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Preface

This text provides an introduction to the theory of the large-scale ocean circula-
tion. There are excellent textbooks on physical oceanography (Pond and Pickard,
1983; OU-staff, 1989; Pickard and Emery, 1990; Tomczak and Godfrey, 1994;
Pedlosky, 1996; Knaus, 1997), and geophysical fluid dynamics (Pedlosky, 1987;
Cushman-Roisin, 1994; Salmon, 1998; Pedlosky, 2003; Mc Williams, 2006; Val-
lis, 2006). However, for a typical course where one wants to focus on the ocean
circulation only at a challenging level for physics and mathematics students, a
combination of material from these books is needed. This text is an attempt into
this direction which has resulted in a book on a level between Pond and Pickard
(1983) and Pedlosky (1996) with much basic material from Pedlosky (1987).

The book consists of four parts. In part I (chapters 1 - 4) a brief introduction
is given into the ocean circulation and the governing equations of ocean flows. In
addition, concepts are introduced that are necessary to describe and understand
the behavior of large-scale ocean currents. In part II (chapters 5 - 10), the theory
of the midlatitude wind-driven ocean circulation is presented. Considering model
development, there is a top-down approach and reduced equations are derived
using asymptotic methods and scaling. Part III (chapters 11 - 12) focusses on the
understanding of equatorial currents and El Niño. In the last part IV, chapters
13 - 16, basic theory of planetary scale flows is presented, covering topics as
the thermocline problem, the Antarctic Circumpolar Current, the Arctic Ocean
circulation and the stability of the thermohaline circulation.

Additional material both in broadening (indicated by a B) and deepening (indi-
cated by a D) of the topics discussed is indicated in separated blocks. At the end
of each chapter several exercises are formulated and pointers to these exercises
appear in the left margin of the main text. Many of these exercises are aimed to
further develop methodological skills and to become familiar with the physical
concepts. New material is introduced in only a few of these exercises. Solutions
to the exercises are available at the website of the book at

http://www.phys.uu.nl/∼dijkstra/DO

v



vi DYNAMICAL OCEANOGRAPHY

It should be possible to go through this text with an elementary knowledge
of mathematics and physics. Mathematical techniques such as Green’s functions
and the method of inner and outer expansions are presented using elementary
examples. The use of proper asymptotic methods requires dimensionless equa-
tions while for understanding of physical concepts dimensional quantities are best
suited. Throughout the text I therefore have used a strict *-subscript notation to
indicate dimensional dependent quantities except in chapters where only dimen-
sional quantities are used. In this way reduced model equations, such as the quasi-
geostrophic model in chapter 5, are derived using dimensionless quantities and the
dimensional result is stated afterwards. Results and models which are frequently
used in the literature are presented in separate boxes for easy reference. Important
issues can also be found in the Summary boxes at the end of each chapter.

I hope that students and interested researchers will like the way I have chosen
to present the material and find this book a useful addition.

SEPTEMBER 2007, UTRECHT
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Physical oceanography is the study of the physics of the oceans and seas
and is thus part of geophysics. Other oceanographic disciplines are bio-
logical oceanography and chemical oceanography. Over the last decades,
physical oceanography has developed from a descriptive to an explanatory
and predictive science and has matured within the field of environmental
physics. In section 1.1, a brief description is given of the bathymetry of
the ocean basins. Some historical notes on the exploration of the oceans
are provided in section 1.2. In section 1.3, an introduction is given into
the properties of seawater with focus on the concepts of static stability,
potential temperature and the T -S diagram. Furthermore, a first peak of
the global sea surface temperature and sea surface salinity distributions is
given.

1.1. The ocean basins
The Earth is a spheroid, i.e., a sphere that is flattened somewhat near

the poles compared to the equator, due to the action of the centrifugal
force. Some characteristics of the Earth which are relevant for physical
oceanography are provided in Table 1.1. At the moment there are accu-
rate data sets of the surface relief of the Earth. An important data set
is the ETOPO bathymetry, which is available now at 2′ resolution (see
http://www.gfdl.noaa.gov/products/vis/data/datasets/etopo2 topography.html). In
Fig. 1.1, a plot of the 5′ data set (ETOPO5) is provided using plotting software
from http://iridl.ldeo.columbia.edu/. The global ocean consists of three intercon-
nected basins: the Pacific Ocean, the Atlantic Ocean and the Indian Ocean. The
largest connection between the basins is in the Southern Hemisphere; part of this
connection is unblocked by continents. A much smaller connection between the
Pacific and the Indian Ocean exists through the Indonesian Straits. A connec-
tion also exists in the Northern Hemisphere between the Pacific and the Atlantic
through the shallow Bering Strait.

A typical ocean basin starts from the coast, with the continental margin extend-
ing to a depth of about 200 m. In width, this margin can vary between several
tens to hundreds of kilometers. Further from the coast there is usually an abrupt
transition from the continental margin to the continental slope, the latter with a
slope of about 5 to 10%. The continental slope connects to the deep basin which
has a typical slope of 0.01 to 0.1%. The deep sea plains are sometimes intersected
by undersea mountain ridges, such as the Mid-Atlantic ridge, and deep trenches,
such as the Marianas trench near the Philippines.

The majority of the surface of the Earth (70.8%) is covered by ocean water
(361×106 km2) The volume of land that extends above sea level is about 108 km3
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Figure 1.1. Ocean bathymetry as plotted from the ETOPO5 global bathymetry dataset; the color
scale below indicates the depth below sea level.

Characteristic Value
Average radius 6.37 × 106 m

Angular velocity 7.5 × 10−5 s−1

Total volume 1.37 × 109 km3

Total mass 5.97 × 1024 kg
Total surface area 5.10 × 1014 m2

Ocean surface area 3.61 × 1014 m2

Mean ocean depth 3.8 × 103 m
Mean land elevation 8.4 × 102 m

Table 1.1. Some characteristic properties of the Earth relevant for physical oceanography.

and the volume of seawater is about 14 × 108 km3. In the Northern Hemisphere
about 60% of the surface is ocean and 40% is land. In the Southern Hemisphere
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the ocean surface is much more dominant with about 80% being ocean (Fig. 1.2).
As we will see later in this book, this equatorial asymmetry in land-sea contrast is
important to understanding the differences in the ocean circulation and its effect
on climate in both hemispheres. The average depth of the ocean (about 3800 m)

-80

-60

-40

-20

0

20

40

60

80

0 20 40 60 80 100

Fraction (% of ocean surface)

L
at

it
u

d
e

Figure 1.2. Fraction (in % of the total surface) covered by the ocean as a function of latitude.

is more than a factor of 1000 times smaller than the width of the ocean basins.
In plots of measured or modeled quantities in physical oceanography the vertical
scale is usually greatly exaggerated with respect to the horizontal scale.

Additional Material

B: Chapter 3 on the ‘Sea Floor and its Sediments’ (in particular the sections
3.1-3.2) of Duxbury et al. (2000) provides a broader view on the ocean basin
bathymetry and its connection to geodynamical processes with many color
figures. An elementary introduction can also be found in chapter 2 of OU-
staff (2004b).
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1.2. Exploration of the oceans
In section 1.2.1 we mention some of the important facts of oceanographic his-

tory. The availability of data in the modern era and the relatively easy processing
of all these data today is discussed in section 1.2.2.

1.2.1. A tiny bit of history
Both the Vikings and the Polynesians made use of their experience with ocean

currents in their exploration of new areas in the Atlantic and Pacific, respectively.
The Normans for example had settlements near New Foundland around the year
1000 AD and travelled back and forth to their home country using Atlantic cur-
rents.

First documented knowledge on the ocean currents was gathered during the
expeditions of Christopher Columbus (1492–1494), Vasco da Gama (1497–1499)
and Ferdinand Magellan (1519–1522). Columbus pioneered the measurements
of currents in the Atlantic. These measurements were continued by James Cook
(1728–1779) on the ships the Endeavour, the Resolution and the Adventure, and
by Charles Darwin (1809–1882) on the Beagle. It was James Clark Ross and John
Ross who crossed the Arctic and Antarctic with the Victory, the Isabella and the
Erebus.

The first map of the Gulf Stream was made in 1769 by Benjamin Franklin and
Timothy Folger (Fig. 1.3) and was motivated by the problem to reduce the time
to cross the Atlantic. Each ship captain was advised to follow the Gulf Stream
to Britain and to avoid it when going back to the United States. It is quite likely
that the existence of the Gulf Stream contributed to the discovery of America.
In Columbus’ time, wood and other objects frequently appeared on the coast of
Norway, Scotland and Ireland. For someone like Columbus this may have lead to
the idea that there had to be land westward of Europe.

An important discovery was made in 1751 near 24◦N in the Atlantic by Henry
Ellis, captain of a British slave transport vessel. Using a new instrument, that had
been developed by British preacher Stephen Hales, he measured the temperature
of the deep ocean and found that the deep water was unexpectedly cold. Although
the impact of these measurements would become clear only two centuries later,
Ellis had discovered a characteristic of the global ocean circulation: deep water
is relatively cold everywhere. Until that time, it was believed that the heat would
have diffused from the surface to deep layers. This riddle was solved by Count
Rumford in the early 1800s: the cold water sinks in polar seas and moves equa-
torward through deep currents.

In the 19th century, many incidental measurements on ships followed which
were collected and analyzed by the American scientist Maury (1806-1873).
Maury was the first to make detailed maps of winds and currents and wrote the
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Figure 1.3. The Franklin-Folger map of the Gulf Stream made in 1769.

first book on Physical Oceanography entitled: The Physical Geography of the Sea;
he is usually called the first physical oceanographer.

The famous Challenger expedition (December 1872 - May 1876) was mainly
motivated by biological scientific questions. One of the hypotheses was the so-
called ‘Azoic’ hypothesis stating that there would be no ocean life in the deep
ocean because of the high pressure and the lack of light. Under leadership of
Wyville Thomson, a ‘consortium’ of scientists performed measurements includ-
ing 492 profiles of temperature along the route. During the expedition 4717 new
species were discovered and the ‘Azoic’ hypothesis was falsified. The Challenger
expedition concluded with a 50-volume report containing a wealth of oceano-
graphical information.

It took until 1925 for a dedicated physical oceanographic expedition was or-
ganized. From 1925-1927, the German Meteor expedition collected many mea-
surements of temperature and salinity over a large area in the Atlantic. The CTD
(Conductivity, Temperature, Depth), the instrument to accurately and simultane-
ously measure conductivity of seawater (and hence salinity) and temperature, was
not invented until 1955 by Bruce Hamon and Neil Brown.

During the International Geophysical Year in 1957-1958 international cooper-
ation between different countries grew and measurements were done over a rela-
tively large ocean domain. Many details of the sea surface temperature during the
1957 El Niño, for example, were measured and it appeared that the sea surface
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temperature was anomalously high over a much larger area of the Pacific than
previously thought. This lead Jacob Bjerknes to the discovery of the connection
between changes in the equatorial trade winds and those in the sea surface temper-
ature in the eastern Pacific. It also provided the first clear example of the important
role of the ocean circulation in the climate system.

1.2.2. The modern era

The World Ocean Circulation Experiment (WOCE) was operational from 1985-
1995 and aimed to measure, describe, model and understand the global ocean
circulation. Along many sections hydrographic measurements (temperature,
salinity) have been collected and several of these sections have been repeated
two or three times to determine long term variations in temperature and salin-
ity. The data are freely available through the website http://whpo.ucsd.edu/ and
can be viewed and analyzed relatively easily by using, for example, the Ocean
Data View software (http://odv.awi-bremerhaven.de/) or the Java Ocean Atlas
(http://odf.ucsd.edu/joa/). The WOCE program also contained a large compo-
nent dedicated to ocean modeling and there are now a dozen or so ocean models
available to the community. Other large-scale international programs in which the
study of the oceans was central were the Tropical Ocean Atmosphere Program
(TOGA) and the (still ongoing) Climate Variability (CLIVAR) project.

The first satellite for oceanographic research, the SEASAT, was launched in
1978. Although the satellite was only operational for one month, important mea-
surements of the sea surface topography were performed through radar altimetry.
With instruments on a satellite there is the possibility for global coverage of the
ocean surface (remote sensing). Measurements of the sea surface height (TOPEX,
ERS), surface chlorophyll concentration (SeaWiFs) and sea surface temperature
(AVHRR) are now routinely performed and can be downloaded from the internet
(see http://topex-www.jpl.nasa.gov/).

First steps have been taken now towards an ocean global observing system. For
example, ARGO is a global array of 3,000 free-drifting profiling floats that mea-
sures the temperature and salinity of the upper 2000 m of the ocean. This allows,
for the first time, continuous monitoring of the temperature, salinity, and velocity
of the upper ocean, with all data being relayed and made publicly available within
hours after collection (see http://www.argo.ucsd.edu/).

An overview of all data available is provided by the NOAA National Oceano-
graphic Data Center (http://www.nodc.noaa.gov/index.html) where all links are
provided to the locations of the different data sets.
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Additional Material

B: A brief but interesting overview of the history of oceanography can be read
in the Prologue of Duxbury et al. (2000). Chapter 1.3 of WOCE (2001) pro-
vides a good impression on the origin, development and conduct of WOCE. A
historical overview of the developments in physical oceanography since 1950
can be found in (Jochum and Murtugudde, 2006).

1.3. Characteristics of seawater
Many of the unique features of the oceans can be attributed to the special prop-

erties of water itself. The water molecule (H2O) is composed of two hydrogen
atoms which are connected through an oxygen atom. The water molecule has a
clear asymmetric structure because the axes between the H atoms and O atom in-
tersect at an angle of 105◦. As a consequence, the electric charge in the H2O is
anisotropic providing the water molecule with an electric dipole moment. Water
can dissolve more substances than any other liquid on Earth which explains the
presence of many ions in the ocean and the high salinity of ocean water.

Because of its large electric dipole moment, water molecules form chains
through hydrogen bonds. This means that water has an extremely high surface
tension compared to other liquids. One of the effects of this high surface tension
is the occurrence of capillary waves on the ocean surface. These waves play an
important role in transferring momentum between the atmosphere and the ocean.
Another consequence of the chain formation is the high specific heat and large
latent heat of evaporation of water. The heat absorbing capacity is increased by
the transparency of water to sunlight; only a small part of the solar radiation is
reflected at the sea surface. The oceans therefore have a large thermal inertia and
play an important role in the storage and transport of heat in the climate system.

1.3.1. Salinity
Sea water consists of a dilute solution of ions, such as Cl− and Mg2+. In a

certain volume element, let there be n − 1 of these ion types with masses mi, i =
1, · · · , n − 1 and indicate the mass of the water by mn. The total mass m and the
mass fractions ci, i = 1, · · · , n − 1 are then given by

n∑

k=1

mk = m ; ck =
mk

m
→

n∑

k=1

ck = 1. (1.1)

It is an experimental fact that the relative composition of the different ions is
constant in seawater far from continental boundaries. Actually, this was one of
the discoveries of the Challenger expedition (cf. section 1.2). It indicates that the
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ocean water is well mixed over geological time scales. This motivates to define
the salinity S and the water fraction W as

S =
1
m

n−1∑

k=1

mk ; W =
mn

m
, (1.2)

such that all mass fractions can be expressed as ck = λkS, k = 1, · · · , n− 1 with

λk =
mk∑n−1
l=1 ml

→
n−1∑

k=1

λk = 1 ; S + W = 1. (1.3)

In this way, seawater can be considered as a two-component liquid (water and
salt) in which there is only one independent variable, the salinity S.

In early times, the salinity was determined from samples of seawater through
titration of chloride ions (Cl−) and the use of the constant relationship between
chloride content Cl and salinity S, given by

S = 1.806 Cl. (1.4)

Nowadays one determines the salinity through the electrical conductivity of a par-
ticular seawater sample which is much more accurate than the titration method.
For the open ocean, a typical value of the salinity is 35 gram of salt per kg of
seawater, also indicated as S = 35 ppt (parts per thousand). Often the Practical
Salinity Unit (psu), defined as the ratio of the conductivity of the sample and a
standard NaCl solution, is used as a measure of the salinity; values in psu hardly
differ from those in ppt (Sppt = 1.004867Spsu).

1.3.2. The surface distribution of temperature and
salinity

A still often used climatology of temperature and salinity data is the Levitus and
Boyer multivolume ocean atlas (Levitus and Boyer, 1994; Levitus et al., 1994).
This multivolume atlas presents global, objectively analyzed fields of major ocean
parameters on a one-degree latitude-longitude grid for selected standard depth
levels from the sea surface to 5500 m depth. Work to date includes quality control
of historical in-situ temperature, salinity, oxygen, phosphate, nitrate, and silicate
data and the preparation of one-degree latitude-longitude mean fields for each of
these parameters. A more modern data set is from Gouretski and Koltermann
(2004) and these data can be conveniently inspected and plotted using the Ocean
Data View software (http://odv.awi-bremerhaven.de/).

From the Gouretski and Koltermann (2004) data, the mean sea surface tem-
perature of the ocean is plotted in Fig. 1.4a. At mid-latitudes, the temperature
at the western part of each basin is substantially warmer than that at the eastern
side. At high latitudes in the Atlantic Ocean, the water in the Norwegian Sea is
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relatively warm compared to water at the same latitude in the northern Pacific.
There is a marked temperature gradient in the equatorial Pacific with a relatively
cold tongue in the east and a relatively warm pool in the west. In Fig. 1.4b, the

(a)

(b)

Figure 1.4. Pattern of the mean (a) sea surface temperature and (b) sea surface salinity of the
ocean as plotted using the ODV software and the Gouretski and Koltermann (2004) gridded ocean
data atlas.

mean sea surface salinity is plotted. The spatial structure of the sea surface salin-
ity is strongly coupled to the pattern of evaporation, precipitation and inflow of
freshwater through rivers and the melting of ice. As we will see in chapter 2,
the subtropical Atlantic is an area where evaporation is larger than precipitation
giving a relatively high sea surface salinity. The average salinity is larger in the
Atlantic than in the Pacific. In the Southern Ocean the salinity is zonally very uni-
form. Extreme values of sea surface salinity occur in the Red Sea (values larger
than 40 ppt) due to large evaporation and the East Sea between Sweden and Fin-
land (values of about 7 ppt), the latter due to the large inflow of freshwater from
rivers and the small exchange with the Atlantic.
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1.3.3. T - S diagrams and water masses
Salinity is a very important controlling agent of the density of ocean water

which increases with increasing salinity. Apart from the salinity, the temperature
T also exerts an influence on the density of ocean water. When pure water is
heated, the velocities of the water molecules increase which leads to thermal ex-
pansion. The supplied energy is also used for the formation of hydrogen bridges
which leads to thermal compression. The combination of both effects causes the
maximum density of pure water at 4◦C, instead of at the freezing point.

Increasing salinity values decrease the freezing temperature of seawater
(Fig. 1.5). Also the temperature at which a maximum density occurs decreases
with increasing salinity and at S = 24.695 ppt both temperatures are equal to T
= -1.332 ◦C. A lake therefore freezes more easily than an ocean surface. In the
motionless freshwater of the lake the upper water column can be cooled from 4◦C
to 0◦C with no resulting mixing. In the salty ocean, mixing would result imme-
diately and the whole water column needs to be cooled to induce ice formation.
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Figure 1.5. Plot of the freezing temperature and the temperature at maximum density versus the
salinity.

During a hydrographic CTD measurement both temperature and salinity
(through conductivity) are recorded as a function of depth, while depth is recorded
indirectly through a pressure sensor. Salinity can be determined with an accu-
racy of 0.005 ppt and temperature with an accuracy of 0.005◦C. The vertical
salinity differences in the deep ocean are usually very small and hence accurate
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measurement is important because of the large effect on the density distribution
in the water column.

A typical result of hydrographic measurements is shown in Fig. 1.6, where the
temperature (Fig. 1.6a) and salinity (Fig. 1.6b) are plotted along the WOCE A16
section in the Atlantic (Fig. 1.6c). From these plots, one can observe that the
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Figure 1.6. (a)Temperature and (b) Salinity along the A16 section (c) of the WOCE program as
plotted using the ODV software and the Gouretski and Koltermann (2004) gridded ocean data atlas.

vertical distribution of ocean water properties seems to be organized into differ-
ent layers. For example, the water from the south (pink in Fig. 1.6a) having a
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temperature near 0◦C seems to sink downward from Antarctica and then extends
northward along the bottom of the Atlantic (this is the so-called Antarctic Bottom
Water or AABW).

For one station along a specific section, an important result of hydrographic
measurements is a so-called T -S curve; an example of such a curve measured
along the WOCE A16 section (which is at 12◦N in Fig. 1.6) is shown in Fig. 1.7.
At this station, the temperature decreases monotonically with depth (Fig. 1.7a)
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Figure 1.7. Data from station 129 (12◦N, 21◦W) along the A16 section of the WOCE program.
(a) Temperature versus depth; (b) Salinity versus depth. (c) T -S diagram. (d) Densities σt (solid)
and σθ (dashed) versus depth.

and the salinity has a minimum at about 800 m depth (Fig. 1.7b).
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Water Mass T (◦C) S (ppt)
North Atlantic Deep Water (NADW) 2-4 34.9-35.0

Antarctic Bottom Water (AABW) -0.5 - 0 34.6 - 34.7
Antarctic Intermediate Water (AAIW) 3-4 34.2 - 34.3

Table 1.2. Range of characteristic properties from several water masses in the Atlantic.

It appears that certain volumes of water with particular T -S characteristics can
be found in the hydrographic measurements. The characteristics of these so-called

Ex. 1.1

water masses can be traced great distances from the locations at which they were
formed. This is because the water is advected through the ocean basins without
much mixing. For example, part of the North Atlantic Deep Water (NADW) is
formed in the Greenland-Iceland-Norwegian seas through cooling of the upper
layers of the ocean and subsequent vigorous vertical mixing. The NADW has a
temperature range of 2 - 4 ◦C and its salinity is in the range of 34.9 - 35.0 ppt. In
the T -S diagram at 12◦N in the Atlantic (Fig. 1.7c) the NADW is found at a depth
of 1500 m. In this way, the NADW can be identified even in the South Atlantic,
which indicates the existence of a large-scale ocean circulation system. The T -S
characteristics of some important water masses are given in Table 1.7.

Ex. 1.2

1.3.4. Static stability
As soon as the in-situ temperature T , salinity S and the pressure p of a water

parcel are known, its density can be determined through the equation of state ρ =
ρ(T, S, p). This equation of state is determined accurately in the laboratory and
a standard UNESCO formula exists (Fofonoff and Millard, 1983) with modern
modifications of it (McDougall et al., 2003; Jackett et al., 2006).

Instead of the actual density, many relative density differences are used in the
literature. Often a relative density σt (kgm−3) is used defined by

σt = ρ(T, S, 0) − 1000. (1.5)

This is the value of the density with respect to pure water at the mean atmospheric
pressure at sea level. A plot of σt over a range of T -S values is shown in Fig. 1.8
where the standard UNESCO formula was used in (1.5). As can be seen the
sensitivity of the density versus temperature decreases in colder water. Hence in
polar areas the influence of salinity on the density is larger than in tropical areas.

A complication is that seawater is slightly compressible. With each meter depth
in the ocean, the pressure increases by 0.1 Pa and hence the temperature of a
water parcel will increase with depth just by adiabatic (without the addition of
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Figure 1.8. Contour plot of the density σt versus temperature T and salinity S using the UN-
ESCO formula (Fofonoff and Millard, 1983).

heat) compression since work is imposed on the parcel. On the other hand, the
temperature of a water parcel will decrease when it is raised adiabatically in the
ocean. In the deep ocean, in particular where vertical temperature variations are
very small, it is important to correct for compressibility effects to obtain the right
picture of the vertical density profile. To account for compressibility effects, the
concept of potential temperature ϑ is introduced. It is defined as that temperature
a sample of sea water would obtain when adiabatically raised to the surface.

The relation between potential temperature and in-situ temperature follows
Ex. 1.3

from considering the vertical movement of water parcels in a background strat-
ification determined by a density profile ρ(z). At a vertical level z = −zi the in
situ properties (Fig. 1.9) of the water are (ρi, Si, Ti) and the pressure is pi. As-
sume that a water parcel with volume ΔV moves downwards from z = −z1 to
z = −z2 adiabatically and without changes in salinity. The temperature in the wa-
ter parcel, say TW

2 , is only changed through adiabatic compression (TW
2 > T1).

Hence,

TW
2 = T1 + ΔT , ΔT =

∂T

∂p
Δp, (1.6)
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Figure 1.9. Sketch to clarify the concept of static stability. The in-situ temperature and salinity of
the water parcel are indicated by the superscript W . The water parcel moves vertically only adia-
batically and without change in salinity from z = −z1 to z = −z2. It experiences an acceleration
az due to the density difference between the parcel and the background density field.

where ∂T/∂p > 0 indicates the adiabatic compression and Δp = p2 − p1 > 0
the vertical pressure difference. Because of near hydrostatic equilibrium we have
(with Δz = −z2 + z1 < 0):

Δp = −ρ1gΔz, (1.7)

such that

ΔT = −∂T

∂p
ρ1 g Δz ≡ −ΓΔz. (1.8)

In the equation above, Γ (◦C m−1) is the adiabatic temperature gradient. Down to
a depth of 1 km, the value of Γ is negligibly small. At a depth of 5 km, the value
of Γ ≈ 0.14 ◦C/km and at a depth of 9 km the value of Γ ≈ 0.19 ◦C/km.

By Newton’s second law, the vertical acceleration az on the parcel with volume
ΔV is

az =
ΔV g(ρ2 − ρW

2 )
ΔV ρW

2

. (1.9)

In the limit Δz → 0, we use

ρ2 = ρ1+
∂ρ

∂z |z=−z1

Δz+. . . = ρ1+
[

∂ρ

∂S

∂S

∂z
+

∂ρ

∂T

∂T

∂z
+

∂ρ

∂p

∂p

∂z

]

z=−z1

Δz+. . . ,

(1.10)
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and

ρW
2 = ρ1 +

∂ρ

∂z

W

|z=−z1

Δz + . . . = ρ1 +
[
−Γ

∂ρW

∂T
+

∂ρW

∂p

∂p

∂z

]

z=−z1

Δz + . . . .

(1.11)
As the variations in T and S are small, ∂ρW /∂p ≈ ∂ρ/∂p and we find that as

Δz → 0

az =
g

ρ1

[
∂ρ

∂S

∂S

∂z
+

∂ρ

∂T
(
∂T

∂z
+ Γ)

]
Δz. (1.12)

The quantity E = −az/(g Δz) is defined as the static stability of the water
column and with (1.12) it follows (with ρ = ρ1) that

E = −1
ρ

[
∂ρ

∂S

∂S

∂z
+

∂ρ

∂T
(
∂T

∂z
+ Γ)

]
. (1.13)

When E > 0 (and hence az < 0), then the water column is statically stable since
the force on the water parcel is in the opposite direction to the initial movement.
The water parcel will return towards its initial position and in fact, oscillatory

Ex. 1.4

motion can result, with the Brunt-Väisälä (or buoyancy) frequency N defined by

N2 = gE. (1.14)

Values of E in the upper 1000 m of the open ocean are in the range 10−6 – 10−5

m−1. Below this depth, values of E can decrease to 10−7 m−1 in trenches; here
∂S/∂z is small and hence E → 0 implies that ∂T/∂z = −Γ. Thus the in-situ
temperature changes at great depth are mainly due to pressure changes.

The potential temperature is the in-situ temperature corrected for the adiabatic
temperature gradient Γ and by good approximation given by ϑ = T +Γz. Hence,

E = −1
ρ

∂σϑ

∂z
, (1.15)

where the potential density σϑ (kgm−3) is defined as

σϑ = ρ(ϑ, S, 0) − 1000. (1.16)

The concept of potential temperature is important to determine whether the water
column is stably stratified or not. When the relative density σt as in (1.5) is used,
compressibility effects are completely neglected. The difference between σt and
σϑ is illustrated with the data of the WOCE A16 section in Fig. 1.7d. The profile
of σt would indicate that the water column is statically unstable at depth, but
σϑ correctly indicates that it is indeed statically stable: the in situ temperature
increase at depth is only due compressibility effects.
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Characteristic Notation Value
Reference density ρ0 1.0 × 103 kgm−3

Heat Capacity Cp 4.2 × 103 Jkg−1K−1

Thermal expansion coefficient αT 1.0 × 10−4 K−1

Haline expansion coefficient αS 7.6 × 10−4 −
Kinematic viscosity ν 1.0 × 10−6 m2s−1.

Table 1.3. Typical values of characteristic parameters of seawater.

Additional Material

B: There is plenty of material on static stability and about T -S diagrams and their
interpretation, An elementary introduction can be found the chapters 2 to 4 of
OU-staff (2004a) and section 6.4 of OU-staff (1989). To become more familiar
with temperature and salinity distributions in the ocean basins, download the
Ocean Data View software from http://odv.awi-bremerhaven.de/ and view the
Gouretski and Koltermann (2004) ocean atlas. Alternatively, you can explore
the Levitus data sets by making plots of the temperature and salinity fields at
http://iridl.ldeo.columbia.edu/SOURCES/.LEVITUS94/.

D: Chapter 1 in Emery and Thomson (2004) provides an overview of the type of
measurements performed in physical oceanography and the analysis meth-
ods of these data. Appendix 3 of Gill (1982) lists formula’s for the full UN-
ESCO equation of state, for the potential temperature, for the specific heat
and for the freezing point of seawater. You can practice with the concepts
of potential temperature, static stability and water masses by making the ex-
ercises at http://gyre.umeoce.maine.edu/physicalocean/Tomczak/index2.html
where also the textbook of R. Steward can be downloaded (see also
http://oceanworld.tamu.edu/ocean410/ocng410 text book.html).

An accurate evaluation of the equation of state is also important to compute the
speed of sound cs, defined by

cs = (
∂ρ

∂p
)S,ϑ (1.17)

evaluated at constant potential temperature and constant salinity. A thorough dis-
cussion is given in Wright (1997) where also a comparison is made of the different
equations of state. Often approximations of the equation of state ρ = ρ(T, S, p)
such as a linear equation of state, i.e.,

ρ = ρ0(1 − αT (T − T0) + βS(S − S0)), (1.18)
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are adequate. In the equation above, ρ0, T0 and S0 are a reference density, a ref-
erence salinity and a reference temperature. The two expansion coefficients αT

and αS are both positive as the density increases with both decreasing temperature
and increasing salinity. Several typical properties of seawater are summarized in
Table 1.9. Nonlinearities in the equation of state can, however, lead to interesting
phenomena such as cabelling (where the two water masses mix and the resulting
water mass is heavier that each of them) and thermobaricity (the thermal expan-
sion coefficient increases with depth).

Ex. 1.5
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Summary

Salinity is defined as the mass fraction of all ions in seawater and its
units are ppt (parts for thousand) or psu (practical salinity unit).

The potential temperature ϑ of a water parcel is that temperature that
would be obtained when the parcel is adiabatically raised to the sur-
face. It is always lower than the in-situ temperature because water is
compressed at depth. A rough approximation is ϑ = T − Γ d where
d is depth (in meter) and Γ ≈ 0.15◦C/m is the adiabatic temperature
gradient.

The static stability of seawater is measured through its local buoyancy
frequency

N2 = −g

ρ

∂σϑ

∂z
≈ −g

ρ

[
∂ρ

∂S

∂S

∂z
+

∂ρ

∂T
(
∂T

∂z
+ Γ)

]

where σϑ is the potential density. If N2 < 0 the water column is
statically unstable.

A T -S diagram is a parameter curve in the T −S space with depth (or
pressure) as the parameter. In these diagrams, typical extrema can be
associated with particular water masses.
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1.4. Exercises on chapter 1

(1.1) Mixing

A water mass A, with a temperature TA = 5◦C and a salinity SA = 35.5 ppt,
is mixed with a water mass B, with a temperature TB = 2◦C and a salinity
SB = 34.5 ppt. The resulting water has a temperature of 3◦C and a salinity of
34.85 ppt.

a. Calculate the volume ratio of the water masses A and B in the mixture.

b. How can one determine this ratio graphically using a T -S diagram?

(1.2) Potential temperature

Consider in the table below some in-situ measurements of the temperature and
salinity at a certain location in the Atlantic.

Depth(m) Temperature (◦C) Salinity (ppt)
0 18.909 32.574
1000 2.697 34.410
2000 1.868 34.600
3000 1.528 34.661
4000 1.456 34.679
5000 1.503 34.686
5460 1.547 34.688

a. Investigate whether the water column is statically stable when a linear
equation of state is assumed (with αT = 10−4K−1 and αS = 7.6 × 10−4).

b. Why is the pressure dependence in the equation of state here important?

c. Determine the potential temperature as a function of depth for these
measurements.

d. Is the water column statically stable?

A water parcel with an in-situ temperature of T = 10◦C and a salinity of
S = 35 ppt moves adiabatically and without salinity changes from a depth of
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2 km to a depth of 5 km.

e. What is the in-situ temperature and the potential temperature of the parcel
at the final depth?

(1.3) Buoyancy frequency

Consider a stratified water column with a density profile ρ(z).

a. Derive the equation of motion for a water parcel that, without any exchange
of heat and salt with its environment, is subjected to a small initial vertical
displacement.

b. At t = 0, the position of the parcel is z = z0 and the velocity of the parcel
is zero. Show that the buoyancy frequency N can be seen as the characteristic
oscillation frequency of the water parcel in a stably stratified water column.

c. Consider now the same situation but in the presence of friction that is lin-
early related to the velocity of the water parcel. Derive in this case also the
equation of motion for the water parcel. When is the water column unstably
stratified?

(1.4) Neutral surface and neutral density

The concept of a neutral surface is important when we consider the (small
scale) mixing processes between water masses.

a. Argue that the local mixing in the ocean is much larger along a surface of
constant density than perpendicular to this surface.

Neutral directions are the directions in which a parcel can move in an adiabatic
and isohaline manner without altering its buoyancy, i.e., neutral directions are
parallel to lines of constant buoyancy.

b. For a linear equation of state, show that neutral directions are orthogonal
to the vector ∇ρ where ρ is the local density. How can one identify these
directions in a typical T -S diagram such as Fig. 1.8?

c. With a nonlinear equation of state, it is necessary to perform the gradient
operation that removes pressure effects, just as is done for static stability. Show
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that neutral directions are orthogonal to the vector n with

n = ∇ϑ (
∂ρ

∂ϑ
)S,p + ∇S (

∂ρ

∂S
)ϑ,p

where ϑ is the potential temperature. Argue that n is the normal of the local
potential density surface.

d. Determine the vertical component of the vector n expressed in terms of
N2.

Neutral surfaces represent an accumulation of tangents to locally referenced
potential density surfaces. These neutral density surfaces, defined by a value
of the neutral density γn, are essentially a continuous analog of the discrete
potential density surfaces referred to at various pressures.

e. Argue why γn is not only a function of T, S and p but also of latitude and
longitude.

(1.5) Nonlinear equation of state

A water mass A with potential temperature ϑA = 2◦C and a salinity SA =
34.04 ppt, is mixed with a water mass B, having a potential temperature ϑB =
8.5◦C and a salinity SB = 36.0 ppt.

a. If these water masses are mixed in about equal proportions, what is so
special about the resulting mixture? This phenomenon is called cabelling.

b. Illustrate this effect, called cabelling, graphically in a T -S (or ϑ-S) diagram.

In general, the thermal expansion coefficient depends on pressure. Consider
an equation of state of the form

ρ = ρ0(1 − αT (z)(T − T0) + βS(S − S0))

with αT (z) = α0 − α1z (z is negative) and α0 and α1 are positive constants.
Consider now two water parcels with temperature T1, salinity S1 and T2,
salinity S2, respectively. At the sea surface the densities of both parcels are
the same (i.e., ρ1 = ρ(T1, S1, 0) = ρ(T2, S2, 0) = ρ2).

c. Determine the density difference of both parcels at a depth h.

d. How can this effect, called thermobaricity, be illustrated graphically using
T -S diagrams?
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The main characteristics of the surface forcing of the ocean circulation,
the annual mean patterns of wind stress, heat flux and freshwater flux are
presented section 2.1. In section 2.2, the patterns of the ocean currents in
the different basins are described with a focus on major surface currents,
the thermohaline circulation and the associated heat- and freshwater trans-
port. Section 2.3 provides an overview of the role of the ocean circulation
in climate and naturally leads to the formulation of a few central prob-
lems in dynamical oceanography (section 2.4) which help to organize the
structure of this book.

2.1. Forcing fields
The large-scale ocean circulation is driven by a surface wind stress and affected

by surface fluxes of heat and fresh water.

2.1.1. Wind stress
The magnitude and direction of the shear stress which is exerted by the atmo-

spheric winds on the ocean surface depends on the wind velocities. If U = (U, V )
indicates the wind velocity at 10 m height, then a semi-empirical bulk relation
provides the wind stress τ (in Pa = Nm−2) as

Ex. 2.1

τ = CDρa|U|U, (2.1)

where ρa = 1.2 kgm3 is the density of air and CD ≈ 10−3 is a friction coefficient
that depends on |U|.

The annual average zonal wind stress on the ocean-atmosphere surface from
observations (Trenberth et al., 1989) is plotted in Fig. 2.1a and the meridional
wind stress in Fig. 2.1b. Maximum values of the zonal wind stress are about 0.3
Pa and occur at the Southern Hemisphere. Typical values are about 0.1 Pa and the
general pattern is the same during the whole year: strong easterly winds near the
equator, strong westerly winds at midlatitudes and weaker easterly winds at polar
latitudes. The meridional wind stress is somewhat weaker than the zonal wind
stress and largest values occur over the Southern Ocean.

2.1.2. Heat flux
The total net heat flux Qoa in Wm−2 which is positive when heat is transported

from the atmosphere into the ocean) is the sum of several components, i.e.,

Qoa = QH + QE + QLW + QSW . (2.2)

In this expression, QH is the sensible heat flux, QE is the latent heat flux, QLW

is the longwave heat flux and QSW is the shortwave heat flux. The magnitudes
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(a)

(b)

Figure 2.1. Annual average of the zonal wind stress (a) and the meridional wind stress (b) on the
ocean-atmosphere surface. Contour values are in units of 0.1 Pa (in dyn/cm2). This plot was made
using the data and software at http://ingrid.ldeo.columbia.edu/.

of these fluxes can also be estimated by bulk formulae that have the same form as
(2.1).

For example, the sensible heat flux QH is the flux of heat arising through ran-
dom motion near the ocean-atmosphere interface (a ‘diffusive flux’) and it is pro-
portional to the difference between the sea-surface temperature (Ts) and the at-
mospheric temperature (Ta) at a height (za) just above this interface. The bulk
formula estimating this flux is given by

Ex. 2.2

QH = ρaCpaCH |U|(Ts − (Ta + γaza)) (2.3)
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where ρa (kgm−3) and Cpa (Jkg−1K−1) are the density and heat capacity of air,
|U| (ms−1) is the wind speed, γa (Km−1) the (dry or moist) atmospheric ‘lapse
rate’ and CH is a dimensionless semi-empirical transfer coefficient.

In Fig. 2.2, the long term monthly average values of Qoa are plotted for January,
April, July and October (Oberhuber, 1988). In the annual average, there is a net
positive heat flux in the equatorial region and a net negative flux at high latitudes.
In the Southern (Northern) Hemisphere summer, there is a net input of heat in the
Southern (Northern) Hemisphere. Maximum values of Qoa are about 200 Wm−2

and these occur in January over areas near the Gulf Stream (Atlantic) (Fig. 2.2)
and Kuroshio (Pacific), providing a strong zonal asymmetry of the heat flux in
both basins. There are other sources of heat into the oceans, such as geothermal
activity, but these are of minor importance for the ocean circulation and we will
not consider them.

2.1.3. Freshwater flux
The evaporation E (ms−1) over the ocean can be estimated by a bulk formula

of the form

E = CE |U|(qs − qa), (2.4)

where CE is a semi-empirical exchange coefficient, qa the relative humidity in
the atmosphere and qs the saturation relative humidity at the ocean-atmosphere
boundary. The latent heat flux QE in (2.2) is related to the evaporation E throughEx. 2.3

QL = ρaLfE, (2.5)

where Lf = 2.5 × 106 Jkg−1 is the latent heat of evaporation. It is hard to
determine the precipitation, P , from direct observations and in most cases an
empirical relation between precipitation and temperature/pressure is used.

The long term monthly mean values of P − E in mm/month are plotted for
January, April, July and October (Oberhuber, 1988) in Fig. 2.3. There is quite
a zonally uniform pattern in the Atlantic as well as in the Pacific. The zones of
high precipitation near the equator are related to the Intertropical Convergence
Zone (ITCZ) and can be seen as maxima of the freshwater flux with amplitudes
of 200 mm/month (Fig. 2.3b). The central midlatitude regions are zones of net
evaporation and there is less seasonal variation than in the heat flux. At very high
latitudes precipitation again dominates over evaporation. There are other sources
of freshwater into the oceans, such as river outflow, but these are again of minor
importance for the large-scale ocean circulation and we will not consider them.
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(a)

(b)

(c)

(d)

Figure 2.2. Seasonal mean net downward heat flux in Wm−2 (positive when heat is transferred
into the ocean) in (a) January, (b) April, (c) July, and (d) October.
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(a)

(b)

(c)

(d)

Figure 2.3. Seasonal mean net climatological monthly mean freshwater flux in mm/month for (a)
January, (b) April, (c) July, and (d) October.
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Additional Material

D: To become more familiar with the forcing fields and their variabil-
ity it is recommended to explore several data sets available at
http://iridl.ldeo.columbia.edu/SOURCES/. Elementary statistical analysis can
be performed on many of these data sets at Geert Jan van Oldenborgh’s Cli-
mate Explorer, available at http://climexp.knmi.nl/.

2.2. Ocean circulation
Apart from hydrographic measurements from which current information can be

extracted (we will see later how this is done), there are two methods to measure
currents directly. One of these methods is measurement of the Eulerian velocity,
for example with a current meter along a rope in the water column. The other is the
measurement of the velocity of an object that moves with the currents using, for
example, a satellite tracking system. Examples of these Lagrangian instruments
are the ARGO floats which were briefly mentioned at the end of section 1.2. These
floats can also be positioned at a certain density level.

2.2.1. Surface circulation
A textbook picture (Peixoto and Oort, 1992) of the surface ocean cir-

culation is plotted in Fig. 2.4a together with a snapshot of a surface
speed plot (Fig. 2.4b) computed with the high-resolution NLOM model (see
http://www7320.nrlssc.navy.mil/global nlom32/skill.html). As could be ex-
pected, the surface currents follow the patterns of the annual mean winds
(Fig. 2.1a), with westward currents near the equator and eastward currents at mid-
latitudes. This gives the characteristic ‘gyre’ flows in the Atlantic and the Pacific,
consisting of a subpolar gyre and a subtropical gyre. Strong poleward currents ap-
pear at the western side of each ocean basin with the Gulf Stream, the Kuroshio,
the Brazil Current and the Agulhas Current being pronounced examples.

A short overview of volume transports of some major currents in the ocean is
provided in Table 2.1. These transports are measured in Sverdrup (SV) where 1 Sv
= 106 m3s−1, or about one million ‘bathtubs’ per second. The zonal width of these
currents is relative small compared to the zonal basin scale (Fig. 2.4b). At the
eastern side of each basin are less strong equatorward currents with the California
Current, the Canary Current and the Benguela Current as clear examples. In

Ex. 2.4

the equatorial region there are strong currents both in the Pacific and Atlantic: the
South Equatorial Currents and North Equatorial Currents (Fig. 2.4). North of the
equator (at about 4◦N), there is the Equatorial Countercurrent that is directed in
the opposite direction to the wind.

Finally, the Antarctic Circumpolar Current (ACC) is the dominant current in
the Southern Hemisphere and a comparable current does not exist in the Northern
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(a)

(b)

Figure 2.4. (a) Sketch of surface circulation pattern of the ocean (Peixoto and Oort,
1992). (b) Snapshot of a ‘nowcast’ of the surface current speed in the NLOM model (see
http://www7320.nrlssc.navy.mil/global nlom32/skill.html) at 1/32◦ resolution for December 27,
2006.
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Some typical transports of the prominent ocean currents
Current Location Value

Agulhas 31◦S, Indian 70 Sv
Gulf Stream 26◦N, Atlantic 32 Sv
Gulf Stream 38◦N, Atlantic 88 Sv
Brazil Current 28◦S, Atlantic 22 Sv
Kuroshio 25◦N, Pacific 22 Sv
Kuroshio 33◦N, Pacific 57 Sv
East Australian 30◦S, Pacific 22 Sv
ACC 150◦E, Southern 147 Sv
ACC 60◦E, Southern 137 Sv

Table 2.1. Some typical transports of the ocean currents as determined during WOCE.

Hemisphere. This is mainly caused by the positioning of the continents: near the
location of the Drake Passage (55-70◦S) the ocean is zonally unblocked. This
leads to very large transports and peculiar phenomena which will be discussed in
chapter 14.

2.2.2. Thermohaline circulation
The circulation of heat and salt through the ocean basins is called the thermo-

haline circulation (Wunsch, 2002), usually abbreviated with THC. In the North
Atlantic, the relatively warm and saline water transported by the Gulf Stream is
cooled on its way northward. In certain regions, i.e., the Greenland Sea and the
Labrador Sea, the water column becomes unstably stratified and vigorous con-
vection occurs. The net effect is the formation the North Atlantic Deep Water
(NADW), see section 1.3.2. This water is transported southwards at mid-depth
as a deep (western boundary) current, it crosses the equator and connects to the
water masses of the Southern Ocean.

In the North-Pacific, no deep water is formed because the surface waters are
too fresh and hence there is no equivalent of NADW. Deep water formation also
occurs near the Antarctic continent. In the Pacific, this inflow of heavy deep water
is compensated by a surface return flow which again connects with water masses
in the Southern Ocean. The water mass entering the Atlantic from the south is
the Antarctic Bottom Water (AABW). The outflow of NADW in the Atlantic is,
apart from AABW, also compensated by surface inflow of water coming from the
Indian Ocean and water coming through Drake Passage (Schmitz, 1995).

The three-dimensional flow of different water masses through the ocean basins
has been termed (Gordon, 1986; Broecker, 1991) the ‘Ocean Conveyor’. Analysis
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of the section data of the World Ocean Circulation Experiment (WOCE, see
http://oceanic.cms.udel.edu/woce/), combined with inversion studies have lead to
a more detailed estimates over the volume transports through the world oceans
(Ganachaud and Wunsch, 2000). In Fig. 2.5, the zonally integrated mass trans-
ports over several sections are presented. The boundaries between water masses
are taken as certain neutral density surfaces (defined by a value of the quantity γn

as introduced in exercise 1.5). In this way, the red arrows represent the surface
transport, the blue arrows show the transport at intermediate depths and the green
arrows indicate the transport in the deep ocean. Upwelling and downwelling are
indicated by arrows and dots, respectively, and their color indicates from which
level the water is originating.

Figure 2.5. Estimated section integrated mass transports as determined in Ganachaud and Wun-
sch (2000) from the WOCE data. See text for an explanation of the colors and symbols.

2.2.3. Heat and freshwater transport
The oceans take care of about one third to a half of the total meridional heat

transport of the combined ocean-atmosphere system. The total meridional heat
transport due to the ocean circulation is difficult to measure directly and only a
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few estimates at certain locations have been obtained. Recent inversion studies of
the WOCE-section data have lead to section estimates (Ganachaud and Wunsch,
2000) and a summary result is presented in Fig. 2.6. The meridional heat transport

Figure 2.6. Estimated section averaged heat transport over WOCE sections (Ganachaud and
Wunsch, 2000); the WOCE sections are indicated by their number (such as P12, A8, etc.), and 1
PW = 1015W.

in the Atlantic is positive over the whole basin with a maximum of about 1.3 PW
at about 30◦N. In the Pacific, the heat transport is at least a factor two smaller
than in the Atlantic. The meridional heat transport in the Indian Ocean is mainly
southward with a maximum of 1.8 PW near 20◦S. Best estimates of the total

Ex. 2.5

zonally averaged meridional heat transport are also presented in Ganachaud and
Wunsch (2000) with a maximal northward heat transport of about 1.8 PW at 30◦N.

Estimates of the freshwater transport through the oceans are also hard to ob-
tain from direct observations. As can be seen from the surface freshwater flux
in Fig. 2.3, there is net precipitation in the tropical and high-latitude regions,
and there is net evaporation in the subtropics. The ocean circulation must trans-
port water into the evaporative zones and away from precipitation regions for
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compensation. Wijffels et al. (1992) present estimates of this freshwater trans-
port (Fig. 2.7) and demonstrate the importance of the Bering Strait throughflow.
The Pacific is a net precipitative basin with much of the gain occurring between
0-15 ◦N (the location of the Intertropical Convergence Zone), while the Atlantic
and Indian Ocean are evaporative basins. Over the whole North Atlantic Ocean,
there is southward transport of freshwater with a maximum of about 0.95 × 109

kgs−1 at 60◦N.

Figure 2.7. Meridional freshwater transport (in 109 kg/s) in the ocean, with the quantities FP

and FA referring to the freshwater transport of the Pacific-Indian through flow and that of the
Antarctic Circumpolar Current at Drake Passage, respectively (Wijffels et al., 1992).

Additional Material

B: Chapter 7 of Knaus (1997) provides many pictures of property (temperature,
salinity, velocity) sections of western boundary currents and equatorial cur-
rents. Descriptions of western boundary currents and water masses can also
be found in introductory textbooks on physical oceanography (Pickard and
Emery, 1990; Tomczak and Godfrey, 1994).

D: For a better understanding of the thermohaline circulation it is useful to read
the short paper Wunsch (2002). In-depth descriptions on heat- and fresh-
water transports are presented in section 6.1 (Ocean Heat Transport by H.
Bryden) and section 6.2 (Ocean Transport of Fresh Water (by. S. Wijffels) of
WOCE (2001).
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2.3. Oceans and climate
Over the last decades, many techniques have become available to construct cli-

matic records from geological, biological and physical data. These proxy records
show that climate variations on different time scales have been very common in
the past. The enormous amount of instrumental data that has been collected over
the last 150 years contributes in turn to a more and more complete picture of the
climate system’s variability.

An ‘artist’s rendering’ of climate variability on all time scales is provided in
Fig. 2.8. This power spectrum is not computed directly by spectral analysis from
a time series of a given climatic quantity, such as (local or global) temperature;
indeed, there is no single time series that is 107 years long and has a sampling
interval of hours, as the figure would suggest. Fig. 2.8, however, includes infor-
mation obtained by analyzing the spectral content of many different time series,
for example the 335 year long record of Central England temperatures. Figure

Figure 2.8. An ‘artist’s rendering’ of the composite power spectrum of climate variability show-
ing the amount of variance in each frequency range (from Dijkstra and Ghil (2005)).

2.8 reflects three types of variability: (i) sharp lines that correspond to periodi-
cally forced variations, at one day and one year; (ii) broader peaks that arise from
internal modes of variability; and (iii) a continuous portion of the spectrum that
reflects stochastically forced variations, as well as deterministic chaos.
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Between the two sharp lines at 1 day and 1 year lies the synoptic variability of
midlatitude weather systems, concentrated at 3–7 days, as well as intraseasonal
variability, i.e. variability that occurs on the time scale of 1–3 months. The lat-
ter is also called low-frequency atmospheric variability, a name that refers to the
fact that this variability has longer periods than the life cycle of weather systems.
Immediately to the left of the seasonal cycle in Fig. 2.8 lies interannual, i.e. year-
to-year, variability. An important component of this variability is the El Niño vari-
ability in the Tropical Pacific. About every four years, over a period of about one
year, the sea-surface temperature (SST) in the Eastern Tropical Pacific increases
by a few degrees. This is associated with variations (the Southern Oscillation) in
the tropical Pacific surface winds, the trade winds. The ENSO (El Niño/Southern
Oscillation) phenomenon arises through large-scale interaction between the equa-
torial Pacific and the global atmosphere. The last strong El Niño was in 1997 and
the pattern of the sea surface temperature anomalies is plotted in Fig. 2.9. The
temperature of the eastern Pacific was in December 1997 about 6◦C higher than
normal.

Figure 2.9. Sea surface temperature anomaly with respect to a long term mean for December
1997, at the maximum of the 1997-1998 El Nino (from Dijkstra and Burgers (2002)).

The energy in the spectrum at interdecadal time scales is likely due to the cli-
mate system’s internal processes: each spectral component can be associated, at
least tentatively, with a mode of interannual or interdecadal variability. Inter-
decadal variability is present in global records, instrumental as well as paleocli-
matic. The leftmost part of Fig. 2.8 represents paleoclimatic variability. The in-
formation summarized there comes exclusively from proxy indicators of climate.
These include coral records and tree rings for the historic past, as well as marine-
sediment and ice-core records for the last two million years of Earth history, the
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Quaternary. During this period an alternation of warmer and colder episodes,
called glaciation cycles, is prominent. The cyclicity is manifest in the broad peaks
present in Fig. 2.8 between roughly 1 kyr and 1 Myr. The three peaks at about 20
kyr, 40 kyr and 400 kyr reflect variations in Earth’s orbit. These orbital variations
represent, respectively, variations in precession, obliquity and eccentricity, three
parameters that are used to describe Earth’s orbit.

Within these glaciation cycles there are higher frequency oscillations promi-
nent in the North Atlantic paleoclimatic records. These are the Bond cycle, with
a near-periodicity of 6–7 kyr, and the Dansgaard-Oeschger cycles providing the
peak at around 1–2.5 kyr in Fig. 2.8. Rapid changes in temperature, of up one half
of the amplitude of a typical glacial-interglacial temperature difference, occur in
a Dansgaard-Oeschger cycle. Progressive cooling through several of these cycles
followed by an abrupt warming defines the Bond cycle. In North Atlantic sedi-
ment cores, the coldest part of each Bond cycle is marked by a so-called Heinrich
layer that is rich in ice-rafted debris.

In summary, climate variations range from the large-amplitude climatic transi-
tions of the past millennia to small-amplitude fluctuations on shorter time scales.
Several frequencies of variability are clearly related to forcing mechanisms. How-
ever, variability can also arise through processes internal in the climate system
giving rise to frequencies that are not directly related to the temporal variability of
the forcing. Examples are the 3–7 day synoptic variability of midlatitude weather
which arises through instability of the zonal mean circulation of atmosphere, and
the El Niño variability whose frequency is set by the coupled interaction and in-
trinsic processes in the equatorial Pacific and atmosphere. Internal variability on
longer time scales can occur through instabilities of states in the slower compo-
nents of the climate system, such as the ocean and the ice caps. Hence, even if the
external, i.e., solar, forcing was steady, the climate system would display variabil-
ity on many time scales. It is the response of this highly complex climate system
to relatively small time-dependent variations in the forcing, which is recorded in
the sediment cores, ice cores and instrumental data.

Changes in the ocean circulation can influence climate substantially through the
impact on the meridional heat transport. This can affect mean global temperature
and precipitation, as well as their distribution in space and time. Subtle changes
in the North Atlantic surface circulation and interactions with the overlying at-
mosphere are thought to be involved in the interannual and interdecadal climate
variability as observed in the instrumental record of the last century. Changes in
the circulation may also occur on a global scale, involving a transition to different
large-scale patterns. Such changes may have been involved in the large-amplitude
climate variations of the past, like the Dansgaard-Oeschger cycles.

This is enough motivation to try to understand the ocean circulation in more
detail! In the following chapters of part I we make a first step by (i) identification
of the characteristic time scales of the different processes and (ii) presenting the
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governing equations of ocean flows. First, however, we conclude this chapter by
specifying the problems which motivate the structure of the text in parts II, III and
IV of this book.

Additional Material

B: We here touched upon the role of the ocean circulation in climate and the pro-
cesses of climate variability in general. For the interested reader, the beauti-
fully illustrated book of Ruddiman (2001) is a must. For bedtime reading on
the subject I recommend the books by Imbrie and Imbrie (1986) and Bigg
(2003).

2.4. Motivating problems and approach
There are several fundamental problems in dynamical oceanography and a few

will be discussed in this book. In this section, we sketch the different problems and
also the approach followed in later chapters to formulate theories for the particular
phenomena.

2.4.1. Western boundary currents
Looking at the surface currents as in Fig. 2.4b, we see relatively strong currents

at the western side of ocean basins and relatively weak ones at the eastern side
of these basins. This is illustrated in Fig. 2.10, where a snapshot of the observed
sea surface temperature in part of the North Atlantic Ocean is plotted. As the
wind-stress field is fairly zonally homogeneous (Fig. 2.1) there is no immediate
cause of the zonal asymmetry in the currents. If we restrict to the Atlantic Ocean,
this leads to the following specific questions:

Why does a Gulf Stream exist, i.e., why is the flow western intensified?

Which physical processes control the volume transport of the Gulf Stream?

In the chapters 5 and 6, these issues will be discussed and answers based on the
principles of geophysical fluid dynamics will be formulated. The special case of a
steady wind-driven ocean flow of constant density water is considered in chapter
5. Using asymptotic methods, the pure wind-driven flow field can be divided
into several regions where different equations (balances) apply. The solutions in
each of these regions can be determined analytically and the resulting flow field
is analyzed in chapter 6.

2.4.2. Internal variability of ocean flows
Flows in the ocean are far from stationary and vary on many time scales. A

direct cause of this temporal variability are variations in external forcing, such
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Figure 2.10. ‘Multipass image’ (from a satellite) of the sea surface temperature in the Gulf
Stream region in May 1996 (image from http://fermi.jhuapl.edu/avhrr/).

as that in the wind-stress forcing. Such wind-stress changes cause waves that
propagate through the flow field inducing an adjustment of the flow to the new
forcing conditions. Temporal variations can also occur because mean flows are
sensitive to disturbances which leads to instabilities. These instabilities are at
the origin of the formation of meanders and eddies in currents such as the Gulf
Stream (Fig. 2.10). These considerations lead to the following specific questions:

How is the adjustment of an ocean flow when the wind stress is changing?

What type of instabilities of ocean currents exist and what are the physical
mechanisms of destabilization?

In the chapters 7 to 10, these questions are addressed and again an attempt is
made to answer them from principles of geophysical fluid dynamics. To formulate
the problems, basic material on the propagation of free waves in a rotating liquid
is needed and this is introduced in chapter 7. This theory on free waves is then
generalized in chapter 8 to a stratified flow in a midlatitude ocean basin. To study
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the adjustment process, the special problem of an initially motionless flow that is
suddenly accelerated by a time-independent wind stress is studied in chapter 9.
The results provide an answer to the first question above. In chapter 10, the linear
stability of a zonal current is studied with focus on two instability mechanisms:
barotropic and baroclinic instability.

2.4.3. Special equatorial phenomena
Fig. 2.4 indicates that there are peculiar equatorial currents both in the Pacific

and Atlantic. Although the wind stress is directed westward, eastward currents
are observed north of the equator. Another special phenomenon is the occurrence,
about once every four years, of El Niño in the Pacific (and not in the Atlantic)
with a sea-surface temperature anomaly pattern as in Fig. 2.9. This leads to the
following specific questions:

Why are there equatorial countercurrents in the Atlantic and Pacific?

Which physical processes are responsible for the occurrence of El Niño?

Theory for the steady equatorial ocean circulation, the equatorial free waves
and the equatorial adjustment, is presented in chapter 11. It appears that the an-
swer to the first question is directly related to the meridional gradients of the zonal
wind stress. The material in chapter 11 is necessary to understand the dynamics of
El Niño as a phenomenon arising through coupled processes between the equa-
torial Pacific and the global atmosphere. The coupled processes will be presented
in chapter 12 and a basic explanation of the anomaly patterns and time scale of El
Niño is given.

2.4.4. Phenomena on the planetary scale
In the last chapters, we consider ocean flow phenomena on a planetary

scale. The Antarctic Circumpolar Current (ACC) is special in that there are
no lateral boundaries over a substantial part of the flow domain. This leads
to interesting dynamics controlling the volume transport of the current. The
Arctic Ocean circulation is special because of the strong coupling between
the spatial pattern of the ocean currents and the bottom topography. On this
planetary scale, there is an intricate coupling between the large-scale flow and
the density gradients in the ocean water. The flow transports heat and salt and
thus causes density differences. The density gradients in turn cause pressure
gradients and hence influence the large-scale flow. One of the phenomena
that is caused by this large-scale nonlinear interaction is the thermocline, the
region with a relatively large vertical temperature (and density) gradient in the
ocean (cf. Fig. f:A16). The sharp transitions in the temperature during the
Dansgaard-Oeschger cycles (section 2.3) may have been caused by changes in
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the meridional heat transport caused by changes in the global ocean circulation.
The thermohaline circulation is indeed sensitive to perturbations, in particular to
those in the surface freshwater flux, because the atmosphere reacts differently to
salt perturbations than to heat perturbations. This leads to the following questions:

Why is there a thermocline and what processes control its shape?

What controls the volume transport of the ACC near Drake Passage?

Why are the surface currents in the Arctic Ocean closely following topographic
features?

Is the global ocean circulation sensitive to perturbations and if yes, what are
the physical processes responsible?

All these questions can only be partially answered by current theory on the
planetary circulation. The basis for the theory is presented in chapter 13 where
two theories for the existence of the thermocline are studied. In both theories, the
different effect that temperature and salt on the flow can be neglected and only the
density field is important. The theory is used in chapter 14 to study the effect of
bottom topography on the ACC and slightly extended in chapter 15 to address the
dynamical processes controlling the Arctic Ocean circulation. The stability of the
large-scale circulation is subject of chapter 16 and theory on the stability of the
thermohaline circulation is presented with the help of conceptual models.
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Summary

The large-scale annual mean wind-stress pattern, forcing the ocean
circulation, consists of easterlies in the Tropics, westerlies in the mid-
latitudes and again easterlies at high latitudes. The maximum zonal
wind stress is about 0.1 Pa in the tropics and 0.2 Pa at midlatitudes.

The large-scale net annual mean heat flux pattern, affecting the ocean
circulation, shows maximum positive values of about 100 Wm−2 in
the tropics and minimum values of -150 Wm−2 at high latitudes in
particular in regions of western boundary currents.

The large-scale annual mean net freshwater flux pattern, affecting
the ocean circulation, shows maximum positive values of about 150
mm/month in the tropics (related to the ITCZ) and minimum values of
about -100 mm/month at midlatitudes. At high latitudes, the freshwa-
ter is again positive with maximum values of about 50 mm/month

Major surface currents in the ocean basins are western intensified, i.e.,
they are all located at the western part of each ocean basin. Typical
current velocities in the western boundary currents are 1 ms−1 and a
typical transport is 50 Sv.

The ocean circulation transports heat poleward with a maximum of
about 1.5 PW at 25◦N in the North Atlantic. Heat transport is north-
ward over the whole Atlantic while over the Pacific and Indian Ocean
it is poleward in each hemisphere.

Ocean processes play a role in the climate system on time scales from
months to thousands of years.
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2.5. Exercises on chapter 2

(2.1) Wind stress

The average windspeed over the region of the Antarctic Circumpolar Current
is about 10 ms−1.

a. Give an estimate of the mean wind-stress at the ocean-atmosphere interface
in this region.

b. If a unidirectional wind blows over an initially motionless water column of
10 m thickness, then calculate the flow velocity in this layer after 3 hours.

(2.2) Heat flux

Consider a layer of seawater (heat capacity Cp = 4.2 × 103 Jkg−1K−1,
density ρ = 1.027 × 103 kgm−3) with a thickness of 1 m and an area of 104

m2.

a. Determine how much energy is needed to raise the temperature of the water
by 1 ◦C.

Assume that a constant heat flux Q = 400 Wm−2 is applied over the area, for
example due to a warmer atmosphere.

b. How long does it take before the temperature of the water layer has
increased by 1 ◦C?

During a seasonal cycle, there is heat uptake in an ocean region whereas
during the winter the opposite occurs.

c. Assume that the upper 100 m of ocean water is in contact with the
atmosphere and that the seasonal temperature change in the water is about
10◦C. Calculate the amount of energy which is stored (released) by the water
layer.

d. Determine the same quantity for a land surface and a seasonal temperature
change of about 20◦C.
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(2.3) Freshwater balance

Consider the freshwater balance for a thin layer of seawater. The salinity of the
water changes through evaporation (E) and precipitation (P ). The dimension
of E and P is m3s−1 per m2 and hence ms−1. Let Fw be the vertical flux of salt
at the bottom of the layer, which has a salinity S and let FS be the freshwater
flux through the ocean-atmosphere surface.

a. Show that the balance of freshwater can be written as

E − P + Fw(1 − S) = 0

b. Show that the salt balance can be written as

FwS = FS

c. Derive that, to a good approximation, the flux FS can be written as

FS = (E − P )S

(2.4) Gulf Stream

Warm western boundary currents such as the Gulf Stream play an important
role in the climate system because they contribute to the meridional heat trans-
port. The Gulf Stream is about 100 km wide, has a depth of 500 m and has a
mean speed of 1 ms−1.

a. Provide an estimate of the volume transport of the Gulf Stream (in Sv).

The meridional heat transport due to the Gulf Stream depends on the temper-
ature difference between the warm water flowing northward and the cooler
water flowing southward.

b. Provide an estimate of this temperature difference and of the meridional
heat transport associated with the Gulf Stream.

(2.5) Mediterranean Outflow

Consider a flow over a sill such as that in the Gibraltar Strait. West of the sill,
the water has a salinity Sa = 36.2 ppt and east of the sill (in the Mediterranean
basin), the salinity is Sb = 38.4 ppt. The volume flux of the surface transport
of the Atlantic to Mediterranean is Qa, and the reverse transport at depth has
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a volume flux of Qb (both in Sv).

a. Derive that

Qa + Qb = 0
QaSa + QbSb = (E − P )AS0

where S0 is a mean salinity in the Mediterranean basin.

Assume that the difference between evaporation E and precipitation P is
about 1 m/year over the Mediterranean basin. This basin has an area of about
A = 2.5 × 1012 m2.

b. Determine Qa and Qb for the Mediterranean outflow and compare the result
to values in the literature.
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In this chapter the basis for a quantitative description of ocean currents
will be provided. After an introduction into the relevant temporal and
spatial scales in section 3.1, the governing equations of ocean flows, rep-
resenting the momentum, mass, heat and salt balances are given in section
3.2. These are the equations of ‘classical physics’, describing the flow of a
rotating stratified layer of ocean water on a sphere. It comes as no surprise
that the general equations are much too complicated to solve analytically
and even with numerical solution techniques all the relevant scales of mo-
tion cannot be resolved on current supercomputers. Fortunately there are
many flow phenomena in the ocean that can be described by less com-
plicated balances in the flow field. These phenomena can be understood
using simplified forms of the equations. As explained in section 3.3, with
help of the specific time scales of processes one can a priori identify some
dominant balances.

3.1. A priori scales
From the description of the ocean basins and the surface forcing in the previous

chapters we know that the ocean flows occur in a relatively thin layer of rotating
liquid, that the liquid is stratified, that the flows are forced at the surface by wind
stress and buoyancy flux, and that the domain is bounded by continental geometry
and bottom topography.

It is important to consider characteristic time scales of each of the processes
involved in the circulation. As we will see later, processes with comparable char-
acteristic time scales are able to balance. The characteristic time scale of a par-
ticular process is also directly related to the contribution of that process to the
vorticity balance of the flow. Note that if the velocity vector of the flow is indi-
cated by v, the vorticity vector is given by ω = ∇ ∧ v (where ∧ indicates the
vector cross product) and has therefore a dimension of s−1. A process with a rel-
atively small characteristic time scale hence provides a larger contribution to the
vorticity balance in the flow than a process with a larger characteristic time scale.

3.1.1. Geometry
Let L and U be characteristic horizontal length and velocity scales of a par-

ticular ocean flow. For example, L could be the width of an ocean basin (L =
O(106) m) and U a maximum depth-averaged horizontal velocity in the basin (U
= O(10−2 ms−1)). The advective time scale τa associated with the flow is then
given by

τa =
L

U
. (3.1)
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This indicates the time scale on which the ocean flow with velocity U changes
on the length scale L. Typical values for the basin scale flow above would be
τa = 108 s ≈ 3 years.

The advective time scale also has an interpretation in terms of vorticity, which
is related to velocity gradients. Consider a flow with a gradient in the horizontal
velocity U over a length scale L. This gradient provides a contribution to the
vertical component of the vorticity vector of magnitude U/L = 1/τa (Fig. 3.1a).

Ex. 3.1
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Figure 3.1. Illustration of (a) the advective time scale τa, (b) the inertial time scale τf and (c)
the time scale τβ where f1 = f0 + β0L.

The average depth of the ocean, say D, is much smaller than the horizontal
scale of a typical ocean flow. This introduces a small parameter δ = D/L, the
so-called aspect ratio; for basin scale flows with L = 106 m and D = 103 m the
value of δ ≈ 10−3.

3.1.2. Coriolis acceleration
For an observer who moves along with the rotating Earth (with rotation vector

Ω and angular velocity Ω = |Ω|) ocean flows with a velocity field v are influenced
through an apparent acceleration ac, the Coriolis acceleration, given by ac =
−2Ω ∧ v.

To briefly illustrate the appearance of the Coriolis acceleration consider
(Fig. 3.2a) an orthogonal basis (e1, e2, e3) at a point P (with latitude θ) at the
surface of the Earth. The vector OP connecting the point P and the origin O of
an inertial coordinate system, the latter located at the center of the Earth, rotates
with an angular velocity Ω = |Ω|. Hence a fluid parcel that does not have any
velocity with respect to the rotating basis moves with an angular velocity Ω with
respect to the inertial coordinate system.

Ex. 3.2

The coordinate system, with e3 locally vertical (i.e., opposite to the direction
of the effective gravity, the resultant of the gravity force and the centrifugal force)
rotates with respect to O (Fig. 3.2b) as follows (in the northern hemisphere),

The horizontal plane spanned by e1 and e2 rotates counterclockwise with an-
gular velocity Ω sin θ.
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(a) (b)

Figure 3.2. (a) Situation of a coordinate system (e1, e2, e3) on a rotating sphere, with φ indi-
cating longitude, θ latitude and r the distance of a point to the center of the Earth. (b) Sketch to
determine the Coriolis acceleration in spherical coordinates.

The vertical plane spanned by e1 and e3 rotates clockwise with angular veloc-
ity Ω cos θ.

Consider first the movement of fluid parcels in the horizontal plane (Fig. 3.3).
Within a time Δt the coordinate system (e1, e2) rotates over an angle

α = Δt Ω sin θ. (3.2)

Hence, a parcel which moves at t = 0 uniformly along e2 with velocity v arrives
after a time Δt in point A, with | OA |= vΔt. With respect to the rotating
coordinate system (it becomes (e′1, e

′
2) after a time Δt) the parcel appears to have

undergone an acceleration to the right (in the positive e1 direction). In a time Δt,
the result is the displacement (for small α)

| AA′ |=| OA | sin α ≈| OA | α = v(Δt)2Ω sin θ. (3.3)

The acceleration is uniform in the direction of e1, and when denoted by ac
1, given

by

| AA′ |= 1
2
ac

1(Δt)2. (3.4)

From (3.3) and (3.4) it follows that

ac
1 = 2Ωv sin θ. (3.5)

In the same way, an expression can be derived for the component of the apparent
acceleration in the direction of e2 (Fig. 3.3). A fluid parcel which moves uni-
formly in the e1 direction with velocity u is displaced (with respect to the rotating
coordinate system) over BB′ in a time Δt en hence in the negative e2 direction.
In the same way as in the determination of ac

1, it follows that

| BB′ |= 1
2
ac

2(Δt)2 = − | OB | sinα = −u(Δt)2Ω sin θ, (3.6)
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Figure 3.3. Sketch to help to determine the components ac
1 en ac

2 of the Coriolis acceleration.

and finally
ac

2 = −2Ωu sin θ. (3.7)

It can be shown in the same way that the rotation of the (e1, e3) plane induces an
acceleration of magnitude −2Ωw cos θ in the e1-direction and an acceleration of
magnitude 2Ωu cos θ in the e3 direction. The complete expression of the Coriolis
acceleration hence becomes

ac = −2Ω ∧ v =

⎛

⎝
2Ω(v sin θ − w cos θ)

−2Ωu sin θ
2Ωu cos θ

⎞

⎠ . (3.8)

The horizontal component f = 2Ω sin θ of the Coriolis acceleration is the
most important term affecting the ocean circulation. Its characteristic time scale
is the inertial timescale

τf =
1
f

. (3.9)

Near the equator this time scale increases rapidly and τf reaches a minimum at the
poles. To determine its interpretation in terms of vorticity, consider a fluid parcel
moving on the sphere in the northern hemisphere at a latitude θ0; the Coriolis
acceleration deflects its path to the right which gives a contribution (Fig. 3.1b)
to the vertical component of the vorticity with a magnitude f0 = 2Ω sin θ0. The
inertial time scale is about 104 s at 45◦N .

If the horizontal scale of the motion is so small that we can take a constant
f0 = 2Ω sin θ, we say we use the f -plane approximation. Introduction of a local
coordinate y = (θ − θ0)r0 and then a Taylor series near θ0 gives

f = f0 + β0y + O(θ − θ0)2) ; β0 =
2Ω
r0

cos θ0. (3.10)
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This linear meridional variation of f is part of the β-plane approximation. The
characteristic time scale associated with the meridional variation of the Coriolis
acceleration is

τβ =
1

β0L
. (3.11)

An interpretation in terms in vorticity is again possible (Fig. 3.1c). A water parcel
that moves northward in the northern hemisphere is deflected more strongly at a
more northerly position. This gives a contribution to the vertical component of
the vorticity with a magnitude of β0L. At 45◦N, a value of τβ is 104 s for a flow
with a length scale L = 5000 km.

3.1.3. Stratification
Because the density of ocean water depends on temperature, salinity and pres-

sure, ocean water is stratified. A characteristic quantity of the stratification is the
buoyancy (or Brunt-Väisälä) frequency N , given by

N2 = −g

ρ

∂ρ

∂z
, (3.12)

In a stably stratified water column (N > 0), a fluid parcel can locally depart
from its equilibrium due to a perturbation, but because the restoring force always
counteracts its motion, the parcel will eventually return towards its equilibrium
position. It can, however, overshoot and this behavior will lead to a damped os-
cillation with an oscillation frequency N .

A stable stratification of the water column introduces a characteristic time scale

τs = N−1. (3.13)

The profile of N2 along the WOCE A16 section is plotted in Fig. 3.4 (in cy-
cle/hour). In the upper layers the profile follows that of salinity (see Fig. 1.6).
The time scale τs increases from a minimum of 1/10 hr just below the ocean sur-
face to about 1/2 hr at a depth of 2 km.

The ocean-atmosphere interface is deformable and it can be considered as a
special case of a stratified liquid in which there is a layer of air with thickness D
and constant density ρa situated above a liquid layer also with depth D and density
ρ. The buoyancy frequency N2 can for this case be approximated by

N2 ≈ g(ρ − ρa)/(Dρ), (3.14)

and because ρa/ρ � 1 it follows that N2 ∼= g/D. This introduces the timescale

τg =
√

D/g, (3.15)

which is associated with oscillations in the ocean-atmosphere surface, i.e., long
gravity waves with phase speed c = D/τg =

√
gD. Deformations of the air-sea

interface provide also a contribution to the vorticity balance, as we will see later.
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Figure 3.4. Buoyancy frequency (N) along the WOCE A16 section as plotted using the ODV
software and the Gouretski and Koltermann (2004) gridded ocean data atlas.

3.1.4. Mixing of momentum, heat and salt
.
With ν = 10−6 m2s−1 (Table 1.3) being the kinematic viscosity of water and

U , L characteristic velocity and length scales of the flow, the Reynolds number
Re = UL/ν is the ratio of inertial and viscous accelerations in a liquid. For basin
scale flows in the ocean, with U = 10−1 ms−1 and L = 106 m, a typical value
of the Reynolds number is Re = 1011. This is far above typical critical values of
Re marking transitions from laminar to turbulent flow and hence the ocean flow is
highly turbulent. Molecular viscous effects can be neglected on those scales with
respect to inertial effects.

In turbulent flows there are rapid fluctuations that result in a fast redistribution
of momentum, heat and salt. Because of their apparent random nature these fluc-
tuations have the character of diffusion, but one that is much larger than diffusion
due to molecular processes. In one of the simplest representations of these mixing
processes, called first-order closure, the mixing is represented as being down gra-
dient diffusion with turbulent mixing coefficients (also called ‘eddy viscosities’
and ‘eddy diffusivities’). Contrary to the molecular coefficients, these coefficients
are not a material property but are flow dependent.

In this first-order closure theory, the turbulent flux Ψ of a scalar quantity (for
example, heat) ψ is proportional to the gradient ∇ψ, with mixing coefficient K,
i.e.,

Ψ = −K ∇ ψ. (3.16)

Below, we will indicate the mixing coefficients for momentum with A, and take
those of heat and salt the same and indicate them with K. It should be stressed that
the first-order closure theory is certainly incorrect over large parts of the ocean.
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However, many aspects of the ocean circulation theory developed in later chapters
are eventually independent of the representation of mixing processes and hence
using the simplest one is useful. It may therefore not come as a surprise that
values of the mixing coefficients are not well-known. A rough estimate of the
momentum mixing coefficient is given by the product of the relevant length scale
and velocity scale in the flow. However, in realistic flows these are usually hard to
determine. Because horizontal and vertical length scales differ considerably in the
ocean and the ocean is strongly stratified (inhibiting vertical mixing) horizontal
mixing coefficients are usually orders of magnitude larger than vertical ones. We
use the subscripts H and V to indicate the different coefficients, i.e., AV and AH

for the vertical and horizontal mixing coefficients of momentum.
In this first-order closure theory, the mixing of momentum is represented by

FI = ∇ · T , (3.17)

with T the part of the stress tensor representing shear. The general form of T is

T = AH(∇H ⊗ v + (∇H ⊗ v)T ) + AV (∇z ⊗ v + (∇z ⊗ v)T ), (3.18)

where the superscript T indicates the transpose, ∇H is the horizontal gradient
operator and ∇z = (0, 0, ∂/∂z). The notation ⊗ is the dyadic product

a ⊗ b =

⎛

⎝
a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

⎞

⎠ . (3.19)

Estimates of AH are within the range 10 − 105 m2s−1 and AV varies from
values of 10−5 m2s−1 in the deep ocean to values of 10−1 m2s−1 in the upper
layer. In the same way the mixing of heat and salt is represented as

FT = ρ0Cp(∇H · (KH∇HT ) +
∂

∂z
(KV

∂T

∂z
)), (3.20a)

FS = ρ0(∇H · (KH∇HS) +
∂

∂z
(KV

∂S

∂z
)), (3.20b)

with estimates KV = 10−5 – 10−4 m2s−1 and KH = 10 – 103 m2s−1.
Some form of friction is needed to be able to satisfy boundary conditions, for

example no-slip (zero tangential and normal velocity) conditions on the conti-
nental boundaries and on the bottom topography. In many cases, this leads to
boundary layers (e.g., the Ekman layers) whose thickness depends on the mixing
coefficients. Friction introduces characteristic time scales

τH
w =

L2

AH
; τV

w =
D2

AV
. (3.21)

In vorticity terms: random transport of momentum leads to diffusion of vorticity,
with a magnitude proportional to the mixing coefficients.
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3.1.5. Ratio of scales
Ratios of time scales provide a priori insight into the importance of dynamical

processes in the flow. In a stationary flow, this ratio provides information as to
whether the dynamical processes represented in both time scales are able to bal-
ance. In time-dependent flows, the ratio provides information on which process
contributes most to the tendency of certain quantities in the flow.

Dimensionless parameters can always be written as the ratio of length scales or
the ratio of time scales. For example, the (local) Rossby number ε is the ratio of
τf and τa, according to

ε =
τf

τa
=

U

f0L
. (3.22)

If ε � 1, then the inertial acceleration is much smaller than the Coriolis accelera-
tion, i.e., τa � τf . In the vorticity view the relative vorticity is much smaller than
the planetary vorticity. For motions on a length scale much larger than L = U/f0

the effect of inertia is not important with respect to Coriolis effects.
Another parameter that is important for the large-scale ocean flows in the di-

mensionless quantity β defined by

β =
τa

τβ
=

β0L
2

U
. (3.23)

If β � 1, then the effect of the inertial acceleration on the motion is much smaller
than that due to the gradient in the Coriolis acceleration. In other words, the rela-
tive vorticity is much smaller than the gradient of planetary vorticity; for motions
on a length scale larger than

√
U/β0, effects of inertia can be neglected with

respect to effects due to variations in the Coriolis acceleration.
The Ekman numbers EH and EV , defined by

EH =
AH

fL2
=

τf

τH
w

; EV =
AV

fD2
=

τf

τD
w

, (3.24)

measure the ratio of the acceleration due to friction and the Coriolis acceleration.
If EV � 1, then the vorticity input due to ‘diffusive’ vertical momentum transport
is not important compared to that due to the Coriolis acceleration. As an example,
EH can also be written as EH = (Lw/L)2, where Lw =

√
AH/f is a frictional

length scale. For motions on a much larger length scale than Lw, the effects of
friction can be neglected.

Stratification introduces a dimensionless parameter, the Burger number S, that
can be represented as ratio of length and time scales as,

S = (LD/L)2 =
N2D2

f2L2
=

τ2
f δ2

τ2
s

. (3.25)
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The length scale LD is the internal Rossby deformation radius, given by

LD =
ND

f
, (3.26)

and with N = 10−3 s−1 as a typical value in the midlatitude surface ocean and
D = 4 km, the scale LD = 50 km. For motions on this length scale, the de-
formations of isopycnal (constant density) surfaces provide accelerations that are
comparable to the Coriolis acceleration.

Ex. 3.3

For deformations of the ocean-atmosphere interface with the approximation
(3.14), the Burger number S transforms into the rotational Froude number F with

F−1 =
gD

f2L2
=

R2
D

L2
. (3.27)

Here RD is referred to as the external Rossby deformation radius given by

R2
D =

gD

f2
0

, (3.28)

with typical midlatitude values of R = 1000 km. Deformations of the ocean-
atmosphere interface on this scale cause accelerations comparable to the Coriolis
acceleration.

Additional Material

B: On the Coriolis acceleration and its counter-intuitive effects, see Stommel
and Moore (1989) and chapter 2 of Cushman-Roisin (1994). All the other
processes here are also part of many textbooks such as Cushman-Roisin
(1994). An overview of all processes in which turbulence is involved is pro-
vided in Thorpe (2005).

D: In the sections 10.1-10.5 of Vallis (2006), a thorough discussion is given
on turbulent transport. The modern formulation of mixing processes of mo-
mentum and heat/salt in ocean models is discussed systematically in Griffies
(2004). At this point, his chapter 7 would be useful to read.

3.2. Large-scale balances
In the chapters 1 and 2, we obtained a first impression of the large-scale ocean

circulation and the distribution of ocean temperature and salinity. To understand
these flows our starting point are the local conservation laws on a typical ocean
domain such as a sector of the sphere (Fig. 3.5) which rotates with angular velocity
Ω = |Ω|.
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3.2.1. Equations of motion
The equations of motion for a flow of fluid with density ρ and velocity v (for

an observer moving with the rotating sphere) are

ρ

[
Dv
dt

+ 2Ω ∧ v
]

= −∇p + ρ∇Φ + ρFI , (3.29a)

Dρ

dt
+ ρ∇ · v = 0, (3.29b)

where I will use D/dt to indicate the material derivative given by D/dt = ∂/∂t+
v · ∇, with t the time coordinate. In the equations above, p is the pressure and Φ
the geopotential (∇Φ = −ge3), with g the gravitational acceleration and e3 the
unit vector in the radial direction. The vector FI represents the effect of mixing
due to random (turbulent) small-scale motions as formulated in (3.17).

The left hand side of (3.29a) represents the change in momentum of a fluid
parcel. It is caused by velocity changes of the fluid parcel with time (Dv/dt)
consisting of local velocity changes (∂v/∂t) and the changes due to advection of
the fluid parcel (v ·∇v), and effects induced by the frame of reference, taking into
account the Coriolis acceleration. Terms on the right hand side of (3.29a) repre-
sent the causes of these changes and are given by pressure forces, shear stresses
and volume forces. Equation (3.29b) is the conservation of mass of a particular
fluid parcel when moving with the flow.

Δθ

Δφ

Ω

V

Figure 3.5. Example of a typical subdomain of ocean flow on the sphere.
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Conservation of heat and salt is formulated as

ρCp
DT

dt
= FT + QT , (3.30a)

ρ
DS

dt
= FS + QS , (3.30b)

where FT (Wm−3) and FS (kg m−3s−1) represent the mixing due to turbulent
motions as in (3.20). The terms QT (Wm−3) and QS (kg m−3 s−1) represent the
internal sources/sinks of heat and salt.

The unknown quantities in the equations are the velocity field v, the pressure p,
the density ρ, the temperature T and the salinity S, a total of 7. The last equation
needed to close the system of equations is the equation of state

ρ = ρ(T, S, p), (3.31)

which was discussed at length in chapter 1 (section 1.3).

3.2.2. Spherical coordinates
In traditional fluid mechanics on the sphere, the equations of motion are usually

given in spherical coordinates (r, ϑ, ϕ). In oceanography we work with longitude
φ = −ϕ, latitude θ = π/2 − ϑ and the velocity components in zonal, meridional
and vertical direction are represented as v = (u, v, w). The equations of motion
(3.29) can be written in coordinates (φ, θ, r), using (3.8)), as

Du

dt
+

uw

r
− uv

r
tan θ − 2Ω (v sin θ − w cos θ) =

− 1
ρr cos θ

∂p

∂φ
+ Fφ

I , (3.32a)

Dv

dt
+

wv

r
+

u2

r
tan θ + 2Ωu sin θ =

− 1
ρr

∂p

∂θ
+ Fθ

I , (3.32b)

Dw

dt
− u2 + v2

r
− 2Ωu cos θ =

− 1
ρ

∂p

∂r
− g + Fr

I , (3.32c)

Dρ

dt
+ ρ(

∂w

∂r
+

2w

r
+

1
r cos θ

(
∂(v cos θ)

∂θ
+

∂u

∂φ
)) = 0, (3.32d)

ρCp
DT

dt
= FT + QT , (3.32e)

ρ
DS

dt
= FS + QS , (3.32f)

ρ = ρ(T, S, p), (3.32g)
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with
D

dt
=

∂

∂t
+

u

r cos θ

∂

∂φ
+

v

r

∂

∂θ
+ w

∂

∂r
. (3.33)

Below we will use the vertical coordinate z = r − r0 instead of r, where r0 is
Ex. 3.4

the distance of the mean sea level from the center of the Earth. To close the set
of equations we will use the first-order closure formulation relating the terms F
in the equations above to the gradients of properties, i.e. the relations (3.18) and
(3.20).

3.2.3. Boundary conditions
To obtain a well-defined mathematical problem, boundary conditions have to

be specified. An ocean basin is bounded zonally by continents, and vertically by
bottom topography and the ocean-atmosphere interface (Fig. 3.6). The bottom
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Figure 3.6. Sketch to help define the general boundary conditions at ocean boundaries.

topography is specified as a function

z = −D0 + hb(φ, θ), (3.34)

where D0 is a reference depth. At the bottom both tangential and normal velocities
are zero (no-slip) and there is no large-scale transport of heat and salt. Hence the
boundary conditions at z = −D0 + hb(φ, θ) become

ti.v. = 0 ;
D(z + D0 − hb)

dt
= 0, (3.35a)

n.∇T = 0 ; n · ∇S = 0, (3.35b)

where n is the outward normal and ti, i = 1, 2 the tangent vectors at the bottom.
The eastern and western boundaries can, in most cases, be described by functions
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φe = φe(θ) and φw = φw(θ). On these lateral boundaries, we also assume that
there is no-slip and no transport of heat and salt. This gives the same conditions
as (3.35), where n is now the outward normal on the eastern or western boundary.

The ocean-atmosphere interface is described by

z = h(φ, θ, t), (3.36)

where the average interface position is at z = 0. The tangential stress and the
normal stress are continuous over this interface and the interface is a material
surface. If we denote the atmospheric pressure at the interface by pa(φ, θ, t), the
boundary conditions at z = h(φ, θ, t) become

D

dt
(z − h(φ, θ, t)) = 0, (3.37a)

ρ0AV r
∂

∂r
(
u

r
) +

ρ0AH

r cos θ

∂w

∂φ
= τφ, (3.37b)

ρ0AV r
∂

∂r
(
v

r
) − ρ0AH

r

∂w

∂θ
= τ θ, (3.37c)

p − pa(φ, θ, t) = 0, (3.37d)

where τφ and τ θ (N m−2) are the zonal and meridional component of the wind
stress. In the equations (3.37) already the approximation is made that the curvature
of the surface is very small.

With Qoa (Wm−2) as the net downward heat flux into the ocean, the heat bal-
ance at the interface can be written as

ρCpKV
∂T

∂z
= Qoa, (3.38)

with Cp in J kg−1K−1 and KV in m2s−1. As discussed in chapter 2, changes in
salt can be induced by net changes in evaporation E and precipitation P (both in
ms−1). Therefore, the fresh water balance can be written as

ρKV
∂S

∂z
= (E − P )S0, (3.39)

where S0 is a reference salinity, usually taken as S0 = 35 ppt.

Additional Material

B: A discussion of the governing equations can be found in any textbook on geo-
physical fluid dynamics, (Pedlosky, 1987; Cushman-Roisin, 1994; Salmon,
1998; Mc Williams, 2006; Vallis, 2006). An elementary derivation can be
found in chapter 4 of Gill (1982) and in Batchelor (2000).

B: For those interested in the derivation of the equations from Hamilton’s princi-
ple in mechanics, see chapter I (sections 1-10) in Salmon (1998).
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3.3. Dominant balances
We return to the general equations (3.32) and ask the question whether we can

determine a priori dominant balances of terms in the these equations. Therefore
it is useful to consider the stationary solution of these equations when the water
is motionless. After substitution of v = 0 into (3.32), we find that this solution
(indicated by p̄, T̄ , S̄, ρ̄) must satisfy (with z = r − r0)

∂p̄

∂φ
=

∂p̄

∂θ
= 0, (3.40a)

∂p̄

∂z
= −ρ̄g, (3.40b)

FT +
QT

ρ̄Cp
= 0, (3.40c)

FS +
QS

ρ̄
= 0, (3.40d)

ρ̄ − ρ(p̄, T̄ , S̄) = 0, (3.40e)

where the fact that there is no mixing of momentum when v = 0 has been used.
If QS = QT = 0, then T̄ and S̄ are only functions of z which are determined by
the boundary conditions. The density ρ̄(z) is calculated from (3.40e) and (3.40b)
and determines the hydrostatic pressure p̄(z).

Next we consider deviations from this hydrostatic steady state and introduce
the dynamic pressure p̃ and density ρ̃ such that p = p̄ + p̃ and ρ = ρ̄ + ρ̃. To

Ex. 3.5

estimate the magnitude of these dynamic quantities, we use the time scales τa,
τf and τw. For flows with a horizontal length scale L and a horizontal velocity
scale U , we first consider the horizontal momentum balances. The magnitude
of the inertial accelerations ρv.∇v can be estimated as ρ0U

2/L = ρ0U/τa and
that of the Coriolis accelerations as 2Ωρ0U sin θ = ρ0U/τf . As the time scale
τw is much larger than both τa and τf and τf � τa, the dominant balance must
be between Coriolis acceleration and pressure gradient. But because the Coriolis
acceleration depends on the latitude θ, we have to consider three different cases:

(i) Midlatitude ocean circulation

The flow can be considered near a latitude θ0 �= 0 and it is local so that L/r0 is
small. The scales for dynamic pressure and density are determined in chapters
5 (homogeneous case) and 7 (stratified case) and the governing equations are
reduced according to these scales.

(ii) Equatorial ocean circulation

The flow can be considered locally near the latitude θ0 ≈ 0 and L/r0 is small.
In this case, the Coriolis acceleration at the equator is zero, but it is nonzero
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just north and south of the equator. The scales for dynamic pressure and den-
sity are determined in chapter 11 and the governing equations are reduced
according to these scales.

(iii) Planetary circulation

The flow is on such a large scale that L/r0 is not small. In this case, the
magnitude of the Coriolis acceleration is scaled by its maximum value 2Ω at
θ = π/2. The scales for dynamic pressure and density are determined in
chapter 13 and the governing equations are (unfortunately not much) reduced
according to these scales.

Through the dependence of the Coriolis acceleration on latitude, and the a priori
dominant balance between this acceleration and the pressure gradient, the math-
ematical description of ocean flows is divided naturally into three different prob-
lems. In the remaining chapters this logical division is followed with focus first
on stationary and then on time-dependent flows. Before we turn to the first type
of these flows (at mid-latitude) however, we first consider the concept of vortic-
ity in more detail, since it will play an important role in the interpretation of the
dynamical processes causing a particular type of ocean flow.
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Summary

Processes with the smallest time scales are expected to be most dom-
inant in steady balances. Ratio’s of time scales lead to dimensional
parameters and indicate whether balances in a flow can occur between
different processes. A process with a small time scale is expected to
lead to a large contribution to the vorticity balance in a flow.

For flows with a characteristic horizontal length scale L and a vertical
length scale D, near a certain latitude θ0 (with f0 = 2Ω sin θ0) in
water with a vertical density gradient set by the buoyancy frequency
N , important scales are the inertial time scale τf , the inverse buoyancy
frequency τs and the internal and external radii of deformation (LD

and RD, respectively), defined by

τf =
1
f0

; τs =
1
N

; LD =
ND

f0
; RD =

√
gD

f0

In a stratified, rotating flow with a characteristic horizontal velocity U
the most important dimensionless parameters are the Rossby number
ε, the Burger number S and the rotational Froude number F defined
by

ε =
U

f0L
; S =

N2D2

f2
0 L2

; F =
f2
0 L2

gD
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3.4. Exercises on chapter 3

(3.1) Vorticity

Consider a flow having a width of 200 km directed northward with a maximum
velocity of 2 ms−1 near the latitude 27◦N.

a. Calculate the value of the Coriolis parameter f0 of this flow.

b. Determine a typical value of the relative vorticity of the flow.

c. Provide estimates of the time scales τf , τa and the Rossby number ε.

(3.2) Properties of the Coriolis acceleration

a. Show, in the same way as in section 3.1.2, that the rotation of the (e1, e3)
plane induces an acceleration −2Ωw cos θ in the e1 direction and an accelera-
tion 2Ωu cos θ in the e3 direction.

In section 3.1.2 we derived the expression for the Coriolis acceleration ac.

b. Show that ac ⊥ Ω and ac ⊥ v.

(3.3) Rossby deformation radius

Both the external (RD) and internal (LD) Rossby deformation radii are impor-
tant length scales in the ocean.

a. Use typical values of ocean depth (Fig. 1.1) and buoyancy frequency
(Fig. 3.4) to estimate LD and RD in the Atlantic Ocean at a latitude of 5◦N,
30◦N and 55◦N.

b. Provide a priori arguments whether effects of stratification are important
in (i) the ‘gyre’ circulation, (ii) the mean Gulf Stream, and (iii) rings which
develop from the Gulf Stream (see Fig. 2.10).

c. Same as b. but now for the effects of ocean-atmosphere deformation.
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(3.4) Equations of motion

It is a useful exercise to derive the equations of motion (3.32a-c) from the
specification of the Navier-Stokes equations in spherical coordinates (r, ϑ, ϕ)
such as provided, for example in appendix 2 of Batchelor (2000).

First consider the isotropic case for which AH = AV .

a. Give an explicit expression for the inertial terms in (3.32a).

b. Give an explicit expression for the term Fφ
I in (3.32a).

Next consider the nonisotropic case, but now in Cartesian coordinates.

c. Give an explicit expression for the term Fφ
I in (3.32a) using (3.18).

(3.5) Damped inertial motion

We consider the situation where a particular wind stress has driven a flow in
an ocean basin (containing water of constant density) for a while and then
suddenly ceases. At this point there are no external forces acting on the water.
There is a linear friction damping the motion with a friction coefficient r. The
horizontal momentum equations are

Du

dt
= 2Ωv sinφ − ru

Dv

dt
= −2Ωu sinφ − rv

where D/dt is the material derivative. Assume that a water parcel has a
horizontal velocity (u, v) = (0, v0) at t = 0.

a. Show that
D

dt
(u2 + v2) = −2r(u2 + v2)

We now search for solutions of the form

(u(t), v(t)) = e−rt(c1 sin(αt + Ψ1), c2 cos(αt + Ψ2)).

with constants α, c1, c2 and Ψ2.

b. Determine (u(t), v(t)) and explain what kind of motion of the water parcel
results.
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VORTICITY
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Because the concept of vorticity plays an important role in the interpreta-
tion of the results of ocean models, a special section is devoted to the vor-
ticity equation (section 4.1), the different mechanisms of vorticity trans-
port (section 4.2) and the concept of potential vorticity (section 4.3). The
shallow-water equations are presented in section 4.4 to nicely illustrate
vorticity concepts for flows in thin liquid layers. Here we also see a first
example of scaling and the use of dimensionless equations.

4.1. The vorticity equation
As we have seen in chapter 3, the relative vorticity is the local spin of a fluid

parcel and defined mathematically as ω = ∇∧v. In a rotating frame of reference,
it is useful to define the planetary vorticity as 2Ω and the absolute vorticity ωa =
ω + 2Ω. Streamlines are the integral curves of the instantaneous velocity field

C2

ω

C
1

C
2

C
2

a b

σ

σ '
tangent vector

n

S2

n

V

S
1

Figure 4.1. A vortex tube consisting of vortex lines through a closed curve C1. The mapping
σ : [a, b] ⊂ R → R

3 is a curve which can parameterize a particular vortex line.
Ex. 4.1

and similarly vortex lines are the integral curves of the instantaneous absolute
vorticity field (or more generally, as integral curves of the vector field ωa/ρ ).
Hence, for fixed t0, the range of a curve σ : R → R

3 is a vortex line if

σ′(s) =
ωa

ρ
(t0, σ(s)). (4.1)

A vortex tube consists of vortex lines which pass through a closed curve (Fig. 4.1).
Ex. 4.2
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Because the vorticity field is divergence free, Helmholtz’ theorem states that if C1

and C2 are two closed curves on a vortex tube (Fig. 4.1) then

Γ1 =
∫

C1

v · ds =
∫

C2

v · ds = Γ2, (4.2)

where Γ is the circulation of the velocity field with respect to a closed curve C.
The balance of vorticity follows from the momentum balance (3.29a) by taking

the curl of both sides of the equation. With help of

v · ∇v − ∇v2

2
+ ω ∧ v = 0, (4.3a)

∇∧ (
∇p

ρ
) +

∇ρ ∧∇p

ρ2
= 0, (4.3b)

where v2 = v · v, the vorticity equation is written as

∂ω

∂t
+ ∇∧ ((2Ω + ω) ∧ v) = ρ−2∇ρ ∧∇p + ∇∧ FI . (4.4)

Using ∇ · ω = 0 and ∇∧ (v ∧ ω) = ω · ∇v − ω∇ · v − v · ∇ω, it follows that
(4.4) can be written as

∂ωa

∂t
= −v · ∇ωa + ωa · ∇v − ωa∇ · v +

∇ρ ∧∇p

ρ2
+ ∇∧ FI . (4.5)

This equation shows that the local vorticity can change through advection,
Ex. 4.3

changes in orientation of vortex lines, changes in thickness of vortex tubes, den-
sity (or baroclinic) effects and random mixing (diffusion) of vorticity. Of these,
advection needs no further explanation: the other vorticity changing mechanisms
are considered in the next section.

4.2. Vorticity transport
Using elementary examples, we will present the mechanisms of vortex stretch-

ing, vortex tilting, baroclinic vorticity production and diffusion of vorticity.

4.2.1. Vortex stretching and tilting
Consider in Fig. 4.2 a situation where in a local Cartesian coordinate sys-

tem, the vector ωa is initially parallel to the z-axis, i.e., ωa = (ω1, ω2, ω3)T =
ω̄ (0, 0, 1)T , where the superscript T indicates transpose and ω̄ > 0. If the com-
ponents of the velocity vector are defined as v = (u, v, w) then the sum of the
second and third terms of the right hand side of (4.5) becomes

ωa · ∇v − ωa∇ · v =

⎛

⎝
ω̄ ∂u

∂z

ω̄ ∂v
∂z

−ω̄(∂u
∂x + ∂v

∂y )

⎞

⎠ . (4.6)
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ω1

ω2

compression

convergence

Figure 4.2. Illustration of vortex stretching. Convergencies in a flow lead to compression of a
vortex tube and hence to larger vorticity component in direction of the stretching (ω2 > ω1).

When no other effects of vorticity production are present, then the third compo-
nent of (4.5) with (4.6) gives

∂ω3

∂t
= −ω̄(

∂u

∂x
+

∂v

∂y
). (4.7)

The time change of the z-component of ωa is thus proportional to the horizontal
divergence of the velocity field orthogonal to the z-axis. When ∂u/∂x+∂v/∂y <
0, there is a local convergence of liquid in this horizontal plane. Consider the local
vortex tube parallel to the z-axis (Fig. 4.2a). This vortex tube is being compressed
and hence the vorticity in the z-direction must increase (Fig. 4.2b) according to
(4.6); this is the mechanism of vortex stretching.

From the first component of (4.6), it follows that the change in the vorticity
component in the x-direction is proportional to ω̄∂u/∂z. Consider a vortex line
that is initially parallel to the z-axis (Fig. 4.3) in a flow for which ∂u/∂z > 0.
Because of the vertical shear in this flow the vortex line tilts and hence provides
a contribution to the x-component of the vorticity (Fig. 4.3). The same mecha-
nism of vortex tilting can change the vorticity component in the y-direction when
∂v/∂z �= 0.

4.2.2. Baroclinic vorticity production
The vector ∇ρ ∧∇p in (4.5) is called the baroclinic vector. According to (4.5)

there is vorticity production when this vector is not equal to the zero vector. To
illustrate how vorticity is produced when ∇ρ ∧ ∇p �= 0, we look at the following
example. Assume that for z ∈ [−1, 0] the pressure field is given by p(z) = −z and
in addition, for x ∈ [0, 1], the density is given by ρ = ρ0−δz−γx, with δ > 0 and
γ > 0. The surfaces (planes) of constant pressure (isobars) and constant density
(isopycnals) are sketched in Fig. 4.4. Consider two fluid parcels on the same level



Vorticity 75

z

x

u(z)

ω
1

vortex line at t = 0
vortex line at t > 0

Figure 4.3. Illustration of vortex tilting. The vortex line is aligned with the z−axis at t = 0 and
is tilted by the vertical shear in the flow. This induces a nonzero x-component of the vorticity (ω1).

z but at different horizontal positions x, say at x1 and x2 (with x2 > x1).

z

x

isopycnals isobars
x1

x2ρ p

ρ p

Figure 4.4. Sketch to illustrate the production of vorticity through baroclinic effects.

The parcel at x1 has a larger density than the one at x2, while the same pressure
gradient acts on both parcels. The parcel at x1 will therefore move downwards
with respect to that at x2, which induces a vorticity component in the y-direction.
Direct calculation also confirms this since

∇ρ ∧∇p =

⎛

⎝
0
−γ
0

⎞

⎠ . (4.8)

There is a particular case when the baroclinic vector is zero, i.e., when surfaces
of constant density are also surfaces of constant pressure. In this case, the pressure
is a unique function of density, p = p(ρ). Such a flow, where baroclinic vorticity
production is absent, is called a barotropic flow.
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4.2.3. Diffusion of vorticity
Consider a flow of a viscous liquid with (in Cartesian coordinates) FI = ν ∇2v,
where ν is the kinematic viscosity. If we take the rotation of this term (as it
appears in the vorticity equation (4.5)), it follows that ∇ ∧ FI = ν ∇2ω. Imag-
ine a circular flow around the y-axis (Fig. 4.5) where r2 = x2 + z2, for which
ω = (0, ω(t, r), 0)T . The equation for the y-component of the relative vorticity
(assuming that all other effects are absent and that Ω = 0) from (4.5) is

∂ω

∂t
= ν∇2ω. (4.9)

If we assume that a concentrated vortex with magnitude Γ is present at the
origin at t = 0 then ω(0, r) = Γδ(r), with δ(r) being the delta distribution. The
solution to the problem (4.9) is then given by

ω(t, r) =
Γ

4πνt
e−

r2

4νt . (4.10)

For ν = Γ = 1, ω component is plotted for three different times in Fig. 4.5b and
we see that through the presence of viscosity the vorticity is diffused in time over
the flow field.

(a)
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(b)

Figure 4.5. Illustration of the mechanism of vorticity diffusion. (a) Flow situation where only the
azimuthal velocity component v is nonzero. (b) For ν = Γ = 1, the vorticity component (4.10) at
y = 0 (i.e., r = x) for three values of t.
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4.3. Potential vorticity
It is now time to introduce the important concept of potential vorticity. In

many flows there are constraints of the motion of fluid parcels set by particular
invariants. In non-rotating flows Kelvin’s theorem is one of these constraints.
These constraints become more powerful when they hold for scalar quantities
instead of for vector quantities. Potential vorticity is one of these scalar quantities
and we will introduce the concept below in its most general form.

Consider a general scalar quantity λ that satisfies

Dλ

dt
= Fλ (4.11)

where Fλ represent the sources and sinks of λ. For each such λ a potential vortic-
ity Πλ is defined as

Πλ =
ω + 2Ω

ρ
· ∇λ. (4.12)

The ith component of D(∇λ)/dt can be written as

(
D

dt
∇λ)i =

⎡

⎣ ∂

∂t
+
∑

j

vj
∂

∂xj

⎤

⎦ ∂λ

∂xi
.

If we take the inner product of this vector with ωa/ρ, then it follows (denoting
ωi = (ωa)i) that

ωa

ρ
· D(∇λ)

dt
=
∑

i

ωi

ρ

⎡

⎣ ∂

∂t
+
∑

j

vj
∂

∂xj

⎤

⎦ ∂λ

∂xi
=

=
∑

i

ωi

ρ

∂

∂xi

⎡

⎣ ∂

∂t
+
∑

j

vj
∂

∂xj

⎤

⎦λ −
∑

i

ωi

ρ

∑

j

∂λ

∂xj

∂vj

∂xi
=

=
∑

i

ωi

ρ

∂

∂xi

⎡

⎣ ∂

∂t
+
∑

j

vj
∂

∂xj

⎤

⎦λ −
∑

j

∂λ

∂xj

∑

i

ωi

ρ

∂vj

∂xi
=

=
ωa

ρ
· ∇Dλ

dt
−∇λ · ωa

ρ
· ∇v. (4.13)

Next, the vorticity equation (4.5) is written as

Dωa

dt
= ωa · ∇v − ωa∇ · v +

∇ρ ∧∇p

ρ2
+ ∇∧ FI .



78 DYNAMICAL OCEANOGRAPHY

From the continuity equation (3.29) we derive ∇ · v = −ρ−1Dρ/dt, we then
divide both sides by ρ, then substitute the result in (4.3) and take the inner product
of the result with ∇λ. This gives

∇λ · (ρ−1 D

dt
ωa −

ωa

ρ2

Dρ

dt
) = ∇λ · D

dt

ωa

ρ
=

∇λ · (ωa

ρ
· ∇v +

∇ρ ∧∇p

ρ3
+

∇∧ FI

ρ
), (4.14)

Summing (4.13) and (4.14) and using (4.11) we eventually derive

DΠλ

dt
=

ωa · ∇Fλ

ρ
+ ∇λ · (∇ρ ∧∇p

ρ3
+

∇∧ FI

ρ
). (4.15)

When

(i) λ is a conserved quantity, i.e., Fλ = 0,

(ii) FI = 0, and

(iii) λ = λ(ρ, p)

then it follows from (4.15) that

DΠλ

dt
= 0. (4.16)

This is the famous Ertel’s theorem. Conservation of potential vorticity provides
a strong constraint on the flow. In subsequent chapters, the importance of these
type of constraints will become clear and several examples will be given.

Additional Material

B: You are now ready to read the more comprehensive discussion on the vorticity
concepts in chapter 2 (sections 2.1 to 2.5) of Pedlosky (1987) chapter 4 of
Vallis (2006) and chapter 3 of Mc Williams (2006).

D: In the review paper “Ertel’s potential vorticity theorem in physical oceanog-
raphy” (Müller, 1995) there is an overview of the different potential vorticities
used, their interpretation and their origin (derived from a Lagrangian descrip-
tion of the fluid motion).
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4.4. Shallow-water equations
In this section several concepts of vorticity are studied in more detail along with

the introduction of the shallow-water equations. As we will both use dimensional
and dimensionless quantities, we use a star subscript to indicate dimensional quan-
tities.

Consider the flow in a shallow liquid layer having a constant density ρ on a
plane that is rotating with angular velocity Ω. We choose a Cartesian coordinate
system with the gravity vector parallel to the z∗-axis. Let the bottom be described
by z∗ = −D0 + hb∗(x∗, y∗) and the liquid-gas interface by z∗ = h∗(x∗, y∗, t∗).
The equations (3.32), with f = 2Ω, then become

ρ(
Du∗
dt∗

− fv∗) = −∂p∗
∂x∗

+ ρAH

[
∂2u∗
∂x2

∗
+

∂2u∗
∂y2

∗

]
+ ρAV

∂2u∗
∂z2

∗
, (4.17a)

ρ(
Dv∗
dt∗

+ fu∗) = −∂p∗
∂y∗

+ ρAH

[
∂2v∗
∂x2

∗
+

∂2v∗
∂y2

∗

]
+ ρAV

∂2v∗
∂z2

∗
, (4.17b)

ρ
Dw∗
dt∗

= −gρ − ∂p∗
∂z∗

+ ρAH

[
∂2w∗
∂x2

∗
+

∂2w∗
∂y2

∗

]
+ ρAV

∂2w∗
∂z2

∗
, (4.17c)

∂u∗
∂x∗

+
∂v∗
∂y∗

+
∂w∗
∂z∗

= 0, (4.17d)

with
D

dt∗
=

∂

∂t∗
+ u∗

∂

∂x∗
+ v∗

∂

∂y∗
+ w∗

∂

∂z∗
. (4.18)

4.4.1. Hydrostatic equilibrium
A characteristic vertical length scale of the problem is the average liquid layer

depth D, L is a characteristic horizontal length scale, U is a horizontal velocity
scale and τ is a characteristic time scale. Let W and P be a priori unknown scales
of vertical velocity and dynamic pressure, then we define dimensionless quantities

x =
x∗
L

, y =
y∗
L

, z =
z∗
D

, t =
t∗
τ

(4.19a)

u =
u∗
U

, v =
v∗
U

, w =
w∗
W

, (4.19b)

p∗ = −gρz∗ + p P. (4.19c)

Because ∂u∗/∂x∗ = O(U/L) and ∂v∗/∂y∗ = O(U/L), it follows from (4.17d)
that W cannot be larger than

W =
D

L
U. (4.20)

The estimate (4.20) is an upper boundary; W can be smaller than (4.20) if the
terms ∂u∗/∂x∗ and ∂v∗/∂y∗ partially cancel.
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With the choice of (4.20) for W and the advective time scale τa = U/L for τ ,
the equations (4.17) become

ε
Du

dt
− v = − P

ρfLU

∂p

∂x
+ EH

[
∂2u

∂x2
+

∂2u

∂y2

]
+ EV

∂2u

∂z2
, (4.21a)

ε
Dv

dt
+ u = − P

ρfLU

∂p

∂y
+ EH

[
∂2v

∂x2
+

∂2v

∂y2

]
+ EV

∂2v

∂z2
, (4.21b)

δ2ε
Dw

dt
= − P

ρfLU

∂p

∂z
+ δ2EH(

∂2w

∂x2
+

∂2w

∂y2
) + δ2EV

∂2w

∂z2
, (4.21c)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (4.21d)

with
D

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
. (4.22)

In (4.21), we see the Rossby number ε, the aspect ratio δ and the horizontal and
vertical Ekman numbers EH and EV . These are defined as

δ =
D

L
; ε =

U

fL
; EH =

AH

fL2
; EH =

AV

fD2
. (4.23)

The large-scale ocean circulation is characterized by a huge difference in horizon-
tal and vertical length scales, i.e., L � D and hence δ � 1. Typical values are
D = O(103)m and L = O(106)m, which gives δ = O(10−3).

Now consider the case when EH = EV = 0. The pressure gradient is either in
balance with (i) the Coriolis acceleration or (ii) with the inertial acceleration. In
case (i), the proper pressure scale is P = ρfUL and in case (ii) it is P = ρU2.
It then follows from (4.21c) that

(i)

δ2ε
Dw

dt
= −∂p

∂z
, (4.24)

(ii)

δ2 Dw

dt
= −∂p

∂z
. (4.25)

In case (i), the order of magnitude of ε is at most O(1), because otherwise the as-
sumption of a balance between pressure gradient and Coriolis acceleration breaks
down. In both cases, we conclude that (note that Dw/dt = O(1)) the hydrostatic
approximation

∂p

∂z
= O(δ2) ⇔ p∗ = −ρgz∗ + O(δ2), (4.26)

is valid for flows with (δ � 1). One can show with similar arguments that (4.26) is
still valid in a time-dependent problem with nonzero (but small) Ekman numbers
EH and EV .
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4.4.2. Inertial flows
The shallow-water equations follow from (4.17) with AH = AV = 0 and

δ → 0, i.e.,

ρ(
Du∗
dt∗

− fv∗) = −∂p∗
∂x∗

, (4.27a)

ρ(
Dv∗
dt∗

+ fu∗) = −∂p∗
∂y∗

, (4.27b)

∂p∗
∂z∗

= −ρg, (4.27c)

∂u∗
∂x∗

+
∂v∗
∂y∗

+
∂w∗
∂z∗

= 0. (4.27d)

When friction is neglected the boundary conditions become

z∗ = h∗(x∗, y∗, t∗) :
D(z∗ − h∗)

dt∗
= 0; p∗ = pa∗ (4.28a)

z∗ = −D0 + hb∗(x∗, y∗) :
D(z∗ + D0 − hb∗)

dt∗
= 0, (4.28b)

where pa∗ is the atmospheric surface level pressure. From the second equation in
(4.28a) and equation (4.27c) we find

p∗(x∗, y∗, z∗, t∗) = ρg(h∗(x∗, y∗, t∗) − z∗) + pa∗, (4.29)

from which it follows that horizontal pressure gradients are independent of z. The
other equations (4.27) reduce to

Du∗
dt∗

− fv∗ = −g
∂h∗
∂x∗

, (4.30a)

Dv∗
dt∗

+ fu∗ = −g
∂h∗
∂y∗

, (4.30b)

∂u∗
∂x∗

+
∂v∗
∂y∗

+
∂w∗
∂z∗

= 0. (4.30c)

From the kinematic conditions (4.28) it follows that

w∗(x∗, y∗, h∗, t∗) =
∂h∗
∂t∗

+ u∗
∂h∗
∂x∗

+ v∗
∂h∗
∂y∗

, (4.31a)

w∗(x∗, y∗, hb∗, t∗) = u∗
∂hb∗
∂x∗

+ v∗
∂hb∗
∂y∗

. (4.31b)

The system (4.30)-(4.31) is the general form of the shallow-water equations.
Ex. 4.4
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Now consider the special (but highly relevant) case where the velocity compo-
nents u∗ and v∗ do not depend on z∗. In that case (4.30c) can be integrated over
the layer and with (4.31) and H∗ = h∗ + D0 − hb∗, we obtain

∂H∗
∂t∗

+
∂

∂x∗
(H∗u∗) +

∂

∂y∗
(H∗v∗) =

=
∂H∗
∂t∗

+ u∗
∂h∗
∂x∗

+ v∗
∂h∗
∂y∗

+ H∗(
∂u∗
∂x∗

+
∂v∗
∂y∗

) = 0. (4.32)

The special form of the shallow-water equations are the equations (4.30a-b) and
(4.32). We can write (4.32) as

DH∗
dt∗

+ H∗(
∂u∗
∂x∗

+
∂v∗
∂y∗

) = 0, (4.33)

and consider a volume with layer thickness H∗ and cross section A∗. The diver-
gence of the horizontal velocity field is the relative change of the cross section
area along a flow trajectory, hence

1
A∗

DA∗
dt∗

=
∂u∗
∂x∗

+
∂v∗
∂y∗

. (4.34)

Elimination of the horizontal divergence in (4.32) gives

1
A∗

DA∗
dt∗

+
1

H∗

DH∗
dt∗

= 0 ⇒ D

dt∗
(A∗H∗) = 0. (4.35)

The equation (4.32) is therefore just volume conservation. An increase in volume
at a certain location (x∗, y∗) is compensated by changes in the height field h∗.

We now consider the interpretation of (4.32) and the transport of vorticity in a
flow described by the special form of the shallow-water equations. For constant
density flows, the vorticity equation (4.5) reduces to

D

dt∗
(ω∗ + 2Ω) − (ω∗ + 2Ω) · ∇v∗ = 0, (4.36)

with (in a Cartesian coordinate system) the relative and planetary vorticity given
by

ω∗ =

⎛

⎜⎝

∂w∗
∂y∗

− ∂v∗
∂z∗

∂u∗
∂z∗

− ∂w∗
∂x∗

∂v∗
∂x∗

− ∂u∗
∂y∗

⎞

⎟⎠ ; Ω =

⎛

⎝
0
0
Ω

⎞

⎠ . (4.37)

Because we have neglected friction, diffusion of vorticity is absent and baroclinic
vorticity production is absent because of the constant density in the flow. With
ω∗ = (ω1∗, ω2∗, ω3∗) we can write

(ω∗ + 2Ω).∇v∗ =

⎛

⎜⎝
ω1∗

∂u∗
∂x∗

+ ω2∗
∂u∗
∂y∗

+ (ω3∗ + f)∂u∗
∂z∗

ω1∗
∂v∗
∂x∗

+ ω2∗
∂v∗
∂y∗

+ (ω3∗ + f)∂v∗
∂z∗

ω1∗
∂w∗
∂x∗

+ ω2∗
∂w∗
∂y∗

+ (ω3∗ + f)∂w∗
∂z∗

⎞

⎟⎠ . (4.38)
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Making use of the scales (4.19), we observe that

D

U
ω1 = δ2 ∂w

∂y
− ∂v

∂z
, (4.39a)

D

U
ω2 =

∂u

∂z
− δ2 ∂w

∂x
, (4.39b)

L

U
ω3 =

∂v

∂x
− ∂u

∂y
. (4.39c)

Additional Material

B: The shallow-water equations form the cornerstone of many branches in geo-
sciences, such as coastal dynamics and flows on outer planets. In chapter 5
of Gill (1982) the shallow-water equations are derived along with some illus-
trative flows problems.

D: For the numerical solution of the shallow-water equations in many different
situations see Vreugdenhil (1994).

In the special case that u and v are independent of z, the horizontal components
of the vorticity are negligible in the hydrostatic approximation. With the notation
ζ∗ = ω3∗ it follows from the z-component of (4.36) that

D(ζ∗ + f)
dt∗

= −(ζ∗ + f)(
∂u∗
∂x∗

+
∂v∗
∂y∗

). (4.40)

In addition to advection, vortex stretching can induce vorticity changes in these
flows through divergences/convergencies in the horizontal velocity field. From
(4.33-4.34) and (4.40) we find that

D(ζ∗ + f)
dt∗

=
ζ∗ + f

H∗

DH∗
dt

⇒ D

dt∗

(
ζ∗ + f

H∗

)
= 0. (4.41)

This determines a scalar (ζ∗ + f)/dt∗ that is conserved with the motion of the
Ex. 4.5

liquid. Immediate applications of conservation of this shallow water potential
vorticity are given in Fig. 4.6.

Can this quantity be written as a potential vorticity Πλ∗, such as generally de-
fined through the Ertel theorem (cf. section 4.3)? To show this we need to find
a quantity λ∗ such that Πλ∗ in (4.12) is equal to (ζ∗ + f)/H∗. If the horizontal
velocities u∗ and v∗ do not depend on height, the equation (4.30c) can be directly
integrated in z. With (4.31b) this gives

w∗ = (hb∗ − D0 − z∗)(
∂u∗
∂x∗

+
∂v∗
∂y∗

) + u∗
∂hb∗
∂x∗

+ v∗
∂hb∗
∂y∗

, (4.42)
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Figure 4.6. Applications of the conservation the shallow-water potential vorticity. (a) A column
keep the same thickness but moves northward and hence its relative vorticity must decrease (ζ2 <
ζ1). (b) A column moves eastward and its thickness H increases and hence the vorticity must
increase (ζ2 > ζ1).

and with (4.31a)

w∗ =
z∗ + D0 − hb∗

H∗

DH∗
dt∗

+
Dhb∗
dt∗

. (4.43)

Finally we find, with w∗ = Dz∗/dt∗, that

D∗
dt∗

[
z∗ + D0 − hb∗

H∗

]
= 0, (4.44)

and this provides the choice λ∗ = ρ(z∗ + D0 − hb∗)/H∗. This quantity is the
relative position of a fluid parcel in the layer (Fig. 4.7). The potential vorticity

) )

)

�

�
%

���
�

������+��
� %

��,

Figure 4.7. Illustration of the physical meaning of the quantity λ∗. The dashed curve is the
relative position of a fluid element in the flow and this is constant.

Πλ∗, usually referred to as the shallow-water potential vorticity, is then

Πλ∗ = (ω∗ + 2Ω) · ∇
[
z∗ + D0 − hb∗

H∗

]
=

ζ∗ + f

H∗
, (4.45)

which is in accordance with the earlier result (4.41).
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Summary

There are basically four mechanisms of vorticity change in a rotat-
ing, stratified liquid, i.e., vortex stretching, vortex tilting, baroclinic
vorticity production and vorticity diffusion.

The concept of potential vorticity Πλ refers to a family of possible
scalar invariants in flows, usually parameterized by a conserved quan-
tity λ, whose general form is

Πλ =
ω + 2Ω

ρ
· ∇λ

where ω is the local vorticity vector.

For the constant density shallow-water equations, the most commonly
used invariant is the shallow-water potential vorticity

Π =
ζ + f

H

where ζ is the vertical component of the vorticity vector, f the Coriolis
parameter and H the total layer depth.



86 DYNAMICAL OCEANOGRAPHY

4.5. Exercises on chapter 4

(4.1) Helmholtz theorem

Let C1 and C2 be two curves on a closed vortex tube, Si be the surfaces en-
closed by the Ci, S be the total surface of the tube and V be the total volume
enclosed by S (see Fig. 4.1). From the identity ∇ · ω = 0, show that

Γ1 =
∫

C1

v · ds =
∫

C2

v · ds = Γ2

(4.2) Tornado

A tornado consists of a thin vortex tube. Assume that the vorticity is constant
over the cross section of the tube.

a. Show that locally the vorticity decreases when the thickness of the vortex
tube increases.

b. About 10 m from the center of a tornado one measures wind speeds of 200
km/hr. Determine the pressure variations when the tornado passes by.

(4.3) Taylor column

Consider a flow with velocity field v = (u, v, w) in a horizontally unbounded
layer of water. The water has a constant density ρ and rotates with an angular

�

�

Ω

velocity Ω around the z-axis (see figure).

a. Give the vorticity equation of this flow.
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We will focus now on variations in the flow on a time scale τ , a horizontal
velocity scale U and a length scale L.

b. Estimate the order of magnitude of the terms in the vorticity equation.

Let f = 2Ω. There is a special type of flow in case τ � 1/f and
ε = U/(fL) � 1.

c. Why is this case so special when considering the vorticity equation?

d. In an initially motionless layer, a sphere of radius R, with R < L, is moved
over the bottom with a velocity U . After a while a steady flow results with
ε � 1. Make a sketch of this flow.

(4.4) Topographic steering

For large-scale flows in the deep ocean at locations for away from the equator,
the relative vorticity can be neglected with respect to the planetary vorticity.

a. Argue why this holds and show that for a constant density flow, the shallow-
water potential vorticity Π reduces to

Π =
f

H

where H is the thickness of the layer and f = f0 + β0y is the Coriolis param-
eter on the β plane.

Consider now the east to west flow over a seamount as sketched in the figure
below.

b. Describe the path of a watercolumn in this flow.
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(4.5) Altimetry

Using a satellite, one can determine the height of the sea-surface η with respect
to a reference surface (the geoid).

a. Describe how a seamount at the bottom of an ocean basin (through its
influence on the local gravity field) affects the position of the sea surface.

b. How accurate can the geoid currently be determined (search the world wide
web)?

c. Use the hydrostatic balance to show that

p = p0 +
∫ h

−z
gρ dz′

where z is the depth and p0 is a constant pressure at the sea surface (z = h).

Take now a horizontal plane z = −z0 below the sea surface and assume that
the density ρ of the water is constant in the layer above this plane.

d. Assume that inertia is not important in the flow and that the flow is steady.
Derive from the equations (4.30) that the surface velocities are given by

u = − g

f

∂h

∂y
; v =

g

f

∂h

∂x
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In this chapter, we focus on the understanding of the wind-driven ocean
circulation in the North Atlantic. After an introduction on this flow in
section 5.1, an idealized model of a constant density flow (the barotropic
midlatitude β-plane model) is derived in section 5.2. Local solutions of
this model are constructed using asymptotic methods (inner- and outer
expansions) which will naturally lead to the concepts of geostrophic equi-
librium and the Ekman boundary layers (section 5.3) and the formulation
of the barotropic quasi-geostrophic vorticity equation (section 5.4).

5.1. The North Atlantic surface circulation
A view of the surface circulation in the Atlantic basin can be obtained from an

inspection of Fig. 2.4a. In the North Atlantic, the circulation is characterized by
two cells, usually called ‘gyres’. The smallest one, the subpolar gyre, is formed
by currents south of Greenland and in the Labrador Sea such as the Irminger
Current, the West Greenland Current and the Labrador Current. The largest one,
the subtropical gyre, is formed by currents around the Sargasso Sea, such as the
North Equatorial Current to the south. Near the western boundary, the latter cur-
rent joins part of the South Equatorial current and part of the combined currents
flows northward as the Antilles Current, while the other part flows into the Gulf
of Mexico. The latter water eventually ‘escapes’ between Florida and Cuba as the
Florida Current.

A merger of the Florida and Antilles current leaves the east coast of the US at
Cape Hatteras and is then called the Gulf Stream. Snapshots of the circulation in
the Gulf Stream region from a high resolution model are plotted in Fig. 5.1. The
Gulf Stream flows northeastwards towards the Grand Banks of Newfoundland
near (40◦N, 50◦W). The current that exists north-eastward of the Gulf Stream is
called the North Atlantic Current. This current bifurcates into a part that con-
tributes to the flows in the Norwegian Sea and a part that deflects southward as
the Canary current.

Ex. 5.1

Characteristic of the flow in the North Atlantic as sketched in Fig. 5.1 are strong
boundary currents (Florida Current and Gulf Stream) which exist at the western
side of the basin. The Florida Current is situated above the continental slope,
but the Gulf Stream is situated in the open ocean. The horizontal velocities in
the Gulf Stream (up to 2.5 ms−1) are among the largest measured in the ocean.
Its mean velocity is about 1.5 ms−1 and its average width is about 115 km. The
average volume transport of the Florida Current is 30 Sv (1 Sv = 106m3s−1). This
transport increases towards Cape Hatteras up to 150 Sv near 65◦W, but decreases
again to 35 Sv near 40◦W. In comparison, the average surface current velocity in
the subtropical gyre is about 0.1 ms−1.
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(a)

(b)

(c)

Figure 5.1. Snapshot of the surface circulation in the Gulf Stream region from a high resolu-
tion global ocean model (NLOM). (a) Sea surface height, (b) current speed, and (c) sea surface
temperature.
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The explanation of the surface circulation in the North Atlantic such as in
Fig. 5.1, is one of classical problems in dynamical oceanography and forms the
central problem of this chapter. The question can be formulated as what processes
control the ‘gyres’ and why is there a western amplification of the currents, in
other words, why is there a Gulf Stream?

Additional Material

B: The North Atlantic surface circulation is described in more detail in chapter
14 of Tomczak and Godfrey (1994) and chapter 7 of Knaus (1997). For bed-
time reading, The Gulf Stream by Henry Stommel (Stommel, 1977) is recom-
mended.

5.2. The barotropic circulation on the β-plane
The North Atlantic flow as described above is a typical mid-latitude phe-

nomenon. This motivates the consideration of a model set up around a central
latitude θ0 (case (i) in section 3.3). As a first step, we investigate a situation in
which the ocean water has constant density. In this case, only the pure wind-
driven flow can be analyzed. Again, dimensional quantities will be indicated by a
∗ subscript.

For a flow with characteristic horizontal and vertical length scale L and D, hor-
izontal and vertical velocity scale U and W = UD/L and a time scale L/U , the
magnitude of the Coriolis acceleration is U2Ω sin θ0 = Uf0. From the analysis
in section 3.3, we anticipate that the dominant horizontal momentum balance is
between the Coriolis acceleration and the pressure force for small Rossby number
ε = U/(f0L). Moreover, we anticipate a hydrostatic vertical momentum balance
as D � L. This motivates us to scale the pressure as

p∗ = −ρ0gDz + ρ0Uf0L p. (5.1)

We are now fully prepared to find proper reductions of the total equations of mo-
tion specifically targeted to explain the intensification of western boundary cur-
rents.

5.2.1. The β-plane approximation
As a first step in the reduction, local coordinates (x∗, y∗) (Fig. 5.2) are intro-

duced with

x∗ = xL = φ r0 cos θ0, (5.2a)

y∗ = yL = (θ − θ0)r0, (5.2b)

z∗ = zD = r∗ − r0. (5.2c)
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Figure 5.2. Local Cartesian coordinates as defined in (5.2).

After substitution of the scaled variables into (3.32) and use of the local coordi-
nates (5.2), where derivatives are transformed as,

∂u∗
∂φ

= U
∂u

∂x∗

∂x∗
∂φ

= U cos θ0
r0

L

∂u

∂x
, (5.3)

we find the dimensionless equations

ε

[
Du

dt
+

L

r∗
(δuw − uv tan θ)

]
− v

sin θ

sin θ0
+ δw

cos θ

sin θ0
=

−cos θ0

cos θ

r0

r∗

∂p

∂x
+

Fφ
I

Uf0
, (5.4a)

ε

[
Dv

dt
+

L

r∗
(δvw + u2 tan θ)

]
+ u

sin θ

sin θ0
=

−r0

r∗

∂p

∂y
+

Fθ
I

Uf0
, (5.4b)

εδ2 Dw

dt
− εδ

L

r∗
(u2 + v2) − δu

cos θ

sin θ0
=

−∂p

∂z
+ δ

Fr
I

Uf0
, (5.4c)

∂w

∂z
+ 2

D

r∗
w − L

r∗
v tan θ + +

r0

r∗

∂v

∂y
+

r0

r∗

cos θ0

cos θ

∂u

∂x
= 0, (5.4d)

with
D

dt
=

∂

∂t
+ u

r0

r∗

cos θ0

cos θ

∂

∂x
+

r0

r∗
v

∂

∂y
+ w

∂

∂z
.

We use the identity
r∗
r0

= 1 + δ
L

r0
z, (5.5)
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and locally around θ = θ0 we use the expansions

sin θ = sin θ0 +
L

r0
y cos θ0 + O(

L

r0
)2, (5.6a)

cos θ = cos θ0 −
L

r0
y sin θ0 + O(

L

r0
)2, (5.6b)

tan θ = tan θ0 +
L

r0

y

cos2 θ0
+ O(

L

r0

2

). (5.6c)

In the equations above ε = U/(f0L) is the Rossby number and δ = D/L (cf.
section 3.1.5).

In the β-plane approximation, the local variation of the Coriolis acceleration is
taken into account while only terms O(L/r0) are kept in (5.6). In the limit δ → 0,
the equations then become (with β = β0L

2/U )

ε
Du

dt
− v(1 + βεy) = −∂p

∂x
+

Fx
I

Uf0
, (5.7a)

ε
Dv

dt
+ u(1 + βεy) = −∂p

∂y
+

Fy
I

Uf0
, (5.7b)

∂p

∂z
= 0, (5.7c)

∂w

∂z
+

∂v

∂y
+

∂u

∂x
= 0, (5.7d)

with

D

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
.

Note that for consistency of the asymptotic expansion, the βε term should be
smaller than unity.

In local coordinates, the mixing terms are represented as

Fx
I

Uf0
=

AH

f0L2
(
∂2u

∂x2
+

∂2u

∂y2
) +

AV

f0D2

∂2u

∂z2
=

EH

[
∂2u

∂x2
+

∂2u

∂y2

]
+ EV

∂2u

∂z2
, (5.8a)

Fy
I

Uf0
=

AH

f0L2
(
∂2v

∂x2
+

∂2v

∂y2
) +

AV

f0D2

∂2v

∂z2
=

EH

[
∂2v

∂x2
+

∂2v

∂y2

]
+ EV

∂2v

∂z2
, (5.8b)

where EH = AH/(f0L
2) and EV = AV /(f0D

2) are the horizontal and vertical
Ekman numbers (cf. section 3.1.5).
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5.2.2. Boundary conditions
The only boundary conditions which need further analysis are the conditions

(3.37) at the ocean-atmosphere boundary. The mean interface position is at z∗ = 0
and from (3.37d) and (5.1) it follows that at z∗ = h∗ (or z = h∗/D):

−gh∗ρ0 + ρ0Uf0L p = 0, (5.9)

where pa∗ = 0 is chosen as reference level for the pressure.
To determine the scaling of the interface amplitude, we write h∗/D =

μη(φ, θ, t), where μ is, for the moment, still unknown. For small deviations
h∗/D, it follows that at z = 0:

0 = −gDρ0μη + ρ0Uf0Lp|z=0
+ · · · → μη =

Uf0L

gD
p, (5.10)

This shows that μ = Uf0L/(gD) = εF , where F = f2
0 L2/(gD) is the Froude

number (cf. section 3.1.5). For midlatitude flows F = O(1), see Table 5.3 and
hence εF � 1 justifying the expansion (5.10). As a consequence, we write
z = εFη(φ, θ, t) and the normal stress balance (3.37d) obtains the simple di-
mensionless form

p = η (5.11)

With τ0 as a characteristic value of the wind stress and hence τ∗ = τ0τ , the
tangential stress boundary conditions become

τ0D

ρ0AV U
τφ =

∂u

∂z
+

AH

AV

D

r∗

δ

cos θ

∂w

∂φ
, (5.12a)

τ0D

ρ0AV U
τ θ =

∂v

∂z
− δ

AH

AV

D

r∗

∂w

∂θ
. (5.12b)

Although the values of the mixing coefficients AH and AV are not well known,
the second terms in the right hand side are (with plausible estimates) much smaller
than the first ones and they can be neglected in the limit δ → 0.

Finally, the kinematic condition in (3.37a) is written as

w = εF

[
∂

∂t
+

L

r∗

u

cos θ

∂

∂φ
+ v

∂

∂θ

]
η, (5.13)

and in local coordinates (5.2) with L/r0 � 1 and δ → 0, this equation becomes

w = εF

[
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

]
η, (5.14)

with η = η(x, y, t).
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5.2.3. Model equations
To summarize the dimensionless equations: if we consider a basin with a bot-

tom topography z = −1 + hb(x, y) and an ocean-atmosphere interface given by
z = εFη(x, y, t), the equations describing the constant density (barotropic) flow
in the β-plane are (5.7-5.8), i.e.,

ε
Du

dt
− v(1 + βεy) = −∂p

∂x
+ EH

[
∂2u

∂x2
+

∂2u

∂y2

]
+ EV

∂2u

∂z2
, (5.15a)

ε
Dv

dt
+ u(1 + βεy) = −∂p

∂y
+ EH

[
∂2v

∂x2
+

∂2v

∂y2

]
+ EV

∂2v

∂z2
, (5.15b)

0 = −∂p

∂z
(5.15c)

∂w

∂z
+

∂v

∂y
+

∂u

∂x
= 0, (5.15d)

with boundary conditions at the upper and layer boundaries given by

z = −1 + hb(x, y) : n · u = t1 · u = t2 · u = 0 (5.16a)

z = εFη(x, y, t) : p = η ; w = εF (
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
),

: α̂τx =
∂u

∂z
; α̂τy =

∂v

∂z
, (5.16b)

where (see Fig. 5.3)

Figure 5.3. Sketch of the geometry of the bottom topography with normal n and tangential vec-
tors t1 and t2.

t1 =

⎛

⎝
1
0

∂hb
∂x

⎞

⎠ ; t2 =

⎛

⎝
0
1

∂hb
∂y

⎞

⎠ ; n =

⎛

⎝
−∂hb

∂x

−∂hb
∂y
1

⎞

⎠ , (5.17)

and the parameters are defined as

ε =
U

f0L
; β =

β0L
2

U
; α̂ =

Dτ0

ρ0AV U
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F =
f2
0 L2

gD
; EH =

AH

f0L2
; EV =

AV

f0D2
. (5.18)

The barotropic midlatitude β-plane model

Under the shallow-water approximation D/L � 1, the β-plane approx-
imation (linearized Coriolis parameter with L/r0 � 1), the dimensional
equations for a constant density flow (in a local Cartesian coordinate sys-
tem) are

Du∗
dt∗

− v∗(f0 + β0y∗) +
1
ρ0

∂p∗
∂x∗

= AH

[
∂2u∗
∂x2

∗
+

∂2u∗
∂y2

∗

]
+ AV

∂2u∗
∂z2

∗
,

Dv∗
dt∗

+ u∗(f0 + β0y∗) +
1
ρ0

∂p∗
∂y∗

= AH

[
∂2v∗
∂x2

∗
+

∂2v∗
∂y2

∗

]
+ AV

∂2v∗
∂z2

∗
,

∂p∗
∂z∗

= −ρ∗g,

∂u∗
∂x∗

+
∂v∗
∂y∗

+
∂w∗
∂z∗

= 0,

with boundary conditions

z∗ = −D + hb∗(x∗, y∗) : n · u∗ = t1 · u∗ = t2 · u∗ = 0,

z∗ = h∗ : p∗ = 0 ; w∗ =
∂h∗
∂t

+ u∗
∂h∗
∂x∗

+ v∗
∂h∗
∂y∗

;
τ0

ρ0
τx = AV

∂u∗
∂z∗

;
τ0

ρ0
τy = AV

∂v∗
∂z∗

.

where n is the outward normal to the bottom and t1 and t2 are the two
tangent vectors orthogonal to n (as defined in (5.17)).

For a typical basin at midlatitudes, typical values of the dimensionless param-
eters are given in Table 5.3. From this table, it can be seen that the product εβ
is indeed small as is the product εF . In this case, the deviations of the ocean-
atmosphere interface are small and we can take all boundary conditions at z = 0.
In the remainder of this chapter, we will investigate stationary solutions of the
equations (5.15-5.16).

5.3. Stationary solutions
From Table 5.3 it appears that the equations (5.15-5.16) contain a small param-

eter, the Rossby number ε. The solutions of the equations therefore look like those
for ε = 0, except maybe in relatively small areas in the flow field. To determine
asymptotic solutions in ε, we have to determine the order of magnitude of the



100 DYNAMICAL OCEANOGRAPHY

Parameter Value Parameter Value
L 1.0 × 106 m τ0 1.0 × 10−1 Pa
D 1.0 × 103 m ρ0 103 kgm−3

f0 1.0 × 10−4 s−1 AH 102/104 m2s−1

U 10−2 ms−1 AV 10−4/10−2 m2s−1

β0 1.6 × 10−11 (ms)−1 g 9.8 ms−2

Parameter Value Parameter Value
ε 1.0 × 10−4 α̂ 103/105

F 1.0 β 1.6 × 102

EH 10−6/10−4 EV 10−6/10−4

Table 5.1. Typical values of the dimensionless parameters in the barotropic midlatitude ocean
model on the β-plane as given in (5.18).

other parameters with respect to ε. Table 5.3 indicates that F = O(1), β = O(1)
and EH and EV are at most O(ε).

We can already anticipate problems in the limit ε → 0, since higher order
derivatives vanish in the equations (5.15-5.16) and we will not be able to satisfy all
boundary conditions in this limit. In that case, we have to consider the boundary
layers explicitly and a useful mathematical method for this is the method of ‘inner’
and ‘outer’ expansions. To illustrate this method, we first consider a relatively
simple example.

�
Example 5.1: Inner and outer expansions

Consider the following boundary value problem for x ∈ [0, 1] and the function
y(x):

εy′′ + y′ = a, (5.21a)

y(0) = 0; y(1) = 1, (5.21b)

where a ∈ R, ε � 1 and the primes indicate derivatives to x. This problem has
an exact solution

y(x; ε) = (1 − a)
1 − e−x/ε

1 − e−1/ε
+ ax, (5.22)

which is plotted for three different values of ε in Fig. 5.4. For small ε, a boundary
layer appears near x = 0 that is needed to satisfy the boundary conditions.
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Figure 5.4. (a) Analytical solution y(x; ε) for three values of ε. (b) Magnification of the solution
near x = 0.

The aim of the method of inner and outer expansions is to try to find an approxi-
mate solution for small values of ε in case we do not know the exact solution. First
we expand

y(x; ε) = y0(x) + εy1(x) + ε2y2(x) + O(ε3), (5.23)

where O indicates the higher order terms neglected. Substitution in (5.21) gives

ε(y′′0(x) + εy′′1(x) + ...) + y′0(x) + εy′1(x) + . . . = a, (5.24a)

y0(0) + εy1(0) + . . . = 0, (5.24b)

y0(1) + εy1(1) + . . . = 1. (5.24c)

Now consider the O(1) system (the terms without ε); for arbitrary a, this pro-
vides the simple system

y′0(x) = a, (5.25a)

y0(0) = 0, y0(1) = 1. (5.25b)

The general solution of (5.25), the outer solution y0(x) = ax + C1, can only
satisfy one boundary condition; we choose C1 = 1 − a such that y0(1) = 1. The
resulting solution cannot satisfy the boundary condition at x = 0 and boundary
layer behavior is expected.

Because the scaling of the thickness of the boundary layer with ε is a priori
unknown we introduce a general boundary layer coordinate ζ through

ζ =
x

εp
. (5.26)
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Transformation of the problem (5.21) in the coordinate ζ for the function ỹ(ζ; ε)
gives,

y′(x) =
1
εp

ỹ′(ζ), (5.27)

and the problem near ζ = x = 0 becomes

ε1−pỹ′′ + ỹ′ = εpa, (5.28a)

ỹ(0) = 0, (5.28b)

and the highest order derivative can only participate in a balance when p = 1.

We now proceed with the inner expansion

ỹ(ζ; ε) = ỹ0(ζ) + εỹ1(ζ) + O(ε2), (5.29)

from which the O(1) system becomes

ỹ′′0 + ỹ′0 = 0, (5.30a)

ỹ0(0) = 0, (5.30b)

with as a general solution (the inner solution)

ỹ0(ζ) = C2(e−ζ − 1). (5.31)

The constant C2 follows now from the fact that the inner solution must continu-
ously connect to the outer solution y0(x) near x = 0. This results in the matching
condition

lim
ζ→∞

ỹ0(ζ) = −C2 = lim
x→0

y0(x) = 1 − a, (5.32)

with the result C2 = a − 1. With the procedure, we find the O(1) asymptotic
solution

y(x; ε) = (1 − a) + ax for ε → 0, x > 0 fixed (5.33a)

y(ζ; ε) = (1 − a)(1 − e−ζ) for ε → 0, ζ = x/ε > 0 fixed. (5.33b)

These solutions are plotted (together with the ones in Fig. 5.21b) in Fig. 5.5 and
the boundary layer character of the solution is well represented by the asymptotic
solutions.

�

Additional Material

D: Asymptotic methods and their application to problems in Fluid Mechanics are
well described in Kevorkian and Cole (1996). Another excellent reference on
these methods is chapter 7 of Bender and Orszag (1999).
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Figure 5.5. Asymptotic solutions (no label) and the analytic solutions (labelled), these are the
same as in Fig. 5.4, for three different values of ε.

5.3.1. The geostrophic flow
We are now happy that we have the scaled dimensionless model equations

(5.15-5.16) such that all dependent quantities are O(1) and the magnitude of the
terms is measured by the dimensionless parameters in (5.18). To apply the method
of inner and outer expansions to this model, we first formulate the outer expansion
in ε as ⎛

⎝
v
p
η

⎞

⎠ =

⎛

⎝
v0

p0

η0

⎞

⎠+ ε

⎛

⎝
v1

p1

η1

⎞

⎠+ . . . (5.34)

The outer flow (u0, v0, w0, p0) is determined by looking at the O(1) system of
the equations (5.15). This system is

v0 =
∂p0

∂x
, (5.35a)

u0 = −∂p0

∂y
, (5.35b)

0 =
∂p0

∂z
, (5.35c)

∂w0

∂z
+

∂v0

∂y
+

∂u0

∂x
= 0. (5.35d)
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Hence the flow outside boundary layers is in hydrostatic and geostrophic equilib-
rium.

Geostrophic and Hydrostatic balance

Under very small Rossby number ε, the dominant balances in the interior
of a constant density flow are geostrophic (Coriolis and pressure gradient
balance) and hydrostatic. The dimensional momentum equations are

f0v∗ =
1
ρ0

∂p∗
∂x∗

,

f0u∗ = − 1
ρ0

∂p∗
∂y∗

,

−ρ0g =
∂p∗
∂z∗

.

The velocities u∗ and v∗ are independent of z∗ and the horizontal velocity
field is divergence free, i.e., ∇H∗ · (u∗, v∗)T = 0. One can therefore in-
troduce a streamfunction in the horizontal plane ψ∗ = p∗/(f0ρ0) (m2s−1)
such that uH∗ = e3 ∧∇∗ψ∗.

The dimensionless boundary conditions at z = 0 from (5.16b) become

p0 = η0 ; w0 = 0, (5.37a)

α̂τx =
∂u

∂z

0

; α̂τy =
∂v

∂z

0

. (5.37b)

From (5.35), it is easily derived that ∂w0/∂z = 0 and because of (5.37a), it
follows that w0 ≡ 0. According to (5.35c) both u0 and v0 must be independent of
z. The geostrophic flow can therefore not satisfy the boundary conditions (5.37b)
nor those at the bottom boundary.

The barotropic hydrostatic and geostrophic equations on the midlatitude β-
plane are dynamically degenerate. If the pressure field is known, then the velocity
field is determined. However, every pressure field provides such a consistent ve-
locity field but the equations themselves provide no information to determine the
pressure given the forcing and boundary conditions. The only information given
is diagnostic: in time the pressure gradient field will balance the Coriolis acceler-
ation. Hence, the ageostrophic effects (such as inertia, and mixing) and boundary
conditions have to be considered to provide the evolution of the pressure field.
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5.3.2. The bottom Ekman layer
For ease of understanding, we first consider the case of a flat bottom, with

hb(x, y) ≡ 0. The boundary layer variable ξ is introduced as

ξ =
z + 1

�
(5.38)

where � is the scale of the (a priori unknown) thickness of the bottom boundary
layer. The boundary layer (inner) solution is indicated by (ṽ, p̃) and it turns out to
be convenient to use ĒV = 2EV and ĒH = 2EH . The equations in the variables
(x, y, ξ) become

ε
Dũ

dt
− ṽ(1 + βεy) =

−∂p̃

∂x
+

ĒH

2

[
∂2ũ

∂x2
+

∂2ũ

∂y2

]
+

ĒV

2�2

∂2ũ

∂ξ2
, (5.39a)

ε
Dṽ

dt
+ ũ(1 + βεy) =

−∂p̃

∂y
+

ĒH

2

[
∂2ṽ

∂x2
+

∂2ṽ

∂y2

]
+

ĒV

2�2

∂2ṽ

∂ξ2
(5.39b)

0 =
∂p̃

∂ξ
, (5.39c)

�−1 ∂w̃

∂ξ
+

∂ṽ

∂y
+

∂ũ

∂x
= 0, (5.39d)

D

dt
= ũ

∂

∂x
+ ṽ

∂

∂y
+ �−1w̃

∂

∂ξ
, (5.39e)

and the boundary conditions become

ξ = 0 : ũ = ṽ = w̃ = 0. (5.40)

The condition that the vertical mixing of momentum should participate in the
O balance leads to

� = Ē
1/2
V . (5.41)

From the continuity equation (5.39d) it follows that

∂w̃

∂ξ
= −Ē

1/2
V (

∂ṽ

∂y
+

∂ũ

∂x
), (5.42)

which indicates that w̃ must be rescaled. The relevant scale of the vertical ve-
locity in the boundary layer is not UD/L but Ē

1/2
V UD/L = UδE/L, with
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δE = Ē
1/2
V D = �D the Ekman layer thickness. The inner expansion therefore

becomes

(ũ, ṽ, w̃, p̃)T = (ũ0, ṽ0, Ē
1/2
V w̃0, p̃0)T + ε(ũ1, ṽ1, Ē

1/2
V w̃1, p̃1)T + . . . (5.43)

and the O(1) system of equations is

−ṽ0 = −∂p̃

∂x

0

+
1
2

∂2ũ

∂ξ2

0

, (5.44a)

ũ0 = −∂p̃

∂y

0

+
1
2

∂2ṽ

∂ξ2

0

, (5.44b)

0 =
∂p̃

∂ξ

0

, (5.44c)

∂w̃

∂ξ

0

= −
[
∂ṽ

∂y

0

+
∂ũ

∂x

0]
. (5.44d)

From (5.44c) it follows that p̃0 is independent of ξ and therefore also ∂p̃0/∂x
and ∂p̃0/∂y in (5.44a-b). If (5.44b) is twice differentiated with respect to ξ and
then (5.44a) is used, this leads to

∂4ṽ

∂ξ4

0

+ 4 ṽ0 = 4
∂p̃

∂x

0

. (5.45)

The characteristic polynomial of the homogeneous equation is λ4 + 4 = 0, with
solutions λ = ±(1± i). Two of the roots (1 + i) and (1 − i) provide unbounded
solutions for ξ → ∞ and hence the general solution of (5.45) is

ṽ0(x, y, ξ) = A1(x, y)e−ξ(cos ξ − i sin ξ) +

+A2(x, y)e−ξ(cos ξ + i sin ξ) +
∂p̃

∂x

0

, (5.46)

where the Ai are complex functions. From (5.44b) it follows that

ũ0(x, y, ξ) = A1(x, y)e−ξ(i cos ξ + sin ξ) −

−A2(x, y)e−ξ(i cos ξ − sin ξ) − ∂p̃

∂y

0

. (5.47)

The boundary conditions on ξ = 0 provide two conditions to solve for A1 and
A2

A1 =
1
2

[
−i

∂p̃

∂y

0

− ∂p̃

∂x

0]
; A2 =

1
2

[
i
∂p̃

∂y

0

− ∂p̃

∂x

0]
. (5.48)

The outer and inner solution for the velocities are both expressed in the horizontal
Ex. 5.2
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pressure gradient, which is independent of the vertical coordinate since throughout
the water column p̃0(x, y) = p0(x, y). The matching principle for the pressure
takes a simple form here.

The boundary layer (inner) solution becomes

ũ0(x, y, ξ) = u0(x, y)(1 − e−ξ cos ξ) − v0(x, y)e−ξ sin ξ, (5.49a)

ṽ0(x, y, ξ) = v0(x, y)(1 − e−ξ cos ξ) + u0(x, y)e−ξ sin ξ, (5.49b)

and from (5.44d) we find for w̃0

w̃0(x, y, ξ) =
ζ0

2
(1 − e−ξ(cos ξ + sin ξ)), (5.50)

where ζ0 is the vertical component of the O(1) vorticity defined by

ζ0 =
∂v0

∂x
− ∂u0

∂y
. (5.51)

�
Example 5.2: Ekman bottom layer solution

δ
"

�
�

"��	��%����	'��	'�

-��*��.�/
�����

�

�

Figure 5.6. Sketch of the situation of the Ekman layer near a flat bottom below a parallel
geostrophic flow with a constant zonal velocity U .

Consider as an example the situation in Fig. 5.6 where far from the bottom
there is a geostrophic parallel flow with velocity field v∗ = (U, 0, 0)T . From
(5.49) with u0 = 1 and v0 = 0 it follows that

ũ0(x, y, ξ) = 1 − e−ξ cos ξ, (5.52a)

ṽ0(x, y, ξ) = e−ξ sin ξ, (5.52b)

w̃0 = 0. (5.52c)

The velocity fields (5.52a-b) are plotted in Fig. 5.7a as a function of ξ. Both
fields oscillate around the geostrophic field (which is obtained for ξ → ∞) and
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indeed satisfy the no-slip conditions at the bottom boundary (ξ = 0). In Fig. 5.7b,
where v0 is plotted versus u0 with parameter ξ, part of the so-called Ekman spiral
can be seen. As the momentum is transferred upwards from layer to layer in
the liquid column, the velocity vector turns clockwise as a consequence of the
Coriolis acceleration (see also Example 3.2). Near the bottom boundary, the flow
is turned 45◦ counterclockwise with respect to the geostrophic flow, which also
follows from

lim
ξ→0

ṽ0

ũ0
= 1. (5.53)
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Figure 5.7. (a) Velocities ũ0 and ṽ0 in (5.52) as a function of ξ. (b) Parameter plot of the velocity
ũ0 versus ṽ0 with ξ as parameter.

In dimensional quantities (note that ξ = (z∗/D+1)/Ē
1/2
V and δE = Ē

1/2
V D =√

2AV /f0, i.e., ξ = (z∗ + D)/δE) we find

ũ0
∗(z∗) = U(1 − e

− z∗+D
δE cos

z∗ + D

δE
), (5.54a)

ṽ0
∗(z∗) = Ue

− z∗+D
δE sin

z∗ + D

δE
, (5.54b)

which shows that the boundary layer thickness is δE . With ĒV in the range 10−7-
10−3 estimates of δE/D = 3 × 10−4 − 3 × 10−2 are obtained, and the Ekman
layer thickness is in the range 1 – 100 m.

�
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Example 5.2 is also well suited to determining the transport of water in the
Ekman layer. Consider a volume V with length Lx, width Ly and the height of
the boundary layer (which is about δE) such as indicated in Fig. 5.8a. In the
example, the boundary layer velocities are independent of x and y and the zonal
φx∗ and meridional φy∗ volume transport (in [m3s−1]) in the boundary layer are

(
φx∗
φy∗

)
=

(
Ly

∫ −D+δE

−D (ũ0
∗ − U)dz∗

Lx

∫ −D+δE

−D ṽ0
∗dz∗

)
. (5.55)

Evaluation of the integrals, with help of

∫ ∞

0
e−ξ sin ξ dξ =

∫ ∞

0
e−ξ cos ξ dξ =

1
2
, (5.56)

gives
(

φx∗
φy∗

)
=

UδE

2

(
−Ly

Lx

)
. (5.57)

The Ekman volume transport (ME∗) per unit length perpendicular to the flow
direction (in m2s−1) is

ME∗ =

⎛

⎝
φx∗
Ly

φy∗
Lx

0

⎞

⎠ =
δEU

2

⎛

⎝
−1
1
0

⎞

⎠ . (5.58)

There is a relation between this mass transport and the shear stress on the bottom
boundary, Tb∗ (Nm−2) which is given (at z∗ = −D) by

Tb∗ = −ρ0AV

⎛

⎜⎝

∂ũ0
∗

∂z∗
∂ṽ0

∗
∂z∗
0

⎞

⎟⎠ =
ρ0AV U

δE

⎛

⎝
−1
−1
0

⎞

⎠ , (5.59)

and hence

ME∗ =
Tb∗ ∧ e3

ρ0f0
, (5.60)

where e3 is the unit vector in vertical direction.
In the northern hemisphere, the total mass transport in the boundary layer is

perpendicular and to the right of the bottom shear stress (Fig. 5.8b). The expres-
sion (5.60) shows that the result is independent of the representation of the vertical
mixing of momentum. The result (5.60) is also general and can be deduced from
the general form of the boundary layer solution (5.49).
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Figure 5.8. (a) Sketch to help determine the Ekman transport. (b) the bottom shear stress vector
and the mass transport per unit length (ME∗in kgm−1s−1).

5.3.3. The free surface Ekman layer
Similarly to the bottom Ekman layer formed due to the bottom friction, an

Ekman layer forms at the surface through the wind-stress forcing. At the ocean-
atmosphere interface, a boundary layer coordinate χ is introduced as

χ = − z

�
, (5.61)

and similarly to the situation in the bottom boundary layer, it follows that
� = Ē

1/2
V . Hence, the vertical velocity is rescaled in the same way as in (5.43)

and the equations for the O(1) boundary layer solution

(û, v̂, ŵ, p̂)T = (û0, v̂0, Ē
1/2
V ŵ0, p̂0)T + ε(û1, v̂1, Ē

1/2
V ŵ1, p̂1)T + · · · (5.62)

become

−v̂0 = −∂p̂

∂x

0

+
1
2

∂2û

∂χ2

0

, (5.63a)

ũ0 = −∂p̂

∂y

0

+
1
2

∂2v̂

∂χ2

0

, (5.63b)

0 = − ∂p̂

∂χ

0

, (5.63c)

∂ŵ

∂χ

0

=
∂v̂

∂y

0

+
∂û

∂x

0

. (5.63d)

In this case, the pressure is also homogeneous over the boundary layer and equal
to that of the outer solution, p̂0(x, y) = p0(x, y).

The solution of (5.63) is again of the form of (5.46), but now the functions
A1 and A2 are determined through the boundary conditions (5.16) at z = 0 (or
χ = 0), which become

α̂τx = −∂û

∂χ

0

Ē
−1/2
V , (5.64a)
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α̂τy = −∂v̂0

∂χ
Ē

−1/2
V , (5.64b)

where τx and τy are given functions of x and y. The final solution is

û0(x, y, χ) − u0(x, y) =
αe−χ

2
([τy − τx] sinχ + (τy + τx) cos χ), (5.65a)

v̂0(x, y, χ) − v0(x, y) =
αe−χ

2
([τy − τx] cos χ − (τy + τx) sin χ), (5.65b)

where α = α̂Ē
1/2
V = 2τ0/(ρ0f0δEU).

For the case τx = 1, τy = 0 and α = 1, the difference velocity û0(x, y, χ) −
u0(x, y) is plotted in Fig. 5.9a. Both components of the difference velocity are
the same at the ocean-atmosphere interface and approach zero for χ → ∞. In
the parameter plot in Fig. 5.9b, we again observe the Ekman spiral; as momentum
is transferred from the wind stress to the layers below, the velocity vector rotates
clockwise.
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Figure 5.9. Ekman velocities as in (5.65) for the case τx = 1, τy = 0 and α = 1. (a) Difference
velocities û0(x, y, χ) − u0(x, y) and v̂0(x, y, χ) − v0(x, y) as a function of χ. (b) Parameterplot
of the velocity û0(x, y, χ) − u0(x, y) versus v̂0(x, y, χ) − v0(x, y) with χ as parameter. Ex. 5.3

If we indicate the dimensionless wind stress with the vector T, then the velocity
û0 can be written as

û0(x, y, χ) = u0 +
αe−χ

2
(T(cos χ− sin χ) + (T∧ e3)(cos χ + sin χ)). (5.66)
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At the interface (χ = 0) the relative velocity becomes

û0 − u0 =
α

2
(T + T ∧ e3), (5.67)

and has rotated 45◦ with respect to T. For the Ekman volume transport per unit
length (in m2s−1), a similar expression can be derived as for the bottom Ekman
layer. The result is

ME∗ =
T∗ ∧ e3

ρ0f0
, (5.68)

and hence the Ekman mass transport is always perpendicular and to the right of
the wind stress (in the northern hemisphere).

�
Example 5.3: Physics of the Ekman spiral

As we have seen in Fig. 5.7b and Fig. 5.9b, the velocity vector turns in the
Ekman boundary layers. To explain this in more detail we again consider Example
5.2 where a simple case of the bottom boundary layer was presented. For the
geostrophic flow far away from the boundary layer, we have from ac

∗ = −2Ω∧v∗
and from geostrophic equilibrium

ac
∗ =

⎛

⎝
f0v∗
−f0u∗

0

⎞

⎠ ;
1
ρ0

∇∗p∗ =

⎛

⎝
f0v∗
−f0u∗

0

⎞

⎠ ,

where f0 = 2Ω or in dimensionless form (with the flow in example 5.2)

∇p = ac =

⎛

⎝
v0

−u0

0

⎞

⎠ =

⎛

⎝
0
−1
0

⎞

⎠ .

In Fig. 5.10a, −∇p and the Coriolis acceleration ac are sketched. The pressure
decreases in the meridional direction; without the rotation of the Earth fluid would
flow from high to low pressure. Through the Coriolis acceleration the flow is de-
flected to the right and in a final steady state, the pressure gradient exactly balances
the Coriolis acceleration. In the boundary layer, the effect of friction becomes im-
portant and the velocity decreases, but the pressure gradient is the same as the
one outside the boundary layer. Consider the situation in the boundary layer in
Fig. 5.10b, where the velocity has decreased and hence the Coriolis acceleration
also decreases. The velocity vector must turn counterclockwise such that the re-
sulting frictional acceleration and the Coriolis acceleration are able to balance the
pressure gradient.
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Figure 5.10. (a) Geostrophic balance outside the bottom Ekman boundary layer: the pressure
gradient ∇p balances the Coriolis acceleration ac (hence the sum of ac and −∇p is zero). (b)
Balance in the Ekman boundary layer, where the sum of the Coriolis acceleration and the frictional
acceleration af compensate the pressure gradient.

�

5.3.4. Continuity of the vertical velocity
The results so far of the outer geostrophic flow and the inner Ekman boundary

layer flows are sketched in Fig. 5.11. Through the Ekman boundary layers, the
total flow satisfies the boundary conditions at the top and bottom, and the hori-
zontal velocities and the pressure are continuous over the vertical. There is one
variable that we need to consider: the vertical velocity. As deduced earlier, the

Figure 5.11. Sketch to clarify the matching of the vertical velocity over the top and bottom bound-
aries of the Ekman layer and the geostrophic domain.

outer vertical velocity w0 ≡ 0. Equation (5.50) indicates that the O(1) vorticity
(ζ0) in the geostrophic domain generates, through the bottom friction (for a flat
bottom) a vertical velocity at the top of the boundary layer (ξ → ∞) according to

lim
ξ→∞

w̃(x, y, ξ) = lim
ξ→∞

Ē
1/2
V w̃0(x, y, ξ) =

1
2
Ē

1/2
V ζ0. (5.69)
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We now consider the case of the presence of bottom topography. If hb(x, y) =
O(1) we see that the O(1) geostrophic problem no longer gives w0 ≡ 0. The
asymptotic methodology is no longer directly applicable and numerical methods
need to be used. However, in the case hb(x, y) = O(ε) asymptotic methods can
still be used. In this case, let

hb(x, y) = εηb(x, y). (5.70)

The boundary conditions at z = −1 + εηb(x, y) are that both normal and tan-
gential components of the velocity are zero. The tangent vectors and normal at a
particular point is spanned by

t1 =

⎛

⎝
1
0

εηb,x

⎞

⎠ ; t2 =

⎛

⎝
0
1

εηb,y

⎞

⎠ ; n =

⎛

⎝
−εηb,x

−εηb,y

1

⎞

⎠ , (5.71)

where ηb,x = ∂ηb/∂x (see Fig. 5.3). The conditions

v · t1 = v · t2 = v · n = 0, (5.72)

give

u + ε
∂ηb

∂x
w = 0, (5.73a)

v + ε
∂ηb

∂y
w = 0, (5.73b)

w − ε(u
∂ηb

∂x
+ v

∂ηb

∂y
) = 0. (5.73c)

The vertical velocities w are now O(ε) and

w − ε(u0 ∂ηb

∂x
+ v0 ∂ηb

∂y
) = 0. (5.74)

If (5.44d) is integrated from ξ = 0 to ξ = ∞, we find that the correction due to
the bottom topography leads to

lim
ξ→∞

w̃(x, y, ξ) = ε u0 · ∇ηb +
1
2
Ē

1/2
V ζ0. (5.75)

where u0 = (u0, v0). This result can be seen as that for the flat bottom plus a part
due to the kinematic boundary condition (v · n = 0).

The vertical velocity at the lower boundary of the free surface Ekman layer
follows from vertical integration of the continuity equation (5.63d) with the result

lim
χ→∞

ŵ(x, y, χ) = Ē
1/2
V ŵ0(x, y, 0) +

α

2
Ē

1/2
V ∇.(T ∧ e3), (5.76)
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where ŵ0(x, y, 0) is the value of the vertical velocity at the free surface. We
obtain this value from (5.16b) which in variables (x, y, z) (note that the boundary
condition can be taken on χ = 0) becomes

w = w0 + εw1 + . . . = εF

[
Dη

dt

0

+ ε
Dη

dt

1

+ . . .

]
, (5.77)

and (5.76) modifies as

lim
χ→∞

ŵ(x, y, χ) = εFu0.∇η0 +
α

2
Ē

1/2
V ∇.(T ∧ e3). (5.78)

The relations (5.75) and (5.78) show an essential problem. It does not appear
possible to match the O(1) boundary layer solution for the vertical velocity to
the O(1) geostrophic solution. This can only be done when both the limit (5.75)
and (5.78) become zero and as we have seen, one can then no longer satisfy the
boundary conditions. The solution of this problem is to match the O(1) boundary
layer solution with the O(ε) geostrophic solution. This leads to the barotropic
quasi-geostrophic theory in the next section.

To perform this matching, we need to fix the relative amplitude of ε and EV ;
so far we have only mentioned that EV was at most O(ε). The equations (5.75)

and (5.78) show that if E
1/2
V � ε, only kinematic effects are included. Because

the flow must be driven by the wind stress, we have to take the Ekman terms into
account and hence we define the parameter r as

r =
Ē

1/2
V

ε
. (5.79)

If r = O(1), then both terms in (5.75) and (5.78) are of the same order of magni-
tude. If we take the limit r → 0, then there are only kinematic effects.

�
Example 5.4: Ekman pumping and suction

Consider a situation where the dimensionless wind stress T is given by

T =

⎛

⎝
γy
0
0

⎞

⎠ , (5.80)

with γ > 0 and y ∈ [−1, 1]. It follows that ∇ · (e3 ∧ T) = γ which is constant.
The Ekman boundary layer velocity field follows from (5.65) as

uE(x, y, χ) = û0(x, y, χ) − u0(x, y) =
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=
γyα

2
e−χ(− sin χ + cos χ), (5.81a)

vE(x, y, χ) = v̂0(x, y, χ) − v0(x, y) =

=
γyα

2
e−χ(− cos χ + sinχ). (5.81b)

At the surface χ = 0, we have
(

uE

vE

)
=

γyα

2

(
1
−1

)
, (5.82)

while the total Ekman volume transport ME∗ per unit length is

ME∗ = γ
UδEα

2

(
0
−y

)
(5.83)

The direction of ME∗ and the surface velocities are plotted in Fig. 5.12a and the
effect of vertical friction is to cause horizontal convergencies. This can explicitly
be seen from

∇.

(
uE

vE

)
= −γ

α

2
e−χ(cos χ + sinχ), (5.84)

which integrated over the boundary layer is equal to −αγ/2. From (5.78), the
vertical velocity is calculated as

w1(x, y, 0) = Fu0.∇η0 − αrγ. (5.85)

The second term on the right hand side is caused by the convergence of water. In
the limit F → 0, it follows that w1(x, y, 0) < 0 (in the northern hemisphere,
it follows that α > 0), and hence water is pumped from the boundary layer into
the geostrophic flow domain. For γ < 0, the opposite happens: there is a di-
vergence in the Ekman layer and mass is sucked into the Ekman boundary layer
(Fig. 5.12b).
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Figure 5.12. Example of Ekman (a) pumping (γ > 0) and (b) suction (γ < 0) caused by (a) a
convergence and (b) a divergence of mass in the surface Ekman layer.
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Surface Ekman layer

For a given wind stress T∗ = (τx
∗ , τy

∗ , 0)T there exists an Ekman bound-
ary layer of thickness δE = D

√
ĒV =

√
2AV /f0. At the ocean-

atmosphere surface, the dimensional horizontal Ekman volume transport
(in m3s−1) is

φx∗ =
τy
∗ Ly

ρ0f0
; φy∗ = −τx

∗ Lx

ρ0f0
,

where Lx and Ly are the dimensions on the layer in x and y direc-
tion. The magnitude of the Ekman upwelling velocity is given by w∗ =
Ē

1/2
V (UD/L) (α/2)Ē1/2

V ∇ · (T ∧ e3) and in dimensional quantities this
becomes

w∗ =
1

ρ0f0

[
∂τy

∗
∂x∗

− ∂τx
∗

∂y∗

]
=

1
ρ0f0

∇ · (T∗ ∧ e3)

The upwelling velocity thus scales with τ0/(ρ0f0L) and is about 10−6

ms−1 (which is 10 cm/day) for a flow with L = 1000 km and τ0 = 0.1
Pa at 45◦N.

In Fig. 5.13, the annual global wind-induced upwelling is plotted from data of
the wind-stress field. There is downwelling in the midlatitude subtropical gyres
and upwelling in the midlatitude subpolar gyres. There is also pronounced up-
welling along the equator (we will explain this in chapter 11) and along some of
the coastal boundaries.

�

Additional Material

B: Having understood section 5.2 it is recommended to read chapter 4, sections
4.1 to 4.3, 4.5 to 4.8 and 4.10 to 4.11 in Pedlosky (1987). An alternative
threatment of the Ekman layer can be found in chapter 5 of Cushman-Roisin
(1994).

D: In section 4.9 of Pedlosky (1987) and section 5.5 of Cushman-Roisin (1994),
the extension of the Ekman layer theory in the presence of a sloping boundary
is described.
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5.4. The barotropic vorticity equation
The analysis in the previous section shows that small deviations from

geostrophic flow (in the flow outside the Ekman boundary layers) are necessary
to solve the degeneracy problem of the geostrophic equations (cf. section 5.2.1).
The O(ε) equations (5.15) become

u0 ∂u0

∂x
+ v0 ∂u0

∂y
− v1 − βyv0 = −∂p1

∂x
+ Re−1∇2

Hu0, (5.86a)

u0 ∂v0

∂x
+ v0 ∂v0

∂y
+ u1 + βyu0 = −∂p1

∂y
+ Re−1∇2

Hv0, (5.86b)

0 =
∂p1

∂z
, (5.86c)

∂u1

∂x
+

∂v1

∂y
+

∂w1

∂z
= 0, (5.86d)

where EH = 2εRe−1 is assumed to be O(ε) at most and Re = UL/AH is the
Reynolds number. In general, Re−1 is a very small parameter but neglecting the
term will lead to problems in satisfying lateral boundary conditions.

If the O(ε) pressure p1 is eliminated from (5.86a,b), we find

Dζ

dt

0

+ βv0 = u0 ∂ζ0

∂x
+ v0 ∂ζ0

∂y
+ βv0 =

−(
∂u1

∂x
+

∂v1

∂y
) + Re−1∇2ζ0 =

∂w1

∂z
+ Re−1∇2ζ0, (5.87)

where D/dt = u0∂/∂x + v0∂/∂y. Because u0 and v0 and hence ζ0 are indepen-
dent of z we can integrate (5.87) over the layer thickness (from z = −1 to z = 0)
and find

Ex. 5.4
u0 ∂ζ0

∂x
+ v0 ∂ζ0

∂y
+ βv0 = w1

|z=0
− w1

|z=−1
+ Re−1∇2ζ0. (5.88)

To close this equation for ζ0, we need to express w1 in terms of the boundary
layer solutions. Using (5.75) and (5.78), i.e.,

w1(x, y,−1) = u0 · ∇ ηb +
r

2
ζ0, (5.89a)

w1(x, y, 0) = Fu0 · ∇η0 +
αr

2
∇ · (T ∧ e3), (5.89b)

(5.88) becomes the barotropic potential vorticity equation given by

∂ζ0 − Fη0 + ηb

∂t
+ βv0 =

αr

2
∇.(T ∧ e3) −

rζ0

2
+

1
Re

∇2ζ0, (5.90a)
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ζ0 =
∂v0

∂x
− ∂u0

∂y
, (5.90b)

v0 =
∂p0

∂x
; u0 = −∂p0

∂y
, (5.90c)

η0 = p0. (5.90d)

Equation (5.90) is a scalar equation for the pressure p0(x, y). It is remarkable
that the O(ε) balance in the flow outside the Ekman boundary layers eventually
determines the O(1) pressure field and hence the O(1) geostrophic flow field. The
lateral boundary conditions for p0 will be considered in later sections.

As p0 is a streamfunction, often the dimensionless geostrophic streamfunction
ψ = p0 is used; the scalar equation for ψ then becomes

(
∂ψ

∂x

∂

∂y
− ∂ψ

∂y

∂

∂x
)(∇2ψ − Fψ + ηb) + β

∂ψ

∂x

=
αr

2
∇ · (T ∧ e3) −

r

2
∇2ψ + Re−1∇4ψ. (5.91)

The barotropic vorticity equation

This equation forms the basis for the description and explanation of the
western intensification of boundary currents as we will see in the next
chapter. It results from an asymptotic approximation of the solutions of
the barotropic β-plane model for a constant density ocean in the limit of
small Rossby number ε. The dominant balances in the flow interior are
hydrostatic and geostrophic and the evolution of the pressure field is deter-
mined from a balance of the ageostrophic effects. Its steady dimensional
form (with ψ∗ = p∗/(ρ0f0) in m2s−1) is

(
∂ψ∗
∂x∗

∂

∂y∗
− ∂ψ∗

∂y∗

∂

∂x∗
)(∇2

∗ψ∗ − λ0ψ∗ +
f0

D
hb∗) + β0

∂ψ∗
∂x

=
1

ρ0D
∇ · (T∗ ∧ e3) − ε0∇2

∗ψ∗ + AH∇4
∗ψ∗,

=
f0

D
wE∗ − ε0∇2

∗ψ∗ + AH∇4
∗ψ∗,

where ε0 = f0δE/D (s−1) is a dimensional damping coefficient and
λ0 = f2

0 /(gD) = 1/R2
D, where RD is the external Rossby radius of

deformation as defined in section 3.1.

The first two terms on the right hand side of (5.91) represent vorticity gen-
eration through the wind stress ((αr/2)∇.(T ∧ e3)) and the bottom friction
(−(r/2)∇2ψ in (5.91)), both through Ekman pumping/suction and subsequent
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Figure 5.13. Annual mean wind-induced Ekman upwelling (in cm/day) over the global ocean
(from http://www.ocgy.ubc.ca/projects/clim.pred/Upwell/index.html).

vortex stretching. The third term is the vorticity production due to lateral friction.
To investigate the physical interpretation of the left hand side of (5.91), we write
it, with v0 = Dy/dt, as

D

dt

[
ζ0 − Fη0 + ηb + βy

]
=

DΠ
dt

. (5.92)

If DΠ/dt = 0 then Π is constant along streamlines.
Now consider the dimensional potential vorticity Π∗ on the β-plane defined by

Π∗ =
ζ∗ + f

H∗
, (5.93)

where H∗ is the total thickness of the water column, f = f0 + β0y∗ and ζ∗ is the
vertical component of the relative vorticity. For the case considered above with
small amplitude topography, we have

H∗ = h∗ − (−D + hb∗) = D + h∗ − hb∗. (5.94)

In dimensionless quantities, this becomes

D

f0
Π∗ = (1 + εFη − εηb)−1(εζ + 1 + βεy). (5.95)

Expansion of the denominator in ε gives

(1 + ε(Fη − ηb))−1 = 1 − ε(Fη − ηb) + O(ε2), (5.96)
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and eventually

D

f0
Π∗ = 1 + ε(ζ + βy − Fη + ηb) + O(ε2) = 1 + εΠ + O(ε2). (5.97)

The relation DΠ/dt = 0 is thus a representation of conservation of potential
vorticity and the dimensional potential vorticity

Π∗ = ∇2
∗ψ∗ − λ0ψ∗ +

f0

D
hb∗ (5.98)

is often referred to as the quasi-geostrophic potential vorticity.
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Summary

At the ocean-atmosphere surface, the wind-stress forcing leads to di-
vergences or convergencies in the surface mass transport. This occurs
in Ekman layers of thickness

δE =

√
2AV

f

where AV is the vertical viscosity.

The dimensional horizontal Ekman volume transport (in m2s−1), i.e.,
per unit length perpendicular to the transport direction is

Mx
E∗ =

τy
∗

ρ0f0
; My

E∗ = − τx
∗

ρ0f0
,

This surface mass transport leads to Ekman pumping or suction with
a vertical velocity given by

wE∗ =
1

ρ0f0

[
∂τy

∗
∂x∗

− ∂τx
∗

∂y∗

]

Near the ocean bottom, similar features occur and the transports de-
pend on the bottom stress (instead of on the surface wind stress).

In both Ekman layers, the velocity vector undergoes a spiralling be-
havior because the pressure gradient vector is fixed (constant density
case) and a balance between pressure gradient, friction and Coriolis
acceleration has to be maintained.

The quasi-geostrophic potential vorticity

Π∗ = ∇2
∗ψ∗ − λ0ψ∗ +

f0

D
hb∗

is a conserved quantity when (i) bottom friction is negligible, (ii)
lateral friction is negligible and (iii) the Ekman pumping velocity
wE∗ = 0.
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5.5. Exercises on chapter 5

(5.1) Gulf Stream

In this exercise, we consider the dominant balances in the horizontal momen-
tum equations for the Gulf Stream. Characteristic length scales for the Gulf
Stream are Lx = 50 km and Ly = 500 km. The characteristic velocity in
east-west direction is about U = 0.1 m/s and that in north-south direction
V = 1.0 m/s. Assume furthermore that the Gulf Stream is a steady current
and take AH = 105 m2s−1 and AV = 0.1 m2s−1.

a. Show that in the meridional direction the Gulf Stream is not quite in
geostrophic balance. Which other terms contribute to this momentum
balance?

b. Show that the zonal momentum equation is dominantly geostrophic.

(5.2) An alternative approach to the bottom Ekman layer

Consider an ocean with water of constant density ρ above a flat bottom (at
z∗ = 0). The horizontal velocities outside the Ekman layer (where the flow
is hydrostatic and geostrophic) are indicated by (ug∗, vg∗). The total velocity
can be written as

u∗ = ug∗ + uE∗; v∗ = vg∗ + vE∗

where uE∗ en vE∗ are the horizontal Ekman velocities.

a. Show that the Ekman velocities can be determined from

−f0 vE∗ = AV
∂2uE∗
∂z2

f0 uE∗ = AV
∂2vE∗
∂z2

b. Determine the Ekman transport ME∗ = (Mx
E∗, M

y
E∗) through vertical

integration and show that the direction of this transport is perpendicular to the
bottom shear stress.
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c. Show that for vg∗ = 0 and constant ug∗, the solution of the Ekman layer
velocities is given by

uE∗ = −ug∗e
−z∗/δE cos

z∗
δE

vE∗ = ug∗e
−z∗/δE sin

z∗
δE

where δE =
√

2AV
f0

is the bottom Ekman layer thickness.

d. Check that the total velocity field (u, v) satisfies the boundary conditions

(z = 0) : u∗ = v∗ = 0
(z � 1) : u∗ = ug∗; v∗ = 0

and make a sketch of the total velocity field in the Ekman layer.

(5.3) Ekman layer at the ocean-atmosphere interface

Suppose we have a basin of dimensions 1000 × 1000 × 1 km at 45◦N
(domain [0, 1] × [−1, 1] × [−1, 0]) with the flow forced by the wind stress
τx
∗ = τ0y, τy

∗ = 0; take τ0 = 10−1 Pa and choose U = 10−2 ms−1.

a. Write a computer program that calculates the dimensionless Ekman
velocities for this wind stress field for different values of AV . Make a plot
of the velocitities (û0, v̂0) versus χ ∈ [0, 10] for three different values of
AV = 0.1, 0.01 and 0.0001 m2s−1.

b. Calculate for each of the values of AV the dimensional Ekman transport
ME∗.

(5.4) Ekman layer at an eastern boundary

Ekman layers can also occur near continental boundaries. Consider a flow
near an east coast x = xE driven by wind stress τy = τ0, τx = 0, where τ0 is
constant. Bottom friction can be neglected.

a. Write down the zonal momentum equations in this case (integrated over
depth) and determine the Ekman pumping at the surface.
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b. Give a physical explanation of the upwelling velocity in the northern
hemisphere, in case τ0 < 0.

c. Introduce a coordinate λ = (xE − x)/δ and derive that the dominant zonal
momentum balance is given by

u + (
AH

f
)2uxxxx ≈ 0

d. Determine the lateral Ekman boundary layer scale δ.

(5.5) Steady geostrophic flow

Consider a thin layer of water that rotates with a constant angular velocity Ω;
the layer is bounded from below by a flat bottom. Initially, the water is motion-
less and the deviation h of the dimensionless sea surface from its equilibrium
value is zero. At t = 0, the sea surface is deformed according to

h(x, y) = (−H(x) + H(−x))h0

where h0 is a constant and H is the Heaviside function. During the develop-
ment of the flow, the Rossby number ε remains small.

a. Use quasi-geostrophic theory and formulate the equations which determine
the geostrophic velocities u0, v0 and surface deformation h0.

Assume now that the amplitudes of velocities are so small that products of
these quantities can be neglected.

b. Determine the linear equation describing the evolution of h0.

Consider now the special case that the steady state field h0 does not depend
on y.

c. Determine the steady state field h0.

d. Determine and sketch the geostrophic velocities u0 and v0.
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Through the analysis in the previous chapter, an enormous reduction of
the mathematical problem of the wind-driven circulation has been accom-
plished. At the beginning of section 5.1, we needed to solve a system
of four coupled partial differential equations in three space dimensions,
which has now been reduced to the solution of one scalar partial differ-
ential equation (5.91) in two spatial dimensions. But the problem can be
reduced even more! In section 6.1, inner and outer expansion techniques
are used on the barotropic vorticity equation to obtain the famous Sver-
drup balance outside continental boundary layers. The structure of the
flow in the boundary layers is presented in section 6.2 for the frictional
cases (the Munk and Stommel boundary layers) and in section 6.3 for the
inertial case. From this theory, the mechanism of the western intensifi-
cation of midlatitude ocean current such as the Gulf Stream is described.
Finally, in section 6.4 some nonlinear aspects of the circulation are dis-
cussed.

6.1. The Sverdrup balance
As we have already seen, the values of L = 1000 km, U = 10−2 ms−1 apply

for the gyre-scale flow in the North Atlantic and with β0 = 2.0× 10−11 (ms)−1 it
follows that β = O(102). If we look at the terms in the equation (5.91), then the
first term in the left hand side is O(1) and the last two terms in the right hand side
are both at most O(1). Hence, only the wind stress term can balance the β term
which leads to

O(
αr

2
) = O(β) → O

[
τ0

ρf0δEU

E
1/2
V

ε

]
= O

[
τ0

ρUD

L

U

]
= O

[
β0L

2

U

]
, (6.1)

from which the horizontal velocity U (which was previously not related to the
parameters, but based on observational values) follows as

U =
τ0

ρDβ0L
. (6.2)

First of all, we need to check whether this gives consistent values of U . With
D = 103 m, ρ = 103 kgm3, τ0 = 0.2 Nm−2, and β0 = 2.0 × 10−11 (ms)−1,
we find U ≈ 10−2 ms−1 which is indeed consistent. As mentioned before, this
velocity is a depth averaged velocity at the basin scale.

With the choice of U , the barotropic vorticity equation (5.91) becomes

1
β

[
∂ψ

∂x

∂

∂y
− ∂ψ

∂y

∂

∂x

] [
∇2ψ − Fψ + ηb

]
+

∂ψ

∂x
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= ∇ · (T ∧ e3) −
r

2β
∇2ψ − 1

βRe
∇4ψ. (6.3)

Because β is large, F = O(1), r = O(1) and Re−1 � 1, we can use 1/β as a
small parameter and as this term occurs in the highest derivatives, we can again
make use of the method of inner and outer expansions (cf. Example 5.1).

The outer expansion becomes

ψ(x, y) = ψ0(x, y) + β−1ψ1(x, y) + . . . (6.4)

and the O(1) system is simply

∂ψ0

∂x
= ∇ · (T ∧ e3), (6.5)

which is called the Sverdrup balance.

The Sverdrup balance

The dimensional form of the Sverdrup balance (6.5) is

β0v∗ =
1

ρD
(
∂τy

∗
∂x∗

− ∂τx
∗

∂y∗
) =

f0

D
wE∗,

The right hand side of this equation is the vorticity input by the wind
stress giving rise to the Ekman pumping velocity. The term −β0v∗ is the
vorticity change of a fluid parcel when moving north-south on the sphere
(cf. section 3.1). The β− induced vorticity changes must compensate the
vorticity input by the wind. For example, if the Ekman pumping velocity
is negative fluid parcels must move southward such that their vorticity
change is positive. The dimensional pressure field follows from p∗ =
ρ0f0ψ∗ = ρ0f0LUψ and hence the flow follows isobars.

Ex. 6.1

For the Sverdrup flow (6.5) the streamfunction ψ0 can be directly determined
from (6.9) as

ψ0(x, y) =
∫ x

x0

∇ · (T ∧ e3)(s, y)ds + Ψ0(y), (6.6)

where x0 is still arbitrary and Ψ0(y) is an integration constant. The horizontal
velocity u0 is

u0(x, y) = −∂ψ0/∂y = −
∫ x

x0

∂

∂y
[∇ · (T ∧ e3)(s, y)] ds + U(y), (6.7)

where U(y) = −Ψ0′(y).



130 DYNAMICAL OCEANOGRAPHY

But can this solution satisfy the kinematic boundary conditions? Let the con-
tinental boundaries be described by xE = xE(y) and xW = xW (y), then the
tangent t and the normal n are

tW =
(

x′
W
1

)
; nW =

(
−1
x′

W

)
; tE =

(
x′

E
1

)
; nE =

(
1

−x′
E

)
. (6.8)

The kinematic boundary conditions (v · n = 0) then become

x = xW (y) : u = vx′
W ; x = xE(y) : u = vx′

E , (6.9)

and for later reference the no-slip conditions (v · t = 0) are

x = xW (y) : v = −ux′
W ; x = xE(y) : v = −ux′

E . (6.10)

If we try to satisfy (6.9b) with the solution (6.6) at xE(y) then

U(y) =
∂

∂y

∫ xE(y)

x0

∇ · (T ∧ e3)(s, y)ds, (6.11)

and we cannot satisfy the boundary condition (6.9a) at xW for an arbitrary wind-
stress field. Similarly, if we determine U(y) such that (6.9a) is satisfied at xW ,
we cannot satisfy the kinematic boundary condition at xE . Hence, the Sverdrup
circulation cannot satisfy both kinematic boundary conditions.

For the total dimensionless Sverdrup transport Φy we find

Φy(y) =
∫ xE

xW

v0(x, y)dx =
∫ xE

xW

∇ · (T ∧ e3)(x, y)dx, (6.12)

which is independent of the boundary conditions. This transport has to be com-
pensated in boundary layers, at the eastern or western (or both) boundaries.
To obtain the dimensional transport in Sv, multiply by the factor ULD, i.e.,
Φy
∗ = UDLΦy.

�
Example 6.1: Sverdrup flow

Consider, for a square ocean basin x, y ∈ [0, 1] × [0, 1], the Sverdrup flow
caused by the wind stress

τx(x, y) = − 1
2π

cos 2πy, (6.13a)

τy(x, y) = 0, (6.13b)
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such that
∂ψ

∂x

0

= v0(x, y) = ∇ · (T ∧ e3) = − sin 2πy. (6.14)

The geostrophic streamfunction ψ0(x, y) is

ψ0(x, y) = −x sin 2πy + Ψ0(y). (6.15)

Note that ψ0 is also the shape of the ocean-atmosphere boundary since p0 = η0 =
ψ0. The zonal geostrophic velocity is

u0(x, y) = −∂ψ0/∂y = −2πx cos 2πy + U(y). (6.16)

If we try to satisfy the boundary condition u = 0 at x = 1, then

U(y) = 2π cos 2πy → u0(x, y) = −2π(1 − x) cos 2πy (6.17a)

ψ0(x, y) = (1 − x) sin 2πy + ψ0, (6.17b)

where ψ0 is an arbitrary constant which can be taken as zero. The solution is
plotted in Fig. 6.1a and it cannot satisfy the condition u = 0 at x = 0. To close
the circulation, a boundary layer is needed near the western boundary.

If we try to satisfy the boundary condition u = 0 at x = 0, we find

ψ0(x, y) = −x sin 2πy + ψ0. (6.18)

Again, with ψ0 = 0 the Sverdrup flow is plotted in Fig. 6.1b and this solution
cannot satisfy the condition u = 0 at x = 1. To close the circulation, a boundary
layer is needed near the eastern boundary.

Considering only Sverdrup dynamics, both solutions in Fig. 6.1 are equally
possible and we have to resolve the boundary layer structure (as will be done in the
next section) to determine which one is dynamically correct. For both solutions,
the total meridional Sverdrup transport Φy is given by

Φy(y) =
∫ 1

0
− sin 2πy dx = − sin 2πy. (6.19)

With values of τ0 = 0.1 Pa, L = 1000 km and D = 1000 m, it follows from (6.2)
that U = 10−2 ms−1 and we find a maximum transport in each gyre of about 10
Sv. �

6.2. Continental boundary layers
To satisfy the boundary conditions (6.9) we have to investigate the flow behav-

ior near the continents where the length scale L is not the characteristic length of
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(a) (b)

Figure 6.1. Examples of Sverdrup flows for the wind stress field τx(x, y) = −1/(2π) cos 2πy,
τy(x, y) = 0. (a) The flow satisfies u = 0 at x = 1. (b) The flow satisfies u = 0 at x = 0.

the flow. From (5.91), there are three processes that can give a different balance
in the boundary layer, i.e., inertia, bottom friction and lateral friction. The three
associated length scales are

δI = (
U

β0
)1/2 , δS =

δEf0

2Dβ0
, δM = (

AH

β0
)1/3. (6.20)

The scales are chosen such that

(
δI

L
)2 =

1
β

, (
δM

L
)3 =

1
βRe

,
δS

L
=

r

2β
, (6.21)

which are exactly the different terms in (5.91). If the scale of the flow is larger
than max(δI , δM , δS), then the Sverdrup balance holds, but if the scale of the flow
is in the order of one of the δ’s in (6.20), the equations need to be rescaled.

For the analysis of the boundary layer solutions, we consider the simple case
where xW and xE are constant, the bottom is flat (ηb = 0) and the effect of the
deformation of the ocean-atmosphere interface is neglected ( F → 0). In that
case, (5.91) can be written as

(
δI

L
)2
[
∂ψ

∂x

∂

∂y
− ∂ψ

∂y

∂

∂x

]
∇2ψ +

δS

L
∇2ψ − (

δM

L
)3∇4ψ =

−∂ψ

∂x
+ ∇ · (T ∧ e3). (6.22)

With a boundary layer coordinate λ given by

λ =
x − xW

�
, (6.23)
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at the western boundary, (6.22) becomes

(
δI

�∗
)2
[
∂ψ

∂λ

∂

∂y
− ∂ψ

∂y

∂

∂λ

] [
∂2ψ

∂λ2
+ �2 ∂2ψ

∂y2

]
+

δS

�∗

[
∂2ψ

∂λ2
+ �2 ∂2ψ

∂y2

]
−

−(
δM

�∗
)3
[

∂2

∂λ2
+ �2 ∂2

∂y2

]2
ψ = −∂ψ

∂λ
+ �∇ · (T ∧ e3), (6.24)

where �∗ = L�.
With a boundary layer coordinate μ given by

μ =
xE − x

�
, (6.25)

at the eastern boundary, (6.22) becomes

−(
δI

�∗
)2
[
∂ψ

∂μ

∂

∂y
− ∂ψ

∂y

∂

∂μ

] [
∂2ψ

∂μ2
+ �2 ∂2ψ

∂y2

]
+

δS

�∗

[
∂2ψ

∂μ2
+ �2 ∂2ψ

∂y2

]
−

−(
δM

�∗
)3
[

∂2

∂μ2
+ �2 ∂2

∂y2

]2
ψ =

∂ψ

∂μ
+ �∇ · (T ∧ e3). (6.26)

Each of the three terms on the left hand side will give higher derivatives but to
satisfy no-slip conditions we have to take lateral friction into account. When only
bottom friction and/or inertia is considered (with only second order derivatives),
we can only satisfy kinematic boundary conditions. Hence, there are several pos-
sibilities:

(i) Effects of inertia and bottom friction can be neglected with respect to lateral
friction, δM � max(δS , δI). The boundary layer structure is relatively simple
(Fig. 6.2a) and is called the Munk boundary layer.

(ii) Effects of inertia can be neglected with respect to those of bottom and lateral
friction and the effect of bottom friction is much larger than that of lateral
friction on a length scale �S

∗ . In this case δS � max (δM , δI); on the scale
�S
∗ only kinematic boundary conditions can be satisfied and the boundary layer

is called the Stommel boundary layer. However, to satisfy no-slip conditions,
there must be a sub-layer of scale �M

∗ < �S
∗ within the Stommel boundary

layer where lateral friction is important (Fig. 6.2b). On the scale �M
∗ it follows

that

(
δM

�M
∗

)3 = O(
δS

�M
∗

) ⇒ �M
∗ = O(δS(

δM

δS
)3/2). (6.27)

(iii) The effects of bottom friction are negligible everywhere, but the effect of iner-
tia is larger than that of lateral friction on a scale �I

∗. The boundary layer scale
is called the inertial boundary layer and in that case there is the same situation
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as in (ii) in that there must exist a sub-layer where lateral friction is important
(Fig. 6.2c). With δI � max(δM , δS), the sub-layer has the scale �M

∗ with

(
δM

�M
∗

)3 = O(
δI

�M
∗

)2. (6.28)

If all three effects have the same order of magnitude, the boundary layer struc-
ture is more complicated but the cases above cover all interesting and essentially
different cases.

(a)

(b)

(c)

Figure 6.2. Boundary layer structure for three different cases. (a) Munk boundary layer, (b)
Stommel boundary layer with viscous sublayer, and (c) inertial boundary layer with viscous sub-
layer.
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6.2.1. The Munk boundary layer
Case (i) of the previous section is characterized by

δM � max (δI , δS), (6.29)

and hence lateral friction dominates over inertia and bottom friction. We start
from the Sverdrup solution ψ0 in (6.6), with

ψ0(x, y) =
∫ x

xW

∇.(T ∧ e3)(s, y)ds + Ψ0(y), (6.30)

where Ψ0(y) is still to be determined. For constant xW and xE , the kinematic
(6.10) and no-slip (6.11) boundary conditions are

x = xW , xE : ψ = 0,
∂ψ

∂x
= 0. (6.31)

Consider first the boundary layer at the eastern boundary. With �∗ = δM and
with (6.29), (6.26) becomes

[
∂2

∂μ2
+ �2 ∂2

∂y2

]2
ψ =

∂ψ

∂μ
+ �∇ · (T ∧ e3). (6.32)

It appears convenient to introduce the boundary layer correction φB by

ψ(μ, y) = ψ0(x, y) + φB(μ, y). (6.33)

Substitution of (6.33) into (6.32) and use of

∂ψ0

∂μ
= −�

∂ψ0

∂x
, (6.34)

gives, with � = δM/L � 1, the dominant balance

∂4φB

∂μ4
+

∂φB

∂μ
= 0. (6.35)

The characteristic polynomial is found through substitution of eμz into (6.35)
which gives

z4 + z = 0 ⇒ z = 0 ∨ z = −1 ∨ z =
1
2
(1 + i

√
3) ∨ z =

1
2
(1 − i

√
3). (6.36)

The general solution of (6.35) is

φB(μ, y) = C1(y)+C2(y)e−μ+C3(y)e
μ
2 cos

μ
√

3
2

+C4(y)e
μ
2 sin

μ
√

3
2

. (6.37)
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There are four integration constants (functions of y) and we need four boundary
conditions to determine them. Two follow directly from the boundary conditions
(6.31) at the eastern boundary x = xE (μ = 0), i.e.,

φB(0, y) = ψ(0, y) − ψ0(xE , y) = −ψ0(xE , y) (6.38a)

∂ψ

∂μ
= −�

∂ψ0

∂x
+

∂φB

∂μ
≈ ∂φB

∂μ
= 0. (6.38b)

The other two follow from matching to the Sverdrup solution for μ → ∞, i.e.,

lim
μ→∞

φB = 0 ; lim
μ→∞

∂φB

∂μ
= 0. (6.39)

For the solution (6.37), it follows from (6.39) directly that C1 = C3 = C4 = 0
and from (6.38b) that C2 = 0. The zeroth order boundary layer correction φB = 0
and Ψ0(y) has to be fixed by requiring that ψ = 0 at the eastern boundary. In other
words, the boundary analysis indicates that the Sverdrup solution has to satisfy the
eastern boundary condition and hence (6.30) becomes

ψ0(x, y) =
∫ x

xE

∇.(T ∧ e3)(s, y)ds. (6.40)

At the western boundary, we follow the same approach with λ as boundary
layer coordinate. With

∂ψ0

∂λ
=

∂ψ0

∂x
�, (6.41)

it follows in the same way (from (6.24)) that the zeroth order balance in the bound-
ary layer is given by

∂4φB

∂λ4
− ∂φB

∂λ
= 0. (6.42)

The characteristic polynomial is

z4 − z = 0 ⇒ z = 0∨ z = 1∨ z = −1
2
(1 + i

√
3)∨ z = −1

2
(1− i

√
3), (6.43)

and the general solution (6.42) is

φB(λ, y) = C1(y) + C2(y)eλ + C3(y)e
−λ
2 cos

λ
√

3
2

+ C4(y)e
−λ
2 sin

λ
√

3
2

.

(6.44)
The boundary - and matching conditions become

φB(0, y) = ψ(0, y) − ψ0(xW , y) = −ψ0(xW , y) (6.45a)

∂ψ

∂λ
= �

∂ψ0

∂x
+

∂φB

∂λ
≈ ∂φB

∂λ
= 0 (6.45b)

lim
λ→∞

φB = 0 ; lim
λ→∞

∂φB

∂λ
= 0. (6.45c)



Western intensification 137

From (6.45b) it follows that C1 = C2 = 0 and the conditions (6.45a) fix the
zeroth order boundary layer correction through C3 and C4, with

C3(y) = −ψ0(xW , y) ; C4(y) =
C3√

3
. (6.46)

Finally, the boundary layer solution is given by

ψ(λ, y) = ψ0(xW , y)(1 − e
−λ
2 cos

λ
√

3
2

− 1√
3
e

−λ
2 sin

λ
√

3
2

), (6.47)

and ψ(λ, y)/ψ0(xW , y) is plotted as function of λ in Fig. 6.3. We see that indeed
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Figure 6.3. Plot of the boundary layer solution ψ(λ, y)/ψ0(xW , y) from (6.47).

ψ = 0 and v̂(λ, y) = L/δM∂ψ̂0/∂λ = 0 at λ = 0. Note also that ψ oscillates
and hence there are intervals where v̂ is positive and negative.

6.2.2. The Stommel boundary layer
In case (ii), we consider the boundary layer structure due to bottom friction for

which
δS � max (δI , δM ). (6.48)

The potential vorticity equation reduces to

δS

L
∇2ψ = −∂ψ

∂x
+ ∇ · (T ∧ e3). (6.49)
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The Sverdrup solution is again

ψ0(x, y) =
∫ x

xW

∇ · (T ∧ e3)(s, y)ds + Ψ0(y), (6.50)

where Ψ0(y) has to be determined. As the highest order derivative in (6.49) is
of second order only kinematic conditions can be prescribed and for constant xW

and xE , we have
x = xW , xE : ψ = 0. (6.51)

We now consider the impact of bottom friction near x = xE , take �∗ = δS in
(6.26) (note � = δS/L � 1) and expand

ψ̃(μ, y) = ψ̃0(μ, y) + �ψ̃1(μ, y) + . . . (6.52)

Equation (6.26) provides the O(1) system

∂2ψ̃

∂μ2

0

− ∂ψ̃

∂μ

0

= 0, (6.53)

having the solution
ψ̃0(μ, y) = C1(y)eμ + C2(y). (6.54)

For μ → ∞ , ψ0 has to be bounded; this implies C1(y) = 0 and because of
Ex. 6.2

(6.51) at x = xE also C2(y) = 0. There can be no eastern boundary layer due to
bottom friction and the Sverdrup solution has to satisfy the boundary condition at
X = xE . This gives

Ψ0(y) = −
∫ xE

xW

∇ · (T ∧ e3)(s, y)ds. (6.55)

At the western boundary, we choose �∗ = δS and expand

ψ̂(λ, y) = ψ̂0(λ, y) + �ψ̂1(λ, y) + . . . (6.56)

From (6.24) the O(1) equations are

∂2ψ̂

∂λ2

0

+
∂ψ̂

∂λ

0

= 0. (6.57)

The solution is
ψ̂0(λ, y) = C1(y)e−λ + C2(y), (6.58)

and this solution is bounded for λ → ∞. The kinematic condition at x = xW

(λ = 0) gives
C1(y) = −C2(y), (6.59)
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and the matching condition at λ → ∞ leads to

lim
λ→∞

ψ̂0(λ, y) = C2(y) = lim
x↓xW

ψ0(x, y) = Ψ0(y). (6.60)

This gives the Stommel boundary layer flow solution as

ψ̂0(λ, y) = Ψ0(y)(1 − e−λ). (6.61)

�
Example 6.2: Stommel western boundary layer

Consider a square basin such as in Fig. 6.4 and take xW = 0 and xE = 1. As
an example, the wind-stress field is given by

τx(x, y) = − 1
2π

cos 2πy, (6.62a)

τy(x, y) = 0, (6.62b)

and the kinematic conditions on the boundaries are ψ = 0. The Sverdrup flow
(Fig. 6.4a), that satisfies the kinematic boundary conditions at the eastern bound-
ary, was already determined in Example 6.1 and is given by

ψ0(x, y) = (1 − x) sin 2πy. (6.63)

According to the boundary analysis, the boundary layer flow is

ψ̂0(λ, y) = sin 2πy(1 − e−λ), (6.64)

and the total solution for δS/L = 0.1 is plotted in Fig. 6.4b. Bottom friction, as
did lateral friction, can provide a boundary layer current at the western boundary
of the continent to balance the Sverdrup transport. The dimensional boundary
layer width is for this case 100 km and typical meridional horizontal velocities
V = UL/δS in the boundary layer are about 10 cm/s.

The full solution to (6.49) can actually be analytically determined and with
η1 = −L/(2δS) and η2 =

√
η2
1 + 4π2 it becomes

ψ(x, y) =
L

4π2δS

[
1 − eη1

e−η1 sinh η2x − sinh η2(x − 1)
sinh η2

]
sin(2πy). (6.65)

Although this solution is useful to compare the validity of the asymptotic solu-
tions, the boundary layer character of (6.65) is not so obvious. For δS/L = 0.1
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(a) (b)

Figure 6.4. (a) Sverdrup flows for the wind stress field τx(x, y) = −1/(2π) cos 2πy, τy(x, y) =
0. (b) Total flow solution with Stommel western boundary current for δS/L = 0.1.

the asymptotic solution deviates substantially from the analytic one, but for
δS/L = 0.01 the difference is very small.

�

To demonstrate the compensation of the Sverdrup transport by the western
boundary current, we compute the dimensionless meridional velocity, v̂0(λ, y)
in the boundary layer and find

v̂0(λ, y) =
1
�

∂ψ̂0

∂λ
=

L

δS

∂ψ̂0

∂λ
=

L

δS
Ψ0(y)e−λ. (6.66)

The total meridional transport in the boundary layer Φ̂y therefore is

Φ̂y(y) = �

∫ ∞

0
v̂0(λ, y)dλ = Ψ0(y) = −Φy(y), (6.67)

and from this it follows that
Φ̂y + Φy = 0, (6.68)

which demonstrates the compensation.

6.2.3. Physics of the western intensificationEx. 6.3

As shown by direct calculation, both bottom and lateral friction can provide
provide western boundary currents which compensate for the complete Sverdrup
transport. In this section, we focus on the physics of this result by looking at the
vorticity balance for a subtropical gyre.
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The wind stress induces negative vorticity into the flow (Fig. 6.5) and in the
internal flows (outside boundary layers). This input of vorticity is compensated
by southward movement of fluid parcels (the Sverdrup flow); through the β-effect
the fluid parcels acquire positive vorticity. Both boundary layer currents should
be northward to compensate for the (southward) Sverdrup transport. Through the
β-effect there is negative vorticity production due to such a current which has to
balance the vorticity produced by friction.

�
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Figure 6.5. Vorticity balances in the Sverdrup regime and the western boundary layers. (a) Munk
boundary layer and (b) Stommel boundary layer.

In the lateral friction (Munk) case (Fig. 6.5a), there are no-slip boundary condi-
tions and the tangential velocity is zero at the boundary. The meridional velocity
gradient is hence positive on the western boundary and positive vorticity is pro-
duced which is able to balance the negative vorticity due to the β-effect, according
to (see (6.22))

0 = (
δM

L
)3∇4ψ − ∂ψ

∂x
.

At the eastern boundary, the friction generates negative vorticity which cannot
achieve an appropriate balance.

In case of bottom friction (Stommel), the tangential velocity is maximal at the
boundaries. The meridional velocity gradient ∂v/∂x is positive on the eastern
boundary and negative on the western boundary. Hence, the vorticity in the flow
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domain outside the Ekman layers (the term ζ0 = ∇2ψ) is negative in the west and
positive in the east (Fig. 6.5b). The vorticity balance in the boundary layer is (in
case of only bottom friction, see (6.22))

0 = −δS

L
∇2ψ − ∂ψ

∂x
, (6.69)

and hence bottom friction and β-effect have to compensate each other. This can
only be accomplished in the western boundary and not in the eastern boundary.

In the Stommel boundary layer, the streamlines of the Sverdrup circulation are
deflected, such that the normal velocity is zero on the boundary. To satisfy no-slip
conditions, there must be a Munk sublayer within the Stommel boundary layer
with a thickness O(δ−1/2

S δ
3/2
M ). It can be shown that this Munk layer does not

contribute much to the total meridional transport (Pedlosky, 1987).

6.3. The inertial boundary layer
Finally we consider the case

δI � max (δS , δM ). (6.70)

We take �∗ = δI (with � = �∗/L) and if we write the western boundary layer
solution as

ψ̂(λ, y) = ψ̂0(λ, y) + �ψ̂1(λ, y) + . . . (6.71)

then the O(1) system in (6.26) becomes
[

∂ψ̂0

∂λ

∂

∂y
− ∂ψ̂0

∂y

∂

∂λ

]
∂2ψ̂

∂λ2

0

+
∂ψ̂0

∂λ
= 0. (6.72)

It is convenient to define the operator J , also called the Jacobian operator, with
respect to coordinates x, y as

Jx,y(f, g) =
∂f

∂x

∂g

∂y
− ∂g

∂x

∂f

∂y
, (6.73)

for two arbitrary scalar functions f and g. The Jacobian operator has the following
properties

i) Jx,y(f, f) = 0 ; ii) Jx,y(f, G(f)) = 0, (6.74)

where G is an arbitrary operator. With (6.73), (6.72) can be written as

Jλ,y(ψ̂0,
∂2ψ̂

∂λ2

0

+ y) = 0, (6.75)

and solutions are determined from

∂2ψ̂

∂λ2

0

+ y = G(ψ̂0). (6.76)
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Equation (6.76) expresses that the quasi-geostrophic potential vorticity (cf. sec-
tion 5.3) is constant along streamlines.

�
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Figure 6.6. Sketch of a streamline in the inertial western boundary layer of thickness δI . Ex. 6.4

Now consider a streamline that enters the western boundary layer at y = y1

and leaves it at y = y2, such as sketched in Fig. 6.6. For the Sverdrup solution,
the relative vorticity is negligible and hence at y1 we determine G(ψ̂0) = y1. As
potential vorticity is constant along the streamline, we find at y2 that ∂2ψ̂0/∂λ2 =
y2 − y1 > 0. But at y2, the solution has to match with the Sverdrup solution for
which the relative vorticity is small and hence there is an inconsistency.

Equation (6.76) can therefore not hold everywhere along the streamline in
Fig. 6.6. To analyze this, we use the boundary layer correction

φB(λ, y) = ψ̂0(λ, y) − ψ0(xW , y), (6.77)

where ψ0 is the Sverdrup solution. According to the ‘matching principle’ with the
Sverdrup solution, we find

lim
λ→∞

φB(λ, y) = 0. (6.78)

Consider the situation in Fig. 6.6 in the area λ � 1, such that | φB |�| ψ0 |. The
linearized equation for φB in this area becomes (from (6.72)), neglecting terms of
O(δI/L),

u0(xW , y)
∂2φB

∂λ2
+ φB = 0. (6.79)

When u0 is constant (for example, locally near y0), the characteristic polyno-
mial is k2 + 1/u0 = 0 for solutions φB ≈ ekλ. The general solution of (6.76)
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will show damped oscillatory behavior when u0(xW , y) > 0 and cannot satisfy
the matching condition (6.78). Hence, a necessary condition for the existence of
an inertial boundary layer is

u0(xW , y) < 0. (6.80)

In Fig. 6.6, we see that south of y0, where u0 < 0, there can be an inertial bound-
ary layer. For y > y0, a pure inertial layer cannot occur and the excess of relative
vorticity has to be dissipated through friction.

Additional Material

B: A less mathematical approach to the Sverdrup balance and western boundary
layers can be found in chapter 8 of Cushman-Roisin (1994).

D: Having understood the material so far, extensions within reach are chapter 5
of Pedlosky (1987), where much more details are provided of the theory of
the homogeneous wind-driven circulation, and chapter 14 (sections 14.1 to
14.6) of Vallis (2006) where for example topographic effects are discussed.

6.4. Highly nonlinear flows
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Figure 6.7. Plots of the zonal wind stress (6.81) for three different values of σ.

Steady solutions of the barotropic vorticity equation have been computed for
values of Re far into the nonlinear regime. The dimensional wind-stress profile
on a square basin [0, L] × [0, L] often considered is

τx
∗ (x, y) = −τ0 (σ cos π

y∗
L

+ (1 − σ) cos 2π
y∗
L

) ; τy
∗ (x, y) = 0 (6.81)
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where the dimensionless parameter σ controls the shape of the wind stress and
τ0 is a typical amplitude. Since Veronis (1963), much attention has focussed
on the subtropical (single) gyre system as obtained above with the choice σ =
1. The single-gyre wind-stress forcing consists of easterlies (westerlies) at the
south (north) part of the basin. The so-called double-gyre case has more recently
received much attention and is obtained with σ = 0 in (6.81). In this case, both
the subtropical and subpolar gyres are forced and the wind stress is symmetric
with respect to the mid-axis of the basin (Fig. 6.7).
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Figure 6.8. (a) Bifurcation diagram for the single-gyre (σ = 1) barotropic quasi geostrophic
model for a square basin with Re = UL/AH as the control parameter. (b) Pattern of ψ near
Re = 10 on the lower stable branch in (a). (c) Same for Re = 60 along lower branch and (d) for
Re = 60 along the upper stable branch.

Ex. 6.5

Under a given steady wind-stress forcing, the linear steady quasi-geostrophic
theory predicts a Sverdrup interior flow and a frictional western boundary layer.
The linear theory provides a first order explanation of the existence of western
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boundary currents, such as the Gulf Stream as we have seen above. The nonlinear
theory is, however, far from complete. Although the strong effect of inertia on the
flows was already shown by Veronis (1963), the work to determine systematically
the solution structure of the barotropic vorticity equation (5.91) versus the lateral
friction parameter AH did not start until the mid 1990s (Cessi and Ierley, 1995;
Jiang et al., 1995).
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Figure 6.9. (a) Bifurcation diagram for the double-gyre (σ = 0) barotropic quasi geostrophic
model for a square basin with Re = UL/AH as the control parameter. (b) Pattern of ψ near
Re = 10 on the lower stable branch in (a). (c) Same for Re = 60 along the branch A1u; the
pattern on the branch A1d at Re = 60 is the mirror image of (c) with respect to reflection through
the midaxis of the basin. (d) The pattern at Re = 60 on the branch A2d.

For large values of AH , a unique and globally stable flow state for both single-
and double-gyre cases is found. To investigate the solution structure of the equa-
tions when AH is decreased, continuation methods (Dijkstra, 2005) have been
used on discretized versions of the barotropic vorticity equation. In the results
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Parameter Value Parameter Value
L 1.0 × 106 m τ0 1.5 × 10−1 Pa
D 6.0 × 102 m β0 1.6 × 10−11 (ms)−1

f0 1.0 × 10−4 s−1 g 9.8 ms−2

ρ0 103 kgm−3 ε0 0.0 s−1

Table 6.1. Standard values of parameters used in the computations of Fig. 6.8 and Fig. 6.9.

below, a 128 x 128 equidistant grid is used to solve the barotropic vorticity
equation

(
∂ψ∗
∂x∗

∂

∂y∗
− ∂ψ∗

∂y∗

∂

∂x∗
)(∇2

∗ψ∗ − λ0ψ∗ +
f0

D
hb∗) + β0

∂ψ∗
∂x

=
1

ρ0D
∇.(T∗ ∧ e3) − ε0∇2

∗ψ∗ + AH∇4
∗ψ∗,

with hb∗ = 0 (no bottom topography), λ0 = 0.0 (no effect of ocean-atmosphere
surface deformations) and values of parameters as in Table 6.9. Steady states
are determined versus AH and in the results below a value of the dimensionless
streamfunction ψR at a certain gridpoint is displayed versus the Re = UL/AH . In
other studies, also the ratio of boundary layer thicknesses δI∗/δM∗, where δI∗ =
(U/β0)1/2 and δM∗ = (AH/β0)1/3 is used as the control parameter. In the
so-called bifurcation diagram (Fig. 6.8a) for the single-gyre flows (σ = 1), each
point on the curve represents a steady state and its stability is indicated by the
linestyle, with solid (dashed) curves indicating stable (unstable) solutions. At
small and large values of Re, there is a unique steady solution, while between the
two so-called saddle node bifurcations L1 and L2 there is a regime of multiple
equilibria. Plots of the streamfunction ψ at labelled locations in Fig. 6.8a are
shown in Fig. 6.8b-d. The pattern in Fig. 6.8b near Re = 10 deviates already from
the symmetric linear Munk-Sverdrup solution. The effects of strong nonlinearities
on the flow can be seen in the streamfunction for both solutions at Re = 60. A
strong north-south asymmetric solution (Fig. 6.8c) appears on the lower branch
and a gyre filling up the basin (Fig. 6.8d) develops on the upper branch.

Additional Material

D: Anyone who wants to know more on the bifurcation behavior of wind-driven
ocean flows described by the barotropic vorticity equation, consult chapter 5
in Dijkstra (2005).

For the case σ = 0, the structure of the steady solutions is shown through the
bifurcation diagram in Fig. 6.9a, where the value of the streamfunction at a point



148 DYNAMICAL OCEANOGRAPHY

in the southwest part of the domain (ψR) is plotted versus Re = UL/AH . At
large values of AH (small Re), the anti-symmetric double-gyre flow (Fig. 6.9b) is
a unique state. When lateral friction is decreased, this flow becomes unstable at
a so-called pitchfork bifurcation P1 and two branches of stable asymmetric states
appear for smaller values of AH (larger Re). The solutions on these branches
have the jet displaced either southward or northward (Fig. 6.9c) and are exactly
symmetrically related for the same value of Re. For even smaller friction, the
anti-symmetric flow becomes inertially dominated and ψR increases rapidly. A
pitchfork bifurcation P2 occurs on the anti-symmetric branch where an additional
pair of asymmetric solution branches appear (Fig. 6.9d); all these solutions are
unstable. This brief analysis shows the enormous complexity in the flows when
nonlinear effects become large.
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Summary

For a constant density ocean, the dominant (Sverdrup) balance in the
interior of the domain is given by

β0v∗ =
1

ρD
(
∂τy

∗
∂x∗

− ∂τx
∗

∂y∗
) =

f0

D
wE∗,

This is a vorticity balance where fluid parcels move north-south such
that the β-induced vorticity change of this motion is compensating the
wind-induced vorticity input.

The continental boundary layers are only able to compensate the Sver-
drup transport in the western part of the basin. The boundary layer
thicknesses are either

δI = (
U

β0
)1/2 , δS =

δEf0

2Dβ0
, δM = (

AH

β0
)1/3.

depending on the dominant vorticity balance in the western boundary
layer. Here U is set by the Sverdrup velocity scale

U =
τ0

ρDβ0L

The boundary layer thicknesses δM and δS are set by lateral and bot-
tom friction and are called the Munk and Stommel boundary layer
thickness, respectively.

The barotropic quasi-geostrophic theory of the wind-driven ocean cir-
culation is a first step to understand the midlatitude gyres and the west-
ern intensification of boundary currents. It explains that the β-effect is
responsible for the strong east-west symmetry of the midlatitude ocean
currents and that inertial effects can induce north-south asymmetry in
the flow.
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6.5. Exercises on chapter 6

(6.1) Sverdrup flow

Given is the dimensionless wind-stress field

τ =
(

τx

τy

)
= 0.1

(
sin 6(y − π

6 )
0

)

over an ocean basin with x ∈ [0, 1] and y ∈ [0, π]. The Sverdrup flow is
assumed to satisfy the kinematic condition at the eastern boundary.

a. Determine the Sverdrup streamfunction ψ0(x, y).

b. Draw (or plot) the streamline pattern for π
12 < y < 5π

12 and interpret the
result in terms of a vorticity balance.

(6.2) Sverdrup flow and Stommel boundary layer

Given is the same dimensionless wind-stress field as in exercise 6.1, over an
ocean basin with x ∈ [0, 1] and y ∈ [0, π].

a. Determine the dimensionless Stommel boundary layer solution for this
wind-stress field.

b. Determine now the dimensional pressure p∗, the sea surface elevation h∗
and the meridional transport Φ∗(y∗) defined by

Φ∗(y∗) =
∫ L

0
ψ∗(x∗, y∗) dx∗

where L is the basin length.

c. Sketch (or plot) these fields for typical values of the parameters as in Ta-
ble 6.9. Is the flow in the Stommel boundary layer in geostrophic balance?

(6.3) Integral balance

Consider in the general situation of (6.22), i.e., with all physical processes
taken into account, a closed streamline C that encloses an area A, as in the
figure below. Show that for Re → ∞, the velocity field u = (u, v) and the
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wind-stress vector τ = (τx, τy) satisfy the relation

δS

L

∫

C
u · ds =

∫

C
τ · ds

and provide a physical explanation of the result.

(6.4) Fofonoff inertial flow

Consider a general pure inertial quasi-geostrophic flow in a homogeneous
ocean. This flow satisfies the barotropic vorticity equation with zero wind
stress (T = 0) and without frictional effects (δS = δM = 0).

a. Show that the resulting equation is given by

u · ∇
((

δI

L

)2

∇2ψ + y

)
= 0

where u is the horizontal velocity vector. Give a physical interpretation of this
vorticity balance.

Consider now an inertial current and the situation that the ocean is bounded
at x = 0 by a coast. The flow is purely zonal for x → ∞ and it has a
dimensionless horizontal velocity field given by u = −1 and v = 0.

b. Demonstrate that in this case, the absolute vorticity is a linear function of
the streamfunction.

c. Consider the western boundary layer (with δI � L) and show that the total
solution is given by

ψW (x, y) = (y − y0)(1 − e−xL/δI )
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where y0 is an arbitrary north-south location for which ψ = 0 for all x. From
now, take y0 = 0.

Consider now the new situation in which there is also a continental boundary
at x = 1. Between the continents, the flow is still purely zonal.

d. Show that the total solution (with western and eastern boundary layers) can
be written as

ψWE(x, y) = y(1 − e−xL/δI − e−(1−x)L/δI )

Finally, we consider a closed basin with a southern boundary at y = −1 and a
northern boundary at y = 1 (where ψ = 0).

e. Why are there boundary layers at these northern and southern boundary?
Show that the solution is given by

ψB(x, y) = ψWE(x, y) + c1e
−(1−y)L/δI + c2e

−(y+1)L/δI

and determine the constants c1 and c2.

f. Make a sketch (or plot) of the resulting flow under e. This is the Fofonoff
inertial flow.

(6.5) Weakly nonlinear Stommel model

Consider the barotropic vorticity equation (6.22)

(
δI

L
)2
[
∂ψ

∂x

∂

∂y
− ∂ψ

∂y

∂

∂x

]
∇2ψ +

δS

L
∇2ψ = −∂ψ

∂x
− ∂τx

∂y

for the dimensionless wind-stress field

τx = − 1
π

cos πy

in an ocean basin [0, 1]× [0, 1]. Let δS/L = ε (where ε � 1 is not the Rossby
number but just a small parameter) and scale δI/L = R εp for certain p and
R = O(1) with respect to ε.

For this case, the Sverdrup (ψ0) and Stommel solution were determined in
section 6.4. Introduce now a western boundary layer coordinate λ, with

λ =
x

εq
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with q > 0 and let φ = ψ − ψ0.

a. Show that the highest order balance at the western boundary reduces to

R εp−2q
[
φλφλλy − φλλλ − ψ0

y

]
+ ε1−qφλλ + φλ = 0

where φλ = ∂φ/∂λ, etc.

b. Provide the correct boundary conditions for the function φ.

c. Determine all possible balances in the western boundary layer depending
on (p, q) and sketch the different cases in the (p, q)-plane.

d. Argue why the nonlinear correction to the Stommel solution has no north-
south symmetry.
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Etude No 4., G. Garcia

155



156 DYNAMICAL OCEANOGRAPHY

In the previous chapter, we only considered the steady circulation on large
spatial scales. In this and the next three chapters, we will consider time-
dependent problems. A prototype problem is how an ocean flow evolves
when at a certain time t0, the wind stress is changed. To solve this so-
called adjustment problem (which is actually done in chapter 9), we focus
in this chapter on the basic ingredients of the response: the free waves.
We restrict ourselves here to the free waves that can be described by the
constant density shallow-water equations (section 7.1). In section 7.2,
gravity waves in a horizontally unbounded geometry and a zonal channel
are presented (Poincaré and Kelvin waves) and mechanisms of propaga-
tion are presented. The impact of bottom topography and the β-effect is
considered in the sections 7.3 and 7.4 leading to a description of Rossby
waves.

Note: All equations in this chapter are dimensional and we will therefore omit
the star subscript.

7.1. Small amplitude motions
Consider the situation of a motionless liquid layer with a constant depth

H0(x, y) that rotates around the vertical axis with a constant angular velocity Ω.
Suppose that the flow can be well-described by the special form of the shallow-
water equations (4.30a-b) and (4.32), which we here restate for convenience

Du

dt
− fv = −g

∂h

∂x
, (7.1a)

Dv

dt
+ fu = −g

∂h

∂y
, (7.1b)

∂H

∂t
+

∂

∂x
(Hu) +

∂

∂y
(Hv) = 0. (7.1c)

Here, H = h + D0 − hb is the total depth of the layer, f = 2Ω is the Coriolis
parameter and h is the surface elevation.

In this situation small amplitude perturbations (quantities with a tilde) are as-
sumed to be superposed on the background state H̄ = H0, ū = v̄ = 0, i.e.,

H(x, y, t) = H0(x, y) + εh̃(x, y, t), (7.2a)

u(x, y, t) = εũ(x, y, t) ; v(x, y, t) = εṽ(x, y, t), (7.2b)

where ε (not the Rossby number ε here!) is the amplitude of the perturbations
with (ε � 1). The O(ε) balances in (4.30a-b) and (4.32) become

∂ũ

∂t
− fṽ = −g

∂h̃

∂x
, (7.3a)
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∂ṽ

∂t
+ fũ = −g

∂h̃

∂y
, (7.3b)

∂h̃

∂t
+

∂

∂x
(H0ũ) +

∂

∂y
(H0ṽ) = 0. (7.3c)

With U(x, y, t) = H0(x, y)ũ(x, y, t), V (x, y, t) = H0(x, y)ṽ(x, y, t) and
η = h̃, (7.3) can be written as

∂U

∂t
− fV = −gH0

∂η

∂x
, (7.4a)

∂V

∂t
+ fU = −gH0

∂η

∂y
, (7.4b)

∂η

∂t
+

∂U

∂x
+

∂V

∂y
= 0. (7.4c)

This system of equations can be reduced to a single equation for η. First, we
differentiate (7.4a) with respect to x and (7.4b) with respect to y and then we add
the result. This gives

∂

∂t

[
∂U

∂x
+

∂V

∂y

]
− f

[
∂V

∂x
− ∂U

∂y

]
= −g∇ · (H0∇η). (7.5)

Next, we differentiate (7.4b) with respect to x and subtract (7.4a) differentiated
with respect to y from the result. This gives

∂

∂t

[
∂V

∂x
− ∂U

∂y

]
+ f

[
∂V

∂y
+

∂U

∂x

]
= −gJ(H0, η), (7.6)

where the Jacobian J(f, g) is a short notation for (with f and g two arbitrary
scalar functions)

J(f, g) =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
. (7.7)

as in (6.73 As a third step, we differentiate (7.5) with respect to t and use (7.6)
with the result

[
∂2

∂t2
+ f2

] [
∂U

∂x
+

∂V

∂y

]
= −g

∂

∂t
∇ · (H0∇η) − fg J(H0, η). (7.8)

As a final step, we use the relation (7.4c) in (7.8), and find the equation for η to be

∂

∂t

[
(

∂2

∂t2
+ f2)η −∇ · (gH0∇η)

]
− fg J(H0, η) = 0. (7.9)

Ex. 7.1
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If η is determined, then it follows that h̃ = η and the velocities ũ and ṽ follow
by differentiating (7.3a-b) with respect to t with the result

(
∂2

∂t2
+ f2)ũ = −g

∂2h̃

∂x∂t
+ f

∂h̃

∂y
, (7.10a)

(
∂2

∂t2
+ f2)ṽ = −g

∂2h̃

∂y∂t
− f

∂h̃

∂x
. (7.10b)

The equations above describe the evolution of small amplitude perturbations on
the motionless solution. In the next sections, we will consider specific geometrical
situations and determine the free wave solutions in these cases.

7.2. Free waves: H0 constant
In the case where H0 is constant, we introduce C2

0 = gH0 and (7.9) reduces to

∂

∂t

[
(

∂2

∂t2
+ f2)η − C2

0∇2
Hη

]
= 0, (7.11)

where ∇2
H = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplace operator.

7.2.1. Unbounded domain
When the domain is horizontally unbounded, there exist free wave solutions of

(7.11) with the representation

η(x, y, t) = η0 ei(kx+ly−σt), (7.12)

with phase θ = kx + ly − σt and wavevector k = ∇θ (see Fig. 7.1). Substitution

θ �
���

�

�

�

�

�

Figure 7.1. Lines of constant phase θ in the x-y plane and the wavevector k.
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of (7.12) into (7.11) gives

ση0(f2 − σ2 + C2
0 (k2 + l2)) = 0. (7.13)

The interesting cases are when σ �= 0 and from (7.13) we find the dispersion
relation

σ = ±
√

f2 + C2
0 (k2 + l2). (7.14)

The dispersion relation shows that for every wavevector k = (k, l)T , there are two
free waves with a phase speed C = σ/|k| in the (positive and negative) direction
of the wavevector k, with

C =
σ√

k2 + l2
= ±

√

C2
0 +

f2

(k2 + l2)
. (7.15)

For f = 0, the dispersion relation (7.14) reduces to that for ‘normal’ gravity
waves with phase speed C0 = (gH0)1/2. For f �= 0, it follows from (7.14) that
the frequency of these so-called Poincaré waves is always larger than f , in other
words the period is always shorter than the inertial period f−1.

Ex. 7.2

The physical mechanism of propagation of a ‘normal’ gravity wave (with f =
0) is as follows. Consider a one-dimensional wave (with ṽ = 0) as in Fig. 7.2a. At
locations where ∂η/∂x < 0, the corresponding pressure gradient causes a local
acceleration ∂ũ/∂t > 0. The resulting flow causes a local change in the position
of the free surface according to

∂η

∂t
= −H0

∂ũ

∂x
.

and hence the wave propagates to the right. To determine the effect of plane-
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Figure 7.2. (a) Sketch to explain the propagation mechanism of a ‘normal’ gravity wave. (b)
Sketch to explain the propagation mechanism of a Poincaré wave.

tary rotation on the propagation of the waves, we consider the change in relative
vorticity, the latter has also the form

ζ(x, y, t) = ζ0 ei(kx+ly−σt).



160 DYNAMICAL OCEANOGRAPHY

The amplitude ζ0 follows through substitution (together with (7.12)) into (7.6) and
we find

σ

[
ζ0 −

fη0

H0

]
= 0,

which exactly represents the conservation of the linearized potential vorticity.
With the help of (7.14), we see that the relative vorticity is proportional to the
interface height through vortex stretching. If η0 > 0 (η0 < 0), then the change
in relative vorticity (in the northern hemisphere) is also positive (negative); this
is sketched in Fig. 7.2b. Because of the induced velocities through this vorticity
distribution, the wave now propagates faster than the corresponding wave with
f = 0.

7.2.2. Zonal channel

�
�
(


�
�
�


�

�

Figure 7.3. Sketch of the geometry of a zonal channel having a width L.

Now consider the free wave solutions in a zonal channel as sketched in Fig. 7.3,
still using the assumption that H0 is constant. The only new feature, compared to
the previous case, is the existence of meridional boundaries at y = 0, L. Because
lateral friction is neglected, the boundary conditions are only kinematic, e.g., ṽ =
0. Free waves can again be described by (7.11) and (7.10b) with the latter only
applied at y = 0, L:

∂

∂t

[
(

∂2

∂t2
+ f2)η − C2

0∇2
Hη

]
= 0, (7.16a)

y = 0, L : g
∂2η

∂y∂t
+ f

∂η

∂x
= 0. (7.16b)

Because of the boundaries, solutions of the form of (7.12) no longer exist. The do-
main is, however, still unbounded in the x-direction and hence free wave solutions
can be represented by

η(x, y, t) = η̂(y)ei(kx−σt), (7.17)
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where η̂(y) is the (still unknown) y-structure of the waves. Substitution of (7.17)
into (7.16) gives

η̂′′ +
[
σ2 − f2

C2
0

− k2

]
η = 0, (7.18a)

gη̂′(0) + f
k

σ
η̂(0) = 0 ; gη̂′(L) + f

k

σ
η̂(L) = 0. (7.18b)

where the primes indicate differentiation to y.
The solution of (7.18a) is

η̂(y) = A sinαy + B cos αy (7.19a)

α2 =
σ2 − f2

C2
0

− k2, (7.19b)

and the two homogeneous boundary conditions (7.18b) lead to a system of two
homogeneous equations for A and B, i.e.,

αgA +
fk

σ
B = 0 (7.20a)

A(αg cos αL +
fk

σ
sinαL) + B(

fk

σ
cos αL − αg sin αL) = 0.(7.20b)

This system has only a nontrivial solution when the coefficient determinant is
zero. This provides the eigenvalues σ as zeroes of

(σ2 − f2)(σ2 − C2
0k2) sinαL = 0. (7.21)

When σ is determined from (7.21), then α2 follows immediately from (7.19b) and
as the equations for A and B are a dependent system, the eigenfunction η̂(y) can
be calculated from (7.19a).

From (7.21) several free wave types are obtained. These are summarized be-
low:

(i) Kelvin waves

One of the solutions of (7.21) is

σ = ±C0k, (7.22)

and the phase speed of these so-called Kelvin waves is σ/k = ±C0; Kelvin
waves are hence nondispersive waves. Consider a wave that moves in the
positive x-direction, i.e. with σ = C0k. With α2 = −f2/C2

0 it follows that
α = if/C0 and with (7.19a) the eigenfunction η̂(y) is

η̂(y) = −iA e
− yf

C0 . (7.23)



162 DYNAMICAL OCEANOGRAPHY

As the amplitude A is arbitrary, we just make the choice A = i such that (7.17)
provides a real function η. The result is

η(x, y, t) = e
− yf

C0 cos k(x − C0t). (7.24)Ex. 7.3

This is a ’normal’ plane wave that propagates in the positive x-direction with
a simple fixed y-profile. The characteristic meridional decay scale of η is the
external Rossby deformation radius (cf. section 3.1)

RD =
C0

f
=

√
gH0

f
. (7.25)

The velocities ũ and ṽ of the Kelvin wave follow from (7.10) as

ũ =
g

C0
e
− yf

C0 cos k(x − C0t) = − g

f

∂η

∂y
, (7.26a)

ṽ = 0, (7.26b)

such that the x-component of the velocity is in geostrophic balance, as
sketched in Fig. 7.4. If the wave propagates westward, then u > 0 and the
Coriolis acceleration (to the right of the motion for f > 0) is exactly compen-
sated by the pressure gradient due to the deformation of the free surface. The
external Rossby deformation radius is exactly that length scale such that the
pressure differences due to deformation of the free surface are large enough
to balance the Coriolis acceleration. The propagation mechanism in the x-
direction is similar to that of gravity waves with f = 0.
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Figure 7.4. Momentum balances in the Kelvin wave (in the Northern Hemisphere), where Fp

represents the pressure gradient force (- ∇p) and Fc the Coriolis force.

(ii) Inertial oscillation Another solution of the dispersion relation (7.21) is

σ = ±f. (7.27)
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The case k = f/C0 can be considered as a special case of a Kelvin wave and
the amplitude of η is given by (for σ = f ):

η(x, y, t) = e−ky cos(kx − ft). (7.28)

(iii) Poincaré waves

The last solution of the dispersion relation is given by

α2L2 = L2(
σ2 − f2

C2
0

− k2) = n2π2, n = 1, 2, ... ⇒

σ = σn = ±
√

f2 + C2
0 (k2 + (

nπ

L
)2), n = 1, 2, ... (7.29)

Comparing the dispersion relation (7.14) and (7.29), we see that the zonal
channel has ‘discretized’ the spectrum of the Poincaré waves; the meridional
wavenumber l is now given by nπ/L. Note that the Poincaré wave for n = 0
does not provide a consistent solution since α = 0 and hence η̂ has no y
dependence. This eigenfunction cannot satisfy the boundary conditions at the
meridional walls. The Kelvin wave can be considered as this n = 0 wave in
the limit RD → ∞.
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Figure 7.5. Dispersion relation (for k > 0) of (n=1, 2 and n=3) Poincaré waves and the Kelvin
wave for F = (L/RD)2 = 1.

The total spectrum of free waves is summarized in Fig. 7.5 where the dispersion
relation is plotted for the n = 1, n = 2 and n = 3 Poincaré waves and the
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Kelvin wave. Note that the frequency approaches zero for the Kelvin wave but the
Poincaré waves keep finite frequencies.

7.3. Free waves: H0 = H0(y)

In this section, we consider free waves in a zonal channel, but now in the pres-
ence of small variations in bottom topography. As a specific case, we choose

H0(y) = D(1 − s
y

L
), (7.30)

where L is the width of the channel (Fig. 7.3) and s � 1. Free waves are again of
the form (7.17), e.g.,

η(x, y, t) = η̂(y) ei(kx−σt). (7.31)

We substitute (7.31) into (7.9) and the boundary conditions (7.10b) at y = 0, L
(ṽ = 0) with the result

(1 − s
y

L
)η̂′′ − s

L
η̂′ + η̂(

σ2 − f2

C2
0

− k2(1 − s
y

L
) − fs

Lσ
) = 0, (7.32a)

η̂′(0) + f
k

σ
η̂(0) = η̂′(L) + f

k

σ
η̂(L) = 0, (7.32b)

where C2
0 = gD. The general problem (7.32) can be solved numerically, but for

s � 1, we can approximate 1−sy/L ≈ 1. This is the only reduction, because we
cannot a priori estimate the order of magnitude of the different terms in (7.32).

Solutions of (7.32) are given by

η̂(y) = e
sy
2L (A sinαy + B cos αy), (7.33a)

α2 =
σ2 − f2

C2
0

− (k2 +
s2

4L2
) − fks

σL
. (7.33b)

The dispersion relation again follows through application of the boundary con-
ditions and by requiring the coefficient determinant of the homogeneous system
in A and B to be zero. One finds a similar expression as (7.21), i.e.,

(σ2 − f2)(σ2 − C2
0k2) sinαL = 0. (7.34)

The Kelvin waves are therefore not influenced by small topographic features;
this was expected based on the physical mechanism of their propagation. The
solutions of the equation sinαL = 0 are

α2L2 = L2

[
σ2 − f2

C2
0

− (k2 +
s2

4L2
) − fks

σL

]
= (nπ)2, (7.35)
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or

σ2 − fks

σL
C2

0 − C2
0 (k2 +

n2π2

L2
+

f2

C2
0

) = 0. (7.36)

Equation (7.36) is a third order polynomial and hence there are three roots. For
s = 0 we again find the Poincaré waves and because now |σ| > f these waves
are slightly modified due to the topography. With σ = O(f), the second term
in (7.36) is small when s → 0. The only way in which this term can be of any
importance is when σ = O(s); in that case, the terms with σ2 can be neglected.
The new class of waves, the so-called Rossby waves, therefore has a dispersion
relation given by

σ = −skf

L

1

k2 + n2π2

L2 + f2

C2
0

, n = 1, 2, 3, . . . (7.37)

and hence they are low-frequency waves (frequency much smaller than f ).
In this situation, the existence of the waves depends on the variations of the

topography. In addition, the waves occur only in a rotating fluid. In the physical
mechanism of propagation of the waves, both these elements are crucial. The
special character of the waves is that their phase speed in the x-direction (Cx =
σ/k) is always negative. Because the fluid depth decreases with y, when s > 0,
an observer moving with the wave always sees a deeper layer to the left.

Ex. 7.4

For a Rossby wave, it follows that | σ| � f which confirms that the period
is much larger than 1/f . Hence, these waves are prototypes for explaining low-
frequency variability in the ocean and atmosphere. The corresponding eigenfunc-
tion η̂(y) is

η̂(y) = η0 sin
nπy

L
+ O(s), (7.38)

which follows from (7.32). The n = 0 case also gives a physically meaningful
wave; it follows from (7.38) that ṽ = 0 and boundary conditions can be satisfied.

For Rossby waves the time derivatives are an order of magnitude smaller than
the spatial derivatives, for example ∂2/∂t2 = − σ2 � f2), and the equations
(7.3a-b) reduce to

fũ = −g
∂η

∂y
, (7.39a)

fṽ = g
∂η

∂x
. (7.39b)

Hence, the horizontal velocity field is in geostrophic balance, while the propaga-
tion of the wave is controlled by ageostrophic processes.

To understand the propagation mechanism, we return to the general equation
(7.9) which, for H0(y) and |σ| � f reduces to

∂

∂t
(f2η − gH0∇2

Hη − g
∂H0

∂y

∂η

∂y
) + fg

∂H0

∂y

∂η

∂x
= 0. (7.40)
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If ∂H0/∂y is small, then the third term within the time-derivative can be neglected
with respect to the other two terms. If we use (7.39) in the form

gH0∇2
Hη = H0f(

∂ṽ

∂x
− ∂ũ

∂y
) = H0f ζ̃, (7.41)

where ζ̃ is the z-component of the vorticity vector, then it follows

∂

∂t

[
ζ̃ − fη

H0

]
− ṽ

∂H0

∂y

f

H0
= 0. (7.42)

This again suggests conservation of potential vorticity and this time in terms of
small amplitude motions. Indeed, if we substitute H = H0(y) + η, u = ũ, v = ṽ
and ζ = ζ̃ into the potential vorticity Π = (ζ + f)/H with DΠ/dt = 0 then we
find (7.42) through linearization. The general equation (7.9) can thus be derived
from a linearized form of conservation of potential vorticity. Hence, we can use

D

dt

(
ζ + f

H

)
= 0, (7.43)

to describe the physical mechanism of propagation of Rossby waves.
Three columns of water which are initially motionless at a latitude y = y0 are

sketched in Fig. 7.6. Assume that the topography is such that the layer thickness
decreases northward and that the interface does not deform. Now at t = 0, column
B is displaced northward as an initial perturbation. Because it moves to a location
where H is smaller (note that f is constant), column B must get a negative relative
vorticity because of conservation of potential vorticity. This anticyclonic move-
ment of column B induces velocities in both columns A and C, such that A moves
northward and C southward. Column C starts to rotate cyclonic (positive vortic-
ity) because it moves into an area where the liquid depth increases, but column
A get a negative vorticity, similar to column B. The velocities induced through
the rotation of both columns A and C on column B drive column B back to the
position y = y0. As it passes through this latitude, it moves southward and hence
the next half phase of the cycle can be described as above but with opposite signs
of the motions. Through the description, we see the wave moving westward.

To summarize, we have seen that in a situation of constant f , there exist
several types of gravity waves. The local acceleration is of central importance
to the propagation of ‘normal’ gravity waves and Poincaré waves. These waves
have relatively large phase speeds. In Kelvin waves the local acceleration is
not important, but these waves only exist in the presence of a boundary (and
at the equator, as we will see in chapter 11). Long Kelvin waves have a long
period, but the only waves which are possibly relevant for long time scale vari-
ability in the oceans (with frequencies much smaller than f ) are the Rossby waves.
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Figure 7.6. Propagation mechanism of Rossby waves in a layer of liquid on a sloping bottom.

Additional Material

B: Many books and articles deal with gravity waves in the atmosphere and
ocean. A less mathematical approach can be found in chapter 6 of Cushman-
Roisin (1994).

D: In the lectures 13 to 16 of Pedlosky (2003) and chapter 5 of Gill (1982) many
issues on the energetics of waves and wave packets are discussed.

7.4. Free waves in the quasi-geostrophic model
We return to the barotropic quasi-geostrophic theory in section 5.3 where the

evolution of the flow could be described by one scalar equation, the barotropic
vorticity equation (5.91). In dimensional form (with the same scaling as in section
5.3), the unforced, nondissipative form of this equation is

[
∂

∂t
− ∂ψ

∂y

∂

∂x
+

∂ψ

∂x

∂

∂y

]
(∇2ψ + β0y − λ0ψ +

f0

D
hb) = 0, (7.44)

where ψ is the geostrophic streamfunction and hb the bottom topography and
λ0 = f2

0 /(gD) = 1/R2
D. The evolution of small amplitude perturbations on the

motionless flow for a bottom topography hb(y) can be described by

∂

∂t
(∇2ψ − λ0ψ) + (β0 +

f0

D

∂hb

∂y
)
∂ψ

∂x
= 0. (7.45)

Consider the example hb = sDy/L equivalent to the case where the total layer
thickness (H = D − hb) of the situation H0 = D(1− sy/L) in the previous sec-
tion. Free wave solutions in the unbounded horizontal plane can be represented as

ψ(x, y, t) = ψ0 ei(kx+ly−σt), (7.46)



168 DYNAMICAL OCEANOGRAPHY

and substitution into (7.45) gives the dispersion relation as

σ =
−k(β0 + f0

sL)
k2 + l2 + λ0

. (7.47)

With λ0 = f2
0 /C2

0 (section 5.3), we find

σ = −(
sf0

L
+ β0)

k

k2 + l2 + f2/C2
0

, (7.48)

which is similar to the dispersion relation (7.37) for Rossby waves if l = nπ/L
and β0 = 0.

Ex. 7.5

In the quasi-geostrophic theory, only the Rossby waves appear as free wave
solutions and the other waves are ‘filtered’. This is consistent with the results
on the propagation mechanisms of the waves in the previous section: only for
the Rossby waves the velocity field is in geostrophic equilibrium. In addition, it
follows from (7.48) that in the homogeneous quasi-geostrophic case, there is a
dynamic equivalence between the effect of small variations of bottom topography
and latitudinal variations of the Coriolis acceleration. As a consequence, Rossby
waves are expected to be fairly general in the ocean and will appear even without
variations in topography.
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Summary

In a constant density rotating (with constant f0) shallow-water layer
of constant depth H0 without horizontal boundaries there are only
Poincaré waves with a dispersion relation

σ = ±
√

f2
0 + C2

0 (k2 + l2)

where C0 =
√

gH0.

When meridional boundaries are present with a distance L apart,
Kelvin waves can occur. These waves have a typical length scale RD

and a frequency σ given by

RD =
C0

f0
; σ = ±C0k

When bottom topography and/or the β-effect is present, Rossby waves
can occur. In case of a linear slope H0(y) = D(1−sy/L), with s � 1
these Rossby waves have a dispersion relation on the β-plane given by

σ = −(
sf0

L
+ β0)

k

k2 + l2 + f2/C2
0

In the quasi-geostrophic approximation, the Poincaré waves are fil-
tered and only Rossby waves can be represented.
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7.5. Exercises on chapter 7

(7.1) Standing waves: closed basin

Consider one-dimensional gravity waves with a sea surface amplitude η(x, t)
and velocity u(x, t) in a basin with length L and in a water layer of depth H;
assume rotation is absent.

a. Show that the equations (7.4) reduce to

∂η

∂t
+ H

∂u

∂x
= 0 ;

∂u

∂t
+ g

∂η

∂x
= 0

b. Show that both u and η satisfy wave equations with wavespeed C =
√

gH .

c. What are the boundary conditions at x = 0 and x = L?

d. Show that the solutions of these equations can be written as

η(x, t) =
∞∑

n=1

An cos knx cos σnt

u(x, t) =
C

H

∞∑

n=1

An sin knx sinσnt

where the An are constants and

kn =
nπ

L
; σn =

nπC

L

(7.2) Standing waves: half open basin

Consider the same situation as in the previous exercise, but now with an open
boundary at x = L.

a. What is the boundary condition at x = L in this case?
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b. Show (again with separation of variables) that the solutions can be written
as

η(x, t) =
∞∑

n=1

cos knx(An sinσnt + Bn cos σnt)

u(x, t) =
C

H

∞∑

n=1

sin knx(−An cos σnt + Bn sinσnt)

where An and Bn are constants and determine the kn and σn.

Suppose that the flow is forced at the open boundary by a tide with amplitude

η(L, t) = η0 cos ωt

Assume that the sea-surface is at rest for t = 0.

c. Determine the total solution of this forced problem for t > 0.

(7.3) Phase versus group velocity

For Poincaré waves, the phase speed is given by (7.14). The group velocity is
defined as:

Cg =
( ∂σ

∂k
∂σ
∂l

)

a. Determine the group velocity for Poincaré waves.

b. Are these waves dispersive?

(7.4) Kelvin wave

At midlatitudes, Kelvin waves move along coasts.

a. In which direction (north or south) propagate these waves if they move
along the European Atlantic coast?

Suppose that a Kelvin wave propagates in a layer of water with a thickness
H0 = 103 m.

b. Calculate the Rossby deformation radius of such a wave at 45◦N.
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c. Determine the time τ that is needed for a Kelvin wave to propagate over a
distance of 1000 km.

(7.5) Topography and Rossby waves

A Rossby wave with wavenumbers k = k0 and l = 0 propagates (at 45◦N)
over a seamount with a spatial distribution

ηb(x, y) = η0e
−((x−x0)2+(y−y0)2)

where (x0, y0) is a point in the middle of the basin.

a. Sketch the deviation of the lines of constant phase caused by the presence
of the topography.

b. At which side of the seamount can stationary Rossby waves occur?



Chapter 8

STRATIFICATION

Bolero, B. Calatayud
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In this chapter we will extend the theory so far to include stratification.
In section 8.1 a heuristic introduction is given why the internal Rossby
deformation radius LD is such an important scale of motion. The formu-
lation and use of potential vorticity in a stratified rotating liquid is pre-
sented in section 8.2. In section 8.3 we then proceed with the derivation
of the continuously stratified quasi-geostrophic model. Finally, Rossby
waves in a stratified, rotating liquid in a domain with bottom topography
are discussed of section 8.4.

8.1. Rotation versus Stratification
Suppose we have flow with a stratification ρ = ρ0 + ρ̄(z) where ρ̄(z) is called

the background stratification and ρ0 is a reference density. The effect of stratifi-
cation on a flow with a horizontal length scale L is determined by the value of the
buoyancy frequency N [s−1], defined by

N2 = −g

ρ

dρ

dz
≈ − g

ρ0

dρ̄

dz
, (8.1)

as ρ0 + ρ̄(z) ≈ ρ0. We assume that this stratification is present over the length
scale L.

The first issue to investigate is the horizontal length scale over which stratifi-
cation effects will be important. Thereto we consider the situation of flow over
topography as sketched in Fig. 8.1.

 

�

ρ3�4
5

�
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�

Figure 8.1. Flow over topography with a characteristic horizontal length scale L, vertical length
scale D, horizontal velocity U and buoyancy frequency N , the latter determined by dρ̄/dz.

The time that a fluid element needs to cross the topography is the advective
timescale τa = L/U . Due to the presence of the topography, there will be vertical
velocities with an, a priori unknown, characteristic velocity scale W . Due to the
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vertical motion, there will be vertical displacements with an amplitude Δz with

Δz = Wτa. (8.2)

With dρ̄/dz < 0, the density difference between a particular fluid element that
has moved upwards with Δz > 0 and the background density field (on the same
z−level) is equal to Δρ = −(dρ̄/dz)Δz > 0. If Δz < 0, then the fluid element
is lighter than its environment and Δρ = −(dρ̄/dz)Δz < 0. With (8.1-8.2) it
follows that

Δρ = N2 ρ0

g
Δz = N2 ρ0

g

WL

U
. (8.3)

Differences in density Δρ cause pressure differences Δp and with the hydrostatic
balance, we have the estimate

Δp ≈ −gDΔρ = −N2 ρ0WLD

U
. (8.4)

Whether these density induced pressure differences (with magnitude P =
N2ρ0WLD/U ) will influence the flow now depends on other factors (such as
the background rotation).

First consider the case in which there is no rotation and where inertia is the
dominant term in the momentum balance, with a characteristic pressure scale
ρ0U

2. With (8.4) it follows that

U2 =
P

ρ0
= N2 WLD

U
⇒ W/D

U/L
=

Δz

D
=

U2

N2D2
= Fr2. (8.5)

The stratified Froude number Fr is a measure of the relative influence of stratifi-
cation versus inertia. When Fr is small then the stratification is strong and vertical
motions will be very small. For large values of Fr, stratification is unimportant
compared to inertia.

If we go back to chapter 5 and consider the constant density rotating case, then
we know that for the vertical ‘outer’ velocity, we had the expansion

w = w0 + εw1 + O(ε2), (8.6)

where the first term w0 = 0. The dimensional vertical velocity is scaled with
DU/L, such that the actual scale of the vertical velocity is equal to εDU/L. It
follows then that

W = εDU/L ⇒ W/D

U/L
= ε, (8.7)

and it is exactly the Rossby number that determines the magnitude of the vertical
motion. In a rotating flow with ε � 1, vertical motions are very restricted and the
motion is quasi two-dimensional.
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Now assume that in a stratified flow, the Coriolis acceleration is the domi-
nant term in the momentum balance with a characteristic geostrophic pressure
ρ0Lf0U . With the pressure differences P from (8.4) we derive

W/D

U/L
=

U2

N2D2

f0L

U
=

Fr2

ε
. (8.8)

The parameter Fr2/ε provides the scale of the vertical motions in a stratified
rotating flow. When Fr increases, the influence of the stratification decreases and
the vertical motions will be mainly determined by the rotation; we approximate
the constant density case (Fig. 8.2). In the regime where Fr2/ε ≈ ε, i.e.

U2

N2D2
≈ U2

f2
0 L2

⇒ L ≈ ND

f0
= LD, (8.9)

the effect of stratification is of the same magnitude as that of rotation. The length
scale LD is the internal Rossby deformation radius (cf. section 3.1).

Figure 8.2. Overview of the different flow regimes in a stratified rotating flow.

Typical values of N2 in the upper layers of the North Atlantic are N2 = 10−5

s−2. With D = 4× 103 m and f0 = 10−4 s−1, a typical value of LD is about 100
km (see Table 8.1).
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U L D N Fr ε Fr2/ε

10−2 106 103 10−2 10−3 10−4 10−2

10−1 105 103 10−2 10−2 10−2 10−2

m/s m m 1/s - - -

Table 8.1. Typical values of ε, Fr and Fr2/ε for different values of L, D and N , with f0 = 10−4.

8.2. Potential vorticity (again ...)
In section 4.4 we introduced the general concept of potential vorticity through

the Ertel theorem (4.12) as

Πλ∗ =
ω∗ + 2Ω

ρ∗
· ∇λ∗. (8.10)

In case λ∗(p∗, ρ∗) is a scalar which is constant along streamlines (Dλ∗/dt∗ =
0) and the flow is frictionless (FI∗ = 0), then the potential vorticity Πλ∗ is a
conserved quantity (DΠλ∗/dt∗ = 0).

In section 4.5, we saw one example of a constant density flow described by
the shallow-water equations in a layer of total thickness H . Here the conserved
quantity λ∗ = ρ∗(z∗ +D−hb∗)/H∗ leads to the shallow-water potential vorticity
Π∗ = (ζ∗ + f)/H∗. Conservation of Π∗ allowed to predict changes in rotation or
northward/southward motion over topography, depending on the relative magni-
tude of ζ∗ and f . In exercise (4.4) of chapter 4, for example, |ζ∗| � f and hence
conservation of Π∗ allows a prediction of poleward movement of a water column
over bottom topography (here f/H has to remain constant along streamlines). We
have also seen at the end of chapter 5 that in the quasi-geostrophic approximation,
the shallow-water potential vorticity Π∗ is approximated by

Π∗ =
1
D

(∇2ψ∗ − λ0ψ∗ +
f0

D
hb∗ + β0y∗), (8.11)

which resulted from an expansion of Π∗ = (ζ∗ + f)/H∗ in the Rossby number ε.
If there is both rotation and stratification, one may ask what forms of potential

vorticity are useful to predict again changes in rotation and/or latitudinal motion
of a fluid column. Suppose that there is a stratification with a density distribution
ρ. With a linear of state, the density equation (from 3.32e-f) can be written as

Dρ∗
dt∗

= KH∇2
Hρ∗ + KV

∂2ρ∗
∂z∗2

, (8.12)

where KH and KV are the vertical and horizontal diffusivities of heat and salt.
When mixing is negligible, we then find Dρ∗/dt∗ = 0. According to the Ertel
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theorem, with λ∗ = ρ∗ the potential vorticity

Πs∗ =
ω∗ + 2Ω

ρ∗
· ∇ρ∗, (8.13)

is a conserved quantity. As in section 4.5, the dominant component is the last term
(the product of the vertical components) in Πs which gives

Πs∗ ≈
ζ∗ + f

ρ

∂ρ∗
∂z∗

, (8.14)

where ζ is again the vertical component of the vorticity.

Figure 8.3. Potential vorticity Πs∗ (8.15) distribution along the WOCE A16 section in units
10−12 (ms)−1.

When the vertical vorticity can be neglected with respect to f , then Πs∗ reduces
to

Πs∗ = −N2f

g
. (8.15)

This quantity can be directly calculated from hydrographic data. A plot of this
potential vorticity (in units of 10−12 (ms)−1) is shown in Fig. 8.3. The distribution
of Πs is fairly symmetrical about the equator (due to its f dependence) with low
Πs water in the equatorial region. The highest values of Πs occur in the upper
ocean where the stratification (and hence the values of N2) are large.

When we approximate the stratification with layers of constant density differing
by an amount Δρ and having a thickness h we can approximate (we will use these
layer models in chapter 9)

dρ∗
dz∗

=
Δρ

h∗
, (8.16)

and in this case Πs∗ becomes

Πs∗ =
ζ∗ + f

h∗

Δρ

ρ∗
. (8.17)
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This has the same form as the shallow-water potential vorticity but h now indicates
the thickness of a certain density layer instead of the total layer thickness.

With conservation of Πs we can again predict changes in latitudinal motion
or/and rotation when the stratification is changed. For example, when locally
the stratification is reduced, then N2 is reduced or equivalently a water mass
of certain density gets a larger thickness with respect to its surroundings. On
the large scale, where f is dominant over the relative vorticity, a decrease in
stratification must lead to poleward motion as f has to increase. On a smaller
scale, where f is nearly constant, a decrease in stratification locally must lead to
an increase in local vorticity and hence in an increased counterclockwise motion.

Additional Material

B: See chapter 9 in Cushman-Roisin (1994) for additional details.

D: A more extensive discussion on the use of the potential vorticity concept can
be found in section 4.7 of Vallis (2006) and the first sections of Müller (1995).

8.3. The stratified quasi-geostrophic model
From Table 8.1, it appears that on scales of O(100) km, adaptions to the homo-

geneous quasi-geostrophic theory as presented in chapter 5 are needed: this will
lead to the stratified quasi-geostrophic theory.

We scale the horizontal and vertical velocities with U and W = DU/L, re-
spectively and for the pressure scale we take

p∗ = p̄∗ + ρ̄∗ULf0p, (8.18)

where ρ̄∗ is the dimensional background density field and p̄∗ the associated hy-
drostatic pressure field. Because the dynamic density field is also in hydrostatic
equilibrium, it scales as

ρ∗ = ρ̄∗ +
ρ̄∗ULf0

gD
ρ ⇒ ρ∗ = ρ̄∗(1 + εFρ). (8.19)

8.3.1. Model formulation
Use of local coordinates (x∗, y∗, z∗) which are again scaled with L and D,

application of the β-plane approximation and taking the limit δ → 0 and L/r0 �
0 gives (cf. section 5.1)

ε
Du

dt
− v(1 + βεy) +

∂p

∂x
(1 + εFρ)−1 = EH∇2

Hu + EV
∂2u

∂z2
, (8.20a)
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ε
Dv

dt
+ u(1 + βεy) +

∂p

∂y
(1 + εFρ)−1 = EH∇2

Hv + EV
∂2v

∂z2
, (8.20b)

0 = −∂p

∂z
− ρ, (8.20c)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (8.20d)

εF
Dρ

dt
+ (1 + εFρ)

w

ρ̄∗

dρ̄∗
dz

= Hρ, (8.20e)

D

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
. (8.20f)

Here ∇2
H is the horizontal Laplace operator and Hρ contains all mixing terms of

density. The dimensionless parameters in the equations are again the Rossby num-
ber ε = U/(f0L), the dimensionless planetary vorticity gradient β = β0L

2/U
and the rotational Froude number F = f2

0 L2/gD. The parameter F is small
on length scales L = 100 km and anticipating an asymptotic expansion in ε, we
assume F = O(ε). For the mixing terms in the momentum equation we again
assume that EV and EH are at most O(ε).

Again we try to find solutions of the form

u(x, y, z) = u0(x, y, z) + εu1(x, y, z) + . . . (8.21)

with similar expansions for v, w, p and ρ. Using

N2D

g
= − 1

ρ̄∗

dρ̄∗
dz

≈ O(ε), (8.22)

the O(1) system in (8.20a-d) becomes

v0 =
∂p

∂x

0

, (8.23a)

u0 = −∂p

∂y

0

, (8.23b)

0 = −∂p0

∂z
− ρ0, (8.23c)

0 =
∂u0

∂x
+

∂v0

∂y
+

∂w0

∂z
. (8.23d)

From (8.23) it follows that the O(1) geostrophic horizontal velocity field is diver-
gence free and that w0 is constant in z. Because w0 = 0 at the bottom it again
follows, as in the homogeneous case, that w0 ≡ 0. The geostrophic, hydrostatic
equations are again degenerate and at O(1), there is no evolution equation for the
pressure.
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When (8.23a-b) are both differentiated to z and (8.23c) is used, we find

∂v0

∂z
= −∂ρ0

∂x
, (8.24a)

∂u0

∂z
=

∂ρ0

∂y
(8.24b)

The equations (8.24) are usually referred to as the thermal wind balance and they
Ex. 8.1

describe that in a stratified rotating flow horizontal density gradients are associated
with vertical shear.

Ex. 8.2

The thermal wind balance

The dimensional form of the thermal wind balance is given by

f0
∂v∗
∂z

= − g

ρ0

∂ρ∗
∂x∗

,

f0
∂u∗
∂z

=
g

ρ0

∂ρ∗
∂y∗

,

Note that only the vertical shear is given by these equations and not the
velocities itself (see Example 8.1).

�
Example 8.1: Thermal wind balance

Consider first a situation where the density increases northward, i.e.,

ρ∗ = ρ0(1 + αy∗),

with α > 0. According to hydrostatic equilibrium, the vertical pressure increases
faster with depth in the north than in the south, according to

p∗ = −ρ0gz(1 + αy) + p0(y),

where p0 is the surface pressure at z = 0. Relative to the mean pressure at partic-
ular levels −z1 and −z2, the pressure distribution has the high/low pattern as in
Fig. 8.4. Pressure gradients are balanced by the Coriolis acceleration and hence at
depth the zonal flow is eastward and near the surface the zonal flow is westward.
The vertical shear in the zonal direction is according to the thermal wind balance
given by

∂u∗
∂z

=
g

f0ρ0

∂ρ∗
∂y∗

=
g

f0
α
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which fits with the flow directions in Fig. 8.4. A similar picture can be drawn to
illustrate the vertical shear in meridional direction due to a zonal density gradient.
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Figure 8.4. Sketch of the mechanism of the thermal wind balance relating the vertical shear in
zonal direction to a meridional density gradient.

�

The O(ε) equations (8.20a-b/d) become

∂u0

∂t
+ u0 ∂u0

∂x
+ v0 ∂u0

∂y
− v1 − βyv0 = −∂p1

∂x
, (8.26a)

∂v0

∂t
+ u0 ∂v0

∂x
+ v0 ∂v0

∂y
+ u1 + βyu0 = −∂p1

∂y
, (8.26b)

∂w1

∂z
+

∂u1

∂x
+

∂v1

∂y
= 0. (8.26c)

The vorticity balance for the vertical component of the vorticity vector ζ0 =
∂v0/∂x − ∂u0/∂y can be found by eliminating the pressure p1 from (8.26a-b)
and with (8.23a-d) and (8.26c) we find

(
∂

∂t
+ u0 ∂

∂x
+ v0 ∂

∂y
)(ζ0 + βy) =

∂w1

∂z
. (8.27)

So far we have not used the density balance (8.20e). On the scale LD, stratifi-
cation must be an important ageostrophic effect. As the mixing of density (heat/
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salt) is very small, we can neglect Hρ and hence the dominant O(ε) balance in
(8.20e) becomes

Dρ0

dt
− w1S = 0, (8.28)

where S = FN2D/g = N2D2/(f2
0 L2) is the Burger number (cf. section 3.1).

With the help of (8.28), we can express w1 into terms of the pressure p0 and finally,
from (8.27), we find the quasi-geostrophic stratified potential vorticity equation
(with ψ = p0)

(
∂

∂t
+ u0 ∂

∂x
+ v0 ∂

∂y
)(∇2ψ +

∂

∂z
(
1
S

∂ψ

∂z
) + βy) = 0. (8.29)

The equation (8.29) can be written as DΠs/dt in the limit of small Rossby num-
ber, where Πs is the potential vorticity defined in (8.13).

Ex. 8.3

In the stratified case, the equations for motions on the scale of the Rossby
deformation radius are closed by the density equation while in the constant density
case they can only be closed by the Ekman layers. Note, however, that in the
stratified case we cannot integrate over the layer because the horizontal velocities
are z-dependent and hence we have to consider explicit boundary conditions.

8.3.2. Boundary conditions
How do the Ekman boundary layers change from the constant density formu-

lation in chapter 5 to the stratified case discussed here? To analyze this, we first
consider the flat bottom case at z = −1 as in chapter 5 and introduce a boundary
layer coordinate ξ = (z + 1)/E

1/2
V . Using the same expansions as in (5.43), but

now also for ρ̃, the O(1) system of boundary layer equations is again (5.44a-d),
but (5.44c) has changed to

∂p̃0

∂ξ
= −E

1/2
V ρ̃0. (8.30)

In addition, from (8.28) an estimate for ρ̃0 follows as

ρ̃0 = O(
w̃

ε
S) = O(E1/2

V

S

ε
), (8.31)

such that
∂p̃0

∂ξ
= O(EV

S

ε
). (8.32)

Hence, if EV � ε/S, then ρ̃0 is approximately constant over the Ekman layer
and we can use the results from the constant density theory. Because S = O(1)
for motions with a horizontal scale LD, this condition is satisfied when EV � ε.
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If there is again an O(ε) bottom topography, as in (5.70), with associated
boundary conditions (5.71), then the boundary condition for ψ at z = −1 be-
comes

w1 =
1
S

(
∂

∂t
+ u0 ∂

∂x
+ v0 ∂

∂y
)
∂ψ

∂z
= u0.∇ηb −

r

2
ζ0. (8.33)

At the ocean-atmosphere interface it can also be shown that if EV � εS, the
results of the homogeneous theory can also be used. The equation (5.77) (with
F = O(ε)), with (8.28), then gives the boundary condition at z = 0

w1 = − 1
S

(
∂

∂t
+ u0 ∂

∂x
+ v0 ∂

∂y
)
∂ψ

∂z
=

αr

2
∇.(T ∧ e3), (8.34)

where r is the parameter in (5.86), i.e. r = Ē
1/2
V /ε.

Because F = O(ε) and S = O(1), the deformation of the ocean-atmosphere
interface does not play any role in the stratified dynamics on the scale of the
Rossby deformation radius. The isopycnals deform much easier than the ocean-
atmosphere interface and those contribute most to the vorticity balance. For F =
O(ε), the ocean-atmosphere interface can be treated as a non-deformable surface;
this is called the ‘rigid lid’ approximation.

The continuously stratified quasi-geostrophic model

Note that to convert back to dimensional quantities,

α =
2τ0

ρ0Uf0δE
; r =

δEf0L

DU
→ αr

2
=

τ0L

ρ0DU2

and

ψ∗ = ULψ : S =
N2D2

L2f2
0

; β =
β0L

2

U
; ε0 =

f0δE

D

such that the dimensional equations become

(
∂

∂t∗
+ u∗

∂

∂x∗
+ v∗

∂

∂y∗
)(∇2

∗ψ∗ +
∂

∂z∗
(
f2
0

N2

∂ψ∗
∂z∗

) + β0y∗) = 0,

with boundary conditions at z = −D :

− f2
0

N2
(

∂

∂t∗
+ u∗

∂

∂x∗
+ v∗

∂

∂y∗
)
∂ψ∗
∂z∗

= f0u∗.∇hb∗ − Dε0ζ∗,

and at z = 0 :

− f2
0

N2
(

∂

∂t∗
+ u∗

∂

∂x∗
+ v∗

∂

∂y∗
)
∂ψ∗
∂z∗

=
1

ρ0D
(
∂τy

∗
∂x∗

− ∂τx
∗

∂y∗
).
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8.4. Free waves
To determine the free waves of the stratified quasi-geostrophic model, we con-
sider the unforced equation (8.29) with boundary conditions (8.33-8.34), i.e. with
r = T = 0. Furthermore, we will consider a horizontally unbounded ocean and
boundary effects due to the presence of the continents are neglected. Free waves
are again found by determining small amplitude motions with respect to the mo-
tionless state.

8.4.1. Vertical structure functions
The linearized equation (8.29) becomes

∂

∂t
(∇2ψ +

∂

∂z
(
1
S

∂ψ

∂z
) + β

∂ψ

∂x
) = 0. (8.35)

We search for separable solutions

ψ(x, y, z, t) = Ψ(x, y, t)Φ(z), (8.36)

for a vertical structure function Φ(z). It appears that solutions exist if Φ satisfies

(
1
S

Φ′)′ = −χΦ. (8.37)

The boundary conditions for Φ follow from (8.33- 8.34). For a flat bottom these
become

Φ′(0) = Φ′(−1) = 0. (8.38)

The constant χ in (8.37) is a so-called separation constant which has to be deter-
mined such that the problem above has nontrivial solutions. Because S is positive
and the problem (8.37) is self-adjoint, there exist a countable number of real eigen-
values. A special eigenvalue is χ = 0 with associated eigenfunction Φ = 1. Since
the baroclinic vector ∇ρ ∧ ∇p is zero for these waves, they are called barotropic
waves. All other waves, with χ �= 0, are baroclinic waves and only exist because
of the presence of the stratification.

In the special case where S is constant, the solutions of (8.37) are

Φ(z) = A1 cos(z
√

χS) + A2 sin(z
√

χS). (8.39)

The boundary conditions (8.38) imply that A2 ≡ 0 and

sin(
√

χS) = 0 ⇒ χ = χn =
n2π2

S
. (8.40)

For n = 0, we find the barotropic mode and for n > 0 the baroclinic modes are
given by (8.39). The vertical structure of the modes with n = 0, 1, 2 and n = 3
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Figure 8.5. (a) Structure functions Φn(z) for the first four modes n = 0, 1, 2 and n = 3 for a
N2 profile such as in (b).

are plotted in Fig. 8.5b. The density profile ρ̄ that corresponds to a constant S
(Fig. 8.5a) is linear.

Through separation of variables, the function Ψ(x, y, t) in (8.36) is determined
from

∂

∂t
(∇2Ψ − χΨ) + β

∂Ψ
∂x

= 0. (8.41)

To determine free waves in a horizontally unbounded domain, we substitute trav-
eling waves solutions of the form

Ψ(x, y, t) = Ψ0e
i(kx+ly−σt), (8.42)

into (8.41), where k and l are the wavenumbers in the x- and y-direction, σ is
the frequency of the wave and Ψ0 is its amplitude. For a fixed value of χn, the
dispersion relation follows as

σn = − βk

χn + k2 + l2
. (8.43)

Hence, for each value of χn, there is an associated frequency σn and because χn is
real, the corresponding σn are also real. For the barotropic mode we have χ0 = 0
and the frequency of these waves is

σ0 = − βk

k2 + l2
. (8.44)
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Rossby waves with a constant LD.

In a flat bottom continuously stratified liquid layer characterized by a con-
stant internal Rossby deformation radius LD, the dimensional dispersion
relation for Rossby waves is

σ∗ = − β0k∗
n2π2

L2
D

+ k2
∗ + l2∗

, n = 0, 1, . . .

Here we have assumed that the external deformation radius RD is much
larger than LD and furthermore the quasi-geostrophic approximation has
been applied. The Rossby wave mode with n = 0 is the barotropic mode
and it has no vertical structure; the modes with n > 0 are baroclinic
Rossby modes.

8.4.2. Properties of Rossby waves
The phase speed C of the waves with dispersion relation (8.43) is

C =
(

Cx

Cy

)
=
(

σ
k
σ
l

)
=

(
− β

χ+k2+l2

− β
χ+k2+l2

k
l

)
, (8.45)

such that the phase speed in x direction is always negative. An observer moving
with the waves always sees a larger planetary vorticity to the right.

The maximum frequency σ of Rossby waves is found for k = (l2 + χ)1/2 with
amplitude

σm = − βk

2(l2 + χ)1/2
. (8.46)

The absolute maximum σM occurs for l = 0 with

σM = − β

2χ1/2
. (8.47)

For l = 0, the frequency σ is plotted as a function of k/
√

χ in Fig. 8.6a. The
dimensional wavelength and frequency of this wave are

λ∗ =
2πL

k
=

2πL
√

χ
, (8.48a)

σM∗ =
σMU

L
= − βU

2
√

χL
. (8.48b)

For constant S, with eigenvalues χ given by (8.40), the Rossby waves with largest
frequency have wavelengths

λn∗ =
2πL

n

√
S =

2
n

LD, (8.49)
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Figure 8.6. (a) Dimensionless frequency and (b) ratio Cx
g /Cx for Rossby waves with l = 0 as a

function of k/
√

χ.

where LD is the internal Rossby deformation radius, i.e. LD = ND/f0.
For typical values of N (N = 10−2 s−1), we find LD ≈ 100 km and these

waves move into the x-direction with phase speed

Cx
n∗ =

σM∗
k∗

= − β0L
2
D

2(nπ)2
. (8.50)

and as β0L
2
D = O(10−1 ms−1), typical travel times over 1000 km are in the order

of years.
Ex. 8.4

Waves can transport energy over large distances with respect to the character-
istic displacement of the fluid elements when the wave passes. The plane wave is
not suited to describing this energy transport; a more general form of the wavefield
is needed. The most simple example is the wave packet

Ψ(x, y, t) = A(x, y, t) cos(kx + ly − σt), (8.51)

where A is a slowly varying function of x, y, i.e.

A−1 ∂A

∂x
� (k2 + l2)1/2 ; A−1 ∂A

∂y
� (k2 + l2)1/2 ; A−1 ∂A

∂t
� σ. (8.52)

This amplitude is a measure of the energy of the wave packet and hence we are
interested in the evolution of A. When (8.51) is substituted into (8.35) we find,
by equating the coefficients for both the sine and cosine to zero, the dispersion
relation (8.43) and

∂A

∂t
+ Cg · ∇A = 0, (8.53)
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where Cg is the group velocity, with

Cg =
( ∂σ

∂k
∂σ
∂l

)
. (8.54)

For the Rossby waves (8.43), we find for the group velocity

Cg =

(
β k2−l2−χ

(k2+l2+χ)2

β 2kl
(k2+l2+χ)2

)
. (8.55)

Waves for which Cg �= C are called dispersive waves and the Rossby wave is
hence an example of these type of waves. From the expression for Cx

g , we can
deduce that a wave packet that contains a wave with k2 > l2 + χ will move
eastward while long Rossby waves with k2 < l2 + χ will move westward. For
the absolute values of the group velocity, we find | Cx

g |≤| Cx |, as can be seen in
Fig. 8.6b for waves with l = 0.

Additional Material

D: Properties of Rossby waves are discussed in all textbooks on geophysical
fluid dynamics, for example chapter 15 of Cushman-Roisin (1994) and chap-
ter 4 of Mc Williams (2006).

D: Material for further study can be found in section 5.7 of Vallis (2006), sections
6.11, 6.12 and 6.15 of Pedlosky (1987) and lectures 14, 15 and 19 of Pedlosky
(2003).

8.4.3. Topographic Rossby waves
Bottom topography can substantially affect the propagation of Rossby waves.

We will study this using an example of a simple bottom profile given by

ηb(y) = γy, (8.56)

and assume that S is constant. The equation (8.29) with the boundary conditions
(8.33-8.34) becomes

∂

∂t
(∇2ψ +

1
S

∂2ψ

∂z2
) + β

∂ψ

∂x
= 0, (8.57a)

z = −1 :
∂2ψ

∂t∂z
= −γS

∂ψ

∂x
, (8.57b)

z = 0 :
∂2ψ

∂t∂z
= 0. (8.57c)
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Figure 8.7. (a) Plot of the functions tanm and −(m + 1/m). (b) Plot of the functions tanhμ
and 1/μ − μ.

Again, we look for plane wave solutions of the form

ψ(x, y, z, t) = Φ(z)ei(kx+ly−σt), (8.58)

and through substitution in (8.57), we find the following eigenvalue problem for
Φ (with eigenvalues σ)

Φ′′ + m2Φ = 0 (8.59a)

Φ′(0) = Φ′(−1) − S
γk

σ
Φ(−1) = 0 (8.59b)

m2 = −S(
βk

σ
+ k2 + l2). (8.59c)

The complication is now that for γ �= 0, the eigenvalue σ is in the boundary
Ex. 8.5

condition. There are two types of solutions for β �= 0, which depend on the sign
of m2, i.e. m2 > 0 and m2 < 0. When m = 0, then a constant Φ does not
satisfy (8.59b) for γ �= 0 unless k = 0 (but then also l = 0, due to (8.59c)) and
we find only trivial solutions. Hence, bottom topography will strongly affect the
barotropic mode.

For m2 > 0, the solution Φ and the dispersion relation are

Φ(z) = A cos mz, (8.60a)

m tan m =
γkS

σ
⇒ tan m = −γ

β
(m +

S(k2 + l2)
m

). (8.60b)

For fixed S and fixed wavevector k, (8.60b) has a discrete set of roots mi

(Fig. 8.7a). Note that there is no intersection on the first branch of the function
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tan m, i.e. m1 ∈ (π/2, 3π/2). For S → 0 and fixed wavevector k, there is an
intersection for m = 0. From (8.59c), we see that this is exactly the barotropic
mode. For S = O(1) and γ → 0, we find mi = iπ, i.e. the Rossby waves for a
flat bottom, including the barotropic mode.

For m2 < 0, we define μ2 = −m2 > 0 and the solution for Φ(z) and the
dispersion relation (directly from (8.60) through substitution m = iμ) are

Φ(z) = A cosh μz, (8.61a)

μ tanh μ = −γkS

σ
⇒ tanh μ = −γ

β
(μ − S(k2 + l2)

μ
). (8.61b)

There is now only a single eigenvalue (Fig. 8.7b), which has special properties.
The eigenfunction has a maximum amplitude at the bottom and decreases expo-
nentially upwards; this type of mode is a so-called “bottom trapped” mode. For
S → 0 and fixed k, the dispersion relation becomes

σ = −(γ + β)
k

k2 + l2
. (8.62)

This is exactly the Rossby wave frequency for which bottom slope and β-effect
are additive.



192 DYNAMICAL OCEANOGRAPHY

Summary

In a rotating stratified flow, the effect of stratification and rotation on
scale of vertical motions is of similar magnitude when

L ≈ LD =
ND

f

In stratified rotating flows, a useful potential vorticity is

Πs∗ = −N2

g
(ζ∗ + f)

where N is the buoyancy frequency and ζ is the vertical component of
the vorticity vector.

In the quasi-geostrophic approximation, this potential vorticity re-
duces to

Πs∗ = ∇2ψ∗ +
∂

∂z∗
(
f2
0

N2

∂ψ∗
∂z∗

) + β0y∗

where ψ is the geostrophic streamfunction. In the continuously strati-
fied quasi-geostrophic model, this quantity is conserved.

The dispersion relation of Rossby waves in this model is given by

σ = − β0k
n2π2

L2
D

+ k2 + l2
, n = 0, 1, . . .

For LD = 100 km, barotropic (n = 0) waves cross an Atlantic size
basin (5000 km) in a few days, while for baroclinic waves (n > 0) this
takes several years.

Bottom topography slightly modifies the baroclinic (n > 0) modes
but strongly modifies the barotropic mode (n = 0) to become ‘bottom
trapped’.
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8.5. Exercises on chapter 8

(8.1) Thermal wind balance

An ocean current has a velocity field given by

u∗(x∗, y∗, z∗) = 0 ; v∗(x∗, y∗, z∗) = V0 e−
(x∗−x0)2

A ez∗/A

a. Determine the density field ρ∗(x∗, y∗, z∗) which is in thermal wind balance
with this flow.

b. Sketch the velocity field and the density field of this flow.

(8.2) Velocities from hydrographic data

To determine geostrophic velocities from measurements of temperature T∗ and
salinity S∗ one calculates (i) the slope of the isobars, or (ii) the pressure change
along a surface of constant geopotential. Here, the geopotential Φ∗ is defined
by

Φ∗(x∗, y∗, z∗) =
∫ z∗

−1
g dz′∗

a. Use the hydrostatic and geostrophic balances and derive that

∂Φ∗
∂x∗

= −f0v∗ ;
∂Φ∗
∂y∗

= f0u∗

where Φ∗ is the value of the geopotential on an isobaric surface p∗ = p0 and
f0 is the local Coriolis parameter.

Consider now two isobaric surface (with pressures p1∗,A and p2∗,A) at a
station A as in the figure below.

b. Show that the geopotential difference between these two isobaric surfaces
is given by

Φ∗(p1∗,A) − Φ∗(p2∗,A) =
∫ p2∗,A

p1∗,A

α∗(S∗, T∗, p∗) dp∗

where α∗ = 1/ρ∗ is the specific volume.
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As a next step, α∗ is decomposed as

α∗(S∗, T∗, p∗) = α∗(35, 0, p∗) + δ∗

where δ∗ is the specific volume anomaly. It directly follows that

Φ∗(p1∗,A) − Φ∗(p2∗,A) =
∫ p2∗,A

p1∗,A

α∗(35, 0, p∗) dp∗ + ΔΦA∗

where ΔΦA∗ is the geopotential anomaly between the isobaric surfaces.

Consider now two isobaric surfaces (P1 and P2) that both intersect the stations
A and B, at a distance L (see figure below).

0

9
)

9
.

2

γ

�

�

c. Show that the angle γ is determined through

tan γ =
ΔΦB∗ − ΔΦA∗

L

d. Can one now determine the absolute meridional geostrophic velocity field?
If not, what can one determine?

(8.3) Coastal current

Consider a steady, geostrophic and parallel flow on the western side of a coast
at x = 1. The density field perpendicular to the coast is given by ρ = ρ(x)
with ∂ρ/∂x < 0; this can occur for example due to the freshwater outflow of
a river at the coast. The water is well mixed vertically and the height of the sea
surface is given by z = h(x) while the flat bottom is located at z = −1.
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All quantities describing the flow are independent of the coordinate y. Assume
that inertia and friction can be neglected, that |h| � 1 and that

v̄ ≡
∫ h

−1
v dz = 0

a. Derive the equation determining the slope of the sea surface in terms in the
density field.

b. Determine the velocity field of the flow and calculate the depth at which
v = 0; this is the so-called ‘level of no motion’.

c. Make a sketch of the sea surface height and the velocity field. Provide a
physical interpretation of the result.

(8.4) Rossby waves in the Pacific

Rossby waves propagate westwards and can be observed at midlatitudes with
altimeters. In the figure below (source http://topex-www.jpl.nasa.gov/), mea-
surements of sea surface height anomalies (in cm) are plotted as a function
of time along three latitudes in the Pacific (at 20◦N, 32◦N and 39◦N, respec-
tively).

a. Provide an estimate of the phase speed of the Rossby waves in these figures.

b. Calculate the dimensional phase speed of a Rossby wave with a zonal
wavelength of 5000 km and with an infinite meridional wavelength in a
constant density layer of water with a depth H0 = 3 km at (i) 10◦N and (ii)
60◦N.

c. Are the waves in the figures barotropic or baroclinic Rossby waves?

(8.5) Reflection of Rossby waves

As we have seen in section 8.4, for a baroclinic Rossby wave with certain
χ = χn and with wavevector k = (k, 0), the dimensionless streamfunction ψ
is given by

ψ(x, y, t) = Ψ0 exp [−i(kx − σt)]

with Ψ0 being a complex amplitude and with the dispersion relation

σ =
−βk

χ + k2
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Consider now an incoming Rossby wave with wavenumber, angular frequency
and streamfunction (ki, σi, Ψi) which moves to the western boundary at x = 0.

a. Give the relation between ki of the incoming wave and σi.

Consider now also the reflected wave; this wave can be represented by
quantities (kr, σr, Ψr).

b. What are the boundary conditions for ψ at x = 0.

c. Determine the streamfunction of the total flow consisting of the incoming
and the reflected Rossby wave.



Chapter 9

ADJUSTMENT

Vals Venezolano No. 2, A. Lauro

197



198 DYNAMICAL OCEANOGRAPHY

After the discussion on the free waves in the stratified and constant den-
sity case, we can now tackle the adjustment problem already mentioned
in chapter 7. How does the time-dependent flow from a motionless state
settle into a steady ocean circulation once a wind stress is forcing it? We
therefore consider in this chapter a basin stratified motionless ocean that
is suddenly forced by a wind-stress field. For the stratified case, we will
restrict ourselves to the analysis of the two-layer model that will be de-
rived in section 9.1; its free waves will be presented in section 9.2. In the
constant density case we know that for t → ∞, a Sverdrup balance with a
western boundary current will appear. It will turn out that the adjustment
can be studied simultaneously in the constant density and two-layer case
(section 9.3)

9.1. The quasi-geostrophic two-layer model
As the ocean stratification can be imagined to be build up of layers which are

advected without much mixing, layer models have been frequently used as a sim-
plification of the continuous stratified model. In each layer, the density is assumed
to be constant. In Fig. 9.1 a two-layer approximation is sketched with the upper
layer having a density ρ1, the lower with ρ2 and ρ1 < ρ2. The layers are separated
by a material surface, often called the thermocline, denoted by z∗ = −h∗(x, y, t).

Consider first the motionless flow where the thermocline is flat and given by

!
)

!
.

�
�
�
�


� �

�
�
(

�
�
��
6
�
�

�
�
�
!
)

Figure 9.1. Sketch of a two-layer situation where layer i has a constant density ρi and an equi-
librium thickness Hi.

z∗ = −H1 and the constant atmospheric pressure by p0. The hydrostatic pres-
sure, that is continuous over z∗ = −H1, is

p1∗(z∗) = −ρ1g(z∗ + H1) + pI , (9.1a)

p2∗(z∗) = −ρ2g(z∗ + H1) + pI , (9.1b)
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where pI = ρ1gH1+p0 is the equilibrium pressure at the equilibrium thermocline. Ex. 9.1
In case of flow in both layers, the dimensional pressure also has to be con-

tinuous over the thermocline. To determine a scale μ for the amplitude of the
thermocline we write

h∗(x, y, t) = H1 + μĥ(x, y, t) = Dh(x, y, t), (9.2)

where ĥ = O(1). From the scaling (9.2) one can derive with p1∗ = p2∗ at
z∗ = −h∗ that

g(ρ1 − ρ2)μĥ = f0LU(ρ2p2 − ρ1p1). (9.3)

With a reference density ρ0, and if we choose

μ =
ρ0f0UL

g(ρ2 − ρ1)
= εFD

ρ0

Δρ
, (9.4)

then it follows from (9.3) that

−ĥ =
ρ2p2 − ρ1p1

ρ0
⇒ h =

H1

D
+ εF

ρ0

Δρ
ĥ. (9.5)

Now we know that Δρ/ρ0 � 1 and that for i = 1, 2 ρi/ρ0 ≈ 1, such that from
(9.5) we finally deduce

ĥ = p1 − p2. (9.6)

Pressure differences between both layers cause deformations of the thermocline.
Besides (9.6) the kinematic boundary condition at z = −h is

w = −Dh

dt
= −εF

ρ0

Δρ

Dĥ

dt
. (9.7)

Additional Material

B: Layers models are also discussed in section 6.16 of Pedlosky (1987), section
5.4 of Vallis (2006), chapter 12 of Cushman-Roisin (1994) and section 5.1 of
Mc Williams (2006).

In both layers, the density is constant and we can apply the constant density
theory from chapter 5. Expansions in ε and a procedure similar to that in section
5.3 leads to

Diζ
0
i

dt
+ βv0

i =
∂w1

i

∂z
, (9.8)
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for i = 1, 2, where

Di

dt
=

∂

∂t
+ u0

i

∂

∂x
+ v0

i

∂

∂y
(9.9a)

u0
i = −∂p0

i

∂y
; v0

i =
∂p0

i

∂x
(9.9b)

ζ0
i = ∇2p0

i . (9.9c)

At the bottom z = −1 we can use the Ekman theory in section 5.2 and we find
from (5.75)

w2 = ε( u0
2 · ∇ηb +

r

2
ζ0
2 ), (9.10)

and at the surface z = 0 from (5.78) we have

p0
1 = η0 (9.11a)

w1 = ε( Fu1 · ∇η0 +
αr

2
∇ · (T ∧ e3) ). (9.11b)

Integration of (9.9) over the layers (−1 to −h and −h to 0) then gives, using
(9.10-9.11),

D1

dt
(ζ0

1 + βy − DF

H1
p0
1 +

DF

H1

ρ0

Δρ
(p0

2 − p0
1)) =

=
D

H1

αr

2
∇ · (T ∧ e3), (9.12a)

D2

dt
(ζ0

2 + βy +
D

H2
ηb − D

H2
F

ρ0

Δρ
(p0

2 − p0
1))

= − D

H2

r

2
ζ0
2 . (9.12b)

We consider the case where Fρ0/Δρ = O(1) (note that in the stratified case
F � 1, see Table 8.1) where deformations of the ocean-atmosphere interface can
be neglected. With

F1 =
f2
0 L2

g′H1
; F2 =

f2
0 L2

g′H2
, (9.13a)

r1 =
D

H1

αr

2
; r2 =

D

H2

r

2
, (9.13b)

η̃b =
D

H2
ηb ; β =

β0L
2

U
, (9.13c)

where the reduced gravity g′ = gΔρ/ρ0. It follows with ψi = p0
i , i = 1, 2, from

(9.12) that

D1

dt

[
∇2ψ1 + βy + F1(ψ2 − ψ1)

]
= r1∇.(T ∧ e3), (9.14a)
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D2

dt

[
∇2ψ2 + βy + η̃b − F2(ψ2 − ψ1)

]
= −r2∇2ψ2. (9.14b)

We can write both parameters Fi as Fi = L2/L2
Di, where LDi is the Rossby

deformation radius, LDi = (g′Hi/f2
0 )1/2.

The two-layer quasi-geostrophic model

The dimensional form of the quasi-geostrophic two-layer model on a midlati-
tude β-plane with equilibrium thicknesses H1 and H2 and reduced gravity g′

is

D1

dt∗

[
∇2ψ1∗ + β0y∗ +

f2
0

g′H1
(ψ2∗ − ψ1∗)

]
− 1

ρ1H1
∇.(T∗ ∧ e3) = 0,

D2

dt∗

[
∇2ψ2∗ + β0y∗ +

f0

H2
hb∗ −

f2
0

g′H2
(ψ2∗ − ψ1∗)

]
+ ε0∇2ψ2∗ = 0

where hb∗ is the dimensional bottom topography and ε0 = f0δE/H2 is the
bottom friction coefficient.

9.2. Free waves
To consider free waves in the two-layer model, we consider the linearized equa-

tions (9.12) around the motionless flow without forcing and dissipation. These
equations then become

∂

∂t
(∇2ψ1 + F1(ψ2 − ψ1)) + β

∂ψ1

∂x
= 0, (9.16a)

∂

∂t
(∇2ψ2 − F2(ψ2 − ψ1)) + β

∂ψ2

∂x
= 0. (9.16b)

If we multiply (9.16a) by F2 and (9.16b) by F1 and add both results, we find, with
Ψ̃ = F2ψ1 + F1ψ2

∂

∂t
∇2Ψ̃ + β

∂Ψ̃
∂x

= 0. (9.17)

In a similar way, by subtracting (9.16b) from (9.16a), with Ψ̄ = ψ1 − ψ2,

∂

∂t
(∇2Ψ̄ − (F1 + F2)Ψ̄) + β

∂Ψ̄
∂x

= 0. (9.18)

In this way, we have obtained equations for the evolution of the barotropic mode
Ψ̃ (9.17) and the first baroclinic mode Ψ̄ (9.18). The dispersion relation of these
waves is

σ =
−βk

χ + k2 + l2
, (9.19)
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where χ = 0 for the barotropic wave and χ = F1 + F2 for the baroclinic wave.
Ex. 9.2

We know that the phase speed of these Rossby waves is westwards. Now the
problem to be studied is what happens when these waves meet a continent. Con-
sider an incoming Rossby wave (packet) with wavevector (ki, li) and dispersion
relation

σi =
−βki

χ + k2
i + l2i

, (9.20)

at the western boundary. The streamfunction of this incoming wave can be written
as

ψi = Aie
i(kix+liy−σit). (9.21)

For the energy of the wave (packet) to reach the western boundary, the group
velocity has to be negative In Fig. 9.2a, we see that the incoming wave has a
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Figure 9.2. (a) Reflection of Rossby waves, where k is the wavevector and c the group velocity.
(b) Geometrical view of the change in wavelength during reflection.

wavenumber which represents long Rossby waves. The wavenumber ki is explic-
itly given by

ki = − β

2σi
−
√

β2

4σ2
i

− (χ + l2i ). (9.22)

The reflected wave is represented by

ψr = Are
i(krx+lry−σrt). (9.23)

The total streamfunction is hence given by ψ = ψi+ψr. Because u = −∂ψ/∂y =
0 at the wall (x = 0), the relations

liAie
i(liy−σit) = −lrAre

i(lry−σrt), (9.24)

must hold for every y and t which can only occur when

σi = σr ; li = lr. (9.25)



Adjustment 203

The angle of incidence is therefore equal to the angle of reflection (θi = θr) and
the frequency is invariant under reflection. The wavenumber of the reflected wave
must therefore lie in the same circle as the incoming wave (see Fig. 9.2b).

Because the energy of the reflected wave must propagate eastward, the reflected
Rossby wave must have a short wavelength and hence the wavenumber is given
by

kr = − β

2σi
+

√
β2

4σ2
i

− (χ + l2i ), (9.26)

and kr > ki. The latter follows from (9.24); Ai = −Ar, such that the amplitude is
the same but the phase is shifted by π. The conclusion is that long Rossby waves
are reflected as short Rossby waves.

For long Rossby waves with l = 0 the dispersion relation in the limit k → 0
becomes (see 9.19)

σ = −βk

χ
. (9.27)

These waves satisfy the long-wave approximation

β
∂ψ

∂x
− χ

∂ψ

∂t
= 0. (9.28)

For short waves (k → ∞ in (9.19)) the dispersion relation is

σ =
−β

k
, (9.29)

and these waves satisfy the short -wave approximation

∂

∂t

∂2ψ

∂x2
+ β

∂ψ

∂x
= 0. (9.30)

We will use the approximate equations (9.28) and (9.30) to solve for the adjust-
ment problem in the next section.

9.3. Adjustment in a rectangular basin
Consider a rectangular basin as in Fig. 9.3 (with length L, width B, and aspect

ratio d = B/L) having a flat bottom (ηb = 0). The dimensionless wind stress T
is given by

T(x, y, t) = f(t)

⎛

⎝
− cos(πy/d)

0
0

⎞

⎠ , (9.31)

where f(t) has not yet been specified.
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Figure 9.3. Sketch of the geometry in which the adjustment is studied.

9.3.1. Possible responses
Suppose that the function f(t) has a characteristic time scale τp; note that this

time scale can be independent of any wave propagation in the basin. We therefore
rescale t → tL/(Uτp) and choose the velocity scale in (9.14) such that O(r1) =
O(β), or

U =
τ0

ρ1H1β0L
. (9.32)

With H1 = 103 m and L = 105 m, this gives a value of U = 10−1 ms−1, which
is of the order of the phase velocities of the first baroclinic Rossby wave. When
inertia is neglected, this choice of U leads to the equations

L

βUτp

∂

∂t
(∇2ψ1 + F1(ψ2 − ψ1)) +

∂ψ1

∂x
= ∇ · (T ∧ e3),

L

βUτp

∂

∂t
(∇2ψ2 − F2(ψ2 − ψ1)) +

∂ψ2

∂x
= −r2

β
∇2ψ2.

In case the bottom friction is negligible (r2 = 0) then, as for the free waves,
we can combine the two equations (9.33) above to get separate equations for the
barotropic and baroclinic mode (as in section 9.2). As the resulting equations are
uncoupled and have the same form, the adjustment problem can be formulated as

L

βUτp

∂

∂t
(∇2Ψ − ΛΨ) +

∂Ψ
∂x

= −υf(t) sin(
πy

d
), (9.34)

where Λ = F1 + F2 for the baroclinic mode and Λ = 0 for the barotropic mode.
Note that the amplitude υ is different for each of these cases. The problem is
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closed by specifying kinematic boundary conditions at the basin boundaries and
the initial conditions

t = 0 : Ψ = 0. (9.35)

In dimensional quantities (note that time, streamfunction and horizontal coor-
dinates were scaled with 1/(β0L), UL and L) the equation (9.35) becomes

∂

∂t∗
(∇2

∗ψ∗ − λ0ψ∗) + β0
∂ψ∗
∂x∗

=
1

ρ0H1
∇.(T∗ ∧ e3), (9.36)

where

λ0 =
f2
0

g′ (
1

H1
+

1
H2

) =
1

L2
D1

,

in the baroclinic response and λ0 = 0 in the barotropic case. Note that from
section 5.3, the adjustment problem for the constant density case satisfies also
an equation of the form (9.34) but then with Λ = F (and λ0 = f2

0 /(gD)). Of-
ten a linear damping (−ε0∇2

∗ψ∗) is added to the right hand side with a damping
coefficient ε0 (s−1).

The equation (9.34) provides insight into the response of the flow to different
frequencies in the wind forcing. Consider the baroclinic case with H2 � H1 and
hence F2 � F1. We can write

Λ = F1 = (
L

LD1
)2 (9.37a)

L

βUτp
=

1
β0Lτp

= τβ/τp (9.37b)

L

βUτp
Λ =

L

β0L2
D1τp

=
L

crτp
, (9.37c)

where cr = β0L
2
D is the magnitude of the Rossby phase speed. The factor L/cr

is hence a wave time scale which is called the adjustment time scale τc.
Ex. 9.3

With τp being the time scale of variation of the wind forcing, the following
cases can be distinguished

(i) High frequency forcing, i.e., τβ/τp � 1 and τc/τp � 1. In this case, fluctua-
tions in the wind will not generate Rossby waves and the response is local.

(ii) Low frequency forcing, i.e., τβ/τp � 1 and τc/τp � 1. In this case, the first
term in (9.34) can be neglected and the ocean is always in Sverdrup balance
with the changing wind stress.

(iii) On time scales τp on the order of τc or/and τβ Rossby waves are an important
component of the response.
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Note that the adjustment time scale depends on the latitude through LDi and β0.
At midlatitudes adjustment is relatively slow compared to more equatorial lati-
tudes.

9.3.2. The spin-up problem
For convenience we choose d = π and consider the spin-up to the stationary

solution for the case f(t) = H(t). We choose τp = τβ = 1/(β0L), υ = 1 and can
separate the equation (9.34) by

Ψn(x, y, t) = − sinny Φn(x, t), (9.38)

for certain n. Through this separation, the boundary conditions for Ψ at y = 0, 1
are satisfied and we write Φ = Φn. The equation for Φ becomes

Φxxt − Λ̃Φt + Φx = H(t), (9.39)

with Λ̃ = Λ + n2 and Φ = 0 for t = 0. Boundary conditions at the western and
eastern walls are kinematic and hence Φ = 0.

Ex. 9.4

We see that for t → ∞, the Sverdrup solution Φ(x) = x − 1 is reached. In
addition, the homogeneous solutions of (9.39) are exactly the Rossby waves with
dispersion relation (note that β is absorbed into the time scale)

σ =
−k

k2 + Λ̃
. (9.40)

If there were no zonal boundaries, then the solution would be ΦI(t) = −t/Λ̃.
This is also the initial response, because then gradients of Φ in x are still small.
However, Rossby waves will immediately be generated and these must eventually
take care of the zero mass flux at the zonal boundaries. Moreover, they must
collectively provide the Sverdrup flow in the limit t → ∞.

The total solution of the problem (9.39) can be determined using Laplace trans-
formation techniques but it turns out to be non transparent. Hence, we will present
a more qualitative analysis of the response by writing the solution as

Φ(x, t) = ΦI(t) + ΦL(x, t) + ΦS(x, t), (9.41)

where ΦI is the initial response, ΦL the response due to long Rossby waves and
ΦS the response due to short Rossby waves.

At the east coast long Rossby waves are generated and transport energy (cf.
section 9.2) westward. These waves satisfy the long-wave approximation (9.28),
i.e.,

∂Φ
∂x

L

− Λ̃
∂Φ
∂t

L

= 0. (9.42)

The solution of this equation is

ΦL(x, t) = G(x + Λ̃−1t), (9.43)



Adjustment 207

where G is an arbitrary function. As short Rossby waves will only play a role near
the western boundary (through reflection), the total solution outside the western
boundary can be well approximated by

Φ(x, t) = ΦI(t) + ΦL(x, t) = − t

Λ̃
+ G(x +

t

Λ̃
). (9.44)

With this solution, we can only satisfy the eastern boundary condition, Φ = 0 at
x = 1, for all t > 0. This gives

− t

Λ̃
+ G(1 +

t

Λ̃
) = 0, (9.45)

with G(η) = (η − 1)H(η − 1) as a solution. From (9.44) the solution follows as

t < Λ̃(1 − x) : Φ(x, t) = − t

Λ̃
, (9.46a)

t > Λ̃(1 − x) : Φ(x, t) = x − 1. (9.46b)

Plots of the time development of the solution for Λ̃ = 1 are shown in Fig. 9.4.
The time t∗ = τpΛ̃(1 − x) is exactly the time a long Rossby waves takes to

travel between the east coast and the location x. As according to (9.37) Λ̃ =
L/(crτp), the time needed to adjust to the Sverdrup flow at location x∗ is hence
approximately given by (L−x∗)/(β0L

2
D1). For example, for Rossby wave speeds

for the first baroclinic mode, about 5 cms−1, the adjustment time is in the order
of years. For the constant density case, it is (L− x∗)/(β0R

2
D) and in the order of

days.
To satisfy the boundary conditions at the western boundary, short Rossby waves

are needed. These satisfy the short-wave approximation (9.30), i.e.,

ΦS
xxt + ΦS

x = 0, (9.47)

with Φ = 0 at x = 0 and a matching condition with the flow outside the boundary
layer. We determine the solution through the Laplace transform technique; for
s > 0, define

φ(s, x) = L(Φ(x, t)) =
∫ ∞

0
Φ(x, t)e−st dt. (9.48)

It then follows from (9.47), with Φ(s, 0) = 0, that

φ(s, x) = α1(s)(e−x/s − 1), (9.49)

where α1(s) is still undetermined. When the long Rossby waves have not reached
the western boundary region, the matching condition becomes

lim
x→∞

φ(s, x) = L(
−t

Λ̃
) = − 1

Λ̃s2
⇒ α1(s) =

1
Λ̃s2

. (9.50)
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Figure 9.4. Time development of the solution Φ in (9.46) for Λ̃ = 1. (a) t =0, (b) t = 1/4 and (c)
t = 1.
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For the inverse Laplace transformation, we use

L−1(s−ne−a/s) = (
t

a
)(n−1)/2Jn−1(2

√
at), (9.51)

where Jn−1 is the Bessel function of the first kind of order n − 1.

�
Example 9.1: Bessel functions

The Bessel functions Jn(x) are defined by

Jn(x) =
∞∑

k=0

(−1)k

k!(n + k)!
(
x

2
)n+2k, (9.52)

and satisfy the differential equation

x2y′′ + xy′ + (x2 − n2)y = 0. (9.53)

The functions J0, J1 and J2 are plotted in Fig. 9.5. As can be seen, these func-

Figure 9.5. Bessel functions J0(x), J1(x) and J2(x) as a function of x.

tions oscillate for x → ∞. The asymptotic behavior for x → 0 and x → ∞
is

Jn(x) →
√

2
πx

cos(x − π

4
− nπ

2
) + O(

1
x

), x → ∞,

Jn(x) → 1
n!

(
x

2
)n, x → 0,

�
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For times t < Λ̃ the total solution is given by (n = 2)

Φ(x, t) =
1
Λ̃

(−t +

√
t

x
J1(2

√
xt)). (9.55)

In Fig. 9.6a, the initial development of the western boundary layer is plotted for a
value of Λ̃ such that the velocity of the long Rossby waves is relatively small and
the solution (9.55) is visible. Note that for the baroclinic mode, the solution Ψ̄ is
equal to the dimensionless deformation of the thermocline (Ψ̄ = ψ1 − ψ2 = ĥ).
The drawn line is the maximal distance, the short Rossby waves have travelled
from the western boundary.

(a) (b)

Figure 9.6. Adjustment for (a) Λ̃ = 600 and (b) Λ̃ = 20. The labels at the curves mark subse-
quent time steps (from Anderson and Gill (1975)).

Ex. 9.5

At this stage, there are three regimes in the ocean response: a western boundary
current described by (9.55), an interior flow where only zonal flow is accelerated
by the wind stress field (the solution ΦI ) and an eastern region where the westward
expanding Sverdrup balance develops. After a dimensionless time Λ̃ (the time
needed for Rossby waves to reach the western boundary, L/cr dimensionally),
the solution (9.55) is no longer valid and the western boundary layer has to match
to the Sverdrup solution. We then have

lim
x→∞

φ(s, x) = L(−1) = −1
s
⇒ α1(s) =

1
s
, (9.56)

and the total solution for t > Λ̃ becomes

Φ(x, t) = J0(2
√

xt) − 1 + x. (9.57)

The flow development for Λ̃ = 20 can be seen in Fig. 9.6b. Here the Rossby
waves propagate so fast that the (9.57) solution appears nearly instantaneously.
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Additional Material

B: It is useful at this point to read the original papers on the adjustment problem
(Anderson and Gill, 1975; Anderson and Killworth, 1977; Anderson et al.,
1979).

As can be seen from Fig. 9.5, both Bessel functions J0 and J1 oscillate and
J0(0) = 1, J1(0) = 0. Both boundary layer corrections therefore display large
oscillations; a measure of the thickness of the boundary layer (for t < Λ̃) is, for
example, the position of the first zero of J1. With increasing t this zero shifts to
smaller values of x and the boundary layer thickness decreases. However, this
thin boundary layer needs to compensate for the Sverdrup transport and hence the
boundary layer velocities must increase. The larger zonal gradients in the stream-
function can be clearly seen in Fig. 9.6. Eventually, a singularity will develop in
the boundary layer (the zero of J0 moves to x = 0 for t → ∞) and friction is
needed (lateral or bottom) to regularize the solution.
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Summary

In a two-layer quasi-geostrophic model, only the barotropic and first
(n = 1) baroclinic Rossby waves are represented.

At a western boundary, long wavelength Rossby waves reflect into
short wavelength Rossby waves.

The response of an ocean basin to a step function in wind stress con-
sists of an inertial response, a long wave response and a short wave
response. The constant density and baroclinic spin-up time scale to
the Sverdrup solution is determined by the propagation time scale
(L/(β0R

2
D) and L/(β0L

2
D), respectively) of the longest Rossby wave

in the basin. The western boundary layer flow is build up by the short
Rossby waves.

The adjustment time is proportional to f0 and the adjustment is thus
much faster in lower latitudes than at higher latitudes.
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9.4. Exercises on chapter 9

(9.1) Reduced gravity

Consider an initially motionless two-layer system with equilibrium thick-
nesses H1 and H2 is. The density of the layers in ρ1 and ρ2, where (ρ2−ρ1) �
ρ1. At t = 0, the surface is given an amplitude ε (positive upward) and as a con-
sequence, the amplitude of the thermocline is δ(positive downward).

a. Show that
δ = ε

ρ1

ρ2 − ρ1

Assume that a wave in the sea surface has an amplitude of 1 cm.

b. Determine for typical values of ρ2 = 1026 kg/m3 and ρ1 = 1020 kg/m3 the
amplitude of the thermocline.

(9.2) Rossby waves in a two-layer model

Small amplitude motions occur in an initially motionless two-layer system
where layer i has a density ρi and equilibrium thickness Hi, i = 1, 2. Con-
sider only waves with l = 0 and use ρ2 − ρ1 = 1 kgm−3 and H1 = 500 m,
H2 = 4500 m.

a. Calculate the dimensional phase speed Cx
∗ of the baroclinic and barotropic

Rossby waves with a wavelength λ∗ = 2πL/k of 100 km at a latitude 45◦N?

b. Sketch the velocity distributions as a function of depth for both types of
Rossby waves.

(9.3) Basin modes

Resonance phenomena can occur in an ocean basin that is forced by a time-
dependent wind stress through so-called basin modes. In this exercise, we
investigate the frequencies and patterns of these modes. Consider the unforced
problem (9.34) with τp = L/U , i.e.,

∂

∂t
(∇2Ψ − ΛΨ) + β

∂Ψ
∂x

= 0
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with Ψ = 0 at the boundaries (x = 0, 1; y = 0, d). We look for solutions of
the form

Ψ(x, y, t) = Φ̂(x, y) exp(−iσt)

a. Show that the equation for Φ(x, y) is given by

−iσ(∇2Φ̂ − ΛΦ̂) + β
∂Φ̂
∂x

= 0

With the transformation Φ̂(x, y) = Φ(x, y) exp(−iβx/(2σ)) this equation be-
comes the eigenvalue problem

∇2Φ + μ2Φ = 0

with

μ2 =
β2

4σ2
− Λ

and homogeneous boundary conditions.

b. Show that the eigenvalues σnm are given by

σ2
nm =

β2

4
1

n2π2 + m2π2/d2 + Λ

and the eigenfunctions through

ψnm(x, y, t) = Anm sin(nπx) sin(
mπy

d
)e−i(σnmt+ xβ

2σnm
)

where Anm is an arbitrary amplitude.

c. Sketch ψ11 for β = 102, d = 1, Λ = 0 and determine the dimensional
frequency σ∗

11.

d. Describe briefly what happens when the flow in the basin is forced by a
wind stress with a time dependence f(t) = cos σ11t.

(9.4) Sverdrup balance in a two-layer model

Consider a quasi-geostrophic two-layer model for the wind-driven ocean
circulation in a square basin of length L on the midlatitude β plane. Both
layers have the same equilibrium thickness and their density difference is
small compared to the mean density.
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a. Show that in the part of the basin where the Sverdrup balance holds, the
bottom layer is motionless.

b. If one can measure the slope of the thermocline with an accuracy of 10%,
show that one cannot measure the sea surface height with a better accuracy.

(9.5) Adjustment: a numerical simulation

To study the adjustment of a motionless liquid layer to the Sverdrup-Stommel
steady solution, consider the adjustment problem defined by

∂

∂t
(∇2ψ − Λψ) +

∂ψ

∂x
= −H(t) sin y − r∇2ψ

on the domain [0, 1] × [0, π], with the wind-stress field τx(y) = −H(t) cos y
and τy = 0. Here, H(t) is the Heaviside function and linear friction is added
(with coefficient r) for reasons which will become clear below. Kinematic
boundary conditions ψ = 0 hold on each lateral boundary. Furthermore, Λ =
0 for the barotropic case ψ = Ψ̃ and Λ = F1 + F2 for the baroclinic case
(ψ = Ψ̄).

The equation above has solutions of the form

ψ(x, y, t) = −Φ(x, t) sin y

and the equation for Φ becomes

Φxxt − (Λ + 1)Φt + Φx + r(Φxx − Φ) = H(t)

with boundary conditions Φ(0, t) = Φ(1, t) = 0 and initial condition
Φ(x, 0) = 0.

The aim of this exercise is to solve this equation numerically for given values
of the parameters r and Λ. Define the grid xi, i = 0, · · · , m, with x0 = 0
and xm = 1, such that Δx = 1/m. Use central discretization in space and an
implicit Crank-Nicholson in time, i.e.,

Φxx ≈ Φi+1 + Φi−1 − 2Φi

Δx2

Φx ≈ Φi+1 − Φi−1

2Δx

Φt ≈ Φn+1 − Φn

Δt

where Δt = tn+1 − tn is the time step.
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We can write the resulting equations as

CW Φn+1
i−1 + CCΦn+1

i + CEΦn+1
i+1 = g(Φn

i−1, Φ
n
i , Φn

i+1)

During each time step, we have to solve a system of equations Ax = b with a
tridiagional matrix A.

a. Determine the coefficients CW , CC , CE and the function g in the expression
above.

b. Write a program in your favorable language to solve the system of
equations.

c. Take r = 0.1 and determine how long we have to integrate for different
values of Λ. Take Λ = 1 and Λ = 100 and determine a suitable integration
time. What are optimal time steps in both cases?

d. Consider now the convergence of solutions with m en Δt for r = 0.1.
Choose the same two values of Λ as under b). Justify the use of specific m
and Δt in connection with the accuracy of the solutions.

e. Choose an optimal value of m and Δt for Λ = 0. Perform a set of simu-
lations with different r ∈ [0.001, 0.1] and describe the different phenomena
(wave propagation, boundary layers) you see in the solutions.

f. Do the same for Λ = 100 and provide an overview of the different adjust-
ment phenomena in the parameter plane (r, Λ). Give a physical explanation
for these phenomena.
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In chapter 6, we used the Sverdrup-Stommel-Munk theory to explain the
existence of a strong western boundary current, such as the Gulf Stream.
From observations, it is clear that the Gulf Stream is a strong meandering
current and that vortices, such as rings and eddies, are continuously be-
ing shed. An example is shown in Fig. 10.1, where a snapshot of the sea
surface temperature of the North Atlantic Ocean is plotted. The behavior
of these vortices is complex; they grow on the background flow and in-
teract with it and with each other. A typical length scale of these features
is 100 km, and the time scale of development is about 60-90 days. In
this chapter, we focus on the understanding of the physical mechanisms
of the instabilities of zonal ocean currents. The question is: under what
circumstances are small perturbations amplified by drawing energy from
the mean flow? In section 10.1, we consider the general problem in the
quasi-geostrophic continuously stratified model and in the following sec-
tions, both the mechanisms of barotropic (section 10.2) and baroclinic
(sections 10.3-10.5) instability are presented.

Figure 10.1. Multipass satellite image of the sea-surface temperature in the Gulf Stream region
in May 1996 (image from http://fermi.jhuapl.edu/avhrr/).

10.1. Quasi-geostrophic theory
The quasi-geostrophic continuously stratified model for flow in a midlatitude

ocean basin was formulated in section 8.1. The governing equations are (8.29)
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with boundary conditions (8.33- 8.34), i.e.,

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
)(∇2ψ +

∂

∂z
(
1
S

∂ψ

∂z
) + βy) = 0, (10.1a)

z = −1 : − 1
S

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
)
∂ψ

∂z
= u.∇ηb −

r

2
∇2ψ, (10.1b)

z = 0 : − 1
S

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
)
∂ψ

∂z
=

αr

2
∇ · (T ∧ e3), (10.1c)

u = −∂ψ

∂y
; v =

∂ψ

∂x
. (10.1d)

If we consider a zonal channel bounded by lateral walls at y±1 then the boundary
conditions (the horizontal mixing of momentum is neglected) are

y = ±1 : u · n = 0, (10.2)

where u = (u, v)T is the horizontal geostrophic velocity vector and n the outward
normal on each lateral wall.

Suppose there is a steady solution ψ̄(x, y, z) of the equations above. To inves-
tigate the stability of this solution, we look at small perturbations φ(x, y, z, t) on
the steady state. With

ψ(x, y, z, t) = ψ̄(x, y, z) + φ(x, y, z, t), (10.3)

the equations for φ become

(
∂

∂t
+ ū

∂

∂x
+ v̄

∂

∂y
)
[
∇2φ +

∂

∂z
(
1
S

∂φ

∂z
)
]

+

(−∂φ

∂y

∂

∂x
+

∂φ

∂x

∂

∂y
)
[
∇2ψ̄ +

∂

∂z
(
1
S

∂ψ̄

∂z
) + βy

]
+

(−∂φ

∂y

∂

∂x
+

∂φ

∂x

∂

∂y
)
[
∇2φ +

∂

∂z
(
1
S

∂φ

∂z
)
]

= 0. (10.4)

The boundary condition at z = −1 becomes

−(
∂

∂t
+ ū

∂

∂x
+ v̄

∂

∂y
)
∂φ

∂z
− (−∂φ

∂y

∂

∂x
+

∂φ

∂x

∂

∂y
)
∂ψ̄

∂z
−

(−∂φ

∂y

∂

∂x
+

∂φ

∂x

∂

∂y
)
∂φ

∂z
= S

(−∂φ
∂y

∂φ
∂x

)
· ∇ηb −

r

2
∇2φ, (10.5)

and at z = 0:

−(
∂

∂t
+ ū

∂

∂x
+ v̄

∂

∂y
)
∂φ

∂z
− (−∂φ

∂y

∂

∂x
+

∂φ

∂x

∂

∂y
)
∂ψ̄

∂z
−

− (−∂φ

∂y

∂

∂x
+

∂φ

∂x

∂

∂y
)
∂φ

∂z
= 0, (10.6)
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and the boundary conditions on the lateral walls are
(−∂φ

∂y
∂φ
∂x

)
· n = 0. (10.7)

With the notation

Π̄ = ∇2ψ̄ +
∂

∂z
(
1
S

∂ψ̄

∂z
) + βy, (10.8a)

q = ∇2φ +
∂

∂z
(
1
S

∂φ

∂z
), (10.8b)

we can write (10.4) as

∂q

∂t
+ ū

∂q

∂x
+ v̄

∂q

∂y
− ∂φ

∂y

∂Π̄
∂x

+
∂φ

∂x

∂Π̄
∂y

− ∂φ

∂y

∂q

∂x
+

∂φ

∂x

∂q

∂y
= 0. (10.9)

With the Jacobian

J (f, g) =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
, (10.10)

we can write it as

∂q

∂t
+ J (ψ̄, q) + J (φ, Π̄) + J (φ, q) = 0. (10.11)

In the sections below, we will consider specific simple basic state flows for which
the stability problem can be reduced to ordinary differential equations. In general,
one has to use numerical techniques to solve these problems.

Additional Material

B: For a general introduction into hydrodynamic stability theory, consult Drazin
and Reid (2004).

10.2. Barotropic instability
Consider a zonal flow for which ψ̄ = ψ̄(y), i.e. v̄ = 0 and U(y) = ū(y) =

−ψ̄′(y) in a zonal channel that is bounded by walls at y = ±1. We will restrict the
analysis to the most simple case of the model where bottom topography (ηb = 0)
and bottom friction (r → 0) are neglected.

The zonal flow ψ̄ is a solution of the unforced equations (10.1). Sufficient con-
ditions for instability can be determined by looking at the evolution of infinites-
imally small perturbations on the zonal flow. In that case, we can linearize the
equations (10.4) around this flow and hence the linear stability problem becomes

(
∂

∂t
− ψ̄′ ∂

∂x
)
[
∇2φ +

∂

∂z
(
1
S

∂φ

∂z
)
]

+ (ψ̄′′′ + β)
∂φ

∂x
= 0, (10.12)
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where the prime indicates differentiation to y. The boundary conditions are

z = −1, 0 : (
∂

∂t
− ψ̄′ ∂

∂x
)
∂φ

∂z
= 0, (10.13a)

y = −1, 1 :
∂φ

∂x
= 0. (10.13b)

This system of equations has solutions of the form

φ(x, y, z, t) = φ̂(y, z)eik(x−ct), (10.14)

where c = cr + ici is the complex growth factor. If ci > 0, then perturbations will
grow and the zonal flow will be unstable. The problem for φ̂(y, z) becomes

−(ψ̄′ + c)

[
∂2φ̂

∂y2
− k2φ̂ +

∂

∂z
(
1
S

∂φ̂

∂z
)

]
+ (ψ̄′′′ + β)φ̂ = 0, (10.15)

with boundary conditions

z = −1, 0 :
∂φ̂

∂z
= 0, (10.16a)

y = −1, 1 : φ̂ = 0. (10.16b)

If (10.18a) is satisfied then (10.13a) will certainly be satisfied; we will restrict
ourselves here to perturbations that satisfy (10.16a).

Just as with the structure of the stratified Rossby waves in chapter 7, there again
exist separable solutions

φ̂(y, z) = Φ(z)A(y), (10.17)

if Φ satisfies the equation

(S−1Φ′)′ = −χΦ, (10.18a)

Φ′(0) = Φ′(−1) = 0. (10.18b)

With this splitting, the eigenvalue problem (10.15) (with eigenvalue c) becomes

A′′ − (χ + k2)A − A
U ′′ − β

U − c
= 0 (10.19a)

A(−1) = A(1) = 0. (10.19b)

The growth of the barotropic (χ = 0) as well as of the baroclinic (χ > 0) modes
is described by a similar eigenvalue problem as in section 8.3.1.

If we multiply (10.19a) by A∗, the complex conjugate of A, we find

A∗A′′ − (χ + k2)|A|2− | A |2 U ′′ − β

U − c
= 0, (10.20)
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where | A | is the norm of the complex number A. Integration over the interval
[−1, 1] and use of the boundary conditions (10.19b), which also must be satisfied
by A∗, gives

∫ 1

−1

∣∣A′|2 − (λ + k2)|A|2
]

dy −
∫ 1

−1
|A|2 U ′′ − β

U − c
dy = 0. (10.21)

By multiplying the numerator and denominator of the integrand in the second
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Figure 10.2. Plot of the zonal velocity U(y) = a
2
(1 + cos πy) for a = 0.5, 1.0 and a = 2.0.

integral of (10.21) by U − (cr − ici), the integral can be written as

∫ 1

−1
| A |2 (U ′′ − β)(U − (cr − ici))

| U − c |2 dy. (10.22)

The equality (10.21) must hold for both real and imaginary part. The first integral
is a real number and for the second (10.22) gives

ci

∫ 1

−1
|A|2 U ′′ − β

| U − c |2 dy = 0. (10.23)
Ex. 10.1

For instability, the inequality ci > 0 must hold and hence a necessary condition
for instability is that the function U ′′−β must change sign on the interval [−1, 1].
If this does not occur, then ci = 0 must hold and the flow U(y) cannot be unstable.
For β > 0, this condition is called the Kuo criterium; for β = 0 it is called the
Rayleigh criterium. Be careful with this criterium, because it does not provide a
sufficient condition for instability; a flow which satisfies this condition can still
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be stable. Note that the dimensional form of the Kuo criterium is based on the
quantity U ′′

∗ − β0.

�
Example 10.1: Barotropic instability

As an example we consider U(y) = a
2 (1+cos πy) with a > 0 (Fig. 10.2) where

the parameter a is a measure of the horizontal shear in the flow. The zonal velocity
is maximal in the center of the channel and zero on the boundaries y = ±1. In
this case,

U ′′ − β = −1
2
π2a cos πy − β. (10.24)

If 2β/(π2a) > 1 then U ′′ − β does not change sign and hence the zonal flow
is stable. We can take b = β/(aπ2) as a control parameter for the stability
problem. Growth factors kci as a function of k and b are plotted in Fig. 10.3 for
the barotropic mode (λ = 0); the curve for which ci = 0 is called the neutral
curve. The barotropic mode is the most unstable mode; i.e. all modes with λ > 0
have larger growth factors than the barotropic mode. There is a strong asymmetry

Figure 10.3. Contour plot (from Kuo (1951)) of the growth factor kci of the problem (10.19) for
the zonal velocity field U(y) = a

2
(1 + cos πy), where b = β/(aπ2), k the wavenumber and χ = 0

(barotropic mode). .

in the results as an eastward jet is more stable (b > 0) than a westward jet. There
is also a clear short wave boundary in the waves with wavenumbers k >

√
3/2

will damp exponentially. For b > 0.5, the zonal flow is stable consistent with the
Kuo criterium. The spatial scale of the fastest growing perturbation is determined
by km = 0.5 for b ∼= −0.2.
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�

To describe the mechanism of barotropic instability, we again consider the mo-
tion of three water columns on the β-plane (Fig. 10.4) similar to the description
used of the propagation of the Rossby wave in section 7.3. Assume that column
B initially moves northward then, through conservation of potential vorticity, it
acquires a negative rotation. For an eastward flow, the horizontal shear induces a
positive rotation (Fig. 10.4a) that will counteract the rotation of B. For a westward
flow, the horizontal shear amplifies the negative rotation of B (Fig. 10.4b), which
explains the asymmetry of the growth of perturbations. The growth of the per-
turbation itself is identical to that of plane shear instabilities where the Reynolds’
stress induces the energy transfer between the mean state and the perturbations.

(a)

(b)

Figure 10.4. Sketch to understand the mechanism of barotropic instability for (a) an eastward
flow and (b) a westward flow.

10.3. The Eady model
One of the simple situations in which baroclinic instability occurs is the flow

in a zonal channel with lateral walls at y = ± 1. Bottom friction is neglected,
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(r = 0), there is no bottom topography (ηb = 0), S is constant and we put β = 0
(f -plane approximation). Consider the steady state ψ̄(y, z) = − y(z + 1), such
that the velocity field is given by U(z) = ū(z) = z + 1, V = v̄ = 0. Hence there
is only vertical shear in the basic flow and from the geostrophic and hydrostatic
balances

∂ψ

∂x
= v ; − ∂ψ

∂y
= u ;

∂ψ

∂z
= −ρ, (10.25)

the thermal wind balance is (section 8.3)

∂u

∂z
=

∂ρ

∂y
;

∂v

∂z
= −∂ρ

∂x
, (10.26)

The density field of the zonal flow is hence given by

ρ̄(y, z) = y. (10.27)

The equations which describe the evolution of small perturbations on this steady
flow are (with q = ∇2φ + S−1φzz)

∂q

∂t
+ (z + 1)

∂q

∂x
= 0, (10.28a)

z = 0 : −(
∂

∂t
+

∂

∂x
)
∂φ

∂z
+

∂φ

∂x
= 0, (10.28b)

z = −1 : − ∂

∂t

∂φ

∂z
+

∂φ

∂x
= 0, (10.28c)

y = ±1 :
∂φ

∂x
= 0. (10.28d)

These contain solutions

φ(x, y, z, t) = Φ(y, z)eik(x−ct), (10.29)

and substitution gives

(z + 1 − c)(
1
S

∂2Φ
∂z2

+
∂2Φ
∂y2

− k2Φ) = 0, (10.30a)

z = −1 : c
∂Φ
∂z

+ Φ = 0, (10.30b)

z = 0 : (1 − c)
∂Φ
∂z

− Φ = 0, (10.30c)

y = ±1 : Φ = 0. (10.30d)

For z + 1 − c �= 0 we find solutions of (10.30a) of the form

Φ(y, z) = A(z) cos(n +
1
2
)πy, (10.31)
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and the eigenvalue problem for the eigenvalue c becomes

A′′ − μ2A = 0, (10.32a)

(1 − c)A′(0) − A(0) = 0, (10.32b)

cA′(−1) + A(−1) = 0, (10.32c)

with μ2 = (k2 + [(n + 1
2)π]2)S. The solution of (10.32a) is

A(z) = C1e
μz + C2e

−μz. (10.33)

Substitution of this solution into the homogeneous equations (10.32b-c) and set-
ting the coefficient determinant to zero provides the eigenvalues c. We find

c =
1
2
± 1

μ

[
(
μ

2
− 1

tanh μ
2

)(
μ

2
− tanh

μ

2
)
]1/2

. (10.34)

In Fig. 10.5, the three functions x, tanh(x) and 1/ tanh(x) are plotted. We
see that x − tanh(x) > 0 for all x and that for x > x0

∼= 1.2 it follows that
x > 1/ tanh(x). If μ > μc = 2x0

∼= 2.4, then both values of c ∈ R and hence
ci = 0. These are neutral waves that will stabilize if friction is added. For μ < μc,

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3

x

f(x)
1/tanh(x)

tanh(x)

x

Figure 10.5. Plot of the functions 1/tanh(x), tanh(x) and x.
Ex. 10.2

the values of c are complex conjugated and there is at least one perturbation for
which ci > 0 with growth factor

kci =
k

μ

[
(−μ

2
+

1
tanh μ

2

)(
μ

2
− tanh

μ

2
).
]1/2

(10.35)
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Figure 10.6. (a) Plot of the positive growth factor ci over the interval μ ∈ [0, μc] for the n = 0
mode. For this case, the complex growth factors are given by c = 1/2 ± ici. (b) The phase speed
cr − 1/2 as a function of μ over the interval μ ∈ [μc,∞], where both branches are plotted; for
these branches of eigenvalues the growth factor ci = 0.

The eigenvalues c for the n = 0 mode (the fastest growing mode) are plotted as a
function of μ in Fig. 10.6.

Ex. 10.3

The growth factor kci for the n = 0 mode is plotted versus μ in Fig. 10.7
for four values of S. Dimensional growth factors k∗ci∗ can be obtained from
k∗ci∗ = kci/τa, where τa is the advective time scale. The largest growth factor at
S = 0.25 appears at km = 3.128 and hence the dimensional wavelength of this
fastest growing mode is given by (note S = (LD/L)2)

λ∗ =
2π

km
L =

4π

km
LD ≈ 4LD. (10.36)

For the ocean, a typical value of LD = 100 km which corresponds to a quarter
Ex. 10.4

wavelength according to (10.36). This is in qualitative agreement with the scale
of the observed baroclinic eddies in western boundary currents such as the Gulf
Stream. Stratification is essential for this type of instability, because μ is propor-
tional to S. The physical mechanism of baroclinic instability must therefore be
different from that of barotropic instability.

10.4. Mechanism of baroclinic instability
The instability depends crucially on the fact that isopycnals of the steady flow

do not coincide with isobars. The dimensional density of the zonal flow is given
by

ρ∗ = ρb∗(1 + εF ρ̄), (10.37)
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Figure 10.7. Plot of the growth factor kci as a function of the wavenumber k for four values of
the Burger number S.

where ρb is the density distribution associated with the background stratification
and ρ̄ is the dimensionless dynamically induced density distribution.

According to the thermal wind balance for a zonal flow that only depends on z,
i.e. U = U(z), V = 0, the density ρ̄ only depends on y (cf. (10.27), i.e.,

∂ū

∂z
=

∂ρ̄

∂y
⇒ ρ̄ linear in y. (10.38)

If we assume that S is constant (as in the Eady model) then from the definition of
S = N2D2/(f2

0 L2) and it follows that ρb is approximately linear in z. Hence, for
this particular zonal flow, the density field can be approximated by

ρ∗ = ρ0 − δz∗ + γy∗, (10.39)

where ρ0 is a reference density, δ = ∂ρ∗/∂z∗ and γ = ∂ρ∗/∂y∗.
For a zonal flow, the streamlines (and isobars) at y∗ = 0 are given by the lines

z∗ = C1 (constant) whereas lines of constant density in the y∗−z∗ plane are given
by

z∗ =
γ

δ
y∗ + C2, (10.40)

where C2 is a constant. The isopycnals hence make an angle α (with tan α =
γ/δ) with the horizontal plane (Fig. 10.8).

Ex. 10.5

Consider a fluid element with volume V that moves adiabatically, and without
salinity change, from A to B along a vector P due to a particular perturbation
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Figure 10.8. Sketch to help explain the mechanism of baroclinic instability.

(Fig. 10.8). The density of the fluid element is unchanged but the density of the
surrounding liquid at B is equal to

ρ∗B = ρ∗A +
∂ρ∗
∂y∗

(y∗B − y∗A) +
∂ρ∗
∂z∗

(z∗B − z∗A), (10.41)

where all derivatives are taken at point A. The volume force, and hence the accel-
eration on the fluid element, due to the density difference is

f∗ = g(ρ∗A − ρ∗B) = −g(
∂ρ∗
∂y∗

η∗ +
∂ρ∗
∂z∗

ζ∗), (10.42)

with ζ∗ = (z∗B − z∗A) and η∗ = (y∗B − y∗A). The acceleration a∗ into the
direction of P is

a∗ =
f∗ · P
ρA∗

. (10.43)

From (10.42- 10.43) it follows (the subscript A is now omitted)

a∗ = −g · P
ρ∗

∂ρ∗
∂z∗

ζ∗(
∂ρ∗
∂y∗
∂ρ∗
∂z∗

η∗
ζ∗

+ 1) = −g · P
ρ∗

∂ρ∗
∂z∗

ζ∗(1 − γ

δ

η∗
ζ∗

). (10.44)

Because g · P < 0 and ∂ρ∗/∂z∗ < 0 it follows that the acceleration in the direc-
tion of P is positive when the slope of the trajectory (tan φ) is smaller than the
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slope of the isopycnals (tan α), i.e., tan φ/ tan α < 1. In this case, the original
perturbation is amplified and lighter fluid from location A will move upwards due
to buoyancy. This is characteristic of baroclinic instability: in this way, the po-
tential energy associated with the basic state density field is transferred to kinetic
energy of the perturbations.

Additional Material

B: Barotropic and baroclinic instability theory are discussed in many textbooks,
such as chapter 7 and 16 of Cushman-Roisin (1994) and section 5.2 of
Mc Williams (2006).

D: In chapter 6 of Vallis (2006) the energetics of the instability mechanisms are
discussed. A comprehensive treatment can be found in chapter 7 of Pedlosky
(1987), where also aspects of nonlinear development of the perturbations are
presented.

10.5. The Phillips model
In the Eady model of the previous section only the f -plane case was considered

as β = 0 was assumed. To study the effect of the background planetary vorticity
gradient we consider the two-layer model as derived in chapter 9. To simplify the
analysis, we will assume that the flow is bounded is confined to a zonal channel.
The unforced equations (9.14) of the model are then given by

D1

dt
(∇2ψ1 + βy + F1(ψ2 − ψ1)) = 0, (10.45a)

D2

dt
(∇2ψ2 + βy − F2(ψ2 − ψ1)) = 0, (10.45b)

where the meaning of the parameters is explained in section 9.1. With the walls of
the zonal channel at y = ±1, the boundary condition is again that the meridional
velocity has to be zero.

Again, looking at perturbations (for both layers n = 1, 2) on the steady basic
zonal flow (ψ̄1(y), ψ̄2(y)), i.e.

ψn(x, y, t) = ψ̄n(y) + φn(x, y, t), (10.46)

we obtain equations for the evolution of these perturbations

(
∂

∂t
− ψ̄′ ∂

∂x
)qn +

∂φn

∂x

∂Π̄n

∂y
+

∂φn

∂x

∂qn

∂y
− ∂φn

∂y

∂qn

∂x
= 0, (10.47)
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where

qn = ∇2φn − Fn(−1)n(φ2 − φ1), (10.48a)

Π̄n(y) = βy + ψ̄′′(y) − Fn(−1)n(ψ̄′
2(y) − ψ̄′

1(y)), (10.48b)

with boundary conditions

y = ±1 :
∂φn

∂x
= 0. (10.49)

We consider the special case that

ψ̄n(y) = −Uny. (10.50)

Here, the Un are the constant zonal velocities in both layers and this flow is a
solution of (10.45) and satisfies the boundary conditions (Fig. 10.9).
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Figure 10.9. Sketch of the steady flow and perturbations in the Phillips model.

We search for separable solutions of (10.47) of the form

φn(x, y, t) = Φn(y)eik(x−ct). (10.51)

This gives two coupled equations for the Φn as

(U1 − c)(Φ′′
1 − k2Φ1 − F1(Φ1 − Φ2))

+ Φ1(β + F1(U1 − U2)) = 0, (10.52a)

(U2 − c)(Φ′′
2 − k2Φ2 − F2(Φ2 − Φ1))

+ Φ2(β + F2(U2 − U1)) = 0, (10.52b)

with
Φ1(−1) = Φ1(1) = Φ2(−1) = Φ2(1) = 0. (10.53)
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The eigenfunctions are

Φn(y) = An cos ljy, lj = (j +
1
2
)π, (10.54)

and substitution of these solutions into (10.52) leads to a set of homogeneous
equations for the An. Setting the coefficient determinant to zero provides the
eigenvalues c as

c = U2 +
UsK

2(K2 + 2F2) − β(2K2 + F1 + F2)
2K2(K2 + F1 + F2)

±

[β2(F1 + F2)2 + 2βUsK
4(F1 − F2) − K4U2

s (4F1F2 − K4)]
1
2

K2(K2 + F1 + F2)
, (10.55)

with K2 = k2 + l2j . In the case U1 = U2 = U , we find two real eigenvalues

c1 = U − β

K2
, (10.56a)

c2 = U − β

K2 + F1 + F2
, (10.56b)

and, apart from an additive constant, we find the phase speeds of the Rossby waves
of the first baroclinic mode (c2) and the barotropic mode (c1) (cf. section 9.2).
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Figure 10.10. (a) Plot of the critical value of Usc from (10.62). Note that with y = UscF/β and
x = K2/F , here the function y = 2/(x

√
4 − x2) is plotted. (b) The growth factor ci from (10.61)

for Us = 2β/F ; with y = ci/β and x = K2/F here the function y =
√

x2(4 − x2) − 1/(x2+2)
is plotted.
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In the case β = 0, the eigenvalues become

c = U2 +
UsK

2(K2 + 2F2)
2K2(K2 + F2 + F1)

± [U2
s (K4 − 4F1F2)]

1
2

(K2 + F2 + F1)
, (10.57)

and hence there is instability (ci > 0) when

K2 = k2 + (j +
1
2
)2π2 < 2(F1F2)1/2. (10.58)

If (j + 1
2)2π2 < 2(F1F2)1/2, then there is an interval of wavenumbers [0, k0] for

which the basic flow is unstable. For a given F1 and F2 the largest wavenumber
k0m (for j = 0) perturbation that can grow is given by

k2
0m = 2(F1F2)1/2 − π2

4
. (10.59)

This condition is an approximation (i.e., in the two-layer model) of the condition
μ < μc in the Eady model. Wavenumbers larger than (4F1F2)1/4 and hence
perturbations with wavelength λ∗ with

λ∗ >
2πL

k0m
= 2πL(4F1F2)−1/4, (10.60)

will be damped.
In the case where F1 = F2 = F , the eigenvalues are given by

c =
1
2
(U1 +U2)−

β(K2 + F )
K2(K2 + 2F )

± [4β2F 2 − K4U2
s (4F 2 − K4)]1/2

2K2(K2 + 2F )
, (10.61)

and hence if K2 > 2F , then the basic state is stable. For K2 < 2F , the flow only
becomes unstable if Us is large enough, i.e.

U2
s > U2

sc =
4β2F 2

K4(4F 2 − K4)
. (10.62)

This critical value of the shear stress depends on β but is independent of the sign
of Us. The β-effect is hence stabilizing in the baroclinic instability mechanism.
In Fig. 10.10a, Usc > 0 is plotted as a function of K. The minimum of the curve
(∂Us/∂K = 0) is given by Usm = β/F. For Us > Usm, there exists an interval of
perturbations (characterized by K) that will grow exponentially. For Us = 2Usm,
the growth factors ci are plotted in Fig. 10.10b.
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Summary

Necessary conditions for instability of a zonal flow can be determined
through a linear stability analysis. If the flow is unstable, then there
will be an interval of wavenumbers that will grow exponentially. After
some time, the amplitudes of the perturbations become so large that
they will influence the flow and nonlinear interactions of the different
modes can no longer be neglected. Only a nonlinear theory can then
provide an answer to how the perturbations develop and how they will
modify the basic state.

A necessary condition for barotropic instability of a zonal flow with
velocity U∗(y∗) is that there is sign change in the quantity U ′′

∗ − β0.
Note that this is not a sufficient condition: when U ′′

∗ −β0 changes sign,
the flow may still be stable.

The barotropic instability mechanism can be considered as an ampli-
fication of Rossby waves through the background horizontal shear.

Whenever there is vertical shear in a rotating stratified flow, baroclinic
instability will occur and perturbations over a band of wavenumbers
are amplified. During the instability process, potential energy from
the background density field is converted into kinetic energy of the
disturbances.

The β-effect is a stabilizing effect in baroclinic instability as it modi-
fies the potential vorticity of the background state.
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10.6. Exercises on chapter 10

(10.1) Barotropic instability

As we have seen in section 10.2 a necessary, but not sufficient, condition
for barotropic instability of zonal flows is the Kuo criterium. This criterium
implies that there can be no growth of perturbations on a background flow
U = U(y) if U ′′ − β does not change sign with the flow domain. Consider
now the dimensionless zonal flow

U(y) = Ū(3y − 2y3)

on the domain −1 ≤ y ≤ 1 on a β plane, where Ū is a constant amplitude.

a. Show that this flow is stable when |Ū | is smaller than β/12.

b. Is this flow unstable on an f -plane?

(10.2) Baroclinic instability

Consider a dimensionless background flow with horizontal velocity field
u = u(z) = a(z + 1), v = 0, with a > 0.

a. Determine the density field that is compatible with this velocity field; use
quasi-geostrophic theory.

b. Calculate the angle between the isopycnals and the horizontal when it is
assumed that the Burger number is constant.

(10.3) Eddy scales

A typical value of the buoyancy frequency N in the Gulf Stream region is
N = 10−3 s−1.

a. Determine the wavelength of the perturbation with the largest growth factor
in the Eady model for the Gulf Stream.

b. Why do we see (in general) eddies with a larger diameter?
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(10.4) Barotropic and baroclinic instability

Consider a zonal channel with y ∈ [−1, 1] and a background stratification
ρb = ρb(z). Assess the stability (and the type of instability mechanism
responsible) of the following (dimensionless) flows:

a. U(y) = 6 sinπy, V = W = 0.

b. ψ(y, z) = −y4(z + 1).

c.

U =

⎧
⎨

⎩

− Ū
2 : −1 < y < −1

2
Ūy : −1

2 < y < 1
2

Ū
2 : 1

2 < y < 1

where Ū is constant.

(10.5) Baroclinic instability in the Eady model

The relation between the condition of the motion of fluid particles with respect
to isopycnals and the instability condition in the Eady model (μ < μc) is not
immediately transparent.

a. Show that
∂ρ∗
∂y∗
∂ρ∗
∂z∗

= −Dε

SL

∂ρ̄

∂y
+ O(

D

L
εF )

b. Derive for this case that the acceleration a∗ is

a∗ = −g.P
ζ∗
ρ∗

∂ρ∗
∂z∗

(1 − Dε

SL

∂ρ̄

∂y

η∗
ζ∗

)

c. Subsequently show that η∗ and ζ∗ are related to the perturbation velocities
through

η∗
ζ∗

=
ṽ∗
w̃∗

=
L

Dε

ṽ0

w̃1

where ṽ0 and w̃1 are the dimensionless velocities of the perturbations; these
are determined from the eigensolutions with positive growth factor.
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d. Show that the background flow is unstable when

∂ρ̄

∂y
> S tan φ

where S is the Burger number.

e. Explain now why there is instability only when μ < μc, where μ2 =
(k2 + [(n + 1/2)π]2)S (section 10.3).
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The tropical zone of the ocean basins has a special place within dynamical
oceanography. Through the existence of the trade winds, there is a large
transfer of momentum from the atmosphere to the ocean. In section 11.1
a few characteristics of the velocity, temperature and salinity fields are
presented together with the main issues which motivate this chapter. The
constant density and reduced gravity models on the equatorial β-plane are
formulated in section 11.2. With these models the physics of the Equa-
torial Counter Current is explained in section 11.3 and the zonal slope in
the equatorial thermocline in section 11.6. Equatorial waves are described
in section 11.4 and this material is needed in section 11.5 to describe the
wind-driven ocean circulation in an equatorial basin.

11.1. Characteristics
The annual mean wind stress over the Tropical Pacific is shown in Fig. 11.1.

Clearly, the trade winds are mainly zonal and directed from east to west. The
maximum amplitude of the zonal wind stress is about 0.1 Pa (note: 1 dyn/cm2 =
0.1 Pa). At the equator, there is a small component of the meridional wind stress
with an amplitude of about 0.025 Pa. The structure of the winds is not symmetric
with respect to the equator since the convergence of the South Pacific trade winds
and North Pacific trade winds is located slightly north of the equator. This is
associated with the fact that the Intertropical Convergence Zone (ITCZ) is, on
average, located north of the equator.

As we saw in Fig. 5.13, there is a strong upwelling along the equator with a
maximum amplitude of about 2 m/day. The existence of this upwelling is directly
related to the Ekman transport associated with the trade winds. This transport is
90◦ to the right of the winds (and hence northward) in the northern hemisphere
and 90◦ to the left of the wind (and hence southward) in the southern hemisphere.
The resulting horizontal divergence of the mass transport has to be compensated
and hence upwelling results.

The equatorial surface flows have a rather complex structure as is illustrated
by the circulation by the snapshots of surface speed in the Pacific from the a high
resolution ocean (the NLOM) model (Fig. 11.2). Equatorial currents are highly
variable and intense in each of the three ocean basins with surface speeds up to
1 ms−1. In the Pacific, the westward South Equatorial Current has a maximum
north of the equator, which seems related to the asymmetry in the wind stress
(Fig. 11.1), while the North Equatorial Current has a maximum just north of 10◦N.

A meridional section of the zonal geostrophic velocity at 155◦W in the Pacific
(Fig. 11.3) shows the North and South Equatorial Current as strong westward
flows. The eastward Equatorial Counter Current is situated between these two
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(a)

(b)

Figure 11.1. Annual mean (a) zonal and (b) meridional wind stress over the Tropical Oceans
from Trenberth et al. (1989) in units of dyn/cm2 (1 dyn/cm2 = 0.1 Pa).

currents with maximum positive zonal velocities of 40 cm s−1 at about 5◦N. At
about 100 m depth between the latitudes 2◦N and 2◦S, there is a strong eastward
current, the Equatorial Under Current, with maximum velocities of about 1 ms−1.

Ex. 11.1

The physics of the Equatorial Counter Current is the first motivating problem of
this chapter.

The annual mean sea surface temperature (SST) in the Pacific (Fig. 11.4) indi-
cates that there is a strong asymmetry between the relatively warm western part
of the basin (the so-called Warm Pool) and the cooler eastern basin (the so-called
Cold Tongue). The Cold Tongue has a mean temperature of about 24◦C while the
Warm Pool temperature is about 29◦C giving a zonal temperature difference over
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Figure 11.2. Snapshot of the surface speed from a high resolution ocean model (the NLOM, see
http://www7320.nrlssc.navy.mil/global nlom32/skill.html) in the equatorial Pacific.

Figure 11.3. Meridional cross section of the zonal geostrophic velocity (in cm s−1) at 155◦W
between Hawaii and Tahiti (from Wyrtki and Koblinksky (1984)).

the basin of about 5◦C . There is also a north-south asymmetry about the equator,
with more warm water situated north of the equator.

Physical processes up to a few hundred meters depth in the ocean play an im-
portant role in the Pacific climate system. During the Tropical Ocean Global At-
mosphere (TOGA) program (1985-1995), a whole array of measurement devices
has been set-up in the Tropical Pacific (McPhaden and coauthors, 1998). Hence,
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Figure 11.4. Annual mean SST in the Tropical Oceans (Levitus and Boyer, 1994).

only over the last decade, the temperature at these depths have been measured rou-
tinely through the TAO-buoy network (see http://www.pmel.noaa.gov/toga-tao).
In Fig. 11.5, a longitude-depth section of the equatorial temperature (from 2◦S to
2◦N) is shown for November 1996; this situation is close to annual-mean condi-
tions for the Tropical Pacific. At each longitude, there is a strong vertical gradient

Figure 11.5. Depth-longitude section of the near-equatorial Pacific temperature in the monthly
averaged over November 1996. The crosses in the figure indicate the measurement positions of the
TAO-buoys (from http://www.pmel.noaa.gov/toga-tao).

in the temperature distribution; this transition region is the equatorial thermocline.
The depth of the 20◦C isotherm is a reasonable measure of the location of the ther-
mocline. This depth changes from about 200 m at the western part of the basin to
about 50 m at the eastern boundary. Hence, in the annual-mean state, the colder
water is much closer to the surface in the east than in the west. This slope in the
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equatorial thermocline is the second motivating problem of the material in this
chapter.

Temperature and salinity are plotted in Fig. 11.6 along the same meridional
section in the Pacific as in Fig. 11.3 (at 155◦W). The north-south structure of the
20◦ isotherm indicates a shallowing of the thermocline near the equator. Slightly
north of the equator there is a region where the thermocline depth has a large
meridional gradient. The salinity distribution is fairly north-south asymmetric
with slightly higher salinities south of the equator. The Equatorial Under Current
is contained between the 15◦C and 25◦C isotherms and appears associated with
large meridional salinity gradients.

Additional Material

B: An elementary introduction on equatorial currents (with nice illustrations) is
given in chapter 5 of OU-staff (1989).

D: An extensive description of the tropical ocean circulation is given in chapter
4.3 (Godfrey et al.) of WOCE (2001) and in section 6.1 of Pedlosky (1996).

11.2. Equatorial ocean models
From the description of the phenomena in the previous section, it appears that

the characteristic zonal flow scale is the basin length, but the meridional scale is
much smaller. Furthermore, the vertical scale is only a few hundred meters. In
fact, most phenomena of interest are present only in a relatively small zone around
the equator. This motivates the use of the equatorial β-plane models; again, the
constant density case is considered first and then later extended to a layer-type
model.

11.2.1. Constant density equatorial β-plane model
For the case of constant density ρ, the starting equations are the dimensional

equations in chapter 4. The only thing to change for the equatorial case is the
value of the Coriolis parameter at the central latitude, which is the equator, hence
f0 = 0. In this way, the dimensional equations become

Du∗
dt∗

− β0y∗v∗ = −1
ρ

∂p∗
∂x∗

+

+AH

[
∂2u∗
∂x2

∗
+

∂2u∗
∂y2

∗

]
+ AV

∂2u∗
∂z2

∗
, (11.1a)

Dv∗
dt∗

+ β0y∗u∗ = −1
ρ

∂p∗
∂y∗

+
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(a)

(b)

Figure 11.6. Temperature in C◦ (a) and salinity in psu (b) along a meridional section at 155◦W
in the Pacific (from Wyrtki and Koblinksky (1984)).

+AH

[
∂2v∗
∂x2

∗
+

∂2v∗
∂y2

∗

]
+ AV

∂2v∗
∂z2

∗
, (11.1b)

∂p∗
∂z∗

= −ρg, (11.1c)

∂w∗
∂z∗

+
∂v∗
∂y∗

+
∂u∗
∂x∗

= 0, (11.1d)

with
D

dt∗
=

∂

∂t∗
+ u∗

∂

∂x∗
+ v∗

∂

∂y∗
+ w∗

∂

∂z∗
.

The dimensional boundary conditions at the ocean-atmosphere interface, de-
scribed by z∗ = η∗, are of the form

p∗ = pa∗, (11.2a)

ρAV
∂u∗
∂z∗

= τx
∗ , (11.2b)
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ρAV
∂v∗
∂z∗

= τy
∗ , (11.2c)

D

dt∗
(z∗ − η∗) = 0. (11.2d)

In these equations, u∗ and v∗ are the horizontal velocities, w∗ is the vertical
velocity and p∗ is the pressure. The quantities g, AH , and AV are the acceleration
due to gravity and the horizontal and vertical mixing coefficients of momentum.
The quantity pa∗ is the background atmospheric sea level pressure and (τx

∗ , τy
∗ ) is

the wind-stress forcing. Other boundary conditions for the flow, for example at
the continental boundaries, will be specified later.

11.2.2. The reduced gravity model
A slight extension of the previous model is the flow in a two-layer ocean in

which the bottom layer is assumed to be motionless (Fig. 11.7). In this case,
the equations (11.1- 11.2) hold for the top layer (with density ρ and equilibrium
depth H) and also for the second layer (with slightly larger density ρ + Δρ).
The horizontal pressure gradient is zero in the second layer and hence only the
hydrostatic pressure equation applies, i.e.

∂p2∗
∂z∗

= −(ρ + Δρ)g. (11.3)

Let the interface between the layers be prescribed through z∗ = −H + ζ∗, as seen
in Fig. 11.7, then at this interface the continuity of pressure and the kinematic
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Figure 11.7. Sketch of the reduced gravity ocean model. The upper active layer has a density
ρ and equilibrium depth H . The bottom layer is infinitely deep, has a density ρ + Δρ and is
motionless.

condition become

p1∗ = p2∗, (11.4a)
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D

dt∗
(z∗ + H − ζ∗) = 0, (11.4b)

where the material derivative can be taken in both layers, since the vertical ve-
locity is continuous. The equatorial reduced gravity ocean model is obtained by
integrating over the upper layer, with total thickness h∗ = η∗ + H − ζ∗. The
equations become

∂u∗
∂t∗

+ u∗
∂u∗
∂x∗

+ v∗
∂u∗
∂y∗

− β0y∗v∗ =

= −g′
∂h∗
∂x∗

+
τx
∗

h∗ρ
+ AH

[
∂2u∗
∂x2

∗
+

∂2u∗
∂y2

∗

]
, (11.5a)

∂v∗
∂t∗

+ u∗
∂v∗
∂x∗

+ v∗
∂v∗
∂y∗

+ β0y∗u∗ =

= −g′
∂h∗
∂y∗

+
τy
∗

h∗ρ
+ AH

[
∂2v∗
∂x2

∗
+

∂2v∗
∂y2

∗

]
, (11.5b)

∂h∗
∂t

+
∂(u∗h∗)

∂x∗
+

∂(v∗h∗)
∂y∗

= 0. (11.5c)

where g′ = gΔρ/ρ is the reduced gravity. This reduced gravity shallow water
type model is a first cornerstone of the theory explaining the equatorial current
structure.

11.3. The Equatorial Counter Current
The first problem we address is whether we can explain the Equatorial Counter

Current (ECC) with the homogeneous (constant density) theory. After introduc-
tion of a typical horizontal velocity scale U , a horizontal length scale L and a
vertical length scale D, we scale the other variables as

t∗ =
t

β0L
; u∗ = Uu ; v∗ = Uv ; w∗ = U

D

L
w ; p∗ = ρβ0L

2Up. (11.6)

With this scaling, the equations (11.1) become

β−1 Du

dt
− yv = −∂p

∂x
+

ĒV

2
∂2u

∂z2
, (11.7a)

β−1 Dv

dt
+ yu = −∂p

∂y
+

ĒV

2
∂2v

∂z2
, (11.7b)

0 = −∂p

∂z
, (11.7c)

∂w

∂z
+

∂v

∂y
+

∂u

∂x
= 0, (11.7d)
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where ĒV = 2AV /(β0L
3) = 2EV , where EV is the equatorial vertical Ekman

number; horizontal mixing is neglected.
The ECC is located north of the equator and so we consider a zone | y |>

y0 > 0 away from the equator. We take 1/β as our expansion parameter and
assume that EV is at most O(β−1). The O(1) system of equations in this zone
then becomes (see section 5.2 for details on the asymptotic techniques),

yv0 =
∂p0

∂x
, (11.8a)

yu0 = −∂p0

∂y
, (11.8b)

∂p0

∂z
= 0, (11.8c)

∂u0

∂x
+

∂v0

∂y
+

∂w0

∂z
= 0, (11.8d)

and hence u0 and v0 are z-independent. The vorticity equation follows from (11.8)
as

y
∂w0

∂z
= v0, (11.9)

and as the horizontal flow is not divergence free (because the variation of the
Coriolis parameter enters the geostrophic balance), the O(1) problem is not dy-
namically degenerate.

For the Ekman layer at the surface and at the bottom, we determine boundary
layer solutions in the same way as in section 5.2.4. In fact, if we use the trans-
formation λ =

√
|y| and boundary layer coordinates ξ̄ = λξ and χ̄ = λχ in the

Ekman layers, the solutions (5.49) and (5.65) from the midlatitude β-plane can
be copied with ξ and χ substituted by ξ̄ and χ̄, respectively. The results for the
Ekman pumping velocities and Ekman mass transport are for the surface layer,

ŵE =
α

2
Ē

1/2
V ∇ · (T ∧ e3

y
) → ŵE∗ =

1
ρβ0

∇ · (T∗ ∧ e3

y∗
), (11.10a)

ME =
α

2
Ē

1/2
V

T∗ ∧ e3

y
→ ME∗ =

1
ρβ0

T ∧ e3

y∗
, (11.10b)

as α = 2τ0/(ρβ0LδEU) and δE = Ē
1/2
V D; e3 is the unit vector in z-direction.

The dimensionless Ekman pump velocity and mass transport near the flat bottom
are

w̃E =
1
2
Ē

1/2
V

[
∇ · (u

0

λ
) + ∇ · (u

0

λ
∧ e3)

]
, (11.11a)

ME =
1
2λ

Ē
1/2
V (u0 + u0 ∧ e3). (11.11b)
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The vorticity equation follows directly from (11.9) through integration over the
layer as

y

2
E

1/2
V

[
α∇ · (y−1T ∧ e3) −∇ · (u

0

λ
) −∇ · (u

0

λ
∧ e3)

]
= v0. (11.12)

If we choose U such that αĒ
1/2
V = 2, i.e., U = τ0/(ρβ0LD) then the Sverdrup

balance becomes

v0 = y∇ · (y−1T ∧ e3) =
∂τy

∂x
− ∂τx

∂y
+

τx

y
. (11.13)

With L = 106 and D = 103 we find U ≈ 10−2 ms−1 if τ0 = 10−1 Nm−2; this
velocity should again be seen as a depth averaged velocity.

�
Example 11.1: Idealized model of the ECC

As an example we consider an idealization of the equatorial wind-stress field
as

τx(y) = −1
2
(1 + cos 2π(y − y0)), (11.14)

where y > y0 > 0 and τy = 0 (Fig. 11.8a). This mimics the strong south
equatorial trade winds (negative τx), a weakening more northward followed by
the strong north equatorial trade winds.
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Figure 11.8. (a) Plot of the zonal wind stress field (11.14) versus y, the zonal velocity u0/π2, the
meridional velocity v0 and the pressure p0 at x = 1/2 with xE = 1; here y0 = 0.5. (b) Sketch to
help explain the existence of the ECC.
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The geostrophic velocities (u0, v0) can easily be determined from (11.13a) and
with u0(xE , y) = 0, where xE is the eastern boundary, they become

u0(x, y) = 2π2(x − xE) cos 2π(y − y0) (11.15a)

v0(x, y) = − 1
2y

(1 + cos 2π(y − y0)) − π sin 2π(y − y0) (11.15b)

p0(x, y) = y(xE − x)π sin 2π(y − y0) + xτx(y) (11.15c)

The profiles of τx, u0, v0 and p0 are plotted in Fig. 11.8a for x = 1/2, xE = 1
and y0 = 0.5. Indeed, over an interval in y, the zonal velocity is positive and
in opposite direction to the zonal wind stress. From the meridional velocity, we
see that there is a convergence of mass at y = y0 and a divergence at y = y0 +
1/2. The pressure p0 (which is also the sea surface height) profile indicates that
there the sea surface height decreases over the region where the zonal velocity is
positive in agreement with geostrophic equilibrium.

�

The example above serves to explain the physics of the ECC. The wind stress
pushes water up to the western continent and hence induces an east-west slope in
the sea surface height. Because the zonal winds vary in meridional direction the
sea level height also changes (Fig. 11.8b). This can be seen from the solution of
the geostrophic pressure (11.15c) which is also the sea surface height (Fig. 11.8a).
Imagine y0 to be located at about 4◦ where the trade winds are still strong. With
the weakening of the trade winds more northward the meridional slope in the sea
level is negative inducing a positive zonal geostrophic velocity. Because of the
variation in the Coriolis parameter, there is a slight shift in the sea level height
variations with the wind stress variations.

Ex. 11.2

We have assumed here that the value of the Coriolis parameter f0 was so small
that strict (constant f0 �= 0) geostrophic equilibrium on the f -plane was not pos-
sible. At latitudes of the ECC, however, Coriolis effect are not zero and one could
do with a midlatitude β-plane model to compute velocities and sea surface height
with latitude. It appears that this does not change anything in the explanation of
the ECC as given above.

11.4. Equatorial waves
In the reduced gravity model of section 11.2.2, consider the motionless (ū∗ =

v̄∗ = 0) reference state with h̄∗ = H . This is a stationary solution of the un-
forced, nondissipative equations (11.5). The equations governing small amplitude
motions are obtained by linearizing the equations (11.5) around this reference
state and become

∂u∗
∂t∗

− β0y∗v∗ = −g′
∂h∗
∂x∗

, (11.16a)
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∂v∗
∂t∗

+ β0y∗u∗ = −g′
∂h∗
∂y∗

, (11.16b)

∂h∗
∂t∗

+ H(
∂u∗
∂x∗

+
∂v∗
∂y∗

) = 0. (11.16c)

It is convenient to introduce nondimensional quantities by

t∗ =
L

co
t ; x∗ = Lx ; y∗ = λoy, (11.17a)

h∗ = Hh ; u∗ = cou ; v∗ =
λo

L
cov. (11.17b)

Here, L is the zonal basin length, co is a shallow water gravity wave speed and λo

is a characteristic meridional length scale, the equatorial Rossby radius of defor-
mation, given by

co =
√

g′H ; λo =
√

co

β0
. (11.18)

Using these scales, the dimensionless equations become

∂u

∂t
− yv +

∂h

∂x
= 0, (11.19a)

ζ2
o

∂v

∂t
+ yu +

∂h

∂y
= 0, (11.19b)

∂h

∂t
+

∂u

∂x
+

∂v

∂y
= 0, (11.19c)

with ζo = λ0/L.
Travelling wave solutions of the form

u(x, y, t) = û(y)ei(kx−σt), (11.20a)

v(x, y, t) = v̂(y)ei(kx−σt), (11.20b)

h(x, y, t) = ĥ(y)ei(kx−σt), (11.20c)

are sought with k being the nondimensional wavenumber and σ the angular fre-
quency. The boundary conditions are

y → ±∞ : û, v̂, ĥ → 0. (11.21)

The solutions with v̂ ≡ 0 have a dispersion relation

σ2 = k2, (11.22)

and the meridional structure of the wave is

û(y) = û(0)e
−ky2

2σ , (11.23a)

ĥ(y) =
σ

k
û(y), (11.23b)
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with û(0) being an arbitrary amplitude. The solutions which are bounded for
y → ±∞ exist only when σ = +k. Hence, the phase velocity of these waves
is positive and the waves only move eastward. These are the well-known Kelvin
waves with a dimensional wavelength and phase speed (σ/k) given by

λ∗ =
2πL

k
; c∗ = co. (11.24)

Patterns of the thermocline field h of a Kelvin wave are plotted in Fig. 11.9 for
four stages during the propagation. The dimensionless wavenumber is chosen to
be k = π, corresponding to a wavelength of exactly twice the basin λ∗ = 2L.
For the Kelvin wave, the dimensionless period P is 2π/σ = 2 and the pictures in
Fig. 11.9 are at times t = 0, t = 1/8, t = 1/4, t = 3/8, which covers a quarter of
a period. The maximum amplitude of the thermocline field for the Kelvin wave is
located just at the equator.

Ex. 11.3

Free wave solutions with v̂ �= 0 also exist. In (11.19), û and p̂ can be eliminated
to give a scalar equation for v̂, i.e.

v̂′′ + v̂

[
ζ2
0 (σ2 − k2) − k

σ
− y2

]
= 0, (11.25)

where the ′ indicates differentiation with respect to y. Equation (11.25) only has
bounded solutions when

ζ2
0 (σ2 − k2) − k

σ
= 2j + 1, (11.26)

for j = 0, 1, · · ·. These solutions of (11.26) are of the form

v̂j(η) = ψj(y) =
e

−y2

2 Hj(y)
(2jj!π1/2)1/2

, (11.27)

with Hj being the Hermite polynomials. The ψj are called the Hermite functions
(see Example 11.2).

�
Example 11.2: Hermite polynomials and Hermite functions

The Hermite polynomials Hn(x) are solutions of the differential equation

y′′ − 2xy′ + 2ny = 0. (11.28)

for a function yn(x). The first Hermite polynomials are

H0(x) = 1; H1(x) = 2x; H2(x) = 4x2 − 2; H3(x) = 8x3 − 12x, (11.29)
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(a) (b)

(c) (d)

Figure 11.9. Patterns of the dimensionless thermocline field for the Kelvin wave at four different
times during one period P = 2 of evolution (a) t = 0 (b) t = P/8, (c) t = P/4 and t = 3P/8.
The wavenumber k = π and plotted is ψ0(y)cos(π(x − t))/

√
2, where ψ0 is the Hermite function

in (11.27). Note that x and y are scaled according to (11.17).

and the following relations can be derived

Hn+1(x) = 2xHn(x) − 2nHn−1(x) (11.30a)

H ′
n(x) = 2nHn−1(x). (11.30b)

The Hermite polynomials form a complete orthogonal system on the interval
[−∞,∞] with a weight function w(x) = exp(−x2/2) and inner product

∫ ∞

−∞
Hk(x)Hn(x)e−x2

dx = n!2nπ1/2δkn. (11.31)
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where δkn = 1 when k = n and zero otherwise (the Kronecker symbol). The
Hermite functions ψn(x), with

ψn(x) = (n!2nπ1/2)−1/2 exp(−x2/2)Hn(x), (11.32)

are solutions of the differential equation

y′′ + (2n + 1 − x2)y = 0, (11.33)

From (11.31) it follows that
∫ ∞

−∞
ψk(x)ψn(x)dx = δkn. (11.34)

For the Hermite functions, the following relations apply

xψn(x) =
√

n

2
ψn−1(x) −

√
n + 1

2
ψn+1(x), (11.35a)

ψ(x) =
√

n

2
ψn−1(x) +

√
n + 1

2
ψn+1(x). (11.35b)

�

First, we consider the full spectrum of these waves by putting ζo = 1, which is
equivalent to using L as a meridional length scale. The dispersion relation (11.26)
can be written as

k = − 1
2σ

± 1
2

[
(
1
σ
− 2σ)2 − 8j

]1/2

. (11.36)

For j > 0, two real roots exist provided (1/σ − 2σ)2 ≥ 8j in which case σ
satisfies

0 < σ <
1√
2
((j + 1)1/2 − j1/2)

or

σ >
1√
2
(j1/2 + (j + 1)1/2).

The first interval of σ is in the low frequency range and the waves are called
equatorial Rossby waves. The second interval represents the high frequency so-
called ‘inertia-gravity’ waves.

For the case j = 0, two roots are found from (11.36), the first one being σ =
−k which leads to a westward travelling Kelvin wave which becomes unbounded
far from the equator. The second root is

k = − 1
σ

+ σ, (11.37)
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which gives a bounded wave called the Yanai wave. For large σ, the character
of the wave becomes Kelvin like, whereas for small σ it becomes Rossby like. A
classical picture of the dispersion relation for the Kelvin wave, the Yanai wave and
j = 1 Rossby and inertia-gravity waves is plotted in Fig. 11.10. The Yanai and

0

0.5

1

1.5

2

2.5

3

-4 -3 -2 -1 0 1 2 3 4

 Rossby, j = 1

k

 inertia-gravity ,  j = 1

σσσσ

Yanai 

Kelvin 

Figure 11.10. Dispersion relation of equatorial free waves. Shown are the Kelvin wave, the Yanai
wave and the j = 1 Rossby wave.

Kelvin waves have a positive group velocity and for inertia-gravity and Rossby
waves, the group velocity cg becomes

cg =
∂σ

∂k
=

1 + 2σk

2σ2 + k
σ

. (11.38)

For low frequency Rossby waves (Fig. 11.10), the group velocity is negative and
the approximate dispersion relation is (note that both k2 << 1 and σ2 << 1)

σ = − k

2j + 1
. (11.39)

Their dimensional phase velocity is given by

c∗ = − co

2j + 1
,

and depends on the meridional wavenumber j. In the limit ζo → 0, only these
long waves remain which can be immediately concluded from (11.26). This limit
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is therefore called the long wave limit. The first long Rossby wave (j = 1) travels
westward with a phase velocity which is 1/3 of that of the Kelvin wave. From the
expressions of the Hermite functions in (11.27), one can see that the amplitude is
restricted to a relatively small meridional interval around the equator; these waves
are therefore called ‘equatorially trapped’.

Patterns of the thermocline field for the j = 1 Rossby wave, with again a
dimensionless wavenumber k = π (k∗ = π/L), are plotted in Fig. 11.11 for four
stages during the propagation. The dimensionless period of the j = 1 Rossby
wave is P = 2π/σ = 6, and the pictures are shown at t = 0, t = 3/8, t =
3/4, t = 9/8. The maximum amplitude of the j = 1 Rossby wave is located off-

(a) (b)

(c) (d)

Figure 11.11. Patterns of the thermocline field h of the j = 1 Rossby wave for four different
times during one period P = 6 of evolution (a) t = 0 (b) t = 3/8, (c) t = 3/4 and (d) t = 9/8.
The wavenumber k is equal to π and plotted is (ψ0(y)+ψ2(y)/

√
2)cos(π(x− t)))/(2

√
2), where

ψ0 and ψ2 are Hermite functions as in (11.27).
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equatorial at about 1.33λo from the equator. This distance increases (Fig. 11.12)
for higher Rossby waves, i.e., larger j. For co = 2 ms−1, the dimensional values of
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Figure 11.12. Meridional structure of the dimensionless thermocline field ĥj (see e.g., (11.46c)
below) associated with the first 5 (long) free Rossby waves (j = 1, ..., 5).

the meridional locations at which Rossby wave thermocline amplitudes have their
maximum are shown in Table 11.1 for the long waves with j = 1, ..., 5 together
with dimensional crossing times for a basin of 15,000 km.

Wave type ymax θmax τd (days)

Kelvin 0.0 0.0 87
Rossby, j = 1 1.22 ±3.31 260
Rossby, j = 2 1.75 ±4.75 434
Rossby, j = 3 2.17 ±5.88 608
Rossby, j = 4 2.50 ±6.77 781
Rossby, j = 5 2.83 ±7.67 955

Table 11.1. Typical quantities of free equatorial waves for co = 2 m/s, and β0 = 2.2 ×
10−11(ms)−1, such that λo = 301.5 km. The dimensionless quantity ymax is the position of
the maximum amplitude of the thermocline depth as seen in Fig. 11.12; θmax is the latitude of this
position. The travel time τd is based on the time it takes for the wave to cross a basin of 15,000 km.
The Kelvin wave travels from west to east whereas all Rossby waves travel from east to west.
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Additional Material

B: Equatorial waves are discussed at length in section 8.5 of Pedlosky (1987),
the chapters 3 and 4 of Philander (1990) and lecture 18 of Pedlosky (2003).

11.5. Forced response in a basin
Using the reduced model derived in section 11.2, we next consider the changes

in the ocean circulation in a finite basin due to the presence of a prescribed wind
stress. Under limitations of small amplitude forced motion, the shallow water
model can be linearized around a motionless reference state with constant ther-
mocline depth H . Small amplitude zonal winds are assumed to be present, while
the meridional component of the wind is neglected. A further simplification arises
by idealizing the horizontal friction to be linear rather than harmonic. This can be
justified by recognizing that for equatorially trapped motions in which the zonal
length scale L is much larger than the meridional scale λo,

AH

[
∂2u∗
∂x2

∗
+

∂2u∗
∂y2

∗

]
≈ −2AH

λ2
o

u∗ = −amu∗ (11.40)

which can, for example, be derived using central differences around the equa-
tor. With the scaling (11.17), the dimensionless problem to determine the small
amplitude response to the wind stress is obtained from (11.5) and given by

∂u

∂t
− yv +

∂h

∂x
+ εou = F0τ

x, (11.41a)

ζ2
o

∂v

∂t
+ yu +

∂h

∂y
+ εoζov = 0, (11.41b)

∂h

∂t
+

∂u

∂x
+

∂v

∂y
+ εoh = 0, (11.41c)

where F0 = τ0L/(c2
oρH) is the dimensionless amplitude of the zonal wind stress

and εo = amL/co is the dimensionless linear damping coefficient. In a finite basin
on the equatorial β-plane, the boundary conditions are

x = 0, 1 : u = 0, (11.42a)

y → ±∞ : u, v, h → 0. (11.42b)

With F = (τx, 0, 0) and u = (u, v, h), this system of equations can be written
as

M∂u
∂t

+ Lu = F, (11.43a)
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L =

⎛

⎝
εo −y ∂

∂x

y ζoεo
∂
∂y

∂
∂x

∂
∂y εo

⎞

⎠ ; M =

⎛

⎝
1 0 0
0 ζ2

o 0
0 0 1

⎞

⎠ . (11.43b)

Applying a Fourier transformation in x, according to

û(k, y, t) =
∫ ∞

−∞
u(x, y, t)e−ikx dx, (11.44a)

F̂(k, y, t) =
∫ ∞

−∞
F(x, y, t)e−ikx dx, (11.44b)

all x-derivatives in L transform to ik in L̂ and M̂ = M. All free wave solutions
of the previous section, written say as Û, are solutions of the eigenvalue problem
(for εo = 0)

L̂Û = iσM̂Û, (11.45)

where σ is given through the dispersion relation (11.26).
Ex. 11.4

In the limit ζo → 0, only the long (small k), low frequency modes (small σ)
Rossby waves remain, having a dispersion relation and eigenfunctions for j =
1, 2, . . .

σj =
−k

2j + 1
(11.46a)

ûj(y) =
1

2
√

2
(
ψj+1(y)√

j + 1
− ψj−1(y)√

j
), (11.46b)

ĥj(y) =
1

2
√

2
(
ψj+1(y)√

j + 1
+

ψj−1(y)√
j

), (11.46c)

v̂j(y) = ψj(y), (11.46d)

The Kelvin waves with dispersion relation and eigenfunction

σ0 = k, (11.47a)

û0(y) =
1√
2
ψ0(y), (11.47b)

ĥ0(y) =
1√
2
ψ0(y), (11.47c)

v̂0(y) = 0, (11.47d)

have to be included to get a complete system of basis functions for the merid-
ional structure of the solutions of the problem (11.19). The vector eigenfunctions
(11.46) and (11.47) will be indicated below by Φj and Φ0, respectively. A con-
sequence of the elimination of the small waves in the limit ζo → 0 is that one can
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no longer satisfy the kinematic boundary condition (u = 0) at the western bound-
ary of the basin. A consistent boundary condition is to balance the incoming and
outgoing zonal mass flux, which gives

x = 0 :
∫ ∞

−∞
u dy = 0. (11.48)

As a next step, the zonal wind stress is assumed to have the particular form

τx(x, y, t) = δ(x − x0)g(y)eiωt, (11.49)

where δ is the Dirac delta distribution, x0 a point in the basin and g(y) a pre-
scribed function. The time dependence is assumed to be periodic with frequency
ω. Since the system of equations (11.19) is separable in time, the solutions u
also have the same time dependence, i.e., u(x, y, t) = eiωtũ(x, y). If the so-
lution ũ(x, y) for the wind-stress shape (11.49) is determined and is indicated
by G(x, y; x0) then the solution for every wind stress with spatial dependence
τx(x, y, t) = f(x)g(y)eiωt, is given by

u(x, y, t) = eiωt

∫ 1

0
G(x, y; x0)g(x0) dx0, (11.50)

which is easily verified by substitution of (11.50) into (11.43). Hence the solution
G acts as a Green’s function (see Example 11.3) and it is worthwhile determining
it explicitly.

�
Example 11.3: Green’s functions

Inhomogeneous boundary value problems can be efficiently solved using a
Green’s function. As an example, consider the one-dimensional boundary value
problem for the function y(x) on the interval x ∈ [0, 1], defined by

(1 + x)y′′ + y′ = h(x), (11.51a)

y′(0) = y(1) = 0, (11.51b)

for an arbitrary function h(x). The Green’s function G(x, ξ) is defined on the
square 0 ≤ x, ξ ≤ 1 as the solution of

(1 + x)G′′ + G′ = δ(x − ξ), (11.52a)

G′(0) = G(1) = 0, (11.52b)

where the primes indicate differentiation to x and δ is the Dirac distribution. Once
G has been determined, then the general solution to (11.51) follows immediately
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as

y(x) =
∫ 1

0
G(x, ξ)h(ξ) dξ. (11.53)

This is easily verified by substitution since

(1 + x)y′′ + y′ =
∫ 1

0
((1 + x)G′′(x, ξ) + G′(x, ξ))h(ξ) dξ =

=
∫ 1

0
δ(x − ξ)h(ξ) dξ = h(x). (11.54)

In our example, we can determine G analytically from

(1+x)G′′+G′ = ((1+x)G′)′ = δ(x−ξ) → (1+x)G′ = H(x−ξ)+C1, (11.55)

where H is the Heaviside function. When we use G′(0) = 0, it follows that
C1 = 0 (the Heaviside function has an argument −ξ < 0). We can then solve

G′ =
H(x − ξ)

1 + x
→ G(x, ξ) = (ln(1 + x) − ln(1 + ξ))H(x − ξ) + C2 (11.56)

and the constant C2 follows from G(1) = 0 as C2 = ln(1 + ξ) − ln 2. The
solution finally is

G(x, ξ) = H(x − ξ) ln
1 + x

1 + ξ
+ ln

1 + ξ

2
(11.57)

The example illustrates why often Heaviside functions appear in Green’s func-
tions.

�

First the (particular) solution Gf to the inhomogeneous problem is derived
followed by the total solution G which satisfies the boundary conditions. After
the Fourier transformation of the equations (11.43) for u = ũeiωt, the following
system of equations results

φû − yv̂ + ikĥ = e−ikx0g(y), (11.58a)

yû +
∂ĥ

∂y
= 0, (11.58b)

φĥ + ikû +
∂v̂

∂y
= 0, (11.58c)

with φ = εo + iω.
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The forcing function g(y) and the dependent quantities û, v̂, ĥ are expanded
into the free wave solutions as follows

g(y) = r0û0(y) +
∞∑

j=1

rj ûj(y), (11.59a)

û = a0Φ0(y) +
∞∑

j=1

ajΦj(y), (11.59b)

where the Φj satisfy (11.45). Equating term by term, the coefficients aj are solved
in terms of the rj as

aj =
rje

−ikx0

φ + iσj
, (11.60)

where σj is the frequency of eigenmode j. The inverse Fourier transform now
gives the formal solution as

Gf (x, y, φ; x0) =
1

2πi

∫ ∞

−∞
eik(x−x0) ×

×

⎡

⎣ r0

k − iφ
Φ0(y) −

∞∑

j=1

rj(2j + 1)
k + iφ(2j + 1)

Φj(y)

⎤

⎦ dk. (11.61)

The integrals can be evaluated through the residue theorem (see any text on com-
plex function theory) and one gets

Gf (x, y, φ; x0) = r0Φ0(y)e−φ(x−x0)H(x − x0) +

+
∞∑

j=1

(2j + 1) rj eφ(2j+1)(x−x0)Φj(y)H(x0 − x), (11.62)

where H is the Heaviside function. The physics of this forced response is easy to
understand. If a wind-stress forcing is applied at x = x0, then to the west (x < x0)
only a Rossby wave response (Φj) is found whereas to the east (x > x0), a Kelvin
wave response (Φ0) is found.

This solution does not satisfy the boundary conditions at the eastern and west-
ern boundaries and solutions of the homogeneous problem have to be added to
accomplish this. These solutions are the actual eigenfunctions Φj , the free wave
solutions, with up to now undetermined amplitudes bj . One obtains for x > x0,

G(x, y, φ; x0) = (r0 + b0)Φ0(y)e−φ(x−x0) +

+
∞∑

j=1

bje
φ(2j+1)(x−x0)Φj(y), (11.63)
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while for x < x0, one obtains

G(x, y, φ; x0) = b0Φ0(y)e−φ(x−x0) + (11.64)

+
∞∑

j=1

((2j + 1)rj + bj)eφ(2j+1)(x−x0)Φj(y). (11.65)

From the condition at the eastern boundary (u = 0), it follows from (11.41b) that

∂h(1, y, φ; x0)
∂y

= 0 ⇒ hG
E(φ; x0) = h(1, y, φ; x0), (11.66)

where the superscript G refers to the Green’s function. To determine the coeffi-
cients bj , the identities

0 = lim
M→∞

⎡

⎣û0 + 2
M∑

j=0

α2j+1û2j+1

⎤

⎦ , (11.67a)

π− 1
4 = lim

M→∞

⎡

⎣ĥ0 + 2
M∑

j=0

α2j+1ĥ2j+1

⎤

⎦ , (11.67b)

α2j+1 =

√
(2j + 1)!
2jj!

, (11.67c)

are used. Note that the convergence with M in these identities is very poor for
the zonal velocity component and for both zonal velocity and thermocline off
the equator. Convergence is best for the thermocline deviation on the equator.
Application of the eastern boundary condition and comparing term by term gives

(r0 + b0)e−φ(1−x0) = π
1
4 hG

E ,

b2j+1e
φ(4j+3)(1−x0) = 2α2j+1 π

1
4 hG

E ,

b2j = 0,

from which the coefficients bj can be solved. Eventually, the complete solution to
the pulse forcing at x = x0, i.e., the Green’s function for the problem, is found as

G(x, y, φ; x0) = π
1
4 hG

EK(φ(1 − x), y) − L(φ(x0 − x), y)H(x0 − x), (11.69)

where vector functions K and L are defined as

K(η, y) = eηΦ0(y) + 2
∞∑

j=0

α2j+1e
−η(4j+3)Φ2j+1(y), (11.70a)

L(η, y) = r0e
ηΦ0(y) −

∞∑

j=0

(2j + 1)rje
−η(2j+1)Φj(y). (11.70b)
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Up to this point, only the eastern boundary amplitude of the thermocline hG
E is still

unknown, but it can be determined from the western boundary condition (11.48)
and becomes

π
1
4 hG

E(φ; x0) =

∫∞
−∞ Lu(φx0, y)dy
∫∞
−∞ Ku(φ, y)dy

, (11.71)

where Ku and Lu are the first components of K and L, respectively. This com-
pletes the basic machinery needed in the next section to understand the response
of the ocean to varying wind stress forcing.

11.6. The equatorial thermocline
To understand the spatial structure of the thermocline (as in Fig. 11.5), we first

consider the forced ocean response to a zonal forcing τx = f(x)eiωt which can
be explicitly determined using the Green’s function. The basic identity used is the
explicit summation

e−iz

(
û0

ĥ0

)
+ 2

∞∑

j=0

α2j+1e
iz(4j+3)

(
û2j+1

ĥ2j+1

)
=

= π− 1
4 e

i
2
y2 tan 2z 1√

cos 2z

(
−i sin 2z
cos 2z

)
, (11.72)

for complex z with Im(z) ≥ 0. Note that for z = 0, the identities reduce to
(11.67).

Computation of the values of rj in (11.59a) gives (for g(y) = 1)

r0 =
1√
2

∫ ∞

−∞
ψ0(y) dy = π

1
4 ,

r2j+1 =
1

2
√

2

∫ ∞

−∞
(

ψ2j+2√
2j + 2

− ψ2j√
2j + 1

) dy = −π
1
4
2α2j+1

4j + 3
,

r2j = 0,

and hence one finds from (11.70b) that

L(η, y) = π
1
4 K(η, y). (11.74)

Using the integral ∫ ∞

−∞
ei y2

2
tan(2z) dy =

√
2π

i tan 2z
,

one obtains as a solution for hG
E in (11.71), using the identity (11.72) for z = −iφ,

as

hG
E(φ̃; x0) =

√
sin(2φ̃x0)
sin(2φ̃)

,
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where φ̃ = −iφ = ω−iεo. The Green’s function G is then completely known and
the total response to a wind stress with zonal dependence f(x) can be computed
from (11.50) as

u(x, y; φ̃) = hE(φ̃)
sin 2φ̃(x − 1)√
cos 2φ̃(x − 1)

ei y2

2
tan(2φ̃(x−1)) −

−
∫ 1

x
f(x0)

sin 2φ̃(x − x0)√
cos 2φ̃(x − x0)

ei y2

2
tan 2φ̃(x−x0) dx0, (11.75a)

h(x, y; φ̃) = hE(φ̃)
√

cos 2φ̃(x − 1)ei y2

2
tan(2φ̃(x−1)) −

−
∫ 1

x
f(x0)ei y2

2
tan(2φ̃(x−x0))

√
cos 2φ̃(x − x0) dx0, (11.75b)

where

hE(φ̃) =
∫ 1

0

√
sin(2φ̃x0)
sin(2φ̃)

f(x0) dx0, (11.76)

is the thermocline amplitude at the east coast.
The thermocline response to a periodic wind stress with a spatial structure mim-

icking the zonal wind stress due to the trade winds, i.e.,

τx = 0.6 (0.12 − cos2
π(x − 0.57)

1.14
) cos

2πt

P , (11.77)

is shown in Fig. 11.13 with a period P corresponding to 3 years. In the panels,
time t = 0 the indicates the phase of maximum westerly winds and no winds are
present at t = −P/4. At times when the wind stress is present, the thermocline
response is nearly in steady balance with the wind stress. However, the ocean
does not only react to the instantaneous wind stress but also to previous winds
through propagation of waves. The structures off the equator to the west of the
wind are partly free Rossby waves which are still adjusting to the wind but part of
this response is just a forced response in steady balance with the wind stress. It
is the departure of this steady balance which is crucial to further evolution of the
flow and provides the ocean with a memory.

Ex. 11.5

As a special case, we consider ω = 0 and εo = 0 in the solution (11.75) and
are therefore looking at the stationary response to the wind stress field τx(x, y) =
f(x) and τy = 0. The equatorial thermocline distribution is found from (with
φ̃ = 0, and the proper limit in (11.76))

he(x) =
∫ 1

0
s1/2f(s)ds −

∫ 1

x
f(s)ds. (11.78)
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Figure 11.13. Response of the thermocline (amplitudes relative to the equilibrium layer depth H)
to a periodic wind fluctuation having a spatial structure (11.77). Plotted are the spatial patterns of
the oscillation for several phases of the oscillation (from Neelin et al. (1998)).

Using (11.78), we see that at the equator the balance τx = hx = f(x) holds and
hence from (11.78) it follows that the first term in the right hand side determines
the value of the thermocline at the eastern boundary. The dimensional form of
(11.78) is

he∗(x∗) =
τ0L

ρHg′
(
∫ 1

0
x1/2f(s)ds −

∫ 1

x
f(s)ds). (11.79)

For a pure zonal wind field f(x) = −1, the thermocline solution becomes

he(x) =
1
3
− x → he∗(x∗) =

τ0

ρHLg′
(
1
3
− x∗

L
) (11.80)

The fact that the thermocline is deeper in the west than in the east can be com-
pletely explained from the wind-stress field. Because the sea surface is higher in
the west than in the east, the resulting pressure difference has an immediate im-
pact on the slope of the thermocline. With τ0 = 0.1 Pa, H = 200 m, L = 10,000
km, g′ = 0.05 ms−2 and ρ = 103 kgs−3, we find that the factor τ0L/(ρHg′) =
100 m which provides a realistic amplitude of the thermocline deviation.



Equatorial ocean circulation 269

Summary

Interesting features of the equatorial ocean circulation are the Equato-
rial Counter Currents (ECCs) and Equatorial Under Currents (EUCs).

A reduced gravity model is a two-layer model in which the lower layer
is motionless.

Equatorial Counter Currents exist because of the weakening of the
trade winds slightly north of the equator leading to a negative merid-
ional gradient in the sea surface height.

Long baroclinic waves in the equatorial wave guide consist of Kelvin
waves (with phase speed c0 =

√
g′H) and Rossby waves with phase

speeds

cj∗ = − c0

2j + 1
where j is associated with the meridional structure of the wave. The
travel time of the Kelvin wave over the Pacific is about 3 months (with
c0 = 2 ms−1) and this is 9 months for the j = 1 Rossby wave.

The response of an equatorial ocean basin to a wind-stress field can be
determined using Green’s function theory. The thermocline deviation
due to a zonal wind stress of 0.1 Pa is about 100 m.
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11.7. Exercises on chapter 11

(11.1) The Equatorial Under Current

Consider a column of water with a thickness h0 below the Ekman layer. Water
moves from a location y0 > 0 to the equator as a compensation of water which
flows northward in the upper layer. Assume that at y0, the relative vorticity is
small with respect to the planetary vorticity.

a. Show that from conservation of potential vorticity, it follows that

β0y − u′

h
=

f0

h0

where h(y) is the thickness of the water column at location y and u(y) the
steady zonal velocity at the equator.

b. Determine the solution u(y) as a model for the Equatorial Under Current
and provide an estimate of the amplitude of the zonal velocity of this current.

c. Is this a good model to explain the existence of the Equatorial Under Cur-
rent?

(11.2) Equatorial Counter Current

The model in section 11.2 does qualitatively indicate the existence of the Equa-
torial Counter Current (ECC). We have assumed that f0 = 0 and computed the
flow on the equatorial β-plane. At latitudes between 4◦N and 10◦N, the Cori-
olis parameter f0 is not strictly zero and one could compute the flow using a
midlatitude β-plane model such as presented in the chapters 5 and 6.

a. Use the dimensionless Sverdrup balance (6.5) to compute the zonal
velocity, meridional velocity and sea surface height for the same wind stress
as in Example 11.1.

b. Show that an ECC occurs at latitudes where the meridional gradient in the
sea surface height is negative.
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c. Determine from observations a reasonable amplitude of the wind stress
north of the equator in the Pacific and estimate the amplitude of the corre-
sponding velocities with the model in section 11.2. Does this agree with ob-
servations?

(11.3) Properties of equatorial waves

a. Determine the dimensional vertical velocity field associated with the
equatorial Kelvin wave and the j = 1 Rossby wave.

b. Determine the ratio of the sea surface height amplitude and the thermocline
depth amplitude for both waves as in a.

c. During an El Niño the eastern Pacific thermocline can deepen by 50 m.
Compute the amplitude of the sea surface height anomaly during such an event.

(11.4) Reflection of equatorial waves at a western boundary

Consider the reflection of the j = M equatorial Rossby wave at a western
boundary located at x = 0. The incoming wave has a wavenumber

kI = − 1
2σI

+ (σ2 +
1

4σ2
− (2M + 1))

1
2

and hence its group velocity is westward.

a. Show that the incoming velocity field of the wave is given by

vI(x, y, t) = ei(kIx−σt)ψM (y)

uI(x, y, t) =
i

2
ei(kIx−σt)(

√
(2(M + 1))
σ − kI

ψM+1(y) +

√
(2M)

σ + kI
ψM−1(y))

hI(x, y, t) =
i

2
ei(kIx−σt)(

√
(2(M + 1))
σ − kI

ψM+1(y) +

√
(2M)

σ − kI
ψM−1(y))

The reflected wave is a superposition of Rossby waves (with amplitude
Bm, m = 1, ..., M ) and a Kelvin wave (with amplitude BK).

b. Provide an expression for the zonal velocity field uR(x, y, t) of this
superposition.
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c. Determine the coefficients Bm and BK .

d. Show that the j = 1 Rossby waves reflects into a Kelvin wave.

(11.5) Equatorial thermocline

To get familiar with the solutions (11.75) we consider the limit ω = 0 (steady
forcing, hence τx = f(x)) but keep ε0 �= 0.

a. Determine the thermocline solution at the equator explicitly for this case.

b. Now take the limit ε0 → 0 in the result of a. and derive (11.78).

c. Describe which physical processes determine the zonal slope in the thermo-
cline and which processes set the thermocline depth at the western boundary
of the domain.
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The spatial patterns of the annual mean state of the surface winds and
sea surface temperature (SST) in the Pacific were shown in chapter 11
(Fig. 11.1 and Fig. 11.2). In this chapter, anomalies of this mean state
are considered. About once every four years the sea surface temperature
in the eastern Pacific is much higher than average; this phenomenon is
called El Niño. Sea surface temperature anomalies of up to a few degrees
can occur and are accompanied by a weakening/strengthening of the trade
winds, the latter called the Southern Oscillation. In this chapter, the fo-
cus is on a dynamical understanding of the El Niño/ Southern Oscillation
(ENSO) phenomenon. After the presentation of a few basic characteris-
tics of ENSO in section 12.1, we discuss coupled processes and feedbacks
between the equatorial ocean circulation and atmosphere in section 12.2.
Sections 12.3 and 12.4 introduce modern conceptual models of ENSO
viewed as a delayed oscillator phenomenon.

12.1. Basic Phenomena
The El Niño/Southern Oscillation (ENSO) is the most prominent example of

interannual variability in the climate system. Because it develops on relatively
short time scales, it is one of the best studied climate phenomena, both observa-
tionally and theoretically. ENSO is caused by processes in both the tropical ocean
and atmosphere with a central role for the sea surface temperature.

Figure 12.1. Time series of NINO3 and SOI over the period 1900-2000 (from
http://ingrid.ldgo.columbia.edu).

Two important indices that are frequently used to monitor the state of the Trop-
ical Pacific system are the SOI and the NINO3. In Fig. 12.1 the NINO3 in-
dex (the SST anomaly averaged over the box [150◦W-90◦W] × [5◦S-5◦N]) is
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plotted. It appears that the occurrence of El Niño’s (positive NINO3) and La
Niña’s (negative NINO3) is quite irregular. Strong El Niño’s such as in 1982-
1983 and 1997-1998 are rare as are strong La Niña’s and actually long intervals
exist with either weak warm or weak cold conditions. An index that captures the
amplitude of the sea level pressure anomaly pattern is the Southern Oscillation In-
dex (SOI), which is the normalized difference of the pressure anomalies between
Tahiti (18◦S, 150◦W) and Darwin (12◦S, 131◦E). When this index is positive,
the trade winds are stronger and when it is negative the trade winds are weaker
than normal. Generally, periods with a high NINO3 index have a low SOI and
vice versa (Fig. 12.1). The correlation between 12-month means of the monthly
NINO3 index and the SOI is close to -0.9 over the last 50 years.

An accurate data set of Tropical Pacific SST fields is now available for long
enough, such that dominant patterns of variability at interannual time scales can be
extracted. When the seasonal signal is filtered out, the equatorial SST anomalies
over the years 1990-2000 show an irregularly oscillating signal (Fig. 12.2, left
panel) with maximum amplitudes east of the dateline. The maximum temperature
anomaly during the 1997-1998 El Niño is about 5◦C. As a measure of thermocline

Figure 12.2. Plot of the equatorial SST anomalies (left panel) and the heat content anomalies
(with respect to the seasonal mean) over the years 1990-2000. The plots were made using data and
software at http://www.pmel.noaa.gov/toga-tao/realtime.html.
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anomalies, the upper ocean heat content Hc in 1010 J/m2 is defined as

Hc = ρ0Cp

∫ 0

−Hf

T dz, (12.1)

where Hf is a fixed depth usually chosen as 300 m. If the thermocline (e.g.
the depth of the 20◦C isotherm) is depressed (elevated), then the upper layer is
warmer (colder) leading to a larger (smaller) heat content. In the right panel of
Fig. 12.2, the equatorial heat content anomaly is plotted over the years 1990-2000.
The upper layer (300 m) was in 1997 about 4◦C warmer than average leading to a
positive heat content anomaly of Hc = 0.5×1010 Jm−2 at 120◦W. The anomalies
in heat content show a clear propagation eastward with west leading east. Note
that there are time intervals where the zonally averaged heat content is positive
(at the end of 1996) or negative (at the beginning of 1995). Positive easterly SST
anomalies occur simultaneously with an anomalously low western Pacific heat
content.

Together with the variations of the SOI and NINO3 indices, Fig. 12.2 suggests
that ENSO is an oscillatory signal which can be characterized by several patterns
at different phases of the oscillation. The patterns for the zonal wind, SST and

Figure 12.3. Plot of the zonal wind and SST and their anomalies with respect to the
seasonal mean at November 30, 1997. The plots were made using data and software at
http://www.pmel.noaa.gov/toga-tao/realtime.html.

their anomalies are plotted in Fig. 12.3 for the warm (El Niño) phase of the oscil-
lation (November 1997). The SST anomaly is positive over nearly the whole basin
with maxima in the eastern equatorial region and a fairly equatorial symmetrical
pattern in the Pacific cold tongue. The positive SST anomaly is accompanied by
a westerly wind-stress anomaly (arrows in the lower panel of Fig. 12.3) with a
maximum west of the maximum SST anomaly.



Dynamics of ENSO 277

In this oscillatory view, the cold phase of the 1997-1997 ENSO (the La Niña-
phase) occurred at the end of 1995. Between the cold and warm phase of the oscil-
lation is a transition phase which occurred at the beginning of 1997 (Fig. 12.2a).
During this ‘transition phase’, SST anomalies are nearly zero over the basin as
are the wind-stress anomalies. However, the heat content anomaly in the western
and central Pacific is positive, since the thermocline is deepened. The latter is
consistent with the equatorial anomalies in heat content in Fig. 12.2b.

Additional Material

B: In Glantz (1996), a broad overview of the weather phenomena associated
with El Niño is given with a description of their impact on society. Other
bedtime reading is Philander (2004).

12.2. A coupled ocean-atmosphere system
The equatorial ocean-atmosphere system is a strongly coupled system and an

impression of the whole system is given in Fig. 12.4. In this picture the mean
state is shown with its Cold Tongue in the east and its Warm Pool in the west.
The trade winds form part of a larger tropical circulation system consisting of the
Walker circulation and the Hadley circulation. The nature of the coupling between

=�����
%�#�

:��#�	
%�#�

��������	�

����&
����
,�%����	�

>
�

�

ρ

ρ 6
Δρ

,

#

%

�
�

τ τ
���

*����
"��,�����	

!�&���

���,�����	

*��
9���
 "��&
��	�,�


>
��

�

�

�

��&�
%�	&�

�?,���

@"�08

0��@-9!�=�

Figure 12.4. Overview of the oceanic and atmospheric processes of the equatorial coupled
ocean-atmosphere system.

ocean and atmosphere is the following. A sea surface temperature anomaly will
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give, through local heating, a lower-level wind anomaly. The resulting wind-stress
anomaly on the ocean-atmosphere surface will (i) change the thermocline slope
through horizontal pressure differences in the upper ocean, will (ii) change the
strength of the upwelling through the Ekman divergences in the upper layer and
will (iii) affect the upper ocean currents (u, v) in the mixed layer. The change in
velocity field and thermocline field will affect the sea surface temperature.

From observations, the wind stress response associated with a NINO3 anomaly
is indeed closely related to the sea-level pressure anomaly pattern of the Southern
Oscillation. The wind response is concentrated around the equator in an area
around the date line west of the NINO3 area, as shown in Fig. 12.5. The westward
response of the wind means that the trade winds are weakened (or even reversed)
during El Niño’s.

In section 12.2.1 below we consider the processes which determine the temper-
ature in the ocean mixed layer. Section 12.2.2 discusses the effect of wind-stress
anomalies on the upper ocean circulation. The last subsection (section 12.2.3)
presents two important feedbacks which play a role in El Niño .

12.2.1. Processes determining the SST
The upper layers of the ocean are generally well mixed up to a depth of 50 m

and the temperature is vertically fairly homogeneous within this layer. Consider
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Figure 12.5. Response of pseudo wind stress (pseudo wind stress is a vector in the direction of
the surface wind and a magnitude that is the square of the wind speed) to NINO3 anomalies, from
a regression of observed FSU pseudo wind stress fields to the NCEP NINO3 index over the period
1968–1999. Contours at 5 and 10 m2s−2K−1 denote the magnitude of the response.

such a mixed layer in Fig. 12.6 with a constant depth Hm. The temperature in
the mixed layer changes due to air-sea interaction, processes at the bottom of the
mixed layer and advection. The net heat flux from the atmosphere into the ocean
is denoted by Qoa (positive when heat is transferred from atmosphere into the
mixed layer) and the heat flux at the bottom of the mixed layer by Qb (positive
when heat leaves the mixed layer). The general temperature equation is given by

∂T∗
∂t∗

+ u∗ · ∇T∗ = KH∇2
HT∗ + KV

∂2T∗
∂z∗2

, (12.2)
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where ∇2
H is the horizontal Laplace operator. The horizontal and vertical diffu-

sivities are indicated by KH and KV (both m2s−1), respectively. The boundary
conditions are

z∗ = 0 : ρCpKV
∂T∗
∂z∗

= Qoa, (12.3a)

z∗ = −Hm : ρCpKV
∂T∗
∂z∗

= Qb. (12.3b)

where ρ is the constant density in the mixed layer and Cp the constant heat capac-
ity. Using the approximation that the temperature is vertically homogeneous over
the layer, one can integrate (12.2) over the layer which results in

∂T∗
∂t

+ u∗
∂T∗
∂x∗

+ v∗
∂T∗
∂y∗

= KH∇2
HT∗ +

Qoa − Qb

ρCpHm
. (12.4)

The net heat flux Qoa can be parameterized into a simple form as, for example,
given by

Qoa = −a1(T∗ − Tr∗), (12.5)

where Tr∗ is a reference atmospheric equilibrium temperature. At the lower
boundary, the heat flux is composed of diffusive and advective contributions, with
the latter dominating. An approximation of this heat flux is

Qb

ρCp
= w∗

T∗ − Ts∗
Hu

, (12.6)

where w∗ is a typical vertical velocity at the bottom of the mixed layer, Hu a
vertical distance such that the temperature gradient between the mixed layer and
the subsurface temperature Ts∗ is well approximated. The subsurface temperature
will depend on the vertical temperature distribution and hence on the position of
the thermocline. For example, if the thermocline depth increases then the colder
water is further from the surface and Ts∗ will increase.

12.2.2. Wind induced ocean flow anomalies Ex. 12.1

As can be deduced from Fig. 12.4, SST anomalies lead to surface wind-stress
anomalies. From the theory on the equatorial ocean circulation in chapter 11,
we know that wind-stress anomalies lead to (i) changes in the Ekman flow, (ii)
changes in the thermocline slope and (iii) the generation of a spectrum of free
waves, in particular of Kelvin and Rossby waves.

The surface Ekman layer theory was discussed in section 11.3 using a Lapla-
cian form of momentum friction. In the reduced gravity model in section 11.2,
however, linear friction was used. If the frictional processes in the equatorial Ek-
man layer are idealized to be linear, with damping coefficient as, then a vertically
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Figure 12.6. Sketch of the mixed layer ocean model. The heat flux Qoa is taken positive when
heat is transferred from the atmosphere to the ocean and the heat flux Qb is taken positive when
heat leaves the mixed layer.

integrated balance of the frictional processes, the Coriolis acceleration and wind
stress leads to

asuE∗ − β0y∗vE∗ =
τx
∗

ρHE
(12.7a)

asvE∗ + β0y∗uE∗ =
τy
∗

ρHE
(12.7b)

where uE∗ and vE∗ are the vertically averaged horizontal Ekman layer velocities,
HE is the Ekman layer depth and β0 is the variation of the Coriolis acceleration
on the equator. The vertical velocity wE∗ at the lower boundary of the Ekman
layer is given by

wE∗ = HE(
∂uE∗
∂x

+
∂vE∗
∂y

) (12.8)

For a constant zonal wind stress τx
∗ = −τ0, the equatorial dimensional upwelling

Ex. 12.2

wE∗ is given by

wE∗ =
τ0β0

ρa2
s

(12.9)

which for as = 5.0× 10−6 s−1 and τ0 = 0.1Pa leads to a few m/day. Wind-stress
anomalies lead hence to changes in the Ekman upwelling velocity at the equator:
when the trade winds increase in strength the upwelling increases and vice versa.

From the theory in the sections 11.5 and 11.6, the effect of wind-anomalies
on the ocean velocities below the Ekman layer can be deduced. The ocean zonal
current velocity was given by (11.75) and stronger trade winds leads to a stronger
westward equatorial zonal velocity and vice versa. For a constant zonal wind-
stress τ∗ = −τ0, (11.80) provided the explicit expression for the thermocline as

he∗(x∗) =
τ0

ρHLg′
(
1
3
− x∗

L
) (12.10)
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Stronger trade winds lead to a deeper thermocline in the west and a shallower one
in the east and vice versa.

12.2.3. Feedbacks
In the previous sections, the elementary physical processes have been discussed

and there is enough background now to discuss feedbacks in the coupled sys-
tem. There are three important feedbacks, which are called the thermocline, the
upwelling and the zonal advection feedback. The first two are associated with
changes in the vertical heat transport modelled by (12.6), and the third is associ-
ated with horizontal heat transport. The first two feedbacks are described in this
section in their most elementary form and the zonal advection feedback will be

Ex. 12.3

the topic of an exercise at the end of this chapter.
This thermocline feedback is best explained by looking at a sloping thermocline

in a constant upwelling ocean (with constant w∗ = w̄∗) as sketched in Fig. 12.7.
Assume that a positive SST perturbation T̃ is present in the eastern part of the
basin (Fig. 12.7). This leads to a perturbation in the low level zonal wind which
is westerly with a maximum located west of the maximum of the SST anomaly
according to the response shown in Fig. 12.4. Since the background trade winds
are weakened locally, the slope of the thermocline decreases and it becomes more
flat. In this case, the colder water will be closer to the surface in the west but
it will be farther down in the east. In other words, in the east the thermocline
is deeper and hence the subsurface temperature is higher. Hence, the subsurface
temperature effectively increases at the level of upwelling, giving a positive heat
flux perturbation at the bottom of the mixed layer according to (12.4) and (12.6),
i.e.,

∂T̃∗
∂t∗

≈ −w̄∗
T̃∗ − T̃s∗

Hu
. (12.11)

As w̄∗ is positive, the first term in the right hand side represent the local damping
of SST anomalies. However, when T̃s∗ > 0 then the second term on the right
hand side is positive and the original disturbance may be amplified.

As another prototype situation, consider that the thermocline (and hence the
subsurface temperature T̄s∗) is fixed with a certain slope related to the background
winds, the latter similar to the previous case. Again a positive SST anomaly
is present in the east which generates the same changes in the wind as before
(Fig. 12.7). However, now the changes only influence the upwelling (w̃∗), mainly
through the Ekman layer dynamics. Weaker easterly winds imply less upwelling
and hence less colder water enters the mixed layer. This can also be seen from
(12.6), i.e.,

∂T̃∗
∂t∗

≈ −w̃∗
T̄∗ − T̄s∗

Hu
. (12.12)
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If w̃ < 0 and the background vertical temperature gradient is stably stratified
(T̄∗ > T̄s∗), then the surface temperature perturbation is amplified.
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Figure 12.7. Sketch to illustrate the thermocline feedback, the upwelling feedback and the zonal
advection feedback as indicated. In each case, a warm SST anomaly induces wind-stress anomalies.
(i) Thermocline feedback: the wind anomaly leads to changes in the thermocline slope, which in
turn induces — with constant background upwelling — an amplification of the SST anomaly. (ii)
Upwelling feedback: the wind anomaly leads to changes in the upwelling which in turn induces — in
a background stably stratified temperature field — an amplification of the SST anomaly. (iii) Zonal
advection feedback: the wind anomaly induces stronger zonal advection which, if the annual-mean
zonal SST gradient is negative, leads to amplification of the SST anomaly.

Additional Material

B: Chapter 11 (sections 11.11 to 11.15) of Gill (1982) is a nice introduction into
the tropical atmospheric circulation. There are several review papers on cou-
pled processes (Cane, 1986; Neelin et al., 1994, 1998; Dijkstra and Burgers,
2002) and ENSO and see also Philander (1990).

12.3. The delayed oscillator view of ENSO
From the material presented in the previous section it can be anticipated how

an El Niño grows once an SST anomaly is present in the eastern Pacific. A warm
anomaly will lead to a weakening of the trade winds which will give a smaller
Ekman upwelling and a smaller thermocline slope. The two feedbacks above then
may lead to amplification of the SST anomaly. The question is now what eventu-
ally stops this growth. Here the transient nature of the response (adjustment due
to waves) comes into play and although the full responses were given in section
11.5, there are more conceptual models providing insight into these issues.
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The first step in obtaining a reduced model is the simplification of the shallow
water response. For convenience, the dimensionless shallow water equations us-
ing the long wave approximation (ζ0 → 0) in (11.41) are again given below with
the dimensionless zonal wind stress forcing indicated by τ , i.e.

∂u

∂t
− yv +

∂h

∂x
+ εou = τ , (12.13a)

yu +
∂h

∂y
= 0, (12.13b)

∂h

∂t
+

∂u

∂x
+

∂v

∂y
+ εoh = 0. (12.13c)

To obtain a single equation for h, (12.13a) is differentiated with respect to y and
the result is then multiplied by y. When (12.13a) is subtracted from this result one
obtains

(yuy − u)t − y2vy + yhxy + εoyuy − hx − εou = y τy − τ, (12.14)

where the subscripts now indicate differentiation. Next, (12.13b) is differentiated
with respect to x and the result multiplied by y. When also (12.13b) is differenti-
ated with respect to y, the two relations

y2ux + yhxy = 0, (12.15a)

yuy + u + hyy = 0, (12.15b)

are obtained. The terms yuy and yhxy are now eliminated from (12.14) using
(12.15). When the relation u = −hy/y is used and the term with ux + vy is
eliminated using (12.13c), the final equation obtained is

y2(
∂h

∂t
+ εoh) + (

2
y

∂

∂y
− ∂2

∂y2
)(

∂h

∂t
+ εoh) − ∂h

∂x
= y

∂τ

∂y
− τ. (12.16)

The boundary conditions then become

x = 0 :
∫ ∞

−∞

1
y

∂h

∂y
dy = 0, (12.17a)

x = 1 :
∂h

∂y
= 0. (12.17b)

It can be assumed that h has a near parabolic dependence near the equator,
a property which does not seem unreasonable, when looking at the thermocline
structures of the free equatorial Rossby waves. Hence,

h(x, y, t) = he(x, t) + y2Δh(x, t). (12.18)
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If one takes (hn + he)/2 = h(x, 1, t), the right hand side being the thermocline
deviation at a distance λo from the equator, then it follows that Δh = (hn−he)/2.
Note that the zonal velocity is given by u = −hy/y = he − hn. Now (12.18) is
substituted into (12.16) and considered at y = 0 giving one equation relating he

and hn. A second equation is obtained by realizing that the second term in the left
hand side of (12.16) is much smaller than the first at y = yn where h ≈ hn. This
leads to the so-called two-strip model

(
∂

∂t
+ εo)(he − hn) +

∂he

∂x
= τ|y=0, (12.19a)

(
∂

∂t
+ εo)hn − 1

y2
n

∂hn

∂x
=

∂

∂y
(
τ

y
)|y=yn

. (12.19b)

Note that the free wave solutions of (12.19b) with wavenumber k (in a zonally
unbounded domain) have a frequency −k/y2

n, and hence represent Rossby waves.
For yn = 2, these have a phase velocity 1/4 of the free Kelvin wave signal (of the
wave with the same wavenumber k) which is contained in (12.19a). The boundary
conditions can be approximated by

hn(1, t) = rEhe(1, t) ; he(0, t) = rW hn(0, t), (12.20)

where rE and rW are a measure of the degree of zonal mass flux allowed at each
boundary. For example, at the eastern boundary, the zonal velocity is given by
uE(1, t) = he(1, t)−hn(1, t) = (1−rE)he(1, t). Hence, if rE = 1 the zonal mass
flux is zero but for rE < 1 a nonzero mass flux is allowed. In general, rW < 1,
since energy leaks through the western boundary under condition (12.17b) and a
choice rW = 3/5 is the appropriate value under the two-strip approximation with
h = 0 at y = 2yn and beyond. Both rW and rE therefore monitor the degree of
exchange of mass between the equatorial strip and off-equatorial regions.

We now turn to the SST equation. When advection and horizontal diffusion are
neglected in (12.4), we find the equation

∂T∗
∂t

= εw(Tr∗ − T∗) − w∗
T∗ − Ts∗

Hu
(12.21)

where εw is a damping coefficient and Tr∗ was the radiation equilibrium tempera-
ture. As the thermocline deepens, the subsurface temperature increases and hence
we can represent this effect as a dependence Ts∗ = Ts∗(h∗), where h∗ is the ther-
mocline thickness. If we linearize the equation (12.21) around a given background
state, scale the equations using (11.17), then the equation governing the equatorial
SST-anomalies is given by

∂Te

∂t
+ CT Te − Ch he = 0, (12.22)
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with CT representing local damping and Ch the effect of thermocline variations
on the temperature perturbations. As the SST perturbations change mostly in the
eastern part of the basin, one can average (12.22) over the eastern half of the basin,
say from x = 1/2 to x = 1, to give

dTeE

dt
+ CTETeE − ChEheE = 0. (12.23)

A westerly wind response west of positive TeE can be represented by

τ|y=0 = μ A0 TeE f(x), (12.24)

with a fixed pattern f(x) and amplitude A0. The proportionality factor μ serves
as coupling coefficient with μ = 1 being a ‘realistic’ strength. The function
f(x) mimics the spatial pattern of the wind response and can be taken piecewise
constant, for example

f(x) =
1

x2 − x1
for x1 < x < x2, (12.25)

and zero elsewhere. In this way, the forcing in (12.19b) can be approximated as

∂

∂y
(
τ

y
)|y=yn

≈ −μ A0 TeE f(x)
θ

y2
n

, (12.26a)

where θ is an O(1) coefficient.
Ex. 12.4

A nice element in the coupled model developed in this way is that the two-strip
equations can be integrated along the (Kelvin and Rossby) wave characteristics,
which are given by

x − x0 = t − t0, (12.27a)

x − x0 =
t0 − t

y2
n

, (12.27b)

respectively, where (x0, t0) is any point in the domain. When damping is ne-
glected, the solutions he and hn can be obtained by first integrating (12.19b)
along a Rossby wave characteristic starting at the eastern boundary and reaching
the western boundary. Next, (12.19b) is integrated along a characteristic starting
at the western boundary over the Kelvin crossing time, in which the wave has
reached the eastern boundary. Using mean value approximations and the fact that
1 + y2

n >> 1, this leads to delay equations of the form

heW (t) = rW rEheW (t − 1 − y2
n) +

+μA0rW (rETeE(t − 1 − xP ) − θTeE(t − y2
nxP )), (12.28a)

heE(t) = rW rEheE(t − 1 − y2
n) −

−μA0(θrW TeE(t − 1 − y2
nxP ) − TeE(t − 1 + xP )), (12.28b)

dTeE

dt
+ CTETeE − ChEheE = 0, (12.28c)
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where xP is a chosen fixed point within the area of wind response [x1, x2].
When the effect of the eastern boundary reflection is neglected (rE = 0), then

(12.28b) and (12.28c) give

dTeE

dt
= −CTETeE + μA0ChE

(TeE(t − 1 + xP ) − θrW TeE(t − 1 − y2
nxP )), (12.29)

which shows that the average eastern basin temperature is influenced by local
damping and a remote signal due to propagation of Kelvin and Rossby waves.
The delay time 1−xP is the effect due to the Kelvin wave and as this is relatively
fast, it can be neglected on long time scales. It provides the local amplification of
temperature perturbations by thermocline feedback through a forced Kelvin wave
response. The delay 1+y2

nxP is the time taken for the Rossby wave to travel from
the center of wind patch near xP to the western boundary plus the time it takes
the reflected Kelvin wave to cross the basin. When returned in the eastern part of
the basin, it provides a delayed negative feedback to the temperature perturbation
(since rW > 0).

Additional Material

B: The articles Cane and Zebiak (1985), Battisti and Hirst (1989), Schopf and
Suarez (1988) provide an overview on the early modeling and understanding
of El Niño .

D: The papers Jin (1997a) and Jin (1997b) provide a complete overview on the
different delayed oscillator models as the delayed oscillator equations are de-
rived from shallow-water dynamics.

Equation (12.29) forms the basis of the delayed oscillator theory of the late
1980’s where a differential delay equation with local feedback was proposed as a
model of ENSO. The equations are

dT∗(t∗)
dt∗

= aT∗(t∗) − bT∗(t∗ − d) − cT 3
∗ (t∗). (12.30)

Here a represents the growth rate of the temperature disturbance T in the eastern
Ex. 12.5

Pacific and would correspond to μA0ChE −CTE in (12.29). The quantity d is the
delay time due to the propagation of equatorial waves, corresponding to 1+y2

nxP

in (12.29), and b measures its influence with respect to the local feedbacks. The
nonlinear term in (12.30) is needed for equilibration of the temperature to finite
amplitude.

This delayed oscillator model represents the central elements of the ENSO cy-
cle in terms of local growth due to instability and subsequent adjustment through
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(individual) Kelvin and Rossby waves. In the eastern part of the basin, strong
feedback takes place which leads to amplification of disturbances: positive SST
anomalies cause wind-stress anomalies, which weaken the background trade
winds, with maximum weakening west of the SST anomaly. This is turn creates a
different slope in the thermocline which leads through the thermocline feedback
to a larger SST anomaly.

Figure 12.8. Sketch to illustrate the negative delayed feedback. Stage (a) is just after the max-
imum of El Nino where the Kelvin wave (deepening the thermocline) propagates to the eastern
boundary and Rossby waves appear which shallow the thermocline in the central Pacific. Stage (b)
is just before the start of the La Nina phase where the Rossby waves have reflected into a Kelvin
wave which shallows the thermocline. Although the largest amplitude of the waves is in the ther-
mocline, the waves are drawn at the surface and their color (blue: cold and red: warm) indicates
their temperature signal in the mixed layer.

However, the ocean does not react instantaneously to the changing winds, but
has a memory component which partly determines its long term evolution. The
wind anomaly also generates westward travelling Rossby waves that make the
thermocline shallower in off-equatorial regions in the western part of the basin
(Fig. 12.8a). The Rossby waves reach the western boundary and cause a Kelvin
wave reflection which causes a shallower thermocline (Fig. 12.8b). This Kelvin
wave signal provides the delayed negative feedback, through which the SST
anomaly reduces to zero and becomes slightly negative. Then the feedback start to
operate with a different sign to amplify the negative temperature anomaly leading
to a La Niña state. Hence, the period of the oscillation is basically determined by
the wave transit time associated with the delayed feedback. Slightly different (and
important) details have been added to this mechanism, but the basic mechanism
of the delayed oscillator at work is that sketched above.
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Summary

The El Niño phenomenon is associated with an interannual sea sur-
face temperature anomaly in the eastern to central Pacific. There are
connected changes in the sea level pressure and surface winds which
are called the Southern Oscillation.

A positive SST anomaly in the eastern Pacific leads to low-level heat-
ing of the tropical atmosphere and to a westerly wind anomaly located
west of the SST anomaly and hence a weakening of the trade winds.

A weakening of the trade winds leads to a reduction of upwelling and
a reduction in the slope of the thermocline.

There exist three positive feedbacks in the coupled system: the ther-
mocline feedback, the upwelling feedback and the zonal advection
feedback.

El Niño is brought about through coupled interactions between the
equatorial ocean and the global atmosphere. Anomalies in sea sur-
face temperature induce wind-stress anomalies which cause changes
in thermocline depth and upwelling and the three feedbacks can am-
plify these anomalies. The ocean adjusts to the changes in wind stress
through the propagation of equatorial waves. The ocean basin adjust-
ment provides a negative feedback which damps the anomalies and
which induces a transition to the opposite phase (La Niña). This is the
essence of the delayed oscillator view of ENSO.
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12.4. Exercises on chapter 12

(12.1) Ocean-atmosphere interaction

Assume that the temperature in the eastern Pacific (in the NINO3 region) in-
creases by 1◦C.

a. Use Fig. 12.4 and information in section 2.1 such as (2.1) to determine the
amplitude response of the zonal wind stress τx

∗ caused by a SST (NINO3)
anomaly.

Assume that the wind-stress anomaly is purely zonal, i.e., τy = 0.

b. Calculate the amplitude of the equatorial upwelling anomaly wE∗ caused
by the zonal wind-stress anomaly.

c. Calculate the amplitude of the thermocline anomaly he∗ in the west Pacific
caused by the zonal wind-stress anomaly.

(12.2) Equatorial upwelling

In section 12.2.2 the Ekman layer equations (12.7) were given in case of linear
friction with damping coefficient as. Assume that τy = 0.

a. Determine the horizontal Ekman velocities uE∗ and vE∗ in terms of the
wind stress τx

∗ .

b. Explain why vE∗ = 0 at the equator.

c. Determine the upwelling velocity wE∗ at the equator for a constant zonal
wind stress τx = −τ0.

d. With a wind stress amplitude τ0 = 0.1 Pa and a damping coefficient as =
5.0 × 10−6 s−1, determine wE in m/day.

(12.3) The zonal advection feedback

Apart form the thermocline and the upwelling feedback, there is a third feed-
back: the zonal advection feedback. Assume that there is a region with a strong
zonal background temperature gradient with ∂T̄∗/∂x∗ < 0. Such a region, for
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example, exists at the eastern side of the warm pool.

a. Assume that there is a positive temperature anomaly that causes westely
wind anomalies. Describe the effect on the zonal currents in the ocean.

b. Consider in the SST-equation, the balance

∂T̃∗/∂t∗ ≈ −ũ∗ ∂T̄∗/∂x∗

that describes the evolution of temperature anomalies T̃∗ due to anomalies in
the zonal current ũ∗. Describe the mechanism of the zonal advection feedback.

(12.4) The two-strip model

From the two-strip model in section 12.3, the delayed oscillator equations
can be derived explicitly from the shallow-water model and the SST equa-
tion. Central in this derivation is the integration over characteristics defined by
Kelvin and Rossby waves.

a. Determine the characteristics of a free Kelvin wave along the equator and
sketch these in the x − t plane.

b. Determine the characteristics of a free j = 1 Rossby wave along the ymax

value in Table 11.1 and also sketch these in the x − t plane.

c. Why can yn in the two-strip model be identified with ymax as given in
Table 11.1?

d. Carry out the integration of the equations (12.19) along both characteristics
under a. and b. and derive the equations (12.28a-b).

(12.5) The delayed oscillator

Equation (12.30) forms the basic model for the delayed oscillator.

a. Scale time with 1/a and temperature by
√

a/c, derive the dimensionless
equation

dT

dt
= T (t) − αT (t − δT ) − T 3(t),

and determine α and δT .
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b. Show that for α < 1, the equation has three different steady states.

c. Using linear stability theory (as in chapter 10, see also chapter 16),
determine the stability of the nontrivial steady states for α < 1. What are the
periods of oscillation of the unstable modes?
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THERMOCLINE PROBLEM
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In the chapters 5-10, basic theory of the midlatitude ocean circulation was
presented. The constant density case was considered in chapter 5 followed
by the case where the stratification was uniformly characterized by a typ-
ical profile of the buoyancy frequency N (chapter 7). In this chapter, we
relax the restriction of fixed N over the basin by allowing the density to
vary over the whole flow domain. Although these density differences arise
through gradients in temperature and salinity, here we will only consider
the density field itself. The effect of both quantities on the density and
its consequences for the stability of the large-scale flow will be discussed
in chapter 16. In section 13.1 some characteristics of the thermocline are
presented and the mathematical thermocline problem in section 13.2. The
planetary extension of the constant density theory in chapter 5 is subject
of section 13.3 and the planetary extension of two-layer model follows
in section 13.4. In the last section 13.5, the ventilation theory and the
internal boundary layer theory of the thermocline are presented.

13.1. Characteristics of the thermocline
Profiles of potential temperature ϑ, salinity S and potential density σ0 (cf.

chapter 1) at a station (along the WOCE A16 section) in the North Atlantic near
(21◦W, 26.5◦N) are plotted in the Figs. 13.1a-c. The potential density increases at
depths between 500 and 1500 meter and then quickly approaches its deep sea
value. The region where the largest gradients occur is called the pycnocline
(Fig. 13.1c) and because there are also strong temperature gradients in this region
(Fig. 13.1a), it is also called the thermocline; we will use this terminology below.
The depth of the thermocline is large at midlatitudes and decreases towards the

equator and the poles. This can be seen in a plot of the potential density σ0 along
the WOCE A16 section (Fig. 13.1d). For this section, potential temperature and
salinity profiles were plotted in Fig. 1.6 (chapter 1).

Horizontal density gradients influence the ocean circulation e.g., through the
thermal wind balance. These partly density driven flows, however, in turn deter-
mine the density distribution through advection of heat and salt. The existence
of the thermocline is the net result of the interaction between flow field and the
density field in the ocean and it is therefore a complicated nonlinear problem. It
maybe no surprise that this problem has not been satisfactorily solved up till now.
The central issue discussed in this chapter is the theory attempting to explain the
presence of the thermocline.
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Figure 13.1. Profiles of (a) the potential temperature, (b) the salinity and (c) the potential density
(σ0) in the eastern part of the Atlantic Ocean near (58◦W, 37◦N). (d) Plot of the potential density
σ0 along the WOCE A16 section.
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13.2. Formulation of the problem
We consider an ocean basin that is bounded in the zonal direction by continents

at φ = φW (θ) and φ = φE(θ) and which has a meridional extent [θS , θN ]. In the
vertical direction, the ocean water is bounded by an ocean bottom with average
depth D and by the ocean-atmosphere interface with a mean position at z = 0.

On the planetary scale, the characteristic length scale of the flow is L = r0 and
because the density variations are large, the static stability parameter (the buoy-
ancy frequency N ) will vary strongly. Hence we can no longer use a reference
density ρ̄∗(z) and the only reasonable choice for such a reference is a constant
ρ̄∗ = ρ0. With these choices, the appropriate scales for pressure and density
follow as (cf. section 3.3)

p∗ = −gDρ0z + 2ρ0UΩr0p, (13.1a)

ρ∗ = ρ0(1 +
2ΩUr0

gD
ρ) = ρ0(1 + εpFpρ), (13.1b)

where z∗ = Dz. Here εp = U/(2Ωr0) and Fp = 4Ω2r2
0/(gD) are the planetary

Rossby and rotational Froude numbers.
To simplify matters, we will take a linear equation of state

ρ∗ = ρ0(1 − αT (T∗ − T0) + αS(S∗ − S0)), (13.2)

with constant αT and αS . Because we will focus on the understanding of the ver-
tical structure of the wind- and density driven flow, we neglect horizontal mixing
of momentum, heat and salt. The vertical mixing of heat and salt is represented
by the vertical diffusivity KV .

With a linear equation of state the equations for temperature and salinity (3.32e-
f) can be combined into one equation for the density ρ, which becomes (in spher-
ical coordinates)

Dρ

dt
=

u

cos θ

∂ρ

∂φ
+ v

∂ρ

∂θ
+ w

∂ρ

∂z
= λV

∂2ρ

∂z2
. (13.3)

with λV = KV r0/(UD2). The parameter λV represents the small scale vertical
mixing of density. With an estimate of KV = 5 × 10−5 m2s−1 and U = 10−3

ms−1 it follows that λV ≈ O(1), but this value is very uncertain. Likely, the value
of λV is much smaller.

From chapter 3, the scaled momentum balance and the continuity equation can
(in the limit δ = D/r0 → 0) be written as

εp

[
Du

dt
− uv tan θ

]
− v sin θ = − 1

cos θ

∂p

∂φ
+

1
2
ĒV

∂2u

∂z2
, (13.4a)

εp

[
Dv

dt
+ u2 tan θ

]
+ u sin θ = −∂p

∂θ
+

1
2
ĒV

∂2v

∂z2
, (13.4b)
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ρ = −∂p

∂z
, (13.4c)

∂u

∂φ
+

∂(v cos θ)
∂θ

+ cos θ
∂w

∂z
= 0, (13.4d)

where ĒV = AH/(Ωr2
0) is the vertical planetary Ekman number. If we consider

the case with a flat bottom and neglect the effect of free surface deformations,
then the boundary conditions become

z = −1 : u = v = w = 0,
∂ρ

∂z
= 0, (13.5a)

z = 0 : α̂τφ =
∂u

∂z
; α̂τ θ =

∂v

∂z
; w = 0 ; ρ = ρs, (13.5b)

where α̂ = τ0D/(ρ0AV U) and ρs is the prescribed surface density distribution.
The bottom boundary condition for ρ (13.5a) implies that there are no fluxes of
heat and salt at the bottom of the ocean. The equations (13.4) and boundary
conditions (13.5) are the dimensionless mathematical model associated with the
the thermocline problem.

13.3. The constant density planetary circulation
It is again helpful to discuss the homogeneous (constant density) theory for

the planetary case first and then look at the modifications needed to incorporate
the effects of stratification. For the planetary homogeneous case, there are again
small parameters, i.e. εp = 10−4, ĒV ≤ 10−4 and Fp = 102, such that εpFp � 1.
Again, asymptotic solutions can be determined by using the parameter εp and we
write the solution as

u(φ, θ, z) = u0(φ, θ, z) + εp u1(φ, θ, z) + . . . , (13.6)

with similar expansions for v, w and p. The O(1) system of equations describes
the geostrophic flow

v0 sin θ =
1

cos θ

∂p0

∂φ
, (13.7a)

u0 sin θ = −∂p0

∂θ
, (13.7b)

0 = −∂p0

∂z
, (13.7c)

∂u0

∂φ
+

∂(v0 cos θ)
∂θ

+ cos θ
∂w0

∂z
= 0. (13.7d)
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The planetary geostrophic balance

On the planetary scale where the full variation of the Coriolis parameter
is taken into account, the geostrophic balances are given by

2Ω v∗ sin θ =
1

ρ0r0 cos θ

∂p∗
∂φ

,

2Ω u∗ sin θ = − 1
ρ0r0

∂p∗
∂θ

.

From (13.7c), it follows with (13.7a-b) that u0 and v0 cannot depend on z and
hence the boundary conditions (13.5) cannot be satisfied. Again, an analysis of
the Ekman boundary layers is needed, but contrary to the β-plane case, the plane-
tary geostrophic equations are not dynamically degenerate. When the pressure is
eliminated from (13.7a-b) using (13.7d) the vorticity equation follows as

sin θ
∂w0

∂z
− v0 cos θ = 0. (13.9)

In dimensional quantities, (13.9) is written as

2Ω
r0

v∗ cos θ = 2Ω
∂w∗
∂z∗

sin θ, (13.10)

where the 2Ω is added for comparison to the midlatitude case. Because of the
O(1) variation of the Coriolis parameter in the planetary case, the O(1) horizon-
tal geostrophic velocity field is no longer divergence free. The equation (13.10)
expresses that the vorticity due to north-south movement of a fluid column on the
rotating sphere can balance the vortex stretching of the column.

13.3.1. The bottom Ekman layer
At the bottom, we introduce a boundary layer coordinate ξ = (z + 1)/Ē

1/2
V

and write the solution in the boundary layer as

ũ(φ, θ, ξ) = ũ0(φ, θ, ξ) + εp ũ1(φ, θ, ξ) + . . . (13.11)

with similar expansions for v and p. For the vertical velocity the expansion be-
comes

w̃(φ, θ, ξ) = w0(φ, θ, z) + Ē
1/2
V (w̃0(φ, θ, ξ) + εpw̃

1(φ, θ, ξ) + . . . (13.12)

The first term in the right hand side is needed because the O(1) geostrophic solu-

tion w0 is nonzero. The rescaling with the factor Ē
1/2
V is needed to balance terms

of the continuity equation in the boundary layer.
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The O(1) system of equations in the boundary layer becomes

−ṽ0 sin θ = − 1
cos θ

∂p̃0

∂φ
+

1
2

∂2ũ0

∂ξ2
, (13.13a)

ũ0 sin θ = −∂p̃0

∂θ
+

1
2

∂2ṽ0

∂ξ2
, (13.13b)

0 = −∂p̃0

∂ξ
, (13.13c)

∂ũ0

∂φ
+

∂(ṽ0 cos θ)
∂θ

+ cos θ

[
∂w0

∂z
+

∂w̃0

∂ξ

]
= 0, (13.13d)

from which it follows that the pressure is again constant over the boundary layer,
i.e. p̃0 = p0.

Let λ =
√
| sin θ| and define ξ̄ = λξ. The equations (13.13a-b) are then

transformed into

−ṽ0 = −v0 +
1
2

∂2ũ0

∂ξ̄2
, (13.14a)

ũ0 = u0 +
1
2

∂2ṽ0

∂ξ̄2
, (13.14b)

where also (13.7) has been used. This is the same system of equations as for the
Ekman boundary layer on the β-plane. Hence, the solutions (5.49) can be copied
with ξ substituted by ξ̄.

Substitution of these solutions into (13.13) and use of (13.7d) gives

cos θ
∂w̃0

∂ξ
=
[
∂u0

∂φ
cos λξ +

∂v0

∂φ
sinλξ

]
e−λξ

+
∂

∂θ

[
(v0 cos λξ − u0 sinλξ)e−λξ cos θ

]
. (13.15)

Through integration over the boundary layer and making use of the definite inte-
grals

∫ ∞

0
e−λξ

(
sinλξ
cos λξ

)
dξ =

1
2λ

(
1
1

)
, (13.16a)

∫ ∞

0
ξe−λξ

(
sin λξ
cos λξ

)
dξ =

1
2λ2

(
1
0

)
, (13.16b)

we find

lim
ξ→∞

w̃0(φ, θ, ξ) = w̃0(φ, θ, 0) +
1
2λ

(
1

cos θ
(
∂u0

∂φ
+

∂(v0 cos θ)
∂θ

) +
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1
cos θ

(
∂v0

∂φ
− ∂(u0 cos θ)

∂θ
)) +

1
4λ tan θ

(u0 − v0),

= w̃0(φ, θ, 0) +
1
2λ

(∇ · u0 + ∇ · (u0 ∧ e3) +
1

2 tan θ
(u0 − v0)) =

= w̃0(φ, θ, 0) +
1
2
(∇ · (u

0

λ
) + ∇ · (u

0

λ
∧ e3)), (13.17)

where u0 = (u0, v0, 0)T .
From the boundary conditions w = 0 at z = −1, it follows

Ē
1/2
V w̃0(φ, θ, 0) + w0(φ, θ,−1) = 0, (13.18)

and hence we finally find from (13.17) and (13.18) that

w̃E(φ, θ) = lim
ξ→∞

Ē
1/2
V w̃0(φ, θ, ξ) + lim

z→−1
w0(φ, θ, z)

=
1
2
Ē

1/2
V (∇ · (u

0

λ
) + ∇ · (u

0

λ
∧ e3)). (13.19)

The dimensionless Ekman transport ME is determined through integration of
ũ0 − u0 over the boundary layer and becomes

ME =
Ē

1/2
V

2λ
(u0 + u0 ∧ e3), (13.20)

Note that this expression is very similar to that on the equatorial β-plane (section
11.2) where λ =

√
|y|.

Bottom Ekman layer

On the planetary scale the dimensional vertical Ekman pumping veloc-
ity (ms−1) and the Ekman volume transport (m2s−1) at the ocean (flat)
bottom are

w̃E∗ =
1

2r0

√
AV

Ω
(∇ · ( u∗√

| sin θ|
) + ∇ · ( u∗√

| sin θ|
∧ e3)),

ME∗ =
1
2

√
AV

Ω
1

sin θ
(u∗ + u∗ ∧ e3).

13.3.2. The free surface Ekman layer
In the boundary layer at the free surface, we introduce the boundary layer co-

ordinate χ = −z/Ē
1/2
V and the expansions (for u, v and p) become

û(φ, θ, χ) = û0(φ, θ, χ) + εpû
1(φ, θ, χ) + . . .

ŵ(φ, θ, χ) = −w0(φ, θ, z) + Ē
1/2
V (ŵ0(φ, θ, χ) + εpw̃

1(φ, θ, χ) + . . .
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The O(1) system becomes

−v̂0 sin θ = − 1
cos θ

∂p̂0

∂φ
+

1
2

∂2û0

∂χ2
, (13.23a)

û0 sin θ = −∂p̂0

∂θ
+

1
2

∂2v̂0

∂χ2
, (13.23b)

0 = −∂p̂0

∂χ
, (13.23c)

∂û0

∂φ
+

∂(v̂0 cos θ)
∂θ

− cos θ(
∂w0

∂z
+

∂ŵ0

∂χ
) = 0. (13.23d)

We transform χ̄ = χλ and the boundary conditions at χ = 0 become

α̂Ē
1/2
V τφ = λ

∂û0

∂χ
, (13.24a)

α̂Ē
1/2
V τ θ = λ

∂v̂0

∂χ
. (13.24b)

The solutions are therefore given by (5.75) with χ substituted by λχ and α =
Ex. 13.1

Ē
1/2
V α̂ substituted by α/λ. Integration of the continuity equation (13.23d) over

the boundary layer and making use of the boundary conditions at z = 0, i.e.

Ē
1/2
V ŵ0(φ, θ, 0) − w0(φ, θ, 0) = 0, (13.25)

eventually provides the vertical Ekman velocity ŵE as

ŵE(φ, θ) = lim
χ→∞

Ē
1/2
V ŵ0(φ, θ, χ) − lim

z→0
w0(φ, θ, z) =

=
α

2
Ē

1/2
V ∇ · ( T

sin θ
∧ e3), (13.26)

where T = (τφ, τ θ, 0). For the dimensionless Ekman transport we then find

ME =
αĒ

1/2
V

2 sin θ
T ∧ e3, (13.27)

Again note that this expression is again very similar to that on the equatorial β-
plane (section 11.2) where sin θ ∼ y.



304 DYNAMICAL OCEANOGRAPHY

Surface Ekman layer

On the planetary scale the dimensional vertical Ekman pumping velocity
(ms−1) and the Ekman volume transport ((m2s−1)) at the ocean surface
are

ŵE∗ =
1

2Ωρ0
∇ · ( T∗

sin θ
∧ e3),

ME∗ =
1

2Ωρ0

1
sin θ

T∗ ∧ e3.

13.3.3. The planetary Sverdrup-Stommel theory
Integration of (13.9) over the geostrophic flow domain gives

sin θ (ŵE − w̃E) = v0 cos θ. (13.29)

Using the expressions for the vertical Ekman velocities of the previous section,
the potential vorticity equation becomes

sin θ

2
Ē

1/2
V

[
α ∇ · ( T

sin θ
∧ e3) −∇ · (u

0

λ
) −∇ · (u

0

λ
∧ e3)

]
= v0 cos θ,

(13.30)
with λ =

√
| sin θ|.

The vorticity change due to north-south motion is represented by the right hand
side. It is balanced by vorticity changes due to the wind stress and the bottom
friction. Because both u0 and v0 can be expressed in terms of the pressure p0,
(13.30) is a scalar equation for p0. Note that the horizontal velocity field is not
divergence free and hence there is no streamfunction ψ such that u0 = ∇∧(e3ψ).
We can, however, write p0 = ψ and then (13.30) becomes a scalar equation for ψ.
In this case, curves of constant ψ are in general not streamlines.

From (13.30) it follows that there is only a nontrivial balance in the interior of
the basin (far from the continental boundaries), if the characteristic velocity U is
chosen such that

αĒ
1/2
V

2
= 1 ⇒ U =

τ0

2ρ0ΩD
. (13.31)

We then find that U ≈ 10−3 ms−1 and subsequently εp = O(10−5). The choice
of U is therefore consistent with the approximation εp � 1. In (13.30) there is

only one small parameter, i.e., Ē
1/2
V .

If we denote ε = Ē
1/2
V and expand the solution of (13.30) as

ψ(φ, θ) = ψ0(φ, θ) + ε ψ1(φ, θ) + . . . (13.32)
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and we find the O(1) balance in (13.30) to be

∂ψ0

∂φ
= sin2 θ ∇ · ( T

sin θ
∧ e3) ≡ T (φ, θ). (13.33)

This is the planetary Sverdrup balance and just as on the β-plane, in general we
Ex. 13.2

cannot satisfy both kinematic conditions u ·n = 0 on the continental boundaries.

The planetary Sverdrup balance

On the planetary scale the dimensional Sverdrup balance is given by

2Ω
r0

v∗ cos θ =
sin θ

ρ0D
∇ · ( T∗

sin θ
∧ e3),

The solution of (13.33) follows immediately through integration in zonal direc-
tion as

ψ0(φ, θ) =
∫ φ

φ0

T (s, θ)ds + Ψ0(θ), (13.34)

where Ψ0(θ) is still an arbitrary function.
To study the flow in the continental boundary layers we consider the case where

φW and φE are constant. At the western boundary, we introduce a boundary layer
coordinate ζ with ζ = (φ − φW )/εq, where q is to be determined. The highest
order terms in ε will come from the second order derivatives of φ in the expression
∇ · (u0/λ) +∇ · ((u0/λ)∧ e3). The coefficient of ∂2ψ/∂φ2 in this expression is
1/(λ3 cos2 θ). The equation (13.30) therefore becomes

ε−q ∂ψ

∂ζ
= T (φ, θ) − εq−2 λ

2 cos2 θ

∂2ψ

∂ζ2
+ O(εq−1), (13.35)

and bottom friction can only play a role when q = 1.
The boundary layer expansion becomes

ψ̂(ζ, θ) = ψ̂0(ζ, θ) + εψ̂1(ζ, θ) + . . . , (13.36)

and the O(1) balance in (13.35) gives, with δ(θ) = λ/(2 cos2 θ)

∂ψ̂0

∂ζ
= −δ(θ)

∂2ψ̂

∂ζ2
. (13.37)

The solution is

ψ̂0(ζ, θ) = C1(θ) + C2(θ)e
− ζ

δ(θ) , (13.38)
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and the functions Ci(θ) are determined from

û0(0, θ) = − 1
sin θ

∂ψ̂0

∂θ
(0, θ) = 0 (13.39a)

lim
ζ→∞

ψ̂0(ζ, θ) = C1(θ) = lim
φ→φW

ψ0(φ, θ). (13.39b)

At the eastern boundary the minus sign in (13.37) changes into a plus sign and,
as in the β-plane case, it follows that there is no boundary layer due to bottom fric-
tion. The function Ψ0(θ) in (13.34) has to be chosen such that the zonal velocity
is zero at φ = φE and this fixes also C1 and C2.

The boundary layer thickness δ(θ) is relatively small near the equator and in-
creases monotonically with θ. The dimensional boundary layer thickness δ∗(θ)
follows from (13.37), the definition of ζ and the horizontal length scale L = r0

and becomes

δ∗(θ) = Ē
1/2
V r0δ(θ) =

r0

D cos2 θ
(
AV sin θ

Ω
)1/2. (13.40)

At θ = 45◦N we find that δ∗ ≈ 40 km for AV = 10−3 m2s−1.

13.4. The planetary two-layer model
The governing equations in the stratified case are given by (13.4). When we ne-

glect mixing and inertia in these equations, we find again the planetary geostrophic
and hydrostatic balances. Just as in the stratified quasi-geostrophic case in chap-
ter 7, horizontal density differences will cause a vertical shear according to the
dimensionless thermal wind relations

sin θ
∂v

∂z
= − 1

cos θ

∂ρ

∂φ
, (13.41a)

sin θ
∂u

∂z
=

∂ρ

∂θ
. (13.41b)

Planetary thermal wind balance

On the planetary scale the thermal wind balance is

2Ω sin θ
∂v∗
∂z∗

= − g

ρ0r0 cos θ

∂ρ∗
∂φ

,

2Ω sin θ
∂u∗
∂z∗

=
g

ρ0r0

∂ρ∗
∂θ

.

To help understand the existence of the thermocline one can idealize it as a
boundary between two layers of constant density. The upper layer (which is
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bounded above by the ocean-atmosphere interface) has a constant density ρ1 and
the lower layer (bounded below by a flat bottom) has a constant density ρ2 > ρ1.
The layers are separated by a deformable interface at z = −h(φ, θ).

In each layer, the results of the homogeneous theory from the previous section
can be used; we denote the velocity vector in layer i with (ui, vi, wi)T . In each
layer outside the Ekman layers, (13.7) applies and hence

vi sin θ =
1

cos θ

∂pi

∂φ
, (13.43a)

ui sin θ = −∂pi

∂θ
, (13.43b)

∂pi

∂z
= 0, (13.43c)

1
cos θ

(
∂ui

∂φ
+

∂(vi cos θ)
∂θ

) +
∂wi

∂z
= 0. (13.43d)

The boundary conditions at the thermocline (that is made dimensionless with
the depth D, i.e. h∗ = Dh, but there is no a priori scaling) z = −h(φ, θ) become

p1∗ = p2∗, (13.44a)
D

dt
(z + h(φ, θ)) = 0 ⇒ u

∂h

∂φ
+ v cos θ

∂h

∂θ
+ w cos θ = 0, (13.44b)

which represents the continuity of normal stress and the nonexistence of mass
transfer over the interface.

From (13.1a) and (13.44a) it follows that

γh = p1 − p2, (13.45)

with γ = (ρ2 − ρ1)/(εpFpρ0) = g′D/(2Ωr0U), i.e. this parameter now contains
the reduced gravity g′ = g(ρ2 − ρ1)/rho0 . From (13.45) it follows that small
pressure differences between layer 1 and 2 can cause substantial amplitudes in the
thermocline. Although the pressure is continuous over z = −h, this does not hold

Ex. 13.3

for the horizontal velocities (that are independent of z in each layer). It is not
difficult to show that the vertical velocity is continuous.

The final equations of the planetary two-layer model are obtained by inte-
gration of (13.43) over each layer. The vorticity equations then become (with
h1 = h, h2 = 1 − h),

v1h1 cos θ = (ŵE − w|z=−h) sin θ, (13.46a)

v2h2 cos θ = (w|z=−h − w̃E) sin θ, (13.46b)

where ŵE and w̃E are the vertical Ekman velocities at top and bottom of the
Ekman layer. Because of the continuity of w over the thermocline, the Sverdrup
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Figure 13.2. Sketch of a layer model needed to satisfy a prescribed surface density distribution
ρ = ρs.

balance in the two-layer model becomes

(v1h1 + v2h2) cos θ = sin θ(ŵE − w̃E). (13.47)

With the choice of U as in (13.31) it follows that ŵE = O(1) and w̃E = O(Ē1/2
V ).

In many cases, the effect of the bottom boundary layer can be neglected.

The planetary two-layer model

On the planetary scale the two-layer model, where the interface is located
at z∗ = −h∗, is given by

2Ω cos θ

r0
v1∗h1∗ = 2Ω sin θ(ŵE∗ − wI∗)

2Ω cos θ

r0
v2∗h2∗ = 2Ω sin θ(wI∗ − w̃E∗),

where h1∗ = h∗ and h2∗ = 1 − h∗. In addition, ŵE∗ and w̃E∗ are pre-
sented in section 13.3 and

wI∗ =
Dh∗
dt∗

.

Ex. 13.4

With the two-layer model, we have reduced the mathematical problem of sec-
tion 13.1 substantially. But how do we satisfy conditions of a prescribed surface
density field with this type of model? Well, the two-layer model can easily be
generalized to an n-layer model. If the layers outcrop to the surface, as sketched
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in Fig. 13.2, then a surface density distribution can be mimicked. In this way, the
vertical density difference is also coupled to the horizontal density difference.

13.5. Thermocline theory
There are two different theories of the physics of the thermocline: the ventila-

tion theory and the internal boundary layer theory. Both can considered as limits
of a final theory, which unfortunately has not been developed yet. The ventilation
theory has the attractive property that it is purely advective. However, it can only
provide a good description in cases where the surface Ekman pumping velocity
ŵE < 0. The internal boundary layer theory includes a dependency on the mag-
nitude of λV in (13.3). To give realistic thermocline depths the value of λV has to
be larger than indicated by observations.

13.5.1. Ventilation theory
The central idea of the ventilation theory is that properties of the surface ocean

are transported through advection to deeper regions of the ocean. In other words,
these properties are ventilated from the surface to the deeper ocean. In this way,
water of relatively high density in polar areas can be advected equatorward (south-
ward in the northern hemisphere) below surface water which has a smaller density.
The net result is the formation of a thermocline. The ventilation theory is purely
advective as with λV = 0 in (13.3) we find

Dρ

dt
= 0. (13.49)

and the density is constant along streamlines. As one can anticipate problems
will arise to satisfy surface boundary conditions for the density when the Ekman
vertical velocity is negative.

We consider the ventilation process in more detail using a simple three-layer
ocean model, as sketched in Fig. 13.3. The flow domain is bounded by a flat
bottom and coastlines at φ = φW and φ = φE . The layers have a constant
density ρj and the third layer is assumed to be motionless. The location of the
interfaces between the layers are indicated by the dimensionless z-coordinates zj ,
with z1 = 0, z4 = −1, and

z2 = −h1, (13.50a)

z3 = −(h1 + h2). (13.50b)

The effect of ocean-atmosphere deformation can be neglected on the large
scale, and the layer thicknesses are given by

h1 = −z2, (13.51a)

h2 = z2 − z3, (13.51b)

h3 = z3 + 1. (13.51c)



310 DYNAMICAL OCEANOGRAPHY

θ
�

ρ
)

ρ
.

�
�

�
.


�
.

�
.

�
)

#
. #

.

#
)

�
<

�
�
)

φ

�
)

�
(

θ
(

θ
.

θ
)

83

4θ -3

4θ

�
�

Figure 13.3. Sketch of the three-layer ocean model, where the thickness of the layer with density
ρ1 becomes zero at θ = θ2; note that θ2 < θ0.

The vertical velocity ŵE due to Ekman pumping is assumed negative on the whole
interval θ1 < θ < θ0 and ŵE(θ = θ0) = 0. In the domain S(θ), for which
θ1 < θ < θ2, layer 1 is exposed to the wind forcing. In the domain N(θ) for
which θ2 < θ < θ0, layer 2 surfaces.

We first consider the domain N(θ) where h1 = 0. In each layer j the governing
equations of the flow outside the Ekman layer are

vj sin θ =
1

cos θ

∂pj

∂φ
, (13.52a)

uj sin θ = −∂pj

∂θ
, (13.52b)

∂pj

∂z
= 0, (13.52c)

∂uj

∂φ
+

∂(vj cos θ)
∂θ

+ cos θ
∂wj

∂z
= 0. (13.52d)

Just as in the two-layer model in the previous section, the pressure and vertical
velocity are continuous over the interfaces and hence

p2 − p3 = γ2h2 = −γ2z3, (13.53a)

z = z3 = −h2 :
D

dt
(z + h2) = 0, (13.53b)
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with γ2 = (ρ3 − ρ2)/(ρ0εpFp), εp = U/(2Ωr0) and Fp = 4Ω2r2
0/(gD). In the

motionless third layer we have u3 = v3 = 0 and hence p3 = p̄3 is constant and
consequently p2 = p̄3 − γ2z3.

In the domain N(θ) there are two active layers and the Sverdrup balance
(13.47) over layer 2 and 3 becomes (use v3 = w̃E = 0)

v2h2 cos θ = ŵE sin θ. (13.54)

From (13.52a) it follows for j = 2,

v2 cos θ =
1

sin θ

∂p2

∂φ
, (13.55)

such that with p2 = p̄3 − γ2z3 we have

v2h2 cos θ =
h2

sin θ

∂p2

∂φ
= z3

γ2

sin θ

∂z3

∂φ
= sin θ ŵE . (13.56)

Through integration over φ, the Sverdrup balance (13.54) can be written as

γ2

∫ φE

φ
z3

∂z3

∂φ
dφ =

1
2
γ2(z2

3(φE , θ) − z2
3(φ, θ)) = sin2 θ

∫ φE

φ
ŵE(φ, θ)dφ,

(13.57)
and with h2 = −z3 we find

γ2h
2
2(φ, θ) = −2 sin2 θ

∫ φE

φ
ŵE(φ, θ)dφ + γ2h

2
2(φE , θ). (13.58)

The geostrophic velocities are calculated from

u2 = − 1
sin θ

∂p2

∂θ
= − γ2

sin θ

∂h2

∂θ
, (13.59a)

v2 =
1

sin θ cos θ

∂p2

∂φ
=

γ2

sin θ cos θ

∂h2

∂φ
. (13.59b)

Because of the kinematic boundary condition u2 = 0 at the eastern continental
boundary (φ = φE) it follows from (13.59a) that

∂h2

∂θ
(φE , θ) = 0. (13.60)

The layer thickness at the eastern boundary is therefore fixed if given at θ = θ0.
The layer thickness of the second layer is also determined from (13.58) once ŵE

is prescribed.
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�
Example 13.1: Outcropping

Consider the situation for which

ŵE(φ, θ) =
α

2
θ − θ0

sin2 θ
, (13.61)

for a constant α �= 0 on the domain N(θ), such that ŵE(φ, θ0) = 0 and choose
h2(φE , θ0) = H2 with H2 constant. From (13.58) we then find that

γ2(h2
2(φ, θ) − H2

2 ) = α(θ0 − θ)(φE − φ). (13.62)

Because φE − φ > 0, h2 increases westward (see Fig. 13.4) when α > 0. Be-
cause ∂h2/∂φ < 0, the meridional velocity v2 < 0 (see (13.59b)) such that the
geostrophic transport is directed southward advecting water with a density ρ2.

In the case where α < 0, and hence ŵE > 0, then h2 decreases westwards. If
for a certain latitude θs

| α |
γ2

(θ0 − θs)(φE − φW ) > H2
2 , (13.63)

then h2 becomes zero for a certain longitude φs. This surfacing of a layer is
called ‘outcropping’. This simple example illustrates the problems that arise in
the ventilation theory when ŵE > 0. In Fig. 13.4, the solution h2 is plotted

Ex. 13.5

as a function of φ for different values of θ and for α > 0. The slope ∂h2/∂φ
increases with southward and has a maximum at the southern boundary of the
domain θ = θ2 which is the ‘outcropping’ curve of layer 1.

�

As a next step, we consider the solution in the domain S(θ) where there are
three layers. The domain S(θ) is special in that layer 2 is no longer exposed to
the wind forcing. The conditions at the interfaces now become

p1 − p2 = γ1h1 (13.64a)

p2 − p3 = γ2h2, (13.64b)

z = z2 = −h1 :
D

dt
(z + h1) = 0, (13.64c)

z = −z3 = −(h1 + h2) :
D

dt
(z + h1 + h2) = 0, (13.64d)

with
γ1 =

ρ2 − ρ1

ρ0εpFp
; γ2 =

ρ3 − ρ2

ρ0εpFp
. (13.65)
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Figure 13.4. Plot of the solution h2(φ, θ) as in (13.62) versus φ for different values of θ. The
value of α/(γH2

2 ) = 0.5 and the domain is [φW , φE ] = [286, 350] and [θ1, θ0] = [40, 70].

Now consider the changes in the potential vorticity of layer 2, i.e.,

q2 =
sin θ

h2
, (13.66)

along curves of constant pressure p2. These curves coincide with streamlines
because (with (13.52a-b)),

u2 · ∇p2 =
(

u2

v2

)
.

( 1
cos θ

∂p2

∂φ
∂p2

∂θ

)
= 0, (13.67)

and hence the velocity vector is tangent to curves of constant pressure. Elimina-
tion of the pressure in (13.52a-b) gives the vorticity equation

v2 cos θ = sin θ
∂w2

∂z
. (13.68)

Integration over the layer (with thickness h2) gives, with (13.64c),
∫ z3

z2

v2 cos θ dz = h2v2 cos θ = sin θ(
Dz2

dt
− Dz3

dt
) = sin θ

Dh2

dt
, (13.69)

and hence with D(sin θ)/dt = v2 cos θ, it is found that

Dq2

dt
=

1
h2

D(sin θ)
dt

− sin θ

h2
2

Dh2

dt
= 0. (13.70)
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The potential vorticity q2 is therefore conserved along streamlines.
At θ = θ2, we know the value of q2 from the solution in the domain N(θ) and

we indicate it with qN
2 , i.e.,

qN
2 =

sin θ2

h2
= −sin θ2

z3
. (13.71)

For θ < θ2, the potential vorticity q2 is given by

q2 =
sin θ

h2
=

sin θ

z2 − z3
. (13.72)

From (13.71-13.72) it follows that along a streamline in the second layer in the
domain S(θ), we have

q2 = qN
2 ⇒ z2 = (1 − sin θ

sin θ 2
)z3. (13.73)

The Sverdrup balance (13.52) with w̃E = 0, now becomes

(v1h1 + v2h2) cos θ = sin θ ŵE . (13.74)

If the layer thicknesses are expressed in terms of zj , and the geostrophic velocities
and the relations (13.64a) are used with (13.74) we find

γ1z2
∂z2

∂φ
+ γ2z3

∂z3

∂φ
= sin2 θ ŵE(φ, θ), (13.75)

which, after integration in the zonal direction, can be written as

γ1(z2
2(φE , θ) − z2

2(φ, θ)) + γ2(z2
3(φE , θ) − z2

3(φ, θ)) =

= 2 sin2 θ

∫ φ

φE

ŵE(φ, θ)dφ. (13.76)

Because z2 = −h1, h1(φ, θ2) = 0 and u1(φE , θ) = 0 it follows from (13.52b)
that z2(φE , θ) = 0. The thickness of the upper layer remains zero at the eastern
boundary. If we write f = sin θ and f2 = sin θ2 and introduce h through

h2 = h
f

f2
, (13.77)

then it follows from (13.73) that

h2 = z2 − z3 = − f

f2
z3 → h = −z3; z2 = −(1 − f

f2
)h, (13.78)

such that (13.76) becomes

(γ1(1−
f

f2
)2 +γ2)h2(φ, θ) = γ2z

2
3(φE , θ)−2 sin2 θ

∫ φE

φ
ŵE(φ, θ)dφ. (13.79)
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Because z2(φE , θ) = 0 and z3(φE , θ) has to be constant in the meridional direc-
tion (since u2 = 0 at φ = φE) it follows that z3(φE , θ) = H2. This determines
the thickness h through the Ekman vertical velocity ŵE and hence h1(φ, θ) and
h2(φ, θ) as well.

�
Example 13.2: The shadow zone

Just as in Example 13.1, let the Ekman vertical velocity be given by

ŵE(φ, θ) =
α

2
θ − θ0

sin2 θ
, (13.80)

with α > 0. The solution (13.79) in the domain S(θ) then becomes

h2(φ, θ) =
α(θ0 − θ)(φE − φ) + γ2H

2
2

γ1(1 − f
f2

)2 + γ2

, (13.81)

and the layer thicknesses are

h1 = h(1 − sin θ

sin θ2
), (13.82a)

h2 = h
sin θ

sin θ2
. (13.82b)

The solution matches the solution in the domain N(θ) at θ = θ2, for which (see
Example 13.1)

h1 = 0, (13.83a)

γ2(h2
2(φ, θ) − H2

2 ) = α(θ0 − θ2)(φE − φ). (13.83b)

Now consider the streamlines that, in layer 2, intersect the curves θ = θ2 at a
certain longitude φ̃ (Fig. 13.5). Because z3 = −h, curves of constant pressure h
are also streamlines in layer 2 (note p2 − p3 = γ2h). For the streamline through
φ = φ̃ we find

h2(φ, θ) =
α(θ0 − θ)(φE − φ) + γ2H

2
2

γ1(1 − f
f2

)2 + γ2

=

= h2(φ̃, θ2) =
α(θ0 − θ2)(φE − φ̃) + γ2H

2
2

γ2
. (13.84)

The streamline that connects to the eastern boundary in layer 2 (φ̃ = φE) is
determined in the domain S(θ) through the relation

α(θ0 − θ)(φE − φ) = H2
2γ1(1 − f

f2
)2. (13.85)
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We can write the streamline as a function φc(θ) with

φc(θ) = φE − H2
2γ1

α

(1 − f
f2

)2

θ0 − θ
. (13.86)

For θ = θ2 the second term in the right hand side becomes zero and hence

Figure 13.5. Sketch to understand the existence of the shadowzone.

φ = φE . However, when θ < θ2, then φ < φE and the streamline deflects to the
west (Fig. 13.5). The area east of the streamline cannot be reached by water in
layer 2 that was originally north of the ‘outcrop’ line θ = θ2.

In general, the solution (13.79) cannot be valid up to the eastern boundary
which also follows from the fact that h is not constant for φ = φE . The condi-
tions that h(φE , θ) must be constant and potential vorticity is conserved in layer 2
cannot both be satisfied. This causes a shadowzone in which the flow is zero (and
the layer thickness constant) to satisfy the boundary conditions. In the shadow
zone, the total Sverdrup transport is carried by layer 1. From (13.79) it follows
with z3 = −H2 and z2 = −h1 that

h2
1(φ, θ) =

α

γ1
(φE − φ)(θ0 − θ), (13.87)

and hence the thickness of the first layer increases in southward and westward
direction.

�
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Additional Material

D: The material in the previous sections should (hopefully) make one prepared
for the more comprehensive texts on the ventilation theory of the thermocline
problem such as in sections 6.21 to 6.23 in Pedlosky (1987), chapter 4 in
Pedlosky (1996) and chapter 16 (sections 16.1 to 16.4) in Vallis (2006).

13.5.2. The internal boundary layer model
The second theory of the physics of the thermocline is the internal boundary

layer theory. The central idea of the internal boundary layer idea is that the ther-
mocline arises through an advection/diffusion balance at mid-depth. The exis-
tence of such a balance can be studied by using the continuous equations (13.3-
13.4) with the boundary conditions (13.5).

First we investigate whether we can extract a characteristic length scale for the
depth of the thermocline that depends both on the dynamics and the thermody-
namics of the flow. Let WE be a (dimensional) characteristic vertical velocity due
to Ekman pumping at the surface, U = WEr0/D and ŵE(φ, θ) the horizontal
(dimensionless) distribution of the Ekman vertical velocity. Now consider typical
horizontal density variations Δρ in the surface density field ρs(φ, θ). The total
density ρ∗(φ, θ, 0) is then given by

ρ∗(φ, θ, 0) = ρ0 + Δρ ρs(φ, θ), (13.88)

and with (13.1b) it follows that

ρ(φ, θ, 0) =
Δρ

ρ0

gD

2ΩUr0
ρs(φ, θ) =

=
Δρ

ρ0

gD2

2ΩWEr2
0

ρs(φ, θ) = (
D

δa
)2ρs(φ, θ), (13.89)

where

δa = (
2Ω WE ρ0

gΔρ
)1/2 r0 (13.90)

is called the advective thermocline scale. With WE = 10−6 ms−1, Δρ/ρ0 = 10−3

we find δa ≈ 700 m which is a reasonable scale for the thermocline. The vertical
length scale δa is the scale at which dynamically induced density differences are
balanced by changes in the surface density field. Another vertical length scale
is the diffusive scale δD, that is defined by a balance between vertical advection
(w∗∂ρ∗/∂z∗ ∼ WEΔρ/δD) and vertical mixing (KV ∂2ρ∗/∂z2

∗ ∼ KV Δρ/δ2
D),

i.e.,

δD =
KV

WE
. (13.91)
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Having identified these two different length scales, we know that the ratio δD/δa

provides a guideline for investigating the different balances that can occur in the
flow. The possible cases are systematically discussed below; we will indicate the
scale D of the thermocline below (don’t confuse this with the total layer thickness
as used in earlier chapters).

(A) First we consider the case where δD/δa � 1, which corresponds to small WE

according to (Fig. 13.6a)
δD

δa
≈ W

−3/2
E . (13.92)

and hence the Ekman pumping is relatively weak.
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Figure 13.6. Sketch to help understand the different cases in the scales of the thermocline depth.
(a) Case A with δD/δa � 1. (b) Case B with δD/δa 	 1.

There are now several choices that can be made for the characteristic vertical
length scale of the flow D:

(A1) If we choose D = δa then it follows that

λV =
KV r0

UD2
=

KV

WED
=

δD

D
=

δD

δa
� 1, (13.93)

and because ρ = ρs according to (13.89), the surface density extends
(because of large vertical mixing) to the deep sea which is not what is
observed.
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(A2) If (D/δa) is not O(1), then it follows from (13.88) that ρ = (D/δa)2ρs

and hence ρ has to be rescaled to be able to satisfy the surface boundary
condition. We therefore rescale

ρ = (
D

δa
)2ρ̃, (13.94)

and from (13.4) it appears that u, v and w also need to be rescaled, with
u = (D/δa)2ũ, v = (D/δa)2ṽ and w = (D/δa)2w̃. For the balance
(13.3) this gives

(
D

δa
)2
[

ũ

cos θ

∂ρ̃

∂φ
+ ṽ

∂ρ̃

∂θ
+ w̃

∂ρ̃

∂z

]
=

δD

D

∂2ρ

∂z2
, (13.95)

while the boundary conditions at the surface become ρ̃ = ρs and w̃ =
(δa/D)ŵE .

Within this case (note that we still require δD/δa � 1) there are two
options

(A2a) If D � δa then D � δD and hence λV � 1) and (13.95) reduces
to ∂2ρ/∂z2 = 0. Again the surface density extends (because of large
vertical mixing) to the deep sea which is not realistic.

(A2b) An advection-diffusive balance is possible when

D = (δ2
aδD)1/3 = (

2Ωr2
0KV

gΔρ/ρ0
)1/3, (13.96)

In this case we have λ = δD/D = (δD/δa)2/3 � 1,

D

δa
= (

δD

δa
)1/3 � 1. (13.97)

and hence D � δa. In this diffusive limit, since w = (D/δa)2w̃
the boundary condition at the surface reduces to w̃ = 0 which shows
again that the problem is independent of the Ekman pumping. The
downward mixing of density is so strong that the internal density gra-
dients induce vertical velocities that are much larger than the Ekman
velocity.

In summary, the δD/δa � 1 is not realistic because it either provides solutions
without a vertical structure or a thermocline scale independent of the Ekman
pumping velocity.

(B) We now consider the second case δD/δa � 1; again there are several possible
choices for D (Fig. 13.6b). We discuss only two interesting ones:
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(B1) There can be a balance in (13.3) for D = δa, i.e., λV = δD/D =
δD/δa � 1 and we find Dρ/dt = 0. In this case, the density is con-
stant along streamlines and hence the name of advective length scale for
δa. In this advective limit, again (13.89) reduces to ρ = ρs; the solutions
of Dρ/dt = 0, however, in general cannot satisfy this boundary condition
unless the Ekman pumping is negative.

(B2) Another balance is possible when D = δD � δa such that λV = 1.
In this case ρ has to be rescaled as ρ = (δD/δa)2ρ̂ and consequently u
and v have to be rescaled as well according to the thermal wind balance.
Because δD/δa � 1, (13.3) now becomes

w
∂ρ̂

∂z
=

∂2ρ̂

∂z2
, (13.98a)

∂w

∂z
= 0. (13.98b)

In the region with length scale δD, the vertical velocity is constant in z and
equal to wE . Moreover, (13.98) only has bounded solutions for wE > 0
as is illustrated by Example 13.3.

�
Example 13.3: Flow in a circumglobal channel

Consider the flow in a circumglobal channel (Fig. 13.7) that is bounded by
the latitudes θ = θ0 and θ = θ2. At the surface, the flow is forced by a density
distribution ρ = ρs(θ) and a wind-stress field τφ = τφ(θ) and τ θ = 0. We assume
that the layer is infinitely deep and are searching for solutions that are independent
of the zonal coordinate, i.e., u(θ, z), v(θ, z), w(θ, z), p(θ, z) and ρ(θ, z).

θ = θ
(

θ = θ
.

τ 

ρ
�

Figure 13.7. Sketch of a circumglobal channel on the sphere (drawn here in the Southern Hemi-
sphere).

Outside the Ekman layers the equations (13.3) become

v = 0, (13.99a)
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u sin θ = −∂p

∂θ
, (13.99b)

∂w

∂z
= 0, (13.99c)

ρ = −∂p

∂z
, (13.99d)

w
∂ρ

∂z
= λ

∂2ρ

∂z2
, (13.99e)

and it follows immediately that w = w(θ). The advection-diffusion balance for
the density can be integrated with the result

ρ(θ, z) = C1(θ)e
w(θ)z

λV + C2(θ). (13.100)

When w(θ) < 0 then C1 = 0, because otherwise the density becomes unbounded,
and hence ρ = ρs(θ). When w(θ) > 0 the solution becomes

ρ(θ, z) = (ρs(θ) − ρ∞(θ))e
zw(θ)

λV + ρ∞(θ), (13.101)

where ρ∞(θ) is the density at z → ∞. Hence the characteristic vertical scale of
the density anomalies is λ/w(θ) and we can take h(θ) = λV /w(θ) as a measure
of the depth of the thermocline. The corresponding dimensional vertical scale of
the thermocline is δD.

�

φ

θ

�

%
�
'
(
 %

�
+
(


�&#����#�


&�$$,��#�


�&#����#�


%
�
�
(


δ
�

δ
�

Figure 13.8. Sketch to help explain the internal boundary layer idea. Region I is the domain
where wE < 0 and region II where wE > 0.

Case (B) is therefore the most realistic case with different balances depending
on whether wE > 0 or wE < 0. This is summarized in Fig. 13.8 which gives a
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sketch of the Ekman pumping in a basin where the flow is forced by a prescribed
wind stress. In the region where wE < 0, liquid with surface density values is
pumped into the geostrophic region and then advected through this region. Here,
the vertical scale can be set pure by advection, we have case (B1) above. In the
region where wE > 0, liquid with a certain density enters the Ekman layer and
hence in general cannot match to a prescribed surface density distribution. Here
a balance according to case (B2) above is set between advection and mixing on a
small scale δD above the advectively controlled flow below (under the conditions
that mixing is still small).
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Summary

The thermocline is a vertical interval with relatively large gradients in
the temperature and the density field. The thermocline arises through
the nonlinear coupling of the velocity field with the density field.

The constant density midlatitude Sverdrup-Stommel theory can be
easily generalized to the planetary case. The Stommel boundary layer
thickness is given by

δ∗(θ) =
r0

D cos2 θ
(
AV sin θ

Ω
)1/2.

Two characteristic scales for the thermocline depth are the advective
scale δa and the diffusive scale δD given by

δa = (
2Ω WE ρ0

gΔρ
)1/2 r0 ; δD =

KV

WE
.

where WE is the characteristic Ekman pump velocity, Δρ a character-
istic horizontal density difference and KV the vertical diffusivity.

Two theories describe different aspects of the thermocline problem.
The internal boundary layer model is able to provide a reasonable
representation in regions where ŵE > 0 but is based on a relatively
large vertical mixing coefficient. This is complementary to the venti-
lation theory which is purely advective, but it is only applicable when
ŵE < 0. The final solution of the thermocline problem will likely
contain elements from both theories.
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13.6. Exercises on chapter 13

(13.1) Planetary Ekman layers

Consider the flow in the spherical sector [φ, θ] ∈ [286, 350] × [10, 70] as a
model of the ocean circulation in the North Atlantic Ocean. The density of the
water is constant and the flow is driven by the wind-stress field

τφ
∗ (φ, θ) = − τ0

2π
cos 2π(

θ − 10
60

) ; τ θ = 0 (13.102)

where τ0 = 0.1 Pa. The depth of the basin D = 4000 m and the bottom
is flat. Assume that the mixing coefficients of momentum are constant with
AV = 10−3 m2s−1 and AH = 105 m2s−1.

a. Determine the thickness (in m) of the Ekman layers at the ocean-atmosphere
interface and near the bottom.

b. Determine the pattern and amplitude of the upwelling over the basin.

c. Determine the difference in sea surface height between the subtropical gyre
and the subpolar gyre (in m).

d. Determine the pattern and amplitude (in ms−1) of the geostrophic merid-
ional velocity in the basin.

(13.2) Homogeneous planetary circulation

Consider a circumglobal zonal channel for θ ∈ [θ0, θ1] ⊂ (−π/2, 0) bounded
between the latitudes θ0 en θ1. The wind stress at the ocean-atmosphere sur-
face is of the form

τφ = sin(π
θ − θ1

θ0 − θ1
) ; τ θ = 0

The bottom of the channel is flat and the surface deformation of the
ocean-atmosphere surface is negligible. The density of the ocean water
is constant, the flow caused by the wind stress is steady and horizontal
mixing of momentum can be neglected. In this exercise we try to find flows
which are independent of the zonal coordinate, i.e., solutions of the form
(u(θ, z), v(θ, z)w(θ, z), p(θ, z)).
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a. Determine the equations that describe the flow outside the boundary layers
at the bottom and at the surface.

b. Derive solutions of the velocity field in the Ekman layer at the bottom and
at the ocean-atmosphere surface.

c. Show by matching of the vertical velocity that the geostrophic zonal velocity
field is given by

u0(θ) = C1τ
φ(θ) + C2

√
| sin θ |
cos θ

and argue that C2 = 0.

d. Choose two simple latitudes θ0 and θ1 and sketch the velocity field, includ-
ing the flow in the Ekman layers.

(13.3) Continuity of the vertical velocity

In this exercise we consider the continuity of the vertical velocity in the
two-layer planetary model over the thermocline.

a. Show that
w2|z=−h

− w1|z=−h
= (u1 − u2) · ∇h

where

∇h =
( 1

cos θ
∂h
∂φ

∂h
∂θ

)
.

b. Next, use the geostrophic balance to show that

u2 sin θ = e3 ∧∇(p1 − γh),

c. Prove that w is continuous at z = −h.

(13.4) Two-layer planetary model

Consider the situation as in exercise (13.1), but now for a two-layer ocean
with g′ = 0.01 ms−2 and equilibrium layer thicknesses H1 = 500 m and
H2 = 3500 m.

a. Prove that with a time-independent wind forcing, the lower layer is
motionless.
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b. Determine the pattern and amplitude of the thermocline field (in m).

(13.5) Ventilation

Consider the situation as in Example 13.1 with the same spatial pattern of the
Ekman pumping ŵE in a spherical sector [φ, θ] ∈ [286, 350] × [10, 45]. Take
α = −1 and assume that the maximum magnitude of the upwelling is equal to
0.1 m day−1. The layer thicknesses in the three-layer model are H1 = 500 m,
H2 = 1000 m and H3 = 2000 m. The density difference between the layers
are such that g(ρ3 − ρ2)/ρ2 = 0.02 en g(ρ2 − ρ1)/ρ2 = 0.01 ms−2.

a. Calculate the profile of the layer thickness h2.

b. Determine the latitude φs where outcropping occurs.



Chapter 14

ANTARCTIC CIRCUMPOLAR CURRENT
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The absence of a continental barrier near the latitude of Drake Passage has
a large influence on the ocean circulation in the Southern Ocean. Between
45◦S and 65◦S there is a strong zonal current, known as the Antarctic Cir-
cumpolar Current (ACC), which connects the three ocean basins. The
ACC plays an important role in the transport of heat, salt and other quan-
tities between the ocean basins and hence has an important role in the
climate system. In this chapter some characteristics of the ACC, as deter-
mined from the (limited) observations, are presented in section 14.1. One
of the central motivations of the material in this chapter is the physical
processes which control the volume transport through Drake Passage. In
section 14.2 we consider barotropic wind-driven flows in a zonal channel
discuss the role of bottom topography (and the so-called ‘form stress’)
in these flows. The theory of stratified flows is presented in section 14.3
where we discuss the JEBAR effect. At the end of this section we touch
on the role of instabilities and the resulting eddies.

Note: All equations in this chapter are dimensional and we will therefore omit
the star subscript.

14.1. Observations
The annual average wind-stress forcing (τφ, τ θ) from Trenberth et al. (1989)

over the globe was plotted in Fig. 2.1. The zonally averaged profile of the zonal
wind stress τφ over the Southern Hemisphere is shown in Fig. 14.1. The zonally
averaged value of τφ is positive between 65◦S and 30◦S and negative elsewhere.
As a consequence, the meridional Ekman transport M θ

E , determined in section
13.2 as

M θ
E = − τφ

2Ωρ0 sin θ
, (14.1)

is northward between 65◦S and 30◦S (note that sin θ < 0 in the Southern Hemi-
sphere) and southward south of 65◦S and north of 30◦S.

A sketch of the flow patterns in the Southern Ocean is given in Fig. 14.2a
together with the annual mean temperature and salinity in Fig. 14.2b and c, re-
spectively. The ACC is the dominant flow around Antarctica, with gyres – the
Weddell Gyre and the Ross Gyre – near the boundaries of this continent. The
ACC is composed of different zonal jets, each associated with a strong gradient in
density, a so-called front. Two of these fronts are indicated in Fig. 14.2, e.g., the
Polar Front and the Subantarctic Front. Signatures of the fronts are visible in the
plots of sea surface temperature and sea surface salinity (Fig. 14.2b,c).

The fronts are also visible in the profiles of temperature and salinity
(Fig. 14.3a,b), as measured along the WOCE 140◦E meridional section (between
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Figure 14.1. Profile of the zonally averaged zonal wind stress (τφ) (as deduced from Trenberth
et al. (1989)) over the Southern Hemisphere.

Australia and Antarctica). The contours of potential density σ0 (Fig. 14.3c) slope
upward to the south (∂ρ/∂θ < 0), consistent with an eastward zonal surface cur-
rent through the thermal wind balance

2Ω sin θ
∂u

∂z
=

g

ρ0r0

∂ρ

∂θ
. (14.2)

The deep water, the Antarctic Bottom water (AABW), is characterized by a rel-
atively low potential temperature (-0.2◦C), a salinity of 34.68 psu and a poten-
tial density σ0 = 28.3. Another water mass is the Antarctic Intermediate Water
(AAIW) with a salinity of 34.4 psu and a potential temperature of 5-6◦C. The as-
sociated circulation is sketched in Fig. 14.3d. North of 65◦S, the Ekman transport
is divergent and there is upwelling in the upper ocean. South of this latitude, there
is downwelling and formation of deepwater (in the Weddell Sea). The NADW
(the North Atlantic Deepwater) also surfaces in the southern ocean and mixes
with water masses in the Southern Ocean.

The zonal flow along the WOCE 140◦E section has a relatively complicated
spatial structure and it is difficult to determine the total transport. The transport of
the zonal jet near the Subantarctic Front is estimated to be about 105 Sv and that
near the Polar Front is about 22 Sv. It are these types of observations that have
resulted in the estimate of 134 ± 13 Sv for the transport through Drake Passage.
In the remainder of this chapter, we will address the problem of the processes
controlling this Drake Passage transport.
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(a)

Figure 14.2. (a) Overview of the surface current system in the Southern Ocean; two of the fronts
are indicated (from WOCE (2001)). (b) Annual mean sea surface temperature, and (c) annual mean
sea surface salinity.
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Figure 14.3. Profiles of temperature (a), salinity (b) and (c) potential density σ0 along the WOCE
140◦E meridional section; note that in all panels south is to the right. (d) Sketch of the zonally
averaged circulation in the Southern Ocean; note that south is to the left (from WOCE (2001)).
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Additional Material

B: A description of Antarctic Oceanography can be found in chapter 6 of Tom-
czak and Godfrey (1994). A more extensive discussion on the flow in the
Southern Ocean is given in section 4.6 of WOCE (2001).

14.2. The barotropic channel model
An idealized model of the ACC is that of a barotropic flow in a zonal channel

with a geometry as in Fig. 13.7. This channel is located in the Southern Hemi-
sphere and it is bounded by latitudes θ = θ1 and θ = θ2. The flow is forced at
the ocean-atmosphere interface by an idealized wind stress (τφ, τ θ). The bottom
topography is represented by a function hb(φ, θ).

The equations governing the constant density flow were presented in section
13.2. Neglecting inertial terms, the dimensional equations are

−2Ωv sin θ +
1

ρ0r0 cos θ

∂p

∂φ
= AV

∂2u

∂z2
+ Fφ, (14.3a)

2Ωu sin θ +
1

r0ρ0

∂p

∂θ
= AV

∂2v

∂z2
+ Fθ, (14.3b)

0 =
∂p

∂z
, (14.3c)

1
r0

(
∂u

∂φ
+

∂(v cos θ)
∂θ

) + cos θ
∂w

∂z
= 0, (14.3d)

where AV is the vertical mixing coefficient of momentum. The terms Fφ and Fθ

are added as a representation of the lateral friction. If we assume that deformations
of the ocean-atmosphere interface are unimportant then the boundary conditions
become

z = −D + hb :
D(z − hb)

dt
= 0; t1 · u = 0; t2 · u = 0, (14.4a)

z = 0 : τφ = ρ0AV
∂u

∂z
; τ θ = ρ0AV

∂v

∂z
; w = 0, (14.4b)

where

t1 =

⎛

⎝
1
0

1
cos θ

∂hb
∂φ

⎞

⎠ ; t2 =

⎛

⎝
0
1

∂hb
∂θ

⎞

⎠ ,

are the tangent vectors at the bottom. In the zonal direction, periodic bound-
ary conditions are chosen and no-slip conditions apply at the meridional channel
boundaries.
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14.2.1. Flat bottom case
In the flat bottom case, we find from (14.4a) that the vertical velocity w = 0 at

z = −D. Integration of the equations (14.3) over depth (from −D to 0) gives

−2Ωv̄ sin θ = − 1
r0ρ0 cos θ

∂p̄

∂φ
+

τφ

ρ0
− τφ

b

ρ0
+ F̄φ, (14.5a)

2Ωū sin θ = − 1
r0ρ0

∂p̄

∂θ
+

τ θ

ρ0
− τ θ

b

ρ0
+ F̄θ, (14.5b)

0 =
∂ū

∂φ
+

∂(v̄ cos θ)
∂θ

, (14.5c)

where the barred quantities indicate vertically integrated quantities, i.e.,

ū =
∫ 0

−D
u dz

and τ b is the bottom shear stress.
In a zonally periodic channel with τφ = τφ(θ) and τ θ = 0, we have seen in

Example 13.3 that there exists solutions which are independent of φ with v̄ = 0.
For these solutions, the zonal momentum balance (14.5a), provides two possibil-
ities: (i) the wind-stress forcing is compensated for by bottom friction or (ii) it is
compensated by lateral friction. In case (ii) (case (i) will be subject exercise 14.1)
assume that the lateral friction is proportional to the lateral viscosity AH and is
of the form AH∇2u. If U indicates a characteristic zonal velocity, then it follows
from a balance between the wind-stress term (τφ/ρ0) and the lateral friction term
(F̄φ) that

Ex. 14.1

τ0

ρ0
≈ AHUD

r2
0

→ U =
τ0r

2
0

ρ0DAH
, (14.6)

and hence the transport Φ scales as

Φ =
∫ θ2

θ1

r0ū dθ → r0DU =
τ0r

3
0

ρ0AH
. (14.7)

�
Example 14.1: Channel transport: flat bottom

Consider a channel with θ1 = 65◦S and θ2 = 55◦S, for which the flow is forced
by the wind stress

τφ(θ) = τ0 sin
(θ − θ1)
(θ − θ1)

; τ θ = 0.
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For parameters AV = 10−3 m2s−1, D = 4000m and ρ0 = 1000 kgm−3, steady
solutions were determined of the full equations (14.3) using the fully implicit
THCM model De Niet et al. (2007). In the drawn curve labeled 0.0 in Fig. 14.4,
the transport Φ (in Sv) is plotted versus 1/AH . As can be seen, the transport
indeed increases with 1/AH according to a straight line as predicted by the simple
scaling argument above. An already large value of AH = 2.5×104 m2s−1 leads to
quite unrealistic transports of a thousand Sv and hence the barotropic flat bottom
channel model is not a good model for the ACC.
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Figure 14.4. Transport Φ through a zonal channel (in Sv) versus the lateral viscosity 1/AH as
computed with the full model (14.3) over the domain [280, 360] × [−65,−55]. The curves are
labeled by the factor h0/D where h0 is the height of the Gaussian Hump and D = 4000 m is the
total depth of the layer. The curve labelled h0/D = 0.0 is for a flat bottom.

�

14.2.2. The role of bottom topographyEx. 14.2

The presence of bottom topography changes the character of the constant den-
sity flow rather dramatically. To derive the depth averaged equations in this case,
frequent use is made of Leibnitz’s rule

d

dx

∫ g(x)

f(x)
F (x, t) dt = F (x, g(x))

dg

dx
− F (x, f(x))

df

dx
+
∫ g(x)

f(x)

∂F

∂x
(x, t) dt

(14.8)
for general scalar functions f, g and F . Define the total layer depth H = D − hb

then the vertical integration (from z = −D + hb to z = 0) of (14.3), neglecting
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lateral friction, gives

−2Ωv̄ sin θ = − 1
r0ρ0 cos θ

[
∂p̄

∂φ
− pb

∂H

∂φ

]
+

τφ

ρ0
− τφ

b

ρ0
, (14.9a)

2Ωū sin θ = − 1
r0ρ0

[
∂p̄

∂θ
− pb

∂H

∂θ

]
+

τ θ

ρ0
− τ θ

b

ρ0
(14.9b)

0 =
∂ū

∂φ
+

∂(v̄ cos θ)
∂θ

, (14.9c)

and hence compared to (14.5) extra terms −pb∇H involving the bottom pressure
pb = p(φ, θ,−H(φ, θ)) enter the right hand side. The presence of the bottom
topography has an important effect on the volume transport through the zonal
channel.

�
Example 14.2: Channel transport: Gaussian Hump

We consider the same geometry and wind forcing as in Example 14.1 but now
there is a Gaussian Hump present in the middle of the channel. The bottom to-
pography is described is

hb(φ, θ) = h0 e−(
(φ−φm)

δ
)2 ,

where h0 is the maximum topography height at φ = φm and δ is a measure of its
width. Again for parameters AV = 10−3 m2s−1, D = 4000m and ρ0 = 1000
kgm−3, steady solutions were determined of the full equations (14.3) using the
fully implicit THCM model De Niet et al. (2007) using a 80×20×20 equidistant
grid. In the curves labeled 0.1 and 0.25 in Fig. 14.4, the transport Φ (in Sv) is
plotted versus 1/AH for two values of h0/D showing that the transport is much
decreased when bottom topography is present. The explicit dependence of Φ on
h0/D is plotted in Fig. 14.5.

�

To understand the effect of bottom topography on the flow in this channel con-
figuration, we turn to a slightly simpler configuration in local Cartesian coordi-
nates on the β-plane. Consider a zonal channel x ∈ [0, L], y ∈ [y0, y1] with
bottom topography of the form

hb(x, y) = h0 e−(
(x−xm)

δ
)2 , (14.10)

which represents again a Gaussian Hump with width δ. The total thickness of the
water layer is given by H(x, y) = D − hb(x, y) and hence its minimum value is
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Figure 14.5. (a) Plot of the bottom topography versus the parameter h0/D for δ = 10◦. (b) Plot
of the channel transport Φ versus h0/D for AH = 2.5 × 105 m2s−1.

H0 = D−h0. Let z = −H0 be the z-coordinate of the top of the highest point of
the bottom topography in the channel and let δE be a measure of the Ekman layer
thickness near the ocean-atmosphere interface, with δE � H0.

The momentum balances and continuity equation, neglecting lateral friction,
become

−fv = − 1
ρ0

∂p

∂x
+ AV

∂2u

∂z2
, (14.11a)

fu = − 1
ρ0

∂p

∂y
+ AV

∂2v

∂z2
, (14.11b)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (14.11c)

where f = f0 + β0y. From (14.4) the boundary conditions become

z = 0 : ρ0AV
∂u

∂z
= τx, ρ0AV

∂v

∂z
= τy, w = 0

(14.12)

z = −H(x, y) :
D(z + H(x, y))

dt
= 0, u − w

∂H

∂x
= 0, v − w

∂H

∂y
= 0

The depth-integrated continuity equation (14.11c) is

∂ū

∂x
+

∂v̄

∂y
= 0, (14.13)

as all terms due to Leibnitz’s rule cancel through the boundary conditions (14.12).
If we integrate (14.13) over the zonal direction and use the periodic boundary
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conditions, we find at every ‘longitude’ y

< v >=
∫ L

0
v̄ dx =

∫ L

0

[∫ 0

−H
v dz

]
dx = 0 (14.14)

Using an integration of the momentum equation (14.11a) over different inter-
vals in the vertical, we can determine the different contributions to < v >. In-
tegration of (14.11a) over the depth of the Ekman layer (on a contour y = yc)
gives

−f < v >E=
∫ L

0

[∫ 0

−δE

(−fv) dz

]
dx =

∫ L

0

τx

ρ0
dx. (14.15)

The pressure gradient vanishes due to the periodic boundary conditions and the
stress term at z = −δE can be neglected outside the Ekman layer. The equation
(14.15) is the integrated meridional Ekman transport along the contour y = yc.
In the southern hemisphere, with f < 0 and a zonal wind τx > 0 it follows that
< v >E > 0 and hence the transport is northward.

Integration of (14.11) over [−H0,−δE ] and over a contour y = yc gives

−f < v >I=
∫ L

0

[∫ −δE

−H0

(−fv)dz

]
dx = 0. (14.16)

as there are no contributions from the stress in this region and the pressure gradient
again vanishes due to the periodic boundary conditions. In this internal region
there cannot be a geostrophic flow and hence < v >I = 0.
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Figure 14.6. Sketch of the topography (14.10) with the vertical structure of the flow domain.

Integration of (14.11) over [−H(x, y),−H0] and a contour y = yc gives

−f < v >G=
∫ L

0

[∫ −H0

−H
(−fv)dz

]
dx =
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= − 1
ρ0

∫ L

0

[∫ −H0

−H

∂p

∂x

]
dx −

∫ L

0

τx
b

ρ0
dx, (14.17)

where τx
b is again the zonal component of the bottom shear stress. Using Leib-

nitz’s rule we find
∫ −H0

−H

∂p

∂x
dz =

∂

∂x
(
∫ −H0

−H
p dz) − p(x, y,−H)

∂H

∂x
, (14.18)

and the integral balance (14.17) becomes

−f < v >G=
1
ρ0

∫ L

0

[
p(x, y,−H)

∂H

∂x
− τx

b

]
dx. (14.19)

In the region of the flow where there is bottom topography, a geostrophic flow
can occur. The net effect along the contour is given by the first term in the right
hand side of (14.19). When pressure gradients develop in the presence of bottom
topography, these establish a net ‘stress’; this is the so-called ‘bottom form stress’.

�
Example 14.3: Form stress

We consider the same geometry and wind forcing as in Example 14.2 for the
Gaussian Hump present in the middle of the zonal channel. The patterns of the
barotropic streamfunction ψB with

ū = − 1
r0

∂ψB

∂θ
; v̄ =

1
r0 cos θ

∂ψB

∂φ
,

for three different solutions h0/D = 0.0, h0/D = 0.1 and h0/D = 0.25 are
plotted in Fig. 14.7a-c; in these computations AH = 2.5 × 105 m2s−1. For the
flat bottom case (Fig. 14.7, upper left panel) the streamlines are lines of constant
y. A weak amplitude bottom topography h0/D = 0.25 causes a deviation of the
streamlines over the topography (Fig. 14.7, upper right panel). As the surface
pressure field has qualitative the same pattern as the barotropic streamfunction
(Fig. 14.7, lower left panel), it can be seen that the flow left of the hump is north-
ward (as ∂p/∂φ < 0 and v sin θ ∼ ∂p/∂φ). Right of the hump where the pressure
anomaly is negative whereas left of the hump the pressure anomaly (with respect
to the flat bottom case) is positive. The meridional overturning streamfunction
ψM defined by

w = − 1
r0

∂ψM

∂θ
; v =

1
r0 cos θ

∂ψM

∂z
,
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Figure 14.7. Solutions of the full problem for the Gaussian Hump with AH = 2.5× 105 m2s−1.
Upper left panel: barotropic streamfunction (in Sv) for h0/D = 0.0. Upper right panel: barotropic
streamfunction for h0/D = 0.25. Lower left panel: surface pressure field for h0/D = 0.25. Lower
right panel: meridional overturning streamfunction (in Sv) for h0/D = 0.25.

(where v is the zonal average of v) is plotted in (Fig. 14.7, lower right panel) and
shows that below the topography indeed a southward flow is present compensating
for the northward Ekman flow at the surface.

�

To understand the physics of the bottom form stress in more detail, we recall
that the pressure is that part of the stress tensor describing the normal flux of
momentum. Consider two coordinate planes in the flow defined by z = −h(x)
and z = −d(x) as in Fig. 14.8. Let xw and xe be located west and east of the
topography, then

∫ xe

xw

∫ −h(x)

−d(x)

∂p

∂x
dz dx = p̄e − p̄w +

+
∫ xe

xw

(p(x,−h(x))
∂h

∂x
− p(x,−d(x))

∂d

∂x
) dx (14.20)

with

p̄ =
∫ −h(x)

−d(x)
p dz. (14.21)
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Figure 14.8. Sketch to illustrate the physics of the ‘bottom form stress’.

The term p̄e− p̄w on the right hand side is the net horizontal flux of momentum
in the area bounded by xw and xe. The integral term on the right hand side is
sum of the flux of horizontal momentum through z = −h(x) and that through the
bottom at z = −d(x). In an ocean basin bounded by continents at xw and xe, and
a flat bottom, the first term provides a balance with the wind-stress forcing. In
a zonally unbounded basin (with periodic boundary conditions), the first term on
the right hand side is zero, and a balance is established between the two integral
terms and the wind stress forcing. When the sea surface height gradient can be
neglected, the second term in the integral (the ‘bottom form stress’) provides the
balance with the wind stress.

Going back to the analysis in the zonal channel we can see this dominant bal-
ance by realizing that < v >=< v >E + < v >I + < v >G = 0 and hence

< v >G + < v >E= 0 →
∫ L

0

[
τx − τx

b

ρ0
+ pb

∂H

∂x

]
dx = 0, (14.22)

where pb = p(x, y,−H(x, y) is the bottom pressure. When the bottom stress is
small compared to the surface stress, the Ekman transport is compensated by the
geostrophic flow. In the flows in Example 14.3, where the first term in (14.22) is
positive, this implies that the second term must be negative. The bottom pressure
anomalies have the same sign as the surface pressure anomalies in this example.
Indeed pb > 0 in areas where the layer thickness decreases (left of the hump)
and pb < 0 in areas where the layer thickness increases which provide a negative
value of the integral involving the form stress.

We can now explain the decrease in transport due to bottom topography. Since
the pressure distribution is not in phase with the topography there is momentum
transfer from the ocean water to the bottom topography. The total force of the
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topography on the water is given by

Fs =
∫

p∇H d2x

and points in the example in the negative x-direction providing a effective drag
(the ‘form drag’, although it is not a real drag). This drag induces a reduction in
the volume transport as in Fig. 14.5.

Additional Material

B: There are several interesting papers on the concept of ‘form stress’ which
clarify many more aspects of it (Warren et al., 1997; Olbers, 1998). Further
discussion on the role of the ‘bottom form stress’ in relation to the Antarctic
Circumpolar Current can be found in section 4.6 of WOCE (2001).

14.3. Stratification
There are two basic effects caused by the presence of stratification:

(i) through baroclinic pressure gradients a flow is generated according to the ther-
mal wind balance.

(ii) the zonal currents are susceptible to baroclinic instability, which leads to ed-
dies whose dominant size is the scale of the internal Rossby deformation radius
L = ND/f , where N is the buoyancy frequency.

We will consider these two special cases in the next subsections.

14.3.1. Stationary baroclinic flows
Near the Antarctic continent the water is strongly cooled by the atmosphere

increasing its density. Sea-ice formation can also contribute to a density increase
of the ocean water. So, apart from an increase in density with depth, there is also
a meridional density gradient; the density increase poleward (Fig. 14.3c).

To study the effect of the presence of stratification on the flow in the zonal
channel, we consider a situation in which the bottom topography is piecewise
linear (Fig. 14.9). The channel has a zonal extent [xw, xe] and a meridional extent
[y0, y1] and in the region without topography, the layer depth is equal to D. Over
the interval [x0, (x0 +x1)/2] the height of the topography increases linearly up to
a height h0 and over the interval [(x0 + x1)/2, x1] it decreases to zero. The total
depth of the layer H is

H(x, y) =

⎧
⎨

⎩

D : x ∈ [xw, x0] ∧ x ∈ [x1, xe]
D − αb(x − x0) : x ∈ [x0,

x0+x1
2 ]

D + αb(x − x1) : x ∈ [x0+x1
2 , x1]
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Figure 14.9. Sketch of the flow configuration in a zonal channel with bottom topography, wind-
and buoyancy forcing.

where αb = 2(D − h0)/(x1 − x0) > 0. The flow in the channel is forced
by a zonal wind stress field τx and a meridional surface temperature distribution
Ts(y) as shown in Fig. 14.9. The latter causes a meridional density gradient ρ(y)
through a linear equation of state, ρ = ρ0(1 − αT (T − T0)).

The momentum balances in the channel, neglecting inertia and horizontal mix-
ing, are

−fv = − 1
ρ0

∂p

∂x
+ AV

∂2u

∂z2
, (14.23a)

fu = − 1
ρ0

∂p

∂y
+ AV

∂2v

∂z2
, (14.23b)

g
ρ − ρ0

ρ0
= − 1

ρ0

∂p

∂z
, (14.23c)

where the background hydrostatic pressure has been subtracted. To investigate the
impact of stratification (in combination with bottom topography), we want again
to integrate the equations over depth and introduce

ū =
∫ 0

−H
u dz ; v̄ =

∫ 0

−H
v dz ; p̄ =

∫ 0

−H
p dz ; χ =

g

ρ0

∫ 0

−H
z(ρ − ρ0)dz,

where ρ0χ m3s−2 is the vertically integrated potential energy. Again using Leib-
nitz’s rule and the surface boundary conditions (we neglect bottom friction), ver-
tical integration of the horizontal momentum equations gives

−fv̄ = − 1
ρ0

(
∂p̄

∂x
− pb

∂H

∂x
) +

τx

ρ0
, (14.24a)

fū = − 1
ρ0

(
∂p̄

∂y
− pb

∂H

∂y
) +

τy

ρ0
. (14.24b)
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Ex. 14.3When we multiply (14.23c) by z and then integrate over depth, we find

χ = −
∫ 0

−H

z

ρ0

∂p

∂z
dz. (14.25)

Through partial integration, we can write

χ =
1
ρ0

(Hpb − p̄) → − 1
ρ0

p̄ = χ − H

ρ0
pb. (14.26)

When we take the x-derivative of (14.24b) and the y-derivative of (14.24a) and
eliminate the bottom pressure pb, this gives

∇ · ( f

H
ū) = J(χ,

1
H

) + ∇ · ( f

H
ME), (14.27)

where J(f, g) is again the Jacobian

J (f, g) =
∂f

∂x

∂g

∂y
− ∂g

∂x

∂f

∂y
,

and

Mx
E =

τy

ρ0f
; My

E = − τx

ρ0f

are the Ekman transports. In (14.27), we recognize the term f/H as the shallow-
water potential vorticity (note that we have neglected inertia and hence the relative
vorticity term does not appear).

The curves of constant f/H are called geostrophic contours and two of these
contours for the channel configuration are sketched in Fig. 14.10. Outside of the
interval where bottom topography is present, these are the lines y = c, where c is
a constant. In the interval between x0 and (x0 +x1)/2 these geostrophic contours
are determined by

f0 + β0y = c(D − αb(x − x0)). (14.28)

For example, the geostrophic contour through x = x0, y = 0 is given by

y = − f0

β0D
αb(x − x0),

and as f0 < 0 and αb > 0, this contour has a positive slope and it is deflected
northward when the layer thickness decreases. This is in correspondence with
what is deduced from the conservation of potential vorticity: without forcing, fric-
tion and stratification, a water column will get deflected northward when moving
over this part of the bottom topography.

Integration of the depth integrated continuity equation (∇ · ū = 0), the vector
identity ∇ · (φu) = φ∇ · u + ∇φ · u for an arbitrary vector u and scalar φ, it
follows from (14.27) can be rewritten as

∇(
f

H
) · ū = J(χ,

1
H

) + ∇ · ( f

H
ME). (14.29)
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Figure 14.10. Sketch of the geostrophic contours for the flow configuration as in Fig. 14.9.

In the absence of wind forcing and stratification, the equation above indicates thatEx. 14.4
ū is perpendicular to the gradient of the geostrophic contours. In other words,
the transport is tangent to the geostrophic contours. The wind-driven Ekman
transports are able to induce deviations from this behavior. In addition, the first
term on the right hand side of (14.29) can induce deviations from transport along
geostrophic contours; this term is usually referred to as the J(oint) E(ffect) of
B(aroclinicity) and R(elief), or JEBAR.

We illustrate the JEBAR effect, by writing

J(χ,
1
H

) =
1

H2
(
∂χ

∂y

∂H

∂x
− ∂χ

∂x

∂H

∂y
) =

1
H2

( ∂χ
∂x
∂χ
∂y

)
.

(−∂H
∂y

∂H
∂x

)
,

For fixed x, χ decreases as a function of y because the density decreases north-
ward. Left of the topographic maximum we have ∂H/∂x < 0 and ∂χ/∂y < 0
and hence J(χ, 1/H) > 0. As ∇(f/H) · ū ≈ cos γ, where γ is the angle between
the normal to the geostrophic contours and the velocity vector; without JEBAR
γ = 90◦. With JEBAR with J(χ, 1/H) > 0, we have 0 < γ < π/2 and hence the
zonal character of the flow over the topography is strengthened. To the right of
the topographic maximum (Fig. 14.11), we have ∂H/∂x < 0 and hence we find
−π/2 < γ < 0 which also increases the zonality of the flow (because the slope
of the geostrophic contours has changed). To illustrate the effect, we also plot
in Fig. 14.11a-b two solutions (one with only wind forcing, the other with wind
+ temperature forcing) of the full equations for the configuration as in Fig. 14.9.
The JEBAR effect indeed causes an increase in the zonal transport by making the
flow more zonal.
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Figure 14.11. (a) Sketch of the JEBAR effect on the flow over the topography as in Fig. 14.9. The
layer is cooled in the south and heated in the north such that the meridional density gradient is
negative. (b) Barotropic streamfunction of the steady solution of the full model in the configuration
with only wind forcing. (c) Same for the case of both wind- and temperature forcing.

14.3.2. Time dependent phenomena
We have seen that the input of momentum through the wind stress is balanced

by the ‘bottom form stress’ and we now focus on the processes which transport
the momentum through the flow. From chapter 10, we know that zonal currents
can become unstable through barotropic and baroclinic instability. Small pertur-
bations develop to finite amplitude and eddies are formed with a length scale of
the internal Rossby deformation radius. Eventually, a geostrophic turbulent flow
appears through interaction of these eddies. A plot of the instantaneous global



346 DYNAMICAL OCEANOGRAPHY

sea level height (in a high-resolution ocean model) as in Fig. 14.12 shows the
signatures of these eddies, in particular in the ACC region.

Figure 14.12. Snapshot of the global sea-level height field from a high-resolution ocean model
(NLOM, 1/32◦, see http://www7320.nrlssc.navy.mil/html/7320-home.html).

These type of flows are complex and the flow field is usually decomposed into
a time mean (u) and a deviation (ũ) from this time mean as follows,

u = u + ũ → ũ = 0. (14.30)

As an example, consider the zonal momentum balance in local Cartesian coordi-
nates, i.e.,

∂u

∂t
+

∂(uu)
∂x

+
∂(vu)

∂y
+

∂(wu)
∂z

−fv = − 1
ρ0

∂p

∂x
+AH∇2u+AV

∂2u

∂z2
. (14.31)

We cannot neglect inertia in these flows as it determines the interaction between
the eddies. Substitution of (14.30) for all fields, and then taking an average gives

∂(uu + ũũ)
∂x

+
∂(vu + ṽũ)

∂y
+

∂(wu + w̃ũ)
∂z

− fv =

− 1
ρ0

∂p

∂x
+ AH∇2u + AV

∂2u

∂z2
. (14.32)

Additional Material

B: The JEBAR concept is worked out in more detail in Mertz and Wright (1992).
Further discussion on the effects of eddies on the Southern Ocean flow can
be found in section 4.6 of WOCE (2001).



Antarctic Circumpolar Current 347
Ex. 14.5

The first two terms on the left hand side represent a horizontal flux of mo-
mentum through the divergence of the Reynolds’ stress terms associated with the
‘standing eddies’ (the terms with uu, etc.) and with the ‘transient eddies’ (the
terms with ũũ, etc.). Vertical transport of horizontal momentum is represented by
the third term on the left hand side. The remainder of the terms are the Coriolis
acceleration, the pressure gradient, and the lateral and vertical friction in the same
way as in the stationary equations. When the different terms are calculated from

�
�
��
6
�
�

%�	&�����

�	��$�����
$��
�����

������

$��
�����

������	���

�&&���

�&&���

Figure 14.13. Sketch to illustrate the vertical momentum transfer through eddy driven ‘interfacial
form stress’.

a high-resolution simulation of an ocean model one finds that in the zonally and
vertically integrated equations, there is a balance between the wind stress and the
bottom form stress over the whole ACC region. The other terms are relatively
small compared to these dominant terms and so ‘eddies’ don’t effect the vertically
averaged momentum balance.

The momentum transport from top to bottom is caused by a so-called ‘inter-
facial form stress’ which is similar to the bottom form stress but now between
layers of different density in the flow (Fig. 14.13). When the upper layer flow
is unstable, a time-dependent perturbation will appear which causes a time-mean
pressure difference on both sides of the interface separating the layers. In this
case, we have the same situation as for the bottom form stress but the boundary
is now the interface. An eddy-induced net stress, the ‘interfacial form stress’, can
be imagined as occurring on the interface to accomplish the downward transfer of
zonal momentum. Eventually this is transferred to the bottom topography through
the bottom form stress.
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Summary

In a barotropic channel model without topography and with only lat-
eral friction, the zonal transport scales with 1/AH where AH is the
lateral viscosity.

The presence of bottom topography substantially decreases the zonal
transport because the topography exerts a force (‘bottom form stress’)
on the overlying water. This force Fs is given by

Fs = −
∫

p∇hb d2x

where p is the pressure and hb is the bottom shape.

Stratification and bottom topography can act together to cause flows to
deviate from being along geostrophic contours; this combined effect
is the JEBAR effect.

Eddies are important in the region of the Antarctic Circumpolar Cur-
rent to transfer momentum downward in the water column through an
interfacial form stress.
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14.4. Exercises on chapter 14

(14.1) Scaling of the ACC transport

In section 14.2, we derived that in the case of lateral friction, the zonal trans-
port through the zonal channel scales as 1/AH . Consider now the case where
only bottom friction is the dissipation mechanism.

a. Determine an expression for the bottom shear stress with help of the
(planetary) bottom Ekman solution in chapter 13.

b. Determine the scaling of the ACC transport versus AV , in case the bottom
friction balances the wind stress.

(14.2) Depth averaged vorticity balance

Consider a constant density flow in a zonal channel as in section 14.2 and
neglect the bottom stress term.

a. Use the depth-averaged equations (14.9) to derive the vorticity equation for
this flow, i.e.,

2Ωv̄ cos2 θ =
1

ρ0r0
J(H, pb) +

1
ρ0

(
∂τ θ

∂φ
− ∂(τφ cos θ)

∂θ
),

where J is the Jacobian.

b. Compare the result above for the flat bottom case with the Sverdrup balance
(13.33) derived in section 13.2. Why are the results different?

(14.3) Geostrophic contours

a. Determine the geostrophic contours for the bottom topography given by

hb(x, y) = h0e
−( x

L
)2 ,

where h0 > 0, x ∈ [−L, L] and y ∈ [y0, y1].

Assume that the flow is driven by a constant wind stress τx = τ0, τy = 0, that
the density is constant and neglect bottom friction.
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b. Sketch the deviation of the flow compared to that along geostrophic
contours.

(14.4) JEBAR

Consider a channel flow on the domain x ∈ [0, L], y ∈ [−L, L], z ∈ [−H, 0]
where H = D − hb as in section 14.3 and assume that

ρ(y, z) = αy(1 − eγz)

and
hb(x, y) = h0 sinπ

x

L
sinπ

y

L

where α > 0, h0 > 0 and γ > 0 are constants.

a. Determine the vertically integrated potential energy ρ0χ.

b. Determine the expresssion for the JEBAR term J(χ, 1/H).

c. Describe how pressure gradients are generated by the JEBAR effect and
sketch the deviations of the flow due to these effects.

(14.5) Interfacial form stress

In section 14.3.2 it was stated that the effect of eddies introduces an interfacial
form stress by which momentum can be transported downward.

a. Use (14.32) and the analysis of section 14.2.2 and determine the meridional
transport < v >I is case eddies are present.

b. Give a description of the interfacial form stress in terms of vertical momen-
tum transfer as was done for the bottom form stress in section 14.2.2.
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The continental geometry of the Arctic basin is substantially different
from that in the Southern Ocean. Whereas the Southern Ocean is un-
blocked over a range of latitudes, the Arctic basin is quite isolated having
only a few connections with the other ocean basins. Together with the fact
that a large part of the Arctic is ice covered during most of the year, this
gives rise to a peculiar Arctic Ocean circulation. In this chapter, several
characteristics of the Arctic circulation will be mentioned in section 15.1.
Next we will focus on two questions: (i) why are the surface velocities
closely following bottom topographic features and (ii) why are the deep
velocities relatively large? To answer these questions, the occurrence of
closed geostrophic contours is important and introductory dynamical the-
ory is presented in section 15.2. An idealized model that is used to tackle
both questions above is presented in section 15.3 and its application to the
Arctic Ocean and Nordic Seas appears in section 15.4.

Note: All equations in this chapter are dimensional and we will therefore omit
the star subscript.

15.1. Characteristics
As bottom topography is one of the foremost important factors for the cir-

culation in the Arctic Ocean, we start by showing a map of the bathymetry in
Fig. 15.1. The Arctic basin north of Svalbard is comprised of several subbasins
(Canada basin, Makarov basin, Amundsen basin, Nansen basin) of about 3000-
4000 m depth which are separated by ridges (e.g., Alpha-Mendeleyev ridge and
Lomonosov ridge) with depths of only 1000-1500m. The major connection be-
tween the Arctic and the surrounding oceans is through Fram Strait (to the At-
lantic) and the Bering Strait (to the Pacific). The Bering Strait is only 45 m deep
and 85 km wide. There are some small connections to the Atlantic through the
Canadian Archipelago (e.g., Lancaster Sound) but these are of minor importance
compared to Fram Strait (between Greenland and Svalbard). South of Svalbard,
the area is usually referred to as the Nordic Seas including the Greenland basin
and Norwegian basin.

A large part of the Arctic is ice covered during most of the year. The sea ice
concentration (this quantity is 1 in a particular grid box if the area is totally cov-
ered and 0 if there is no sea ice) over the Arctic basin in Winter and Summer
(both averaged over the years 1985-1995) is plotted in Fig. 15.2. What can be
seen directly from Fig. 15.2a is that the sea ice extends much more southward in
the Canadian area than in the Nordic Seas. Harbours in northern Norway are ice
free during most of the winter. This is due to the inflow of warm water through
the Norwegian Current (an extension of the Gulf Stream) which has a mean
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Figure 15.1. Bottom topography of the Arctic Basin and Nordic Seas
with the names of geographic features indicated (slightly modified from
http://www.ngdc.noaa.gov/mgg/image/IBCAO betamap.jpg).

temperature of about 6-8 ◦C. In Summer (Fig. 15.2b), most of the Canadian
Archipelago becomes ice free as well as parts of the boundaries of the Arctic
basin.

The wind- and buoyancy forcing over the global ocean was presented in chapter
3; over the Arctic measurements are relatively sparse. As in this chapter, we are
only concerned with wind-driven flows and to get an impression of the wind stress
field, the sea level pressure distribution over the Arctic is plotted in Fig. 15.3. We
will not consider the heat flux and freshwater flux over the region. A relatively
high pressure area in the vicinity of the North Pole (in particular in Winter) de-



354 DYNAMICAL OCEANOGRAPHY

(a) (b)

Figure 15.2. The 1985-1995 average Winter (a) and Summer (b) ice concentration in the Arctic
and Nordic Seas (made by software and data available through http://climexp.knmi.nl/). The sea
ice concentration is 1, when a grid box is totally filled with sea ice; it is 0 when there is no sea ice.

(a) (b)

Figure 15.3. The 1985-1995 averaged Winter (a) and Summer (b) sea level pressure (in mb) over
the Arctic (made by software and data available through http://climexp.knmi.nl/).

termines the annual average wind-stress distribution over the Arctic basin. Most
of the Arctic seas are therefore subjected to polar easterlies with a corresponding
anti-cyclonic (westward) surface wind stress. Over Greenland and the Norwegian
Seas, the wind-stress field is determined by the Icelandic low which generates
cyclonic (anti-clockwise) surface winds.

With the use of Lagrangian surface drifters in the Nordic seas, reliable surface
flow estimates are now available. The time-mean field over the period 1991-1995
is shown in Fig. 15.4a. Note that the coverage of drifters is large in the southern
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and eastern part of the domain and sparse in the northern and westerns parts. The
Atlantic inflow branches in two currents at the northern coast of Norway: one
branch continues northward into the Barents Sea and the other branch (the West
Spitsbergen Current) continues towards Fram Strait. Both branches finally enter
the Arctic basin. A sketch of the circulation over the Arctic basin is plotted in
Fig. 15.4b. A major feature of the circulation is the Arctic Ocean Boundary
Current (AOBC) with a transport of about 3-5 Sv together with cyclonic gyres in
the different basins. There are boundary undercurrents along all of the major to-
pography and these flows are the strongest persistent features in the Arctic Ocean.
These boundary currents are a few tens of kilometers wide and they are trapped
over the margins of each of the major basins.

Additional Material

B: The description of all characteristics of Arctic Oceanography, in particular the
different water masses, is far beyond the scope of this book and other sources
should be consulted. Many details can be found in Chapter 7 of Tomczak and
Godfrey (1994). On the role of the Arctic in the global climate system, see for
example Bobylev et al. (2003).

15.2. Quasi-geostrophic flows with topography
In this section, we will present basic theory to understand the effects of

bathymetry, such as in the Arctic, on the bottom current structure. We will start
with explaining in more detail the concept of geostrophic contours (section 15.2.1)
and then proceed with quasi-geostrophic theory of flows in the presence of closed
geostrophic contours (section 15.2.2).

15.2.1. Geostrophic contours
In section 4.4, the concept of potential vorticity was introduced and its useful-

ness was shown in many following chapters. If we consider the shallow-water
potential vorticity Π under conditions of small Rossby number (such that the rel-
ative vorticity is much smaller than the planetary vorticity), it reduces to

Π =
f

H
, (15.1)

where f is the local Coriolis parameter (f = 2Ω sin θ) and H is the total depth of
the ocean. When Π is conserved and the assuming a steady flow, it follows that

DΠ
dt

= u · ∇Π = u · ∇(
f

H
) = 0, (15.2)
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Figure 15.4. (a) Mean surface flow (arrows) in the Nordic Seas from Lagrangian drifters; the
bathymetry is shown as the grey curves (from Nøst and Isachsen (2003)). (b) Mean circulation of
upper layer waters (more specifically, the water between 200 and 1700 m) in the Arctic (from Rudels
et al. (1999)).
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Figure 15.5. Contour plot of f/H for the Arctic Ocean and the Nordic Seas (from Nøst and
Isachsen (2003)).

and hence the velocity field is tangent to the contours of the f/H field (note that
the vector ∇f/H is orthogonal to curves of constant f/H).

The f/H field can be determined from bottom topography data and is plotted in
Fig. 15.5. What is striking here is that many geostrophic contours are closed due to
the presence of the bottom topography. Contrary to the Canada basin and Makarov
basin, the Eurasian basin is split into two large areas (Nansen + Amundsen basins)
with closed contours. Hence, already from this picture and the theory in section
14.2, one expects the depth-averaged flow along bottom topographic features.
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15.2.2. Steady flows with closed geostrophic contours
To look at the effect of closed geostrophic contours on the bottom flow, we

use the two-layer quasi-geostrophic model on the midlatitude β-plane derived in
section 9.1. In particular, we start from the dimensional equations (9.14), here
repeated for convenience

D1

dt

[
∇2ψ1 + β0y +

f2
0

g′H1
(ψ2 − ψ1)

]
− 1

ρ1H1
∇ · (T ∧ e3) = 0,

D2

dt

[
∇2ψ2 + β0y +

f0

H2
hb −

f2
0

g′H2
(ψ2 − ψ1)

]
+ ε0∇2ψ2 = 0,

where
Diφ

dt
= J(ψi, φ) =

∂φ

∂x

∂ψi

∂y
− ∂ψi

∂x

∂φ

∂y

is the Jacobian for every scalar quantity φ. Furthermore, the quantities ψ1 and ψ2

are the geostrophic streamfunctions in both layers, with constant densities ρ1 and
ρ2 and with equilibrium layer thicknesses H1 and H2; g′ = (ρ2 − ρ1)/ρ0 is the
reduced gravity. The quantity f0 is the local Coriolis parameter, β0 is its local
gradient and ε0 is the bottom friction parameter. From section 5.2, we can write

1
ρ1H1

∇ · (T ∧ e3) =
f0

H1
wE , (15.4)

where wE is the Ekman pump velocity. In the equations, we have neglected lat-
eral friction (for example Laplacian friction terms AH∇4ψi) and also a frictional
coupling between the layers, but we will do this later when needed.

The ratio of the relative vorticity term and the term associated with the variation
in the layer thickness in (15.3) is proportional to the parameter Fi = L2/L2

Di
where LDi is in the internal Rossby deformation in each layer. When we assume
that both the Fi are large, the relative vorticity can be neglected and when use
is made of J(ψi, ψi) = 0 (where J is the Jacobian), we find from (9.14) the
equations

f2
0

g′H1
J(ψ1, ψ2) + β0

∂ψ1

∂x
=

f0

H1
wE , (15.5a)

f2
0

g′H2
J(ψ2, ψ1) + β0

∂ψ2

∂x
+ ε0∇2ψ2 = −J(ψ2,

f0

H2
hb). (15.5b)

We now first determine the depth-averaged flow by multiplying (15.5a) by H1

and (15.5b) by H2 and adding the result. Using also the identity J(ψ1, ψ2) =
−J(ψ2, ψ1), we find

β0
∂

∂x
(H1ψ1 + H2ψ2) + J(ψ2,

f0

H2
hb) = f0wE − H2ε0∇2ψ2. (15.6)
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Under conditions that friction is negligible and bottom topography is absent, we
introduce the depth-averaged streamfunction ψB as

ψB =
H1ψ1 + H2ψ2

D
, (15.7)

where D = H1 + H2 is the total equilibrium depth. The relation (15.6) then
reduces to the Sverdrup balance

β0
∂ψB

∂x
=

f0

D
wE , (15.8)

and the solution for ψB satisfying a no-flow eastern boundary conditions at x = xe

is given by

ψB(x, y) = − f0

β0D

∫ xe

x
wE(x′, y)dx′, (15.9)

and hence ψB is known when wE is prescribed. The streamfunction in each layer
is related to ψB through

ψ1 =
DψB − H2ψ2

H1
; ψ2 =

DψB − H1ψ1

H2
. (15.10)

We now proceed first with the case without bottom topography (which is easier)
and then come back to this issue at the end of this section. In the flat bottom case,
using (15.10) in the vorticity equations (15.5) gives

J(ψ1, β0y + F̂ψB) =
f0

H1
wE , (15.11a)

J(ψ2, β0y + F̂ψB) = −ε0∇2ψ2, (15.11b)

where F̂ = f2
0 D/(g′H1H2). These are linear equations in ψ1 and ψ2 which can

be easily solved.
In the interior of the second layer, bottom friction is small and (15.11b) gives

J(ψ2, q̂2) = 0 ; q̂2 = β0y + F̂ψB, (15.12)

and hence ψ2 = Ψ(q̂2) for some function Ψ. Streamlines in the lower layer are
hence identical to isolines of the known function q̂2. These are also isolines of the
potential vorticity of the lower layer q2 (the geostrophic contours), since

q2 = β0y − f2
0

g′H2
(ψ2 − ψ1) = q̂2 − F̂Ψ(q̂2). (15.13)

The interesting case is now whether closed geostrophic contours will exist in
the lower layer. When the wind forcing is zero, ψB is zero and the geostrophic
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contours are lines of constant y. Such contours will always intersect the eastern
boundary where ψ2 = 0 and hence ψ2 is zero everywhere. When the wind forcing
is so small that the geostrophic contours (curves of constant q2) still intersect the
eastern boundary, then there is flow in the upper layer, but the lower layer is still
motionless. To see how the geostrophic contours are deformed by the upper-layer
flow, we first consider an example.

�
Example 15.1: Localized Ekman pumping: specification

Consider a situation of localized Ekman pumping in a disk with radius R
around (0, 0), such that R < xe, where xe is the eastern boundary. On the disk,
the Ekman pumping (Fig. 15.6a) is given by

wE = −γx, (15.14)

where γ > 0 is a positive constant; wE = 0 outside the disk.

The Sverdrup streamfunction ψB is immediately found from (15.9). It is zero
for points (x, y) outside the disk (when x > R, this follows from wE = 0 and
when x < −R, it follows from the anti-symmetry of wE with respect to x = 0)
and for values (x, y) within the disk it becomes

ψB(x, y) =
γf0

β0D

∫ X(y)

x
x′dx′ =

γf0F̂

2β0D
(R2 − x2 − y2), (15.15)

where X(y) =
√

R2 − y2. The geostrophic contours are now given by curves
of constant q̂2 = β0y for points outside the disk and by curves of constant q̂2 =
β0y + (F̂ γf0)/(2β0D)(R2 − x2 − y2) for points inside the disk.

When we write y0 = β2
0D/(γf0F̂ ), the expression for q̂2 within the disk can

be written as

q̂2 =
β0

2y0
(R2 + y2

0 − x2 − (y − y0)2). (15.16)

Hence the geostrophic contours are only deformed within the disk and two exam-
ples (y0/R = 2 and y0/R = 1/4) are shown in Fig. 15.6b and Fig. 15.6c, respec-
tively. When the center of the circular arc y0 lies outside of the disk (y0 > R), the
curves remain open circular arcs and connect to the constant latitude lines outside
the disk. However, when y0 < R the center lies within the disk and hence there
are isolines which are closed and which are not connected to the constant latitude
lines.
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Figure 15.6. (a) Sketch of the situation of localized Ekman pumping within a disk of radius R.
(b) Isolines of q̂2 for the case y0 = 2, R = 1. (c) Same for y0 = 0.25 and R = 1 (from Pedlosky
(1996)).

The critical value of the forcing which is required to have closed contours is
determined by the condition y0 ≤ R, which is equivalent to

β2
0D

γf0F̂
≤ R → γ ≥ β2

0D

f0F̂R
. (15.17)

When γ = W0/R, where W0 is a typical amplitude of the Ekman pump velocity,
then by defining a mean Rossby deformation radius Ld using F̂ = 1/L2

d, we find

W0 ≥ β2
0L2

dD

f0
. (15.18)

With typical values f0 = 10−4 s−1, β0 = 10−11 (ms)−1, D = 1000 m and
Ld = 50 km, we find as critical value W0 ≈ 2.5 × 10−6 m s−1 = 0.2 m/day,
which is well within the realistic range of high latitude Ekman pump velocities
(Fig. 5.13) observed.
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�

The example clearly shows that the upper-layer flow caused by the Ekman
pumping can deform the lower-layer geostrophic contours such that they can be-
come closed. When closed, these contours are disconnected from the eastern
boundary and hence, in principle, flow is possible within such regions. But how
is it determined?

� �

�

"

0

	

&�

σE&�

Figure 15.7. (a) Sketch of a closed geostrophic contour C parametrized by the curve σ and
enclosing an area A.

It turns out that friction between the layers is crucial to set the flow in the lower
layer. Such type of friction may be established by time-dependent processes as-
sociated with eddies (as briefly discussed in section 14.3), but it is usually rep-
resented in the right hand side of the momentum equation of the lower layer by
a term −Af (u2 − u1). As the vorticity equation results from taking the curl of
the momentum equations, we then obtain by adding the interfacial friction term to
(15.11b),

J(ψ2, q̂2) = −ε0∇2ψ2 − Af∇∧ (u2 − u1). (15.19)

Now consider a region A in the lower layer enclosed by a closed geostrophic
contour C (Fig. 15.7). Integration of (15.19) over this region gives

∫

A
J(ψ2, q̂2) dxdy =

∫

A
u2 · q̂2 dxdy =

∫

A
∇ · (u2q̂2) dxdy =

∮

C
, q̂2u2 · nds

(15.20)
where n is the outward normal and ds = |ds| the scalar element along the curve
C. As q̂2 is constant along the geostrophic contour C it can be taken out of the
integral. As was discussed above, the geostrophic contour is also a streamline as
ψ2 = Ψ(q̂2) and parameterizing the curve C by a mapping σ(s) : R → R

2, we



Arctic Ocean Circulation 363

have ψ2(σ(s)) = constant. By taking the derivative to s we find

∇ψ2 · σ′ = 0. (15.21)

Now because n is orthogonal to the tangent to the curve (σ′) and for the
geostrophic streamfunction, we have u2 = e3 ∧∇ψ2, it is found that

∮
q̂2u2 · n ds = q̂2

∮
u2 · n ds = q̂2

∮
d

ds
ψ2(σ(s))ds = 0, (15.22)

the latter step because the contour is closed and ψ2 is single valued.
Integration of (15.19) therefore gives

∫

A

[
ε0∇2ψ2 + Af∇∧ (u2 − u1)

]
dxdy = 0, (15.23)

and applying Gauss’ and Stokes’ theorems to the integrals above we obtain

Af

∮
u1 · ds = (ε0 + Af )

∮
u2 · ds. (15.24)

To obtain another relation between u1 and u2 we use (15.10) to give

u1 =
D

H1
uB − H2

H1
u2, (15.25)

where uB is the Sverdrup velocity field. Substituting this expression into (15.24)
gives ∮

u2 · ds =
DAf

H1ε0 + DAf

∮
uB · ds. (15.26)

On the other hand, when friction is negligible we have ψ2 = Ψ(q̂2) (because
of conservation of potential vorticity in the lower layer) and hence

∮
u2 · ds =

∮
e3 ∧∇ψ2 · ds =

∮
e3 ∧

∂Ψ
∂q̂2

∇q̂2 · ds. (15.27)

Again, ∂Ψ/∂q̂2 is only a function of q̂2 and hence constant along C. With q̂2 =
F̂ψB + β0y, we then find
∮

u2 · ds =
∂Ψ
∂q̂2

∮
e3 ∧∇(F̂ψB + β0y) · ds =

∂Ψ
∂q̂2

∮
F̂uB · ds, (15.28)

since e3 ∧ ∇y = −e1 and its contour integral is zero. Combining (15.26) and
(15.28), one can solve

ψ2(x, y) = Ψ(q̂2) =
DAf

F̂ (ε0H1 + DAf )
(q̂2(x, y) − q̂20) (15.29)

where q̂20 is an integration constant which is determined by the value of q̂2 on
the outermost closed geostrophic contour where ψ2 = 0. The conclusion of this
analysis is that weak dissipation (interfacial friction) sets the flow in the lower
layer in the region of closed geostrophic contours.
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�
Example 15.2: Localized Ekman pumping: solutionEx. 15.1

We now continue the analysis of the situation of localized Ekman pumping as
in Example 15.1. Assume that y0 < R such that closed streamlines exist; the
outermost closed geostrophic contour touches the boundary of the disk at (0, R)
and hence the value of q̂20 = β0R. The outermost geostrophic contour in the
lower layer (where ψ2 = 0) is therefore given by (from (15.16)) by

β0R =
β0

2y0
(R2 +y2

0 −x2 − (y−y0)2) → x2 +(y−y0)2 = (R−y0)2. (15.30)

The streamfunctions in both layers follow from (15.29) and (15.10)

ψ2(x, y) =
DAf

ε0H1 + DAf
(ψB + β0

y − R

F̂
), (15.31a)

ψ1(x, y) =
DψB(x, y) − H2ψ2(x, y)

H1
. (15.31b)

For ε0 = 0 (no bottom friction) and y0 = 1/4, R = 1, both streamfunctions
ψ1 and ψ2 are plotted in Fig. 15.8. In layer 2 (Fig. 15.8b), one observes that the
circulation is limited to the region of closed geostrophic contours. The explicit
solution for ψ2 within the disk for this case is given by

ψ2(x, y) =
β0

F̂

[
1

2y0
(R2 − x2 − y2) + y − R)

]
, (15.32)

and the streamlines are circles with center (0, y0). The solution for ψ1 in
Fig. 15.8a is more complicated as it is composed of part of the Sverdrup solu-
tion (which is nonzero over the forcing disk) and part of the solution ψ2. Outside

Ex. 15.2

of the regions of closed contours (the dark contour in Fig. 15.8a), the solution is
just the Sverdrup solution weighted by a factor D/H1. At the intersection of the
forcing region and that of the outermost closed contour, jumps occur in the upper
layer streamfunction.

�Ex. 15.3

While we have totally neglected bottom topography in this section, it is clear
that the addition of bottom topography in the quasi-geostrophic case easily leads
to closed contours as it is part of the potential vorticity q2. The material in
this section has illustrated that subtle effects may control bottom layer currents
once geostrophic contours become closed. To investigate the bottom currents
in the Arctic, the quasi-geostrophic approximation is questionable because the
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(a) (b)

Figure 15.8. (a) Plot of the streamfunction ψ1 for the case y0 = 0.25, R = 1. (b) Plot of the
streamfunction ψ2 for the case y0 = 0.25, R = 1 (from Pedlosky (1996)).

amplitude of the bottom topography is no longer in the order of the Rossby
number. Hence, in the next section we turn to a slightly more complicated model.

Additional Material

B: For a more extensive discussion see sections 3.5 to 3.8 in Pedlosky (1996).
An alternative approach to this problem can be found in section 14.7 of Vallis
(2006).

D: The Arctic Ocean flow has motivated much work on the representation of
eddy-topography interactions, see e.g., Holloway (1992). For the quasi-
geostrophic case incorporating bottom topography, see Dewar (1998).

15.3. An idealized model of the Arctic circulation
The starting point (Nøst and Isachsen, 2003) are the horizontal momentum

equations for an ocean layer bounded by z = 0 at the surface and by z = −H at
the bottom. The steady horizontal momentum equations are written as

v · ∇v + e3 ∧ fv = − 1
ρ0

∇p + AV
∂2v
∂z2

, (15.33)

where v = (u, v) is the horizontal velocity vector, e3 is the unit vector in ver-
tical direction and only vertical mixing processes are considered. The boundary
conditions are as in (14.4).

As a first step, the flow is split into a geostrophic and an ageostrophic part
according to v = vg + va, with

vg =
1

fρ0
e3 ∧∇p (15.34a)
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e3 ∧ fva = AV
∂2v
∂z2

− v · ∇v (15.34b)

The horizontal momentum equation (15.33) can then be written as

e3 ∧ fv = − 1
ρ0

∇p + e3 ∧ fva (15.35)

As a next step, we define the depth-integrated horizontal velocity as

V =
∫ 0

−H
v dz (15.36)

and split the total horizontal transport into

V = Va + Vs + Hvb, (15.37a)

Vs =
∫ 0

−H
(vg − vb) dz, (15.37b)

Va =
∫ 0

−H
va dz. (15.37c)

Here vb is the bottom horizontal velocity, i.e., vb = v|z=−H , which is indepen-
dent of z.

To arrive at the depth averaged vorticity equation, we use the fact that the hori-
zontal divergence of V (through vertical integration of the continuity equation) is
zero to give

∇ · (Vs + Va + Hvb) = 0. (15.38)

We use Leibnitz’s rule for writing

∇ · Vs = ∇ ·
∫ 0

−H
(vg − vb) dz =

=
∫ 0

−H
∇ · (vg − vb) dz + ∇H · (vg − vb)|z=−H , (15.39)

and the last term in the right hand side can be neglected if the ageostrophic veloc-
ities near the bottom are assumed small.

Using the vector identities (for arbitrary vectors a and b and scalar φ)

∇ · (a ∧ b) = b · ∇ ∧ a − a · ∇ ∧ b,

and
∇∧ (φa) = φ∇∧ a + ∇φ ∧ a,
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we evaluate

∇ · vg = e3 ∧∇p · ∇(
1
f

) = − 1
f
vg · ∇f, (15.40a)

∇ · vb = e3 ∧∇p · ∇(
1
f

) = − 1
f
vb · ∇f, (15.40b)

and

∇ · (Hvb) = ∇ · ( H

ρ0f
e3 ∧∇pb) = fvb · ∇(

H

f
) = −H2

f
vb · ∇(

f

H
). (15.41)

Eventually one then finds from (15.38) the vorticity equation
Ex. 15.4

H2

f
vb · ∇(

f

H
) = − 1

f
Vs · ∇f + ∇ · Va. (15.42)

If we assume that inertia can be neglected, then vertical integration of (15.34),
and taking the divergence of the result gives

∇ · Va = e3 ·
[
∇∧ τ s

ρ0f
−∇ ∧ τ b

ρ0f

]
, (15.43)

where τ s and τ b are the surface wind stress and the bottom stress vectors, respec-
tively. In this case, the vorticity equation becomes

H2

f
vb · ∇(

f

H
) + e3 · ∇ ∧ τ b

ρ0f
= e3 · ∇ ∧ τ s

ρ0f
− 1

f
Vs · ∇f. (15.44)

When the wind-stress field and the transport due to the shear velocities Vs are
given, this equation is a single scalar equation for the streamfunction ψb associated
with the bottom velocities, i.e.,

vb =
1

fρ0
e3 ∧∇ψb. (15.45)

Note that when the bottom velocities and bottom stress are zero, the balance
(15.44) reduces to the Sverdrup balance as f only varies in the meridional di-
rection.

�
Example 15.3: Idealized basin

Let the layer depth of an idealized basin in Cartesian coordinates be given by

H(x, y) = H0e
− r2

L2 + H1, (15.46)
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where r2 = (x−x0)2 +(y− y0)2 and H1 and H0 are constants. Hence, at r = 0,
we have H = (H0 + H1) m and for r � L, we have H ≈ H1 m. We assume that
the right hand side, say F , of (15.44) is known as

F (x, y) = F0(
x

x0
)2, (15.47)

which is constant in y and increasing quadratically in x. Let us assume that the
Coriolis parameter f is constant. Certainly, the geostrophic contours f/H are
closed. Let furthermore the bottom stress be parameterized as

τ b = ρ0Rvb, (15.48)

with R being constant, then (15.44) becomes

−vb · ∇H +
R

f
∇∧ vb = F → − 1

ρ0f
J(ψb, H) +

R

ρ0f2
∇2ψb = F, (15.49)

where J is again the Jacobian. For given H and F this is a linear equation for the
streamfunction ψb which can be solved numerically.

Ex. 15.5

A plot of the velocity field vb for values R = 10−4 ms−1, H1 = 300 m,
H0 = 3700 m, L = 6× 105 m, F0 = 5× 10−7 ms−1 in a domain of 5000× 5000
km is shown in Fig. 15.9b, while the H field is plotted in Fig. 15.9a. It indicates
the close alignment of the velocity vectors with the f/H contours.

(a) (b)

Figure 15.9. (a) Contours of H for the problem as defined by (15.46) in Example 15.3. (b) Bottom
velocity vector plot as the solution of (15.49) where the bottom velocity vb = e3 ∧ψb/(ρ0f) (from
Nøst and Isachsen (2003)).

�

15.4. Application to the Arctic basin
Estimates for the terms in the right hand side of (15.44) from observations have

been made in Nøst and Isachsen (2003). The wind-stress term was calculated
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from the NCEP/NCAR reanalysis project and averaged over the years 1950-2000
whereas the term involving Vs was calculated from several ocean atlases. Over
most of the Nordic seas (with the exception of regions near Svalbard and Iceland),
there is upwelling (Fig. 15.10a) while there is downwelling over the remainder of
the Arctic basin. The spatial pattern of the hydrographic term in Fig. 15.10b is
quite different from that of the wind-stress term with large positive values south
of Fram Strait in the East Greenland Current and relatively small values of the
Arctic basin. It can be immediately seen that the spatial patterns of both fields
do not cancel which indicates that a Sverdrup balance is not likely in the Arctic
Ocean and Nordic Seas. The vertical velocities associated with the right hand side
of (15.44) have an absolute maximum of about 2 × 10−6 ms−1.

(a) (b)

Figure 15.10. (a) Surface Ekman pumping velocities (the term e3 · ∇ ∧ τ s/(ρ0f) in (15.44))
calculated from NCEP wind stress data and (b) hydrographic forcing (the term −(Vs/f) · ∇f in
(15.44)) calculated from EWG Arctic Atlas and World Ocean Atlas 98. The units are in 10−6 ms−1

(from Nøst and Isachsen (2003)).

Once the right hand of (15.44) is known, the bottom streamfunction can be
determined once the bottom friction law is specified. In Nøst and Isachsen (2003),
the quadratic bottom friction law

τ b = ρ0CD

√
u2

b + v2
b vb, (15.50)

is used with a drag coefficient CD = 10−3. Using the full bathymetry of the
Arctic Ocean and Nordic Seas, the equation (15.44) was solved. In Fig. 15.11,
the bottom velocity fields for the Arctic Ocean (Fig. 15.11a) and the Nordic Seas
(Fig. 15.11b) are shown. The red arrows indicate current measurements from
moored instruments.
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Figure 15.11. (a) Modeled bottom geostrophic velocities (black arrows) and those observed (red
arrows) at specific locations for the Arctic Ocean. (b) Modeled bottom geostrophic velocities (black
arrows) and observed near-bottom currents (red arrows) for the Nordic Seas (from Nøst and Isach-
sen (2003)).

The most pronounced feature of the model circulation in the Arctic basin is the
counter-clockwise Arctic Circumpolar Boundary Current along the perimeter of
the entire region, in agreement with the available current meter data. Near (80◦W,
150◦E) this current splits and part flows along the Lomonosov Ridge towards
the North Pole. Near the North Pole there is a gap in the Lomonosov Ridge
and the model predicts a bottom flow into the Makarov basin following the f/H
contours. In the Canada basin, the circulation is clockwise and much weaker. The
bottom velocities in the Nordic Seas show also strong currents in and out of Fram
Strait, with the East Greenland current being most pronounced. Much more on
the description of the model currents and the comparison with observations can
be found in Nøst and Isachsen (2003).
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Summary

The Arctic Ocean circulation is characterized by a cyclonic Arctic Ocean
Boundary Current and cyclonic gyres in the different sub basins.

Surface winds, and the associated Ekman pumping, is already able to close
geostrophic contours in the deep ocean as the potential vorticity in the deep
ocean is influenced by the depth averaged (Sverdrup) flow. Bottom topography
also contributes to the closure of geostrophic contours.

Once closed contours exist in the lower layer, flow is possible in this layer
through frictional coupling with the upper layer.

The flow in the Arctic Ocean and Nordic Seas is strongly controlled by bottom
topography as geostrophic contours are closed over much of the flow domain.
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15.5. Exercises on chapter 15

(15.1) Limits

There are two interesting limits in the problem discussed in Example 15.2.

a. First consider the limit ε0H1/DAf → ∞. Determine the resulting
streamfunction solutions and provide a physical interpretation for the result.

b. Second, consider the limit ε0 → 0 as was used in the Figs. 15.8. Again,
determine the resulting solutions and provide a physical interpretation of the
result.

(15.2) Homogenization of PV

The solution of the problem in Example 15.3 has an interesting potential
vorticity distribution.

a. Determine the potential vorticity q2 (of the bottom layer) and in particular
consider the limit ε0 → 0.

Assume more generally that the dissipation term in the lower layer vorticity
equation can be written as ∇ · (κ∇q2) instead of using the interfacial friction
term. Instead of (15.19) we then obtain with ε0 = 0,

J(ψ2, q̂2) = ∇ · (κ∇q2)

b. Show that ∮

C

κ∇q2 · n ds = 0

where the integral is taken over a closed streamline in the lower layer.

We can also use the constraint of potential vorticity conservation in the fric-
tionless limit, i.e., q2 = Ψ(ψ2).

c. Show that for all closed streamlines

dΨ
dψ2

= 0

and provide a physical interpretation of the result.
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(15.3) Topography in the quasi-geostrophic case

In this exercise the quasi-geostrophic two-layer model with bottom topogra-
phy is considered. Starting equations are again given by (15.3) on a domain
[xw, xe] × [−L, L] which contains the point (0, 0). We will neglect bottom
friction and hence put ε0 = 0. The bottom topography is given by

hb(x, y) = hb0

[
1 − x2 + y2

R2

]

when x2 + y2 < R2 and it is zero over the rest of the domain. The Ekman
pumping is chosen as

wE(x, y) =

⎧
⎨

⎩

α(y − L) : y0 < y < L
α(y0 − L) : −y0 < y < y0

−α(y + L) : −L < y < −y0

and hence wE is everywhere negative over the domain.

a. Assume that R < xe and hb0 = 0. Show that near the eastern boundary the
lower layer is at rest and determine the streamfunction in the upper layer.

b. Determine the conditions under which closed geostrophic contours appear.

Now assume that the conditions under b. are such that no closed geostrophic
contours appear due to the wind-stress forcing and consider the case hb0 > 0.

c. Determine the condition on hb0 such that closed geostrophic contours appear
in the lower layer.

(15.4) Bottom velocities on closed f/H contours

It is possible to derive an approximate formula for the bottom velocities on
closed f/H contours for the model in section 15.4. To do this, we start from
(15.45) here rewritten for convenience as

vb =
1

fρ0
e3 ∧∇ψb

a. Introduce q = f/H as one coordinate and p as a coordinate perpendicular
to q (hence along ∇(f/H)). Show that when velocities perpendicular to f/H
are much larger than those perpendicular to it, the bottom velocities can be
determined from

vb ≈
1

fρ0

∂ψb

∂q
e3 ∧∇q
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Assume now that ψb is a function only of q.

b. Consider the linear friction law τ b = RCDvb and integrate the vorticity
equation (15.44) along a closed contour C of constant f/H . Show that the
result can be written as

∮
RCD

ρ0f
vb · ds =

∫

A
(e3 · ∇ ∧ τ s

ρ0f
− 1

f
Vs · ∇f) dxdy

where A is the area enclosed by C.

c. Now use the results under a. in that of b. to derive an expression for ∂ψb/∂q.

d. Show that

vb = αb

[∫

A
(e3 · ∇ ∧ τ s

ρ0f
− 1

f
Vs · ∇f) dxdy

]
t

where t is the tangent vector to C and determine αb.

(15.5) Explicit bottom velocities in Example 15.3

As an application of the results in exercise (15.4), it is possible to determine
explicit expressions for the bottom velocities in the case of Example 15.3.

a. Show that for this case the expression for vb in exercise 15.4 (part d.)
reduces to

vb = |∇H| f
R

∫
Fdxdy∮

|∇H|f2ds
t

b. Use the expression for F in Example 15.3 to derive

vb =
fF0

8Rx2
0

(r3 + 4x2
0r) t

where r =
√

x2 + y2 and interpret the result.
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In this chapter the focus will be on the different roles of the transport of
heat and salt in the component of the ocean circulation associated with
density differences, the thermohaline circulation. It will appear that the
stability properties of the large-scale ocean circulation are highly sensi-
tive to the representation of these transports. Note that we have totally
neglected these aspects in chapter 13, where only the density field was
considered and not the separate effects of heat and salt. The motivation
to study the thermohaline circulation in isolation is that variability in this
flow may have been responsible for rapid climate change in the past (sec-
tion 16.1). In section 16.2 we present an idealized model to investigate
the stability of the thermohaline circulation, the Stommel two-box model.
In the following sections (16.3 and 16.4) we analyze the equilibrium so-
lutions of this model and the feedbacks affecting the stability of the ther-
mohaline circulation (section 16.5).

16.1. Past climate variability
Much information on past climates has been obtained through measurement

of isotope content, such as oxygen and carbon isotopes in material derived from
ocean sediments and from ice cores, combined with accurate dating techniques.
For example, the carbonate in shells of marine organisms (e.g. foraminifera) and
water in ice caps contain two isotopes of oxygen, 18O and 16O. The normalized
isotope ratio δ18O is calculated as a deviation from a reference sample as

δ18O =
(

18O
16O

)sample − (
18O
16O

)reference

( 18O
16O

)reference

, (16.1)

where the reference sample is different for ice cores (i.e. standard mean ocean
water) than for carbonate shells (i.e. a specific fossil Cretaceous species). The
isotope 16O is lighter than 18O so that water containing 16O is preferentially evap-
orated and a temperature-dependent fractionation occurs. Under cold conditions,
less water containing 18O is able to evaporate into the atmosphere.

Changes in δ18O reflect the combined effect of changes in global ice volume
and temperature at the time of deposition of the sampled material. During very
cold conditions, global ice volume is relatively large and hence sea level is low,
which enriches water in the ocean with 18O. Also because of the colder temper-
atures, more 18O remains in the ocean and less 18O becomes locked in the ice.
Hence, in ocean sediments the ratio δ18O will increase under cold conditions,
whereas in ice cores it will decrease.

When corrections for global ice volume (with respect to the reference sample)
are made, δ18O can be used as an indicator for the temperature at the time of
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deposition. The δ18O record from the last 2.5 My, as obtained from deep sea
sediments (ODP site 677 in the equatorial Pacific at 1◦N, 84◦W), is plotted in
Fig. 16.1. One observes the variations in climate superposed on a gradual cooling

-2.5

-2

-1.5

-1

-0.5

0

2.5 3 3.5 4 4.5 5 5.5

δδδδ18O

Time (My)

Holocene

Eemian

coldwarm

Ice ages

Figure 16.1. Isotope ratio δ18O for benthic foraminifera at Ocean Drilling Program site 677
located in the eastern equatorial Pacific at 1◦N, 84◦W. A change in δ18O of 0.23 units can be
translated into a temperature change of about 1◦C. All this data (and many more) is available
through NOAA’s Paleoclimatology site (http://www.ngdc.noaa.gov/paleo/paleo.html).

trend, with a change in pace about 0.7 My ago. From then on, a dominant period of
about 100,000 years is found, reflecting the frequency of major glaciations which
occurred in the northern hemisphere. Termination of these glaciations seems to be
rather abrupt and leads to warmer periods, called interglacials; at the moment, we
live in the Holocene interglacial. The transitions between glacials and interglacials
are global in extent, since their signatures are found in available data from all over
the globe.

The oxygen isotope record of the last 110,000 years within the GRIP ice core
from Greenland is plotted in Fig. 16.2. Note that, contrary to the values of ocean
sediments, values of δ18O are now negative and cool periods have smaller (larger
negative) values. From the last interglacial (the Eemian), the transition to the last
glacial period has been in several stages, with again warmer periods alternating
with cold intervals. The Last Glacial Maximum (LGM) occurred at about 20,000
years ago, and the temperature difference between LGM and Eemian is about
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Figure 16.2. Oxygen isotope record of the last interglacial and the most recent glacial episode.
A change in δ18O of one unit corresponds to about a temperature change of about 2◦C.

10◦C. Spectral analysis reveals that the periodicities of the cold/warm fluctua-
tions are about 40,000 and 20,000 years. The signatures of these changes are also
visible globally, but the spatial extent of the signal reveals that these fluctuations
are somehow forced in the northern hemisphere.

When the transition from the Last Glacial Maximum to the Holocene is con-
sidered in more detail, rapid transitions are observed. Sudden warm periods (in-
terstadials), which last for 500 - 2,000 years, appear with temperature changes of
about 5◦C. These transitions between cold and warm episodes are also confirmed
in δ18O records from ocean sediments and are called Dansgaard-Oeschger events
(cf. section 2.4). A magnification of the δ18O record from the GRIP ice core is
plotted in Fig. 16.3. Of particular interest is that the warming of the earth from
20,000 years ago onward has been in several relatively distinct stages. First, rel-
atively fast transitions to the Bølling and Allerød interstadials occur, where the
temperatures are relatively high. This is followed by a period of significant cool-
ing between 12,500 and 11,500 years ago. The resulting stadial is referred to as
the Younger Dryas, during which the apparent warming trend was delayed for
approximately 1,000 years. The period ends with a rapid shift to warmer temper-
atures into the beginning of the Holocene, with indications of a temperature rise
of 1◦C per decade!



Thermohaline circulation 379

-1.5 104

-1.4 104

-1.3 104

-1.2 104

-1.1 104

-1 104

-45 -40 -35 -30

Time (yr) 

δδδδ18O

cold warm 

Younger Dryas

Allerod

Bolling

Transition 
to Holocene

Figure 16.3. Oxygen isotope record from the GRIP ice core (shown in Fig. 16.2) over a smaller
window of time, showing the Bølling and Allerød interstadials and the Younger Dryas stadial.

What processes caused these rapid transitions? As the ocean circulation is
responsible for a substantial part of the meridional heat transport, fluctuations in
the ocean currents can lead to climate changes. In the next section the possibility
of relatively rapid transitions in the ocean circulation is explored using conceptual
models.

Additional Material

B: For an introduction on the role of ocean circulation in paleoclimate, see Rud-
diman (2001). An overview of the Younger Dryas and its possible causes is
given in Berger and Jansen (1994).

16.2. The Stommel two-box model
Global ocean models with a coarse resolution (about 4◦ horizontally) are quite

capable of simulating the main features of the global ocean circulation. One prob-
lem is the buoyancy flux forcing; when the models are forced with prescribed
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heat flux, freshwater flux and wind stress, the resulting circulation has a very
weak meridional overturning in the Atlantic. Hence, ocean modelers have used
the observed surface salinity field to force the ocean models. Once equilibrium
solutions are obtained, the freshwater flux is derived by computation and used in
further investigations on sensitivity.

In typical studies of the stability of the thermohaline circulation, the freshwater
forcing is changed by adding slowly varying perturbations at different locations.
In this way the sensitivity of the overturning flow to the freshwater forcing can be
determined. When the perturbation is added in the northern North Atlantic (with
an inflow of typically 0.05 Sv per 1,000 years) a response as shown in Fig. 16.4
is obtained. On the vertical axis, for example, the amount of North Atlantic Deep
Water is plotted (or the strength of the zonally integrated flow, the meridional over-
turning circulation) while the horizontal axis shows the strength of the anomalous
freshwater forcing. With increasing freshwater forcing, the strength of the over-
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Figure 16.4. Typical hysteresis behavior associated with the changes in the strength of the At-
lantic meridional overturning when the strength of the freshwater flux γp is changed slowly in time
(first an increase followed by a decrease).

turning circulation decreases; at some point L+ the overturning collapses. When
the freshwater input is reversed, hysteresis occurs as the transition to the original
state occurs at a smaller value of γp (at L−) than the reverse transition.

This result indicates that there is more than one equilibrium circulation pattern
for a given set of forcing conditions and that rapid transitions between them may
occur on relatively short time scales. This is an alarming result when we consider
the anticipated changes in the buoyancy forcing of the ocean due to the increase
in greenhouse gases. In most climate models, precipitation increases over higher
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latitudes and hence this would weaken the meridional overturning in the Atlantic.
However, different models display a mosaic of different responses to the same
greenhouse forcing conditions. In some of the models, the meridional overturning
decreases substantially whereas in others it is hardly affected. We will focus only
on the basic mechanisms which cause the occurrence of the multiple equilibria and
which are responsible for the sensitivity of the ocean circulation to the freshwater
and heat flux forcing.

In a model proposed by Stommel in 1961, this problem was first studied in
its most essential form, using two vessels (boxes) having volumes Vp and Ve.
These boxes contain well-mixed water of temperature and salinity (Te∗, Se∗) and
(Tp∗, Sp∗), with the subscripts ‘e’ and ‘p’ indicating the equatorial and polar box,
respectively. The boxes are connected at the surface by an overflow region and at
the bottom by a capillary tube, to keep the volume in each box constant.

The flow rate Ψ∗ is directed from high to low pressure (or from high to low
density) and is assumed to be linearly related to the density difference between
the liquid in the two boxes, i.e.

Ψ∗ = γ
ρp∗ − ρe∗

ρ0
, (16.2)

where ρ0 is a reference density and γ a hydraulic constant. Hence the flow rate is
taken to be positive if the liquid in the polar box is denser. The exchange of prop-
erties does not depend on the sign of Ψ∗ because it only matters that properties
from one box are transported to the other box. The pathway (either through the
overflow, or through the capillary) is unimportant, because mass is conserved. A
linear equation of state of the form

ρ∗ = ρ0(1 − αT (T∗ − T0) + αS(S∗ − S0)), (16.3)

is assumed, where the subscript ’0’ refers to reference values.
Exchange of heat and salt in each box due to the surface forcing is modelled

through relaxation to a prescribed surface temperature and salinity (T a, Sa) with
relaxation coefficients CT and CS . These coefficients are different for each box
and for each quantity considered (heat or salt). In this way, the balances of heat
and salt in each box are given by

Vp
dTp∗
dt∗

= CT
p (T a

p − Tp∗)+ | Ψ∗ | (Te∗ − Tp∗), (16.4a)

Ve
dTe∗
dt∗

= CT
e (T a

e − Te∗)+ | Ψ∗ | (Tp∗ − Te∗), (16.4b)

Vp
dSp∗
dt∗

= CS
p (Sa

p − Sp∗)+ | Ψ∗ | (Se∗ − Sp∗), (16.4c)

Ve
dSe∗
dt∗

= CS
e (Sa

e − Se∗)+ | Ψ∗ | (Sp∗ − Se∗). (16.4d)
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Figure 16.5. Sketch of the two-box model set-up. Two reservoirs contain well-mixed water and
are connected through an overflow and a capillary tube. The circulation is driven by density gradi-
ents between the boxes which are set-up by the exchange at the surface.

In the following analysis, we will restrict ourselves to the case of realistic forcing,
for which T a

e − T a
p > 0 and Sa

e − Sa
p > 0. For simplicity it is assumed that the

relaxation times for temperature in both boxes is proportional to their volume and
hence CT

p /Vp = CT
e /Ve ≡ RT is constant. The same simplification is made for

salinity with RS = CS
p /Vp = CS

e /Ve. When time, temperature, salinity and flow
rate are scaled with 1/RT , VeVpRT /(γαT (Ve + Vp)), VeVpRT /(γαS(Ve + Vp))
and VeVpRT /((Ve + Vp), respectively the dimensionless equations become

dT

dt
= η1 − T (1+ | T − S |), (16.5a)

dS

dt
= η2 − S(η3+ | T − S |), (16.5b)

where T = Te −Tp, S = Se −Sp and Ψ = T −S is the dimensionless flow rate.
The three parameters that appear in the equations (16.5) are given by

η1 =
(T a

e − T a
p ) γαT (Ve + Vp)
VeVpRT

,

η2 =
RS

RT

(Sa
e − Sa

p ) γαS(Ve + Vp)
VeVpRT

, (16.6)

η3 =
RS

RT
.

The model is thus a two-dimensional system of ordinary differential equations
containing three independent parameters ηi, i = 1, 2, 3 and describing the evo-
lution of the temperature and salinity differences between the boxes. Clearly,
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the equations (16.5) form a relatively simple mathematical model which imme-
diately suggests proceeding with analytical methods. However, imagine that we
had many more, say ten or more, of these boxes all coupled through exchanges of
heat and salt, which models the horizontal and vertical structure of the exchanges
of these properties in more and more detail. Then, a typical way to proceed would
be to choose parameter values as ‘realistic’ as possible and compute the time
evolution of the temperature and salinity in the boxes, starting from some initial
state. Such a time series is called a trajectory. Starting from the initial state (0,0)
(T = 0, S = 0), such a trajectory is shown in Fig. 16.6a for the case η1 = 3.0,
η2 = 0.5 and η3 = 0.3. In this case, the freshwater forcing is relatively small and
the flow evolves to a steady state with sinking in the north, since Ψ = T −S > 0.
It turns out, that whatever initial condition one takes for these parameter values,
this same steady state is always reached.

However, one usually likes to know the sensitivity of the system to changes in
parameters and so three trajectories are plotted in Fig. 16.6b for the case η2 = 1.0.
The trajectories starting at the initial conditions (0, 0) and (2.5, 2.5) approach a
steady state with sinking in the north similar to the case η2 = 0.5. However,
the evolution from the initial condition (3.0, 3.0) approaches a steady state with
sinking in the south, since Ψ = T − S < 0. Apparently, there are multiple steady
states under the same forcing conditions in this model, provided that η2 is large
enough. But what is the limiting value of η2 (somewhere between 0.5 and 1.0),
where these multiple equilibria just appear? This question motivates us to look at
the steady equations directly and solve these states as functions of parameters.
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Figure 16.6. (a) Trajectory starting from the zero solution (T = S = 0) for the model (16.4)
with η3 = 0.3 , η1 = 3.0 and η2 = 0.5. (b) Three different initial conditions lead to the approach
of two different steady states for η3 = 0.3 , η1 = 3.0 and η2 = 1.0.
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16.3. Equilibrium solutions
For steady states, the time derivatives in (16.5) are zero which gives the solu-

tions
T =

η1

1+ | Ψ | ; S =
η2

η3+ | Ψ | ,

and Ψ has to be solved using the implicit equation

Ψ =
η1

1+ | Ψ | −
η2

η3+ | Ψ | .

When η2 = 0, then S = 0 and hence Ψ = T > 0. The solution for Ψ follows
from a quadratic equation and its positive root gives the solution

T = −1
2

+

√
1
4

+ η1 ; S = 0,

which is referred to as the TH-solution. The flow, with sinking in the northern
box is driven by the temperature difference between equator and pole with warm
water flowing poleward through the overflow and cold water going equatorward
through the tube (Fig. 16.5).

When η1 = 0, there is no heat forcing and hence T = 0. It follows that
Ψ = −S < 0 and hence a flow driven by the high salinity at the equator is
obtained, giving the solution

T = 0 ; S =
1
2
η3 −

√
1
4
η2
3 + η2,

which is referred to as the SA-solution.
Although the structure of the equilibrium solutions can be explicitly solved, it

is more illustrative to show some typical results. With fixed η3 = 0.3, a plot of
steady solutions T and S versus η2 are shown in Fig. 16.7a for η1 = 0.25. Such
a diagram will later be called a bifurcation diagram. There is a unique solution
which is temperature driven for small η2 (in this case, Ψ = T − S > 0), it is
motionless at η2 = 0.1 (at the intersection of the T and S curves) and becomes
salinity driven at larger η2. Hence, with increasing η2 the solution changes from
TH-type to SA-type.

The same diagram is shown for η1 = 3.0 in Fig. 16.7b. As the time-dependent
results also indicated, for η1 = 3.0 there are multiple stationary solutions of the
equations over a certain interval in η2. Up to the point L1 in Fig. 16.7b, the
solution is unique of TH-type. Between the points L1 and L2, both TH and
SA solutions exist and for values of η2 beyond L2 only the SA solution exists.
The points L1 and L2 exactly bound the region of multiple equilibria. When
the position of these points is determined for other values of η1, the area in the
(η1, η2) parameter plane where both TH and SA solutions occur is bounded by
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Figure 16.7. (a) Plot of steady values of temperature (T) and salinity (S) for the model (16.4) for
different η2 with fixed η1 = 0.25 and η3 = 0.3. (b) Same as in (a) but for η1 = 3.0. (c) Path of the
points L1 and L2 in (b) in the (η1, η2) parameter plane. These paths intersect at the point Q and
connect to the curve η2 = η1η3 which defined the motionless flow Ψ = 0 and extends from Q to
the origin.

two curves (Fig. 16.7c). To the right of the curve of points L1, there is unique
northern sinking (TH) solution, whereas to the left of the curve of points L2, there
is a unique southern sinking (SA) solution. At the point Q, which is given by
Q = (η3/(1 − η3), η2

3/(1 − η3)), both curves intersect. This point is located on
the line for which there is no motion (Ψ = 0), described by η2 = η1η3 (shown as
the dotted curve in Fig. 16.7c). A diagram as in Fig. 16.7c, will later be referred
to as a regime diagram.

In summary, the most important result is that for some of the parameter values,
multiple steady states exist. Under the same forcing conditions, different steady
(T, S) states exist in combination with opposite circulation directions. Two points
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on the solution branches, indicated by L1 and L2, play a central role in the ori-
gin of these equilibria. The regime diagram in Fig. 16.7c provides a complete
overview of where in the parameter plane these multiple equilibria occur.

16.4. Stability of equilibrium solutions
If a particular steady state from the previous section is indicated by (T , S), the

next step is to consider the evolution of perturbations (T̃ , S̃) on this steady state,

T = T + T̃ , (16.7a)

S = S + S̃. (16.7b)

For the box model the notation M is used for a smoothed version of the modulus
function, i.e.

M(Ψ) = [H(Ψ) −H(−Ψ)] Ψ,

where H is a smoothed version of the Heaviside function, for example

H(Ψ) =
1
2
(1 + tanh

Ψ
ε

) ; ε � 1, (16.8)

such that derivatives of M exist. For the linear stability boundary, quadratic in-
teractions in the perturbations are neglected and using

M(Ψ + Ψ̃) = M(Ψ) + M′(Ψ)Ψ̃ + · · · ,

leads to the evolution equations

dT̃

dt
= −

[
(1 + M(Ψ)) T̃ + M′(Ψ)T (T̃ − S̃)

]
, (16.9a)

dS̃

dt
= −

[
(η3 + M(Ψ)) S̃ + M′(Ψ)S (T̃ − S̃)

]
, (16.9b)

with Ψ̃ = T̃ − S̃. These equations admit solutions of the form

T̃ = T̂ eσt ; S̃ = Ŝ eσt, (16.10)

where σ = σr + iσi is the complex growth factor. The real part σr monitors the
exponential growth rate of the perturbations. Hence, when σr < 0 for a particular
perturbation (T̂ , Ŝ) this perturbation is damped and when σr > 0 it will grow,
leading to instability of the steady state. Substituting these expressions into the
equations (16.9) gives an eigenvalue problem

(
−(1 + M(Ψ) + M′(Ψ))T M′(Ψ)T

−M′(Ψ)S −(η3 + M(Ψ) −M′(Ψ))S

)
x̂ = σx̂.

(16.11)
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where x̂ = (T̂ , Ŝ) The matrix on the left hand side is called the Jacobian matrix
and will in most cases be indicated by J .

In Fig. 16.8a, the solutions in Fig. 16.7b are replotted with Ψ on the vertical
axis. Along the branches, the sign (±) of both real eigenvalues σ is shown. For
values of η2 up to the point L1, the TH-solution is stable and similarly for values
beyond L2, the SA-solution is stable. On the branch of solutions connecting the
solutions at L1 and L2, one of the eigenvalues is positive. According to (16.10),
small perturbations will grow on this steady state and hence it is unstable. This
is demonstrated by computing the time evolution of the temperature and salinity
fields starting exactly at this steady state (point A, T = 2.80, S = 2.74) for
η2 = 1.0 as plotted in Fig. 16.8b. The time-dependent state diverges away from
the unstable steady state and eventually the steady TH-state at point B is reached.
With the analysis of the steady states and their linear stability in parameter space
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Figure 16.8. (a) Plot of steady values of the flow Ψ for the model (16.4) for different η2 with fixed
η1 = 3.0 and η3 = 0.3. (b) Evolution of the temperature and salinity fields for η1 = 3.0, η2 = 1.0
and η3 = 0.3 starting at the steady state at point A (T = 2.80, S = 2.74). The ±-signs indicate
the sign of the (real) eigenvalue of the Jacobian matrix of the solution.

the trajectories computed for η2 = 1.0 in Fig. 16.6 can also be understood. For
η2 = 0.5, the system is in the unique stable TH-regime according to Fig.16.7c.
For η2 = 1.0, the system in the regime of overlapping stable TH-states and SA-
states and hence trajectories with two different initial conditions may approach
different steady states.

Additional Material

D: For results of bifurcation studies on a hierarchy of models of the thermoha-
line circulation, see Dijkstra (2005) or the review paper on the application of
dynamical systems theory to the large-scale ocean circulation (Dijkstra and
Ghil, 2005).
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16.5. Physical mechanisms
In this section, we will look at the two mechanisms which may cause multiple

equilibria in more detail: the salt-advection feedback and the convective feedback.

16.5.1. Advective feedback
A nonlinear feedback between the flow and the density structure, called the

(salt) advection feedback, is responsible for the non-uniqueness of equilibrium
solutions in the Stommel model. Consider a zonally averaged (meridional over-
turning) circulation from the equator towards northern latitudes in Fig. 16.9. The
surface forcing saltens/warms the low latitude region and freshens/cools the high
latitude region and the circulation is driven by the meridional density gradient.
Since there is northern sinking, the circulation is thermally driven. If the circu-
lation strengthens, then more salt is transported northward. This enhanced salt
transport will increase the density in the north and consequently amplify the orig-
inal perturbation in the circulation. The strengthening of the circulation also trans-
ports more heat northward, which will weaken the flow by lowering the density.
Heat transport therefore provides a negative feedback on the circulation.
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Figure 16.9. Sketch of the physics of the salt advection feedback. The mean circulation is indi-
cated by the closed arrows. The upper ocean temperature and salinity fields can be inferred from the
surface forcing of heat and freshwater. A salt perturbation which strengthens the circulation leads
to a northward salt transport, which leads to amplification (open arrows) of the circulation (positive
feedback). The perturbation in the circulation also leads to increased heat transport which opposes
the original density perturbation. However, this perturbation is more damped by the atmosphere
than the salinity perturbation.

In addition to the advection feedback, a central ingredient to the existence of
multiple steady states are the different damping times of salinity and temperature
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anomalies. The atmosphere exerts quite a strong control on the sea surface tem-
perature anomalies, but salinity in the ocean does not affect the freshwater flux
at all. In the two-box model in section 15.3, these different response time scales
of salinity and temperature, with τS = 1/RS and τT = 1/RT , were taken into
account by the coefficient η3 = RS/RT = τT /τS , which was smaller than unity.
In general, the different surface boundary conditions for temperature and salinity
are referred to as mixed boundary conditions. The extreme case is a prescribed
surface temperature (τT << 1) and prescribed surface freshwater flux (τS >> 1)
for which surface temperature perturbations are essentially zero.

Together, the advective feedback and the different response time scales provide
a potential mechanism of change of the thermohaline circulation. Consider the
thermally driven circulation as in Fig. 16.9 and imagine that a surface freshwater
anomaly is suddenly present in the north part of the domain. Because the density
is lowered in the north, the meridional buoyancy gradient decreases and hence the
strength of the circulation decreases. The effect is that both the northward salt
and heat transport decrease. Now, the negative heat anomaly is rapidly damped
at the sea surface, but the freshwater anomaly is not damped at all and hence
amplifies the original freshwater perturbation. This positive feedback is able to
rapidly weaken the thermally driven overturning circulation.

16.5.2. Convective feedback
A convective feedback may also be responsible for multiple equilibria. In

Fig. 16.10 we consider a box model with time-varying temperature T∗ and salinity
S∗ due to a surface heat flux FT = α(Ta − T∗) and surface salinity flux FS in the
surface box, coupled to a box with constant temperature Ti and Si and constant
prescribed flow rate q. Convective exchange with time constant τ−1 occurs if the
surface water becomes denser than the deep water, which has constant tempera-
ture Tb and salinity Sb.

The equations for the evolution of the temperature T∗ and salinity S∗ are

dT∗
dt∗

= α(Ta − T∗) + q(Ti − T∗) + τcH(ρ∗ − ρb)(Tb − T∗), (16.12a)

dS∗
dt∗

= FS + q(Si − S∗) + τcH(ρ∗ − ρb)(Sb − S∗), (16.12b)

with H being the Heaviside function. With the equation of state

ρ∗(T∗, S∗) = ρ0 − αT T∗ + αSS∗, (16.13)

the steady states can be easily solved and become

T∗ =
qTi + αTa + τcH(ρ∗ − ρb)Tb

q + α + τcH(ρ∗ − ρb)
, (16.14a)

S∗ =
qSi + FS + τcH(ρ∗ − ρb)Sb

q + τH(ρ∗ − ρb)
. (16.14b)
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Figure 16.10. Sketch of the box model set-up to illustrate the convective feedback. An active box
of temperature T∗, S∗ is coupled to boxes of constant temperature Ti, Si and Tb, Sb. Advective
exchange takes place with flow rate q and vertical (convective) exchange occurs, on a time scale τc,
if the surface water is denser than the bottom water.

Two types of equilibria can be distinguished. Those for which the argument of
the Heaviside function is positive are called convective equilibria, and those for
which it is negative are called non-convective equilibria. With the new parameters

ΦT = −αT (α(Ta − Tb) + q(Ti − Tb)), (16.15a)

ΦS = αS(FS + q(Si − Sb)), (16.15b)

κ(τ) =
q + τ

q + τ + α
, (16.15c)

three different solution regimes exist (Fig. 16.11).
The condition that a convective equilibrium exists can be written as ΦS >

−κ(τ)ΦT (indicated as the line a − b in Fig. 16.11) which defines regime 1 in
Fig. 16.11. Similarly, the condition for a non-convective equilibrium to exists can
be written as ΦS < −κ(0)ΦT (indicated as the line c− d in Fig. 16.11) which de-
fines regime 2. In regime 3, both convective and non-convective equilibria exist
and transitions between these solutions can occur under the same forcing con-
ditions. Consider a non-convective state with cold/freshwater above warm/salty
water which is only marginally stable and an atmospheric forcing which is cool-
ing and freshening the upper box. A finite amplitude positive density perturbation
is able to induce convection and if this occurs, warmer and saltier water is mixed
to the surface. The heat in the surface layer is quickly lost to the atmosphere but
the surface salinity is increased and hence convection is maintained, leading to a
convective state.

For the particular case ΦT = 1.0, q/α = 0.5 and τ/α = 2.0, the bifurcation
diagram of the model (16.12) is plotted. In this diagram, both the dimensionless
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Figure 16.11. Sketch of the regimes of convective and non-convective equilibria in the box model
in the (ΦT , ΦS) parameter plane. In regime 1, there are convective states, in regime 2 there are
non-convective states, whereas in regime 3 both states are present. In regime 4 no steady states
exist.
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Figure 16.12. Diagram showing the equilibria for the box model (16.12) with ΦT = 1.0, q/α =
0.5 and τ/α = 2.0 and ΦS as control parameter.

temperature T = αT (T∗−Tb) and salinity S = αS(S∗−Sb) are plotted versus the
control parameter ΦS . Two saddle node bifurcations (L1 and L2) occur at ΦS =
−5/7 and ΦS = −1/3. These are exactly the values −κ(τ) and −κ(0) bounding
the regions of convective and non-convective regimes, respectively. Hence, the
high temperature and salinity states are convective and exist for ΦS > −5/7
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(regime 1) whereas the low salinity and temperature states are non-convective
and exist for ΦS < −1/3 (regime 2). Regime 3 is exactly located in the interval
−5/7 < ΦS < −1/3 and in this regime, multiple equilibria exist. Note that
regime 4 is not reached here, because ΦT > 0.



Thermohaline circulation 393

Summary

The thermohaline circulation is the circulation associated with the
transport of the heat and salt in the world oceans. The meridional over-
turning circulation is the zonally averaged flow in each ocean basin.

Variations in the Atlantic meridional overturning circulation may have
been important in relatively rapid climate variations in the past, such
as the Younger Dryas.

The meridional overturning circulation may be destabilized by two
mechanisms: (i) the salt advection feedback, and (ii) a convective
feedback. Box models such as the Stommel two-box model are im-
portant to understand these feedbacks.
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16.6. Exercises on chapter 16

(16.1) Transports in the Stommel model

a. Reformulate the Stommel model in dimensional form in case (i) there
is a prescribed freshwater flux H at the polar box and one with opposite
sign (-H) at the equatorial box, and (ii) the volume of the boxes are
different.

b. Provide an estimate of the volume of both boxes by dividing the North
Atlantic in two sectors.

A reasonable value of the restoring time of heat at the ocean-atmosphere
surface is about 1 month.

c. Based on the temperature and salinity plots in chapter 2, provide an
estimate of the north-south density difference and estimate the value of
the hydraulic constant in the Stommel model (γ) such that the meridional
overturning is about 15 Sv.

d. Does the thermally driven circulation provides a good estimate of the
meridional heat transport under reasonable values of the freshwater flux?

(16.2) The Rooth model

One of the shortcomings of the Stommel two-box model is that it only de-
scribes flow in the northern hemisphere. In a box model designed by Rooth
(1982), the flow is driven by a north-south density difference, caused by
freshwater fluxes HS and HN only.

Assume that the temperature is constant and only salinity varies in the
boxes. It follows then that

q∗ = k(S3∗ − S1∗)

where k is a transport coefficient.

a. Formulate the equations describing the evolution of the salinity in the
boxes.

b. Determine the steady states of the model.
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c. Show that the strength of the overturning circulation only depends on
the freshwater flux HN . Provide a physical explanation of this result.

(16.3) Convective adjustment

A problem in hydrostatic ocean models is the representation of convection
which occurs when the water column becomes statically unstable. Assume
a situation where, for example through advective transport, a layer of cold
water with a temperature T∗ = T1 is situated above a layer of warmer
water with a temperature T∗ = T2; the density is fully determined by the
temperature.

a. Why can the resulting convection not be represented by the hydrostatic
equations?

In an unstable situation, heat is mixed vertically to guarantee static stabil-
ity of the water column.

b. What is the resulting temperature in case layer 1 has a thickness H1 and
layer 2 a thickness H2?

c. Describe how this adjustment influences the large-scale flow?

(16.4) Mechanism of meridional overturning

It is nontrivial that a meridional density gradient Δρ is responsible for a
meridional overturning.

a. The density gradient causes a meridional pressure difference ΔpM .
Show that

ΔpM = gDΔ ρ,

and argue that D depends on KV (the vertical diffusivity).
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b. This pressure gradient sets up a zonal flow through geostrophy with a
characteristic velocity U . Explain why this flow causes a zonal pressure
gradient ΔpZ .

c. Explain why ΔpZ ≈ ΔpM .

d. Describe how the meridional flow can be driven by a meridional density
difference.

(16.5) Scaling

As a sequel to exercise (16.4), we try to find a scaling relation between the
strength of the meridional overturning circulation ψM and the meridional
density difference Δρ.

a. Scale U according to the geostrophic balance and use the scale of ΔpM

from exercise (16.4) to show that

U =
DgΔρ

fL
,

where f is the average Coriolis parameter over the flow domain.

b. Use the advection diffusion balance for the thermocline, i.e.,

w∗
∂ρ∗
∂z∗

= KV
∂2ρ∗
∂z∗2

,

to show that

U =
KV L

D2
.

c. Show that ψM ≈ (Δρ)
1
3 .
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