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PREFACE TO 1973 EDITION 

In essence, this book is an introduction to the theory of ocean currents. I 
have not made an attempt to cover the widest possible range of problems 
and to survey the very diverse and numerous studies undertaken in recent 
years. In contrast, I wanted to select and study thoroughly only a minimum 
amount of material which is required for an understanding of the features of 
the large-scale motions of the water of the oceans. 

First of all, I have endeavoured to  demonstrate the link between the basic 
concepts of the theory of ocean currents and the general laws of hydro- 
mechanics; therefore the book contains a brief exposition of the foundations 
of thermo-dynamics and hydro-dynamics of non-homogeneous fluids as well 
as necessary prerequisites of tensor analysis. In describing different hydro- 
dynamic models of oceanic phenomena, special attention is given to a discus- 
sion of the physical premises of the theory, methods of mathematical analy- 
sis and comparison of theoretical results with observations. In principle, all 
derivations are given of the results considered in this book. 

The contents of this book are clear from its chapter headings. For the sake 
of brevity, this book does not deal at all with the very important problems 
of numerical modelling of ocean currents; it also does not contain a histori- 
cal survey of the development of the theory. Interested readers will find 
expositions of these aspects in published surveys and monographs by A.E. 
Gill [27], V.F. Kozlov [55], V.P. Kochergin [52], S. Manabe and K. Bryan 
[73], P.S. Lineikin [66, 671, G.I. Marchuk [74], A. Robinson [103--1051, 
A S .  Sarkisyan [107], H. Stommel [115,117], A.I. Fel’zenbaum [ 18,191, 
N.  Fofonoff [21], W.B. Stockmann [ 113,1141 and V.V. Shuleikin [ 1091. 

The literature listed in this book in no way claims completeness. Litera- 
ture references of a historical character are appended to each chapter; the 
text only contains references which are required for understanding the treat- 
ment. 

This book is based on lectures read by me beginning from 1966 to stu- 
dents of the fourth year course at Moscow Physical-Technical Institute which 
specialized in oceanology. 

I wish to thank all those who in one way or another assisted in the pro- 
duction of this book. Over a number of years, I had opportunities to discuss 
with my colleagues and friends a wide range of problems of ocean dynamics, 
and the results of such discussions found their reflections in this book. With 
special gratitude I wish to acknowledge conversations with W.B. Stokmann 
which had the greatest significance for me. 

While working on this book, I often consulted A S .  Monin whose sugges- 
tions contributed essentially to the writing of this book. Observations by 
B.A. Kagan on the general lay-out of the book as well as on individual ques- 



vr 
tions were rather valuable for me. Useful remarks and suggestions originated 
from V.A. Mitrofanov who read the complete manuscript, and likewise from 
G.M. Reznik and V.D. Larichev who read it in parts. I received great help in 
preparing the manuscript from L.I. Lavrishcheva, E.P. Belova and T.A. Ya- 
kusheva. 

V.M. KAMENKOVICH 

PREFACE TO ENGLISH EDITION 1977 

For this edition, V.M. Kamenkovich revised completely Sections 8 of 
Chapter 3 and 7 of Chapter 5, wrote a new treatment on matching of asymp- 
totic expansions (Appendix B), included additional material to Section 
1 of Chapter I11 and made a large number of minor changes and additions. 
Cooperation over almost the largest possible distance on the surface of the 
Earth has been very close and successful. 

R. RADOK 
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CHAPTER 1 

STATICS. THERMODYNAMICS OF EQUILIBRIUM STATES 

1.1 ENTROPY 

The most important characteristic of a thermodynamic system is its 
entropy. More complete physical significance of entropy, as also of other 
thermodynamic parameters, is brought to light in statistical physics which 
deals with macroscopic properties of systems from the point of view of their 
microstructure. 

From a .licrostructural point of view, a thermodynamic system consists 
of a huge number of particles (molecules, atoms, ions) the state of which is 
described by quantum mechanics. Each definite quantum state of a system 
of particles may be considered as a possible microstate of the thermody- 
namic system. 

Consider an isolated system in a state of thermodynamic equilibrium. 
Without entering into the details of the description of quantum states of 
systems of particles, it may be asserted that to  a given microstate of a ther- 
modynamic system there correspond a finite number W of possible (com- 
patible with given macroscopic conditions) microstates. 

Statistical physics starts from the assumption that each possible micro- 
state of a system i has a definite probability of its realization Pi. As a rule, 
this assumption is true for systems consisting of large numbers of particles. 
Obviously, 
W 

C P , = l .  
1 

(1.1.1) 

It is not difficult t o  define what must be understood by macroscopic 
parameters of a system, or functions of state of a system. For example, let 
fi be the internal energy of a system in the microstate i (the total mechanical 
energy of the particles constituting the system). Then the internal energy of 
the system E as a function of state is given by 

W 

In other words, the quantity E is the mathematical expectation of the 
stochastic quantities E ~ .  
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In essence, specification of the probabilities Pi completely characterizes 
that possible choice of microstates which corresponds to given macroscopic 
conditions. In order to have some “mean” measure of the molecular “dis- 
order”, one introduces the concept of entropy of a thermodynamic system r)  

which is defined as 

W 

q = -k c Pi In Pi , 
1 

(1.1.2) 

where h is Boltzmann’s constant ( k  = 1.38 - J/”C); the choice of the 
constant k as factor in (1.1.2) is only dictated by considerations of conve- 
nience. 

In practice, entropy is more commonly denoted by S. However, in oceanographical 
literature, this symbol belongs by tradition to salinity; therefore entropy will be denoted 
here by 7). It is interesting to note that the symbol 7) was, in fact, used by Gibbs [26]. 

In reality, when a system with certainty lies in a unique quantum state 
(ideal “order”), then q = 0. If the number of admissible microstates is fixed, 
then it is intuitively clear that the maximum “disorder” in the system will be 
under conditions of equal probability of all such microstates. This is in agree- 
ment with the measure of “disorder” introduced above, since the function 
q(P,, ..., Pw) attains a maximum under the condition (1.1.1) indeed when 

then the magnitude of the maximum entropy r )  is 

q = h l n W .  (1.1.3.) 

The definition of entropy, in accordance with (1.1.2), has been intro- 
duced for an arbitrary macrostate of a system. An attempt will now be made 
to single out equilibrium states which are the simplest among possible macro- 
states of a system; in fact, it will be assumed that in an equilibrium state a 
system achieves maximum molecular “disorder”. Then the probabilities of 
all admissible microstates must be the same and the entropy of the equilib- 
rium system will be determined by (1.1.3). It must be emphasized here that 
the definition of entropy, in accordance with (1.1.2) or (1.1.3), is not linked 
directly to such physical quantities as energy, interaction forces, etc. 

In this book, electromagnetic processes (radiation, etc.) will not be con- 
sidered. Therefore, in what follows, it is assumed that the macrostate of an 
equilibrium system of mass m is completely determined, if its internal energy 
e ,  its volume V and the masses m,, ..., m, of the different substances con- 
stituting it (components of the system) are specified. 
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Sometimes the numbers of moles nj or  the numbers of particles (molecules, atoms, 
ions) Nj of the given components of a mixture are specified. Obviously, nj = mj /Mj ,  where 
Mj is the gram-molecular weight of the component j (mi in grams). Also, n j / N A  = N j ,  
where N, is Avogadro's number equal to 6.02 . mole-'. 

Having computed the number W of admissible microstates of a system in 
an equilibrium macrostate with parameters E ,  V and mi, one determines then 
the entropy of such a system as a single-valued function of the parameters E ,  

V and mj from (1.1.3). 
The concept of entropy of an equilibrium thermodynamic system permits 

to  introduce into the consideration such parameters as the absolute tempera- 
ture of the system T and the chemical potentials of the separate components 
of the system p j .  By definition, one sets 

(1.1.4) 

The subscripts V and mj, for example, on the derivative arc,@€ indicate 
that during differentiation of the function q with respect to E the parameters 
V and mj remain unchanged. In this notation, it is immediately clear which 
are the independent variables. This notation will be employed whenever the 
independent variables are not especially specified. 

It will be useful to  apply this scheme to the simplest thermodynamic sys- 
tem, a mixture of two mono-atomic ideal gases. Consider a gas enclosed in a 
volume V which consists of Nl atoms of the first kind and N, atoms of the 
second kind. The total number of atoms is then N = N, + N,. Under normal 
conditions, the dynamics of systems of such atoms may be described by the 
laws of classical mechanics, assuming each atom to be a material point 
(mono-atomic gas) and neglecting the potential energy of interaction 
between atoms (ideal gas). Then the system will possess 3N degrees of free- 
dom. Let q , ,  q,, q3 be the Cartesian coordinates of the first atom and p,, p 2 ,  
p 3  the associated impulses; q4,  q 5 ,  (76 and p4, p5, p6 the Cartesian coordi- 
nates and associated impulses of the second atom, etc. At each instant of 
time, the state of the system of atoms is completely determined by specifica- 
tion of 6N numbers (3N coordinates qi and 3N impulses pi). This is a micro- 
state of the system which is conveniently represented as the point M with 
coordinates ( q , ,  ..., q 3 N ;  p l ,  ..., p 3 N )  in the 6N-dimensional phase space of 
the system r. 

Let the mass of the atoms of the first kind be equal to vl, that of the 
atoms of the second kind v2. Then, since p1 = v,(dq,/dt), p 2  = v,(dq,/dt), 
etc., the Hamiltonian (total energy) of the system has the form 

P2 
3 N 1  p' 3 N  

H =  c - +  c L +  U(qi ,  V ) .  
1 2vl 3 N l + l  2v2 

(I .1.5) 
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In this expression, the potential energy U(qi, V) of the system has been 
introduced, in order to take into account the fact that the atoms of the gas 
may not leave the volume V. It is simplest to assume that for each atom 
U = 0 inside the volume V and U = ~0 outside this volume. Note that, by defi- 
nition, the quantity H is the internal energy of the system in the microstate 
under consideration and that, by (1.1.5), one has 

H(qi,Pi, V )  2 0 . 
In correspondence with the general scheme, consider now the equilib- 

rium state of an isolated system with parameters E ,  V, mi. How does one 
compute the number of possible microstates of the system W? Although the 
dynamics of the system of atoms are classical, quantum effects must be 
taken into account when computing W .  It is a fact that, firstly, by strength 
of the uncertainty principle of the classical state contained in the volume 
h3N of phase state ( h  is Planck's constant), they blend in a single quantum 
state and, secondly, that in quantum mechanics identical atoms are indistin- 
guishable and N,!N,! classical states likewise merge in a single quantum 
state. Thus, if the possible microstates of the system fill some finite volume 
fir of phase space, then 

In the case under consideration, the possible microstates of the system lie 
on the surface H ( q , ,  pi ,  V) = E in the phase space r. However, it follows from 
the above that it will be convenient to  assume for the computation of W that 
the energy of the system is not strictly constant but fluctuates within limits 
( E ,  E + SE), where 6~ is a small but finite quantity. I t  will be shown below 
that S E  does not affect the value of the entropy q. 

The volume of phase space filled by the possible microstates of the system 
is now given by 

(1.1.6) 

The integral over the coordinates in (1.1.6) is readily computed and seen 
to be equal to VN. The integral over the impulses is reduced by a simple 
change of variables to the evaluation of the volume of a 3N-dimensional 
sphere of given radius. Using a known formula for the volume fi,,(R) of an 
n-dimensional sphere with radius R 
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one finds 

For large N ,  the expression for In W effectively does not depend on the 

and In E ~ ~ / ~  is of order (In N) /N .  Therefore one obtains for the entropy of 
the system a completely defined expression which depends only on E ,  V, N ,  
and N,. Using Stirling's formula 

In N !  = N In N -  N + O(ln N )  , 
and an analogous formula for ln[r(3N/2 + 1) 1, one arrives, finally, at 

arbitrary parameter &, since the ratio of the terms In [(l + 6 ~ 1 ~ ) ~ " ~  - 11 

a1 N 
N Nl 

In- 

( ~ T v , ) ~ / ~  e5I2 

h3 
a.  = , i = l , 2 .  (1.1.7) 

Since it has been agreed to measure states of a mixture with different 
components by masses ml and m2, one must introduce in (1.1.7) the substi- 
tutionsN, = ml/vl and N ,  = m2/v2 .  

Using (1.1.4), one obtains the formulae for the temperature T of a mix- 
ture of two ideal gases and the chemical potentials pi of the components 
of this mixture 

Note that the chemical potential of a component in a mixture depends on 
the mass of the other component and is an intensive quantity. 

It will be recalled that the thermodynamic parameters of a system are 
subdivided into extensive and intensive parameters. Extensive parameters 
change by a factor M as the masses mj of all components of the system 
change by a factor M ;  intensive parameters do not change for such a change 
of the masses mi. In other words, extensive parameters are homogeneous 
functions of mi of order one, while intensive parameters are homogeneous 
functions of mj of order zero, and therefore depend only on the concentra- 
tions cj = mj/m. 

It is seen from (1.1.7) that the entropy of a mixture of two ideal gases is 
extensive. This general property of entropy holds true for arbitrary systems 
[GO]. 
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1.2 EQUILIBRIUM PROCESSES 

In the preceding section, it has been assumed for the computation of the 
entropy of an equilibrium thermodynamic system that the external condi- 
tions are unchanged. Now let the external conditions change in such a man- 
ner that the characteristic time of these changes is considerably larger than 
the relaxation time of the system (the characteristic time of transition to the 
equilibrium state). Then each state of a system may be assumed to be 
approximately an equilibrium state. Such processes are referred to  as equilib- 
rium or reversible processes. 

For each equilibrium state, one has to determine the internal energy E of 
the system. Therefore the first law of thermodynamics for equilibrium pro- 
cesses, one of the formulations of which asserts the existence for arbitrary 
systems of internal energy as a function of state, is fulfilled automatically. 

A process is said to  be an adiabatic equilibrium process when a change in 
its internal energy E occurs only on account of work 6A performed by the 
external forces acting on the system. 

Here and below, symbols of the type 6 A  are used to denote certain differential forms 
which, generally speaking, are not exact differentials of whatever functions of state under 
consideration. 

Such processes must take place, on the one hand, sufficiently quickly, in 
order that heat- and massexchanges with the surrounding medium may be 
neglected, and, on the other hand, sufficiently slowly, so that the process 
may be assumed to be an equilibrium process. 

In the case under consideration, the only external force is the pressurep 
(the average force exerted by the molecules on unit area of the surface C sur- 
rounding the volume V). The work performed by this force is 6A = -pdV 
and, thus, for adiabatic processes 

dE = -pdV . (1.2.1) 
How does the entropy of a system change during an adiabatic process? 

In order to answer this important question, consider again a mixture of two 
ideal gases and find an expression for the pressure p as a function of E ,  V and 
mi. During an arbitrary microstate of this. system, one has the identity 

(1.2.2) 
where t is the time, ( F l ,  F,, F 3 )  = (dp,/dt, dp,/dt, dp,/dt) the force acting 
at a given instant of time on the first atom, (F4, F,, F, )  the force acting on 
the second atom, etc. The mathematical expectation of the left-hand side of 
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(1.2.2) is zero, since in an equilibrium state the quantity ( C : N p i q i )  obviously 
does not depend on time. Hence 

- c Fiqi) = 2~ . 
3 N  

1 

Since one is dealing with an ideal gas, one must take into consideration 
only forces which the wall of the vessel exerts on the gas atoms. In other 
words, the forces acting on the atoms differ from zero only when the atoms 
hit the wall of the vessel; since the impact of an atom on a wall is postulated 
to  be perfectly elastic, these forces act along the inward normal to  the wall 
of the vessel. Since in an equilibrium state all microstates have the same 
probability, one finds 

tC Fiqi)= -p I ( r ,  n) dZ: , 

where the integral extends over the entire surface C of the vessel, n is the 
unit outward normal, r is the radius vector of points lying on the surface 2. 
However, by the theorem of Gauss-Ostrogradskii, 

3 N  

2: 1 

J ( r ,  n )  dC = J.div I dV = 3 V ,  

and hence 

2 E  
p = - - .  3 v  

r: V 

(1.2.3) 

Now it is already quite simple to  show that during an adiabatic process the 
entropy of a mixture of two ideal gases does not change. In fact, by (1.1.7), 
(1.2.1) and (1.2.3), 

This important result is proved in courses of statistical physics for arbi- 
trary systems (cf., for example, [60,  ?j 111). However, it follows directly 
from (1.2.1) that 

One may now find an expression for (aq/aV),,,j. Using a property of 
Jacobians, one finds 
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and from the first formula (1.1.4) 

(1.2.4) 

Now one has expressions for all partial derivatives of the entropy rl with 
respect to E ,  V and mi. By (1.1.4) and (1.2.4), 

(1.2.5) 

This formula, called Gibbs’ relation, is one of the basic relations of thermo- 
dynamics. 

The entropy of an isolated equilibrium thermodynamic system possesses 
the very important property of maximality. In order to formulate this prop- 
erty, imagine the system subdivided into m subsystems and denote by sub- 
script h the parameters of the hth subsystem. Consider a possible perturba- 
tion of the parameters Ek, vk and mk of a subsystem which are compatible 
with the condition of isolation of the system. In a perturbed state, this iso- 
lated system will have the entropy Zr= qk(Ek, V,, mkj) .  The property of 
maximality of entropy of the isolated equilibrium system implies that 
m 

It  is useful to verify this property for a mixture of two ideal gases. First 
of all, note that by strength of the isolated nature of the system the sum of 
the energies of the subsystems in their perturbed states as well as the sums of 
their volumes and of the numbers of atoms of each kind must be equal to 
the corresponding quantities in the original equilibrium state. Therefore, 
without reducing generality, one may subdivide each system with parameters 
2 ~ ,  2V, 2N, ,  2N2 into two subsystems with parameters E f 6e, V 2 &I7, N1 f 
6N1, N2 k 6N2.  Using the extensive character of entropy, the condition of 
maximality of entropy may be written in the form 

r l (€ ,V ,N , ,N2) - - r l (€+6E,V+6V,N1  +6N1 ,N2+6N2)  

-$v (E  - 6 ~ ,  V- 6V, N1 - 6N1, N2 - 6N2) 2 0 . 
This is the condition of convexity of the function V ( E ,  V, N,, N 2 ) .  It  is read- 
ily proven by noting that, by (1.1.7), the expression for consists of a sum 
of four functions of the type x In ( y / x )  (there being no need to  consider 
linear terms). Therefore it is sufficient to  prove convexity of functions x In 
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(y/x) along any straight line y - y o  = a(x - xo) in the xy-plane. In fact, 

For arbitrary isolated thermodynamic systems, the property of maximali- 
ty of entropy is proved in courses on statistical physics (cf., for example, 

Consider now an arbitrary equilibrium process for a closed system (such 
systems do not exchange mass with surrounding media; otherwise, a system 
is said to be open). Then S E  f SA. By definition, the quantity SQ 
6 Q = d € - 6 A ,  (1.2.6) 

is called the amount of heat gained by the system. 
Since all dmj = 0 (chemical reactions not being taken into consideration) 

and 6A = -pSV, it follows from Gibbs’ relation (1.2.5) that 

[GO, 5 7,811. 

6 Q  
T d q = - .  (1.2.7) 

In essence, the truth of the second law of thermodynamics has been 
proved for equilibrium processes. In fact, from (1.2.7) follows the impos- 
sibility of a perpetuum mobile of the second kind. If there were given a 
cyclically operating engine, working by obtaining heat from some heat reser- 
voir (SQ > 0), then over a complete cycle of such a machine $(SQ/T) > 0, 
which contradicts, by (1.2.7), the condition $dv = 0. 

Thus, both laws of the thermodynamics of equilibrium processes follow 
from ordinary postulates of statistical physics. 

Finally, it will be proved that the absolute temperature of a thermody- 
namic system, defined by the first relation (1.1.4), actually coincides with all 
properties of the absolute temperature, formulated in traditionally estab- 
lished thermodynamics which are not based on the ideas of statistical phys- 
ics. Firstly, as it follows from (1.2.7), the function 1 /T  is an integrating fac- 
tor for the differential form SQ; secondly, if two systems lie in thermal con- 
tact, then in an equilibrium state their temperatures are equal. 

In order to  prove the second assertion, use will be made of the maximum 
property of the entropy 7 of an isolated equilibrium system, consisting of 
two subsystems with energies and E ~ .  Since in the case of thermal contact, 
the volumes and constitutions of both subsystems do not change, one has 

As S E ~  + = 0, then, by (1.1.4), one has T1 = T 2 .  
In conclusion, a definition will be given of the concept of the heat capac- 
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ity of a system as the amount of heat SQ which must be added to a closed 
system in order to increase its temperature T by one centigrade. Since the 
quantity SQ is not a differential of any function of state and depends on the 
type of process, one may introduce heat capacities for constant pressure 
C, = 6Q,/dT and for constant volume C, = SQ,/dT, respectively. In order 
to express C, and Cu in terms of derivatives of entropy, it is convenient to 
change over from the independent variables E ,  V ,  mi to the independent vari- 
ables T, p ,  mi and T, V, mi, respectively. It then follows from (1.2.7) that 

(1.2.8) 

1.3 THERMODYNAMIC POTENTIALS 

By Gibbs' relation (1.2.5), the significance of the entropy of a system as a 
function of E ,  V. mj permits to determine all its basic thermodynamic param- 
eters. In fact, by (1.1.2) and (1.2.4), one finds the temperature T, the 
chemical potentials pj and the pressure p as functions of E ,  V, mj. Further, 
eliminating from the expressions T = T(E, V, mj) and p = P ( E ,  V, mj) the 
energy E, one finds the equation of state of the system. For example, in the 
case of a mixture of ideal gases, one arrives without difficulties at the law 

p V =  kNT = R(nl  + n 2 )  T , 
where R = kN, = 8.314 - lo3  J mole-' * "C-' is referred to  as the universal 
gas constant and nl ,  n2 are the numbers of moles of components of the mix- 
ture. 

Further, it is readily verified that C, and C,, as also other thermodynamic 
parameters which will be defined in the following sections, may likewise be 
found from the known entropy q = q ( ~ ,  V, mi). For this reason it is said that 
with respect to the independent variables E, V, mj the entropy of a system is 
a thermodynamic potential. 

However, as has already been seen during the derivation of (1.2.8), the 
independent variables E ,  V ,  mi are not always themselves convenient. Some- 
times it is, for example, convenient to use as independent variables q, V, mj. 
Rewriting Gibbs' relation (1.2.5) in the form 

n 

de = Tdq -pdV + c pidmj , 
1 

(1.3.1) 

it is seen that in terms of the independent variables q, V ,  mj the thermo- 
dynamic potential will be the internal energy of the system e = ~ ( q ,  V, mj). 

Using the invariance of the form of representing the first differential of 
a function, one obtains from (1.3.1) the reiations 
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n 

d(e - Tq) = d$ = - q d T  -pdV + c pjdmj,  
1 

(1.3.2) 

(1.3.3) 

n 

d ( E + p V - T q ) = d { = - q d T +  V d p + C p j d m j .  (1.3.4) 
1 

The function x = E + pV is called the enthalpy of the system (or the heat 
function); the function I) = E - Tq is called the free energy of the system 
(or the Helmholtz function); the function < = E + p V  - Tq is called Gibbs’ 
potential (or Gibbs’ function) of the system. 

Gibbs’ notation [ 26 J has been retained here. With regard to other notations and ter- 
minology, reference should be made to [3 ,  pp. 19, 201. 

It follows from (1.3.2)-(1.3.4) that  the enthalpy x is the thermody- 
namic potential with respect t o  the variable q, p, mj,  the free energy J /  
with respect to T, V, mj and Gibbs’ potential { with respect to T, p ,  mj.  Ob- 
viously, the functions x, I), { are extensive parameters of state of the sys- 
tem. Therefore, by Euler’s formula for homogeneous functions of first order, 

Hence, by (1.3.4), one has Euler’s identity 

n 

E + p V -  Tq = c phmk . 
1 

(1.3.5) 

Differentiating (1.3.5) and taking into account Gibbs’ relation (1.2.5), one 
obtains 

n 

VdT - Vdp + C mkdpk = 0 
1 

(1.3.6) 

This formula is known as the Gibbs-Duhem relation. 
If one relates an extensive parameter of a system t o  unit mass, then one 

may consider corresponding specific parameters. Thus, the specific volume 
Vim = l / p  ( p  is the density of the system). Likewise, one may introduce the 
specific internal energy E,  = Elm, the specific entropy q,  = q/m, the specific 
enthalpy xm = x/m, the specific free energy $ m  = J//m and the specific 
Gibbs’ potential {, = {/m. Obviously, all the specific parameters will be 
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intensive quantities and not depend on rnj,  but on the concentrations cj = 
mj/m.  Further by Euler's identity (1.3.5) and Gibbs'relation (1.2.5), one ob- 
tains readily 

Since C; r n k  = rn, then CT ck = 1. Therefore only n - 1 components may 
be taken as independent variables, characterizing the constitution of the mix- 
ture. Since Cy dck = 0, one has 

n -1 

Tdq, = de, + p d  - - c (& - p n )  dCk , ci 1 
(1.3.7) 

where already all dcl, ..., dc,-l may be assumed to be independent. Note 
that one may interpret pn as chemical potential of any component. 

The relations (1.3.2)-(1.3.4) and (1.3.6) may be rewritten in terms of 
specific quantities in the same manner. 

Specific parameters have been introduced. However, by the same means, 
one could introduce a density Z/V = p z ,  (where Z is any extensive param- 
eter and z, its corresponding specific parameter). I t  is not difficult to 
write down Gibbs' relation in terms of densities. By (1.2.5), one has 

n 

Td(Pqrn) = d(Pem) - c PkdPk , (1.3.8) 

where Pk = mk/V is the density of the hth component of the mixture and 
C; Pk = p. Note that the expression for the differential of the density of the 
entropy pq, has been obtained as a function of the independent variables 

1 

PEm,  P I ,  * - * ,  Pn. 

1.4 SEA WATER AS A TWO-COMPONENT SOLUTION 

The principal substances, dissolved in sea water, are strong electrolytes 
and they are practically dissociated into ions. The basic components of the 
mixture are chloride ions (Cl-), sodium ions (Na'), sulphate inns (SO:-), 
magnesium ions (Mg2'), calcium ions (Ca2'), potassium ions (K') and hydro- 
carbonate ions (HCO,). 

The concept of salinity will now be introduced. Consider a volume V and 
let m l ,  ..., mnPl be the masses of the components of the admixture in solu- 
tion (for example, rn, = v,Nl, where v1 is the mass-of the C1- ions, Nl , is the 
number of these ions), and rnn the mass of the pure water. Then salinity s = 
ZT-' m k / m  (where m is the mass of the volume V). Defined in this manner, 
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TABLE 1.1 
Ion composition of sea water (according to Sverdrup et al. [120, Chapter VI]) 

Ions % Ions % 

Na+ 30.61 c1- 55.04 
Mg2+ 3.69 soq- 7.68 
Ca2+ 1.16 HCOT 0.41 
K+ 1.10 

salinity turns out to be a nondimensional quantity, usually expressed in 
parts per thousand and denoted by S .  Clearly, S = 1000s. 

The following important fact is experimental in origin: Far away from 
ocean shores, the composition of principal ions in sea water is constant 

where h k  are constants (cf. Table 1.1). In other words, the salinity of sea wa- 
ter changes because of addition of pure water or its disappearance (precipita- 
tion, evaporation, formation and thawing of ice), but the composition of the 
salt of sea water remains unchanged. 

As a consequence of the constancy of its salt composition, sea water may 
be considered as a two-component mixture: pure water and salt. Denote the 
concentration of pure water by cw. Then s + cw = 1. Selecting s as indepen- 
dent variable and denoting by ps the quantity Ch,ph (the chemical potential 
of salt), Gibbs’ relation for specific quantities (1.3.7) may be written in the 
form 

(1.4.1) 

where p denotes the difference of the chemical potentials of salt ps and pure 

The basic thermodynamic relations (1.3.1)-( 1.3.6) for specific quantities 
water P w ,  P = Ps - Pw. 

will now be written down for sea water: 

(1.4.2) 

P (1.4.3) dXm =Tdq,+-dp+pdS,  x m - € ,  +-, 1 - 
P P 

(1.4.4) 
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1 P 
P P 

dCm = T m d T  + - dp + PdS , Cm = + - - Tqm 

Euler’s identity 

Em +p- TVm = PUS + ~w 7 

P 

the Gibbs-Duhem relation 

(1.4.5) 

(1.4.6) 

(1.4.7) 1 
P 

qmdT - -- dp + sdp + dpw = 0 . 

Formulae (1.2.8) for the specific heats cp and c, assume the form 

(1.4.8) 

1.5 ENTROPY, INTERNAL ENERGY AND CHEMICAL POTENTIAL OF SEA WATER 

It has been shown in 5 1.1 that starting from the statistical definition of 
entropy a simple analytic expression for the function q ( e ,  V, m j )  may be 
found for the case of a mixture of two ideal gases. However, it will be 
recalled that the simplicity of the calculations arose from the fact that for an 
ideal gas the effect of inter-atomic forces need not be taken into considera- 
tion. Unfortunately, because of the necessity of taking into account the 
forces of interaction between ions (especially Coulomb forces) by the meth- 
ods of statistical physics, one cannot succeed in constructing a comprehen- 
sive analytic expression for the entropy of sea water. Known theories for 
weak solutions of strong electrolytes turn out to be valid for significantly 
weaker concentrations of ions of the admixtures [ 1231. 

It will be shown in this section that one may estimate the thermodynamic 
parameters (entropy, internal energy, etc.) on the basis of empirical data. 
For this purpose, a number of thermodynamic relations must be derived. 

The measurement of temperature T, pressure p and salinity s is simplest. 
Therefore it is convenient to select as independent variables T, p and s .  
Clearly, for such a choice, Gibbs’ potential C m  will play a basic role. By 
(1.4.5), one has 

(1.5.1) 

Using the conditions a2tm/aTap = a2Cm/apaT, etc., one readily finds (in 
terms of the variables T, p ,  s) : 

(1.5.2) 
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Further, a2fm/a T2 = -aq,ia T = -c,/T. 
Since a 3 { m i a p a ~ 2  = a3fmiaT2ap and a 3 f m / a ~ a ~ 2  = a 3 { , / a ~ 2 a ~ ,  one has 

(1.5.3) 

By (1.4.8) and (1.5.2)7 

At the present time sufficiently exact empirical formulae have been pro- 
posed for the equation of state of sea water [136,24,132] and the specific 
heat cp at atmospheric pressure [ 8 ] .  However, then, by the first formula 
(1.5.3), the specific heat cp may be computed for any pressure, so that in the 
sequel the functions p(T,  p, s) and cp(T7 p, s) may be assumed known. An 
idea about the dependence of p and cp on T, p ,  s can be obtained from Figs. 
1.1 and 1.2 and Table 1.11. 

Further, by the third formula (1.5.2) and the second formula (1.5.3), the 
parameter p may be computed exactly apart from a function a(s)T + b(s) ,  
where a(s) and b(s) are arbitrary functions. 

It will be shown below that (aplas),,, may be computed as a function of 
s from data on the dependence of the compressibility of saturated vapour on 

Salinity 

Fig. 1.1. Density p g/cm3 as function of temperature and salinity at  atmospheric pressure 
(Montgomery [SO]). Dotted curve denotes freezing. 

Fig. 1.2. Specific heat at  constant pressure cp J . g-' 
and salinity at atmospheric pressure (Fofonoff [24 I). 

("C)-' as function of temperature 
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TABLE 1.11 
Dependence of p and cp on pressure p (deviation from atmospheric pressure) for T = 0" C 
and S = 35%0(Montgomery [SO]) 

Pressure p (dbar) 

0 2000 4000 6000 8000 10 000 

Density 

Difference 
p g cm-3 1.02813 1.03748 1.04640 1.05495 1.06315 1.07104 

,-1O,-P 0 0.0667 0.122 0.168 0.206 0.237 
c,(O)--C (PI 

the salinity of sea water. Hence, if it is assumed that ( a p / a s ) , ,  is known as 
a function of s (for two different values of the temperature and the same 
pressure), then arbitrariness in the determination of the parameter p may be 
reduced to a linear function of T. Finally, by (1.5.4), the specific heat qm 
may be computed as a function of T ,  p ,  s apart from a linear function of s. 

How to estimate (ap/as),,? Consider for this purpose the equilibrium 
between sea water and its saturated vapour, enclosed in some constant 
volume. Since such a system may be assumed to be isolated, its entropy q 
must be a maximum. Taking into consideration (1.2.5), one has 

Quantities without subscripts relate to  sea water, those with the subscript 
u to vapour. In this formula, p, is the chemical potential of the pure water in 
sea water, 6m, the change in the mass of pure water in the sea water (assum- 
ing that the ions of the salt do not evaporate form the solution), p, the 
specific Gibbs potential of pure vapour (which may be called the chemical 
potential of pure vapour. 

Since 8e, 6V, 6m, are arbitrary, one finds 

(1.5.5) 

(1.5.6) 

These equations give the dependence of the compressibility (pressure of 
saturated vapour p u  on T and s. Let T be constant and consider p v  = p,(s). 
Differentiating (1.5.6) with respect to  s, one has 

(1.5.7) 
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In analogy with the derivation of (1.5.2), one finds readily from (1.3.4) that 

(3) T,m,,m, =(=) T , p , m ,  =v, ,  ($ ) / , ,  
where V ,  is the partial volume of pure water in sea water (in general, if Z(T, 
p ,  mi) is an extensive function of state of a system, then the intensive func- 
tion of state Zi = aZ/ami is referred to as a partial parameter of the system), 
V,  the specific volume of vapour. Further, by the Gibbs-Duhem relation 
(1.4.7), one has 

Formula (1.5.7) may now be rewritten in the form 

s($) =(v,-v,)--+ dP 
T,  P ds 

Consider the relative lowering of the pressure of saturated vapour of sea 
water r = (p," - p,)/p," (where p: is the pressure of saturated vapour over pure 
water). Since V ,  << V,, one has, finally, 

p,V, dr - RUT dr 
l - r d s  l - r a s '  (1.5.8) 

where R, = R/M,,  M ,  is the gram-molecular weight of water vapour, R the 
universal gas constant, R, = 46.2 * lo5 erg a 8-l * "C-' (water vapour being 
assumed to be an ideal gas). 

It is known that for normal conditions r = 0.54s (cf. the survey of empiri- 
cal data drlds in Fofonoff 1241; it is shown there that ap/as may be esti- 
mated also from the known dependence of osmotic pressure on salinity, and 
likewise the boiling temperature or the freezing temperature of sea water). 
Then sap/as .u 7.5 . l o8  erg.  8-l for T = 27°C. 

An expression for the derivatives of the interval energy em is also readily 
found. For example, one obtains from the second formula (1.4.5) in the 
system of variables T, p ,  s that 

and, since a{,/aT = --qm and aqm/aT = c p / T ,  

(I .5.9) 
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(1.5.10) 

(1.5.11) 

Thus, from the same initial empirical data which permit the computation of 
the entropy of sea water q(T, p ,  s), one may find also the specific internal 
energy of sea water e(T, P, s) (it is readily seen that it will only be exact 
within a linear function of s). Clearly, it will then also be easy t o  find the 
specific Gibbs potential {,,,(T, p ,  s) = em + p / p  - Tqm exactly apart from a 
function of the form a1 + a,T + ags + a,Ts (where a; are constants). 

1.6 ADIABATIC TEMPERATURE GRADIENT AND COMPRESSIBILITY OF SEA 
WATER 

In thermodynamics, one must often express parameters of state in dif- 
ferent systems of independent variables. Such changes of variable lead t o  
interesting relations. As an example, consider the heat capacity c, = T(aq,/ 
aT),,, and write down its expression in the system of variables T, p ,  s using 
for this purpose known properties of Jacobians. One has 

By (1.5.2) and (1.4.8), one finds 

(1.6.1) 

The formula (1.6.1) permits to  determine c, from cp for a known equa- 
tion of state of sea water. Since a ( l / p ) / a p  < 0 (cf. 5 1.7), one has cp > c,. 
The physical significance is as follows: If one adds to a system a definite 
quantity of heat, then for constant volume it heats up more than for con- 
stant pressure, since in the second case the system will perform work on 
account of part of the heat. Note that for sea water the ratio c,/c, is very 
close to  unity. 

Consider the change in the temperature of a system during an equilib- 
rium adiabatic process. Since for such a process the entropy q,  and the 
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TABLE 1.111 
Dependence of r on the pressure (difference from atmospheric pressure) for T = 0°C and 
S = 35%0 (according to Montgomery [SO]) 
- .  _ _ _ _  _ _ _ ~ -  ~- ~.,___ 

Pressure p (dbar)  0 2000 4000 6000 8000 10 000 

Adiabatic tempera- 
ture gradient 

dbar) 0.035 0.072 0.104 0.133 0.159 0.181 
I'("C/lOOO 

salinity s of the system remain unchanged, then this change is given by (aT/  
ap)rlrn,s. This quantity is denoted by and referred to  as the adiabatic tem- 
perature gradient of the system. In the system T,  p ,  s, one finds for I' the 
expression 

An idea of the numerical values of I? can be gained from Table 1.111. 
The concept of potential temperature 8 of a system will now be intro- 

duced. This is the temperature which a system acquires during an equilib- 
rium adiabatic transition from pressure p to  atmospheric pressure pa .  The 
corresponding density for such a transition is termed potential density. By 
definition, one has 

The quantities 0 and p p o t  describe the effect of removal of pressure influ- 
ence on the temperature and density of seawater. 

Since the density of sea water differs little from the value 1 g * cniC3, it is 
convenient to  introduce the following quantities: ustp = l o3  [ p ( T ,  s, p )  - 
1 g ~ m - ~ ] ,  ut = ustp ( T ,  s, pa) and ue = ustp ( 6 ,  s, pa).  Table 1.IV permits 
to compare all these quantities by means of the example of a deep water 
station. 

Finally, the following quantities will be introduced: the coefficient of 
thermal expansion (variables T,  p, s) 
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TABLE 1.IV 
Example of computations of 8 ,  uStp, ut, (30 a t  a deep water station (according t o  Fofonoff 
~ 3 1 )  

0 
50 

100 
200 
500 

1 0 0 0  
1 5 0 0  
2 000 
2 500 
3 000 
3 500 
4 000 
4 500 
5 500 
6 500 
7 500 
8 500 

10 000 

7.47 
7.17 
7.02 
6.41 
5.03 
3.19 
2.36 
1.93 
1.82 
1.66 
1.58 
1.59 
1.64 
1.78 
1.92 
2.08 
2.23 
2.48 

e 
C) 

~ 

7.47 
7.16 
7.01 
6.39 
4.99 
3.12 
2.26 
1.79 
1.65 
1.44 
1.31 
1.26 
1.25 
1.26 
1.25 
1.24 
1.22 
1.16 

P 
(dbar) 

32.47 
82.50 
33.26 
33.94 
34.13 
34.39 
34.52 
34.61 
34.64 
34.66 
34.67 
34.67 
34.67 
34.67 
34.67 
34.67 
34.67 
34.67 

25.39 
25.45 
26.07 
26.68 
27 .OO 
27.40 
27.58 
27.69 
27.72 
27.75 
27.76 
27.76 
27.76 
27.75 
27.74 
27.72 
27.71 
27.69 

25.39 
25.45 
26.07 
26.69 
27.01 
27.41 
27.59 
27.70 
27.73 
27.76 
27.78 
27.78 
27.78 
27.78 
27.78 
27.79 
27.79 
27.79 

25.39 
25.68 
26.53 
27.61 
29.34 
32.10 
34.62 
37.05 
39.37 
41.68 
43.95 
46.18 
48.38 
52.71 
56.96 
61.13 
65.23 
71.24 

0.0 
50.3 

100.6 
201.4 
504.1 

1009 .6  
1516.5  
2 024.6 
2 533.8 
3 044.2 
3 555.7 
4 068.3 
4 582.0 
5 612.6 
6.647.3 
7 686.2 
8 729.2 

10 301.1 

9 (1.6.5) 

the coefficient of isothermal compression (variables T, p ,  s) 

the coefficient of adiabatic compression (variables qm,  p ,  s) 

The quantity K,, 

which is given by 

(1.6.6) 

(1.6.7) 

is closely linked to ' the  velocity of sound c in sea water 

(1.6.8) 

whence 
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TABLE l . V  
Dependence of speed of sound on pressure p (difference from atmospheric pressure) for 
T = 0°C and S = 35%0 (according to Montgomery [ 8 0  J )  

Pressure p (dbar) 0 2000 4000 6000 8000 1 0  000 
Speed of sound 

(m . sec-l ) 1448.6 1484.4 1519.7 1554.2 1587.7 1620.0 

At the present time, the velocity of sound c in sea water as a function of 
T, p ,  s may be assumed to be known sufficiently well [131]. An idea regard- 
ing the dependence of the speed of sound c on T, p, s can be gained from 
Fig. 1.3 and Table l .V.  

The quantity K,, will now be expressed in terms of the independent vari- 
ables T,  p ,  s: 

By (1.6.5) and (1.6.6), one has 

K q  = -ra + K~ (1.6.9) 

Salinity 

Fig. 1.3. Speed of sound c (m/sec), as function of temperature and salinity for atmospheric 
pressure (according to  Montgomery [SO]). Dotted curve refers to freezing temperature. 
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or, using (1.6.1) and (1.6.2), 

(1.6.10) C” 

CP 
K q = -  K T .  

Since c, < c,, then K~ > tcq. Formula (1.6.10) permits to compute c,/c, 
from the known speed of sound and the equation of state of sea water. 

1.7 THERMODYNAMIC INEQUALITIES 

In the preceding sections, the property of maximality of entropy has 
been used to determine conditions of equilibrium of an isolated system 
(cf. the proof of the equality of the temperatures of two systems lying in 
thermal contact in 3 1.2 and likewise the conditions of equilibrium of the 
system of sea water and its saturated vapour in 5 1.5). However, it is known 
that for an isolated system the extreme value of entropy is a maximum. 
Therefore one has not only the condition 6 q  = 0 but also the condition 
S 2 q  < 0 (naturally, for definite limitations on the possible variations S E ,  SV, 
Smj).  

The condition S 2 q  < 0 for admissible variations S E ,  SV, Smj permits to 
obtain a number of important thermodynamic inequalities. In order to 
derive these, subdivide an equilibrium system into two subsystems with 
identical mass m,  volume V and internal energy E and vary the parameters of 
each subsystem. Restricting consideration to a two-component mixture 
(sea water) and varying only the mass of the salt, one finds 

0 3 Q ( E  + tief, V + S v ,  m, + am,) + Q ( E  + S E ” ,  V- SV, m, - Sm,) 

(1.7.1) 

The conditions for the variations Se’ and SE” will now be written down. 
Assume that in the perturbed state the subsystems may have macroscopic 
velocities SV, and 6v2 (the question of possible macroscopic motions of an 
equilibrium system is treated in detail in the following section). 

Then it is obvious that, by strength of the laws of conservation of the 
total impulse, the moment of total impulse and the energy of the system, 
one may write down the linking conditions 

(m + Sm,) Sv, + (m - Sm,) Sv, = 0 ,  
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r x  6v, +(m--6m,)rX 6 v 2 = 0 ,  

the radius vector relative to some Doint 0. It follows from the first 
two relations, accurately to second order of magnitude, that 

6v, = -6v, = 6 v  

Expressing from the third relation 6 ~ ”  in terms of 6 ~ ’  and 6v and substitut- 
ing into (1.7.1), one arrives at a quadratic form with respect to now already 
arbitrary variations 6v, 6 ~ ’ ,  SV, am,. As this form is negative definite, one 
derives now inequalities for the principal diagonal minors A,, A,, A3, A4 of 
its matrix: 

A1 < 0,  A 2 >  0, A 3 <  0, A , >  0 .  (1.7.2) 
The first of the inequalities (1.7.2) leads directly to an important deduc- 

tion relating to the positiveness of the absolute temperature of the system. 
By (1.2.5), (1.2.8) and known properties of Jacobians, one has 

Finally, the inequalities (1.7.2) may now be given the forms 

T >  0, c, > 0, ( a p / a V ) T , m , , m , <  0, (aPs/ams),p,mw > o .  
(1.7.3) 

Since for T and p = const. 
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one finds, rewriting the Gibbs-Duhem relation (1.4.7) in the form (1 - s)dp 
= dp,, from the last inequality (1.7.3) 

(1.7.4) 

Strictly speaking, one must not exclude from the inequalities (1.7.2) the 
equality signs, since the quadratic form (1.7.1) must, in general, be only non- 
positive. A thermodynamic state for which one of the inequalities (1.7.2) 
would become an equality is said in thermodynamics to be critical and is 
subjected to special study. In the following it will be assumed that states of 
sea water under consideration are not critical. 

In this context, it is interesting to  note that during simultaneous variations 
in E ,  V,  m,, mw the corresponding quadratic form in Sv, S E ' ,  SV, am,, Sm, 
will already no longer be negative definite, but only non-positive. In fact, 
side by side with the minors (1.7.2) one would have to consider also the 
determinant A5 

However, this determinant vanishes identically, since by the Gibbs-Duhem 
relation (1.3.6) one has for two-component mixtures 

msdps + m,dpw = 0 

with T, p = const., and therefore 

= O .  a(&, Pw) 
mw) 

Consider now the second and third inequality (1.7.3). Since during differ- 
entiation rn, and m, remain constant, these inequalities are equivalent to the 
inequalities 

C" > 0 ,  (aPlaP),,, > 0 . (1.7.5) 
However, then, by (1.6.1), one has cp > c, and c,/c, > 1 (a fact which has 
already been used in § 1.6). Further, it follows from (1.6.6) and (1.6.10) 
that K ,  > 0 and the speed of sound, by (1.6.8), may be determined for any 
medium. It is interesting to note that, by (1.5.8), one has dp,/ds < 0: The 
pressure of saturated vapour drops as the salinity of sea water is increased. 

1.8 CONDITIONS OF EQUILIBRIUM OF SEA WATER 

For the definition of entropy in 5 1.1 it has been assumed that the sys- 
tem is at rest (in a macroscopic sense) and that no external forces act on it. 
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Consider now the problem of equilibrium of a finite volume V of fluid 
located in a field of stationary conservative forces with specific potential 
U ( M )  [where M is a point of the medium]; in addition, assume that separate 
parts of the fluid may undergo macroscopic motion with velocity v(M). For 
definition of the entropy of such a system, we decompose the volume V into 
separate particles, which are somewhat small and such that within their 
limits the fields U and v may be assumed to be homogeneous, but at the 
same time sufficiently large so that the statistical concept of entropy may 
make sense for them (here and below, a particle is conceived in a macro- 
scopic sense). Then the entropy of each particle will depend only on its 
internal energy, volume and composition; the presence of the fields U and o 
will not affect the magnitude of the entropy of separate particles. 

It is simpler to demonstrate this fact by the example of a mixture of two ideal gases. 
In the case of fields U and v which are homogeneous within the bounds of the entire 
volume of the mixture, the phase volume must be computed from the formula [cf. 
(1.1.6)] 

dqidpi 1 

c+ UGH+ UGe+6 E+U 

where H is given by (1.1.5) in which p ;  must be replaced by (pl + V ~ U ~ ) ~ ,  pg by ( p 2  + 
v ~ u ~ ) ~ ,  etc. Clearly, the same magnitude is obtained for a, as from (1.1.6). 

Thus, by definition, the entropy of a finite volume V of the liquid will be 

(1.8.1) 

where the specific entropy qm is a function of the specific internal energy 
E,, the density of the medium p and the concentration of the admixture s. 
Analogous formulae may be written down for the internal energy of a finite 
volume V and likewise for other extensive thermodynamic parameters. 

The conditions of thermodynamic equilibrium will now be derived. As- 
sume that the system under consideration is isolated; then its entropy must 
be a maximum and simultaneously the following laws of conservation must 
be fulfilled. 

(1) The total impulse of the system must be constant 

J pvdV = constant ; 
V 

(1.8.2) 

(2) The total i,,oment of momentum of the system must be constant 

J r  X pvdV = constant, 
V 

(1.8.3) 
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where Y is the radius vector of the point. 
(3) The total energy of the system (sum of kinetic energy of macroscopic 

motions with velocity v, potential energy U and internal energy E,) must be 
constant 

1 [ p [$ + em + U dV = constant 1 
(4) The masses of each component of the system must be constant 

Jp,dV = constant, Sp,dV = constant . 
V V 

(1.8.4) 

(1.8.5) 

The relations (13.2)-( 1.8.5), in essence, yield an exact formulation of 
what must be understood by the condition of isolation of a system. 

At the end of 5 1.3 [(1.3.8)], it has been seen that the density of the 
entropy pqm may be assumed to be a function of pe,, ps, pw. However, the 
entropy of a finite volume V, by the constraint (1.8.4), will, in general, 
depend not only on the fields pe,, p,, p,, but also on the field pv (although 
the entropy of separate particles also does not depend on the field pv; since 
the field U is stationary, it has not been included in the list of functions on 
which q depends; for example, for the gravity field, U =  -gz with g the 
gravitational acceleration and z the downward vertical coordinate). Thus, the 
determination of the conditions of equilibrium of a system has been reduced 
to an analysis of the extrema of the functional ~(pc, ,  ps, p w ,  pv) for the con- 
stvaints (1.8.2)-(1.8.5), imposed on the possible functions pe,, p,, pw, pv. 

The method of Lagrange multipliers will be employed to determine the 
extremum q. Introduce the auxiliary function G 

+ a j p v d V  + b J r X pvdV , 
V V 

(1.8.6) 

where A,, A,, A, a,  b are constant numbers and vectors. Recall that p = ps + 
p, and that for variations in pe,, p,, p,, pv the volume of the system V 
remains unchanged [the region of integration in (1.8.6)]. 

Constructing the expression for the first variation of the functional G and 
using (1.3.8), one has 

6G = (($ + A] ~ ( P E , )  + [-$ + XU + A, - A $1 6p, 
V 
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6 p w +  [ h v + a + b X  r ] 6 ( p v )  

Setting equal to zero the coefficients of the variations 6(pe,), 6ps, 6 p w ,  6(pv) 
yields now 

(1.8.7) 1 
h '  

T =- -  

I*w=-u--+- hw v 2  
h 2 '  

(1.8.8) 

(1.8.9) 

(1.8.10) a 1  v =--  --(b X r ) .  A X  

These are the necessary conditions of thermodynamic equilibrium of a finite 
volume of sea water. Thus, in an equilibrium state: 

(1) The temperature T is constant throughout the entire volume of fluid. 
(2) The chemical potentials ps and pW differ only by a constant amount. 
(3) The volume of fluid may move only like a rigid body with velocities of 

translation -a/X and of rotation -b/X. 
Introduce the strain rate tensor cap. Consider for this purpose the Carte- 

sian coordinate system x". It is easily shown that the distribution of veloci- 
ties at the point M' near the point M is given by 

V,(M') = V,(M) + %[(rot v x 6 r ) ,  + eap6rP] , (1.8.11) 

where 

The arrangement of the indices in (1.8.11) is convenient for the following 
exposition, although in an orthogonal Cartesian coordinate system it is, of 
course, indifferent where the indices are placed - up or down (without 
violating the summation convention). 

It is natural to define the strain rate tensor eap in the general tensorial 
form as 

e,p = V,up + V p u ,  . (1.8.12) 
Then the relation (1.8.11) may be assumed to  hold true in any coordinate 
system (inasmuch as it is a coordinate system in which it applies, cf. 3 A.3). 

By (1.8.11), the strain rate tensor exactly describes the difference 
between the motion of the fluid particles and the fluid's motion as a rigid 
body. Therefore it is obvious that the equilibrium condition (1.8.10) must 
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be equivalent to the condition eap = 0 (a fact which is also readily estab- 
lished formally). 

Subtracting (1.8.9) from (1.8.8), the equilibrium condition for sea water 
can be written in the form 
T = constant, p f constant, eap = 0 . (1.8.13) 

This formulation will be employed extensively in what follows. 
Finally, the equations of hydrostatics wilI be derived from the general 

equilibrium conditions (1.8.7)-( 1.8.10). Assuming the system to be at rest 
(v = 0), one has, by the Gibbs-Duhem relations (1.4.7), the first two condi- 
tions (1.8.13) and (1.8.9). 

1 
P 
- V& = u,pw = -0,u. 

Since V,U = -X, (where X, is the body force), then 

1 
P 
-U& =x,. (1.8.14) 

It is seen that in the presence of mass forces X the pressure p cannot be a 
constant quantity. However, then also the salinity cannot be constant. In 
fact, since T,  p = constant, then 

The equilibrium vertical salinity gradient in a gravitational force field is read- 
ily estimated from this formula. Since sap/as = 7.5 . l o 8  erg - g-' I ap/ap I 
= 1 erg g-' (dyne * cm2)-', then as/az = 1.3 . 10-4s (m-'), which differs 
essentially from what is observed in the oceans. 

1.9 CONDITION FOR THE ABSENCE OF CONVECTION. VAISALA FREQUENCY 

Assume that the temperature of the sea water T, the salinity s and the 
density p ,  and also all other thermodynamic parameters depend only on the 
vertical coordinate z (increasing downwards). Such a fluid is said to  be strati- 
fied. Since the temperature of the fluid is not constant, then it cannot find 
itself in a state of thermodynamic equilibrium (cf. 5 1.8). However, let it be 
assumed that the fluid is in a state of mechanical equilibrium and study the 
condition of stability of such an equilibrium (the condition of absence of 
convection). 

Let a particle of the fluid, located at the level z ,  move adiabatically to  the 
nearby level z + E.  Assume that at each instant of time the thermodynamic 
state of the particle may be assumed to  be an equilibrium state. The density 
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of the particle at the level z + ,$ is p(z) + (dp/dz),m,s t ,  and the density of 
the surrounding medium at this level p(z) + (dp/dz)t. However, then the 
Archimedian force acting per unit volume of particle is g[(dp/dz),m,s - (dp/ 
&)I$.  Clearly, this force will tend to  return the particle to its former level z 
only if 

g> ($) . (1.9.1) 

This is the well known condition of stability of the equilibrium of a strati- 
fied fluid (the condition of absence of convection). If the fluid were incom- 
pressible, then the stability condition would be simply dp/dz > 0; taking 
account of the adiabatic compression of the particle (and connected with it 
of its increase in density) has led to  the formulation (1.9.1). 

If the condition (1.9.1) is fulfilled, then one may introduce the frequency 
N defined by 

(1.9.2) 

It follows from the preceding work that the fluid particle displaced from 
equilibrium will perform small oscillations about its equilibrium position 
with this frequency N. This frequency, an important parameter of a strati- 
fied medium, is referred to as Vaisala frequency (this name not being used 
universally). 

Formula (1.9.2) may be written differently. By (1.8.14) and (1.6.8), one 
has 

and hence 

p g dP g2 
P c2 

(1.9.3) 

In the upper layers of the sea (outside a homogeneous layer), the first 
term on the right-hand side of (1.9.3) significantly exceeds the second term, 
and the stability condition may be given the approximate form dp/dz > 0. 

Assuming p to be a function of T, p, s and using (1.6.9), one finds 

(1.9.4) 

Since for sea watergpr - 10-4”C/m (a change of temperature of 0.01”C for 
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every 100 m depth), then in the upper layers of the sea for a not large 
salinity gradient the stability condition reduces effectively to  dT/& < 0 
[recall that for a temperature, characteristic for the upper layers of the sea, 

Finally, assuming again p to  be a function of T, p ,  s, one has, from (1.9.3) 
( a P / a  n p , s  < 01. 

and (1.6.10), 

(1.9.5) 

This formula is convenient for obtaining an estimate of N within the limits 
of homogeneous layers, where the temperature and salinity vary little with 
depth. In contrast, in those layers of the sea where dT/& and ds/& are large, 
the second term in (1.9.5) may be omitted (since cp = q,). Therefore, assum- 
ing that (dpldz), = lop3 (do,/&), one obtains an approximate formula for 
the evaluation of N in those layers where T and s vary essentially with depth: 

(1.9.6) 

In conclusion, it should be pointed out that in the ocean the smallest 
value of N is of the order of f loA4 sec-' (corresponding to  periods of 
1.7-17 hours), while the largest value of N ,  usually attained in the seasonal 
thermocline, is of an order of 10W2 sec-l (corresponding to  a period of -10 
minutes) . 

COMMENT ON CHAPTER 1 

The material of this chapter is classical. Therefore it is difficult here to  
give references. General courses on thermodynamics and statistical physics 
have been used which were written by Landau and Lifshits [60], Kubo [ 561, 
Morse [82], Khinchin [ 501 and Haase [29], and likewise the survey paper by 
Fofonoff [24]. The derivation of the formula (1.2.3) has been taken from 
Kubo [ 561. For the derivation of N ,  the work of Vaisiila [ 1241 has been fol- 
lowed (confer also Eckart 1131). 



CHAPTER 2 

DYNAMICS, THERMODYNAMICS OF IRREVERSIBLE PROCESSES 

2.1 THERMODYNAMIC PARAMETERS IN A NON-EQUILIBRIUM STATE 

Hitherto, only states of thermodynamic equilibrium have been considered 
when the internal state of a system is characterized completely by such param- 
eters as, for example, E ,  V, m, and mw. As it has been seen, for an equilib- 
rium state, one may introduce entropy 7) as a function of e, V, m, and m,. 
Further, changes of the function of state have been studied for transition 
from one equilibrium state to another (equilibrium processes) and condi- 
tions of thermodynamic equilibrium of a finite fluid volume have been 
derived. 

Next, non-equilibrium processes of transition in a fluid medium will be 
studied. In other words, a system will be investigated which is not in a state 
of thermodynamic equilibrium. Is it possible to use for this purpose the 
results of the thermodynamics of equilibrium states? 

Assume that the characteristic relaxation time of the system (time of tran- 
sition to an equilibrium state) decreases as the dimensions of the system 
decrease. Therefore subdivide this system into a set of somewhat small par- 
ticles (containing, however, a large number of molecules) in order that the 
relaxation time of each particle will be significantly shorter than the charac- 
teristic time scale of the process under consideration. Then it may be 
assumed in approximation that at any instant of time any particle finds itself 
in a state of thermodynamic equilibrium, and for each particle the entropy 
may be determined as an equilibrium function of its internal energy, volume 
and composition. After this, temperature, pressure, chemical potentials, etc., 
may be determined by ordinary means. In this manner, Gibbs’ relation 
proves to be valid for each particle and, consequently, also all formulae of 
equilibrium thermodynamics. 

In the sequel, entropy of a non-equilibrium system will be understood to 
be the sum of the entropies of all equilibrium particles into which the origi- 
nal system has been decomposed. By strength of the extensiveness of the 
entropy of an equilibrium system, further decomposition of equilibrium par- 
ticles into small parts does not affect the magnitude of the entropy of a non- 
equilibrium system. Thus, the entropy of a finite volume V of a fluid volume 
is defined by 

(2.1.1) 



32 

where qm(M,  t )  is the specific entropy; it is important that qm = q,(~,, p, s). 
In an analogous manner, also other extensive thermodynamic parameters for 
a finite volume of a continuous medium may be defined (compare the rea- 
soning in § 1.8 for the definition of entropy of a finite volume of a fluid; it 
was explained there why specific entropy qm does not depend on the fields 
of macroscopic velocities and external forces), 

Thus, in the case of a liquid medium, one may speak of fields of tempera- 
ture T ( M ,  t ) ,  pressure p ( M ,  t),  specific entropy q,(M, t), specific internal 
energy E,(M, t ) ,  etc., and assume Gibbs’ relation (1.4.1) for specific quanti- 
ties to  be true at  each point of the medium. 

It should be emphasized that, in contrast to  the specific entropy qm, the 
entropy q of a finite volume V of a fluid medium depends, of course, not 
only on the internal energy of this volume, the magnitude of the volume and 
its composition, but also on a number of other parameters (naturally, this 
statement does not relate to the case when this volume is in an equilibrium 
state). 

The approximation introduced is normally referred to as approximation of 
local thermodynamic equilibrium. A definition of entropy of a non-equilib- 
rium system and an estimate of the accuracy of the approximation intro- 
duced presents a very difficult problem and will not be considered here (cf., 
for example, [135]). However, it is clear intuitively that for systems with 
not very large gradients in the basic parameters the approximation above 
must be true. In what follows, consideration will be restricted to just such 
systems. 

The basic physical laws for continuous fluid media will now be formu- 
lated. 

2.2 EQUATIONS OF CONSERVATION OF MASS 

Assume that each component of a mixture may be considered as a contin- 
uous medium with its own velocity field. Let ps, pw,  vs and v w ,  respectively, 
be the densities and velocities of the salt component and pure water. Then 
one may postulate the conservation laws 

-_d-Jp,dV=O, dt 
VS 

(2.2.1) 

(2.2.2) 

Here and below, it is assumed that integration is extended over the indi- 
vidual volume, i.e. the moving, deforming volume consisting of one and the 
same particles of the medium [in (2.2.1), the particles of salt, in (2.2.2), 



33 

those of pure water]. Note that in writing down (2.2.1) and (2.2.2), chem- 
ical reactions between the components of the mixture have not been taken 
into account. 

Using (A.7.15) and the arbitrariness of an individual volume, one arrives 
at the differential form of the equations of conservation of mass: 

a P s  
~ + div(p,v,) = 0 , a t  

a P w  --+ div(p,v,) = 0 . a t  

(2.2.3) 

(2.2.4) 

Obviously, equations (2.2.3) and (2.2.4) follow from (2.2.1) and (2.2.2) 
only if all the functions entering into (2.2.3) and (2.2.4) are sufficiently 
smooth. Throughout this book, it will be assumed that this condition is ful- 
filled. 

Next, consider a more convenient characteristic. Introduce the velocity 
field v as the velocity of the centre of inertia of a particle of sea water: 

(2.2.5) 

Since the density of sea water is p = ps + p,, addition of equations (2.2.3) 

PSV, + P w % J  
P s  + P W  

v =  

and (2.2.4) yields the equation of conservation of mass of sea water 

aP  -+ div(pv) = 0 . 
a t  

Equations (2.2.3) and (2.2.4) may be written in the form, 

_ _  - -div(p,v + I , )  , 
at 

-- - -div(p,v + I , )  , 
a t  

(2.2.6) 

(2.2.7) 

(2.2.8) 

(2.2.9) 

(2.2.10) 

The vectors pv, pv, + I, ,  p,v + Z, are normally referred to  as vectors of 
density of mass fluxes of sea water, salt and pure water, respectively. If n is 
the external normal to the surface 2 ,  then the expressions (pv, n), (p,v + I,, 
n) and (p,v + I , ,  n )  represent the corresponding masses passing in unit time 
through unit area of the fixed surface C ,  bounding a volume V. The vectors 
pv, p,v and p, v characterize aduectiue transport of mass (caused by macro- 
scopic motion of sea water particles with velocity v), the vectors Z, and I ,  dif- 
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fusive transport of mass (not linked to  macroscopic motion). In fact, inte- 
grating (2.2.7) and (2.2.8) over the volume V, one finds 

JpwdV = - (Zw, n)  dL: , 
V c dt 

(2.2.11) 

( 2.2.12) 

where the individual volume V consists of one and the same particles of sea 
water. It is seen that the vectors Z, and I ,  characterize mass transport 
through the moving surface L: bounding the volume V. 

Equation (2.2.7) and (2.2.8) are normally referred to  as diffusion equa- 
tions for salt and sea water, respectively. Using (2.2.6), the definition of 
total derivative (cf. 3 A.7) and the fact that ps = ps, equations (2.2.6) and 
(2.2.7) may be rewritten in the alternate forms 

*+ p div v = 0 ,  dt  (2.2.13) 

(2.2.14) ds 
dt  p - = -div I ,  . 

which often prove useful. 

Is + I , ,  = 0 . 
Adding (2.2.9) and (2.2.10), one obtains, by (2.2.5), 

(2.2.1 5) 

Thus, two laws of mass conservation have been postulated: (2.2.1) and 
(2.2.2) or, in differential form, (2.2.3) and (2.2.4). These equations have 
been written in terms of parameters of the medium such as p,, p,, v, and vLu. 
If one selects as parameters of the medium the quantities ps = ps, p ,  v and I,, 
then it is convenient to  employ as equations of mass conservation the equa- 
tions of conservation of mass of sea water (2.2.6) and the diffusion equation 
for salt (2.2.7) [or in the form (2.2.13) and (2.2.14)]. 

In conclusion, consider mass exchange through the free ocean surface: 
evaporation, precipitation, formation and thawing of ice. The total effect of 
these processes may be described by specification of the flux of pure water 
b in unit time per unit area. Then one has that at the ocean surface F(r, t) = 0 

where vF = dr/dt is the velocity of the motion of points of the surface F, n = 
VF/ I VFI is the normal to  this surface, and it has been assumed in writing 
down (2.2.16) that b > 0, if VF is directed into the ocean and b < 0 if VF 
points out of the ocean. Differentiating the equation F(r,  t )  = 0 with respect 
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to time, one finds 

Introducing instead of v, and v, the velocity v and diffusive flux I,, equa- 
tions (2.2.16) may be rewritten in the form 

b 
E + ( v ,  V F ) = - I V F I ,  (Z,, V F ) = - b s I V F I .  
a t  P 

face. 

(2.2.17) 

This is the final form of the boundary conditions at the free ocean sur- 

2.3  EQUATIONS OF MOTION 

As a rule, it may be assumed that the Earth has the shape of a sphere and 
rotates with constant angular velocity SZ: s2 = 7.29 . sec-l. It is natural 
to consider motion of sea water from the point of view of an earthbound 
observer. However, then one is forced to operate with a non-inertial refer- 
ence system and to take in the equations of motion inertia forces into 
account, i.e., centripetal and Coriolis forces. 

External forces acting on an individual volume V of a continuous medium 
may be subdivided into mass (volume) and surface forces. The most impor- 
tant mass force is that of gravity; it is equal to the Earth’s attraction and the 
centripetal force. It will be assumed that the specific value of the gravity 
force (or gravitational acceleration) is a constant vector directed along the 
Earth’s radius towards its centre. The specific value of the Coriolis force is 
known to be given by 2v X SZ. In many problems, importance also attaches 
to the tide-generating forces of Moon and Sun. In what follows, the resultant 
of all mass forces (excluding the Coriolis force) per unit mass will be 
denoted, as in Chapter 1, by X, and it will be assumed that it has the poten- 
tial U so that X ,  = -7 aU. 

External surface forces with which a surrounding medium acts on an area 
dC are conveniently described by p(n)dC (where n is the external normal to 
dC; it determines the orientation of this element in space). Analogously, the 
vector p(n) may also characterize internal surface forces at the point M .  For 
this purpose, one needs only switch mentally the medium, located on the 
side of the normal n to the area dC, and replace its effect on dC by the vec- 
torp(n). By Newton’s third law, p(n)  = --p(-n). 

Thus, consider an arbitrary finite volume V of a continuous medium and 
let C be the surface bounding V. Postulate Newton’s second law for this 
volume in the form 

2 JpvdV = s p ( X  + 2v X a)  dV + f p ( n )  dC . 
dt v V x 

(2.3.1) 
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As in the preceding section, let the motion V be individualized. Thus, the 
change in unit time of the total impulse of V (the impulse of unit volume, 
by definition, is equal to pv) equals the resultant of all mass as well as sur- 
face forces, external with respect to  this volume. 

Apply (2.3.1) to  an infinitesimal tetrahedron with vertex at M and edges 
along the coordinate axes [assuming (2.3.1) to be applicable to any volume]. 
Using a Cartesian orthogonal coordinate system with base vectors el ,  e2 ,  e 3 ,  
and letting the volume of the tetrahedron vanish, one obtains 

p ( n )  =p(ex)  n' + P ( e z )  n2 + p ( e s )  n3 7 

where n = nie i .  

Thus, in a Cartesian orthogonal coordinate system, the vector p ( n )  
depends linearly and homogeneously on the vector n .  Obviously, such char- 
acteristic dependence is conserved in any coordinate system at the point M .  
Thus, 

Pa(%) = PapaP (2.3.2) 

According to the tensor criterion (cf. 3 A.3), p a p  is a tensor; as a rule, it is 
called the stress tensor at the point M .  Directing n along the coordinate lines, 
the physical significance of the individual tensor components p a p  is readily 
explained. 

Pap = -pmffp + Dap 7 (2.3.3) 

where uap is the viscous stress tensor, p the pressure and map the metric ten- 
sor. 

Newton's second law will now be written down in differential form. Ordi- 
narily, one employs (A.7.15) for each component of the vector p v  and uti- 
lizes the arbitrariness of the volume V to obtain first this law in a Cartesian 
orthogonal coordinate system; then it is written in general tensorial form [cf. 
the derivation of (1.8.11)]. One has 

It is customary to present p a p  in the form 

a 
a t  - (pu") = --oprI"P + pX" + 2p€47Upa7 , (2.3.4) 

(2.3.5) 

The tensor nap is called the tensor of density of the momentum flux. 
Newton's law in the form (2.3.4) is normally referred to  as momentum flux 
equation. 

It follows from (2.3.4) that generation of momentum (per unit volume in 
unit time) is linked to action of mass forces X and Coriolis forces. If these 
were absent, then change in the momentum J,pvdV of the volume V in unit 
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time would be equal to the flux $,IIaPn,dC through the surface X and, 
under the assumption that there exists a shell such that $zrI~pn,dC = 0, the 
momentum J,pvdV would not change in time. Therefore, in cases when the 
change per unit time of density of some scalar (or vector) may be presented 
in the form of divergence of some vector (or tensor), one speaks of the equa- 
tion of conservation of this scalar (or vector). For example, equation (2.2.7) 
is the equation of conservation of salt; in the absence of mass and Coriolis 
forces, equation (2.3.4) is the equation of conservation of momentum, etc. 

Using the mass conservation equation (2.2.13) and the concept of the 
total derivative of a vector (cf. 5 A.7) equation (2.3.4) may be rewritten in 
the form 

dv, 
p -= -v&l + p x ,  + vpo: + 2p€apyvpi27 . dt 
It is generally referred to as equation of motion. 

(2.3.6) 

2.4 EQUATIONS O F  ANGULAR MOMENTUM 

Let 0 be an arbitrary point and r = OM the corresponding vector of the 
point M .  Then one may postulate independently of (2.3.1) for an arbitrary 
individualized volume V the law 

~ Y X  pvdV = l { r X  p ( X +  2vX a ) }  d V +  J r X  p ( n )  dZ1 , 
V V x dt (2.4.1) 

or, in words, the change in unit time of the total moment of the momentum 
of the volume V about the point 0 equals the resultant moment (about the 
same point 0) of all forces which are external with respect to this volume. 

In some models of continuous media, one must take into account in the writing down 
of (2 .4 .1)  internal moments of momentum and internal couples (cf. for more details 
[ 108, Chapter 111, 5 3 I ) ,  

Using (A.7.15) and the arbitrariness of V, one has 

a at (€,p,"ppu') + v,(€,pr"ppvyud) = €,pr"Pp(XY + 2€7wxu,i2x) + 

+ v d E a p 7 "  P P 76 1 (2.4.2) 

Multiply (2.3.4) vectorially from the left by r and subtract the result from 
(2.4.2), to obtain after some simple transformations 

Eap7p@r = 0 , (2.4.3) 

which establishes the symmetric nature of the stress tensor pPr.  
Equation (2.4.3) is equivalent to (2.4.2). In what follows, it will be 
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assumed that the tensor polp, by (2.4.3), is symmetric, and therefore (2.4.2) 
will no longer be considered to be independent of (2.3.4). 

2.5 EQUATION OF CONSERVATION OF ENERGY 

A start will be made with a study of an equilibrium system which is open, 
i.e., exchanges mass with a surrounding medium. The equality de = 6 A ,  by 
definition, is true only for adiabatic processes (cf. 5 1.2); recall that 6A is the 
work of all external forces acting on the system. In the general case, one has 
E # 6A. For an open system, the quantity of heat 6 Q  received is represented 
conveniently by the formula 

6 Q  = de - 6A - Cxj6,mj,  (2.5.1) 

where xi = ( i 3 ~ / i 3 m ~ ) ~ , ~ , ~ ~  is the partial enthalpy of component j of the mix- 
ture, and 6,m, is the increase in the mass mj of the component due to mass 
exchange with the surrounding medium. Equation (2.5.1) may be called 
equation of conservation of energy for an open equilibrium system. 

Definition (2.5.1) is not the only possible definition of 6 Q  for an open 
system (cf. Landau and Lifshits [59, 3 571 and Eckart [14]). In fact, the 
very quantity 6Q is very conditional. Thus, for a closed system, it is defined 
as that part of the change in the internal energy of a system which is not 
linked to work done by external forces on the system. In the case of an open 
system, it is convenient to especially separate out the change in energy 
caused by mass exchange with the surrounding medium and not to include 
it in 6Q. The definition (2.5.1) has been constructed in just this manner. In 
fact, during equilibrium increase in mass of a system for constant T and p ,  
one has 

n 

1 

n n 

In analogy with equation (2.5.1) of energy conservation for an equilib- 
rium system, let it be postulated that for a finite volume V of sea water 

where x is the partial enthalpy of salt and x, that of pure water. 
The significance of the individual terms in (2.5.2) will now be explained. 

On the left-hand side of the equation, one has an expression for the amount 
of heat obtained by the system from outside media during unit time; since 
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heat enters only through the surface, this quantity must be represented by a 
surface integral (if the shell is adiabatic, there will be no heat flux) with 
some scalar density q ( n )  which depends on the orientation of d 2  (the nega- 
tive sign is due to the fact that n is the outward normal). The first term on 
the right-hand side describes the rate of char,ge of the energy of the system 
(where it is natural to understand by the energy of the system during irre- 
versible processes the sum of its kinetic and internal energies). The following 
two terms on the right-hand side describe the work done by external forces 
(mass and surface) on the system in unit time (the work done by the Coriolis 
force equals zero). Finally, the last term on the right-hand side of (2.5.2) 
represents the mass exchange with the surrounding medium, since the mass 
fluxes through dC of salt and pure water are -(Zs, n) and -(Z,, n), respec- 
tively [cf. (22.11) and (2.2.12)]. 

Applying (2.5.2) to an infinitesimal tetrahedron at the point M and letting 
the volume of the tetrahedron vanish, one finds that the scalar q ( n )  depends 
linearly on the normal n [cf. the derivation of (2.3.2)]. Therefore one may 
introduce at each point of a medium a vector q such that 

q ( n )  = (q ,  n). (2.5.3) 

This vector is called the heat flux density vector. 
In the ordinary manner, one obtains from (2.5.2) the differential form of 

the energy equation: 

This equation will now be transformed. Firstly, by (2.2.15), one has XI ,  
+ x,Z, = (x, - xw)Zs, and further x, - x, = (ax,/as),, which follows from 
the identity 

true for T,  p = constant. Secondly, since the body force has the potential U ,  
one has 

(2.5.5) 

Therefore (2.5.4) may be rewritten in the form of the energy transport 
equation 

' au 
+ p - .  

a t  
(2.5.6) 
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It is natural to call the quantity E ,  = $vz + E ,  + U the total specific 
energy of a particle (sum of kinetic, internal and potential energies). If a U/a t 
= 0, as this is the case for the gravitational force, then (2.5.6) leads to  

a 
a t  
-(pE,) = -divI,, 

the equation of conservation of energy, where 

(2.5.7) 

(2.5.8) 

The vector Z, is called the vector of the density of energy flux. Obviously, 
the vector P ( E ,  + U + v2/2)ua describes the advective energy flux (caused by 
macroscopic motion with velocity v ) .  The remaining terms in the expression 
for ZE are linked to  influx of heat, work done by surface forces and mass 
exchange. It follows from (2.5.7) that, if the volume V be surrounded by a 
shell such that g Z ( Z E ,  n)dZ = 0, then the total energy of such a volume will 
not change in time. 

Note that (as has been seen in 8 1.5) specific internal energy E ,  may be 
defined from experimental data only exactly apart from a function as + b y  
where a and b are constants. I t  is readily shown, using (2.5.6) and (2.2.14), 
that the definition of heat influx into a volume V, according to  (2.5.2), does 
not depend on the function as + b .  

Thus, the basic equations of conservation of mass of sea water, diffusion 
of salt, motion and energy conservation have been written down. However, 
this system of six equations contains at least eighteen unknown functions. 
These are temperature T ,  pressure p ,  salinity s ,  the velocity vector v, as well 
as the vectors Z, and q and the symmetric tensor uao. Using thermodynamic 
relations, one may express in terms of T,  p and s the density (equation of 
state of sea water), the specific internal energy E , ,  the specific entropy Q, 
and other thermodynamic parameters. In future, the functions T,  p ,  s and 
v will be referred to  as basic parameters of the medium. 

The parameters I,, q and oap characterize non-equilibrium processes in 
the medium (diffusion, heat conduction, internal friction) and therefore may 
not be evaluated on the basis of formulae of equilibrium thermodynamics. 
As a rule, they are referred to  as thermodynamic fluxes. 

The remaining part of this chapter is devoted to  establishment of relations 
between the thermodynamic fluxes I,, q and oap and the basic parameters of 
the medium T,  p ,  s and v .  Analysis of changes in the system’s entropy plays 
here a resolving role. 

2.6 EQUATIONS FOR MECHANICAL AND INTERNAL ENERGY 

Consider certain simple consequences of the basic equations. Multiply 
(2.3.6) scalarly by v; since the Coriolis force does not perform any work, it 
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follows that 

p- - + puff 0, - = pX,u" + u, vppap. 
a t  (vz) 2 (3 
Integrating this relation over the volume V and using the symmetry of the 

tensor polo, one finds after some elementary transformations 

- d [pTdV v2 = $papn,updZ + JpX,uadV - $ Jpaflee,,dV, dt 
?: V V V 

(2.6.1) 

where eep is the strain rate tensor (cf. 5 1.8). 
The first two terms on the right-hand side of (2.6.1) represent work done 

(in unit time) by the external (mass and surface) forces. Since a change in 
the system's kinetic energy is equal to  the work done by external forces 
acting on the system, it is clear that the last term on the right-hand side of 
(2.6.1) expresses the work done by the internal forces of the given system 
(in unit time). 

Since the body force X has a potential U ,  one has from (2.5.5) 

I t  is natural to call the quantity U +  v2/2 the specific mechanical energy 
and the vector p(v2/2 + U)u" + pap,  the vector of the density of mechanical 

chanical energy generated in unit volume in unit time. The equation (2.6.2) 
is called the equation of mechanical energy transfer. 

energy flux. The expression -* 1 ffd3 eap + paU/at  yields the amount of me- 

Subtract now term by term equation (2.6.2) from (2.5.6): 

(2.6.3) 

This is the equation of internal energy transfer. By (2.6.3), the vector of the 
density of internal energy flux is equal to pemua + + (ax, /a~)~, , l ," ,  and 
the amount of internal energy generated in unit time in unit volume equals 

ZP eap. 
It is seen that the quantity papeap/2 enters with opposite signs into (2.6.2) 

and (2.6.3). Hence it is clear that it describes the interconversion of mechan- 
ical and internal energies. 

Using (2.3.3), one has 

&p"peap = -p div v + f crapeap . 

It will be shown below that always crapeaq> 0. It is natural to  call this term 
dissipation of mechanical energy (in unit time in unit volume). Note that for 

1 



42 

an incompressible fluid div v = 0 and mechanical energy always goes over 
(dissipates) into internal energy. For a compressible fluid, generally speaking, 
reverse conversion is possible. 

Using the equation of mass conservation (2.2.13), equation (2.6.3) may be 
rewritten in the form 

(2.6.4) 

2.7 EQUATION O F  ENTROPY TRANSFER 

In § 2.1, the basic proposition on the validity of Gibbs' relation for spe- 
cific entropy qm (approximation of local thermodynamic equilibrium) has 
been discussed. In studying changes in the parameters of particles in unit 
time, one finds 

Using (2.2.13), (2.2.14) and (2.6.4), express the rate of change of the 
entropy qrn in terms of the thermodynamic fluxes I,, q and oap. After simple 
transformations, one obtains 

(2.7.1) 

This equation will be called the equation of entropy evolution. 
Proceed now to formulation of the second law of thermodynamics. Con- 

sider an individual volume V of sea water as a thermodynamic system; the 
change of the entropy q of such a system (in unit time) is obtained by inte- 
gration of (2.7.1) over the volume V. One has 

(2.7.2) 

Entropy changes of any system may be presented in the form 

where 6,q/dt is the entropy change due to heat and mass exchange with the 
surrounding medium and 6 iq /dt is the entropy change caused by non-equilib- 
rium of the processes under consideration. By the second law of thermo- 
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dynamics, one has for irreversible processes 

The second law of thermodynamics leads to  important results relating to 
transfer processes in fluids. 

In order to separate the expression for G,q/dt (or, what is the same thing, 
6,q/dt) from the general expression for dq/dt, the following procedure will 
be adopted. Assume first that at a given instant of time the system lies in an 
equilibrium state. Then, on the basis of the equilibrium conditions [cf. 
(1.8.13)], one has T = constant, p = constant, eap 0, and, since dq/dt = 
6,q/dt, it follows from (2.7.2) that 

!E?= - ld iv  Z,dV = -j(Z,, n)  dZ1 , dt 
V z: 

(2.7.3) 

where 

Proceeding to  the case of non-equilibrium systems, note that by its very 
definition the quantity 6,q/dt is not linked directly to the non-equilibrium 
nature of the state under consideration. Therefore let the validity of (2.7.3) 
be postulated also for the general case. Then one finds from (2.7.2) 

The vector pqmv + Iq is called the entropy density flux vector. In this con- 
text, it is useful t o  compare the formula for I, with the formula dq = 6Q/T 
[cf. (1.2.7)], which gives the change in entropy of a closed equilibrium sys- 
tem when heat 6Q is introduced. The expression +x(Z,, n)dC gives the total 
inflow of entropy (in unit time) through the moving boundary Z1 of the vol- 
ume V, caused by heat and mass exchange with the surrounding medium; the 
sign of the flux may be arbitrary. The quantity 6, is called entropy produc- 
tion: It is the amount of entropy which arises in unit time in unit volume of 
fluid due to  the non-equilibrium nature of the processes taking place in the 
medium. By the second law of thermodynamics, one has 

9 , > 0 .  (2.7.4) 

The expressions for I ,  and 9, may be rewritten in the form 

( 2.7.5) 
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(2.7.6) 

if one employs the thermodynamic identity 

which is readily obtained from Gibbs' relation (1.4.1). The subscript T in 
( ~ ~ p ) ~  denotes that during the computation of the gradient of p ( T ,  p ,  s )  the 
temperature is assumed to  be constant. 

Employing the formulae derived, equation (2.7.1) will, finally, be written 
in the form 

(2.7.7) - ( p v m )  = -div(pq,v + Z,) + 9., . at 

This equation for the entropy is usually referred to as equation of entropy 
transfer. 

a 

2.8 THE BASIC PROPOSITIONS OF THE THERMODYNAMICS OF 1RR.EVERSIBLE 
PROCESSES 

For the ensuing work, it will be useful to introduce the concept of 
thermodynamic forces 

defining them as corresponding multipliers of the thermodynamic fluxes 
qa ,  and a@ in (2.7.6). 

In accordance with the conditions (1.8.13) of thermodynamic equilibrium, 
thermodynamic forces vanish in equilibrium states. It is natural to  assume 
that thermodynamic forces are such additional parameters which must be 
introduced as characteristics of a non-equilibrium state of a finite volume of 
fluid as a thermodynamic system. In other words, postulate that thermody- 
namic fluxes are functions of thermodynamic forces. Assuming the gradients 
of the basic parameters of a medium T,  p ,  s and v to  be not large, restrict 
consideration to linear approximations 

(2.8.1) 
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By the tensor criterion, A:?, A:$, ..., being functions of T,  p ,  and s, will 
be tensors. The relations (2.8.1) are called phenomenological laws. They do 
not contain terms of zero order, since in a state of thermodynamic equilib- 
rium all fluxes vanish. The components of the tensors A:! ... are called 
phenomenological coefficients. 

The laws (2.8.1) form the foundation of the thermodynamics of irrevers- 
ible processes. For isotropic media, they simplify significantly, since for such 
media all tensors of phenomenological coefficients must be isotropic (cf. 
5 A.5). However, an isotropic tensor of third order can only be zero, and 
one arrives at the conclusion that fluxes of heat and salt q and Z, do not 
depend on the thermodynamic forces eop/2T, and that momentum fluxes 
(Joii caused by viscous stresses do not depend on the thermodynamic forces 

This fact is known as Curie’s theorem. 
Furthermore, an isotropic second-order tensor depends only on one scalar 

a and has the form amop. The isotropic tensor A$gYX, by strength of the sym- 
metry of the tensors ooP and eoP, may be assumed to be symmetric in the 
superscripts a ,  and y, K ,  separately. Such a tensor depends on two scalars 
a, and a2 and has the form (cf. 5 A.5) 
A ~ P Y X  = almaPmYX + a,(maYmPX + mffxmPy) . 
33 

Thus, one may write, finally, for isotropic media formulae (2.8.1) in the 
form 

Is (@2 (2.8.2) 

oap = dei:m,p + 2feap 7 

where a ,  b ,  b’, d and f are scalar functions of T, p and s. 
Finally, by Onsager’s principle, proved in statistical physics (cf., for exam- 

ple, [60, § 122] ) ,  the matrix of phenomenological coefficients must be sym- 
metric and b’ = b.  Thus, processes of heat conduction, diffusion and internal 
friction in isotropic fluids are described with the aid of five phenomenologi- 
cal coefficients: a, b, c, d and f which are functions of T,  p and s. In the fol- 
lowing sections, the laws (2.8.2) will be studied in greater detail. 

2.9 THE RELATIONSHIP BETWEEN THE VISCOUS STRESS TENSOR AND THE 
STRAIN RATE TENSOR 

Present the tensor eop as eop = 2(S,p + V,p), where 
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Sap = (V,uP + vPu,) - (div v )  map , 

The tensor S,, characterizes pure shear deformation, the tensor V,, defor- 
mation in pure extension or compression; note that Sy, = 0. 

Substituting the expression ie,, = S,, + V,, into the last formula (2.8.2), 
it becomes 

V,, = $(div v )  map . 

uap = 2vl P S , ~  + 3 ~ 2 ~  V,p . (2.9.1) 
The coefficients u1 and u 2  are called first and second coefficients of viscos- 

ity, respectively; they have been introduced in place of the coefficients d 
and f .  The first coefficient of viscosity v1 is called, as a rule, simply viscosity 
coefficient. For an incompressible fluid, VaP = 0 and S,, = e 4 2 ,  and the 
second coefficient of viscosity does not play any role. 

Compute now the entropy increase in unit time in unit volume caused 
only by the process of internal friction. By (2.7.6), one has 

since S,,VP = $ey,Sf,. As far as, by the second law of thermodynamics, 8, 
> 0, one arrives at the result that the first and second coefficients of viscos- 
ity are postive. 

2.10 THE RELATIONSHIP BETWEEN FLUXES O F  HEAT AND SALT AND TEMPER- 
ATURE, PRESSURE AND SALINITY GRADIENTS 

Consider the first two formulae (2.8.2) and introduce instead of a, b and c 
more customary coefficients. Recall that b' = b. Start with the vector q .  
Expressing -(l/T) ( ~ , p ) ~ ,  by strength of (2.8.2), in terms of and V,(l/ 
T ) ,  one obtains 

The new coefficient K = (1/T2)[u - ( b 2 / c ) ]  has been introduced. It charac- 
terizes processes of heat transfer in the absence of diffusion ( I ,  = 0) and is 
called thermal conductivity. 

Next, find an expression €or the entropy increase caused only by processes 
of heat conduction and diffusion in unit time in unit volume. By (2.7.6), one 
has 

K 1 
6, = - (YT, VT) + ; ( Is ,  I s )  

Since 9, > 0, by the second law of thermodynamics, one finds that K > 0, 
c >  0. 

T2 



47 

Rewrite the second formula (2.8.2) in the form 

k ,  
1, = -pD Vs +-VT + % V p )  , 

( T  P 
(2.10.1) 

where D = (c/pT)(ap/as),,;  the coefficient D is called diffusion coefficient 
and characterizes diffusive transfer in the presence of a salinity gradient 
only. Since, by (1.7.4), one has ( a p l a s ) , ,  > 0, one findsD > 0; the coeffi- 
cient k ,  = b/[c(ap/ds)T , , ] ,  referred to as thermo-diffusion ratio, character- 
izes diffusive transfer in the presence of a temperature gradient only (ther- 
mo-diffusion). The coefficient (pk,D)/p, by analogy, may be called baro- 
diffusion coefficient; it is interesting to  note that k,  = p [ a ( l / p ) / a s ] T , ,  ( d p /  

and that it does not depend on the phenomenological coefficients a, b 
and c. 

Introducing the coefficient k,, write the expression for q finally in the 
form 

(2.1 0.2) 

Thus, instead of a, b and c ,  new phenomenological coefficients K ,  D and 
kT have been introduced which have clear physical significance. Note that 
hT and k,  may have arbitrary signs. 

TABLE 2.1 

Phenomenological coefficients for atmospheric pressure (according to Montgomery [ 801) 

Pure water Sea water 

0°C 20" c 0" c 20" c 
__- 
Coefficient of 

dynamic viscosity vp 
g . cm-1. sec-l 

heat conductivity K 

Watt. cm-1.0c-I 
Coefficient of 

kinematic viscosity v 
em2.  sec-1 

Coefficient of 
thermal conductivity 

Coefficient of 

K /C8P 
cm . sec-l 

Coefficient of 
diffusion D 
cm2 . sec-' (NaCI) 

Prandtl number V / ( K  /c,p) 

1.787. 1.002. 1.877. loA2 1.075. 

5.66.10-3 5.99.10-3 5.63.10-3 5 . 9 6 . 1 0 - ~  

1.787. 1.004. 1.826. 1.049. 

1.34.10-3 1.43.10-3 1.39.10-3 1.49.10-3 

0.74.10-5 1 .41 .  0 .68 .  1 .29 .  

13.3 7.0 13.1 7.0 
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In the further treatment, phenomenological coefficients will be assumed 
to be known functions of T,  p and s. Generally speaking, they may be deter- 
mined (or linked to other parameters) on the basis of the microscopic theory 
of transfer processes in fluids or measured empirically. 

Table 2.1 gives an idea of the magnitude of the phenomenological coeffi- 
cients. Apparently, the second coefficient of viscosity v 2  has the same order 
of magnitude as v l  [ 59, 3 78). The thermodiffusion ratio h,  for sea water 
is unknown; De Groot and Masur [9, Chapter XI, § 71 state that for liquid 
mixtures the quantity kT/Ts has an order of + "C-'. 

Thus, if one replaces in the equations of mass conservation (2.2.13), salt 
diffusion (2.2.14), motion (2.3.6) and energy transfer (2.5.6) the expressions 
for q ,  Z, and (sap by gradients of T , p ,  s and v ,  in accordance with (2.9.1), 
(2.10.1) and (2.10.2), one actually obtains a closed system of equations for 
the determination of the basic parameters of the medium T,  p ,  s and v .  Note 
that it is at times convenient to select in place of the equation of energy 
transfer (2.5.6) the equation of internal energy transfer (2.6.3) or the equa- 
tion of entropy evolution (2.7.1). 

COMMENT ON CHAPTER 2 

This chapter pursues basically the normal treatment of the thermodynam- 
ics of irreversible processes in a continuous medium. The following mono- 
graphs have been used: De Groot [ lo ] ,  De Groot and Masur [9],  Landau and 
Lifshits [ 591, Levich et al. [61], Sedov [lo81 and Haase [29]. 



CHAPTER 3 

WAVE MOTION IN THE OCEAN 

3.1. BASIC EQUATIONS 

As usual, during an analysis of wave motions, dissipative processes (fric- 
tion, heat conduction, diffusion) will be neglected. The starting point will be 
the equations of motion (2.3.6), of conservation of mass of sea water (2.3. 
13), of diffusion of salt (2.2.14) and of evolution of entropy (2.7.1). In the 
case under consideration, the number of these equations may be reduced. In 
fact, since ds/dt = 0 and dr),/dt = 0, by (2.2.14) and (2.7.1), one obtains 

(3.1.1) 

The quantity (ap/ap)Vm, has the meaning of the square of the local veloc- 
ity of sound in the medium; if it is assumed that it is a known function of 
the pressure and density of the medium, then the three equations of motion 
(without friction), the equation of conservation of mass of sea water and 
equation (3.1.1) contain only the five unknown functions v(u,  u ,  w ) , p ,  p .  In 
other words, a closed system of equations has been obtained. 

In the sequel, wave motions in the ocean will be considered as small oscil- 
lations of a layer of liquid of constant depth H in a gravity field. 

Since the force of gravity singles out in space the vertical direction, it is 
convenient to go to a spherical system of coordinates h, cp, z (where h is the 
longitude, 0 < h < 2n, cp is the latitude, -7r/2 < cp < n/2, and z is reckoned 
upward from the undisturbed surface of the ocean -H < z < 0). Since 
I z I  << a (where a is Earth’s radius), one may replace, in writing down the 
basic equations in a spherical coordinate system [cf. (A.9.4-14)] the Lam6 
coefficients hh, h,, h, by the approximate expressions 

h,, = a cos cp, h, = a ,  h, = 1 . (3.1.2) 
Apparently, this approximation involves an insignificant error; however, it 

is important that it does not violate the tensorial nature of the individual 
terms of the equations, and therefore, if a certain equation has the form of a 
law of conservation (cf. 5 2.3), this property is maintained in the approxi- 
mate version. 

I t  is interesting to  note that in Euclidean space there do  not  exist curvilinear orthogonal 
systems q l ,  q2, q3, the Lam6 coefficients of which would be equal to a cos 42, a, 1. This 
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follows directly from (A.8.7) and (A.8.8): The curvature tensor in this coordinate system 
is not  equal to  zero. 

A start will now be made with free oscillations. Assume that the basic 
state of rest is characterized by density po(z) ,  velocity of sound c ( z )  and 
pressure po(z) = pa - J”ogp,(z)dz. Linearizing the initial equations with 
respect to such a basic state, one obtains 

au 1 ap’ 
a t  po a cos pax 

a v  1 apt 
a t  Po aacp , 

2stv sin cp = -- 

- + 2Qu sin cp = -- ~ 

_ -  

ap’  PO -+  w-+ po divv = 0 , at dz 

(3.1.3) 

(3.1.4) 

(3.1.5) 

(3.1.6) 

(3.1.7) 

where u,  v ,  w are the zonal, meridional, vertical components, respectively, of 
the velocity v ,  p’ and p’ are the deviations of pressure and density from their 
undisturbed values po(z) and po(z) .  

The Coriolis force in equations (3.1.3)-(3.1.5) has been presented in the 
so called “traditional” approximation; its complete expression is 2Q X 
v (-2Qv sin cp + 252w cos cp, 252u sin cp, - 252u cos cp).  The accuracy of this 
approximation is not always clear. As a rule, it is based on the smallness of 
vertical velocities compared with horizontal ones, but this condition is only 
true for long waves and, besides, at the equator (cp = 0) the neglected terms 
2slw cos cp, - 2% cos cp may turn out to be significant. However, the prob- 
lem would be considerably more complicated, if the complete expressions 
for the Coriolis forces were retained (since it would preclude the ensuing em- 
ployment of the method of separation of variables). 

A discussion of the “traditional” approximation is given in [13, 3 3 37, 
38, 53; 87; 95; 96; 1261. 

Boundary conditions will be formulated next. At the free surface of the 
ocean z = { ( A ,  p, t )  (where { is the sea level), there must be fulfilled the dy- 
namic condition of continuity of pressure po + p’ =pa (ideal fluid) and the 
first condition (2.2.1 7) which is usually called kinematic condition (under 
the assumption that evaporation, precipitation, thawing and formation of 
ice are absent). Linearization of the dynamic condition for small 5 yields 

dP0 
Pa = P o ( < )  + P ’ W  = PO(0) + 5 ,  ( 0 )  + P ’ ( 0 )  + - a .  = P a  -gpo(O) 5 + P’(0) + 0 . .  

Further, since ( v ,  n )  = a < / a t ,  n 2 (0, 0, 1) and is small, the boundary 
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conditions at the free ocean surface may be written in the form 

w = -  a’ for z = o .  (3.1.8) P‘ = gpor, a t  

Obviously, the boundary condition at the sea floor is 

w = O  for z = - H .  (3.1.9) 
Next, the energy equation for wave motions will be derived. Initially, it 

will be useful to treat this problem under the assumptions that dissipative 
processes are absent and the oscillations of the fluid layer are finite. In this 
chapter, the basic equations are the equations of motion, of conservation of 
mass, of diffusion of salt and of evolution of entropy; therefore the equation 
of conservation of energy must be a consequence of these equations. In fact, 
it follows from Gibbs’ relation (1.4.2), since ds/dt = 0 and dv,/dt = 0, that 
p(dem/dt) = -pdiv v ;  using equation (2.6.2) for the mechanical energy, one 
obtains 
a 
a t  - ( K  + E )  = -div[(K+ E + p )  v ]  , (3.1.10) 

where K = p(u2/2) is the kinetic energy per unit volume and E = PE + pgz is 
the sum of the internal and potential energies per unit volume. 

For the free motions under consideration, the total energy of the fluid 
remains constant. Integrating equation (3.1.10) over the entire volume of 
fluid and assuming that the fluid covers the entire sphere (if there is a coast, 
the normal velocity vanishes on it) and p I = 0, one finds 

1 ( K + E )  dzdC = constant . (3.1.10’) 

where C is the surface of the entire sphere (or, if there are shores, of the 
ocean). 

Is it possible to give an analogue of the equation of conservation of energy 
for equations (3.1.3)-(3.1.7) describing small oscillations of a fluid? Al- 
though the answer to this question turns out to be positive, it is far from 
being trivial, since equations (3.1.3)-(3.1.7) are “distorted images” of the 
initial non-linear equations, and existence of a positive definite function 
(with respect to v ,  p‘ and p ‘ )  which remains constant during motian of the 
fluid is not obvious beforehand. 

The equation of conservation of energy for wave motions has the form 

-H X 

(3.1.11) 

is the square of the Vaisala frequency (cf. § 1.9). 
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The truth of this equation is most simply established by direct verifica- 
tion. For this purpose, one must rewrite first equations (3.1.6) and (3.1.7) 
in the form 

_-  a’‘ - gp,w - c2po div v , 
a t  

W .  
$ ( P . - $ P j  =g PoN2 

(3.1.12) 

(3.1.13) 

and, differentiating with respect to t the contents of the curly bracket on the 
left-hand side of (3.1.11), employ (3.1.3)-(3.1.5), (3.1.12) and (3.1.13). 

lntegrating equation (3.1.11), as in the case of the derivation of (3.1.10’), 
over the entire volume of the liquid, one arrives, by (3.1.8), at the equation 

(3.1.14) 

which yields a simple proof of the stability of the equilibrium state of strati- 
fied fluid under the condition N 2  > 0 (cf. § 1.9). 

I t  is not difficult to prove that (3.1.14) and the derivation relating to sta- 
bility are true also in the case when N 2  = 0 in separate layers or throughout 
(in these layers one must retain in the integrand of the volume integral only 
the first two terms). 

The quantity 

(3.1.1 5) 

by the significance of the energy equation (3.1.11), must be somehow linked 
to the sum of the internal and potential energies of the fluid E .  In order to 
explain this connection, expand the characteristics under consideration in 
the form of series of the type 

E = E ,  + E l  + E ,  + ... , 
and analogously expand p ,  p ,  z), qm,  etc., where the subscript indicates the 
order of magnitude of the term under consideration. Substituting these series 
into the original equations and equating to zero terms of different orders, 
one derives equations of zero, first and second orders. For example, equa- 
tions (3.1.3)-(3.1+6) will be the equations of motion and conservation of 
mass of first order (in terms of the new notation used up to  the end of 
5 3.1, one must replace in all equations (3.1.3)-(3.1.15) v by vl, p’ by P I ,  p’ 

K =  K2 + ... , (3.1.16) 
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by p l ,  etc.). Furthermore, write down in place of equations (3.1.7) the 
equations of salt diffusion and entropy evolution of first order 

as, dso 
z + w  - = o  

9 drlo 

l d z  ’ 

at l d z  ’ 
+ w  -=o  

(3.1.17) 

(3.1.18) 

and derive from the second-order equations only the equation of conserva- 
tion of mass 

% + div(pov2 + p l v l )  = 0 . (3.1.19) 

In an analogous manner, one obtains from (3.1.10) 

aE1 
-= -div[(Eo + p o )  v l ]  , aE1 -- 

at - O ,  at 

(3.1.20) -(K2+E2)=--div[(Eo+pO)v2+(E1 + p l ) v l ] .  

Obviously, these energy relations are consequences of the equations of mo- 
tion, conservation of mass, salt diffusion and entropy evolution of zero, first 
and second orders. 

The third equation (3.1.20) is of special interest. Integrating it over the 
entire fluid volume, as for the derivation of equation (3.1.14), one finds 

a 
at 

(3.1.21) 

For the transformation of this equation, write E in the form 

E = P Em + gPz = PXm - P + gPz 

Eo +PO = POX0 + Po@, 

using Gibbs’ relation (1.4.3), to  find 

El = P O T O r l l  + P O P O S l  + P l X O  + Plgz 

Recall that all quantities with zero subscript depend on z only. Using now 
(3.1.17), (3.1.18) and (3.1.19), equation (3.1.21) is readily rewritten in the 
form 

J J ( K 2  + E 2 )  dzdX + J F t 2 d Z  - 

- J ( 2dso/dz sf + 2dqo/dz ‘ l )  

Jxop2dzdC - 
-H X 2: -H Z 

dC =constant. POP0 

x 
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Subtracting from this relation (3.1.14) and taking into consideration that 
K 2  = p0(vf/2), one finds 

= constant. (3.1.22) 

A discussion of these relations will be started with the case of a fluid with 
a rigid lid at z = 0; in that case, the last term on the left-hand side of (3.1.14) 
drops out, and so do the last two terms on the left-hand side of (3.1.22). 
Since first-order motions are under consideration, the magnitude of the 
kinetic energy of such motion is of second order. Therefore it is obvious 
that, generally speaking, changes in the integral JEHJCK2 dzdlz may be con- 
nected only to changes in J!?,JCE2dzdZ. However, it  is more important for 
an analysis of the system of equations of first order that changes in 
J?.,JxK2dzdZ are linked, by (3.1.14), to changes in J'?,Jz&dzdC , since only 
characteristics of first order enter into the expression for C, while, as is easily 
shown, also second-order characteristics enter into the expression for E 2 .  
Therefore, since by (3.1.22), the difference JOHJ2(E2 -C)dzdC remains 
unchanged with time, it is convenient to imagine that during small oscilla- 
tions of a fluid not all the energy J?HJCE2dzdZ, but only its part 
J?,J&dZdc may convert into kinetic energy .f!!HJzK2dzdC. 

For a liquid with a free surface, the considerations above remain valid; 
however, one must take in (3.1.14) and (3.1.22) all terms into account. The 
quantity j?HJC(E2 -E)dzdC will now change in the course of time, but 
these changes will not be reflected directly in changes of the kinetic energy 
J?&zK2dzdZ. 

In analogy with a concept introduced by Lorenz [71] for a definite class 
of atmospheric motions, the quantity & may be called available potential 
energy (per unit volume) for wave motions of small amplitude in a stably 
stratified fluid. Generally speaking, the quantity C contains internal as well 
as potential energy contributions; however, by strength of the small com- 
pressibility of sea water, the contribution of the internal energy is not large, 
and therefore, for the sake of brevity, the quantity C will be referred to as 
available potential energy. 

3.2. SEPARATION OF VARIABLES 

In what follows, consideration will be given to wave motions in an un- 
bounded ocean which are periodic in time. For this purpose, solutions of the 
system of equations (3.1.3)-(3.1.7) for the entire sphere will be studied 
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for the boundary conditions (3.1.8) and (3.1.9) in the form 

(u ,  u ,  w ,  p ' ,  p ' )  = Re{(u, c, 6, 5, F )  exp(-iat)} , (3.2.1) 
where the complex amplitudes of the oscillations i2, 6, G, fi and P are func- 
tions of A, cp, z ,  and o is the frequency of the oscillations. Substituting (3. 
2.1) into (3.1.3)-(3.1.7) and eliminating 3 from (3.1.5) and (3.1.6) with 
the aid of (3.1.7), one obtains 

a &  io - gpo - 
a2  c2 C2 

po div,(u", 5) + po - - -p  -- w = 0 . 

(3.2.2) 

(3.2.3) 

(3.2.4) 

(3.2.: 

Only stable (or, in separate layers, neutral) stratified fluids will be consid- 
ered (N2 > 0).  Possible frequencies o must then be real numbers; otherwise 
all functions ZI, p f  and p f  will be in the course of time either exponentially 
increasing or decreasing, which contradicts, by (3.1.13), the conditions of 
constancy of total energy. 

The structure of (3.2.2)-(3.2.5) permits to seek solutions of the problem 
in the form 
- -  1 

( u ,  u 1 = __ W ) [  m, cp), V(A, cp)l, = ioW(z) WA, cp), 
PO(Z) 

5 = m> n(h, cp) . (3.2.6) 
Substituting (3.2.6) into (3.2.5), this equation may be written in the form 

(3.2.7) 

where 5 is the separation constant of the variables (with dimensionality sec2/ 
cm2). 

Final substitution of (3.2.6) into (3.2.2)-(3.2.5), taking ! . I t 0  account 
(3.2.7), yields for U, V and n Laplace's tidal equations 

an 
a cos cpaA -ioU- 252V sin cp = - (3.2.8) 

(3.2.9) an 
aacp 

-ioV + 252U sin cp = -~ , 
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-iaen + divh(U, V) = 0 , 

and for P and W the equations 

(3.2.1 0) 

@ g  - + -p + (a2 - N ~ )  po W = 0 , 
dz c2 

(3.2.11) 

(3.2.12) 

Equations (3.2.8)--(3.2.10) were considered a long time ago by Laplace in connection 
with tidal theory. It may be shown that they describe low frequency ((5 << N) oscilla- 
tions of a homogeneous ocean of constant depth H = l/gf (cf. 5 3.9). 

The boundary conditions for P and W will now be rewritten. Eliminating 
r ,  one has 

W = O  for z = - H  and P+gpoW=O for z = O .  

(3.2.13) 
The problem of free oscillations in an ocean may now be posed inthe fol- 

lowing manner: Find all possible pairs of characteristic numbers E and u for 
which Problem H (the system of equations (3.2.8)-(3.2.10) for conditions 
of boundedness) and Problem V [the system of equations (3.2.11) and 
(3.2.12) for Conditions (3.2.12)] have non-trivial solutions. In the ( e ,  a)- 
plane, such pairs of numbers for each problem form a discrete set of curves 
called eigenvalue curves of the corresponding problems. Points of intersec- 
tion of eigenvalue curves of Problem H and Problem V yield the frequencies 
of the possible free oscillations of the ocean. Thus, one may also obtain the 
dependence of a on, in a corresponding manner determined, wave numbers 
with respect to A, cp and z (dispersion relations). 

Note that the forms of System (3.2.11) and (3.2.12) and Conditions (3.2. 
13) do not change for a study by the method stated of problems of free 
oscillations of a liquid layer on a non-rotating sphere, and likewise on a 
rotating or non-rotating plane. In other words, the effects of the Earth’s 
rotation and spherical shape appear explicitly only during an  analysis of 
Problem H. At the same time, effects of stratification, compressibility, grav- 
ity forces and boundary conditions at the upper surface of the liquid layer 
appear explicitly only during a study of Problem V. Such a division of 
effects turns out to be very useful for a study of the general problem. 

3.3. ANALYSIS OF THE SIMPLEST CASES 

When equilibrium is disturbed in a stably stratified compressible ocean, 
there appear various restoring forces which give rise to a range of wave mo- 
tions. The following factors are basic: gravity force, stratification and com- 
pressibility of sea water, rotation and spherical shape of Earth. All these fac- 
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tors combine; however, at first, it is useful to study by means of simple mod- 
els each of these effects separately. 

The general approach of 8 3.2 will be pursued. Consider Problem V for an 
incompressible and inhomogeneous (N = No = constant) fluid. If N = N o  = 
constant and c = 03, then po(z)  = p,(O)exp[-(Ng/g)z]. However, it may be 
assumed with a very small error (cf. 5 3.4) that po = constant, and then Sys- 
tem (3.2.11) and (3.2.12) reduces readily to  the single equation with con- 
stant coefficients 

d2 W -+E(N;-u') W = O .  
dz2 

Let u be fixed and look first for a positive If u2 > NZ, then 
W= sinh{&(u2 -Ng) (z  + H ) }  , P = -(p * c o s h { d F  
Ng) (z  + H ) } ,  and the eigenvalues E will be roots of the equation 

(3.3.1) 

In the case when u2 < NZ, W = s . n - { - ~ ~ ( z + H ) }  , 
P = - ( p i / ~ ) m ;  - u 2 )  cos{&@Ng - u 2 )  (z  + H ) } ,  and the eigenvalues Ewill 
be roots of the equation 

If E < 0, then one has for the determination of E the equations: 

l/p 

gJ-E 
for u2 < Ng, tanh J-E(N~ - 0') H = - 

dF7ej  
for u2 > N g ,  tan J--f(u2 - Ng) H = - 

gdG * 

(3.3.2) 

(3.3.3) 

(3.3.4) 

Patterns for graphical solution of equations (3.3.1) through (3.3.4) are 
shown in Fig. 3.1. It is seen that equation (3.3.1) has a single root e0, equa- 
tion (3.3.3) has no roots and equations (3.3.2) and (3.3.4) have countable 
sets of roots e 0 ,  e l ,  e2, ... and c1, ..., respectively (where the subscripts 
have been chosen to differ for all these roots). 

The behaviour of the eigenvalue curves ei(u) is also readily assessed. Thus, 
it follows from Fig. 3.la that fo + 00 as u +  00. However, then, by (3.3.1), 
g2 e0 - u2. Further, as u --f 0, one has approximately ~ ~ ( 0 )  2: l/gH; by (3. 
3.2), the relative error of this approximation is small and of order N a / g  (for 
the ocean - lo-'). To this degree of accuracy, one finds easily f i ,  replacing 
equations (3.3.2) and (3.3.4), respectivelv, by 

tan HJe(N; - u 2 )  = 0 and tan H~-E(u '  - Ng) = 0 
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t 3’ 

% 
Fig. 3.1. Graphical solution of equations (3.3.1)-(3.3.4). 

(1) E > 0, u2 > N;, a = - . . / w / g ,  b = H J m ,  

( 2 )  E > 0, u2 < N;, a = d m / g ,  b = HJ-; 

(3) E < 0, u2 < N;,  a = d-1, b = H d v ,  
(4)  E < 0,  u2 > NE, a = d-jg, b = H J V .  

(cf. Figs. 3.lb and d). Thus, 

, n = l , 2 , 3  ,..., E n  = (W2 
P ( N ;  - 0 2 )  

(3.3.5) 

(3.3.6) 

Figure 3.2 presents the final description of the behaviour of the eigenval- 

Next, consider Problem H for the simplest case of a plane rotating layer. 
ue curves ei (0). 

The form of equations (3.2.8)-(3.2.10) must, of course, change: 
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0 E 

Fig. 3.2.  Pattern of eigenvalue curves of Problem V ( c  = -, p o  = constant, NO = constant). 
The curves are numbered with the corresponding order n. The pattern is symmetric about 
the axis u = 0. 

a cos cp ah  is replaced by ax, aap  by ay ,  2C2 sin cp by 2C2, divh(U, V) by 
a uiax + a v i ay .  

Seek the solution of Problem H in the form 

where U,, Vo and ITo are constants, h and 1 are (dimensional) wave numbers 
along the x- and y-axes. Substituting these expressions into (3.2.8)-(3.2.10), 
one obtains a homogeneous algebraic system of equations for Uo, V, and 
no. Setting the determinant of this system equal to zero, one finds 

h2 + l 2  
u2 = (2!2)2 + ____. 

E 
(3.3.7) 

Figure 3.3. shows the pattern of the eigenvalue curves (3.3.7). It is conve- 
nient to refer to the curves in the half-planes E > 0 and E < 0 as curves of 
first and third order, respectively. 

The results obtained permit now a study of the free oscillations of a plane 
rotating layer of incompressible and non-homogeneous (N = constant) fluid 
in a gravity field. Consider for this purpose the ( E ,  0)-plane. The solutions of 
(3.1.3)-(3.1.7), corresponding to points of intersection of the characteristic 
curve ~ ~ ( 0 )  of Problem V with first type eigencurves of Problem H are called 
gravitational surface waves; their frequencies satisfy o2 > 4n2. I t  is readily 
seen that replacement of the second boundary conditions (3.2.13) by 
the rigid cover condition W ( 0 )  = 0 converts eo(a) into E = 0, without inter- 
section with the first type eigenvalue curves of Problem H .  Hence the waves 
under consideration are caused entirely by the effect of the free surface in 
the gravity force field (it is not difficult to show that the inhomogeneity of 
the water exerts almost no effect). The physical reason for the occurrence of 
surface waves is obvious; when the free surface is deflected, there appear 
pressure gradients which play the role of restoring forces. The dispersion 
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relation for surface waves for CJ > No is obtained by elimination of E from 
(3.3.1) and (3.3.7): 

In this way one finds immediately the limiting formulae for short 
(khH>> 1) and long (khH << 1) waves: 

0 2 = g k h  for khH>> 1, o2 - 4a2 = gHk2 for k,H << 1 

(3.3.9) 

The first formula (3.3.9) has been written down using the fact that for 
short waves in the ocean lo1 >> No and l o /  >> 2a. The second formula 
(3.3.9) is true also for I (TI < No. 

Solutions of System (3.1.3)-(3.1.7) corresponding to points of inter- 
section of eigenvalue curves e i (a)  of Problem V with characteristic curves 
of Type 1 of Problem H are called internal gravitational waves. Obvi- 
ously, eigenvalue curves of Problem H and V intersect only when 2C2 < No 
(cf. Figs. 3.2 and 3.3); hence the frequencies of internal waves lie in the 
range 2C2 < I (TI < No. In essence, these waves are not linked to the presence 
of a free surface; it is easily seen that the approximate formula (3.3.5) for 
the characteristic curves e i (o)  is equivalent to a replacement of the second 
condition (3.2.13) by the condition of a rigid lid W ( 0 )  = 0. The physical 
reason for the generation of internal waves is the effect of Archimedes forces 
which play in a stably stratified fluid the role of restoring forces. The dis- 
persion relation for internal waves is obtained by elimination of c from 
(3.3.5) and (3.3.7) 

4n2m2 + N8kE 
0 2  = 

where 

k :+m2 ' 
(3.3.10) 

n = 1, 2, 3, ... 

If the medium were unbounded, then (3.3.10) would describe the disper- 
sion relation for plane internal waves of the form exp[i(hx + Zy + mz - ot )] .  
Therefore it may be said that m2 has the meaning of the square of a vertical 
wave number. In the case of no rotation 

= NE sin28 , (3.3.11) 0 2  = N2 k2 
0 

k;  + m2 
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and 8 is the angle formed by the wave number vector ( h ,  I, m )  with the ver- 
tical. 

Assume now that the liquid is homogeneous (No = 0 ) ;  then the eigenvalue 
curves ei(o),  i = -1, -2, ..., of Problem V will necessarily intersect the third 
type eigenvalue curves of Problem H (for No f 0, this is only possible when 
2C2 > N o ) .  The corresponding solutions of equation (3.1.3)-(3.1.7) are re- 
ferred to as gyroscopic waves. 

As a rule, these waves are called inertial waves. The terminology proposed by Tolstoy 
[122, p. 2171 is used here; it is based on the similarity of the particle motions in such 
waves (in an unbounded medium) and the motions of a gyroscope, since one understands 
by inertial also oscillations with frequencies equal or near to 2R  sin cp (independently 
of the nature of these vibrations). 

The physical reason for the existence of these waves is the Earth’s rotation. 
In fact, one obtains from (3.1.3) and (3.1.4), for example, that a2u/a t2  + 
(2C2)2u = ( - l / po ) (a2p‘ /axa t  + 2Rap’/ay), whence it is clear that the Cori- 
olis force may play the role of restoring force. As internal gravitational 
waves, gyroscopic waves are practically not distorted when the free surface 
is replaced by a rigid lid (an approximation to (3.3.6) has been derived essen- 
tially for W ( 0 )  = 0). The dispersion relation for gyroscopic waves is obtained 
by elimination of E from (3.3.6) and (3.3.7). For No = 0, one has 

= (2s2)2 cos26,  m2 
k: + m2 

o2 = (2C2)2 (3.3.1 2) 

where 

m2 = ( ~ T ) ~ / H * ,  

has the significance of the square of a vertical wave number and 6 is the 
angle between the wave vector ( k ,  I ,  m )  and the axis of rotation (z-axis). 
Clearly, one has always o2 < 4a2. 

n = -1, -2, ... 

A special case are oscillations of a plane rotating layer with frequency o 2  = t 212. This 
case must be studied on  the basis of initial equations of the type (3.1.3)-(3.1.7) without 
separation of variables. It is easily seen that ( u ,  u )  2/ Re(1, ti) exp(ti2Rt),  w = 0, p ’  = 0,  
p’ = 0, so that the oscillations will proceed without participation of pressure gradients 
(pure inertial oscillations). 

Thus, in the problem considered here, one may find surface gravitational 
waves and internal gravitational waves (if 2a< N o )  or gyroscopic waves (if 

Introduce now a new factor, namely, Earth’s spherical shape, and con- 
sider free oscillations of a non-rotating (s2 = 0) spherical layer of incompres- 
sible (c = m) and inhomogeneous ( p o  = constant, N = No = constant) fluid. 
Problem V does not change under these conditions, but Problem H must be 
studied all over again. Since the coefficients of the System (3.2.5)-(3.2.10) 

2 a  > No). 
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depend only on p, solutions of Problem H will be sought in the form 

(u, V, n) = (U, V, f i )  exp i h ~ ,  

where U ,  v and fi depend on p, and k = 0, 1, 2, ... is the longitudinal (non- 
dimensional) wave number. It is convenient to change over to another depen- 
dent variable 

p = sin rp, 

~ f i  + a202en = o , 
where 

- 
-1 < p < 1.  

Eliminating 6 and e, one finds for fi the equation 
- 

(3.3.13) 

Solutions of this equation which are limited to the interval [-1, 11 exist 
only for a2a2e = n(n + l), n = k ,  k + 1, ...; these are associate Legendre func- 
tions of the first kind ph,(p) (cf. [62, pp. 327-3351). Thus, the eigenfunc- 
tions and eigenvalue curves of Problem H in the case of a non-rotating spheri- 
cal layer have the form 

n = e ( p ) e x p i k h ,  u 2 - - n(n + 1) , n = k , k + l ,  ...; k = 0 , 1 ,  ... 
a2e 

(3.3.14) 

The number n - k gives the number of zeros of II along the meridian: I t  is 

C 

Fig. 3.3. Pattern of eigenvalue curves of  Problem H for a rotating plane layer. Numbers 
indicate definite values of k 2  + Z2. The pattern is symmetric about u = 0. 

Fig. 3.4. Pattern of eigenvalue curves of Problem H for non-rotating spherical layer for 
fixed h .  Each curve is numbered. The pattern is symmetric about u = 0 axis. 
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natural to call it the latitudinal wave number (non-dimensional). The pattern 
of eigenvalue curves (3.3.14) is shown in Fig. 3.4. Since 52 = 0, only first 
type eigenvalue curves are possible (compare with Fig. 3.3). 

Eliminating E from (3.3.1) and (3.3.14), one obtains the dispersion rela- 
tion for gravitational surface waves in a spherical layer for I oI > No 

n = h, h + 1, ... (3.3.15) 
a 

tanh 1 
The limiting cases of this formula for short and long waves are readily 

found: 

(3.3.16) 

for mH<< 1, n = h, k + 1, ... n(n + 1) u2 =gH 
a* a 

In writing down the first of these formulae, as also for the first formula 
(3.3.9), it has been assumed that lo1 >> N o ;  the second formula is also true 
for lul < No. 

Next, the dispersion relation for internal gravitational waves in a spherical 
layer will be written down. Eliminating E from (3.3.5) and (3.3.15), one has 

n(n + 1) 

n = h, k + 1, ... 
In formulae (3.3.15)-(3.3.17), the symbols k, n - h ,  m denote longi- 

tudinal, latitudinal and vertical wave numbers, respectively (the first two of 
which are non-dimensional). It is useful to compare formulae (3.3.15)- 
(3.3.1 7)  with (3.3.8)-( 3.3.10). 

The case of a rotating spherical layer is very complex and will be studied 
below. It  is natural to assume that gravitational (surface and internal) and 
gyroscopic waves will exist also in this case. However, one may already 
immediately demonstrate the existence of a new, very important class of 
waves usually referred to as Rossby waves. 

Consider the eigenvalue curve ~ ~ ( 0 )  of Problem V. It  has been seen that 
eo l / g H  for o = 0, and consequently, for small o, the curve eO(o) is located 
close to the E = 0 axis. Does Problem H possess such eigenvalue curves which 
intersect the E = 0 axis for small values of o? In the cases of a plane rotating 
layer and a non-rotating spherical layer, such eigenvalue curves do not exist, 
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by (3.3.7) and (3.3.14). Proceeding to the general case, set E = 0 in (3.2.10). 
Then, introducing a stream function $ 

and eliminating the function n from (3.2.8) and (3.2.9) one finds 

2a a $  
a2 a h  

(+o) A$ + ~ - = 0 ,  (3.3.1 8) 

where A is the Laplace operator on a sphzre with radius a. If one seeks solu- 
tions of this equation in the form $ = $(sin cp)eikh, k = 1, 2, ..., one finds 
readily 

2Gk , 
n(n + 1)  ’ 

O = -  n = k ,  k + 1, ... (3.3.19) 

Formula (3.3.19) gives a positive answer to the question posed above. 
Thus, in the case of a rotating spherical layer, there arise a new class of eigen- 
value curves of Problem H for which o,(O) = 2S2k/n(n + l), n = k ,  h + 1; they 
will be called, in future, eigenvalue curves of second type of Problem H .  It  is 
clear that the eigenvalue curves of second type of Problem H must intersect 
the eigenvalue curve E ~ ( o )  of Problem V ,  which runs close to the E = 0 axis 
for small (5. The corresponding solutions of the system of equations (3.1.3) 
3 3 . 1 . 7 )  will be referred to as barotropic Rossby waves. In essence, these 
waves were known already a long time ago (cf., for example, [75,32]); 
however, Rossby [112] first showed the significance of these waves in geo- 
physics. A detailed historical survey of these aspects is given in [99]. 

It is clear from the above that barotropic Rossby waves are described 
approximately by (3.3.18) (the error of the approximation will be estimated 
at the end of 5 3.8, and likewise in § 3.7). It  is not difficult to show that for 
such waves P ( z )  N constant, W = 0, i.e., that the vertical structure of Rossby 
waves practically does not depend on the stratification of the sea water 
(whence they obtain the term barotropic). In order to explain the physical 
mechanism of the generation of bardtropic Rossby waves, rewrite (3.3.18) 
in the form 

df - + - - - u = o ,  a t  adp (3.3.20) 

where -io has been replaced by the operator a /a t  and also the Coriolis 
parameter f =  2S2 sin 9’ and the vertical component of the vorticity vector 
w, = A$ have been introduced. Equation (3.3.20) is nothing else but the 
(linearized) equation of vorticity for such fluid motions, when u and u do 
not depend on z and w = 0 (cf. 5 4.1). 

Introduce now the displacement y of particles of the fluid along the 
meridian y :  ay /a t  = u. It  follows then from (3.3.20) that the vorticity w, and 
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Fig. 3.5. Towards explaining the physical mechanism of generation of barotropic Rossby 
waves [47]. CQ = phase velocity. 

Fig. 3.6.  Pattern of eigenvalue curves of Problem V. Orders of curves are indicated. The 
pattern is symmetric about the (5 = 0 axis. 

the displacement y of a particle have opposite phases. Therefore during mo- 
tion of a particle towards north (south) from some mean position, the vor- 
ticity a, of the particle drops (grows). A vorticity field thus perturbed gives 
rise to a velocity field (Fig. 3.5) for which each particle executes an oscilla- 
tion about its mean position while the wave form moves to the west. Thus, 
in the case of a rotating spherical layer (df/dp # 0), there exists a distinct 
wave-type mechanism which has no analogue in the case of a rotating plane 
layer or of a non-rotating sphere. 

Note that, by (3.3.19), barotropic Rossby waves have low frequencies and 
that the zonal components of their phase velocities are always negative, i.e., 
they may propagate only in a westerly direction. 

In conclusion of this section, the effect of compressibility will be briefly 
investigated. For this purpose, consider a homogeneous ( p o  = constant, No = 
0), compressible ( c  = co = constant) fluid in the absence of gravity forces 
(g = 0). Then the system (3.2.11) and (3.2.12) reduces to the single equation 

d2 W 
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with the conditions W(-H) = 0 and (dW/dz),=,= 0. It is readily seen that 

n = -1, -2, ... (3.3.21) 

Figure 3.6 presents schematically the eigenvalue curves (3.3.21). Compari- 
son of Figs. 3.2. and 3.6 shows that the eigenvalue curves of Fig. 3.6 display 
the distorting effect of compressibility (displacement of vertical asymptote). 
The disappearance in Fig. 3.6 of eigenvalue curves with numbers n = 0, 1,  ... 
is completely clear, since there is no gravity field. 

Solutions of System (3.1.3)-(3.1.7) corresponding to intersections 
of eigenvalue curves eA1(u), E - ~ ( u ) ,  ... of Problem V with eigenvalue curves 
of the first type of Problem H (cf. Figs. 3.3 and 3.4) are referred to as acous- 
tic waves. They are high-frequency waves which exist due to a medium’s 
elasticity (obviously, these waves disappear for co = -). The dispersion rela- 
tion for acoustic waves on a non-rotating plane is 

- _  O 2  - k 2  + l 2  + m 2 ,  
d 
where m2 = ( n / 2 H ) 2  (21nl-1)2 (n = -1, -2, ...) has the significance of the 
square of a vertical wave number. I t  is not difficult to write down the anal- 
ogous formula also for a non-rotating spherical layer (rotation exerts insignif- 
icant influence on acoustic waves). 

3.4. THE EIGENVALUE CURVES FOR PROBLEM V 

Consider now Problem V for the general case of a compressible stratified 
ocean. Starting from results of 5 3.3, one might expect existence of eigen- 
value curves of the type U ~ ( E ) ,  ul(e), ..., U - ~ ( E ) ,  u - ~ ( E ) ,  ... (cf. Figs. 3.2 and 
3.6), although, generally speaking, new types of eigenvalue curves are also 
possible (the ensuing analysis shows that new types of such curves do not 
exist). 

A beginning will be made with a study of the disposition of the eigenvalue 
curves of Problem V in the ( E ,  u2)-plane by derivation of integral relations. 

In fact, it is convenient to study the (6, 02)-plane (and not the ( E ,  0)-plane) and to 
assume that -- < u2 < -, although in the problem of free oscillations of a stably strati- 
fied fluid only u2 > 0 has physical significance. 

Replace equation (3.2.11) by a complex conjugate equation and, multi- 
plying it by W, add it to (3.2.12) after it has been multiplied by the function 
conjugate complex to P. Integrating the relation obtained from -H to 0 
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and using the conjugate complex form of (3.2.13), one finds 

Since it has already been proved that all possible frequencies o are real, it 
follows that the eigenvalues E are real. Therefore also the eigenfunctions P 
and W may be assumed to be real. Likewise, it is obvious that for o2 < N2in 
the eigenvalue curves of Problem V cannot lie in a region where E < l /cLax. 

If F ( z )  is some function on the segment (-H, 0), then Fmin (or Fma) denotes the 
minimum (or maximum) of the function on (-H, 0) .  

Introduce instead of P the new function Q, 

CP = P+gp,W 

and rewrite System (3.2.11) and (3.2.12) in the form 

CP’+g&+(u2-g25) poW=O, 

W’-geW+ E - -  -+=(I. i c 2  ;o 

(3.4.1) 

(3.4.2) 

where here and throughout this section dashes denote differentiation with 
respect to z .  

Multiply (3.4.1) by W ,  and (3.4.2) by CP and add the results. After integra- 
tion of the relation obtained from -H to 0, one obtains, by the boundary 
conditions (3.2.13), 

0 

(g2E - 0 2 )  J Po W2dz  = f (E - $) 1 CP2dz . 
Po 

-H -H 

It follows from this identity that for g 2 E  > o2 the eigenvalue curves of 
Problem V cannot lie in the region E < l , / ~ ~ ~ ~ ,  and for g 2 E  < o2 in the region 

Finally, the monotonic nature of the eigenvalue curves will be proved. For 
this purpose consider an arbitrary point (E,  02)  one some eigenvalue curve 
and its corresponding eigenfunctions P and W. Move along this eigenvalue 
curve by (de, do2); then also the eigenfunctions P and W will change by 6P 
and 6 W .  Taking variations of (3.2.11), (3.2.12) and (3.2.13), one finds 

E > 1 / C 2 i n .  

(6P)’ +-6P g + (02 - N 2 )  poGW + poWdo2 = 0 , (3.4.3) 
C2 

(3.4.4) 
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6 ~ = 0  for z = - H ,  6 P + g p o 6 W = 0  for z = O .  (3.4.5) 

Subtract from equation (3.2.11), multiplied by 6 W ,  equation (3.4.3), 
multiplied by W ,  from equation (3.4.4), multiplied by P ,  equation (3.2.12), 
multiplied by 6P, and add the results. Integrate the relation obtained from 
-H to 0. Since [P6W - w6P]oH = 0,  on the basis of the boundary condi- 
tions (3.2.13) and (3.4.5), one finds 

Hence follows the monotonic nature of the eigenvalue curves in the 
( E ,  $)-plane. It should be noted here that there do not exist for the problem 
under consideration eigensolutions of the form P f 0, W + 0 or P f 0, W = 0. 
Therefore an ensuing transition from the analysis of a system of equations 
for P and W to  a study of separate equations for P or W does not lead to a 
loss of eigensolutions. 

It is convenient to introduce new functions 

(3.4.6) 
-H 

and to write System (3.2.11) and (3.2.12) in the simpler form 

I;' + ( 0 2  - N2)  #&22 = 0 , (3.4.7) 

(3.4.8) 

Consider the following cases: 

(1) u2 < Nkin 

Recall that in this region eigenvalues may only occur for E > l/cLax. Elim- 
inating from (3.4.7) and (3.4.8) the function GI, one obtains for$ the equa- 
tion 

(K j ' ) '  - Gfi = 0 , (3.4.9) 

where 

(3.4.10) 
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Rewrite (3.2.13) in the form 

jj’ = 0 for z = -H, for z = 0.(3.4.11) 

First, the existence of eigenvalues for the problem (3.4.9) and (3.4.11) 
will be proved. Let @ ( z )  be the solution of the Cauchy problem for equations 
(3.4.9): @(-H) = l,p’(-H) = 0. Using Sturm’s comparison theorems [39, 
Chapter X; 30, Chapter XI], it is not difficult to obtain qualitatively graphs 
of the quantity K(O)@‘(O)/p^(O) as a function of E (for fixed 0 2 ) .  

In fact, fix o2 and increase E from - to 03. During this process, the func- 
tion K does not change, but the function G decreases (for all z )  and, accord- 
ing to the first comparison theorem, in the interval -H < z < 0 the number 
of zeros of @(z)  may only increase, where each new zero appears first at the 
point z = 0 and the moves in the direction of the point z = -H (zeros cannot 
pass through the point z = -H). Let el, e 2 ,  ... be values of E for which 
p ( 0 )  = 0. There will be an infinite number of such values of E ,  since G + 00 

for E -+ m for all z .  Then, by the second comparison theorem, the quantity 
K(Olp’(O)/$(O) will monotonically decrease with E in the intervals (-, F1), 
6, f a ) ,  - * - *  

Further, replacing K and G in (3.4.9) by Km, and Gmin: 

(3.4.12) 

and using the second comparison theorem, it is not difficult to show that 
K(O)@’(O)/fi(O) -+ + 00 for E + -03. 

Schematic graphs of K(O)@’(O)/@(O) as function of E are given in Fig. 3.7. 
By (3.4.11), intersections of this graph with the straight line 
K( O ) f i ’ (  O)@( 0 )  = -l/gpo( 0) give the eigenvalues of the problem under con- 
sideration. 

Fig. 3.7. Schematic graph of K( O)$’( O)/$( 0) as function of e for fixed D2 < Ngin. The 
eigenvalues €0, €1, €2, ... are indicated. 
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For E >  l/c$ax in the interval (-23, 0) one can always find a subinterval 
where G is negative. However, then, for o2 +. - m,  the function K decreases 
(for all z ) ,  and, by the first comparison theorem, the solution p ( z )  will oscil- 
late over this subinterval and hence over the entire interval (-H, 0). In other 
words, for any fixed E > l /ckax, the problem under consideration must have 
an infinite number of eigenvalues u2. Since the eigenvalue curves cannot 
intersect (cf. Fig. 3.7), then for u2 + --oo all eigenvalue curves tend to the 
vertical asymptote E = 

Using Sturm's comparison theorems, one may obtain simple estimates of 
the eigenvalues e0,  e l ,  .... For this purpose, replace in equation (3.4.9) the 
functions F and G by their minimum values Kmin and Gmin and consider 
the equation with constant coefficients obtained for the boundary condi- 
tions @'(-H) = O,p^'(-H) = 0. For the changed equation (3.4.9), one may 
likewise introduce the solution of the Cauchy problem: @(-El) = l,@'(-H) = 
0 and, constructing the graph of Kmi&'(0)/@(O), compare it with the graph 
of K(O)@'(O)/@(O) already constructed for the same equation (3.4.9). I t  is not 
difficult to show then that for the same numbers the eigenvalues of the ini- 
tial problem will be larger than the eigenvalues of the changed problem 
Since the last can be found immediately, known lower estimates of the 
eigenvalues e0 ,  e l ,  ... have been obtained. Analogously, replacing in equation 
(3.4.9) the functions K and G by their maximum values: 

(3.4.13) 

one obtains upper bounds for the eigenvalues f o ,  e l ,  .... Thus, one has, 
fin ally, 

n = 0,1, ... (3.4.14) 

Generally speaking, the upper bounds (3.4.14) are true only for E >  

l /ckin,  since for e < l/ckin formula (3.4.13) for Gmax is not valid. However, 
since it has been proved that the eigenvalue curves are monotonic, these 
estimates are also true for E < I / c $ ~ ~ .  

The estimates (3.4.14) are rather coarse (especially for e 0 ) ;  however, all 
the same, they yield a definite idea on the distributions of the eigenvalue 
curves e1(u2), e 2 ( 0 2 ) ,  ... (for e o ( 0 2 )  another estimate will be derived, cf. 
(3.4.19)). 

It is not difficult to show, reverting to System (3.4.1) and (3.4.2), that 
the eigenvalue curves of the problem in hand may not intersect the straight 
line u2 = g 2 e .  Therefore, since the curves e,(u2) (n  = 0, 1, 2, ...) are mono- 
tonic, they may not have vertical asymptotes for E > l / c i a x  and must with- 
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out fail decrease in the region E > l/c&in. 

( 2 )  e > 1/C$in 

Eliminating from (3.4.7) and (3.4.8) the function p, write the equation 

(3.4.15) 
for z% in the form 
(KC’)‘ - G& = 0 ,  

where 

> 0, G = ( a 2 - N 2  160.  K=- 50 
1 

C 2  
E - -  

(3.4.16) 

The boundary conditions are 

& =  0 for z =-H, G I - - ( ~ - + ) ~ G = O  for z = o .  
C 

(3.4.1 7) 

Let w ( z )  be the solution of the Cauchy problem for equation (3.4.15): 
z%(-H) = 0, $’(+I) = 1. Since, as o2 decreases from 03 to  - and when e is 
fixed, the function G decreases (for all z )  and the function K does not 
change, then, using the comparison theorems, in the same manner as in the 
preceding case, it is not difficult to establish the graph of K(O)&’(O)/z%(O) as 
a function of o2 (for fixed E )  (cf. Fig. 3.8). The intersection of this graph 
with the straight line K(O)z%’(O)/Lir(O) = gpo(0) yields, by (3.4.17), the eigen- 
values og, of ,  .... 

As in the preceding case, one may obtain upper and lower bounds for the 
eigenvalues of,  ug, ... (replacing conditions (3.4.17) by the conditions 
z%(-H) = 0, &(O) = 0 and K ,  G by Kmin, Gmin and Kma,, G,,,, respectively): 

n = 1, 2, ... (3.4.1 8) 

Note that the estimated curves in (3.4.14) and (3.4.18) for n = 1, 2, ... in 
the region o2 < NLi,,, E > l/c: are identical. 

Thus, for all e > l/cLin, by (3.4.18), one has U;(E) < NLax n = 1, 2, .... 
Since for u2 < N:,, in the interval (-H, 0) one can always find a subinterval 
where G will be negative, and K decreases for e + ~0 (for all z ) ,  th,en it is 
easily shown that the eigenvalue curves u;(e) ( n  = 1, 2, ...) tend for large E to 
the straight line u2 = N:,, as an asymptote. 

The eigenvalue curve ug( e )  requires separate consideration. Without proof 
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(cf. [ 551 for a proof) one has first the estimate 

(3.4.19) 

Setting N o  = 0 in (3.3.2) (incompressible homogeneous fluid), one has 
that ~ ~ ( 0 )  = l/gH. In the general case, the estimate (3.4.19) gives a very nar- 
row range for ~ ~ ( 0 ) .  

In order t o  avoid a misunderstanding, it will be recalled that (3 .3 .2)  for No # 0 is 
approximate; hence the fact that ,  by this formula, Eo(N0) = l/gH does not  contradict 
inequality (3.4.19). 

Further, since the curve o ~ ( E )  has been seen to lie below the straight line 
u2 = g 2 e ,  one has u ~ ( E )  < g2c for all E .  It  will be proved now that for E + 00 

the eigenvalue curve u $ ( E )  approaches to the straight line u2 = g2E asymp- 
totically. For this purpose, replace in (3.4.15) the quantities K and G by 
K1 and G1 

and the boundary conditions (3.4.17) by 

& = O  for z = - H ,  & ‘ - ( ~ - l / c ; ~ ) g & = O  for z = O .  

(3.4.20) 
It is readily shown that the problem changed in this manner has only one 

eigenvalue 08.  In order to determine it, let $ ( z )  = p^01/2$(z). Then one finds 

Fig. 3.8. Schematic graph of  K( O)iU‘(  O) / iU(  0) as function of a2 for fixed f > 1/ckin. The 
eigenvalues a;, a;, a$, ._. are indicated. 
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for + the equation 

(3.4.21) 

It is easily verified that as E + m the eigenvalue of the problem (3.4.21) 
and (3.4.20) (condition (3.4.20) must be rewritten in terms of +) tends 
asymptotically to g2E. Since og > 02 for all E ,  then also the curve D ~ ( E )  

approaches for E + masymptotically to the straight line o2 = g2E. 

(3) E > l/c;ax 
In this region, there may only occur eigenvalues for o2 > N i i n .  Write 

down for Lir an equation of the form (3.4.15) with the functions K and G 
gven by 

> 0, G = ( N ~ - u ~ ) ~ ~ ~ ,  K = -  60 

1 - 
c 2  - 

which differ only in sign from the corresponding formulae (3.4.16). Consider 
again the solution of the Cauchy problem for (3.4.15): LZ(-H) = 0, G’(--H) = 

1. The graph of the quantity K(O)G’(O)/&(O) as function of o2 (for fixed E )  

is shown in Fig. 3.9 which also shows the eigenvalues oE1, oE2, ... (to dis- 
criminate between these eigenvalues and of, og ... negative indices are intro- 
duced, c.f. (3.3.6)). 

It is readily proved that all eigenvalue curves o,”(E) (n = -1, -2, ...) tend 
for E + 00 to the straight line u2 = Nkin as asymptote. Only lower bounds for 
these eigenvalues will be obtained. For this purpose, one must consider 
equation (3.4.15) for the boundary conditions G(-H) = 0, G’(0)  = 0, 
replacing in them K ,  G by Kmin, Gmin. One finds 

(3.4.22) 

Since the curves O ; ( E )  ( n  = -1, -2, ...) do not intersect the straight line 
o2 = g2E, one finds that, because they are monotonic, they cannot have 
horizontal asymptotes for E -+ and therefore must lie in the region o2 > 

2 Nmax. 

(4) a2 > Nkax 

K ,  G by 
Write the equation for in the form (3.4.9), determining the functions 

which differ from (3.4.10) only in sign. 
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6* ‘.....&+ 

+.... . - 
Fig. 3.9. Schematic graph of the quantity K( O)Eu’( O)/ iU(  0) as function of D2 for fixed E < 
l/chax. The eigenvalues u ? ~ ,  o?,, ... are indicated. 

Consider the solution of the Cauchy problem for (3.4.9): $(-El) = 1, 
$’(-H) = 0. The graph of the quantity K(O)@’(O)/Ij(O) as function of E (for 
fixed u2)  is shown in Fig. 3.10, which also indicates the eigenvalues 
c0, E - ~ ,  E - , ,  .... For a derivation of upper bounds for the eigenvalues c1, 
E - ~ ,  ... consider equation (3.4.9) for the boundary conditions $‘(-El) = 
0, $(O) = 0, replacing K ,  G by Kmin, Gmin. One finds 

(3.4.23) 

The estimated curves in (3.4.22) and (3.4.23) for n = -1, -2, ... in the 
region u2 > N;,, and E < 1/cgaX are identical. 

Fig. 3.10. Schematic graph of the quantity K(O)$‘(O)/@(O) as function of E for fixed o2 > 
N k a .  The eigenvalues €0, e-2, ... are indicated. 
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TABLE 3.1 
Number of zeros of Pn(z)  inside the interval [ -H,  01 

Region Index Number of zeros 

Thus, one has for all 02, by (3.4.23), that en(~') < 1/czin (n  = -1, 
-2, ...). It  is easily proved that the straight line E = l /cgin is a vertical asymp- 
tote for all eigenvalue curves E,(o') (n  = -1, -2, ...). 

(5) l /cgax < E < l /cgin,  NZin < u2 < N g a x  

Since the eigenvalue curves, in general, are monotonic, there cannot be 
closed curves in the region under consideration, and consequently there can 
pass through this region only eigenvalue curves which have already been 
studied. Naturally, it will be proposed that the eigenvalue curves may not 
have singular points and cannot break up at any finite point of the ( E ,  02)-  

plane. 
In summarizing the results obtained, it is easy to display schematically the 

eigenvalue curves of Problem Vin the ( E ,  0')-plane (Fig. 3.11). It  will be use- 
ful to  compare Fig. 3.11 and Figs. 3.2 and 3.6 keeping in mind that Figs. 3.2 
and 3.6 are graphed on a plane E ,  O .  In fact, there do not arise new types of 
eigenvalue curves (compared with Figs. 3.2 and 3.6) in the general case. 

Let f i n @ )  and z%,(z) be eigenfunctions which correspond to the eigenvalue 
curves with index n(n = 0, f 1, f 2, ...). Then, applying Sturm's theorems to 
the problem under consideration (cf. Figs. 3.7-3.10), one may point out the 
number of zeros of P n ( z )  and z%,(z) (i.e., also of P,(z) and W n ( z ) ,  cf. (3.4.6)) 
inside the interval [-H, 01 (Tables 3.1 and 3.11). In the general case when 
l /ckax < E < l / cg in ,  it is impossible to say anything on the number of zeros 
of apparently, the same is true for the zeros of fin@), when N:in < 
u2 < N k a X .  

The results of this section permit to obtain rather easily estimates of 
changes of the parameters c(z) and N ( z )  for different types of waves in the 
general case. 

TABLE 3.11 
Number of zeros of Wn(z)  inside the interval [-H, 01 

Region Index Number of zeros 
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Fig. 3.11. Schematic presentation of eigenvalue curves of Problem Vin  ( E ,  02)-plane (gen- 
eral case). Numerals indicate corresponding values of n. 

3.5 THE EIGENVALUE CURVES O F  PROBLEM H. 

In the general case of a rotating spherical layer of fluid, one may expect, 
on the basis of the results of 5 3.3, that all three types of eigenvalue curves 
of Problem H exist: The first type, an analogue of the curves shown in Figs. 
3.3 and 3.4 for E > 0; the second type, curves with the property of bounded- 
ness of u,(E) as e + 0 (this type of curves are, in fact, characteristic for a 
rotating spherical layer; these curves are missing in Figs. 3.3 and 3.4); the 
third type, an analogue of the curves shown in Fig. 3.3. for e < 0. 

Thus, proceed to the analysis of Problem H .  It  will be convenient to seek 
the solution of this problem in the form 

(3.5.1) 
(u, v, n) = (- u, 

cos cp’ i cos cp’ 

where the functions U,, V, , II, depend only on cp, and k is an integer which 
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is not equal to zero (the case k = 0 is discussed at the end of this section) 
and has the significance of a (non-dimensional) longitudinal wave number. 
Substituting (3.5.1) into (3.2.8)-(3.2.10) and changing over to the variable 
p = sin cp, one finds 

CJ, U, -pV, - k n ,  = 0 ,  (3.5.2) 
-cJ* v* + pu* + DII, = 0 ,  

kU, -DV, - ~ , c ~ , ( l  - p 2 )  II, = 0 ,  

(3.5.3) 
(3.5.4) 

where 

(3.5.5) 

Use equation (3.5.2) to eliminate U ,  from equations (3.5.3) and (3.5.4) 
and find 

D+- n =-LL-CJ ( ::) * *) v* , 

(D -$) v* = [$ - € * C J * ( l  - p2) 1 n, 

(3.5.6) 

(3.5.7) 

Thus, the problem has been reduced to finding solutions bounded in the 
interval [-1, +1] for the two ordinary differential equations (3.5.6) and 
(3.5.7). It is not difficult to establish (cf., for example, [110, Chapter 51) 
that there can exist only one-parameter families of solutions of this system 
which enter the neighbourhoods of the North and South Poles like ip - 
11 k/2  and -1 p + 11 k / 2 ,  respectively (there cannot be singular points inside the 
interval [-1, 11). 

Replace equation (3.5.6) by its conjugate complex equation, multiply it 
by V, and add the result to equation (3.5.7) after having multiplied it by the 
function, conjugate complex to n, . Multiply the result by (1 - p2)-' and 
integrate it with respect to p from -1 to 1. On the basis of the behaviour 
stated of (II,, V,),  one has for p = +1 that [n*, V , ] l l  = 0; one obtains, 
finally, 

Since CJ, is real, it follows that the eigenvalues E ,  of Problem H are real 
(recall that it has already been proved for Problem V that the E are real). 
Therefore the functions II, and V,  may also be assumed to be real. Besides, 
it follows from the identity derived that for E ,  < 0 the eigenvalue curves of 
Problem H cannot lie outside the strip I CJ, I < 1. 
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It is easily shown [cf. (3.2.1), (3.2.6), (3.5.1) and (3.5.6), (3.5.7)] that, if 

is a solution of Problem (3.1.3)-(3.1.9), then also 

-2QaiaWrI,, 2!2aPrI, exp[-i(hX - ot)]  1 
is a solution of this problem (p'  has not been written down). Since both 
expressions yield one and the same solution, one may, without reducing gen- 
erality, consider only positive h. Thus one has h = 1, 2, .... Recall that u > 0 
will then correspond to waves which travel eastwards and u <  0 to waves 
which travel westwards. 

It is very difficult to find the eigenvalue curves G * ( E , )  of the system of 
equations (3.5.6) and (3.5.7) for h = 1, 2, .... However, by studying the sim- 
pler problem of the asymptotic behaviour of these eigenvalue curves for 
small and large E ,  , one may construct a qualitative picture of the distribution 
of these curves in the ( E ,  0)-plane. 

In what follows, separate equations for V,  or II, are required [note that 
system (3.5.6), (3.5.7) does not have solutions of the type V,  = 0, rI, + 
0 or V ,  + 0, rI, = 01. After some simple manipulations, one obtains 

(3.5.9) 

where the operators L and D are given by (3.3.13) and (3.5.5). Note that 
although the coefficients in equations (3.5.8) and (3.5.9) have singularities 
inside [-1, 13, the functions V, and II, have already been shown not to 
have any singularities inside this interval. 

Thus, fix h and consider the following cases. 

(1) E ,  + 0 

Find first those u, the absolute values of which increase without bound as 
E ,  + 0 (first type). It is convenient to employ equation (3.5.9) for n, . Clear- 
ly, one has in first approximation 

( L  + E , U f )  n, = 0 .  

EN-4 and 
In essence, this is the problem of the non-rotating spherical layer: n, = 

(3.5.10) 
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The function V, is now found from (3.5.6), the function U ,  from (3.5.2). 

Here and in what follows, for the sake of brevity, not all formulae for the eigenfunc- 
tions will be written down (for example, V, and U,), and attention will be focussed on 
the formulae for the eigenvalue curves. An analysis of features of the eigenfunctions is 
given in [ll, 90, 701. 

Assume now that u* is bounded as E ,  + 0 (second type). In this case, em- 
ploy equation (3.5.8) for V,. In first approximation, one has 

L--  v , = o ,  ( a”,) 
whence V, = ph,(p) and 

(3.5.11) 

The index n’ has been introduced here in order to be able to distinguish the 
two types. 

Clearly, these formulae must be considered to be first terms of corre- 
sponding asymptotic expansions in powers of E , ( E ,  2 0). 

(2) E ,  + 

It is convenient to employ equation (3.5.8) for V, . Assume that u, + 0 as 
E ,  + 30. However, then at least the term kV,/u, in (3.5.8) will be large. 
Therefore V, must have, for large E ,  , large derivatives; as E ,  + 00, the term 
with d2V,/dp2 in (3.5.8) turns out to be insignificant and one cannot find a 
solution V, which is bounded over the entire interval [-1, 11. However, if 
a finite function V, has a large derivative, then it is natural to assume that 
V, differs significantly from zero only over a small segment of p ;  it  is sim- 
plest to assume that V, is “localized” around the equator. Then p2 << 1 
and, in first approximation, equation (3.5.8) assumes the form 

- - - + E * @ * - p 2 )  v , = o .  d2 k 2 1 [dp2 0% 

This equation determines the scale of the variable p ;  in fact, require the 
terms d2V,/dp2 and e,p2V, to be of the same order (if this is not so, no 
“local” functions are obtained); the variable 8 = ~ : / * p  will then be a quantity 
of order unity. 
Thus, 

One must assume that V, is bounded and determined for all real 8 as 
E ,  + m; the problem of determination of such a function is well known (cf. 
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[62, pp. 323-3261) and one has 

v =  0, 1, 2, ..., 

It is not difficult to  write down explicitly for large E ,  the solution of 

(3.5.12) 

where H ,  is the Hermite polynomial of order v. 

equation (3.5.12) for (T, : 

(3.5.13) 

k l  
u* = -2v'+l ,1*/2 + ..., v' = 1, 2, ... (3.5.14) 

The above reasoning is, in essence, heuristic. However, i t  may be verified, 
if one considers the formulae obtained for large E ,  to be first terms of corre- 
sponding asymptotic expansions. Substitution of such expansions in (3.5.8) 
really affirms the deductions made, except when, in first approximation, 
k 2  = ~ , a :  (since the denominator of the fraction in (3.5.8) vanishes in this 
approximation). This is the reason why the value v '  = 0 must be excluded in 
(3.5.14). 

Thus, the case a: = k2/E,  must be studied separately. This is most simply 
achieved by reverting to  equation (3.5.9) for II,. Consider first the case 
when 

(3.5.1 5) 

In first approximation, the equation for II, will be 

Replacing n, by II, = exp(-02/2) 2, one obtains 

This equation is readily integrated. Finally, in first approximation, the 
solution of (3.5.9), bounded for all real 8 ,  has the form 

II, = exp(-e2/2) . (3.5.16) 

The function V, is now found from (3.5.6), and then U ,  from (3.5.2): 

v* f 0, u, = € y I *  . (3.5.17) 
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It is natural that (3.5.15)-(3.5.17) should yield only first terms of cor- 

In the case 0, = - k / ~ : ‘ ~ ,  which can be analyzed in an analogous manner, 
responding asymptotic expansions for large e * .  

there do not exist solutions of (3.5.9) which are bounded for all real 8. 

(3) E* +. - 
Recall that for e,  < 0 the eigenvalue curves of Problem H may only lie in 

the half-strip I u, 1 < 1. Study first the question of the behaviour of eigenval- 
ue curves of Type 2 for e ,  < 0. Numerical calculations show (cf. [ll, 701) 
that 0, +. -1 for e,  -+ -. However, by (3.5.8), the function 1 - p 2  must 
then be small, and consequently V,  must be “localized” about the poles. 
Consider the neighbourhood of the North Pole. Let 

t = 2 V F m  - P I  7 (3.5.18) 

(3.5.19) 

where the coefficient q must be determined. 

retaining only the principal terms, one obtains 
Substituting into equation (3.5.8) relations (3.5.18) and (3.5.19) and 

(3.5.20) 

This equation has been studied in great detail (cf. [62, pp. 335-3401): 
Bounded on the half straight line 0 < ( < 00, solutions of this equation exist 
only when 

q = 2 - K + 2V’, 

and have the form 

V‘ = K - 1, K ,  K + 1, ... 

where L, is the Laguerre polynomial of order s. 
Finally, one has 

q = 2v + h,  v = 0, 1, 2, *.. 

and 

(3.5.21) 

(3.5.22) 
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Next, consider the asymptotic behaviour of the eigenvalue curves of Type 
3 of Problem H .  Using again results of numerical computations [11,70], seek 
u* in the form 

o * = l -  (-€* )1/2 +o($) , (3.5.23) 

where q must be determined, and the eigenfunction “localized” about the 
North Pole depends, by assumption, on [ according to (3.5.18). Following 
the earlier analysis, one finds 
q = k + 2 v + 2 ,  v = O , 1 , 2  ,... 
and 

Finally, it will be natural to assume that the second branch of eigenvalue 
curves of the Type 3 approach asymptotically the u = 0 axis as E* + -. 
Therefore let 

u* = __ k +  2qk +o(-$), 
--El (-€*)3/2 

(3.5.24) 

where q must be determined and V, is “localized” about the North Pole 
and depends on t according to (3.5.18). One has 

This equation is of the type (3.5.20), whence 

q = h + 2 v + 1 ,  v = O , 1 , 2  ,... 
and 

Note that one need not study the eigenfunctions “localized” about the 
South Pole. It is readily shown that solutions of (3.5.8) bounded on [-1, 11 
can only be even or odd functions in p.  

These solutions permit, finally, to  establish a general presentation of the 
distribution of the eigenvalue curves of Problem H in the (f, o)-plane for 
fixed k .  For this purpose, it is useful to keep in mind that, in general, the 
eigenvalue curves of Problem H for fixed h form an enumerable set of curves 
(the spectrum is discrete) and that different curves of the. set cannot inter- 
sect. 

The proof of the first statement may be based on considerations of 
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Morse and Feshbach [83, pp. 668-6741. The second assertion has been 
proved by Dikii [ l l ,  p. 281. 

Detailed numerical computations have shown the validity of the asymp- 
totic obtained. Fig. 3.12 shows the complete pattern of the eigenvalue curves 
of Problem H for k = 1. On the basis of this graph one may describe certain 
general features of the behaviour of the eigenvalue curves of Problem H for 
fixed h .  

First, let E ,  > 0 and o* > 0. Then one has the lower curve of first type 
(closer to the axis); for E ,  + 0, it has the index n = k and is described by (3. 
5.10) with sign << +>>. Clearly, formula (3.5.15) yields the asymptotic 
behaviour for E ,  + m of this very curve. Formula (3.5.13) with sign << + 
>> must then describe the asymptotic behaviour for E ,  + 00 of theremain- 
ing curves of first type; if for E ,  + 0 a curve has index n = k + 1, then for 
E ,  + 

Now let E *  > 0, but o* < 0. Then one has the lower curve of second type 
(further away from the €*-axis); for E ,  + 0, it has index n' = k and is 
described by (3.5.11). Computations of Dikii [111 and Longuet-Higgins 
[ 7 0 ]  show that its asymptotic behaviour for E, -+ m is given by (3.5.13) 
with sign << - >> for v = 0. Now the entire pattern becomes clear. A curve 
of second type which has for E ,  + 0 index n' = h + I ,  has for E ,  + m index 
n' = I [formula (3.5.14)]; a first-type curve which has index n = k + I for 
E ,  -+ 0, has index v = 1 + 1 for E* + 00 [formula (3.5.13) with sign -1. 

this curve has the index I, = I - 1. 

2 2  

- - 

- 
- 

I I I I I I I I  

0 25 5050 250 4.Qza2e -2 
-500 -250 -50 -25 

I ' ' I ' I I I  

Fig. 3.12. Eigenvalue curves of Problem H for rotating layer for k = 1, constructed from 
results of numerical calculations by Longuet-Higgins [ 701. Inscriptions on curves for small 
and large I E ~  indicate applicability of corresponding asymptotic formulae [cf. (3.5.10), 
(3.5.11), (3.5.13), (3.5.14), (3.5.19) and (3.5.23)]; the asymptotic (3.5.15) is denoted by 
1."' = 0. 
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The asymptotic behaviour of the eigenvalue curves of second type for 
e, -+ - is described by (3.5.19). The pairwise “merging” of these curves for 
e, -+ - 00, observed in Fig. 3.12, is explained by the fact that for large I e, 1 
the eigensolutions of (3.5.8) are “localized” about the poles and therefore, 
in first approximation, the eigenvalues, corresponding to even and odd eigen- 
functions V,, coincide and differences are only revealed in higher approxi- 
mations. 

Every third-type curve shown in Fig. 3.12 represents two merging 
“paired” curves (on the graph they do not differ). The reason for the 
“merging” is the same as in the case of second type curves; besides, third- 
type curves lie entirely in the region of large I e, I . The asymptotic behaviour 
of these curves for E ,  -+ - m is described by (3.5.23) and (3.5.24). 

The case k = 0 (purely zonal motion) must be studied specially. Obvi- 
ously, the location of the eigenvalue curves in the (e, ,  o,)-plane in this case 
is symmetric with respect to the straight line u* = 0 and second-type curves 
do not arise. Analogous analysis permits to  find the asymptotic behaviour of 
the eigenvalue curves of the first and third types. 

For e, -+ + O  (first type), one has 

0, = k {n(n  + 1)}1/2/€:’2+ ..., 

u, = k(2v + 1)1/2/E:/4 + ..., 

(5, = 2 1  7 4/(-€,)1’2 + O(l/E*), 

q = 2 + 2 v ,  v = o , 1 , 2  ,.... 

0, v, = 0, n, = 1). 

n = 1, 2, ... ; 
for E ,  -+ m (first type), one has 

v = 0 ,  I ,  2, ... ; 
for e, -+ --oo (third type), one has 

In addition, the axis e ,  = 0 and u, = 0 will also be eigenvalue curves ( U ,  = 

3.6. CLASSIFICATION OF FREE OSCILLATIONS 

Finally, the results of 5 3.3. will be generalized to the general case of a 
rotating spherical layer of a compressible stratified fluid. For this purpose, 
the eigenvalue curves of Problems V and H will be constructed on one graph 
in terms of the variables E and u (Fig. 3.13). Then: 

(1) The solutions of System (3.1.3)-(3.1.7) corresponding to  points 
of intersection of the eigenvalue curves o n ( € ) ,  n = -1, -2, ... of Prob- 
lem V with the eigenvalue curves of first type of Problem H for e > 0 are 
referred to as acoustic waves (Fig. 3.13). The basic physical cause for the 
generation of these waves is compressibility, the elasticity of the medium 
(for c2 -+ m, the eigenvalue curves on(€) ,  n = -1, -2, ._. of Problem V pull 
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back in the region E < 0 and points of Type 1' are missing). Inhomogeneity 
of the medium, presence of a free surface, effects of gravity forces as well 
as rotation and the spherical shape of the Earth, of course, affect acoustic 
waves; however, acoustic waves also exist in a homogeneous weightless (N = 
0, po = constant) compressible medium, located on a non-rotating plane 
( 8  3.3). Inequality (3.4.23) yields for the frequencies of acoustic waves the 
simple lower bound 

2 -  
Cmin PO min 

u2 > u," = NLin + 

Since in the ocean u, % 1 rad/sec, acoustic waves are characterized by high 
frequencies. 

(2) Solutions of System (3.1.3)-(3.1.7) corresponding to points of 
intersection of the eigenvalue curve uO(e) of Problem V with eigenvalue 
curves of Type 1 of Problem H are referred to as surface gravitational waves 
(Fig. 3.13). The basic physical reason for the occurrence of these waves is 
the inclination of the free surface of the ocean in the gravity force field. 

Kamenkovich and Odulo [ 4 7 ]  have shown that replacement of the free surface by 
a rigid lid destroys the eigenvalue curve ( T O ( € )  of Problem V, and thereby also surface 
gravitational waves. In their place, there arise in a compressible fluid another class of 
waves. so-called Lamb waves. 

Compressibility and inhomogeneity of a medium practically do not 
affect the eigenvalue curve uO(e) of Problem V [cf. 5 3.3, estimate (3.4.19) 
and the asymptotic U ; ( E )  % g2E for large €1 ; this means that they also do not 
affect surface gravitational waves. However, rotation and the Earth's spher- 
ical shape prove to be very essential (especially for long waves). Surface 
gravitational waves on a sphere may have, generally speaking, any frequen- 
cies. 

Solutions of System (3.1.3)-(3.1.7) corresponding to  points of inter- 
section of eigenvalue curves of Type 1 of Problem H are referred to  as 
internal gravitational waves (Fig. 3.13). The basic reason for their generation 
is the inhomogeneity of sea water in the gravity force field (if Nma, + 0, 
then points of Type 3' disappear). It will be shown below that internal 
waves are practically not distorted when the free surface is replaced by a 
rigid lid; effects of compressibility of sea water likewise are inessential. It 
is natural that for very long waves one must take account of the Earth's rota- 
tign and spherical shape. Frequencies of internal waves may, in general, lie 
in the range 0 < 1 0 1  < Nma,. For all eigenvalues f n ( u ) ,  n = 1, 2, ..., corre- 
sponding to these waves, one has the estimate [cf. (3.4.14)] 

(3.6.1) 
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E 

Fig. 3.13. Pattern of intersections of  eigenvalue curves of Problem V (solid lines) and 
Problem H (broken lines) for 2Q > N ~ n .  Only one eigenvalue curve of each type is 
shown. Points of Type 1' correspond t o  acoustic waves; points of Type 2' to surface 
gravitational waves; points of Type 3' t o  internal gravitational waves; points of Type 4- 
to barotropic Rossby waves; points of Type 5-  t o  baroclinic Rossby waves; points of 
Type 6' to gyroscopic waves. 

(3 )  Solutions of System (3.1.3)--(3.1.7) corresponding to points of 
intersection of the eigenvalue curve (s&) of Problem V with the eigenvalue 
curves of Type 2 of Problem H are referred to as barotropic Rossby waves 
(Fig. 3.13). The basic physical reason for the occurrence of these waves is 
the combined effect of the Earth's rotation and spherical shape (condition of 
existence of eigenvalue curves of Type 2 of Problem H ) .  Compressibility and 
inhomogeneity of sea water practically do not affect these waves. The range 
of possible frequencies is 0 < 1u1 < S2. 

Solutions of System (3 .1 .3) - (3 .1 .7)  corresponding to  points of inter- 
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section of the eigenvalue curves u, ( E ) ,  n = 1 , 2 ,  ... of Problem V with eigen- 
value curves of Type 2 of Problem H are referred to as baroclinic Ross- 
by waves (Fig. 3.13). The basic physical reason for the occurrence of these 
waves is the combined effect of the inhomogeneity of sea water in a gravity 
force field (condition of existence of curves of u, ( E ) ,  n = 1, 2, ... of Problem 
V) and rotation of spherical Earth (condition of existence of curves of Type 2 
of Problem H ) .  The range of possible frequencies of these waves is 0 < 1u1 < 

(4) Solutions of System (3.1.3) through (3.1.7) corresponding to points of 
intersection of the eigenvalue curves u,(c), n = -1, -2, ... of Problem V with 
eigenvalue curves of Types 2 and 3 of Problem H for E < 0 are referred to as 
gyroscopic waves (Fig. 3.13). The basic physical reason for the occurrence of 
these waves is the Earth’s rotation. However, gyroscopic waves do not arise 
for any rotation, but only if the condition 2.n > Nmin is fulfilled (otherwise 
the eigenvalue curves of Problem V and H do not intersect). As also in the 
case of internal gravitational waves, replacement of the free surface of the 
ocean by a rigid lid practically does not distort gyroscopic waves; the effect 
of compressibility of a medium likewise is inessential. The range of pos- 
sible frequencies is Nmin < lul < 252. It  follows from (3.4.22) that for all 
eigenvalue curves E ~ ( o ) ,  n = -1, -2, ..., corresponding to these waves, one 
has 

min (a ,  Nmax). 

(3.6.2) 

Gravitational (surface and internal), acoustic and gyroscopic waves may 
propagate in easterly as well as in westerly directions. Rossby waves (baro- 
tsopic and baroclinic) propagate only towards the west. 

3.7. SOME APPROXIIMATIONS AND THEIR ANALYSIS 

Under conditions characteristic for the ocean, energies of different types 
of wave motions may differ strongly from each other. For example, as a rule, 
the energy of acoustic waves in the ocean is negligibly small compared with 
that of other types of waves. Therefore there arises often the problem of fil- 
tration of those and other waves. In this context, it is expedient to discuss 
“filtering” properties of approximations which are employed in the theory 
of wave motions. 

Consider first Boussinesq’s approximation to the initial equations (3.1.3) 
-(3.1.7) [replacement of the equation of continuity (3.1.6) by div u = 
0 and omission of the term ( l /c2)ap‘/at  in (3.1.7)]. For an analysis of 
wave motions in this approximation, one employs separation of variables 
(cf. 5 3.2); then Problem H does not change, and instead of the system (3. 
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2.11) and (3.2.12) one obtains 

dp+ ( a 2 - - ’ )  p o w =  0 ,  (3.7.1) 
dz 

dW E - + - p = o  
dz P o  

(3.7.2) 

with the same boundary conditions (3.2.13). Formally, System (3.7.1) and 
(3.7.2) is derived from System (3.2.11) and (3.2.12) by omission in the lat- 
ter of terms containing 1/c2. Since in the ocean c & , / g H > >  1 and 

>> 1, then, taking into consideration estimates (3.4.19), (3.6.1) 
and (3.6.2), it is readily shown that Boussinesq’s approximation filters out 
acoustic waves completely and practically does not distort gravitational, 
gyroscopic and Rossby waves. 

In Boussinesq’s approximation, the energy conservation equation (3.1 . lo) 
assumes the form 

(3.7.3) 

Consider now the approximation of the rigid lid (replacement of the free 
surface of the ocean by a lid). Obviously, in such an approximation, only the 
second boundary condition (3.2.13) changes, i.e., it is replaced by W ( 0 )  = 0. 

Restrict considerations to analysis of the problem in Boussinesq’s approxi- 
mation. EliminatingP from (3.7.1), (3.7.2) and (3.2.13)’ one finds 

- Po- d W  + e ( N 2  - 02) p o w  = 0 ,  *! dz) 
(3.7.4) 

-_ __ W =  0 for z =--12, d W  + W =  o for z = 0 .  (3.7.5) 

Derive first the eigenvalue curves on(€ ) ,  n = 1,  2, ... of Problem Vand intro- 
duce the non-dimensional quantities 

ge * 

- - 1 -  
= H z ,  N = NmaxN, PO = P m a x P o ,  0 = Nmaxo, € =  E .  

N2axH2 

Then all quantities with bars (except E )  are of order unity [cf. estimate (3.6. 
l)]. Substituting them into (3.7.4) and (3.7.5), one obtains 

(3.7.6) 

6 d W  - 
T d z  

---+ W =  0 for Z =  0 ,  (3.7.7) W =  0 for Z=- l ,  
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where ( 1 / E )  d6ld.z - 1 and 

Under typical conditions in the ocean N,,, = lo-' sec-l, H = 4 km and 
6 = 4 . i.e., 6 is a small parameter. Therefore, obviously, the relative 
error arising from replacement of the second condition (3.7.5) by W ( 0 )  = 0 
for the eigenvalue curves o n ( € ) ,  n = 1, 2, ... of Problem (3.7.4) and (3.7.5) 
and for its corresponding eigenfunctions will be of order O(6). 

In an analogous manner, it may be shown that the approximation of the 
rigid lid distorts slightly the eigenvalue curves on(€) ,  y1 = -1, -2, ... of Prob- 
lem (3.7.4) and (3.7.5) and its eigenfunctions for E < E ,  [cf. (3.6.2)]. 

Finally, it is obvious that the approximation of the rigid lid annihilates the 
eigenvalue curve uO(e)  of Problem V .  In its place, System (3.7.1) and (3.7.2) 
for the conditions W(-H) = 0 and W ( 0 )  = 0 will have the eigenvalue curve 
E = 0 ( P  = constant, W 0). Solutions of the initial system of equations 
corresponding to points of intersection of the eigenvalue curve E = 0 of Prob- 
lem V and eigenvalue curves of second type of Problem H are naturally 
called non-divergent Rossby waves. For such waves, one has strictly w = 0 
and divh(u, u )  = 0; essentially, barotropic Rossby waves were studied in 
5 3.3 in the approximation of the rigid lid. 

Thus, finally, the approximation of the rigid lid completely filters out sur- 
face gravitational waves, but practically does not distort internal gravita- 
tional, baroclinic Rossby and gyroscopic waves, and likewise converts baro- 
tropic Rossby waves into non-divergent Rossby waves (an estimate of the 
error arising in this step is given in 5 3.8). In other words, only surface gravi- 
tational waves are linked to deflections of the free surface from its unper- 
turbed position. 

In conclusion, consider the quasi-static approximation in the initial equa- 
tions (3.1.3)-(3.1.7) [omission of the term a w / a t  in (3.1.5)]. This approx- 
imation implies the striking out of o2 in System (3.2.11) and (3.2.12); 
System (3.2.8)-(3.2.10) and condition (3.2.13) do not change. In other 
words, one must simply set u2 = 0 in (3.2.11). But then there remain in 
the ( E ,  02)-plane only those eigenvalue curves of Problem V which inter- 
sect the E-axis; these curves become straight lines parallel to the o'-axis. 
Thus, gravitational and Rossby waves remain, and gyroscopic and acoustic 
waves vanish. 

Clearly, the quasi-static approximation distorts little only low-frequency 
gravitational and Rossby waves (u << Nmax). 

In the quasi-static approximation, System (3.7.1) and (3.7.2) under con- 
dition (3.2.13) conveniently reduces to the single equation for P 

(3.7.8) 
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with the conditions 

P + - - - 0  g dP- f o r z = O  - = 0  forz=-H,  dP 
dz N 2  dz 

(3.7.9) 

Problem (3.7.8) and (3.7.9) is an ordinary Sturm-Liouville eigenvalue 
problem. Therefore it is clear that the set of eigenfunctions P,(z) ( n  = 0, -1, 
-2, ...) of this problem is complete. These functions may be constructed for 
given values of N ( z )  and po(z)  once and for all. 

At times, instead of the eigenvalues E , ,  n = 0, 1, 2, ..., so called equivalent 
depths H, = l/gE,, n = 0, 1, 2, ... enter into Problem (3.7.8) and (3.7.9). 
Using estimates (3.4.19) and (3.4.14), one obtains 

P O ( 0 )  Ho 
Pornax H 

<-<1,  

By the first estimate, Ho N H ;  the estimates of H I ,  H 2 ,  ... turn out to be 

Obviously, in the quasi-static approximation, the energy equation (3.7.3) 
rather coarse. 

has the form 

pj2)  = -divh(p'u, p ' u )  . (3.7.10) 

3.8 APPROXIMATE ANALYSIS OF PROBLEM H. THE CONCEPT OF THE P-PLANE 

The asymptotic expansions of 5 3.5 for small and large values of I~ l tu rn  
out to be very useful for a study of the problem of the disposition of the 
eigenvalue curves of Problem H in the ( E ,  0)-plane. However, just now, 
approximate formulae of another type true for a wider range of values of E 

will be of interest here. In fact, such formulae permit construction of 
required dispersion relations for different types of ocean waves. 

Taking account of characteristic horizontal scales of the oceans, limit the 
study to not so very long waves (quarter wavelengths of order 1000 km and 
less) which correspond to large values of the nondimensional wavenumbers on 
the sphere (of order 10  and larger). In this case, the coefficients of system 
(3.2.8)-(3.2.10) change little over the length of the waves, and for the 
construction of the corresponding eigensolutions of the problem a short- 
wave approximation may be applied. 

Start with the eigenvalue curves of Type 1 and consider (3.5.9). Let the 
frequency o* be fixed. Then it is clear from the results of 5 3.5 that the 
larger E, the larger the number of zeros in the interval (-1,l) of the eigen- 
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function II, and the shorter the corresponding wave length. In other words, 
short-wave solutions of Problem H correspond to the large values of E,. 

Such solutions will be sought in the form of the asymptotic series 

fi,(p) = [no(p) + fF2r11(p) + ...I exp[iei/2 1 l ( p )  dp] . (3.8.1) 
0 

The form of the series (3.8.1) has been chosen on the basis of the follow- 
ing reasoning. If the coefficients in equation (3.5.9) were constant, the 
l ( ~ , )  in the series 1 = lo + 11~;1/2 + ..., one obtains an expression of the form 
e x p [ i ~ ; / ~ l ( ~ , ) p ]  with the constant phase coefficient 1 ( ~ , )  = O(1). Expanding 
I ( € , )  in the series 1 = lo + 11~;1/2 + ..., one obtains an expression of the form 
(3.8.1) with constant phase coefficient lo  and amplitude which changes 
slowly over the wave length, for example, no = exp[il,p]. Clearly, in the case 
under consideration when the coefficients of equation (3.5.9) are not con- 
stant, but change slowly over the wave length, it is reasonable to seek the 
solution of (3.5.9) in the form of the asymptotic series (3.8.1) assuming the 
phase coefficient 1 and the amplitudes no, II,, ... to change slowly over the 
wave length. 

Thus, by (3.8.1), the latitudinal wave number for large E ,  is of order E : ’ ~ .  

The longitudinal wave number k enters into equation (3.5.9) as a parameter. 
Here special interest attaches to waves for which longitudinal and latitudinal 
wave numbers are of the same order. Therefore assume that h ‘L and let 
in equation (3.5.9) 
h = ho = constant (3.8.2) 

Substituting (3.8.1) into (3.5.9) and equating to zero coefficients of dif- 
ferent powers of e,, one arrives at  a sequence of equations for the determina- 
tion of l ( p ) ,  I I o ( p ) ,  IIl(p), etc. For example, the coefficients of E ,  and E : ~ ~  

yield in this manner the equations 

It follows directly from (3.8.3) that 

l 2  = E ( p 2 ) / ( 1  - p 2 ) 2  , 

where 

E ( p 2 )  = p4 - (1 + 02) p2 + 02 - kg . 

(3.8.3) 

(3.8.4) 

(3.8.5) 
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If u: > kg , one has E ( 0 )  > 0; since always E(1) < 0, one root p: of the 
equation E ( b 2 )  = 0 will be less than unity, another root larger than unity: 

1 + o f -  (1 - u y  1/2 

pf ,2  = 2-f (----+ 4 kg] . 

Thus, one has that E ( p 2 )  > 0 for -pl < p < p 2  and E ( p 2 )  < 0 for -1 < 
p < -pl and p1 < p < 1, i.e., by (3.8.5), the function n, has on the interval 
-pl < p < p1 an oscillatory (wave) character, and on the intervals -1 < p < 
-pl and p1 < p < 1 an exponential (non-wave) character. 

If 02 < k$ , then the interval [-1, 11 does not contain a section on which 
the solution II, oscillates, and this signifies that in this case there are no short- 
wave eigensolutions. 

By (3.8.3), the coefficient of nl(p) in (3.8.4) vanishes and one obtains a 
simple equation for the determination of n0(p). One may proceed in an anal- 
ogous manner to find n,, .... 

In order to construct a complete asymptotic expression for the eigenfunc- 
tion n, of Problem H ,  one must still develop special asymptotic representa- 
tions for n, in the neighbourhood of the transition points p = f p l  and of the 
ends of the interval p = +1. Successive matching of all asymptotic expansions 
leads to  asymptotic expansions of the solutions of (3.5.9) which are 
bounded on [-1,1] and of the corresponding eigenvalues E*,. 

For the sake of brevity, the complete analysis will be omitted (cf. [49] for 
such an analysis relating to curves of Types 1-3) and it will be assumed, as 
an approximation, that all values of E* are admissible (continuous spectrum). 
Since ( E * ~ + ~  - E * , ) / E * ,  + 0 as n -+ w ,  such an approximation, beginning with 
large values of n ,  is completely justified. 

Greatest interest relates to asymptotic representation of the eigenfunction 
11, on the interval [-pl, pl], where it has a wave character. Restricting con- 
sideration to the first approximation and recalling (3.5.1) and (3.8.2), one 
finds 

n, = no@) e x p { i [ k o 6 X  + 6 
9 

l(sin p) cos pdp]} . 
0 

Consider now some point with coordinates ho, cpo such that I sin po I < pl, 
and introduce local wave numbers 

k’  = k/a cos po = kod/*/a cos po, 1’ = &(l/a)(dp/dp) = &(l COS Po)/a . 
Clearly, in the neighbourhood of the point Xo, po, the above expression may 
be presented in the form of a plane wave 

II- n’(p0) exp{i[k’(po) x +  PO) YI) (3.8.6) 

where n’ is the amplitude and x = a cos p o ( h  - ho), y = a(p - cpo) are local 
coordinates in the plane tangent to the sphere at the point ho, po. 
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Using the definitions of the local wave numbers h' and I' and taking into 
consideration (3.5.5), formula (3.8.5) can be rewritten in the form 

(3.8.7) 

where f ( p 0 )  = 2CZ sin cpo is the Coriolis parameter. 
By definition, only discrete values k' and I '  are admissible; however, in the 

case of short waves (large values of E , ) ,  one may fix the local wave numbers 
k' and I '  arbitrarily and will thereby not violate the boundary conditions at 
the poles. Then formulae (3.8.7) and (3.8.6) may be considered to be 
approximate expressions for eigenvalue curves of Q p e  1 ( k ' ,  I' being free 
parameters) and for eigenfunctions II, [in the vicinity of the point Xo, pol 
corresponding to the points of these curves, respectively. It must be empha- 
sized that introduction of local wave numbers and the approximate expres- 
sion (3.8.7) for eigenvalue curves of Type 1 has significance only for short- 
wave eigensolutions. 

The cases of eigencurves of Type 2 for E ,  < 0 and of Type 3 can be 
studied in an analogous manner. For fixed 0, and large E , ,  the solution is 
sought in the form 

P 

n, = [n,(Pu) + (-*Y2 nib) + ... I exPM-E*Y2 J 411) d111 9 

C 

where the lower integration limit c is chosen to suit convenience. Substitut- 
ing this series into (3.5.9) and setting k = k o ( - E , ) 1 / 2  (latitudinal and longi- 
tudinal wave numbers being of the same order), one obtains 

l 2  = -F ( P 2 ) / V  - P 2 I 2  Y 

where 

F ( p 2 )  = p4 - (1 + u:) p2 + U: + k : .  

Since F ( 0 )  > 0 and F(1) > 0, there cannot occur for u2 > 1 - 2ko short- 
wave solutions (on the interval [-1, 11 eigensolutions do not oscillate). In 
the case a: < 1 - 21c0, the equation F ( p 2 )  = 0 has on the interval (-1, 1) 
two roots 

(3.8.8) 

1+0: -  
d . 2  = 2 + J[(1- - 4 k 2  0 i  14 

and on the intervals (-p2, -pl) and ( p l ,  p a )  the eigensolution will have an 
oscillatory (wave) character and on the intervals (-1, -pa) ,  (-pl, pl) and 
( p 2 ,  1) an exponential (non-wave) character. 

As in the case of eigencurves of Type 1, the complete asymptotic repre- 
sentation of the solution will not be developed here and it will be assumed 
that the spectrum is continuous for large IE* I .  Introducing on the wave inter- 
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vals of the solution local wave numbers k' and l ' ,  rewrite (3.8.8) in the form 

where E < 0. Thus, formula (3.8.7) serves for the description of eigencurves 
of Type 1 for c > 0 as well as for the description of eigencurves of Types 2 
and 3 for E < 0. 

Finally, consider eigencurves of Type 2 for c > 0. In this case, it is more 
convenient to  study (3.5.8) for the fixed parameter o = - - ( T * E $ / ~ ,  since eigen- 
functions with large latitudinal wave numbers correspond precisely to  the 
points of intersection of the curves CJ, = -constant E,'/' with eigencurves 
of Type 2 at large E , .  

Seek the solution of the problem in the form 

V ,  = [ V o ( p )  + E ; ~ / ~ V ~ ( ~ )  + ...I exp[iet/2 

Substituting this expression into (3.5.8) and taking into consideration (3.8. 
2), one obtains 

1(p) dp] . 
0 i 

(3.8.9) 

where 

If how > 1, one has G ( p 2 )  < 0 in (-1, 1) and short-wave eigensolutions do 
not exist. If k o o  < 1, then G ( p 2 )  > 0 on the interval (-pl, p , )  and G ( p 2 )  < 
0 on the intervals (-1, p,) and ( p , ,  1). 

As before, consider the wave interval of the solution and, introducing 
local wave numbers k' and l ' ,  rewrite (3.8.9) in the form 

(3.8.10) 

where the coefficient & P O )  = (252/a)cos po, referred to  as latitudinal change 
of the Coriolis parameter, will play an important role in what follows. 

Formula (3.8.10) yields an approximate expression for eigencurves of 
Type 2 for E > 0 (k' and 1' being free parameters). 

This analysis may be simplified by introduction of the concept of the 
so-called 0-plane. Assume that the scale factor cos cp in the system of equa- 
tions (3.2.8)-(3.2.10) may be replaced by the constant cos cpo . Intro- 
ducing local coordinates x = a cos po (A - A,) and y = (p - cpo), one finds 

au av an an 
ax a Y  ax ay -ioen + __ + -= 0 -ioV + f U = -- , -iuU- f V  = -- , 

(3.8.11) 
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Formally, this system has the same form as in the case of a rotating plane 
layer. However, it must be recalled that the Coriolis parameter f is here a 
function of y. 

(u, V, II) = (6, C, fi) exp ikx , (3.8.12) 

where 6, ? and fi are_functions of y .  Substi!ute form (3.8.12) into (3.8. 
11) and express fi and n in terms of and dV/dy, using the first and third 
equations. After introducing the expressions obtained into the second equa- 
tion (3.8.11), one finds 

A solution of (3.8.11) will be sought in the form 

(3.8.13) 

where = df/dy. It has been assumed in the derivation of (3.8.13) that u2 f 
k2f ,  or, what is the same thing, that P 0. It  is not difficult to show that 
only for u = k/e1’2, and then only in the neighbourhood of the equator, 
there exist non-trivial bounded solutions of system (3.8.3). 

Finally, a last assumption will be introduced; it relates to moderate lati- 
tudes of the oceans where the coefficients f and p in (3.8.13) may be 
assumed to be constants (variant of the short-wave approximation). The set 
of these assumptions is usually called the approximation of the 0-plane. As a 
rule, it is assumed that in the equatorial region one has f = f l y ,  when one 
speaks of the equatorial 0-plane. 

If f and p are constants, then a solution of (3.8.13) may be sought in the 
form Q = exp(iZy ), and one obtains immediately the equation for the eigen- 
value curves 

k 2  + l 2  + kP/o 
€ =  

0’-f2 - (3.8.14) 

It determines the set of eigencurves of Problem H in the ( f ,  a)-plane (Fig. 
3.14). I t  is seen from this figure that qualitatively all three types of eigenval- 
ue curves under consideration are described correctly (for not very large 
1 ~ 1 ) .  For these eigenvalue curves, one obtains easily from (3.8.14) simple 
approximate formulae. For this purpose, let 

and write the cubic equation in 0[(3.8.14)] in the form 
0 3  - 0 + 6 = O ,  - 

where 
one finds D l . 2  = 2 1  + O(6) and 
ting small terms, one has 

= a/u, and 6 = uR lug.  Since for the ocean 6 is a small parameter, 
= -6 + 0 ( S 2 ) .  Reverting to  u and omit- 

(3.8.15) 
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Fig. 3.14. Pattern of eigenvalue curves of Problem H for rotating spherical layer in 
approximation of 0-plane ( k  > p/n. The numbers correspond to definite values of k 2  + Z2. 

Within the notation for the wave numbers, formulae (3.8.15) coincide 
exactly with (3.8.7) and (3.8.10). Thus, the approximation of the P-plane 
and the short-wave approximation yield the same formulae for the eigencur- 
ves of Problem H. 

N.10' 8-' 
0 0.4 0.8 f.2 

- 

- 

A 

M 
Fig. 3.15. Graphs of u,tp(z), c ( z )  and N ( z )  typical for the ocean; N,,, = 1.1 . lop2 
sec-l, cmin = 1.483 . l o 5  cmisec. N ~ n  = 0 (chosen so that existence of gyroscopic waves 
is assured). 
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Frequency 

Fig. 3.16. Dispersion curves u = u ( k h )  for different types of waves for uStp, N and c (Fig. 
3.15) characteristic for the ocean: f = 1.0 . l r 4  sec-l, fl  = 1.6 . m-1 sec-1, k = kh 
cos 30°, 1 = k h  sin 30'. Arabic numerals indicate numbers n of corresponding vertical mode 
(Fig. 3.11), Roman numerals type of waves: Z = Rossby waves, ZZ = gyroscopic waves, 
ZZZ = internal gravitational waves, ZV = surface gravitational waves, V = acoustic waves. 
Equation of inclined straight lines: CG = u / k h ,  ce = constant. Numerals o n  these straight 
lines are the values of the phase velocity cb m/sec. 

Substitution of the numbers E ~ ,  e l ,  e2, ... into (3.8.15) [the eigenvalues of 
Problem (3.7.8) and (3.7.9)] yields the corresponding dispersion relations 
for not very long Rossby and gravitational (low-frequency) waves. 

Finally, dispersion curves for different classes of not very long ocean 
waves will be constructed for distributions of ustp(z), N ( z )  and c ( z )  typical 
for the ocean (Fig. 3.15). For this purpose, determine the eigenvalue curves 
of Problem H from the approximate formula (3.8.14) and the eigenvalue cur- 
ves of Problem V numerically. Omitting the details of the numerical compu- 
tations, the final results are shown in Fig. 3.16, constructed in cooperation 
with A.V. Kulakov. Note that in the stated range of h, and 0, the frequen- 
cies of all types of waves, excluding Rossby waves, depend on the wave num- 
bers k and 1 only through hh = d m ' .  In the simplest cases, these relations 
have been already stated for different types of waves in 5 3.3. 

In conclusion, the relative error arising from the replacement of baro- 
tropic Rossby waves ( E  2: l / g H )  by non-divergent Rossby waves ( E  = 0) will 
be estimated from the second formula (3.8.15) [cf. the approximation of the 
rigid lid in 5 3.71. This error is, obviously, equal to ( f 2 / g H ) / ( k 2  f Z2), and for 
not very long waves it turns out, as a rule, to be insignificant [cf. Fig. 3.161. 
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3.9 PROBLEM OF FORCED WAVE MOTIONS 

It  is known that a basic contribution to the variability of the ocean arises 
from meso- and macro-scale processes with characteristic frequencies of 1 
per day and less and wave numbers of 10-2-10-3 krn-’. In such a range of 
frequencies and wave numbers, there may only exist barotropic and baro- 
clinic Rossby waves (cf. Fig. 3.16). Therefore, under typical ocean condi- 
tions, the portion of energy due to acoustic, gyroscopic and gravitational 
waves is usually insignificant. 

Thus, it is natural to consider the problem of forced waves in Boussinesq’s 
approximation and quasi-statically, filtering out acoustic and gyroscopic 
waves. Gravitational waves will be filtered out somewhat later. 

Forced wave oscillations in the ocean are described by the same system of 
equations (3.1.3) -( 3.1.7) which has been studied in connection with 
the theory of free oscillations; however, one must now write down on the 
right-hand sides of (3.1.3) and (3.1.4) the mass forces F A  and Fv. Overlook 
for the present the question of the nature of these forces and assume that 
F A  and F ,  have already been expanded in series 

m m 

F A  =L c F”,(X, cp, t )  P,(z), F =L c F;(X,  cp, t )  P,(z) (3.9.1) 
Po 0 Lp Po 0 

with respect to the eigenfunctions P,%(z) of Problem (3.7.8) and (3.7.9). 

One of the basic mechanisms of forcing of low-frequency oscillations in the ocean is the 
action of tangential wind stress T A  and T~ on the ocean surface (the direct effect of 
changes of atmospheric pressure p a ,  as a rule, is inessential and p a  may be assumed to be 
constant). This surface force may be replaced by the body force (TA, r,)/p&o, acting 
within the limits of the upper mixed layer of thickness ho (cf. [ 5 ] ) .  

Then the solution of the problem of forced oscillations may be sought in 
the form 

m 

where W,(z)  = ( 1 / p d 2 )  dP,/dz; the sea level 2 has been included among the 
number of unknowns. Obviously, conditions (3.1.8) and (3.1.9) are satisfied. 
Substitution of (3.9.2) into (3.1.3)-(3.1.7) yields for U,, V ,  and fl, 
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the system of Laplace's tidal equations with known body forces. Introducing 
instead of the eigenvalue en of Problem (3.7.8) and (3.7.9) the equivalent 
depth H ,  = l/ge,, (cf. end of 3.7), one has 

(3.9.3) 

Thus, the general problem of forced oscillations reduces to the solution of 
a number of problems of the same kind of the determination of normal 
modes of oscillation (U,, V,,, II,) described by (3.9.3) 

The general number of such problems is determined by the given accuracy of represen- 
tation of the mass forces by the series (3.9.1). The functions P,(z) and the equivalent 
depths H ,  can be computed for a given stratification once and for all. Analysis of similar 
problems in the case of n-layer fluids is discussed in [46], as well as in [63, Appendix]. 

Consider now the question of filtration of gravitational waves. Study Sys- 
tem (3.9.3) for moderate latitudes of the ocean. As is already known, the 
coefficients of System (3.9.3) change very slowly for the short waves of 
interest here. Therefore, changing to local coordinates x = a cos lpo(h - Xo) 
and y = a(lp - lpo) [ cf. (3.8.11)], one obtains, for example, 

f = f o  + Po(Y - Y o )  + *.* 

and 

(3.9.4) 

where k is a characteristic (dimensional) wave number. 
Assume that in the first two equations of System (3.9.3) the Coriolis force 

(fv,  fu)  and vhn have the same orders of magnitude [the index n has been 
omitted for the sake of simplicity]. Expressing now the characteristic scale 
II in terms of the characteristic velocity scales ( U ,  V ) ,  one obtains 

where o is a characteristic frequency. Besides, it is obvious that 

(3.9.5) 

(3.9.6) 

Formulae (3.9.4)-( 3.9.6) introduce three nondimensional param- 
eters; their magnitudes will be estimated for Rossby waves. One has f o  = 1.0 - 
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TABLE 3.111 
Values of the parameters onfolgHnk2 and on / fo  

Barotropic: n = 0 2.9 . 1.1 . 10-1 3.6.10-5 1.4 . lop2 
Baroclinic: n = 1 1.4 . 10-1 1.0. 10-4 1.3 . 1.0. 10-3 

n = 2  1.4 . 10-1 2.4.10-5 1.4 . lop2 2 . 4 .  

lop4 sec-l, Po = 1.6 . m-l sec-l; the parameters of stratification 
ustp,  c and N are given in Fig. 3.15. Numerical calculations yield for the first 
three eigenvalues ~ ~ ( 0 ) :  e0 = 0.257 - loA4 sec2/m2, el = 0.140 sec2/m2, e2 = 
0.573 sec2/m2, and the equivalent depths Ho = 3.97 - 103m, Hl = 0.73 m, 
H2 = 0.18 m. The parameter Oo/f0k = 0.16 for h = l oA6  m-l and po/fok = 
0.016 for k = lop5 m-l. The values of the parameters onfo/gHk2 and an / fo  
are given in Table 3.111; the frequencies of the Rossby waves have been com- 
puted for the second formula (3.8.15). 

Thus, all three parameters po/ fok ,  onfo/gHnk2 and an / fo  are small for baro- 
tropic as well as for baroclinic Rossby waves. I t  will be shown below that the 
order of magnitude of the ratio F / f U  is also small. Therefore, presenting the 
unknown solution in the form 
u = V ' O '  + vcl) + "., v = V ' O '  + v'l' + ..., n = n(0) + n(1) + ... . 
and neglecting in first approximation all small terms, one finds 

(3.9.7) 

(3.9.8) 

(it being convenient not to go to the non-dimensional form). 
When writing down the second approximation, it is expedient to assume 

that all small parameters po/ fok ,  afo/gHk2 and o/fo and likewise the ratio 
F/ fU are quantities of equal order of magnitude. One has 

(3.9.9) 

(3.9.10) 

(3.9.11) 
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The relations (3.9.7) are said to be geostrophic. Equation (3.9.8) permits 
to introduce a stream function 

(3.9.12) 

when it follows from (3.9.7) that 

Po) = f 0 $ ( O )  + constant . 

tiation, one obtains the vorticity equation 

(3.9.13) 

Eliminating the function rI(’) from (3.9.9) and (3.9.10) by cross-differen- 

+ f lOflo) = rot,F . (3.9.14) 

Finally, one finds the required equation for Rossby waves from (3.9.8) 
and (3.9.11)-( 3.9.13) 

(3.9.1 5) 

where Ah is the Laplace operator in the (x, y)-plane. 
The superscript (0) on the stream function has been omitted here; recall 

also that (3.9.15) is a first approximation. Likewise, one must keep in mind 
that in this equation the quantity H has different meanings for barotropic 
and baroclinic Rossby waves. Once the stream function I) has been found, 
then U ,  V and II can be determined (in first approximation) from (3.9.12) 
and (3.9.13). 

Equation (3.9.1 5) determines the at present unknown characteristic scale 
of the velocity U as % Fk,lflo. Therefore the ratio FIfU % Po/fok, as it has 
been assumed, turns out to be small. 

COMMENT ON CHAPTER 3 

3 3 3.1, 3.2: For the general formulation of the problem, the energy equa- 
tion and the method of separation of variables, cf. Monin, Obukhov [78], 
Eckart [13], Dikii [ l l ] ;  the approximation (3.1.2) is due to Phillips [94]. 

5 3.3: Related questions are studied in many places (cf. Eckart [ 131, Tol- 
stoy [122]). An explanation of the mechanism of the formation of Rossby 
waves has been given by Longuet-Higgins [ 691. 

5 3.4: This presentation is due to Kamenkovich, Odulo [47]; cf. also the 
bibliography in this paper. 

5 3.5: This subject is studied in the papers of Longuet-Higgins [70] and 
Dikii [ l l ] .  
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5 5 3.6, 3.7: Kamenkovich, Odulo [47]. 
3 3.8: The short-wave analysis of Laplace’s tidal equations is based on 

8 3.9: The derivation of the equation for Rossby waves has been taken 
work of Kamenkovich, Tsybanova [49]. Cf. also Phillips [97, Section 31. 

from the work of Phillips [ 94, Section 21. 



CHAPTER 4 

EQUATIONS OF THE THEORY OF OCEAN CURRENTS AND THEIR 
PROPERTIES 

4.1 EQUATION OF EVOLUTION O F  POTENTIAL VORTICITY 

A start will be made with the derivation of the general vorticity equation. 
Introducing the vorticity vector w = rotv and employing the well known 
relation 

vpvpv, = V,(+V2) + €,pyWPVY , 

Equation (2.3.6) may be rewritten in the form 

(4.1.1) av, 1 
~ + V ('v2) + E , ~ ~ w $ u Y  = --V,p + X, + F, , a t  a 2  P 

where the vector wA = w + 2Cl signifies the vorticity of the absolute motion 
and is, as a rule, referred to  as absolute vorticity (absolute motion comprises 
motion with velocity v relative to  the Earth and rotation with velocity C2 
together with the Earth), F is the force of friction per unit mass (Fa = (1/ 
p)V,&) and the remaining notation is known. 

Applying to  both sides of (4.1.1) the operation eXUCVVv and using a formula 
of the type (A4.11), one finds 

a ax 1 
__ + v U V , w ~  - v x v  "id; + w ~ V u v U  - wv v vx = --€XV,V uPVaP at P 2  

A v  

_ _  l e X u a V v ( V g )  + eXuaVu(X, +Fa) . 
P 

Since exv"vU(o,p) = rot(Vp) = 0, V,w> = div aA = 0, exvaVuX, = 0 (mass 
forces have a potential) and a w/a t = a w,/a t ,  this expression may be simpli- 
fied. Finally, using the equation of conservation of mass (2.2.13), one arrives 
at the known equation 

(4.1.2) 

By (4.1.2) [ Fridman's equation] , the change of absolute vorticity referred 
to unit mass is caused by the effects of stretching of the absolute vorticity 
lines, baroclinity of the ocean water and frictional forces. 
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These effects will now be discussed briefly. Consider in Cartesian coordi- 
nates an element of the absolute vortex thread 8r = (6x, 6 y ,  62) = ( E / ~ ) o ~  
(where E is some small quantity). Since this element moves with the liquid, 
the change in length of the component 8x will be 

d u A x a u  u A y a u  u A z a u  -( 6x) = f- - + €-- 

and analogously for 6 y  and 62. Hence one has, in general tensorial form, 
d t  p ax p a y + E p Z  

d -(6rX) = E - - V ~ , , X  , 
d t  P 

but this quantity is exactly proportional t o  the second term on the left-hand 
side of (4.1.2). Note that in the case of plane motion the effect of stretching 
of the absolute vortex lines vanishes (assuming, of course, that the axis of 
rotation is perpendicular to  the plane of motion). 

The baroclinic effect is described by the term ( l / p 3 ) Y p  X V p .  Clearly, vor- 
ticity w arises only from those components of the force Vp which lie in the 
plane tangential to  the isopycnic surface (in a baroclinic fluid p = p (p) and 
Vp does not have such a component), since, in fact, this component of Vp 
imparts different accelerations to particles lying on different sides of the iso- 
pycnic surface which also arouses their twisting. Analogously, the effect of 
viscosity always causes a couple, twisting the fluid particles (Fig. 4.1). 

Thus, even in an ideal baroclinic fluid, absolute vorticity of particles 
(referred to  unit mass) is not conserved during motion (because of stretching 
of absolute vortex lines). 

Consider now a quantity u the value of which for each fluid particle does 
not change during adiabatic motion. Then 

do 
d t  
-- - 0  (4.1.3) 

Quantities o(x”, t )  are usually referred to  as Lagrangean adiabatic invari- 

1 a -  

Fig. 4.1. Towards an explanation of the generation of vorticity in a fluid. a) - baroclinic 
effect; different accelerations of “upper” and “lower” particles leading to deviations from 
translatory motion are shown; b) - effect of frictional forces, twisting fluid particles; the 
velocity distribution is shown on the right. 
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ants or simply as adiabatic invariants. Examples of such invariants are spe- 
cific entropy rim and salinity s. 

Thus, let a be some adiabatic invariant. I t  will be shown that one may 
obtain a new adiabatic invariant which plays an important role in hydro- 
dynamics (cf., for example, [76, 77,94,130]) .  For this purpose, apply to 
(4.1.3) the gradient operator 0,. Since in Euclidean space 0,0, = V,V,, one 
has 

-(V,O) d + Vxv"VOla = 0 .  dt (4.1.4) 

For adiabatic motion, one must omit in Fridman's equation (4.1.2) the 
effect of friction. Multiply then this equation scalarly by V K a ,  and equation 
(4.1.4) likewise scalarly by ( l / p ) o > .  Adding the results and using the iden- 
tity 

oy7,vxvxo = V x V ~ 0 , a ~ ~ ,  (4.1.5) 

one obtains Ertel's formula 

O A V U  = < ( V p X V p )  v o .  %(T) p 
(4.1.6) 

The quantity ( l / p ) w , V a  is called the potential vorticity of the particle. If 
the thermodynamics of the medium under study are determined by two 
independent parameters (for example, p and p) ,  then 

( VP X VP) Vrim = 0 7 

since the vector V q m  lies in the plane of the vectors V p  and V p .  However, 
then, by Ertel's formula (4.1.6), it is concluded that the potential vorticity 
( l / p ) o ,  V q m  is an adiabatic invariant. However, in the case of sea water, the 
specific entropy qm depends on three independent parameters (for example, 
p ,  p and s) and, generally speaking, ( V p  X Vp)Vr), # 0. Since the velocity of 
sound in sea water is very large, one has approximately for adiabatic motion 
dp/dt = 0 [cf. (3.1.1)]. Since always ( V p  X V p ) V p  = 0, the potential vorticity 
( l / p ) o A V p  may he assumed to  be an approximate invariant for sea water. 

For non-adiabatic motion of a fluid, formula (4.1.6) is readily generalized. 
Repeating all stages of the derivation of (4.1.6), one obtains 

(4.1.7) 

where Q is the change of the parameter a caused by non-adiabatic factors: 
da/dt = Q. Since div ( Q o A )  = oAVQ and Va rot F = div (u rot F ) ,  one has 
finally, 

--( Vp X V p )  Va + div(Qo, + a rot F )  . (4.1.8) 
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Equation (4.1.8) is referred to  as the equation of evolution of potential 
vorticity. 

4.2 BOUSSINESQ'S APPROXIMATION 

In Chapter 3, a closed system of equations has been obtained for the deter- 
mination of the basic parameters T, p, s and v. However, in general form, 
these equations prove to  be too complex, and they may be considerably sim- 
plified for studies of the motion of sea water. 

A start will be made with the equation of evolution of entropy in the 
form (2.7.1). Transform to the variables T,  p and s. By (1.5.4), one has 

+ I ,  v($). (4.2.1) 

Employing the diffusion equation for salt (2.2.14) and the identity ,u = 
ax,/as-Taq,/as (cf. end of § 2.7), one derives equation (4.2.1) in the 
form 

(4.2.2) 

In writing down (4.2.2), the adiabatic temperature gradient r has been 
introduced (cf. 3 1.6). It is not difficult to obtain the estimate that on 
lowering particles from the ocean surface to  a depth of 2000 m I'dp - 1 f 
2"C, at the same time as dT - 10°C; for horizontal displacements of par- 
ticles, the contribution of the term r d p  is quite insignificant. Therefore in 
the upper layers of the ocean, the second term on the left-hand side of 
(4.2.2) may be disregarded deliberately. Further, assuming the gradients of 
the basic parameters of the medium V,T, Vap, Vffs and Vaup to be small, 
neglect the two last terms on the right-hand side of (4.2.2) in comparison 
with the first term. Finally, one has 

dT p c , ~  = -div q . (4.2.3) 

Equation (4.2.3) is usually called the equation of heat conduction for a 

Next an estimate will be obtained of the change of density 6 p / p  in the 
moving medium. 

ocean. Since p = p (  T ,  p, s ) ,  one has 
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In the ocean, one has a p / a T  - 2 - g/"C, 6T - 10°C. Therefore 
( 6 p ) , , ,  - 2 whence (6p), , ,  - 
lop3 g. Thus, observable changes in temperature and salinity appear to  have 
roughly identical effects on density changes. 

Next, an estimate of the quantity ( 6 ~ ) ~ , ~  will be obtained. The quantity 
( a ~ / a p ) ~ , ~  = l/c$, where c$ is the square of the isothermal velocity of sound 
(cf. 5 1.6). Thus cT - c, and 

lop3 g. Further, apl3.s - 1 g and 6s - 

Estimate the possible pressure drop 6 p  which depends, generally speaking, 
on the type of motion. For example, for small-scale motions 6p /Lp  - i?/L 
(where L is a characteristic horizontal scale and U a characteristic horizontal 
velocity), and ( l / p ) ( 6 p ) T , s  = u2/c2 = + lop8. For large-scale motions, 
pressure drops along the horizontal and vertical differ strongly in magnitude. 
In the first case, using geostrophy (cf. 5 3.9), one has 6p - LfU (where f is 
the Coriolis parameter), i.e. 6p l o 5  + l o6  dyn/cm2 and ( l / p ) ( 6 p ) T , s  = 

In the second case, by the hydrostatic condition 6 p  2: gpH 
(where H is the vertical scale -1 km). Hence 6p = l o8  dyn/cm2 and ( l / p )  

These estimates show that for computation of the horizontal density gra- 
dient V,p one may assume the density to  depend only on temperature and 
salinity. However, when computing vertical density gradients, the depen- 
dence of the density on pressure proves to  be very important. 

Thus, the density in the ocean changes very little: 6p /p  = This fact 
will now be used to  simplify the basic equations. Consider the equation of 
conservation of mass (2.2.13). Since 

t 

(6p)T,s = 5 .10-3. 

equation (2.2.13) may be written in the form 

* + p  divv = 0 .  (4.2.4) 

It has been seen in Chapter 3 that the term ap/a t is essential only for fast 
acoustic waves. Writing equation (4.2.4) in the form div v = 0, one filters out 
acoustic waves with insignificant energy and practically does not distort 
other types of waves. Assuming that characteristic velocities of propagation 
of disturbances in a medium are given by linear theory, it is readily shown 
that one may neglect the term ap /a t  in (4.2.4) also in case of non-linear pro- 
cesses. Thus, with a great degree of accuracy, the equation of conservation of 
mass may be written in the form 

div v = 0 . (4.2.5) 

a t  
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Finally, it will be assumed that the force of gravity is the only external 
body force. Consider the expression - ( l / p )  V p  + g ,  entering into the equation 
of motion (2.3.6). Let p = p0 + p ' , p  = p o  + P I ,  where V p 0  = g p 0  and po is 
some mean constant density, p '  << po. Then, neglecting terms of the second 
order of smallness, one obtains 

VP' P' 
- v p + g = - - ( v p o +  V p )  1--+ ;: ... 1 +g--- Po +gz 7 

1 
P P o  

- 

or reverting to total p and p ,  

(4.2.6) 

One may replace p by po in (2.2.14) and (4.2.3); likewise, it may be 

Taking all these approximations into account, the system of basic equa- 
assumed that the thermal conductivity in (4.2.3) is constant. 

tions reduces to the form: 

- (poua)  = --o,IT"P + p$i + 2 p o ~ a P 7 u p ~ 7  , a 
a t  

II"P = pOuauP + pm"P - uap , 

(4.2.7) 

(4.2.8) div v = 0 , 

a 
at -- (pas) = -div(p,sv + I , )  , (4.2.9) 

where the equation of motion has been rewritten in an equivalent form, 
taking into consideration (4.2.8). 

Since the concrete expressions linking the fluxes uaP, Z, and 4 to  the gra- 
dients of the basic parameters v, T,  p and s will not be required in what fol- 
lows (cf. end of 5 4.3), no attention will be given here to  simplification of 
the general laws (2.9.1), (2.10.1) and (2.10.2). 

The term p g  in (4.2.7) describes the effect of Archimedes forces. Thus, 
small changes in density prove to  be essential only for the computation of 
these forces; in all remaining terms entering into the basic equations, the 
density p may be replaced by the constant po. 

Approximations (4.2.5) and (4.2.6) (and likewise replacement of p by po 
in all remaining equations) are referred to  as Boussinesq approximation. A 
variant of these approximations has been encountered in Chapter 3 when 
considering the linear theory of waves. It is not difficult to  show that, after 
introduction of the Vaisala frequency N ( z )  into the basic equations of the 
theory of waves, the density po(z)  may be replaced by the constant p o ;  then 
all types of waves (except, of course, acoustic waves) will be distorted quite 
unnoticeably . 
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According to the approximation adopted, one has for adiabatic motion of 
a fluid dT/dt = 0, ds/dt = [cf. (4.2.8)-(4.2.1O)l. Since dpldt = (l /c$)dp/ 
dt ,  one can set approximately dp/dt = 0, assuming c$ t o  be very large. 
Then it is readily shown that, by strength of the equations of motion (4.2.7), 
the potential vorticity oA Fp will be an adiabatic invariant. In fact, repeating 
the derivation of the preceding section and employing the identity 

V p  rot pg = div(p rot pg) = div[rot(p2/2) g ]  = 0 

one finds 

(4.2.11) 

Since strictly speaking d p / d t  # 0, the quantity oAVp for  each particle will, generally 
speaking, change slowly in agreement with a general equation of the  type (4.1.8). 

I t  is easily verified, at the same time, that the approximate analogue of 
Fridman's equation (4.1.2) has the form 

1 
P o  

___ dw' W" V ux = - EXuaVv(pga) + E ~ ~ ~ V , , F ,  , A v  d t  
(4.2.12) 

and, since vap0 = poga, the term (l/pg)eK"@ Vu(pg,) may be rewritten in the 
form (l/p;)eKua VupV,po, which can be usefully compared with the expres- 
sion ( l / p 3 ) e K u "  vupvap in the exact equation (4.1.2). 

In conclusion of this section, the analogue of the equation of mechanical 
energy transfer (2.6.2) will be written down in Boussinesq approximation. 
Multiplying the equation of motion (4.2.7) scalarly by v, one obtains 

(4.2.13) 

Since it has been seen that uOgeaP > 0, then the Boussinesq approximation 
does not admit conversion of internal energy into mechanical energy (only 
dissipation of mechanical energy is possible). 

4.3  AVERAGING O F  BASIC EQUATIONS 

Thus, one has found for the determination of the basic parameters of a 
medium v,  T, p and s a closed system of equations (4.2.7)-(4.2.10). How- 
ever, a new circumstance complicates extremely the entire problem: Mo- 
tion in the ocean is turbulent. Therefore, in essence, the functions v, T, p 
and s turn out to  be stochastic fields and for given initial and boundary con- 
ditions one has a set of possible realizations of the motion under considera- 
tion. Even for small deviations from given external conditions, there develop 
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in the flow finite perturbations (for more detail, cf. [79]). As usually, 
assume that each concrete realization of the field v ,  T,  p and s (real field) 
satisfies the basic equations (4.2.7)-(4.2.10). Clearly, the problem of 
description of a concrete realization of the motion under study on the 
basis of the system of equations (4.2.7)-(4.2.10) is practically insoluble. 

It is natural in a study of random fields to  take interest, in first place, in 
their mean values. Each real field a will be represented in the form 

a = i i + a ' ,  (4.3.1) 

where a is the averaged field and a' the pulsation field. The representation 
(4.3.1) was first introduced by Reynolds. 

What is the significance of the average in the representation (4.3.1)? 
Strictly speaking, one must understand by average the stochastic average over 
the set of possible (under given external conditions) realizations of a motion 
under consideration. In the presence of stationarity or homogeneity of the 
stochastic field, one may, using the ergodic hypothesis, compute the mean 
also over individual realizations. However, the method of averaging will not 
be of concern here. The operation of averaging will be introduced axiomati- 
cally; in fact, it will be required that the following conditions are fulfilled 
(Reynold's conditions) : 

a f b = a + b , 
~- - -  - 

ha = lza , k = constant , h = k , k = constant , 

(4.3.2) 

Note that for a stochastic average all these conditions are satisfied. For so- 
called time or space averages (practical methods of averaging), the last condi- 
tion (4.3.2) is only fulfilled approximately. 

The following results follow from the last condition (4.3.2), if one sets 
there consecutively b = 1, b = b' and b = 6 :  

- __ - - - - - - -  
a = a ,  a ' = a - a = O ,  ab' =ab' = 0 ,  ab = a b .  (4.3.3) 

(4.3.4) 

The following important relation follows readily from (4.3.3): 

ab = ab + a'b' . 

An attempt will now be made to  construct a system of equations for the 
averaged fields v ,  T, p and s. Averaging equations (4.2.7)-(4.2.10) and 
using rules (4.3.2)-(4.3.4), one finds 

- __ ~ 

- _ -  

(4.3.5) 

div v = 0 , (4.3.6) 
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a -  
% ( P O S )  = -ciiv(p ,S; + I, + pOSIZlr) , 

(4.3.7) 

(4.3.8) 
- - -  

Thus, one may write down for the averaged fields v, T,  p and s t h e  same 
equations as for the real fields, if one understands by heat flux 3 + J ,  , by 
diffusive flux of salt I, + J,, and by the tensor of viscous stresses uffP +Rap ,  
where 

The vector J ,  is referred to  as vector of density of turbulent flux of heat, 
the vector J ,  as vector of density of turbulent salt flux, and the symmetric 
tensor RaP as tensor of Reynolds stresses. Thus, from the point of view of 
averaged fields, turbulence leads to a change in the transfer processes, where, 
as a rule, 

y, I >> 141 , IJ,I >> Ir,l , IRffPI >> IcapI . (4.3.10) 

These inequalities may, generally speaking, be violated only for studies of 
micro-scale processes which will not be considered in this book. 

Note now that the system of equations (4.3.5)-(4.3.8) for the aver- 
aged fields v ,  T, p and s appears to be not closed: It contains the new 
variables J,, J ,  and RaP which play, by (4.3.10), a definite role. Formally, 
this situation is analogous to  the position discussed in detail in Chapter 2. 
However, for averaged motions, there exist no general principles of the type 
of the second law of thermodynamics on the basis of which one could achieve 
closure of the systems. The problem of closing Systems (4.3.5)-(4.38) 
has hitherto not been solved completely (at last, not in visible form) and 
it represents the basic difficulty encountered in the study of turbulent 
motions of fluids. A semi-empirical approach to the solution of this problem 

over known T, p and s, by strength of the non- 
linearity of the equation of state of sea water, likewise is not clearly defined. 

- - -  

will be given in § 4.5. - _  
Note that the average 

4.4 EQUATION FOR TURBULENT ENERGY 

Introduce the important equation for the specific kinetic energy of the 
mean motion E,  = ($)a and the mean specific kinetic energy of the pulsating 
motion (or simply the turbulent energy) E,  = (4)~’~. 

First average the equation of transfer of mechanical energy of the real 
motion (4.2.13). For this purpose, employ the following useful identities 
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which are readily derived taking into consideration (4.3.2)-(4.3.4): 

uaua = uaua + uLura or E'= E, + E ,  , 
uauaup = 2EsGp + 2E,Lp + 2v"v&v& + v;uraub. 

__ _ _  - 

-- ___ 
(4.4.1) 

The averaging of (4.2.13) then leads to  the relation 

(4.4.2) 

Next, consider the equation of transfer of kinetic energy of the mean mo- 
tion. Multiplying (4.3.5) scalarly by v, one obtains after some simple trans- 
formations 

- 
E,i@ - p -ap- v, - } + psPgP - loffPe a p  - $Rapeap . a 

(POE,) = -vp { P o  

(4.4.3) 

Subtracting (4.4.3) from (4.4.2), one finds 

(4.4.4) 

Equations (4.4.3) and (4.4.4) represent the required equations of the trans- 
fer of quantities E, and E ,  . 

Basic interest attaches to the expression for the amount of turbulent 
energy E ,  which arises in unit time in unit volume: 

Note that the first term on the right-hand side of (4.4.4) describes only 
redistribution of turbulent energy inside a fluid volume (advection and diffu- 
sion of turbulent energy), and under conditions when the velocity pulsations 
at the boundary of a region vanish this term does not alter the quantity 

The expression A = (:)Rapeap enters with opposite signs into equations 
(4.4.3) and (4.4.4); it describes mutual conversion of the kinetic energies of 
the mean and pulsating motions. As a rule, this expression is positive, and 
then the pulsating motion feeds on the energy of the mean motion. When 
A < 0, energy transfers from the pulsating motion to the mean motion. 
Generally speaking, such a case may occur and certain experimental data in 
support of this fact a r emlab le .  

The expression B = p'ulPgp describes the mean work done by the Archi- 
medes forces. Thus, in a stratified fluid, there occurs mutual conversion of 

S" P o  Etd v. - 
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potential and turbulent energies. For stable stratification, p' and ufpgB have 
opposite signs and B < 0, which leads to decay of turbulence. For unstable 
stratification, in contrast, B > 0, and the energy of turbulence grows. 

The expression ($ ) ufapeLp describes dissipation of turbulent energy due to 
viscous forces. By (2.9.1) and (4.2.8), one readily obtains 

( S f Q P  e,@ ' = v,po(era@ekp) > o . 
Introduce the dynamic Richardson number 

B 
, A  

R = - -  (4.4.5) 

It makes it possible to derive a simple criterion for the development of tur- 
bulence (however, rather complex). If at the boundaries of a region there 
occurs no diffusive flux of turbulent energy and A > 0, then for mainte- 
nance of already existing turbulence one must have 

Rr< 1 .  (4.4.6) 

A simple expression for R, may be stated for the case of plane parallel 
mean motion [U =U(z ) ,V=  0, W = 0, alax = a/ay = 01: 

(4.4.7) 

The z-axis is here directed downwards. 

4.5 THE BASIC EQUATIONS IN SPHERICAL COORDINATES 

As has already been noted in $3.1,  the convenience of the system of 
spherical coordinates h , p  and z is due to the fact that at each point the 
direction of the z-axis coincides with the direction of the gravitational force. 
Furthermore, it is seen that properties of motions along the vertical differ 
strongly from those of motions in the horizontal plane. 

Employing (2.9.4), (2.9.9) and the approximation (3.1.2), equations 
(4.3.5)-(4.3.8) may be written in terms of spherical coordinates. It is 
convenient, first of all, to step over in the equation of motion (4.3.5) with 
the aid of (4.3.6) to the ordinary form of representation [(2.3.6)]. Omitting 
for the sake of convenience the averaging signs (bars above symbols), one has 

au u au u au au t a n p  - +- - + -- +- w-- uu-- 2f2w cos p - 2nu sin cp = 
a t  a C O S ~  ah  a ap az a 

+ F A ,  1 
po a cos pdh (4.5.1) 
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(4.5.2) 

aW 
(v cos cp) +- = 0 , i a  

a cos cp ah a cos cp acp az 

u as U ~ S  as 1 . as 
at a coscpah a acp az po s ,  

+-- 1 au ____ 

+--+ w-==---&vJ 

aT u aT v a T  aT 1 -+---+--+ w-= -~ 
at acoscpah a acp az cPpo divJq 3 

(4.5.4) 

(4.5.5) 

(4.5.6) 

where u, v and w are physical velocity components and z is measured down- 
wards from the undisturbed ocean surface (0 < z < H ) .  Therefore the system 
of coordinates A, cp, z turns out to be left-handed, recall that in a left-handed 
coordinate system = - l / l f i l ,  etc.; cf. 5 A4 and (A9.13), and this fact 
has been taken into account when writing down the components of the 
Coriolis force. The quantities FA, F,, F, are physical components of the fric- 
tion force p;lVaRaB [the terms.VB;baaP, div I , ,  div q in equations (4.3.5)-- 
(4.3.8) have been omitted in correspondence with (4.3.10)]. By (A.9.5) 
and (3.1.2), one has 

i a  aRAZ 

i a  

+ -(RAP C O S ~  p) + - 
a cos2 cp acp az 

a cos cp ap az a 
aR,? R A A  (R,, cos cp) + -+--tan cp , +-- 

(4.5.7) 

where RAA, RAP, ... are physical components of the tensor Rap. 

tensor eaB will be written down. By (A9.14) and (3.1.2), one finds 
In conclusion, expressions for the physical components of the strain rate 

1 V au 1 -  aV 1 -  aw 
2 a a cos cpah ' 2e,, -qj ' az 7 

2ezz - -- -eAA =--tan cp + 

- av  + cos cpL (A), eAz = -+ au aw 
- a cos aacp coscp az a coscpah' 

(4.5.8) 
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4.6 COEFFICIENTS O F  TURBULENT EXCHANGE 

Consider now the question of how to  close the system of equations for 
the averaged fields. A start will be made with a study of the simplest plane 
parallel motion [U = U(z) ,V= 0, W = 0, a/ax = a /ay  = 01. In this case, the 
system of equations (4.3.5)-(4.3.8) _ _ _ _ _ _ _  contains only the three characteristics 
of turbulent transfer u'w',  s'w', T ' w ' .  By analogy with the laws of molec- 
ular transfer (2.9.1), (2.10.1) and (2.10.2), introduce the coefficients 
of turbulent transfer K, K,  and K ,  (employing this analogy, naturally, assum- 
ing in (2.10.1) and (2.10.2) vas and VaT,  respectively, to  be the principal 
terms) : 

(4.6.1) 

The exchange coefficients K ,  K, and K ,  may be considered to be new 
characteristics of turbulence. Linking by means of the averaging hypothesis 
the coefficients K,  K, and KT to the parameters of the mean motion, one can 
arrive at a closed system of equations for the determination of v, T,  p a n d x  
This is the most commonly used method of closing the system of equations 
of mean motion. In the sequel, this method will be adopted without giving 
consideration to any other method of closing the equations. Note that very 
often it is easier to introduce ~~ one or __ the other assumption relating to  K ,  K,  
and KT rather than to u'w', s'w' and T'w' .  In essence, this is the reason for 
the introduction of the exchange coefficients. 

Proceed now to the general case of three-dimensional motion and the 
study of the question of formal determination of the coefficients of tur- 
bulent transfer. 

For the sake of simplicity, begin with turbulent diffusion. Assuming, in 
analogy with molecular diffusion, that the components of the vector of tur- 
bulent flux density of salt p o s ' u ~  depend linearly on the components of the 
vector V&i, one arrives at the formula 

posfufo' = - p o P Q p s  . (4.6.2) 
The components of the second-order tensor Do;@, in the general case, are 

referred to as coefficients of turbulent diffusion. Apparently, the tensor DaP 
must be assumed to be symmetric. However, then six diffusion coefficients 
are introduced and (4.6.2) is found to  be meaningless without any additional 
hypothesis regarding the structure of the tensor DffP.  In fact, if at  a given 
point of a flow the quantities pOsru fa  and Voy are known, then it is impossible 
to determine from the three equations represented by (5.6.2) the six com- 
ponents of the tensor gap. The whole matter is that the tensor Dap defined 
formally by (4.6.2) is not a physical constant (as, for example, the coeffi- 
cient of molecular diffusion), but depends, generally speaking, on a motion's 
character. 

- _ _  

__ - 
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For a study of large-scale oceanic motions, one has a natural hypothesis 
relating to the axial symmetry of the tensor of the exchange coefficients DOD 
about the vertical direction k. In fact, large-scale motions in the ocean 
exhibit sharp differences between the properties of motions along the verti- 
cal and in the horizontal plane and the anisotropy of the tensor D a p  in the 
horizontal plane can be neglected completely. In general, note that it does 
not at all follow from the assumptions relating to axi-symmetry of the 
exchange coefficient tensor that such characteristics of turbulence as R,,, 

and T'u:, must be axi-symmetric. 
Using (A.5.2), rewrite the tensor DaP in the form 

Po = DLmaP + (DH - DL) k,kP . (4.6.3) 

In this manner, two scalar exchange coefficients have been derived (which, as 
a rule, differ strongly from each other). 
Employing (4.6.3), rewrite (4.6.2) in the coordinates A, cp and z :  

(4.6.4) 

The relations (4.6.4) impose a limitation on the form of the vector 
(three equations for the two unknowns DL and D ,  ; however, it is important 
that they admit experimental verification). The coefficient DL is referred to  
as coefficient of horizontal turbulent diffusion, the coefficient DH as coeffi- 
cient of vertical turbulent diffusion. 

In a study of turbulent heat transfer, one may almost word for word 
repeat all the reasoning and write down for the relation between the vectors 
T'v:, and 0,T formulae analogous to  (4.6.4) : 

where KL and KH are the coefficients of horizontal and vertical turbulent 
thermal conductivity, respectively. 

Next, consider the coefficients of turbulent viscosity. By analogy with 
molecular viscosity, it is natural to  assume that the tensor R,, is a linear and, 
generally speaking, inhomogeneous function of the strain rate tensor Fy6. 
Further, assume that for Gy6 = 0 the tensor - R,, reduces to an isotropic ten- 
sor. Then the general dependence of R,, on ey6 has the form 

The components of the fourth-order tensor KorPy6 are called coefficients of 
turbulent viscosity. Since R,, and ey6 are symmetric, one has 

(4.6.7) 

Contracting the tensor RYo, one obtains still the relation 
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Kym,seyb = 0 .  (4.6.8) 

By (4.6.7) and (4.6.8), the tensor KaPrs consists of 30 different compo- 
nents; the relation (4.6.6) contains only 6 equations. Therefore, as in the 
case of turbulent diffusion, it is impossible to  determine from given tensors 
R,, and 2,' all components of the tensor K E P T & .  

By analogy with problems of turbulent diffusion, assume the tensor KaPrs 
to be axisymmetric about the vertical direction. Then, using (A.5.2), one 
derives from (4.6.6) readily the relations 

- 

RAp = RqA = POALeAp 3 RAz = R2A = POAGA2 R,, = R2, = PoAHe,, , 
- =-z - P o  ~ o E t  + P O A L ~ A A  + - ( A ,  - A )  e z z  , 

2 

P o  - 

R,, = -$poE, + POALT,, + 2 (AL - A )  e z z  , R,, = -%PoEt + p 0 A; z z  * 

(4.6.9) 

The formulae (4.6.9) contain the three coefficients of turbulent viscosity 
A,, A,{ and A and, in principle, admit experimental verification. As a rule, 
the coefficients AL and A ,  are called horizontal and vertical turbulent viscos- 
ities, respectively (and they differ strongly in orders of magnitude from 
each other). 

Compute now the amount of energy ( l / po )  4 = (i P ~ ) R * ~ F , ~ ,  transferred 
from the mean motion to the pulsating motion. By (4.6.9), after some 
simple transformations, one finds 

3A-AL-  2 FAA 3A + AL 'W] . (4.6.10) 

Hence it is seen that for A,  > 0, AH > 0 and A > 0 energy will be transferred 
from the mean motion to  the pulsating motion. Note that probably only for 
SQ > 0 the concept of turbulent viscosity and the hypothesis of depen- 
dence of R,, oneY8 makes sense. 

Thus, in the general case of large-scale motions, it may be assumed that 
turbulence is characterized by two coefficients of turbulent diffusion (and 
two thermal conductivities) and three coefficients of turbulent viscosity (E t  
may be included in 5). Concrete hypotheses on the structure of these coeffi- 
cients will be discussed later. 

Revert now to  the case of plane parallel motion. Using (4.6.4) and (4.6.9) 
and neglecting the dependence of p on p ,  rewrite (4.4.7) in the form (DH 
= KH) 
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where 

is the ordinary Richardson number and Pr, = AH/DH is the turbulent Prandtl 
number. 

4.7 BOUNDARY CONDITIONS 

Consider first the free surface of the ocean z = {(A, cp, t) .  The question of 
formulation of boundary conditions at  a random surface in itself is quite 
difficult; besides, one must take into account the reverse influence of irregu- 
lar perturbations of this surface on the boundary layer of the atmosphere. 
Proceeding approximately, replace formally the fluxes uap, Z, and q by the 
turbulent fluxes Rap, J, and J4 and assume the _ _ _  ordinary laminar boundary 
conditions to hold true for the averaged fields v, T,  p a n d s a t  the mean free 
surface z = ?(A, p, t).  

Consider now the dynamic boundary conditions. At the surface z = r9 the 
forces (-:map + R,,)nP acting per unit area with normal np must be con- 
tinuous. Since the inclinations of the level 7 are very small, the external nor- 
mal np in the coordinate system h, p, z is approximately (0 ,  0, -1). Hence 

-Rxz = P o r k  , (4.7.1) 

where p o  (FA, yp) are the components of the tangential wind and Fa is the 
atmospheric pressure. In writing down the last condition, the component 
R,, has been neglected in comparison with 5. 

In what follows, the averaging signs (bars above symbols) will be omitted. 
Using the smallness of { compared with H ,  condition(4.7.1) may be written 
down for z = 0. Clearly, Rk,({) N Rhz(0) and R,,({) = RGZ(O). By (4.5.8), 
one has ehz 2 au/az, epz = au/az (it will be seen in the next section that 
I w I << I u I for the motions under consideration). Finally, using (4.6.9) and 
the first formula (3.1.8), one obtains for z = 0 

- - -  - - 
-Rpz = p o r p  , p = p a  for z = { , 

au av  
Haz --A - = ~ p ,  P = P a - g P o { *  (4.7.2) -A - = T A ,  Haz 

This is the final form of the dynamic boundary condition. 
One may likewise write down the kinematic boundary condition (2.2.17) 

for z = 0. Since the difference of precipitation-evaporation represents 
roughly 50 cm per year, or cm/sec, which is by two orders of magni- 
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tude smaller than characteristic values of vertical velocities in the ocean, the 
flux of fresh water in the first of the conditions (2.2.17) will be neglected. 
Thus 

(4.7.3) 

Replacing the molecular diffusive flux Z, in the second conditions (2.2 .L7) 
by the turbulent flux J,, taking into account the smallness of the inclina- 
tions of the sea level C, one has 

JSz = -bs for z = 0 . (4.7.4) 

Using (4.6.4), this condition may be rewritten in the form 

-D - = -(b/p,) s for z = 0 . (4.7.5) as 
Haz 

As it had to  be expected, condition (4.7.5) turns out to  be homogeneous. 
This reflects the fact that the total amount of dissolved salt in the ocean 
remains unchanged; changes in salinity in the ocean are only caused by 
influx of fresh water. 

In writing down the boundary condition for the temperature, one must 
set up the equation of heat balance at the ocean surface. Assume that all 
radiation (short wave from the Sun and long wave from the atmosphere) is 
absorbed by a very thin surface layer of the ocean and must be taken into 
consideration only in the boundary conditions (in fact, this was the reason 
why in the treatment of thermodynamics certain parameters which charac- 
terize the electromagnetic field in the fluid had not been introduced). Fur- 
ther, long-wave radiation of the ocean surface must be taken into account as 
well as heat of evaporation and turbulent heat flux from the atmosphere. 
Denote the total heat flux in unit time per unit area of the ocean surface by 
Q* ; it depends on the temperature of the ocean surface and atmospheric 
parameters. Taking into account (4.6.5), the boundary condition for the 
temperature may be written in the form 

-K aT -=- I Q*(T,  ...I fo rz  = 0 .  
Haz CPPO 

(4.7.6) 

Naturally, this condition turns out to be inhomogeneous, since there exist 
external energy fluxes (for example, short-wave radiation from the Sun) 
which form the temperature field in the ocean. 

The boundary condition at the ocean floor z = H is obvious; this is con- 
ditions of no-slip and absence of fluxes of heat and salt: 

for z = H. (4.7.7) 

A generalization of the last two conditions (4.7.7) to  the case of variable 
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ocean depths presents no difficulties. 
Conditions at the shores may be written down in an analogous manner. 
Note that for the purpose of this study of the boundary conditions, the 

new unknown function ((A, cp, t )  has been introduced. This function does 
not depend on z and is determined from the boundary conditions, as will be 
seen below. 

4.8 QUASI-STATIC APPROXIMATION 

For studies of meso- and macro-scale processes in the ocean (vertical scales 
of order H - 100 m +- 1 km, horizontal scales of order L - 100 + 1000 km, 
characteristic frequencies of order 1 day-' and less), vertical velocities of 
motions, as a rule, turn out to be small compared with horizontal velocities. 
In fact, assuming that all terms in (4.4.5) have the same order of magnitude, 
one obtains for w the upper bound: W = ( H / L ) U  or W = lOV3U. The small- 
ness of the vertical velocities in the ocean permits to write the equation of 
motion along the vertical (4.5.3) in the form 

_ _  ap - gP az (4.8.1) 

Equation (4.8.1) has been written down as if the fluid were at rest; there- 
fore such an approximation is said to be quasi-static. The filtering properties 
of this approximation have been explained in detail in 8 3.7. Naturally, it 
does not at all follow from this fact that (4.5.3) may be written approxi- 
mately in the form (4.8.1) that the vertical velocity component w is alto- 
gether inessential. For example, the term a w/az proves to  be very important 
in the equation of continuity (4.5.4). 

Integrating (4.8.1) with respect to  z from 0 to z and taking the last condi- 
tion (4.7.2) into account, one has 

z 

P ( k  cp, z ,  t )  = P a  -gPo< + g /- PdZ . 
0 

As a rule, the atmospheric pressure gradient is inessential: 

(4.8.2) 

This formula clearly displays the factors which form horizontal pressure 
gradients. It is easily seen that changes vhp along z are only caused by den- 
sity inhomogeneity of the ocean. 

Since I w I << I u I ,  the term 2C2w cos cp in (4.5.1) will be neglected (a tradi- 
tional approximation when writing down Coriolis forces; cf. 83.1). Then 
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one obtains in quasi-static approximation instead of the equations of mo- 
tion (4.5.1) and (4.5.2) the equations 

u au u au au tancp a t  au 
at a coscpah a acp az a a cos cpaX 

+ - - + W- - UU-- - 2CLu sin cp = g -+--- 

z 

- K j -  d z + F A ,  a cos pah 
0 

(4.8.3) 

(4.8.4) 

Assume that estimates of 6 p / p  (cf. 54.2)  for the averaged field are cor- 
rect. Then it may be assumed for computation of V , p  that the density p does 
not depend on the pressure p .  Therefore it is concluded from (4.8.3) and 
(4.8.4) that for meso-macro-scale motions under consideration the depen- 
dence of p-on p is inessential. 

This circumstance makes it possible to  employ as potential vorticity the 
quantity wAVp (cf. 3 3 4.1 and 4.2). It will only be shown here how one 
must simplify this quantity in order that it will not change during abiabatic 
motions of the liquid studied in quasi-static approximation (more exactly, for 
zero friction forces in (4.8.3) and (4.8.4) and under the condition dp/dt 

First of all, expressions for the components of absolute vorticity in the 
left-handed coordinate system h, cp, z will be written down. By (A.9.13) and 
(3.1.2), one has uA = (oh, wv + 2C2 cos cp, w, - 2CL sin cp), where 

= 0 ) .  

au 
a cos cpaX * 

(u  cos cp) - 
i a  

cos cp aacp u z = - - - -  (4.8.5) 

Since the vertical velocities are small in comparison with horizontal veloc- 
ities, it is natural to introduce for the components of absolute vorticity 
approximate expressions of the form GA = (ah, b,, Gz - f ) ,  where 

Differentiating equations (4.8.4) and (4.8.3) with respect to z and using 
(4 .5 .4 )  and (4.8.1), one finds after some simple transformations 

+w--- uGp tan cp 
aGA u aGh U ~ G ,  aGh -+-- +--- 
at acoscp ah a acp az a 
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(4.8.7) 

a&, u aij ,  ~ a i j ,  a i j  u i j ,  
at acoscp ah  a acp az u 

-+-- +-- + w-v+- tan cp 

(4.8.8) 
Further, differentiate (4.8.4) with respect to  h and (4.8.3) with respect to  

9 after multiplying it first by cos cp. Subtracting the relations obtained term 
by term, one obtains after division of coscp the equation for the vertical 
component of absolute vorticity o ~ ,  = w, - f .  Obviously, the result may be 
written down directly, projecting equation (4.2.12) on to  the z-axis. By 
(4.8.5), (4.8.6) and the fact that 

one finds 

(4.8.9 1 

Equations (4.8.7) through (4.8.9) represent nothing else but projections 
of Fridman's approximate equations on to the axes A, cp and z. It is interest- 
ing to  note that equations. (4.8.7)-(4.8.9) may be obtained from Fridman's 
general equation (4.2.12) by replacing in it the exact expression for the 
absolute vorticity oA by the approximate expression obA [cf. (A.9.7) 
and the approximation (3.1.2)]. Furthermore, apply the operation V .  to the 
equation dp/dt = 0; it may be shown by straight differentiation that in 
spherical coordinates with the approximation (3.1 2) the physical compo- 
nents of the vectors V,(dp/dt) and d(VKp)/dt + V,v"Vap are equal to each 
other [generally speaking, this is not obvious; cf. derivation of (4.1.4) and 
the note preceding (3.1.10)]. Then, setting FA and F ,  equal t o  zero and 
using an identity of the type (4.1.5), one obtains directly 

This is a sought form of the equation of the potential vorticity in quasi- 
static approximation. 
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In conclusion, the equation for the kinetic energy will be written down in 
quasi-static approximation. Reverting first to  pressure p, multiply (4.8.3) 
and (4.8.4) by u and u ,  respectively. Adding the results and employing 
(4.5.4) and (4.8.1), one finds 

(4.8.1 1) 

4.9 GEOSTROPHIC MOTION 

As a rule, in the open ocean, frictional forces and accelerations of fluid 
particles are small and the horizontal pressure gradient vhp is balanced by 
the Coriolis force. By (4.8.2)-(4.8.4), one has 

(4.9.1) 

Motions described by equations (4.9.1) are called geostrophic. Such mo- 
tions are very uncommon. For example, it is seen from (4.9.1) that the hori- 
zontal velocity will be directed along the isobar or perpendicular to  v h p .  It 
has been shown in 3 3.9 that large- and meso-scale Rossby waves may be 
assumed to  be geostrophic in first approximation. 

Compute the vertical velocity for geostrophic motion. Equations (4.9.1) 
and (4.5.4) readily yield 

aw f - = ? v .  
32 

(4.9.2) 

This equation demonstrates the effect of the Earth's spherical shape. If the 
Earth were plane, then /3 = 0 and for geostrophic motion a w/az = 0, which 
would be in sharp contradiction to observations in the ocean. 

Equation (4.9.2) yields a more exact estimate of W than that derived in 
5 4.8. One has 

w =-u- OH - 2 . 1 0 +  u, (4.9.3) 
f 

since 0 = 2 * cm-' sec-l, f = low4 sec-l, H l o5  cm. 

Differentiate (4.9.2) with respect to z. Using (4.8.1) and (4.9.1), one 
obtains 

(4.9.4) 

It is interesting to note that in the ocean d2w/az2 is linked to  the zonal den- 
sity gradient. It is a fact that on the surface of the ocean, on the whole, den- 
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4 

5- 

sity varies in meridional directions. By (4.9.2), the zonal density gradient is 
very essential in the deep parts of the ocean. 

Differentiating (4.9.1) with respect to  z and using (4.8.1), one finds 

I -  

:\* 

i’ 

(4.9.5) 

T
of current velocities u and u from the observed temperature and salinity 
fields, which is used widely in oceanographical practice. In fact, it has 
already been stated that for evaluation of v h p  the density may be assumed to  
be a function of T and s only. Therefore, one may compute from observed 
values of V h T  and v h s  the quantity V,p and from (4.9.5) the quantity aulaz 
and au/az.  Thus, in order to  find u and u on a given vertical, one has to know 
their values only at one level. For a construction of current charts, this refer- 
ence level is chosen, as a rule, on the basis of certain supplementary consider- 
ations (usually, of an empirical character). It must be emphasized that the 
dynamic method is an indirect method for the computation of currents, and 
that the necessity of knowing certain reference values of u and u is its essen- 
tial deficiency. 

The geostrophic character of the motion of the water in the open ocean is 
a fundamental fact. In what follows, different simple models will be em- 
ployed to study in what sense and under what conditions the motion in the 
ocean is approximately geostrophic. At this stage, a brief reference is only 
made to  Fig. 4.2 which demonstrates well the agreement between instrumen- 
tal observations and geostrophic current velocities. 

... . 

Fig. 4.2. Graph of geostrophic velocity and direct measurement of velocity (from observa- 
tions by means of floats, given by points, according to Swallow [121]. Instrumental 
observations of velocities represent mean values over two days. Reference level for geo- 
strophic velocities was chosen in such a manner as to ensure best possible agreement with 
instrumental observations. 
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COMMENT ON CHAPTER 4 

84.1. Equation (4.1.2) has been proposed in the work of Fridman, cf. 
[ 25, § 18 and Appendix § 21. The explanation of the effect of stretching of 
vortex lines has been given by Lamb [58,  p. 2571 ; on the discussion of the 
generation of vorticity in a fluid, cf., for example, Yih [134, p. 781. For- 
mula (4.1.6) was obtained by Ertel [17]; equations (4.1.7) and (4.1.8) have 
been derived by Obukhov [89]. 

8 4.2. Related questions are discussed in Landau and Lifshits [59, $5 10, 
561 and Phillips [98, Chap. 111. 

854.3, 4.4. On the whole these results follow from Monin and Yaglom 
[42, ss3.1-3.3, 5.1, 5.8, 6.2, 6.31. 

3 4.6. Cf. Kamenkovich [45]. 
84.8. On the derivation of equation (4.8.10), cf., for example, Monin 

[76], Phillips [94] and Welander [130]. 
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CHAPTER 5 

EKMAN THEORY, WIND-DRIVEN CURRENTS IN A 
HOMOGENEOUS OCEAN 

5.1 PURE DRIFT CURRENT 

Consider the single exact solution of the basic equations. Let an 
unbounded plane layer of fluid of depth H rotate about the z-axis with con- 
stant angular velocity a. On the surface of the fluid acts a tangential wind 
stress which is independent of time and horizontal coordinates. It is natural 
to  assume that all basic parameters of the motion likewise do not depend on 
time and horizontal coordinates. Then the equations of motion along the x- 
and y-axes and corresponding boundary conditions follow from relations of 
the type (4.5.1), (4.5.2), (4.5.7), (4.6.9), (4.7.2), and (4.7.7): 

(5.1.1) 

(5.1.2) 

(5.1.3) 

u = u = O  f o r z = H  (5.1.4) 

As the simplest hypothesis, let the coefficient of vertical turbulent 
exchange A H  in equations (5.1.1) and (5.1.2) be constant. It is readily seen 
that w 0 and the dynamic equations are separated completely from the 
equations for temperature and salinity. 

Problem (5.1.1)-(5.1.4) describes so-called pure drift current in the 
ocean. It is convenient for the solution of this problem to introduce the 
complex velocity U = u + iv and the complex wind stress t = T~ + iry and 
rewrite (5.1 .l) -( 5.1.4) in the form 

a2 u 
az2 

2 i ! 2 U = A H - - ;  (5.1.5) 

au=-T f o r z = ~ ,  U = O  f o r z = H .  (5.1.6) 
A H a z  
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The solution of this problem is readily found: 

(5.1.7) 

It is seen that during an analysis of pure drift current there arises an internal 
scale of length hE = d m .  Introduce the Ekmw number E 

h 

H 
E = ! ?  (5.1.8) 

Let the depth H of the ocean be small and E >> l(hE >> H ) .  Then (5.1.7) 
assumes the form 

‘ u= - ( H - 2 )  . 
A H  

(5.1.9) 

This is the ordinary formula for plane parallel Couette flow. The rotation 

Consider now another extreme case of a deep ocean: E << l ( h ,  << H ) .  
of the fluid in this case does not exert an appreciable effect on the current. 

Then 

(5.1.10) 

It  follows from (5.1.10) that for z = 0 the vector of the surface velocity 
Us is inclined at an angle 7r/4 in a clockwise direction to the vector 7. With 
increasing z ,  the modulus of the vector U decreases exponentially, while the 
vector itself rotates in a clockwise direction. At depth z = 7rhE = D, the vec- 
tor U will already point in the opposite direction to Us. The solution 
(5.1.10) is often referred to  as Ekman spiral. 

Formula (5.1.10) could have been obtained directly, by solving Problem 
(5.1.5) and (5.1.6) for the infinitely deep ocean. 

The physical significance of the scale h, (or D) is now completely clear. It 
characterizes the depth of the layer of water involved in motion in the case 
of a deep ocean. The quantity h, (or D) is referred to  as Ekman depth fric- 
tion. 

The solution obtained depends parametrically on the coefficient of verti- 
cal turbulent exchange A H .  Since AH = Slhg and, according to  observations in 
the deep ocean, hE = 100 m, then A H  = lo2 cm2/sec. It is customary to  esti- 
mate by means of such a “fit” to  observations of certain characteristics 
the coefficient of turbulent exchange. 

Compute the total flux S of pure drift motion. Since in the ocean hE 
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<< H ,  one has 

(5.1.11) 

It is interesting to note that, if one assumes from the outset the ocean to be 
infinitely deep, then (5.1.11) may be obtained also for arbitrary AH [for 
arbitrary A ,  the right-hand side of (5.1.5) may be written in the form 
a(A,aU/az)/az]. Then (5.1.5) must be integrated from 0 to 00 and the first 
boundary condition (5.1.6) used. 

5.2 THE BASIC EQUATIONS OF EKMAN THEORY 

It has been seen that pure drift flow penetrates to a not large depth (hE 
N 100 m). This is caused by the fact that for such motion the horizontal 
pressure gradient V,,p vanishes (by strength of the assumptions of a shoreless 
ocean and uniformity of wind). Consider now the simplest model of wind 
flow in which the horizontal pressure gradient plays an essential role. 

Thus, consider the Ekman model which is based on the following prem- 
ises : 

(1) The ocean is homogeneous in density ( p  = po = constant). 
(2) Non-linear inertial terms in the equations of motion (4.5.1) and 

(4.5.2) are hegligibly small. 
(3) There exists essentially only vertical turbulent friction. 
(4) The motion is steady. 
Naturally, such a model cannot explain all phenomena observed in the 

ocean. However, its simplicity permits at least to  explain qualitatively a num- 
ber of important features of the dynamics of the real ocean (geostrophic 
flow in the open ocean, Ekman boundary layer, necessity of formation of 
intense boundary flow along western shores, etc.). 

The basic equations of the model are obtained from the general relations 
of Chapter 4. First of all, the equations of motion (4.5.1) and (4.5.2) will be 
written down with due consideration to the initial premises of the model and 
relations (4.5.7), (4.6.9) and (4.8.2). The equations of motion will be aug- 
mented by the equation of conservation of mass in the form (4.5.4). Finally, 
the first two of the dynamic boundary conditions (4.7.2) will be written 
down as well as the kinematic condition (4.7.3) (omitting in it non-linear 
terms) and the boundary condition (4.7.7) at the bottom for the velocity 0. 
Thus one obtains 

(5.2.1) 

(5.2.2) 
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aw i a  
a cos pah cos p aap az 

( v  cos cp)  + - = 0 +-- au --__ (5.2.3) 

au au 
A - = - r A ,  A , z = - r V ,  w = O  f o r z = O ,  (5.2.4) 

u = v = w = o  forz  = H .  (5.2.5) 
The boundary conditions over the horizontal will be posed later. 

The unknown functions of Problems (5.2.1)-(5.2.5) are u(X, cp, z ) ,  
v (h ,  cp, z ) ,  w(X, cp, z )  and ((A, cp).  This is the mathematical formulation of the 
Ekman model of wind-induced flow in a homogeneous ocean. 

The problem formulated will now be solved. Equations (5.2.1) and (5.2.2) 
and the first two equations (5.2.4) and (5.2.5) may be rewritten in the form 

t f o r z = O ,  U = O  f o r z = H ,  i f U = g P +  AH- 

a2 

au a2 u 
az2 ’ az 

A -= -  

(5.2.6) 

where 

u= u + iv , P =  a’ +i- ,  a( t = r A + i r q .  
a coscpah aacp (5.2.7) 

The solution U of Problem (5.2.6) is readily found (P does not depend on 
z ) .  Restricting consideration to the northern hemisphere (f > 0), one has 

) p = ( 1  + i) . (5.2.8) u=- f sinhp(H-z) +-  gP 1 - coshpz 
pAH cosh pH i f  ( cosh pH ’ U H  

Naturally, this general expression contains a pure drift component of the 
motion [compare the first term in (5.2.8) with (5.1.7)], but now r is already 
variable and instead of 52 one has 52 sin cp; the second term in (5.2.8) will be 
referred to as gradient component of the motion. If the pure drift compo- 
nent is a result of the direct action of the wind on the ocean surface, then 
the gradient component arises from the presence of the horizontal pressure 
gradient Vhp. Obviously, the reason for the development of the pressure gra- 
dient is the following: Space inhomogeneity of the wind and presence of 
shores lead to piling up and removal of water which is accompanied by 
deflection of the water leveI from its unperturbed position. 

From (5.2.3) and the last condition (5.2.4), one finds 
z 

t cosh pH - cosh p ( H  - Z) w = -s diVhUdZ = --divh ( udz) = --diV,, - 
0 0 s ( i f  cosh pH 

(5.2.9) 
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with the new notation 

div, Z = div, (Re 2, Im 2) . (5.2.10) 

Only one of the basic relations of the theory (5.2.1)-(5.2.5) has not been 
used, namely w(A,cp, H) = 0. Since the expression (5.2.9) for w contains 
second derivatives of the level (, the condition w(A, cp, H) = 0 yields the 
second-order equation required for the determination of ((A, cp). For the 
solution of this equation one must have a “two-dimensional” (i.e., indepen- 
dent of z )  boundary condition along the horizontal. Clearly, at shores of a 
basin, one may not demand fulfillment either of a condition of non-slip or of 
a no-flow condition (since non-linear inertial terms and horizontal turbulent 
exchange were neglected in the equations of motion). However, assuming the 
shores to be sheer cliffs, one may require fulfillment of an integral no-flow 
condition 

( S ,  n) lr = 0 7 

where n is the normal to  the shoreline r and S is the total flow vector 

(5.2.11) 

H H 

S A  = J udz , S ,  = J V& . 
0 0 

The vector S is easily found from (5.2.8). Integrating, one obtains 

(5.2.12) 

(5.2.13) 

Separating here real and imaginary parts and constructing the expression 
(5.2.11), one arrives at the required boundary condition for the determina- 
tion of ((A, cp). After determination of (, formulae (5.2.8) and (5.2.9) permit 
to  find the velocity vector v at all horizons, i.e., the complete solution of 
problem (5.2.1)-(5.2.5) has been constructed. 

This method of solution of problem (5.2.1)-(5.2.5) and (5.2.11) is 
not always the most convenient. Sometimes it is expedient not to write 
down directly the equation for {, but to  investigate the system of equations 
for S A ,  s9 7 

as, ax a 9  
a (s, C O S ~ )  = 0 ,  +-  

for the boundary condition (5.2.11). 

(5.2.14) 

(5.2.1 5) 

(5.2.16) 
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Equations (5.2.14) and (5.2.15) are obtained from (5.2.13) after separa- 
tion of real and imaginary parts. Therefore the functions A, B, F and G are 
known. Their expressions in the general case will not be written down; for 
deep and shallow seas, expressions for A, B, F and G can be obtained from 
(5.3.6), (5.3.7), (5.3.10) and (5.3.11). Equation (5.2.16) is derived by inte- 
gration of (5.2.3) taking into account the last conditions (5.2.4) and (5.2.5). 

Thus, the study of the initial system of equations (5.2.1)-(5.2.3) for 
the conditions (5.2.4), (5.2.5) and (5.2.11) has been reduced to a study 
of the “twodimensional” system of equations (5.2.14)-( 5.2.16) for the 
condition (5.2.11). 

5.3 VERTICAL STRUCTURE OF THE FLOW; EKMAN BOUNDARY LAYERS 

As in 5 5.1, introduce the friction depth hE = d m  and the Ekman 

(1) E << 1 (h,  << H): deep ocean 

In this case IpHI - 1/E >> 1 and one has 

number E [cf. (5.1.8)], Consider two limiting cases: 

“ 1 ,  1 
7 1- cosh pH 

sinh pz e-p(H-z) 
cosh pH 

__ tanh p H  2: 1 - i- sin1’2cp . ruH 2H 
1 h E  

Using these relations, rewrite (5.2.8) and (5.2.9) in the form 

(5.3.1) 

w = divh ($eCpZ) + rot, (F) -- go‘ a‘ + div,(;f;- g p  e-p(H-z) 
f 2  a cos pax 

where 0 = (2Q/a) cos cp. 
It  is easily seen that over the main deeps of the ocean (outside boundary 

layers of width of order hE located at the ocean surface and floor) formula 
(5.3.1) may be rewritten with great accuracy in the form 

(5.3.3) 

This formula describes geostrophic flow. It is not difficult to  understand 
why this formula does not hold near the surface and bottom of the ocean. In 
fact, the formula for geostrophic flow is obtained from (5.2.6) by discarding 
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in these equations frictional forces; however, these forces play an essential 
role at the surface of the ocean (otherwise it is not possible to transfer 
momentum from the atmosphere to  the ocean) and at the ocean floor (con- 
dition of no slip). Mathematically this means that the solution (5.3.3) cannot 
satisfy the boundary conditions (5.2.6) of the problem. 

Thus, it is clear why the solution (5.3.1) of Problem (5.2.6) contains, 
besides the geostrophic term, yet two terms: U, = ( t / p A H )  exp (-pz) and Ub 

= -(gP/zf) exp [-p(H - z ) ] .  The first of these terms describes pure drift 
flow, the second bottom flow. The boundary layer within the limits of which 
the term U, (or ub, respectively) is essential is referred to  as Ekman surface 
(or bottom, respectively) friction layer. 

The analogue of (5.3.1) is (5.3.2). Here one has in the interior of the ocean 
outside the boundary layers (recalling the z-axis points downwards) 

(5.3.4) 

Analogous terms in (5.3.2) give “corrections” which are required for the 

Note the following important circumstances. Rewrite (5.3.4) first in the 
description of vertical velocities in the surface and bottom boundary layers. 

form 

(5.3.5) 

and pose the following question: Is it possible, after neglecting the friction 
terms in (5.2.1) and (5.2.2) [and some of the boundary conditions (5.2.4) 
and (5.2.5)], to determine all characteristics of geostrophic flow? It  has been 
shown that the horizontal velocity components ug and ug may be determined 
in this manner. Furthermore, one may find awg/az  from (5.2.3). However, 
as it follows from (5.3.5), neither of the boundary conditions (5.2.4) and 
(5.2.5) can yield wg when aw,/az is known; wg(0 )  is completely determined 
by the structure of the surface friction layer. 

Write down equations (5.2.14) and (5.2.15) for the case of the deep 
ocean. One has 

(5.3.6) 

(5.3.7) 
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(2) E >> l (hE  >> H): shallow sea 

In this case I p H I  - 1/E << 1 and (5.2.8) and (5.2.9) may be rewritten in 
the form 

T 
U = -  ( H - z ) + q H 2 - 2 ) ,  (5.3.8) 

AH 2AH 

w = div,,[&($ - Hz) + & ($ - H'z)} . (5.3.9) 

The effect of rotation is completely missing from these formulae. They are 
readily obtained by omitting the Coriolis force during solution of Problem 
(5.2.6). 

Equations (5.2.14) and (5.2.15) for the shallow sea have the form 

(5.3.1 0) H2 i g ~ ~  a{ 

H2 s, = __ 

s h -- - 2AH ' h  +-- 3 AH u cos pax 

i g ~ ~  a{ (5.3.11) 7 +---  AH ' 3 AH U a p '  

5.4 GENERAL METHOD OF SOLUTION OF PROBLEM 

Consider now a general analytical method for the solution of the System 
(5.2.14)-(5.2.16) for the boundary conditions (5.2.11). On the basis of 
(5.2.16), it is convenient to introduce the total flow function $: 

(5.4.1) 

Seek the solution of the System (5.2.14)-(5.2.16) in the multiply con- 
nected region D (a basin with islands). Let ro, rl, ..., r, be closed bound- 
ary contours of the region D (ro is the external contour, rl, ..., rm are 
internal boundaries), 7 the tangent vector to  a contour with positive direc- 
tion IeavingD on the left and a the internal normal (Fig. 5.1). 

Fig. 5.1. Scheme of multiply connected region D. 
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First solve equations (5.2.14) and (5.2.15) with respect to the inclinations 
of the sea level ar /ah and arlap: 

(5.4.2) 

(5.4.3) 

and then eliminate 2 by crossdifferentiation. Substituting into the final 
result from (5.4.1), one finds 

- diVh(N T ), (5.4.4) 
where Ah is the Laplace operator on a sphere of radius a .  

In (5.4.2)-(5.4.4), the functions K, L, M and N are known and formulae 
for their determination are readily written down. It  is important that K > 0. 

According to the boundary conditions (5.2.11), the function $ must be 
constant on each boundary contour. Since the function $ is determined 
exactly apart from an arbitrary constant, the boundary condition(5.2.11) 
may be rewritten in the form 

where the differences between the unknown contour constants Qk have the 
significance of total transports of water through the straits. Obviously, all Qk 

must be found during the process of solution for a given wind field T .  

Note that certain of the unknown contour constants do not arise, if the 
region of integration D is simply connected; equation (5.4.4) may be solved 
for the first of the conditions (5.4.5). 

It is impossible to find the constants Qk by considering only one of the 
equations (5.4.4). However, one must keep in mind that one requires a solu- 
tion of the system of equations for Sk , S, ,I. Assume that one has succeeded 
in finding the function $ for the problem under consideration. Then one 
finds S,  and SA from (5.4.1) and, substituting them into (5.4.2) and (5.4.3), 
obtains a problem for the determination of { from known derivatives ar /ah 
and atlap. Equation (5.4.4) which must be satisfied by $ expresses,that 
the two mixed second derivatives of 5 must be equal. However, one of 
these conditions is insufficient for the construction of a single-valued func- 
tion (; in addition, one must fulfill the conditions 

$ d{=O,  k = l ,  ..., m .  
r k  

(5.4.6) 

Note that, if these conditions are satisfied, than an analogous relation 
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holds true for any closed contour which lies entirely in D, including likewise 
the external contour ro. In other words, one has only rn (i.e., as many as 
there are internal contours) independent conditions (5.4.6). 

Substituting in (5.4.6) the expressions (5.4.2) and (5.4.3) and using 
(5.4.1) and (5.2.11) one obtains 

(5.4.7) 

where ds is the element of arc of the contour rh, T~ and 7, are projections of 
7 on to  the directions of the vectors t and n, respectively. 

Thus, the unknown function $ must satisfy (5.4.4) and the boundary con- 
ditions (5.4.5) and (5.4.7). It will now be shown that the solution of such a 
problem exists and is unique. 

Uniqueness will be proved first. It is sufficient for this purpose to  show 
that the homogeneous problem (5.4.4), (5.4.5) and (5.4.7) has only a solu- 
tion which is identically equal to  zero. If this is not so, then, by strength of 
properties of elliptic equations, there exists a contour rl on which $ has a 
maximum value. However, then (cf. [91]) 

which contradicts the condition (5.4.7). 
Now seek a solution of the problem in the form 

m 

I;/=$o+x QkI;/k , 
k =1 

(5.4.8) 

where G o ,  $1, ..., $, are auxiliary functions which are determined in the 
following manner. The function $o is a solution of the non-homogeneous 
equation (5.4.4); $olrj = 0 0  = 0, 1, ..., m). All functions $*(k = 1, ..., rn) 
satisfy the homogeneous equation (5.4.4); $k  (pi = 0 for j f h and $ k  Irk 
= 1. Since the Dirichlet problem for the elliptic equation (5.4.4) has a unique 
solution, the functions I;/l, G 2 ,  ..., Grn are completely defined. 

Thus, the expression (5.4.8) satisfies (5.4.4) and the conditions (5.4.5). 
Substituting it into (5.4.7), one obtains rn linear algebraic equations for the 
unknown contour constants Q1,  ..., Q,. The determinant of this system 
depends only on the functions $1, ..., $,, which satisfy the homogeneous 
equation (5.4.4) for the boundary conditions stated above. Therefore it is 
clear that, by strength of the uniqueness of Problem (5.4.4), (5.4.5) and 
(5.4.7) proved above, this determinant is non-zero and all contour constants 
Q1, ..., Q ,  can be determined. 

This method of solution has been employed to  compute the total trans- 
port of the Antarctic Circumpolar Current [136,43]. 
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5.5 CERTAIN VERY SIMPLE SOLUTIONS 

Consider a shallow sea. The coefficients in equations (5.4.2) and (5.4.3) 
are given by 

(5.5.1) 

Equation (5.4.4) for the total flow function L) then becomes 
H 3  Ah$ = -- rot,( T / H )  . 
2AH 

(5.5.2) 

For the sake of simplicity, assume that the Earth’s curvature may be 
neglected, and consider a basin of constant depth H of rectangular shape: 
0 < x < L,; 0 S y < L,. Let the tangential wind stress be given by 

7, = 70 c + cos- , 7, - - 0 , c = constant. (5.5.3) ( 2) 
Seek the solution of equation (5.5.2), vanishing on the edges of the basin, 

in the form 

$ = X(x) sin- TY . (5.5.4) 
LY 

Substituting this expression into (5.5.2), one arrives at the following prob- 
lem for the determination of the function X :  

(5.5.5) 

(5.5.6) 

It  is interesting to note the case when the basin is strongly elongated: L, 
>> L,. Clearly, formula (5.5.6) can then be written with sufficient accuracy 
in the form 

H270 [-I + ,-x/€L, + , - (L,--x)kLx 3 ,  € = 2  L (5.5.7) 
X(x) = __ TL, ’ ~ K A H  

and far away from the edges x = 0 and x = L, one finds 

(5.5.8) 
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where 

- 1  r, = - i’ r,dy . 
L, 0 

(5.5.9) 

In essence, formulae (5.5.8) give the first terms of corresponding asymp- 
totic series for expansions of the solution of the problem under considera- 
tion with respect to the small parameter E .  These formulae are valid not only 
for the wind field (5.5.3). 

In fact, consider a rectangular basin elongated along the x-axis and a wind 
field of the form r, = r,(y), r, = 0, where r,(y) is an arbitrary function. 
Then, far away from the boundaries x = 0 and x = L,, it may be assumed 
that in first approximation S,, S,, a</ax and a</ay do not depend on x. 
However, by (5.2.16) written in Cartesian coordinates, one has aS,/ay = 0, 
and since S ,  = 0 for y = 0 and y = L,, it follows that S,  = 0. It  follows from 
(5.3.11) that a{/ay _= 0, and hence that a l lax = constant. This constant is 
readily determined from the condition 

/’S,dy = 0 ,  

which follows from (5.2.16) and the boundary conditions of the problem. 
As a result one obtains (5.5.8). Clearly, the method stated can also be 
applied to solve the problem in the case when r, and H are arbitrary func- 
tions of y. 

The solution of (5.5.8) permits to find the vertical velocity distribution 

0 

20 - 2  
u = O ,  H ’  

where 

Zo(Y) __-  47,(Y) - 37, - 
H 37, 

(5.5.10) 

(5.5.11) 

This formula yields the value of the depth at which u = 0 (inside the 

/---= = = 

---_ ---_-’ __)_ --4 

LX X 
_ _  - 

Fig. 5.2. Pattern of flow in shallow sea for variable wind stress. a - planform; tangential 
wind stress to the right; b - vertical section at the middle of the basin, plus (+) sign indi- 
cates that u > 0, mims (-) sign that u < 0. 
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Fig. 5 .3 .  Pattern of flow in shallow sea for constant wind stress. a -vertical section; b - 
distribution of velocity u(z) a t  middle of basin. 

basin). More important is the fact that for wind directed everywhere to  one 
side a counter current may occur on the surface of the ocean (cf. Fig. 5.2). 
In general, presence of a counter current follows from the condition 

11 udydz=O;  

however, appearance of the counter current on the ocean surface is caused 
by non-uniform wind. This fundamental fact lies at the base of the theory 
of equatorial counter currents (cf. [114]). 

N L 

0 0  

Now let T . ~  = T~ = constant. Formula (5.5.10) then assumes the form 

(5.5.12) 

The simplest explanation of equatorial undercurrents in the oceans (Fig. 5.3) 
is based on this formula (cf. [19]). 

5.6 WESTERN BOUNDARY CURRENT 

Consider an ocean in moderate latitude and assume that its depth is large 
compared with the depth of the Ekman layer ( E  << 1). Neglecting in (5.4.4) 
terms of order E which do not contain second-order derivatives of $, one 
finds 

(5.6.1) 

Analysis of this equation will be started with the case of an ocean of con- 
stant depth. Obviously, the first term on the left-hand side of (5.6.1) 
describes the effect of bottom friction. Since it may be expected that in the 
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open ocean friction is inessential, one has 

(5.6.2) 

Equation (5.6.2) is referred to  as Sverdrup’s relation. It permits introduc- 
tion of a characteristic scale $o for the total flow function $ depending on 
the determining parameters of the problem: ro, a,  Po = 2 a / a ,  A ,  and the 
characteristic magnitude of rot, t, representable as ro/u:  

70 \k --. 
O -00 

(5.6.3) 

Let ro 2: 1 cm”/sec2, Po 2 2 - cm-’ see-’. Then $o = 0.6 
cm3/sec. Generally speaking, for such a choice of scales, the quantity I)o is 
somewhat too small (the non-dimensional value of Irot, T 1 is of order 5 + 7; 
however, for the asymptotic theory presented below, this is not important). 

Proceeding in (5.6.1) to  non-dimensional variables and retaining, for the 
sake of simplicity, the same notation for non-dimensional I) and rot, t, one 
obtains 

where 

k(p) = += 

(5.6.4) 

(5.6.5) 

and A ,  is the Laplace operztor on the unit sphere. 
Equation (5.6.4) belongs to  the class of equations with a small parameter 

as factor of the highest derivatives. It is known that presence of boundary 
layers is, generally speaking, characteristic for solutions of such equations. 

$ = $o + E$’ + ... + q0 + ESl + ... (5.6.6) 

where the functions $o, ... and their first order-derivatives are of order 
0 (1). It follows from (5.6.4) that these functions will satisfy equations of 
first order in A.  However, then the functions $o, I)l, ... cannot satisfy the 
boundary conditions on both sides of the ocean (assuming there to be no 
islands). Therefore introduce side by side with $o, G 1 ,  ... “rapidly” varying 
“correction” functions $ o, q1, ... which are non-zero only in a narrow band 
of width E near the shore line (boundary layer). These functions are also of 
order 0 (l), and thus both terms on the left-hand side of (5.6.4) will be of 
the same order within the limits of the boundary layer. It is readily shown 
that in the problem under consideration a boundary layer can arise only 
on the western shore of the ocean [cf. note following (5.6.12)]. 

Substitution of (5.6.6) into (5.6.4) leads to  two groups of terms: Those 
which change “normally” and those which change “quickly”. Obviously, 

The solution of (5.6.4) will be sought in the form 
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the group of “normally” changing terms must be equal to  rot, T, and the 
group of “quickly” changing terms equal to zero. 

First write down the equations for the functions I),, $1, .... Setting the 
coefficients of different powers of E equal to zero, one finds 

(5.6.7,) 

Let h = X,(p) be the equation of the eastern boundary. Since it has been 
assumed that a boundary layer is only formed along the western shore, one 
has $, = 0, $1 = 0, ... for X = X,(p). These boundary conditions are suffi- 
cient for solution of equations (5.6.7), i.e., all functions $,, ... may be 
found. For example, 

(5.6.8) 

In order to construct equations for the functions $ (3, 5 1, ..., it is conve- 
nient to  step over to curvilinear orthogonal coordinates x = x@, cp), y = y(X, 
cp) such that the line x = 0 coincides with the western shore X = h,(cp) and the 
coordinates x and y increase for motion into the region and towards the north, 
respectively (Fig. 5.4) (where, naturally, it has been assumed that the shore line 
is sufficiently smooth and does not contain segments with large curvature). 
Then the functions q 0 ,  ql, ... will change “normally” along the coordinate 
y and “quickly” along x. Introducing the “stretched” variable 5 = x/E, deriv- 
atives of Go, G I ,  ... with respect to 5 are converted to quantities of order 
0 (l), just as the same functions and their derivatives with respect to y .  (Later, 
it will be shown that the width of the boundary layer will be of order E ;  
therefore the functions describing the structure of the boundary current 

x=o x, x2 

Fig. 5.4. Orthogonal curvilinear coordinates x and y for analysis of the  boundary current 
along the western shore of a n  ocean. 
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must depend on x / E .  Note that the notation 
with the sea level). 

Denote the Lam6 coefficients of the system x, y by h,, h,  : 

for x / E  must not be confused 

It will be natural to write now also (5.6.4) in the new coordinates x and y.  

Proceeding in (5.6.4) to  x and y ,  one finds 

a $ a x  a $ a Y -  
ax ax ay ax EhAh$ + -- + -- - -rot, t, (5.6.9) 

where 

Expand the coefficients of this equation in series of powers of E .  One 
obtains within the limits of the boundary layer, for example, 

(5.6.10) 

Substituting into (5.6.9) the expansion (5.6.6) and setting equal to zero 
the coefficients of different powers of E in the group of "quickly" changing 
terms, one finds the required equations for G o ,  5 1, ... : 

ah, 
h , ( x ,  Y )  = h , ( a - ,  Y )  = h,(O, Y )  + E z  (0, Y X  + - * *  

(5.6.110) 

. . . . . . . . . . . . . . . . . . . . .  
with the notation 

Since the coordinate x grows inwards, one has (axlah) ,  > 0 . 
Consider equation (5.6.11), an ordinary differential equation with respect 

to (; the dependence of q 0  on y turns out to  be parametric. Since the func- 
tions q0, ql, ... describe the structure of the boundary layer, they must, in 
essence, vanish anywhere else but near the shore. Mathematically, thi5 may 
be achieved by a condition of exponential decay of the functions 5 o, IJ 1, ... 
for large (. 

The functions q0, ql, ... have been introduced in order to remove the 
inaccuracy in the fulfillment of the boundary conditions on the western 
shore in the functions $o, $1, ..., respectively. Therefore the second bound- 
ary condition for (5.6.110) will be 

$ O ( O ,  Y )  + ? O ( O ,  Y )  = 0 7 
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and the required solution (5.6.110) have the form 

(5.6.12) 
A W  

The functions $ 5 2,  ... are constructed in the same manner. Thus all terms 
in the expansion (5.6.6) can be determined. 

A similar procedure may also be adopted in the vicinity of an eastern 
shore. Then one arrives at an equation analogous to (5.6.110), but with an 
opposed sign in front of the term a 4 ,Ja{. Such an equation does not have a 
non-zero solution which decays exponentially for large {. Hence follows the 
conclusion that there is no boundary layer at the eastern shore. 

I t  is an important fact that currents in moderate latitude may be con- 
sidered independently from currents in tropical and polar regions. In fact, 
the construction of solutions of the problem, by strength of properties of 
(5.6.7), employed only boundary conditions on western and eastern shores. 
“Liquid” boundaries remind one only of “fitting” together of solutions for 
moderate latitudes with solutions for equatorial and polar regions. However, 
the effect of such a boundary will be essential only in a “narrow” zonal strip 
the width of which with respect to  cp is of order fl. 

Consider now the solution obtained. The function 4, differs essentially 
from zero only in the vicinity of the western shore for x - E ,  or in dimen- 
sional variable for x - aE, i.e., the scale aE actually characterizes the thick- 
ness of the boundary layer. 

Using (5.6.8) and (5.6.12), present the solution of the problem in the fol- 
lowing form: 

In the open ocean, outside the boundary layer at the western shore, but 
up to the eastern shore, 

AE 

I) = s (rot,t) dh + O ( E )  ; 

in the vicinity of the western shore, 

h 

(5.6.13) 

h E  

I) (rot,t) dh(1- exp [-2 G), a)+ O ( E )  , 
A, 

AE 

?$! = -__ 1 hX”0 ($)o 1 (rot,r) dh exp (5.6.14) ax E k, 
hW 

Fig. 5.5 shows lines of constant J / ,  computed by means of (5.6.13). Ob- 
viously, these lines cannot “run into” shore. Therefore (5.6.13) turns out to 
be unreal at a western shore of an ocean and must be replaced by (5.6.14), 
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Fig. 5.5. Lines of equal total flow $ . 
drup’s formula 

t) = (a2/2f2) 

cm3/sec for the North Atlantic, by Sver- 

AE 
(rot,r) dh . 

A 

On the right-hand side are given the mean over many years of the tangential wind stress 
rh cm2/sec2 and the corresponding distribution of lov8 rotz T cm/sec2 (according to 
Munk [84]). 

“closing” the stream lines at a western shore of an ocean. 
For non-dimensional components of total flow within the bounds of the 

boundary layer, one finds &at S ,  = 0 (l), S ,  = 0 (l/E). Thus, one actually 
has obtained a strong coastal flow at ‘the western shore of the ocean. This is 
the simplest analogue of the Gulfstream in the North Atlantic and the Kuro- 
shio in the Pacific Oceans. It is readily seen that at an eastern shore of an 
ocean there does not develop any strong coastal flow. It  is clear from the 
analysis above that such asymmetric horizontal structure of the current is 
caused entirely by the latitudinal variation of the Coriolis parameter. 

The necessity for formulation of boundary flow follows from the condi- 
tion of conservation of mass of sea water. In fact, by Sverdrup’s dimensional 
relation (5.5.2), one has in the open ocean 

h E  
U 2  

252 cosp ’  2a 

AE a rot t 
Q = S,a cos cpdh = -_ (rotzT) dh . (5.6.15) s =--z 

A, A, 
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Since the total transport Q depends on cp, the solution of (5.6.13) violates 
the condition of conservation of mass for an ocean as a whole (cf. fig. 5.5). 
Therefore one must form a boundary layer, in order to compensate for this 
defect at western shores. However, the total transport of the boundary layer 
Qb must then be equal to - Q, and one arrives at Munk’s formula 

A E  

Q~ = 5 J (rot,.r) d~ . a2 
(5.6.16) 

It is remarkable that, by (5.6.16), the total Pansport of the boundary cur- 
rent Q b  does not depend on the coefficient of turbulent exchange and may 
be computed from the field rot, t . 

It is natural that (5.6.16) should be obtained formally also on the basis of 
(5.6.14). However, the derivation presented here has the advantage of gener- 
ality. In the sequel (Chapter 6), more complex models will be designed for 
the coastal boundary layer which take into consideration non-linearity, hori- 
zontal turbulent exchange, etc. However, all the same, if the current in the 
open ocean is described by (5.6.13), then (5.6.16) remains true indepen- 
dently of the form of the equation which describes the structure of the 
boundary layer. Note only that it does not follow from the reasoning based 
on the condition of conservation of mass that a boundary layer must form 
at the western shore of an ocean (cf. 9 6.2). 

Formula (5.6.12) permits to obtain an estimate of the coefficient of tur- 
bulent exchange A H .  Since the order of the width of the Gulfstream is known 
(aE N 50 km), one finds AH = l o 2  + l o 3  cm2/sec. 

The influence of the shape of the coast line on the boundary layer is 
described by the coefficient h:o (axlah), in (5.6.12) and (5.6.14). Therefore 
the conclusion may be drawn that deformation of a coast line leads only to  
a certain change of the width of the boundary layer and of its velocity, with- 
out, however, being reflected in the magnitude of the total transport Q b .  

A, 

5.7 EFFECT OF BOTTOM RELIEF ON BOUNDARY CURRENT 

Consider now the analysis of (5.6.1) in the general case of an ocean of 
variable depth. Neglecting, as in the case of an ocean of constant depth, the 
effect of bottom current, one obtains Sverdrup’s generalized relation 

Lines of constant f / H  serve as characteristics of this first-order equation. 
Therefore, in essence, not the very depth H ,  but the function f / H  displays 
the influence of the bottom on the current in a homogeneous ocean. 

In the case under consideration, the equation for the boundary current is 
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readily derived. It is not difficult to  show that the boundary current at a 
shore of an ocean [an exponentially decaying solution of an equation of the 
type [5.6.11)] exists only along those segments of a western shore line 
where 

and of an eastern shore where 

where the coordinate axis y coincides with the shore line and points to the 
north. 

The mean inclination of the ocean floor is of order loA3 which, generally 
speaking, is sufficient for changes in sign of the quantity a ( f / H ) / a y .  There- 
fore consider a problem for which this quantity changes sign as one moves 
along a western shore; its solution yields the simplest model of the separa- 
tion of a boundary current from a shore, caused by the effect of the bottom 
relief. 
Consider the problem 

(5.7.1) 

$ = O  f o r x = O a n d x = l ,  (5.7.2) 

and construct a bounded solution of this problem in the strip 0 < x < 1, I y I 
< m. The choice of the strip for the analysis of the model is justified by the 
fact that one wishes to concentrate attention on a study of separation of a 
boundary current from a western coast. The characteristics of the limiting 
equation (E = 0) will be parabolae x - y2 /2  = constant (lines of constant 
f /H in the present problem). North of the point ( 0 ,  0), there is no coastal 
boundary flow; it will be shown below that at this point it separates from 
the west coast. 

In the open ocean (outside the boundary layer), the term EA,$ in (5.7.1) 
is small and the geostrophic solution $, is given by the series 
$, = $go@, Y )  + E$,,(x, Y )  + *.* + O W )  (5.7.3) 

Since for y < 0 a boundary layer may exist only at a western shore (x = 0), and 
for y > 0 only at an eastern shore (x = l), it is clear that $, = 0 for x = 1, 
y < 0 and x = 0, y > 0. The functions $go, $gl, ... are readily found. For 
example: 

y -Jm I y + J2 - 2x + y2 

$a0 = 

for y > 6, 

for y < JG (5.7.4) 
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Since $g # 0 for x = 0, y < 0 and x = 1, y > 0, one finds coastal boundary 
layers in Regions 1 and 4 of Fig. 5.6. Further, obviously, the function $g 
undergoes a discontinuity along the line y = G, this discontinuity is 
obviated by the boundary layer (with large velocities along y =a in 
Region 3 ) .  Besides, near (0, 0) and (1, 0), asymptotic expansions in Regions 
1 and 4 turn out to  be invalid, and therefore transition region 2 is formed 
(a region of separation) and Region 5 with special asymptotics. 

The solution of problem (5.7.1) and (5.7.2) in Regions 1, 2 and 3 may be 
represented in the form of asymptotic series: 

In Region 1 

y < o ,  ( 2 0 ;  
(= -  X 

E '  $ = $1 = $ l O G ,  Y )  + Wll + * * *  7 

(5.7.5) 
in Region 2 

t > O ,  I r l K " ;  (5.7.6) 

in Region 3 

(5.7.7) 
As always, the scale E for the variable x in Region 1 is determined from 

the condition that the terms Ea2$/ax2 and ya $/ax must be of equal orders 
of magnitude. In Region 2, these terms are also of equal order; however, 
the term a$/ay must be here of the same order. Otherwise the expansion 
(5.7.6) would not differ from the expansion (5.7.5) and the effect of 
separation of the boundary layer could not be described. These two con- 
ditions yield for the scales along x and y the quantities E 2 1 3  and 
respectively. Finally, the scale of the coordinate x1 = x-iy2, changing 
across boundary layer 3, will be determined by the condition that the terms 
Ea2$/ax:, and a $lay must be of equal order. 

Note that it is not obligatory to introduce for an analysis of a boundary 
layer orthogonal coordinates (the coordinates in Region 3 :  x1 = x-y2 /2 ,  y 
are not orthogonal). I t  is only important that one of the families of coor- 
dinate lines should be directed "along" the boundary layer. In Region 3, this 
line is x1 = constant, and therefore a/axl - E-'I2, a/ay - Eo. 

Construction of the equations for the individual terms of asymptotic 
series presents no great difficulties. One obtains in the ordinary manner the 
following equations and boundary conditions: 

(5.7.8) 
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Fig. 5.6. Boundary layers 1, 3, and 4, transition regions 2 and 5 and the pattern of 
stream lines (of constant $) for problems (5.7.1) and (5.7.2). For the sake of clearity, the 
boundary layers have been strongly enlarged. 

$lo  = $11 = 0 ,  $20 = $21 = 0 forx = 0 .  

(5.7.9) 

(5.7.10) 

(5.7.11) 
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Note that the study of Problems (5.7.1) and (5.7.2) employed a method 
which differed somewhat from that employed in 85.6 (although for an 
analogous type of problem), In 3 5.6, “correction” functions have been 
introduced within the confines of the boundary layers, which compensate 
for the inaccuracy in the fulfillment of the boundary conditions for the func- 
tions describing the solution in the open ocean. For such “correction” func- 
tions, special equations were constructed and a search was made only for 
exponential decaying with the distance from the boundary solutions of 
these equations. 

However, in the case under consideration, we will not apply this method, 
since separate terms of expansion (7.7.3) have singularities on the boundary, 
for example, in the neighbourhood of the point ( 0 , O ) .  Therefore, the com- 
plete region of integration will be subdivided into individual parts in each of 
which special asymptotic expansions of the solutions of the problem will be 
written down; these expansions must now be matched in a definite manner. 
The basic idea of this general method of matched asymptotic expansions is 
explained in Appendix €3. Note that in those cases when the method of “cor- 
rection” functions is applicable, it leads automatically to matched asymp- 
totic expansions. 

Consider the problem of matching of asymptotic expansions in the geo- 
strophic region and Region 1. Applying Procedure 1 (cf. Appendix B), one 
arrives without difficulties at the condition 

t 
$10 + $ g o ( O , Y )  9 $11 - JW + $g1(0, Y) for r + . (5.7.12) 

Equation (5.7.8) and conditions (5.7.11) and (5.7.12) permit easy con- 
struction of the functions G l 0  and $ll. These functions are analogous to 
(5.6.14) and will therefore not be written down here. 

Analogously, application of Procedure 1 (cf. Appendix B) to  matching of 
the asymptotic expansions in the geostrophic region and Region 3 yields 

$ 3 0 - + J T + y  f o r u + w ,  + 3 o + y  f o r u + - .  (5.7.13) 
Consider the matching of asymptotic expansions in the geostrophic region 

and Region 2. According to  Procedure 1 ,  rewrite the partial sum $go(x,  y )  
+ E$gl(x, y )  in the form 

$,o(E2/3t, E1I37)) + E E1I37)) 

and expand in a series of powers 1, E l l 3 ,  ... for fixed t and 7. Using (5.7.4), 
one finds 

$ , o ( E ~ ’ ~ ~ ,  E1I37)) + E $g1(E213t ,  E1I37)) = f i  + E1/37) + O ( E ~ / ~ ) ,  (5.7.14) 
whence 

$20 + fl , $21 - 7) for t -+ - , q+-. (5.7.1 5) 
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Equations (5.7.9) and conditions (5.7.11) and (5.7.15) determine the func- 
tions $20 and $21 in a unique manner. 

Next, the matching of the asymptotic expansions in Regions 1 and 2 will 
be checked. Rewrite the partial sum $lo({, y )  + E$ll({, y )  in the form 

r )E1’3)  + E$11([E-1/3, r ) E 1 / 3 )  and expand in a series of powers 
1, Ell3 ,  ... for fixed t and r). Explicit formulae for $ l o  and $11 yield 

$ 1 0 ( t ~ - 1 / 3 ,  r ) ~ l / ~ )  + E $ ~ ~ ( ~ E - ~ / ~ ,  r ) ~ ~ / ~ )  = &(I - etq) 

(5.7.16) 

Using the asymptotic expansion of the solution of problem (5.7.9), 
(5.7.11), (5.7.15) for [ -+ 0 and r )  -+ -, it may be shown that the match- 
ing conditions for the expansions (5.7.5) and (5.7.6) are fulfilled (cf. [38]). 

In order to  determine the function $ 3 0 ,  one must still find initial condi- 
tion for y = 0 for equation (5.7.10). For u >  0, these conditions are “dic- 
tated” by the asymptotic expansion in the geostrophic region, for cr < 0 by 
the boundary conditions at the shore for x = 0 (cf. the scales of the cor- 
responding regions in Fig. 5.7). The condition for $30 will be written in the 
form 

$ 3 0 ( 0 , 0 )  = 0 for u < 0 ; $ 3 0 ( ~ ,  0) =fi for o > 0 . (5.7.17) 
Equation (5.7.10) is readily solved for conditions (5.7.13) and (5.7.17) : 

(5.7.18) 

Only the first term in the expansion for will be determined. However, 
it  must be kept in mind that for construction of a unique solution of Prob- 
lem (5.7.10), (5.7.13) and (5.7.17), because of the discontinuity of the ini- 
tial conditions (5.7.17) for y = 0, one must, in general, know the character 
of the singularity of the required function at  the point u = 0, y = 0. This sin- 
gularity is determined from the matching condition of the asymptotic expan- 
sions (5.7.6) and (5.7.7). 

It will now be shown that $30 is actually found in this manner. For this 
purpose, change in Region 2 to  the variables 0 = (x - $Y, ) /E , /~ ,  r )  = y / E 1 l 3 ;  
then the operator L ,  assumes the form L ,  = a2 /aO2 - a/ar) .  Using the 
asymptotic expansion of $ z o  for 10 1, r )  + 00 one finds 

m 

$20 ( u E P / 6 ,  y E  -113 ) = y + & ? - d m /  e-s2ds+o(l) .  
0 1 2 6  

Thus, formula (5.7.18) yields the true character of the singularity of $30 

for (u, y )  + (0 ,  0). Construction of the subsequent terms of expansion 
(5.7.7) is givw in [37,38]. 
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Thus, asymptotic expansions have been constructed for Regions 1 , 2  and 
3. In essence, determination of the asymptotic in Regions 4 and 5 does not 
differ (in Region 5, the expansion begins with terms of order E l l 3 ) .  

The velocities of the current (derivatives of $ with respect to x and y )  
computed from the asymptotic expansion for $ will be continuous. 
Although, as it follows from (5.7.4) and (5.7.18), the derivatives of $ g  and 

have singularities for (x, y)  -+ (0 ,  0) and a$,/ax also for (x, y )  + (1, 0), 
these singularities are removed by the transition regions 2 and 5. 

These asymptotic expansions of the solution of Problem (5.7.1) and 
(5.7.2) permit readily construction of the pattern of stream lines (lines of 
constant $) and the distributions of velocities in the boundary flows (Figs. 
5.6 and 5.8). 

Note that, although a ( f / H ) / a y  changes sign at both points (0 ,  0) and 
(1, 0), separation of boundary flow 1 from the shore and its continuation in 
the form of an internal jet 3 has been observed only at the point (0 ,  0); on 
approach to  the point (1, O), boundary current 4 gradually becomes exhausted. 

The method of solution of Problems (5.7.1) and (5.7.2) presented above 
is readily generalized to  the case of arbitrary right-hand sides in (5.7.1) and 
likewise to arbitrary shore lines. Note that the axis of the internal boundary 
current in Problems (5.7.1) and (5.7.2) is the curve y = fix. In the general 
case, this axis will be a line of constant f / H  which touches the western shore 
at some point (point of separation) and turns back to the east coast. 

Fig. 5.7. Scales of Regions 2 and 3. 
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Fig. 5.8. Schematic distributions of velocities a t  section perpendicular to the axes of 
baundary currents 1 and 3: a - Layer 1, v y  = 0 ( l / E ) ;  b - Layer 3, uyl = 0 ( l / J E ) ,  x1 = 
x--y2/2 (xl, y1 -orthogonal coordinates). 

COMMENT ON CHAPTER 5 

The material of 3s 5.1-5.3 has been studied repeatedly in the literature, 
cf. Ekman [15,16] and also Felsenbaum’s book [18], where it has been 
proposed to  construct an equation for the total flow function I) and not for 
the sea level, as this was done by Ekman. 

3 5.4. This section follows the work of Kamenkovich [42,43]. 
3 5.5. The important role of the non-uniformity of the wind field in ocean 

dynamics, in particular for the formation of equatorial counter currents, was 
first pointed out by Stokman [ 1141. 

3 5.6. The basic theory of western boundary currents was developed by 
Stommel [ 1161. Sverdrup’s relation was proposed in [ 1191 and Munk’s for- 
mula in [84]. The methods of analysis of the boundary layer have been 
exposed in detail, for example, in Cole [7] and Carrier [3]; cf. also Appen- 
dix B of this book. 

5 5.7. Criteria for the existence of boundary currents for oceans of vari- 
able depth have been discussed by Welander [128]. Problem (5.7.1) and 
(5.7.2) has been considered by Kamenkovich and Reznik [48]; cf. also Ilyin 
et al. [ 37,381 which presents a complete mathematical analsysis of the prob- 
lem. 



CHAPTER 6 

TWO-DIMENSIONAL MODELS OF OCEAN CURRENTS 

6.1 METHOD OF TOTAL FLOWS 

In order to arrive in a natural manner at the idea of averaging over depth 
of the equations of motion and at an exposition of the method of total 
flows, consider first wind-induced currents in a homogeneous deep ocean. 
Integrating the initial equations of Ekman’s model (5.2.1) and (5.2.2) with 
respect to  z from 0 to H and taking (5.2.4) into consideration, one has 

(6.1.1) 

where (r:, r;) = -AH(au/az, a u / a z )  I are the components of the bottom fric- 
tion. Eliminating from (6.1.1) the level < and introducing the total flow 
function +, one finds 

(6.1.2) 

Comparing equation (6.1.2) with (5.6.1), one obtains the approximate 
[recall that small terms of order E were neglected in (5.6.1)] formula 

(6.1.3) 

Consider now as an example the Ekman model with variable transfer coef- 
ficient AH = AH@). It is readily seen that equations (6.1.1) and (6.1.2) will 
also be valid in this case; however, it  is difficult to find a general expression 
for curl, (rb/H) in terms of $. If it is assumed that (6.1.3) holds true approx- 
imately also in this case, then one derives immediately an equation for the 
total flow function $ in the study of which the parameter hZ may be con- 
sidered to  be the mean characteristic of the bottom friction in the ocean. Na- 
turally, this equation lends itself to  analysis which is considerably simpler 
than that of the initial system of equations, and thus there arises the possibil- 
ity of investigating velocities of currents averaged over depth for more com- 
plex models. 

Apply such an approach in the general case. Of course, one has to  intro- 
duce additional hypotheses modelling one or the other new effect in order to 
obtain a closed system of equations for parameters of a motion averaged 
over depth. However, it turns out that the initial equations are simplified 
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significantly, and, most important of all, that such a theory explains in a 
sufficiently reasonable manner important features of the horizontal structure 
of ocean currents. 

Attention will now be given to stationary currents in moderate latitudes. 
Using (4.5.4), (4.5.7) and (4.6.9), find first of all a general expression for the 
horizontal components of the friction force. Integrating then the equations 
of motion (4.8.3) and (4.8.4) with respect to  z from 0 to H ,  one finds 

(6.1.4) 

(6.1.5) 

In these formulae, the quantity E ,  has been included with the pressure p ;  
since, as a rule, E ,  << p ,  no further consideration wilI be given to terms with 
E,. The symbol Ah denotes the Laplace operator on a sphere with radius a. 

Normally, in the ocean, one has 17-b 1 - 0.01 cm"/sec" (cf. [133] ). Since 
( 7  I - 1 cm2/sec2, one may neglect the effect of bottom friction in the aver- 
aged equations (6.1.4) and (6.1.5) in comparison with the effect of the tan- 
gential wind stress. However, in that case, the averaging of the initial equa- 
tions permits to eliminate from the consideration the coefficient of turbu- 
lent vertical transfer A H  which has only been studied little to  date. 

In the Ekman model, the role of bottom friction in the region of a western 
boundary current is overstated artificially, since the model does not con- 
tain other factors which are suitable for closing the isolines of the total flow 
function (cf. 5 5.6). 

Introducing P = Jrpdz, the pressure averaged over the depth, and the pres- 
sure pb at the ocean floor, one has 

[ ( v@) dz = VhP-pb V h H .  
0 
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In essence, the term PbVhH describes the effect of the inhomogeneity of 
the density of sea water on the distribution of total flows in the ocean; it is 
very difficult to  obtain for this term an objective estimate. All the same, this 
term will be neglected below. Otherwise one does not succeed in the con- 
struction of a closed system of equations for the study of features of the 
distributions S,, S, and P in the ocean. 

Furthermore, assume that the integrals of the non-linear inertial terms and 
of the horizontal turbulent transfer in (6.1.4) may be represented approxi- 
mately in the form 

a2 C O S ~ ~  ”.) ah ’ 
- 

and in (6.1.5) analogously. 
Finally, if the transfer coefficient A is assumed to be constant, then one 

may, to the same approximation, not take into consideration, by the bound- 
ary conditions w(X, p, H )  = 0 and w(h,  cp, 0) = 0, the two last terms on the 
right-hand sides of (6.1.4) and (6.1.5). In this manner, the as yet unknown 
transfer coefficient has been excluded completely. 

Hence one arrives at the equations 

cos 2p 2 s inp  as, 
a2 cos2cp a h  SA - 

a2 cos2cp [ (6.1.6) 

(6.1.7) 

These equations will yet be augmented by the equation of conservation of 
mass (5.2.16), viz. 

as, a -+ -(S, cos cp) = 0 . ah a 9  
(6.1 3) 

Thus, the closed system of equations (6.1.6)-(6.1.8) for the determina- 
tion of the unknown functions S,, S, and P has been constructed. The hy- 
potheses introduced have permitted to derive instead of the complex, initial, 
three-dimensional model of currents caused by surface effects (wind, heat 
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flux, etc.) a two-dimensional model with an external mass force. This 
approach to the study of the horizontal structure of ocean currents is also 
referred to as the method of total flows. 

In equations (6.1.6)--(6.1.8), the single external force is the tangential 
wind stress. In other words, the method of total flows permits to study only 
horizontal features of wind-induced currents in the ocean. The thermo-haline 
components of a current, caused by action of factors directly changing the 
temperature and salinity of sea water, does not contribute in the analysis of 
currents averaged over the depth of the ocean (within the framework of the 
approximations introduced). 

The following sections show that the analysis of the system (6.1.6)- 
(6.1.8) makes it possible to explain important peculiarities of the horizontal 
structure of ocean currents. 

6.2 GENERAL ANALYSIS O F  A TWO-DIMENSIONAL MODEL 

Generally speaking, the equations derived hold true for an ocean of vari- 
able depth. However, in order to simplify the ensuing analysis, assume that 
the depth is constant, i.e., H = constant. Then, dividing (6.1.6) through 
(6.1.8) by H and introducing velocities u and u, averaged over the depth of 
the ocean, and pressure p (employing the former symbols), one obtains after 
a number of transformations the equation of vorticity for two-dimensional 
currents on a sphere (with the z-axis directed downwards) 

u a  v a  
a ap 

(a - f )  +-- (a - ___- 
a cos cp ah 

where 

a v  
a cos pah ' ( u  cos p) - _ _ _ ~  

i a  
cos p aap 

a=-- (6.2.2) 

The left-hand side of equation (6.2.1) describes advection of absolute vor- 
ticity a - f [since the model is two-dimensional, there does not occur 
stretching of vortex lines in (6.2.1)], the right-hand side diffusion of relative 
vorticity A L A h a ,  an internal source of vorticity (2AL/a")w and an external 
source of vorticity (1/H) rot, f (in a two-dimensional model, there is no baro- 
clinic effect), 

In the equation of vorticity transfer for two-dimensional motions on a plane, friction 
leads only to diffusion of vorticity, described by the term ALAhW. Mathematically speak- 
ing, this is a consequence of the fact that in Euclidean space the result of repeated cova- 
riant differentiations does not depend on the sequence of differentiations. The develop- 
ment of the internal source of vorticity ( 2 A L / a 2 ) o  in (6.2.1) is caused by the curvature 
of the spherical surface (non-Euclidean space) (cf. SA.8). 
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At the same time, inclusion of bottom friction in (6.1.3) likewise leads to  an 
internal vorticity source. 

Important features of the motions under consideration are the closed 
nature of the stream lines and the constant sign of the intensity of the exter- 
nal vorticity source (for example, in the region of the Azores Anti-cyclone, 
rot, T > 0). Therefore one must take into consideration in (6.2.1) diffusion 
of relative vorticity; otherwise there would arise for motion of particles 
along closed trajectories a surplus of relative vorticity and stationary motion 
would prove to be impossible. The formal proof follows from the identity 

$ v h  V h (  W - f )  ds = $ diV, [oh(w - f ) ]  ds = 0 , 
1’ 1’ 

where the integral is taken along the closed trajectory r and q, = (u, u).  If 
friction is not included in the equations of motion, then one obtains on inte- 
gration of (6.2.1) along a closed trajectory a contradiction, since gr  (rot, 
z)ds > 0. 

Consider an open ocean and let rot, t > 0. Simple estimates show that in 
the open ocean changes in f essentially exceed changes in w ;  however, then 
diffusion and advection of relative vorticity are here insignificant, and one 
obtains Sverdrup’s relation 

1 
flu = -grot , r  . (6.2.3) 

According to Sverdrup’s relation, all particles must move southwards to 
larger values of the planetary vortex -f, since flux of vorticity from the 
external source is positive (in the left-handed coordinate system A, rp and z). 
Obviously, the total meridional transport of such motion Q will depend on 
the latitude (intensity of the external vorticity source is not constant) and 
there exist lines which cross the ocean from eastern to western shores on 
which rot, T = 0 (for example, the southern and northern boundaries of the 
Azores Anti-cyclone). But such motion violates the law of conservation of 
mass (the liquid being incompressible). Therefore there must arise at shores 
of an ocean northerly currents which remove violations of the law of conser- 
vation. 

At what shores do there arise boundary currents? Clearly, within the 
limits of boundary flow advection and diffusion of relative vorticity w must 
be essential (otherwise, the fluid particles would be moving south). Conse- 
quently, the width of such a current must be small compared with the char- 
acteristic dimensions of the basin (the expressions for advection and diffu- 
sion of relative vorticity w contain derivatives of higher order than the 
expression /3u for advection of the planetary vortex -f). However, then one 
has within the limits of a narrow boundary current N -(l/h,)au,/ax, 
where u, is the velocity of the current along the shore [cf. Fig. 5.41, and the 
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total advection of vorticity (3 by the coastal current is (Fig. 6.1) 

R 

uyuh,dx = i u ; ( A )  -$u,”(B) . 
A 

The point A lies on the shore and by strength of the condition of no slip 
u,(A) = 0; the point B has been chosen at the outer edge of the boundary 
layer and therefore u,(B) N 0, since the velocity u, within the limits of the 
boundary layer exceeds significantly the speed u, in the open ocean. This 
follows from the fact that the total transport of the narrow coastal current 
must be equal in order of magnitude to  the total transport of fluid in the 
open ocean. Furthermore, the total contribution of the internal vorticity 
source (2A,/a2)o within the limits of the boundary current is likewise read- 
ily seen to be equal to  zero. Thus, it is clear that the diffusive flux of vortic- 
ity from the wall must play a fundamental role. 

Consider first a northerly boundary current along a western shore (Fig. 
6.la). Since the wall is at rest, it acts on the fluid with a force which coun- 
teracts the motion. Since the absolute magnitude of the vorticity generated 
at the wall decreases with distance from the wall, it may be asserted that due 
to diffusion negative vorticity is added to the fluid. This flux also gives the 
required excess negative vorticity which is carried northward by the bound- 
ary current because of advection of planetary vorticity -f. Thus, a strong 
current is possible at a western shore which does not violate the equation of 
vorticity transfer (since in the open ocean flu = -(1/H) rot, z, it is obvious 
that ( l / H )  rot, 7 makes an insignificant contribution to the vorticity balance 
within the limits of a strong boundary current). 

I t  is important to note that the reasoning presented does not depend on 

Fig. 6.1. Pattern of vorticity transfer in boundary currents. Shown is advective transfer of 
planetary vorticity and diffusive transfer of relative vorticity as well as the couple of 
forces which twist water particles at a shore. View from above; the axis z is directed 
downwards. a). Western shore, current to  the north. b). Eastern shore, current to  the 
north. c). Eastern shore, current t o  the south. 
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the concrete form in which the terms of turbulent viscosity have been writ- 
ten down and is based only on sufficiently general and reasonable concepts 
of turbulent diffusion of vorticity. 

Next, consider the analysis of a boundary current which runs northward 
along an eastern ocean shore (Fig. 6.lb). Clearly, this time positive vorticity 
is supplied to the current because of diffusion from the wall. However, such 
a current, in general, cannot exist, even when the action of an external 
source is taken into account. If the boundary current is directed towards the 
south, then negative vorticity is added because of diffusion, and then balance 
of vorticity is possible, but only on participation of the external vorticity 
source (1/H) rot, t. As it has already been seen, such a current cannot be 
strong. In this manner, it has been proved that formation of a strong bound- 
ary current is only possible at a western shore; the no slip condition at the 
shore and features of vorticity diffusion do not admit formation of a strong 
boundary current at an eastern ocean shore. Analogous reasoning also applies 
to  the case rot, 7 < 0. 

A very essential result has been derived which explains the pronounced 
asymmetry in the total flows observed in moderate latitudes of the Atlantic 
and Pacific Oceans (Fig. 6.2). The result is even more surprising as the tan- 
gential wind field ( T ~ ,  T ~ )  does not exhibit in these regions any special asym- 
metry and nevertheless strong coastal currents (Gulfstream and Kuroshio) 
are only observed along western shores. It must be emphasized that in the 
above reasoning ,the effect of latitudinal changes of the Coriolis parameter f 
played the determining role. 

Thus, a boundary current is only formed at a western shore of an ocean. 
However, then one obtains for its total transport immediately Munk's formula 
(5.6.16) (recall that this formula was assumed to  be true also for H # con- 
stant). Recall again that this formula does not contain matching turbulent 
transfer coefficients. It is useful to compare computations based on Munk's 
formula with observations [southwards from bhe point of separation of the 
Gulfstream from shore (p = 33"N)I. As shown by Fig. 6.3, the order of 
magnitude of the total transport of the boundary current is given correctly 
by the two-dimensional theory (the theoretical values are about half those 
observed). Taking into consideration the approximate character of the two- 
dimensional theory (for example, stationary theory) as well as of the obser- 
vations (because of the difficulty of objectively estimating the transport of 
the Gulfstream averaged over many years), one cannot but admit that the 
results of such a comparison are the quantitative success of the theory under 
study. 

As it follows from the analysis above, direct action of the tangential wind 
stress in the region of the boundary current does not affect its dynamics; 
the boundary current is determined by the action of the wind on the entire 
ocean [cf. Munk's formula (5.6.16)]. 

Features of boundary currents are studied in detail in the next sections. 
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Fig. 6.2. Schematic chart of the total flows in the Atlantic Ocean. (According to Iselin 
[86]) .  Water transport between adjoining lines on the western side of the ocean is 12  . 
1 0 1 ~  cm3isec. 

2 o l l  0 I0 20 30 40 yo 

Fig. 6.3. Dependence of transport of Gulfstream Q [m3/sec] on latitude cp (according to 
Gill [27]) .  1 = Knauss' observations [51]; 2 = Munk's formula (5.6.16); rot, T has been 
computed from Hellerman [31]. 
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6.3 VISCOUS BOUNDARY LAYER 

The following work demands writing down of the basic equations of the 
two-dimensional model in non-dimensional form. The characteristic scale for 
the velocity Uo (having in mind the velocity averaged over the depth of the 
ocean) is determined, according to Sverdmp’s relation (6.2.3), by 

(6.3.1) 

where 7,,/u is taken as a characteristic value of rot, z (cf. § 5.6) and Po = 2fi/ 
a is the characteristic value of the change of the Coriolis parameter with 
latitude. 

Taking as characteristic horizontal scale of the ocean basin the radius u 
of the Earth, one finds 

a u  d -+-(v coscp) = 0 ,  a h  acp 

(6.3.2) 

(6.3.3) 

(6.3.4) 

where, in order to avoid complicated notation, u and u are non-dimensional 
components of the horizontal velocity, averaged over the depth of the ocean 
[scale (6.3.1)] , f is the non-dimensional Coriolis parameter (scale 2n) ,  p is 
the non-dimensional pressure averaged over the depth of the ocean (scale 
2fLup0U0),  7h and T~ are non-dimensional components of tangential wind 
stress (scale 7 0 )  and Ah is the Laplace operator for the sphere of unit 
radius. 

In writing down (6.3.2)-(6.3.4), two parameters have been introduced: E 
and 6; it will be convenient to  define them in terms of two internal length 
scales L,  and L,: 

(6.3.5) 

For the external parameters of the problem one has the values: 70 =I 1 cm2/ 
sec2, a = 6.4 * 10’ cm, H =  1 km, Po N_ 2 - cm-l sec-l, A L  = 0.3 . lo8 
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cm2/sec. Then Uo N 0.1 cm/sec, Li N 8 km, Lo z 50 km; thus, the parame- 
ters E and 6 prove to be very small. (Note that characteristic values of Uo and 
Li are somewhat too low because of the choice of ro/a as scale for rot, 7 . )  

It is seen that equations (6.3.2)-( 6.3.4) contain two small parameters 
which are coefficients of the highest derivatives in the system. The asymp- 
totic methods of $ 8  5.6 and 5.7 will be applied to the study of such prob- 
lems. 

Proceeding step by step, this section will be concerned with the viscous 
boundary layer and it will be assumed that the non-linear inertial terms in 
(6.3.2) and (6.3.3) may be neglected (clearly, this depends on the magnitude 
of the exchange coefficient AL, cf. 3 6.5). Eliminating the function p from 
(6.3.2) and (6.3.3) and introducing the non-dimensional stream function 

one finds [cf. (6.2.1)] 

(6.3.6) 

(6.3.7) 

where p = cos cp is the non-dimensional latitudinal change of the Coriolis 
parameter (scale 2fi/a). 

On western and eastern shores of a basin, there must be satisfied the no- 
slip conditions 

‘ = O ,  -- ”- o for x = ~ , ( s o ) ,  (6.3.8) a n  

$ = O ,  -- a’- a n  o for A = ~ ~ ( s o ) ,  (6.3.9) 

where X = X E  (q), X = Xw (q) are the equations of the eastern and western 
shore lines, respectively, and n is the normal to the shore. 

Equation (6.3.7) will now be studied for the case of moderate latitudes. 
Since, as will be shown below, the solution in the open ocean may be con- 
structed without consideration of boundary conditions at “liquid” bound- 
aries, attention will be limited to conditions (6.3.8) and (6.3.9). In other 
words, during an analysis of currents in moderate latitudes, the conditions 
at “liquid” boundaries do not affect the solution of a problem. This impor- 
tant fact was already noted earlier during the analysis of the Ekman model 
(cf. S 5.6). 

$J = $0 + 6 .  $1 + ...+ $o + 6 - J1 + ... + J o  + 6 

Seek the solution of (6.3.7) in the form 
- 
q l +  ... (6.3.10) 
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The functions $o, $1, ... describe the solution in the open ocean, but in view 
of the structure of equation (6.3.7) they may not satisfy the boundary con- 
ditions (6.3.8) and (6.3.9) on both shores of the basin. In order to remove 
these discrepancies at the western agd eastern shores, respectively, the “cor- 
rection” functions q0, ql, ... and $o, $,, ... have been introduced. These 
functions differ essentially from zero only near the corresponding coast. For 
the functions $o, I),, ..., one obtains readily the equations 

= -rot,r , * 
a i  

a $1 - - = o ,  a i  

(6.3.110) 

(6.3.111) 

In ordsr - to construct equations for the “rapidly” changing functions qo,  
... and $o, ..., change over to a new coordinate system which permits to  
separate out the “rapid” variable for these functions. For this purpose, intro- 
duce in the neighbourhood of the western shore the curvilinear orthogonal 
coordinate system x1 and y, for which the curve x1 = 0 coincides with the 
shore line and the coordinates x1 and y1 increase for motion into the basin 
and northward, respectively (cf. Fig. 5.4). Denote the Lam6 coefficients of 
the coordinate system by hL1) and h(yl). Proceed analogously in the neigh- 
bourhood of the eastern shore: the coordinate system x2  and y z  has Lam6 

In these new coordinate systems, the functions q0, ... and $o, ... have the 

and they must decay exponentially for large rl and C2. Next, rewrite 
equation (6.3.7) in the new coordinate system. It  is not difficult to represent 
the operator Ahah + 2Ah in the form 

coefficients hL2), h y )  with corresponding properties. 

forms: qo = $o (tl, yl) ,  t1 = xl/6,  ... and Go = $0 (t2, ~ 2 ) ,  (2 = ~ 2 1 6 ,  .-, 

Ty 

(6.3.12) 

where the operator M contains derivatives with respect to x of not higher 
than third order. Obviously, the representation (6.3.12) is true at western as 
well as at eastern shores. 

The required equations for Go,  ... and F0, ... are readily found (cf. 3 5.7): 

(6.3.130) 
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where 

(6.3.15) 

z 
Note that the functions so, ... and $o, ... satisfy ordinary differential equa- 
tions in and c2 ;the dependence of these functions on y1 and y2  is paramet- 
ric. This is the result of the transition to the “fast” variable ( in equation 
(6.3.7). 

Write down the boundary conditions. Substituting the expansion (6.3.10) 
into (6.3.8) and (6.3.9), one finds: 

$ l l h W  $l(o, Y 1 )  = Y 

. . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . .  

.................... 

(6.3.160) 

(6.3.161) 

(6.3.171 ) 

(6.3.18,) 

(6.3.181) 

(6.3.190) 

(6.3.191) 

Thus, separate equations have been obtained for the functions Go ,  q0, q0 ,  
...; however, the bouildary conditions for these functions have turned out to 
be “interlinked”. In other words, the solution $o for the open ocean 
depends through the boundary conditions on the structure of the boundary 
layers. 
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Introduce l l ( y )  and Z2(y): 

(6.3.20) 

and write down the characteristic equations for (6.3.13,) and (6.3.14,), 
respectively, in the forms 

v3 - 13 1 = 0 (6.3.21) 

v 3 - 1 ; = 0 .  (6.3.22) 

Equation (6.3.22) will be considered first. Since x2 increases when one 
moves into the basin, then (ax,/ah), < 0 and E 2  < 0. Hence, equation 
(6.3.22) has only the single root v = l , ,  which lies in the left half-plane of the 
complex variable v. Consequently, the exponentially decaying solution of 
equation (6.3.14,) has the form 

$0 = C(Y) exp(Z2C2) (6.3.23) 

and, by strength of the boundary condition (6.3.19,), one has C =  0. But 
then 5, = 0. Hence, by (6.3.18,), one has $, = 0 for h = h,(p) and equation 
(6.3.11,) may be solved: 

$, = (rot,t) dh . 
A 

(6.3.24) 

Thus, the current in the open ocean is described by the same Sverdmp for- 
mula which was obtained during the analysis of the Ekman model. 

Consider now equation (6.3.21). Since Zl > 0, this equation has two roots 
v l  and v 2  which lie in the left half-plane of the complex variable v. The expo- 
nentially decaying solution of equation (6.3.13,) which satisfies conditions 
(6.3.16,) and (6.3.17,) has the form 

AE so = -s (rot,z) dh 
AW 

(6.3.25) 

It  is easily seen that the function J 1  must satisfy equation (6.3.14,) and 
condition (6.3.19, ). Hence 

(6.3.26) 

Once T1 is known, the values of $l at the eastern shore can be found from 
(6.3.18,) and the function inside the basin determined by solution of 
equation (6.3.111). As soon as $1 is known, formulae (6.3.161) and 
(6.3.171) yield the necessary boundary conditions for the construction of 
G1, etc. Thus, all terms of the series (6.3.10) may be constructed. 
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Note that the expansion (6.3.10) bears an asymptotic character and, as a 
rule, consideration will be restricted to its first terms. By (6.3.24)-(6.3.26), 
the solution of the problem under consideration has been obtained in the 
following form: 

In the open ocean, outside the boundary layers along the western and 
eastern shores, 

(6.3.27) 

In the neighbourhood of the western shore of the ocean (xl - 6 )  

$ = f E  (rot,r) dh exp (-y) sin($ Zlcl +;)I + O(6) , (6.3.28) 
AW 

2 fi (rot,t) dh .~ Z1 exp (-’$) sin-2-Z1{7 + 0(1) ; a *  1 AE 

~ ax1 =sJ AW f l  
In the neighbourhood of the eastern shore (x2 - 6)  

As had been assumed in determining the characteristic scale for the veloc- 
ity from (6.3.1), the nondimensional velocity in the open ocean turns out 
to be of order unity. However, it should not be concluded that the choice of 
scale (6.3.1) “enforces” the Sverdrup solution (6.3.27) for the open ocean. 
Choice of one or the other scales for unknown functions for solution of a 
problem is in a definite sense an assumption the truth of which can only be 
established after solution of the problem. 

Attention will now be turned on the structure of the boundary layer at 
the western shore of an ocean. Using (6.3.28) and formulae of the type 
(6.3.6), one finds readily that within the limits of the boundary layer uX1 - 1, u y l  - 1/6 and both velocity components vanish at the shore. 

I t  is not difficult to  show that Munk’s formula (5.6.16) is obtained for the 
magnitude of the total transport of the boundary current, as in the case of 
the Ekman model (cf. the discussion of this question in 3 6.2). However, the 
structure of the boundary current obtained above differs from that of the 
Ekman theory. The meridional velocity component (or the total flow) 
change sign within the boundary layer, an indication that weak counter 
currents arise near the outer edge of the boundary layer. 

It is clear that the thickness of the viscous boundary layer is of order L, 
and that, once L,  has been determined from observations, the coefficient 
A L  may be estimated; if L,  = 100 km, then A L  = lo8 cm2/sec. Note that L,  
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changes little when A, is varied by one order of magnitude [cf. (6.3.5)]. 
Next, consider the boundary layer at an eastern shore of an ocean. Using 

(6.3.29), one finds that the boundary layer which forms at an eastern Least 
does not lead to a strong coastal current; it only removes the inability to ful- 
fill the boundary condition uY2 = 0 for x 2  = 0 to  the Sverdrup solution. 

Furthermore, as in the case of the Ekman model, it is seen that a change 
in the configuration of the shore line leads only to a quantitative change in 
the velocity within the limits of the boundary layer, anu likewise of the 
width of this layer, but that it does not bring about any qualitative change in 
the structure of the boundary current. 

I t  is interesting to note that current velocities averaged over the depth of 
the ocean (or total flows) are shown by the solution obtained to depend 
only on rot, t, and not on the field t itself. 

Thus, a general linear theory of the viscous boundary layer at ocean coasts 
has been developed which explains a number of interesting features of such 
coastal currents as the Gulfstream, et  al. However, this theory has an essen- 
tial defect. The boundary current described by the linear theory exists all 
along the shore; it first “saturates” to  maximum total transport and then 
gradually “exhausts” itself to  zero transport (cf. Fig. 5.5). Hence also Sver- 
drup’s relation appears to be valid throughout the oceans outside coastal 
boundary layers. 

Such patterns are not observed in Nature. The Gulfstream, on attaining 
maximum transport, leaves the shore in the form of a narrow concentrated 
jet which gradually dissipates in the open ocean. A more interesting feature 
of the current in the open ocean to  the north of the Gulfstream’s point of 
separation from shore is meandering. Therefore also Sverdrup’s relation 
which does not describe such meanders cannot be true in this region. Note 
that a similar pattern is also observed in the northern part of the Pacific 
Ocean. 

Furthermore, the large magnitude of A, must be noted which is required 
by the linear theory. According to estimates, obtained by Stommel [117, p. 
98, 97, 991, A ,  = lo6 cm2/sec. However, for such a value of A,, inertial 
terms which have not been taken into account in the model above appear to 
be essential in the equations of motion. 

All these circumstances lead to the necessity of giving consideration to the 
more complicated models of 85 6.4-6.6.  

6.4 INERTIAL BOUNDARY LAYER 

The effect of the non-linear inertial terms on the structure of the bound- 
ary layer will now be studied, neglecting the action of forces of turbulent 
friction. Combined effects of viscous and inertial terms will be considered in 
$8 6.5 and 6.6. 
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A beginning will be made immediately with the equation for a western 
boundary current. Introducing, as in 8 6.3, curvilinear coordinates x and y ,  
rewrite equations (6.3.2) and (6.3.3) without frictional forces: 

(6.4.1) 

u a u  u -+-Y-- a v  uu ah __ +fu=-h++.y, (6.4.2) 
Y Y  ay  h,h, ax h,h, ay 

where u and u are the components of the velocity in the directions x and y .  
On the basis of (6.3.4), define a stream function $ by 

(6.4.3) 

At the shore, the no-flow condition 

u = o  x = o  (6.4.4) 

must be fulfilled. 
In the analysis of the problem under consideration, it will be convenient 

not to introduce “correction” functions for separate terms of the asymptotic 
expansion of the solution of the problem in the open ocean, but to  represent 
the required solution directly in the region of the boundary current in the 
form of asymptotic series (cf. § 5.7): 

where { = X / E .  

equal powers of E .  One finds for the first approximation 
Substitute the series (6.4.5) into (6.4.1)-(6.4.3) and collect terms of 

(6.4.6) 

(6.4.7) 

(6.4.8) 

where the notation 

hxo = hX(0, Y ) ,  hyo = h,(O, Y), f o  = f ( 0 ,  Y )  

has been introduced. 
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In the open ocean, the solution of the problem becomes an asymptotic 
series of the normal type. It will now be assumed that all terms of these 
series have been found. 

Substituting the expansion (6.4.5) for u into (6.4.4), one obtains in first 
approximation 

u o = O  for c = O .  (6.4.9) 
The asymptotic expansions in the regions of the boundary layer and the 

open ocean must be matched in a definite manner. Methods for such match- 
ing have been explained in Appendix B (cf. also § 5.7). Without difficulties, 
one finds for the first approximation 

uo = ugo, uo = 0, p o  = p g o ,  $o = for = 00 , (6.4.10) 
where ugo,pbo and $go are the values of the first terms of the asymptotic 
expansion in the open ocean for x = 0. 

Thus the unknown functions uo, vo, p o  and $o satisfy the system of equa- 
tions (6.4.6)-(6.4.8) for the boundary conditions (6.4.9) and (6.4.10). 

Equations (6.4.6) and (6.4.7) are conveniently rewritten in the form 

(6.4.11) 

(6.4.12) 

where 

Multiply equation (6.4.11) by uo, equation (6.4.12) by uo and add the 
results to obtain 

uo -(x a v 2  + P O  + Y )  + uo a ($ u2 +PO + Y )  = 0 
hxoac 2 Y O  y 

This equation yields directly the Bernoulli type integral 

2 (6.4.13) 9 + p o  + Y =  Q ( $ o ) ,  2 

where &( $o) is an arbitrary function. 
Expressing the contents of the brackets on the right-hand sides of (6.4.11) 

and (6.4.12) with the aid of (6.4.13) in terms of Q, one obtains the absolute 
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vorticity integral 

(6.4.14) 

Equations (6.4.13) and (6.4.14) are equivalent to the equations of motion 
(6.4.6) and (6.4.7). 

In order to determine Q ( $ J ~ ) ~  attention will be turned on the boundary 
conditions. Since the current regime is known for { = 00, the value of Q on 
any stream line is readily found. The formal procedure is as follows. For 
< = m y  the Bernoulli type integral (6.4.13) assumes, by strength of the 
boundary conditions (6.4.10), the form 

P ~ O  + Y =  & ( $ g o )  . (6.4.1 5 )  

Furthermore, inverting the function $ J g o  = $go(y),  one finds y = Y ( $ ~ ~ ) .  
Substituting this expression for y on the left-hand side of (6.4.15), one 
obtains Since $go covers the same interval of values as $o, the 
unknown function Q has been constructed. 

Note that the function p o  is defined exactly apart from an arbitrary con- 
stant -c; the constant c drops out of equations (6.4.13) and (6.4.14) and 
need not be written down. 

Note that for { = m the absolute vorticity integral (6.4.14) may be written 
in the form 

f o  = Q ’ ( $ g o )  (6.4.16) 
It follows from this relation that inertial boundary layer cannot exist along 
an entire coast line. In fact, the values of the Coriolis parameter fo(y) at points 
of entry and exit of a stream line from a boundary layer cannot coincide, 
since dfo/dy > 0. This question will now be studied in greater detail. 

will be constructed. For this pur- 
pose, one may combine relation (6.4.14) and the first equation (6.4.8) to 
arrive at a second-order ordinary differential equation the order of which 
may be reduced. However, it is simpler to proceed in the following manner. 

Substituting for uo from the first relation (6.4.8) into (6.4.6), one finds 

First, an equation for the function 

Integrating this equation with respect to { and taking into account the 
boundary condition for { = 00, one obtains 

Po = P g o  + f o ( $ o  - $ g o )  * (6.4.17) 

Substituting this expression into the Bernoulli integral (6.4.13), one arrives 
at the equation 

(6.4.1 8) 
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Finally, substituting into the first equation (6.4.8) for uo from (6.4.18), 
one finds the required first-order ordinary differential equation for $o({, y )  
which has for the boundary condition $o(O, y )  = 0 the solution 

(6.4.1 9) 

After $o has been found, the function uo may be found from (6.4.18), the 
function p o  from (6.4.17) and the function uo from the second equation 
(6.4.8). 

There arises now the following question: When is it possible to determine 
uo from (6.4.18) (or, in other words, when will the right-hand side of 
(6.4.18) be positive) and obtain from (6.4.19) a function $o which tends 
exponentially to the function $go for { -;r m? In order to answer this ques- 
tion, rewrite (6.4.18), taking account of (6.4.15) and (6.4.16), in the form 

(6.4.20) 

whence it follows that the function Q must be concave, i.e., 

Q " ( $ g o )  > 0 - (6.4.21) 

If a boundary layer exists, then uo > 0 and for large < 
uo 2- d Q " ( $ g o ) ( $ g o  - $01 + -.. (6.4.22) 

When condition (6.4.21) is fulfilled, then (6.4.18) and (6.4.19) make 
sense. Furthermore, if I $o - $go I << 1, then the expansion (6.4.22) holds 
true and by (6.4.19) the variable < - - [ l / ( h x o ) d w ) ]  log ( $ g o  - $01; 
but this means that for large { the function J / o  tends exponentially to 
Gg0.  Thus, it has turned out that condition (6.4.21) is also sufficient for the 
existence of an inertial boundary layer. 

An expression will now be found for Since 

one finds 

(6.4.23) 

Since dfo/dy > 0, the condition for existence of an inertial boundary layer 
(6.4.21) may be written in the form 

ugo < 0 . (6.4.24) 

Thus, it is seen that the normal to shore component of the geostrophic 
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velocity must be negative at the shore. In other words, at the outer edge of a 
boundary layer, the fluid must flow into the boundary layer. Therefore con- 
dition (6.4.24) may be formulated as follows: At a western shore of an 
ocean, there exists only an inertial boundary current the transport of which 
increases along its flow. Such a boundary current will be said to  be accelerat- 
ing. 

Consider a region of a boundary current. It follows from (6.4.7) that for 
{=, 

Setting in (6.4.20) the quantity $o = 0 and differentiating 
obtained with respect to y ,  one obtains, by (6.4.15), (6.4.16), 
(6.4.25), that 

(6.4.25) 

the relation 
(6.4.23) and 

(6.4.26) 

Since uo > 0 in the region of the boundary current and, by (6.4.23) and 
(6.4.24), $go > 0, then the velocity uo at the shore increases along the flow. 

Note that the criterion of existence of an inertial boundary layer at a 
western coast of an ocean is determined by an integral characteristic of the 
wind field over the entire basin and is not linked directly to local features 
of the wind field near the coast itself. 

Consider now Fig. 5.5. I t  is seen that in the southern part of the region 
under consideration upo < 0 (the stream lines of the current in the open 
ocean “run” into the shore) and criterion (6.4.24) is satisfied. This is the 
region of formation of the Gulfstream. As it moves along shore northwards, 
the velocity ugo becomes zero and then positive; in this region, by (6.4.24), 
there does not exist an inertial boundary layer. 

It is interesting to note that the configuration of the west coast of an 
ocean actually does not exert any influence on the existence criterion of a 
boundary layer. 

Thus, an important step has been taken along the path towards a study of 
the structure of the Gulfstream: It  has been shown that it is impossible for 
an inertial boundary layer to exist along an entire shore line. This is the basic 
non-linear effect of the model under consideration. 

It is readily shown that at an eastern shore of the ocean there may only 
exist an inertial boundary current for which the transport decreases along 
the flow. Such a boundary current will be said to be decelerating. 

6.5 INERTIAL-VISCOUS BOUNDARY LAYER 

After this study of the limiting cases of viscous and inertial boundary 
layers, consider now the general problem of a coastal boundary current in 
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the presence of viscous and inertial effects. In order to study this difficult 
problem, recourse will be taken to maximum simplification of the model. 
Firstly, introduce the P-plane approximation: Consider motion on a plane 
rotating Earth with a Coriolis parameter which depends linearly on latitude 
(in non-dimensional variables f = f o  + .y) (cf. 9 3.8). Secondly, assume that 
shore boundaries pass along meridians and consider a very simple zonal wind 
field which depends only on latitude. I t  follows from 35 6.3 and 6.4 that 
these simplifications do not lead to qualitative changes in the structure of 
viscous and inertial boundary currents. For example, if a shore nowhere 
touches a line cp = constant, then its configuration prescribes only a definite 
direction of the boundary current without exerting influence on the crite- 
rion of its existence. 

Write down the boundary conditions. By strength of the assumptions 
relating to the shape of the coastal boundaries, the equation of the western 
shore will be x = 0, and that of the eastern shore x = 1 (in non-dimensional 
variables). Therefore conditions of no slip at rigid boundaries assume the 
form 

‘=O, - _  W o  ax for x = 0 ,  (6.5.1) 

$ = O ,  -- a ’ - ~  ax for x = l .  (6.5.2) 

Thus, the solution of the problem under consideration depends on two small 
parameters e and 6 which are coefficients of the highest derivatives of sys- 
tem (6.3.2)-(6.3.4). In other words, there arise two characteristic length 
scales Li and L, which describe the structure of the boundary layer [cf. 
(6.3.5)], and, at a first glance, it  is not clear how t o  introduce a “stretched” 
variable and in what form to write down the asymptotic expansion of the 
solution of the problem. 

The following approach will be adopted. Consider a boundary layer within 
the limit of which inertial and viscous terms have the same orders of magni- 
tude (inertial-viscous boundary layer). As characteristic thickness of the 
boundary layer, select the scale Li (by assumption, the scale L,  has the same 
order, but the choice of Li will be more convenient below). Then the inertial 
terms will have within the limits of the boundary layer order 0(1) [in equa- 
tion (6.3.3)], but the viscous terms order O ( S 3 / e 3 ) .  It is convenient to  intro- 
duce a Reynolds number for the boundary layer as a ratio of a characteristic 
magnitude of inertial terms to a characteristic magnitude of viscous terms in 
equation (6.3.3). One has 

(6.5.3) 

where U is the magnitude of the velocity at the outer edge of the boundary 
layer. 
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TABLE 6.1 
Parameters A L ,  R, L,, 6 

A~ cm2/sec R L, km 6 

108 
1 0 7  
106 
105 

2.2 . l o r 2  79 1 . 2 .  10-2 

2.2 . 10 1.9 1.2.10-3 

2 .2 .  10-1 37 0.6 . 
2.2 17 0.3 . 

All determining parameters of the problem (a, Po, 70) with the exception 
of AL may be assumed to be sufficiently well known. The range of possible 
values of A L  is very wide. Therefore the structure of boundary layers will be 
studied for different values of R,  and in this manner values of AL will be 
found for which the theory is closest to observations. 

For example, let U = 1 cm/sec; then, since Po = 2 cm-' sec-l, one 
finds Li = 22 km and E = 3.4 * lop3; the following table is readily con- 
structed (Table 6.1). 

Replacing the parameter 6' by e 3 / R ,  rewrite equations (6.3.2)-(6.3.4), 
taking account of the assumptions formulated at the beginning of this sec- 
tion, in the form 

(6.5.4) 

(6.5.5) 

(6.5.6) 

The structure of the inertidviscous boundary layer will now be studied. 
Fix the Reynolds number R and assume it to be of order unity. Then the 
system (6.5.4) -( 6.5.6) will contain only one small parameter E mul- 
tiplying the highest derivative and known asymptotic methods may be 
applied. Thus, seek the solution of the problem for the entire basin in the 
form 

u = uo(x, y )  + ... + i i o ( f , y )  + ... + 90(7,Y) 1 - x  + ..., 

1 -  (z, y )  + ... +;So 1 (T, 1 - x  Y )  + ..., 
u = uo(x, y )  + ... + - uo 

f 

p = P o ( x , Y )  + *.. +.,(:,y) + * - -  + P O ( - ; , Y )  1 - x  

+ =  $o(x, y )  + ... + Go(:,Y) + ... + 50 ( T ,  1 - x  1) + - 0 . )  

+ * * * ,  

(6.5.7) 
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Obviously, exponential decay of the functions Go,  Zo,  ko, $o, ... is 
required for Cl + 00 (t1 = x /e)  and of the functions zo, Z0, Fo ,  fro, ... for c2 
--f 00 [ { z  = (1 - x ) / e ] .  Note that, on the basis of the assumptions made, there is 
no need to have a special coordinate system for the description of the 
boundary layer; the role of the “rapid” variable is played by x. 

Substitution of the expansions (6.5.7) into (6.5.4)-(6.5.6) yields after 
simple transformations for the first approximation the equations 

(6.5.8) 

(6.5.9) 

(6.5.10) 

(6.5.11) 

(6.5.12) 

(6.5.13) 

(6.5.14) 

(6.5.1 5) 

(6.5.16) 

Here aI-ld below, uoo = U O ( 0 ,  Y), Po0 = PO(0,  Y), $00 = $ O ( O ,  Y ) ,  uo1 = uo(1, 
Y ) ,  Po1 = PO(1,  Y ) ,  $01 = $ o U ,  Y).  

Note that in a description of inertial-viscous boundary layers inertial and 
viscous effects are essential only in the equation of motion along the y-axis 
(along the current); the equation of motion along the x-axis (across the cur- 
rent) is geostrophic. This comment applies also with respect to  viscous and 
inertial boundary layers. I t  follows from this remark that the analogue for 
equation (6.4.17) for the inertial boundary is likewise true in the case under 
consideration. Combining (6.5.11) and (6.5.13), and likewise (6.5.14) and 
(6.5.16), and taking the conditions at infinity into consideration, one has 

P o  = f 5 0  7 (6.5.17) 
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po = f F 0 .  (6.5.18) 

Substituting this expression for j j o  into (6.5.12), the system of equations 
(6.5.11)-(6.5.13) is readily reduced to the equation for 5, 

(6.5.19) 

Equations (6.5.14)-(6.5.16) are reduced in an analogous manner to  the 
equation for J0 

(6.5.20) 

The system (6.5.8)--(6.5.10) is readily reduced to  the equation for $o 

(6.5.21) 

Note that the terms with Coriolis parameter drop out from equations 
(6.5.19)-(6.5.21) and only the latitudinal change of the Coriolis parameter 
is essential. 

Thys, one has arrived at the required equations for the functions $ o ,  To 
and Go which describe the motion in the open ocean and within the limits 
of the boundary layers. Note that the equations for 5, and q0 depend for 
the present still on the unknown function uo. Likewise, it is seen that, in 
contrast to what happens in the case of the viscous boundary layer, equa- 
tions (6.5.19) and (6.5.20) are non-linear also in the partial derivatives. I t  is 
also obvious that the equations of the inertial-viscous boundary layer do 
not have integrals of the Bernoulli and absolute vorticity type. Therefore 
numerical analysis must be employed for their solution. 

The boundary conditions for equations (6.5.19)-(6.5.21) will be derived 
next. Substitution of the expansion (6.5.7) into (6.5.1) and (6.5.2) yields 

$ O ( O ,  Y )  + $o<o, Y )  = 0, $l(O, Y )  + 51(0, Y )  = 0 7 (6.5.22) 

(6.5.23) 

(6.5.2 5) 

It  is seen_ that the equations and boundary conditions for the functions $o, 
q0 and G o  are “interlinked”. They are “disentangled” in the following man- 
ner. 



177 

Revert to  equations (6.5.19) and (6.5.20). Their solutions in the half-strip 
0 < y < 1, 0 < (1, t2 < 00 [ r’(0) ~’(1) = 0 J will be considered. By sense of 
the expansions, the functions $o ,  F0, ... must decay exponentially for 
large c1 and c2. It  is natural to  assume that the behaviour of such functions 
for large and c2 is determined by the linear terms of equations (6.5.19) 
and (6.5.20). Under those circumstances, one will have for large Cl and c2, 
respectively, 

(6.5.26) 

(6.5.27) 

Equations (6.5.26) and (6.5.27) are ordinary differential equations with 
the characteristic equations 

(6.5.28) 1 uoov2 + 1 = - v3 
R .’ 

(6.5.29) 1 uo1v2 + 1 = --v3 . 
R 

Note equations (6.5.28) and (6.5.29) do not have purely imaginary roots 
for any positive R.  However, then equation (6.5.28) has always two roots 
in the left half-plane of the complex variable v, and equation (6.5.29) only 
one such root. Therefore equation (6.5.26) has two linearly independent 
solutions which are damped at infinity, while equation (6.5.27) has only one 
such solution. Hence it may be concluded that one must have for the deter- 
mination of solutions of the non-linear equations (6.5.19) and (6.5.20), 
which decrease for large c1 and t2, two conditions for c1 = 0 in the case of 
equation (6.5.19) and a single condition for c2 = 0 in the case of equation 
(6.5.20). 

However, under these conditions, by the-first condition (6.5.25) and the 
homogeneity of equation (6.5.20), one has G o  = 0 and, according to  the first 
condition (6.5.24), $o(l, y )  = 0; hence equation (6.5.21) readily yields the 
solution 

$o@, Y )  = r’(1 -x)  . 

tained. Only the formula for F1 will be written down here: 

(6.5.30) 

Note that for all functions F1, F2, F3, . . . simple linear equations are ob- 

z 
$1 =-; 7’ ev~2 , v < o .  (6.5.31) 

The problem has now been reduced to analysis of the following non-linear 
equation for the inertial-viscous boundary layer at a western shore of an 
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ocean : 

(6.5.32) 

- 
(6.5.33) 

The function F o  is readily found from (6.5.17), once q0 has been deter- 
mined. The arbitrary constant in the formula for F 0  is not essential. 

Thus, after construction of go, the solution of the problem under con- 
sideration may be presented in the form: 

In the open ocean 

a * O  
-(O, Y )  = 0, ai-1 *o(m, Y )  = 0 * 50<0, Y 1 + 3-t = 0 ,  

* = r‘(1 -x )  + O(E) ; 

At a western shore of an ocean (x - E )  

* = 3 - l  + Jots-1 , Y )  + O ( f ) ,  

X a *  - + 0(1), Cl = T ;  
ax E a t ,  

(6.5.34) 

(6.5.35) 

At an eastern shore of an ocean (1 - x - E )  

(6.5.36) 

In this way, strong currents arise only at western shores of an ocean. The 
transport of such a boundary current is readily computed and turns out to 
be equal to r‘. It should be noted specially that the validity of Sverdrup’s 
solution (6.5.30) in the-open ocean has again been demonstrated, but this 
time in a more general case; speaking more exactly, it is true in those regions 
of the ocean where one may “concoct” a boundary layer described by prob- 
lem (6.5.32) and (6.5.33). Then the proof given is based essentially on con- 
sideration of the terms of horizontal turbulent transfer (cf. $6.2) .  If these 
terms were not present, then the characteristic equation (6.5.29) in the 
general case might not have a root with a negative real part and, above all, 
the boundary condition (6.5.25) would be absent. In other words, it could 
not be proved that $o = 0, and one would not obtain (6.5.30). 

However, it must be emphasized again that the current in the open ocean 
is linked to the structure of the coastal boundary conditions at the shores. 
This peculiar fact does not take place, for example, in the study of Prandtl’s 
boundary layer in classical hydrodynamics. 

The results of the “linear” analysis of Problem (6.5.32) and (6.5.33) will 
be presented first. Linearizing equation (6.5.32), one obtains 

(6.5.37) 
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with the boundary conditions (6.5.33). The solution of Problems (6.5.37) 
and (6.5.33) has the form 

$o = C,(y) e’lfl + ~ , ( y )  ev2r1 , 
where v1 and v2 are roots of the polynomial 

1 
R 

-- v3 - r11v2 + 1 = 0 

for which Re ul,, < 0 (such v1 and v2 have been seen to always exist) and 
C, and C, are easily found from (6.5.33). 

It is of interest to investigate problem (6.5.37) and (6.5.33) for limiting 
values of the Reynolds number R. For R << 1, one obtains readily 

(6.5.38) 

Recalling the definitions of tl and R,  one has 

As had to  be expected, this is the solution for the viscous boundary layer. 
Note that (6.5.38) holds true for any R in a narrow strip with respect t o y  
near a shore, where T I ’  = 0. 

Next, let R >> 1. In this case, three regions in terms of y may be distin- 
guished: 

(1) The region where r” > 0 or uoo < 0; one easily finds for large R 

Thus, the inertial-viscous boundary layer would split into an inertial layer 
with thickness of order E and a viscous sub-layer with thickness of order e/R 
(recall that tl = x / E ) .  

( 2 )  The region where r” = 0; on approaching this region, the thickness of 
the inertial layer decreases as the viscous sub-layer “becomes fat”; in the 
very region where rl’ = 0 the role of the “inertial” terms is insignificant, 
and the solution is given by (6.5.38). 

(3) The region where T I ’  < 0 or uoo > 0; for large R ,  one has 

It is seen that splitting into inertial and viscous regions does not exist; the 
effect of diffusion of relative vorticity is essential within the limits of the 
boundary layer the thickness of which is of order RE (it increases with grow- 
ing R ) .  

These are the results of “linear” analysis. Naturally, the linearized equa- 



180 

tion (6.5.37) is true only for large values of However, it will be seen 
below that from a qualitative point of view many effects are correctly 
assessed by the “linear” theory. Therefore the deductions from “linear” 
theory will serve as a lead. 

6.6 THE BOUNDARY LAYER FOR LARGE AND SMALL REYNOLDS NUMBERS 

The coefficient of turbulent transfer AL (and thereby also the Reynolds 
number R) will now be varied. Assume the equation (6.5.32) for the iner- 
tial-viscous boundary layer is true not only for finite values of R, but 
also for large and small R (it is not difficult to  verify this assumption, 
once the corresponding solutions have been constructed). 

Consider first the region of an accelerating boundary current (7’’ > 0) .  
Relying on the results of the “linear” analysis, it is natural to expect for 
R >> 1 splitting of the inertialviscous boundary layer into an inertial 
region and a viscous sub-layer. Therefore the solution of problem (6.5.32) 
will be sought in the form 

The choice of an expansion in powers of l/* may be explained as fol- 
lows. If one disregards completely the viscous term in equation (6.5.32), 
then one obtains an inertial boundary layer which satisfies the condition 
uo + G o  = 0 for x = 0. The velocity component F0 does not vanish for this 
case at the shore, and, in order to  remove such discrepancy, one requires a 
viscous sublayer at the wall. Within the limits of such a viscous sub-layer, the 
term -(1/R)a3$o/a<; must have the same order as the inertial term (a $o/ 
a{l)(a2&O/a{1ay). However, since the viscous sublayer is described by 
a term of the form (l/R‘)$o({lRo, y) ,  it is clear that one has a = +. 

Substituting the expansion (6.6.1) into (6.5.32) and the boundary condi- 
tion (6.5.33), one arrives at the equations 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(6.6.20) 

(6.6.31) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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and the boundary conditions 

cPo(0, Y )  + 7’ = 0 ,  
. . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(6.6.40) 

Y) = 0 * 

(6.6.51 ) 
. . . . . . . . . . .  

Obviously, equation (6.6.2,) for the boundary condition (6.6.4,) describes 
the structure of the inertial boundary layer. This problem has been studied 
in detail in § 6.4, where existence of an inertial layer and its degeneration 
have been proved for 7rr > 0 and for 7’‘  = 0, respectively. It has also been 
shown that, by (6.4.26), the velocity E, at the wall grows with increasing y. 

Next, consider equation (6.6.3,). Introduce the new function 

(6.6.6) 

which yields, by (6.6.1), the values of the stream function within the limits 
of the viscous boundary layer with an accuracy of up to l/a. Proceeding 
in (6.6.3,) and (6.6.5,) to the function x, one obtains 

(6.6.7) 

(6.6.8) 

where (ap,/afl) 1, = Zoo is the velocity of the inertial boundary layer at the 
shore. 

Problem (6.6.7) and (6.6.8) is nothing else but Prandtl’s problem of a vis- 
cous boundary layer along a wall, where the role of the velocity of the outer 
flow is played by Coo. Since the velocity Coo increases when one moves along 
the flow, the solution of problem (6.6.7) and (6.6.8) must exist. Thus, ‘(linear” 
analysis predicted accurately the effect of splitting of the inertial-viscous 
boundary layer for 7” > 0 and R >> 1 ;  it must only be noted that the vis- 
cous sub-layer has thickness of order l / a ,  and not 1/R, as in the “linear” 
theory. 

Problems (6.5.32) and (6.5.33) have been analyzed numerically for 7’ = 

4y(l  - y )  (cf. 1441). Figs. 6.4 and 6.5 demonstrate the phenomenon of 
splitting of the inertial-viscous boundary layer for 0 < y < 0.5. Already for 
R - 10, the region is sufficiently clearly subdivided into inertial flow and 
viscous sub-layer (this is seen more distinctly in Fig. 6.5). 

It is useful to study the effect of splitting of the inertial-viscous bound- 
ary layer for large R from the point of view of vorticity transfer (86.2). 
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Fig. 6.4. Isolines of the stream function J /  for boundary flow [4?]. Solid line = inertial 
flow J /  = f ( y )  + yo; broken line = inertial viscous flow J /  = T (y)  + $0;  R = 16, 7’ = 

4Y( l  -Y). 

Since diffusion of relative vorticity has been seen to  be essential only in the 
general vorticity balance, viscosity may only play a role in a narrow sub-layer 
near shore (for R >> 1). However, in such a case, the basic region of the 
boundary layer will be free from viscous effects, and the absolute vorticity of 
particles o - f will not change as it moves in this region [cf. 6.4.14)]. How- 
ever, then also the stream lines must be crowded towards shore (the more so, 
the larger is w in the inertial region) and such flow must be accelerated (its 
total transport must increase when one moves along the flow). 
As the boundary flow slows down, the stream lines must abandon the 

boundary layer. However, then vorticity balance is only possible under 
conditions when viscosity acts throughout the entire layer. Since for large R 
the action of viscosity in the region of acceleration of boundary flow is con- 
centrated within the limits of a very narrow coastal layer, right up to  y = 0.5, 
and on slowing down of the boundary current viscosity must be essential 
throughout the entire layer even for very large R ,  it is clear that such 
“jumps” in the thickness of the viscous layer are impossible and therefore 
there cannot exist a slowed-down boundary layer for large R. 

Thus, one has arrived at  a basis on which to  assume that in the northern 
half of a basin (7‘’  < 0) there does not exist an inertial-viscous boundary 
layer for R >> 1. However, the results of numerical analysis (omitted here 
because of its complexity, cf. [44]) show that this layer is already not pres- 
ent for R - 10. It will only be noted that inclusion of non-linear terms in 
(6.5.32) completely alters the deductions of the “linear” analysis relating to  
the behaviour of the inertial-viscous boundary layer for y -+ i. Recall that 
the linearized equation (6.5.37) has a solution of the boundary layer type 
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Fig. 6.5. Distribution of vorticity a’3,/a{, for inertialviscous flow for y = 5 
values of R [44]. Broken line = corresponding vorticity distribution a2%/ac8 for inertial 
current; 7’ = 4y( 1 - y) .  

and different 

for all y and R; the complete equation (6.5.32) does not have this property. 
It is important to note that, since there does not exist a boundary layer 

for 7’’ > 0 and R >> 1, Sverdmp’s relation for the open ocean for 7’’ < 0 
and R >> 1 may not be fulfilled. 
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Consider now the solution of Problem (6.5.32) and (6.5.33) for small R. 
Introduce the new variable q = {,VR = x/6, then the function $o(q, y )  may 
be sought in the form 

$‘O(V7 Y )  = $ O O ( q ,  Y) + R2’3$01(q, Y) + * * *  (6.6.9) 

Construction of the functions Goo,  GO1, ... which are solutions of ordinary 
linear differential equations does not encounter principal difficulties. The 
function Goo describes the viscous boundary layer: 

- 

(6.6.1 0) 

Consider the character of the boundary layer for various Reynolds num- 
bers. For not large R, it is possible to find numerically the solution of prob- 
lem (6.5.32) and (6.5.33) for all y (0 < y < l)[for 7’ = 4y(1 - y) this 
was possible for R < 0.51. For R of order 1/512 and 1/256, the function 
$o was sufficiently close to  the solution (6.6.10). Since in this case the 
thickness of the boundary layer is of order 6 (and not E ) ,  then one obtains 
in terms of C1 a sufficiently “thick” layer. As R increases, the boundary 
layer loses symmetry with respect to y = 0.5 and the centre of rotation shifts 
upwards along the flow. The thickness of the layer for 7” < 0 is somewhat 
reduced and the stream lines acquire a distinct oscillatory character with a 
wave length which is less than for very small R .  For 7“ > 0, the thickness of 
the boundary layer decreases as R increases more sharply, and the oscilla- 
tions of the stream lines become insignificant (Figs. 6.6 and 6.7). When R 
increases further, as is already known, in the region 7” > 0 the boundary 
layer becomes basically inertial; in the region 7’’ < 0 there does not exist a 
boundary layer for R >> 1. 

Table 6.11 gives an idea of the dependence of the thickness of the bound- 
ary layer { b  on R for 7‘ = 4 y ( l  -y)  for all values of y.  [Equation (6.5.32) 

TABLE 6.11 

Dependence of f b  on R 

R c b  Y b  R cb Y b  

11512 
11128 
1 /64  
1/32 
1 /16  
118 

co 
W r( 

I1 I1 I1 

h h h 

50 52 54 2.10-6 
32 50 50 2.1OY6 
32 40 40 2-10-6  
10 21 29 2-14 

8 19 27 2-14 
9 23 24 2-14 

1 / 4  1 0  20 43  
112 8 12  
1 8 1 0  
4 7 7.8 - 
8 6.8 7.8 - 

16 6.8 7.8 - 

- 
- 

2-14 
2-14 
2-14 
2-14 
2-14 
2-14 
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Y O  a’ 6 12 48 
1.00 4 5r 

Fig. 6.6. Stream lines of \1, = ~ ’ ( y )  + Go for the boundary flow R = *, 7’ = 4y(l - Y). a). 
Corresponding graph of Co(T1) for different values of y .  b). [44]: 1 - Y  =$, 2 - Y =+, 
3 - y = $ .  

with the conditions (6.5.33) has been solved numerically for f = 0 and 
$o({b ,y )  = o with { b  chosen in such a manner that (a$o/af1)2  + (a$,~ay)~ 
< T b  for C1 = { b  and given Tb.  Therefore { b  must be assumed to  be the thick- 
ness of the boundary layer]. 

Thus, for large Reynolds number R ,  there does not exist a stationary iner- 
tial-viscous boundary layer in the northern half of a basin. Therefore it may 
be asserted that also Sverdrup’s relation is not fulfilled there in the open 
ocean. This result appears t o  be quite natural, since it was hard to expect 
that the ordinary Sverdrup relation for H = constant could describe such 
features of currents in the open ocean as the meanders of the continuation 
of the Gulfstream, etc. Apparently, it is necessary to  take into account for 
this purpose new factors: Bottom relief, density inhomogeneity, etc. Note 
that the described pattern is already existing for values of R - 10 which cor- 
responds to A L  = l o 5  + lo6  cm2/sec (cf. Table 6.1). 

This is an example of estimation of the coefficient of turbulent transfer 
AL based on qualitative agreement of theoretical patterns and observations. 
Previously, exchange coefficients had been assessed by means of “fitting” of 
theoretical values of one or the other quantity (for example, the width of 
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Y 

12 16 24 30 36 42 k 
Fig. 6.7. Stream lines li/ = ~ ' ( y )  + q0 for the boundary flow R = $, r' = 4y(l - y ) .  

the boundary current) to  observations. With regard to  estimates of AL,  cf. 
also [ l l 8 ,  pp. 98, 97,991. 

Speaking generally, it has been assumed that the two-dimensional model is 
also valid for an ocean with variable depth [incidentally, the term p b v h H  
which describes the effect of the density inhomogeneities of sea water on the 
distribution of total flows vanishes for H =  constant (cf. ?j 6.1)], and the 
results of 3 6.7 indicate that the relief of the bottom may be one of the fac- 
tors causing separation of the boundary current from shore. However, a 
solution of such a problem which takes into account horizontal turbulent 
friction and inertial terms has not yet been obtained. 

6.7 NON-STATIONARY BOUNDARY LAYER 

It  will be useful to  consider now the method of total flows (two-dimen- 
sional models) from another point of view. It has been shown in Chapter 3 
that low-frequency Rossby waves in an ocean of constant depth split up into 
barotropic and baroclinic modes which do not interact between each other. 
Therefore averaging of the basic equations over the depth is in this case, in 
essence, equivalent t o  separation of the barotropic mode. As soon as the 
effect of bottom relief is taken into consideration, there arises interaction 
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between baroclinic and barotropic modes of oscillation, and it is now diffi- 
cult to assess to what extent this interaction is essential. I t  may be said that 
$5 6.2-6.6, by separating the barotropic component of the motion from the 
baroclinic components, were concerned with viscous and non-linear effects 
caused by the barotropic components. In the general case, there is appar- 
ently a need to take also into consideration, in addition to the non-linear 
interaction of the barotropic and baroclinic components of a motion, the 
linear interaction described by the term pbVhhH in equations (6.1.4) and 
(6.1.5). 

Consider the problem of propagation of barotropic Rossby waves in an 
ocean of constant depth. Assuming the excited waves not to  be very long, 
the problem will be studied in the &plane approximation. Recalling results 
of $ 3.9, one has 

a ari/ 
ax Ah J /  + 0- = -rot,(z/h,) . (6.7.1) 

As follows from results of §§ 3.7 and 3.8, barotropic Rossby waves may 
be assumed with high accuracy to be non-divergent (div, u = O ) .  This cir- 
cumstance has been taken into account in the writing down of (6.7.1). 

First of all, assume that the ocean has no shores. Let at time t = 0 arise 
over the ocean a tangential wind stress field z such that the right-hand side 
of (6.7.1) may be written in the form 

-rot,(z/h,) = Re{F(x, t )  exp i l y } ,  (6.7.2) 
where the wave number 1 is assumed to  be known. Under these conditions, it 
will be natural to represent the reaction of the ocean in the form 

ri/ = Re(* exp i ly)  . (6.7.3) 

In the general case of arbitrary changes of r with respect to  y,  the func- 
tion F may be assumed to  be the Fourier transform (with respect t o  y) of 
the right-hand side of (6.7.1) and the function \k the Fourier transform (with 
respect to y)  of the solution J /  of the problem in hand. Thus, one obtains for 
the function *(x, t) the equation 

(6.7.4) 

Consideration will now be limited to a definite class of functions F(x,  t) .  
Firstly, interest attaches to  the case when the wind field arises suddenly and 
then does not change in the course of time; it is known that the solution of 
the general problem when the wind field varies arbitrarily in time may be 
expressed in terms of the solution of this problem in a sufficiently simple 
manner. Secondly, as a rule, the wind over the oceans is very close to a zonal 
distribution; at least for all significant Fourier components of the function 
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F ( x )  h2 << l 2  (where h is the wave number in the x-direction). 
Consider a simple auxiliary problem. Let 

exp(ikx) for t > 0, I 0 for t < 0 .  

Then one finds readily 

F(x, t )  = 

(6.7.5) 

Thus, each Fourier component of F(x) with wave number h excites in the 
ocean a disturbance described by (6.7.5). Since h2 << Z2, the upper integra- 
tion limit in (6.7.5) does not depend on k for all significant Fourier compo- 
nents of F(x) .  Thus the solution of the problem under consideration will 
then have the form 

(6.7.6) 

Naturally, formula (6.7.6) is approximate (for a more detailed derivation and 
discussion, cf. [63]). I t  follows from (6.7.6) that 

(6.7.7) 

This expression is of special interest. The general reaction of the ocean is 
seen to split up into a stationary reaction (l/P)F(x) in accordance with 
Sverdrup's relation and a wave reaction ( l / P ) F ( x  + (p/Z2)t)  which moves to  
the west with velocity P / Z 2 .  For 1 = 1/200 km, cm-' sec-l, 
one has @ / I "  = 0.64 cm/sec. 

This result will now be discussed. Recall that the dispersion relation for 
the waves under consideration has the form 

= 1.6 * 

Since, as a rule, the vector (k ,  1) points in the direction of the motion of the 
wave crests, it is convenient to  assume that 0 > 0 and h < 0. For fixed fre- 
quency 0, all possible values of h and 1 lie on a circle with centre (-P/2a, 0) 
and radius p/20 (Fig. 6.8). The group velocity of the wave packet with wave 
numbers ( h ,  1 )  is known to  be equal to (ao/ah, ao/aZ); it is directed along the 
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* - q/zz 
Fig. 6.8. Circle which is locus of wave numbers (h ,  1 )  of barotropic Rossby waves of given 
frequency (5 > 0; k h  = ( h ,  1 ) ;  cg = group velocity; lcgl = p/lk,12 (according t o  Longuet- 
Higgins [ 6 8 ] ) .  

Fig. 6.9. Integration path for inversion of Laplace transform. 

radius of the circle to  its centre and has the magnitude p / ( k 2  + Z2). Since 
h2 << l 2  for all wave packets aroused, all of them will have the same group 
velocity p/Z2, and therefore the profile F ,  by (6.7.7), will move with velocity 
p/Z2 without changing its shape. 

All points ( k ,  1) for which k 2  << Z2 lie around the point (0,O) and the 
group velocity for the corresponding wave packets is practically orientated 
towards the west. Now it is clear why intensive boundary currents are 
formed at western shores of oceans. 

However, how is such a current formed? Assume that at x = 0 lies a 
straight coast line and that at a certain instant of time there begins to arrive 
from the open ocean a disturbance. The solution of such a problem may be 
presented in the form $ = $u + $ B ,  where $u is the solution for the shore- 
less ocean and G B  that for the “reflected” disturbance (reaction of shore). 
The function $u  has already been determined, while for $ B  one has the 
homogeneous equation (6.7.1) with the boundary condition 
$ B = - $ u  for x = O .  

Let 

(6.7.8) 

$ d o ,  Y ,  t )  = ReWu exP(i1Y)) , 
where 

qu = const. for t >  0 ,  

q u = O  for t < O .  

As soon as this problem for \ku has been solved, the solution of the prob- 
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lem for the general case may be written down in the form of a convolution 
integral with respect to  t over functions which are already known. 

Represent G E  in the form (6.7.3) and apply the Laplace transformation 
with respect to t. One finds 

m 

\Ilg = /” eCst \k,(~, t) dt . 
0 

Equation (6.7.1) readily yields 

(6.7.9) 

The asymptotic form of the function GE will be sought for large t. For 
this purpose, replace the ordinary integration path r in the inversion formula 
for GB in accordance with Jordan’s lemma, and properties of the integrand, 
by three “loops” rl, r2 and r3 (Fig. 6.9). Consider the integral 

2ni (6.7.10) 

For large t, the major contribution to the value of the integral (6.7.10) 
arises from integration in the neighbourhood of the point s = 0; therefore the 
exponent in the integrand may be replaced by st - (p / s  + 12s//3)x. However, 
this integral is tabulated and one finds readily 

An asymptotic estimate of integrals of the type (6.7.10) along “loops” 
r2 and r3 is readily obtained by known methods (cf. [12, 3 351). Collecting 
all estimates, one may write down the asymptotic formula 

(6.7.11) 

The first term in this formula dominates. The second term in curly 
brackets may be omitted for large t; it is interesting to note that it represents 
a reflected “short” Rossby wave (for incident waves h2 << 1 2 ) .  The ampli- 
tude of such a wave decreases with time; its group velocity is directed along 
shore (the crest moves at an angle of 45” to  the negative x-axis). 

Formula (6.7.1 1) describes the formation of a non-stationary boundary 
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layer at a western shore of an ocean. Introduce the thickness L,  of this layer 
as distance to the first zero of J o ( ( ) .  One obtains then for large t 

(6.7.12) 

Hence it is seen that in the course of approximately one week the thick- 
ness of the boundary layer stays at an order of 100 km. For large times, one 
must take into account friction and non-linear terms; otherwise, by (6.7.12)’ 
the quantity L,  will decrease continuously with growing t .  

Revert once more to  Fig. 6.8. Consider a certain wave packet with wave 
number (h ,  I )  and frequency a. Since a chord is always smaller than a diam- 
eter of a circle, one has 

(6.7.13) 

However, the wave number (h,  1 )  of this wave packet has been seen to  be 
determined entirely by the characteristic horizontal scales of the atmo- 
spheric system. Therefore it may be said that (6.7.13) selects the class of 
external effects which are able to  excite in the ocean significant barotropic 
motions of given frequencies. For example, if 0 = l/week, then one must 
have h, < & km (hh = d m ) .  

COMMENT ON CHAPTER 6 

$6.1. The method of total flows was first proposed by Stockman [112] 

5 6.2. Basically, this section follows the work of Stewart [lll]. 
56.3. The basic results were obtained by Munk [84], Munk and Carrier 

5 6.4. The basic results were derived by Charney [6] and Morgan [MI, cf. 

55 6.5 and 6.6. The basic results are given in Il’in and Kamenkovich [34, 

$ 6.7. The basic results are due to Pedlosky [92], II’in [33] and Lighthill 

and has been discussed repeatedly in the literature (cf., for example, [20]). 

1871. 

also [22]. 

351 and Kamenkovich [44], cf. also [86]. 

[ 63,641. The presentation follows basically [63]. 
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CHAPTER 7 

THREE-DIMENSIONAL MODELS OF OCEAN CURRENTS 

7.1 BOUNDARY CURRENTS IN A HOMOGENEOUS FLUID 

In Chapter 5, in a study of the Ekman model of winddriven currents, 
only vertical turbulent viscosity has been taken into account. Consideration 
will now be given to  horizontal turbulent viscosity; this effect causes a num- 
ber of new phenomena (especially in the inshore regions). 

Assume that the density of the water is constant and study the problem in 
the P-plane approximation. As it has been seen in § 8 4.5, 4.6 and 6.1, the 
general expression for the forces of turbulent friction is very complicated 
and depends on the three exchange coefficients: A,, AH and A. As a rule, in 
the P-plane approximation, the friction force is represented in the form 

(7.1.1) 

where the coefficient AL and AH are assumed to be constant and Ah is the 
Laplace operator in the x ,  y-plane. 

Formula (7.1.1) may be derived from relations of the type (4.5.4), (4.5.7) 
and (4.6.9), rewritten in Cartesian coordinates if it is assumed that the terms 
A,(a2w/axaz) and A(a2w/axaz) in the expression for F,  (and analogously 
for Fy) may be neglected ( E ,  may always be included in the pressure term). 
The term AH(a2w/axaz) is actually small compared with the term AH(a2u/  
az2); an estimate of the termA(a2w/axaz) is not readily obtained, since there 
exist no data on the exchange coefficient A.  

Incidentally, it will be noted that the approximate manner of presenting turbulent 
friction in the form A L A h ( U ,  u )  for a study of motion on a sphere is not correct, since, 
for example, it leads to non-zero friction force for rigid rotation of a fluid u = a cos cp, 
u = 0, w = 0 as A h U  = cos 2y/a c o s y  [cf. (6.1.4) and (6.1.5) for exact expressions for 
horizontal friction]. 

Thus, the equations of motion for the problem in question have the form 
[to be compared with (5.2.1)-(5.2.3)] : 

au av aw 
ax ay az 
- + - + - = o .  
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Denoting by L a characteristic horizontal length scale and by H the depth 
of the ocean assumed to be constant, one arrives at  non-dimensional vari- 
ables (dashed) through the formulae 

H 
L ( u ,  U )  = U ~ ( U ’ ,  v ‘ )  , (x, y )  = L(x‘, y‘) , w = - UOW‘ , z = Hz’ , 

where ro is a characteristic value of the tangential wind stress, Uo = 
ro(AHfo/2)-112 [according to (5.3.10)], f o  is a characteristic value of the 
Coriolis parameter and is the non-dimensional latitudinal change of the 
Coriolis parameter. 

Rewriting the equations of the problem in non-dimensional form and 
omitting strokes on non-dimensional variables, one has 

where the horizontal and vertical Ekman numbers 

(7.1.2) 

(7.1.3) 

(7.1.4) 

(7.1.5) 

have been introduced. 
For the real ocean, both these numbers are small, but they may be of dif- 

ferent orders. The problem is greatly simplified if it is assumed that the num- 
bers EL and EH are equal [in other words, AH/AL = ( H / L ) 2 ] .  It may be 
shown that the basic features of the structure of boundary layers for EL = 

E ,  are characteristic also for the general problem when the two small param- 
eters EL and E, are independent (cf. [ lo l l ) .  

Consider a current in a basin in the form of the cube 0 < x < 1, 0 < y < 1, 
0 < z < 1, in non-dimensional variables. The boundary conditions of the 
problem have the form 

u = u = 0 (7.1.6) 

u = v = 0 (7.1.7) 

forx  = 0 andx = 1 , 
for y = 0 and y = 1,  

(7.1.8) 
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u = u = w = o  for z = 1 . (7.1.9) 

Since E L  = EH = E,  the System (‘7.1.2)-(7.1.4) contains one small 
parameter at the highest derivative and ordinary asymptotic methods may be 
used to solve it. Assume that far away from shores horizontal turbulent fric- 
tion is small and the motion is described by the Ekman formulae (of 5 5.3); 
then the solution of the problem there may be written in the form 

U = EUg(X, y )  + ... + U E ( X ,  y ,  [) ..a + EUb(X, Y ,  71) + - a *  

U = E V g ( X ,  y )  + ... U E ( X ,  y ,  [) + ... EUb(X, Y ,  71) + -.. , 
w = Ew,(x, y ,  Z) + ... + E W E ( X ,  y ,  t )  + ... + E2Wb(X, Y, 71) + ... , 

r =Ei-g@,Y) + .-a 7 
(7.1.10) 

where t = z / E ,  q = (I - z ) /E ,  and ug ,  ug, wg and cg describe geostrophic mo- 
tion and the “correction” functions u,, u E ,  w,, ub ,  ub , and wb Ekman bound- 
ary layers at  the surface and the bottom of the ocean, respectively. 

It is readily shown that the determination of the functions uE and uE 
reduces to  the well-known problem of pure drift motion in an infinitely deep 
ocean ( 5  5.1). One has 

(7.1.11) 

The vertical velocity W ,  is easily found from the equation aw,/at + 
au,/ax + au,/ay = 0, since wE --f 0 for t --f 00. However, the expression for 
w,(x, y ,  0) required below may be obtained directly by integrating this equa- 
tion with respect to t from 0 to 00 : 

It now follows from the third boundary condition (7.1.8) that 

wg(x ,  y ,  0 )  =+ rot, . M 

(7.1.12) 

(7.1.13) 

Thus, the analysis of the surface boundary layer yields the required bound- 
ary conditions for the determination of the vertical velocity of the geo- 
strophic current. 

Note that (7.1.12), and also (7.1.13) is true for an arbitrary change of AH with depth. 
This follows from the fact that w,(x, y ,  0)  is determined by the divergence of the total 
flow of a pure drift current (cf. end of 8 5.1) .  

For the velocities ug, ug and wg of the geostrophic motion, one finds the 
usual relations 

(7.1.14) 
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(7.1.15) 

Eliminating the level Cg from (7.1.4) and utilizing (7.1.15)’ one arrives at 
Sverdrup’s relation 

(7.1.16) 

The bottom Ekman layer (ub ,  v b ,  W b )  may be considered in an analogous 
manner to the surface layer. It must only be noted that, as a consequence of 
the first two boundary conditions (7.1.9), the expansions (7.1.10) for ub and 
v b  begin with terms of order U ( E ) .  Therefore, by (7.1.4)’ the expansion for 
wb begins with a term of order U ( E 2 ) ;  however, then, by the third condition 
(7.1.9), one finds that w g ( x ,  y ,  1) = 0. Since ug and ug do not depend on z ,  
one has by (7.1.13) and (7.1.16) that 

From (7.1.15), one obtains 

(7.1.17) 

(7.1.18) 

where the function h ( y )  must still be determined. Once this function has 
been found, formula (7.1.14) permits to determine the level 5, (exactly apart 
from a constant). 

In order to find h ( y ) ,  one must study the inshore boundary layer. Con- 
sider the vicinity of the western shore (x = 0) and present certain quali- 
tative arguments. By (7.1.10), in the open ocean, the total flows (S,,, S g y )  = 
O ( E ) ,  (SEX , SE,) = O ( E ) ,  (Sbx,  ,!?by) = O ( E 2 ) .  Using (7.1.13) and (7.1.16), 
one derives Sverdrup’s integral relation 

E s,, + SEY = - - 
2prot2 * 

Hence the total meridional transport of water in the open ocean 

( s g y  4- S E y )  dX 
0 

is not equal zo zero (for definiteness, it may be assumed that rot,7 > 0) .  
Relying on the results of analysis of the viscous boundary layer in the two- 
dimensional theory ( §  6.3), it may be assumed that at  the shore ( x  = 0) a 
boundary layer of thickness O(E2’3)  is formed the total transport of which 
is of U ( E )  and compensates the transport in the open ocean. Then the total 
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Fig. 7.1. Pattern of disposition of boundary layers and flows at a western shore which are 
taken into consideration in the first approximation to the solution of the problem. Sche- 
matic distributions of velocities in the boundary layer of thickness O(E213) and in the 
open ocean are shown. 

flows and velocities in this layer are of order S, = O ( E ) ,  S ,  = O(E113),  u = 
O ( E )  and u = O(E113). Obviously, by (7.1.2) and (7.1.3), the order of the 
level is O ( E ) .  It  is readily seen that the vertical friction in the basic thickness 
of this boundary layer is negligibly small and that it may be shown that the 
“correction” functions for the horizontal velocities u and u do not depend 
on z .  Note that the boundary layer under consideration, as will be shown 
below, exists only at a western shore of an ocean. 

There still remains to determine the scale of the vertical velocity w. The 
“correction” functions for u and u in a boundary layer of thickness O(E2’3)  
will not vanish at the bottom. In order to remove this discrepancy, one must 
take account of vertical friction. In the vicinity of the line x = 0, z = 1, one 
may single out a “transition” region with scales E2I3, 1, E along the x , y , z -  
axes, respectively, within the limits of which the vertical friction and the 
Coriolis‘ force are of the same order. Since, on the basis of the estimates 
already derived, u = O(E1I3) ,  the same order is also obtained for u :  u = 

O(E113).  However, then a u p x  = O(E-l13), and since aw/az  = O(EU1I3), by 
(7.1.4), one has w = O(E213) .  It is natural to assume that the order of w will 
be this within the limits of the entire boundary layer. 

Consider now the Ekman friction layer at  the ocean surface. The velocities 
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of pure drift current uE and ufi; are readily verified not to vanish for x = 0. In 
order to remove this discrepancy, one must take into consideration horizon- 
tal friction. Then one may single out in the vicinity of the line x = 0, z = 0 a 
transition region within which the effects of horizontal and vertical friction 
are of the same order: hence the scales of this region along the x ,  y ,  z-axes 
are E ,  1, E ,  respectively (Fig. 7.1). One has for this region: u = 0(1), u = 
0(1), aulax  = O(E-’), aulay = O(1); therefore the equation of continuity 
yields a w p z  = O(E- l ) ,  and hence w = O(1). 

Since in the transition region the vertical velocity is of order 0(1), one 
requires at the shore ( x  = 0) an additional sublayer of thickness O ( E )  within 
which the vertical velocity likewise is of order O(1). Assume now that here, 
as in the transition region, the terms awlaz  and a u / a x  in (7.1.4) are of the 
same order; then u = O(E) .  It  is natural to assume that in such a boundary 
layer horizontal turbulent exchange plays an essential role in the general 
balance of forces; hence u = O ( E ) .  Besides, comparing the orders of the level 
gradient d(/ax and the forces of horizontal friction E2(a2u /ax2) ,  one finds 
that 3‘ = O(E2) .  

Thus, at the shore (x = 0), there arises a new boundary layer of thickness 
O ( E )  with intense vertical motion the existence of which is not linked to an 
effect of latitudinal variation of the Coriolis parameter [as occurred in the 
case of the boundary layer of thickness 0 ( E 2 l 3 ) ] .  Naturally, such a boundary 
layer exists also near an eastern ocean coast. Thus, asymmetry of the hori- 
zontal structure of ocean currents is “created” basically by the boundary 
layer of thickness O(E213).  

The procedure will now be formalized. Consider a region outside the bot- 
tom boundary layer, the near shore boundary layers at the eastern shore 
( x  = 1) and the zonal boundaries ( y  = 0 and y = 1). By strength of the above, 
the solution of the problem in this region must be sought in the form 

= EUg(X, y )  + ... + U E ( X ,  y ,  t )  + ... EU,((T, y )  i- ... + EU,(K, y ,  Z )  + _.. 
+ Uc(K7  Y ,  t )  + a * *  7 

u = EUg(x, y )  ... + U E ( ~ ,  y ,  [) -k ... + E1’3U,((T, 3’) f ... EU,(K, y ,  2) + ... 
+ U c ( k  Y ,  t ; )  + - * .  7 

w = E w ~ ( x ,  y ,  Z )  + ... + EwE(x, y ,  [) + ... + E 2 / 3 ~ , ( ~ ,  y ,  Z) + ... + w,(K,  y ,  Z )  + ... 
+ W C ( K 7  Y ,  8 + - - *  7 

r = E3‘Jx, y )  + ... + E{,(o, y )  + ... + E 2 t s ( ~ ,  y )  + ... , (7.1.19) 

where (T = x / E 2 l 3 ,  K = xIE,  t; = z / E ,  and the functions ug, ug, wg, Cg and uE, 
uE,  wE are already assumed to be known. Note that correction functions 
CE and Cc have not been introduced into the expansion for the level. 

Substitution of the expansions (7-1.19) into the original system of equa- 
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tions (7.1.4) yields the system of equations: 

For the functions um,  urn, w,, Crn:  

(7.1.20) 

For the functions u,, u,, w,: 

(7.1.21) 

For the functions us, us, ws, Cs: 

(7.1.22) 

The necessity of matching corresponding asymptotic expansions leads to 
the following boundary conditions which are readily verified: 

U,,U,,W,’O f O T K , . $ + W ,  u, ,u , ,w, ,~m”o f O l . c r + W ,  

us, us, w,, 3; -+ 0 for K + m . (7.1.23) 

Throughout conditions (7.1.23), it is assumed that the functions approach 
zero exponentially. Furthermore, substitution of the expansions (7.1.19) 
into the boundary conditions (7.1.6) and (7.1.8) yields 

U d O ,  Y > 8 + a d o ,  Y , 0 = 0 9 (7.1.24) 

urn((), Y = 0 > (7.1.25) 
U d O ,  Y ,  0 + U d O ,  Y, 0 = 0 7 

(7.1.26) 

(7.1.27) 

(7.1.28) 

Solution of systems (7.1.20)-(7.1.22) may be achieved in the following 
manner. First consider system (7.1.20). Eliminating 5, from the first two 
equations, one has 
a3u, 
ao3 

2pvm = 0 .  -- 

The solution of this equation, satisfying (7.1.25) and decaying exponentially 
for large u,  is 

(7.1.29) 
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where the function C ( y )  must still be determined. By the third equation 
(7.1.20) and the condition for u + 00, one finds 

(7.1.30) 

The formula for f, will not be derived here. 
An analogous construction at the eastern shore shows that u, = 0 and 

u, = 0, i.e., that S,  in the eastern boundary layer of thickness O(E2l3)  is of 
order O(E'I3). Therefore only the boundary layer of thickness O(E2I3) at  
the western shore takes part in the total meridional transport of mass, and 
one finds 

1 1 1 (Sgy + S E y )  dx + J ( J  4 0 ,  Y )  do dz = 0 * 

0 0 

Hence follows the expression for the function C ( y )  

(7.1.31) 

1 

(7.1.32) 

Consider next system (7.1.21). Integrating these equations with respect to 

2 
~ ( y )  = - __ (2p)-2/3 J (rotzt) dx . 

fl 0 

from 0 to 00, one finds, by (7.1.28) and (7.1.23), for -+ 00 

w, (K ,  y ,  0) = 0 , (7.1.33) as,, 
aK 
~- 

1 a2sCx I a2sc, 
-fScy = - __ , f S C X  = - __ 7 2 a K 2  2 aK2 

where 
m 

S,, = 7 u,dt , S,, = J ucdt .  
0 0 

lntegrating conditions (7.1.24) with respect to from 0 to 00, one obtains 
readily from the first two equations (7.1.33) 

(7.1.34) 

Since, by (7.1.11), one has SEX + isEy = 7/(2zf),  the third equation (7.1. 
33) yields an expression for w,(K, y,  0). Substituting it into (7.1.27), one 
obtains 

(7.1.35) 

A complete determination of the functions uc, u,, w, will not be given 
here (they are only essential in the transition region E ,  1, E ) .  Note that an 
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analogous treatment of a transition region with scale E ,  1,  E in the vicinity 
of the line x = 0, z = 1 leads to the condition w , ( K ,  y , 1) = 0. 

Proceed now to the study of system (7.1.22). By (7.1.26), it may be 
assumed that us does not depend on z .  It  follows then from (7.1.22) that us 
likewise does not depend on z ,  and w,  is linear in z .  One has, by (7.1.35) and 
the condition w, (K ,  y ,  1) = 0, that 

(7.1.36) 

It is now easy to obtain from (7.1.22) and (7.1.23), by integration with 
respect to K ,  for K + 03 formulae for us, us, 5,. They will not be derived here 
as only the expression for u,(O, y)  is required. Integrating the third equation 
(7.1.22) with respect to K from 0 to 03, taking into account the condition 
us + 0 for K + 03, one finds 

us(% Y )  = TY * (7.1.37) 

As is already known, there does not arise a boundary layer of thickness 
O(E2’3)  at the eastern shore in the first approximation. Therefore the condi- 
tion for the zonal velocity at x = 1 assumes the form 

ug(l, Y )  + us((), Y)  = 0 * (7.1.38) 

Since the constructions of the function us for the eastern and western 
shores do not at all differ, formula (7.1.37) is also true for the eastern shore, 
and combining (7.1.18), (7.1.37) and (7.1.38), one finds 

Thus, the solution in the geostrophic region has been constructed. It is 
interesting to note that the zonal geostrophic velocity us does not vanish at 
the eastern shore (however, the zonal component of the total flux vanishes). 
Likewise, it must be emphasized that the velocity uy is determined not only 
by rotzT, as in the two-dimensional theory, but it depends also on the field 
T itself. 

Since the total meridional transport of water vanishes [cf. (7.1.31)] and, 
by (7.1.38), the water does not escape through the eastern shore, it also 
must not escape through the western shore. Therefore condition (7.1.26) 
must now be fulfilled automatically, as is readily verified by substitution. 

Analysis of the bottom boundary layer and the corresponding transition 
regions, and likewise of the boundary layers at the boundaries y = 0 and 
y = 1, will not be presented here (cf. [101,93]). 

It is readily shown that bottom friction plays a secondary role in the 
problem under consideration. Therefore the distribution derived above for 
the total flows (outside the boundary layers at  the boundaries y = 0 and 
y = 1) coincide completely with the results of the two-dimensional theory. 
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T'=O 

Fig. 7.2. Typical graph of temperature changes with depth in moderate latitudes of the 
ocean (during two different seasons) (according to Stommel [ 1171). 

Fig. 7.3. Distribution of isolines of temperature perturbations T in the x, z-plane (accord- 
ing to Barcilon [ l ] ) .  The thickness of the western boundary layer is shown. 

However, it must be emphasized that the boundary layer of thickness O ( E )  
is lost in a study of the problem by the method of total flows. The currents 
within the limits of these layers may be of great interest, especially in con- 
nection with the problem of upwelling and downwelling motions. 

Recall that, for the analysis of wind driven currents in a homogeneous 
ocean within the framework of the Ekman model, use has been made of 
approximate horizontal boundary conditions. [ Cf. conditions (5.2.11).] 
The analysis above justifies the formulation adopted. 

7.2. SIMPLEST LINEAR MODEL OF THERMOCLINE 

The temperature (and likewise salinity and density) field in the ocean has 
one clearly pronounced feature : practically all temperature changes (in ver- 
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tical as well as horizontal directions) are concentrated in the upper kilometre 
layer which is usually referred to as main thermocline or simply as thermo- 
cline (Fig. 7.2). The bottom thickness of the water of the ocean (below the 
thermocline) has almost constant temperature which, in essence, does not 
depend on the thermal conditions at the surface of the ocean. Such a pattern 
is true for the entire world ocean, except, may be, in high latitudes. Starting 
from general reasoning, it may be assumed that the thermocline is nothing 
else but a specific thermal boundary layer of the ocean. I t  is the task of 
theory to explain, first of all, the parameters on which the characteristic 
thickness of this boundary layer depends. Besides, the existence of a thermal 
boundary layer in the open ocean raises naturally a number of new problems 
also for the theory of coastal boundary currents. It has already been shown 
in the last section how complicated the structure of coastal boundary layers 
becomes (even in the case of a homogeneous ocean) when one steps over 
from two-dimensional to three-dimensional models. 

A start will be made with the simplest possible model. Assume that there 
is no wind, i.e., the motion is due to purely thermal causes. However, then 
one need not take into consideration vertical turbulent exchange (at least, 
outside the bottom Ekman boundary layer). Disregard also non-linear iner- 
tial terms and horizontal turbulent transfer; for the sake of simplicity, 
restrict consideration to the 0-plane approximation, so that 

1 aP fu = ay , 

(7.2.1) 

(7.2.2) 

(7.2.3) 

(7.2.4) 

where, as usually, the x-axis is directed to the east, the y-axis to the north, 
the z-axis downwards, po is the mean density in the ocean, f = f o  + P(y -yo)  
and the remaining notation is as before, 

It will be assumed that the density depends only on the temperature, and 
besides linearly, so that 

P = POL1 - a ( T -  Toll 7 (7.2.5) 

where To is the temperature averaged over the entire ocean and cr the con- 
stant coefficient of thermal expansion. 

The equation of heat transfer is non-linear, and this fact is the cause of 
basic difficulties encountered in the construction of a theory. As a first step, 
linearization will be introduced (the non-linear theory will be considered in 
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the next section). Thus, let the temperature field in the ocean assume the 
form 

T =  T, -Gz  -+ T ' ( x , Y , z ) ,  G >  0 ,  (7.2.6) 

where T = T,  - Gz(T,, G = constant) is a certain mean distribution of tem- 
perature in the ocean and T '  is a perturbation. Assuming the perturbation of 
the temperature field to be small, linearize the equation of heat transfer 
(4.5.6). In addition, assume the coefficients of vertical and horizontal heat 
conductivity ( K H ,  K L )  to be constant, to obtain, finally, 

(7.2.7) 

The boundary conditions will be formulated next. Thermal processes at 
the ocean surface are extremely complicated, and their discussion is not 
required with the problem under consideration. As regards a study of the 
effect of the formation of a thermal boundary layer, it is sufficiently simple 
to specify the temperature at the ocean surface. Recalling likewise the kine- 
matic boundary condition, one has 

T ' =  Q y )  , w = 0 forz  = 0 ,  (7.2.8) 
where O ( y )  is a known function (the temperature at the surface of the ocean 
changes chiefly in a meridional direction). 

Let it be assumed that there is no perturbation of the temperature at the 
ocean floor for z = H. Furthermore, since vertical turbulent exchange has 
been neglected in the equations of motion, one may impose at the bottom 
only a condition of no flow. Thus, 
T ' = O ,  w = O  f o r z = H .  (7.2.9) 

A formulation of boundary conditions at  shores which are assumed to be 
sheer cliffs is very specific. In general, there is no heat flux at a shore (for 
example, for x = 0 and x = L) and the horizon.ta1 velocity must also vanish. How- 
ever, since horizontal turbulent exchange is absent from the equations of 
motion as well as are non-linear terms, one is forced to forget about fulfill- 
ment of all conditions at the shore. Clearly, it is impossible to violate the no- 
flow condition: The total mass of fluid in the basin must remain constant. 
However, if, for example, one has u = 0 for x = 0, then, by (7.2.2), a p / 3 y  = 

0, which means, by (7.2.3) and (7.2.5), that also aT'/ay = 0 for x = 0. There- 
fore it will be simplest to write 

T ' = O  f o r x = O ,  T ' = O  f o r x = L .  (7.2.10) 
Thus, the thermal and dynamic boundary conditions could be consoli- 

dated in the single condition (7.2.10). The conditions at the zonal bound- 
aries of the region will not be considered here. 

It will be convenient to reduce the problem to a single equation for T ' .  
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Eliminating from (7.2.1) and (7.2.2) the pressure p and employing (7.2.4), 
one obtains 

aw $ v = f -  az (7.2.11) 

Differentiating this equation with respect to z and taking (7.2.3) and (7.2.5) 
into account, one finds 

Finally, substituting into this equation, in accordance with (7.2.7), the 
expression for w in terms of T', one obtains 

(7.2.12) 

Conditions (7.2.8), (7.2.9) and (7.2.10) will now be rewritten so that they 
only involve the temperature perturbation T' : 

T ' = O  f o r x = O ,  T ' = O  f o r x = L .  (7.2.13) 

Thus, the study of the thermal boundary layer has been reduced to anal- 
ysis of the problem (7.2.12) and (7.2.13). These equations will now be 
written in non-dimensional form. 

Choose L and H as characteristic scales in horizontal and vertical direc- 
tions, respectively. Let O o  be the characteristic value of the function O ( y ) ;  it 
will be quite natural to adopt B o  as characteristic scale for T'. Writing (7.2. 
12) and (7.2.13) in terms of non-dimensional quantities (denoted below by 
the former symbols), one obtains 

a2T' 
az2 

T ' = O ( y ) ,  __ +yA,T'=O f o r z = O ,  

T ' = O ,  + TAhT' = 0 forz  = 1 ,  
az2 

(7 2.14) 

T ' = O  forx = 0 ,  T ' = O  f o r x = l ,  (7.2.15) 
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where 

(7.2.16) 

If K H  = 1 cm2/sec, K ,  = lo' cm2/sec, H = 4 km, L = 5000 km, cy = 2.5 - 
lov4 ('C)-', G = (OC)/cm, then y N 6 ,  Ho = 0.3 km, E = 0.08. These 
estimates are very approximate; however, it will be assumed in the sequel 
that the parameter y is finite and the parameter E small. The asymptotic of 
the solution of problem (7.2.14) and (7.2.15) for small E yields completely 
satisfactory understanding of the peculiarities of the solution of the problem 
also for not very small E .  

It  is already clear, starting from these considerations, that the internal 
characteristic scale H ,  gives the order of magnitude of the thickness of the 
thermal boundary layer, or of the thermocline, in the ocean. Therefore it 
may be assumed that qualitatively the model under consideration actually 
describes the effect of formation of the thermal boundary layer in the ocean. 
The structure of the boundary layers will now be studied in greater detail. 

The temperature perturbation T' outside the boundary layers vanishes 
according to (7.2.14) and (7.2.15) (internal solution). Obviously, the non- 
dimensional thickness of the thermal boundary layer is of order E .  It  is not 
difficult to determine also the order of the non-dimensional thickness of the 
coastal boundary layer 0 ( e 2 )  from the condition that the terms 
ye4A,,(a2T'/az2) and aT'/ax must be of equal order of magnitude. Thus, the 
solution of Problems (7.2.14) and (7.2.15) outside the boundary layers at 
zonal boundaries will be sought in the form 

T' = TS(x ,  Y ,  t )  + ... + Tw(r,  Y ,  E) + ('7.2.17) 

where t = Z / E ,  r = x /e2 ,  7) = (1 - x ) / e2  and all functions T,, T w ,  TE must 
decay exponentially for large ,$, r and 7). 

Substitution of (7.2.17) into (7.2.14) and (7.2.15) leads to the relations 

(7.2.18) 

+ Y E ( ~ ,  Y ,  E) + ... 7 

T s + T w = O  f o r ( = O ,  

T w = O  f o r t = O ,  

(7.2.19) 

(7.2.20) 

(7.2.21) 

(7.2.22) 

(7.2.20') 
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T , + T E = O  f o r r ) = O ,  (7.2.21’) 

T,=O f o r t = O .  (‘7.2.22’) 
A start will be made with problems (7.2.18) and (7.2.19). Introduce the 

Fourier sine transform with respect to  g 

T, = 

Then, by (7.2.18) znd (7.2.19), one obtains for T, the equation 

ca 

T ,  sin(&) d{ . 
0 

with the solution 

(7.2.23) 

where the function A(y) must still be determined. 
For solution of problems (7.2.20)-(7.2.22) and (7.2.20‘)-(7.2.22’), the 

Fourier sine transform will again be employed. After single integrations with 
respect to 5 and r ) ,  respectively, one obtains from (7.2.20) and (7.2.20’) the 
equations 

(7.2.24) 

( 7.2.24’ ) 

Equation (7.2.24’) has no non-zero solution which decays exponentially 
for large r ) .  However, then th_e function TE likewise vanishes identically, and, 
by (7.2.21’), one finds that T,(l, y ,  g) = 0; hence the function A(y) entering 
into (7.2.23) has been determined, and 

or, reverting to the original function, 

The substitution o = ~ t ~ ’ ~ ( 3 .  -x) - l I3  reduces (7.2.26) to  the form 

(7.2.25) 

(7.2.26) 

(7.2.27) 
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where 
x = E4/3(1 -x)-1/3 . (7.2.28) 

Thus, the function T, depends on the variables x and $ only through the 
combination x. 

The function FW is found from (7.2.24) for the condition T,(O, y ,  a )  + 
Tw(O, y ,  a)  = 0 [cf. (7.2.21)]. Using (7.2.25) and inverting the transform, 
one obtains 

(7.2.29) 

The integrals in (7.2.27) and (7.2.29) apparently must be evaluated 
numerically. However, it is not difficult to establish qualitatively the behav- 
iour of the solution of the problem. Outside the western boundary layer, one 
has T’ = T J x ,  y). Therefore the lines T‘ = constant coincide in the x, z-plane 
with the lines x = constant. By (7.2.28), these curves are given by the simple 
equation z4 = constant (1 -x), according to which all lines x = constant 
“come out of7’ the point x = 1, z = 0. The “correction” function T ~ ( { ,  y ,  t )  
“turns upwards” these curves within the limits of a western boundary layer 
and forces them “into” the point x = 0, z = 0 (Fig. 7.3 on p. 202). 

Thus, due to the 0-effect, the pattern of the curves T ’ =  constant is 
sharply asymmetric with respect to the plane x = 1/2, although the motion 
generating factor e ( y )  does not at all depend on x. This phenomenon has 
already been encountered repeatedly. 

The width of the western boundary layer is here overestimated (for the 
adopted values of the determining parameters, of order 200 km). However, 
recall again that the problem under consideration only bears a qualitative 
character. Besides, in essence, the parameter G has been introduced solely 
for linearization of the problem; for a real ocean, its estimate is very indefi- 
nite. In general, linearization of the equation of heat transfer introduces a 
series of artificial aspects. For example, since practically there does not 
occur below the thermal boundary layer a change in temperature, the verti- 
cal velocity w ,  by (7.2.7), will likewise be equal to zero there, and conse- 
quently also the horizontal velocity will vanish [cf., for example, (7.2.11)]. 
It is important to emphasize that this result follows from (7.2.7) and it does 
not depend on the form of the other equations. If one admits that the quan- 
tity G is not constant, then the basic state T = T ( z )  will not satisfy the equa- 
tion of heat transfer with constant exchange coefficients and the method of 
perturbations will then not be very sensible. All this suggests the necessity of 
studying non-linear models. 
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7.3 A NON-LINEAR MODEL OF THE THERMOCLINE 

Non-linear heat advection will now be completely taken into account in 
the equation of heat transfer (4.5.6). Then, limiting consideration to motion 
in the open ocean, disregard in this equation terms describing horizontal tur- 
bulent exchange of heat. Let the remaining equations be the same as in 5 7.2 
(cf. also 5 7.2 regarding the formulation of the problem). In spherical coor- 
dinates, these equations assume the form 

-gwo(T - 

l a  aw + - __ (v cos $0) + - = 0 ,  
u cos cpah cos cp aacp az 

au 

(7.3.1) 

(7.3.2) 

(7.3.3) 

(7.3.4) 

(7.3.5) 

where p’ is the deviation of the pressure from its equili-rium value p a  + gpoz.  
It will be convenient to reduce this system of equations to a single equa- 

tion for some auxiliary function M ( X ,  cp, z ) .  For this purpose, eliminate first 
by crossdifferentiation the pressure p from (7.3.1) and (7.3.2). Using (7.3. 
4), one has 

aw 
az u = a  tancp-. (7.3.6) 

By (7.3.1), equation (7.3.6) may be rewritten in the form 

Based on analogy with the stream function for twodimensional motion of 
an incompressible fluid, introduce now a function M ( X ,  cp, z )  such that 

aM g aM p ’ = g z ,  w =  
2i2pOa2 sin2cp aX ‘ 

However, then, by (7.3.1)-(7.3.3), one has 
g a2M 6 a2M 

2QupO sin cp cos cp ax az ’ V =  
2s2poa sin cp acp az ’ U = -  

(7.3.7) 

(7.3.8) 
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Substituting (7.3.8) into (7.3.5), one arrives at  the required equation for 
M 

(7.3.9) 

The boundary conditions along the vertical at  z = 0 and z = H remain the 
same as in the case of the linear model [cf. (7.2.8), (7.2.9)J; generally speak- 
ing, the effect of wind may be taken into account by replacing the second 
condition (7.2.8) by a condition of the type (7.1.13). However, formulation 
of the boundary conditions along the horizontal demands special analysis, 
since system (7.3.1)-(7.3.5) [or, what is the same thing, equation (7.3.9)] 
describes motion in the open ocean and the boundary conditions required 
for its solution must be derived by study of the structure of nearshore 
boundary layers. Therefore only a certain particular solution of the non- 
linear equation (7.3.9) will be presented here, in order to  demonstrate 
the possibility of formation of a thermal boundary layer and to discuss its 
properties. 

Consider equation (7.3.9) in non-dimensional form. Let B o  be a charac- 
teristic scale of temperature changes at the ocean surface. Then, by the third 
equation (7.3.8), the scale M ,  for the function M will be 

Mo = BOQPOH~ , (7.3.10) 

where H ,  is a characteristic thickness of the thermal boundary layer, 
In equation (7.3.9), all terms describing heat advection have the same 

order of magnitude Mi/H:. Assuming that the term describing vertical tur- 
bulent heat exchange has the same order, the quantity Ho may be found: 

(7.3.11) 

Let a = 6.4 l o3  km, K ,  = 1 cmp/sec, L? = lop4 sec-l, g = 103cm2/sec, 

comparison with (7.2.16) the term derived for Ho contains only a single 
vague parameter - the coefficient of vertical turbulent temperature transfer 
KH; however, since Ho % 3.\/KH, changes in KH do not effect strongly the 
magnitude of Ho. Finally, using (7.3.7), (7.3.8), (7.3.10) and (7.3.11), char- 
acteristic magnitudes of velocities may be estimated: u = 1 cm/sec and w = 
0.4 * lop4 cm/sec. 

Selecting H ,  as characteristic vertical scale and M o  as scale for the func- 
tion M ,  equation (7.3.9) may be written in the form 

a = 2.5 . 10-4 OC-1 , 8 , = 10°C. Then Ho= 250 m. Note specially that by 

aM a2M a -,- 
(a ,  az2) 
a@, cp )  ax az3 az 

aM a3M a4M +cotrp- - =sin2rp-, (7.3.12) 
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where the previous notation has been retained for non-dimensional M and z .  
A particular solution of this equation will be sought in the form 

Substituting (7.3.13) into (7.3.12), one finds conditions under which (7.3. 
13) actually yields a solution of (7.3.12): 

(”+ h cot cp = 0 ,  
ah ap 1 
g ( $ + k c o t p ) = O ,  

(7.3.15) 

(7.3.16) 

(7.3.17) 

The case when ak lap  + h cot cp f 0 is not of interest: it gives the solution 
u = u ( p , z ) ,  u = O ,  w = w ( h , p ) ,  T = T ( p , z ) ,  

for which horizontal advection of heat vanishes identically. Consequently 

(7.3.18) C k = ~~ 

sin cp ’ 

where c is some constant. 
If the functions A and m are known, then the function B can be found 

from (7.3.17). Hence the solution (7.3.13) contains two “free” functions: 
A and rn. 

Rewriting (7.3.7) and (7.3.8) in non-dimensional form, one finds u ,  u ,  w ,  
and T.  Employing (7.3.17), one has 

It  is seen that one must select c < 0 for description of the thermocline (on 
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the northern hemisphere). Furthermore, the quantity m( A, cp) is immediately 
determined, as soon as the temperature at  the ocean surface z = 0 is given. 
Setting w = 0 for z = H (non-dimensional depth), one finds 

(7.3.20) 

where it has been assumed that the constant c has been given a value such 
that the term with exponent may be neglected ( I c I H >> 1). Since the func- 
tion m is already known, relation (7.3.20) permits determination of A(h ,  
cp). Then formula (7.3.19) for w may be rewritten in the form 

(7.3.21) 

Assume that the wind has been selected such that the function w(h,  p, 0) 
satisfies a condition of the type (7.1.13). Then conditions of the type (7.2.8) 
and (7.2.9) will be fulfilled and if one forgets for the time being about the 
boundary conditions along the horizontal which are unknown, it may be 
said that the solution derived describes the velocity and temperature fields in 
the open ocean. Note that side by side with the thermal boundary layer the 
model under consideration describes also barotropic motion below the ther- 
mocline (the horizontal velocity does not depend on 2). This is an important 
non-linear effect of the model. Recall that by equation (7.2.7) of the linear 
model in those regions where T = 0, necessarily also w = 0; the complete 
non-linear equation (7.3.5) is free from this deficiency. 

Thus, the models of 5 5 7.2. and 7.3 have demonstrated the possibility of 
explaining the thermocline in the ocean as a specific thermal boundary layer. 
However, answers to many questions remain still unclear, for example, 
relating to the relative roles of turbulent exchange and advection of heat in 
the formation of the thermocline, etc. 

COMMENT ON CHAPTER 7 

5 7.1 Basically, this follows Pedlosky [93] , cf. also [ 1011. 
5 7.2 In essence, the first linear model of the thermocline was proposed 

by Lineikin [65]. Formula (7.2.16) was obtained by Stommel and Veronis 
[118]; cf. also [41, -661 and Lineikin’s survey [67]. The problem studied 
here was solved by Barcilon [ 11. 

5 7.3 Non-linear models have been studied in many papers (cf. the survey 
by Veronis [127]). The problem investigated here was solved by Needler 
[ 881. Cf. Welander [ 1291 for a survey of further developments of the prob- 
lem. 



APPENDIX A 

ELEMENTS OF TENSOR ANALYSIS 

A . l  CURVILINEAR COORDINATES 

Consider three-dimensional Euclidean space. Let yl, y 2 ,  y 3  be rectangular 
Cartesian coordinates in a region V of this space. The formulae 

x" = x"(y1, y 2 ,  y 3 )  (A . l .  1) 
determine curvilinear coordinates xf f  in the region V, if the functions x"(yl, 
y 2 ,  y 3 )  have a single-valued inverse in this region so that 

y" = y"(x1, 2, x3) . (A.1.2) 

Here and in what follows, subscripts or superscripts which are letters may 
assume any of the values 1, 2, 3, i.e., relation (A.l.1) represents not one but 
three equations. Employment of upper and lower indices proves to  be a con- 
venient formalism. 

In the particular case when the functions xa(yl, y 2 ,  y 3 )  are linear, the 
coordinates xQ are said to be uffine.  

Surfaces x" = constant are called coordinate surfaces, and lines along 
which only one of the coordinates xa changes, coordinate lines. For example, 
the coordinate surfaces x1 = constant and x 2  = constant intersect along a 
coordinate line x3. 

Let 0 be a fixed point. Consider some point M ( x a )  of V and its radius vec- 
tor OM. The vector 

(A.1.3) 

is known to be directed along the tangent t o  the coordinate line xa. Accord- 
ing to (A.1.3), each coordinate system x" gives rise at  the point M to three 
vectors e l ,  e 2 ,  e3 which form a local basis there. This basis plays a funda- 
mental role in what follows. 

Components u" of a vector a with respect to  the basis e, are said to  be 
con travarian t 
a = alel  + u2e2 + u3e3 = u"e, . (A. 1.4) 

Here and below (unless stated otherwise) the customary convention is adopted that, if 
in a monomial one and the same Greek index is encountered twice, once as a superscript 
and once as a subscript, then the expression denotes the sum of monomials for the values 
1,  2 , 3  of the index. 
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The basis e, at a point M is closely linked to  the basis e" the vectors of 
which are defined as 

(A.l. 5) 

where e, Xep denote vector products and (e1e2e3) a triple product. Note 
that e,  can be expressed in terms of ea: by formulae analogous to (A.1.5). 

e,eP = Spa , (A.1.6) 

where Spa = 0 for 01 f /3 and = 1 for a = /3. 
The components a,  of a vector a with respect to  the basis e,  are said to  be 

covariant 

a = a,@ . (A.1.7) 
It is seen from (A.1.5) that in rectangular Cartesian coordinates (and only in 
those) contravariant and covariant components of a vector a coincide. 

The bases e, and e" generate at  a point M two important symmetric 
matrices map and map (a  referring to rows, /3 to columns): 
mop = e,ep , mop = e"eP . (A. 1.8) 

It is not difficult to obtain from (A.1.4)-(A.l.8) the relations 

ap = mapa" , a" = maPap , (A.1.9) 

and 

Consider the scalar product of vectors e, and eP 

(A.l.10) 

Obviously, the matrices maP and rn@ are inverses of each other. 

(A.1.4), (A.1.7) and (A.l .S),  one has 

ab = mapa" bP = maPam bP = a ,  b" . 

distance between them: 

Next, find the expression for the scalar product of two vectors a and b. By 

( A . l . l l )  
Consider a point M'(X, + dx"), close to  the point M(x"), and find the 

Hence 

dS2 = rn ,p&"dxP,  

from which follows that the matrix mcu4 is positive definite. 

(A.1.12) 
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A.2 TRANSFORMATION O F  COORDINATES 

Let new curvilinear coordinates xa' be introduced in the region V which 
are related to xff by the formulae 

xff' = xff'(x1, x2, x3) , xff = xff(x1', x2', x3') . (A.2.1) 

It will be convenient to denote this coordinate system by dashed indices. 
At a point M under consideration, the coordinate system xff' generates 

new bases e,, and ecy' and matrices m f f g p P  and mffIP'. In this context, there 
arise also new contravariant and covariant components a,' and a,, of a vector 
u. How are the new quantities e, , ,  e"', m , ~ ~ ~ ,  mff'p', 8' and a,( related to the 
old quantities eff , e,, m f f P ,  map, a, and aLu ? 

First establish the link between the vectors of the local bases e,' and e , .  
One has 

(A.2.2) 

(A.2.3) 

where the index 01' in the derivative ax"lax"' is assumed to  be subscript. 
Two basic matrices of the transformation have been introduced: 

(A.2.4) 

For fixed a and a ' ,  the number A:,! may be interpreted as that element of 
the matrix which stands at the intersection of row 01 and column 01'. Since 
the correspondence (A.2.1) is one-to-one, the matrices A:,! and A:: are not 
singular. I t  follows from the obvious identity 

(A.2.5) 

that they are inverses of each other. 
Consider a vector a a t  the point M. Its components a f f  or a, depend on the 

choice of the coordinate system. However, the vector u is invariant with 
respect to this choice; consequently, 
aa e,, = ame, . 

Using (A.2.3), one obtains 

(A.2.6) 

It follows from definition (A.1.8) of the matrix mffp  and (A.2.2) that 

(A.2.7) 
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is the transformation law of this matrix. 

components of a vector u :  
Formula (A.1.9) permits to  derive the transformation law of covariant 

Since aa,ea = a,e", one has 

and 

(A.2.8) 

(A.2.9) 

(A.2.10) 

Consider equations (A.2.6) and (A.2.8). It  is seen that the vector a is char- 
acterized by the fact that the set of its components (contravariant or cova- 
riant) transforms for transition from coordinates xQ to coordinates x"' 
according to (A.2.6) or (A.2.8). The inverse statement is also true: If in 
every system of coordinates there is defined a set of three numbers which 
transform during transition from one coordinate system to  another accord- 
ing to  (A.2.6) or (A.2.8), then this set of three numbers may be considered 
to be the components of some vector, since a"'e,, = use, or a,-ecy' = u,e@. 

Thus, the fundamental property of invariance of a vector with respect to  
choice of coordinate system has been expressed successfully in terms of its 
components each of which depends naturally on the choice of this or 
another coordinate system. 

It must be emphasized that in the law (A.2.6) the matrix A.: is multiplied 
by the vector a&, and in the law (A.2.8) the transposed matrix A:,, by the 
vector a@. Comparison of (A.2.6) and (A.2.8) with (A.2.2) yields an explana- 
tion of the terminology contravariant (i.e., transformation different from 
that of the basis vector e , )  and covariant (i.e., transformation like that of the 
basis e, ) . 

Example. Let cp be a scalar function. Consider the set of three numbers 
ap/axa. One has 

Hence it is seen that the three numbers acp/ax" transform according to 
(A.2.8) and that one may introduce a vector 

Thus it will be convenient to select covariant or contravariant components of 
a vector depending on the problem under consideration. 
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A.3 TENSORS 

The concepts of scalar and vector are basic in physics; however, it is not 
possible to limit consideration to these quantities. For example, it is known 
from hydrodynamics that the vector of the surface forces F acting on an 
arbitrary area element do at a point M depends linearly and homogeneously 
on the vector of the normal n to this area. In the coordinate system x", this 
statement may be written as 

F a  = pfYPnP . 
Since the character of the link between the vectors F and n does not depend 
on the choice of coordinate system, the set of nine numbers pyp transforms on 
transition from a system of coordinates xe to  a system of coordinates x"', by 
(A.2.6), according to the law 

The converse is also true: If a vector F depends in one coordinate system 
on the vector n linearly and homogeneously and the set of numbers pp'p trans- 
forms only in accordance with the prescribed law, then the linear and homo- 
geneous link between these vectors does not depend on the choice of a con- 
crete coordinate system. 

Generalizing the example under consideration, the concept of tensor will 
now be introduced. A tensor Q:$ of third order, twice contravariant and 
once covariant, will be said to  exist, if there is defined in every coordinate 
system x" a set of 27 numbers Q"; Q'", ... which transform from coordi- 
nates x" to coordinates x"' in accordance with the law 

(A.3.1) 

The numbers Q"$ are called the components of the tensor. 
The general definition of a tensor of arbitrary order and type may be con- 

structed in an analogous manner. In the sequel, relation (A.3.1) will be 
referred to as the transformation law for the components of tensors of any 
kind. Obviously, scalars, vectors and matrices pff9 are tensors (for example, 
the set of contravariant components of a vector a forms a contravariant first 
order tensor a"). 

Note that each tensor component in a coordinate system x"' is a linear 
homogeneous function of all its components in a system x". It must be em- 
phasized that the nature of a tensor is determined by the number and 
arrangement of its indices which are given as Greek letters, where in each ver- 
tical there is written down only one index. As a consequence, in general, ten- 
sors QYp and Qf will differ. 

On the basis of (A.2.5), it is not difficult to derive from (A.3.1) the 
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inverse transformation law (proceeding from coordinates xol' to coordinates 

Two tensors of the same type and order are equal if all corresponding 
components of these tensors in each coordinate system are equal. 

A tensor is said to be symmetric with respect to  pairs of upper (or lower) 
indices, if its components do not change on transposition of the indices; for 
example, AaP = APa. If, as a consequence of such a transposition, the com- 
ponents change sign, but not their absolute values, a tensor is said to  be 
anti-symmetric, for example, Bap = -Boa. It is to  be emphasized that it fol- 
lows from (A.3.1) that, if the property of symmetry (or antisymmetry) 
exists in one coordinate system, then it exists in any coordinate system. 

There exists a class of admissible operations on tensors which again 
generate tensors. Functional relations which include only such operations 
are said to be tensorial. By strength of the invariance of such relations with 
respect to choice of coordinate system, it is sufficient to verify their truth 
only in a single coordinate system. For example, if in one coordinate system 
all tensor components vanish, then they vanish in any coordinate system and 
one has a zero tensor. Consequently, it may be said about tensors and tensor 
relations that they do not refer to  a particular coordinate system. This is the 
basic idea of tensor calculus. 

The following operations will be defined by means of concrete examples: 
(1) The sum of two tensors Af"py and BYpy of identical type and order is a 

tensor Cpp, of the same type and order the components of which are equal to 
the sums of corresponding components of the summand tensors: 

c:py = A?OY + B?py . (A.3.2) 
is the tensor with compo- 

nents 

Cap ..YvP ...a = A.-YBvlr a p  ..w * (A.3.3) 

In general, the operation of multiplication is not commutative. 
(3) The operation of contraction. Let there be given a tensor A;:py. Select 

any superscript (for example, a) and any subscript (for example, p )  and sum 
all components with the same values of these indices. The resulting sum will 
be components of the new tensor 

ALP?' = A..QpY U o l  . (A.3.4) 

(4) Tensor criterion. Let it be known that for an arbitrary tensorBPY the 
operation 
A . . ~ B P Y  = cff (A.3.5) 

always yields a tensor Ca.  Then Ai$ is likewise a tensor. 

X a ) .  

(2) The product of two tensors A42; and 

Pr 

The generalization of rules 1-4 to  tensors of any kind is obvious. 
Consider a tensor Qyp. Side by side with this tensor, one may consider the 
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tensors 

Qap = maYQY, , Q~~ = mayQ:p , Q" . P =  m Y P  Qa, .  (A.3.6) 
Operations (A.3.6) are referred to  as raising and lowering of indices and the 
tensors QlyP, Q"p, Ship and Qap are said to  be associated. In essence, they are 
all different representations of one and the same physical characteristic [cf. 
(A.1.9)]. If consideration is limited to rectangular Cartesian coordinates, 
then the difference between associated tensors vanishes. Obviously, classes 
of associate tensors may be formed for tensors of any kind. 

A.4 EXAMPLES OF SIMPLE TENSORS 

It is readily verified that is a tensor. In fact, it follows from (A.2.6) 
that 

(A.4.1) 

The tensor character of m,p and maB follows from (A.2.7) and (A.2.10). 
are associate tensors. The last equality (A.l.10) yields that map, map and 

The tensor ma8 is referred to as metric tensor. 

lmap I = m. Equation (A.2.7) now renders 
Let the determinant of the matrix mffp  be denoted by m: 

(A.4.2) 

where Iaxa/axa'I is the determinant of the matrix ax"/ax"' (a  referring to 
rows, a' to columns). 

The transformation law for the quantity m differs from the general law 
(A.3.1) by the presence of the factor laxa/axa' 1 2 .  In such cases one speaks 
of a pseudo-scs 

Then 
Let Y1, Y 2 ,  3 

ar of weight 2. 
I be a right-handed Cartesian rectangular coordinate system. 

(A.4.3) 

It follows from this relation and the property of Jacobians that [axa/ax"'l 
> 0, if the Orientations of the vectors e, and ea, are identical, and 1 axa/ax"' I 
< 0, if their orientations differ. 

In each coordinate system x", define the sign of the quantity 6: fi 
> 0, if el, e2, e3 form a right-handed triple of vectors and 6 < 0 if this 
triple is left-handed. Taking into consideration the sign of laxa/axa' I ,  one 
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obtains, by (A.4.2), the transformation law for fi 

(A.4.4) 

In this manner, the pseudo-scalar fi of weight 1 has been introduced. 
Consider now sets of numbers eePy and eaPy which are antisymmetric in 

any pair of the indices, defining their components in an arbitrary coordinate 
system by 

0 if two indices are equal, 
eePy = 1 if (~,p,y form an even permutation of 1,2,3, 1 -1 if a,p,y form an odd permutation of 1,2,3, 

and analogously for eePy. 
It follows from the theory of determinants that 

(A.4.5) 

(A.4.6) 

It  is seen that the transformations of eePy and eepy likewise differ from the 
general law (A.3.1) by the presence of the factor laxw/axw’ I’ (h  equal to 
+1 or -1). As a rule, it is said that eePr is a pseudo-tensor of weight +1 and 
eePy a pseudo-tensor of weight -1. 

It  follows from (A.4.4)-(A.4.6) that fePY and fapy, defined as 

(A.4.7) 

are true tensors; it  is readily shown that EOPY and faPy are associate tensors. 
An expression for the vector product of two vectors from the right a X a 

will now be found. By (A.1.5), (A.4.3) and (A.4.4), one has 

a X b = (a“e,) X (bPeP) = EepyaPbYee . (A.4.8) 
It  is seen that the vector product of two vectors from the right (and only 
such a vector product will be considered here) is a vector the covariant com- 
ponents of which are given by (A.4.8). Analogously, one has 

a x b = EeP’apb,ee . (A.4.9) 
The triple product of vectors a, b and c is a scalar and may be written in 

the form 

( a h )  = EepyaebPcY = a b P r .  c (A.4.10) 

The following formulae are important: 

~ , p ~ ~ ~ ” ~ b , ~  = b,, - b,,, E “ P Y E , , ~ ~ V P  = bP’7 - bYP (A.4.11) 
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where b,, is an arbitrary tensor. 
Consider an anti-symmetric tensor b,,; it has only three independent com- 

ponents. Introduce the vector 

u" = I f LYPybpy  2 . (A.4.12) 
If the vector u" is known, then, by (A.4.11), one has 

e,pYu" = $e,p,Pupbvp = i ( b p y  - b,p) = bp, . (A.4.13) 
Thus, specification of an anti-symmetric tensor of second order b,, is equiv- 
alent to specification of a vector uci, and conversely. 

The vector product from the right a X b could be introduced as an anti- 
symmetric second order tensor a,b, - a,b,. By the results above, the tensor 
a,bp - a,b, is equivalent to the vector defined by (A.4.8) and (A.4.9). 

A.5 ISOTROPIC AND AXISYMMETRIC TENSORS 

A tensor is said to  be isotropic if its components do not change for all pos- 
sible coordinate transformations leading to  rotation about an axis passing 
through a point M and mirror reflection with respect to a plane through M. 

For example, consider an isotropic tensor Qap and find its general form. 
For this purpose, introduce the bilinear function F(a, b )  = Qapa"aP (where a 
and b are arbitrary vectors). Then Qap = F(eci, e p ) .  Since the tensor Q,p is iso- 
tropic, the scalar function F(e,, ep) turns out to  be invariant with respect to  
the group of rotations and mirror reflections and, according to  the theory of 
invariants of the group, to depend only on the scalar products eat?,. Taking 
into account the bilinearity of the function F(ea,ep) ,  one finds that the 
general expression for the isotropic tensor Qap depends on the single scalar a 

QLyp = a(e,ep) = amcip . 
This method permits to  determine the general form of a covariant iso- 

tropic tensor of any order. Limiting consideration to  tensors of order not 
higher than 4, one has 

Q, = 0 , Qap = am,p , Qap, = 0 

Qcupvp = a~mcipmvp + a2maumpp + a3mcipmpu > (A.5.1) 

where a, a,, a2 and a3 are arbitrary scalars. 
Next, consider the definition of the axisymmetric tensor. Let k be a unit 

vector which specifies the axis of symmetry at a given point. A tensor will be 
said to  be axisymmetric, if its components do not change for all possible 
coordinate transformations which induce rotation about the axis k and mir- 
ror reflection in places containing k or perpendiculars to k. 

As an example, consider an axisymmetric tensor Qap and find its general 
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form. Introduce again the bilinear function F(e,, ep)  = Qap. This function 
turns out to be invariant with respect to  the group of rotations and reflec- 
tions; it does not disturb the configuration of the system of vectors k, e l ,  e2,  
e3 and its general form is given by 

Q o l p  = F(e,ep) = al(e,ep) + a 2 ( W  = a 1 m f f p  + a2k,kp , 
where ul and a2 are arbitrary scalars. 

Applying the method above, one obtains the general form of covariant 
axisymmetric tensors of any order. Limiting consideration to  tensors of 
order not higher than 4, one finds 

Q, = 0 , Q,p = alm,p + q&,kp , Qapy = 0 , 

Qffpvp = blm,pmv,, + b2mffvmpp + b3ma,mpv + b,m,pk,k, + b n J q $ ,  

+ b,m,,k@, + b,m,,k,kp + b,mppk,kv + b9m@,kp + b10h,kpk&, , 
(A.5.2) 

where a,, a2,  b,, ..., b I o  are arbitrary scalars. 

A.6 DIFFERENTIATION O F  TENSORS 

In the preceding sections, tensors and tensor operations at a fixed point 
have been studied. Next, consider tensor fields and investigate the problem 
of the change of a tensor during transition from one point M to a closeby 
point M’. 

First of all, the change of local basis vectors will be determined. One has 

(A.6.1) 

Relation (A.6.1) defines the new object rEp referred t o  as Christoffel sym- 
bol of the second kind. I t  follows from (A.6.1) that I ‘zp = F&. The following 
formula may be derived for rEo: 

(A.6.2) 

It is not difficult to find now the transformation law for and to  show 
that it is not a tensor. 

Thus, on transition to the neighbouring point M’(x ,  + dx,), the local basis 
changes to  e; = e, + de,, so that 

ek = @,ep , a!, = + rEffhK . (A.6.3) 

Consider now the solution of the fundamental problem, for example, in the 
case of the tensor QPo. How is one to  compare QrYp(M) and Qffp(M’)? Difficul- 
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ties encountered in such a comparison arise from the fact that algebraic oper- 
ations may only be performed on tensors given at one point. 

Proceed in the following manner. Transpose the basis vectors e:, parallel to 
themselves from the point M'  to the point M and together with the basis 
transfer the tensor QYP(M'). In other words, consider at the point M a new 
basis e; and the tensor Q:;(M) given with respect to  this basis with compo- 
nents equal to the components of QPp(M'). Since now both tensors Q:;(M) 
and QYP(M) are given at  the same point (however, in different bases) they 
may be compared (once they have been referred to  one and the same basis). 

The tensor Q:; will now be written in terms of the basis e,. This problem 
is readily resolved with the aid of (A.2.4), (A.2.5) and (A.3.1). Denoting the 
components of Q:; t o  the basis ecu by Po, one obtains 

a?P@T(W = aP,Q:J(W . 
Disregarding squares of dx", one finds 

dxy + r:,QTPdxK - r;,Qf",CIXY . 

Denote now the absolute differential of the tensor Q:$ by DQYp: 

- as:@ 
QPP = QPP + axy (A.6.4) 

(A.6.5) 

The preceding reasoning may be considered as a guide; one may simply 
define DQYP by (A.6.5) and then verify that the result is a tensor. By the ten- 
sor criterion, the set 

(A.6.6) 

will be a tensor; it is called the covariant derivative of the tensor QPo. 
It  is readily verified that aQYp/axK is not a tensor. In fact, on transition t o  

a nearby point, there is superimposed on the change of the set, yet a change 
caused by choice of a definite coordinate system (the change of the basis 
e, from point to point depends, of course, on the choice of the coordinate 
system). Thanks to introduction of additional terms into (A.6.5) or (A.6.6) 
with factors r&, one has succeeded, as has been shown, in separating out the 
invariant part of the change of QYP. Note that in affine coordinates a31 I?& 
= 0 and there do not arise additional terms in (A.6.5) and (A.6.6). 

It is clear from the example under consideration how one can define the 
absolute derivative and covariant derivative for a tensor of any kind. For 
example, let there be given a tensor Qpl.$,. For every superscript (for exam- 
ple, a ) ,  construct the additional term with plus sign of the type P ~ a Q ~ $ p d x K ,  
and for each subscript (for example, Y) the additional term with minus sign 
of the type rE,Q(YPorrdxK. The number of such additional terms is equal to 
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the order of the tensor (in general, there are no such terms for a scalar). Thus 

(A.6.7) 

Note that the absolute differential of a tensor turns out to be a tensor of 
the same type and order, while in the covariant derivative of a tensor order 
and number of subscripts are increased by unity. 

A.7 INVARIANT DIFFERENTIAL OPERATORS 

In affine coordinate systems, when all I'& = 0, the following rules are 

(1) The covariant derivative of a sum of tensors is equal to  the sum of 

(2)  The general rule for evaluation of the covariant derivative of a product 

(A.7.1) 
.eolpy and PPy 

readily verified. 

covariant derivatives of each of the terms. 

of two tensors follows from the example: 

vK(A?$!p) = ('KA?p) ':/.I + Aq'@(vK,BY&i). 

are equal to  zero: 
(3) The covariant derivatives of the tensors map, map, 

V K m a p  = 0 ,  ~ , m @  = O , 0,spp = 0 ,  vK€@y = o  , V,€ffPY = 0 .  

(A.7.2) 

For parallel-translation of a vector (I, obviously, Da = 0. By ( A . l . l l ) ,  
(A.4.8) and (A.7.2), scalar and vector products of parallel-translated vectors 
do not change. 

From (A.7.2) follows the fact that the operations of covariant differentia- 
tion and contraction are commutative: 

= v K ( 6 f a A f ; i ~ )  = 'KA?a" . (A. 7.3) 

and likewise the rule for differentiation of associate tensors 

V ( mapAp) = maPV KAP . 

one arrives at  the useful formula 

(A.7.4) 

Writing out the identity VK.eaPr = 0 in an arbitrary coordinate system xw,  

(A.7.5) 

Consider now the most frequently encountered differential tensor oper- 
ators (invariant operators) : 
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(1) The scalar operator V f f u f f  is called the divergence of the vector a and 
denoted by diva. By (A.7.5), one has 

01 - aa" i a  d iva=  V,a -__ + r$d=-- ( , h a a ) .  
axff ,/TI axff 

The following vector is referred to as the divergence of the symmetric tensor 
a"@: 

V,amYP = __ a@ + r K  ( J ~ u @ )  + rtpaVp . + rP a ~ v  = __ i a  __ 
K U  f i a x a  K f f  axa 

(A.7.6) 

(A.7.7) 

Again, (A.7.5) has been used in writing down this result. 
(2) The vector Vf f$  is calied the gradient of the scalar function $ and 

denoted by V$ : 

V+=Vff+ef f=mf f f l - -  a$  ep . (A.7.8) 

The second-order tensor Vffup is called the gradient of the vector functiona 
and often denoted by Va. 

(3) The scalar A+ = mf fPv f fVp$  is called the Laplace operator of the scalar 
function G. One has 

axff 

Formulae (A.7.6)--(A.7.8) and the identity Vamffp = 0 have been used to 
derive this result. 

(4) Consider the anti-symmetric tensor V f f a p  - Vpa, which, by (A.4.12) 
and (A.4.13), may be represented in the form 

(A.7.10) 

(A.7.10') 

The vector ma is referred to as the vorticity (or rot) of the vector field a and 
denoted by rot a. 

(5) The vector mffPVffVpuK is called the Laplace operator of the vector 
function u and denoted by Aa:  

Aa = V(div a) - rot(rot a )  . (A.7.11) 

This formula is readily verified in rectangular Cartesian coordinates. 
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(6) Let there be given a continuous medium moving with velocity v(M,  t). 
Consider first some scalar field t,b. By definition, the expression 

(A.7.12) 

is referred to as individual derivative of the scalar I) with respect to  time t. If 
a vector field u is given, then its individual derivative with respect to  time is 
given by 

du 
dt - = (?$ + vPvpa" (A. 7.13) 

The physical significance of these definitions is easily explained in a rectan- 
gular Cartesian coordinate system: An individual derivative characterizes the 
change of $ (or a )  in unit time for fluid particles moving with velocity v .  

(7) Next, the derivative with respect to time of the integral J,adV will be 
derived, where a is a scalar field and V an individual volume of a continuous 
medium (i.e., a volume which consists of the same moving particles). Intro- 
ducing the external normal n to  the surface C bounding the volume V, one 
has 

or, by the Gauss-Ostrogradskii theorem, 

JadV = Jr$ -t div(av) d V  . 
dt V V 1 

\ 

(A.7.14) 

(A.7.15) 

A.8 CURVATURE TENSOR 

The following question will be treated briefly. Selecting a definite curvi- 
linear coordinate system xff and writing down in it corresponding invariant 
relations, one might forget that the space is Euclidean and there exists in it a 
rectangular coordinate system. How does one formulate this important fact 
in terms of the coordinate system x"? 

In order to answer this question, introduce the curvature tensor R;$. Let 
u be an arbitrary vector. Then, by definition, 

Vu(V,a,) - VJAVuacu) = R;$p , (A.8.1) 
where 

(A.8.2) 
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By the tensor criterion, it follows from (A.8.1) that R;iE is a tensor. 
The following formula is readily derived: 

+ mKO(rVK@rE" - rEpr;&) - (A.8.3) 

It yields the result that the tensor Rvpcup is symmetric: 

R v p a p  = -Rpvap, R v p a p  = -Rvppe  9 RuMap = R a p v p  . (A.8.4) 

These formulae show that RUpap has only six independent components; for 

If the space is Euclidean, then there exists in it an affine coordinate sys- 
tem and the tensor Rvpop vanishes identically. It follows from (A.8.1) that 
in Euclidean space VaVpa, = VpVaaK. It may be shown that, if the tensor 
Rvpap vanishes identically in a region V ,  then there exists in this region a 
coordinate system such that its matrix map will be the unity matrix at all 
points of the region V (rectangular Cartesian coordinate system). Hence the 
initial coordinates x" may be interpreted as cuwi-linear coordinates in Euclid- 
ean space. 

Consider an orthogonal coordinate system: mij = eiej = 0 for i f j and mji  
= eiei = hi2 . The parameters hi (lengths of the basis vectors e i )  are referred to 
as Lame parameters of the given coordinate system. Then 

R1212 ,  R2323,  R3131r R12137 R2321 ,  R3132. 

for i f j , (A.8.5) 

Furthermore, according to  (A.6.2), one finds 

different . (A.8.6) 

Now it is not difficult to write down 

with the components R2321 and R3132 obtained by cyclic transposition of 
indices and 

(A.8.8) 

with the components R2321 and R3132 obtained by cyclic transposition of 
indices. 
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Setting the independent curvature tensor components equal to  zero, one 
arives at six necessary and sufficient conditions for a space to  be Euclidean. 

A.9 BASIC FORMULAE 

Side by side with the local basis eLu of a given coordinate system x a ,  
consider the normalized basis u, : 

1 1 u2 = r e 2 ,  us =- 
1 

u1 = r e 1  m11 7 m2 2 Ge3 . 
(A.9.1) 

The components 2 ,  of a vector u with respect to the basis u, will be called 
physical components: 

(I = c 6 iUi  , ii, = K l a l  , z2 = K 2 a 2  , = K 3 a 3  . 
3 

i = l  

(A.9.2) 
In an analogous manner, the physical components of any contravariant ten- 
sor, for example, QQp may be defined by 

Qll = d G i & l 1  , Q12 = m 2 Q 1 2  , etc. (A.9.3) 
If a tensor has subscripts, one must first step over to the associate tensor 

which has only superscripts and then use formulae of the type (A.9.3). 
An advantage of the physical components of a tensor is that they have the 

same dimensions as physical characteristics. However, they do not transform 
according to  the law (A.3.1) and therefore it is significantly more difficult 
to formulate in terms of them the property of invariance of a parameter with 
respect to choice of coordinate system. Note that in rectangular Cartesian 
coordinates, corresponding covariant, contravariant and physical compo- 
nents of a tensor are identical. 

Consider again an orthogonal coordinate system xa with Lam6 parameters 
h a ,  and, using (A.8.5) and (A.8.6), write down Formulae (A.7.6)-(A.7.13) 
in terms of physical components of the corresponding tensors. 

I t  follows from definition (A.7.6) that 

(A.9.4) 

In spherical coordinates A, cp and r ,  define the two-dimensional divergence of 
the vector (&, 2,) by 

(A.9.4’) 
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By definition (A.7.7), the physical components ^bi of the vector V,aaP 
have the form 

a In h k  
- h k k T ]  ax . (A.9.5) 

Recall that a@ is a symmetric tensor. 

of the vector V$ 
By definition (A.7.8), one has the expression for the physical components 

(A.9.6) 

In spherical coordinates 1, cp and r ,  the two-dimensional gradient V h $  is 
defined by 

(A.9.6') 

It is now the right moment to  present the formulae for the physical com- 
ponents Ci of the vector b"V,aP: 

(A.9.7) 

Formulae (A.9.6) and (A.9.7) permit to write down expressions for indi- 
and a vector a. One has, by (A.7.12) and vidual derivatives of a scalar 

(A.7.13), 

(A.9.8) 

(A.9.9) 

Definition (A.7.9) yields 

In spherical coordinates A, cp and r ,  define the twodimensional Laplace 
operator of the scalar function + 

(A.9.11) 

No consideration will be given to (A.7.11). 
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The physical components of the vector rot a are given by (A.7.10‘): 
In a right-handed coordinate system: 

- 7 ( h 2 h 2 ) ] ,  a 
ax 

n 
(rot a)3 

In a left-handed coordinate system: 

h1h3 ax 

(A.9.12) 

(A.9.13) 

By (A.4.8) or (A.4.9), the physical components of the vector a X b have 

In a right-handed coordinate system: 
the form: 

(U >? b)1 = 6 2 6 3  - 6 3 6 2  , 

(a i b)2 = 6 3 6 1  - 6 x 6 3  , 

(a >? b)3  = ii1g2 - Ci2il . 

(a b)1 = 6 3 6 2  - 2 2 6 3  , 
(a >? b),2 = 6 1 6 3  - 6 3 6 1  , 

In a left-handed coordinate system: 

(a >? b)3 = fi2i1 - h 1 i 2  . (A.9.15) 

(A.9.14) 

In conclusion, formulae for the physical components of the strain rate ten- 
sor eap = ciaup + V p a  will be written down: 

(A.9.16) 
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In formulae (A.9.4)-(A.9.16), repeated indices do not imply summation. 

COMMENT ON APPENDIX A 

The general handbooks [ 54;53;72;100;108, Chapters I1 and IV] have been 

55 A.1 and A.2: Statement of general material. 
5 A.3: Proof of Rules 1-4 (cf. [loo, Chapter I]). 
5 A.4: For proofs, cf. [72]. 
5 A.5 : Cf. [ 2,4,96], and likewise [ 108, Appendix I]. 
5 A.6: These results follow from [ 100, Chapter VIII]. 
5 A.7: Proofs of Rules 1-3, cf. [loo, Chapter VII]; a more detailed deri- 

5 A.8: Cf. [ 100, Chapter IX; 721, where also the proofs are given. 
5 A.9: Detailed derivations of (A.9.4)-(A.9.16) are given in [53, Chapter 

employed in the preparation of this section. 

vation of (A.7.6)-(A.7.16) is given in [53], and likewise in [72]. 

IV] . 
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APPENDIX B 

ON MATCHING OF ASYMPTOTIC EXPANSIONS 

First consider a simple example. Let there be given on the interval 0 < x 
< 1 the function 

y ( x )  = cos x -- 

where E is a small parameter. Construct an asymptotic representation of this 
function, expanding it in terms of 1, E ,  e2, .... One finds immediately that for 
finite x 

E > O ,  (B.1) 
E 

X + E '  

m 

where 

uo = cosx, 

The modulus of the remainder term for a partial sum of n terms of expan- 
sion (B.2) is less than ( E / x ) "  ; therefore (B.2) has the character of an asymp- 
totic expansion for be < x < 1, where be = E",  v < 1. For any given accuracy 
en and parameter v < 1, selecting Ne > n / ( l  - v), one finds 

urn(x)  = (-l)m(l/xm), m = 1 , 2 , 3 ,  ... . 

Ne 

y ( x )  = c E k U k ( x )  + O(En), be  < f 1 
0 

Hence inf N ,  + m for v -+ 1, i.e., the closer the left-hand boundary of the 
region of validity of (B.2) is to  the point x = 0, the larger is the number of 
terms of the asymptotic expansion which is required to attain a given accu- 
racy. However, the boundary be cannot approach the point x = 0 more 
closely than to  order E .  

In the neighbourhood of the point x = 0, it is natural to  go to  the variable 
{ = X / E ;  for finite values of (, one obtains 

m 

Y = f k u k ( ( >  3 (B.3) 
0 
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The modufus of the remainder term for the partial sum of n terms of 
(B.3) is less than ( l / n ! ) x " ;  therefore (B.3) represents an asymptotic expan- 
sion on 0 < x < bi , where bi = E' , v > 0. For any given accuracy en and param- 
eter v > 0, selectingNi > n/v ,  one has 

Y ( X )  = 

Hence 
of the 

inf Ni + m for v -+ 0, i.e., the further away is the right-hand boundary 
region of validity of (B.3) from x = 0, the larger is the number of 

terms of the asymptotic expansion which is required to attain a given accu- 
racy. However, the boundary bi could not be moved on a finite distance 
from the point x = 0. 

Most important of all is the fact that for any E -+ 0, the boundaries bi and 
be may be chosen such that the regions of validity of expansions (B.2) and 
(B.3) will overlap. 

Finally, the solution of the problem under consideration may be pre- 
sented in the form 

Ni 

y ( x )  = c E k V k ( X / E )  + o(E"), 0 < x < b 7 

0 

where 

and the numbers N ,  and Ni depend on the parameters n and v. 
For the sequel, it will be convenient to  have a formulation of the fact that 

the regions of validity of expansions (B.2) and (B.3) overlap in the form of 
some equality. For example, writing down both expansions for x = b,  one 
finds 

where b is given by (B.4), while Ne and Ni depend on n and v. 
Since, by (B.4), one has b -+ 0 as E + 0, and b/E -+ 00, the asymptotic 

behaviours of the functions u k ( x )  for x + 0 and the functions u k ( < )  for < + 00 

appear to  be interlinked. For example, if n = and v = f, one may select Ne = 

Ni = 0 and write down (B.5) in the form 
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whence 

vo("") = U O ( 0 )  - 
In a definite sense, the example under consideration is typical. Very fre- 

quently, an asymptotic expansion of Type (B.2) of a solution y ( x )  of some 
boundary value problem for a differential equation turns out, due to one or 
the other physical reasons, to be inapplicable in the neighbourhood of some 
point (say, x = 0). As a rule, this signifies that near this point the solution 
y ( x )  has a different asymptotic expansion of Type (B.3); usually, the regions 
of validity of the two expansions overlap and a condition of Type (B.5) 
appears to be valid. 

In an analysis of concrete problems, a difficulty arises from the fact that 
the initial equation and boundary conditions permit usually to find the coef- 
ficients f.&(x) and u A ( { )  of asymptotic expansions (B.2) and (B.3) only apart 
from some unknown constants. For the determination of these constants, 
the property of overlap of the regions of validity of expansions (B.2) and 
(B.3) is basic. As it has been seen, the asymptotics of the functions uk (x )  for 
x -+ 0 and u k ( { )  for { + 00 are interrelated, by (B.5), whence follow the 
required supplementary conditions for the determination of the unknown 
constants. 

Direct application of (B.5) leads often to very complicated constructions. 
Hence consider the following convenient heuristic procedures where the 
parameters n, v, N, and Ni do not appear explicitly. 

PROCEDURE 1 

(1) Let there be given some integer M :  M = 0, 1,2, .... Consider the partial 
sum Z ~ E ~ U ~ ( X )  and write it in the form Z F E k u k ( E { ) .  

(2) For fixed {, expand this expression in powers of E :  1, E ,  e2, ... and 
select the sum of its first M terms. One finds Z g  E' c p ' ( { ) .  
Matching condition: Beginning with a sufficiently large value of M ,  the func- 
tions c p ' ( { )  are the asymptotics of u k  ({) for { + 00. 

In a similar manner, one can formulate 

PROCEDURE 2 

(1) Let there be given some integer M :  M = 0, 1,2, .... Consider the partial 
sum z g E k u k ( < )  and write it in the form x r E k u l , ( X / E ) .  

(2) For fixed x ,  expand this expression in powers of E :  1, E ,  e2, ... and 
select the sum of its first M terms. One finds C5ekd iM)(x ) .  
Matching condition: Beginning with a sufficiently large value of M y  the func- 
tions diM)(x)  are the asymptotics of u k ( x )  for x -+ 0. 
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Successive application of these procedures permits, as a rule, to determine 
the unknown constants in the expressions for uk ( x )  and u k  ({). 

At the base of the methods formulated, there lies a regrouping of terms on 
both sides of (B.5) by which a simpler comparison of terms of equal order is 
achieved. Therefore, if in the execution of at  least one of these procedures 
the matching condition is actually fulfilled, then this must guarantee appar- 
ently also the truth of (B.5). 

As an example, consider the following problem: For small positive E ,  find 
an asymptotic expansion of the solution of the problem 

q” + y’ = cos x ,  y ( 0 )  = y ( 1 )  = 0 (B.6) 
for 0 < x < 1 (in essence, this problem is an analogue of one worked out in 
3 5.6). 

As usual, seek the solution of the problem in the form 

y ( x )  = c EkUk(X) 
0 

03-71 

Substitute this series into (B.6) and equate to  zero the coefficients of differ- 
ent powers of E to find for the functions uk(x) the equations: 

ub = cos x ,  u ;  =-ui;, u; = -u;, u; = -u;, ... . 
Integrating these equations, one finds 

u 0 = s i n x + A o ,  u1 =-cosx+A1,  u2 = s i n  x + A2, 

~3 = cos 3t + AB, 

where the constants Ah  are as yet unknown. 
Generally speaking, there must be boundary layers near the points x = 0 

and x = 1, Since the functions uk(x) may not satisfy simultaneously the 
boundary conditions for x = 0 and x = 1. Consider first the neighbourhood 
of the point x = 0. Introduce the variable { = x / e  and seek y ( x )  in the form 

... , 

Expanding cos E{ in a power series for fixed 
(B.6) and the boundary condition y ( 0 )  = 0, one obtains 

and substituting (33.8) into 

u; + ub = 0, Uo(0)  = 0, 
u;  + v; = 1, U,(O) = 0, 

u2(0)  = 0, 
h ( 0 )  = 0, 

v; + u; = 

u; + u;  = -{ 12, O4 



TABLE B.1 

._ 
M = O  M = l  M = 2  

__________.___ 
dkM) 

dhM) (1 - x)2 sin 1 -(l-x)cosl--  (I - x)2 (1 - x)3 cos 1 2 !  sin1-- 
3!  -(1- x )  cos 1 -(1- x)  cos 1 - ___ 

2! 

... ... 

-(1- x )  sin 7 

... 

-(I - x )  sin 1 + cos 1 
2 !  

(1 - x )  cos 1 

... 

TABLE B.11 

c p ’  M = O  M = l  M = 2  M = 3  

C P ’  -sin 1 s i n  1 s i n  1 s i n  1 

C i p  sin 1 sin 1 

C p ’  

C p  

-1 + cos 1 + { -1 + cos 1 + { -1 + cos 1 + { 

1 - cos 1 - P + s”- { 
6 2  

... ... ... ... ... 
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Hence, on integration, one finds 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
where Bh are arbitrary constants. 

Analogously, expanding y ( x )  near x = 1 in the series 
m 

and cos (1 - c$) in a power series for fixed E ,  and substituting (B.9) into 
(B.6) and the condition y(1) = 0, one arrives at 

wo = C,(I - et), 
w1 = C,(I - et) - t cos I, 
w 2  = c2(1 - ec) - ( t 2 / 2  + E) sin I, 
w3 = C3(l  - et) + (E3/6 + t 2 / 2  + E )  cos 1, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
where C,  are arbitrary constants. 

The unknown constants Ah, Bh and C ,  may be determined only from the 
matching conditions of corresponding asymptotic expansions. Start with 
expansions (B.7) and (B.9). By Procedure 1 the wh(E) can only behave for 
E +. 00 like some polynomial in E, whence C,  = 0, h = 0,1, ... and all coef- 
ficients w, ( t )  of expansion (B.9) have been found. Next, apply successively 
Procedure 2 and, for the sake of clarity, present the results in the form of 
Table B.I. 
In this manner, dl Ah are found from the matching condition: 

A.  =-sin 1, A ,  = cos 1, A 2  = sin 1, .... 
Finally, the constants Bjh must still be found. For this purpose, expansions 

(B.7) and (B.8) must be matched. Applying Procedure 1, one arrives at Table 
B.11. 
The matching condition now yields 
Bo =-sin 1, B, = -1 + cos 1, B2 = sin 1, B3 = 1 - cos 1, .... 

The validity of this asymptotic representation is readily established if one 
will invoke the exact solution of Problem (B.6) which in the case under con- 
sideration has a simple form. Thus, simple examples have permitted to  study 
important features of the method of matched asymptotic expansions. In 
analyses of more complicated problems, one may be guided by the results 
above. 
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COMMENT ON APPENDIX B 

The method of matched asymptotic expansions is the topic, for example, 
of the monographs [125] and [7], the survey [57] and a number of other 
publications. Basically, the present treatment follows the work of Il’in and 
coauthors [ 37,381. 
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