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CELSISSIME At~E SERENISSIME 

PRINCE PS, 
DOMINE GRATIOSISSIME. 

On aufus fuHfem Sereniffimo Nomini 
Tuo lrydrodynamtcam hanc in
fcribere, nifi ilia Academia: Scien. 
tiarum, fub um bone T uo Petropoli 
florentis, confilio & fubfidiis a me 
confcripta fui.ffet. Novimus quan
tum Tibi , Sereniffime Princeps , 

Magnanime Academix Protecror, pofl: Augufiam illam 
orbis borealis Palladem, debeamus, idque cum toto orbe 
literato, qui pra:clara fibi porro ab Academia, amrenis 
benevolentia:: Tua:: radiis collufirata, pollicetur, pia & 
immortali recolemus memoria. Florebit in a:ternitatis 
facrario apud Rufficam gentem Tuorum in illam merito-

(Reproduction of first page of dedication to 
Daniel Bernoulli's H ydrodynamics. 

See page xix for translation .) 
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PREFACE 
TO THE ENGLISH TRANSLATIONS 

In the belief that students attaining the doctoral level should know 
something about the background of their profession, the writer began 
in 1960 to offer a graduate course at the University of Iowa on the 
history of hydraulics. Instead of attending lectures, every stud_ent 
was expected to read the Institute book on the subject [r], select a 
lesser-known investigator from the past in each of his three required 
doctoral languages (English, of course, included), and submit original 
monographs summarizing the respective lives and works. If he so 
preferred, a student could prepare instead one monograph on a single 
subject, such as pipe resistance, the roots of which would carry him 
into several source languages. Furthermore, a student whose lan
guage background was sufficiently broad to need no further exercise 
could concentrate on a single national literature, like Russian 
hydraulics. 

The lack of Latin in the writer's background-which had proved 
particularly troublesome when he was seeking to digest early treatises 
on hydraulics-led him to suggest to two students with foreign
language upbringing (the one, Italian; the other, German) who were 
able as well to read Latin that they compare the works on fluid 
motion of the two Bernoullis, Johann and Daniel. The idea soon 
grew to the point of involving the complete translation of the two 
present books, in part as the regular course requirement, in part as 
salaried employment with the Iowa Institute of Hydraulic Research, 
and in no small part as a labor of love. To the American-born 
Thomas Carmody (who really began the undertaking) fell the task of 
actual translation; but to the German-born Helmut Kobus (who had 
studied far more Latin) fell that of checking meticulously every word 
and thought and of preparing the manuscript for the printer after his 
fellow translator had left for another university. Kobus, in turn, 
finally left the country, and it remained to Carmody (and the writer) 
to read proof. 
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Why the Bernoullis' works should have been singled out for trans
lation seems at first thought rather obvious, if only because of the fre
quency with which the name Bernoulli is on a hydraulician's lips. 
But it is only Daniel to whom one is making reference, and the word is 
gradually spreading that' the theorem bearing his name is nowhere to 
be found in his habitually cited Hydrodynamica [ 2]. Not until the last 
few years has mention of either the work Hydraulica [3] or its author 
Johann Bernoulli appeared in fluids literature with any frequency 
whatever, and this almost exclusively in the writings of C. Truesdell 
[4]. It is Truesdell's thesis that, whereas Daniel has received too 
much credit for the formulation of the Bernoulli theorem, Johann 
has received too little. Readers who have not studied Latin, and 
who may never have the chance of seeing the original works, can now 
judge the matter for themselves. They can also marvel at the many 
familiar concepts which Daniel did originate and for which he has 
received almost no credit at all. 

To understand the rather curious relationship between Johann 
Bernoulli and his son Daniel, one must know something of the family 
itself [5]. Basel had become a university town in 1460, a center of 
early printing that attracted such Renaissance writers as Erasmus and 
Paracelsus, a refuge for Huguenots during the Reformation of 1530, 
and finally by the seventeenth century a very literate city of strong 
family ties. To this city, in 1622, came a Huguenot from Antwerp by 
the name of Bernoulli. He established himself as a merchant and 
raised sons who also became merchants. One of these fathered a 
dozen children, of whom four lived: a mathematician, an artist, 
another mathematician, and at last a merchant. The oldest was 
Jakob Bernoulli (1654-1705), who became professor of mathematics 
at the university and finally rector. The second mathematician was 
Johann Bernoulli (1667-1748), who was trained by his brother, 
worked with the French mathematician L'Hopital at Paris, taught 
mathematics for ten years in Holland, and then succeeded his brother 
as professor at Basel. It was he who had as sons Nikolaus, Daniel, 
and Johann II. 

Though Jakob was an extremely able mathematician in his own 
right, his great contribution to the present history was the education 
of his younger brother, who in turn taught his own sons. Unfortu
nately, friction developed and steadily increased between the brothers, 
and their early collaboration eventually changed to rivalry. Jo
hann's bitterness was increased by L'Hopital's publication in his own 
name of various discoveries communicated to him in Johann's many 
letters-not to mention an entire course of instruction which he had 
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given him in Paris-but he nonetheless became upon Newton's death 
the foremost mathematician in the world. Because of his close 
association with Leibniz (it was Johann who first applied the new 
calculus-and, in fact, introduced the word "integral"), he sided 
eloquently with him against Newton in the fluxion-calculus contro
versy, to the chagrin of the Royal Society. 

Daniel Bernoulli (1700-1782) was born at Groningen near the 
middle of his father Johann's ten-year Dutch professorship. He 
studied under his father at Basel after the latter returned to fill the 
chair left vacant by Jakob's death. In his twenties Daniel spent 
seven or eight years as professor of mathematics at St. Petersburg, a 
period darkened only by the early death there of his older brother 
Nikolaus, also a mathematician. Daniel won or shared, in the 
course of his life, ten prizes awarded by the Paris Academie des 
Sciences for the solution of designated problems. The first of these, 
received at the age of twenty-four, involved the design of a. clepsydra 
for the exact measurement of time at sea. The third, for a paper on 
tides, was shared with Euler and Maclaurin. One which he divided 
with his father dealt with the inclination of the planetary orbits, and 
another, shared with Johann II, was on the best form of anchors. 
Still another had to do with the nature and cause of ocean currents. 
In each of these he displayed considerable mathematical ability, to be 
sure, but above all a keen physical perception and the ingenuity to 
produce a solution regardless of the method used [1]. 

Daniel's Hydrodynamica was begun in 1729, during his sojourn in 
Russia, and an uncompleted manuscript of it was left at St. Peters
burg when he returned to Basel four years later. In the course of its 
revision and completion, he wrote for permission to dedicate it to the 
Empress of Russia, as an acknowledgment of his debt to that country. 
When the book was finally published in Germany in 1 738, he re
quested that the Russian manuscript be destroyed, but it is still pre
served in the files of the Soviet Academy of Science (as remarked in 
the Preface of a Russian translation of the German edition that 
recently appeared l6] ). 

A younger colleague of Daniel's, Leonhard Euler ( 1707- 1783), had 
also studied mathematics under Johann and, largely as the result of 
Daniel's influence, was also invited to St. Petersburg by Catherine I. 
There he became professor of mathematics when Daniel returned to 
Basel. Euler was eventually to surpass the great Johann Bernoulli as a 
mathematician (fifty pages were finally required in his eulogy to list 
merely the titles of his writings), and hence it is hardly surprising that 
not only Daniel but also Johann was to defer to his judgment at even 
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so early a date. Daniel wrote him near the end of 1734 that he had 
arranged with Dulsecker in Strasbourg to publish his new work, but 
not for three years could he report that it was nearly finished. Early 
in 1738 he sent several copies to St. Petersburg, but by the end of the 
year Euler wrote that they had not yet arrived. On March 7 of the 
following year Daniel again protested the total lack of news as to 
their fate [ 7]. 

On the very same day Daniel's father notified Euler that he was 
sending him the first part of his own manuscript Hydraulica. Now 
except for a brief criticism of Newton's cataract hypothesis in 1716, 
there is no record that Johann had written anything whatever on the 
subject of hydraulics until some months after his son's treatise was off 
the press, when he stated in a letter to Euler that he was preparing a 
manuscript on hydraulics which was already well along. Never
theless, he indicated in the first part that it was written in 1732, a full 
year ahead of the Russian version of his son's! The second part fol
lowed the first to St. Petersburg in 1740, and the two were eventually 
published, as Johann had requested, in the Memoirs of the Imperial 
Academy of Science for 1737 and 1738 (which were printed, respec
tively, in 1744 and 1747). They actually first appeared in his col
lected works, published in Switzerland in 1743. 

As surprising as Johann's obvious attempt at seeming to predate his 
son in publication was Euler's delay in acknowledging Daniel's book 
until such time as he could do the same for Johann's. In fact, of the 
two letters of acknowledgment and praise, written on the same day, 
that to Johann was far more flattering. A subsequent letter that he 
wrote Johann about the book was quoted in part in the foreword to the 
Swiss version of Hydraulica as translated herein (seep. 347). Johann's 
reason for using only the first paragraph of Euler's letter is evident 
from the following translation of the second: 

Truly, regarding the force by which vessels are driven backward, 
I certainly do not have the least doubt concerning that very method 
you use for determining this; but when, for pipes attached hori
zontally to a vessel, you find that the pressure driving the vessel 
backward is different from that which agrees with the hypothesis 
of Your son, that force as it is determined by Your Illustrious Son 
seems to me certainly to be more suited to the truth than Yours; 
may I have said this without offense to You. Indeed, from the 
formula which you present for retroaction in this case it follows that 
the retroaction can be indefinitely great, even if the orifice is very 
small and the motion very slow, and the expression given by Your 
Son does not contain this inconsistency; but I am convinced that if 
you will deem it worthy to subject this part to examination once 
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HUNTER ROUSE 

more, Your theory will agree most perfectly with Your Son's idea; 
indeed, I suspect that fractions have to be inverted, and, with this 
done, it will agree most perfectly with the truth and with Your 
Son's expression. 

Xl 

Apparently Daniel first saw his father's treatise when it appeared in 
1743 in the collected works, for he thereafter wrote Euler: 

I beg your Excellence to tell me in sincere friendship and confi
dence your opinion of my father's Opera, particularly of the last 
volume. I for my part have reason of the highest degree to com
plain about it: The new mechanics problems stem mostly from me, 
and my father had even seen my solutions before he solved them in 
his own manner, and nevertheless I am not acknowledged with 
even a word, which I find the more annoying as my solution is not 
yet published. My first solution of rotation around an instan
taneous center, found from the nature of the least inertia, he has 
questioned and also contemned for a long time, and finally he pub
lished it as his own. But since by a miraculous hazard I obtained 
a page from his manuscript in which this, his pretended solution, 
was written, and I complained about it through my brother, he 
barely let me pass as a second inventor. The matter is roughly the 
same with the remaining new problems in mechanics. Of my 
entire Hydrodynamics, of which indeed I in truth need not credit one 
iota to my father, I am robbed all of a sudden, and therefore in one 
hour I lose the fruits of a work of ten years. All propositions are 
taken from my Hydrodynamics; nevertheless, my father calls his 
writings Hydraulics, now first discovered, anno r732, since my Hydro
dynamics was printed only in 1 738. Meanwhile my father has got
ten everything from me, except that he thought of a different 
general method to determine the increment of velocity, which in
vention consists of some few pages. What my father does not claim 
completely for himself he contemns, and finally, as the height ofmy 
misfortune, he inserts the letter of your Excellence in which you, 
too, diminish my inventions in a field of which I am fully the first, 
even the only, author and which I claim to have exhausted com
pletely. Your Excellence says that I have determined the pressure 
of fluids flowing through a conduit in no other way than for the 
steady state, whereas I show immediately on page 259 toward 

a - vv 
the bottom that generally the pressure is---; and what, on the 

2C 

other hand, has my father done in this important new field? The in
vention of the argument comes from me; the idea to consider the 
conduit as cut at the point where the pressure is required comes 
from me; that one should require the acceleration of the last par
ticle at the first instant of interruption is my idea; finally, that from 
this very acceleration, hindered either partly or completely, the 
pressure of the elemental volume determines the pressure of the 
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water in the conduit-this also comes from me; and my father has 
done absolutely nothing else than determine the velocity in his own 
manner and by repeated reasoning, which is his only invention in 
the entire work. The argument about the reaction of fluids my 
father does not yet understand today; nevertheless, he refutes me in 
the corollary on page 488 [page 336 of present translation; see also 
foregoing paragraph from Euler's letter]. All of this is still the 
least about which I can complain. In the beginning it seemed 
almost unbearable to me; but finally I took everything with resig
nation; yet I also developed disgust and contempt for my previous 
studies, so that I would rather have learned the shoemaker's trade 
than mathematics. Also, I have no longer been able to persuade 
myself since then to work out anything mathematical. :My entire 
remaining pleasure is to work some projects on the blackboard now 
and then for future oblivion. I could not accept with a clear con
science the call to Berlin, even if the King should give me the honor 
to send me one, and I beg you therefore not to think of me any 
more with respect to this matter. However, I am strongly obliged 
to your Excellence for your kind services; your most valuable friend
ship presents me with an innermost and true pleasure, and I esteem 
such [friendship] much higher in itself than in the profit which 
could arise to me from it. I could not abstain from complaining to 
your Excellence, as my best friend, seeing that the occasion might 
well arise that you vindicate me of the unjust suspicion of plagia
rism without doing wrong to my father, and also bring it about 
that the truth, as far as the controversial points between my father 
and me are concerned, does not suffer any injury. It does not 
seem proper to me to defend myself. 

Far from being guilty of plagiarism, Daniel had based his treatise on 
material that was not only original but lasting in its interest. The 
reader will find in the following pages of translation the initial 
appearance of topics that are still prominent in the literature even 
today-from the kinetic theory of gases to the principle of jet 
propulsion. Daniel was also the first to connect manometers to 
piezometric openings in the walls of vessels, to consider the establish
ment with time of flow in a long conduit, and to attempt to predict 
conduit pressure in terms of the velocity. However, his deriva
tion of what has come to be known as the Bernoulli theorem will 
hardly satisfy any reader but the most casual. There is no doubt 
that Daniel understood the theorem in its two-term (velocity head and 
piezometric head) form. However, the simplicity of the relationship 
in comparison with the cumbersomeness of his analysis leads one to 
suspect that-despite his claim of invariably reasoning first and ex
perimenting thereafter-he actually knew the answer in advance. 
The artifice of cutting the conduit and relating the pressure to the 
assumed acceleration seems forced at best. 

- ~ --- . . -·· 
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According to Truesdell [8], most of Daniel's difficulty lay in his 
imperfect understanding of fluid pressure. Straub, on the contrary, 
points out that a paper published by Daniel in the St. Petersburg 
Commentarii of I 729 had already contained "an essentially correct 
formula for the so-called hydrodynamic pressure" [ 7 J. In any event, 
though his Hydrodynamica divided a moving fluid for convenience into a 
series of slices normal to the direction of motion, in no case was action 
stated to occur between them. Pressure was treated rather as a con
dition existing at the conduit wall which would produce a jet (or 
manometric column) equal in height to the piezometric head if the 
wall were pierced. Now Johann also assumed the fluid to move in 
normal slices, but the concept of pressure as a mutual interaction at 
their surface of contact was essential in his analysis. Moreover, in 
order to avoid the anomaly of a discontinuity in pressure and velocity 
at an abrupt conduit contraction or expansion, he imagined the 
actual flow section to change gradually before the contraction or 
after the expansion, in a manner reminiscent of ewton's cataract. 
He called this transition "gurges," which Truesdell insists should be 
translated as "eddy," despite the fact that Johann referred to the 
flow within the imaginary throat-like passage rather than to that 
around it. In fact, far from visualizing circulatory motion in the 
zone of separation, he specifically considered it to be occupied by 
stagnant fluid: "And, accordingly, there is formed along the in
definitely small length HG something like a throat, IFGH, contracting 
from the wide into the narrow, through which the liquid must pass, 
the acceleration being continuous but nevertheless augmented gradu
ally, with a rather small portion of the liquid (which fills the small 
space IFD) remaining at perpetual rest" [page 357 of the present 
volume]. The word "gurges" has hence invariably been translated 
herein as "throat." 

Johann was obviously a stride beyond his son in his analysis of the 
Bernoulli relationship. Whereas Daniel had treated pressure pri
marily in terms of height of a manometer column or jet, Johann 
visualized it as a force, albeit one acting over the area of the slice as a 
whole. It remained to Euler-under the considerable stimulus of 
Johann's analysis rather than Daniel's-to originate the concept of 
pressure at a point and to incorporate the pressure gradient into his 
equations of acceleration. These he finally integrated for specific 
conditions [g], thereby first deriving in a rigorous manner what is 
now known as the Bernoulli equation. As in the case of many 
another aspect of fluid motion for which he has not received proper 
credit, it is thus the name of Euler which should be most often upon 
the hydraulician's lips. 
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Although Daniel's lengthier treatise is much easier to read than 
Johann's, each will give the reader some difficulty in accustoming 
himself to the mathematical and the physical style that the respective 
author used. He must hence recall that the calculus was still a rela
tively new concept; that the energy relationship was not yet correctly 
written and even less well understood than the momentum relation
ship, with which it was thought by many to be in conflict; and that 
the theory of dimensions was wholly in its infancy. So long as the 
only dimension was length, little difficulty was encountered, as in 
Daniel's interrelationship of velocity and piezometric heads. Kine
matics was somewhat more complex, as witness his expression of 
velocity through either its head or a proportionality with an observed 
time of fall; in fact, it was Johann who first introduced the coefficient 
of proportionality g. Dynamics was the most confusing, for force had 
not yet been universally defined in terms of length, time, and mass 
through the Newtonian equation, and their interrelationship was still 
arbitrary; even Euler, whose equations were in fact dimensionally 
homogeneous, still defined mass and weight as he saw fit. 

Except for calling attention to certain of the anomalies or actual 
errors, the translators have in large part left the assessment of the 
authors' analyses to the reader himself. To be sure, many manner
isms of the times have been eliminated, such as the excessive use of 
abbreviations and symbols like the ampersand and equality sign as 
parts of speech, and the mathematical notation has been very slightly 
modernized. Translators' insertions are invariably placed within 
brackets, and the bracketed numbers refer to the lists of cited works at 
the ends of the two books. For the convenience of the reader, each 
illustration has been introduced into the text at its first point of ref
erence. The original figures have been reproduced in all cases. 

This Preface would not be complete without reference to a contem
porary undertaking [JO] begun in the Bernoulli city of Basel some two 
decades ago and already assuming tangible form: publication of the 
collected writings of the Bernoulli family, in particular the members 
referred to herein. The project is under the general editorship of Dr. 
Otto Spiess, and the first of well over a dozen projected volumes (the 
early letters of Johann) recently appeared under his direct guidance 
[ r r]. Another, containing Daniel's correspondence as edited by 
Dr. Hans Straub, is now in preparation. The scientific world stands 
greatly in the debt of Dr. Spiess and his colleagues for the impetus 
that they have given to the tremendous task of making this material 
generally available. The writer acknowledges his particular grati
tude for stimulating conferences with Drs. Spiess and Straub, for 
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their willingness to review the foregoing pages, and their kindness in 
providing portraits of Daniel and Johann from approximately the 
times their books were published. A final touch was Dr. Spiess' 
indication, during a visit to his home by the writer, of the impend
ing appearance of Daniel's Hydrodynamica as translated into his native 
tongue [ 1 2]. 

Iowa City, Iowa 
January, 1967 
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PREFACE 

Finally our Hydrodynamics is published after all the obstacles 
which delayed its printing for almost eight years have been 

overcome; perhaps it would never have seen the light if all that 
labor had been mine alone. With pleasure indeed I acknowledge 
that the principal portions of this work are due to the guidance, 
counsel, and support of the Academy of Science of St. Petersburg. 
The opportunity for the book arose from the very purpose of the 
latter, according to which the first Professors who had gathered to 
form it were retained to write a Diatribe on some useful and, as 
much as possible, new subject, and they were advised, certainly, that 
the Theory of forces and motions of fluids, unless it would be under
taken with an unwilling Minerva, is neither a useless nor a trite 
matter, as anyone will easily concede. In addition, in order to 
suppress the Reader's boredom, from the outset I paid attention to a 
variety of things, especially in the last five Sections, and I inserted 
analytical, physical, and mechanical examples, theoretical as well as 
practical, some geometric, nautical, astronomical, and others, the 
understanding of which, nevertheless, did not seem to support as 
much as to postulate the exposition of the undertaken work. The 
calm Reader, understanding these matters, will easily correct 
whatever mistakes have escaped [this] hasty person. The intent of 
this writing is unique: that I may be useful to the Academy, all 
labors of which are organized in such a way as to promote public 
convenience and an increase of good literature. 

Z....,,_ . . .. ,,e. .. 
' 
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FIRST CHAPTER 

Which Is an Introduction) and which Contains Several 
Matters To Be Noted in Advance 

§1. Since the Theory of Fluids is twofold, of which the one, Hydro
statics, considering the pressures and various equilibria of stagnant 
liquids, and the other, Hydraulics, considering the motion of fluids, 
have been treated separately by writers, and since I indeed under
stood both of them to be interrelated by so close a link that the one is 
in very great need of the other, by no means did I hesitate to combine 
them, inasmuch as the order of things seemed to require it, and to de
scribe them both under the common and more general name of 
Hydrodynamics. However, although from the most ancient times 
the Theory of fluids has been continuously refined, nevertheless it did 
not gain very noteworthy additions. Certainly the knowledge of the 
ancient Mathematicians was terminated by this, that they understood 
the common equilibrium of standing fluids or also of bodies together 
with the fluids within which they lie, about which Archimedes wrote. 
And since in addition it is self-evident that, where equilibrium does 
not exist, motion occurs toward the region of lesser pressure, hence 
they were able to contrive various games and hydraulic machines, 
serving excellently partly for pleasure and partly for public interests, 
in which matter certainly they showed themselves to be very 
ingenious. They also perceived, but rather as through a veil, 
those motions which are due to the pressure of the air. But they 
were clearly ignorant of the true reasons and accurate measures in 
matters of Hydraulics, and thus they were merely standing on the 
threshold. 

§2. The effiux of water from a vessel through a very small orifice 
serves excellently for defining the motion of fluids. But although it 
was not wholly unknown to Frontinus and others, as some believe, that 
the velocity of water flowing out of a vessel or container increases 
because of an increased height of water above the point of effiux, it 
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nevertheless must be known that indeed the same Frontinus, in com
puting small amounts of water, or, rather, the water to be expended, 
committed disgraceful and improper errors. Benedetto Castelli first 
pondered about the relation between velocities and heights, but he 
believed a false law, thinking that the two follow the same proportion. 
After this Torricelli finally observed that the velocities increase in the 
ratio of the square roots of the heights, which everyone followed. But 
even though they were not agreeing on the absolute measure of velo
city, they nevertheless began experiments by which they estimated 
that measure to be defined, from which it is customary to acknowl
edge especially that which was performed by Guglielmini and 
repeated eight times, although it departs, of course, from other ex
periments performed at that time. However, it is usual that all 
[ experiments J performed under different circumstances differ from 
each other, and it is not always safe-as we shall say about many in 
the appropriate place-to pass judgment concerning the velocity of 
the water according to the quantity of the same flowing in a definite 
time through a definite orifice. Thus, when we call to account the 
Guglielminian experiment of which we just made mention, it should 
be concluded that the velocity [obtained] from the quantity of water 
which flowed through a given orifice in a given time was not greater 
than that which is due to the fourth part of the height of the surface of 
the water above the orifice. And there are other experiments by the 
same author which are enumerated in Book 2, Prop. 1, aquarum 
fiuentium mensura, by virtue of which the water flowing out can ascend 
by its own velocity to two-thirds of that height. Among the works of 
Mariotte and others there stand out those [ experiments] which decide 
for half the height; this diversity of the velocities so estimated not
withstanding, I persuade myself that the true velocities hardly dif
fered from each other, that they had been in the usual ratio to the 
heights of the water, and that they were everywhere approximately 
such as those which are due to the entire height. But those [ experi
ments] which were last mentioned, which at first glance seem to 
militate for half the height, by number many among the works of the 
authors, without doubt moved Newton, a Man immortal for his 
merits, to speak somewhat more boldly about the Theory by which he 
had found that water springing vertically upwards from a vessel 
through a very small opening can ascend to half the height of the water 
standing in the vessel, although he contradicts that assertion in all the 
experiments which were conducted concerning these heights directly. 
He published the Theory in the first edition of Principia Mathematica 
Philosophiae Natura/is and attacked it from the pressure by which the 

··.... . --iO • 
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water situated in front of the orifice and just about to flow out is 
driven into motion. But since the nature of the matter by no means 
seems always to permit that the force exciting the water to flow out be 
defined a priori, and since, rather, concerning this it is hardly pleasing 
to resolve it otherwise than from the phenomena of motion, that is, 
a posteriori, which I often found, the thinking relied upon for that 
principle must be mistrusted. Hence the Man just praised changed 
his statement in the second edition of his Work, and he changed it 
back somewhat in the third, affirming that the water rises indeed to 
the total height but that the stream which it forms is contracted or 
made slender in front of the orifice, thus giving satisfaction to both the 
phenomenon of the velocity and that of the quantity flowing out in a 
given time, which seemed to contradict each other. But although it 
is not to be denied that the contraction of the aqueous filament is the 
true reason on account of which the velocity of the water flowing out 
cannot be estimated from the quantity, nevertheless I consider that 
the Theory is not to be overemphasized, because it is accidental and not 
everywhere faithful to itself even while the velocity does not vary, let 
alone different reasons such as friction, viscosity of the water, and 
other similar things. Thus when the water flows out not through a 
simple orifice, but through a small cylindrical pipe, the stream is not 
notably contracted, the velocity being preserved, after that has been 
excepted which is lost by it because of friction. But if, this notwith
standing, anyone supposes that the flow of water can be deduced cor
rectly and wholly from the pressure, I may have asked this, that he 
pay attention to the more composite cases, for example to the flow of 
water, which Mariotte calls extraordinary, from a vessel which some 
diaphragm perforated by an orifice separates into two cavities to be 
filled with water, so that the water is forced to flow through the two 
orifices. Mariotte speaks about this motion in his excellent Traite du 
mouvement des eaux, Part IV, p.m. 442. 

§3. Since these things are so, anyone will decide easily for himself 
how little hope there is that somehow the Laws of motions for fluids 
will be reduced to the rules of pure Geometry without any physical 
hypothesis, since certainly on the threshold itself they may have 
gotten away from the clearsightedness of this Man superior and in
comparable in ability; nor do I believe that these things which I am 
about to present in this work can endure all mathematical rigor. The 
principles of the Theory are physical and are to be accepted, not 
without generosity, as approximately true. But yet, after the prin
ciples have been accepted, all will be geometric, subject to no restric
tions, and connected to each other by a necessary interrelationship. 
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Nevertheless, I cannot but feel well concerning those physical prin
ciples with which I became strongly involved, since indeed they led 
me by the hand to exposing many new properties concerning both the 
equilibrium and the motion of fluids, which, unless the love of the 
undertaken work deceives me, will some day promote Hydrody
namics significantly, if they are refined more than I was allowed [by 
circumstances] to do. At this point it may be suitable to admonish
since to many anything which is new is customarily suspect-that I 
conceived the whole Theory in my mind, wrote the treatise, commu
nicated most ofit privately among friends, even sketched some things 
in the presence of our Society, before I undertook any experiment, 
lest I should be liable to be deceived by preconceived measures 
through a false opinion which is nevertheless approximately satis
factory to those [measures], and that even at some time Men most 
perspicacious in known theorems confessed openly that they cannot 
persuade themselves so, nor do they consider that [the theorems] are 
about to be confirmed by experiments; and after all that had hap
pened, at last the experiments were made before friends, and they 
agreed with the Theory as much as I myself could barely hope. But 
now let us return to that from which we digressed. 

§4. After Authors were certain concerning the variety of velocities 
caused by changing the heights, they began to consider more com
posite vessels, namely those furnished with variously inclined and 
unequally large ducts. But Frontinus already knew in his own 
time the nature of these ducts to some degree, knowing that a quan
tity of discharge is increased by the slope or depression of a pipe, 
that is, of the designated duct which has been attached to a reservoir 
or even sometimes to a small river; whence also he ordered that the 
pipes be arranged in line, as he says, and put at the same height. 
And indeed Frontinus is unjustly accused in this regard by some 
that he had no understanding of velocity; however, when he makes 
a calculation of all the water received and compares the latter 
with that about to be expended, I do not see how he can be excused. 
By experience, also, he had been thoroughly informed, which de
serves to be mentioned, that more water is expended than should be 
through a pipe of both the proper size and position to which pipes of 
larger size are immediately attached. I will show in the appropriate 
place that this is so, and that it had been indicated correctly by 
Fabretti, although otherwise very skilled Men indicated that it was 
not evident to them, or rather that they were in doubt concerning it. 

§5. However, what the ancients observed obscurely and without 
true measurements, that at last Mr. Guglielmini grasped in his trea-

.;(l • 
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tise aquarum fluentium mensura by means of the following more accurate 
and more general proposition, saying that the velocity of the water 
flowing through an inclined conduit is the same as if it would have flowed from 
a vessel through an orifice similar and equal in cross section,just as far below the 
surface of the water as the section is below the horizontal [passing] through the 
beginning of the canal, which proposition Denis Papin attacked, he him
self diverging greatly from the truth. But since we are at it, in order 
that we may review the principal comments of both Hydrostatics and 
Hydraulics, in this place the following remark is also to be listed about 
investigating the pressure of fluids from an impetus, namely that the 
force of a fluid dashing against a perpendicular plane at a given velocity is 
equal to the weight of the cylinder of fluid erected above that plane, of which the 
altitude is such that from it something movable, by falling freely from rest, 
would acquire the velocity of the fluid. With the help of this most useful 
Problem one may estimate the force of fluids driving machines or 
(which is the nature of the wind) propelling ships, the motion of solid 
bodies in resistant media, and many other things. About Hydro
statics, however, which is particularly concerned with very slender 
tubes or capillaries, I say nothing, because thus far it could not be 
reduced to the general Laws common to all fluids. Besides, it is 
uncertain as to which Author will have first observed the nature of 
these small pipes; nevertheless it is agreed that the observation is 
recent, because concerning it there is nothing to be seen in books pub
lished before these last seventy or eighty years. 

§6. In addition to those cited, Authors from the times of Galilei 
rather celebrated in aquarian matters are Torricelli, Borelli, Viviani, 
Pascal, Boyle; and of a more recent age are Varignon, Newton, 
Poleni, Hermann, and Jakob and Johann Bernoulli, the discoveries of 
whom are found in the Commentaries of the Royal Academy of Science of 
Paris, Principia Mathematica Philosophiae Naturalis, the treatise de 
Castellis and notes pertaining to Frontinus, Phoronomia, the Acta 
Eruditorum of Leipzig, and various other works. But these discoveries 
about the curvatures generated from the pressure of a fluid, and others 
of this sort, were presented by Geometers because they are easily 
reduced to pure Geometry; however, concerning the rest, I pass in 
silence over things worthy of all praise. 

Since these things have been presented which pertain to the works 
of others, I feel that it is reasonable that I advise sincerely, the 
opinion of my colleagues also having been considered, whether any 
and how many additions to Hydrodynamics can be or must be hoped 
for from the former. Briefly therefore, as much as I will be able, I 
will indicate the important points of the undertaken work. 
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§7. First in order are shown the outstanding Theorems which 
pertain to the equilibrium of standing fluids: the custom of the prac
tice has seemed to me to demand it, although I acknowledge rather 
freely that no new propositions have been added by me. Indeed the 
method of demonstrating, as far as I know, is original with me, but 
since it is easy to compose for oneself innumerable demonstrations, 
there is little also in this portion that I claim for myself. In addition, 
some phenomena of capillary tubes are reviewed in passing, and 
finally on occasion of the pressure which fluids exert on the sides of 
vessels, many new and different theorems are added about the shape 
of bladders full of liquid, about their capabilities for elevating loads, 
about the construction and strength of aqueducts, and about other 
associated things. 

§8. Thereafter the motion of fluids flowing out of vessels is treated, 
and since all who were engaged in this matter up to now will have 
considered in their own Theories the unique and most obvious case in 
which the orifice is taken as infinitely small with respect to the internal 
area of the vessel, ours is recommended not a little for its own breadth, 
for it extends itself to the situation of an orifice of any size whatever, 
and indeed to vessels of any shape whatever. For although considera
tion of the internal shape of the vessel is least required when the ori
fice can be considered as infinitely small, nevertheless without it the 
motion of the water cannot be defined when [ the orifice J is of notable 
magnitude. General corollaries are deduced from the Theory which 
illustrate splendidly the variable motion of water and the disposition 
of the same, and they confirm whatever either experience has shown 
or the attributes of the matter indicate manifestly through themselves. 
Certainly, when the internal areas ,are, for example, moderately 
greater than the area of the orifice, the Theory shows that the error 
that follows from the consideration of the orifice as infinitely small is 
unnoticeable, and accordingly our several additions will perhaps 
seem rather useless. But let me wish that individuals, even if only 
those in the future, consider for themselves that-apart from the fact 
that I am writing not only for [scholars of] hydraulics but also for 
Geometers who are likewise delighted by bare truths-the use of our 
meditations is very great in other affairs, which [use] they will under
stand more when they have considered that the motion begins from 
rest and passes through infinite changes before it attains a certain 
speed, and that the greatest changes occur often in so short a period of 
time that they can in no way be clearly perceived by the senses, 
nevertheless that they are to be determined at the individual points 
both so that the motion be understood correctly in one's mind and 
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because then various Theorems can be deduced. So I noticed (let 
this example, for the sake of the momentum of the discussion, be 
representative of all) that it cannot occur that the pressure of water 
flowing through a conduit at a given velocity be defined along the 
sides of it unless those changes, which let me call instantaneous, be 
understood correctly in one's mind, no matter how imperceptible 
[they are] to the senses. Concerning these things, as it was I who 
first thought about them, I thus added a new portion to the Theory of 
water with the most pleasing success, which, because it considers both 
the motion and the pressure of fluids together, seemed most suitably 
called hydraulico-statics. After these specimens of the general Theory 
are shown concerning cylindrical vessels, both the simple and those 
which are furnished with pipes, there are also determined, especially 
in these latter ones, the changes which arise at the beginning of flow 
while the given grade of velocity is being reached, and this certainly 
under the hypothesis of very wide vessels. But it is to be noted that 
these changes are quite perceptible, even if the vessels are of infinite 
size, and that they can be demonstrated by experiments, until the 
water flowing out of a very wide vessel through a simple orifice im
mediately at the first instant of time has the entire velocity which it 
can attain. The previously mentioned changes depend upon both the 
length and the shape of the pipe. Finally also analytical calculations 
are included for finding times of a different kind together with the 
physical notation pertaining thereto. And finally, as the theory 
indicates that it cannot occur that water ascends much beyond the 
uppermost surface of a bubbling spring, it is shown at the end of the 
section that there does not pertain to our hypotheses the singular 
phenomenon which I myself have observed rather frequently and can 
imitate at will, and of which mention is made in the History ef the Royal 
Academy ef Science ef Paris, for the year I 702, where it is said that it 
happens sometimes that water in leaping fountains rises to three or 
four times that height which corresponds to the uppermost surface of 
the water, but that soon nevertheless the enormous thrusting of water 
is depressed to the ordinary height, and afterwards the genuine under
standing of that phenomenon is conveyed with the true measures 
sought from our Theory, and the method of producing that unusual 
surge and finally of increasing it at will is indicated. 

§9. Further, the Theory is extended to the examination of motions 
from constantly full vessels, to which certainly as much water is con
tinuously supplied as flows out of them. The nature of these consists 
most of all in this, that emanating fluids approach more and more that 
level of velocity which is due to the full height of the surface of the 
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fluid above the orifice, but that they never wholly attain it, except 
after an infinite time. Nevertheless the water is shown to converge so 
quickly to that velocity that after an unnoticeably short time it very 
nearly acquires the full value, except when it is carried through very 
long streams or aqueducts and discharged through a great orifice. 
Then indeed the accelerations are not so rapid that they cannot be 
perceived, which is confirmed by a singular example taken from the 
book du mouvement des eaux by Mr. Mariotte. But since the motion 
begins from rest and increases forever, formulas are given by the aid 
of which either from the time of fl.ow or from the quantity of water 
discharged the velocity at individual points of time can be defined, 
and vice versa. 

§10. Following that, fluids are considered which are being moved 
within vessels, where chiefly the reciprocal or oscillatory motions of the 
fluids are submitted to measurements and their relations are indicated. 
However, Newton gave a similar Theorem for the oscillations of a 
fluid in a pipe of uniform cross section ( the two extreme legs of which 
are vertical, the intermediate part horizontal), which Theorem my 
Father rendered more generally in the Commentaries ef the Imperial 
Academy ef Science ef St. Petersburg, Book II, p. 201, for any given in
clination whatever of the extreme legs with respect to the horizon. 
Our Theory explains the entire matter without any restriction, con
sidering that at individual places the pipes are variable at will with 
respect to direction, position, or area. Next it is shown in which 
cases it may occur that the different oscillations of a swinging object 
are Isochronous, under which conditions the length of a simple 
Isochronous pendulum is determined most generally. But in addi
tion to this type of oscillation certain others are subjected to examina
tion in the subsequent section, such as those which occur in pipes 
immersed in infinite or even confined water, in which there is a need 
for singular caution, insofar as all the applied phenomena are respon
sible for the departure in the calculation; but if the same things have 
been neglected, the difference between them becomes as great as it is 
between the laws of motion which are valid for perfectly elastic bodies 
and those for pliable bodies. 

§11. After this I progress to other more composite subjects, consider
ing certainly the motion of either homogeneous or heterogeneous fluids 
which are forced to fl.ow through one or more orifices before they are 
discharged into the air, where that rule commonly accepted concern
ing the surge of the water to the uppermost level of the surface fails 
decidedly, with even the ordinary laws of pressure ceasing to hold. 
However, of all these things not even a vestige is found among the 
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\ :u - of the Authors except that which Mariotte has at the place 
ci ed above, Part IV, p.m. 442, du mouvement des eaux, where certainly 
he :ho\, that he had been taught by experience that the flow of 
\ ~ -er i- retarded; however, at the same time it is clear how far off he 
had been from the true Theory of these motions, and this Theory 
eems indeed to avoid the influence of almost all the principles- cus

tomarily applied up to this point in similar cases, so that there is 
nothing which further confirms the superiority of our [principles]. 
Certainly the experiments performed do not allow me to doubt the 
truth of these any further. However, these things which have been 
considered do not lack their usefulness whenever they can be of great 
importance in improving hydraulic machines. 

§12. Comments follow about hydraulic machines, about which it is 
shown principally that there is some definite termination of perfection 
beyond which one may not be able to proceed. But the falling short 
of this ultimate level of perfection in many widely accepted machines 
is subjected to numerical calculation with added rules or concepts, to 
which in constructing new machinery one should pay attention. In 
place of an example is mentioned the machine de Marly, * very well 
known throughout the world, about which it is shown, if only the de
scriptions are to be trusted, that it supplies not more than about one 
fifty-sixth part of that quantity of water which, the remaining things 
being equal, a theoretically perfect machine can supply. Also special 
examination is made of a machine most familiar from very ancient 
times right up to our age, namely the Cochlea [ waterscrew] of Archi
medes, not unworthy of the attention of Geometers as much because 
of the understanding of those things which pertain to pure Geometry 
as of those which pertain to Hydraulics. 

§13. There follow some specimens of the motion of elastic fluids, 
such as air and exploded gunpowder, these things having been set 
forth which pertain to the nature of these fluids; but I myself consider 
these not differently from physical hypotheses, about which I will 
affirm nothing confidently. The Propositions and Problems of this 
section are new and selected with the intention that they can give 
occasion for illustrating or even solving many physical questions. 
Certain things are added about the estimation of live forces innate to 
elastic fluids, which at some time probably will be of frequent use in 
mechanical practice. Indeed, it is shown that the effect of, let us say, 
one pound of inflamed gunpowder can be greater in elevating weights 

* [Huge river-driven pumping works, built 1684 in Marly-le-Roi, a suburb of 
Paris, to supply the fountains of Versailles-Trans.] 
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than that which one hundred very robust men can accomplish by 
continuous labor within one day's span. 

§14. Further, the circular motion of fluids is treated, and as well 
fluids which are standing in vessels having been set in motion; several 
other matters are intermixed. But the [statements] which are prof
fered on circular motion can serve in a certain way in explaining the 
phenomena of gravity through vortices; the remaining things may be 
applied as far as possible. 

§15. The previously discussed Theory of motions is brought right 
back again to the equilibrium of fluids, but of moving fluids, of which 
the laws have not yet been shown. It is amazing, since motion is 
defined elsewhere from pressure, that here by the inverse method the 
pressure is sought from the motion by defining it beforehand from the 
environment. Nor should I have believed that another way could be 
begun safely apart from that which I followed. However, I con
sidered that the conduit through which the water flows is shortened 
in that place and at that point of time which comply with the question; 
and afterwards, through our previously mentioned rules, I investi
gated the acceleration of a particle of water just on the verge of 
flowing out. From that acceleration one was able to understand the 
pressure upon that aqueous particle, which compression, by the 
nature of fluids, is equal to the pressure on the sides of the conduit. 
After this pressure has been determined, it is evident what should 
happen if the conduit would have been perforated in just this place 
and a small pipe were in place of the orifice; indeed it will happed 
that the water in it ascends up to a certain standing level in the little 
pipe, sustained by the water below flowing through the conduit, so 
that here equilibrium is presen-r-betwee._n flowing and standing water: 
but under this name I considered ~~is Theory could be con
veniently called hydraulico-statics. Further, it may merit being noted 
that this same Theory is in turn a basis and a-source of other pre
viously unknown motions. The Theorems which are presented are 
not only new, but also the majority are unexpected, of the truth of all 
of which I was not able to convince myself clearly until I had con
ducted experiments which removed all my doubt. But they have a 
significant use whenever the true estimation of the pressure of water 
flowing through aqueducts or streams is based upon them, and hence 
for deducing the required strengths of pipes. From this also depend 
the accurate measures of water to be expended through small water 
meters inserted laterally in a stream. In Physiology those things 
which pertain to the motion of liquids in an animal body are already 
better understood, and there are others. 
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§16. Finally, I progress to explaining certain other methods by 
which water can cause pressure: namely, while it is flowing out of an 
orifice, water thus presses a vessel in the opposite direction no dif
ferently than a cannon ball pushes back the cannon from which it is 
driven out. Many new properties of that repulsion are discovered 
which illustrate the nature of pressures splendidly, and their general 
laws in mechanics will indicate this matter to those thinking seriously 
about it. I performed these investigations because it seemed to me 
that they can at some time offer the occasion for discovering some
thing new for navigation without oars or the help of the wind, about 
which matter I may in the proper place convey a little information, 
al though I know that the origins of all things of this sort in themselves 
eem ridiculous to most people. Finally certain Theorems are also 

included on the force of water from impulse and back-pressure thence 
developed that bodies encounter while moving in fluids. 

§17. And certainly these are things which seemed to me to allow 
geometric deduction from accepted principles. But since there is 
nothing in Theory so rigorously proven that it does not require some 
restriction in its application to solid bodies, therefore it is readily 
evident that no Theory regarding fluids should be anticipated that 
satisfies most fully all measurements ascertained by experience; I 
want those who will try to confirm our Theorems by experiments to be 
mindful of this matter. Certainly they discover some, but not per
fect, agreement everywhere, which is either more strict or more lax 
depending on the circumstances of things. But whenever I myself 
performed some experiment, first of all I pondered until the principles 
of the Theory agreed with the proposed case, and thus the experiment 
never or very rarely failed me. Indeed, not only was I accustomed 
to discern beforehand in which region the difference would be, if it 
was to be noticeable, but also how large it would be; thus it is clear 
enough in itself, if I judge correctly, that fluids certainly follow the 
laws which we assert to be prescribed for them, although they en
counter everywhere now greater, now lesser obstacles. In addition, 
I performed not a few experiments, of which I placed individual ones 
at the end of the section to which they pertain; but I was especially 
anxious to confirm propositions previously unknown and for the most 
par t paradoxical enough. Concerning belief in the experiments, 
there is nothing which anyone may doubt, since I performed the im
portant ones in the presence of Friends after the Theory had been 
made public, nevertheless leaving a large portion of the experiments 

·hich I conceived in my mind to be performed by others, since it is 
not pleasing to go through them individually. After our propositions 
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have been read thoroughly, anyone may propose innumerable others 
for himself, and I judged that it was not my task to explain all that are 
desired by me; nevertheless, I explained some. 

§18. But now, finally, the understanding of the principles that we 
have mentioned so often is to be rendered. The primary one is the 
conservation ef live forces, or, as I say, the equality between actual descent and 
potential ascent. I shall make use of this latter term, because that which 
the other one signifies finds perhaps a more liberal usage among some 
Philosophers, who indeed are inclined to the name vis viva only. I 
plan, here and in our work to come, to speak of this matter a little 
more fully . 

§19. After Galilei had shown that a body descending either verti
cally or on some curved plane acquires the same velocity as long as the 
height of fall is the same, which can be shown from the nature of 
pressures, Huygens made use of this same proposition, but fortunately 
for a more general hypothesis, in bringing out the laws of motion of 
elastic bodies resulting from percussion, and, certainly, in stabilizing 
the center of oscillation ofa compound pendulum; indeed, he brought 
forth this axiom of his own in the following words: If any number ef 
weights begin to be moved in some way by the force ef their own gravity, and the 
individual weights return to rest ef their own accord, the center ef gravity ef the 
same group ef bodies will return to the original height, where by the phrase 
in some way he understands either they may strike each other during descent, 
or they may press, or the bodies may act on each other in any other way. From 
that axiom at once follows the principle of the conservation of live 
forces, which Huygens himself showed also, and in which it is assumed: 
If any number ef weights begin to be moved in some way by the force ef their 
own gravity, the velocities ef the individual weights everywhere will be such that 
the products gathered from the squares ef these [velocities J multiplied by their 
appropriate masses are proportional to the vertical height through which the 
center ef gravity ef the composite ef the bodies descends multiplied by the masses 
ef all ef them. It is amazing how much utility this hypothesis may have 
in mechanical Philosophy; indeed, my Father, if anyone, noticed this 
correctly; he showed it vaguely, but among the foremost, in the 
Parisian edition of his Discours sur les Lois du mouvement and in Book II 
of the Commentaries ef the Imperial Academy ef Science ef St. Petersburg, and 
it is the same that I employed for investigating in fluids the laws of 
motion arising from their own gravity; for I set the velocities of the 
particles constantly to be such that, after the individual particles were 
moved vertically upward to the state of rest, their common center of 
gravity ascended to the original height. However, I preferred to 
adopt this hypothesis, on account of the reason mentioned above, with 
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Huygenian rather than Paternal words, and to mark it with the name 
of the equality between actual descent and potential ascent, rather than by that 
other of conservation of live forces, which some even yet dislike, chiefly in 
England, I know not by what misfortune. Certainly it seems to me 
that in the entire Leibnitian doctrine about live forces there is nothing 
concerning which not everyone, in his own manner of speaking, 
would agree, which, unless I am in error, I showed clearly in the 
Commentaries of the Imperial Academy of Science of St. Petersburg, Book I, 
p. r3rff., and to which I wished to commission a place here, lest any 
of the Readers be offended by these words, and so that he knows that 
nothing is accepted by me which is not received in Mechanics by all, 
and which does not join by a necessary link with what Galilei already 
showed when he established that the increments of velocities follow a 
proportion composed of pressures and instants of time. 

§20. Although, concerning the remainder, the principle mentioned 
above is universal, nevertheless it is not to be treated without circum
spection, because it often occurs that the motion carries over into 
another material. So, for instance, the position of the former is valid 
for determining the rules of motions from percussion, if only the bodies 
be perfectly elastic; but when they are not so, it is easy to see that a 
portion of the live forces, or of the potential ascent, expended in the com
pression of bodies is not restored to the bodies, but remains impressed 
in the certain fine material to which it has transferred. If, neverthe
less, the matter is correctly considered, whenever the ratio is known 
which exists between the portion residual to the bodies and that which 
transfers to the fine material, it will appear that that inconvenience 
can be obviated easily, and thus the laws of motions can be defined 
properly for pliable bodies. Something similar occurs in calculating 
the motion of water, where sometimes it is clear that a portion of the 
potential ascent is lost continuously; this matter should be taken into 
consideration in any case in the calculations to be performed; having 
paid proper attention to this, I came to detect many new Theorems 
about the flow of water, which [fact] is to be seen in Chapters VI and 
VII, and about which I do not yet see whether they could be proven, 
much less invented, by any other method. 

§21. So, therefore, I bave not used our principle recklessly, and in 
this way much presents itself that was previously unknown, not only 
about the motion of water but also, as one can see, surprisingly, about 
its pressure, which, with no Analysis yet performed, no one will have 
easily foreseen or expected. But when it happens that neither can all 
of the potential ascent be conserved because of the nature of the situa
tion, nor can it be foreseen how much may be absorbed, the motion of 
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fluids cannot be determined accurately enough, nor do I estimate that 
it can be done by any other method. Therefore, let me wish that the 
Reader be cautious in deducing corollaries from our Theory which 
often, on account of changed conditions, may not accurately agree 
with experiments. 

§22. From the previous statements it is already sufficiently evident 
that it is required from our theory that the velocity of the individual 
particles of fluid be defined from an assumed velocity which exists at 
some place such as the point of efflux. In the same manner, it was 
necessary to add another hypothesis, which is this: After we under
stand, in the mind of course, that the fluid was divided into layers 
perpendicular to the direction of motion, let us consider that the par
ticles of fluid of the same layer are moved at the same velocity, so that 
everywhere the velocity of the fluid is reciprocally proportional to the 
corresponding area of the vessel. This hypothesis is familiar, although 
it is known further that fluid moves slightly more slowly at the sides 
of a vessel but faster in the middle, which happens on account of the 
attrition, and that other exceptions as well are frequently to be made. 
Nevertheless, a noticeable error can very rarely arise from defects of 
this sort. 

§23. Let me terminate here these warnings about our hypotheses 
with an enumeration of the phenomena which can both illustrate and 
confirm somewhat the conservation of live forces in the motion of fluids. 
Indeed, many of them occur in this very text, which, however, I will 
not treat on account of the calculations they require. However, that 
which is observed concerning a drop having fallen into standing water 
is trivial and obvious: certainly it creates rings in the surface of the 
standing water, and either the larger the drop or the higher the fall, 
the more of them it creates, and there is no doubt but that these rings 
would propagate themselves without end unless the viscosity of the 
fluid and other similar things were [ acting] as a hindrance. Also, 
whenever it is pleasing to observe another effect from drops of this 
sort while many smaller drops are being projected upward from the 
surface of the water below, then what pertains here especially appears 
constantly: that the higher the drops surge, the fewer they are in 
number and the smaller in volume; and when the height of the fall 
was two feet, rather often the smaller drops ascended beyond the height 
of fall, particularly when the water was passing through a large ori
fice. Also it is worthwhile to note here what is observed regarding a 
particle of water in a narrow conduit which is horizontal and covered 
by a perforated cap at the end towards which the water flows. It is 
certain that at the instant at which the water reaches right up to the 
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cap, a few drops spring forth with a great impetus, and soon the 
motion of all the water is established. But anyone could easily be
lieve that the water next to the orifice continues to be moved at the 
proper velocity, and that the remainder of the flow is unchanged; 
his, however, would represent the conservation of live forces very 

poorly; that violent instantaneous efflux of water, just like an explosion, 
represents it splendidly; more about these things elsewhere. 

§24. These are the things which I wished to point out in advance 
concerning our hypotheses and both their eminence and deficiency. 
It remains that I say something about the nature of the fluids toward 
which our extensive efforts will certainly be directed, not because I 
consider that I have more understanding of them than others, but 
because I believe it is a sin to depart from this custom common to all 
·,Titers. And first, certainly, all usually agree that internal motion 
exists in all fluids whatever, without which indeed no one under
-rands correctly such fluidity, effervescences of different fluids, dis
solutions of solids submerged in fluids, evaporations, and infinitely 
many other phenomena. Hence a great part of the most solid matter 
liquefies with sufficient heat, which impels all things into motion; but 
that internal motion causes the particles not to remain adjacent to one 
another, but rather to move to and fro, by which it occurs that without 
friction they withdraw from a spot upon receiving a very small im
pulse, which would certainly not happen if the same particles were 
placed adjacent to one another as in a pile of sand. So it is easy to 
understand that the dust from egg shells held in a pan over a fire is 
said to imitate boiling milk. But the greater the heat is, the more 
\1.olent is the motion of all the particles, and these are dispersed at a 
2'Teater interval from one another; this agrees with the dilatation of 
all fluids from added heat, and their contraction from cold, to which 
law even water itself, not yet frozen, is subject; but that it is ofa dif
ferent nature when it is frozen seems to be deducible from another 
cause occurring by chance, namely this: that water supports air 
particles in its interstices which thus do not increase the volume of the 
·rnter, just as sugar dissolved in water does not increase its volume; 
that at the time of impending freezing the motion of the aqueous 
particles is lessened; that thus the same particles approach each other 
more; and that thus they drive the air particles from their own inter
stices, which, then less suitably arranged in a different place, can in
crease the volume, just as sugar not yet dissolved can increase the 
·olume of the water with which it is mixed. Hence the reason is 

easily deduced as to why ice made of water well purged of air before 
freezing becomes not specifically lighter, but rather somewhat 
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heavier. But Mariotte instituted excellent experiments about the 
true solution of air in water right up to the point of saturation, and he 
enumerated these in his Traite du mouvement des eaux. Therefore, there 
is an opportunity for doubt that fluids (as I said) are frozen when the 
intestine motion ceases or is greatly diminished, when, namely, the 
particles collapse on each other and become adjacent, and at the same 
time expel the heterogeneous particles from the interstices, if any 
linger there; nevertheless, the hardness of frozen bodies is hence not 
understood more clearly, since it seems that with that motion stop
ping, a body is formed with a nature halfway between a fluid and a 
solid, unless something else occurs, and it should be compared with a 
pile of sand; but whatever occurs to the matter, lest certainly I follow 
conjectures, in the meantime it will be pleasing to assume: that as 
many particles as you please gravitate to each other, or, in order that 
I use the word familiar to the English, attract each other, and that the 
attraction increases significantly when the particles approach one 
another; that it is of different strength in different bodies, for example 
less in oil than in water, the ice of which is harder; that fluids, the 
particles of which either attract each other more strongly or are 
moving in a slower motion, freeze more quickly and more easily. 
Then it would be pleasing to conjecture that water impregnated with 
sugar or salt freezes more slowly, because the particles of sugar or salt 
placed between the aqueous particles diminish the attraction of the 
latter, so that these cannot be joined and frozen solid unless the 
heterogeneous particles are driven off; and certainly in all fluids 
which are impregnated with heterogeneous particles, at the time of 
freezing a certain expulsion or secretion or precipitation of portions 
from the pores occurs. There are an infinite number of other pheno
mena of either solid or fluid bodies which agree altogether wonder
fully with the principle of mutual gravitation, such that it is a pity that 
the principle itself is established so far above the human mind that I 
consider that there is no one who can understand it in any way. 

§25. At last let one admit to having been warned that this treatise is 
considered by me as Physical rather than Mathematical, and that I 
did not conduct this plan to obtain a Geometric method in hypotheses, 
definitions, and other devices to be set down in advance beyond 
measure, and I follow everywhere the order and discourse of Geo
meters who customarily start from the beginning, having explained 
the propositions, and that I treat all in such an order that the individ
ual things are deduced properly from the first premises, and they 
leave nothing unproven behind them, however much this may already 
have been proven by so many others. I did not have any trouble in 

. ~-
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understanding those things which have been handed down by others, 
whether they were definitions and axioms, or even theorems, never
theless I did not omit their proofs, which are new, and, finally, even 
in the first section are placed the proofs of the Theorems demonstrated 
at random by others; and since certain terms occur that are neither 
explained nor used by others, I shall give their definitions in the text 
itself. I shall propose the remainder sometimes in the form of Propo
sitions, Theorems, Problems, Corollaries, and Scholia, according to 
the custom of the Geometers, and sometimes I shall give it in a con
tinuously explained discourse. 

One thing remains about which I wish the Reader to be especially 
warned in advance: that I was not able to apply to this work that 
diligence or attention which I should have, and which I myself 
desired. And therefore I have no doubt but that some errors will have 
crept in while I was doing the calculations, which I hope no one will 
employ wrongly; others which met my eye while I lightly read over 
the treatise I myself corrected; nevertheless I am convinced that still 
others remain even yet. 



SECOND CHAPTER 

Which Deals with Standing Fluids and Their 
Equilibrium, Either Between One Another 

or Related to Other Forces 

THEOREM I 

§1. The surface of a standing fluid is para}lel to the horizon. 
PROOF. Let the vessel ABCD (Fig. 1) contain the fluid EBCF, the 

FIGURE I 

surface EGF of which, if it can be done, is made not parallel to the 
horizon. Let an elemental volume in the rather elevated position a 
be considered, which by its own gravity is driven vertically downward 
by a force represented by ac. Let this force be resolved into the two 
components ad and ab, one perpendicular to the surface and the other 
tangent to it. But since there is nothing present which resists this 
latter force, this cannot but spread its own effect and therefore draw 
the elemental volume itself toward E, which would be contrary to the 
hypothesis of stagnation, or of the permanent state. Therefore, it is 
necessary that the tangential force ab be everywhere zero, which does 
not occur otherwise when the entire surface is parallel to the horizon. 
Q.E.D. 
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§2. COROLLARY. Hence the truth of the general propositions is 
understood: that certainly the surface of a fluid, the portions of which 
are acted upon by any type of force whatever, always composes itself 
so that any volume element whatever, placed on the surface, is drawn 
in the direction perpendicular to the surface. 

THEOREM 2 

§3. A homogeneous fluid contained m two connecting pipes 
formed in any way whatever is in a state of equilibrium when both 
surfaces are placed at the same level, that is, [when] they maintain 
an equal vertical distance from the lowest point of the vessel. 

PROOF. Let fluid be contained in the vessel ABC (Fig. 2) composed 
of two connecting legs or pipes, and let it be placed in each leg to the 

C 

d .. 
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B 

FIGURE 2 

same height. I say that this position cannot be changed without 
some heavy body betaking itself from a lower position to a higher, 
which would be contrary to the nature of weights. For if the surface 
E descends to e, and in the other part Dis elevated from D to d, then, 
since the remaining part of the vessel is full of the same fluid before 
and after the position has been changed, the effect of all this change is 
manifested in this: that the particle Ee will have ascended to Dd. 

Besides, the same is evident as well from the first Theorem, since a 
pipe in standing water can be assumed to be formed in any way what
ever, in which certainly the water will maintain the position which it 
had before, since it is just the same whether the water enclosed in 
the pipe is pressed by t]i.e sides of the pipe or by the surrounding 
water. 
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ScHoLrnM 1 

§4. If in the first proof of the preceding paragraph the total mass at 
DBE is considered to have exchanged its position with the position 
dBe, it is easily shown that the center of gravity of the entire mass has 
ascended to a higher position, which is no less absurd. But since in 
our proof there is no particle at Ee which will not ascend after the 
position has been changed, I considered that the proof will be more 
precise and more clear if there be no consideration of the center of 
gravity. 

ScHOLIUM 2 

§5. We have some individual phenomena concerning capillary 
tubes. For instance, water ascends above the level in a rather narrow 
tube, the other extremity of which is submerged in the water, while 
Mercury does not reach that level. Truly, since I considered this 
very carefully at one time, I came to the same conclusion more or 
less which my uncle, Jakob Bernoulli, of blessed memory, once gave 
in his dissertatio de gravitate aetheris, namely that the water in a rather 
narrow tube ascends there beyond that level because the number of 
aereo-aethereal particles at the base of the column which lies above 
the water in the tube is less than the number of the particles at a 
similar base beyond the tube. This is certainly understood from the 
following: after the globules have been placed next to each other on a 
horizontal table, if a circle is made with a compass, some particles are 
necessarily excluded because they cannot be divided; but the pres
sures of the aereo-aethereal columns (of which one base is in the tube, 
the other outside the tube) are in proportion to the bases, that is, to 
the numbers of particles in the bases; hence, if the number of particles 
in the first base equals a, in the second base equals a + b, and the 
pressure in the first column equals g, the pressure in the other column 

will be a + b g, thus the difference of the pressures equals~ g, to which 
a a 

the height of the water above the level must be equated. In order 
that these things be understood more clearly, it will have to be con
sidered that g is proprotional to the square of the diameter which 
corresponds to the surface of the fluid contained in the tube, and that 
a is also proportional to the same square because of the extreme 
smallness of the particles, such that the ratio of g to a is to be con
sidered constant, and accordingly that the height of the water above 
the level must follow the proportion of b itself. But, which is in
trinsically evident, b is in proportion to the periphery of the surface of 
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the fluid contained in the tube; therefore, the height above the level 
will be in proportion to that same periphery, which experience has 
confirmed for a long time now. If further we should now consider 
different fluids, we will see that the previously mentioned periphery is 
the more complicated and accordingly the larger, the greater are the 
fluid particles, and since the height of the fluid above the level depends 
upon the magnitude of this periphery, we understand why this height 
does not follow the inverse ratio of the specific gravity in the same tube. 
Thus if the same tube is immersed in spirits of wine and water, the 
former will ascend less than the latter, although, nevertheless, the 
spirits should ascend more on account of the lesser gravity. But this 
indicates, if I have followed the matter correctly, that the pardtles of 
the spirits of wine are less [in number] than the particles of water. 
Nevertheless, never in my judgment can the ascent above the level in 
any fluid be changed into descent, and I should believe that all fluids 
are of the same nature in this respect, unless some other reason not yet 
considered so far appears in addition, and ifwe should argue accord
ing to our hypothesis, it should be said that Mercury also would have 
ascended above the level if only its particles were not attracted 
mutually to each other by a greater force than are the particles of 
water. Indeed, to this attraction I attribute all those things which 
make Mercury go in a different way. At the end of this section let 
me show the experiments which led me to this thinking. 

LEMMA 

§6. Let the cylindrical pipe ABDC (Fig. 3), the base of which is 
perpendicular to the sides of the pipe, be inclined to the horizon in any 

A 

FIGURE 3 
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way whatever, and let it be considered filled with water right up to 
AB. I say that the pressure of all the water on the base CD is equal 
to the weight of the aqueous cylinder the base of which is CD and the 
height of which is the vertical DE terminated by the horizontal BE. 

PROOF. When the shape of the pipe is cylindrical, and in addition 
the base is perpendicular to the sides of the pipe, anyone sees that the 
action of the fluid on the base is the same as if there were a solid 
cylinder of the same weight above the inclined plane; but it is estab
lished from mechanics that the pressure of the solid cylinder on the 
base is that which is defined in the proposition, and therefore the 
action of the fluid will be such, if only one does not regard the adhe
sion of the fluid to the sides of the pipe and also the behavior of the 
same with regard to capillary tubes, from which we diverted our 
thinking. Q.E.D. 

THEOREM 3 

§7. Now if, generally, a vessel AHMB (Fig. 4) is formed in any way 
whatever and filled with water right up to DE, the pressure of the 

A 

( 
~rj 

,s 
FIGURE 4 

water on the individual particles in the vessel, such as at G or H, will 
always be equal to the weight of an aqueous cylinder the base of 
which is the surface of that particle and the altitude of which is equal 
to the vertical distance of the same particle from the aqueous surface. 

PROOF. I. Let there be considered at G the small cylindrical pipe 
CG entering the vessel perpendicularly, and let this pipe be under
stood to be full of the same liquid right up to C, located on the line 
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ED. If now the vessel is considered to be perforated at G, the fluid 
in both places will be in equilibrium (through §3); therefore, the fluid 
in the tube CG presses against the interior just as much as the fluid of 
the vessel presses against the exterior. But the former pressure 
agrees with the proposition (through §6), and therefore the other 
[does] also. 

II. But if, in place of the point G, another point His assumed so 
that a line which enters the vessel perpendicularly at that point lies 
within the vessel, then the whole vessel RHSON can be considered 
united with the former at H, full of water right up to PO. Thus, 
indeed, it appears, if the particle at H which is common to both 
vessels is perforated, that the fluid thus will be in equilibrium (§3), 
and therefore that the pressure of each at His equal. But the pres
sure of the fluid in RSN is that which is indicated in the proposition 
( according to the first part of this proof), and therefore it is the 
pressure of the fluid which is in the vessel AME. Q.E.D. 

ScHOLIUM 

§8. The equilibria of standing fluids in more composite cases are 
easily deduced from these propositions. However, I, being content 
with the proofs which I just gave of the fundamental propositions in 
hydrostatics, do not wish to follow all of them, for the understanding 
of our practice does not require it. But those things which are im
portant to the pressures of fluids not being at rest surely require a 
more profound investigation. Nor yet has the pressure of fluids 
flowing through conduits or pipes at a given rate of speed been 
properly determined by anyone, although this type of argument may 
be very useful in hydraulic matters as well as in many others. But it is 
not advisable to deal with these latter things before we have com
mented on the motion of fluids. 

§9. From the preceding an understanding is evident of the powers of 
bladders by which immense weights can be supported. Hence even 
the force is known which is sustained by the walls of a pipe in which 
water is standing. Since it is customarily handled by writers on 
hydrostatics, we will now treat this argument, particularly since 
many other things are supported by it which we will have to discuss. 

At first let there be the bladder onmp (Fig. 5) , placed between a 
hard floor and the weight B, into which water is poured through the 
pipe FRo, the vertical leg of which, for the sake of brevity, we will 
make incomparably longer than the diameter of the bladder. The 
weight B will not be elevated immediately. But if water is poured 
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in further right up to F, for instance, finally the weight will become 
elevated; however, there will be equilibrium, since the region of con
tact cd remains with respect to the orifice o just as the weight Bis with 
respect to the weight of the aqueous cylinder of height FR standing 

Ji' 

I 

A 
FIGURE 5 FIGURE 6 

above the base o. And so the absolute determination of the elevation 
depends upon the structure of the bladder; if, for example, it would 
have been composed of perfectly flexible filaments admitting no ex
tension, and if it also had a natural Spherical shape, it is readily 
apparent that the regions of contact end and gpe will be equal and 
folded, and that the remaining expanded portion will have the shape 
of a spherical Zone. And so through Geometry a measure of the 
elevation np is deduced, which will be zero as long as the greatest 
circle of that bladder will have a smaller ratio to the orifice o than that 
which exists between the weight Band the weight of the previously 
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mentioned aqueous cylinder, and the whole bladder will not be 
unfolded before the height will be infinite, that is, never. But if the 
fibers are of a different nature, the situation will be otherwise; many 
persons who have discussed the shape of an inflated bladder and who 
wanted to apply it to the muscular caverns in the classifications of 
animals have not considered this sufficiently. I now wish to treat 
this matter a little more fully. 

§10. Let there be a bladder DC (Fig. 6) and a weight Phung from 
the same, and at the same time [let the bladder be J attached to the 
tube DA, the length of which, in turn, we may consider for our own 
benefit to be incomparably greater than the length DC. After these 
things have been established, certainly anyone easily ascertains that, 
after the vessel and the tube have been filled, the former will become 
inflated and will lift the appended weight P. But no one will know 
the state of equilibrium and the shape of the bag unless the structure 
of the bladder and of its fibers is clearly understood; since these 
matters are so, we will examine some individual cases which can 
occur rather frequently. 

CASE I 

§11. Let the bladder be composed of the longitudinal fibers DpC, 
DmC, etc., in the form of meridians, concurring uniformly at the points 
D and C, or the Poles, perfectly flexible and uniform, the individual 
ones of which are connected mutually to the next by minute trans
verse fibers, which are so lax that they admit sufficient extension under 
a minimum or practically null force. Thus any fiber DpC whatever 
will be curved in the shape of an elastic, and the whole vessel will 
assume the form of a solid which is generated from the revolution of 
this curve about the axis DC. If, further, the height AD is infinite, 
the elastic DpC becomes a rectangle, and then the maximum breadth 
of the bladder is to the length of the axis DC as 2 5 is to 1 1, more or 
less, and the length of the arc DpC is to the same axis approximately 
as 5 is to 2, so that the vessel will be shortened by three fifths at the 
maximum elevation of the weight. 

CASE II 

§12. If, after the remaining things have been established as before, 
the minute transverse filaments no, mp, etc., which are perpendicular 
to the longitudinal fibers are resistant to extension, it appears that 
the shape of the fiber DopC cannot be determined unless two kinds of 
forces are considered to be applied at any one point, one of which acts 
perpendicularly to the curve and presses the fiber outward, and the 
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other is perpendicular to the axis DC of the curve and draws inward. 
Thus it is easily seen that an infinite number oflaws for these pressures 
can be devised so that the fiber DopC conforms to any given curve 
whatever, and thus, for instance, even to a circular one, which shape 
is attributed by most Physiologists to fibers which pertain to small 
muscular mechanisms. But there is still another way by which the 
longitudinal fiber DopC can acquire the shape of a circular arc, 
namely, when the transverse fibers np, mp, etc., are completely absent. 
Thus, indeed, while the bladder is inflated, an opening is made 
between two adjacent longitudinal fibers DopC and DnmC through 
which the fluid escapes, but at the same time, since it cannot flow out 
fast enough, it extends the fibers and composes them to the circular 
shape. And in this case the greatest shortening of the bladder, which 
in the first case was¾ of the total length of the uninflated bladder, now 
is only approximately 1\. 

§13. It follows from the above that it is difficult to determine cor
rectly the shape of an inflated bladder to which a weight is appended 
since, indeed, there is no one who can know perfectly the nature of 
the minute fibers. Nevertheless, here I will transcribe certain 
examples, which seem to be especially plausible, from my notes, with
out proof, which, if anyone desires, he will find in Book III, Commen
taries ef the Academy ef Science ef St. Petersburg. But first of all I will 
give the equation for the curve which is formed from the two kinds of 
forces, as I mentioned in the previous paragraph, with these follow
ing any law whatever. 

§14. Thus, let the thread AEG (Fig. 7) be fixed at the two points A 
and G. Let the straight line AG be drawn, and let there be two in
finitely close points D and Eon the thread from which the perpen-

B ..... 
C-·· ·· 

FIGURE 7 
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diculars DB and EC are drawn to AG; moreover, let the small line 
DF be parallel to the line AG. It is known that at the individual 
points D or E two forces variable in any way whatever are applied, 
one of which is everywhere perpendicular to the curve, the other 
everywhere perpendicular to AG; we will set the first one equal to A 
at the point D and equal to A + dA at the point E, the other = Cat 
the point D, and = C + dC at the point E. Further, let AB = x, 
BD = y, AD = s, BC = dx, FE = dy, DE = ds, since the element of 
the curve is assumed to be of constant magnitude. The radius of the 
Osculating circle at point Dis R, at point Eis R + dR. I say that the 
following will be the equation pertaining to the curve : -A dR - R dA 
= (R dC dx + 2C dy ds + C dx dR ) ds, or, CR ddx having been substi-

tuted for C dy ds (for R is = ~d!s), one will have -A dR - R dA = 

-ARds - RCdx 
(R dC dx + CR dds + C dy ds + C dx dR )/ds, or 

ds 

Jcdy. 

§15. It is seen from the preceding equation that, when the forces 
which are perpendicular to the curve act alone, AR becomes a con
stant quantity, because certainly thus C becomes o. Therefore, then, 
the radius of the osculating circle everywhere follows an inverse ratio 
to the corresponding force. But if the forces perpendicular to the 
axis are present alone, then, with the letter A vanishing, there results 

- RC dx -- Jc drn. B h. . b . d d d d ds :.r ut t 1s equation can e integrate an re uce 

to the form RC (dx)2 = a constant quantity; from this it appears that 
the force multiplied by the radius of the osculating circle is everywhere 
in inverse proportion to the square of the sine which the ordinate 
makes with the curve. Similarly, the canonic equation admits inte
gration when the forces which are perpendicular to the axis are all 
equal to one another or proportional to the element ds of the curve. 
So, indeed, after dC has been set = o, one obtains -A dR - R dA = 

2n dy ds + n dx dR, by considering n as a constant quantity, with 
which, after the equation has been properly treated, there results 
ny dy + mm dy - ns ds = f A dx, where mis the constant arising from 
the integration. 

If, in addition, the forces normal to the curve are assumed propor
tional to the ordinates y, the last equation can be reduced further to 
this: 

_ dx = (2ff- gf) dy; J(2ny + 2mm) 2 
- (2ff- ~f· 
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the constants f and m of which will have to be applied to particular 
cases, while n and g depend upon the relationship of the forces at some 
particular point; whence, if g = o, the catenary appears, and if 
n = o, the elastic curve appears; but generally the equation serves for 
determining the curvature of a uniformly heavy cloth over which 
fluid is lying. The most simple case in this matter is that when it is 
supposed thatf = m = o, for then, indeed, there results 

- dx = -,==-==gy=dy== 
v1 4nnhh - ggyy' 

or, after the integration has been performed, with the addition of the 

. d J4nnhh 2nh h' h. h . require constant, x = - -- - yy + -, w 1c 1s t e equation 
gg g 

of a semicircle to which certainly the cloth will adjust itself in the 
following hypothesis: let a rope of heavy cloth AEG (Fig. 8) be curved 

A G-

FIGURE 8 

in a semicircle, the diameter AG of which is set level, and let fluid lie 
over the rope right up to AG. If the weight of the fluid is equal to the 
weight of the rope, I say that a perfectly flexible rope of uniform 
thickness will preserve the semicircular shape. But in what manner 
it is to be effected that the weights of the rope and the fluid become 
equal is well known from the elements of Geometry. Finally, ifit is 
stated that the forces A as well as Care everywhere proportional to the 
corresponding ordinates y (which hypothesis seems clearly to agree 
most closely with the true shape of the bladder in Fig. 6), then again 
the canonic equation which contains differentials of the third Order 
can be reduced simply to a differential equation, and this should be 
solved easily through quadratures. If, indeed, A = my and C = ny, 
I say that the nature of the curve ADG in Fig. 7 is expressed by this 
equation: 

dx = (g3 + ½myy) dy/\! (13 + ½nyy) 2 
- (g3 + ½myy) 2 
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in which the letters] and g of constant magnitude appear again from 
the integrations; but the value of the letter n becomes negative when 
the equation is applied to determining the shape of the inflated 
bladder. 

§16. I did not wish to pursue these things too much, because they 
do not pertain very closely to Hydrodynamics. Indeed, I include 
nothing about elastic fluids because I arranged to treat the theory of 
them separately; but, nevertheless, because it pertains to the pressures 
of elastic fluids, the former can easily be deduced and proven from the 
nature of simply heavy fluids shown above by assuming that the fluid 
is destitute of elasticity and that a cylinder of the same fluid of in
finite or almost infinite altitude is lying above it; but we will mention 
how these things are to be understood in the proper place. Now, 
indeed, I continue to that which is customarily sought above all in 
aquatic matters, namely, how great the strength of conduits must be 
in order to resist the pressure of water, where chiefly conduits are con
sidered which carry water to fountains, about which I will also say 
a few things. 

§17. The pressure of water standing in conduits ought to be 
properly distinguished from the pressure of flowing water, although 
no one, as far as I know, has paid any attention to it up to this time; 
hence it is that the rules presented by others are valid only for stand
ing water even though they use words which can persuade equally 
that these apply to flowing water. But in order that the distinction 
of either Theory may appear in its own light, I will give a certain 
example the proof of which will be evident from what is below. In 
place of a reservoir let a very wide vessel ABCD (Fig. g) be full of 
water right up to EF, and be connected in its lower part to a hori
zontal cylindrical pipe MOmo through which it is understood that 

FIGURE g 
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water can flow without impediment. Let the vertical NG be drawn, 
terminated by the horizontal EH. After these things have been so 
prepared, I say that if the entire orifice Oo is obstructed by one's 
finger, the point N is pressed outward according to the total height 
NG; that if half the orifice is obstructed, this pressure is diminished by 
a fourth part of the original, and if, finally, after the finger is removed 
the water is allowed to flow very freely, that all the pressure vanishes, 
in the same way that the whole is customarily confused with the part 
or even with nothing by the Authors. But I will demonstrate that 
the pressure can even be made negative and thus be changed into 
suction. But since I cannot treat this before I have treated the whole 
theory of flowing water, I shall now consider standing water only, 
just as if the entire orifice Oo were closed. 

§18. Moreover, it is definite from Mechanics that the walls of the 
pipe MOmo ( the diameter of which we will consider to be incom
parably less than the height NG) are not extended differently than if 
they were arranged in the rectangular shape MOmo (Fig. ro), and 
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m (J 

FIGURE IO 

if they had a weight P appended which is equal to the weight of 
the aqueous prism, the three sides of which are: first, the radius 
of the pipe; second, the length of the same; and third, the altitude 
of the water above the pipe. From this proposition is known not only 
the ratio of the tensions if the al ti tu des of the water or the diameter of the 
pipes were different, but also the very measure of the tensions. Thus, 
accordingly, if the strength of the pipes is greater than that tension, 
there will be no danger of rupture; if otherwise, the pipe will be cer
tainly ruptured. In addition, experiments of this sort are difficult 
and expensive. Therefore, the strength of lead or iron pipes could be 
understood more easily if it were known from experiment how much 
weight a thread of lead or iron of given thickness can sustain without 
danger of rupture. At the end of the section I will add a similar 
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experiment performed by me to show how from this the strength of 
a pipe of given thickness and diameter can be deduced. 

EXPERIMENTS WHICH PERTAIN TO CHAPTER II 

PERTAINING TO §5 

Concerning capillary tubes: Innumerable experiments concerning the 
nature of these tubes have been undertaken by many, among whom 
Georg Bernhard Bilfinger stands out, who not only collected the im
portant ones but also added many of his own; see Commentaries of the 
Imperial Acaderrry of Science of St. Petersburg, Book 2, p. 233ff. 

I. In order that it might appear properly to the eye how contrary in 
Character mercury and the rest of the fluids are in this area, I ordered 
a glass vessel ABD (Fig. 11) to be made composed of two vertical legs, 
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of which the one AB had a diameter of three or four lines and the 
other BC of hardly a third part of a line. When the vessel was filled 
with any liquid whatever, the surface was higher in the narrower leg 
than in the wider, as at D and G; however, mercury alone was more 
depressed in the narrower than in the wider, as at F and G. 

II. In order to show that mercury differs from the nature of the 
other fluids for no other reason than on account of the stronger mutual 
attraction of its own particles, I reflected on these experiments: indeed, 
I filled a slender pipe with mercury by suction and erected it slowly 
from its horizontal position. Accordingly, the mercury, although not 
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all ofit, flowed out, and the vertical height of the mercury remaining 
in the pipe was consistent with itself in every position. However, 
when the mercury is suspended in this way in the pipe, and if then the 
extremity of the pipe is brought in touch with the mercury standing 
in the vessel, it all flows out directly. The prior Phenomena, unless 
I am mistaken, indicate that the same thing occurs with mercury and 
the other fluids when there is no opportunity for an attractive force; 
but the last phenomenon shows that mercury attracts itself very 
strongly. 

III. Let there be assumed a cylindrical glass pipe of a diameter of 
three or four lines, furnished with a base of delicate Paper or of a very 
thin plate of iron prepared and perforated in the middle by a tiny 
little orifice, as Fig. 12 shows. Let the pipe ACDB be inclined and 
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filled entirely with mercury, then erected little by little; what hap
pened before will occur, and although the pipe is very wide, never
theless, not all the mercury flows out, but part of it will remain sus
pended, as for example MCDN, and the smaller is its little orifice o, 
the greater will be this amount. When then the base is submerged in 
the mercury in some associated vessel just a little bit, so that the sub
merged part of the pipe is Ca, not only does the mercury not ascend in 
the pipe right up to f3 (it having been assumed that Ca = Mf3 of 
course) but also almost all of it flows out, until the surface MN 
reaches a. Next I submerged the empty pipe ACDB reasonably 
deeply in the mercury which was in the other vessel, and nevertheless 
nothing of it began to flow from the vessel into the pipe before it had 
been submerged to the height CM; and then suddenly it flowed right 
up until it had reached a level in each part, namely right up to MN, if 
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it was submerged up to that point. All these things are deduced 
easily from the mutual attraction of the mercurial particles. In 
addition, I performed a test to investigate the relationship which 
exists between the height MC and the area o of the little orifice; at any 
rate, it is probable that that diameter is in a reciprocal ratio to the 
diameter pertaining to the little orifice; nevertheless, I was not able to 
confirm the idea sufficiently by experiment, sometimes because of the 
impurity of the mercury which I used, which caused the height of the 
suspended mercury to be not completely consistent with itself when 
the orifice had not been varied in repeated experiments, or sometimes 
also because it is difficult to measure very small orifices accurately. 
Indeed, the orifices must be a minimum, since the height of the sus
pended mercury is barely six or eight lines when the diameter of the 
orifice equals the sixth part of a line; nevertheless, let me tell the 
method which I have used. Indeed, by means of copper wires of 
different thickness which are used in musical instruments, the very 
small diameters of which I found very correctly from the length and 
the weight of them, I perforated the little paper CD; but in this way 
shreds usually appear around the walls of the orifice which impede the 
effiux, and thus it easily happens that the orifice is greater than is the 
thickness of the wire. 

PERTAINING TO §18 

CONCERNING THE STRENGTH OF PIPES. A round copper wire the dia
meter of which was 2 / 11 of a Paris line, to which successively con
tinuously greater weights were added, did not break until the weight 
exceeded 18 Nuremberg pounds. Then I observed that a very thin 
lead plate, which was of rectangular shape, 5/4 of a line wide, 1/ 131 

line thick, was broken when to it was appended a weight of three and 
a half ounces. From these two observations it followed, with all the 
remaining things being equal, that the copper wire is more than 28 
times as strong as the lead wire. From the previous experiment it is 
also deduced that, if a copper pipe should have a diameter of I foot 
and the thickness of the walls were 2 / 11 line, it can sustain water to a 
height of 518 feet before it is broken. In this calculation I used 70 
pounds for the weight ofa cubic foot of water. But if the same pipe 
is of lead, it will sustain water to a height of 18 feet in the light of the 
other observation, and it can bear a height of water of 99 feet if the 
walls of the pipe are a whole line in thickness. This agrees with what 
Mariotte has in his Traite du mouvement des eaux, p. 472, where indeed 
he says that a lead pipe, the diameter of which was I foot and the 
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thickness of the walls two and a half lines, has supported water with
out rupture to the height of a hundred feet, and that while he was 
observing this he shaved off the sides little by little until at last they 
were diminished to a thickness of one line, and that then at last the 
force of the water destroyed the pipe. 

From the observed strength of copper wire, the strength of cannons 
is also determined: let there be, for instance, a cannon, the internal 
diameter of the barrel of which is three inches; moreover, the 
thickness of the walls not far from the touch-hole, where the force of 
the powder is greatest, is customarily more or less equal to the in
ternal diameter, so that the total diameter is thrice the internal dia
meter of the barrel. Because, therefore, this thickness is not to be 
neglected with respect to the internal diameter of the barrel, we shall 
consider all the material concentrated in the middle and thus at a 
distance of three inches from the axis of the barrel. This having been 
established, the maximum height of water which a cannon can sup
port not far from the touch-hole will be 1.;- · 12 · 3 · 2 · 518 = 205,128, 

which force exceeds the elasticity of natural air by about seven thou
sand times. But I will show in the following that ignited gunpowder 
can exert a force for rupturing any cannon greater indeed than that 
which was mentioned, but nevertheless not exceeding it much. But 
the cannons obtain the additional strength that they require from 
belts or bands which are called plattes bandes et moulures, apart from the 
fact that at the very rear of the cannon (d l'endroit de la culasse) the 
thickness is greater than that which we assumed. Nevertheless, we 
will not be surprised that quite a few cannons are shattered. 



THIRD CHAPTER 

Concerning the Velocities of Fluids Flowing out of a 
Vessel Formed in any Way Whatever through 

any Kind of Opening Whatever 

§1. Before we may attempt to define the motion of water developing 
from its own gravity, we will look again at what we set forth in the 
First Chapter, §§18, 19, 20, 21 and 22, concerning the principles to be 
applied to the following matters. 

We will recollect, certainly, that the potential ascent of a System, the 
individual portions of which are moved at any velocity whatever, 
indicates the vertical height to which the center of gravity of that 
System reaches if the individual particles, their motion having been 
turned upward with the proper velocity, are understood to ascend as 
far as they can; and that the actual descent denotes the vertical height 
through which the center of gravity descends after the individual 
particles have come to rest. Then as well we will be mindful that, 
necessarily, the potential ascent is equal to the actual descent when all the 
motion remains in the scattered material, and none of it goes over 
into unobservable or other type material not pertaining to the system, 
and, finally, that the motion of fluids is approximately such that 
everywhere the velocity is reciprocally proportional to the corre
sponding area of the vessel, concerning which we will add certain 
other things in the proper place. Now it is fitting to examine the 
following proposition. 

PROBLEM 

§2. If water flows through a conduit formed in any way whatever 
and its velocity is known in some place, find the potential ascent of all 
the water contained in the conduit. 

SOLUTION. Let there be formed in any way whatever the conduit 
ST (Figs. 13 and 14), through which part bcfg water flows; it is 



HYDRODYNAMICS, CHAPTER III 

assumed, if on the axis ae is taken some point n through which the 
plane pm, perpendicular to the axis, passes, that all aqueous particles 
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existing on that plane will flow at an equal velocity and indeed such 
that it is everywhere inversely proportional to the area of the section 
pm. Moreover, let the velocity of the water at gJ be such as is due to 
the vertical height gs, that is, let the potential ascent of the aqueous 
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stratum at gJ be equal to the line qs, and since heights of this sort are in 
proportion to the squares of the velocities, it follows that the potential 
ascent of the water at pm is equal to the fourth proportional of the 
square of the area pm, the square of the area gJ, and the altitude qs, 
. (gf)2 
mdeed equals (pm) 2 • qs. Thus, with these things having been set 

forth, we will assume: that the curve BPG in Fig. 14 is the scale of the 
areas of the conduit, so that, with AN = an, NP denotes the area at 
pm; hence that the curve HIK is the scale of the potential ascents, so that 
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(EG) 2 

NI= (NP) 2 ·qs. Now let it be assumed that the individual elements 

of the curve HIK have a weight equal to the weight of the correspon
ding aqueous stratum, and that the center of gravity of that curve 
falls at the point L, and let LO be drawn perpendicular to the axis 
AE; thus LO will be the desired potential ascent of all the water. From 
mechanics, moreover, it follows that if a third curve UX,Z be formed, 

the ordinate NX of which is everywhere equal to ~~)
2

, LO will be 

equal to the fourth proportional of the area AEGB and AE,ZU and the 
line qs or EK. Therefore, that which is sought is evident. Q.E.I. 

§3. For instance, if there is a conic conduit, the anterior and pos
terior surfaces gf and be of which have diameters in proportion as m 
is to n, the potential ascent of the water will be 

3ms 
-,------'"----~·qs 
n(mm + mn + nn) · 

PROBLEM 

§4. Given infinitely small variations, with respect to pos1t10n as 
well as to velocity, which correspond to the anterior surface of the 
water, find the variations pertaining to the potential ascents throughout 
the water. 

SOLUTION. Let the area AEGB = M [Fig. 14], the area AE,ZU = 

N, qs = v; the potential ascent will be,:. Truly, because the quantity 

of water in the conduit is considered constantly the same, the area 
AEBG will be invariable, and thus dM = o, so that the differential of 

h . l . . 1 N dv + v dN d 1 d'Ar. b . d fi t e potentza ascent is s1mp y M , an a so Jv 1s o tame rom 

the variation of the position of the water. Therefore, the proposition 
is evident. Q.E.I. 

ScHOLIUM 

§5. These propositions can serve for defining the motion of fluid 
moving within vessels, that is, not flowing out, as I shall show in the 
proper place; but certainly when the fluid flows out through an ori
fice, a more appropriate computation is established differently, 
namely, as follows. 
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PROBLEM 

§6. Find the difference in potential ascent after a volume element has 
flowed out through an orifice. 

SOLUTION. Let us consider that water flows out of the vessel aimb 
(Fig. 15) formed in any way whatever; let the base im be perforated 
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by the orifice pl; let the quantity of water remaining in the vessel after 
a given quantity of it has already flowed out be cimd; moreover, let 
the volume element pnol flow out in an infinitely short instant, with 
the surface cd descending to the position ef. Let a section gh be 
assumed in the middle of the water, parallel to the surfaces cd and ef 
and to the base im itself; and let the velocity of any one of the particles 
on gh be such that it can ascend to a height qs or v when the volume 
element has not yet flowed out, and to a height qz or v + dv after that 
very volume element has flowed out. With all these things having 
been set forth, the increment of potential ascent of the water is sought 
after the position cimd is replaced with the position eipnolmj, that is, 
after the volume element has emerged. 

As before, let the curve CGI (Fig. 16) be drawn as the scale of 
the areas, where, precisely, CD or EF will represent the area of the 
aqueous surface before or after the efflux of the volume element, 
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GH the proper assumed area, IL the size of the base, PL the size of 
the orifice, while the very small connecting parallelogram P NOL 
corresponds to the cylindrical volume element pnol. Next, let there 
be constructed another curve TRU, the ordinates of which are again 
equal to the square of the line GH divided by the corresponding or
dinate of the curve CGI, to which curve in the same manner is annexed 
the small parallelogram LO YX, the side LX of which, certainly, is 
equal to the square of the line GH divided by the line PL. 

Therefore, now it is apparent that the potential ascent of the water 
before the effiux of the volume element is equal to the fourth propor
tional of the area DCIPL, the area DTUL, and the height qs, and that 
the same after the effiux of the volume element is equal to the fourth 
proportional of the area FEIPNOL, the area FWUXYOL, and the 
height qz:.; moreover, in both analogies the first terms (namely, the 
area DCIPL and the area FEIPNOL) are equal to each other; there
fore, if either one of these areas be indicated by M, the area DTUL by 
N, the area FWUXYOL by N + dN, the height qs by v, and qz:. by 
v + dv, the increment of potential ascent during the effiux of the 

. Ndv + vdN 
volume element will be M · Thus, if now it is assumed that 

LD = x, FD= -dx, DC= y, HG= m, and PL= n, one will have 
mm mm -ydx 

D T = -, LX = -, LO = -- (because the area DFEC = area 
y n n 

mmydx mmdx 
LONP ), and hence dN = LOYX - DFWT = - -- + --, 

nn y 
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from which now the increment of the potential ascent sought 1s 

(x dv _ mm; dx + mm; dx) / M. Q.E.I. 

PROBLEM 

§7. With these same propositions retained, find the infinitely 
small actual descent of the water while the volume element flows 
out. 

SOLUTION. Since in Fig. 15 the water changes position cdmi for 
position efmlonpi, it is evident that in either position the center of 
gravity of the portion efmi of the water is in the same place, and 
therefore it can be understood that only the small portion cdje (which 
equals -y dx, while the total mass of the water equals M) has de
scended into lonp. Now let the height of the small aqueous particle 
cdfe above the volume element lonp be x, and the height of the center 
of gravity of the water efmi above the base be b; then the height of 
the center of gravity of all the water in the position cdmi above the 

base will be b _ Y:; · (x - b), and in position efmlonpi the same 

height will be ( M ~ dx)b, whence the difference of the heights or 

-ydx 
the required actual descent equals ------x;r- x, which equation indicates 

that the volume element which flowed out is to be multiplied by the 
height of the water above the orifice, and the product is to be divided 
by the quantity of the water in order to obtain the actual descent which 
occurs when the volume element flows out. Q.E.I. 

PROBLEM 

§8. Determine the motion of a homogeneous fluid flowing out of a 
given vessel through a given orifice. 

SOLUTION. Since, through our hypothesis, potential ascent at indivi
dual instants is equal to actual descent, an increment of the former 
while a volume element flows out will be equal to an increment of 
the latter because it develops in the same short time. Therefore if, 
again, the surface of the water, after a given quantity ofit has flowed 
out, is set equal toy, the area of the vessel at any place whatever, as 
it pleases, is assumed equal to m, the area of the orifice equal to n, 
the height of the water above the orifice equal to x, the quantity 
N is determined by that law which was indicated in §6, and vis under-
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stood to be the height due to the velocity of the water at the assumed 
place where, indeed, the area of the vessel is m, then, through §6, the 

. f . l .11 b (Nd mmvy dx mmv dx)/M increment o potentza ascent w1 e v - nn + -y-- , 

and the least actual descent will be -~dx (through the preceding§), 

from which there results (x dv - mm:n dx + mrr; dx) / M = 

mmvy dx mmv dx . . 
-yx dx/M, or N dv - --- + --- = -yx dx, which equat10n 

nn y 
can generally be integrated since the terms N and y are given functions 
of x itself, and the term vis of only one dimension. 

§9. COROLLARY I. Since the velocities are in inverse proportion to 
the areas, it is evident that the height which corresponds to the 

velocity of the water flowing out will be mm v; therefore, if this is 
nn 

. mmMZ~ 
called z, one will have nnN dz - mmzy dx + ---- = mmyx dx. 

y 
§rn. COROLLARY 2. If the orifice is very small in proportion to the 

areas of the vessel, then n = o, and the entire equation reduces to this: 
-mmzy ~ = -mmxy dx, or z = x; accordingly, therefore, the water 
constantly flows out at that velocity by which it can ascend right up 
to the height of the uppermost surface, the only case that Geometers 
had understood correctly to this time; and this proposition is valid 
for all vessels, however formed. But when the orifice is not considered 
as infinitely small, by no means is the shape of the vessel to be neg
lected. Nevertheless, one can observe that, unless the orifice is very 
wide, it can be considered as infinitely small without any noticeable 
error at all. 

§11. COROLLARY 3. When the fluid is not everywhere the same, 
the computation is to be undertaken in a similar manner: by in
quiring, surely, both into the increment of potential ascent of the com
posite fluid and into the actual descent; and by equating these to each 
other. Thus if, moreover, the orifice is very small, it is also intrinsi
cally evident, as the calculation shows, that the fluid will spring forth 
at a velocity due to a certain height such that, if the vessel were 
refilled to the same height by the same liquid which flows out, the 
walls of the vessel would sustain the same pressure. 

GENERAL ScHoLIUM 

§12. Before we may deduce rather special Corollaries from our 
theory about the motion of fluids from cylindrical vessels, it is fitting 
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here to examine to what extent the assumed hypotheses agree with 
the nature of the matter and what other causes diminishing the fluid 
motion, of which we took no account in the computation, could 
intervene. 

At first, as far as applies to the principle of the conservation of live 
forces or of the perpetual equality between potential ascent and actual descent, 
I see nothing here which can be a notable impediment to it, if only 
we disregard friction, viscosity, resistance of air, and other obstacles 
of this sort. But certainly it occurs often that the principle cannot 
be applied without limitation, which we shall show in the following; 
namely, when the individual particles of water are carried by a dif
ferent motion, as a result of which it occurs that at every instant 
something from the motion, or, if preferred, from the potential ascent, 
is lost. But in the present case nothing similar happens, since indeed 
almost all the particles are moved altogether similarly, and, especially 
when the orifice is very small, the motion of the internal particles is 
almost nil, and therefore no detriment can develop from this. More
over, the other principle, by which it is assumed that the velocity of 
any particle whatever is that which corresponds to the inverse ratio of 
the area, is indeed affected by a twofold disadvantage: first, namely, 
because the motion near the sides of a vessel is a little slower than in 
the middle, and therefore all particles corresponding to the same 
area of a vessel are not carried at an equal velocity; and second, 
because water not greatly distant from the base cannot have that 
motion which this principle postulates. However, neither carries a 
noticeable error with itself inasmuch as in this simple problem the 
internal shape of the vessel is of hardly any consequence to the motion 
of the water flowing out. By the same reasoning it is understood that 
the motion of water flowing out in some other direction cannot be 
very different because, to be sure, the internal motion of the water in 
only the lower part of the vessel becomes different, and this dif
ference can hardly be of any importance. Therefore, it appears that 
the hypotheses by which the computation of this Problem of ours is 
supported thus agree with the nature of the question; hence no error 
perceptible to the senses can arise. But surely the hindrances men
tioned above, attrition, viscosity of the fluid, and other similar ones, 
are of greater importance particularly when an orifice through which 
fluids spring forth is rather small, or when the height of the water 
above the orifice is very great, or, finally, when a pipe is very slender, 
concerning which many experiments are found in the writings of 
Mariotte in his Traite du mouvement des eaux. But now I progress to 
examining the motion of water flowing out of Cylindrical vessels 
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through orifices of any size whatever. We shall also consider vessels 
placed vertically by reason of a short cut and a more elegant solution. 

CONCERNING THOSE THINGS WHICH PERTAIN 
TO THE EFFLUX OF WATER FROM VERTICALLY 
POSITIONED CYLINDERS THROUGH ANY OPENING 
WHATEVER WHICH EXISTS IN A HORIZONTAL BASE 

§13. Geometers who have discussed water flowing from a vessel are 
accustomed to consider principally cylinders positioned vertically. 
Therefore, it will not be out of place at all to deduce those conclusions 
which pertain here from our general theory. Let the area of the 
cylinder be to the area of the orifice as m is to n, the height of the 
water above the orifice when flow begins be a, the height of the re
sidual water be x, and the height due to the velocity of the internal 
water be v; there will be, in the canonic equation of §8, y = m, and 
N = mx ( through §6), which therefore transforms into the following 
equation: 

or 

m3 
mx dv - - v dx + mv dx = - mx dx 

nn 

( I - ::) V dx + X dv = - X dx. 

Let this latter equation be multiplied by x-mm/nn, so that there 
results 

( 1 _ ::) x-mm/nn V dx + xl-mm/nn dv = _ xl-mm/nn dx. 

Now this equation can be integrated; but the addition of a constant 
in the Integration is to be attended to such that at the beginning of 
flow, that is, when x = a, the velocity of the fluid is null, and hence v 
itself likewise is null. So indeed there arises: 

xl-mm/nn V = nn (a2-mm/nn _ x2-mm/nn) 
2nn - mm 

or 

V = nna [(~) 1- mm/nn _ :a]. 
2nn - mm x 

§14. From this equation, therefore, the height generating the 
velocity of the internal water is known; here it deserves to be noted 
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that, if the vessel is very wide, it can be directly reckoned that 

v = .!!:!!:.... x, certainly after the water descends just a little, that is, as 
mm 

soon as xis at once a little less than a. This rule fails notably only at 
the very beginning of motion, and if that first element of motion is 
considered (in which certainly the height a - x can be considered as 
infinitely small), the equation indicates that now v = a - x. From 
this it follows that in the entire cylinder, whatever the orifice might 
be, the internal water is accelerated from the beginning of motion 
just like freely falling bodies. But if the motion continues a little 
while, then this Rule will err the less, the greater is the orifice and the 
higher is the water in the pipe. If, further, that height is desired 
which corresponds to the velocity of the water flowing out, which in 
§g we set equal to z, there will be 

mm 
z = nnv' 

or 

Z = mma [(~)1-mm/nn _ :]. 
2nn - mm x a 

§15. When n = m, that is, when the base is null, it appears from the 
very nature of the matter that the water falls and is accelerated freely 
in the manner of heavy bodies, which very thing the equation also 
indicates; indeed, it occurs in this position that z = a - x. But if 
the orifice is considered as infinitely small in proportion to the area of 
the vessel, which case we have already considered above, it is to be 
assumed that n = o, and then it occurs that z = x, which indicates 
that the water flows out constantly at that velocity by which it can 
ascend to the total height of the water. Finally, with mm = 2nn, 

there develops z = mm (x - x); since nothing can be learned from 
0 

this value, one must go back to the differential equation of§r3, which 
now is this: 

- v dx + x dv = - x dx, or 
x dv - v dx 

xx 
- dx --, 

X 

which integrated, with the addition of the required constant, gives 

~ = ln ~. or 
X X 

v = x In~, 
X 

and so 
a 

Z = 2V = 2X ln -• 
X 

§16. The velocity of the water flowing out increases at the begin
ning and afterwards decreases, and is a maximum somewhere, 
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namely at that place at which the water descends to the height 

I (mm _ nn) nn/(mm - 2nn> 
a nn ; Mariotte, also having learned this through 

experience, indicated it in his Traite du mouvement des eaux, Part III, 
disc. 3, exp. 5, and the maximum velocity itself is that which is due to 
the height 

mma [( nn )nn/(mm-2nn) _ ( nn )(mm-nn)/(mm-2nn)] 

mm - 2nn mm - nn mm - nn 

which quantity reduced becomes 

mma ( nn )nn/(mm-2nn>. 

mm - nn mm - nn 

It is seen from these formulas that the time during which the 
velocity is changed from nil to a maximum is clearly imperceptible 
when the orifice is moderately small and the pipe is not very long, but 
that it becomes noticeable when the situation is otherwise, which we 
see in leaping fountains to which water is carried through long con
duits; but these things which pertain to time intervals will be ex
plained further in the following section, and at the same time it will 
be shown how little water is ejected from very large vessels before it 
flows at maximum velocity. 

FIGURE 17 

The nature of the velocities is better understood from the attached 
Fig. 17, in which, if AB represent the total height of the fluid above 
the orifice at the beginning of flow, the curves A1CB, A2CB, A3CB 
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A4CB express the scales of the corresponding heights to which the 
fluid flowing out can ascend by its own velocity with different sizes of 
orifices. For example, the scale approaches the shape A1CB if the 
orifice has a small ratio to the area of the vessel, and [approaches] the 
shape A2CB when the base is assumed perforated by a greater open
ing; and if now the ratio of the orifice is to the area of the vessel as 

1 is to V2, that scale will be as A3CB (in which case the maximum 
velocity becomes less than in any other, and is expressly that which is 

due to the height 
2
a, by understanding that e is the number the 
e 

logarithm of which is unity, that is, to a height a little less than !a) 
and finally the scale will be as A4CB when there is almost no base 
remaining. 

§17, But now we will illustrate by a certain example that which 
was indicated above in §10: namely, that unless the orifice is very 
large, it can be considered in the calculation as infinitely small with
out very noticeable error, and therefore it can be assumed that z = x, 
as was mentioned in§§ IO and I 5. It seems that in the works of many 
Authors it prevailed that they reckoned only that no proportion of 
size of the orifice is ever to be taken, however great the orifice may be 
assumed, which matter is certainly ridiculous; at least up to this time 
no one whom I know has considered the size of the orifice correctly 
with regard to this matter. Therefore, let us consider a cylinder the 
diameter of which is only quadruple the diameter of the orifice, large 
orifices of which sort customarily occur rarely in hydraulic equip
ment; and let us consider that the surface of the water has descended 
through only one hundredth part of the entire initial height (indeed 
I assume that it has descended some little bit, because at the very 
beginning no motion can exist in the water, much less enough that the 
water flowing out can ascend by its own motion to the entire height); 
these assumptions make m = 16n and mm = 256nn, and x = i 9

0
9
0 a, 

from which there develops 

128 [ 99 - (_22_)255] a = -2:._ a 
z = 127 100 100 IOO ' 

which certainly differs somewhat from the quantity x or / 0
9
0 a, but 

nevertheless not altogether greatly, and the difference becomes much 
less when the orifice is less and when the surface of the water descends 
a little further. Therefore, this Theory differs from the common one 
very greatly at the beginning of flow, at which time the motion is less 
than was stated; on the contrary, towards the end of flow the water is 
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thrust out at a greater velocity than it should be according to the usual 
principles. 

§18. So far we have considered the motion of water having arisen 
from its own gravity; let us now consider: that the water has been 
ejected by some outside force apart from the force of gravity; that 
such a velocity has been communicated to the water flowing out that 
it can ascend to a much greater height than if the gravity of the water 
alone had produced the motion; that then that other force suddenly 
vanishes; and that the water is left by itself. But if this happens, 
experience shows that the velocity of the water decreases very quickly 
and soon is such that it is not notably greater than that velocity which 
would arise from the gravity alone of the water. Thus we see that it 
happens sometimes in leaping fountains ( the true cause and the 
measurement of which I will discuss elsewhere) that the water leaps 
up to a triple or quadruple or even greater height than is customary; 
when this happens, that leap stops suddenly, and it does not exceed 
the customary height, as far as this can be perceived by observation; 
but I am speaking about pipes perforated by not very large orifices, for 
when an orifice is somewhat larger, the leap of the water does not 
decrease so suddenly. And so, we will examine now to what extent 
the theory agrees with these phenomena, and we will include the 
accurate measures of them which follow hence. In order that we 
may indeed follow the matter generally, we will again consider that 
the area of the cylinder is to the area of the orifice as mis to n; that the 
water is driven forth at that velocity by which it can surge to the 
height a; and that at that same instant the height of the water above 
the orifice is a, the gravity of which alone now expels the water; that 
then the surface of the water descends in the Cylinder through the 
vertical height a - x, so that the residual height is x, and then that 
the velocity of the ejected water is that which is due to the height z. 
With these having thus been set forth, we will make use of the general 
differential equation of §g, which is this: 

mmnnzdx 
nnN dt - mmzy dx + --

y 
- mmyxdx 

(where again, as was indicated in §13,y is = m and N = mx), which 
in our particular case becomes 

( 1 - ::) z dx + x dz = - :: x dx, 

which, multiplied by x-mm/nn and afterwards integrated accordingly, 
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so that with x = a one has z = ex, will give the final desired equation 

z = ( mm + ~) a<2nn - mm)/nn x<mm - nn)/nn _ mm X 
2nn - mm a 2nn - mm 

or 

If this height is compared with that which was indicated in §14, the 

(
x)<mm - nn)/nn 

excess of one over the other is found to be a (X; whence 

all these Phenomena are now confirmed which were just indicated; 
indeed, when the number m is much greater than n, that excess im
mediately becomes unnoticeable after the water descends just a little 
bit, that is, after a very short time, but nevertheless all of it never 
vanishes as long as the flow endures; and, finally, it is continuously 
more notable, the more the ratio of the number m to n approaches 
unity. For instance, let the diameter of the pipe be ten times 
greater than the diameter of the orifice, and let the water be expelled 
by such a force that by its own velocity it can spring up to a height 
which is quadruple the height a, or of the water above the orifice; it is 
sought to what height the water flowing can ascend by its own velo
city after the aqueous surface has descended in the pipe through a 
thousandth part of a itself, if at the same time the water is stimulated 
to effiux through its own gravity alone, thence what the similar height 
would have been if the water had had no motion at the beginning. 
Therefore, m = 100 n, mm = 10,000 nn, x = / 0

9
0
9
0 a, ex = 4 a, from 

which in the former case one obtains 

z= [
10,000 (-222._ _ ( 999 )

9999) + (-2filL)9999] a 
9998 1000 1000 

4 
1000 

or 

z = 99,915 a + 18 a . 
100,000 100,000 ' 

but in the latter case it becomes 

Z = 99,9
1

5 a 
100,000 ' 

from which example it is evident how small and clearly unnoticeable 
is the excess of the former height above the other, and how suddenly 
that aqueous thrust is diminished since, indeed, the entire change 
occurs while the surface of the water descends through a thousandth 
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part of the height a, which time in customary hydraulic machines 
cannot be other than very short. Thus what was stated above in §17 
is confirmed as well, that certainly z = x approximately when the 
orifice is rather small, since in the present case, wherein the motion 
begins from rest, the difference between z and x is only fifteen hun
dred-thousandths of the height a itself; since in the meanwhile the 
height z is a little greater than x, it is evident that the water flowing 
out can ascend to a greater height even after the water has flowed out 
for some time, than the height of the water above the orifice. 

§19. Thus, inasmuch as we have deduced from our general Theory 
those things which attend the motion of fluids from cylinders placed 
vertically, we will now also consider pipes placed obliquely, which are 
customarily very long in leaping fountains. In these, certainly, it is 
singular that the acceleration of the motion does not occur as suddenly 
as when the Cylinders are vertical, and thus by observation one may 
perceive the accord of our Theory with the actual motion of water. 

§20. Let us consider a conduit curved any way whatever, but 
nevertheless Cylindrical, the area of which again is in proportion to 
the area of the orifice as m is to n. Let the motion begin from rest, 
and let the vertical height of the water above the orifice at the 
beginning of motion be a. Let a certain quantity of water have 
flowed out, and let the vertical height of the residual water above the 
orifice be taken as x; let the length of the conduit, which at that very 
moment is full, be g, and then let the internal water (the individual 
particles of which I assume here to be carried in a motion parallel to 
the axis of the conduit) have a velocity which corresponds to the 
height v. Thus, with these things having been set forth, if we make 
use of a reasoning similar to the above for seeking indeed the incre
ment of potential ascent while the volume element flows out, as we did 
in §6, and by assuming the same equal to the actual descent, the follow
ing equation is obtained: 

mm 
tdv - - vdg + vdg = - xdg, 

nn 

or 

( I - ::) V dg + g dv = - X dt; 

the integral of this, which is evident after the terms have been multi
plied by g- mmtnn, is this: 

V = gmm/nn-1 J _ X g-mm/nn dg. 
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If there exists, for example, a straight conduit so inclined to the hori
zontal that the sine of the intercepted angle between the two is to the 
total sine as I is to g, there will be g = gx, from which 

v = nna [(~)(nn-mm)/nn _ :a]. 
2nn - mm x 

Since this equation does not differ from the equation given in §13 for 
vertical Cylinders, it follows that in each case the velocities of the 
water are the same when the vertical descents of the surface of the 
water are the same. Therefore, similar accelerations in homologous 
places on either hand are in proportion to the vertical heights, and 
only this distinction occurs, that in an inclined conduit it happens 
more slowly, and in proportion as I tog; therefore, these accelerations 
can be perceived easily by observation in greatly inclined conduits 
which cannot be [perceived] in vertical ones on account of the ex
cessive speed of the changes. On the other hand, it is intrinsically 
evident from the fact that the frictions are increased by the length of 
the pipe that it cannot be that the velocities are not diminished, to 
which those should attend in whom there will be a desire to undertake 
experiments on this subject. 

CONCERNING THE EFFLUX OF WATER FROM 
VERTICALLY POSITIONED CYLINDERS WHICH 

TERMINATE IN OTHER NARROWER AND 
SIMILARLY VERTICAL PIPES 

§21. Experience shows that between two Cylinders wholly equal 
and similarly positioned, for one of which a rather narrow pipe corre
sponds to the orifice of the other, that the one is depleted more 
quickly which has the pipe attached, and indeed, the quicker it does 
so, the more the pipe increases in size from the place of insertion to
ward the extremity, which Mr. s'Gravesande showed to many in 
Physices Elementa Mathematica, lib. 2, cap. 8. Let us consider the entire 
matter in the following Problem. 

PROBLEM 

§22. Let there be a cylindrical vessel AEHB (Fig. 18) positioned 
vertically, perforated at FG, by which opening it connects with the 
conic tube FMNG, through the orifice MN of which water finally 
flows out. The velocity of the aqueous surface CD is sought after it 
descends from rest through AC or ED. 
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SOLUTION. Let the initial height of the water above MN, namely 
NG+ HE, be a, the height of the aqueous surface at the position CD 
above MN, that is, NG + HD, be x, the length of the annexed pipe, 
or NG, be b, the area of the orifice MN be n, the area of the orifice 

.A B 

o iM . 

FIGURE 18 

FG beg, the area of the upper Cylinder be m; let the velocity of the 
aqueous surface at CD be that which is due to the height v. In the 

general equation of§8 there will bey = m and N = m(x - b) + ~~m, 
vgn 

which substitutions, it will be evident, are conformal to the derived 
calculation, since in §6, moreover, the remaining conditions are the 
same as before. Therefore, the equation of §8 is resolved to 

bmm m3v dx 
m(x - b) dv + . 1_ dv - -- + mv dx = -mx dx 

v gn nn 

which, further, divided by m, and with one's having established 

mb 
X - b + . ;- = Z, 

vgn 
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( 1 - :: ) v dz + z dv = - z dz - b dz + ":5 ;z 

which, multiplied by z-mm/nn, yields 

( I _ ::)z-mm/nn V dz+ zl-mm/nn dv 

mbz-mm/nn dz 
-zl-mm/nn dz - bz-mm/nn dz+ v- ; 

gn 

after the integration of which, with the constant C having been added, 
there arises 

nn zenn - mm)/nn V = C _ ze2nn - mm)/nn 
2nn - mm 

nnb mnnb (nn - mm)/nn ---- zenn- mm)/nn + ---------,,= z 
nn - mm (nn - mm) Vgn 

in which the value of the constant quantity C is defined from the fact 
that at the beginning of flow, when indeed x = a or z = a - b + 
mb b . . . . . f 

• 
1
_, v = o, ecause mot10n cannot anse in an instantaneous point o 

vgn 
time; hence, therefore, it occurs that 

C= [( b mb) nn a- +--
Vgn 2nn - mm 

+ nnb Vgn - mn!:!] (a _ b 
(nn - mm) Vgn 

mb ) (nn-mm)/nn 
+- . 

v'gn 

From these equations, indeed, all things are defined; but because the 
calculation is more or less involved unless the area of the upper 
vessel, indicated by m, be so great that it can be reckoned as being 
infinite in proportion to the areas g and n, we will consider this case 
alone, and this the more so because a notable error does not arise 

from it, even if the number~ or~ be of moderate size. 
n g 

§23. Thus, if hence we set m = oo and at the same time make use 
of the first differential equation of the last paragraph, and if in this 

it is assumed that v = !!!!:._ s, so that thus from the value of the letters 
mm 

the height may be found to which water flowing out through the 
orifice MN can ascend by its own velocity, first there will be 

nn bnn nn 
- (x - b) ds + ---= ds - ms dx + - s dx = -mx dx, 
m Vgn m 
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and because m = oo it is easily foreseen that the ratio betweens and x 
will be finite, and also between ds and dx, this same equation will be 
changed, after one's having rejected the appropriate terms into this 
again: -ms dx = -mx dx, or s = x, which was already proven as 
well in §rn. But after that I decided to prove it again here because 
the present case could be seen as different from the former, about 
which there is a discussion in the aforesaid paragraph. These things 
having been understood, it is no task to explain to many the Pheno
mena in §21 concerning this matter indicated.by the Author s'Grave
sande; for it is evident that the water does not flow out through the 
composite vessel AEFMNGHB otherwise than it does through the 
simple vessel AOMNPB when, indeed, the orifice MN is very small; 
and that hence the velocity of the aqueous surface CD is greater than 
if the water were flowing through the vessel AEFGHB, after one has 
set the orifice MN = FG, and much more so if MN is greater than 
FG, which happens when the pipe increases in area towards the 
lower end. But, nevertheless, it must be observed that at the begin
ning of motion the water descends more slowly than has been thus 
defined, and that that rule does not hold until the surface CD has 
descended through some little space, which, however, occurs in a 
short time. We will examine the changes which occur in this case at 
the beginning of motion in the following section. 

§24. The computation would be undertaken in the same way if in 
the vessel, which now we always consider to be of infinite area, were 
implanted a small pipe, not vertical but horizontal, just as in Fig. 19, 
or in any other direction whatever; moreover, it is always found that 
the water, after the surface of the water in the principal vessel de
scends some little bit, soon flows out at approximately that velocity 
which corresponds to the height of that surface above the orifice. 
Therefore, it is clear that, with the height of the water above the pipe 
GN as well as the orifice FG itself being maintained, the quantity of 
water flowing out in a given time is increased by the increased area 
of the orifice MN. Accordingly, therefore, we have given a descrip
tion here of what was mentioned at the end of §5, Chapter I: that 
Frontinus had learned from experience, certainly, that more water than 
is due is appropriated through a calix of both legitimate size and position to 
which pipes of larger size are direct!)! attached. And certainly quantities 
of water, all other things being equal, would be expended, approxi
mately proportional to the orifices MN themselves unless there should 
be many hindrances; the latter may diminish this quantity greatly, 
about which I will speak soon. These hindrances can act so that 
the flow of water is increased very little on account of the increased 
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final orifice; nevertheless it will always be increased some little 
bit. 

R Q 

FIGURE 19 

§25. From the previous discussion it is evident that the velocity by 
which the surface CD of the water in either case about which we spoke 
descends, the remaining things being equal, depends on the area of the 
orifices MN. Moreover, these things are supported by the hypo
thesis that the water adheres everywhere to the walls of the pipes GN, 
and it flows out from the full orifice MN, which hypothesis cannot hold 
further if that orifice should be increased too much. Hence also it is 
evident when water flows out through the vertical pipe in Fig. 18 
that its flow is accelerated by an increased length of this pipe; never
theless the latter can also be increased so that finally the water ceases 
to be continuous in the pipe, in fact, so that it is rather divided into 
columns, which may occur if the pipe has a length of more than 
thirty-two feet or even less if at the same time it increases in area 
toward MN. Thus if the orifice MN is double the other orifice FG, 
the length cannot be greater than eight feet without danger of separa
tion of the water following in the uppermost part of the pipe, which 
matter I will show elsewhere. But there is an additional cause 
besides the excessive length of the pipe which can produce separation 
of the water, namely, that the height of the water CEHD be less than 
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that which can enter the pipe quickly enough, by which it occurs that 
air together with water flows in above at the same time, while the 
surface of the water assumes the form of a cataract or of a bottomless 
hollow, such that not all of the orificeFG is covered by water. Indeed 
this causes the water to flow out in a lesser amount, but not at a lesser 
velocity, which a certain Italian Author, Carlo Fontana by name, 
considered later; he wrote the following about this matter in his own 
vernacular Language: "But if here there were not," he says, "as much 
water as would be sufficient to maintain the said pipe full, the water will 
attract air within itself in as great a quantity as water will be lacking to it for 
intermixing within the water on all sides; but the velocity ef the water will be 
lacking as much as will be the height ef all the air collected together that will be 
in that pipe." Anyone discerns the reasoning of this, because I stated 
that the velocity of the water can hence not be diminished, from the 
fact that otherwise the potential ascent could not be equal to the actual 
descent, and the matter will be confirmed easily by experiment, with 
the extremity MN of the pipe being bent so that the water flows out 
horizontally, and from the area of the jet the velocity of the water can 
be determined. Moreover, it may occur in any manner it pleases 
that, with none of the other conditions changed, the air is mixed with 
the water around the top of the pipe; thus remember, indeed, if there 
is a tiny opening in the pipe not at all far from the orifice FG (Figs. 18 
and 19), and if, further, during the flow of water one has closed that 
little opening with a finger, pure water will flow through, and if one 
removes his finger, soon air will enter through the same little opening 
and will mix itself with the water flowing through. These things 
having been understood, it will be easy to present the reasoning of 
the Phenomena which are observed in chimneys, or smoke ducts; 
indeed smoke seeks height, because it is lighter than air, which is 
consistent with experiments performed on smoke in a vacuum, where 
it was seen to have descended. Therefore, it is the same for smoke 
ascending as for water descending; but in Fig. 18 the latter flows 
through the orifice MN more quickly, the larger it is, and the lower it 
is positioned; therefore, also, the smoke will travel through the 
chimney more quickly, the more the fire is kindled in the furnace, 
the higher the chimney is carried, and the more it diverges facing 
upward, if only it does not diverge too much; experience confirms 
each of these. I myself then learned in addition that if the chimney 
be perforated somewhere, it is not at all so that the smoke attempts an 
exit through that opening, but rather that air rushes in with a great 
impetus, and, mixing itself with the smoke, it rises through the 
chimney, and not otherwise than as we indicated that the air rushes 
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into the pipe FGNM (Figs. 18 and 19). So indeed the smoke ascends 
certainly in a lesser amount, or at least with more difficulty, and the 
fire slackens. 

Still, there are two causes in particular, the one extraneous, the 
other intrinsic in the nature of the matter, which can greatly retard 
the motion of the water in Figs. 18 and 19. The first is the adhesion 
of the water to the walls of the pipe, and the other is that when the 
pipe increases in area, the velocity of the water, nowhere constant to 
itself, is changing in every location in the pipe; if this change is con
sidered to arise from infinitely small impulses of water moving more 
quickly into water moving less quickly, it appears that at every in
stant by these impulses of flexible bodies some of the potential ascent 
is lost, whence necessarily the effiux of the water is noticeably 
diminished. 

§26. Finally, now I will say something about curved vessels from 
which not all the water flows: for the sake of brevity we will consider 
a cylindrical conduit, a certain part of which, that the aqueous surface 
does not cross, is straight. 

PROBLEM 

For example, consider the cylindrical conduit CEDE (Fig. 20), the 
sufficient portion CE of which is straight, the remaining EDE being 

C 

FIGURE 20 

curved in any way whatever; the whole conduit is full of water that 
will flow out through the orifice E; after the surface of the water has 
fallen from C to F, the height corresponding to the velocity of the 
water at Fis sought. 
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SOLUTION. Let the vertical BH and the horizontals CH, FG, AB be 
drawn, and let the sine of the angle HCE be to the total sine as I is to 
g. But now, ifwe consider the matter properly, we will see that the 
present problem is contained in the other more general one which 
we treated above in §20, where we had this equation: 

V = gmm/nn-1 I_ xg-mm/nn ds 

where, for our present case, v represents the desired height corre
sponding to the velocity of the aqueous surface at the position F, 

g the length BDEF, x the height BG, and also~ the index of the ratio 
n 

between the areas of the pipe and the orifice B. But if the length 

BDA is set equal to a, one will have x = g - a, from which now 
g 

V = gmm/nn-1 J _ (S; a) g-mm/nn df 

Let the length of the entire conduit BDEC be indicated by {3, and 
one will have 

J- (g - a) g-mm/nn ds = nna (g<nn-mm)/nn - f3<nn-mm) /nn) 
g g(nn - mm) 

nn (s<2nn-mm)/nn _ f3<2nn-mm) /nn) 
g(2nn - mm) 

and therefore 

V = nna (r _ (~)(nn-mm)/nn) 
g(nn - mm) 1, 

-,--_nn_q -,- ( I _ (~) (2nn -mm)/nn) • 

g(2nn - mm) \, 
Q.E.I. 

ScHOLIUM 

§27. Since these equations are somewhat involved, we will not 
tarry in the general contemplation of them, considering, rather, those 
particular cases which shorten the calculation and which cannot be 
defined by that last equation. 

If we assume that the cover at B is wholly absent, it occurs that 
m = n, and (which must be determined separately for this and equally 
for the other case soon to be discussed) 

b - g + alns - alnf3 
V = ----------'-

g 
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and then the velocity is a maximum at A, and expressly that which 
corresponds to the height 

f3 - a + alna - alnf3. 
g 

Finally, the point E corresponding to the maximum descent 1s 
obtained with the aid of this equation: 

t - alnt = f3 - alnf3. 

The other case 1s to be calculated separately, when mm = 2nn, 
where there arises 

at - af3 - tf3lnt + tf3lnf3 
V = -----------

gf3 
and also, if it is considered, e having been assumed as the number of 
which the logarithm is unity, that t = e<«-fJl l fJ {3, then the point of 
maximum velocity will be determined, of which the generating height 
is e<« - fJl l fJ f3 - a, while the maximum descent, which is proportional 
to the total water flowing out, is defined by making 

at - af3 - tf3lnt + tf3lnf3 = o. 

I do not doubt but that these would correspond to practice exactly, 
if only the adhesion of the water to the walls of the pipe would not 
retard the motion; nevertheless, I consider that the results of the 
experiments can be such that they show the truth of these propositions 
well enough to the intelligent person, who has an understanding of 
these impediments. 

§28. Finally, I will show the correct solution of a certain phenom
enon which at first glance seems to be very much a paradox. 
Indeed, after it appears from all these things freely discussed up to 
now that it cannot happen that the water flows out at a much greater 
velocity than that which is due to the height of the water above the 
orifice (nevertheless they can be somewhat greater, especially if the 
orifices are large; refer to what I said in § I 6 concerning maximum velocities), 
it will seem to many perhaps a wonder that it occurs sometimes in leaping 
fountains that for an instant water makes a far higher thrust than seems 
possible according to our rules. It is far from true that these [rules] 
therefore lose some of their power; in fact, they are rather exceedingly 
strengthened. Moreover, the solution of the paradox consists in this: 
so far we have considered the water as continuous and not separated 
by any air void; and Mr. de la Hire rightly observed that irregular 
spurts of this sort do not occur unless air together with water has 
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entered the pipe somewhat like bubbling water, which, as I indicated 
in §25, occurs frequently. Indeed, that air is carried together with 
the water right up to the orifice of effiux, through which it then erupts. 
While this occurs, the aqueous mass acquires an impetus which it 
employs exclusively in expelling the water, and in this way it produces 
an enormous thrust. Soon I will explain this cause of the phenom
enon more clearly together with the required measurements, after 
I have presented some statements which appear concerning this 
matter in the History of the Royal Academy of Science of Paris for the 
Year r 702. It states in the place cited: "It is seen sometimes that water 
discharging through an orifice springs forth three or four times as high as the 
height of the reservoir would permit, and that it also comes back quite quickly to 
the height which the laws of hydrostatics prescribe to it. But how could it 
deviate from it for an instant? Mr. de la Hire attributes this to the air en
closed in the conduit, which, being compressed by the continuously descending 
water and thus gaining a spring force, is released against the rising part of the 
water and imparts to it this instantaneous velocity." 

And so Mr. de la Hire noticed correctly that the spurt is due to the 
air, and there is no doubt but that he would have extracted the 
correct reason by which air can produce this if he had considered 
more carefully the phenomenon to which he referred incidentally, and 
he would have easily perceived, certainly, that the air within the water 
sustains no pressure except that of the water lying above (on the 
contrary, not even this much in flowing water, as I will show below in 
Chapter XII), and that therefore the compressed air cannot expel 
the water preceding it more strongly than if water had been in its 
place. I certainly saw in advance (which I found often afterwards 
by very simple experiment) that it is not the water located in front of 
the air but that which follows the air that rises unusually high, which 
I will now show more clearly. 

Therefore, in Fig. 20 let the aqueduct CADE be cylindrical, as is 
customary, and let the whole of it be filled with water, except the 
small part mnB filled with air. Let the horizontal and vertical lines 
CH and HE be drawn; let us assume for the sake of brevity that the 
gravity of air can be considered as null with respect to the gravity of 
water, so that the transition of the air through the orifice B offers no 
resistance to the flow of the water, although concerning the remaining 
it would be easy to take into account the inertia of the air, unless we 
wish to avoid an abundance of calculation in a matter in which we 
require no prec1s10n. Let the length of the conduit CADf or CADm 
(indeed we assume the differential nif filled with air to be very small) 
be fi; mf or ng be o, HE be a, the area of the pipe be m, the area of the 
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orifice B be n. Finally, let us state that the water has no motion when 
the surface is at mn; that the height due to the velocity which the 
surface mn has when it arrives at the positionfg is to be sought; let 
that height be v, and the potential ascent of all the water at that very 
instant will also be v; moreover, the actual descent is, through §7, equal 
to the fourth proportional with respect to the total mass of water, the 
volume element of water mngj, and the vertical height HE, that is, 
8 8 "ff a; therefore v = ~ a. Indeed, this height is at once diminished 

faster than stated, and the water is forced to flow through the orifice 
B, which I showed in §18; but, nevertheless, at the first instant the 
water will retain the motion which it acquired, and thus the volume 
element closest to the orifice will be ejected at a velocity which is due 

to the height mmf3S a. However, this height can be not only triple or 
nn 

quadruple a itself, but howsoever great; indeed, with glass tubes I 
created thrusts ten or twenty times as high as a itself at will. For 
instance, if 8 = 100 feet, (3 = one inch, but the diameter of the 
tube is tenfold the diameter of the orifice, then one will have 

mm8 10,000 h . h . h fi 1 1 nnf3 = 
1200 

a, so t at m t ese circumstances t e rst vo ume e e-

ment must spring forth, with the resistance of the air removed, to a 
height more than eight times as great as the customary height a. In 
addition, there are many hindrances, and these are of greatest im
portance, which restrain huge thrusts; indeed, something from the 
motion is lost by the impulse of the aqueous surface mn against the 
wall jg, then also by the enormous friction which the water experi
ences, having been carried so quickly through the little orifice, which 
has to be very small; much is also lost from the fact that the water 
CADm is not moved with all its velocity on account of the adhesion of 
the water to the walls of the pipe, which adhesion is clearly noticeable 
in so long a reach. 

Meanwhile, there can be no doubt that this is the correct solution 
of the phenomenon, and the experiments which I performed satisfy 
that solution in every extent. Then, as well, by this theory the other 
aspect of the phenomenon is solved correctly, namely, that that thrust 
is quasi-instantaneous, and after the shortest little time interval it is no 
greater than usual, according to observation. Thus in the present 
case that we just considered, if, with the rule of §18 changed a little 
(for there the only case discussed is that concerning vessels placed 
vertically), we investigate how much water must flow out in order 
that the thrust does not exceed the customary thrust by more than a 
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thousandth part (which in any case can by no means be observed in 
experiments of this sort), ifit was eight times as great as the same at 
the start, we find that that quantity is so small that the time in which 
the whole ofit is ejected can in no way be perceived. 

EXPERIMENTS WHICH PERTAIN TO CHAPTER III 

FOREWORD 

Indeed there are many things in this Chapter, and these quite 
extraordinary, which can hardly be subjected to experiments imme
diate!;)I. And indeed, since Authors up to now have not considered 
any motion in the efflux of fluids other than that which occurs through 
very small orifices, and accordingly, since our theory which we gave 
for arbitrary areas of orifices is new, this is the very thing the con
firmation of which should be most gratifying. But I do not see in 
what way in vertical Cylinders, which we treated the most, the 
velocity of the water flowing out can be observed, especially when 
the orifice is very large (indeed, on the contrary, some judgment of the 
velocities can be made from the time of depletion). Thus, consider
ing this, I reasoned at last that §§16 and 20 could be useful to our ob
jective: in the former the maximum velocity of water flowing out of 
cylinders placed vertically had been determined; in the other, more
over, it was shown that the motion is the same from obliquely placed 
and vertical cylinders if both vertical heights are assumed alike. 
Therefore, we will make suitable use of cylinders placed obliquely in 
order that from the maximum area of the aqueous thrust the maximum 
velocity of the water or the height due to the same can be obtained by 
experiment; and indeed, by this reasoning that maximum velocity, 
whatever it really is, can be investigated, even if the orifices are as 
large as one wishes. Accordingly, if this is observed to agree with our 
rules, no doubt can remain regarding the entire theory. But before 
I attack the matter itself, the mechanics theorem that follows is to be 
set forth in advance. 

LEMMA 

Let the line AB (Fig. 21) be vertical, ED horizontal; in addition 
let the line AD have any direction whatever, in which direction a 
body at A is understood to be projected, describing the arc AC of a 
parabola, the tangent of which at A is certainly the straight line AD; 
the height due to the velocity at which the body at A was projected 
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A 

FIGURE 21 

. (BC) 2 
· (AD) 2 

will be 
4

AB-BD-CD; and if AD is horizontal, or BAD is a right 

angle, that same height will be (!if· But now I will show those 

things observed by me. 

CONCERNING THE MAXIMUM VELOCITIES OF 
FLUIDS FLOWING OUT THROUGH VERY LARGE 

ORIFICES 

PERTAINING TO §§16 and 20 

FIRST EXPERIMENT. I placed the Cylindrical Pipe FA (Fig. 22), of 
a length of four inches, obliquely to the horizon, and I secured it in 
that position; moreover, the area of the pipe was to the area of the 
opening at A as 2 is to 1, and the diameter of the pipe was equal to 
seven lines, more or less. Then, after measurements of the lines FE, 
AB and BD had been taken in equal units (the law of which is evident 
intrinsically from the figure itself), I found them to be 81, 619, and 
74o. 

With these things so prepared, I filled the pipe with water, having 
closed the orifice A meanwhile with a finger, and with this suddenly 
removed, all the water flowed out in the shortest bit oftime; however, 
I was able to observe that the first and the last [portions] had fallen 
nearer to the vertical AB than the intermediate [ones]; moreover, 
that the drops projected the furthest fell at the point C. And I found 
after rather frequent repetition of the experiment that BC was 235 
of the units which I had used before. 
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But now, if through the previous lemma the height EC is desired to 
which the drops ejected at the maximum velocity can ascend, it is 
found that EC = 56 units; however, by dint of§§r6 and 20 it should 
be 62, unless the friction of the water and its adhesion to the sides of 
the pipe contribute an impediment to the motion; I did not expect 
a greater agreement. 

.................. :1:1 

FIGURE 22 

II. With things arranged as previously, only with the orifice A 
diminished to half so that the area of the pipe was quadruple the area 
pertaining to the opening, I observed that BC = 252. Hence it is 
deduced through experiment that EC = 68, but by theory it should 
be = 70; these numbers differ less than the preceding because here 
friction was a far lesser impediment on account of the diminished 
velocity of the internal water. However, each experiment actually 
confirms the theory excellently. 

CONCERNING THE VELOCITY OF WATER FLOWING 
FORTH FROM A VERY LARGE VESSEL 

PERTAINING TO §17 

In that paragraph we say that if a vessel is very large, soon after 
the internal surface descends some little bit, water flows forth at a 
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velocity which corresponds constantly to the height of the water 
above the orifice. However, one may allow that the water flows in 
any direction whatever (for indeed, in very large vessels any direction 
of the stream cannot change the velocity), and one may observe at 
any arbitrary instant at what distance from the vertical the stream 
impinges on the horizontal, and from there one may seek through 
the previous rule the height corresponding to the velocity of the water 
flowing out at that instant; thus one always finds that height equal to 
the height of the water above the center of the orifice, if only one 
overlooks the first few drops which, by dint of§16, must flow out and 
actually do flow out at a lesser velocity. And the hindrances, which 
we have mentioned rather frequently, will cause no noticeable delay 
to the flow if only the diameter of the orifice equals at least two or 
three lines and the diameter of the vessel itself is not less than a few 
inches, and, finally, the height of the water is not excessive, such as 
very many feet. 

I tested all this often, but the nature of the experiment is too 
trivial for it to merit being described fully. 

CONCERNING VESSELS WHICH ARE PROVIDED 
WITH VERTICAL PIPES 

PERTAINING TO §§22 and 23 

Concerning these things the honored s'Gravesande, in Physices 
Elementa Mathematica, undertook experiments which I repeated; in 
fact, those which apply to the present matter are brought out es
pecially at this point. 

Namely, in Figs. 23, 24, 25 and 26, the individual apertures 
denoted by the letter A are equal to each other, with B alone being 
little greater, in the proportion of 16 to 25, and also the areas as well 
as the heights of the cylinders are equal, except for the last, the height 
of which is quadruple; however, the pipes annexed to the two inter
mediate cylinders have triple the length of the cylinders. Therefore, 
after these vessels were filled with water, it was observed concerning 
its efflux: 

I. That the surface of the water from the beginning does not 
descend more quickly in Fig. 23 than in Fig. 24; but that, after some 
water has flowed out from each, the motion becomes much quicker 
in the composite vessel than in the simple; I predicted both at the 
end of§23. But the matter is understood better and more accurately 
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from the differential equations which we gave in §§22 and 23 if we 
make use of them for finding the first increments of motion in the 
simple cylinder of Fig. 23 as well as in the composite one of Fig. 24, 
and if to this end we assume the areas of the cylinder and the pipe to 

LJ 

A 
A B 

FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 26 

be as m to n, the increment, which we called dv in the simple vessel, 

will be to the increment in the composite vessel as 1 + 3m is to 4, and 
n 

therefore greater by far in the former case than in the latter. There
fore, ifit should be granted to perceive that first motion correctly, we 
would observe at once that that is quicker which occurs in the simple 
Cylinder. Since, in fact, in §§15 and 23 it was demonstrated further 
that the water surfaces, after they have descended a little in each 
vessel, are approximately such that they correspond to the heights 

!!:!!_ x, by understanding by x the heights of the water above the orifices 
mm 
through which it flows; it follows directly that the water descends at 
a much greater velocity in Fig. 24 than Fig. 26. Thus, therefore, the 
Theory clearly agrees with the observations. 

II. That the aqueous surface descends considerably more quickly 
in Fig. 26 than 24, so that the velocity in the case of Fig. 24 is some
what halfway between the cases of Figs. 23 and 26. Here, indeed, it 
is evident again that the first accelerations occur much more slowly 
in the cylinder of Fig. 24 than that of Fig. 26. Therefore, in this 
respect the theory itself indicates what was observed; certainly some
thing is missing that as great a difference as I found can hence de
velop, and it should no longer be noticeable after either surface 
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descends a little, according to §23. However, that difference must be 
attributed to a hindrance which arises from the friction of the water 
in Fig. 24; indeed, the water is carried at a great velocity through the 
pipe AA, and thus as much on account of the increased velocity as on 
account of the diminished area of the vessel a very effective impedi
ment is offered to the motion of the water. 

III. Finally, that the aqueous surface descends very quickly in the 
Cylinder of Fig. 25, if one excludes the first instant, and notably more 
quickly than in Fig. 26. 

Indeed, this conforms to those things which have been shown in 
§23; however, soon after the common beginning of motion, namely, 
after the heights of water above the orifices of effiux have been set 
almost equal, the velocities in Figs. 25 and 26 should be approxi
mately as the areas of the orifices B and A, that is, as 25 to r 6; and 
since a smaller difference of velocities is observed, this is again to be 
attributed to the impediment of friction more than to the other cause 
indicated at the end of§25. 

CONCERNING THE SAME VESSELS, IN WHICH 
HORIZONTAL PIPES ARE INSERTED 

PERTAINING TO §24 

When water flows from a rather large vessel such as CDG (Fig. rg) 
through the horizontal pipe GM larger at the extremity NM than at 
the origin GF, the former is carried through the orifice GF at a greater 
velocity (if again one overlooks the first drops) than if the pipe were 
either absent or Cylindrical. Even Frontinus, taught by experience 
without doubt, affirmed this, but several modern men have denied it. 

Therefore, as something worth the effort, I undertook to investigate 
the matter by experiment. Now the height of the vessel which I 
used was 5¼ English inches above the axis of the pipe, the length of 
the pipe GN was 2 inches 5 lines, the diameter of the orifice GF was 
3.36 lines, the diameter of the aperture MN was 5.48 lines; thus the 
areas of the orifices were approximately as 3 to 8; the area of the 
vessel was large enough that it could be considered infinite with 
respect to the area of the pipe. I have wished to dispatch all measure
ments so that anyone can repeat the experiment. Now, after this 
vessel had been filled with water, I observed the area of the jet, and 
from this, after I had acquired all the measurements needed, I made 
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a calculation of the height which should be due to the velocity of the 
water flowing through at CF as well as at NM; I found the latter to 
be approximately eleven lines, and thence the other to be I inch 
6f lines, which same heights I found as well in another type of ex
periment. But since the height 6 inches and 6} lines is greater than 
5¼ inches, our theory is confirmed about the acceleration of internal 
water by amplification of the pipe towards the extremity, although, 
as I predicted chiefly because of the two reasons dispatched in §25, it 
may be far from actually being accelerated as much as it should 
according to §24, after the obstacles have been subtracted which have 
not been considered in the calculation. 

PERTAINING TO §25 

In this paragraph I mentioned in passing that it can occur in many 
ways that air is mixed with water flowing through pipes. But from 
this it will happen that water flows out in a lesser amount certainly, 
but not at a lesser velocity; in order that I might prove one as well as 
the other, I first made a very small orifice in both the pipes AA and 
AB (Figs. 24 and 25) not far from their Origin; it is a fact that the 
water was carried through the pipes with some noise and flowed out 
in a turbulent state; moreover, the surface descended much more 
slowly than is customary. Then I perforated the pipe of Fig. 19 
somewhat similarly, not far from G, and again I observed that the 
internal surface descended a little more slowly, of which matter I was 
certain, since I counted the oscillations of a certain pendulum while 
the surface descended through a given length; but with an under
standing of the flowing out of the water, I saw that sometimes the 
water flows out from a full orifice and then the water is less clear than 
usual, but it makes an ordinary jet or one greater by a little bit than 
ordinary; however, most often the water and air are carried side by 
side, the former in the lower part of the pipe along the wall FM, the 
latter in the upper, along GN, and then the water is clear and is 
ejected at a velocity not only by no means smaller than the usual but 
even much greater; I had foreseen that this could occur by no means 
obscurely. Concerning this matter, in the following Chapter I will 
discuss another experiment undertaken with greater precision. 

However, a place will probably be given elsewhere for showing that 
water mixed with a sufficient quantity of air flows out almost at that 
amount at which it would flow from a pipe cut off at that place where 
it is perforated, to which matter I noticed that my own experience 
corresponds also. 
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CONCERNING CURVED CONDUITS 

PERTAINING TO §27 

The horizontal MN (Fig. 27) having been drawn on a wall, I 
placed the cylindrical pipe CDB, having both legs parallel to each 
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other, wholly filled with water, so that the one extremity B would just 
touch the horizontal MN, and also that the legs would be vertical, 
while at the same time I blocked the orifice C with my finger, thus 
restraining the flow of water. 

Then I observed, after the finger had been removed, the maximum 
height BP to which the water flowing out ascended, and at other times 
I noticed the point E to which the surface of the water descended; 
however, I performed the experiment under two different conditions; 
indeed, in the first instance I had not placed a cover at B, then I used 
a cover perforated by such an opening that it had an area in ratio to 

the area of the pipe as I to V2. Meanwhile, the measurements were 
such: CA = 345; ADE = 530; BP= 33; and AE = 88 units, 375 of 
which were equal to the length of a London Foot. Things were so in 
the prior case, but in the other, with the rest of the things being un
changed, I observed BP = 64 and AE = 54. I will note here in 
passing that, desiring to determine the maximum descent AE in 
another way, I inclined the pipe after the experiment was ended until 
the water seemed just precisely at efflux through B, at which instant 
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I measured the distance of the surface from the point A noted pre
viously; that distance which I considered to be the same as the 
maximum descent AE was far less than expected; whence I learned 
that a part of the water which had already flowed out through B in 
the experiment had entered the pipe again. 

Thus, after those things had been observed, I sought the magni
tudes of BP and AE by calculation, according to §27, by setting 
first m = n, and then mm = 2nn; but I found in the former case that 
BP = 79, which in the experiment did not exceed 33, and I dis
covered the maximum descent AE approximately equal to 250, which 
the experiment gave as 88. Next, for the case of mm = 2nn, BP 
appears more or less double that which had been observed, and AE = 
186, which had been observed as 54 units. 

I attribute these enormous differences for the most part to the 
adhesion of the water to the walls of the pipe, which adhesion in cases 
of this sort can certainly exert an incredible effect. In fact, I used a 
pipe of hardly more than two lines in diameter, and certainly I will 
experience a greater agreement with a larger pipe. Meanwhile, it is 
likely that the curvature of the pipe in the lower region also takes 
something away from the motion. 

PERTAINING TO §28 

I made use of the same curved pipe which I just described; but I 
placed a cap at B perforated by a very small orifice. I filled the 
whole thing with water except the small region FGB, in which loca
tion I detained the water with the help of a finger placed on the ori
fice C. After the finger was removed, the water descended, and 
when it had arrived at the position HDB, a number of drops were as 
if exploded at so great an impetus through the little orifice at B that 
they ascended to a height of more than ten feet, although the height 
HA hardly exceeded a height of half a foot. However, on account of 
the smallness of the little orifice the water encountered so much re
sistance while it went through the orifice that, after the impetus had 
been weakened, the water not only did not ascend to the height AH 
(above which nevertheless, with all hindrances removed, it should 
have continuously sprung a little) but hardly a drop or so was pressed 
out in a noticeable passage of time, so that I am convinced that if, 
apart from impetus, so great a thrust were to be produced from the 
natural pressure of the water alone, this would not occur except under 
a height of at least one hundred feet. 

Further, I observed as well that the thrust of the water is diminished 
more, the smaller is the space GB before the experiment; all these 
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things conform to the theory. It would have been superfluous to 
take measurements, because on account of the excessive hindrances 
certainly the thrust of the water cannot be as great as it would be 
with the [hindrances] removed. But nevertheless, in order that I 
might confirm that these things in the experiment also agree with the 
formulas, I took a larger pipe CDB in order to eliminate the hin
drances of adhesion for the most part; the region DFB was very small, 
and the region GB, which I left free of water in the experiment, even 
smaller; and finally the cap was perforated by an orifice not alto
gether small. And then I saw that the leap was not very much less 

than the height mm: a, which I gave in §28 for this situation, and I 
nn,-, 

even remember that I had predicted the height of the leap correctly 
to a Friend who was present after I had considered approximately 
how much should be given to the hindrances in the calculation. 

One will obtain a similar instantaneous explosion of water very 
easily, and this arises from a similar cause with fountains which 
eject water through a pipe with a full orifice. If, for instance, one 
places a finger suddenly over the orifice of the pipe, so that part of the 
orifice remains open, one will see directly that the water is expelled 
with a great impetus, and soon the thin thread of water is reduced to 
within the original limits of the velocity. One will observe also that 
the water is projected further and with a greater impetus the less one 
leaves the orifice open with the finger, and, for the same orifice 
having been left open, that the unusual thrust is drawn forth more 
(but always very quickly) and is made more noticeable to the eye, the 
longer is the pipe, so that in leaping fountains to which water is car
ried from a reservoir through very long conduits, if the conduits are 
not very large and if the water flows out of the full orifice, I do not 
doubt but that through a noticeable period of time a vigorous thrust 
of water can thus be produced, returning gradually to the usual 
velocity. All this conforms to what has been shown in §§28 and 18. 

I remember that I performed this experiment at some time or other, 
and for the first time, indeed, in the presence of the most honorable 
gentlemen, Messrs. De Maupertuis and Clairaut, with whom I had 
previously gotten into a violent discussion on those hydraulic matters. 
But although on this occasion there is no air which can be blamed, in 
truth, nevertheless, this phenomenon does not differ from that which 
Mr. de la Hire has observed, and each develops from the fact that the 
motion of the water contained in the conduit, which the enormous 
thrust of the water itself constitutes, or at least part of that motion, 
cannot be lost without any effect arising thence. 



FOUR TH CHAPTER 

Concerning the Various Times which can be 
Expected° in the Eifiux of Water 

§1. It will seem to many to be a completely Geometrical matter, 
which certainly has no concern with any physical consideration, that, 
when water flows from a given vessel through a known aperture at 
velocities determined in every position, the time be defined in which 
a given quantity of water flows out. Nevertheless, experience shows 
the contrary; for water flows out through orifices which exist in a thin 
place at a much lesser quantity than should follow from the simple 
consideration of the velocities, and this for the most part (for the 
matter was not self-consistent in different circumstances) in the ratio 

of I to V2; this moved Newton to affirm in the first edition of Principia 
Mathematica Philosophiae Naturalis that water flows from a vessel at that 
velocity which is generated by half the height of the water above the 
orifice, which opinion all experiments undertaken on velocities con
tradict immediately. Exploring the origin of this contradiction a 
little later, this great Man himself observed that it was located in the 
contraction of the aqueous stream, which contraction customarily 
occurs immediately in front of the orifice. Also, another change in 
the stream, now similar, now contrary to the former, was observed 
by me. Indeed, when water flows out not through a simple orifice 
but through a pipe, the stream is again contracted if the pipe converges 
toward the exterior, but is dilated if the same diverges. Concerning 
the contraction of the aqueous stream flowing out through convergent 
pipes, Giovanni Poleni performed very accurate experiments in the 
book de castellis [reservoirs] p. 15ff. The contraction of the stream 
was observed by this Most Celebrated Man to be greater, the greater 
was the internal orifice of the conic pipe, the external orifice and the 
length of the pipe being maintained, which is the reason that a similar 
quantity of water will flow out more slowly, the remaining things 
being equal, the greater the internal orifice will be, although the 



HYDRODYNAMICS, CHAPTER IV 

impediments from the adhesion of the water to the sides of the pipe 
continually will have a lesser effect; however, those diminutions of the 
impediments would cause the water to flow at a greater velocity at the 
place where the stream was contracted the most, and [the water] 
would be expended no less sparingly; truly, that is understood to 
occur from the observed times of efflux and the areas of the streams 
where they are contracted the most. Therefore, since the crux of the 
matter turns on these changes of the stream, one will be able from this 
to examine and explain the phenomena more fully. 

§2. Let us assume, for instance, a vertical cylinder which has an 
orifice in the middle of its horizontally situated base, but let the 
internal water be considered as divided into horizontal strata. With 
these things thus assumed, we consider that the motion of every 
stratum whatever is the same, and certainly such that a horizontal 
position is preserved in them; however, I have warned that this hypo
thesis cannot be extended to the strata near the orifice, but that, since 
thence no noticeable error can arise by reason of the velocity of the 
flowing water, it is not worth the effort to take this matter into 
account. But now, since other phenomena depend upon the oblique 
motion of the internal water, especially such as when it is in the pre
viously mentioned strata near the orifice, we will illustrate this in a 
few words. 

§3. Moreover, it seems to me that the motion of the internal water 
is to be considered such as it would be if the water were carried 
through infinitely small pipes placed next to each other, of which the 
intermediate descend nearly directly from the surface towards the 
orifice, the remaining being curved gradually near the orifice, as 
Fig. 28a shows, from which it appears that the individual particles 
descend in this way with a motion very nearly vertical until they 
approach the base closely, and they then turn their course gradually 
toward the orifice, so that the particles near the base flow with an 
almost horizontal motion, the others more vertically, toward the ori
fice. I was able to observe this sort of motion often by eye when wax 
particles, which they call Spanish, were immersed in the water. 
Thence it is also known that the individual particles existing at the 
orifice cannot preserve their entire direction, and nevertheless they do 
not turn it so that they assume a motion clearly parallel to the axis, 
but rather the stream of water flowing out will be contracted right to 
de, where accordingly [the stream J will be noticeably more slender 
than at the origin near the orifice ac. But this contraction of the ver
tically flowing stream is not to be confused with the other contraction 
which occurs from the acceleration of the water. Next, it is also 
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evident that when the direction of the individual particles near the 
orifice is different, unavoidably from the impetus which the same par
ticles create mutually between themselves, the stream is compressed, 

A D 

C 

.... -: 

d •··•·· e 

FIGURE 28a 

and thus it thins. And from that compression it occurs, which other
wise would involve a contradiction, that the water already gone out is 
accelerated even in front of the orifice, and thus the potential ascent 
increases, even if we pay no attention to the other acceleration 
common to all falling bodies, as if not pertinent here, and we will not 
make mention of it from now on. But unless I am mistaken, this 
matter ought to be treated further in the following way. 

I. At the outset the stream of water is to be considered while the 
velocities of the particles are not being changed further, which, al
though it never happens in all rigor, nevertheless is to be understood 
to occur not far from the orifice, such as at de. But if this were to be 
so and the water were assumed to flow out of the vessel ABCD through 
the orifice ac, in place of the simple vessel ABCD there is to be under
stood some other composite one ABadecCD. 

Therefore, anything that was set forth in the preceding section for 
determining velocities everywhere will apply fully if in place of the 
proposed vessel a vessel is considered, as I said, provided with a small 
contracted pipe. Nevertheless, by reason of our previously mentioned 
method of determining velocities of water flowing out, this correction 
cannot produce a noticeable change on account of the shortness of the 
small pipe adce, but it can produce an exceedingly noticeable one with 
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respect to the quantity [ of water], because the water is to be considered 
as flowing out through de rather than through the orifice ac. 

II. Thus the velocities in different places in the stream itself will be 
reciprocally as the areas of the corresponding sections, and since in 
very wide vessels the velocity at de is such that it compares to the total 
height of the water, and at the same time it is known from experiments 

that the areas ac and de are approximately as V2 is to r, thus Newton 
thought his theory could be confirmed in which he stated that the 
water truly flows out from an orifice at a velocity that is due to half 
the height of the water above the orifice, although, in progressing, 
the velocity of the water increases; with regard to this, it seems to me 
that he adhered too much to a preconceived opinion: for neither is 
the ratio of the orifice ac to de always the same, nor can the motion of 
the water from the vessel to which a small pipe is attached thus be 
explained; in a word, the attenuation of the stream is by all means 
accidental, for the whole ofit can be avoided by applying a very small 
cylindrical pipe to the orifice or by merely increasing the thickness of 
the plate in which the orifice lies, and then without that correction the 
theorems which were shown in the preceding section apply as much 
with respect to velocities as to quantities [of water]. 

III. It is also evident from the very explanation given above on the 
contraction of the stream that it cannot remain unchanged by diverse 
circumstances; thus, experiments show that the-same is diminished by 
an increased thickness of the walls of the orifice; I am not sure 
whether the height of the water above the orifice contributes anything. 
I should almost believe that the contraction increases some little bit on 
account of the increased height of the internal water, although I 
readily foresee that it will be slight. Also, it is probable that the lesser 
will be the contraction of the stream, especially a vertical one, with all 
remaining things equal, the greater a ratio the area of the orifice will 
have to the area of the cylinder, because the motion of the internal 
water near the base becomes less oblique there, so that if the orifice 
occupies the entire area of the cylinder, certainly no attenuation of the 
aqueous stream can develop. To this I wish those would pay atten
tion who will think perhaps that this contraction should be taken into 
account in the very determination of velocities. For when the orifice 
is not much less than the area of the vessel, no noticeable contraction 
can arise, and when the orifice is small, again hardly any difference 
arises concerning velocities whether the orifice is increased a little or 
is diminished. 

§4. The reasoning is almost the same for water flowing out hori
zontally, so I am saying nothing about other directions: for water 
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flows toward the orifice in a similar way from every region; finally, it 
ascends even from a lower region right up to the orifice so that it can 
flow out, which I myself often observed. Therefore, for a similar 
cause the attenuation will become similar in a stream flowing out, 
which is rather easy to observe by eye, because here the other attenua
tion developing from the acceleration of the water already having 
gone out does not apply. And on account of this reason, if anyone 
begins to make observations on the contraction of a stream, he will 
do better in my judgment by using streams flowing out horizontally 
rather than in any other direction. 

§5. Moreover, it is possible to determine how great the contraction 
is, that is, what ratio exists between the area of the orifice and the 
minimum section of the stream flowing out horizontally, either by 
actually taking measurements of the diameters corresponding to those 
areas, or also indirectly from the quantity of water flowing out in 
a given time and at given velocities, where, nevertheless, the velocities 
are to be deduced not so much from the height of the water above the 
orifice as from the area of the jet, since certainly the hindrances, 
now greater, now lesser, never permit the full velocity of the water 
which it should acquire by dint of the theory, in which no account 
is taken of these hindrances. 

§6. Now I think it is evident enough from the previous statements 
that there will be a perfect agreement between the quantity of water 
flowing out and its velocity, if only there is substituted for the orifice 
which is in the vessel some other orifice diminished just to that degree 
that it would not exceed the section of the maximum contracted 
stream; and it will be equally so at whatever place in the stream or 
at whatever depth from the surface of the water this orifice is under
stood to be, whether at ac or at de, since indeed the velocities will 
always correspond approximately to the total height of the water 
above that place at which the orifice is assumed; henceforth I shall 
call the area of this orifice, to be conceived in the mind, the Section ef 
the contracted aqueous stream. 

§7. Thus, if that Section about which we just spoke would have a 
constant ratio to the orifice, the orifice of efflux would have to be 
considered diminished in the same way, and afterwards a calculation 
of the quantity of water flowing out in a given time would have to be 

undertaken. Thus, indeed, with that ratio taken as~ and with the 
ex 

area of the orifice called n, the Section ef the solid stream would have to 

be considered as!!-. 
ex 
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But since it is variable under different circumstances, rules cannot 
be given a priori in this matter; moreover, the section is changed 
greatly by an increase or decrease of the thickness of the plate in which 
the orifice lies; something, although only a little, can also be contri
buted by the size of the orifice, the areas of the vessel (and these are 
absolute as well as relative), and perhaps by the height of the water 
above the orifice. Meanwhile, there having been assumed that the 
wall is thin, that the vessel is very wide, and that the orifice develops to 
4 or 6 lines in diameter, the ratio between the orifice and the Section of 
the contracted stream does not customarily depart much from that which 

Newton stated, namely as V2 to 1. But often it has been observed 
to be more by some and also less by others. 

§8. But whatever it may be, in any case we will indicate it, as 
ex 

before, by-. And now, for this situation we will develop the com-
I 

putation for the times; but for the sake of brevity we will consider only 
cylindrical vessels, and in these we will examine two kinds of time 
especially: the first which defines the point of maximum velocity, the 
other which corresponds to depletion. But in each case we will 
assume that the motion begins from rest. 

§9. Therefore let a cylindrical vessel be placed vertically, full of 
water, and let the height of the water at the beginning of flow be a, the 
area of the cylinder be m, the area of the orifice be n, the Section of the 

solid stream be:!; let the water already have flowed out for the time t; 
ex 

and then let the residual height of the water above the orifice be x, and 
at the same instant oftime let the surface of the internal water have a 
velocity which corresponds to the height v; the velocity itself will be 

vv, but the element oftime dt is proportional to the element of space 

-dx divided by the velocity Vv, from which dt = -:t 
Indeed, the value of v itself was determined in Chapter III where we 

used the same notation which we now use. But, since for a correct 
measure of the expended water it is required that the section of the 

contracted stream :! be substituted for the orifice n, it follows that in the 
ex 

value of v itself the same substitution is made, and thus it is stated 
that 

V = nna [(~) 1- mmaa/nn _ :a]. 
2nn - mmexex x 
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dx 
But if this value is substituted in the equation dt = - vi/ there 

appears: 

_ /J nna [(a)l-mmaa/nn x] dt - -dx ---- - - -
2nn - mmaa x a 

with the help of which equation all desired times can be defined 
through approximations or series, if only at individual points the value 
of a itself be known. But let us assume it to be of constant value, 
since indeed in the present case there is nothing by which it could be 
changed except the different heights and velocities of the fluid, which 
contribute little or not at all to this aspect of the problem, as far as it 
can be perceived by observation. 

§10. Now, in order that the desired equation can be expressed 
through a series, we will consider the quantity 

in the following form: 

( 
nnx )-112. [r _ (:)mmaa/nn-2]-112 

mmaa - 2nn a 

and the latter factor we will resolve through the customary rules into 
this series: 

I (X)mmaa/nn-2 I. 3 (x)2mmaa/nn-4 
r+-- +---

2 a I ·2·4 a 

1.3 .5 (X)3mmaa/nn-6 + --- - + etc. 
r-2-3-8 a 

from which now 1s obtained a very slightly changed form of the 
equation: 

d 
- dxv mmaa -

t - . ;
nva 

I (X) mmaa/nn - 5/2 
+ - -

2 a 

+ 
~ (:)2mmaa/nn-9/2 + 1.3.5 (:)3mmaa/nn-13/2 ] 

8 
+ etc .. 

1-2·4 a 1·2·3· a 
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This equation is to be integrated so that for x = a there will be t = o; 
there arises, accordingly, 

t = [2 + nn + 3nn + etc.] 
2mmaa - 3nn I 6mmaa - 28nn 

v' (mmaa - 2nn)a [ (x)l/2 nn (x)mmaa/nn-3/2 
x-------- 2- +----- -

n a 2mmaa - 3nn a 

3nn (X) 2mmaa/nn - 7 /2 ] V ( mmaa - 2nn) a + ------- - + etc. ·-------, 16mmaa - 28nn a n 

where 2v'; expresses the time which a body uses while it falls freely 
through the height a. But if in that equation it is assumed that 

_ I (mmaa _ nn) nn/(mm aa - 2nn) 
X-a ----- , 

nn 

which is the height of the water when the velocity is a maximum 
(through §16, Chapter III and §8, Chapter IV), then the time is 
obtained which elapses from the beginning of flow right up to the 
point of maximum velocity; and when it is assumed that x = o, the 
time appears in which the whole vessel is depleted; and, finally, if xis 
assumed equal to any quantity c whatever, t will express the time 
which the surface takes in descent through the height a - c. More
over, we will see for these cases what should happen when the vessel is 
very wide, and the number m thus contains the other one, n, several 
times. 

§11. At first let the number ~ be infinite, then the height of the 
n 

water corresponding to the point of maximum velocity will be 

but since mmaa is an infinite number, this might be considered as 
nn 

(m:arn/mmaa = I + (ln m:;a) ;m:;a, 

of which matter the proof is this: let an infinite quantity A be pro
posed, and, as in our example, let A i t A be considered, and anyone 
readily sees that the latter quantity is little greater than unity, and 
indeed the excess, which we will call z, is infinitely small; and so one 
has A 1 1A = I + z; let the logarithms be taken on both sides, and 
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there will be h~/ = ln(1 +z) = (on account of the infinitely small 

ln A 
value of z itself) z. Therefore, A 11A = 1 + A; and from there, 

similarly, as we said, 

(m::a) nn/mmaa 
(1 mmaa) ;mmaa I+ n-- --• 

nn nn 

Furthermore, because this quantity added to unity is infinitely small, 

a I (m::arn,mma«. 
or 

/ [ (1 mmaa) ;mmaa] _ (i mmaa) ;mmaa a 1+ n-- -- -a-an----, 
nn nn nn nn 

therefore the distance through which the surface of the water de
scends, while the maximum velocity develops from rest, is 

a(ln mmaa)/mmaa 
nn nn 

or 2nna ln ma. 
mmaa n 

This equation indicates that the descent of water in an infinitely 
wide vessel is infinitely small when the water has already attained its 
maximum level of velocity. Moreover, this notwithstanding, it 
could have been questioned whether or not in the meantime a finite 
quantity of water flows out, since indeed a cylinder erected above an 
infinite base of infinitely small height might have an infinite volume; 
but it follows from our equation that this quantity is also infinitely 

. 2nna ma 
small, and nommally equal to -- ln -• maa n 

And this indeed agrees splendidly with the phenomena which we 
discover in the efflux of water from reservoirs through a simple orifice 
for a whole day. For when we cover the orifice with a finger, as soon 
as the finger has been removed we determine that the water flows 
horizontally, and we observe that halfway between the longest thrust 
and the point which lies on a plumb line from the orifice not a drop has 
fallen to the ground. 

§12. Just as in the last paragraph we determined quantities how
soever small, such as the descent of internal water and of water flowing 
out while the water reaches the maximum level of velocity, so now we 
will show the same thing by reasoning of the time. But I say in the 
equation of§rn, expressing the time, that it suffices that only the first 
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term be accepted in each series, which will be evident if one extends 
the calculation to two terms; therefore the desired time interval is 

( J
x) y' (mmaa - 2nn)a 

t= 2-2 - --~----~, 
a n 

whence, after the value pertaining here, which we defined in the pre
ceding paragraph, has been entered for x, there occurs 

_ [ J (r mmaa)/mmaa] J(mmaa - 2nn) t - 2 - 2 1 - n-- -- · ----- a 
nn nn nn 

( 
mmaa)/2mmaa or, after I - In -- --- has been entered for the correspon-

nn nn 
ding quantity under the radical sign, it yields 

but finally, after the quantity 2nn under the radical sign has been 

. 2nv'a ma 
rejected, there appears t = --In-· 

ma n 
But this interval of time is infinitely short, because, as is known, the 

logarithm of an infinite quantity is infinitely less than the quantity 
itself. But if, indeed, from the beginning of flow, water is expelled at 
once at its maximum velocity, it will seem remarkable at first glance 
to some, perhaps, that a finite motion is generated in an instant; 
nevertheless, no one will consider it absurd that an infinite mass, of 
which sort the quantity of water contained in an infinite vessel is, 
in an infinitely short time can produce finite motion, and this by the 
action of gravity alone. 

§13. If, furthermore, in the case of the infinitely wide vessel we 
wish to express the time of depletion, which will of course be infinite, 
it will have to be assumed, as it was indicated above, that x = o in the 
equation of §ro, and at the same time only the first term of the series 

is to be applied, and again ma is to be used for v'mmaa - 2nn; and 
2ma y'

thus it occurs that t = -- a. 
n 

Then at last the time which is spent in the descent of the surface 
through the height a - c is expressed in a similar hypothesis by the 
following equation: 

2ma y'- y'-t = - ( a - c). 
n 
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§14. The previously mentioned equations are satisfied, certainly 
not accurately, but closely, when the vessel is not of an infinite but 
nevertheless of a very great area; finally, they are not very greatly 
deficient when the number m moderately exceeds the number n. It 
may be possible here to add some words about the experiment which 
I indicated at the end of §11, and let this indulgence be given to our 
purpose which is most strongly directed toward illustrating and 
examining the phenomena of motions discovered by experience. But 
I said in the cited paragraph that, when the water flows out hori
zontally, the first volume element at once obtains the entire length of 
the thrust, and indeed theory certainly indicates that same thing for 
very wide vessels; but, truly, in moderately wide vessels a few drops 
must flow out at a lesser impetus before the point of maximum 
velocity appears, and these drops should strike at some point halfway 
between the maximum thrust and the point which corresponds verti
cally to the orifice ; and I observed that this even occurred from 
vessels of area about ten times as large as the orifice. Indeed, when 
at one time I undertook an experiment concerning a vessel half a 
foot high which had an area more or less one hundred times the area 
of the orifice, not even the least particle of water, as much as I was able 
to observe, withdrew noticeably from the full thrust of the water. 
And so we may see what quantity of water should flow out in this case 
before the instant of maximum velocity [is reached]; indeed it will 
be as great as that which a cylinder of the same area contains in the 
height 

(see §10 at the end ) ; nor does this very small height differ greatly from 
. 2nna ma 

the followmg much shorter one, namely -- ln - (see §11 ), where 
mmaa n 

now by !!:. is understood -
1
- and by a half a foot, while for a bne may 

m 100 

substitute V2 (for we do not desire the greatest accuracy here) and 
through ln is indicated the hyperbolic logarithm; but thus there 
occurs 

2nna ma 1 ( 1 ) -- ln - = -- ln 100 + - ln 2 = 0.0002475 foot 
mmaa n 20,000 2 

or 0.00297 inch, and since I found the area of the vessel equal to 
6½ square inches, I knew that the desired quantity of water which 
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indeed should have flowed out before the maximum thrust developed 
was equal to about a fifty-second part of one cubic inch, or, after it has 
been assumed that an average drop contains six cubic lines, more 
than five drops. But in the experiment I observed none, the reason 
of which matter I suspect to be that the first drops, although already 
ejected, are nevertheless still propelled by the water that is following; 
for the others follow too quickly for it to be possible that the first ones 
are removed from them. But it happens here that the interval of 
time from the beginning of flow right up to the maximum expulsion 

(which indeed through §13 is approximately 
2
n-V~ In ma, where 
ma n 

through 2 v~ is understood here the time in which a body falls through 
a height ofhalfa foot, which is about ff second), I say, that interval 
of time does not extend beyond the one-hundred-fifty-eighth part of 
one second. 

Perhaps the fact that one's finger cannot be removed from the 
orifice quickly enough contributes something. But it pertains here 
particularly that the greatest part of that water which flows out before 
the maximum velocity is attained so approaches the maximum thrust 
that no difference can be observed, and thus hardly a single drop 
would have defected by a noticeable interval from the former if it 
could have separated itself freely from the water following. 

§15. So much for water flowing out through orifices; let us progress 
now to the efflux of water from vessels through either converging or 
diverging cones. Moreover, if water flows thus through a converging 
pipe, the same ratio sought in §3 from the converging motion of 
particles explained for simple orifices dictates that the stream of water 
will be contracted in front of the orifice and its particles will still be 
accelerated, and thus the quantity of water flowing out in a given 
time is less than the measures of the orifice of efflux and the velocities 
indicate if the contraction of the stream has not been taken into 
consideration. But that contraction is customarily small in rather 
long pipes. In diverging pipes all things occur in a reverse way: for 
the stream is dilated in front of the orifice, the motion of the water is 
retarded, and a greater quantity of water flows out in a given time 
than would follow from the observed area of the orifice and the 
velocities of the water flowing out through the former without that 
dilation. Finally, the aqueous stream flowing out from cylindrical 
pipes is neither contracted nor dilated. 

And thus one must properly attend to these contractions or dila
tions in estimating the quantities of water flowing out in a given time, 
which question we will treat in passing at the end of the section. 
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But now it is pleasing to study the changes which occur in the 
effiux of water from the beginning of motion. But in these things, 
for the sake of brevity, we will not consider the changes of the stream; 
for neither is the matter so well established that it can be confirmed 
accurately enough by experiments, nor are the previously mentioned 
changes of great moment here; but the matter itself is worth being 
sought after persistently so that the nature of it can be understood 
correctly in one's mind. 

Concerning vessels which have pipes attached, we just discussed 
them in the above Chapter, §§31, 32 and 33; and indeed in §31 we 
gave rather general equations, whatever the ratio might be between 
the areas of the vessel and pipe; but they are overly involved, and they 
require highly troublesome calculation. In the paragraph which 
follows that one, I treated the hypothesis which makes the vessel 
everywhere of infinite area in proportion to the pipe, in which hypo
thesis I said that the water flows out at a velocity by which it can 
ascend to the full height of the water above the orifice of effiux; 
nevertheless, at the end of the paragraph I expressly warned that at 
the beginning of motion the water descends more slowly than was thus defi,ned, 
and that that rule does not apply before the suiface has descended through 
some little space, which matter is intrinsically evident, since indeed the 
maximum velocity cannot be produced in an instant from a state of 
rest in a pipe, although it may occur in a vessel perforated by a simple 
orifice. 

So, holding these things in my mind, I began to investigate the 
initial changes and to reduce them to certain measurements. But the 
previously mentioned rule, in which those initial changes are not taken 
into consideration, does not suffice for this at all, although otherwise 
it is exactly true in an infinitely wide vessel; for all changes which 
precede the state of maximum velocity occur while the surface de
scends through an infinitely small space: nevertheless, if only the 
vessel is infinite in a Geometric sense, then that descent not only 
does not occur in an infinitely small time, as in the case of a simple 
orifice, but occurs in an infinitely great time, and meanwhile an 
infinite quantity of water flows out as well, while through an orifice 
an infinitely small quantity flows out, the other remaining things being 
equal. But in order to show these things, I made the effort of bring
ing forth another equation from the general equation of§23, Chapter 
III, which is this very simple one: s = x, withs taken for the height 
corresponding to the velocity of the water flowing out and x for the 
height of the water above the orifice of effiux; but anyone under
stands that for our purpose the matter is to be brought about thus so 
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that the ratio of the increments of velocity is obtained, which was not 
required previously. 

§16. Therefore, let there be the cylinder AEHB (Fig. 18) as in §22, 
Chapter III, and let this be considered as infinitely wide and full of 
water, and let it have the pipe FMNG attached, of finite area and in 
the form of a truncated cone, either increasing or decreasing in area 
toward the orifice MN through which water flows. Let the initial 
height of the water above the orifice MN, namely NG+ HE, be a; 
the height of the aqueous surface at the position CD above MN, that 
is NG+ HD, be x; the length of the attached pipe, or NG, be b; the 
area of the orifice MN be n; the area of the orifice FG be g; the area of 
the cylinder, which is infinite, be m; and finally let the velocity of the 
aqueous surface at the position CD be such that it conforms to the 
height v, which height indeed will be infinitely small. After these 
things had been established, we saw in the place cited that the 
following equation generally obtains: 

bmm m3 

m(x - b) dv + . 1_ dv - - v dx + mv dx = -mx dx 
v gn nn 

in which it is evident that now the first term m(x - b) dv can be 

neglected with respect to the second ~7m dv, just as the fourth mv dx 
vgn 

3 

with respect to the third - ~ v dx, and thus there can be assumed 
nn 

bmm dv - m
3
v dx = -mx dx 

Vgn nn 

in which equation if again the first term is neglected, which can be 
done unless the changes are desired as well which occur during the 
first descent, even ifit is infinitely small, the common rule will arise of 
the potential ascent of the water flowing out to the full height of the 
water; but now for our purpose, in which we desire those first changes, 
that [first] term will have to be retained, and thus the last equation 
will have to be treated in its entire extension. However, for separat-

ing the unknowns 
mm 

from one another, let - v - x = s, or 
nn 

v = !!!!.... (s + x), and dv = !!!!.... (ds + dx), and so it will occur that 
mm mm 

-nnb ds 
dx = b V ' which is to be integrated so that, with x = a 

nn -ms gn 
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having been established, it produces v = o, and hences= -a; but 
thus it occurs that 

x _ a = nnb ln nnb - ms Vgn 
mV gn nnb + maV gn 

and the assumed value mm v - x having been taken for s, there results 
nn 

x _ a = nnb -ln n4
b - m3vVgn + mnnxVgn_ 

mVgn n4b + mnnaVgn 

Here again in the quantity under the logarithmic sign the term 

n4b, certainly infinitely less than the term mnnxv gn, can be eliminated 
from the numerator, and indeed from the denominator the term n4b, 

likewise infinitely less than the other, mnnaVgn, [can be eliminated]. 
And so there occurs 

x _ a = nnb ln nnx - mma. 
mVgn nna 

From this there is obtained, after e has been employed for the number 
of which the logarithm is unity, 

v = nnx - nna em<x - a). -lgn/nnb • 

mm mm ' 

or, with a - x = z having been assumed, so that z denotes the dis
tance through which the surface of the water has already descended, 
this form can be obtained for the equation: 

- nn(a - z) nna; (mz /nb)-lg /n V------- e 
mm mm 

from which again it is clear that, when z has a minimum ratio to b, 
the denominator of the other term may become infinite, and 

nn(a - z) 
V=---

mm 

nnx 
mm' 

but truly the matter is otherwise as long as the descent z is infinitely 
small, which case we now consider. 
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§17. With these things having been set forth, it is now easy to define 
through what little distance the fluid descends while it acquires the 
maximum velocity, namely by making dv = o, or, 

-nn dz na . ~; ,;---- + _ V g/n e<mz/nb) g/n = 0 
mm mb 

that is, 

nb . 1- (ma . 1-) z = m v n/g -ln nb v g/n . 

But this height multiplied by the height m of the cylinder gives the 

quantity of water flowing out in the meantime, namely nbv n/g · 

ln (:; Vg/n ), which quantity, as I hinted above in §15, is infinite, 

although only logarithmically, an infinity of which sort is less than the 
root of any sort of dimension given from the same infinity: that is to 
say, lnoo is less than oo 11n, however great a number may be assignable 
to n. And it should hence be understood that, if we reason from a 
true infinity to very great quantities, this quantity of water becomes 
small enough. Finally, the corollaries to the formula are these: 

I. If the attached pipe is cylindrical, it occurs that z = nb ln mba. 
m n 

Therefore, with the remaining things being equal, this quantity 
appears as the length of the attached pipe, which is generally true 

also: for from a changed value of b itself the quantity ln :; J! 
is to be considered as not changed on account of the infinite value of 

the number ~. 
n 

II. For the same orifice g, and with the remammg things also 
equal, the quantity z follows a three-halves-power ratio of the final 
orifice: and if the same pipe with first a narrower and then a wider 
orifice is applied to a vessel, the quantity of water in the former case 
will be to the similar quantity in the latter as the square of the wider 
orifice is to the square of the narrower orifice. 

III. Finally, it is to be observed that the whole reasoning is valid 
for all directions of the pipe, which anyone will perceive who will 
properly examine §22, Chapter III. Therefore, the pipe can be 
furnished either horizontally or in any other direction whatever, and 
however curved, to which one will have to pay attention especially in 
undertaking experiments. However, let it always be understood that 
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b is the length of the pipe, and a is the vertical height of the water 
above the extreme orifice. 

§18. Now I come to the time in which those changes from rest to 
the maximum velocity occur. But I say that in a calculation of times 

f h. · 1 nn F h · · · o t 1s sort one can s1mp y set v = - a. or t e remammg quant1-
mm 

ties in the last equation of §r6 vanish, however small the height z is 
assumed, if only it has the minimum assignable ratio to that infinitely 
small height which corresponds to the maximum velocity, namely to 

nb . 1- (ma . 1-) m v n/g ln nb v g/n . 

which I will call 

Thence it follows that the time is predicted, 

bvn (ma. 1-) t = --= -ln - v g/n 
Vga nb 

and that in a like manner it is infinite, although the same time is 
extremely small when the area of the vessel is not infinite but very 
large, which again is to be deduced from the nature of the infinite 
logarithm. 

§19. Because the height of the velocity, as we saw in the last para-

graph, can at once be reckoned as!!:!!.... a (that is, equal to the maxi-
mm 

mum when the surface descends through the minimum assignable 
portion of the infinitely small descent, after which the full maximum 
velocity is present), it follows that most changes from rest to the state 
of maximum velocity are not noticeable (that is, infinitely small ), by 
all means not only the majority, but also all except an infinitely small 
portion; to be sure, the matter occurs thus: the velocity is clearly null 
at the very beginning, and, after the water descends through an in
finitely small distance, it is already very nearly maximum; then, 
while it descends again through some little distance, infinitely small 
but nevertheless infinitely greater than the former [distance], it con
tinues to be moved at its own velocity, taking on infinitely small incre
ments, and then at last it truly attains a maximum velocity. But 
since these latter or infinitely small changes cannot be perceived by 
observation, we will treat differently those theorems which we gave 
in § r 7 by considering, in place of the changes from rest right up to the 
point of maximum velocity, the same changes right up to a given 
rate of speed. 

§20. And so we will investigate through how great a distance z the 
surface of the water descends from the state of rest, and how much 
water flows out, and finally how much time must pass in order that the 
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internal water be moved at a velocity which is generated by free fall 

through the given height, which we will call .!!!!:.._ c, so that c itself 
mm 

denotes the similar height for the velocity of the water flowing out. 

For this it is required that in the last equation of§r6 nnc be entered 
mm 

for v, so that there will be 

nnc 

mm 
nn(a - z) _ nna/e<mz/nbJ· ..lgfii 

mm mm 

mz. 1- a 
and hence it is deduced that -b v g /n = ln ----; but when 

n a-c-z 
c is assumed here to be noticeably less than a, the letter z under the 
logarithmic sign can be rejected, whence there is obtained 

nb . 1- a 
z = -·vn/gln--· 

m a-c 

But this equation now indicates a space which is infinitely small and 
through which the surface of the water descends while the velocity of 
the water flowing out from rest is that which is due to the height c; 
and this little distance is to that indicated in §r 7, by which indeed the 

velocity becomes maximum, as ln _a_ is to ln (mba V g fn), so that the 
a - c n 

first is infinitely less than the other, although both are infinitely small. 
If, further, the defined quantity z is multiplied by m, one obtains the 
quantity of water flowing out while that velocity due to the height c 

is produced, which quantity, accordingly, is equal to 

nbV n /g ln _a_ 
a - C 

and thus is of finite magnitude, and indeed is greater the longer the 
pipe is assumed and the greater a thrust is expected. 

And, finally, the time in which the same occurs, if the terms to be 
rejected are selected correctly, is discovered to be equal to 

Jnbb 1 a 2 -n--
ag a - c 

and thus is finite but very small , and in no case is it to be extended 
easily beyond one second. 

§21. I wished to examine and pursue all these things accurately, 
first because the solution of many phenomena which are customarily 
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observed in the effiux of water depend thereon, then as well in order 
that we might understand correctly in our mind those changes which 
are clearly imperceptible through observation. There have been 
many who, not having followed correctly the transition from the in
finite to the finite or, in turn, from the finite to the infinite in flowing 
water, were not able to extricate themselves from the many diffi
culties which elsewhere easily permit a solution; but ifin place of the 
almost infinite vessel, of which there is none, a very wide vessel is 
assumed, or even, since it suffices in many cases, a moderately wide 
vessel, the formulas will be approximately true, and they will approach 
the truth more or less in accordance with the nature of the question; 
concerning these matters I will point out certain things in the follow
ing experiments. Thus, meanwhile, it is already apparent enough 
from theory, because I had prepared to explain especially why water 
flows from a simple very wide vessel at once at the entire velocity, and 
why it is different for water ejected from a vessel through a pipe. But 
the precise measures concerning these questions are to be deduced 
from the equations themselves. 

§22. Finally it is evident, since it pertains to the time of depletion, 
that, when the area of the vessel moderately exceeds the area of the 
attached pipe, the former can be considered without noticeable error 

to be ma 0, by understanding by 0 the time in which a body by falling 
n 

freely from rest falls through the height which the water had at the 
beginning of flow above the final orifice of the pipe, and by assuming 

for ma the ratio which exists between the area of the vessel and the 
n 

section of the stream, whether contracted or dilated. But the hindrances 
which accidentally occur in addition in these cases increase that time 
somewhat. But if the time is desired in which the surface of the 
water descends through a given height, that [time] is to be taken as 

ma. ( 0 - T), after there has been assumed for T the time which a 
n 

body takes in falling freely through the height which the water has 
above the orifice at the end of the flow. 

EXPERIMENTS WHICH PERTAIN TO CHAPTER IV 

Since a large part of this chapter was employed in the contraction 
of an aqueous stream flowing through an orifice in a thin plate, I 
undertook to begin accurate experiments concerning that contraction, 
certainly not by undertaking measurements of the diameters, which 



90 HYDRODYNAMICS, CHAPTER IV 

method I found cannot be used with sufficient accuracy, but by ob
serving the actual velocities from the extent of the thrust and the 
quantities flowing out in given times. In the experiments I used an 
automaton which pulsed 144 times in the period of the first one 
minute, and I assumed it to be thus in the following [minutes]. 

PERTAINING TO THE THEORY OF THE CONTRACTION OF AQUEOUS 
STREAMS 

EXPERIMENT 1. I furnished a cylindrical pipe, the diameter of 
which was 4 inches 3 lines, English measure, made of a thin plate and 
which had an orifice in the side, that is, in the cylindrical surface; the 
diameter of the orifice was 4-f-l-5 lines. The water flowed out hori
zontally from the vertically positioned cylinder, and the height of the 
water above the center of the orifice was 4 inches 8 lines at the be
ginning of flow, and the similar height at the end of flow was 3 inches. 
However, the whole flow took place in the interval of eleven pulses of 
the automaton, which constitutes a time of approximately 4½ seconds. 

Further, after the experiment had been repeated often, and after 
the height of the orifice above the horizontally placed table and the 
extent of the thrust, and this both in the beginning and at the end of 
flow, had been observed, I saw from the Lemma indicated in the beginning 
ef the Experiments ef the preceding Chapter that the velocity of the water 
flowing out at the place of the maximum contracted stream had con
stantly been that, indeed as much as one could judge by observation, 
which should be due to the height of the water above the very place 
which is at the same height as the orifice. 

Therefore, if we assume that the contraction of the aqueous stream 
was the same everywhere, we apply to this case the last equation of 

2ma • ;- • ;-
§13, namely t = -- (v a - v c), there will have to be established 

n 

t = 4½ seconds;~ = 133; 2v; (the time which a body takes in 
n 

falling freely through the initial height of the water) = o. 1483, and 

2V~ (the similar time for the final height of the water) = 0.1246; it 
occurs that 4½ = 3.15a, from which a= 1.43. Hence it is a conse
quence that the area of the orifice was to the section of the contracted 
stream as 143 to roo; this ratio is a little greater than that which 

exists between V2 and 1, that is between 141 and roo; but if the 
velocities could have been observed very accurately, there is no doubt 
but that they would have been a little less than those which are due to 
the entire height of the water; and when this matter is taken into 
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account, it is discovered that the value of a itself is thus to be dimin
ished a little bit; therefore, from the entire experiment it can be 
concluded very safely that the previously mentioned ratio was as 

V2 to 1. 

EXPERIMENT 2. Next I wished to find out by experiment whether 
in all jets flowing in any direction whatever the contraction is the 
same, and to this end I reckoned that the matter was to be attacked in 
such a way that, except for the change of that direction, all the re
maining circumstances should be the same thereafter. Indeed, I 
obtained it in this manner. 

Obviously, I used the same cylinder as previously, but I attached 
it to a prismatic box, positioned vertically, so that the axis of the 
cylinder would be horizontal, and thus I revolved the attached 
[cylinder] so that the center of the orifice selected for the effiux of water 
would occupy first the highest place, then the middle, then the lowest; 
in the first case the water flowed out vertically upward, in the second 
horizontally, in the third vertically downward; but in the individual 
[cases] I made the heights of the water in the box above the center of 
the orifice perfectly equal; the result was this: 

I observed that in equal times the surface of the water in the indivi
dual cases descends through equal distances in the box. Therefore, 
in streams projecting upward, the water above does not offer notice
able resistance to the water following below, which same thing I 
understood in a different way, because certainly if I intercepted the 
aqueous stream in any direction whatever at a small distance from 
the orifice, such as 3 lines, say by a coin, so that the stream would 
strike against the coin perpendicularly, the effiux of the water would 
not be retarded. Further, neither does the water below in streams 
descending vertically draw the sequent water after itself: and the very 
contraction of the stream is everywhere the same, since the retarda
tion and acceleration of the water ejected upward or downward, 
which cause the stream either to swell or to become slender at some 
distance from the orifice, were not considered. For here certainly the 
discussion is only about that contraction which arises from the 
oblique motion of the particles in the region of the orifice. 

EXPERIMENT 3. I used the same device, prepared in the previously 
mentioned manner, for finding out whether the contraction of the 
stream, all remaining things being equal, would be changed by an 
increased height of the water above the orifice. To this end I fixed 
two needles to the internal walls of the box along a plumb line; the 
first projected above the center of the orifice I 3 inches Io lines, the 
other I 2 inches I¾ lines, English measure; the area of the box was to 
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the area of the orifice as 404 is to I. Moreover, I saw that the surface 
of the water had descended from the upper needle to the lower after 
an interval of 24 pulses of the automaton, which gives a time of IO 

seconds. 
But if indeed the same time is sought according to the Hypothesis 

that the stream had not contracted and that at the same time the 
water had flowed out at the whole velocity which it should have 
had by dint of the theory with no alien hindrances being present, that 
[time] is ascertained to be 61 seconds. 

Thus, therefore, it can be concluded that the area of the orifice 
was to the section of the contracted stream as IO to 61; that is, a = 1.45 
while in the first experiment for the same orifice, all circumstances 
having been considered, one found a = 1 .41. 

After I had tried this in that way, it remained to discover whether 
the water would flow out at the whole velocity, according to observa
tion, about which matter I doubted all the more, because with the 
velocity of the water increasing, the hindrances increase at the same 
time, and accordingly they can be noticeable at the greater heights of 
water while they are not so at the lesser. 

And so with all care applied (because it is required especially for 
the precision of the experiment), I made the water flow out in a per
fectly horizontal direction, and after the measures of both the extent 
of the thrust and the height of the orifice above the horizontal table 
had been taken, I saw, after performing a calculation, that when the 
height of the water was 13 inches and IO lines, or 166 lines, the water 
would flow out, or rather would flow across the section of the contracted 
stream at a velocity which corresponds to a height of 158½ lines; there
fore, the velocity is to be diminished in the calculation in proportion 
to the square roots of these heights, and the discovered value of the 
letter a, which thus is a little less than 1.42, or again 1.41, decreases in 
approximately the same ratio, and thus it is allowable to deduce that 
the changed height of the water does not alone change the contraction 
of the stream according to observation. 

EXPERIMENT 4. I used a cylindrical pipe of height 4 inches, the 
section of which through the axis is represented (Fig. 28b) by CABD; 
the area of the cylinder was to the area of the orifice ac as 1 IO to 1. 

This entire cylinder full of water was evacuated in a time of 21½ 
seconds. However, it must be noted that efflux is not to be granted to 
the water until no turbinate motion is observed in it; for otherwise the 
water is soon changed into a whorl, somewhat swift during efflux, and 
the efflux is greatly retarded, and all the more so the faster the internal 
water is driven in a circle; further, because all the water never flows 
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out, I considered the time of efflux [to extend] until it began to flow 
out drop by drop. 

C ..D 

A a c B 

FIGURE 28b 

This experiment indicates that here the contraction of the water was 
less than in the ratio 2 to I. I had expected the time of evacuation to 
be only about 23 seconds, but the occurrence was a little different, as 
I said, of which matter I noticed a little later that the reason was that 
the elongated lips of the orifice more or less formed a short pipe, al
though very short, as the Figure shows, which hindered the contrac
tion of the stream; however, the length of those lips did not attain two 
thirds of a line. 

EXPERIMENT 5. I made water flow horizontally through a small 
pipe from a very wide vessel; but the pipe was very short, indeed not 
exceeding a length of 3 lines, and it was almost 5 lines in diameter. 

A given quantity of water flowed out in a time of r r ¼ seconds 
which should have flowed out in rof seconds if it is assumed that 
neither was the stream contracted nor were any hindrances present. 

I did not consider the [ determination of the] true velocities of the 
water to be a task that I should undertake, not doubting that they 
were such as they must be in order that a given quantity of water 
might flow in an observed time through an observed orifice, with no 
attention having been given to the contraction of the stream. 

In addition, I furnished other small pipes of different diameter and 
length, and I saw that the quantities of water flowing out in a given 
time and at given velocities correspond directly to the orifices of 
efflux, but that the velocities were more deficient from the velocity 
due to the entire height of the water, the narrower and the longer 
was the pipe, and also the higher was the water. 
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PERTAINING TO THE THEORY OF WATER FLOWING OUT THROUGH PIPES 

EXPERIMENT 6. The cylindrical vessels, of which Figs. 24 and 25 
represent the sections through [each] axis, had a height of 4 English 
inches and pipes attached of one-foot length; the areas of the cylin
ders were to the areas of the orifices A as I 10 to 1. But the orifice B 
was to the orifice A approximately as 25 to 16; the time of evacuation 
before the cylinders were emptied was, in Fig. 24, 6½ seconds, in the 
other, 4½ of these units of time, more or less. 

In these cases the vessels were large enough with respect to the 
attached pipes that they could be considered as infinite; and accord
ingly the water should have flowed out, according to the Rules 
indicated by us within the text, through the final orifices at velocities 
corresponding to the total height of the water, if only one excludes the 
first instants of flow, which themselves are so short here that they can
not be observed. And since in addition, as I advised in passing, the 
quantity of water flowing out in a given time through the pipes is to 
be estimated simply from the speeds and the size of the orifices, I 
found, through the rule shown in §22, the time of evacuation in the 
first case as 4½ seconds, in the latter, almost 3 seconds. 

The fact that these things were observed to be a little greater in the 
experiment in Fig. 24 is to be attributed for the most part to the 
adhesion of the water to the sides of the pipe, but in Fig. 25 to a dif
ferent reason in addition, indicated in §34, Chapter III. 

Other Phenomena are to be noted in these vessels: namely, when 
the vessels are not quite evacuated, a certain sound is perceived from 
the air which then mixes with the water in the upper [part of the] 
orifice; in fact, I heard this sound to the last instant of flow; further, 
it occurs easily that the effiux of water may be permitted before the 
latter has been reduced to perfect rest (for the water is agitated by 
filling and moved in a whorl) ; but then the effiux is retarded very 
much, and a kind of cataract is formed internally, and air is continu
ally intermixed with the water flowing out. Thus the effiux can be 
retarded at will if the water is agitated into a vortex before it flows out. 

EXPERIMENT 7. I used a Prismatic vessel, to which a small pipe 
was attached horizontally as in Fig. rg. The orifice GF was precisely 
5 lines in Diameter, the other, NM, 6½ lines. Accordingly, the very 
areas of the orifices GF and NM were as 100 to 169, but the area of 
the vessel contained the area of the orifice NM 201 times. The length 
of the small pipe GN was 4 inches. 

Then I filled the vessel with water right up to CD, the height of 
which above the axis of the pipe was 13 inches IO lines. After the 
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orifice NM had been opened, the water flowed out, and the surface 
descended right to EH in a time of 8¼ seconds, and the difference of 
the heights, CE or DH, was 2 inches 8 lines. 

After the calculation has been reduced according to the pattern of 
§22, where attention was paid neither to the hindrances nor to the 
change of the stream, we see that the predicted time of descent should 
have been approximately 5 seconds, almost 5½, Therefore, it is to be 
stated in this way: that the mean total velocity was to the entire 
velocity which the theory indicates as 5½ is to 8½, or approximately as 
2 to 3; and hence it can be concluded that the water flowed out 
through the orifice MN at a velocity which compared with (!) 2

, or 
four ninths of the height of the water above the orifice MN, but 
through the other orifice GF it flowed at a velocity due more or less 
to five fourths of that same height. 

And so it appears again that the efflux of water is increased by the 
increased area of the orifice of the pipe toward the exterior, although 
neither the opening at which the pipe is implanted in the vessel nor 
the position of the pipe is changed. 

Further, on the horizontally placed table PQ, I observed the ampli
tude of the thrust PQ, for the height oP, which was 4 inches 8 lines. 
Moreover, I found PQ, = g inches 6 lines. 

It follows from this observation that if consideration of the dilation 
of the stream is set aside, the water would be required to have a 
velocity at NM which is due to a height of 4 inches IO lines, while, 
nevertheless, by dint of the aforementioned experiment it certainly 
had a velocity due to a height of almost 6 inches 2 lines. This obser
vation confirms what I said in §15, namely that in divergent pipes the 
aqueous stream is dilated as at m, and the motion of the same is re
tarded. But in the present case, in order that both observations might 
agree, it will have to be said that the stream was so dilated that it had 
an area in proportion to the orifice NM reciprocally as the afore
mentioned velocities or reciprocally as the roots of the heights due to 

these velocities, namely as V 74 to V 58, and thus that the diameters 

of the dilated stream and of the orifice were as {/ 74 to {/ 58, or as 
IOO to 94.I. 

EXPERIMENT 8. I performed another experiment which, although 
it does not yet pertain to this, nevertheless I will recount: namely, at 
the origin near the orifice GF [Fig. rg] I perforated the pipe with an 
opening e of almost two lines, and again I observed the descent of the 
surface from CD to EH, the water flowing through NM, and at the 
same time I examined the amplitude of the thrust. 
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I saw these two things which at first glance seem almost to contra
dict one another: the descent from CD to EH was made more slowly 
than it was in the preceding experiment, and now it lasted IO seconds; 
and nevertheless the thrust PQ_ was greater for the same height oP, for 
now PQ_ was Io inches Io lines. 

I explain both Phenomena thus: on account of the orifice e, which 
was made near CF, because it allows the free transit of air, the pressure 
is removed which at other times the water exerts within itself in the 
pipe, and the water accordingly does not flow differently where the 
small opening e is than if the pipe were cut off at that very place; but 
the water would flow more slowly, which I showed in passing, if the 
pipe GNMF, as if diverging, were made shorter. Further, since the 
water can flow, although at a lesser quantity, nevertheless with a 
greater impetus, through the unchanged orifice NM without implicit 
contradiction, the reason is the mixing together of air with water; 
for air perpetually rushes into the pipe through the small opening e, 
and together with the water it flows out through NM. And, finally, 
it seems to me that the phenomenon according to which the water 
flows actually through MN more quickly with the orifice e opened 
rather than closed cannot be explained otherwise than that the 
hindrances from outside act less on water rarefied by air than on 
natural [water]. 

PERTAINING TO THE THEORY OF WATER WHICH FLOWS OUT OF VERY 
LARGE VESSELS FROM THE POINT OF REST RIGHT UP TO A GIVEN 

DEGREE OF SPEED 

ExPERIMENT g. When water flows from a very large vessel through 
an orifice made in a thin plate, the first drop bursts forth immediately 
at the entire velocity which is due to the height of the water above the 
orifice. 

This conforms to the theory indicated in §11 if the vessel is truly 
infinite; and even though it may not be infinite in a Geometric 
sense, as long as it is very large, in a like manner no drop can be 
observed at the beginning of flow which will not flow out at the 
maximum velocity; I explained this Phenomenon in §14, since indeed, 
by dint of the theory in some particular case reviewed there, scarcely 
one or two drops should have defected noticeably from the maximum 
thrust. I said that such a little quantity of water could not separate 
itself from the subsequent water on account of the mutual attraction 
or cohesion of the aqueous particles. 
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EXPERIMENT IO. When in fact the water flowed out from a very 
large vessel through a pipe inserted horizontally in the vessel, I 
observed before the stream flowing out formed the maximum thrust 
omQ_ (see Fig. 19) that a noticeable enough quantity of water fell on 
the horizontal table situated below, halfway between P and Q_; 
that the greater is this quantity, the longer is the pipe GN and the 
more it diverges toward N; and finally that that water is distributed 
unequally, and that it obviously falls away more abundantly in the 
place which is more remote from the point P than in that which is 
nearer; however, in the understanding of the time in which all these 
changes take place, l saw that that was very short and such that the 
measure of it cannot be obtained. 

All these phenomena follow as a unit from propositions which we 
gave from §11 right up to the end of the section. But the measures 
shown in that place cannot be confirmed directly by experiments, 
especially those which are indicated in §§15, 16, and 17, where, as 
you know, the formulas are communicated which express the quan
tity of water flowing out while the maximum thrust is attained from 
rest; the reason is: first, because the first drops which should have 
fallen near the point P on the table did not separate themselves freely 
from the water following; second, because the quantity of water 
following the stream oQ_ (which certainly constitutes the maximum 
portion according to the theory itself) cannot be intercepted; and 
finally, because the motion of water through pipes is customarily 
retarded very much by outside hindrances, particularly if the pipes 
diverge, and thus the real motion is very different from the motion 
which the water should have if all the hindrances were removed. 
The remaining measures indicated by us are subjected to fewer diffi
culties, and these of lesser moment; but they are contained in §20, 
and they express especially the quantity of water which flows out at 
the first instant of motion while the water attains a given degree of 
speed. 

Although on account of the reasons just mentioned, especially in 
the case of divergent pipes, a perfect agreement of theory with ex
periments cannot be expected at all, nevertheless I found such success 
that I would understand that complete agreement would have oc
curred easily if all hindrances together with the mutual adhesion of the 
aqueous particles could have been prevented. Indeed, I performed 
experiments on a divergent pipe as well as on a cylindrical one; let 
me now explain them individually. 

EXPERIMENT I I. In Fig. 19 a pipe in the form of a truncated cone 
was inserted horizontally in a vessel; I filled the vessel itself with water 
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right up to CD, so that the height of it above the axis of the pipe was 
equal to 433 parts identical to those which I used in the entire ex

periment. For that height I sought by experiment the point Q 
corresponding to the maximum thrust, and PQ was 287 parts while 
the height oP was 146 parts. Thus I saw that the motion of the 
water, both on account of the adhesion of the water and on account 
of the shape of the pipe, had been greatly retarded, which must occur 
in these cases, as I warned several times. However, it should have 
been, if nothing had opposed the motion, that PQ was 503 parts. 

Next I placed a Pan on the horizontal table, the edges of which were 
at S and R; but first I moistened the Pan, and I allowed all the 
water to rain down from the former [height] again; and after the 
measure of PR was taken, I found that to be 206 parts. 

And finally the diameter CF was 13 parts, and MN 17 parts, but 
the length of the pipe was 125 parts. 

After all these things had been thus prepared, during which time 
I covered the orifice MN with a finger, after the finger had been 
suddenly removed, the water was ejected, and some part of this fell 
on the pan; I collected this anxiously in a cylindrical glass pipe of 
which the diameter was 8½ parts; that pipe was filled to a height of 
2 IO parts, therefore the quantity of water having fallen on the pan 
was 1 1,922 cubic parts. 

But now that quantity, through §20, should be nb-V n/g ln _a_, 
a - C 

where by n the area of the orifice NM is understood, or 227 square 
parts, by g the area of the orifice CF, or 133 square parts; further, b 
denotes the length of the pipe, which was 125 parts; by a is properly 
understood the height of the surface CD above the axis of the pipe, 
but here rather the height complying with the velocity of the water 
striking at the point Q is to be understood, or 141 parts, and simi
larly for c is to be assumed the height complying with the velocity of a 
particle striking at the point R, namely 73 parts. Finally, the abbre
viated expression ln signifies the Hyperbolic logarithm. After these 
numerical substitutions have been made, there occurs 

• 1- a 17 141 
nbvn/gln-- = 227-125---ln-

68 
= 26,830. 

a - C 13 

Therefore, the quantity of water found in the experiment was to the 
quantity which the theory indicates after the consideration of hin
drances has been set aside as 1 1,922 is to 26,830, which numbers, al
though they differ by not a little, nevertheless confirm the theory 
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splendidly, which very thing I now place clearly before one's 
eyes. 

In the formula nb-vnfg ln _a_, we took for a the height due to the 
a - C 

maximum velocity of the water flowing out, as in fact it was in the 
experiment, not as it would have been if the obstacles had been re
moved; certainly we set a = r4r, but in theory a = 433. However, 
if that latter value is assumed, by retaining the value of the height 

C = 73, One has nb'V n/g ln _a_ equal to approximately 6700, which 
a-c 

number is now much less than the number found through the experi
ment, since before it was so much greater. But so it occurs when the 
height c is assumed to preserve its value: just as in fact the height a 
was increased from r4r to 433, so also the height c is certainly to be 
increased, and each height should be increased in the same ratio if the 
hindrances resist equally to the first drops and those following; but, 
the remaining things being equal, the particles experience less re
sistance the slower they are moved, and accordingly also the drops 
which fall on the near side of the limit R are retarded less than those 
crossing that limit. From this it is easy to conclude that the height 
c is to be increased in a lesser proportion than the height a, but the 
proportion itself we cannot give, unless a posteriori by obviously 
making the theory agree with the experiment; thus it is ascertained 
that c is to be set equal to 120, which number clearly suffices, after all 
circumstances have been well considered. 

Thus, therefore, it seems manifest to me that the success of the 
experiment was such that it clearly agrees with the theory. But 
examples of this sort show wholly that we have transmitted the true 
laws of motions into fluids, and these [ examples] I selected from among 
infinite others, because they have no relationship nor any affinity to 
the common rule which states that fluids flow everywhere at a velo
city due to the entire height of the water above the orifice, and they 
cannot be solved by the usual principles. And in remainder, since 
the motion of the water in this experiment was retarded, I wished to 
undertake another one in which all hindrances would be altogether 
diminished, so that thus it would appear that the numbers of the 
experiment and of the rules would agree the more with each other, 
the less would be the hindrances. 

EXPERIMENT r2. And so I now used a cylindrical pipe through 
which the flow might pass more easily, and for that very reason it was 
wider: in addition, the box to which the pipe was attached was much 
wider, and finally, the height of the water contained in the box above 
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the axis of the pipe was much less, so that the water would flow out at 
a lesser velocity, and thus it would encounter obstacles of lesser 
moment. The remaining things were as before. 

Therefore the height of the water above the axis of the pipe was 
130 parts, oP = 553 parts, PQ = 453 parts, PR = 297, the dia
meter CF or MN= 19 parts, and the length of the pipe was 130 
parts. 

I saw that the water, having fallen into the pan, had filled up the 
cylinder, which had a diameter of 8½ parts, to a height of 281 parts, 
the capacity of which was then 15,950 cubic parts. In this case a is 

to be set equal to 453 · 453 = 93 parts, c = 40 parts, n = g = 284 
4-553 

square parts, and b = 130. After these substitutions have been made, 
it occurs that 

nb-Vn/g In _a_ = 284,130 In 93 = 20,760, 
a - C 53 

to which the number in the experiment, 15,950, as we saw, corre
sponds. But the latter number is almost four fifths of the other, 
and thus it agrees approximately to the same, since in the preceding 
example on account of the applied reasons a similar number defected 
from a similar one by more than half. 

Therefore, now it is amply evident that it is to be attributed to out
side obstacles only that the experiments do not correspond to the 
formulas correctly; meanwhile, nevertheless, the experiments are such 
that they cannot demonstrate the strength of these formulas any 
better. 



FIFTH CHAPTER 

Concerning the Motion of Water from 
Constantly Full Vessels 

§1. Vessels are maintained full when as much water is continuously 
poured in as flows out: but the pouring in can be in the same direction 
as the motion of the aqueous surface and at the same velocity at every 
instant, as if certainly a new surface were created continuously which 
already possesses the velocity of the adjacent water, or [it can be] 
lateral and without impetus, just as if the surface which is assumed 
continuously to be created anew were provided with no motion and 
finally is to be stimulated into motion by the water below. I will 
pass over the remaining methods of supplying new water, which are 
infinite. 

Meanwhile, the rule about this motion, especially in the latter 
phase, is accepted: that the water flows out at a velocity complying 
with the height of the surface above the opening; nevertheless, it is 
easy to see in advance that this cannot be valid unless for a vessel 
infinitely wide everywhere, but in the remaining [vessels] it happens 
that the motion beginning from rest will be increased very gradually 
through some interval of time, and finally after an infinite time it will 
acquire the entire velocity. Nevertheless, if one is to say what the 
reason is, those accelerations for the most part occur so quickly that 
the entire velocity is not present for only the shortest time. But the 
situation is otherwise in very long aqueducts, in which the increases in 
velocities do not escape ttotice, and they can be observed with separate 
measurements. 

But whatever the matter may be, since mathematical accuracy is 
never objectionable, I undertook to consider and follow the motion of 
water from the beginning to some given limit. 

§2. All properties of this motion may be reduced to essentially 
three equations: first, between the quantity of water ejected and the 
corresponding velocity; second, between time and velocity; and third, 
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between the quantity of water and the time. If one ofthi.se equations 
is obtained, the remaining follow from it spontaneously. 

Therefore, we will scrutinize only the first one rather closely. But 
here let us be mindful of those things which were advised in the pre
ceding section about the contraction of a stream flowing out through 
simple orifices or converging pipes, and the dilation of the same when 
it is ejected through diverging pipes. However, we indicated in §3, 
Art. I, Chapter IV, that the stream is to be considered until that time 
when the velocities of the particles ( diverting one's mind from the 
changes which gravity produces on the particles beyond the vessel) 
are not changed any further, and all that portion of the stream is to 
be considered as moving inside the vessel, just as if the surface of the 
stream became uniformly hardened there. Therefore, from now on 
when the discussion will be about a vessel through which water flows, 
that ideal vessel is to be considered, the orifice of effiux of which is the 
section of the stream subjected to no further change except that which 
is due to the descent or ascent of the stream. 

PROBLEM 

§3. To find the velocity of water flowing out of a constantly full 
vessel after a given quantity of water has already flowed out. 

SOLUTION. There are two methods of supplying water especially 
worthy of considering, either of which postulates another solution to 
the problem: for either the water is assumed to rain down vertically 
into the vessel, and such indeed that it flows in at precisely the same 
velocity which the surface of the water has, or the water flows in later
ally and thus lacks the impetus by which the water could follow the 
surface on its own and finally is to be excited into motion. 

CASE I 

In order that for the first case we may find the equation between 
the quantity of water ejected and the corresponding velocity, this is 
to be pursued, with a single circumstance changed, along the same 
paths which we followed in the first paragraphs of Chapter III. 

Therefore, as in §6, Chapter III, let the vessel aimb (Figs. 15 and 16) 
be proposed, which is kept constantly full right up to cd by the inflow 
of water; but let water flow out through the orifice pl; and let it be 
established that that quantity of water has already flowed out which 
can be contained in a cylinder erected above the orifice pl to a height 
x, but that the last drop has flowed out at the velocity by which it can 
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ascend to the height qs or v; thus, the equation between x and v will 
now have to be shown. 

Let the curve CGI be the scale of the areas, such indeed that, for 
HL denoting the height above the orifice, HG expresses the area of the 
vessel at that place. Next let a third curve tru be drawn, the ordinate 
Hr of which is everywhere continuously equal to the third propor
tional with respect to GH and PL, or, the ordinate Hr of which is 
(PL) 2 /GH. 

Let the space DCIL = M, the space DtuL = N, and the potential 
ascent of the water contained in the vessel, after the previously men
tioned quantity has already flowed out (through §2, Chapter III), 

will be Z v. Further, let the particle plan be understood to flow out, 

and the surface cd to descend to ef; now the height of the velocity for 
the particle plan will be v + dv; and if now the parallelogram LxyO is 
constructed, the side LO of which is lo, and the other, Lx, is PL, the 
potential ascent of the same water in the position efmlonpie will be equal 
to the fourth proportional with respect to the space EFLONPIE 
(which again is M, because PLON expresses the magnitude of the 
volume element plan, while CDFE expresses the minimum quantity 
cdfe equal to that volume element), the space wuxyOLF (which is 
equal to the space N - DtwF + LxyO, from which, if PL or Lx is set 

equal to n, CD = m, and LO = lo = dx, there will be Dt = nn, 
m 

n n3 

DF = - dx, hence the small space DtwF = - dx, and the space 
m mm 

n3 
LxyO = ndx and finally the space wuxyOLF = N - - dx + n dx), 

mm 
and the height v + dv. Therefore the potential ascent just mentioned 

is (N - ;: dx + n dx) · (v + dv) /M, equal to the rejected differen-

. N N n3 n 
t1alsofthesecondorder Mv + Mdv - mmMvdx + Mvdx,suchthat 

the increment of potential ascent, which was added to the water while 

the volume element plan was flowing out, is Z dv - m:~ v dx + 

~ v dx, where the spaces N and Mare of constant size on account of the 

continuous pouring in of water. In this first case we do not consider 
the potential ascent of the volume element cdje, which is filled while the 
other equal [ volume J plan flows out, because that ascent is not gene
rated by an internal force, nor indeed is the lower water considered to 
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draw the particle cdje after itself, but rather we consider this to be 
poured in continuously by a certain outside force, and this at neither 
a greater nor a lesser velocity than that which pertains to the surface 
eJ. Therefore the entire increment to be considered here is, as we 
said, 

N n3 n 
- dv - -- v dx + - v dx. 
M mmM M 

But that increment must be equated to the actual descent of the center 
of gravity. And that descent, after DL has been set equal to a, is, 

from §7, Chapter III, n~x; therefore, the following equation results: 

or 

N n3 n na dx 
- dv - -- v dx + - v dx = --, 
M mmM M M 

dx = N dv / ( na - nv + ;: v). 

But if this is so integrated that v and x vanish together, it gives 

mmN 
1 

mma - mmv + nnv 
x = n3 - nmm n mma 

which equation, after e has been established as the number the loga
rithm of which is unity, is equivalent to 

V = mma [ I _ e<n3 - nmm)x/mmN]. 
mm - nn 

But this solution is suitable for the first case, where the water is 
poured in from above with a motion which is common with the 
descent of the nearest surface. 

CASE II 

Thus if now the particle cdje is considered continuously to be poured 
in laterally, then on account of its own inertia it stays behind the 
motion of the lower water, and accordingly the potential ascent of 
the same enters differently into the computation. Moreover, first the 
potential ascent of the aqueous mass cdmlpic increased by the volume 
element soon to be poured in is to be considered; then the potential 
ascent of the same water at the position cdmlonpic is to be investigated, 
indeed, after the volume element has already flowed out, and their 

na dx 
difference is to be equated to the actual descent M . Truly the 
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potential ascent of all the previously mentioned water before the pouring 
in of the particle and after the pouring in of the same is thus deter-

mined: certainly the potential ascent of the water cdmlpic is,:;, and the 

potential ascent of the particle ready to be poured in is nil, because, 
poured in laterally, it does not yet have a common motion with the 
lower mass. Therefore, the potential ascent of each [ volume of] water 
(which one obviously determines by multiplying the respective mass 
by its own potential ascent and dividing the sum of the products by the 

sum of the masses) is (M-1;; + ndx-o)/(M + ndx) = M :vndx· 

But at that very time when the particle n dx was poured in from above, 
it acquired a common motion with the water just below, and thus the 
potential ascent of the same water in the position cdmlonpic becomes 
equal to the fourth proportional with respect to the space 
CDLONPIC-(M + n dx), the space DtuxyOLD (N + n dx), and the 

height v + dv, that is, (N +;; dx)(vd + dv), the excess of which over 
+ n X 

. . . Ndv + nvdx + ndxdv Ndv + nvdx 
the pnor potential ascent 1s M + dx = M 

(after the differentials of the second order have been rejected). 
Therefore, the following equation is obtained 

Ndv + nvdx 
M 

na dx 
M 

which, handled as previously and carried out to the end, gives 

N a 
x = -ln--

n a - v 
or 

V = a(I - e-nx!N) 

which solution is valid for lateral pouring in. 

ScHOLIUM 1 

§4. These equations are altogether different from each other; more
over, the greater the difference, the less the area of the vessel; and if 
indeed the uppermost area of the vessel at cd is more or less infinite 
with respect to the area of the orifice, n vanishes with respect to m, 
and it occurs in the former case, just as in the latter, that 

V = a(I - e-nx!N). 
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Therefore, in this hypothesis the motion is the same on either hand, 
which everyone could have seen in advance with no difficulty at all. 
But the motion in the former pouring in is always swifter than in the 
latter, the remaining things being equal. 

Here it is convenient to explain the matter physically as well, in 
order that we can perceive it more distinctly in all phenomena. 

In place of any vessel whatever having any direction whatever, for 
the sake of a shorter delineation, let there be a vertical cylinder with an 
orifice at the base, namely GHND (Fig. 29), and then let the vessel 

FIGURE 29 

EFPQ, be perforated at RS; let the orifices RS and GD be assumed 
perfectly equal and corresponding to each other perfectly at a mini
mum distance apart, so that all the water flowing out from the upper 
vessel flows into the cylinder placed below. 

Let the water begin to flow from each vessel, but let it be assumed 
to flow constantly from the upper at that velocity which the surface of 
the water in the cylinder below has. 

Thus it is evident that this is satisfactory for the first condition of 
filling. But now, to see whether they agree with the preceding, we 
will investigate the phenomena of this motion. 

Therefore, let us consider the upper vessel as if it were infinite, so 
that the water flowing through RS at every instant has a velocity 
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which complies with the height PB or FA; thus it will have to be con
sidered that this height PB is infinitely small at the beginning, because 
then the water must flow at an infinitely small velocity, but that it 
then increases gradually, and this continuously more and more, until 
after an infinite time the motion remains uniform; however, it is 
asked whether the height PB of the water will finally become infinite 
or if indeed it will not pass beyond a certain limit. This is deter
mined as follows. 

Let the height CH or RH (for it is not to be considered that they 
differ from one another) be a, AF= x, the area of the orifice LM be n, 
the area of the orifice RS be m; because, indeed, as is manifest, the 
two vessels can be understood to cohere and thus become one, the 
velocity of the water at LM after an infinite time (from §23, Chapter 

III) will be '\/i:i+x, and at RS it will be vx (which is evident after
wards if now the vessels are considered separated again, for either can 
be assumed without error) , but the velocities must be in the inverse 

ratio of the areas of the orifices; and so Va + X : Vx : : m : n, from 
which (a + x) : x: : mm: nn, or a: x:: (mm - nn) : nn; therefore, 

x = nna and a + x = mma ; therefore, we see that the height 
mm-nn mm-nn 

mma 
due to the velocity of the water at LM is, in this way, ----, 

mm - nn 
certainly after an infinite quantity of water has already flowed out; 
but above we had the same height, or 

V = mma [ I _ e<n3 - nmm)x/mmN] 

mm-nn ' 

where if one sets x = oo (for in an infinite time an infinite quantity 
flows through), the exponential term vanishes if only mis greater than 

mma 
n, and thus equally there appears v = ----. That agreement is 

mm - nn 
remarkable, because the paths which we followed are greatly dif
ferent. On the other hand, if m is not greater than n, the motion 
never becomes steady, not even after an infinite time, for the velocity 
then increases to infinity, while otherwise the height of the velocity 

h h . h mma never surpasses t e e1g t ----. 
mm - nn 

latter cases there is nothing we may say. 

ScHOLIUM 2 

Therefore, concerning the 

§5. Now another question occurs here worthy of being noted: 
indeed, what can be the mechanical method of filling in order that the 
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vessel above remain full to the required height during the entire flow? 
That Problem would be difficult on account of the inconstancy of the 
desired height unless a peculiar artifice were applied here, which I 
shall now treat. 

However, it goes beyond the fact that the water in the minimum 
space RSDG undergoes no compression, either positive or negative, 
because from the hypothesis it is moving at a common velocity with 
the water just below, and thus no particle tends to propel or retain 
any other. 

Therefore, let each vessel be made as I said, and let a pipe be 
attached to the vessel above (for no other purpose than demonstration 
did we previously consider it separated), but let the pipe have a 
small opening at the highest point a (Fig. 30), to which the short pipe 

!J 

l e 

---~-_J J 

FIGURE 30 

am corresponds; in this short pipe let the curved glass tube abcdg, 
sealed at the mouth mn by wax, be inserted; let the horizontal ae be 
constructed, and the point e be marked. With these things prepared 
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thus, one will have to make the highest level of the water during the 
entire experiment remain constantly at the point e; and for this, one 
will see that it is required that at the beginning the surface of the 
water be near the base FP, further, that it be elevated continuously, 
and finally that after some time, albeit infinite, it never surmounts the 

height nna ; but it will be easy to moderate the pouring in of 
mm - nn 

water so that the surface does not diverge very much from the point e, 
if only the circumstances are not so matched that the water is to be 
added overly quickly at the beginning. 

But thus, if one notices that the surface in the small tube is elevated 
above the point e, one must restrain the pouring in a little, which I 
will show is to be done elsewhere; ifit should be the opposite, one must 
pour in the water more abundantly. 

That kind of experiment, of which sort I performed often, involves 
no difficulty, but, lest any error creep into the experiment, the 
capillary effect of the glass tube is to be examined; one finds this 
effect if, after the orifice LM has been blocked, and before the tube has 
been moistened, the cylinder is filled with water right up to the 
summit, and thus one finds that the surface of the water in the tube 
extends right up tof, a point certainly higher thane; however, one 
substitutes this point J for that about which we just spoke in order to 
disregard the character of capillary tubes. 

Therefore, in this way the filling will be properly done according to 
the rule of our hypothesis, and finally experiments can be performed 
concerning this motion. But thus, after we have explained the 
matter freely enough, I think it is unnecessary to warn that the 
vessel above does not pertain otherwise to the cylindrical vessel 
below, which we consider alone, than to the extent that the cylinder 
there is kept full in that manner in which it must be done, and thus 
by m is not to be understood the area of the upper vessel, but the area 
of the orifice RS, which, especially to us, is the surface of the water, 
since the water above RS serves only for the proper supplying to the 
cylinder below. 

ScHOLIUM 3 

§6. Here I must not overlook the fact that thus a case occurs which 
pertains to h;ydraulico-statics, concerning which science I advised certain 
things in Chapter I, §8: certainly we know now at what velocity the 
water must flow by at a in order that its pressure against the sides of 
the pipe be precisely null. But while I was writing these things, I 
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had already formulated the general laws of hydraulico-statics, and I saw 
not without pleasure that that case deduced as a corollary from a 
clearly different theory acquires a similar solution from the general 
theory. Thus all things conform everywhere to a mutual relation
ship, and they show a legitimate application of the principles. 

SCHOLIUM 4 

§7. Now certain things follow concerning another method of 
adding water. Let the cylinder RHNS be assumed as any vessel 
whatever, and let it be kept constantly full by lateral pouring in; this 
can be done by injecting a sufficient quantity of water through the 
short pipe ma; but although this does not occur without motion, 
nevertheless, because it is horizontal here, soon all is removed, and on 
its own it neither advances the flow through the cylinder nor retards 
it; but there is, furthermore, another method which we find, after the 
calculation has been performed correctly, to reduce to the same: 
namely, ifwe consider the vessel EFPQinfinitely large, and we under
stand the base ofit [to be] continuously covered with water, but such 
that the height of the water in the vessel above is to be taken as in
finitely small, the vessel above will furnish water to the pipe attached 
to it, and no other motion will arise thereby than from lateral pouring 
in, if only the orifice RS always remains covered over; but it easily 
occurs that a certain cataract is formed there if the orifice LM is 
large and the pipe RSNH is long. Since here the other method must 
put forth the same effect as the former in the motion of water, every
one sees from this that in each method the inertia of all the water 
flowing into the pipe is to be exceeded by [that of] the water below. 
But the same could also be shown a priori by inquiring into the motion 
which must arise thence according to the equation of§8, Chapter III, 
which is this: 

Nd 
mmvy dx mmv dx d 

V - --'--- + --- = -yx X. 
nn y 

But it will be accommodated to the present case if form, x, and -dx 

one substitutes, respectively, n, a, and n dx (the reason for which act 
y 

will be evident if one matches these with the others), and at the same 
time one setsy to be infinite; for then the third term of the equation 
vanishes, and it occurs indeed that for the present treatment above 
we find 

N dv + nv dx = na dx. 
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After we showed in these scholia the nature of each motion, as much 
as a simple physical consideration of the matter permits, and the dif
ference between them, and at the same time we treated the mechanical 
method of advancing those hypotheses to law, it remains that the rest 
of the rather notable phenomena be indicated as well, which I will 
now do. 

§8. COROLLARY r. If in the vessel RSNH the entire base is absent, 
the orifice LM will equal the orifice RS; the latter can even exceed the 
former if indeed the sides of the vessel diverge. But in these cases 
the height v has no limit in the equation 

V = mma [ 1 _ e<n3 - nmm)x/mmN] 

mm - nn 

and it becomes infinite if the quantity of ejected water, indicated by 
nx, is infinite. 

This indeed is evident intrinsically from the equation when n is 
greater than m; but when the areas of the orifices are equal, one is to 
return to the differential equation of§3, from which the next equation 
was deduced, namely, 

N n3 n n 
-dv - --vdx + - vdx = -adx 
MmmM MM' 

which, for n = m, gives N dv = na dx, that is, v = n;, where v 1s 

manifestly infinite if xis infinite. 
§9. COROLLARY 2. But if the proposed vessel has a base and an 

orifice in it, the area indicated by n of which is less than the area 
of the orifice RS, expressed by m, v has a value which indeed it never 
attains, but nevertheless reaches approximately, and to which it 
converges so quickly after a minimum perceptible time of flow that 
it is not noticeably different unless by special effort vessels contrived 
contrary to this matter are furnished. But that term is as follows: 

v = mma ; therefore, in the case of Scholium 2 of§5, the last term 
mm - nn 

PB is v - a= 
nna 

mm - nn 
I will illustrate by example the very quick 

accession of the velocity to its ultimate limit, after I have applied 
the equation between v and the time corresponding to the height v. 

§10. COROLLARY 3. In the case of the pouring which we call 
lateral, the ultimate height becomes v = a, whatever ratio may exist 
between both orifices of the vessel. 
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§11. COROLLARY 4. If the vessel is cylindrical and its length is set 

equal to b, there occurs (see §3) N = nnb; but let it be noted that the 
m 

values of the letters a and b are not to be confused, for the first ex
presses the height of the uppermost orifice above the lower, the other 
the length of the conduit. And so the values thus agree with each 
other at least in that case in which the axis of the vessel is a straight 
line and vertical; but if the axis is tortuous, or at least not vertical, 
they differ from each other. Therefore, I wished to advise this ex
pressly, lest anyone be misled by the shapes of the vessels, the axes of 
which I made straight and vertical everywhere. If, therefore, for 

cylindrical vessels one sets N = nn b, for vertical pouring in 
m 

mma v = ---- ( 1 _ e<nn - mm)x/mnb) 
mm - nn 

and for lateral, v = a(1 - e-mx/nb). 

PROBLEM 

§12. To find the velocity of the water flowing out from a constantly 
full vessel after the flow has taken place for a given time. 

SOLUTION. With the hypotheses and all the notation retained which 
we applied in §3 and, further, with the time elapsed from the beginning 
of flow having been taken equal to t, we will have to change the 
equations given in that paragraph into others which express the rela
tion between t and v, after the quantities x and dx have been elimi
nated. But the element of time difference dt is proportional to the 
very small space dx which it passes through divided by the velocity 

vu; therefore, we will set dt = ~~, and thus the equation 

dx = Ndv/(na - nv + ;:v) 
which was given for determining the required velocity for vertical 
pouring in, will be changed into the following: 

(I) dt = N-y·dv I ( na-Vv - nv-Vv + ;: v-vv); 

but the other, serving for lateral pouring in, namely, dx = N dv/ 
(na - nv), is changed into the following after the same substitution: 

(II) dt = N·y·dv/(na-vv - nv-vv). 
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But these equations, integrated in the required manner, give for the 
first, 

(a) 
mNy 

1 
mva + vmmv - nnv 

t = --======= · n -,=--,===== 
nvmma - nna mva + vmmv - nnv 

and for the other, which is deduced from the former, after one has 
set m = oo, 

(f3) t = Ny -ln Va + vv. 
nva va - vv 

ScHOLIUM 

Q.E.I. 

§13. If the vessel which is being discussed is cylindrical and twisted 
and inclined in any way whatever, and the length of it is set equal to 
b, the height of the aqueous surface above the orifice remaining equal 

to a, there will be again, as in §n, N = nn b. 
m 

But since, as is well known, 2yVA expresses the time which a body 
takes in falling freely and from rest through the height A, it is evident 

that the quantity :::~ ( = 2y Jb:) expresses the time in which a 

body beginning to be moved from rest descends freely through the 

height bb; we will accept that time as a common measure and we will 
a 

set the same equal to 0, and the equation (a) for vessels or cylindrical 
conduits will be changed into this: 

t = n0 -ln mva + vmmv - nnv. 
2Vmm - nn mVa - Vmmv - nnv' 

the other suitable one, designated by ({3 ), becomes the following: 

t = n0 ln va + vu, 
2m Va - Vv 

from each of which it appears that the water cannot but acquire 
almost the full velocity in a very short time, and this all the more 
quickly the larger is the pipe, the shorter, and the more nearly ver
tical; and that the accelerations are not perceptible in any way, 
unless the aqueducts are made very long; and then also almost all 
grades of accelerations are passed through in a short time, each of 
which I shall now illustrate by an example. 
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I. The time is sought in which fluid from a constantly full vertical 
cylinder, 16 English feet long, the diameter of which is five times the 
diameter of the orifice, acquires a velocity which is due to the height 

.filL a according to the hypothesis to which the second equation per-
100 

tains; thus!!._ = _:_, v = .filL a, and b = a, whence the time which a 
m 25 100 

body takes in falling freely through the space bb or 0 equals one 
a 

second; hence t becomes _:_ ln 399, that is, approximately the ninth 
50 

part of one second, which short time is indeed imperceptible. But 
when the time is considered notable, the changes of the heights v 
become unnoticeable. If the similar time (in which certainly the 

velocity due equally to .filL of the height which results after an infinite 
100 

time is generated) is sought in the first hypothesis, namely, the time in 

which there is obtained v = .filL · mma , then that is found to be 
100 mm - nn 

slightly greater than the preceding, but of unnoticeable excess; whence 
it is evident in vessels of this sort that the water cannot be poured quite 
quickly enough into the upper vessel to satisfy the hypothesis, and 
therefore, by reason of the same, that other experiments cannot be 
performed with regard to the hypothesis in order to show whether the 
height BP in Fig. 30 is truly as great as it should be by virtue of§5, in 
order that the point e or f retains the position during flow which it had 
before flow when the orifice LM was blocked off and no water existed 
in the upper vessel. 

II. Now the same time is sought again for the second hypothesis, if 
the pipe is of the same area and has the same orifice attached to it and 
has an oblique position and a length b of 184 poles or 1104 Paris feet, 
while the height of the aqueous surface above the orifice of effiux is 

r6 Paris feet. Thus it will occur that b = I 104, bb = 76,176, and 
a 

0 = 72 seconds, more or less, from which the mean desired time is 
between eight and nine seconds, which certainly is noticeable enough. 
But if the time is desired in which the height vis equal to only a fourth 
part of the height a, that will be found equal to H ln 3, or approxi
mately one second and a half. 

I do not know whether these things agree with those observed by 
Mariotte to which he refers in his Traite du mouvement des eaux, Part V, 
Disc. 1, where he mentions a certain leaping fountain, which is at 
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Chantilly, to which the water descends through a conduit 184 poles 
long, if only I concluded correctly from the antecedent [discussion], 
and the greatest height of the aqueous surface above the orifice of 
efflux had been indicated by a as 16 feet; the diameter of the aqueduct 
was 5 inches, but the orifice had a diameter of one inch. Mariotte 
seems to me to speak thus, as if the accelerations had been much 
slower than is indicated by our formula, although I do not know 
whether this is to be attributed to the fact that the water perhaps may 
have had some other exit in addition to the orifice which is being dis
cussed here, or that the aqueduct had not been full of water when 
flow was beginning, which many things occurring afterwards caused 
me to believe; ifit has been neither, I believe that the phenomena, as 
they had been observed by Mariotte and can be observed again daily, 
clearly agreed with our calculation. Finally, these words are 
Mariotte's: "Furthermore, this," he affirms, "happens to the same individual 
thrust: when an orifice has been blocked by hand for a space of time of ten or 
twelve scruples of a second, and afterwards the same has been opened, water does 
not burst forth at once, but, surging slowry, the thrust ascends to 3 inches, 
afterwards to a height of a foot, and .finalry to two feet, at successivery noticeable 
intervals. . . . But, nevertheless, .finalry the water springs forth with its full 
impetus." 

PROBLEM 

§14. To find the quantity of water flowing through a given vessel, 
constantly full, in a given time. 

SOLUTION. With the positions and notation of§§3 and 12 applied 
again, now the equation between x and tis to be found; but because, 

as we saw in §12, dt is rJ~, y1; will be yd~X, and this value has to be 

substituted in the integrated equations which we gave in §3; the former 
of these equations was this: 

V = mma [ I _ e<n3 - nmm)x/mmN], 
mm - nn 

which, according to the previously followed custom is changed into 
this: 

(I) yy(dx)2 = mma (1 - e<n3-nmm)x/mmN). 
r;Ji)2 mm-nn 
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The other of the mentioned equations from §3 was the following: 

v = a(1 - e-nxfN) 

which therefore supplies the following in the present case: 

(II) yy(dx)2 = a(I - e-nxfN) 
(dt) 2 • 

Now the equations (I) and (II) have to be integrated, which is 
certainly easy, and because the former contains the latter (for each is 
the same if m = oo), we will treat that one alone, and we will now 
consider it in the following form: 

dt = yVmm - nn·dx/Yr - e<n3-nmm)xtmmN 

mVa 

But let it be established, so that the method of integration is ex
plained all the more, that e<n

3 
-nmm>xtmmN = z, and, accordingly, 

dx = ( 
3
mmN dz) , from which, for the sake of brevity, the constant 

n -nmmz 

. yv'mm - nn mmN -ymN .. d" db 
quantity . ;- , or -,=====, 1s 1n 1cate y 

mv a n3 - nmm nv' (mm - nn)a 

d h ·11 1 d a dz . h" h "f . dd" . . a, an t ere WI resu t t = . 
1 

, In w IC , I In a Itlon It 
ZV I - Z 

occurs that r - z = qq, or z = r - qq, dz = - 2q dq, there develops 

d 
-2a dq 

t=---
1 - qq 

-adq 

I + q 
a dq 

I - q 

the integral of which is 

I - q 
t = a ln ( I + q) + a ln ( I - q) = a ln --· 

I + q 

And there is no need of a constant, since indeed from the nature of 
the matter t and x must vanish simultaneously; but for x = o it occurs 
that z = r and q = o; therefore, equally t and q must begin simul
taneously from zero, which condition the derived equation 

I - q 
t = a ln -- satisfies. It remains that we reassume the original 

I + q 
values in reverse order; in fact, it thus occurs that 

1 v1-z 
t = a ln --~---

1 + VI - Z 
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or 

mN r+v~ t = y ln-----
nY (mm - nn)a r - V r - z 

or, finally, 

(I) t = ymN ln [ r + Y r - e<n3 - nmm)x/mmN] 

nY(mm - nn)a 

_ ln [ r _ yr _ e<n3 - nmm)x/mmN]. 

And that equation, after one has set m = oo, gives the other 
desired equation, 

(II) t = ~~In [r + Yr _-nx /N] - ln [r - Yr - e-nxlN] 
nva 

Q.E.I. 

§15. COROLLARY r. If one sets x = oo, in order that the nature of 
the matter might appear when an infinite quantity of water has 
already flowed through, and m is assumed greater than n, just as is 
mostly customary, the exponential quantity is to be considered to 
vanish in both places if the logarithm has been assumed positive, and 
ln 2 will occur on either hand. But indeed, if the logarithm has been 
assumed negative, it is to be stated that 

yr _ e<n3 - nmm)x/mmN = r _ ½e<n3 - nmm)x/mmN 

and accordingly 

ln [ r _ yr _ e<n3 - nmm)x/mmN] = ln ½e<n3 - nmm)x/mmN 

n3 - nmm 
= N x - In 2. mm 

If these substitutions are properly made for the first method of 
pouring in which we devised, 

(I ) ymN ( mmn - n3 
) 

t=-===== 2~2+ N X 
nY (mm - nn)a mm 

which, for m = oo, gives for the other case 

(II) t = :~ ( 2 ln 2 +ix)· 
It follows from the above formulas: that certainly water flows at a 

lesser quantity than if it would flow from the beginning at the entire 



118 HYDRODYNAMICS, CHAPTER V 

velocity which it acquires in either case after an infinite time; that the 
difference, however, never surpasses a certain limit; and that after an 
infinite time it is described in finite terms. 

§16. COROLLARY 2. When we convert the derived equations, we 
obtain 

(I) 

(II) 

2mmN [ t] x = ---- In (1 + e-tlx) - ln 2 + -
mmn - n3 2a 

2N [ X = n In (1 + e-t//3) - ln 2 + _!___] 
2(3 

-ymN -yN 
where, as above, a = ----=======, and f3 = . r · 

nV (mm - nn)a nv a 
If in addition, as in the last corollary, one sets t = oo, unity vanishes 

with respect to the exponential quantities, which are infinite beyond 
all degree, and there results 

' a 
and 

t 
ln (1 + e- 1113 ) = - ~) 

from this then, after the values of the letters a and f3 have been 
considered again, 

(I) 

(II) 

mtva 
X = -,==== 

yVmm - nn 

tva 2N 
X = -- - -ln2. 

y n 

2mmN 
1 n2 

mmn - n3 

Therefore, if suddenly from the beginning of flow the water would 
flow constantly on either hand at the entire velocity which it can 
acquire, its quantity should not exceed after an infinite time the 
quantity corresponding to the theory for the same time except by the 

very small quantity which in the first case is expressed by 2mmN ln 2 
mm - nn 

and in the second by aN In 2. But if in place of an infinite time one 
n 

takes a time of only a few scruples of a second, the same theorem will 
hold approximately, so that, for instance, if after the first ten seconds 

the quantity Q has flowed out, Q + 2
mmN 3 ln 2 will thereafter 

mmn - n 
flow out in approximately the same number of seconds, or in the other 

2N 
case, Q + - In 2. 

n 
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ScHOLIUM 

§17. The motion of water through siphons pertains as well to the 
theory set forth thus far. However, the theory indicates that the axis 
of a siphon can be inflected in any way whatever and the motion of 
the water thence will not be altered, if only the height of the aqueous 
surface above the orifice of efflux remains the same; since in addition 
aqueducts, siphons or diabetes, and other vessels of this sort are usually 
cylindrical, it is to be established, as I advised in §13, whenever this 

applies, that N = nn b, by understanding that b is the length of the 
m 

conduit or siphon; also in the formulas of§§r4, 15, and 16, the quan
tities are to be so interpreted, where the question concerns time, that 

2yVA represents the time which a body having begun from rest uses 
in a descent through a vertical height A. 

For the rest, as I said in passing, the theory of this chapter indicates 
nothing unique which falls under observation except in very long 
aqueducts, greatly oblique to the horizontal, and having not very 
small orifices; for these three things combine to the end of retarding 
and thus effecting noticeable accelerations, the measures of which 
very strongly support the theory. 

Nevertheless, even in these circumstances some average is to be 
observed lest the hindrances developing from the adhesion of the 
water are excessive. 

As far as the pouring in of water is concerned, I seemed to notice 
for myself that, if it occurs vertically and with impetus, the motion 
hence is so far from being accelerated that, rather, it is retarded, 
unless the pouring in of water occurs equally over the whole surface, 
in the matter which I showed in §4; for, if it is poured in otherwise, 
the motion of the water in the vessel is disturbed, and this disordered 
motion retards the efflux. 

§18. Finally, to this point there pertain to some extent the experi
ments undertaken by the celebrated Giovanni Poleni, as he reports in 
the first book of De Motu Aquae Mixto, p. 12ff., which, therefore, I 
thought should be brought forth here, since they show splendidly that 
everywhere the ultimate speed in constantly full vessels is that which 
agrees with the entire height of the water, if the vessels are not sub
merged, or with the difference of the heights of internal and external 
water in submerged vessels, although as for the rest there is nothing 
in them thus far which is new, because there no accelerations are 
considered. 

Take a cylinder oflength as if infinite, the axis of which has a vertical 
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pos1t10n; let the base be whole; but in a wall let there be a fissure 
parallel to the axis, rendering an orifice [in the form] of a rectangular 
parallelogram which extends from the base right up to the summit of 
the cylinder. Further, consider water to be poured into the cylinder 
steadily, so that in equal times equal quantities are injected; the water 
flows from the cylinder through the fissure; nevertheless, from the 
beginning it does not flow at the same quantity at which it is poured in 
from above, but at a lesser one; therefore, the surface of the water in 
the cylinder surges right up to a certain height asymptotically; but if 
this limit is now known to be reached, the height of the water will 
remain unchanged, and the water flows out constantly at the same 
quantity at which it is poured in. It appears also that the greater 
will be the height of the water in the cylinder, the more [water] is 
poured in. And so there is sought, for increased quantities of water 
to be poured in in a given time, in what ratio the heights to which the 
water surges in the cylinder must increase. 

The solution is this: Let the height of the water, when it is in a 
permanent state, be a, and let the part which is x be terminated at the 
surface, together with the differential dx; let the width of the crack 
be n, and we will have [something] just like an orifice of area n dx, 

through which water flows at a velocity -Vx, therefore, the quantity of 

water flowing out here in a given time is, for instance, n dx -vx, the 

integral of which is jnx-Vx; this expresses the quantity of water flow
ing out in a given time through the partial length x of the crack; and 
thus the quantity of water pimring out in the same time through the 

entire crack will be expressed by Jnav;; but only as much flows out 
as is poured in; hence if the quantity of water poured in in that given 

time is called q, there will be ~na-V; = q. This indicates that the 
quantities of water to be poured in in that given time follow a three
halves-power ratio to the heights to which the water ascends from the 
base of the cylinder, or on the other hand that the heights follow a 
cube-root ratio to the squares of the quantities at which the water is 
poured in in a given time. 

§19. With this problem having been solved, I come to the other 
considered by the celebrated Poleni. 

Let the cylinder be the same, but submerged in water standing in a 
trench, as if in an infinite vessel, and let the depth of submersion be 
designated by a; now, with the same things having been assumed as 
before, again the equation is sought between the height a of the internal 
aqueous surface above the external, and the quantity q to be poured 
in in a given time. 



MOTION OF WATER FROM CONSTANTLY FULL VESSELS 121 

With respect to that portion of the crack ex which ejects water and 
rises above the external water, we already saw that it expends the 

quantity -inexv'; in a given time; but the remaining submerged 
portion of the crack transmits water everywhere at a common 
velocity, as will be evident from things to be discussed below, and 

certainly at the velocity v';, so that, after this velocity has been 
multiplied by the magnitude of the submerged crack na, the quantity 

naVa is obtained which it ejects in a given time. If both quantities 

are gathered in a sum, it will result that (!ex + a)nv'; = q. 
With the help of this equation, q is known from the given heights 

a and ex; or, on the other hand, the height ex [is known] from the 
known quantities a and q. 

Moreover, the very celebrated author himself, whose solution does 
not differ from this of ours, shows that this equation agrees very 
accurately with the experiments. It follows from the equation that 
the elevations ex are the greater for the same pouring in of water, the 
less is the depth of submersion a. 

EXPERIMENTS WHICH PERTAIN TO CHAPTER V 

PERTAINING TO §5 

I used the vessel described in §5 with a glass tube (Fig. 30). But 
first I covered the orifice LM and filled the pipe RN with water until 
its surface touched the little opening at a; then I observed that the 
water having gone into the tube reached the pointf at the extremity; 
after the orifice LM had been opened and the water was flowing, 
I poured new [water] into the vessel EFPQ, above, care having been 
employed so that the extremity of the water atf meanwhile neither 
ascended nor descended. While these things were occurring, the 
surface AB was elevated, but it never exceeded a certain limit; 
indeed, the maximum height PB or FA, as far as I could see, was 

nn a, with!: denoting the ratio between the lower orifice LM 
mm - nn m 
and the upper RS, and a the vertical height of the latter orifice above 
the other. 

But this is the only experiment which I myself undertook; although 
there are many propositions contained in this section which would 
merit attention, and these sufficiently unexpected, nevertheless I was 
not able to perform experiments concerning them; for things in the 
shorter vessels are so composed that whatever unusual [property] they 
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possess escapes observation; moreover, I was not able to prove the 
matter aptly in long aqueducts; when the opportunity will arise for 
others to examine this theory, they should turn their attention to the 
following: 

I. In leaping fountains the whole height of the thrust may be 
observed; after the orifice has first been closed, and the same soon 
opened, the quantity of water which flows out may be seen, while the 
water reaches half the height of the entire thrust, or any part what
ever, which certainly will happen in the shortest time; let the measure 
of that quantity be the length of the cylinder erected above the orifice 
through which the water springs forth, which length we have called 
x, but we have called the entire height of the thrust a, and the ob
served height of the thrust which has not yet reached the total height 
we have designated by v. Then at last, after the calculation has been 
performed, let it be examined whether these quantities correspond 
correctly to the equations for either method of pouring in shown in §3. 

II. Let all things be done as before, with this difference only, that in 
place of the quantity flowing out let the time of effiux be noted, so that 
thus the formulas of§13 can be examined, and finally let the quantity 
be compared with the time of flow, in order that this may show 
whether it compares properly to the formula of§14. 

III. Then expecially let that kind of experiment be performed 
which I indicated in §16, by observing certainly the quantities of 
water corresponding to the halftimes; but I said that, however great 
a time is taken, the difference of these quantities never equals 

2
mmN 

3 
In 2 in the former method of pouring in which we estab

mmn - n 

lished, or 
2 N In 2 in the latter. But these differences, although they 
n 

will never develop perfectly, will nevertheless be reached closely in a 
very short time. 

The remaining things in this section are Corollaries and Scholia; 
anyone will see easily how they can be subjected to experiments. 
But let me wish, before judgment is made, that attention be paid to 
all circumstances with regard to the hindrances, the contraction of the 
stream, and other things which I do not care to repeat everywhere. 
To§§17 and 18: For the confirmation of the problem of§17 pertaining 
to vessels not submerged, see the experiments on p. 26, lib. cit. of 
G. Poleni. 

But since in the submerged vessel the height a should be 55 Paris 
lines (which height is called dead by him), he undertakes five experi
ments in which the height which he calls live, or ex, was successively 
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8¾, 25, 42, 58, and 73½ lines; after these values have been substituted 
in the equation shown in §r8, it follows that the quantities of water 
poured in in a given time were as r oo, 199, 299, 396, and 495; actually 
they had been poured in in proportion as roo, 200, 300, 400, and 500; 
the difference is so little that it cannot be doubted but that the 
agreement would have been perfect if all measurements had been 
taken most correctly. 

Also, the remaining experiments undertaken by that celebrated 
man agree perfectly with the theory; the calculation of them is seen 
among the works of that same Author. But I undertook in the 
interest of the matter to include them here because they pertain to the 
argument of this very section, although as for the rest, I may say 
freely that I long more for those experiments which by calculation 
depend on a change of instantaneous [ conditions J, considered to this 
time by no one that I know, rather than those which assume the 
permanent state. 



SIXTH CHAPTER 

Concerning Fluids not Flowing out but Moving 
within the Walls of Vessels 

§1. Up to this point we have considered water flowing out; but 
now we will contemplate the motions of water which does not flow 
beyond the bounds of vessels. Let me reduce all these motions to two 
kinds, each to be treated separately: 

First: When the fluid in an infinitely long pipe is moved continu
ously in the same direction. 

Second: When it is driven in reciprocal or oscillatory motion. 

CONCERNING THE MOTION OF WATER THROUGH 
INDEFINITELY LONG CONDUITS 

CASE I 

§2. First let there be a conduit placed horizontally but varying with 
respect to [ cross-sectional] areas according to some given law; let a 
fluid be so placed in it, as it customarily occurs in rather narrow pipes, 
that both end surfaces obtain an alignment perpendicular to the axis 
of the conduit and thus begin to be moved at a certain given velocity. 
If these things are so, and clearly no impediments to the motion are 
assumed to be present, it is obvious that there will be no end to the 
motion, in the same way that a sphere progressing freely on a hori
zontal table continues its motion without end. Nevertheless, a sig
nificant difference arises between the two motions; namely, all 
portions of the sphere progress continuously at a uniform velocity; in 
water they perpetually change motion. And it will not be difficult to 
define that motion, if we will consider that the motion must be such 
that the same potential ascent of the entire water which existed at the 
beginning of motion is conserved. But we have determined the 
potential ascent of water moved at a certain velocity in any conduit 
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whatever in §2 of Chapter III: therefore, nothing further remains 
with respect to the solution of the problem. Nevertheless, it will not 
be useless to have introduced one or another example of this matter. 

EXAMPLE I. Let there be, for example, the conduit BgfC (Fig. 31), 

3 

FIGURE 31 

which has the shape of a truncated cone; let the portion BGFC of it be 
considered filled by fluid moved toward gf; and let the particles of 
fluid at CF have a velocity due to the height v; and, finally, let the 
fluid have arrived at the position bgfc. With these things established, 
the velocity of the fluid at gf is sought. Moreover, I will assume that 
V equals the height due to the velocity of the water at gJ. Let the 
vertex of the cone be at H, the diameter at BC = n, the diameter at 
CF= m, the length BG = a; if GB = b, the diameter gf will be 

ma - mb + nb. Hence, because the solid BGFC is equal to the 
a 

solid bgfc, 

(BC) 2 -BH - (GF) 2 -GH = (bc) 2 -bH - (gf) 2 -gH, 

from which 

(bc) 2 -bH = (BC) 2 -BH - (GF) 2 -GH + (gf) 2 -gH; 

BH 
but bH = BC· be, therefore, 

or 

(bc) 3 = (BC) 3 _ (GF)
2
~~H-BC + (gf)~r:-BC 

= (BC) 3 - (GF) 3 + (g/) 3 

b 3J 3 3 (ma - mb - nb)
3

• c = n - m + 
a 

But, from §3, Chapter III, the potential ascent of the water in the 
3 

position BGFC is ( 3m v ) ; and similarly the potential ascent 
n mm+ mn + nn 

of the same water in the position bgfc is found equal to 

3asv 

fJ(aa + a{J + fJfJ)' 
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where, for the sake of brevity, a and f1 have been inserted for the de
termined values of the diameters gJ and be. Therefore, 

V = m3 
• (aa + af1 + f1f1 )f1v. 

a 3
• (mm+ mn + nn)n 

From this formula it is easily understood that the anterior particles 
are moved at a continuously greater velocity, the posterior at a lesser 
and such that, if the little orifice gJ is considered infinitely small, the 
velocity of the water at g.fbecomes infinite and at be infinitely small. 

EXAMPLE 2. Let there be a conduit composed of two cylindrical 
pipes BN and OP (Fig. 32) of unequal area; in the wider branch let 

FIGURE 32 

the fluid BGFC be assumed to be moved toward Pat a velocity which 
corresponds to the height v. Thus it is obvious that no change will 
occur in the motion before the surface GF will have reached MN; but 
from this point of time the motion will be varied continually until all 
the fluid will have entered the narrower pipe. Therefore, one seeks 
the velocity of the surface Jg when the fluid occupies the position 
bgfc; moreover, we will designate the height required for this velocity 
by V. 

Let the diameters GF and g.fbe as n and m; let the length BG = a; 

[if] bM = b, Og = !!!!.... (a - b) ; the potential ascent of the water at 
mm 

BGFC is v; the potential ascent of the water at bgfc is 

n4a - n4b + m4b 
4 V; n a 

therefore, 

From these [relationships] it is understood that the velocity of the 
first drop bursting forth into the narrower pipe corresponds to the 

4 

height n 
4 

v, but that this velocity decreases very quickly, so that, after 
m 
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a very small portion of fluid has flowed through, it can then be con

sidered that V = __!!__b v and after all the fluid has flowed through, 
a-

it assumes the former velocity. For example, let the diameter of the 
wide pipe be ten times the other, and the first drop will flow from the 
wider pipe into the narrower at a velocity due to the height 10,000 v; 
but if one assumes that -h of the fluid has already flowed through, one 
will find that the height which conforms to the velocity of the fluid 
moving in the narrower pipe is approximately equal to .ll v. 

If one seeks the time in which the transflux of the fluid Of occurs, 
one finds that this is equal to 

2(n4a - n4b + m4b) 312 - 2m6av'a 

3mm(n4 - m4 )v'av 

Therefore, all the fluid flows through in the time 

2n6av'a - 2m6av'a 

3mm(n4 - m4 )v'av 

2(n4 + mmnn + m4 )a 

3mm(nn + mm)v'v ' 

where by ;v the time is defined in which the fluid, moving freely in 

the wider pipe, traverses the distance a. But, as I said, these things 
will behave this way if there are no impediments to the motion, and 
at the same time the velocities in the full extent of the composite con
duit are assumed reciprocally proportional to the areas. Meanwhile 
I have already showed elsewhere that the water near the boundary 
MN cannot satisfy this law. And so, since the situation is such, the 
more nearly the actual motion will agree with theory, the longer the 
portion bm will be and the fewer obstacles will be present. 

§3. Thus, if now the conduit is placed not horizontally but obliquely 
to the horizon, it is evident that all things occur similarly except that 
the potential ascent of the water in every position is to be equated to the 
initial potential ascent augmented by the actual descent, that is, by the 
vertical descent of the center uf gravity. And so if the water begins 
to move on its own without any impulse, the actual descent will simply 
be equal to the potential ascent. 

Therefore the water keeps on progressing continuously as long as 
the center of gravity is located at a lower point than it was at the 
beginning of motion. But when the pipe has been so formed and 
curved and filled with such a quantity of fluid that the center of 
gravity can assume its previous height again, then the fluid will 
develop a retrograde motion and will oscillate without end. We will 
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soon discuss that motion comprising the principal portion of this 
section. Meanwhile it may be observed that it can occur that all 
water flows on its own accord from a lower place through a higher 
without previous suction if only all things occur in the required 
manner. 

CONCERNING THE OSCILLATIONS OF FLUIDS IN 
CURVED TUBES 

CASE II 

§4. In the Commentaries ef the Imperial Academy ef Science ef St. Peters
burg, Book II, my Father presented certain theorems which manifest 
the significant use which the theory oflive forces possesses in mechani
cal matters. Indeed that which was given third is as follows: 

Let there be a cylindrical pipe ABCH (Fig. 33) open at either end, bent into 

H 

FIGURE 33 

two legs BA and CH [attached] to the horizontal portion BC; let the sine ef the 
angle ABC be p, and the sine ef the angle HCB be q, with the total sine, 
certainly, being 1; further, let that pipe be filled with water right up to the 
horizontal MN, and let the length ef the portion ef the pipe MBCN filled with 
water be called L. All the oscillations ef the fluid agitated within this tube, 
greater as well as lesser, will be tautochronous with and ef the same duration as 

the very small oscillations ef some simple pendulum the length ef which is ____!:__ · p+q 
The following is a corollary to this theorem, by the same author. 
if ABC and HCB are right angles, which is the only case solved by Newton, 

the length ef the simple pendulum which is isochronous to the oscillating water 
will be -~L,just as Newton found. 

§5. These are the things which have been communicated to the 
public up to this time on the oscillations of fluids, and certainly first 
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by Newton, in order to show the nature of waves, and by my Father, 
in order to show the fruitfulness of the principle of live forces. But 
since it is our intention to give a more complete theory concerning the 
motions of water, it will be to the point to follow that type of argument 
to its full extent. Therefore, let me inquire by which ways the un
equal oscillations of a fluid may become isochronous, and by which 
they do not. Then for the former I will give the length of the simple 
tautochronous pendulum, and for the other I will indicate the time of 
duration; moreover, I will consider pipes that are bent in any way 
whatever and unequally large. 

LEMMA 

§6. Let cAd (Fig. 34) be a leather bag or a conduit of any given 
shape whatever, full of water, terminating at either end in two 

B 

FIGURE 34 

cylindrical conduits ac and fd inclined to the horizon in any way 
whatever and of any area whatever, one of which let me assume 
full of water up to a, the other up tof; let it be necessary to determine 
the height of the center of gravity of all the water from the given 
height of the center of gravity of the water contained in the bag 
cAd, with as many of the remaining things known in advance as is 
sufficient. 
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SOLUTION. Let the center of gravity of the water contained in the 
vessel cAd be at C; and let it be understood that the vertical AB is 
drawn through that point C, and then let the horizontals am, cg, fn, 
and dh be drawn, together with the verticals cb and de. Let it be 
established that ac = a, fd = o:, be = b, ed = (3, the area of the pipe 
ac = g, and the area of the pipefd = y; further, let the aqueous mass 
or the volume of the conduit cAd be M, the line Ag = j, Ah = cp, and 
AC = m. Let the lines mg and ng be divided in two at the points D 
and E, and thus the centers of gravity of the water contained in the 
cylindrical pipes will be at the heights of the points D and E. 

After these things have been set forth, it occurs that AD = f = ½b; 
AE = cp + ½/3; the mass of water at ac is ga, and atfd it is yo:. There
fore, if the sought center of gravity for all the water acAdjis understood 
to be located at the height F, AF will be obtained, as is well known in 
mechanics, by multiplying the mass of water in ac by DA, the mass of 
water [in] fd by EA, and the mass of water in cAd by CA, and by 
dividing the sum of these products by the sum of their masses. From 
this it is found that 

AF= ga(f + ½b) + yo:(cp + ½/3) + Mm . 
ga +yo:+ M 

PROBLEM 

§7. To determine everywhere the velocities of the oscillating water, 
after it has been established that the oscillations do not extend 
beyond the limits of the cylindrical pipes. 

SOLUTION. Let the water beginning the oscillation be in the position 
acAdj, and after a while it will have arrived at the position ocAdp; 
and with the designations made in the preceding paragraph retained, 

let ao be set equal to x; thenjp will beg\ whence (if indeed the center 
y 

of gravity of all the water is understood to have descended from 
F to 0), by virtue of the preceding paragraph, 

g(a - x)(f + ½b - bx) + y(o: + gx)(1> + ½/3 + (3gx) + Mm 
AO = 2a y 20:y . 

ga +yo:+ M 

Hence the descent of the center of gravity or the actual descent is 
deduced 

(
bg bgg) ( b - (3 + J - cp) gx - - + - xx 

FO = 2a 20:y . 
ga +yo:+ M 
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Now let the velocity of the water in the pipe ac (namely, when the 
surface is at 0 ) be such that it corresponds to the height v, and then 

the potential ascent of the water in the other pipe will be gg v; similarly, 
yy 

the potential ascent of the water cAd will be proportional to the height 
v, and therefore we will set it equal to Nv (where N depends upon the 
shape of the bag cAd and can be determined through §2, Chapter III). 
But now if, after the potential ascents everywhere have been multiplied 
by their proper masses, the products are divided by the sum of the 
masses, the potential ascent of all the water ocAdp will be obtained as 

( ga - gx + a.gg + g
3
x + MN) v 

y yy 
ga +ya+ M · 

And because this potential ascent is equal to the actual descent FO 
found a little earlier, 

(b - f3 + J - cp)gx - (bg + _bgg)xx 
2a 2ay 

v=--g-a ___ g_x_+_a._g_g_+_g~3x_+_M_N __ , 

y yy 

Q.E.I. 

§8. COROLLARY 1. Because the line mn = mg - nh + gh = b -
f3 + J - m, we will set mn = c, and at the same time we will multiply 
the denominator and the numerator by 2yya.a.. Thus indeed we will 
obtain 

2gyyaa.cx - (gyya.b + ggyaf3)xx 
V=-----~---~~--~~~----c--=-• 

2gyyaaa. - 2gyyaa.x + qggyaa.a. + 2g3aa.x + 2yyaa.MN 

§9. COROLLARY 2. If v = o, it is evident that the value x then 
denotes the total displacement of the surface of the fluid in the pipe 
ac, which is thus found equal to 

2yaa.c 
ya.b + gaf3' 

but in the other pipe it becomes 

2gaa.c 
ya.b + gaf3· 

Therefore, the water in the narrower pipe can be elevated to any 
height whatever if only the ratio of the areas g and y is taken large 
enough. 
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§10. COROLLARY 3. That portion of the vessel cAd which we assume 
is never reached by either of the surfaces contributes nothing to either 
increasing or diminishing those paths of the fluid; nevertheless, as 
is shown below, it can serve for accelerating and retarding the 
oscillations. 

§11. COROLLARY 4. Let each pipe be assumed of a common size; 
there will be, namely, for g = y, 

2gaacx - (gab + gaf3 )xx 
V = ---''-------'-"------''---'---'---,~. • 

2gaaa + 2gaaa + 2aaMN 

In this case the maximum velocity of either surface occurs when 
they are located at the middle of the total displacement, but it occurs 
differently when the pipes are of unequal area. 

It is to be noted also that the retardations and accelerations are 
similar to each other at similar distances of the surfaces from the 
points at the middles of the paths, that is, from the points of maximum 
velocities. 

THEOREM 

§12. When the areas of the cylindrical pipes are equal in the pre
viously mentioned manner, greater as well as lesser oscillations will 
be Isochronous to each other if only the surfaces never descend below 
the orifices of these pipes. 

PROOF. It is known from mechanics that if an oscillating mobile 
[ object] has passed through a distance x, and if at individual locations 

it has the element of time dt = m dx , with m and n understood 
Vnx - xx 

to be constant quantities, this [ object] makes its respective oscilla
tions, whether greater or lesser, in the same time. 

But because in our case 

2gaacx - (gab + gaf3)xx 
V = -----------, 

2gaaa + 2gaaa + 2aaMN 

and because the velocity itself is equal to vv, there will be 

d d 
J

2gaaa + 2gaaa + 2aaMN/J 2aacx t = X· ----------- ----- - XX, 
gab+ ga(3 gab+ ga(3 

where in a like manner all letters have constant values except x, 
which denotes the distance traveled through; it is evident that these 
oscillations of the fluid will also be isochronous. Q.E.D. 
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PROBLEM 

§13. To find the length of the simple pendulum which is tauto
chronous with the previously mentioned oscillations of a fluid. 

SOLUTION. It is shown in mechanics that, with dt = V m dx , 
nx - xx 

the length of a simple tautochronous pendulum is ½mm. Therefore, 
in our case which is under discussion the length of the pendulum 

h .11 b gaaa + gaaa + aaMN Q EI 
soug t w1 e b f3 . . . . 

ga + ga 
§14. COROLLARY I. If the conduit cAd is assumed to be of the same 

area as the attached pipes, and if its length is called l, the mass of the 
water contained in it, which we have called M, will be gl; and the 
potential ascent of the water contained therein, which we have set 
equal to Nv, will be v, so that N = 1. Moreover, after those values 
have been substituted for the letters M and N, the length of the 
tautochronous pendulum becomes, for that particular case, 

aaa + aaa + aal 

ab + af3 
aa a+ a+ l 

b f3 (a + a + l ) = b f3 a + a - + -
a a 

But since a + a + l is the length of the entire system filled with 

water, and~ signifies the ratio of the sine of the angle bac to the total 
a 

sine, and, equally,~ denotes the ratio of the sine of the angle efd to the 
a 

total sine, we see that our solution does not differ from that which my 
Father gave for that case, and which I recounted above in §4. 

§15. COROLLARY 2. If the conduit cAd is assumed to be of infinite 
area everywhere, MN= o (through §2, Chapter III) and the length 

of the tautochronous pendulum will be : + ;, certainly just as if the 
- + -
a a 

entire intermediate conduit cAd were absent and the cylindrical pipes 
were connected immediately to each other. 

Nevertheless, something special is to be considered here, which I 
will show below. 

ScHOLIUM 

§16. This theorem includes all cases which cause tautochronous 
oscillations where the pipes ac and pd are straight; but when these 
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pipes in which the surfaces of the fluid are traveling are curved, other 
. cases of tautochronism are given in addition which would be easy to 
solve if we should wish to delay here for a longer time. Finally, 
when these pipes are of unequal area, the times corresponding to 
oscillations of different magnitudes become unequal also, and how 
such a time must be defined is apparent to everyone from §8, where we 
gave the velocity of the fluid at any arbitrary point. 

But this concerns finite oscillations. If now we consider that the 
oscillations are very small, we will see that they all become mutually 
tautochronous for the same quantity of fluid and the same conduit 
being retained, whatever might be the shape of the conduit and the 
areas. Let me show this in the following paragraph. 

THEOREM 

§17. Very small displacements of a fluid oscillating in any conduit 
whatever, although they are unequal to one another, are all Iso
chronous. 

PROOF. When the oscillations are very small, those small portions 
of the conduit in which the surfaces of the fluid are agitated can be 
taken as cylinders; therefore, with all the designations kept the same, 
the value which we assigned to the letter v in §8 will remain, and 
from the same reasoning it follows that the letters a, b, a, f3, and x can 

M 
be neglected as being of infinitely small value with respect to -, 

g 
so that in the present case it must be considered that 

2gyaacx - (gyab + ggab )xx 
V = ----~~~=-c-~~~. 

2yaaMN 

Therefore, by virtue of§ r 2, all oscillations, as far as they are very 
small, are Isochronous to one another. Q.E.D. 

PROBLEM 

§18. To determine the length of a simple pendulum tautochronous 
with the very small oscillations of a fluid agitated in any conduit 
whatever. 

SOLUTION. Because in the entire motion the element of time is 

dt = :v' now there will be 

d d J 2yaaMN /J 2yaacx 
t = x · gyab + ggab yab + gaf3 - xx. 
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Therefore, by virtue of§r3, the desired length of the pendulum tau
tochronous with the previously mentioned oscillations will be 

yaaMN 
gyab + gga{3° Q.E.I. 

ScHOLIUM 

§19. Although I may have already advised in passing what is to be 
understood by the quantities Mand N, nevertheless let me set forth 
the entire construction here, so that the nature of the matter is all the 
more evident to everyone. 

Let there be a conduit ABCDE of any kind whatever (Fig. 35a 

FIGURE 35a 

and b), filled with water right up to B and D; let the total sine be 

assumed as r, the sine of the angle DEC as ~ = m, the sine of the angle 
a 

BDC as @ = n; the length of the tautochronous pendulum will be 
(X 

yMN , where g denotes the area of the conduit at B, and y the 
mgy + ngg 
area ofit at D. 

Now let the length BCD of the conduit filled with fluid be considered 
as extended in the straight line bed, above which, as ifit were an axis, 
is formed the curve FGH, which let be the scale of areas in homo
logous places, so that, after be has been set equal to BC, eG is to bF as 
the area at C is to the area at B. Therefore, if bF represents the area 
at B, then the area bdHF will represent the magnitude M. Then, 
from the same axis bd let another curve LMN be constructed, the 
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ordinate cM of which is everywhere (b-:;r, and N (from §2, Chapter 

III) will be the area bdNL divided by the area bdHF, so that M-N is 

the area bdNL, which, multiplied by y , will give the length mgy + ngg 
of the tautochronous pendulum. 

H 

b1--------..;,+--------l,b-l 

.N 

FIGURE 35b 

§20. COROLLARY r. If the pipe BCD is of the same area everywhere, 
and its length is called l, FH will be a straight line parallel to bd itself 
and LN equally; hence the distance bdNL = gl and the length of the 

tautochronous pendulum is _l_. 
m+n 

§21. COROLLARY 2. Let BCD be a conical conduit of length l; 

cG (after be has been set equal to x) will be [1 (Vy - Vg) + Vgr; 

from this cM = gg / [7 ( Vy - Vg) + Vg] 
2

; therefore, the area 

bcML = v~g~ g - Vy g:l v g/ [7 ( Vy - vg) + vg], and thence 

. ggl ggl ggl 
the entire area bdNL = V- + V- . 1_. Therefore, gy - g gy - y V gy 
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the length of the pendulum tautochronous with the oscillating water 

IS 
tvgy 

my+ ng 
Hence it is understood, the remaining things being equal, that the 

water is oscillated very slowly when the areas at Band Dare in recip
rocal proportion to the sines of the corresponding angles DEC and 
BDC; hence, the longer the portion full of water and the less the angles 
just mentioned, the slower the oscillations become as well. 

Further, after the cylindrical and conical pipes have been compared 
to one another, and the angles BDC and DEC have been set equal, it is 
clear that the water, the remaining things being equal, oscillates more 
quickly in the conical than in the cylindrical [pipe], namely, because 

lVgy is always less than ½l, whatever unequal ratio exists between 
y+g 
g and y. If, further, the previously mentioned angles are made 
unequal, it can happen that the water oscillation is slower as much 
as faster in one kind of pipe with respect to the other; so, in order that 
I may show this by an example, let me assume DEC to be a right 
angle, that is, m = 1, and the sine of the other angle BDC, or n is 
equal to ¼, then the length of the pendulum for cylindrical pipes will 
be il. But if under the same remaining circumstances one substi
tutes for the cylindrical pipe a conical one which has an area at B four 
times as large as the area at D, one will have, after y = }g has been 
established, the length of the pendulum equal to l; therefore, the 
remaining things being equal, the tautochronous pendulum for the 
conical pipe is longer than for the cylindrical, and the oscillations in 
the former occur more slowly than in the latter; but if now, once 
again the remaining things constant, we assume the conical pipe 
narrower at B than at D, the situation will be the opposite; for ex
ample, let y = 4g, and the length of the pendulum will be -/'-7l, and 
accordingly less than if the pipe were cylindrical; and again it will be 
less if one assumes the area at B altogether greater than it is at D; 
thus, if y = -hg, the length of the pendulum will be -bl, as before. 
It is notable that we saw also in the preceding example that, with the 
area at B, the position of the conduit BCD and the length of the same 
being maintained, two distinct areas can always be defined at D for 
the same length of a tautochronous pendulum, except when the angles 
DEC and BDC are equal. A particular example of this matter is 
that, if either the area at Dis equal to the area at B, or it has to the 
same a squared ratio of the sine of the angle BDC and the sine of the 
angle DEC, the oscillations of the fluid are completed in either pipe 
within the same time. 
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GENERAL ScHOLIUM 

§22. I performed experiments on the oscillations of fluids in such a 
way that by trial I often found the length of the simple Isochronous 
pendulum, and I was able to observe in different cases that this 
length was more or less such as the theory in this section indicates; 
nevertheless, once I found that length to be a little greater than re
quired; I saw with no difficulty that the reason for this situation is that 
the frictions of the fluid not only diminish the paths, but also retard 
them, and this because the pipes are customarily narrower in that 
place where they are bent. Subsequently, if this is avoided with all 
care, and if the very inflections are not made at an angle, but slowly, 
and if finally the purest mercury is used as the oscillating liquid, I 
have no doubt that the experiments will confirm the previously 
mentioned theory to the letter, so that I would not think it is worth the 
effort to inquire anxiously about them. 

Nevertheless, I will add this as an explanation of the experiments 
undertaken by me, that before the experiment I accurately deter
mined the areas of the pipes in their different places with the help of 
a column of mercury: while it slowly ran through the entire length of 
the pipe, it disclosed the variations of the areas everywhere by its 
different lengths, of which I continually took measurements. And 
certainly these areas are thus to be determined in the pipe after it has 
already been bent, for the areas are decreased somewhat by the bend
ing. This was the reason that in the first experiment undertaken by 
me in this regard success failed my expectation: Indeed, I bent a 
glass tube of the sort that is customarily used for making barometers, 
wide enough and almost perfectly cylindrical, more or less as Fig. 27 
shows, and then, after a very great portion had been filled with 
mercury, I saw that its oscillations occurred much more slowly than 
I had expected, because I did not pay attention to the fact that the 
tube was constricted significantly by the bending at D, especially 
where the angles are formed. Therefore, in order to take this matter 
into consideration, I made use from then on of gradually curved 
tubes, such as Fig. 35a shows, and in these I carefully determined the 
areas after the bending. 



SEVENTH CHAPTER 

Concerning the Motion of Water through Submerged 
Vessels, where it is Shown by Examples how 
Significantly Useful is the Principle of the 
Conservation of Live Forces, even in those 
Cases in which Continually some Part of 

Them is to be Considered Lost 

FIRST PART: CONCERNING THE DESCENT OF 
WATER 

§1. Assume there is a cylinder full of water, the base of which is 
perforated, submerged to a certain depth in standing water of in
finite extent, and one easily realizes that the surface of the water con
tained in the cylinder will descend, and indeed below the surface of 
the exterior water, then it will ascend again, and so on. But these 
oscillations differ completely from the oscillations considered in the 
preceding chapter, in which certainly the motions are always recipro
cal in inverse order to those motions which have preceded. But some
one may presume here that the reflux of water, or the ascent, will be 
the same as the descent was. If one would state such things, he 
would certainly be in error, even if, for instance, the motion is dimin
ished not at all by the adhesion of water to the sides of the vessel and 
other hindrances of this sort; but the rules of motions for percussion 
for elastic bodies are otherwise not very different from these which are 
valid for pliable bodies, in whatever manner in either case bodies are 
considered to be moved completely freely. I use the following similar 
[procedure] which illustrates our argument splendidly: For just as the 
rules of motions are determined correctly in pliable bodies, if after 
collision that part of the live force is considered lost which was ex
pended in the compression of the bodies ( for this is not restored to the 



HYDRODYNAMICS, CHAPTER VII 

progressive motion as in elastic bodies), so the ascent of the fluid will 
be defined no less correctly if one examines accurately how much of 
the live force in individual instants is communicated to the internal 
motion of the aqueous particles, never to return to the progressive 
motion, which is the subject of this discussion. 

§2. Since, therefore, the matter is reduced to the fact that it should 
be investigated how much of the live force is lost continuously in those 
reciprocal motions, we will begin the investigation from this point. 

But first it is evident that all the live force which the particles flowing 
out possess is transferred to the external water, and in no way does it 
promote the subsequent ascent or influx of external water into the 
pipe. This hypothesis is all too clear to warrant a greater explana
tion; but it pertains to the efflux of water and in this case it is the only 
one to be considered. Then we come to the other, which pertains to 
the influx of water. 

Secondly, therefore, it is no less clear to me that with the water 
rushing in through the orifice at a greater velodty than that which is 
present in the internal rising water, that excess again produces a 
certain internal motion in the same internal water, adding little or 
nothing to the ascent. If this is so, and if the area of the orifice is set 
equal to r and the area of the cylinder equal to n, the potential ascent of 

a volume element flowing is equal to nnv, and its velocity is nvv, this 
particle will in its own motion, which it has in common with the 

remaining internal water, retain the velocity vv, and accordingly it 
will conserve the potential ascent v; but it must be considered that the 
remainder of the potential ascent, namely, nnv - v, was transferred to 
the internal motion of the particles. This hypothesis, although it is 
physical and only approximately true, nevertheless has great useful
ness for determining the motions of fluids without noticeable error 
whenever in a vessel uniform continuity, which was assumed so far, is 
broken off, as when the water is forced to go through many orifices. 
Finally, I should believe that this [hypothesis] is unique, with the help 
of which amazing phenomena of this kind of motion can be explained 
correctly. On this account let me implore that it be pondered 
properly before the reader is diverted to other things. 

§3. Therefore, we will now examine this very question by beginning 
with the descent of the water. Let the cylinder AIME (Fig. 36) be 
considered full of water up to XY and submerged in the infinite 
water RTVS, so that it is in a vertical position and its base has the 
opening PL through which water from the vessel can flow into the 
water surrounding. The velocity of the internal water is sought 
after its surface descends through the given space XC or YD, after one 
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has set MY or IX = a, MV = b, MD = x, the area of the orifice 
equal to 1, and finally the area of the cylinder equal to n . 

X ...... y 

FIGURE 36 

The solution will be the same as that which we gave for a similar 
but very general question in Chapter III; only let it be noted that, 
with the infinitely small particle of water CDFE assumed equal to the 
volume element PLON ejected in that same time, the actual descent 
must now be estimated from the height DVor CT, while in the other 
case it was to be defined from the total height DM. 

Indeed, let the velocity of the aqueous surface CD be that which is 
due to the height v, and in the infinitely close position EF the same 
velocity will correspond to the height v - dv. And since the potential 
ascent of the water CDMLPIC is v, the potential ascent of the same water 
in the next position EFMLONPIE will be obtained if the mass 
EFMLPIE (nx - n dx ) is multiplied by its proper potential ascent 
(v - dv) , as also the volume element LONP (n dx) by its proper 
potential ascent nnv in the same way, and the aggregate of the products 
is divided by the sum of the masses, (nx ) ; and so that potential ascent is 

or 

(nx - n dx)(v - dv ) + n dx-nnv 
nx 

xv - v dx - x dv + nnv dx 
X 
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A d
. 

1 
h . f . l . - vdx - x dv + nnv dx 

ccor mg y t e mcrement o potentia ascent 1s --------
x 

(see §6, Chapter III). But that increment must be considered equal 
to an infinitely small actual descent, which (accordingly to §7, Chapter 

III d h · · · ) · (x - b) dx A d h c: 11 · an t e notat10n JUSt given 1s ~--'--. n so t e 10 owmg 
X 

equation is obtained 

- v dx - x dv + nnv dx = ( x - b) dx 

which, integrated in the proper way, is changed into this: 

I ( xnn-1) b ( xnn-1) 
v = nn - 2 x - ann - 2 - nn - I I - ann - l . 

But from that equation certain corollaries follow. 
§4. Let the area of the cylinder be as if infinite in proportion to the 

orifice, and it must be considered that v = x - b; and the very height 
nn 

corresponding to the velocity of the water, while it flows out, is x - b. 
Hence it is a consequence that the water flows out at the velocity 
which a heavy body acquires by falling from the height of the internal 
surface above the external, and it will flow out until both surfaces are 
placed at a level, and then all motion will cease; and therefore the 
water flows out by the same law as if the base changed the position 
IMwith TV. 

But when the orifice cannot be considered as infinitely small, the 
surface of the internal water descends below the external; and in 
order that it may become known to what depth xy the surface CD is to 
descend, v must become null, or 

but the internal surface will never descend so far below the external 
surface as it had been elevated above the same; that defect arises from 
the potential ascent of the water ejected during descent, to which it 
must be proportional. 

§5. It is noticeable that although the water descends more deeply 
in the cylinder the greater it has been elevated at the beginning of the 
descent and the greater the opening is by which the base is perforated, 
nevertheless all the water can never flow out of the cylinder, no 
matter how much it has been elevated before the descent and however 
small is the submerged portion of the cylinder, and at the same time 
the orifice itself or the entire base is assumed to be discharging. 
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§6. The velocity of the surface of the internal water is a maximum 
when it is assumed that 

X _ ( ann-1 )l/(nn-2)
0 

- nna - nnb - a+ 2b 

Accordingly, if n = 1, the orifice of the cylinder of course being 
fully opened, it occurs that x = b, and the velocity is a maximum 
when both surfaces are positioned at the same height. 

But because there are many things which cannot be learned from 
these equations in the two cases, namely, when nn = I and nn = 2, 

and these have many particulars, let me now attack them separately. 
§7. First, let nn = r, whereupon -x dv = (x - b) dx (by §3), or 

- dv = dx - b dx, which, integrated so that simultaneously one has 
X 

v = o and x = a, gives -v = x - a + b ln '.:, or v = a - x - b ln '.:. 
X X 

From these the following can be deduced. 
I. In order that the maximum descent be obtained, it must be 

established that a - x - b ln '.: = o; moreover, it is evident from that 
X 

equation that the letter x never obtains a negative value; on the con
trary, it certainly does not vanish completely without [ causing] a con-

tradiction, unless E is set equal to oo, which indicates that it cannot 

occur that all the water flows out during descent in that case, and 
much less in the others, which §5 confirms. 

II. The maximum velocity is that which is due to the height 

a - b - b ln E' and if the difference between a and b, which I set 

equal to c, is very small, the expansions of the fluid being indeed 
insignificant in proportion to the depth to which the cylinder is sub-

merged, ln E could be considered as i -
2
7b' and therefore the height 

itself due to the maximum velocity as a - b - b ln i = ~~' which 

indicates that the motion will be very slow. 
Moreover, I shall demonstrate in what follows that the entire 

motion remains the same, the rest of the things being equal, when the 
cylinders are considered infinitely submerged, by whatever orifice the 
base may be perforated, so that the motion of the internal water is not 
retarded by the diminished orifice; although this may seem at first 
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glance to be altogether a paradox, nevertheless, the true physical 
reasoning ofit cannot escape the mind that is attentive to these things. 
It is certainly concerned with the fact that the liueforce which is gener
ated in the pipe is as if infinite with regard to the live force of the water 
flowing through the orifice, and therefore the consideration of this 
orifice does not make the computation different. 

We will also show that the reciprocal motions are similar, and that 
both the greater and the lesser oscillations are Isochronous with each 
other, and for these we will determine the length of a simple tauto
chronous pendulum. 

§8. Now let nn = 2 be assumed; but thus it occurs, by virtue of§3, 
x du - u dx ( b - x) dx . 

that u dx - x du = (x - b) dx, or ---- = ----, which, 
xx xx 

correctly integrated, changes into this: 

bx a 
u = - - b + x In -· 

a X 

If it occurs that bx - b + x In~ = o, x will give the position of 
a X 

maximum descent; but the position of maximum velocity will be 
obtained by setting x - ae<b-a)Ja, where by e is understood the 
number of which the logarithm is unity. 

After we have so glanced over various cases for different magnitudes 
of orifices, it remains that we also consider what can happen in 
different cases of the heights a and b. 

§9. And first, certainly, if b is considered null with respect to a, 
which occurs when the base of the cylinder only touches the surface of 
the exterior water, then there results 

I ( xnn-1) 
U = nn - 2 X - ann - 2 

which equation, certainly, differs only in form from that which was 
given in §14, Chapter III, for that case in which the water is con
sidered to be ejected from the cylinder into the air. And I also often 
found that the cylinder is evacuated in the same time whether the 
water is ejected into the air or the base is submerged a very little bit in 
standing water. This experience shows that the external air offers 
little or no hindrance to the effiux, since a resistance more than eight 
hundred times greater does not have a more noticeable effect. 
Therefore, because that case contains nothing in particular which has 
not been mentioned in the place cited, we will not dwell on it any 
further. Rather, we will inquire into what must occur when the 
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elevation of the internal water above the external, such as it is at the 
beginning of the descent, is assumed very small and should be neg
lected with respect to the immersion of the cylinder; this hypothesis 
is satisfied when the excess of the height a over the height b (which 
excess again let us call c, as in §7) is very small. 

§10. Therefore, if one sets a - b = c, one must also set a - x = z, 
and then both quantities, namely, c and z, are to be neglected with 
respect to the quantities a and b; but if a - x = z, then x = a - z and 

xnn-1 = (a _ z)nn-1 = ann-1 _ (nn _ 1) ann-2z 

[
(nn - 1)(nn - 2)] nn-s + ------- a zz 

2 

[
(nn - i)(nn - 2)(nn - 3)] nn- 4 3 a z + etc. 

2·3 

This series is to be continued as much as it suffices for our purpose; 
however, up to three terms will be sufficient. Therefore, in the 
integrated equation which we gave in §3, we will assume x = a - z, 
and 

xnn-1 = ann-1 - (nn - I)ann-2z + [(nn - I)2(nn - 2)]ann-3zz, 

and thus there will be 

v = I {a - z - a+ (nn - i)z - [(nn - i)(nn - 2)] zz} 
nn-2 2 a 

_ _ b_ { 1 _ 1 + (nn _ I)~_ [(nn - i)(nn - 2)]zz}· 
nn-1 a 2 aa 

If in this equation the terms cancelling themselves are deleted, and 
a - c is put in place of b, and the term which is affected by the 

. czz . . d h 1 . 1 quantity - 1s reJecte , t ere resu ts s1mp y 
aa 

2CZ - ZZ 
V = ----

2a 

from which formula, since the letter n has vanished, we have evidence 
that the size of the orifice pertains not at all to the motion of the 
internal water, the origin of which matter I already indicated above 
(§7). 

In the following [paragraphs] we will show further that this 
motion does not differ from the subsequent reflux motion, and hence 
that the oscillations become tautochronous. But before I proceed to 
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other things, I consider that one must be advised that in this calcu

lation the quantities : and i were taken as infinitely small, not only 
a a 

with respect to unity, but also with respect to_:_, of which one has to 
nn 

take proper notice in undertaking experiments; certainly it is allow
able to apply the theory of the infinitely small to experiments without 
noticeable error by greatly diminishing the quantities which have 
been considered as infinitely small in the theory, but it must be done 
so that all things in the experiment are subject to this law. Thus, for 
example, if in the cylinder the entire base is absent, n = I having 
been established, and it is considered submerged to a height of 35 
inches, the experiment may be regarded as sufficiently accurate if the 
water has been elevated before the oscillations only to a height of one 
inch above the surface of the water surrounding; the error will not yet 

be noticeable even if the orifice below is half obstructed, with : 
a 

then being to _:_ as I is to 9, which ratio so far can be safely neglected 
nn 

in our experiment; but if one now assumes the diameter of the pipe as 
two times the diameter of the orifice, with three-quarters of the entire 

aperture closed, it occurs that n = 4, and: will be to _:_ as 4 is to 9, 
a nn 

which ratio will now be small enough that the experiment can 
be affirmed to satisfy the conditions of the theory with sufficient 
precision. 

Therefore, it will now be appropriate to inquire further what 

should be stated here concerning these cases in which: and_:_ indeed 
a nn 

have an appreciable ratio to each other, but each quantity is very 
small, which certainly occurs when the cylinder is submerged very 
deeply and at the same time the base is perforated by a very small 
orifice. 

§n. But that case which we just treated is better deduced from the 
differential equation of§3, rather than the integral [equation], as was 
done previously; however, under these circumstances the term 
-v dx can be rejected with respect to nnv dx, and thus it can be 
assumed that -x dv + nnv dx = (x - b) dx, in which, if it is again 
established that a - b = c and a - x = z, there results adv + 
z dv + nnv dz= (c - z) dz, the second term z dv of which can again 
be neglected with respect to the first one, and thus one obtains 
adv + nnv dz = (c - z) dz, 
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Let it be assumed here (after e has been taken as the number of 

which the hyperbolic logarithm is unity) that v = __:_ e-nnzlaq; in this 
nn 

way the last equation will be changed into this: 

e-nnz/a a dq = nn(c - z) dz, 
or 

a dq = nnennz/a (c - z) dz. 

But this must be integrated so that z and v, or as well z and q, 
vanish at the same time; thus there will result 

q = (c + !:. _ z) ennz/a _ c _ !:., 
nn nn 

or, finally, 

v = __:_ (c + !:. - z) _ __:_ (c + ..::.) e-nnzla. 
nn nn nn nn 

But from that equation it is deduced: 
I. That it again develops, as was found by another method in §10, 

h 2cz - zz 'f. d d h b nnz . . bl' h d t at v = ----, 1 1n ee t e num er - 1s agam esta 1s e as 
2a a 

very small. But in order that this be evident, the exponential 
quantity e-nnz/a must be resolved into the series which is equivalent 

. nnz n4zz n6 z 3 

to 1t, 1 - - + -- - --3 + etc., from which the first three 
a 2aa 2-3a 

terms are sufficient for our purpose; therefore, with this value sub
stituted and the term to be rejected having been rejected, there is 
obtained, as I said, 

2CZ - ZZ 
V = ----

2a 

II. But if, on the other hand, nn is assumed infinitely greater than 
I 

a or ~ because then e-nnz/a - o and also !:. = o, it occurs that z c' - ' nn 
v = c - z, or v = x - b, as in §4. 

III. But it is evident that neither of the aforementioned formulas 

stands without noticeable error when the number nnc is moderate, 
a 

that is, neither infinite nor infinitely small, and nevertheless both 

.. nn da 'fi' quantities - an - are m mte. 
I C 
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For example, let an elevation of one inch be indicated by c, let the 
immersion of the cylinder b be 80 inches, and let a itself be 81 inches; 
then let the diameter of the pipe be established as triple the diameter 

of the orifice, that is, nn = 81, and there will result v = 2 
- z -

2e-\ 
nn 

and if further it is established that z = c = 1, in order that the 
height for the velocity be obtained when both surfaces are positioned 

at [the same] level, one will have v = e -
2

, that is, v = ah- inch, 
nne 

approximately, although according to §w it should have developed 
that V = fi inch, and according to §4, V = O. Jn the same example 
it happens that the entire space through which the surface passes is 
not fully eight-fifths of one inch, and the point of maximum velocity is 
more or less sixty-nine hundredths of the same measure below the 
initial height. 

§12. It should not be any more difficult to extend those things which 
were said so far to all shapes of vessels, finally even to finite spaces by 
which the external water may be terminated; however, the formulas 
become mostly so obliging that I would consider it rather well 
advised to pass in silence over them and to show only by an example 
the particular manner in which the theory should be applied for 
eliciting any number of other cases. 

Deserving more particular attention are those things which I indi
cated concerning the motion of water in pipes opened considerably at 
the bottom and submerged very deeply, because in these the oscilla
tory motion, as in pendulums, is of constant period, and the flow of 
waves in the sea is illustrated by them. But I thought that the back
flow of water in submerged cylinders in general is to be treated first, 
and it is to be shown that according to this hypothesis the backflow 
does not differ from the preceding flow, before the entire oscillatory 
motion is examined. Therefore, we will now comment on the back
flow, and then we will combine both motions in different cases, lest 
anything could be wanting in the proof. 

SECOND PART: CONCERNING THE ASCENT OF 
WATER 

§13. After the water has descended in the submerged vessel as 
much as the nature of the situation permits it, two things especially 
offer themselves for consideration: first, the excess of the height of the 
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external surface above the internal, and second, the live force, or the 
product of the potential ascent and the mass of that water which was 
ejected from the cylinder into the surrounding water during the 
descent; indeed, this live force, which cannot return to the water in the 
cylinder, principally causes the water to fail considerably in approach
ing the original height from which it had fallen; nevertheless, this is 
not the only reason, even if the hindrances of tenacity, adhesion, and 
others of this sort interfere not at all: the other reason was indicated 
in §2. Indeed, the extent of that reason is to be deduced from the 
ascent itself, since the former pertains to the descent, and this is the 
only reason, disregarding the external hindrances, that the water is 
not elevated in ascent above the external surface as much as it had 
been depressed below the same. For it must be noted that, even with 
the water flowing in through a very small orifice, it would ascend at 
the same velocity as if the entire base were missing, and it would rush 
in through the entire orifice if only after the inflow it would exert 
the entire impetus which occurs in the internal water for promoting 
its ascent. Truly anyone who considers this matter properly sees 
easily that the major part of that entire impetus is expended wholly 
in some internal motion which provides nothing to the ascent; but 
I say clearly the major part (I wish it to be noted well), because, when 
the orifice is very large, it is not difficult to see in advance that the 
impetus of the entering water is produced so suitably that the internal 
motion is thence increased by no means slightly; but when the orifice 
is smaller, it is clear that the situation is otherwise. Therefore, our 
hypothesis is applied correctly when either the whole base is absent 
or is almost completely perforated (for thus the excess of the velocity 
of the water flowing in over the velocity of the internal water is nil or 
very small, and that does nothing to this impetus) or even when the 
orifice is very small, because thus all the impetus is overcome. But if 

the orifice should have a ratio to the area of the pipe such as V2 to 1, 

or as 2 to 1, or thereabout, the motion will be a little greater than that 
which follows from that hypothesis, for then the water rushing in 
produces a noticeable impetus, and not all of it is lost because of the 
nature of the matter. 

Therefore it is easy to see in advance, without performing any 
calculation, the following relationships for backflow in water after it 
has fallen from a certain height. 

I. Certainly no noticeable backflow will occur if the orifice is very 
small. 

II. When the submerged portion of the cylinder remains un
changed, the water in backflow will never pass a certain limit, even 
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if it had been elevated to infinity in the previous descent; indeed, 
from whatever height the descent begins, not all the water ever flows 
out of the cylinder, as we saw in §5 and §7. 

III. If the descent is understood to begin at the height XY [Fig. 36] 
and the subsequent ascent to be produced right up to CD, the product 
of the actual descent of the mass of water X YDC right up to TV by the 
mass will be a measure of the combined effect of both of those causes 
which, as was said in §2, make the ascent differ from the preceding 
descent, and when the cause reviewed in the second place vanishes, 
if the entire base IM is removed, that product will then be equal to 
the live force of all the water ejected during the descent, so that, 
without any other calculation except those things already considered 
so far, the ascent of the water in the entire open cylinder can be 
defined. 

IV. The ascent will be equal to the descent if the cylinder is under
stood to be infinitely submerged, the previously mentioned causes of 
diminution then vanishing. 

V. Therefore, these oscillations will be endless, because the last 
oscillations are always just as if infinitely small in proportion to the 
heights of submergence; however, the alien hindrances, of which we 
have taken no account up to now, soon cause all the motion to cease 
altogether. 

§14. With these things having been generally shown in advance, 
let us submit the problem to more accurate calculation; however, I 
will give a double solution, one accommodated to the principles just 
explained, the other different in kind to some degree. 

Therefore, with the figure [36] and the notation of§3 retained, we 
will consider that the water has descended from the height X r all the 
way to xy, and from this terminal point it begins its ascent; let My or 
Ix be called a, and after it has already ascended to cd or ef, let Md = ( 
and dj = dg. After these things have been so prepared for the cal
culation, and with the height due to the velocity of the water at cd 
again designated by v, and the similar height in the adjacent position 
ef by v + du, we will inquire in to the increment of potential ascent of the 
water entering while the volume element LONP goes into the cylinder 
and the surface ascends from cd to ef. Moreover, it is clear that when 
the potential ascent of the internal water multiplied by its proper mass 
is expressed by n(v (indeed, no attention is to be paid to the internal 
motion), the increment of the same product will be n( du + nu dg. 
But if in addition one were to consider the potential ascent nnv - v 
(see §2) which the volume element n d( flowing in loses, and which 
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equally is due to the actual descent of the aqueous particle n d( through 
the height b - x, it is evident that one must write 

n(dv + nvd( + (nnv - v)nd( = (b - flnd( 
or 

g dv + nnv d( = (b - () d(. 

But the same thing is found differently as follows. 
Indeed, let it be considered that the volume element LONP has 

almost no velocity before it begins to flow in, but that, once it begins 
to flow in, the same acquires a potential ascent nnv, although soon after 
its influx (according to the notation following §2) it is to be considered 

as continuing its motion at the common velocity v;. From this fact, 
the reasoning is this: before the influx of the volume element, the 
potential ascent of the water cdMLPlc (the mass of which is n() is v, and 
the potential ascent of the volume element LONP (the mass of which 
is n d() is o; therefore, the potential ascent of all the water cdMLONP le is 

n (v (v 
n g + n d( = g + d( 

But, indeed, after the volume element LONP has flowed in and 
taken the position LonP, its potential ascent is nnv; moreover, the 
potential ascent of the remaining water ef MLonP le ( the mass of which 
indeed again is nfl is v + dv; therefore, the potential ascent of all the 
water considered here after the influx of the volume element is 

n d( nnv + n((v + dv) 
n( + n d( 

(v + g dv + nnv d( 
g + d( 

while before the same influx it was g !v d(; consequently, it took on 

. g dv + nnv d( . g dv + nnv d( 
the mcrement g + d( , or, more simply, g . But 

that increment is to be equated to the actual descent which the water 
makes in changing position from cdMLONPlc to efMLONPle, which 
descent is equal to the fourth proportional of the mass n( of the in
ternal water, the volume element ndg, and the height VJ orb - (, so 

that the previously mentioned descent 1s ( b - /) d(; from which 

again the following equation results: 

g dv + nnv d( = ( b - fl df 

- -----------~ -- - -
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But the integral of this, after the addition of the required constant, 
becomes the following: 

nn + 1 

which we will now consider under varied circumstances. 
§15. And, indeed, when the area of the pipe is an infinite number 

of times greater than the area of the orifice, it is evident that 

v = b - t, and that accordingly the water rushes in at a velocity 
nn 

which is due to the height of the external surface above the internal, 
and then the ascent will not occur beyond the surface of the external 
water. 

But when the area of the orifice has a finite ratio to the area of the 
pipe, the ascent occurs beyond the surface RS, for example, right up 
to st; but Vt will always be less than ~' except when the entire base 
is missing, for then Vt = ~- Just as we warned in §5 that in descent 
the difference between VY and Vy is proportional to and has its origin 
in the potential ascent of the water ejected during descent, so it can now 
be observed in ascent that the difference between ~ and Vt has its 
origin in the collision of the volume elements LonP with the mass of 
water lying over it, which collision indeed does not promote the 
ascent but is lost in useless internal motion, just as was indicated in 
§2. Therefore, when the entire base IM is absent, the water flows into 
the pipe at the same velocity at which the water having previously 
entered the pipe moves, and no collision occurs, which is the reason 
why in that case the water ascends as much above the surface RS as it 
had been depressed below it, which the equation indicates, as we shall 
soon see. 

§16. The maximum ascent st will be found by making v = o. 
Therefore, in order to define the entire motion correctly, the formulas 
brought forth in §3 and §14 will have to be applied alternately, which 
I will now show by the single example in which nn = r. 

Accordingly,ifnn = r,itoccursthatv = b(r - ~) - ; (t - ex;); 
and v = o will result when it is assumed that ( = 2b - x, that is, 
when it is assumed that Vt = ~- Therefore, if, for example, the 
pipe ABM/is full of water, destitute of any base and immersed up to 
its midpoint in the exterior water, and if the entire length of the same 
is called a, the water will be set in motion so that at first it descends 
through a distance 0.297 a below TV, then it is elevated through a 
similar distance above the same TV, and again it is depressed through 
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a distance 0.240a below it, and it transcends that line again in the 
same way, and so on. 

§17. It is evident as well that when a = o, with the pipe of course 

empty of all water, generally there will result v = !!_ - __ g_; and 
nn nn+r 

consequently the entire ascent will be nn + 1 
b, or the ascent above 

nn 

the exterior surface of the water will be !!..... 
nn 

§18. I come now to infinitely submerged pipes, the descent within 
which we have determined with the appropriate relationships of §10. 
Moreover, let us use clearly the same method which we used there for 
defining this case; therefore, for us the initial depression will be 
Vy (= b - a) = c, and the ascent thence produced will be yd(= g -
a) = z. Thus f = a + z, and b = a + c, where the quantities z 
and c must be considered as infinitely small in proportion to the 

(cx)nn ( a )nn ( z) nn quantity a. Hence there results ""t = a + Z 1 + ; , 
which, by applying a known series and taking the first three terms of 
. nnz nn(nn + 1)zz 
1t, one makes equal to 1 - - + -----. After these values 

a 2aa 

have been substituted for b, q, and (i) nn' the last equation of §14 is 

changed into this: 

v = a + c (nnz + nn(nn + 1)zz) 
nn a 2aa 

I ( M0n+ ---- a+z-a+nnz-
nn + 1 2a 

= (a + c) [~ _ (nn ::)zz] _ ( z _ n::z) 
cz _ zz _ (nn + 1)czz. 
a 2a 2aa 

But that last term can be neglected, and thus one has simply 

2CZ - ZZ 
V= 

2a 

in which equation n no longer appears. This does not differ from the 

. r d . . § l 2CZ - ZZ . . d d equat10n 1or escent given 1n 10, name y, v = ----, since 1n ee 
2a 

the quantities a and a differ only by the very small quantity 2c. 
For the rest, here as well are to be understood all those things which 
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were said in the same §10 on the fact that a pipe must not be overly 
obstructed. 

§19. Consequently, the descent and ascent are equal to each other; 
for from our equations it is evident that the liquid is balanced equally 
beyond the surface of the external water. But then it follows es
pecially from those formulas that even the unequal oscillations are 
isochronous to each other, if only all of them can be considered in
finitely small with respect to the submersion, and that moreover the 
simple tautochronous pendulum is of the same length as the sub
merged portion of the pipe. 

That theorem differs from the one which was cited in §4, Chapter 
VI, concerning the oscillations in the cylindrical pipe composed of 
two vertical legs, as follows: there all oscillations are tautochronous, 
the oscillations of finite magnitude not having been excluded, while 
in the present case finite oscillations are of unequal duration; further, 
there the length of the pendulum is equal to half the length of the 
pipe, while here it is equal to the whole; however, if the matter is 
pondered properly, this should be considered as consistent rather 
than inconsistent, on account of the duplication of the pipe which 
occurs in the former case. 

§20. In either type of oscillations the nature of waves agitated by 
the wind is illustrated; for they are not being moved otherwise than 
that the water in them continually ascends and descends again. 
Thus, what Newton says is evident, that the times of the oscillations 
are in proportion to the square roots of the lengths of the waves, be
cause he assumes that the form of the waves is constantly similar to 
itself and accordingly that their length is proportional to the depth to 
which the water is agitated. Moreover, it is probable that the depth 
is that of a simple pendulum tautochronous with the waves, that is, 
for example, 60¼ Paris feet if the ascent or descent of the waves occurs 
every two seconds. 

§21. Although I should not want, for the sake of avoiding the 
abundance of calculation, to pursue this argument to its full extent, 
and in view of these things I should only treat cylindrical vessels, 
nevertheless, since in the case of infinite submersion the propositions 
and theorems lose little of their elegance, let me extend the general 
theorem for the case of oscillations of water in an arbitrarily shaped 
pipe. However, the proof has been omitted, since it will be obvious 
to everyone from things said elsewhere, but especially from those 
which were presented in Chapter VI, §6, §7, etc., up to §20. How
ever, that upper part of the vessel in which the oscillations occur must 
have a cylindrical form. 
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§22. Therefore, let bd be the length of a submerged vessel (Fig. 
35b). Let bF represent its area at the location of the surface, and let 
the vessel be so shaped that the curve FGH is the scale of the areas. 
Let the line be be drawn and the curve LMN be formed, the ordinate 

cM of which is everywhere equal to (b::J2, and the length of the 

pendulum isochronous with the oscillations of the aqueous surface 
will be equal to the area bdNL divided by bL. 

§23. COROLLARY. It follows from the preceding paragraph that if 
the submerged pipe were conic, and if it had an area in the region of 
the surface of the water which is to the submerged orifice as m is to n, 
the length of the pendulum Isochronous with the vibrating water will 

be to the length of the submerged pipe as -y1;;:; is to vn, that is, as the 
roots of the previously mentioned areas, but if the same pipe is sub
merged not quite fully, once in the correct and then in the inverted 
position, the lengths of the isochronous pendulums will be in recip
rocal proportion to the submerged orifices. 

GENERAL ScHOLIUM 

§24. Attempting the things which are contained in this chapter by 
experiments will be worth the effort all the more, since the majority 
of them arise from new hypotheses. I indeed performed several 
[ experiments], but there was no time to execute some individual ones 
which I had planned; those which I did I will recount below. Mean
while, in order that judgment can be passed more safely on the 
agreement of experiments with theory, first there is to be understood 
for the circumstances of the matter, generally, whether and how much 
the contraction of the stream flowing out ( the nature of which I ex
plained in Chapter IV) can disturb the calculation; this incon
venience can be removed for the most part if the walls of the final 
orifice form some small cylinder of barely half a line in height; 
concerning this let the fourth experiment pertaining to Chapter IV 
be brought to mind. Thence as well one has to pay attention to the 
resistances arising from the adhesion of the water, which indeed retard 
the motion little if one considers the times of the oscillations, but they 
detract much from the displacements, especially if rather narrow 
and rather long pipes are used. Therefore, more faith is to be put in 
experiments which are performed on the times of oscillations because 
these times are not altered much at all by the diminution of the dis
placements. With respect to the first kind of experiments, in which 
the displacements of the fluids in the pipes come from seeking and 
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observing the descent as much as the ascent, I used this foresight: 
I wrapped a thread around the pipe at that place to which I expected 
the water to ascend or descend, and thus I finally located this thread, 
after frequent repetition of the experiment, so that the surface of the 
oscillating fluid would run neither above it nor below it. And I also 
marked the rest of the places which were to be observed in the pipe 
equally by wrapping a thread around it. Then, what pertains to the 
times of oscillations, because these decrease very quickly and become 
imperceptible and clearly null, I was not able to investigate otherwise 
than by examining the length of the simple isochronous pendulum, 
after the experiment had been repeated very often; while this [pen
dulum] was oscillating, I placed a finger over the orifice of the pipe 
and removed it therefrom precisely at such an instant of time that both 
the pendulum and the fluid would begin oscillation together. 

EXPERIMENTS WHICH PERTAIN TO CHAPTER VII 

EXPERIMENT I. I acquired a cylindrical glass tube of almost four 
lines in diameter, entirely open below. I submerged it in water 
standing in a very large clear vessel to a height of 44 lines, and I put 
a finger over the opening above, so that in extracting a portion of the 
tube the water would not descend in it; then I extracted the tube to 
a height of 22 lines, so that the submerged portion of the tube as well 
as the height of the internal water above the external was 22 lines, 
and, as soon as the finger was removed, I observed the descent of the 
surface in the tube below the surface of the standing water, and I saw 
that it was 9½ lines. 

But according to §§7 and I 7 it should have descended thirteen lines. 
It seems that the defect of three and a half lines is to be attributed 
almost solely to the adhesion of the water to the walls of the tube. 

After the descent had been observed, I repeated the entire experi
ment in order that I might discover the next ascent also. However, 
it seemed to me to be 8 lines, which, according to§ I 6, with the previous 
descent having been considered, should have been 9½ lines, that is, 
just as much as was the preceding descent. But here the experiment 
failed by only one and a half lines, while in the first part of the ex
periment a defect of up to three lines and a half was present, because, 
indeed, there the displacement was greater, and this at a greater 
velocity, so that one finds altogether greater hindrances, which in
crease together with the velocities. 

EXPERIMENT 2. I used the same tube, but [the end of it was] 
covered by a thin plate which was perforated by an orifice with an 
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area having a ratio of V½ to the area of the tube; when the surface of 
the tube was elevated 18 lines above the standing water and the base 
submerged the same number of lines, I saw that the surface of the 
tube in descent fell almost five lines beneath the standing water. 

However, §8 argues a descent of 7½ lines; the defect, which was more 
than 2½ lines, I again ascribe to the adhesion of the water to the walls 
of the tube. 

Then I immersed this tube, completely empty of water, furnished 
with the same plate, with a finger placed over the top, to a depth of 
18 lines into the water; after the finger had been removed, the surface 
in the tube emerged above the standing water a full eight lines, while 
§ 17 indicates nine for this case. 

I attributed the fact that here the defect was altogether less than in 
descent to the reason which I indicated freely in §13, where I said that 
a slightly greater motion would develop when the orifice would have 
a considerable area with respect to that of the tube, such as in the 

ratio V½ to I or thereabout, than that which follows from the hypo
thesis; and in order that I might be made clearly certain of this 
matter, I applied a shorter and wider tube, so that the effect of almost 
all outside hindrances would be forestalled, and I performed the 
experiment which follows. 

EXPERIMENT 3. I provided a tube the diameter of which was more 
than seven lines, which I took pains to have made of iron, because 
sufficiently cylindrical glass was not at hand; the length of this was 
four inches and six and a half lines; its area was in a ratio of 1 .860 to 
that of the orifice, indicated by n, and nn was 3.458. 

With that tube I performed the experiment thus: 
With the upper orifice closed off, of course, I tried many times [to 

determine] to what depth it should be submerged in the water stand
ing in a very large tank so that, directly after the finger had been 
removed which covered the orifice, the water would ascend precisely 
to the edge of the same orifice, and nothing would flow past. Indeed, 
I found that depth to be 3 inches and three lines; therefore, the ascent 
above the external water was one inch and three and a half lines, 
whereas, even with all the hindrances removed, the ascent should have 
been just a little beyond eleven lines, according to §17. Accordingly, 
one was correctly advised in §13 that the ascents cannot be a little 
greater in cases of this sort than the hypothesis postulates. I then 
applied another base to the same tube; now n = 3.68 and nn = 13.54; 
it was difficult to determine correctly the success of the experiment, 
because the surface ascending in the tube was always bubbling; 
nevertheless, it seemed that now the tube had to be immersed to a 
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height of 4 inches and two or three lines, with four lines more or less 
thus remaining above the water, precisely as the theory indicates. 

EXPERIMENT 4. I immersed a cylindrical glass tube, which had a 
diameter of three lines more or less, to a depth of 20 inches, and I 
caused the water in it to be held in equilibrium after it was first 
elevated to a height of almost one inch. It did not produce beyond 
four or five clearly noticeable departures and returns, and therefore 
I was not able to determine the length of the simple isochronous 
pendulum with all rigor; nevertheless, it seemed to me that it was 
22 or 23 inches, from which I inferred that the adhesion of the water 
to the walls of the tube not only diminishes the displacements, but it 
also delays the times of the oscillations slightly; for according to § r g 
the previously mentioned length should have been only 20 inches. 
I found the same thing in the oscillations which we considered in the 
section above. 

Finally, with the lower orifice approximately half blocked off, I 
was not able to observe that the displacements had been diminished 
or the oscillations retarded, which agrees with those things which are 
found in §§7 and 18. 

EXPERIMENT 5. I immersed a conical tube with a length of 21 

inches with the wider orifice in the water, so that one inch extended 
beyond the water; moreover, one orifice was a little more than twice 
the other. I found that the length of the pendulum isochronous with 
the vibrations of the water balanced in the tube was r 5 inches, but 
according to §23 the same length should have been a little less than 
14 inches. Finally, using the same tube similarly, but in an inverted 
position, I discovered that the length of the isochronous pendulum was 
a little more than double that which it had been before, just as 1s 
indicated in the cited paragraph. 



EIGHTH CHAPTER 

Concerning the Motion of Homogeneous as well as 
Heterogeneous Fluids through Vessels of Irregular 

and Abrupt Shape, where from the Theory of Live 
Forces, a Part of which is Continually 

Absorbed, are explained Excellently Singular 
Phenomena of Fluids driven through 

Several Orifices, after General Rules have been 
Set Forth for Defining the Motions of Fluids 

Anywhere 

§1. So far, except in the chapter immediately preceding, we have 
not made use of any principles other than those two: that the velocities 
of fluids are everywhere reciprocally proportional to the areas ef the vessels, with 
the aid of which is found the potential ascent of all the water from the 
given potential ascent of any particle whatsoever; and, further, that the 
potential ascent of all the water always remains equal to the actual 
descent. So often do these two principles apply that it is by no means 
to be questioned whether the motion of fluids is correctly defined by 
the method furnished by us. Nevertheless, I will not deny that 
vessels in which fluids are moved can be made of such a shape that 
neither one of these principles develops correctly. The former 
[principle] indeed rarely or never varies noticeably from the truth, 
because wherever it does not apply the water usually has almost no 
motion and can without noticeable error be considered as standing; 
but the other principle is regarded otherwise by far, which will be 
apparent from the following example, and those things that we 
offered in the preceding chapter on the backflow of water can serve 
as a splendid testimony to this matter; indeed, it is far from possible 
that water in a submerged vessel, having fallen from a given height, 

- ----=------------=-
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rises again to this height, as it should by virtue of this principle after 
external hindrances have been subtracted; rather, its ascent is often 
barely noticeable compared with the descent which it made before; 
on the contrary, indeed, the water surface certainly cannot rise as 
much above the water in which the pipe is immersed as it had been 
depressed below the same unless the entire pipe is open; but that sur
face is depressed much less than it had been elevated before. The 
reasoning on these things we gave in the preceding chapter. Because 
they are so, I will now give two rules for defining the motion of water 
everywhere, and then I will illustrate them with certain examples 
which could not be explained by any theory up to this point, but which 
conform most excellently with ours. 

RULE I 

§2. One must discover what the velocity will be in the other parts 
of the fluid after the velocity anywhere in the vessel under considera
tion has been assumed as known. For thus the potential ascent of the 
entire fluid and its differential may be found. So far we have con
sidered fluids to be divided into infinite parallel layers, or rather 
layers everywhere perpendicular to the walls of the vessel, and we 
have stated that the velocities are reciprocally proportional to these 
layers; certainly it is easy to fashion a vessel wherein the fluid is 
moved differently; I would believe, though, that the fluid in these 
places never has a conspicuous motion, so that a noticeable deviation 
from this hypothesis can hardly ever arise; nevertheless, for the sake 
of greater accuracy the above-mentioned rule could be applied. 
Indeed, this pertains especially to the contraction of jets whenever 
fluid is forced to go through orifices made in very thin plates, in which 
matter great care has to be taken. I believe that the effects of con
tractions of this sort will be understood in advance quite properly if 
what I said about them in Chapter IV is considered correctly. 

RULE 2 

§3. One must discover at any instant how much of the live force 
or what product of potential ascent and mass may develop without con
tributing anything to the main flow, the nature of which is sought. 
But this in turn is to be left to anyone's careful estimation. Then the 
product is to be added to the product of the mass and the potential 
ascent that the main motion contains, and the sum of the products 
finally is to be considered equal to the total mass of the water times 
its actual descent. 
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This rule is of great progress-making importance and I believe 
almost unique for obtaining measures of motions which occur in 
irregular vessels divided into several cavities connected to one 
another, which I will now illustrate by several examples. 

PROBLEM 

4. Let there be proposed a vessel ACRE (Fig. 37) of area every
where infinite, so to speak, in proportion to [the areas of] the orifices 

FIGURE 37 

to be defined presently, divided into two intercommunicating cavities 
by some diaphragm EF, with the orifice G in the center; furthermore, 
let that vessel have another orifice D in its lowermost part; then let it 
be supposed that the vessel is full of water up to PQ,, so that the lower 
cavity CEFR will be filled completely with liquid, and that further
more the other part PQ,FE lies above the diaphragm. With these 
things having been set forth and the fluid already starting to be moved, 
the velocity of the water flowing out through the orifice D into the 
air, or the height creating this velocity is sought. 

SOLUTION. Let the height of the surface PQ, above the orifice D be 
x, the area of the orifice D be n, and that of the other one, G, be m. 
It is also very clear that the potential ascent of any drop flowing through 
G promotes nothing toward the effiux through D, and that all is used 
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for exciting some internal motion which is soon absorbed without any 
other effect; therefore, it is necessary that in every instant a new 
motion be generated in the particles that will pass the orifice G, and 
no less in the particles flowing out through D. But if the potential 
ascent of the volume element flowing out through D is called v, that is, 
if the water is assumed to spring forth through D with a velocity of 
which the generating height is v, then the similar height, in reference 
to a volume element ( equal to the former in bulk) flowing through G 

h · ·11 b nnv Ar. h · l h b at t e same time, w1 e -. 1ter t ese potentza ascents ave een 
mm 

multiplied by the mass which they have in common and which I shall 

M 
Mnnv 

call M, the sum of the products will be v + --. And since, 
mm 

because of the infinite area of the vessel no other motion is generated, 
the aforementioned sum (by Rule 2) is to be considered equal to the 
product of the total mass of water and its actual descent. But if now 
the total mass of water is called µ, the actual descent, which occurs as 
long as the volume element M flows out, will (per §7, Chapter III) be 

Mx, so that the product of the two is Mx. Hence one obtains 
µ 

Mnnv mmx 
Mv + -- = Mx, or v = --- Q.E.F. 

mm nn+mm 

§5. ScHOLIUM 1. It is evident from this example that the motion 
can be determined without differential calculus, since the shape of a 
vessel that is very wide everywhere cannot affect this motion. Mean
while, it would not have been difficult to define the flow, with con
sideration having been given also to the areas of the vessel, and only 
for the sake of brevity did we avoid it and will we similarly omit it in 
the future, unless perhaps the motion be noticeably changed by the 
varying shape of the vessel, which can happen in vessels in which 
fluid is moved that are wide enough but very long, particularly if the 
motions to be determined are oscillatory. Finally, we have seen in 
the preceding Chapter that, if there are very small oscillations in 
extremely deeply submerged pipes, then it is so far from necessary 
that one should pay attention to the orifice in the base alone, the areas, 
although large enough, having been neglected, that rather one should 
take those [areas] alone into consideration. 

§6. ScHOLIUM 2. Because in the calculation which we have per
formed the live force of any volume element flowing through G must be 
absorbed by the water in the lower cavity, it is evident that the 
proposition must not be extended to those cases which oppose the 
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hypothesis, as, for example, when the diaphragm EF is close to the 
base CR and consequently the orifices lie directly opposed to one 
another; thus indeed it is not hard to predict that the motion will be 
different by far from that which the present theory indicates. How
ever, if the distance DG is large, and if as well the position of the 
orifices is oblique and the walls of the orifices do not allow the aqueous 
stream to contract, then there is no doubt that the theory corresponds 
accurately to all phenomena. 

§7. COROLLARY. If the orifice G is fairly large compared to the 
other, v becomes almost equal to x; but this height v, to which cer
tainly the velocity of the water flowing out through D corresponds, 
decreases considerably with the orifice D increasing, so that if, for 
example, there would be twice the orifice G, v would be ½x, but the 
total [height] almost vanishes when the orifice G is extremely small 
with respect to the orifice D. 

Thus, with these things having been effected, anyone will now per
ceive the true understanding of those motions which Mariotte first 
observed and concerning which very admirable [findings] he states that 
he was overly pleased; and simultaneously one will understand how 
far this Author, most clear-sighted in other matters, diverged from the 
[right] path in these treatises. I believe that it will not be irrelevant 
to insert the observations of Mariotte here. 

§8. He used a vessel such as Fig. 38 represents, which differs from 
the former only in this, that in the lowermost part there is inserted in 

A ,. 

I 
! 
I 

FIGURE 38 
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the cylinder ABC a horizontal pipe MD, perforated by an opening D 
through which water springs forth vertically: but the Diaphragm EF 
is, as before, perforated in the middle by the opening G; below this 
there was a very small orifice K, [placed there] in order that the 
lower cavity could be filled with water more easily; after this had been 
done, [ the small orifice] was closed and the rest of the vessel was filled. 

Having prepared things in this manner, with water flowing out 
through D, Mariotte observed that it soon ascended up to I, then, 
gradually, with the velocity diminished, up to H, and finally, with 
total depletion of the upper cavity ABFE impending, up to 0, and 
then, new forces suddenly having been added, jumps almost up to F. 
He also noticed, if I remember correctly, that the height of the initial 
thrust is the smaller, the smaller the orifice G with regard to the other, 
D. This may be seen in his Traite du mouvement des eaux, Part IV, 
disc. I. Moreover, he believes that the changes in these motions can 
be explained by imagining that to the very wide vessel ABFE a rather 
narrow pipe GLMD is connected through which the water flows. 
But we have certainly demonstrated and experience teaches daily 
that the motion of water out of the vessel ABGLMD is very different 
from that which has just been indicated. One would be no less 
wrong if he believed that the water springs forth with the same velocity 
through the orifice D as if the latter would have been located in the 
diaphragm EF, for it can happen that the height of the initial thrust is 
larger or smaller than the height FE. And, finally, the water does 
not flow out in that quantity, as one might easily suspect, in which it 
would, at the same time, flow out of the upper vessel alone through 
the opened part EFDC, although this is approximately the case when 
the orifice G is so much smaller than the orifice D. 

§9. In truth our equation, namely v = mmx , corresponds alto-
nn + mm 

gether correctly to the phenomena: it indicates indeed that the water 
ascends soon after the beginning of flow to a certain height, which is 
less, the smaller the orifice in the diaphragm is with respect to the other 
orifice; that this ascent is then gradually diminished until all the water 
has flowed out of the upper cavity; that at this very instant it imme
diately experiences an increase and [the thrust] reaches not quite the 
total height of the water lying above, because then the water is to be 
regarded as flowing out of a simple vessel which is infinitely wide; 
nevertheless, even now the water is retarded a little by the transition 
of the air through the orifice G, and understandably it is retarded 
noticeably if the upper orifice is very small, about which subject we 
will soon say something when the discussion will concern hetero-
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geneous fluids. If Mariotte's figure stands in proper proportion in the 
argument brought forth, then it is necessary that one make the orifice 
G a little more than half of the other. 

§10. Our formula indicates further that it could perhaps have 
seemed to be a paradox to many, when this theory had not yet been 
understood, that either a higher or a lower position of the diaphragm 
EF in no way changes the impact or the velocity of the water flowing 
out; however, I believe that the understanding of this phenomenon is 
now manifest to everybody. 

§11. Now, however, we will examine further the motion of water 
when there are many diaphragms perforated by orifices through 
which the water is forced to flow in order that efflux through the 
orifice D may occur. This can be solved by the same method which 
we have used in the problem of§4. Moreover, after the calculus has 
been correctly applied, and with the notations applied in the same 
manner having been retained, there appears 

V =XI ( I + :: + ;; + ; + .... ), 

where by a, f3, y, etc., are understood the areas of the orifices which 
are in the diaphragms, while n expresses, as before, the area of the 
orifice D through which the water flows out. 

§12. If then in place of one diaphragm there are in the same 
vessel, which Fig. 39 represents, many diaphragms, let us say B, C, 
R, etc., through which the water flows as long as it flows out through 
the lowermost orifice D, then the velocity of the outflowing water will 
be changed and increased immediately every time some cavity is de
pleted: further, the proportion between the heights AB, BC, CR, RE, 
etc., and the areas of the orifices D, G, F, H, etc., can be such that 
every time when a new chamber starts to be depleted, the outflowing 
stream always rises to the same height 0, or it flows out at the same 
velocity. But this is obtained (the areas of the orifices D, G, F, H 
etc., having been designated by n, a, f3, y, etc.) by setting 

BC= nn AB; 
aa 

nn 
CR = f3f3 AB; 

nn 
RE= -AB; etc., 

yy 

so that after the orifices. have been set equal to one another, the lines 
AB, BC, CR, RE, etc. are similarly to be made equal to one another. 
It will also be easy in a,cylindrical vessel to ascribe such a magnitude 
to the orifices that the surface of the fluid descends in the same time 
from one diaphragm to any subsequent one, and since these dia
phragms are spaced equally from each other and from the base, a 
uniform construction of clepsydras can be invented. 

- -------
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FIGURE 39 

§13. Indeed, if all diaphragms are placed very high, it will be a 
pleasant hydraulic game to observe the discharging stream DO, which 
increases repeatedly by equal increments and in equal intervals of 
time, which can be done. 

§14. Let it be proposed now to investigate the motion of the dis
charging fluid when different fluids flow through all the individual 
orifices. But evidently the successively lighter fluids have to be 
placed so that they are located higher in order that the motion does 
not become disordered, which happens when a lower fluid ascends at 
the same time that an upper one descends through a common orifice. 
In this manner one may determine what the motion is in the water 
flowing out of a vessel closed everywhere except for some small 
orifice located at the top which allows air to enter. But we will 
retain the hypothesis of the infinite area of the cylindrical vessel in 
relation to the orifices, and further we will designate the specific 
gravity of the fluid discharging through D by A and that of the one 
which flows through G we will denote by the letter B, and similarly 
we will indicate the specific gravities of the fluids flowing through 
F, H, etc., by the letters C, D, etc., respectively. Finally, since here 
also one must consider the heights of the different fluids, of which 
only the lowermost discharging one changes height, of course, be
cause of the cylindrical shape of the vessel, we will let x be the height 
of the lowermost fluid above the orifice D; the heights of the remain-
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ing fluids we will designate, in that order in which they lie on top of 
each other, by b, c, d, etc., respectively, and we will retain the other 
designations of§11; with these things having been thus prepared, the 
computation may be performed as has been done in §4, for there is 
nothing else further to be observed than that the masses of the volume 
elements passing through the different orifices in the same small time 
intervals are estimated not simply from the bulk, but also from the 
specific gravity; the actual descent for the individual fluids will have to 
be taken separately, though. By following this path an equation is 
found at first in this form: 

nn nn nn 
Av + - Bv + f3f3 Cv + - Dv + · · · · = Ax + Bb + Cc + De + · · · · 

aa yy 

which, reduced, gives 

v = (Ax + Bb +Cc+ Dd + · · · · )/ 
A+-B+-C+-D+ ( 

nn nn nn 
aa f3f3 yy ... · )· 

§15. If there are two liquids, two terms will have to be taken in the 
numerator as well as in the denominator, and three terms if there are 
three liquids, and so forth; if then the liquid flowing out were mer
cury, for example, and if water were lying on top of it, and if the 
specific gravities of these liquids were established as 14 to 1, it would 
occur that 

l4X + b 
v = 14 + nn/aa' 

and if the ratio of the orifices D and G should be, for example, as 
3 is to 1, it would occur that 

I4X + b 
V = --"---• 

23 

§16. It is also evident that that reasoning does not exclude those 
cases in which the upper fluids are specifically heavier than the lower 
ones, only that the lower fluids do not ascend through the same ori
fices through which the upper ones descend; but I presume (however, 
I do not confirm) that this will not happen when instead of a simple 
orifice there is some little pipe of small height through which the 
upper liquid may descend into the lower cavity, just as in Fig. 40, 
where indeed only two liquids are considered. 

Here, though, the height CR is variable, the height AC is constant; 
meanwhile, nevertheless, for the sake of uniformity of nomenclature, 
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we will set the height AC = x, the other one, CR equal to b; the speci
fic gravity of the fluid going out through D we will set again equal to 

FIGURE 40 

A, and that of the other fluid, passing through G equal to B; the height 
DO will result, or 

Ax+ Bb 
v=-----· 

A+ Bnn/aa 

Therefore, if water and mercury flow through the orifices D and G, 
respectively, now there will be 

X + 14b 
v = -I -+--14_n_n_/_a_a· 

§17. In order to understand further the motion of a simple fluid out 
of a vessel that admits air through a very small orifice on top, it is to 
be observed that here the height b is null; because the air can be con
sidered to lie above each orifice up to the same height, hence there 
will be 

Ax 
V=------, 

A+ Bnn/aa 

and if ~ were 850, which is more or less the usual proportion be

tween the specific gravities of water and air, there will be 

85ox 
V = ~--=--~· 

850 + nn/aa 
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§18. All these principles which we so far have applied are, as I have 
said already, easily extended to vessels which have a finite area in 
proportion to the orifices; but the truth of these things can be proved 
also in another, very different manner, as I shall show when I come 
to hydraulico-statics, because, by that other method of proof, the pres
sures of the fluids on the individual parts of the vessel become more 
clear; however, the statical rules of those fluids differ strongly from 
the laws which are due to standing fluids. 

Otherwise, these things have their use in correctly understanding 
hydraulic machines; indeed the professional men seem not to have 
attended enough to this; occasion will also be given to elaborate on 
these things more copiously in the following chapter, where we will 
perform a calculation of how much force applied in propelling water 
may be lost from the passing of water through many orifices, and we 
will simultaneously show the remedies to be applied in order that that 
loss of forces be diminished as much as possible. But we will consider 
certain other composite vessels in this chapter before we turn to those. 

§19. It happens sometimes that vessels put next to each other 
receive water from one another that finally will flow out of the last 
one. We will now illustrate those motions by an example. 

Let there be proposed a vessel ACME (Fig. 41) of any shape what-

FIGURE 41 

ever, which is kept constantly full up to AB by a new supply of water. 
Meanwhile, let the fluid be understood to go from this very vessel 
through an orifice Minto another adjoining vessel BMNC, and from 
that again into another one, CNRD, through the orifice N, and so on, 



170 HYDRODYNAMICS, CHAPTER VIII 

until finally the water is emitted into the air, and let the locations of 
the surfaces HL, PQ, etc., be sought after they have been reduced to 
a state of permanence. The question is solved as follows: 

It is certainly clear from the fact that the surfaces AB, HL, PQ, 
etc., remain in the same position that the water goes through the ori
fices M, N, R at the velocities which are due to the heights BH, LP, 
QR, if only the transit of water through the one orifice does not 
accelerate its flow through the next orifice, which certainly does not 
occur unless an effort is made expressly in order that this happen 
somehow. But furthermore it is to be considered that the velocities 
of the water flowing through the orifices are reciprocally proportional 
to the orifices, because in the state of permanence the same amounts of 
water are released in the same time through the individual orifices. 
From this it is recognized, once the areas of the orifices M, N, R have 

been designated by m, n, p, that LP will be mm BH; QR = mm BH. 
nn pp 

But BH + LP + QR is equal to the height of the surface AB above 
the last orifice R, or [equal to] DR; therefore, 

and thence 

and similarly 

and 

or 

mm mm 
BH + -BH + -BH = DR 

nn pp 

BH = DR I + - + - ; /( 
mm mm) 
nn pp 

QR= mm DR/(1 
pp ' 

+-+-, mm mm) 
nn pp 

BH=DR/(1 

LP= DR/(1 

mm mm) +-+-nn pp 

+-+-nn nn) 
mm pp 

QR= DR/(1 +pp+ PP) 
nn mm 

and thus are determined the invariable locations of the surfaces HL, 
PQ, etc. But on the other hand we will examine below, together 
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with other questions pertaining to this, how much time it takes for 
this to occur if those surfaces are located differently and in the in
terim some certain quantity of water flows through the individual 
orifices. However, we will deduce [some] outstanding relations 
arising from the presented values of the heights EH, LP, QR, etc. 

§20. I. If the individual orifices are equally large, there will be 
EH= LP = QR, etc., and something of these heights will be con
tained in the height DR as long as the vessels are open. 

II. But if some orifice is infinitely small in relation to the others, all 
surfaces which are located upstream from the orifice will be at the 
same height as the first surface AB; but the remaining will be close to 
the base GR. 

III. If a continuous conduit passing through the individual orifices 
M, N, R, etc., is assumed, then it is recognized that the water must 
flow out through the orifice of the conduit at a velocity which is due 
to the total height DR. But in our case that velocity corresponds 
only to the height QR, of which matter the reason and origin is this, 
that the potential ascent of the individual volume elements flowing 
through the orifices-except only for the orifice of efflux-is ab
sorbed. Therefore, the live force which is lost at any individual 
instant is to the live force which is generated at any individual in
stant as DQ is to DR. But the heights EH, LP, etc., represent 
respective!)! the live force which is continually withdrawn separately 
from the volume elements flowing through the orifices M, N. Never
theless, if the orifices are almost equal and if their centers are located 
in a straight line, and if, finally, the walls BM, CN, DR are placed not 
very far from each other, [then] I believe it can happen that the 
water springs forth at some higher velocity than this theory indicates. 
In the remaining cases I do not doubt their accuracy, neglecting the 
often indicated hindrances. 

IV. Finally, it is evident that every time the water surfaces HL, 
PQ, etc., change their position, whether many or one alone, soon all 
surfaces will change their locations until they have been brought back 
to equilibrium in the manner that has been mentioned. But to 
define these changes generally is [a matter] of equally intricate as 
well as laborious calculation, unless the vessels are taken as prismatic 
and as practically infinite with respect to the area of the orifices, 
namely in order that the increments of the potential ascents of the water 
ML, NQ, etc., which change their locations, can be neglected in 
comparison to the potential ascents which are perpetually generated in 
the volume elements flowing through M, N, R. And this restriction 
at the outset must not affect us, since we already saw in passing that in 
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moderately wide vessels the increments of the motion of the internal 
masses can be left out of the calculation without noticeable error. 
Therefore, let me omit the general solution, which is mine, on account 
of its overly great involvement, and for greater elegance let me, as I 
have done so far in this chapter, assume the vessels as infinitely wide 
and certainly prismatic. But let me start with a sectioned vessel. 

§21. A sectioned vessel of this kind (Fig. 42) is represented, the part 
AM of which is assumed full of water; the other, BN, is assumed to be 

FIGURE 42 

filled only up to HL when flow starts through each orifice Mand N; 
water is also poured in at AB in order to keep the vessel constantly 
full, and thus it will occur that the water in BN rises ( or even de
scends, according to the conditions). When this is so, we will seek 
the velocity of the surface of the water when it arrives at the position 
hl. 

To this end we will express the area of the orifice Mby m, that of the 
orifice N by n, and the area hl (which certainly is taken everywhere 
the same) by g. Then let us set BM= a, HM= b, Bh = x, and 
hence hM = a - x. But thus it is evident from the assumption of a 
practically infinite area of the vessels AM and BN that when the 
variable surface of the water is at hl, then the height due to the velocity 
of the water flowing through M will be Bh = x, and the velocity 

itself will be Vx, and with respect to the orifice N the similar height 
will be hM = a - x, and the velocity of the water flowing through 

N will be Va - x; therefore the quantity flowing into the vessel BN 
through Min a given time element is to the quantity flowing out of 
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the vessel in the same time element as mVx is to nV a - x, and the 
difference of these quantities divided by the area g gives the velocity 
of the surface hl; hence, this velocity, which we will call v, will be 
expressed by the equation: 

mV°x - nVa - X 
V=-------

g 

§22. Now, in order to find the time in which the surface of the fluid 
-dx 

rises from HL to hl, we will call this time t. But because dt = --, 
V 

there will be, after the value just found has been substituted for v, 

-gdx 
&=--=-~--c,==· 

mVx - nVa - x 

Certainly this formula can be made rational at once by putting 

x = ( 4aqq )2 and then arranging in the required manner. But this 
I + qq 

method is slightly more favorable than that other in which the quan
tity to be reduced is divided into two parts that are consequently to be 
integrated; certainly the equation set forth does not differ from the 
following: 

d 
mg dxVx ng dx~ 

t = ---"-,------ + --"-~--~-· 
nna - (mm + nn)x nna - (mm + nn)x 

And also 

J mg dxVx 2mg v; 
nna - (mm + nn)x = mm + nn 

mng-va 
1 

nva + vmm + nn -vx + -:-------"-==== n -t=---====----;=. 
(mm+ nn)Vmm + nn nva - vmm + nn vx' 

. J ngdxVa - x the mtegral of the other part, namely ( ) , becomes 
nna- mm+nnx 

-2ng . 1-- mngVa 
Va - X + -----==== 

mm+ nn (mm+ nn) Vmm + nn 

mVa + Vmm + nn Va - X 
X ln -,=--,====-~,== 

0 

mVa - Vmm + nn Va - x 
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It is evident that, after the required constant has been added, this 
will yield 

2mg~ - 2mgVx + 2ng-Vb - 2ng-V a -x mng-Va 
!=----------------+----=--;::=== 

mm+nn ~-- (mm+nn)Vmm+nn 

I 
mna +(mm+ nn) Vax-xx+ m-V mm+ nn-V ax+ n-V mm+ nn-V aa-ax 

xn-----'-----===---====---=--====-=== 
mna +(mm+ nn) V ax-xx-m-V mm+ nn-V ax-n-V mm+ nn-V aa- ax 

mngVa 

(mm+nn)Vmm+nn 

I 
mna+ (mm +nn)Vab-bb + m-V mm+nn-Vaa-ab +n-V mm+nn-Vab xn--~--~~==~-~===~==~-~===~~-
mna + (mm+ nn) V ab - bb - m-V mm+ nn-V aa - ab - n-V mm+ nn-V ab 

§23. From §19 it is clear that the surface hl remains in its position 

since Bh( = x) = nna . But if in the integrated equation of the 
mm+ nn 

d . h nna h d · · h prece mg paragrap one puts x = ----, t e enom1nator 1n t e 
mm+ nn 

logarithmic quantity becomes = o, and hence the quantity itself is 
infinite. The time of the total motion, therefore, is infinitely greater 
than that of any part. 

But in order that we may determine another case beyond this, we 
will see in how much time the surface of the water would ascend from 
its lowermost position MN (namely by setting b = o) by the quantity 
½a, but setting m: n = 4: 3, one has 

- Bg-Va - 14gV ½a l 2g-Va I (49 + 35 V2) l 2gVa I ( ) t - --=-----==------''-- + --- n -==-------"---''--~ - --- n -4 , 
25 125 49 - 35v2 125 

or, 

t = Bg-Va - 7gV2a + 12gVa In ( 49 +_ 35V2 ) 
25 125 14ov2 - 196 

that is, approximately t = 15g 2-Va, which indicates that this time is 
100 

to the time during which a heavy weight falls through the height Blvf 
approximately as 15g is to 100: equally, the time of descent is found, 
if in the beginning the surface hl would have been located above the 
position of equilibrium. Let, for example, either one of the vessels 
be completely void of water, and let the orifices Mand N now have a 
ratio 3 to 4, and let the time be determined in which the surface 
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descends from B through half of BM: these hypotheses make m = 3; 
n = 4; b = a; and x = ½a, so indeed one has 

Bgva - 7gv2a 12gva 1 (49 + 35v2) 12gva 1 ( ) t = ------ + --- n -=-=------=-='---~ - --- n -4. 
25 125 49 - 35v2 125 

From this it is apparent that the time is the same in either example. 
§24. Before we get onto manifold vessels, it is convenient to have 

investigated what quantity of water flows through each orifice Mand 
N while the surface of the water goes from the position HL into hl. 
And first of all, certainly, it is evident, as far as the orifice Mis con
cerned, that the quantity of water flowing through it in a given time 

interval (dt) is proportional to the velocity (Vx) multiplied by the 
magnitude of the orifice (m) and the same small time interval dt, so 

that this quantity is (on account of dt = V- -g ~-- per §22) 
m x-n a-x 

v-mg d~Vx ' and hence the entire quantity which has flowed 
m x-n a-x 
out from the beginning is 

But 

-J mgdx-Vx = mnga ln(ma-mb-nb)+ mg (a-b-x) 
m-Vx-n-Va-x (m+n) 2 mx+ nx-na m+n · 

In the same manner one evaluates the quantity of water flowing out 
meanwhile through the orifice N, which, of course, is 

J ngdx-V~ 
- m-Vx - n-Va - x' 

is equal to 

mnga 1 (ma - mb - nb) _ ___!!L (a _ b _ x). 
(m + n) 2 n mx + nx - na m + n 

And from here the quantity of water which is poured into AB 
becomes known also, and it certainly does not differ from that which 
flows through M; finally, the water collected in the vessel EN is 
represented by g(a - b - x), and when the difference of the water 
flowing through M and through N is determined, then that same 
quantity g(a - b - x) appears. 

·- - ----------------
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§25. Just as in §2 1 we have determined for a two-part vessel the 
velocity of a surface continuously changing its position, so let us now 
define the velocities of the individual surfaces for manifold vessels. 
Certainly one may set the height of the uppermost surface above the 
next equal to x, the height of that one above the following equal toy, 
then equal to z, and again the next height equal to s, and so forth. 
But let the areas of the orifices be designated by m, n, p, q, etc., let the 
areas of the second, third, fourth, etc., vessel be M, N, P, etc. Thus 

· · "d h h 1 · f h d r-. ·11 b mV~ - n-Vy 1t 1s ev1 ent t at t eve oCity o t e secon sunace w1 e M , 

the velocity of the third surface will be nVy 7.r PVz, the velocity of the 

. PVz - q-VS 
fourth surface will be p , etc. 

Further, since the small spaces passed through by the surfaces in 
the same small time intervals are in proportion to the velocities, it is 
thus apparent that at any instant the position of these surfaces is 
determined, although the equations are almost intractable. This is 
evident by itself, or, if a single surface were put off its position of 
equilibrium defined in §19 above, then all the remaining are agitated 
by reciprocal motions, until after an infinite time they will simul
taneously go back to their original position. 

§26. Further, let a vessel be formed such as Fig. 43 shows, divided, 
of course, into two parts ABEG and LQNE, communicating with each 
other through the middle orifice M; and let there be, furthermore, the 
orifices Hand N through which water springs forth as long as the same 

---~-~-- ...,~ .... --
~ ":' ... ~~ 
·~--~~-::. 
-~~-- :---~ 
-~ -~-~ _;_..~ 
~~ ~~-~ 

·-,~ 

_:--r· - -~ 

FIGURE 43 
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amount is poured into AB. Also, let the areas in either vessel be in
finitely large in proportion to the orifices M, H, and N; after these 
things have been established, let it be proposed to find the velocities 
with which the water is ejected through Has well as through N, or the 
heights due to these velocities. But the velocities will be invariable, 
because the vessel is kept full of water and at the same time the areas 
of the vessel are taken as infinite with respect to the orifices. 

The solution of this problem may be easily understood from the 
preceding, if only the orifice M is conceived to be divided into two 
parts o and p, of which the one, o, sends water to the orifice H, the 
other, p, to the orifice N: the parts o and p, however (because through 
either one the water flows at the same velocity) will have the ratio 
which the quantities of water flowing out through H and N at the 
same time have, that is, a ratio composed of the ratio of the area H 
to the area N and of the velocity at H to the velocity at N. After 
these things have been admonished, then, if the areas of the orifices 
M, H, and N are indicated by a, {3, and y and the heights due to the 
velocities at H and N are designated by x and y, and hence the velo

cities themselves by vx and -vy, it is clear that one will obtain the area 

f3Vx rvy 
o = v v a and the areap = v v_a. 

f3 x+y y f3 x+y y 
Now let the height of the surface AB above the orifice H be given 

equal to a, and x will result, as it was proven in §4, if the square of the 
orifice o is divided by the sum of the squares of the orifices o and H, 
and if the quotient is multiplied by a; and so it will occur that 

aaax r: h' h h' . l x = . r . 1 , irom w 1c t 1s equation resu ts: 
aax + (f3v x + yv y) 2 

(A) aax + (f3Vx + yVy) 2 = aaa. 

In the same manner, from the ratio of the orifices p and N, after the 
height AB above N has been set equal to a + b, this other equation is 
obtained: 

(B) aay + (f3vx + yvj) 2 = aa(a + b). 

After equation (B) has been subtracted from equation (A), there 
results y = x + b, from which it follows that, if both streams are 
directed vertically upwards, each one springs up to the same position. 
Hence, if in equation (A) the value of x + b is substituted for y, then 

(C) aax + (f3Vx + yVx + b) 2 = aaa, 

from which the value of x itself is deduced from the quadratic equation. 

. ---------------------- -----
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§27. From the equation of the preceding paragraph the following 
conclusions result. 

I. Because the velocity of the water flowing through M is 

fvx+yv_;; h h . h . h. i . ·11 b (fivx+rv_;;)2 a , t e e1g t generatmg t 1s ve oc1ty w1 e a 

but if the equations (A) and (B) are added, there results: 

(fiVx + yVy)2 _ 2a + b - X - y _ ( · _ b) - -------'::... - smcey - x + a - x. 
IX 2 

II. If the orifice His very small in proportion to the orifices Mand 
N, that is, if fi can be assumed as zero in proportion to a and y, then 
equation (C) changes into this: 

aaa - yyb 
aax + yyx + yyb = aaa, or x = --~---'----

aa + yy 

But this agrees splendidly with§ 19, since it is manifest that the water 
springs forth through a very small orifice to the same height which the 
water would have ifit pressed the section LQas much downward as it 
is pressed upwards by the internal water; but this mentioned height 

is, by virtue of§19, aaa - yyb_ Further, in this hypothesis one finds 
<XIX + yy 

the height of the velocity of the water at N, or 

b 
aaa + aab 

x+ =----, 
<XIX + yy 

and finally the height of the velocity of the water at M, or 

yya + yyb 
a - X = -'-'--~-'-, 

<XIX+ yy 

which latter equations could have been immediately understood or 
predicted in this particular case from § 19 as well. 

III. But if now another orifice N, sufficiently small, is placed in 
front of the remaining two, there will be, after one has set y = o, 

aaa aaa + aab + fifib fifia 
x = r:u:i; thenx + b = RR , and a - x = RR. 

<XIX + /J/J <XIX + /J/J <XIX + /J/J 

IV. If yyb = aaa, x becomes null. Therefore, in this case the 
various portions of the section LQ sustain no pressure: in fact it is 

pressed downward if y is larger than at and the section is not per

forated anywhere. 
But, similarly, all these things are understood easily from §19. 
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V. Thus, also, by means of the same paragraph it could have been 
predicted without new calculations what should happen if, the ori
fices H and N having been located at the same height, the sum of 
these orifices or a unique one of area (3 + y can be considered. 
Certainly §rg as well as §26 indicates that 

a.a.a 
X = ------,-.,,----,--=,• 

Ct.Ct. + ((3 + y)2 

VI. It can also be noted that, when the value of x itself becomes 
imaginary, it happens not only that does the water not flow out 
through H in certain cases, but also that the surface LQ descends; 
whence it can happen that it descends below the orifice M, in which 
case the continuity of the water ceases, contrary to the hypothesis of 
the proposition. Moreover, if the value x is real, then it is doubly 
expressed, but the other value is to be considered useless; accordingly, 
therefore, care has to be taken lest the absurd root be taken as useful. 

VII. Finally, in order that we may treat a very special case, let us 
set all orifices equal to one another, and there will result 

5xx + (2b - 6a)x = -aa + 2ab - bb 

or 

3a - b - 2-V (aa + ab - bb) x-~-----~-----· - 5 ' 

and if, furthermore, a = 3b, then x will be (approximately) 1kb, 
hence the height of the velocity at the orifice Nor x + b = Hb and 
the height due to the velocity at M or a - x = f lb. And so the 
velocities or even, since the orifices are equal, the quantities of water 
flowing in the same time through the orifices M, Hand N, are approxi-

mately as V4r: 2: Vrg. 
§28. From all this the method is evident for determining the motion 

of fluids, even when the amount of live forces is not conserved; and the 
computation is always performed in a similar manner as long as it 
can be presumed from the nature of the subject of investigation (as 
could be done accurately in the investigations in this chapter), how 
much of the live force vanishes that is useless for determining the motion 
at any instant. Certainly the cases are not singular which we have 
examined so far; it is plea~ing, therefore, to add another one which 
treats oscillations of fluids, in order that one may know for this how 
much the displacements of the fluid decrease. 

Let there be two pipes, equal in size and cylindrical, AL and BH 
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(Fig. 44), inserted vertically into a very large horizontal vessel 
ABOP. Let that vessel be completely full of water, but let the pipes 
contain water up to C and F; then, with equilibrium having been 
disturbed, let one surface stay at G and the other at E; and let the 
water, left to itself, soon begin to move. These things having been 

FIGURE 44 

set forth, the surface G should descend as far below the position C and 
the other surface E should ascend as far above F as the height CG or 
EF is, if the entire live force were conserved ( we disregard the hindrance 
of frictions and other similar things); in truth it is evident that the 
live force of all the water flowing through A in the horizontal vessel is 
absorbed without any other effect from the water standing there, and 
hence it follows that the descent of the surface G and the ascent of the 
other will be less than was just mentioned; therefore, we will now 
explore this decrement. 

To this end let it be assumed that the surface from G has reached 
M, and let GM = x, GC = b, CA = a; it will occur that BE = 
a - b, EN = x, MC = FN = b - x. Further, let the height due to 
the velocity of the surface at M be v, and at the next position let it be 
m = v + dv; and the increment of the live force of the water (while the 
surfaces run through the elements Mm, Nn, or dx) will be 2a dv, to 
which is to be added the live force of the volume element which is 
absorbed by the water in the horizontal vessel, namely v dx, and the 
sum 2a dv + v dx will be equal to the actual descent of the water multi
plied by the mass of water, which product is equal to the actual descent 
of the volnme element dx, multiplied by 2b - 2x. Therefore, 
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2a dv + v dx = 2b dx - 2x dx. But this equation, integrated cor
rectly, transforms into the following: 

v = 4a + 2b - 2X - e-xt2 a(2b + 4a), 

whence, if one sets 4a + 2b - 2x - e-xt2a(2b + 4a) = o, the value 
of x itself will give the total displacement; if b is subtracted therefrom, 
the residual will indicate the descent below the point C of equilibrium. 

§29. But in order that by a certain example one may show how 
much the oscillations are diminished by this reasoning, let us set 
a = b, having made, of course, CA = GC and BE = o. 

Thus arises 

3a or x = 2a ln ---, 
3a - X 

in which equation the value x = -¼a is almost fully satisfactory. 
Therefore, the decrement of the displacement, or a - b, is equal to 
the fourth part of the elevation of the fluid above the middle point; if 
it is observed to be greater in the experiment, the balance will have to 
be attributed to the adhesion of the water to the walls of the pipes. 

§30. This reasoning of the diminished displacements clearly should 
not be withdrawn, as I suspect, if the horizontal pipe becomes equal 
in area to the vertical ones, on account of the changed direction of the 
fluid at the points A and B. 

Furthermore, infinitely many other cases could be invented to be 
solved by these principles, just as the nature of the oscillations is to be 
investigated in the vessel of Fig. 44 when in the diaphragmatic hori
zontal section it is split into two parts communicating with one 
another through the single opening which the diaphragm has, and 
other cases of that sort. But I believe that this suffices already, so 
that anybody can easily form for himself the general rules for solving 
questions of this type. 

EXPERIMENTS WHICH PERTAIN TO CHAPTER VIII 

EXPERIMENT 1. The fourth paragraph, in which it is said that the 
height for the velocity of the water flowing out through the orifice D 

(Fig. 37) is mmx , I confirmed in this manner, that either of the 
nn + mm 

orifices G and D has an edge like a little belt, very slightly elevated, so 
that there be no place for the contraction of the stream, and a safe 
judgment could be made of the velocities from the quantity of water 
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flowing out in a given time. Then, having taken the measurements 
accurately and having observed the time in which the surface de
scended through the given space AP, I saw that this time corresponds 
correctly to the velocities defined in said paragraph; I also observed 
that the motion is not at all changed by an elevation or depression of 
the diaphragm. The remaining matters pertaining to the experi
ment have slipped my mind, and I did not keep a record of them; 
however, it seemed superfluous to me to repeat the experiment, since 
it will be easy for anyone to imitate it; but it is the basis for the re
maining matters, which therefore hardly need any further experi
mental investigation; nevertheless, I wanted to try the following 
things in addition. 

EXPERIMENT 2. I used a vessel exactly of the kind which Mariotte 
applied (see Fig. 38) and I confirmed our equation again in this 
manner: I made the water flow out of the orifice D horizontally, and 
then I took measurements of the height of the orifice D above the 
floor and the distance of the spot where the stream struck the floor 
from the point on the same floor vertically above which the orifice D 
was located; from this I found the height due to the velocity of the 
water flowing out at D; moreover, this very same height I found by a 
related experiment, which [height] the theory of this chapter indicates 
in §4. Similar experiments I may add at the end of the experiments 
pertaining to Chapter XII, which at the same time will confirm our 
hydraulico-static theory. 

Finally, since there are many things in §§26 and 27 which would 
have to be evaluated by individual calculation, it will be worthwhile 
also to perform experiments concerning them, particularly since in the 
same effort the other experiments which will be enumerated in Chap
ter XII could be performed also, if, to this end, one would care to 
make a vessel such as Fig. 43 shows. 

Furthermore, this theory is also confirmed by the experiments 
listed in Chapter VII which I performed concerning the oscillations 
of fluids flowing into pipes through openings. 



NINTH CHAPTER 

Concerning the Motion of Fluids that are Pushed 
forth not by their own Weight but by an Outside 

Force) and particularly concerning Hydraulic 
Machines and their Ultimate Grade of Per

fection that can be Attained) and how 
this could be Perfected further 

through the Mechanics of Solids 
as well as of Fluids 

§1. In this chapter, in which I have chosen especially to examine 
hydraulic Machines and to perfect the use of them as much as this can 
be done, let us disregard the variations of the motion which take their 
origin from the force or inertia of the internal fluid because, as we 
have seen, the motion of the internal water is as much not uniform 
from practically the first instant of flow, if the orifice is small in pro
portion to the internal areas, as is the case in most hydraulic Machines. 
It would be ridiculous to be concerned in practical cases about the 
changes which occur in the first instants of flow, and which we have 
already determined in Chapter IV, since there it had been worth the 
effort in order that the whole force of the theory might hence be 
brought into the light. Therefore, for the sake of brevity, let us 
assume that during the entire motion the water is constantly expelled 
with a velocity that is proportional to the root of the internal pressing 
force, after that force will have been reduced to the weight of an 
aqueous cylinder lying over the opening; because, whatever that force 
should be, there will have to be considered the weight of a vertical 
aqueous cylinder lying over the internal water surface, and the 
height of that cylinder will give the height due to the velocity of the 
water springing forth, if only there are no extrinsic obstacles and 
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the water is emitted from a very wide vessel. This is to be understood 
in such manner that, if the lid AB loaded with the weight P (Fig. 45) 

! I .c -
.,ii _Y ') 
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FIGURE 45 

expels the water through the orifice F, and, moreover, if the weight P 
is equal to the weight of the aqueous cylinder HABI, then the aqueous 
jet FG ought to attain the height HI. 

DEFINITIONS 

§2. By moving potential then let me understand that acting principle 
which consists of a weight, an activated pressure, or other so-called 
dead forces of this kind. 

Moreover, the product which arises from the multiplication of this 
moving potential by its velocity and also by the time during which it 
exerts its pressure I shall designate by absolute potential. Or, because 
the product of velocity and time is simply proportional to the distance 
covered, it will be permitted also to understand the absolute potential as 
the moving potential multiplied by the distance which the same moves 
through. But this very product I call absolute potential, because from 
that finally is to be estimated work endured by day laborers elevating 
water, which I shall soon show, proven in rules which were observed 
by me in this matter. Meanwhile hydraulic Machines seemed to me 
apt to be conveniently reduced to two types, of which the one emits 
water with impetus, and the other transports it, so to speak, smoothly 
from one place to another. I will treat an example of each in the 
proper order, and, finally, before the end I may add something about 
the diverse moving potentials. 
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FIRST PART: CONCERNING MACHINES EXPELLING 
WATER UPWARD WITH IMPETUS 

RULE I 

§3. The work of day laborers which is applied to hydraulic Ma
chines for elevating water is to be estimated from the absolute potential, 
that is, from the moving potential or pressure which they exert, from the 
time, and from the velocity of the point to which the moving potential 
is applied. 

PROOF. (ex) Concerning the moving potential the matter is clear: 
namely, everything else being equal, the work is in any case propor
tional to the number of laborers or to the moving potential. ({3) With 
respect to time the matter is no less manifest from the reproduction 
of all circumstances which arises from a duplication of the time. 
(y) Finally, the matter that pertains to the velocity is to be deduced 
from the fact that, whether one doubles the moving force or its 
velocity, the effect is no different from twice [the effect] of either 
part. Imagine that the weight P [Fig. 45] by its descent ejects water 
through the orifice F to the height FG; then, the rest remaining the 
same, imagine the orifice F to be doubled, and one sees that twice the 
quantity of water will be ejected to the same height FG in the same 
time from the same moving potential P, but with the latter descending 
twice as fast. Equally, the quantity of water will be doubled, the rest 
remaining the same, if one doubles both the orifice F and the area AB 
and the weight or the moving potential P, but then the velocity of this 
doubled potential remains unchanged. Therefore, in either way the 
effect is doubled. Q.E.D. 

ScHOLIUM 

§4. The preceding proposition is not to be interpreted in a physio
logical, but in a moral sense: morally I estimate neither more nor less 
the work of a man who exerts at some velocity a double effort than that 
of one who in the same effort doubles the velocity, because certainly 
either one achieves the same effect, although it may happen that the 
work of the one, despite being no less strong than the other, is very 
much greater in a physiological sense. If someone advances in an 
effort of 20 pounds a distance of 200 feet in the first minute, he will 
easily _be able to double the effort, but with great difficulty double the 
velocity. From this it follows that for every kind of machine it is to 
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be considered particularly how it should be constituted in order that 
for the minimum fatiguing of the men at the same time the product of 
their effort by the velocity of all be a maximum: and hence it will be 
evident what length should be prescribed to the levers in windlasses, 
how large the radius should be made in wheels or rollers for tread
mills, how great a length should be considered for oars, and so forth 
regarding other machines. 

Moreover, by the reasoning of the use of treadmill rollers, whi<:h 
are very frequently applied in order that the moment become clearer 
to us, let this experiment be considered. 

Let us suppose in Fig. 46 a vertical height of many thousands of 
feet, to which a man ought to ascend in a given time; further, let us 

A 

take a time of ten hours, because such is usually the limit of a day for 
workers; finally, let us consider several paths, AC, AD, etc., inclined 
differently to the horizontal BD; having supposed all this, we under
stand that a walker must progress the faster, the less inclined a path he 
will have chosen, so that he reaches the top of the mountain A in the 
same time, and it is evident that there will be some path, as, for ex
ample, AC, along which he travels the way with the least fatigue, 
insofar as nobody can either proceed up a vertical plane or travel in a 
given time an infinite distance; let us state that this path of least 
fatigue makes an angle ACB or 30 degrees with the horizontal. 

If this is so, the treadmill roller will have to be fabricated such that 
the weight is raised with the desired velocity when the man in the 
treadmill is constantly 30 degrees away from the lowermost point of 
the roller. 

According to the same principle a selection is to be made between 
machines of a different type: thus, for example, if on a windlass the 
operator exerts a potential or a horizontal pressure which has the 
effect of the fourth part of his own weight, and by this effort travels a 
distance of 200 feet in the first minute, he will, as I believe, hardly be 
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fatigued in the same manner as ifhe were treading on a rotating roller 
with the same velocity at an angle of 30 degrees; meanwhile the man 
in the treadmill will nevertheless in this manner carry double the 
weight in the same time to the same height, because he exerts double 
the pressure, other things being equal. 

RULE 2 

§5. With the same absolute potential existing, I say that all machines 
which suffer no friction and generate no motions useless to the pro
posed end maintain the same effect, and that one is therefore not to 
be preferred to the other. 

PROOF. From mechanics it is certain that any composite machine 
can be reduced to a simple lever: therefore, it will be pleasing to 
represent all hydraulic machinery by the simple pump supplied with a 
lever (Fig. 4 7), where, for example, by aid of the lever MN movable 

/~ 
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FIGURE 47 

around the point M, a piston is pushed down, and thus water is ex
pelled through the orifice F. But if the moving potential P applied to 
the lever is understood [to be J at N, we may see from the preceding 
proposition that no benefit comes to the absolute potential from an in
creased or diminished length of the lever MN; and certainly, whatever 
this length may be, it can occur that the same moving potential, moved 
at unchanged velocity, expels the same quantity of water with the 
same impetus as long as the area AB of the pump has a constant ratio 
to the length MN of the pole. From this it is very clear that all 
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machines maintain the same effect under the same absolute potential as 
long as one disregards friction and motions which are useless to the 
destined end. 

ScHOLIUM 

§6. There are some who believe that a machine can be invented 
by aid of which a maximum quantity of water can be elevated to any 
height with a minimum of work, and they torture their minds with 
investigating wheels, levers, and weights to be applied: but they 
waste their effort, and proponents of this kind ought not to be heard, 
since what do these great [men] seem to have found for themselves? 
The best machine is, if we consider its effect alone, that which suffers 
the least friction and creates no useless motions, the precepts concern
ing the avoiding of either one of which we shall treat below. 

RULE 3 

§7. In pumps such as are represented in Figs. 45 and 47, in which 
the internal surface AB of the water is at approximately the same 
height as the orifice F, the absolute potentials for the same instants are 
in a threefold ratio to the velocities of the water springing forth. 

PROOF. The moving potentials are certainly in a twofold ratio to the 
velocities at which the waters flow out through the orifice F, and the 
velocities of the moving potentials follow the same ratio as the velocities 
of the water springing forth; but for the same instants the absolute 
potentials are as the moving forces multiplied by their velocities, hence 
the proposition is evident. 

ScHOLIUM 

§8. It follows from this rule that, if it be our will to elevate water 
through the orifice F to the height FG, a large part of the absolute 
potential is wasted fruitlessly, since the water springs forth with a 
greater impetus than corresponds to the height FG; for example, 
arrange for water to be expelled at twice the velocity, and an eightfold 
absolute potential is required, and, nevertheless, according to reason the 
limit of the proposed effect is not to be considered [ to be] more than 
double, because certainly at the same time twice the quantity of 
water is elevated: and this effect could have been obtained with a 
quarter of the absolute potential by expelling the water at the simple 
velocity through double the orifice; therefore, on this account three 
quarters of that potential must be said to have been wasted uselessly. 
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I have indicated the origin of this loss in §5, and it consists of the 
motion which is generated that is useless to the proposed end: namely, 
the entire motion which remains in the water after it has attained the 
height G is to be called superfluous in our case. 

RuLE4 

§9. When water is expelled through the conduit DF (Fig. 48) and 
has at the orifice Fa velocity which is due to the vertical height CF, 

G-

FIGURE 48 

the absolute potential applied at the same time is proportional to the 
velocity of the water atFmultiplied by the height G above AB. 

PROOF. The moving potential P is certainly proportional to the 
indicated height, and the velocity of that potential is proportional to 
the velocity of the water at F. 

ScHOLIUM 

§10. The absolute potentials increase at a greater rate than the 
velocities of the outflowing water, that is, than the quantities ejected in 
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the same time; but, nevertheless, the difference in ratios is almost un
noticeable, since the height FG is very small in proportion to the 
height FD of the conduit. For example, let FG be equal to ¼FD 
(neglecting the height ED) ; then let the water be emitted at twice 
the velocity, such that now FD = FG; thus the absolute potentials 
will be as I x ¾ to 2 x 2 or as 5 to 16, so that a more-than-threefold 
absolute potential is required for emitting twice the quantity of water. 
But if the former FG is set equal to 1 hFD, and then again the water is 
assumed to be expelled at twice the velocity, [then] the absolute poten
tials will be now as I x 101 to 2 x 104 or as 101 to 208, which ratio 
is just less than one half. It follows thence that the less the speed at 
which the water is discharged, the greater the success with which I 
have applied the absolute potential; and then finally I have applied 
approximately all of it usefully when the water flows out through the 
orifice F at almost unnoticeable velocity; furthermore, the size of the 
orifice could compensate for the scantiness of velocity, so that in a 
given time a noticeable quantity of water can be discharged. Let the 
loss of absolute potential be so defined. 

RULE 5 

§11. Let the pump ABDF [Fig. 48], furnished with a little valve at 
the base and put into water, transfer water from a lower region AD 
to a higher region F, and let the median velocity of the water flowing 
out at F be due to the height FG; then the loss of absolute potential will 
be to that entire potential as FG is to the height G above AB. 

PROOF. Let us imagine that the orifice Fis enlarged very much, 
with the velocity of the water flowing out through F decreased in the 
same ratio; thus the quantity of water flowing out in a given time will 
not be changed if the velocity of the moving potential is the same, and 
thence the effect will be the same. But if the velocity is so diminished 
that the height due to it is unnoticeable, the moving potential may be 
expressed by the height F above AB, since previously the moving 
potential was equal to the height of G above AB; and since in either 
case the velocity of the moving potentials is the same, the absolute potentials 
for the same times will be as the height G is to the height F above the 
common [base] AB. Therefore, the difference of the heights G and F 
will express the loss, since the entire height G above AB represents the 
total absolute potential. 

§12. The same reasoning is valid for every kind of machinery: 
Indeed, whenever water, having been conveyed to the location to 
which it is to be elevated, has a noticeable velocity, the loss of absolute 
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potential becomes great; for if one sets the height of the elevation equal 
to A, the height due to the velocity of the water at the place at which 
it is emitted equal to B, and the entire absolute potential equal to 

P, the quantity A ! B · P will be lost. 

It can also be noted that when water has to be conveyed over some 
height the culmination of which is k _:ated at F by means of a pump 
attached to a pipe, the pipe DF is to be continued downward as much 
as it may please and is not to be discontinued at F, just as it appears in 
Fig. 49. Because if, let us say, the point Fis located twice as high as 

FIGURE 49 

the extremity G of the pipe, twice as large an absolute potential is re
quired for transferring water through the conduit discontinued at F 
than through that continued to G, even if in either case it flows out 
at very low velocity, [ and] its generating height is indeed small in 
proportion to the heights FD or GD. 

RULE 6 

§13. When in pumps which we have considered so far the covers 
AB, or rather the pistons, do not correspond well to the sides of the 
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machines, an opening is left, and from this arises another kind of 
loss in absolute potentials, which is determined thus in pumps in 
which the height of the orifice above the piston can be neglected. As 
the sum of the orifice of effiux and the aforementioned opening is to 
this very opening, so the absolute pote.,tial which is exerted is to that 
part of it which is useless, or to its loss. 

PROOF. The water is indeed pressed equally through the orifice and 
the opening, and it flows at an equal velocity; but the entire absolute 
potential that forces the water through the opening is lost, and this is to 
the complete absolute potential as the opening is to the sum of the 
orifice and the opening. 

ScHOLIUM 

§14. It certainly suits the piston to be well formed and smooth; it is 
also necessary that the cavity of the pump be exactly cylindrical and 
its sides be very smooth as well. But I should hardly believe, unless 
it is done for another purpose, that it is of importance that the pistons 
fill the cavities with ultimate accuracy, because thus perhaps a greater 
loss of forces arises from friction than if a more or less very small 
opening would have been left. For if that opening amounts to, let 
us say, the hundredth part of the orifice of effiux, there will hardly be 
any place for friction, and thence only approximately the hundredth 
part of the absolute potential is lost, and perhaps a larger loss arises 
from the friction of a piston occupying the cavity of the pump exactly. 
Therefore, it is not in this respect that we only too carefully avoid the 
transit of water through an opening left by the piston. But this 
consideration does not refer to those machines in which the water is 
to be drawn into the pump by the retraction of the piston. For here 
the correct and full size of the piston is entirely necessary. 

RULE 7 

§15. In machines which have several orifices transm1ttmg water 
from one cavity to another, something of the absolute potential is lost, 
the reason for which we said in the preceding chapter is that the 
potential ascent of the individual volume elements flowing from one 
cavity into another through a common orifice vanishes. 
· The more and the smaller the orifices of this type are, the greater a 
loss of absolute potential arises, which usually is of great importance, and 
this perhaps apart from the common opinion, in the machines which 
Vitruvius names after their inventor, Ctesibius. Indeed, I speak of 
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orifices located such that all the water that will flow out must go 
through them. That type of loss may now be determined by the 
following calculation. 

Let the area of the last orifice emitting water into the air be n, but 
the areas of the remaining orifices through which the water is driven 
inside the machine be designated by the .ctters a, fi, y, etc., and when 
the same moving potential has been assumed in either case, the height 
due to the velocity of the outflowing water will be to the similar height 

· h · 1 ·fi b . . nn nn nn wit no mterna on ces o structmg as r 1s to r + - + RR + - + 
aa ,-,,-, yy 

etc. (by §r 1, Chapter VIII), and hence it follows that with these 
heights having been made equal to one another, the moving potential 

·11 b nn nn nn . d b . . h w1 e as 1 + - + RR + - + etc. 1s to r, an ecause m e1t er case 
aa ,-,,-, yy 

the velocities of the moving potentials are the same, the absolute 
potentials will also have an equal ratio for these instants. Therefore 

h . nn nn nn . fl h hl f t e portion - + RR + - + etc. 1s super uous, w ence t e oss o 
aa ,-,,-, yy 

absolute potential will be to that entire potential as :: + ;; + ; + 
nn nn nn 

etc. is to r + - + - + - + etc. 
aa fifi yy 

ScHOLIUM 

§16. Whenever the idea of a machine requires orifices through 
which water flows from one small container into another (which 
happens in every kind of pump, such as aspirating ones, aspirantes in 
French, or pressing ones, foulantes, etc.) those orifices are to be made 
very large, as much as the remaining circumstances permit, so that the 
area of the orifice of effiux is very small with respect to those internal 
orifices. But, in order that the use of the rule be more clearly evi
dent, we will consider examples of other, no less useful machines. 

ExAMPLE r. Let a machine be proposed (which Fig. 50 represents) 
in which the pistons C and F are alternately depressed, and by which 
water is introduced into the small container BEH through the passage 
AB and DE, in order that a continuous jet may thus discharge through 
the orifice H. Since here the pistons act alternately, we will consider 
one or the other alone, so to speak, but acting continuously; and so 
one must consider the orifice of effiux H, of area n, and one or the 
other of the orifices o and p, each one of which let have the area a; 
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so the loss of absolute potential will be equal to nn, the whole poten
cxcx 

tial having been set equal to 1 + nn, which quantities are as nn is to 
aa 

nn + aa. Certainly that loss is considerable, if one may trust the 
representations of those machines in which often the orifices o and p 

FIGURE 50 

are smaller than the orifice of effiux H, because if this were so, more 
than half of the absolute potential would be lost. The conduits AB and 
DE will also have to be enlarged throughout their entire extents, as 
much as this is permissible, in order that the machine may lose little 
of its excellence. 

As for the rest, this machine was thought up in order that a con
tinuous jet emerge through H. Nevertheless, because it cannot 
happen but that some interval of time occurs between the last point 
of the elevation of the piston and the beginning of the instant of its 
depression, it will not be possible for the jet to be completely continu
ous and steady. However, the inventor of that machine presents an 
optimal remedy for this inconvenience, which Mr. Perrault mentions 
in Commentarii ad Vitruvium, p. 318, edition 2, Paris, which he says is 
kept in the Royal Library in Paris; this machine will serve us as 
another example: also, let me take the figure together with its descrip
tion from Perrault himself. 
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EXAMPLE 2. " There is a machine," according to the aforemen
tioned Perrault, "in which water is expelled from the small container 
A (Fig. 51 ) by means of the piston B into the jar FG, out of which the 

A 
I 

I 
Ii r·· 

FIGURE 51 

air cannot discharge as long as there is already some water present, 
because the pipe EF descends almost down to the bottom: indeed, it 
happens thus that the water, propelled from the small container A 
through the passage D and occupying the lowermost portion of the 
jar, closes the orifice of the pipe at F and prevents transit of the air. 
Therefore, when the piston brings new water into the small container, 
filled partly with air, partly with water, this newly supplied water 
exerts a force on either fluid, and since the water cannot spring forth 
through the pipe FE at the same velocity at which it flows in from the 
pump through the passage D, because naturally (these are Perrault's 
words) the pipe FE is perforated at its extremity Eby an orifice much 
smaller than the orifice of the pipe D , the water accumulated in the 
vessel compresses the air and, pressed reciprocally by the latter, 
springs forth through the pipe FE even while the piston is raised." 

In this machine a large part of the absolute potential is lost by the 
transition of the water through the passage D, and that loss will be 
greater, the narrower that little pipe is; therefore, it should be made 
wide, or even several pipes transmitting water may be constructed; 
this annotation is of greater importance in the present case, since a 
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much greater loss arises from a narrow passage D than in other 
machines; indeed, make the area of this passage the same as the ori
fice E, and assume furthermore that the piston is depressed and 
retracted in equal time intervals: now no only is one-half of the 
absolute potential lost as previously, but clearly four-fifths will become 
useless. But since there are many [things] in this machine which 
postulate individual calculation, it is suitable to illustrate that one 
separately. 

A DIGRESSION CONTAINING SOME COMMENTS ON THE 

HYDRAULIC MACHINE WHICH FIG. 5 r REPRESENTS 

(a) The aqueous jet through E cannot be completely steady during 
the entire agitation of the piston. Indeed, while the piston is ele
vated, no new water flows in, and thus the quantity of water contained 
in the vessel GE is diminished: hence the water discharges also at a 
continuously smaller velocity until it is accelerated again by the 
intruded piston. 

But if the space which the air occupies in the vessel is set [to be] 
much larger than that space occupied by the water which is ejected 
during a single elevation of the piston, this entire inequality almost 
ceases, it having been assumed that the piston is agitated uniformly 
and has been agitated for a long time previously, which latter hypo
thesis is necessary insofar as the first ones differ very much in agitation 
from the following. Therefore, for the sake of brevity let us satisfy 
all these hypotheses, that is, let us assume everywhere what is called 
the state ef permanence. 

(fJ) Therefore, since the velocity of the water flowing out through 
E is increased noticeably by the first agitations of the piston, it hap
pens soon that the aqueous jet attains almost the entire velocity; with 
this state of the matter having been assumed, it is evident that during 
the depression of the piston as much water is pushed into the vessel as 
is ejected out of the same during the total agitation of the piston. 

During the first agitations, however, more is pushed in than is 
ejected, and this not for the reason, as Mr. Perrault believed, that the 
orifice at Eis less than the other one at G (for the same would happen 
if it were larger), but that the generating cause does not immediately 
exert its total effect in ejecting water. 

(y) It would seem perhaps that it will not be sufficient for investi
gators that, with everything assumed in the permanent state already 
and no outside obstacles being present, the water springs forth from 
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the orifice E at a velocity which can ascend to the height of an 
aqueous column assumed in equilibrium with the pressure of the 
piston; and it would be reasonably so if the pressure of the piston were 
present without interruption, and if no potential ascent were lost in the 
w~er; but because in both [cases] the situation is different, it is not 
possible that in the aqueous jet no other estimation of the velocity 
arises; hence everyone sees not obscurely that attention has to be paid 
to the consideration of the time in which the piston is depressed and 
retracted, [ and] then also to the consideration of the areas in the 
small conduit D and of the orifice E. 

( S) Let us therefore set the time in which the piston is depressed 
equal to 0; the time of one entire agitation equal to t, the area of the 
orifice E equal to fl,; and [that of] the passage D equal to m; then, 
after the force pushing down the piston has been compared with the 
aqueous column lying over it, let us make the height of this column 
equal to a, but the height due to the velocity of the water springing 
forth equal to x. After these [things] have been prepared thus for the 
calculation, it will be permitted to investigate in two ways the ratio 
which will prevail between the velocities of the water at the orifice E 
and at the passage D, and from here to elicit the value of the unknown 
x. First, namely, it is evident that in the time 0 (in which certainly 
the piston is pushed down) as much water flows through the passage 
Das flows out through E in the time t (in which the piston is depressed 
and retracted). The velocity at D is therefore to the velocity at 

E as __!_
0 

to _:_; and since this latter velocity is equal to Vx, the other 
m f.d 

one will be equal to ~~ -v'x. Second, because the velocity of the out

flowing water is due to the pressure of the air in the jar, it follows that 
this pressure is equivalent to the weight of an aqueous column of 
height x; but if one subtracts the pressure of the air from the pressure 
of the piston, one will have the pressure which generates the velocity 
of the water at D; hence, because the difference of pressures is ex
pressed by a - x, the velocity of the water at D will be represented by 

-v' a - x; therefore, the velocity of the water at D is now to the velocity 

of the water at the orifice E as -v' a - X to -v'x. After combining the 
ratios found by either method, 

. ;-- .r I I 
va-x:vx=-:

m0 fl,t 
or 

mm00 
X - -----·a 

- mm00 + f1,f1,U • 

It is evident from this equation that the height of the jet is deficient 
for a double reason from the height a of the pressing column; indeed, it 
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is deficient by more when the piston is depressed faster or elevated 
more slowly, and then also when the orifice E increases in proportion 
to the area of the small conduit D. For example, let the area of this 
orifice be equal to the area of the small pipe D, and let the piston be 
depre" ed and elevated at an equal velocity, and there will result 
x = ½a, such that the outflowing stream rises only to the fifth part of 
the height a. 

( E) The loss of absolute potential is now evaluated in the following 
manner after it has been assumed beforehand that no work is done in 
elevating the piston. Let the velocity at which the piston is de
pressed be v, and the absolute potential expended in the time of one en
tire agitation will be av0 (by §3), but because the effect consists in the 
fact that effiux occurs through E during the time t and the water 

itself is elevated to the height ;m
00 

a, the simple pump of 
mm + µµtt 

Fig. 45 could have managed this, if in the latter as the pressing potential 

an aqueous cylinder of height ;m
00 

a had been taken, and 
mm + µµtt 

this potential had acted during the time t at the velocity ~ v; whence 
t 

the required absolute potential in this simple machine in which nothing 
of the former is lost would have been 

mm00 0 mm00 
-----·a·-v·t = ------av0. 
mm00 + µµtt t mm00 + µµtt 

The total absolute potential is therefore to the uselessly wasted part of 

· 0 · 0 mm00 0 00 · 1t as av 1s to av -
00 

· av , or as mm + µµtt 1s to µµtt. 
mm - µµtt 

Therefore, if the entire absolute potential is designated by P, the loss of 

. ·11 b µµtt P lt Wl e 
00 

. 
mm + µµtt 

Therefore, it is necessary in this rather than in other pumps that the 
passage at least exceed the orifice E in area, or that it be many times 
as great. Indeed, if there is a single one, and this is equal in area to 
the orifice E, and at the same time the piston is assumed to be agi
tated upward and downward at uniform velocity, a loss of four-fifths 
of the total will arise; and if it were made twice as large, then still 
balf of the absolute potential would be lost. 

(l) Finally it is clear that the sides of the jar GE sustain a lesser 
pressure than [ those of] the small container AA; indeed, these pres
sures are as x is to a, that is, as mm00 + µµtt is to mm00, from which 



MOTION OF FLUIDS PUSHED BY AN OUTSIDE FORCE I 99 

ratio engineers will judge the strength of the sides which is required 
for either one. 

--------- [ End of7Jigression] ----------

RULE 8 

§17. When the piston in pumps is extracted and the water flows 
into the small container, not only excited by its own weight but for 
the most part drawn by the piston, then all the absolute potential ex
pended in this attraction comes into the problem in addition, because 
a pump placed under water, as it happens, would be filled on its own 
if sufficient time for filling were allowed; thus that attraction does not 
especially pertain to the ejecting of water with a certain velocity, so 
the entire [attraction] could be avoided, and on this account the work 
expended in that [attraction] is called useless by me. 

But as the inflow occurs partly by the water's own weight, partly also 
by the lifting of the piston, the loss of absolute potential cannot be esti
mated from the effect; indeed, the calculation is to be set forth rather 
so that, after the force elevating the piston to a certain position has 
been set equal to TT, the velocity of the piston equal to v, and the small 
time interval corresponding to the quantities TT and v equal to dt, the 
entire absolute potential expended in elevating the piston is called 
f TTV dt or f TT dx, if by dx is understood an element of space traversed in 
the small time interval dt. It follows hence that if the effort by which 
the piston is raised is of constant magnitude, as it is almost, the 
absolute potential will be equal to the moving potential multiplied by the 
traversed space; but since a similar consideration is valid also for 
the depression of the piston, and also the piston is as much raised as it is 
depressed, it is apparent that the absolute potentials which are exerted in 
alternately attracting and expelling the water are approximately in 
proportion to the moving potentials in either case; whence a loss arises 

which is equal to _TT_ P, after one has set, of course, the elevating 
TT+ p 

potential equal to TT, the depressing potential equal to p, and the 
absolute potential exerted in the elevation and depression of the piston 
equal to P. 

The loss of absolute potential can be estimated approximately in a 
different way from the fact that the whole potential ascent of the water 
flowing into the pump must be thought of as generated uselessly. 
But if the piston is moved upward and downward in the same time 
intervals, or at the same velocity, the velocity at which the water is 
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taken in will be to the velocity at which it is expelled reciprocally as 
the corresponding orifices, and the potential ascents themselves in either 
case will be in the inverse-square ratio of the corresponding orifices; 
if, further, the elevation and depression of the piston occur in different 
time intervals, the velocities are reciprocally as the time intervals, and 
the potential ascents reciprocally as the squares of the time intervals. 
Therefore, the potential ascent generated by the inflow of water is to the 
potential ascent which arises from the efflux, and which alone is inten
ded, in an inverse-square ratio composed of the ratio of the orifice of 
inflow to the orifice of efflux and of the time in which the water is 
drawn in to the time in which it is expelled. 

ScHOLIUM 

§18. From either means of estimating, it follows that the piston is 
to be raised slowly; for thus the moving potential becomes small, by 
reasoning of the first method, or the time of elevation becomes large, 
by reasoning of the second, and thus the laborers may recover from 
the exhausting effort of the preceding depression during the indivi
dual intervals of the elevation of the piston. The latter method 
indicates further that the orifices through which the water is drawn 
are to be made larger and more numerous; but this is also in accord
ance with the former method because thus an almost sufficient quantity 
of water flows in on its own, and so less moving potential is needed. 

RULE 9 

§19. Finally, it is to be observed that the aqueous stream, nsmg 
vertically, never attains that height which would be due to the 
initial velocity of the water; that is, if the stream of fluid would start to 
rise vertically from its origin with as great a velocity as a weight 
falling freely from the height a would acquire, the fluid could not 
ascend to the total height a, even if one were to remove the resistance 
of the air or whatever one may think might retard the motion in this 
case. Indeed, the very nature of the matter inevitably demands 
some defect, the physical reason of which is this: certainly any 
volume element whatsoever, even though beginning a vertical ascent, 
can nevertheless not help but be deflected noticeably to the sides, and 
finally, when it reaches the summit, it is carried by a horizontal 
motion, which must be noticeable, because through the uppermost 
limb or section of the aqueous stream all the water passes, which has 
fl.owed out through the orifice; assume, therefore, that the velocity of 
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any volume element a the instant of time at which it is moved 
horizontally is that which a weight acquires by free fall through the 
height b; thus one sees that the stream cannot ascend beyond the 
height a - b. And for this reason a loss arises in proportion to 
the total absolute potential as b is to a. 

ScHOLIUM 

§20. It has been observed that among quantities of water ejected 
at a common velocity from differently formed small pipes, some rise 
higher than others; therefore, attention is to be paid here to the most 
apt configuration of the final pipes emitting water (des ajutages). 

Mr. Mariotte set up experiments on this matter in his Traite du 
mouvement des eaux. 

GENERAL ScHOLIUM 

§21. So far we have examined the hindrances which appear in the 
case of hydraulic machines ejecting water with impetus; I consider 
those which I exposed to be the outstanding ones; nevertheless, still 
others could be considered, but, as I believe, only of less importance. 
Almost everywhere we gave completely geometric measures and have 
indicated simultaneously the extent to which these hindrances could 
be counteracted for the most part. He who reaches for greater ones, 
believing that the effect expected in elevating water by the least work, 
or (which I have shown in §3 to come back to the same thing) by the 
smallest absolute force, can be exceeded, is tricked by his opinion and 
wastes [lamp] oil and effort. For if one disregards the indicated 
hindrances and other similar ones that might perhaps be considered, 
in the nature of things the most perfect machine will be the simple 
pump of Fig. 45, and if water projected upwards by means of it is 
collected at G, [then] I say that it could not have happened that the 
same amount of water was elevated to the same height FG with less 
work. 

There is, furthermore, another kind of machine which differs from 
the machinery treated so far in that the latter ejects the water with 
impetus, while the former transfers it quietly without noticeable 
motion. But also in the latter the ultimate degree of perfection which 
can be reached comes back to the same thing. But most [of them] 
are subject to many hindrances of very great importance. There
fore, these will have to be treated by us directly. 
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SECOND PART: Ccr.i"CERNING HYDRAULIC 
MACHINES TRANSPORTING WATER WITHOUT 

NOTICEABLE IMPETUS FROM A LOWER POSITION 
TO A HIGHER 

RULE IO 

§22. If a given weight is elevated through a given vertical height a 
by a moving potential [that is] arbitrarily variable but applied directly, 
and if the body retains no motion at the summit of the proposed 
height, the absolute potential expended in the lifting of the weight will 
always be equal to the product of the weight of the elevated body and 
the height a of elevation. 

PROOF. Indeed if a weight, which I shall call A, ascends through 
the height y and is assumed to be moved with the velocity v, and 
animated by a variable moving potential P directly applied in this 
position, the small time interval in which the weight is elevated 

through the element dy will be dy' which multiplied by the moving 
V 

potential P and its velocity v, gives the element of the absolute potential 
(by the definition of §2) equal to P dy, therefore f P dy will give the 
total absolute potential, if after the integration one setsy = a; but during 
the entire motion the increment of velocity dv is equal to the exciting 

or moving potential, which here is p ~ A multiplied by the small 

time interval which is now d:; therefore, we have dv = ( p ~ A) d: 

or Av dv = P dy - Ady, that is, ½Avv = f P dy - Ay, or JP dy = 
½Avv + Ay, where one is to set y = a and v = o (by hypothesis) so 
that f P dy = Aa. 

Furthermore, because f P dy expresses, as we have seen, the entire 
absolute potential expended in elevating the weight, this very potential 
will constantly be the same and expressly equal to the product of the 
weight A and the height a, just as the proposition states. Q.E.D. 

§23. COROLLARY. From the proof it appears to us also that the 
absolute potential is the same whenever the velocity at the summit is the 
same, that is, whenever the height to which a body can ascend at its 
residual velocity, namely ½vv, is constant; and if this height is called 
b, the absolute potential will be equal to A (a + b). Therefore, it is now 
evident how large a portion of the absolute potential is lost when one 
intends to elevate the weight A to the height a, and when the same has 
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at the summit a residual velocity due to the height b; certainly the 
loss of force will be to the entire force as b is to b + a. 

ScHOLIUM r 

§24. And so precautionshave to be taken lest the machines are con
structed such that the water is transported to the determined location 
with a violent motion. Usually, however, this kind of loss is small in 
most machines. 

ScHOLIUM 2 

§25. Everything behaves similarly if the body is not elevated verti
cally but along a plane however inclined or even curved in any 
manner whatever; indeed, the total absolute potential will always be 
equal to A (a + b), that is, to the product of the weight by the height 
of elevation augmented by the height due to the residual velocity of 
the body at the summit, the proof of which matter I omit since it 
differs little from the preceding proof. 

GENERAL ScHOLIUM 

§26. Because the effects of all machines, however composite, can 
be reduced to the nature of the inclined plane, it is evident that if we 
disregard frictions and these losses of absolute potentials which we have 
dealt with so far, all machines come back to the same, because the 
absolute potential simply depends on the height to which a body is to 
be elevated and its weight. The absolute potential has this in common 
with the live force or with the actual ascent or descent. And this is the 
ultimate level of perfection of machines, which cannot be exceeded, 
on the contrary, not even be reached, for a larger weight could always 
be elevated to the same height by the same absolute potential when the 
frictions and losses have been removed. In order that some com
parison can be made of the loss in those machines which, so to speak, 
project water to a desired height as well as in those which transport it, 
we will now indicate also the most greatly noticeable losses in the 
latter ones. 

I. In most machines of this kind friction is of so great a hindrance 
that it alone absorbs the largest part of the potential, particularly 
when square blades or oval bowls connected to a chain moving 
around in a circle elevate the water passing through the conduit to 
which they are fixed. 
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II. Most machines, but particularly those which we have just de
scribed, usually designated by the name of water wheels, are so joined 
together that continually, while the water is elevated, part of it 
trickles d~ wn, or plainly runs back to the place from which it was 
drawn or at least from a higher position to a lower, just as in water 
wheels; ifin these the bowls or blades are well adapted to the conduit, 
the friction becomes almost unsurmountable, but if they are less 
[well adapted], a very great amount of water drips through the open
ings that are left, from the higher portions into the lower, so that a 
very small part of that quantity of water which they received in their 
entire traverse is left when they reach the culmination point. There
fore, or for this reason only, it seems that these machines are to be 
strongly condemned, and particularly if clear water is to be elevated 
which could be drawn by pumps. 

III. Machines are also customarily of such a nature that they lift 
up the water beyond the proposed height; but the potential which 
corresponds to the excess is wasted, and if the water is to be raised 
through labor, [then] that which I indicated in §12 is obtained with 
difficulty. 

IV. There are also machines which do not allow direct application 
of a moving potential, from which drawback again some loss arises. 

§27. These are the obstacles, more or less, which seemed to me of 
notable importance; I do not know, however, whether those can be 
counteracted so much as we have shown regarding the first kind of 
machines; the mechanics know certain tricks of diminishing frictions; 
I would prefer, to water wheels, machines which draw and lift the 
water in buckets; but the buckets are to be constructed so that, if this 
can only be done, they are filled immediately in the lowermost 
position and emit nothing before they have reached the uppermost 
pos1t10n. Since the water is to be transferred through the higher 
location to another one, less high, an effort has to be made that the 
impetus of the falling water promotes the motion of the roller or wheel 
acting in a circular course, although thus the entire absolute potential 
is far from being expended usefully, as we have shown to happen in 
the pump of Fig. 49 (§r 2). The principle of action exists, ifl judge 
correctly, most aptly in the treadmill: for these men are best accus
tomed to work. That which I advised in §4 on occasion of the first 
rule about the angle of inclination according to which a walker can 
attain a certain vertical height in a given time with the least fatigue 
pertains here. I would believe that a man of ordinary stature, 
healthy and robust, marching on a path inclined at 30 degrees will 
accomplish 3600 feet in a single hour without difficulty, and therefore 
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he will elevate to a vertical height of 1800 feet the weight of his body, 
which I may assume [ to be] 1 4 pounds or two cubic feet of water. 
Such a man, therefore, could by means of a treadmill machine, 
acting in a circle and being most perfect (in which of course nothing 
of the absolute potential is wasted) elevate in a single hour two cubic 
feet of water to a vertical height of 1,800 feet, or, which is the same, in 
a single second one cubic foot to the height of one foot; machines 
which are of much lesser effect, doing a favor to the workers, I believe 
to have little to recommend them; meanwhile, having set up an experi
ment with a pump in the house of the illustrious General de Coulon, 
which I shall account for at the end of the chapter, I experienced an 
effect by no means less, by which I am confirmed in my statement that 
workers usually accomplish more with a treadmill: I easily foresee, 
moreover, that in very composite machines a far lesser effect is 
achieved, because in these the greatest part of the absolute potential is 
expended uselessly. Notably, I shall now contribute to this matter 
the example of the very well-known machine de Marl;Y showing what an 
almost incredible loss of absolute potential arises from all the collected 
hindrances. 

Weidler published a treatise about hydraulic machines in which he 
gives a full description of the machine de Marl;Y, and reports that all the 
water is elevated by the motion of 14 wheels, the blades of which are 
propelled by the impetus of the Seine; this makes the impetus for all 
wheels equal to a weight of 1,000,594 pounds, and this is what we 
have designated by the name of moving potential. Furthermore, I 
could understand from some circumstances that the blades are 
carried by a motion by which they travel 3¾ feet in a single second, 
and this velocity is to be taken for the velocity of the moving potential. 
Then he adds that in a single day 1 1, 700,000 pounds of water are 
elevated by means of this machine to a height of 500 feet. These 
things having been so assumed, let us see now how great a potential 
P, similarly moved at a velocity of 3¾, would be required for this 
effect in the very simple machine of Fig. 45, in which it is assumed 
that none of the absolute potential is lost. Indeed, the height FG will 
be 500 feet, and since now in the time of 24 hours 11, 700,000 pounds 
must be ejected through the opening F, that is, 162,500 cubic feet, the 
size of this opening will have to be taken as 0.0108 part of one square 
foot. The velocity of the water is so great that it travels 173 feet in 
a single second. Therefore it contains the velocity 3¾, which the 
weight P is assumed to have, 46 times, and the area AB of the pump 
has to exceed the area of the opening F just as many times. Conse
quently, the area AB will have to be taken as 0.4968 part of a square 
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foot, from which follows that the wei~ht P will be equal to the weight 
of an aqueous cylinder constructed over the base AB to a height of 
500 feet, or to the weight of 248.4 cubic feet of water, that is, to a 
weight of 17,885 pounds, which brings about only the fifty-sixth part 
of the moving potential which Weidler shows to be applied to the 
[water] moved at the same velocity. Thus, therefore, a loss occurs 
in the entire machine which equals U of the entire absolute potential. 

After we have so examined the nature of hydraulic machines, as 
much as it can be done in general, by no means will it be irrelevant to 
treat some special example more accurately, and because the water
screw of Archimedes possesses many outstanding properties which, as 
far as I know, no one has exposed sufficiently, I want to take the ex
ample from it, and this all the more willingly since there are many who 
believe contrary to our rules that this waterscrew has a singular virtue 
for elevating a large quantity of water in a short time and by a small 
force; but those who think so are deceived; for if no account of acci
dental hindrances is taken, this vouches for the same absolute potential 
as all other machines. 

SPECIAL COMMENTS ON THE WATERSCREW OF ARCHIMEDES 

I. There are various authors who taught a method of constructing 
this waterscrew: the summary comes back to the fact that some con
duit or several cylindrical surfaces are bent around, and certainly 
so that the conduit has everywhere the same inclination in relation 
to the axis of the cylinder, which Vitruvius, beyond necessity, orders 
to be made at a half right angle [45°] in all waterscrews. Therefore, 
it is required first of all that on the surface of the cylinder a spiral 
line be drawn, to the normal of which the conduit is to be put, which 
can be done most easily, in my judgment, on a very smooth surface 
(particularly since the helices have to be no little distance from one 
another) by winding a string around the same several times. For 
here the tension will produce the desired line on its own, and the 
spiral indeed cannot be everywhere similar to itself or have a constant 
inclination to the axis of the cylinder unless the arc spanned between 
two points is the smallest of all arcs having the terminal points, which 
is shown to be the case with a stretched string; but if friction is a 
hindrance, the string need only be extended to smaller intervals. 
But this is not why we are hesitant in a matter that is intrinsically 
very simple in many respects. 

A primary law of the spiral is that it is everywhere equally inclined 
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to the axi of the cylinder, following which law the construction is 
undertaken, which I shall add for the benefit of the things to be said 
below. 

Imagine a right cylinder MaJN (Fig. 52-1), on the surface of which 
is to be drawn the desired spiral arb2c3d, etc., and consider the same 
surface to be laid out in the plane given by the shape of the rectang
ular parallelogram AaJF (Fig. 52-2), [and] let here be taken from the 
one part AB, BC, CD, DE, and EF, from the other ab, be, cd, de, and ef, 
each one to be equal to the corresponding one; the points B, C, D, E, 
and Fare joined by straight lines with the points a, b, c, d, and e: if, 
after these things have been done in this way, the plane surface is 
again rolled up into a cylindrical one, with the lines AF and af 
joined, and the points A and a, B and b, etc., coinciding, it will 
happen that the lines aB, bC, cD, etc., form a continuous line on the 
cylindrical surface which will be the desired spiral itself. For easier 
understanding I marked homologous points in either figure with 
common letters. 

II. The cylinder MaJN (Fig. 52-1 ) was already proposed, having 
as a duct the curved conduit of the spiral just described, the diameter 
of which we shall assume as infinitely small in proportion to the 
diameter pertaining to the cylinder; and thus the waterscrew of 
Archimedes will be obtained; if we want to use this for elevating water 
from M to N, the cylinder will have to be inclined with respect to the 
horizontal, and certainly so that the angle aMH (the intercept be
tween diameter Ma of the base, which is in the vertical plane, and the 
horizontal MH) is greater than the angle sao, which the tangents 
to the circle and the spiral form at the common point a. Then, after 
the cylinder has been turned around its axis in the direction aghMs, 
the water will flow in through the lower orifice of the bent conduit 
and flow out through the upper one. 

III. So that we may understand the nature of this elevation cor
rectly, three points in any arbitrary helix of the spiral are to be 
examined by us, namely the points o, p, and q, the first of which, o, 
is the farthest away from the horizontal, the other, p, is closest to it, 
and q is located at the same height as the point o taken in the next 
lower helix; through the individual points o is drawn the straight line 
gn, through the points p the straight line hm, and through the points q 
the straight line st. But the locations of these lines will be determined 
below. 

IV. Let the radius that pertains to the base of the cylinder be r and 
let it be taken as the total sine; the sine of the angle sao equals m; its 
cosine equals M; the sine of the angle aMH equals n, its cosine equals 
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N; the arc ag equals X, the cosine of that arc equals x, [and] the per
pendicular drawn from o down to the horizontal will certainly be 

mNX 
or= -x:T + n(I + x). But because or is a maximum, it happens 

that mx:X + n dx = o, and since from the nature of a circle there is 

dX- -dx 
- VI - xx' 

mN VI - xx=-· 
Mn 

-mNdx 
there will be -,=== + n dx = o, therefore 

mVI - xx 

Therefore, the sine of the required arc ag is ,:., 

. V nn - mm h . . h h or cosme x = ± Mn ; t e upper sign gives t e arc ag, t e 

lower the arc ah determining the lowest points p. 
And so we have determined both the uppermost points o and the 

lowermost p, and it is evident that the arcs Mh and ag are equal to one 
another, but simultaneously it is understood from the irrational 

quantity V nn - mm determining the value of the letter x that it 
cannot occur that m is larger than n; and, indeed, in this case the 
lowermost point is not given, since the entire spiral ascends continu
ously everywhere. Indeed, the waterscrew will not serve thus in 
elevating water, hence the reasoning is now evident which I pointed 
out in the second article of this digression concerning the required 
excess of the angle aMH over the angle sao. 

V. Let us suppose now that a sphere is located somewhere in the 
cavity of the conduit and that the waterscrew is fixed in its position; 
thus the sphere is certainly not at rest unless it is located at some 
point p. But if the waterscrew is assumed not to be held back, the 
sphere will descend, and by its descent it will drive the waterscrew 
around, ancl if, furthermore, it is imagined that the waterscrew is of 
no weight and that the motion of the sphere occurs very freely with 
no hindering friction, [then] the sphere descends on the straight line 
mh by no other law than a sphere descending freely on an inclined 
plane. And so it is evident that a potential is required for holding 
back the descent of the sphere and fixing the waterscrew. Let us 
assume that that potential is applied at the pointf in the plane of the 
circle and perpendicularly to the radius in question in the ratio which 
it has to the weight of the sphere resting at some point p. 

Let the weight of the sphere be p; but, because the action of the 
sphere is vertical, it will have to be resolved into two others remaining 
perpendicular to each other, the one of which let have a common 
direction with the axis of the waterscrew, the other let be perpendic
ular to it; the former will have to be rejected, since it contributes 
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nothing to turning the waterscrew, and the latter will have to be con
sidered alone; but that residual action equals np, and it acts on a lever 
which is equal to the sine of the arc Mh or the arc ag, and this sine 

(by Art. IV) is~- Therefore, the moment of the action is ~-np = 

m,:; if one divides this by the radius of the base, which is the lever 

pertaining to the potential applied at f set in equilibrium with the 
action of the sphere, one will have the required potential equal to 
mNp 
M . Therefore, others customarily derive from a foreign principle 

that which can thus be deduced directly from the nature of the lever. 
With these things having been set forth which were to be set forth, 
let us now begin to consider the use of the machine for elevating 
water. 

PROBLEM 

VI. It is asked what the maximum quantity of water is that a 
given waterscrew can discharge in a revolution. 

SOLUTION. Let us consider an entire helix aib, and let the quan
tity of water which it contains [ when it is] full be q: it is also to be 
noted that the helix cannot be entirely filled with water; for if the 
entire conduit were full, water would flow out through the lower 
orifice: therefore some branch, which is a1b, is occupied partly by air, 
partly by water; also one extremity of the water will be at o, or the 
uppermost point, the other at q, or a point situated at a level with the 
former; therefore, the part full of water is opq, and if this part is 
assumed to be in proportion to the length of the entire helix aib as g 
is to h, the maximum quantity of water to be discharged in one 

revolution will be equal to gi" Q.E.I. 

ScHOLIUM 1 

VII. Because, as we have said, it cannot happen that the water is 
continuous through the full extent of the conduit, care has to be taken 
that no separation is imparted to the water, which can easily be 
accomplished if the entire base of the cylinder is immersed in the 
water, because thus air cannot enter through the lower orifice of the 
conduit; neither must it happen that too large a part of the base 
projects from the water, because then the waterscrew does not draw 
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all the water that it could otherwise [draw] in one revolution; on the 
contrary, it draws nothing if the immersion does not reach the point 
h; but due immersion should occur up to the point g, because thus the 
arc opq of the helix, which is capable of retaining water, becomes 
largest. Although indeed I never conducted an experiment on the 
matter, and most authors seem to speak differently about it, I would 
rather trust in reasoning than in the authority of those who did not 
pay attention to this immersion. 

Therefore, this rule for the ratio of immersion will be observed, namely 
that the base is submerged until the chord of the arc projecting from 

the water is v;:,;:, where the letters m, N, M, and n signify the same 

[variables] as in the fourth article. 

ScHOLIUM 2 

VIII. It is apparent, indeed, after light contemplation of the 
matter, that the ratio between the arc opq of the helix and the entire 
helix arb, that is, between g and h, is greater, and hence a larger 
quantity of water is discharged in a single revolution, the rest being 
the same, the smaller the angle sao and the larger the angle aMH, or, 
the smaller the distance between two adjoining helices and the 
more the waterscrew is inclined towards the horizontal; but it is not 
possible to express that true ratio algebraically; nevertheless, in every 
particular case this is obtained by an easy approach. 

Let me select an example of the preceding rule from a waterscrew which 
Vitruvius shows how to construct and apply. He makes sao a semi-

right angle, and thus m = M = V½ = o. 707 IO; then he sets a ratio 
between NG and MG, which is as 3 is to 4; whence one deduces the 
angle GNM or aMH is equal to 53° 8', and the sine n of it equals 
0.80000 and the cosine N = 0.60000; therefore (by Art. III), the 

sine of the arc ag defining the highest point o equals~ = ¾, and the 

arc ag itself equals 48° 35'. And thus, by virtue of the rule of Art. VII, 
the arc projecting from the water at the base must be 97° ro', and an 
arc of 262 ° 50' is immersed. 

Furthermore, in order that we may now define the ratio between 
the arc opq of the helix and the entire helix arb, it is to be noted that 
the ratio is the same as that which exists between the circular arc 
ghMs and the circumference of the circle, which is manifest from the 
accompanying figure. But the arc ghMs may be determined in the 
following manner : for example, the arc ghMs = arc aghMs - arc ag. 
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But we have seen in the third article that, if from any point of the 
spiral, such as o and q, perpendiculars are drawn down to the hori
zontal going through M, such as or and qx, that perpendicular will be 

mi.JX + n(1 + x), or in our case o.6ooooX + 0.80000(1 + x), with 

X denoting the circular arc corresponding to the assumed point on the 
spiral, namely the arc ag or the arc aghMs, and x denoting the cosine 
of that arc. But the arc ag = 48° 35' = 0.84 794 (because the radius 
is expressed by unity), and the cosine of it equals o.66153; therefore, 
in our case or becomes 0.50878 + r.32922 = r.83800. Further, 
because the points o and q are located at the same height, and the lines 
or and qx are equal to each other, it is apparent that the question is 
now reduced to this: that the other arc aghMs corresponding to the 
point q be found so that, if it is called X and its cosine x, then 
o.6ooooX + 0.80000(1 + x) =or= r.83800; for this condition the 
arc aghMs is found [ to be] approximately 175½ degrees, intersecting 
the cut agM at the points. And since the arc ag will be 48° 35', the 
arc ghMs will finally be 126° 55', which thence will be to the circum
ference of the circle approximately as IO to 29: the same ratio prevails 
between the arc opq of the helix and the entire helix. 

From this follows that in a single revolution there is discharged by 
the waterscrew described by Vitruvius approximately ~ ~ of that 
quantity which the full helix contains, or very little more than one 
third. 

SCHOLIUM 3 

IX. It is nevertheless to be noted that whatever be the quantity 
of water which enters the conduit at the bottom at any revolution of 
the waterscrew and flows out of the same at the top, it imparts neither 
a loss nor a gain to the absolute potential if no consideration is given to 
friction, because the moving potential, the rest being equal, is propor
tional to that quantity. But because friction always hinders and is 
almost the same on account of the very weight of the machine whether 
a larger or smaller quantity of water is pumped, and certainly an 
effort is to be made that that quantity becomes great, the rest being 
equal, this matter I shall now treat a little more expressly. 

ScHOLIUM 4 

X. I already hinted above that the ratio of the arc ghMs to the 
circumference of the circle increases with decreasing angles sao and 
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N MG; either one should therefore be built very small unless other 
inconveniences interfere, particularly in the consideration of the 
angle N MG. As far as the angle sao is concerned, it can be dimin
ished almost arbitrarily, and thence no other inconvenience results 
apart from the fact that the sides of the conduit to be curved cannot 
come too close to one another: on the contrary, from the diminishing 
of that angle another benefit is obtained, namely, that then the ma
chine can be erected more nearly vertical, and the water itself is 
elevated higher, for truly the angle aMH must always be larger than 
the angle sao; from the more nearly vertical position of the water
screw, moreover, it occurs simultaneously that the very weight of the 
machine is of less inconvenience, and that the latter is more easily 
supported. 

Considering these things accordingly, I should believe that it usually 
suffices for the conduit to make an angle of 5 degrees with the base of 
the center. Cardano also made that angle smaller than Vitruvius, 
and since the fewer conduits can be wound around the same center, 
the more obliquely they are attached, Vitruvius stated that eight are 
to be placed, Cardano only three; but the conduits are longer in the 
waterscrew of Cardano, so that it contributes in the lengths what it 
lacks in the number of conduits. In the consideration of the other 
angle N MG it merits being observed that the water can be elevated 
higher, the larger the angle becomes, but, on the contrary, the 
quantity of water discharged in a single revolution is less. Probably 
those who make that angle 60 degrees will reach a just median. 

XI. Now we will also perform the calculation of our waterscrew 
constructed to the norm of the preceding article as we have done for 
the waterscrew constructed according to the concept of Vitruvius in 
Art. VIII. But because by hypothesis the angle sao is 5° and the 
angle N MG = 60°, the arc ag will, by Art. IV, be found to be 8° 43', 
and the vertical line or = 1.00574, to which the other vertical qx will 
be equal if 284° 57' is assigned to the arc aghMs; hence, if the arc ag 
is subtracted, the arc ghMs remains as 276° 14', which corresponds to 
the arc of the helix capable of retaining water; therefore, this part is to 
the entire helix as r 6,574 to 2 r ,600 or as 8287 to ro,800, such that in a 
single revolution more than four-fifths of the capacity of the entire 
helix can be discharged, and two and one-third times as much is 
accomplished by this machine as is obtained from similar machinery 
constructed according to the understanding of Vitruvius; also, the 

water is elevated higher from the same center in the ratio as VS is to 

V2. I come now to the moving as well as the absolute potential that is 
expended in elevating water. 
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PROBLEM 

XII. Given the weight of the water resting in the helix, find the 
tangential potential located atf in equilibrium with that weight. 

SOLUTION. We have seen how this problem may be solved geome
trically by reasoning of a sphere resting at the lowermost point p. 
But in the present case the situation is slightly different, since the 
weight of the water is distributed through a large arc of the helix and 
not concentrated at some given point. It is certainly easy to foresee 
that in either case the potentials will be the same from the indirect 
rules of mechanics; it pleases, nevertheless, to present the desired proof 
of this matter from the nature of the lever, because the mechanics 
love to reduce everything to that. 

We shall consider the helix aib taken separately from Fig. 52 in 
order to avoid confusion of the lines, the notations applied in Art. IV 
having been preserved. Thus, therefore, in Fig. 53 the angle N MG 

I, 

FIGURE 53 

,e, ·f 
fl . 

zi· 

will again be the angle which the center makes with the horizontal, 
its sine equals N, and the sine of the angle aMH equals n; arb is one 
revolution of the spiral. The circle acMpa is the base of the center; 
the sine of the angle pal, as before, equals m, and its cosine equals M; 
but the points l and o are the extremities of the water resting in the 
spiral and located at the same height from the horizontal; from these 
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points are drawn to the periphery of the base the straight lines le and 
op, perpendicular to the base. In the part of the helix which the 
water occupies, two infinitely close points m and n are assumed, and 
through these the straight lines nj and mg are drawn, again perpen
dicular to the base. Finally, from the points c, J, g, and p the per
pendiculars cd, jh, gi, and pq are drawn to the diameter aM; and the 
center of the base is assumed at e, and the radius ea = r. Now let 
the arc lro of the spiral, full of water, be equal to c, and consequently 
the circular arc cMp corresponding to the same be equal to Mc : al = e; 
ac = Me; ad (or the sine with respect to the arc ac) equals]; aq = g; 
the weight of water in lso equals p; the arc aln = x; nm = dx; aif = 
Mx;fg = M dx; ah = y; hi= dy; hf= -V?J> - yy, [and] the weight 

of the volume element at nm equals p dx; but if the line lifis multiplied 
C 

by the sine of the angle aMH and divided by the entire sine, there 
results the lever arm by which the particle nm attempts to turn the 

waterscrew; therefore, this lever arm is equal to n-v' 2y - yy, which, 

multiplied by the weight of the volume element given above, p dx, 
C 

gives its moment np dx -v' ?JI - yy. But from the nature of a circle 
C 

M dx = 'V dy ; therefore, after this value has been substituted for 
zy -yy 

dx, the moment of that same volume element nm becomes n~:, 

the integral of which, after subtraction of the proper constant, is 

np(~~ f) and denotes the moment of the water in the arc ln; whence, 

therefore, the moment of all water in lro is np(~~ f). This divided 

by the lever arm of the potential applied at J, or by r, yields in a like 

manner the desired potential np(~~ j). Q.E.I. 

ScHOLIUM r 

XIII. In order that it be apparent that the value of this potential 
does not differ from that which we found in Art. V for a sphere of the 

same weight p, namely m-:;, the equality between np(~~ j) and 

m-:; or between n(g - j) and mNc is to be shown; but this equality 
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is to be deduced from the fact that the extremities land o of the water 
are located at the same height above the horizontal; for hence it 
follows, as we have shown in Art. IV, that the sum of the arc ac 

multiplied by m_: and the line Md multiplied by n equals the sum of 

the arc acMp multiplied in the same way by m_:: and the line Mq 

multiplied by n. And so, with the notations of the preceding article 
having been applied, there results 

mN mN 
Me· M + (2 - f) ·n = (Me+ Mc)· M + (2 - g) ·n, 

or n(g - f) = mNc, which equality has to be shown for demon
strating the equality of the potentials to be applied for the sphere as 
well as for the water atf 

ScttOLIUM 2 

XIV. Because the potential np(~~ f) does not differ from m-:: 

dh .mN · h h · f · an t e quantity M remams t e same, w atever quantity o water 1s 

drawn in or discharged in one revolution, that potential will be pro
portional to that very quantity of water discharged in a single revo
lution, or to the weight p. Also, it is easy to prove that, if the same 
quantity of water is elevated by the same moving potential and at the 
same velocity to an equal vertical height above the base plane, which 
to this end must be appropriately inclined towards the horizontal, it 
will happen that the time of elevation is also the same. 

Therefore, the same absolute potential is required in the waterscrews 
of Archimedes as [is required] on an inclined plane, to which all 
machines can be reduced, and this waterscrew does not have any 
prerogative over other machines viewed in the theory. Perhaps in 
practice it is less exposed to the inconveniences indicated in §26; by 
no means do I reject its use, but neither do I prefer it to the pumps 
of Ctesibius. 
---------- [ End of Digression] ----------

§28. From what has been said so far, one understands under what 
conditions one machine ought to be preferred to another: namely, 
what degree of perfection of the machine these [ conditions J permit; 
to what one should pay most particular attention in their construction 
and use; how large a part of the absolute potential is lost; and other 
similar things. Of course, we have considered only machines driven 



MOTION OF FLUIDS PUSHED BY AN OUTSIDE FORCE 2 I 7 

by animated potentials, as they are called; but it is readily apparent that 
those machines that are to be driven by the impetus of water, by 
wind, or by the gravitation of water and other principles of this kind 
are subjected to the same laws; always, indeed, the moving potential 
multiplied by the time and the velocity of the point to which the 
potential is applied will give the product of the quantity of water and 
the height to which that quantity can be elevated in a given time by 
means of the proposed machine, other hindrances having been set 
aside. However, I am speaking about machines which lose none of 
the absolute potential; it can happen, indeed, that the greatest part is 
lost, which we have shown often enough above. 

§29. Hence it is apparent that water elevated to a certain height 
can by its descent produce the same effect again; but the effect will 
have to be estimated from the quantity of water to be elevated and 
the height of elevation; for example, by the descent of 8 cubic feet 
from a height of one foot, it is wholly possible for 8 cubic feet to be 
elevated again to the same height, or 4 cubic feet to a height of two 
feet, or one cubic foot to a height of 8 feet, and thus however one 
would please. A specimen of a machine which can elevate water to 
any height whatever by a minimum descent of water is found among 
[the works of] Mr. Perrault in the Commentarii ad Vitruvium, Book ro, 
Chapter 12, which machine he introduces as an almost incredible 
paradox, and he makes the Italian Mr. Francini the inventor ofit, by 
whose industry and planning it was constructed successfully in the 
garden of the Royal Library. The basis of the machine consists in 
the fact that buckets chained together and moving around in a circle 
take up water and transport it to the lowermost point where they 
discharge it, while another series of buckets take up water, although 
less in quantity, and carry it to a much higher location and discharge 
it. It is very clear that if all descending buckets are heavier than all 
ascending buckets, the former series will activate the other perpetually 
in a circle. There exist also machines which produce the same 
through simple pipes by means of flaps that are to be reversed at 
regular time intervals, in which conversion certainly no potential is 
expended. Carlo Fontana describes machinery of this kind. 

But if anyone believes that the same can be obtained from the im
petus of water falling from a certain height and impinging on the 
blades of the machine, he will be far off. Machinery of this kind 
would pertain to that class in which the largest part of the absolute 
potential vanishes without benefit. 

It will not be beside the point to follow this argument more ac
curately and to show how great an effect can be obtained from the 
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impetus of water or wind, and under which circumstances this effect 
may be considered the greatest of all. 

THIRD PART: CONCERNING MACHINES WHICH 
ARE DRIVEN BY THE IMPETUS OF A FLUID, SUCH 

AS BY THE FORCE OF THE WIND 

§30. After water elevated to a certain height falls down again 
from the same and impinges continuously on the blades of a wheel 
to be turned, it cannot happen differently than that the absolute 
potential required for so turning the wheel is much less than that 
which was expended in the elevation of the water, the foremost 
reason for which matter is that the water falling down after the 
impulse on the sides still preserves a velocity which contributes 
nothing to the rotation of the wheel. Therefore, a large part of the 
absolute potential of elevated water would become useless if a machine 
were driven by the impetus of this water and finally, by this in turn 
other water were elevated to a certain height; and indeed a larger or 
smaller part is lost because of different circumstances, but never, as 
I shall show, is lost less than -H· of the total if a computation of the 
ordinary impulse of water is made according to the norm. 

§31. Furthermore, it is commonly stated that if water flows out of 
a very wide cylinder through a simple orifice at its total velocity, that 
is, that which would be due to the total height of the water above the 
orifice, and the stream immediately in front of the orifice impinges 
directly on a plane, [then] it will occur that the impetus of the fluid 
against the plane is in equilibrium with the weight of the aqueous 
cylinder erected above the orifice to the height of the water. Authors 
certainly misled by a false experiment have supported this completely 
false theory. I nevertheless did not want to withdraw here from the 
latter, because I have not yet shown the true theory, and then, after 
our theory has been explained, it will be easy to correct the calcula
tion. May one therefore be allowed to adhere to the common, 
although erroneous, statement until we consider the matter more 
correctly in its proper place. The greater the impetus of a fluid, the 
greater the ratio by which the absolute potential, which we shall give, 
will have to be increased. 

§32. Consider now (Fig. 54) a vessel ABC or a pump which expels 
water through the orifice Cina not quite vertical direction; but the 
water is taken up by another vessel EFD when it has reached the 
summit. At the base of this other vessel picture an orifice D, equal 
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to the former C and located at the same elevation, so that as large an 
amount of water flows out through D as is poured in above, and the 
vessel EDF is kept constantly full. Assume further that the water 
flowing out through D impinges continuously on the blades of some 

Jl 

FIGURE 54 

I 

wheel, which, turned in this manner, elevates other water; in place 
of this machine is described in the simple figure a lever arm rotating 
around H, by assuming that continually some one or another dif
ferent lever arm of this kind is present in front of the orifice D, which 
receives the water and draws water at its other extremity and elevates 
it to the given height. 

After these [things] have so been assumed, I shall first inquire 
about the absolute potential that elevates the water flowing through the 
orifice C to the height CE; then also about the absolute potential that is 
required at G for moving the lever arm at the same velocity at which 
it is moved by the impulse of water DG. 

§33. Let the area of the orifice C or D be n, the area AB be m, the 
velocity of water at C or D be v, the weight of the cylinder erected 
above the orifice C or D to the height CE be p, the time of flow be t; 

then the weight P will be ~ p; the velocity at which the weight 
n 

descends while water is expelled equals !!:. v; therefore (by §3) the 
m 

absolute potential expended in ejecting water through C is 

m n 
- p · - V • t = pvt. 
n m 
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§34. Now, in order that the absolute potential expended in the gyra
tion of the lever arm GL around the point H may be determined, it is 
to be noted that the former is the least consistent with itself; for it is 
changed by the changed velocity at which the lever arm is rotated. 
Therefore, let us make the velocity at which its extremity at G is 
moved equal to V. But in this manner the water is to be considered 
as impinging at G with the velocity v - V, and thus it exerts a pres-

sure which is (v ~ V) 
2

p (for the pressures are in a square ratio to the 

velocities of the impinging fluid, and a pressure equal to p is substi
tuted for the velocity v). But this pressure exists in place of the 
moving potential; in place of the pressure of the fluid we can certainly 
substitute the weight lying above the lever arm at G, which is 

(
V -V V\2p. -J But that weight will be moved at the same velocity as 

the point G, namely, at the velocity V, and it acts during the time t. 
Therefore, the absolute potential required for the rotation of the lever 

arm during the time t and at the velocity Vis C ~ vrP · v. t. 
§35. Thus, if the lever arm LG is not rotated immediately, but the 

fluid is elevated to the height CE with the intention that the stream of 
fluid, by its impulse at G for rotating the lever, elevates water from the 
other part, the entire absolute potential will be to the useful absolute 

potential as pvt is to C ~ ~ 2p Vt, or as v3 is to ( v - V) 2 V, and it will 

be to its useless part as v3 is to v3 - vvV + 2vVV - V3 • 

§36. In almost all machines in which the principle of motion con
sists of the impulse of fluid, it usually happens that the velocity V of 
the lever where it sustains the impetus of the fluid is very small in 
proportion to the velocity v of the fluid; but in these [machines] the 
largest part of the effect that could be obtained from the same 
quantity of fluid moved at equal velocity is lost. 

§37. The greatest effect from the impulse of fluid develops, or, 
which is the same thing, the absolute potential defined in §34 becomes 
greatest, if V = ½v, and then this absolute potential is 2~-pvt; and even 
then it falls short by twenty-three twenty-sevenths of the similar 
potential that is expended in elevating water from C to EF. 

If a natural descent of water exists and is to be used for elevating 
water or for accomplishing anything else, it must be arranged that the 
machine is moved at that place where the impulse occurs at a velocity 
of one third of the velocity of the impinging fluid. But this condition 
can always be satisfied, which is evident from the cited example of the 
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lever. For if the point G is moved at a greater velocity, one must 
diminish the part HG, the rest remaining the same, or one must in
crease it if the point G is moved at a lower velocity. Or even with 
the length HG retained, one must arrange that the water is drawn in 
at the extremity Lin a larger or smaller quantity. 

§38. Truly this is the reasonini about fluids impinging perpen
dicularly on blades; the computation is different for fluids attacking 
obliquely the arms of mills agitated by the force of the wind, and other 
similar machines. About these let me now add some few things, and 
with these I will bring this chapter to an end. 

Since the fluid impinges on the surface of the entire blade, arbi
trarily located and to be rotated in the direction perpendicular to the 
motion of the fluid, writers show that the fluid exerts the greatest 
pressure on the blade for promoting the rotation when the blade 
makes an angle with the direction of the wind the sine of which is to 

the total sine as V2 is to V3; but if the same entire stream of fluid is 
received by the blade, whether [it is] thus or inclined differently to the 
direction of the fluid, then that blade which makes a half right angle 
with the direction of the fluid will sustain the greatest pressure in the 
direction of rotation. 

The first Rule pertains to machines which are driven around by a 
wind surrounding everything; the other to those which are moved by 
a solitary stream and by a certain determined quantity of fluid. But 
either hypothesis depends on the fact that the motion of the blades is 
very small with respect to the motion of the fluid; for if one refers to 
the motion of the blades, both rules are false; and in the outset this 
motion is not to be neglected; indeed, I have often observed on mills 
that the tips of the arms are carried at a velocity which almost equals 
the velocity of the wind itself. 

Since these [things] are so, let us perform a calculation so that we 
obtain an understanding of either motion. 

§39. Therefore, let there exist the fluid DEBA (Fig. 55) which 
impinges on the entire plane AB in the direction EB; moreover, the 
plane is assumed to be moved in parallel motion in the direction Bb 
perpendicular to EB. Further, let the velocities be of the kind that, 
while a particle of fluid moves through the line EB, the point B of the 
plane travels the line Bb. Under these assumptions one may con
sider that the entire system, namely, the fluid and the plane, is moved 
from b towards B, and certainly with the velocity bB. But so it will 
occur that the plane AB is at rest, yet the particle of fluid striking at 
the point B is to be considered as having come from the point e, 
Ee = Bb having been assumed, and so accordingly for all volume 
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elements. Therefore, instead of the fluid DEBA striking the moving 
plane AB with the velocity EB, one will have to consider a fluid 
deBA striking the same but immobile plane AB with the velocity eB. 

FIGURE 55 

Let AB now be extended up to h, and let DEdeh be moved perpen
dicular to EB; the motion represented by eB of the particle of fluid 
will have to be resolved into eg and gB, remaining perpendicular to 
each other, the latter of which does not act upon the plane AB; but 
the other, eg, is again composed of two motions, ef and jg, the latter, 

Jg, of which tries uselessly to propel the plane AB in the direction EB, 
while the former, eJ, alone propels this plane in the direction Eb. It 
is therefore shown that any arbitrary particle causes an impulse 
proportional to the line ej; then it is also evident that if the line AB 
represents the entire plane, the number of particles impinging in a 
given time on the plane is to be represented by the line EN, perpen
dicular to Ad or Be. Whence finally the pressure of water for moving 
the plane in the direction Eb is proportional to the line ef multiplied 
byBN. 

In order that now the inclination of the plane to the fluid be deter
mined that is most favorable under these circumstances for promoting 
the movement of the plane in the direction Eb, let us set AB = 1, 

DE or AC= x, ED = V r - xx, the line EB, which represents the 
motion of the fluid, equal to v, and Eb or the measure of the motion of 
the plane equal to V; and thus, after the calculation has been per
formed, one finds 

ef = xv-V1 - xx - (1 - xx)V, 



and 

whence 
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BN = [xv - VVr - xx] /Vvv + VV; 

.;- vr - xx 
ef-BN = [xv - Vv r - xx] 2 V , 

vv + vv 
which quantity will be largest when this occurs: 

(gv4 + r8vvVV + gV4 )x6 - (r2v4 + 3ovvVV + r8V4)x4 

+ (4v4 + r6vvVV + gV4)xx - 4vvVV = o. 

§40. The calculation in consideration of the inclination of the arms 
in mills is different, because the velocities are different in different 
locations on the arms; they are, indeed, proportional to the distances 
from the center. But now it will be easy for anyone to perform a 
computation for mills. I do not wish to pursue this case any further, 
so let it suffice to have noted that it is stated by authors not accurately 
enough [that] xx = i, and that the true value of x itself is always less 

than V!- For example, if V were equal to v, and all points of the 
arm were thought of as being moved at similar velocity, x would 

become V½, which indicates that the arm is to be inclined to the 
direction of the wind at a half right angle. The best construction of 
arms would be if they were curved so that the wind impinges on them 
higher up at a smaller angle than lower down, or if it were made that 
the arms receive the wind everywhere at a mean angle of approxi
mately fifty degrees. 

§41. I pass on to the other case in which all fluid is assumed to be 
received by the plane, whichever way it be inclined. Here, how
ever, it is evident that because the number of particles impinging in 
a given time is always the same, no attention must be paid to the line 
BN, and that thus the pressure that the water exerts for moving the 
plane AB in the direction Bb is represented simply by ef or 

xvV r - xx - ( r - xx) V. Therefore, this pressure will be made the 

greatest by taking xx = !. + V V , and then the pressure itself 
2 2 vv + vv 

will be ½V vv + VV - ½ V, if by v one understands the direct pressure 
which the stream exerts on a plane which it strikes perpendicularly. 

§42. Let us consider now the stream DEBA as if immediately dis
charged from the orifice D in Fig. 54, and let us call p again the 
direct pressure of the stream thus considered, just as in §33; and the 
pressure of this water, by which it tries to propel in the direction per
pendicular to the stream the plane inclined in such a manner that the 

. ------------ --
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pressure becomes greatest, will be f!.... · ( v' vv + VV - V ) ; and if, 
2V 

furthermore, this pressure is multiplied by the velocity V of the 
plane and by the time, the absolute potential is obtained by which the 
plane can be moved at the same velocity through the same time 
interval; so, therefore, the aforementioned absolute potential will be 

pVt_ (v'vv + VV - V.) 
2V 

§43. The absolute potential which we have just defined is so consti
tuted that it increases continuously with increasing V, and if the 
velocity Vis assumed infinite, that same potential becomes ¼·pvt. If 
we therefore want to use the stream DC in Fig. 54 for rotating a 
machine by an oblique impulse, there can never be obtained more 
than the fourth part of that absolute potential which is expended in the 
elevation of the water from C to EF. But we have seen in §3 7 that by 
direct impulse more than -!-7 is never obtained. Therefore, by an 
oblique impulse or by horizontal motion of the wheel an effect can 
be obtained almost two times as great as by vertical motion of the 
wheel. 

But if the impulse of fluids is estimated differently than was indi
cated in §3 r, one will have to change the value of the letter p every
where in the same ratio in which the estimation of the impulse was 
changed. 

The experiment of which I made mention in §27, Chapter IX, is this: 
namely, by means of a pump one worker lifted sixteen and a half 
cubic feet to a height of fourteen feet within seven and a half minutes. 

But this effect, equally distributed, is equivalent to that action by 
which approximately half a cubic foot is elevated in a single second 
to a height of one foot. Here, therefore, the effect is only half of that 
which I deduced from other principles in §17, that a healthy and ro
bust man can produce on a treadmill. I would not believe that the 
entire defect is to be sought in the losses which can occur to the 
absolute potential from the different causes exposed in this chapter, but 
rather in the fact that the men become more tired from the agitation 
of the piston in the pump than from the tread in the treadmill. 

Some months ago at Geneva I finally performed an obviously 
similar experiment, but with a far more excellent machine con
structed by a singular craftsman, and with these Most Famous 
Gentlemen present: Messrs. De La Rive, Calandrini, Cramer, and 
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J allabert, Professors of the Academy of Geneva. The success of the 
experiment was such that I found out that one worker elevated four
fifths of one cubic foot to a height of one foot in a single second, or, 
rather, that he achieved an equivalent effect. The experiment is 
noteworthy, and I do not believe that an effect greater than this can 
be obtained by any other machine. Also curious is the fact that it 
thus appears that machines of all kinds, animated by any potential 
whatever, achieve, if you remove hindrances, an effect not greatly 
dissimilar. Having thought over the matter well, I state that by a 
most excellent machine a man can elevate a cubic foot of water in a 
single second to the height of one foot, or produce a similar effect. 

Here as well, particularly in consideration of§31, would pertain the 
experiments that I most accurately performed for estimating the im
petus of a fluid stream impinging on a plane, by which was confirmed 
the new theory which I had established about this matter, and simul
taneously I learned that in Mariotte's time a common error was 
committed. But since at the end of that chapter there was no elo
quent discussion on this subject, and since the intention is to treat it 
expressly in Chapter XIII, let us therefore delay until then these 
discussions brought forth from mechanical principles not yet observed. 

- ----------



TENTH CHAPTER 

Concerning Properties and Motions of Elastic 
Fluids, but especially of Air 

1. Now being about to consider elastic fluids, we may ascribe to 
them a constitution that coincides with all properties known so far, 
in order that thus also a path be provided to the remaining, still in
sufficiently explored properties. But the outstanding properties of 
elastic fluids are stated as follows: (I) they are heavy, ( 2) they extend 
in all directions, unless they are confined, and (3) they allow them
selves to be compressed continuously more and more as the com
pressing forces increase. Air, to which our present considerations 
pertain mostly, is composed in this way. 

§2. And so consider a cylindrical vessel ACDB, placed vertically 
(Fig. 56), and in it a movable lid EF, on top of which lies the weight 
P. Let the cavity ECDF contain extremely small bodies agitated in a 

FIGURE 56 
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very rapid motion; thus the small bodies, while they impinge on the 
lid EF and also support the same by their continually repeated 
impacts, compose an elastic fluid which expands if the weight P is 
removed or diminished; this is compressed if the same is increased, 
and it gravitates on the horizontal base CD not at all differently than 
if it existed with no elastic property. Indeed, whether the small 
bodies are at rest or agitated, they do not change gravity, so that the 
base sustains either the weight or the elasticity of the fluid. There
fore, let us substitute for air a fluid that is consistent with the primary 
properties of elastic fluids, and thus we will explain some properties 
which have been already detected in air, and we will illustrate 
further some others [that are] not yet sufficiently investigated. 

§3. We shall consider the small bodies enclosed by the cavity of the 
cylinder as infinite in number, and since they occupy the space 
ECDF, let us say that the latter forms the natural air, to the measures 
of which all [ other measures] are to be referred; and thus the weight 
P holding the lid in the position EF does not differ from the pressure 
of the Atmosphere lying above it, which we therefore shall designate 
henceforth by P. 

But let it be noted that this pressure is not at all equal to the 
absolute weight of the vertical cylinder of air lying above the lid EF 
in the atmosphere, which authors so far have affirmed inconsiderately; 
but that pressure is equal to the fourth proportional to the surface 
of the earth, the size of the lid EF, and the weight of the entire atmo
sphere on the surface of the earth. 

§4. Now the weight 7T is sought which can compress the air ECDF 
into the space eCDJ, the velocities of the particles in either air (the 
natural and the compressed), of course, having been assumed the 
same; moreover, let EC= 1, and eC = s; but since the lid EF is 
transferred to eJ, it suffers a greater pressure from the fluid in two 
ways: firstly, because the number of particles is now greater in pro
portion to the space in which they are contained, and secondly, because 
any particle repeats the impetus more often. In order to perform 
correctly the calculation of the increment which depends on the first 
cause, we shall consider the particles as resting, and we shall make n 
the number of those which are adjacent to the lid in the position EF, 
and the equivalent number for the location of the lid at ef will be 

/( 
eC)21s 

n EC ' or n/s21s. 

But let it be noted that the fluid is considered by us not more com
pressed in the lower part than in the upper part, which is so because 
the weight Pis just as infinitely much larger than the very weight of 

------
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the fluid. Hence it is clear that with this designation the force of the 
fluid varies in proportion to the numbers n and n/s2 13 , that is, as s2 13 

is to 1. But what pertains to the other increment arising from the 
second cause is found by observing the motion of the particles; and thus 
it is apparent that the impulse occurs the more often, the closer the 
particles are located to each other; of course, the number of impulses 
will be reciprocal to the median distance between the surfaces of the 
particles, and these median distances will be determined as follows: 

We assume the particles to be spherical, and we shall call D the 
median distance between the centers of the small spheres for the posi
tion EF of the lid, and the diameter of a small sphere we shall desig
nate by d; so the median distance between the surfaces of the small 
spheres will be D - d; but it is evident that at the position ef of the 
lid the median distance between the centers of the small spheres will 

be Dtfi, and therefore the median distance between the surfaces of 

the small spheres is Dtfi - d. Therefore, with respect to the second 
cause the force of the natural air ECDF will be to the force of the 

compressed air eCDJ as -D 
I 

dis to fl~ , or as Dtfi - dis to 
- D s - d 

D - d; for both causes together, however, the aforementioned forces 

will be as s213 • (Dtfi - d) is to D - d. 
For the ratio D to d we can substitute another, more intelligible one: 

namely, if we consider that the lid EF, [when] depressed by an in
finite weight, descends to the position mn at which all particles touch 
each other, and ifwe designate the line mC by m, D will be to d as I is 

to fl;i;_, which ratio being substituted, finally the forces of the natural 

air ECDF and of the compressed, eCD j, will be as s213 • ( tis - fi;i;_) is 
.a;- .a;- .a;-

to 1 - v m, or as s - ·v mss to 1 - v m. Therefore, 

.a; -
1 - vm 

7T = a -P. 
s - f!mss 

§5. From all phenomena we can judge that natural air can be 
compressed into an almost infinitely small space; therefore, with 

m = o having been assumed, TT becomes ~, so that the compressing 
s 

weights are almost in inverse proportion to the space which the air 
occupies when compressed differently; manifold experience has con
firmed this. This rule can also certainly be accepted safely for air 
rarer than natural; but I have not explored sufficiently whether it can 
be also [ accepted] for very much denser air; and indeed experiments 
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have not yet been performed with that accuracy which is required 
here; for defining the value of the letter m, there is need of only one, 
but of one to be formed most accurately and certainly with violently 
compressed air; however, let the degree of heat in' the air, while it is 
being compressed, be carefully kept unchanged. 

§6. Meanwhile, the elasticity of air is increased not only by com
pression but also by increased heat, and since it is established that heat 
is spread out everywhere by increasing internal motion of the par
ticles, it follows that an increased elasticity of air not changing volume 
discloses a more intensive motion in the air particles, which agrees 
correctly with our hypothesis; it is indeed evident that the greater the 
weight P required for keeping the air in the position ECDF, the greater 
the velocity at which the air particles are agitated. By all means it is 
not difficult to see that the weight P will follow the ratio of the square 
of that velocity, for the reason that the number of impacts as well as 
their intensity increases equally with an increased velocity; but [ each 
one] separately is proportional to the weight P. 

If, therefore, the velocity of the air particles is called v, the weight 
which it can sustain at the position EF of the lid will be vvP and in the 

. . if . ·11 b 1 - -{½;; P . 1 vvP b position e it wi e _3;-• vv , or approximate y -, ecause, 
s - -v mss s 

as we have seen the number m is extremely small with respect to 
unity and the number s. 

§7. That theorem which I presented in the preceding paragraph, 
by which, namely, it is indicated that in all air of any density whatever 
but of the same prescribed degree of heat, the elasticities are as the densities, 
and therefore also the increments of the elasticities, which are created by equally 
increased heat, are proportional to the densities, that theorem, I say, Mr. 
Amontons was taught by experience, and he recorded it in the memoirs 
of the Royal Academy of Science of Paris for the year 1702. The sense of this 
theorem is that if, for example, natural air of moderate heat sustains 
a weight of 100 pounds imposed on a given surface, and then its heat 
is increased until it can carry 120 pounds on the same surface and at 
the same volume, then it will occur that the same air, compressed to 
half the space and possessing the same degrees of heat, can carry, 
respectively, 200 pounds and 240 pounds, so that increments of 20 

pounds and 40 pounds, proportional to the densities, are generated in 
either case by the increased heat. He further affirms that the ex
pansion of air, which he calls tempered, is to the expansion of the 
same air with the heat of boiling water approximately as 3 to 4 or, 
more accurately as 55 to 73. However, I have learned from per
formed experiments that very hot air, such as it is in the hottest 
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summer in this country, is not yet of such an expansion as Mr. 
Amon tons attributes to tempered air; I believe that not at the equator 
itself is the air ever of this heat. But I believe that my experiments 
are to be trusted more than the Amontonian ones for the reason that 
in the latter the air will not preserve its volume, and to this variation 
no consideration was given by the Author in the calculation. I 
learned that the expansion of air which was very cold here in Peters
burg on 25 December 1731 (old statutes) was to the expansion of 
similar air attributed with the same heat as boiling water as 523 is 
to IOOO. 

But in the year 1733, en the 21st day of January the cold was much 
more intense, and for this I observed that the elasticity of the air 
corresponds to within half of that which the same air has when 
heated to boiling water. But when the heat of air in a shadowed 
place was greatest in the year 1731, it had an elasticity of approxi
mately ½ and more accurately 1..fj- of that which the coldest air had 
and i of that which air of the same heat as boiling water has; there
fore, the greatest variations in the air in these places are contained 
within the limits 3 and 4; I have read that in England they do not 
exceed the limits 7 and 8. But I believe that the heat of air, the 
elasticity of which equals three quarters of the elasticity of air as hot as 
boiling water, is almost intolerable for an animal body. 

§8. From the known relation between the different elasticities of 
the same air contained in the same space, it is easy to deduce a measure 
of the heat which pertains to the air if only we agree in defining twice, 
three times, etc., the heat which definition is arbitrary and not fixed 
in the nature of things; to me it seems indeed not incongruous that the 
heat of the air, if it is of common density, is proportional to the state 
of its elasticity. But let the first degree of heat, from which the others 
obtain their measure, be taken from boiling rain water, because this 
has, without doubt, approximately the same degree of heat everywhere 
on earth. 

If these [things J are so accepted, the temperatures of boiling water, 
of air in the hottest time of summer, and of air in the coldest time of 
winter in this country will be approximately as 6, 4, and 3. Let me 
tell now how I found those numbers, so that judgment can be passed 
on the accuracy of the experiments, the success of which is so greatly 
different from the Amontonian. 

§9. Indeed, I made use of an ordinary barometer ACEE (Fig. 5 7), 
and I took care that it was sealed hermetically at m; in this manner 
I changed the instrument into an air thermometer not subjected to 
barometric changes, for with increasing heat an expansion of the air 
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AmF is achieved, and the column of mercury BD which the captured 
air sustains becomes higher, and if the space AmF could be assumed as 
practically infinite, the heat would be in proportion to the height BD 
(by§§7 and 8), and by means of this thermometer the measure of heat 
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FIGURE 57 

could be defined specifically everywhere. For if the instrument is 
immersed in boiling rainwater in a vertical position and the point G 
is observed to which the surface of the mercury ascends, then any other 
degree of heat whatsoever which has been observed to have sustained 
the mercury up to the point D will have to be defined, and in any case 
that heat will be to the heat of boiling water as BD is to BG. And 
since the ratio BD to BG is constant, whatever the height BG should 
be, the same degree of heat that we are discussing can be easily 
imitated in any location. Furthermore, BG could be divided into a 
hundred or a thousand parts, and the height BD could be defined by 
partitions of this kind. 

I say nothing about the methods of obtaining more sensitive ther
mometers of this sort; whoever wants to will easily think up many of 
them. Care should be taken, however, that the height BE be not 
below 4 feet; on the contrary, it should be larger if one intends to deter
mine the degree of heat of other boiling fluids, which is often greater 
than in water. If smaller thermometers of this kind are desired, 
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these could be made so that at the time of sealing at m a glass ampule 
AF is put into the fire of the torch for rarefying the air contained in it, 
and then let the sealing be made immediately, and lest any delay be 
introduced in the sealing, the glass ampule could be drawn previously 
into a capillary tube which melts together easily when it is brought 
close to the flame. In this manner I have obtained thermometers not 
more than four or six inches long, but oflittle value. Furthermore, it 
is of great importance that the space ED be vacant of all air, as much 
as this can be done, and we shall not be sure enough of this vacuum 
when we shall have seen that at a horizontal position of the instrument 
the mercury reaches the extremity E, because it can happen that the 
air which was previously in the space ED retracts into the pores of the 
mercury and again occupies the original space when the mercury 
descends; the test will be safer by moving the part DE towards a 
flame; for if the surface D does not change its position from the heat 
of the flame, this will be a certain proof that the space ED is vacant 
of air. 

§10. In the preceding paragraph we have considered the space 
AmF occupied by the air as practically infinite in proportion to the 
space DG or DE; but since it will be only eight or ten times larger, it 
will not yet be permissible to consider it as infinite without notice
able error; and from here I suppose that some error has arisen in de
fining the expansion of moderately warm air in the Amontonian 
experiments. 

Therefore, in order that the experiment be performed most accu
rately, one will have to proceed as follows: Let the lower surface of 
the mercury be at AF, and let a horizontal [line J be drawn at AL; 
then, for defining any degree of heat whatsoever, let the instrument 
be inclined until the surface of the mercury is at the point g ( which is 
the same one at which the mercury remained from the degree of heat 
of boiling water at the vertical position of the thermometer), and then 
let the measurement of the vertical height gh be taken, which will be 
in fact to the height GB as the expansion of the air, the heat of which 
is to be defined, is to the expansion of air as hot as boiling water. 
Thus, therefore, the heats will be accurately in the ratio of the height 
gh. Before I discontinue this argument, it will be convenient to have 
noted (in case perhaps to some it will seem that the.first degree of heat, 
which was defined by us, taken from boiling water is not always and 
everywhere completely consistent with itself) that instead of the heat 
of boiling water also a thermometer of certain and fixed measures can 
be made if in the experiment the density of the air is measured or its 
specific gravity is noted together with the barometric height. For if 
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the thermometer is inclined until the surface of the mercury is at g, 
and at that time the height of the barometer is 28 Paris inches, and a 
cubic foot of the air in which the thermometer is located has a weight 
of 600 Nuremberg grains, the vertical height gh could be considered 
as the first degree of heat. But if at a different location and time the 
height of the barometer is 29 Paris inches and the weight of a cubic 
foot of the air surrounding the other thermometer (in which it is the 
intention to define the first degree of heat) is 500 Nuremberg grains, 
and finally the surface of the mercury in the thermometer is again at 
g, the vertical height corresponding to the first degree of heat will be 

:~~::: ~ · gh. In using the thermometer, let the instrument always be 

inclined until the surface of the mercury is at g; I wanted to add this 
method so that it be apparent how easy it is in theory to give a fixed 
measure of heat; but in practice I shall prefer another much easier and 
sufficiently accurate one to this. 

§11. Let us come now to considering the atmosphere of air that is 
influenced not by an overlying foreign weight, but by its own mass. 
But first we shall examine the pressures of vertical air columns and 
their equilibria between one another as well as with the mercury 
columns in barometers. Second, we shall investigate the elasticities 
of air at different heights of the atmosphere above the sea and the 
corresponding barometric heights; and these [things] having been 
set forth, we shall satisfy many other phenomena pertaining to the 
changes of the atmosphere. 

12. Let there be two vertical pipes AC and BD (Fig. 58) of equal 
area, and each one of indefinite height. Then imagine narrower 
horizontal pipes ab, cd, if, gh, lm, etc., practically infinite in number, 
open on both sides and connecting to the vertical pipes. Assume 
furthermore that the air particles occupying these pipes are every
where agitated at the same velocity and so have the same degree of 
heat; thus there is no doubt that the bases A and B are equally 
pressed and simultaneously the same weight (which, of course, is the 
very weight of the indefinite air column AC or BD) lies on top of them. 

One also understands that if one assumes diaphragms at equal 
heights such as g and h and imagines the lower air gA and hB to be 
absent, even now these diaphragms are pressed equally on both sides, 
and that the weights of the air columns gC and hD lying above the 
diaph~agms are equal. Therefore, if the weight of the entire air 
column AC or BD is called A and the weight of the air column gC 
or hD is taken as B, the weight of the air contained between A and 
g or Band h will be A - B, the weight lying above the base A or B 
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equals A, and the weight lying above the diaphragm at g or h equals 
B. 

§13. But if the particles in the pipes AC and BD are agitated at 
unequal velocity, the situation will be different; nevertheless, what
ever difference of velocities and temperatures be assumed in the 
individual locations, it is evident that nonetheless the parts of a pipe 
located at the same height will be pressed equally on both sides, such 
as at g and h, and that hence the diaphragms, if they are assumed to 
be located at the same height on both sides, will sustain equal pressure. 
For if one says that the pressure at g is less than at h, there will be 
nothing which may hinder the flow of air from BD into AC through 
the small transverse pipe hg, and thus this statement will contradict 
the state of permanence which we have supposed. 

Therefore, since places located at the same height are equally 
pressed by the air lying above, the densities in arbitrary homologous 
places, such as at g and h, will be (by §6) approximately in the in
verse-square ratio of the velocities at which the particles are agitated 
in these locations. 

§14, It follows from the preceding paragraph that in every place 
the pressure of air is the same at equal heights above the surface of the 
sea if the atmosphere is assumed to be in a permanent state of equili-
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brium and agitated by no winds, whichever be the difference in heat 
between the different parts of the atmosphere. Therefore, it is 
obvious that everywhere on earth, at the equator and at the pole, the 
height of mercury is the same in barometers which are located at the 
surface of the sea or at equal heights above the latter if the atmosphere 
is not exposed to changes. I state further that the water terminated 
by the surface of the sea is located according to a common equili
brium, not because this is completely necessary, but because so far no 
difference has been observed; in reality, the currents (Les courans ) of 
water in many places of the ocean, which are perpetually directed 
toward the same region, show that this hypothesis is not to be accepted 
with all rigor. 

§15. I have already noted that the density of air at any position of 
the vertical pipes depends upon the corresponding heat; and since the 
degrees of heat can be different, equilibrium being retained, the 
densities can also be different. Therefore, let the densities be taken 
equal to D at g and equal to 8 at h; and let there be assumed on both 
sides two strata of equal and infinitely small height dx, with the height 
Ag or Eh taken equal to x. So the weight of the air column Ag will be 
f D dx and [that] of the column Eh will be f o dx, and in this manner 
one can define the weight of both the entire column and any part 
[ of it]. Meanwhile it is apparent that the nature of the matter 
requires least of all that the weights of the columns AC and ED, or 
Ag and Eh, or finally gC and hD are equal to one another, although 
(by§r3) the pressures at the bases A and E as well as at the diaphragms 
g and h are equal to one another. It will perhaps be amazing to 
some at first consideration that it can happen that the base A sustains 
another pressure than that which is the weight of the indefinite air 
column AC lying above it, since indeed, with everything remaining in 
its state, as we have just seen, the individual orifices a, c, e, g, etc., can 
be conceived as closed, in which case there is certainly no doubt that 
the pressure at the base A is the very weight of the overlying air 
column. But anyone may examine this point for himself in the 
following manner: let us assume either column to be of finite height 
(for although they rise without end as long as the particles maintain 
some motion, they will nevertheless be terminated if those particles in 
the uppermost part of the columns have no motion and thus form a 
simple heavy fluid without any elasticity). With this assumption it is 
apparent, first, that either column rises to a common height after the 
transverse tubes which are everywhere present have been opened; 
second, that the uppermost layers are equally dense on both sides 
because they are positioned at equilibrium and have a common 
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height. For this is now obvious why it would not be possible to con
sider the transverse tubes as closed, which I undertook to show. Also, 
it is evident by itself that the pressures are everywhere proportional to 
the weight of the uppermost layer, from which it follows, as was 
already shown in §13, that the pressures in either part are equal to one 
another at equal heights. If now the columns are not terminated 
anywhere, it will be allowable to conclude that the last layers are 
loaded on either side by an equal weight, or to assume [that] dia
phragms [exist] at equal heights, so that hence nothing of the power 
of the demonstration is lost. 

§16. If, therefore, the mercury descends in a barometer transported 
from a lower point such as A to a higher one, g, it does not follow that 
the weight of the mercury column which descends in the barometer is 
equal to the weight of an air column of the same diameter and the 
height Ag, which is so asserted by others. And actually, the rest 
being equal, the descending column of mercury will be the same in 
wintertime as in summertime, since from that statement it should be 
less in a warm season than in a cold season. It will also be the same 
in southern and northern regions. 

Hence it is evident what ought to be thought of that method which 
Mr. Duhamel, in the History of the Royal Academy ~f Science of Paris, 
reports was used at some time or other in England for investigating 
the ratio between the specific gravities of air and mercury. The 
height of the mercury having been observed, of course, at a lower 
point, then also at a higher one, they announced the specific gravities 
in air and mercury to be as the difference of heights of the mercury in 
the barometer was to the height contained between the points of 
observation. Even if the air is assumed as of the same density from 
the lowermost point of observation up to the other one, it is hence not 
permissible to pass judgment on its specific gravity in proportion to 
mercury. This is all that one may conclude from the experiment. 

Let us consider indeed the entire air shell surrounding the earth and 
contained between the two points of observation, and the weight of 
this shell will be to the surface of the earth as the weight of the mer
cury column which descends in the barometer is to its base; this is 
manifest from the fact that the sum of the bases A and B sustain 
certainly the sum of the weights which the air columns AC and BD 
have, and that nevertheless neither base is pressed separately by the 
weight of its column; and this must also be understood for the columns 
gC and hD lying above the diaphragms located at g and h after the 
columns Ag and Bh have been cut off. Therefore, the experiment 
does not indicate that specific gravity of the air in which it is per-
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formed, but rather it determines the mean specific gravity of all air 
close to the earth; the former is greatly variable, the other without 
doubt remains almost constantly the same. 

Let us compute the mean specific gravity of all the air that surrounds 
the earth. Indeed, from many experiments which have been per
formed in different places elevated slightly above the sea, it is shown 
that a descent of one line in the barometer corresponds to an eleva
tion of approximately 66 feet. It follows hence that the average 
specific gravity of the air is in proportion to the mercury as the height 
of one line is to the height of 66 feet, that is, as r is to 9504; therefore, 
with the specific gravity of mercury taken as 1, the mean specific 
gravity of air will be 0.000105. It is indeed noteworthy that this 
average gravity of air is so large; for I am sure that even in the most 
raging coldness in this country the specific gravity of the air is hardly 
yet as large as we have just shown for the mean state of all air sur
rounding the earth; and at the equator it will be much less, and, 
everything having been thought over correctly, I should not believe 
that the average gravity of the air which is contained between the two 
latitudes of 60 degrees extends beyond 0.000090; this having been 
assumed, the average gravity of the air encompassing the earth from 
either pole to the 30th degree (which space makes up a little more than 
an eighth part of the total surface of the earth) will be 0.0002 ro, 
which is twice that of the most dense air in this country; but at the 
pole itself, particularly the Antarctic, the air will be very much 
heavier and perhaps almost ro times lighter than water, since it is 
very cold and very dense. 

§17. Let us come now to changes of both the atmosphere and the 
barometer. We shall therefore consider two barometers, both 
located at the lowest point of air, the one at A, the other at B, and let 
us assume that in either one the mercury is suspended at the same 
height. Next let us imagine the air at A to be greatly heated; thus 
we see that this very air will be rarefied; nevertheless, no change of the 
barometer would be produced, if the air had no inertia against the 
motion, even if all air were driven from AC over to ED; but, this 
inertia having been assumed, a certain pressure develops in all 
regions, and this is most noticeable in the region A. Therefore, the 
height of the mercury in either barometer increases with time, and it 
increases more at A than at B. The contrary will exist, if at once 
some great mass of air close to the barometer A or B were compressed 
by cold. 

§18. This seems to be the unique cause which can effect some change 
in the barometers located at A or B, because, if it is removed, the 
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bases A and E are always equally pressed, certainly either one by a 
weight which is one half of the air columns AC and ED added to
gether, which sum of weights is indeed constant. If we want to 
apply this to the atmosphere, it is to be noted that the bases A and E 
represent the lowest points of the atmosphere, which certainly would 
be located at the surface of the earth if the air could not penetrate the 
inner parts of the earth; but because the situation is different, the 
locations analogous to the bases A and E will have to be considered 
below the surface of the earth. 

§19. Let it now be assumed that the barometers are located at g 
and h, and let the mercury in both be suspended at the same height; 
with these things established, let a cause be imagined to develop by 
which the column Ag either alone or together with the other, Eh, is 
heated up and expands. From this it is evident that if the inertia of 
the air is practically null, the pressures of the air at g and h will 
increase, because a larger quantity of air than before now lies over 
these places; of course, the weight of all the air which was pushed 
upward from Ag and Eh by the heat was involved. And in order to 
indicate this by symbols we will set A equal to the weight of the 
column Ag before a new degree of heat will have developed, a to 
that of the other, Eh, E to the weight of the column gC, f3 to that of 
the column hD, C to the weight of the rarefied column Ag, y to the 
weight of the likewise rarefied column Eh, l to the height of the mer
cury at g before the expansion of the air Ag and Eh, and x to the same 
height after that expansion; we will then have this analogy: 

E + f3: l = E + A - C + f3 + a - y: x; 

from this 

_E+A-C+fJ+a-y_l 
X- E+fJ . 

Therefore, the mercury ascends, by having rarefied the lower air, 
A-C+a-y A-C 

through the height x - l = E + f3 -l = -E- · l (setting 

everything equal in either pipe). 
But with the air again cooling in Ag and Eh, the mercury descends 

again in either barometer. 
Here is to be noted that in this manner from a very small change of 

heat at Ag and Eh a noticeable variation in the barometer can de
velop on account of the tremendous density of air in the lower parts, 
by which it can happen that much more air is contained in the part 
Ag (finally, an infinite number of times as much if air pressed by an 
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infinite force is assumed to be compressed into an infinitely small 
space) than in the remaining gC, although it is infinite in length. 
Whence, if the weight A is very much larger than the weight B, and 
simultaneously the cause rarefying the air is maintained, the weight 
C follows a given ratio to A; since this usually happens, it is apparent 
that the ascent of the mercury on account of the least degree of heat 
being added at Ag can be arbitrarily large. 

Equally, if it is assumed that the parts Ag and Bh are very much 
narrower than the areas at gC and hD, it is recognized that the 
variations of the barometer due to the increased or decreased degree 
of heat at Ag and Bh thus become less noticeable, because the weights 
A and a and C and y, proportional to the former, decrease in this 
manner; nevertheless, the barometric variations which originate from 
this cause can still be understood to be arbitrarily large. 

§20. When this is thus considered, it happens indeed that the baro
metric variations are for the most part to be sought from quick 
changes of temperature in underground caves. It has been known 
for a long time that there are many caves of this kind, and that they 
are immense; even in solid ground, pores can make something like a 
cave. If one collects all cavities (both those which are formed by 
caverns and those formed by air-containing pores) up to a height of 
20,000 or 30,000 feet below the surface of the earth and compares 
their capacity with the solid part of the earth's crust of the same 
height, and if one assumes the latter to be a thousand or a hundred 
thousand times larger than the former, then this will now indeed be 
reason enough to explain the very large changes of the barometer. 
From the preceding paragraph I believe that these things will be 
clear to anyone. 

By the way, places which are closer to caves will be the more 
exposed to winds and changes of the barometer because of the inertia 
of the air to motion, which is perhaps the reason why toward the 
equator, where almost everything is deep sea, smaller variations are 
observed on a barometer than in these northern places. 

§21. From the same source it is deduced that aqueous exhalations 
from the pores of the earth can also contribute something to baro
metric changes, but this will certainly be little. For if the vapors 
would give as much water as can fall in the most severe rain, then the 
mercury will hardly ascend a single line in the barometer, apart from 
the fact that this matter does not occur so fast but that the effect of it 
is distributed almost evenly over the entire atmosphere, and thus 
vanishes completely for a certain definite location. For if we con
sider the entire atmosphere which surrounds the earth, I have noticed 
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that it certainly cannot be loaded unevenly with vapor. Undoubtedly, 
I would prefer the reasoning given in §20 to all others; indeed, 
motions of the earth, which are often noticed up to a hundred miles 
at the same time, and other phenomena of this kind, indicate that 
large and quick changes can occur in the interior of the earth. 

In order to explain barometric changes, there is first of all some 
sudden cause required; indeed, I have already mentioned that the 
slow ones, which I have distributed over the entire mass of air, are of 
no effect, and I have demonstrated this in §14. And for this reason 
the changes which occur immediately in the atmosphere above the 
surface of the earth are to be considered as of little importance. 

§22. And this also seems to be the cause of why the moon, which 
has such a great effectiveness in agitating the waters of the ocean, 
exerts no effect on a barometer that anyone has .been able to notice 
during very careful observations. And if the remaining causes which 
may produce some change somewhere in the atmosphere would also 
act gradually, one would notice constantly, without doubt, the same 
height of mercury at all points equally distant from the surface of the 
sea. This height can be called the mean and will be determined 
approximately in the manner which Johann Jacob Scheuchzer used, 
by observing daily the barometric height through a long period of 
time and taking the mean of all of them. 

And, having used this procedure, that most famous Author stated 
the mean height from the many observations which had been trans
mitted to him from many places. 

At Padua 27 inches 1 1 ½ Paris lines 
Paris 27 " 9½ " Turin 27 1¼ " Basel 26 

" IO¼ " Zurich 26 6½ " On the 
mountain 21 

" 27½ " (St. Gotthard) 

§23. It is known that the diversity of these mean heights stems from 
the unequal elevation of the places above the sea. Indeed, in Pascal's 
time experiments had already been performed on the descent of 
mercury in a barometer which is carried from a lower position to a 
higher one. Thence the philosophers inquired into the mutual pro
portion between cause and effect. Several rules were produced on 
this matter from various authors. The foremost of them, to which 
many people still cling, is that the heights of the locations are propor-
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tional to the logarithms which correspond to the heights of the 
barometer. This rule is established principally on the fact that the 
density of air is everywhere proportional to the weight of the air lying 
above it; but this principle is wrongly applied here, since it is valid 
only for air of constant temperature and is not a definite matter at 
every height of air, although it exists in the same vertical column; but 
if it were so that the heat would be equal, then it must be acknowl
edged that thus the rule behaves correctly enough. 

But experiments are clearly contradictory to the rule; therefore, 
the same degree of heat does not exist everywhere in the entire height 
of the vertical air column. In order to make this plain, let me add 
now some experiments, performed accurately, as I believe, but none
theless at different times and locations, which I regret; experiments 
performed at the same time on the same mountain, only at different 
elevations, would aid our undertaking more; such experiments, 
however, exist, as far as I know, only for moderate heights of places, 
with all the circumstances which one has to know. 

I. At a height of 1070 Paris feet above the surface of the sea the 
barometer descends r 6½ lines, when at the surface of the sea it would 
hold 28 inches 4i lines (others set it simply equal to 28 inches, but in 
the papers which Mr. Delisle exchanged with me it was obtained as 
28 inches 4i lines). Therefore, the elasticity of the air at the surface 
of the sea having been set equal to unity, as I will always do from now 
on, the elasticity at the higher point which I shall designate by E was 
found equal to 0.9520. 

II. At a height of 1542 Paris feet above sea level the mercury, which 
at sea level was clinging to a height of 28 inches 2 lines, descended 
2 r ½ lines in the barometer; here, therefore, E = 0.9364. 

III. On top of the Peak on the Island ofTenerife, 13,158 Paris feet 
above sea level, the mercury reached a height of r 7 inches 5 lines, 
while at the surface of the sea it maintained a height of 27 inches 
IO lines, whence at that place E = 0.6257. 

IV. If the descents of mercury are observed accurately at smaller 
heights, it is found that a descent of one line corresponds to a height 
of 65 or 66 feet. Therefore, at a height of 65 feet E = 0.9970. 
These observations are very widespread; indeed, I have a third from 
Mr. Delisle, and it was performed by Mr. Feuillee and presented 
before the Royal Society of Science in Paris; and that one is the stumbling 
block against which all theories collide that have been brought forth 
so far. 

§24. In order that it now be evident to what extent these theories 
agree with the position of the logarithmic, or of the scale of heights 
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corresponding to the elasticities, let us set the height of a place above 
sea level, to be defined by a certain number of Paris feet, equal to x; 
the expansion of the air at the surface of the sea we shall designate by 
r, and the expansion of the air at the height x we set equal to E. Let 
it be noted further that the atmosphere is now considered unchanged 
by us, or at least always similar to itself, so that the expansions of the 
air at the surface of the sea and at any height x stand in a constant 
proportion to each other. For if only the expansions, not constant 
with time, would change unequally at different heights of the atmo
sphere, no rule could reasonably be invented. This having been set 
forth, let us now take the equation ex ln E = x, where the coefficient 
will be determined from a single observation; let us use the first 
observation and there will be ex ln 0.9520 = ro70, and hence ( due to 
Vlacqian logarithms) ex = - 50,194. Therefore, for this treatment, if 
the logarithmic [method] is to be satisfied, one must set - 50,194 ln E 

= x, or ln E_: = __ x_; but, according to the norm of this equation 
5o,r94 

it is found that E = 0.93 r 7 if x = I 542 for the second observation; 
the observation itself, however, indicates E = 0.9364; the difference 
between hypothesis and observation is more than a line and a half, 
which is clearly noticeable in respect, as usual, to the small difference 
in the vertical heights. 

Furthermore, if now, for the third observation one sets x = 13,158, 
there results from the hypothesis E = 0.5469, while the experiment 
indicated E = 0.6257; this difference is too large to be supported by 
any logarithmic method, for it amounts to more than two inches and 
two lines. 

§25. The logarithmic law having been rejected, it follows that the 
elasticities at different heights of the atmosphere are not at all pro
portional to the densities, or, which amounts to the same thing, that 
the mean degree of heat is different at different heights. Therefore, 
different rules were thought up by others, to whom this defect was 
well known; nevertheless, none of those rules can be said to be suited 
satisfactorily to Experiment 3 (§23). I think one should hardly hope 
to find the true law which nature follows; this, indeed, would provide 
a ratio of the mean velocities of the air particles different from [that 
provided] by simple interferences. Nevertheless, I have agreed 
strongly with a certain hypothesis that corresponds not badly to the 
phenomena; but before I proceed to this special hypothesis, I shall 
give the curve for any law of velocities. 

§26. Let the line AD (Fig. 59) be vertical; the horizontal Q,F 
touches the surface of the sea; BF denotes the mean velocity of the air 
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particles at the surface of the sea, BM the mean density, and BQ. the 
elasticity, which is the same over the entire location of equal elevation. 
Then let there be conceived the curves EFH, LMO, PQ.S, drawn 
through the points F, M, Q., or the scales which at all elevations such 

.µ 

\ 

FIGURE 59 

as BC denote by the ordinates CG, CN, and CR the mean velocities of 
the air particles, the mean densities, and the mean elasticities. Now 
with two curves given, one can determine the third from the fact that 
the elasticities (as experience has also shown and was explained in 
§§3, 4, 5, and 6) are approximately in proportion to the product of the 
square of the velocities just mentioned and the first power of the 
densities. 

I myself have indeed advised in the above-mentioned place that this 
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proportion cannot be exactly true, because air can certainly have an 
infinite expansion or can be compressed by an infinite force, but it can 
plainly not be compressed into an infinitely small space; nevertheless, 
since this property, namely that the elasticities are in proportion to the product 
of the square of the velocities of the particles and the first power of the densities, 
has been seen to correspond completely to the observations in experi
ments even in air which is four times denser than natural air, we may 
use it without any noticeable error for the natural air of the atmosphere 
overlying the sea, and certainly it will be the more true the rarer the 
air is. 

With these things having been prepared for the calculation, let us 
set BF = a, BM = b, BQ = c, BC = x, Cc = dx, CG = v, CN = z, 

. cvvz 
CR= y, and one will have y: c = vvz: aab, or y = -b-. Because, 

aa 
furthermore, the weight of the overlying air is a measure of the elas
ticity, one will have qR( -dy) equal to the weight of the air layer con
tained between C and c, which is proportional to the density z of the 

air and the height of the layer dx; therefore, - dy = Z dx or z = -dn dy; 
n X 

with this value substituted in the equation (y = c:;n, one obtains 

cvv -n dy -dy aab dx 
y = aab·~ ory = ncvv 

§27. If the velocity of the air particles is taken the same at any 

1 · d fc 1 h l - dy b dx c. h · d a tltu e, or examp e, a, t ere resu ts -- = --, or, aiter t e require 

. . l C bx integration, n - = -. 
y nc 

y nc 

But we have seen in §24 that that hypothesis 

is not sufficiently confirmed by experiments. Therefore, having tried 

others, I have set v = v1 aa + mx, or vv = aa + mx, which is the law 
for motion of freely falling bodies, and this not without success; so 

-dy aab dx c aab aa + mx 
thus it occurs that -- = ----- or ln - = - ln ---· 

y naac + mncx y mnc aa 
In this slightly more general equation in which m and n are still 
arbitrary, I further made an attempt to see whether one could not set 

aab = 1, and I saw also that this can be done aptly; truly, thus I 
mnc 

b . d 1 c 1 aa + mx c aa + mx y aa Th" o tame n - = n ---, or - = ---, or - = ---. is 
y aa y aa c aa+mx 

hypothesis indicates that the elasticities of air are everywhere in in
verse proportion to the square of the velocities at which the air par
ticles are agitated, or that CR is to BQas (BF) 2 is to (CG) 2, and since 
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by hypothesis EFH is a parabola above the axis AD having a vertex 

at a distance aa below the point B, it follows that the curve PQS is a 
m 

hyperbola. But I have noticed that said distance aa has to be taken 
m 

equal to 22,000 feet in order to satisfy approximately the observations 
of §23. Hence this specific equation now results: 

aa 

vv 

~ 22,000 
C 22,000 + X 

z aay 
But for the curve LMO one finds (by §26) b = cvv, or, because 

22,000 y b . fi h' b . . = -, one o ta1ns, a ter t 1s su stitution, 
22,000 + X C 

Z ( 22,000 )
2 

b = 22,000 + X • 

§28. In order to show to what extent our hypothesis coincides with 
the experiments of §23, in the equation for the elasticities let us set 
successively x = 1070, 1542, 13,158, and 65; thus one finds, respec-

tively, -2:'. = 0.9536, ~ = 0.9345, -2:'. = 0.6257, and~ = 0.99705; the 
C C C C 

observations, however, indicate~ = 0.9520, ~ = 0.9364, ~ = 0.6257, 
C C C 

and ~ = 0.9970. The third observation, so very unfavorable for 
C 

the other hypotheses, agrees clearly with ours, and the others deviate 
not more than 6.0019 division, which constitutes three-fifths of a line 
in the height of the barometer. But nobody who has experienced 
how vague and how little consistent with one another the barometric 
observations are will even care about such a small difference. I my
self, meanwhile, consider this no different from a precarious hypoth
esis, and I have presented the calculation of §§26 and 27 for no other 
purpose than to give the reason by which it can happen that the ver
tical heights do not correspond to the logarithms of the barometric 
heights, as it should occur if the temperature were uniform throughout 
the entire atmosphere; indeed, after the calculation has been per
formed and a comparison ofit has been made with the experiments, it 
seemed to me that this matter cannot be sufficiently explained by the 
different gravitation of the air particles at different distances from the 
center of the earth, such as Newton has attempted by stating that 
the gravitations of these particles decrease with the square ratio of 
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the distances from the center of the earth, which hypothesis affects no 
noticeable difference from the hypothesis of uniform gravitation at 
heights that do not exceed 13,000 Paris feet. Similarly, I once came 
across the opinion that the increased centrifugal force of the air par
ticles in higher altitudes can contribute something here; but, simi
larly, after performing a calculation I did not adhere to this opinion 
any further. Meanwhile, I do not believe that it is absurd if we say 
that the mean temperature of the air is greater, the further it is from 
the surface of the sea. But let me wish that it be properly noted 
that here we are discussing the mean temperature in the free atmos
phere; for thus it can happen that the real temperature in the moun
tains certainly does not rise for other reasons; nevertheless, the 
hypothesis is not overthrown thereby, since indeed it has already been 
shown in§ I 5 and§ I 6 that the weight of the column of mercury in the 
barometer is not to be understood as being precisely equal to the 
weight of the air column taken in that region, but equal to the mean 
weight of all columns surrounding the earth; therefore, I think 
accordingly about the different densities. 

§29. If the temperature were everywhere the same, the densities 
would be proportional to the elasticities, as far as can be noticed, 
and the vertical heights would correspond to the logarithms of the 
barometric heights. But I state this to oppose the experiments; 
nevertheless, I would not believe that at two places spaced only a 
little apart from each other a noticeable difference of temperature 
can occur, because heat is quickly distributed uniformly in a body of 
rather small density, such as air, unless a perpetual cause exists which 
cools the air in the vicinity. 

But the situation is different in more remote locations, and indeed 
I think it is not absurd to assume the air at the pole as ten times 
denser than at the equator, if only the air is accepted in either case 
as being close to the surface of the earth; but at great heights the 
difference will certainly be less between the density of the air which 
corresponds to the pole and that which corresponds to the equator, 
other things being equal, and therefore the densities of air decrease 
altogether differently away from the surface of the earth, and they 
decrease much more at the pole than at the equator; therefore, in 
this way it could happen that the real densities of the air at the pole 
at small altitudes, let us say, decrease in proportion as (22,000 + x) 4 

is to (22,000) 4 on account of the increased temperature, and at the 
equator they decrease hardly noticeably, because of the decreased 
temperature, which decrease in temperature close to the equator is 
confirmed by the fact that the top of the mountain Pico is covered 
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with snow through a period of almost ten months, while on the island 
of Tenerife it never snows, as they say. Therefore, the mean densi
ties can be thought of, not absurdly, as being diminished in the ratio of 
(22,000 + x) 2 to (22,000) 2 as it has been assumed in §27, while the 
elasticities decrease everywhere in the ratio of (22,000 + x) to 22,000; 
and certainly these cannot differ at the same height above the surface 
of the earth, unless due to causes brought forth by chance and lasting 
only shortly. 

§30. In countries which lie between the 40th and 60th degree of 
latitude, it is probably that the densities decrease in approximately 
the same ratio as the elasticities; and for this reason I wanted to per
form an experiment [to find out] what theory of refractions would 
hence arise, about which subject I shall now add something. 

DIGRESSION CONCERNING THE REFRACTION OF RAYS p ASSING 

THROUGH THE ATMOSPHERE 

(o:) It is a well-known property of rays passing from one medium 
into another, confirmed by innumerable experiments, that the angle 
of incidence maintains a constant ratio to the angle of refraction. 
Furthermore, it is also obvious that if the refraction becomes infinitely 
small, that is, if the difference of the two sines has an infinitely small 
ratio to either sine, the sine of the angle which is contained between 
the prolonged ray of incidence and the refracted ray will have the 
same ratio to the total sine as the difference of the sines of the angles 
of incidence and refraction has to the cosine of the angle of incidence. 
But from now on I shall call that angle which I just defined, contained 
between the prolonged ray of incidence and the refracted ray, the 
differential angle ef refraction. Thence it follows that, everything else 
being equal, the sine of the differential angle ef refraction is proportional 
to the sine of the angle of incidence divided by the cosine of the same 
angle. 

(/3) Experiments show further that if a ray passes from air into air 
of a density different from the former, the differential angle ef refraction 
is, other things being equal, proportional to the difference in densities. 

But experiments pertaining to this matter, as much as it is possible, 
have been performed most accurately by Mr. Hawkbee on greatly 
compressed air as much as on very rare air also, which finally could be 
assumed for null. The manner in which they had been performed is 
described in the Philosophical Transactions; but the success of all ex
periments reduces here to the fact that they argue that the sine of the 
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differential angle of refraction was to the total sine as 5¼ inches is to 
2588 feet when a ray passes out of the natural air into a space empty 
of air at an angle of 32 degrees, that is, as I is to 6060, and under the 
same conditions, with the angle changed from 32 degrees into a half 
right angle, as I to 3787 (by §ex). Hence it is deduced that, if a ray 
hits a vacuum from natural air at an angle, the sine of the angle of inci
dence is to the sine of the angle ofrefraction as 3787 is to 3786. 

In his Treatise on Optics Newton assumes, instead of this, the ratio of 
3201 to 3200, and he deduces it from magnitudes of the refractions 
observed by Astronomers; he states, moreover, that the amount of 
refraction is the same if the layers refracting the ray are parallel, 
no matter in what ratio the densities of the medium decrease, if only 
the difference of densities in the first and in the last layer remains the 
same (see Newton's Treatise on Optics, page 321, French edition). 
Concerning the remainder, the refraction cannot be but greatly 
variable under diverse circumstances, since the air that we call 
natural is exposed to many changes, as much from heat and cold as 
from the pressure of the atmosphere, which both act together in 
forming the density of the air, to which density, other things being 
equal, the refractions of rays entering a vacuum are proportional. 
Mr. Hawkbee has mentioned the same thing in the report of the 
experiments which we just discussed, and for this reason he has 
defined properly the state of the air that existed when he did the 
experiments. 

(y) Now let AC (Fig. 60) be the arc of a terrestrial circle drawn 
around the center B, in the plane of which lies the ray oflight AG; but 
this curved ray AG will be of such a nature that it converges to an 
asymptote; let AH be assumed parallel to this asymptote; let the 
horizontal AE be drawn, and the straight line AF which touches the 
curve AG at A. Thus we may see that the angle HAE will be a 
measure of the true height of the star, and the angle FAE will be a 
measure of the apparent height, and the angle FAH will be the angle 
of refraction; moreover, the angle F AH is the same as the sum of all 
differential angles of refraction or of all angles of contact such as the 
angle cbo. 

Let two elements ab and bo of the curve be considered, and let it be 
understood that the arcs exex, f3f3, and yy with the common center B 
are drawn through the points a, b, and o; let the density of the air 
exexf3f3 be D, and the density of the air f3f3yy be D - dD; then ( through 
§§ex, f3) the sine of the angle of contact at b divided by the total sine, or 
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the angle of contact itself, will be proportional to the difference in 
densities dD multiplied by the ratio of the sines of the angles of inci-

dence and refraction, that is, multiplied by!!!.. But if BD is drawn 
eo 

d . 1 F'A d d . . "d h be d BD b I perpen ICU ar to exten e , It IS evI ent t at - an -D are y 
eo o 

differ, because the ray is almost straight and thus the triangle BDo 
can be taken for rectilinear and similar to the triangle beo. 

FIGURE 60 

Therefore, the required angle F AH will be proportional to J ~~ · dD. 

( o) Following these paths, and assuming that the density D is 

h 22,000 G h h 1. . p . r everyw ere ----- , w ere x expresses t e Ine na In ans 1eet 
22,000 + X 

and G denotes the density of the air at the point of observation, I 
found the following: Let the sine of the apparent height of the star be 
j, the cosine be F, the radius of the earth be r, to be expressed in 
Paris feet; let the number 22,000 be indicated by a; assume further 
that the total sine is r, and that the differential angle of refraction for a 
ray entering a vacuum from natural air at a half right angle is g; 
finally, for the sake of brevity, let 2r - 2a = a, and - FFrr + 
2ar - aa = f3; and f3 will be either a positive or a negative number; 

it will be positive if the apparent height of the star is small, and 
indeed below 2 ° 441

, otherwise it will be negative. In the former 
case the required angleFAHwill be obtained in this manner: namely, 
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let the semicircle MLF (Fig. 6r) be drawn, the radius AM of which 

D 

A B 

FIGURE 61 

a 2f3 - aa 
1s 1; let AC= -Ji, AB = fi , and let the lines CD and BT 

2 r 2a r 
be drawn perpendicular to MC; and the angle FAH will be 

- JFrr Jar Jara· D T 
-f3- g + -f3 g + , I g. 

2 2f3v f3 

In the case that f3 is negative, the same angle F AH will be 

-Jar JFrr Jara l (a - 2-V~) · (Fr - a + -V~) --g+-g+--_g·n - _. 
f3 f3 2f3-Vf3 (a+2-Vf3)·(Fr -a- -Vf3) 

(E) By means of these hypotheses, by assuming 19,600,000 for the 
radius of the earth, for any apparent height of a star one can deter
mine its astronomic refraction if the value of the angle g has been found 
correctly by experiment; but, because it is very difficult to define this 
value with sufficient accuracy, it will be wiser to define the refraction 
in some particular astronomical case and from this to determine the 
other items by calculation. Let us assume, for example, that at a 
height of ten degrees the refraction is 5 minutes 28 seconds, which 
hypothesis most of the Astronomers of Paris follow. We will find the 
following table of refraction [page 2 5 r]. 

But since the refractions follow the proportion of the letter g, that is, 
of the differential angle ef refraction of a ray entering at a half right angle 
from natural air into a vacuum, and because this angle is proportional 
to the density of natural air, or the air which an observer breathes, it 
is evident that even if the air were constantly loaded uniformly with 
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Apparent Apparent 
height of the Refraction height of the Refraction 

star star 

o degrees 34 minutes 53 seconds 50 degrees o minutes 53 seconds 
5 9 59 55 - 44½ 

IO 5 28 60 - 36½ 
15 3 44 65 - 29½ 
20 2 52 70 - 23 
25 2 12 75 - 17 
30 I 47 80 - l lt 

35 l 29 85 - 5½ 
40 I 15 go - 0 
45 l 3 

vapors (which we have neglected so far), nevertheless, it cannot 
happen that astronomical refractions are so variable. They will 
indeed be larger at the surface of the sea than in the mountains, and 
the differences will be noticeable even at moderate heights of moun
tains; furthermore, they will be greater in a cold season than in a 
warm one, and this cause alone can increase refractions at least by a 
quarter in this country; finally, the refractions will also be larger 
when the barometer is high than when it is low. But if vapors were 
ofno hindrance, the refractions could be defined correctly at any time 
if the instrument which has been described in §9 and which Fig. 57 
represents were applied simultaneously with a barometer; for if one 
divides the height of the mercury in the other instrument, one will 
have the density of the air, to which, other things being equal, the 
refraction is to be made proportional. And I do not doubt but that 
the refraction of the sun is less than the refractions of the other stars, 
since the heat of the sun expands the air considerably and diminishes 
the density of the air. 

[ End of Digression] ---------

§31. It appears from what has been mentioned about the agitation 
of air particles, on which in turn the heat of the air depends, but par
ticularly from that which has been mentioned in §ro, that the air 
possesses the same degree of heat whenever the same ratio prevails 
between the elasticity and the density of the former; the barometer 
indicates the elasticity; the density we conclude from the specific 
gravity of the air; and hence, as we have seen in§ Io, a fixed degree of 
heat can be obtained, if the heat of boiling water seems uncertain, 
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just as Mr. Fahrenheit observed that it depends upon the weight of 
the atmosphere lying over it. Instruments which at any single 
instant indicate the density of the air can be invented easily and have 
been described by many. 

It is to be noted here that that ratio just mentioned between the 
elasticity of air and its density simultaneously shows the height of 
homogeneous air, and since we discuss that height from now on, it 
is in order to define the latter correctly before we proceed to other 
things. 

§32. If we consider a vertical air column of uniform density and 
brought to equilibrium with the mercury of the barometer, then the 
height of that column will be what I call the height qf homogeneous air 
for the given density. 

And since the specific gravity of moderately dense air is to the 
specific gravity of mercury as I is to 1 1 ,ooo, and since the mean 
height itself of the mercury in the barometer for locations slightly 
elevated above the surface of the sea is 2½ Paris feet, the height of 
homogeneous moderately dense air will be 25,666 feet. 

It is evident from this definition that those heights about which we 
are talking now are smaller, the denser the air to which the height 
must correspond and the smaller the height of the mercury in the 
barometer. Therefore, if the degree of heat is the same in the moun
tains and at the surface of the sea, the height of the homogeneous air 
will also be the same in either case, because for the same degree of 
heat of the air the density is in proportion to the elasticity of the air or 
to the height of the mercury in the barometer. Further, it is apparent 
that the height of the homogeneous air at the surface of the sea de
creases considerably from the equator towards the poles, because the 
cold is intensified and the density of the air is increased, with the 
elasticity remaining the same, and in the same regions the height is 
less in wintertime than in summer. 

§33. There are many things which pertain to defining the motion 
of air, the solution of which depends upon the height of homogeneous 
air; among these also is the propagation of sound and its celerity, for 
although the celerity of sound is defined differently by different 
methods, we can understand those concerning its propagation in this 
way: that at first the celerity seems to be that which is due to the 
height of the homogeneous air, then that which corresponds to half 
the height, or even to half the height multiplied by the ratio of the 
square circumscribed on a circle to the area of the circle; neverthe
less, all opinions agree on the fact that the celerity of sound is propor
tional to the root of the height of the air homogeneous with that in 
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which it is propagated. If the situation is thus, then sound is pro
pagated faster in warm air than in cold, with a high barometer rather 
than low (to say nothing about favorable or contrary winds); many 
experiments have been performed on this matter, partly in Italy, 
partly in England, and the latter have shown us that the mean 
celerity of sound corresponds to I 140 English feet to be traveled in one 
second. But since in one and the same place the height of the homo
geneous atmosphere is variable, and since especially in this area it 
rises, from barometric changes combined with changes of heat, 
[relatively] from 3 up to 4, the celerity of sound will be everywhere 
variable, even if the winds do not change at all, and in these regions 

that celerity will be contained [relatively] within the limits V3 and 

V4, or I 73 and 200. 

§34. I come now to solving various questions that can be proposed 
concerning the motion of air similar to those which we presented 
previously on the motion of nonelastic fluids. 

PROBLEM 

The motion of air discharging from a vessel through a small orifice 
into infinite space empty of air, is to be defined. 

SOLUTION. From the nature of the question it is apparent that the 
local motion of the internal air, which expands itself while a certain 
quantity of it flows out through the orifice, is not noticeable; there
fore, only the potential ascent which an air particle acquires while it is 
expelled is to be considered here, and it is to be compared with the 
actual descent or rather with the decrease in elasticity which the internal 
air has. But in order to reduce the entire matter to our method 
applied to nonelastic fluids, we shall consider a vertical cylinder of 
common area with the proposed vessel and of the same height as the 
height of the air homogeneous with the int~rnal air; but this cylinder, 
ifit is considered full of similar but nonelastic air, expels the lowermost 
air through the orifice by its own weight at the same velocity at which 
the air in the proposed vessel expels itself by its own elasticity. But in 
the former case it is ejected at a velocity which is due to the height of 
that very cylinder, and hence also in the latter case. It is to be noted 
further that the height which we assumed for the cylinder is always 
the same, because the elasticity and density of the air are diminished 
in the same proportion, but we assume that the temperature is not 
changed. Therefore, if the height of the homogeneous air (which 
depends on the temperature of the internal air) is called A, then the air 

will flow out constantly with the velocity VA. And nevertheless the 
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vessel is never emptied, which the calculation shows, because the air 
flowing out becomes continually thinner. In order to include this in 
the equation, we will set the density or the quantity of air at the 
beginning of flow equal to unity; the residual density or quantity of 
air after a definite time is x, and the time itself is t; then, since the 
velocity is constant, - dx = ax dt, where by a one understands a con
stant quantity to be defined from the size of the vessel, the area of the 

orifice and the height A; hence -dx = a dt, and ln !. = at; moreover, 
X X 

the value of the coefficient a is found in this manner. Because we 
have set - dx = ax dt, at the beginning of the efflux - dx will be 
equal to a dt. The first element ( -dx) is now changed into a cylinder 
sitting above the orifice as a base; moreover, the height of that little 
cylinder will be -L dx, if Lis the height of the cylinder constructed 
above the same orifice and having the same capacity as the proposed 
vessel; further, this length -L dx is that which is traveled in the small 
time interval dt, and because this small time interval is usually set 
equal to the distance traveled divided by the velocity, in this case one 

will have dt = -:;\ let this value be substituted in the equation 

-aLdx VA 
- dx = a dt, and there will result - dx = VA , or a = y· 

Thence the final equation is this: 

ln.: = tvA_ 
X L 

If one chooses to express the time by a certain number of seconds, 
which we shall call n, and if by s is understood the distance which a 
movable object travels by falling freely from rest within one second, 

then one will have to set t = 2n'Vs, and thus it will occur that 

ln _: = 2nVAs X _L __ _ 

PROBLEM 

§35. The motion of denser air flowing out from a vessel through a 
very small orifice into an infinite, thinner, external air is sought, 
assuming the same degree of heat in either air. 

SOLUTION. Let the initial density of the internal air be D, the 
density of the external air be o, the density of the residual internal 
air after a given time t be x, the height of the homogeneous air (in 
relation to either the internal or to the external air, for it cannot be 
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different, if each air is furnished at the same temperature, and thus 
the densities and elasticities decrease in the same ratio) be A. At 
every point the height of the homogeneous air is sought that has the 
same pressure or expansion as the external air and the density of 
which is the same as that of the internal air; at the beginning this 

height will be 8j;, and after the time tit will be 
0
:. But it is evident 

that the velocity of the discharging air will be such everywhere that it 
8A 

corresponds to the difference of the defined heights A and 
X 

therefore, the velocity of the discharging air after the time t is 

jA - o:. 
Further, the increments of densities ( -dx) are proportional to the 

quantities of discharging air, which have a ratio composed of the 

velocity ( j A -
8
:), the density (x) and the small time interval 

(dt); thus, therefore, -dx = aj A -
0
: x dt, where a is a constant 

number which, by the method of the preceding paragraph, becomes 

I: the significance of this letter as applied there having been retained; 

and after this value has been substituted, there develops 

dt 
- dx = L V Axx - 8Ax or 

-dx dtvA 
vxx - OX= -r-· 

After the required integration has been performed this becomes 

1 [ vx - vx"="8J. [ VD + v~J tvA 
n [ Vx + v x - 8] · [ VD - v D - 8] = -Y-' 

or, again setting t = 2nvs, as in the preceding paragraph, one will 
have: 

1 
[vx - vx"="8J-LvD + v~l _ 2n-vAs_ 

n [ vx + V x - 8] · [ VD - VD - 8] - L 

§36. COROLLARY I. The entire efflux occurs in a finite time, in 
which matter this problem differs from the preceding one; for the air 
ceases to flow out when x = 8, and then 

n = _L_•ln VD + v~. 
2v As VD - VD - 8 
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For instance, let A be 26,000 Paris feet, let the proposed vessel 
contain one cubic foot, and in addition let the orifice have an area of 
one square line; L will be 20,736; let it be assumed also that at the 
beginning the internal air was twice as dense as the external; moreover, 
as is established, s = 15½ Paris feet. Therefore, it will occur that 

which indicates that either air will be brought to equilibrium in a 
time slightly longer than twenty-nine seconds, and that after this all 
effiux will cease. It can also happen, on account of the contraction 
which the fluid suffers in front of the orifice (see Chapter IV) and to 
which we paid no attention in the computation, that this time is 

increased almost in the ratio of 1 to V2. 
§37. COROLLARY 2. If one assumes that the air flows out not 

immediately through the orifice but through a long pipe, the velocity 
will therefore not be changed, if only the capacity of the entire pipe is 
as if infinitely small in proportion to the capacity which the vessel 
itself has; it seems, moreover, that the density of the air, as long as it is 
in the pipe, is the same as the density of the air enclosed in the vessel; 
nevertheless-as I shall demonstrate below-the elasticity of the air 
in the pipe is not greater than the elasticity of the external air which 
surrounds the pipe. It follows, hence, that moved air is denser than 
air at rest, but not more elastic; nevertheless, the difference in densi
ties will also be small; for a wind that moves at about 30 feet per 
second will exceed in density the neighboring air, of the same tem
perature and at rest, hardly by a one-thousand-seven-hundredth part. 

PROBLEM 

§38. To define the inflow of air through a very small orifice into a 
vessel full of rarer air, the same degree of heat again having been 
assumed everywhere. 

SOLUTION. Let the vessel be completely empty at the beginning, 
and after a time t let the density of the internal air be set equal to 
x; thus, by remaining on almost the same track which we used m 
§35, and with the same notation retained, one finds 

dx dtvAl5 
L 

or t = 2nvs = 2
~ -

2Lv~. 
VA VAD 

The number of seconds, therefore, m which the entire vessel 1s 
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filled until equilibrium exists between both airs is expressed by v'L ; 
· As 

and the time of replenishing is twice that in which it would be filled 
if the air would flow in constantly at the initial velocity. In the case 
when the capacity of the vessel is one cubic foot and the orifice equals 
one square line, the repletion occurs in a time of about thirty-three 
seconds, unless the repletion is retarded by the contraction of the 
inflowing air jet. 

§39. We have shown various properties of elastic fluids, whether 
moving or at rest; one remains that is not to be omitted by which 
elastic fluids differ from nonelastic fluids: namely, that an elastic 
fluid at rest possesses a live force, which cannot, like other moved 
bodies, elevate itself to a certain height, and indeed we do not con
sider here the local motion in the former, but that which by its expan
sion can generate a certain ascent in other heavy bodies. It will be 
allowed, I hope, to use in the future the phrase live force contained in a 
compressed elastic body, wherein nothing else is understood by this than 
the potential ascent which an elastic body can communicate to other 
bodies before it will have lost all its elastic force. 

It is of merit to note here in advance that just as the descent of a 
given body through a given height, whichever way it happens, pro
duces constantly the same live force in the body, so also an elastic 
body or an elastic fluid, after it has been reduced in any manner from 
a given degree of tension or compression to a given degree, always 
retains in itself the same live force and can again communicate it to 
another body by an opposite change. 

Let me mention now a little about live forces of this sort contained 
in a compressed elastic fluid and a few of their measures; this is an 
argument worthy of attention, since to this are reduced the measures 
of the forces for driving machines by air or fire or other motive forces 
of this kind, of which perhaps several new ones could be developed, 
but not without considerable practical mechanical improvement and 
perfection. 

§40. As we began with air in a vacuum, we shall consider the cylin
der ABCD (Fig. 62), oriented vertically, with the piston EF, which, 
devoid of all weight, can be moved upward and downward very freely. 
Let air be enclosed in the space EBCF, but assume the entire cylinder 
to be located in a vacuum. Let the pressure of the air EBCF be such 
that it can sustain the weight p, which will be equal to the pressure of 
the atmospheric column if that air is natural. Now let another weight 
P appear; thus it will happen that the lid descends to GH and is 
agitated by reciprocal motions to the points H and F. In order to 
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define the motion, let us make use of the common hypothesis that the 
pressures of air, other things being equal, are proportional to the 
densities. 

A .D 

FIGURE 62 

And thus FC = a, FH = x, the velocity of the piston at the position 
GH is v, and the pressure by which the piston GH is forced to further 

descent will be P + p - _a_ p, and the force which animates the 
a - X 

weight lying above the piston must be considered equal to this pres
sure; therefore, if one divides this force by the mass, one will obtain 
the accelerative force, which, multiplied by a time increment, or by 

dx, will give the increment dv of the velocity, and thus 
V 

dv = (p + p - -3:L) dxj(P + p), 
a - X V 

or 

a 
½(P + p)vv = (P + p)x - ap In--· 

a - X 

But from the descent of the weight (P + p) through the height x, 
the potential live force (P + p)x is generated, and when the piston is in 
the position GH, the body (P + p) possesses the actual live force 
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½(P + p)vv, that is, (P + p)x - ap ln a ~ x' which is less than the 

former by the quantity ap ln _a_, and this has gone into the com
a - x 

pression of the air. 
I say, therefore, that air occupying the space a cannot be condensed into 

the space a - x unless a live force is applied which is generated b_y the descent 

of the weight p through the height a ln _a_, however that compression may 
a - X 

have been achieved; but it can be done in an in.finite number of ways. Indeed, 
I shall now illustrate this rule by one or two examples. 

Let the base of the cylinder be of one square foot, the initial height 
FC two feet; in the space BF let air be contained of the type that is 
usually the mean on the surface of the earth, which can carry 2240 
pounds on the surface EF; let x = l be assumed, in order to obtain 
the live force by which two cubic feet of natural air can be driven into 
the space of one cubic foot in a vacuum; and that live force will be 
2 · 2240 -ln 2 = 3105, that is, as large as is generated by the free fall 
of a body of 3105 pounds through the height of one foot. There
fore, in turn, if one had a cubic foot of air twice as dense as natural 
air, then a weight of 3105 pounds could be lifted by means of the 
former to a height of one foot in a vacuum while it assumes the 
density of natural air. 

Further, under the same circumstances let the air be expanded 
into twice as much space as it was in before, now occupying a height 
of four feet in the cylinder, and let this again be compressed into the 
space of one cubic foot, and for this compression a live force will be 
required which is expressed by 4 · 1 120 -ln 4, which is twice as large as 
the former. Therefore, if one had in a vacuum a cubic foot of air 
twice as dense as natural air, then by means of that a weight of fo ro 
pounds could be elevated to a height of one foot, while it assumes half 
the density of natural air, or a weight of 9315 pounds while it becomes 
four times as rare as natural air. 

Hence it is a consequence that if air can expand itself into infinite 
space and it preserves everywhere an elasticity proportional to the 
density, then a finite quantity of air possesses an infinite live force. 

§41. However, these things pertain to the estimation of the live 
force which is contained in air placed in a vacuum; the computation 
becomes slightly different for the denser air which is located in the 
atmosphere; here, namely, the maximum degree of expansion cannot 
be extended beyond equilibrium with the air of the atmosphere; hence 
it is easy to predict in advance, if one has, for instance, a cubic foot of 
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air twice as dense as natural air, that the live force which can be pro
duced in the atmosphere from this compressed air is far from infinite. 
Other live forces of this kind could also be determined in this manner. 

§42. Let the air EBCF be natural and in equilibrium with the 
external air; also let the pressure of the atmosphere on the piston EF, 
which is certainly in equilibrium with the pressure of the internal air 
not yet condensed, be indicated by p. Let the weight P be imposed 
onto this piston; let the air now be condensed into the space CECH, 
and let the piston, loaded with the weight P, have the velocity vat the 
position CH; the remaining notations having been retained, then 

( 
ap ) dx; dv = P + p - -- - P, 

a - X V 

or 

Pv dv = (p - _!P_) dx, 
a - X 

which, integrated, yields 
a 

½Pvv = Px + px - apln--· 
a-x 

But now the live force Px was generated by the descent of the weight 
P through the height x, of which force the portion 

a 
·tPvv or Px + px - ap In --

a - x 

pertains to the same weight moving at the velocity v; therefore, the part 

of the live force which transferred to the air is -px + ap-ln _a_, 
a-x 

which is less than the other one defined in §40. 
For instance, let there be a cubic foot of air twice as dense as 

natural air; one will find that the live force which this air yields while 
it assumes the density of the surrounding natural air is that which is 
generated by the free fall of a body of 865 pounds through a height of 
one foot. 

In the same sense, a cubic foot of air three times as dense as natural 
air is found to have a live force such as corresponds to the free fall of a 
body of 2898 pounds through a height of one foot, which number 
certainly results if, as in §40, one sets p = 2240, a = 3, and x = 2. 

§43. It is evident from this correspondence between the conserva
tion of live forces contained in compressed air and in a body having 
fallen from a given height that no advantage is to be hoped for from 
the principle of compressing air for improving the use of machines, and 
that everywhere the rules shown in the preceding section are valid. 
But since it happens in many ways that air is compressed not by force, 
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but by nature, or acquires a greater expansion than is natural, there 
is certainly hope that from natural occurrences of this kind great 
advances can be devised for driving machines, just as Mr. Amontons 
once showed a method of driving machines by means of fire. I am 
convinced that if all the live force which is latent in a cubic foot of 
coal and is brought out of the latter by combustion were usefully 
applied for driving a machine, more could thence be gained than from 
a day's labor of eight or ten men. For the coal not only significantly 
increases the elasticity of the air while it burns, but it also generates 
an enormous quantity of new air. 

Thus Hales discovered in his vegetable staticks that from a half 
[cubic] inch of coal 180 [cubic] inches of air of the same elasticity as 
natural air had been generated; therefore, a cubic foot of coal will give 
air to 360 cubic feet. But if in §41 the live force is sought which can 
be generated from a cubic foot of air 360 times as dense as natural air, 
it will be found that the former corresponds to the falling of a weight 
of 3,938,000 pounds from a height of one foot; and if, furthermore, it 
is assumed that the elasticity of that air is made four times larger by 
the heat of the burned coals, then that live force corresponds to the 
falling of a weight of 15,752,000 pounds from the same height. 
However, it is difficult to devise a machine suitable for this purpose. 
There are, furthermore, many natural occurrences which not only 
heat up compressed air but can also make the surrounding air more 
elastic by warming it; of this sort are quicklime mixed with fresh 
water and all fermenting matter; water reduced to vapor by means of 
fire possesses incredible force; the most ingenious machine so far, which 
delivers water to a whole town by this principle of motion, is in Lon
don, and the illustrious Weidler has described it. But, above all, the 
astounding effect which can be expected from gunpowder deserves 
to be considered; indeed, having performed the calculations on some 
completed experiments, which I shall add below, I learned that the 
elasticity of ignited gunpowder exceeds more than ten thousand 
times the elasticity of natural air, and even after everything has been 
considered carefully, it is likely that the elasticity of the former is 
incredibly larger; let us assume, moreover, that the elasticity of an 
expanded blast of ignited gunpowder decreases in the same proportion 
as the density; under this -assumption the live force existing in a 
cubic foot of gunpowder will be found, if in §42 one sets a = 10,000, 
x = 9999, and p = 2240, and if one considers [the live force equal to] 

a -px + ap ln--, 
a - X 

which quantity thus becomes equal to 183,913,864. Therefore, m 
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theory a machine is given by means of which one cubic foot of gun
powder can elevate 183,913,864 pounds to a height of one foot, which 
work, I would believe, not even roo very strong men can perform 
within one day's span, whatever machine they may use. It is also 
probable, as I have said, that the effect of the gunpowder is far 
greater; but certainly it is not less, since the calculation is based on 
the height to which an iron shot ejected from a cannon can ascend in 
a vacuum, in which type of experiment the greatest part of the gun
powder is wasted. 

But these things may be better understood if it is noted that the 
same calculation (which we performed before for demonstrating the 
effect which arises from condensed air re-establishing itself) appears 
also for air which, surrounded by natural air, becomes certainly not 
more dense, but nevertheless more elastic from the increased tempera
ture; so, for instance, every time a cubic foot of ordinary air has 
acquired twice its expansion by increased temperature, a weight of 
865 pounds can be lifted by means of this to a height of one foot, if 
only a perfect machine is applied. 

But the effects of all things shown here depend upon both the in
creased density and increased temperature of the air. 

§44. Meanwhile, a live force to be applied for driving machines can 
be obtained not only from compressed or heated air, but also from 
rarer or colder air. Indeed, wherever the equilibrium is disturbed, a 
live force exists which can be applied, if a fitting machine can be in
vented, for lifting loads and driving machinery. But the method of 
determining the live force which can be produced from air of given 
density and given temperature occupying a given space, the appro
priate changes having been made, is the same as that which we have 
furnished in §42. 

§45. Again, indeed, let the vertical cylinder ABCD (Fig. 63) with 
the movable diaphragm EF be considered; assume the air EBCF, as in 
§42, as natural and in equilibrium with the external air; also, let the 
pressure of air of any sort on EF be called p; next, consider the weight 
P, which by means of a rope passed through the two pulleys Mand N 
is connected to the diaphragm and pulls the same towards AD; and 
thus let the diaphragm arrive at GH from the position EF; finally, one 
assumes again FC = a, FH = x, and the velocity of the diaphragm in 
the position GH or of the weight in the position Pis equal to v; if with 
these assumptions §§40 and 42 are consulted, it will now be evident 
that 

( ap ) dx; dv = P + -- - p - P 
a + X V ' 
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or 

Pvdv = (p - __E_) dx 
a+ X ' 

which integrated gives 
a+ X 

½Pvv = Px - px + apln--· 
a 

But again, by the descent of the weight P through the height x a 
live force Px was produced, during which time, meanwhile, the weight 
itself, moved with the velocity v, possesses a live force of only ½Pvv, or 

a+ X 
Px - px + ap In--. Therefore, the live force which remains, 

a 

A D 

4· 

FIGURE 63 
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namely px - ap In a + x, was transferred into the air, and, with 
a 

equilibrium restored again between the internal and external air, the 
live force could be transposed arbitrarily to other bodies. There
fore, if one has the space CECH full of air, the density of which is to 
the density of the external air as CF is to CH, then the live force 

px - ap In a + x will be in effect. 
a 

But whether that live force is contained properly in the external or 
internal air is just a play on words; it suffices that from the disturbed 
equilibrium between either air such a live force can be obtained while 
the restoring process is acting. 

For instance, let a cubic foot of air twice as rare as natural air exist, 
to which hypothesis there apply the conditions p = 2240 pounds, 
a = ½ foot, and x = ½ foot, and the live force which is being dis
cussed will be 1 120 - 1 r 20 ln 2 = 344, that is, the same as is gener
ated by the free fall of 344 pounds from a height of one foot. 

If a cubic foot is filled with air four times as rare as natural, the 
required live force will now be (having set, namely, p = 2240, 
a = ¼, and x = ¾) 1680 - 560 ln 4 = 904, or as great as that which 
arises from the free fall of a weight of 904 pounds through a height of 
one foot. 

Finally, if a cubic foot completely void of air is considered, one must 
set p = 2240, a = o, and x = I; and thus the required live force will 
be 2240( r - o In i-) ; but it is well established that o ln i- is infinitely 
small as compared to unity; therefore, that number is 2240, which 
indicates that by this live force 2240 pounds can be elevated to a 
height of one foot. 

§46. To the present argument the astounding force of greatly com
pressed air pertains, but particularly of a blast of ignited gunpowder 
in the employment of pneumatic rifles and cannons. Let me add to 
this chapter what I have commented separately about these matters. 

CONCERNING THE FORCE OF COMPRESSED AIR 
AND A BLAST OF IGNITED GUNPOWDER FOR 
PROJECTING SHOTS IN THE EMPLOYMENT OF 

PNEUMATIC RIFLES AND CANNONS 

I. Let AG (Fig. 64) be the length of the barrel in a cannon or 
rifle located horizontally, and let it be called a; let AC denote the 
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length of the space which the compressed air or the cloud of ignited 
gunpowder occupies at the beginning of the explosion, and let 
AC= b, and the weight of the shot E to be ejected equal to unity; let 
us further assume that the shot fills out the cavity of the barrel 

exactly and is moved very freely in the latter; the density of the com
pressed air in the space AD is to the density of natural air just as n is 
to r; finally, let the weight of the column of mercury (the base of 
which is CD and the height of which is the same as in the barometer) 
be P. Moreover, let us use the hypothesis, whether the shot is pro
pelled by compressed air or by a blast of gunpowder, that the force of 
that propelling fluid is proportional to the density. 

These things having been prepared for the calculation, we shall 
consider the shot in the position e, by setting Ac = x and the velocity 
of the shot at that location = v; thus the force propelling the shot at 

the position e will be (n: - I )P, which, divided by the mass r and 

multiplied by the element of space dx, gives half the increment of the 

square of the velocity; hence it occurs that v dv = (n: - I )p dx, or 

½vv = (b - x + nb In i)P. If one sets x = a, the height is obtained 

which is due to the velocity at which the shot is exploded; let that 
height be called a, and therefore 

a = (b - a + nb In i)P. 

II. For instance, let the length of the barrel in a pneumatic rifle, 
or a, be 3 Paris feet, the length AC be 4 inches, the air contained in 
AD be r o times denser than natural, or n = Io, the diameter of the 
barrel or the shot to be ejected be 3 lines, and its specific gravity be 
in proportion to mercury as IO to r 7. Therefore, P will be 286, more 
or less, and hence it is found that a = 2788, an indication that the 
sphere is being ejected at a velocity by which it can ascend in a vacuum 
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to a height of 2788 feet. From the preceding formula is understood 
that the most vehement thrust of the shot occurs from the same 
quantity of elastic blast if the length of the barrel is made equal to 
nb. But if attention is paid to the other hindrances which the sphere 
encounters in its transit through the barrel of the Rifle apart from its 
inertia and the resistance of the external air, it appears that a much 
smaller length of the barrel is required for producing the most violent 
thrust. If the length nb is much larger than the length a, which is 
so in stronger thrusts, then one will have, without noticeable error, 

a = nbP In~-
b 

If the cannon is erected vertically, the calculation becomes some
what different, but for more violent thrusts the difference cannot be 
noticed. Therefore, because from now on we shall consider only very 

vehement thrusts, for the sake of brevity we will set a = nbP In i· 
III. Just as we have determined the height due to the velocity at 

which the shot is exploded in the preceding from the given elastic 
force of the blast ejecting the sphere, so it is evident in turn that from 
that observed height the elastic force of the blast can be deduced; thus, 

As a consequence, the elastic force of gunpowder can be, if not 
accurately defined, at least reduced to limits which it will certainly 
exceed. But one may ask how the height a can be determined in an 
experiment; to this I answer that it can be accurately enough under
stood from the time which a shot ejected vertically upwards takes 
from the instant of explosion until it has fallen to the earth, with the 
air resistance taken into account in the calculation. Let me tran
scribe here the experiments reported in the Commentaries of the Imperial 
Academy of Science of St. Petersburg, Book II, pp. 338-39, the calculation 
of which I performed after the hypotheses had been formed, consider
ing air resistance, that the specific gravities of iron and air are as 
7650 is to I, and that the air in which the shot ascends is of uniform 
density; the ratio of the specific gravities seems to have been assumed 
a little higher than was appropriate, but in very high thrusts the 
error will be compensated by the decrease of the densities of the air 
towards the higher altitudes. 

The location of the cannon was adjusted with all accuracy to the 
perpendicular, and in every case it was reset to this position and 
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fixed; the individual experiments were repeated; the length of the 
barrel was, moreover, 7. 7 English feet, the diameter of the shot was 
0 .2375 foot; the diameter of the barrel was not measured, nor was 
the size of the touch-hole; instead, every quantity of gunpowder 
used was weighed, and with a pendulum the time was defined 
from the instant of explosion to the instant at which the sphere fell 
to the earth; the following table shows both what has been ob
served and what has thence been deduced by calculation: 

Quantity Time of Height of Time of Time of Height of Time of 
of gl.lll,,- ascent thrust in ascent in descent in thrust in a ascent and 
powder, and resistant resistant resistant vacuum descent in 

descent, air from air from air from from cal- a vacuum 
calcula- calculation, calculation, culation, from cal-

tion, culation, 

Expressed Observed In In In In In 
by the in English seconds seconds English seconds 

number of seconds feet feet 
Holland 
ounces 

I II III IV V VI VII 
½ II 486 5.42 5.58 541 I 1.6 
2 34 4550 14.37 19.63 13,694 58 
4 45 7819 16.84 28.16 58,750 12[ 

For the same cannon and the same shot, but with the former 
being shortened by one foot and seven-tenths, such that the residual 
length of the barrel is precisely 6 English feet, the following table 
serves, constructed by the same rule. 

I II III IV V VI VII 
t 8 257 3.95 4.o5 274 8.2 
2 20.5 1665 9.74 I0.76 2404 24.5 
4 28 3187 12.5 15·5 6604 4o.5 
6 32 .5 43°4 13·9 18.6 11,810 54·3 
8 38 5643 15·54 22.46 22,394 74 

There are many things which render the success of those experi
ments doubtful insofar as there is nothing which proves the same 
elasticity of the blast. I myself would believe the greatest discrep
ancy to arise from the fact that a very small part of the powder is 
ignited immediately at the beginning of the explosion, that then a 
large part is set on fire when the shot is just close to the orifice of the 
cannon, and that finally the largest part is ejected not yet ignited; 
perhaps this single reason causes the elastic force of the blast pro
pelling the shot to be a hundred times as large as that which results 
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from the experiment when no account has been taken of this matter; 
this seems very probable to me from the fact that, with 4 ounces of 
powder used in a 7. 7-foot-long gun, the shot could ascend in a 
vacuum by this very thrust to a height of 58,750 feet, while for the 
same quantity of powder and the same cannon, but shortened by 
1. 7 feet, the thrust would correspond to a height of 6604 feet in a 
vacuum, which height hardly exceeds the ninth part of the former. 
From comparison between the two experiments I conclude that the 
largest quantity of powder was ignited in the longer cannon while the 
shot was close to the orifice, in fact not further away from the latter 
than 1. 7 feet. 

The thrust of the shot is also diminished by the size of the touch
hole as well as by the opening which is left between the sphere and the 
inner surface of the barrel, through either of which a noticeable, 
useless part of the blast vanishes; however, not as large a decrease 
arises thence as that which I had presumed before the calculation 
had been performed; nevertheless, let me add the calculation in the 
following, in order that a method be available for stating the very 
outer limits for the force of gunpowder, which it will certainly 
exceed in any case. 

IV. The one which displays the greatest elasticity of the blast is the 
third experiment, performed with the gun not yet shortened, which 
shows that the shot could have risen by the impact received to a 
height of a = 58,750 English feet. But the length of the barrel AG 
was a = 7. 7; the length AC ( as much as I conclude from the area of 
the barrel and the gravity of the gunpowder) was 0.08. Finally, the 
value 26.8 is found for P itself ( or for the weight of a mercury column, 
the base of which is a great circle of the shot and the height of which 
is 30 English inches, in proportion to the weight of the iron shot, 
designated by unity), the specific gravity between mercury and 
iron having been taken as 1 7 to Io; since, according to §3, 

n = a/ ( bP In i) approximately, there results n = 6004. Whence 

it follows, if the blast of ignited gunpowder has an elasticity propor
tional to its density, that the maximum elasticity of the former is at 
least six thousand times as great as the elasticity of ordinary air. 

V. But if we now consider the useless part of the blast which es
capes through the touch-hole and the aperture left by the shot, we 
will find a greater elasticity. Since the calculation which is required 
for solving this question is not a little lengthy and is intricate, I did not 
hesitate to apply slightly more liberal hypotheses, by which it be
comes much easier; although the hypotheses themselves are not true 
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in all rigor, they can nevertheless not produce any noticeable error. 
First, let me assume that either aperture through which the blast can 
escape is practically infinitely small in proportion to the area of the 
barrel; with this assumption the velocity at which the blast escapes 
can be estimated at any instant directly from the pressure alone; but a 
hypothesis of this kind can be formed without any noticeable error for 
the entire fluid, even when the openings are not very small at all, 
as we have deduced the corollary from our theory, and anyone will 
see quickly that it can be assumed much more easily in a very elastic 
fluid from the fact that the increment of the potential ascent in relation 
to the internal motion is much less in proportion to the potential ascent 
of a particle springing forth from the orifice in a fluid which is ex
pelled by its own elasticity than that which is ejected by force of 
gravity; for in the former case the local internal motion is less than 
in the latter. Second, [it can be assumed] that the elastic force of a 
blast of ignited gunpowder is such that it is not worthwhile to con
sider the counteracting pressure of the atmosphere; third, that the 
velocity of the shot in the gun, although very large, can nevertheless be 
considered very small in proportion to the velocity at which the blast 
escapes through either aperture, because indeed the inertia of that 
blast cannot be not very small in proportion to the inertia which the 
shot possesses; by virtue of this hypothesis the blast will escape through 
either aperture at the same velocity, since otherwise, the velocity in 

the touch-hole having been set equal to VA and the velocity of the 
shot equal to v, the velocity of the blast in the aperture left between 

the shot and the surface of the barrel would have to be called VA - v. 
I now come to the solution. 

VI. First it is to be noted that if the elasticities of the blast are con
sidered proportional to the densities, the blast will escape constantly 
at the same velocity through either aperture, as we have seen in the 
problem in §34, and that this velocity will be nominally the same as 
that which is generated by the height of the homogeneous gas, the 
weight of which can prevent the contained blast from expanding. 
Hence, the aforementioned velocity will be determined in this manner: 
let the gravity of the shot, be unity, the elasticity or the weight which 
can keep the blast of powder ACDB just ignited in that state of com
pression be P, and the weight of the powder used be p; then the 
weight of the blast of powder just ignited will also be p; and if the 
length AC is set equal to b, it is evident that the height of the homo-

geneous gas which has the weight P will be ~ b. Therefore, the 

velocity at which the newly created blast escapes through the 
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touchhole is J~ b, and it will be ejected at the same velocity during 

the entire explosion, and this not only through the touch-hole, but 
also, approximately, through the aperture left between the shot and 
theoarrel. 

VII. Now, in addition let the area of the barrel be F , the aperture 
contained between the shot and the barrel be f, the area of the touch
hole be cp, the length of the barrel be a, and the quantity of the blast 
at the beginning of the explosion be g. Let it then be understood 
that the shot has come from E to e, and let AC be called x, the residual 
quantity of blast in the cannon at that instant be z, and the velocity 
of the shot in that position be v; the remaining notation has already 
been explained earlier. 

Since the elasticity is by hypothesis directly [proportional] to the 
quantity and inversely to the space, the elasticity of the blast remain-

ing in AcdB will be zb P; this, indeed, is not all expended for pro
gx 

pelling the shot, but only a part of it, which is to the total as F - f is 
to [ F]. Therefore, taking dt for an element of time, one has 

F-f zb 
dv = ----P-dt. 

F gx 

But by the method shown in §34, where the quantity of air flowing out 
in a given time element was specifically defined, one finds 

- dz = f + cp · ~ · J!:. b · X dt. 
F X p 

From a comparison of these two equations, one has 

f+c/Jg vb 
-dz= -- · -·---dv 

F-f b VPp 

which integrated, with the addition of the proper constant, gives 

f+c/Jg vb 
Z = g - -- ·-·--·V 

F-f b VPp . 

Now if this value found for z is substituted in the first equation, and 

simultaneously dx is entered for dt, then 
V 

F - f b f + cp V bP 
vdv = -- ·-·P-dx - -- --vdx 

F x F xVp ' 
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Fvdvvp 

(F - f ) -bPvp - (f + cp ) · v-vbp 

dx -, 
X 

which equation after its proper integration, x = a having been 
entered, transforms into this: 

In i = [-F(f + cp )vvp - F(F - f)-pvPb 

-In (1 - (j + cp )v )]ju+ c/> )2 · VPb. 
(F -f)vbPp 

VIII. Now if that value of v were known from experiment, the 
value of P itself which denotes the elasticity of the cloud of gunpowder 
not yet expanded could thence be deduced. In order to illustrate 
this by an example, let us use the same experiment which we have 
shown already in Art. IV, in order that it be apparent therefrom what 
increase of elasticity arises from the escape of the blast. Therefore, 
the calculation will be performed as follows. 

Because we have designated the weight of the shot, which was three 
pounds, by unity, the four ounces of powder used will have to be ex
pressed by --f2 ; therefore, p = f 2 . The measurements of the open
ings which we consider I have not taken; but usually the aperture 
left by the shot in a gun of this kind constitutes approximately a 
fifteenth part of the area of the barrel; the area of the touch-hole, 
I believe, can be neglected altogether here; therefore, I set F = 15, 
f = 1, <p = o. Further, again a= 7.7, b = 0.08; the height to 
which the shot could ascend in a vacuum ½vv = 58,750, or v = 343; 
therefore, the last equation of the previous article will be this: 

-5251 vP 
In 96 =-----:;=- + 17.5-ln V- , 

V p p - 300 

which is satisfied approximately if one takes VP = 534, and thence 
P = 285,156, which equals the weight of a mercury column of the 
same area as the barrel on the gun, the height of which is more than 
ro,ooo times as large as the height of the ordinary barometer; more
over, we have found above in Art. IV that the number n (which 
signified the same) equals 6004. Therefore, we shall now safely 
affirm (for everywhere the things which we have neglected render a 
larger force to the powder) that gunpowder possesses an elastic force 
at least ten thousand times as large as the elastic force of ordinary 
air. Moreover, it is simultaneously apparent from comparison of the 
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numbers 10,000 and 6004 approximately how much of the force of the 
powder is lost due to the often-mentioned openings. Indeed, I would 
have believed this decrement to be greater; but I was confirmed by 
that calculation in this matter, about which once a man, knowing of 
such matters, wanted me [to be] more certain, [since] indeed he had 
observed no noticeable decrement in cannons after the touch-hole 
was amplified beyond normal by daily use in a siege. 

IX. Indeed, in order that from our equation some corollaries can 
be deduced that are simpler although only approximately true, we 
shall change the logarithmic quantity into a series. This is, indeed, 

-ln (1 - (f + cp )v ) = (f + cp )v 
(F - f )vbPp (F - f )vbPp 

(f + </> )2vv 
+ 2(F - f )2 -bPp 

(f + </> )ava 
+ , ;- + 

3(F - j )3 ·bPpv bPp 

After this value has been substituted in the last equation of Art. VII, 
there results 

ln ~ = Fvv + F(f + cp )v
3 + ... 

b 2(F-f ) -bP 3(F-f )2 -bPvbPp . 

We will notice that here this equation agrees perfectly with the last 
equation of Art. II if the apertures f and <p are set equal to zero; for 
what is indicated here by -½ vv and nP is indicated there by a and P, 
the remainder of the notation being identical. 

X. This equation will serve in order that it be apparent approxi
mately how much the height of the thrust is decreased by the aper
tures if these openings are very small. Let a indicate the height 
which the shot can reach in a vacuum if it is assumed that none of the 
blast escapes through the openings, and the decrement of that height 
about to arise from the eruption of the blast through those same 
apertures will be approximately this: 

(2a) 312 -(f + </> )/3FvbPp. 

Whence in the same gun, with the same quantity of powder used, 
and with the weight of the shot remaining the same, the decrements 
of the thrusts will be proportional to the areas of the apertures. 

The same decrements follow almost in proportion to the square 
root of the quantities of powder used, other things equal; because, 
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indeed, the logarithms of large numbers increase at a much lesser 
rate than the numbers themselves, and because, furthermore, 

a = bP ln i, one could have stated that, the rest being equal, a is 

proportional to b itself, because P is not affected by b. But the 
decrement under discussion, other things being equal, is in proportion 

to the quantity a3 12 /v'bp, or in proportion to the quantity :t butp 

itself, which denotes the weight of the powder used, is proportional 
to b; therefore, the previously mentioned decrement is approximately 

in proportion to v'b, which is the square root of the quantity of pow
der used. Therefore, from the usual reasoning concerning thrusts, 
the decrements are much larger in feeble thrusts than in more violent 
ones, and the experiments described in Art. III seem to confirm this 
also; I see indeed no other reason why in the first table of experiments 
the thrust of a shot in a vacuum, with two ounces of powder having 
been used, should have been more than twenty-six times as high as 
when half an ounce was used,. and why, after the quantity of powder 
was duplicated to 4 ounces, a thrust only four times as high as that 
with a quantity of two ounces should result from the calculation. 

XI. Whatever other inequalities may appear [by comparison J in 
either table of the experiments, I derive, as I have said above, to the 
largest part from the fact that not all powder is ignited, nor is all that 
which is ignited burned at once at the beginning of the explosion. 
And I shall certainly not be astonished, since we have investigated 
this in Experiment 4, Table r, that the total time of explosion makes 
up not even the hundredth part of one second. Therefore, since it is 
certain that the largest part of the powder is ejected not ignited, and 
since not a small part of the remainder is set on fire more slowly than 
was assumed in the calculation, and since, furthermore, a noticeable 
part of the powder is adulterated by vapors and earthen material 
which does not burn, it follows that the burning parts possess a far 
greater elasticity than that which was determined from calculation of 
the experiment in Art. X; perhaps it is ten or a hundred times as 
large. 

But perhaps it is only as large as the experiment has shown, namely, 
ten thousand times as large as the elasticity of ordinary air; it follows, 
hence, either that the elastic blast which develops from ignited gun
powder is not ordinary air, or that the elasticities increase in a greater 
proportion than the densities; indeed, the density of air that arises 
from powder just ignited cannot be more than a thousand times 
larger than the density of ordinary air if almost all the powder is 
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composed of compressed air, which I conclude from the specific 
gravity of the powder with respect to the air. 

Meanwhile, the question has been treated for a long time whether 
the elastic blast which is deduced from bodies is ordinary air or not, 
which question I will not decide. 

If, nevertheless, one assumes that gunpowder is a thousand times 
as dense as natural air and ten thousand times as elastic, then it will 
follow from §4 that the air, compressed by an infinite force, cannot be 
compressed more than r 33 r times, and according to the same rule 
the elasticity of air four times as dense as natural would be to the 
elasticity of natural air as 4¼ is to r. 

But whether experiments performed by others which make the 
ratio of these elasticities exactly 4 to r have been done with sufficient 
accuracy, and whether the temperature of the air remained the same 
while it was compressed, I do not know. It is also quite likely that 
the same blast which lies hidden in the pores of gunpowder is the 
cause of the elasticity of elastic bodies or of resilient wool; indeed, as 
long as it is present in the small cavities, the elastic blast is compressed 
if bodies are driven by some force into an unusual shape, and as long 
as it is restoring the most capacious form to the small cavities, the body 
is returning to its original shape and length. 



ELEVENTH CHAPTER 

Concerning Fluids acting in a Vortex, 
while also Concerning Those which 

are Contained in Moving Vessels 

§1. From the time at which Kepler and Descartes were employing 
vortices for explaining various phenomena of nature, many people, 
reckoning that they were expending their effort wisely, reworked that 
argument eagerly; but, unless I am wrong, Huygens first penetrated 
the nature of it correctly in his Traite de la pesanteur; let me add certain 
things which pertain to my purpose, perhaps not sufficiently examined 
by others. 

However, as is customary, one assumes that vortices are reduced to 
the state of permanence or of persistence, so that the fluid, subjected to 
no change, is moved constantly according to the same law. 

§2. Let the cylinder ABCD (Figs. 65 and 66), the axis of which is 
GH, be placed vertically and let it be filled to a certain height; let the 
water be considered as having been formed into a vortex, and let all 

.A D .A G D 

FIGURE 65 FIGURE 66 
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things be already reduced to the state of permanence. Thus the 
surface of the water will be depressed toward the axis and elevated 
toward the sides. We will represent a section through the axis 
terminated by the surface of the water by the curve EOF, and the 
nature of this curve we will now give from the relation which the 
velocities have mutually at certain distances from the axis. 

Let ga andfn be drawn infinitely close and horizontal, and let am 
be made vertical. Let Og = x, gf or am = dx, ga = y , mn = dy. 
Moreover, it is evident that any volume element whatever located at 
the surface presses perpendicularly to the surface by its own acting 
force, composed of the horizontal centrifugal force and the vertical 
force of gravity, because, if it would press obliquely, there would be 
nothing which would keep the elemental volume in its place. 

Therefore, if the centrifugal force of a volume element located at a 
is expressed by the horizontal ba and the force of gravity by the ver
tical ca, and the rectangle abec is completed, the diagonal ae will be 
perpendicular to the curve; hence the triangle eca is similar to the 
triangle amn, and thus dx: dy = ec: ca = ba: ca, or, as the centrifugal 
force is to the force of gravity at the point a. 

Moreover, Huygens showed that the centrifugal force of a body 
driven in a circular course at the speed which it could acquire by 
free fall through a height of half the radius is equal to its own force of 
gravity: thus, if accordingly the height corresponding to the gyratory 
velocity of the volume element is called V and the force of gravity g, 

2gV 2gV 
the centrifugal force will be --, from which dx: dy: : -- : g, or, 

y y 

dx = 2Vdy_ 
y 

§3. If one sets V = ½Y, x will become equal toy, and accordingly the 
line EO will be straight, forming a half right angle with the axis CH, 
and the cavity will have the shape of a cone. But if the proportion of 
the velocities is kept the same, namely, that they are everywhere 
proportional to the [square] roots of the distances from the axis, and 
the water is driven around more quickly or more slowly, the angle 
EOG will be more acute, the more quickly [the water] is moved, so 
that, if the velocity would be infinite, then the water would have to 
stand perpendicularly to the base, as if it were a wall, and form a 
cylindrical cavity in the interior, if only there would be a cover at 
AD which would prevent all the water from being ejected. 

§4. If it is assumed, a little more generally, that 2 V = jy", dx will 

become_be- 1 dy, or, x = (~f- Hence it follows that the curve will 
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always be concave toward the axis, as in Fig. 65, if e is greater than 
unity, and convex, as in Fig. 66, ifit is less. In the first case the angle 
EOG is always right, in the other it is always null; only in the case in 
which e = I can that angle have any value whatever. 

§5. These things can serve for determining to some degree the scale 
of velocities in an artificially produced vortex: for, if one sees that the 
surface is concave, one will judge correctly that the velocities increase 
in a greater ratio than the distances from the axis increase; if it is 
convex, one will deduce the contrary. If the curve does not seem to 
be of the parabolic type, this will be proof that the velocities cannot 
be compared with some force determined from the distances. The 
greater the observed line EM terminated by the horizontal OM, the 
greater the absolute velocity of the particles, or the letter f 

§6. But I think that in a homogeneous fluid a vortex cannot remain 
in the proper state through some notable time if the centrifugal forces 
of equal portions increase from the axis toward the periphery: for if 
this were so, since there is nothing which would sufficiently repress the 
centrifugal force of the portions nearer the axis, thus it would occur 
that those nearer portions would perpetually recede from the axis, 
and those more remote would be propelled toward it, and equilib
rium or the state of permanence could never be attained under this 

condition. Hence it appears that this quantity 
2
g V (which certainly 
y 

expresses the centrifugal force of equal portions in homogeneous 
fluids) either increases together with y or at least does not decrease, 
and thus if we go again to the special hypothesis formed previously 
(2 V = ff ), e cannot be less than unity. Therefore, in all vortices 
discussed here that have been reduced to a state of permanence, the 
surface will never be convex, as in Fig. 66, but always either concave, 
as in Fig. 65, or conic; and because e is either greater than unity or 
equal to the same, it cannot occur otherwise than that the velocities 
increase in proportion either equal to or greater than the roots of the 
distances from the axis. When I consider these things accordingly, 
I do not understand in what way Newton could assume that two vor
tices of a fluid everywhere homogeneous are reduced to a state of 
perpetual persistence in which in the one the periodic times of the 
portions are as their distances from the axis of the cylinder, but in the other as 
the squares of the distances from the center of the sphere. For in the first of 
these vortices the velocities would be equal everywhere, and in the 
other they would clearly decrease from the axis to the periphery. 

It is more probable in the majority of vortices which have already 
attained the state of absolute persistence that the periodic times of the 
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individual portions of either a homogeneous or heterogeneous fluid 
will be the same as if the entire cylinder were solid, moreover that the 
portions which are specifically heavier will be nearer to the circum
ference. In this case v becomes proportional toy itself and V pro
portional to the square of the same, and the curve EOF will be an 
Appolonian parabola, the vertex of which is at O and the axis of which 
is OG. 

I presume especially that things will be approximately so if the 
vortex is generated by the rotation of a cylindrical vessel about the 
axis HG, or even by uniform agitation with a stick near the sides of a 
vessel, the phenomena of which sort of vortices Mr. Saulmon showed 
in the Commentaries of the Royal Academy of Science of Paris for the year 
1716. 

§7. The pressures which the different portions of the cylinder 
ABCD sustain from the fluid are proportional to the heights of the 
vertical columns corresponding to the same portions; indeed, it is not 
required that we add to this weight the impulse of the fluid develop
ing from the centrifugal force, because that impulse has already 
obtained its effect in elevating the water. And if the vessel were not 
cylindrical but of some irregular shape, it would be permissible to 
assume a cylinder, the axis of which coincides with the axis ofrotation, 
full of fluid such that the point O in the proposed vessel as well as in 
the fictitious cylinder is located in the same place; for thus, at any 
point in the cylinder the pressure will be as great as it is at the same 
point in the proposed vessel. It appears from this very thing that the 
surfaces of the vortices can be defined from a principle other than that 
which we used above: indeed, after the horizontal line OM has been 
drawn, and the vertical Na [has been drawn] with pn infinitely close 
to it, it follows that the height Na or Og is proportional to the centrif
ugal force of all the particles which are at ON, and that the difference 
of the two neighboring heights, namely, am and gJ, is proportional to 
the centrifugal force of the particle Np. Thence the final equation 

h . h d . § . . d . d 1 d 2 V dy w 1c we presente 1n 2 1s again enve , name y, x = --· 
y 

§8. Now let us see what must happen to bodies floating on a vortex; 
but in order that the matter may be made the more clear and simple, 
in place of the body we will consider a small globule of the same 
specific gravity as the eddying fluid. 

Such a globule united with the fluid is driven immediately by two 
forces, the one tangential, drawing its origin from the impetus of the 
fluid, the other centripetal, which develops from the centrifugal force 
of the fluid. These forces maintain a constant ratio to each other, 
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namely, the square of the respective velocity of the fluid, whether the 
body is at rest or is carried in a circular motion. 

Moreover, it deserves to be noted by those who adhere to Car
tesian principles in explaining the phenomena of gravity that the 
tangential force is incomparably greater than the centripetal force: 
indeed, the former is to the latter as the distance of the body from the 
axis of the vortex is to eight-thirds of the diameter of the globe; the 
proof can be seen in the Commentaries of the Imperial Acaderrry of Science 
of St. Petersburg, Book II, pp. 318 and 319. 

§9. Although I know that many things have been alleged by various 
people in order that they might show that a delicate material driven 
very suddenly into a vortex can indeed dislodge bodies toward the 
axis, on the other hand it does not follow thence that at the same time 
those bodies are transferred by the vortex; nevertheless, I was not 
able to remove this doubt after I learned that the tangential force is 
almost infinitely greater than the centripetal force. Perhaps this 
difficulty is obviated no better if we state that there are two vortices, 
contrary and of equal strength, about the same axis. For it seems that 
most phenomena of nature cannot be conciliated with the hypothesis 
of vortices unless we assume that two or more vortices can cross over 
one another very freely in any direction whatever: for the common 
gravitation alone of all the celestial bodies toward one another, which 
cannot be doubted, shows well enough either that one should bid 
farewell to the hypothesis of vortices, or that the very free crossing of 
several vortices in all directions should be concluded. Therefore, if 
two vortices of equal strength were assumed to be contrary and about 
the same axis, then the contrary impetuses would destroy the tan
gential forces of each vortex; but at the same time each vortex would 
join in depressing a body toward the common axis. 

§rn. Another difficulty occurs in that the gravity of bodies cannot 
be sought from the effect of two contrary vortices moving about the 
same axis. For thus the bodies would not gravitate toward a com
mon point or quasi point, but toward the axis, and they would glide 
toward the same in a perpendicular motion, which conflicts with the 
vertical descent of bodies and the roundness or quasi roundness of the 
earth and of celestial bodies. 

This other difficulty is also overcome if two axes are assumed per
pendicular to each other or approximately so, about each of which 
two contrary vortices of equal strength are driven. For the force com
posed of all the vortices can be understood to be so constituted that 
a body moves approximately toward the point at which both axes 
intersect one another; nevertheless, the earth would always be 
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compressed somewhat toward the plane crossing through both axes. 
But certainly it will be possible to contend with this inconvenience, if 
only it is an inconvenience, by increasing the number of vortices 
very much: for if the vortices are considered as almost infinitely many, 
they all can cross over themselves with the same facility as rays of 
light, which do not impede each other at all. 

I wanted to add these things here for the sake of those who are 
pleased by vortices, in order that they may see whether this motion 
can be conceived more easily than that which Huygens assumed: for 
the phenomena of nature can be explained equally by each. I 
showed this idea a little more accurately in the dissertation which, 
having been rewarded with a prize in the year 1 734, the Royal 
Academy of Science of Paris chose to print. 

§11. Because no one can doubt that all planets gravitate toward the 
sun and satellites toward their own planets according to Newton's 
thinking, and that the cause of this gravity is connected with that by 
which terrestrial bodies tend toward the center of the earth, the 
hypothesis of vortices will have to be extended to the entire system of 
the world ifit is applied for explaining the gravity of terrestrial bodies. 
Thus, indeed, planets floating in a fine material would be moved in a 
resistant medium, and, gradually losing some of their own motion, 
they should have to drift toward the center of the sun in the manner of 
a spiral: but since this is not apparent from the most ancient observa
tions, the hypothesis of vortices postulates that an eddying fluid is 
assumed, rare and delicate beyond all measure, that is moving at a 
velocity which the human mind can barely comprehend: for, the rarer 
the fluid, the quicker one must assume the motion to be. Perhaps 
the perpetuity of the motions will be explained more by a certain 
reciprocal communication of motion, which is such that a celestial 
body which has just propelled certain particles is propelled in turn 
by them with a similar force. 

§12. I now come to the remaining properties of gravitating bodies 
which follow from the hypothesis of vortices. Let us consider that a 
body which transmits no particles of fluid through its pores is resting 
in an eddying fluid; thus the body tends toward the center of the vor
tex, and its centripetal force will be precisely equal to the centrifugal 
force of the eddying fluid which is located within the same volume at 
the same distance from the center. Therefore, any bodies whatever 
located in the same position in the vortex have the same centripetal 
force if they have the same volume, even if the quantities of material 
in any one body are unequal in any way whatever, and if bodies of 
this sort can be moved freely toward the center of the vortex, they will 
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be carried at unequal velocities, reciprocally proportional, of course, 
to the square roots of the quantities of material, if the measured 
distances are equal. 

§13. Those things which were mentioned in the preceding para
graph are easily applied to the gravity of bodies, if only the origin of 
gravity is the centrifugal force of some delicate material driven very 
quickly in a vortex. But because experience shows that all terrestrial 
bodies descend at the same velocity in a vacuum, and all bodies sus
pended by an equal thread make tautochronous vibrations, we thence 
conclude that ultimate heavy particles, through which, indeed, heavy 
fluid cannot penetrate, are of equal specific density in all terrestrial 
bodies, that is, they contain equal quantities of solid matter in equal 
volumes, and this no less in the heavy particles which compose gold 
than in those which compose feathers. But lest these things be under
stood other than as I wish, I will have to explain what I mean by 
ultimate heavy particles and by the solid matter innate to them. 

§14. Therefore, heavy particles are those, having been appropriately 
named such, which are impenetrable to a fine eddying material: 
indeed, particles of this sort act the same way as bodies placed in a 
vortex, which we discussed in§ I 2; nevertheless, although they may be 
impenetrable to the fine material just mentioned, I would not believe 
that they are perfectly solid, which Huygens seems to have presumed 
in his treatise De Gravitate, that is, such that their entire space is 
filled with material, without pores or inter-flowing fluid; I think, 
rather, that these heavy particles do have their own pores again, and in 
them there is some far more delicate fluid which traverses the heavy 
particles with the same freedom with which a heavy fluid flows 
through observable bodies: but the remainder, which coheres to 
itself in the heavy particles, I call the solid material pertaining to the 
same particles. 

§15. From these [considerations] it is clear that the different speci
fic gravities of bodies should be sought by no means from the different 
density of the heavy particles, but from the fact that these particles can 
be unequal in number, or even in magnitude, in different bodies 
within the same volume, such that in the more compact bodies, or 
those of greater specific gravity, the heavy particles either are positioned 
with less interstices or are greater in volume. 

But even if the heavy particles should have different specific densities 
in different bodies, on that account the bodies would not have different 
specific gravities, the remaining things having been set equal; more
over, such bodies, having fallen from above, should descend toward 
the center of the earth at different velocities from one another. 
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Therefore, it should be possible that bodies of equal specific gravity 
should descend in the vacuum so commonly mentioned at an unequal 
velocity no less than we see bodies of different specific gravity de
scending at equal velocity. Moreover, in bodies of this sort the laws 
of motions would be greatly different from what they are nowadays 
when masses are estimated from weights alone. 

§16, Finally, because all terrestrial bodies, as far as is known from 
experience, have their heavy particles of equal specific density, as was 
indicated in §13, I may indeed be easily induced to believe that the 
same thing occurs in all planets considered separately. But it is 
altogether probable to me that the planets compared to each other 
have their individual heavy particles of different specific density, 
because I do not see any reason why these particles should be similar 
in all planets. But in any planet whatever, its centrifugal force or its 
attempt to recede from the sun depends upon the density of its heavy 
particles. Therefore, it is not yet allowable to infer that the centrifi1gal 
forces of the planets are in an inverse square ratio of their distances from the sun 
from the fact that the periodic times follow a ratio of the three-halves power of 
the distances: for such a conclusion supposes the same density of the 
heavy particles on all planets. 

§17, The centrifugal forces of planets are certainly equal to the 
contrary forces by which they are drawn toward the sun. But 
because, as I mentioned in the paragraph above, it is not yet certain 
in what ratio with respect to the distances from the sun the centrifugal 
forces of the planets are changed, therefore it is not permissible to say 
anything definite about their forces of gravity toward the sun. And 
indeed there are many things in the hypothesis of vortices which 
constitute and determine the forces of gravity at different distances. 
For when the force of gravity is equal to the centrifugal force of a fine 
material which cannot penetrate the heavy particles of a body, it 
follows that the force of gravity is greater, the greater is the quantity 
of fine material to which transit is denied; but because we know that 
a body, impenetrable to one fluid, often offers the freest transfer to 
another finer fluid, it can occur, if only we assume that the eddying 
material is unequally fine at different distances from the center of the 
vortex, that one and the same planet, at unequal distances from the 
sun, is driven unequally toward the sun, which same thing can apply 
more easily in different planets because it happens that the structure 
of the heavy particles can be different. 

In addition to these things are the different density of the eddying 
material, the velocity, and the distance from the center, which [ all] 
contribute to forming the force of gravity. But if they are taken into 
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consideration, it will certainly appear that the forces of gravity can 
decrease with increasing distances from the center of forces. Never
theless, on account of the fact that the centrifugal forces of equal 
volumes of eddying material do not decrease equally, I consider that 
the latter [ situation J cannot occur on account of the reasoning shown 
in §6. 

But let these things suffice which we have discussed generally and 
incidentally concerning the nature of vortices and their application 
to the Phenomena of gravity: the intention was not to commend the 
hypothesis of vortices, but only to draw certain conclusions from it 
without which I should believe this hypothesis cannot subsist. 

I come now to the other part of the chapter in which we will con
sider briefly the state of fluids which are contained within moving 
vessels; the subject is very fertile and variable in infinite ways. But 
we will treat a few matters, or examples, to which many others can 
be referred. 

§18. If water is contained in a perforated vessel and the same vessel 
falls freely, it is self-evident that no water will flow out during the fall 
of the vessel, because, certainly, the upper particles do not gravitate 
toward the lower. If the vessel indeed descends in an accelerated 
motion, but slower than that by which bodies are accelerated natur
ally in a vacuum, the water will flow out, but at a lesser velocity than 
if the vessel were at rest; the contrary will be the case if the vessel is 
drawn upward by an accelerated motion. Finally, if the vessel is 
borne horizontally by an accelerated motion (for now we will not 
attend to the remaining directions), it can happen that the velocity 
of the water flowing out is either greater or less than the ordinary 
velocity in relation to the position of the orifice. But the velocities of 
the water will thus be determined. 

§19. For example, let the cylinder ACDB (Fig. 67) be full of water 
right up to AB, the base CD of which has a very small orifice at E 
through which water flows, while in the meantime the entire vessel 
is drawn upward by a descending weight P by means of a string 
running over two pulleys H and G. Finally it is assumed that as 
much water is constantly supplied from above as flows out through the 
orifice E; but let the weight of the cylinder and the water contained in 
it be indicated by p. Thus it appears that any volume element of 
water standing in the vessel is stimulated to ascend by a force which 

is in proportion to the natural force of gravity as pp - p is to 1. But 
+p 

because the reaction of a volume element against the base is equal to 
the force by which any volume element is stimulated to ascend, it 
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exerts another pressure on the base, in addition to the natural pres

sure, which will be expressed by pp - P_ But both pressures taken 
+p 

together will be to the natural pressure alone as p 
2
P is to 1, so that 

+p 

FIGURE 67 

the base is pressed not at all otherwise by the water lying above than 

if the cylinder were at rest and the height of the water were p 2P -AC, 
+p 

and from this itself it follows that the height due to the velocity of 

the water flowing out uniformly is p
2
p . AC. 
+p 

Therefore, if P = o, no water will flow out with the vessel falling in 
a naturally accelerated motion; if P = p, the water will flow out at 
the ordinary velocity, because then the vessel is at rest; and if P = oo, 
the velocity of the water flowing out will be to the ordinary velocity 

as V2 is to I. 
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§20. Now one seeks what must happen to a fluid which is contained 
in a vessel to which a uniformly accelerated horizontal motion is 
imparted. But it is very easy to see from this alone that now the 
inertia of the particles is horizontal or opposite to the direction in 
which the vessel is moved, while that of their gravity is vertical. But 
each remains constantly the same. 

Therefore, after the fluid arrives at the state of persistence or 
permanence, its surface will be plane but inclined toward the direction 
of motion. Moreover, the angle of inclination will be determined 
as follows. 

Let there be a cylindrical vessel ACDL (Fig. 68), positioned verti
cally, which is moved in a uniformly accelerated motion over the 

ct~....--

H 

FIGURE 68 

horizontal plane CDH by means of the weight P attached to the vessel 
at S with the help of the pulley G, and let the weight of the vessel and 
the water contained in it be to the weight P as p is to P; let the 
natural gravitation be unity; the force of any volume element in the 

direction GS, with respect to its own gravitation, will be -p p . 
+p 

Therefore, if AB is in the same plane as SG and as the surface of the 
water, and if AL is drawn, it is evident that the action of the natural 
gravity will be to the reaction arising from the weight P as BL is to 

AL, or as I is to -p p ; and with the entire sine designated as 1, the 
+p 

sine of the angle LAB will be 

p 
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Hence it is understood also that the base CD experiences a greater 
pressure at C than at D from the water lying above, and this in pro
portion to the heights AC and BD; and, if the same base is perforated 
by a very small orifice, that the water will be ejected at a velocity 
which corresponds to the height of the vertical column lying above. 
Thus, indeed, this will be after everything has reached the state of 
permanence; if the weight P is variable, the surface AB will never re
main in the same position; moreover, the velocity at which the vessel 
is moved in individual locations depends on that weight. Therefore, 
if the total weight is removed after the vessel already has acquired 
motion, the vessel will continue to be moved at its own velocity, but 
the surface of the water will lose its slope and again be composed in a 
horizontal position, just as if the vessel were at rest; therefore, in these 
cases it is not the motion of the vessel which changes the state of fluids, 
but the variation in motion. 

§21. That which we indicated in the preceding paragraph about a 
vessel positioned vertically is easily extended to a vessel of any shape 
whatever: for, whatever is the inclination to the horizon of the 
aqueous surface AB in the cylindrical vessel, it will be the same in all 
other vessels; moreover, the pressure of the water on the walls of a 
vessel is defined everywhere if the vertical column is considered from 
that point for which the pressure of the water is to be defined up to the 
surface of the water, which will have to be imagined if that should be 
necessary. If in place of the vessel there is assumed, for example, a 
pipe curved at each end, just as ACDL (Fig. 69), and this is moved in 

A--, 

...:'1: · . 

C 'D 

FIGURE 69 

the direction CD, then each surface Mand N will change position to 
A and B, until the straight line AB obtains the required inclination 
defined previously; also, it can occur that part of the water flows out 
through A before equilibrium is present; if the leg DL is directed 
downward as in Fig. 70, the water will remain as if suspended; 
indeed, in each case the inclination of the line AB will be the same, 
the remaining things being equal. 

However, in Fig. 69 the line MA will be greater, the longer is the 
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horizontal leg CD, such that the smallest accelerations or retardations 
can be observed; this often can be useful for other things such as 
measuring accelerations of ships and the pressures which rowers exert 
in individual immersions of the oars; however, in these cases the entire 

- - -- -~ -- ·--.. 

FIGURE 70 

motion of the fluid which is developed in individual repetitions should 
be investigated, because the state of persistence or permanence cannot be 
assumed. 

Because of this same reasoning, it is not yet allowable to determine 
wholly from the preceding what must happen when vessels contain
ing a fluid are pierced. 

However, the rules of percussion can be deduced from the ordinary 
laws of pressure, since indeed a percussion is nothing other than an 
immense pressure lasting for a very short time. 

§22. For example, let the cylindrical pipe ABCD (Fig. 71 ), placed 
horizontally, be full of water, and let the sphere P impinge on the 

FIGURE 71 

extension AP of the pipe; then the water will suddenly press the base 
BA violently toward P; in order to understand this pressure properly, 
we will assume first that the pipe has no weight; thus it appears from 
the equality between action and reaction that during the impulse of 
the sphere the base is not impelled differently by the water than it 
would be impelled in the opposite direction by the sphere if the latter 
impinged directly against the base. But if the weights of the water 
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and the pipe are assumed to be in proportion asp is to 7T, the impulse 
of the water against the base will be to the residual impulse asp + 7T 

is top; for the impulse is distributed equally over all the material of 
the water as well as the pipe, and only the fluid reacts on the base. 

But now let us assume a very small orifice m in the base BA; 
through this, nevertheless, water is considered to flow very freely; 
thus we understand that a particle of water will be ejected through the 
small orifice m during the impulse; however, the quantity of that 
water cannot be determined, for it depends upon the rigidity of the 
material AP receiving the impulse: indeed, if that material is very 
rigid, a greater pressure is to be substituted for the impetus, but lasting 
for less time; for example, let the same impetus be considered for two 
different cases: moreover, in one let the pressure be quadrupled, in 
the other let the duration of the pressure be quadrupled, which can 
happen when the material is more rigid in the former case than in the 
latter; thus, approximately double the quantity will flow out in the 
impulse of the lesser pressure and greater duration than in the other 
case. In this way the rigidities of materials can be explored: but 
they can be found as well from sound. 



TWELFTH CHAPTER 

Which shows the Statics of Moving Fluids, 
which I call Hydraulico-Statics 

§1. Among those who gave measurements of the pressure of fluids 
existing within vessels, few have gone beyond the common rules of 
Hydrostatics which we showed in Chapter II; nevertheless, there are 
many other rules which pertain to the appropriately named Hydro
statics, such as whenever a centrifugal force or the force of inertia is 
united with the action of gravity, each of which we discussed in the pre
ceding chapter; dead forces of this type can be devised and combined in 
infinitely many other ways. But these are not the things which seem 
to me to be most desirable, since it is not difficult to give general rules 
for this procedure. I desire, rather, [to treat] the statics of fluids 
which are moved within vessels in a progressive motion, such as of 
water flowing through conduits to leaping fountains: indeed, this is 
of multiple use, and it has not been treated by anyone, or, if some 
people can be said to have made mention of it, it was not at all 
properly explained by them; indeed, those who have spoken about 
the pressure of water flowing through aqueducts and the strength 
required of the latter for sustaining that pressure did not hand down 
any laws other than those for extended fluids with no motion. 

§2. It is singular in this hydraulico-statics that the pressure of water 
cannot be defined unless the motion has been known correctly, which 
is the reason that this doctrine escaped notice for so long; indeed, up 
to now Authors were hardly anxious to investigate the motion of 
water, and they estimated velocities almost everywhere from the 
height of the water alone; however, although the motion often tends 
so quickly toward this velocity that the accelerations clearly cannot 
be distinguished by observation, and all the motion seems to be 
generated in an instant; nevertheless, it is of interest to understand 
these accelerations correctly, because otherwise the pressures of the 
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flowing water often cannot be defined, and on that account I esti
mated that it is a matter of greatest moment to consider those changes, 
however instantaneous, from the beginning of motion up to a given 
limit with all care, and to confirm them by experiments, which I did 
at different places in this treatise, but especially in Chapter III. 

§3. If the motion could be defined everywhere, it would be easy 
to develop the most general statics in moving fluids: indeed, if one 
assumes an orifice which is infinitely small in that very place at which 
the pressure of the water is desired, one will seek to learn first at what 
velocity the water would erupt through that tiny orifice and to what 
height that velocity would be due; moreover, one understands that 
the pressure which is sought is proportional to this very height. 

From this principle the pressure is to be sought which the hori
zontal plate LQ in Fig. 43 sustains if it has not been perforated. In
deed, since it has been shown by us in the second corollary of §3 I, 

Chapter VIII, that, if the orifice His infinitely small in proportion 
to the orifices M and N, and the ratio of these orifices Mand N is 
indicated by a and y, then the height due to the velocity of the water 

erupting through H will be aa(LB) - yy (NQ ), we will thence judge 
aa + yy 

that the pressure of the water against the nonperforated plate LQ is 
proportional to this very height. We gave the same proof in another 
way in §rg of the cited chapter. Hence it follows that it can occur 
that the section LQ experiences no pressure, however great the height 

of the water above it may be, as for example when y = aV LB/NQ; 
indeed, the pressure can even be changed into suction. 

§4. Similarly, the pressure of the water against the section LQ is 
obtained if, for instance, the latter is perforated by an orifice of finite 
size in proportion to the two remaining [orifices]. For if the section 
is perforated by an infinitely small orifice with respect to that which 
exists at H, the water cannot but erupt at a common velocity through 
either one. And since this velocity is known (from §30, Chapter 
VIII) for the orifice H, the velocity is also obtained at which the water 
must erupt through the tiny orifice which we conceive, and thus we 
know the pressure of the water. For example, let the orifices M, 
H, and N be equal to one another, and also let the height BL have a 
ratio to the height LQ as ro is to 3, and the pressure against the plate 
LQ will be one-tenth of what it is with the orifices Hand N closed off. 

Finally, if one should desire the pressure of the water in another 
location, he will simply add the height by which the section LQ 
exceeds that point to the height of the thrust through the orifice H. 
The same method serves for determining water pressures in the rest 
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of the vessels which we treated in Chapter VIII. But all these 
matters differ from those which pertain to the motion of fluids through 
conduits, because the water, on account of the infinite size of the 
vessels assumed by us, is as if at rest in cavities, and nevertheless it 
exerts a far different pressure from what is otherwise customary. 
Moreover, in conduits the water changes its pressure more, the greater 
the velocity at which it flows through, and it exerts almost all its 
customary pressure if that velocity is very small. 

This is so whenever the velocities of fluids can be determined by the 
methods presented by us just above. But the matter must be handled 
by a singular method when the water flows through conduits, and I 
comprehend this doctrine especially under the title of hydraulico
statics. Here, not so much can the pressure be defined from the 
velocity as, reciprocally, the velocity from the pressure, if a small 
orifice is made in the walls of the conduit. And in the present 
chapter I decided to treat especially that hydraulico-statics, the appli
cation of which is very broad. 

PROBLEM 

§5. The very wide vessel ACEE (Fig. 72), with the cylindrical and 
horizontal pipe ED attached, is to be kept constantly full of water; 

A B 

FIGURE 72 

and at the extremity of the pipe let there be the orifice o emitting 
water at a uniform velocity; the pressure of the water against the 
walls of the pipe ED is sought. 
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SOLUTION. Let the height of the aqueous surface AB above the 
orifice o be a; the velocity of the water flowing out at o, if one excludes 
the first instants of flow, will have to be considered uniform and equal 

to va, because we assume the vessel to be kept constantly full; and, 
with the ratio of the areas of the pipe and its orifice assumed equal to 

~, the velocity of the water in the pipe will be Va_ But if the entire 
I n 
base FD were missing, the ultimate velocity of the water in the pipe 

itself would be Va, which is greater than va_ Therefore, the water 
n 

in the pipe tends to greater motion, but its pressure is impeded by the 
added base FD. By this pressure and repressure the water is com
pressed, which very compression is confined by the walls of the pipe, 
and hence these sustain a like pressure. Thus it appears that the 
pressure of the walls is proportional to the acceleration, or the incre
ment of velocity which the water would receive if the entire obstacle 
to motion would vanish in an instant so that [the water] might be 
ejected immediately into the air. 

Therefore, the problem is now changed into this: if during the 
flow of water through o the pipe ED were broken at cd at an instant, 
one seeks the magnitude of the acceleration the volume element acbd 
would thence be about to obtain; indeed, the particle ac taken at the 
walls of the pipe will sense that much pressure from the water flowing 
through. To this end the vessel ABEcdC is to be considered, and with 
regard to it the acceleration of an aqueous particle close to efflux is to 

be found, if this would have the velocity Va_ We handled that 
n 

matter very generally in §3, Chapter V . Nevertheless, because the 
calculation is short in this particular case, we will here again subject 
the motion in the shortened vessel ABEcdC to evaluation. 

Let the velocity in the pipe Ed, which [velocity] is now to be con
sidered as variable, be v; let the area of the pipe, as before, be n, the 
length Ee = c; let the length of the aqueous particle ac, infinitely 
small and about to flow out, be indicated by dx. There will be an 
equal volume element at E entering the pipe at the same instant that 
the other, acdb, is ejected; moreover, while the volume element at 
E, the mass of which is n dx, enters the pipe, it acquires the velocity v 
and the live force nvv dx, which entire live force was generated anew; 
indeed, the volume element at E, not yet having entered the pipe, 
had no motion on account of the infinite size of the vessel AE; to this 
live force, nvv dx, is to be added the increment of live force which the 
water at Eb receives while the volume element ad flows out, namely, 
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wcv dv; the sum is due to the actual descent of the volume element 
n dx through the height BE or a; therefore, one obtains nvv dx + 

v dv a - vv 
2ncv dv = na dx, or dx = -

2
-c-· 

Moreover, in all motion the increment of velocity dv is proportional 

to the pressure multiplied by the differential time, which here is dx; 
V 

therefore, in our case the pressure which the volume element ad ex-

. . 1 h . V dv h . h . periences 1s proport10na to t e quantity dx' t at 1s, to t e quantity 

a - vv 
2C 

B h . h' h h . . b k v'a a ut at t at mstant at w 1c t e pipe 1s ro en, v = -, or vv = - ; 
n nn 

therefore, this value is to be substituted in the expression a - vv, 
2C 

which thus is transformed into nn -
1 

a. And this is the quantity to 
2nnc 

which the pressure of the water against the portion ac of the pipe is 
proportional, whatever area the pipe may have, or by whatever 
orifice its base may be perforated. Therefore, if in a particular case 
the pressure of the water would be known, it would be understood at 
the same time in all remaining [ cases J : but, indeed, we have this 
[pressure J when the orifice is infinitely small or n is infinitely large 
with respect to unity: for then it is evident from itself that the water 
exerts its entire pressure, which conforms to the total height a, and 
this pressure we will designate by a; but when n is infinite, unity 
vanishes with respect to the number nn, and the quantity to which the 

pressure is proportional becomes !!:... Therefore, if we wish to know 
2C 

in general how great the pressure is when n is any number whatever, 
the following analogy must be used. If the pressure a conforms 

to the quantity !!:.., what then will be the pressure for the quantity 
2C 

nn - r 
--- a? And thus the desired pressure is found equal to 

2nnc 
nn - r 
--a. Q.E.I. 

nn 
§6. COROLLARY r. Because the letter c vanishes from the calcula

tion, it follows that all portions of the pipe, those which are nearer to 
the vessel AG as well as those which are more remote, are pressed 
equally by the water flowing through, and certainly less than the 
elements of the base CG, and the difference is the greater, the larger is 
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the orifice o; and, further, the walls of the pipe do not sustain any 
pressure if in the latter the entire barrier FD is missing, so that the 
water flows out from a full orifice. 

§7. COROLLARY 2. If the pipe is perforated somewhere by a very 
small orifice that is necessarily in some ratio to the orifice o, the 
water will spring forth at the velocity by which it could ascend to the 

height nna - a if only no foreign hindrances were interfering. Indeed, 
nn 

this will be the height of the thrust in Fig. 73, or In = nna - a_ But 
nn 

FIGURE 73 

if the small tube gm is attached, vertical or even inclined in some way, 
connecting with the horizontal pipe, but so, nevertheless, that the ex
tremity of the inserted tube does not project into the cavity of the 
horizontal pipe lest the water flowing past strike against that extremity, 
the vertical height gh of the water standing in the inserted tube will 

also be equal to nna - a; and it is not necessary in this latter case 
nn 

that the tube gm be very narrow. 

ScHOLIUM 

§8. Therefore, this theory can be confirmed very easily by experi
ment, and this will be of more importance because up to this time no 
one has defined equilibria of this sort, the use of which is very widely 
evident, because by the same method the pressure of water flowing 
through conduits can be obtained very generally for aqueducts in-
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dined in any way whatever, curved, of varied area, and at any 
velocity of water whatever; then, as well, because not only this 
[theory] of pressures, but the entire theory of motions besides, which 
we gave above, is confirmed by experiments of this sort, because they 
prove that the accelerations of the water were defined correctly by us. 
But one must take care in the experiment that the horizontal pipe is 
very smooth on the interior, perfectly cylindrical and horizontal, and 
that it is wide enough so that no noticeable decrement of motion can 
arise from the adhesion of the water to the walls of the pipe; let the 
vessel itself be very wide and be kept full continuously. Also one 
must observe how great is the characteristic of elevating standing 
water in the glass tube gm, which characteristic pertains to all capillary 
or rather narrow tubes; for this elevation is to be subtracted from the 
height gh; or, rather, a pipe of equal thickness is to be assumed with 
the orifice o blocked off, the point mis to be noted, and then, with the 
water allowed to flow, the point h is also to be noted; moreover, 

according to the theory the descent will be mh = _..:_ a = _..:_ (EB). 
nn nn 

Finally, one must pay attention as well to the stream of water 
flowing out at o, for its contraction also causes the water in the hori-

zontal pipe to flow through at a velocity less than Va_ I treated that 
n 

contraction and the method of preventing it in Chapter IV. But 
although it can happen with these inconveniences that no noticeable 
error remains in the experiment, nevertheless, if we wish to apply 
greater accuracy, the quantity of water flowing out in a given time 
will have to be discovered by experiment, which [quantity], compared 
with the area of the pipe, will give very correctly the velocity of the 
water flowing within the pipe, which in the calculation we have set 

Va 
equal to -. But if in the experiment it will be found to be less, 

n 
such, for example, as is due to the height b, then the pressure of the 
water flowing by will be approximately a - b. 

§9. COROLLARY 3. If the orifice at o is blocked off at first by a 
finger, and afterwards the water is allowed to flow, the pressure a at 

the first moment of flow is changed into the pressure nna - a, but that 
nn 

change of pressures does not occur in an instant; if, indeed, one is to 
speak accurately, it occurs at last after an infinite time, because, as 
we saw in Chapter V, the entire velocity of the water, which was 
assumed by us in the calculation to correspond to the whole height a, 
is never present exactly; nevertheless, it tends toward this velocity 
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with an incredible acceleration immediately after the first drops have 
been ejected, so that it seems to have acquired the total [velocity], as 
much as can be judged by observation, without any noticeable delay, 
unless the aqueducts are very long, for then the accelerations of the 
water can be discerned clearly by eye, an example of which I gave in 
§13, Chapter V. Therefore, in those conduits bearing water to a 
leaping fountain from a reservoir located very far away, if the pres
sures are investigated at some point by experiment in the manner that 
I mentioned above, it is found that the pressure is diminished quickly 
indeed, nevertheless not in an instant, and it will be possible to 
distinguish the differences of the pressures. 

But in order to define the force of the water generally, one must 
assume for v that velocity which the water has at that same place and 
that same instant at which the force is desired, and if this velocity is 
known to conform to the height b, the force of the water will be a - b. 
Hence, since those things which were offered in Chapter V have 
agreed with the present, it will be possible to define what the pressure 
will be at any moment. 

For these [statements] it is not difficult to anticipate the laws of this 
hydraulico-statics if both the shape of the vessel and the velocity of the 
water flowing through the conduits are assumed at will as anything 
whatever. Indeed, the pressure of the water will always be a - b, 
where by a is understood the height due to the velocity at which water 
will flow out of an abrupt conduit and vessel kept constantly full after 
an infinite time, and by b the height due to the velocity at which the 
water actually flows through. It is clearly amazing that this very 
simple rule, which nature affects, could remain unknown up to this 
time. Therefore, I will now show it more expressly. 

PROBLEM 

§rn. To find the pressure of water flowing at any uniform velocity 
whatever through a conduit arbitrarily formed and inclined. 

SOLUTION. Let there be a conduit ACD (Fig. 74), through the ori
fice o of which water is considered to flow at a uniform velocity due 
to the vertical height oS; let the line SN be drawn, and let the in
finitely wide vessel NMQ,P be assumed full of water right up to NP, 
from which the conduit draws its water perpetually and equally; I 
assume these things accordingly ii:i order that a cause be present, or a 
uniform propelling force, which propels the water at a given velocity 
or maintains an equal flow of water. And without this hypothesis 
our problem would be indeterminate, because the same velocity in 
the same conduit pertaining to any instant can be generated in in-
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finitely many ways, and therefore, in order that a measure of the cause 
propelling the water be obtained, uniformity must be assumed in the 
motion of the water. 

FIGURE 74 

Now the pressure of the water is to be defined at CF ( or if) ; and to 
this end we will consider again that the conduit is broken at the 
section CE (or ce) perpendicular to the conduit, and we will examine 
what acceleration or retardation the volume element CEGF ( or cegf) 
will receive after the first instant of rupture; for this reason we have 
to define generally the instantaneous motion through the shortened 
vessel NMECAQP (or NMceAQP). Therefore, let the velocity of the 
infinitely small volume element CEGF (or cegf) at that very point of 
cutting off be v, and let its mass be dx; the live.force of the water moving 
in the shortened vessel will be proportional to the quantity vv; hence 
we will set it equal to a.vu, understanding by the letter a. some constant 
quantity which depends upon the areas of the suddenly broken con
duit; however, its precise determination is not required here. Let it be 
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noted that the live force of the water in the fictitious vessel N MQ,P 
is neglected on account of its infinite area; nevertheless, even if 
it would not be of infinite area, no variation would hence arise in the 
calculation. Now we have the increment of live force of the water 
moving in the shortened vessel equal to 20:v dv, to which if there is 
added the live force generated at the same time in the ejected volume 
element, there arises 20:v dv + vv dx, which is the total increment of 
live force due to the actual descent of the volume element dx through the 
vertical height of the water above the point C (or c), which we will 
designate by a; therefore, that total increment of live force is hence to 
be made equal to a dx, such that 

20:v dv + vv dx = a dx 
or 

v dv a - vv 
Tx = ----;;-· 

If the remaining things occur as in §5, and the velocity v is assumed 
as ifit were due to the height b, it will be found that the pressure of the 
water at CF (or cf) is as great as in water standing at the height a - b. 
Here it can be noted that the height b is to the height oS, if there are 
no alien hindrances to the motion and the stream flowing out at o is 
not contracted, in proportion as the square of the orifice o and the 
section CE ( or ce). 

§11. COROLLARY. When b is greater than a, the quantity a - b 
becomes negative, and thus the pressure is changed into suction, that 
is, the walls of the conduit are pressed inward; moreover, then the 
situation is to be considered as if, in place of the aqueous column CT 
lying above and set in equilibrium with the water flowing by, the 
aqueous column ct were attached, the tendency of which to descend 
is prevented by the attraction of the water flowing by, just as if, for 
example, the area ce of the conduit were equal to the orifice o, where
upon b = oS, not considering the accidental hindrances to the motion; 
hence, if the tube er descends from the conduit, and ifit is full of water 
from its origin c right to the point t placed on a level with the orifice o, 
the water ct will remain suspended without motion; but if the point t 
is placed below o, the water will descend through the tube er, and it 
will flow perpetually at r, and, nevertheless, as anyone can now 
estimate after this theory has been considered, the velocity of the 
water flowing out at r will be that which is due to the height of NP 
above r, and even if all hindrances are removed, this velocity will 
correspond rather to the height tr, if only the tube is very narrow in 
proportion to the conduit. If the point t is placed higher than the 
point o, the water will ascend on its own, and after it will all have 

.. 
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entered the conduit, air will be drawn through the tube, and soon the 
aqueous stream flowing out at o will be disturbed by the admixed air, 
its clearness and solidity having been spoiled. Therefore, one sees 
when the pressure will be positive and when negative: indeed, the 
pressure is the greater in a tube, the larger it is [in area] and the lower 

it is placed. Certainly in theory the height b = !._ (oS), if~ denotes 
nn n 

the ratio between the area of the orifice and of that section of the pipe 
for which the pressure is to be defined. But when hindrances dim
inish the motion notably, it will be agreed upon in estimating pres
sures rather that the velocity of the water, as it actually is, be found by 
experiment and the height required for that velocity be substituted 
for b; similarly, the pressure will be estimated more accurately if for 
a not the height of the aqueous surface NP above the place of effiux is 
substituted but rather the height of the velocity at which the water 
actually flows out from the conduit broken in the same place. Never
theless, these corrections are not always important. But I will now 
illustrate that general theory by certain examples. 

§12. EXAMPLE I. Let there be a vessel ABFG (Fig. 75), from the 
middle of the base of which the pipe DE descends, having the shape 
of a truncated cone diverging toward the lower regions. Let water 
be supplied perpetually at AG, so that the vessel is thus kept full. 

Moreover, let the height of the aqueous surface above the orifice 
Ebe a, and above D (which is the point at which the pressure of the 
water is desired) be c, the area of the orifice at Ebe m, and the area 
of the horizontal section at D be n. The pressure of the water at D 

will be c - mm a, which quantity is negative by virtue of the hypo-
nn 

theses, so that the walls of the conduit are pressed inward by an 

aqueous column of height mm a - c. 
nn 

Therefore, if the curved pipe DLN is understood to be inserted in 
the other pipe DE, the water flowing past D will be in equilibrium 

with the water DLN when the height of D above N is mm a - c. If 
nn 

this height is less, the water will ascend on its own, and it will not stop 
ascending as long as the orifice N is submerged in water, so that thus 
water can be elevated from a lower place to a higher without any 
external force, if it flows in at AG in sufficient quantity. But, indeed, 

when the vertical height of D above N is greater than mm a - c, the 
nn 

water will ascend in the leg LN until it will be equal to the other. 
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Finally, it must be recalled here that in passing I indicated that 
experience shows that water is indeed far from flowing out through 
pipes diverging from the vessel to which they are attached at its total 
velocity which it should obtain by virtue of the theory; I indicate 
reasons for this in §26, Chapter III. 

I 
I I 

N 

FIGURE 75 

Hence it occurs that the height of D above N is somewhat less than 
that which should be found by theory. The error may be corrected 

if in place of mm a the height of the velocity is used which the water 
nn 

has at D; this height is obtained from an experiment performed on the 
quantity of water flowing out in a given time. 
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§13. EXAMPLE 2. If to a similar vessel a vertical pipe is attached, 
which is represented in Fig. 76 by CE, in which the areas everywhere 

)" 

FIGURE 76 

have an inverse ratio to the square roots of the heights of the water 
lying above, that pipe is not affected by the water flowing through, 
and it does not sustain either pressure or suction anywhere. 

Hence it follows that the natural shape of a vertical aqueous fila
ment, as long as it is continuous, is the same as that of the pipe CFE, 
which both reasoning and experience confirm; moreover, the fila
ment will be attenuated more quickly, the less the height of the 
aqueous surface above the orifice C, or the slower the water flows out; 
it appears that the aqueous filament is of this nature in order that the 
same quantity of water may flow across the individual sections and 
that the velocity is not changed anywhere, wherever the filament is 
cut off, which same property occurs as well in the pipe CFE, so that 
these things agree with each other very well. 

§14. EXAMPLE 3. Let water discharge from a reservoir through a 
conduit in the base of which there is an orifice through which water 
springs forth vertically just as in a leaping fountain; I say that the 
pressure of the water at individual points in the conduit is everywhere 

equal if its areas are respectively as J x ~ b' where a expresses the 

height of the water in the reservoir above the orifice of efflux, x the 
height of the same water above a point chosen at will in the conduit, 
and b an arbitrary constant height, and then the pressure of the 
flowing water everywhere will be to the pressure of standing water as 



302 HYDRODYNAMICS, CHAPTER XII 

b is to a. But because, with the remaining things being equal, wider 
conduits are less resistant to rupture than narrower, and this indeed 
in ratio of the radii, or because the attempt of water in rupturing a 
conduit, with the remaining things being equal, follows a square root 
ratio of the areas, it is evident that the conduit will be subject to the 
same danger of rupture at any location if the area (y ) in proportion 
to the orifice ejecting water (unity) everywhere follows the law of the 
following equation: 

(x - ~) vj = b, or xxy4 - bby3 - 2axyy + aa = o. 

In a conduit of equal area throughout its entire length, the pressing 
force of the water for rupturing the conduit will be everywhere 
proportional to the strength of the conduit, if the thickness of the walls 

of the conduit follows the ratio of x - _!:__, the area of the conduit in 
mm 

proportion to [that of] the orifice (unity) having been understood 
bym. 

§15. EXAMPLE 4. It can happen that the height of the aqueous 
surface with respect to the place at which the pressure is to be investi
gated is negative, such as in curved siphons drawing water from one 
vessel to another placed lower. Then the pressure becomes negative 
on two accounts, namely, equal to - a - b, with a denoting the height 
of the point above the surface of the water and b the height due to the 
velocity of the water at that point. 

Truly these things will suffice, as I believe, for correctly under
standing the statics of moving fluids. Now I come to certain other 
phenomena, the solution of which depends on those rules which we 
have just presented. 

§16. In Chapter III, §25, I made mention of the cohesion of water 
flowing through pipes; however, to define the true measures of that 
cohesion everywhere is a matter which cannot be explained without 
that previously mentioned hydraulico-statics: for it does not suffice to 
have considered the vertical heights above the orifice of efflux, as it 
is commonly thought, but it is necessary to know also the velocities 
conforming to the water, and these are understood from the areas. 
But in order that the general law may appear at once in defining the 
force of cohesion or the inclination with which fluids tend toward 
mutual separation, I say that that force of cohesion is equal to the 
force by which the walls of a conduit are pressed inward, which we 
defined in §ro. This proposition does not seem to me to need any 
other proof; for just as the compression of water, or the force by 
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which its portions are pressed mutually against one another, is equal 
to the standing aqueous column lying above, so in turn the tendency 
to separate the fluids is to be reckoned equal to the [ effect of] the 
attached standing vertical aqueous column which is in equilibrium 
with the water flowing by. In place of examples we will accept the 
same things which we used above for indicating the negative pressures 
of water. 

I. In Fig. 75, explained in §12, if in the tube DLN the height of D 
above N is such that the water standing in it is in equilibrium with 
the water flowing past at D, then, in order that the water not be torn 
apart at that place, the force of cohesion at D must be as great as that 
which the weight of an aqueous column of similar base and vertical 
height DN has. Hence that which I mentioned in §25, Chapter III, 
is understood: that the length of a pipe can be increased so that finally the 
water stops being continuous in the pipe, but rather it is divided into columns, 
and this happens in cylindrical pipes when they descend beyond 32 feet; more
over, in diverging pipes a lesser descent is required, so that, for example, if the 
lower orifice were twice as large as the upper orifice attached to the reservoir, 
pipes could not descend below eight feet without the danger of the dissolution of 
the water being present. However, in these examples considered 
theoretically, the water is assumed to flow at its full velocity without 
diminution of motion. 

II. From the same reasoning it is evident that if pipes converge 
toward the lower regions, then they admit a descent greater than 
32 feet; and finally, in the case of Fig. 76, explained in §13, the pipe 
can be continued without end, as also in infinitely many other ways. 

III. But if the height of the aqueous surface in a reservoir is nega
tive with respect to the proposed point, as occurs when water is to be 
carried across a mountain, never, no matter how the problem is 
attacked, can the height exceed 32 feet, which is evident from §15. 
For even if the water is to flow through at an infinitely small velocity, 
a force of cohesion is already required which is equal to the entire 
aqueous column, and a greater force is required if it flows through at 
an appreciable velocity. Hence I consider the remedies employed 
by some Writers as useless: certainly I know that without other artifice 
water often remains suspended beyond a height of 32 feet, and Mer
cury beyond 30 inches; but this effect is uncertain and not consistent. 
Certain people also affirm that the flow of water through curved 
siphons occurs in a vacuum; but whether the vacuum is such that not 
even a sixtieth part of the air is left in the receptacle, and whether the 
height of the pipe exceeds by more than half a foot the surface of the 
water to be drawn, I do not know. Thus, therefore, I wish that those 



HYDRODYNAMICS, CHAPTER XII 

things which I mentioned about the subsequent dissolution of the 
water should not be considered other than hypothetically spoken. 
It will suffice that I have determined accurately by what force the 
water is urged to mutual separation. 

§17. Further, there are other phenomena of nature, the true ex
planation of which depends on that hydraulico-statics theory: for ex
ample, that smoke ascending through a chimney draws air after itself 
with great impetus through an orifice made in the chimney; that the 
wind blowing from a rather narrow place into a more open one loses 
some of its elasticity, just as it is gathered from this that opened 
windows are closed by air attempting exit from a room on account of 
its greater elasticity; and others of this sort, which individual cases it 
is not permitted to study. 

The pressures of moving fluids can be varied, indeed, in infinite 
ways; nevertheless, I believe that all can be reduced to our principles; 
we have examined two forms of that theory: I deduced the first from 
the known motion which the fluid will have, if at the point where the 
pressures are to be determined the vessel is perforated with an in
finitely small orifice; the other I deduced, as they say, a priori from our 
general theory; often they both pertain at the same time, as one 
requires the help of the other, and then another estimation of pres
sures arises which I will indicate by a single example. 

§18. Let us consider, in the vessel which Fig. 72 shows, that the 
horizontal pipe has, not only at its extremity but also at its insertion 
EC, a section in a vertical place perforated in the middle, the remain
ing positions indicated in §5 being maintained; the walls of the pipe 
ED will endure a different pressure from the water flowing through 
than if there were no section EC added, and certainly a lesser one, 
although [the water] flows through at a lesser velocity. In order 
that this pressure be accurately defined, the path to be followed is the 
same as cited in §5: namely, first of all the velocity is to be sought at 
which the water flows in the pipe ED after it has already been made 

uniform. Then one should inquire as well into the value of v: v if the 
pipe is assumed to be broken off somewhere. x 

But how this can be found is a matter which pertains especially to 
Chapter VIII, with the precautions of§r4, Chapter VII, having been 
heeded at the same time. In Chapter VIII the motion of fluids 
flowing through many orifices is shown generally, and in §14, Chapter 
VII, it is demonstrated in particular how the potential ascent which is 
generated in volume elements is to be estimated when these [ ele
ments] flow through the orifice, not into practically standing water 
but into water carried by a motion which cannot be neglected. 
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If one proceeds properly along these indicated paths, he will dis
cover that the velocity with which the water flows uniformly through 

the pipe ED conforms to the height mmppa , where by 
mmnn + nnpp - mmpp 

m, p, and n are indicated, respectively, the areas of the orifices made in 
the sections EG and FD, and as well of the pipe ED; moreover, by a 
one understands the height of the water above the horizontally posi
tioned pipe ED. 

Further, if one assumes that the pipe is broken off at cd and that the 
volume element ad is being moved at the velocity v, or that the height 
due to this velocity is vv, and if at the same time one indicates the 
length Ee by c and the very small length ac by dx, one will encounter 
the following equation: 

or 

nn 
2cv dv + - vv dx = a dx 

mm 

v dv mma - nnvv 
dx 2mmc 

mmppa 
Now for vv let the value just indicated, -------=-.c=------ be 

mmnn + nnpp - mmpp' 
substituted, and there will be 

V dv 
dx 

mmnn - mmpp _______ ....::..:: ___ a 
2c(mmnn + nnpp - mmpp) ' 

to which the sought pressure is proportional. But if the area of the 
final orifice, indicated by p, is as if infinitely small, the pressure 
becomes a. Generally, therefore, the pressure sought, by virtue of 
§5, is equal to 

mmnn - mmpp -------=-=--------a. mmnn + nnpp - mmpp 

§19. If the area n of the pipe is as if infinite in proportion to the 

areas of the orifices in the sections, the pressure becomes mma 
mm+ pp 

and so great also is the height to which the water flowing out at o 
can ascend by its own velocity; therefore, this conforms with §4, 
Chapter VIII, because the shape of the vessel, or [its being] of in
finite area everywhere, docs not cause the velocity of the water 
springing forth to differ. 

When there is no plate at F, it happens that p = n, and the entire 
pressure vanishes. This deserves to be noted because it shows the 
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reason why in diverging pipes the suction is not as great as it should be 
according to the hypothesis in which all the live force is assumed to be 
conserved. Indeed, in the present case we took into consideration a 
live force which is continually diminished. And so also the sides of 
the pipe experience no pressure when the section which is at EC has 
an orifice infinitely smaller than that which exists at FD. Finally, it 
is worth noting also that, although fluids being moved through con
duits constructed without any cross-sectional plates generally effect 
a pressure which corresponds to the difference of the heights due to 
those velocities at which the fluid flows after an infinite time through 
a cut off conduit and at which it flows actually through the unin
terrupted conduit, in the present case this law is nevertheless least 
valid, to which I wish that those would pay attention who want to 
show the general proposition of §ro synthetically by our observed 
hydraulico-statics theory. For perhaps there will be some to whom this 
matter will seem so intrinsically obvious that it hardly need be proven; 
but particular laws of this type which occur in hydraulico-statics show 
that those, if there are any, deceive themselves by a certain false 
resemblance to the truth. 

§20. It will be to the point to undertake experiments also concern
ing these things which were mentioned in § r 8, for [ determining] the 
velocity of the water flowing out at o as well as the pressure; for 
hence in addition to the laws of pressures that theory of accelerations 
will also be confirmed which obtains when a certain portion of the 
live force is continually used up uselessly, which problem we treated 
especially in Chapter VIII. Moreover, in undertaking an experi
ment, as much as it can be done, let those hindrances be avoided of 
which we have already often made mention. 

§21. Let me inject here a question which certainly does not pertain 
to the statics of fluids, but to the hydraulics or motion of fluids, but 
which cannot be solved without those previously given hydraulico
statics rules. In Fig. 72 (here I no longer consider any plate at EC) 
one seeks, if the pipe is perforated by an orifice at ac having a finite 
ratio to the area of the pipe as well as to the area of the orifice o, and 
if the motion of the water has already been made uniform, one seeks, 
I say, at what velocity the water will erupt through each aperture. 

At this time let the height BE again be a, the area of the pipe be n, 
the area of the orifice at o be p, the area of the orifice ac be m, and the 
velocity of the water flowing out through o be v. The velocity of the 

water which flows across the orifice ac will be f!.. v. Therefore, at that 
n 

same place it exerts a pressure on the walls of the pipe which is 
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a - ppvv (according to §5), and on that account I assume that the 
nn 

height which can generate the velocity at which the water springs 
forth through the orifice ac will also be approximately as great, but 

that this velocity itself is Ja - ppvv_ With this having been estab-
nn 

lished, the velocities at the orifices a and ac will be as vis to Ja - ppvv; 
nn 

and thus any volume element whatever entering the pipe at GE, when 
it arrives at the region of the first orifice, is separated into two portions, 
one of which flows out through ac, the other through o; and thes~ 
portions are, respectively, proportional to the velocities at which the 
efflux occurs on either hand multiplied by the areas of the orifices. 
Therefore, if the mass of the entire volume element GE is called g, 
the portion of it flowing out through ac will be equal to 

J ppvv; [ J ppvv] gma - nn pv + ma - nn ' 

and the other portion flowing out through a equals 

If these portions are multiplied, respectively, by the squares of their 
velocities, their live forces will be obtained, the sum of which is to be 
equated to g · a, that is, to the actual descent of the volume element g 
through the height a. Thus, if it is reduced, the following equation 
is obtained: 

n3vv - n3a = mpvv nna - ppvv 
or 

2n6 + mmnnpp + nnmpv 4n4 + mmpp - 4nnpp vv = -----------:::-------,----------- a 
2n6 + 2mmp4 ' 

and this quantity expresses the height for the velocity of the water 
flowing out at a, by which knowledge also is obtained the similar 

height for the other orifice ac, which indeed is a - ppvv_ 
nn 

§22. If p = n, it happens that vv = a; therefore, the water then 
springs forth at the total customary velocity through the orifice a, and 
nothing flows out through the other orifice ac. Further, in either ori
fice the velocity corresponds to the entire height a, if p is as if infinitely 
small. But if mis infinitely small, it certainly occurs that vv = a, but 
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the height of the velocity pertaining to the small orifice ac is a - pp a, 
nn 

as was already indicated in §7. If m = p, it occurs that 

n4a 
vv------~· 

- n4 - nnpp + p4 ' 
and 

ppvv (nn - pp)2a 
a - -- = ~'--....C...C.-~ 

nn n4 - nnpp + p4 

Finally, it can be observed that the water is always ejected through 
the orifice o at a greater velocity than that which corresponds to the 
height a, which certainly occurs because the water at Ed makes some
what of an impetus against the water at dF. 

Meanwhile, although all these Corollaries agree splendidly with 
the nature of the argument, nevertheless, the solution of that problem 
cannot be considered other than approximately true. 

HYDRAULICO-STATIC EXPERIMENTS FOR 
CHAPTER XII 

PERTAINING TO §§3 AND 4 

The pressures which have been shown in the aforementioned para
graphs can be confirmed by a simple experiment, if the vessel which 
Fig. 43 shows and which is described in §30, Chapter VIII, is care
fully prepared, and if in its cross section LQ a glass tube is inserted 
vertically, either end of which is open; thus it will be observed, with 
the orifices H and .N blocked off and the entire system filled with 
water, that the water in the glass tube ascends to the level AB, or it 
exceeds it according to the nature of capillary tubes. Then also, if 
the finger is removed from the orifice .N, it will be observed that the 
water in the glass tube descends, and after the measurements have 
been taken, it will be found, unless I am mistaken, that the residual 
height of the water in the glass tube (after the height due to the 

effect of capillary tubes has been subtracted) is aa(LB) - yy(.NQ), 
aa + yy 

just as it was mentioned in §3, where the denominations of these letters 
are explained. 

Further, if from each orifice Hand.Na finger is removed, then the 
residual height of the water in the glass tube will be just that which is 
indicated in §4. Similarly, a glass tube can be inserted in the section 
Q.N, and this then bent [upward], so that it can be learned whether the 
pressures at the section Q.N have also been defined correctly. 

But th - experiments which pertain to the pressures of water carried 
through pipes I myself undertook in the presence of our Society, and 



STATICS OF MOVING FLUIDS 

they are described in Vol. IV of the [St. Petersburg] Commentaries, 
p. 194. Therefore, I will present those things here as they are 
described there. 

I used a wooden box, the width of"" hich was one foot, the length 
three feet, the height r 4 inches. I filled this with water, and I 
implanted horizontally in its final portion a cylindrical tube accu
rately made from iron. But that iron pipe was made as follows: 
namely, it had a length AB (Fig. 77) of 4 English inches, 2 lines, a 

.e 
I 

A [D] I 

lb] 
FIGURE 77 FIGURE 78 

diameter BC of 7 lines; the pipe was perforated in the middle by a 
small orifice m, and at the same place the tube DE, likewise of iron, 
having six lines in length and one and one-half lines in diameter, 
was welded so that the small orifice m would lie in the middle of the 
base. A little later I attached to this small tube a glass tube of 
equal area, as it appears in Fig. 79, which shows the method of the 
whole experiment. Further, I took care that three covers be made, 
[ each] attached to the iron pipe and perforated by an orifice of 
different size; such a cover is represented in Fig. 78. 

With all these things brought together in that way, which Fig. 79 
shows, and having insured that the water did not flow through 
openings other than the aperture at BC, I blocked off the orifice at 
BC, and then I observed, in the vertically placed glass tube, the 

n 

j 

FIGURE 79. 
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point n to which the water ascended, and this I marked by wrap
ping a silk thread around it; but first I had determined the capillary 
effect of that glass tube, and this I had found to be five lines, so 
that, with the tube vertically immersed in the water, the difference 
between both surfaces of water was five lines; accordingly, the point 
n was elevated above the surface EF by the same number of lines, 
and hence in the calculation any height Dn, Dg, is to be considered 
diminished by five lines. 

In the individual experiments the box was kept full of water so 
that the height AF was g inches, 7 lines, but the height Dn was 10 
inches. With all these things thus prepared for the experiment, 
then by reason of the orifice having been opened at BC, efflux was 
granted to the water, and directly the water descended in the glass 
tube, as from n tog, which point g I marked again with another silk 
thread wrapped around the tube beforehand. And thus at last we 
performed the following experiments which correspond to §5 and 
following. 

EXPERIMENT 1. When the diameter of the orifice in the cover BC 
was 2¼ lines, the descent ng was a little greater than one line, so that 
no difference could be observed between the theory and the result of 
the experiment. 

EXPERIMENT 2. With another cover applied, in which the dia
meter of the orifice was 3-} lines, or a little greater, the observed 
descent ng was six lines and two-thirds, again clearly as the theory 
indicates. 

EXPERIMENT 3. With the third cover applied, in which the dia
meter of the orifice was 5 lines, or somewhat less, we observed a 
descent ng of 28 lines. According to the theory it should have been 
about 29 lines, and, indeed, the orifice was seen to have not quite 
five lines in diameter. The very small difference is to be attributed 
to the hindrances which the water experiences in flow through the 
tube which are greater than in the preceding experiments on account 
of the increased motion within the tube. 

EXPERIMENT 4. Finally, with no cover attached, we allowed the 
water to flow out through the full orifice, and then almost all the 
water had gone out from the glass tube; nevertheless, some portion 
remained which we discovered to be eight lines high. But five of 
them are to be attributed to the effect of the capillary tube, the re
maining three are due to the hindrances which the water en
counters in flow from D to B. 

Thus, therefore, the experiments agree with theory correctly. 
Moreover, hence it is not difficult to see in advance that it can 
happen that the walls of the pipe not only are not pressed toward 
the exterior, but also that they are compressed inward toward the 
axis of the pipe (see §11). Moreover, I was shown this by the fol
lowing additional experiment. 

EXPERIMENT 5. In place of the cylindrical pipe AB I applied a 
conical one, the external orifice of which was greater than the in-
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ternal orifice, and at the same time I made use of a curved glass tube 
such as Fig. 80 shows. And, while before flow the water stood at n 
in the glass tube, the water descended in the same tube right to g 
when water flowed through the conic pipe; and the point g was 

I 

D I 
I 

FIGURE 80 

I 

n 

.J 

below D, [serving as] proof that the conical pipe was under pressure 
during flow. But in these cases there are significant hindrances to 
the motion which make the velocities of the water at the external 
orifice much less than those which correspond to the height of the 
water; and for this reason the height of the point D above g was 
not as great as it would have been otherwise, although there was 
some [height]. I obtained the same but altogether more notable 
effect in another way (see§r2 ). This other experiment I performed 
in the following year in the presence of the Academicians, the Most 
Serene Prince Emanuel of Portugal being present. 

EXPERIMENT 6. In Fig. Sr ACFB represents a cylinder, in the base 
of which was implanted the conic pipe DCHE; and the latter had a 
small tube at the side at l which was joined by the extremity of the 
curved glass tube lmn; the height CA was 3 inches ro lines; El, 4 lines; 
lH, 2 inches g½ lines; the area of the conic pipe at l was to the area 
of the orifice CH as ro is to r 6; ln was 5 inches 6 lines, and its orifice 
n was submerged in water in the small vessel M. 

With a finger placed over the orifice CH and the vessel filled, the 
water trickled through the glass tube lmn into the vessel M; but 
with the finger removed and the water now flowing out through 
CH, the water ascended of its own in a reciprocal motion from the 
small vessel M through the tube nml, and together with the re
mainder flowed out through CH, during which time the entire 
small vessel M would have been emptied. But water was supplied 
continuously from above, so that the vessel was kept full. If a por
tion of the orifice CH was blocked off by a finger, it was easy to 
cause the water in the glass tube lmn to move up or down at will. 
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If anyone should wish also to find out by experiment whether the 
theory agrees with the problem of§r8, he will not have organized his 
work badly, since indeed he will thus illustrate not only this new 
hydraulico-statics of ours, but also the theory of Chapter VIII, equally 
new and treated by no one, by a splendid example, and this very 
easily. 

FIGURE 81 

After these things now have been collected in wntmg, I myself 
undertook the experiments of which I just made mention. I used 
the same mechanism for this that I just described and which is 
represented in Fig. 79; but in addition, as the nature of the matter 
requires, I placed another cover on the pipe at A; and the height of 
water AF was 8 London inches; the diameter of the iron pipe AC was 
again 7 lines. Also I used the same covers as before. But in every 
experiment I observed the descent which the surface n made when the 
finger was removed from the cover BC; moreover, at the same time, 
after the measurement of the vertical height of the orifice C above the 
floor had been taken, I observed the distance of that vertical line from 
the place at which the aqueous stream struck. This distance I shall 
call the amplitude of the thrust; but this vertical height was r 9 inches in 



STATICS OF MOVING FLUIDS 

the individual experiments. With these things thus prepared I 
performed the following experiments. 

EXPERIMENT 7. When the diameter of the orifice of the interior 
cover was 2½ lines and the diameter of the orifice of the exterior cover 
3} lines, the descent ng was a little less than 7 inches, and the amplitude 
of the thrust was g inches. However, in the theory shown in §18, the 
descent ng is indicated as 6 inches ro lines and the amplitude of the 
thrust as g½ inches. 

EXPERIMENT 8. Next the diameter of the internal orifice was 
5 lines and the diameter of the other orifice 3§ lines; the descent ng 
was almost r 7 lines and the amplitude of the thrust 24 inches. In theory 
ng is r 7£ lines and the amplitude of the thrust 23 inches. 

EXPERIMENT g. Further, when the diameter of the internal orifice 
was 3¾ lines and the diameter of the exterior orifice 5 lines, the de
scent ng was almost the same as in Experiment 7, namely, about 
7 inches. But the amplitude of the thrust was greater, that is, r r inches. 
In theory ng is 6 inches r r lines and the amplitude of the thrust almost 
r r inches. 

EXPERIMENT ro. Finally, with the diameter of the interior orifice 
being 3% lines and the diameter of the exterior orifice 2½ lines, the 
descent ng was about one inch and the amplitude of the thrust 23 inches. 
In theory ng is 14 lines and the amplitude of the thrust is 22½ inches. 

Actually all these experiments agree splendidly with the theory; 
perhaps a greater agreement would have resulted ifit would have been 
possible to obtain the measurements of the orifices with greater 
accuracy; nevertheless, no one, as I believe, is displeased by those 
minimal differences in numbers. Moreover, they arise for the most 
part from the compression of the water at AC which is produced while 
the volume elements entering the conduit through the interior 
orifice lose part of their motion; hence the amplitude of the thrust is 
slightly greater and the descent ng is less in theory than in the experi
ments; I did not wish to add the measure of this matter, although it 
would have been within my power, lest the calculation become more 
intricate. 



THIRTEENTH CHAPTER 

Concerning the Reaction of Fluids flowing out of 
Vessels and the Impetus of the Same) after 

They have Flowed out) on the Planes 
against which They Strike 

§1. Water, while it is being ejected from a vessel, acts in the same 
way against the vessel out of which it is flowing as a shot against the 
cannon or rifle from which it is expelled: it certainly repels the vessel. 
And this, indeed, Newton already noted in Principia Mathematica 
Philosophiae Naturalis, first edition, p. 332, and from this he correctly 
deduces the ascent of mortar shells which are filled with gunpowder 
properly mixed with charcoal. For after the material has been 
ignited, it projects the mortar shells upward while it expires slowly 
through the orifice. 

But neither did the cited author (since it was not in accordance 
with his purpose) handle the argument generally enough for the 
importance of the matter, nor did he give the true measurement of it. 
Finally, in the two later editions he ignored it altogether. However, 
he considered that that force of repulsion is equal to the weight of an aqueous 
cylinder the base of which is the orifice transmitting the water and the height of 
which is equal to the height of the aqueous surface above the orifice. Indeed, 
this quantity is deduced correctly from the opinion which Newton 
favored at that time about the velocity of the water flowing out of a 
vessel, when he stated that the water can ascend to one half the 
height of the surface by its own velocity. 

But just as now the falsity of the latter proposition is unknown to 
no one any longer, so also the defect of the other anyone hence easily 
gathers, although at first glance it seems true enough. 

§2. At first we will consider the matter in the very simple case in 
which, certainly, we assume the water to flow horizontally out of a 
vessel of infinite area. Moreover, I have demonstrated that the total 
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force of repulsion is not present immediately at the beginning of flow 
unless insofar as the total velocity itself is present in the water flowing 
out, such that if the vessel is not of infinite area, the force of repulsion 
together with the velocity of the water flowing out increases little by 
little, or even decreases, according to the nature of the circumstances. 
However, at first let us disregard these instantaneous changes by 
assuming that the flow from an infinite vessel becomes constant. 
And thus the force of repulsion is best defined if whatever force is 
required for producing the motion is sought. Indeed, to this end one 
has to look not only for the velocity of the water flowing out, but also 
for the quantity of it; but the quantity depends partly on the magni
tude of the orifice and partly on the contraction of the stream, which 
latter is variable; indeed, we saw in Chapter IV that it can be 
entirely avoided. If some contraction exists, nevertheless, the section 
of the most greatly contracted or attenuated stream is to be considered 
instead of the orifice, and then I say that the force of repulsion will be 
equal to the weight of an aqueous cylinder the base ~f which is the orifice trans
mitting the water ( that is, the section of the most greatly contracted 
horizontal stream) and the height of which is equal to double the height of the 
aqueous surface above the orifice, or, more accurately, to double the height 
appropriate to the velocity of the water flowing out. Therefore, if there is no 
contraction of the stream, just as there is none when water flows out 
through a short pipe, the repulsion will be twice or almost twice as 
great as that which was defined by Newton. 

§3. In order that we may show this proposition, a certain Mechan
ical principle will have to be considered here, for which I have often 
found use in solving other questions. The principle is this: 

lj a body has acquired the same velocity from rest through direct motive 
pressures, variable in arry way whatever, and if the individual pressures are 
multiplied by their proper differential times, the sum of all the products will 
always be the same; that is, if the pressure is p and the differential time is dt, 
then f p dt will be constant. I showed this matter more clearly in the Com
mentaries of the Imperial Academy of Science of St. Petersburg, Book I, p. 132. 

§4. Let us assume now a cylinder of practically infinite area from 
which water flows out horizontally at uniform velocity; let us dis
regard the influence which gravity exerts on the particles after they 
have flowed out, so that the individual ones continue to be moved 
horizontally and uniformly. But the particles are accelerated and 
they experience pressure as long as the maximum value of the velocity 
is not yet present, and they obtain this value when they have arrived 
at the place of the greatest contraction of the stream. For this reason 
I said that the section of the stream formed at that place is to be 
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considered instead of the orifice of efflux. Let the area of that section 
be 1, and let the water there have a velocity which is due to the height 
A. Let it be assumed that the cylinder of water has flowed out which 
has I for its base and L for its length. If the time is expressed by a 
length divided by a velocity, the velocity appropriate to the height 

will have to be expressed by V 2A, and the time of flow by _ ; . 
v2A 

With these things set forth in advance, we will investigate the motive 

pressure which can impart the velocity V 2A to the cylinder Lin the 

time _ ; . Let the pressure be p, and let it be considered, for the 
v2A 

sake of a shorter calculation, to have acted during the time t and to 
p dt pt 

have given the velocity v to the cylinder. Then dv = Land v = I,' 

Lv _ 1- L 
whence p = ,:· Now let v 2A be substituted for v and V 

2
A for t, 

and thus p = (LV 2A) I ( v:A) = 2A. Therefore, the pressure con

stantly exciting the water to efflux is equal to the weight of the aqueous 
cylinder of which the base is the above-defined orifice transmitting 
water, the height of which is equal to double the height appropriate 
to the velocity of the water flowing out; and also just as great is the 
reaction which repels the vessel. Q.E.D. 

§5. The proof is the same if the water flows out not through an 
orifice but through a horizontal cylindrical pipe at a constant velo
city, or even through a pipe of size varying in any way. This latter 
can also be proven directly if the pressure required in the individual 
particles is expressed correctly so that these [particles] receive the 
required increments or decrements of velocities. 

§6. The height which we called A differs very little indeed in ex
periments from the height of the water above the orifice of efflux, 
especially if the water flows out from a very large vessel through a 
simple orifice which is not very small. But the orifice of efflux more 
often differs notably from the minimum section of the stream, which 
we consider as the orifice transmitting the water; the quantity of water 
flowing out in a given time, compared with its velocity, indicates this 
in experiments. 

Hence it occurs that our proposition of §3, after it has been chal
lenged by experiment, ordinarily does not differ much from the pro
position of Newton shown in §1. But if everything is carefully avoided 
which can produce a contraction of the stream and which can dimin-
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ish the velocity, the repelling force according to our theory will 
become almost double that which was defined by Newton, and 
accordingly, such a value is also confirmed by experiments. 

But in order that we may bring the matter clearly to light and treat 
it now rather generally, we will handle it so that we determine the 
repelling force from the beginning of flow, while the velocities are 
being changed continuously; and, indeed, our first theory does not 
have meaning other than when the velocity remains unchanged. In 
order that we may be more intelligent in handling this slightly more 
intricate question, it will help here to set forth certain rather general 
things in advance. 

§7. Momentum is the product of the velocity and the mass. If the 
velocities are unequal, the absolute momentum will result if the indivi
dual particles are multiplied by their own velocities, respectively, and 
the sum of the products is taken. The momentum is generated by the 
motive pressures acting for a given time, and the effect is to be con
sidered equal to the cause. Therefore, the sum of the motive pres
sures multiplied by their proper differential times is to be evaluated 
from the momentum generated. And because any motive pressure 
reacts on the vessel from which the water flows out, the total repelling 
force for any instant whatever will be equal to the new momentum 
divided by the differential time in which it is generated. With these 
things having been set forth, I proceed to the question itself. 

§8. Therefore, let the vessel ACDB (Fig. 82) be of infinite size, and 
let the tube EHID, the areas of which are assumed unequal in some 
way, be fastened horizontally to it. Let the area of the orifice HI 
be I, and the length of the tube be m. The velocity at HI, variable 

B 

I 
i 
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FIGURE 82 
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in any way, equals V 2v, or that which is due to the height v. I say at 
first that the absolute momentum of the water contained in the tube 

will be equal to mV 2v, that is, as if the tube were cylindrical and 
equal in area to the orifice HI, because, of course, the velocity of any 
sectionFGg.fis reciprocally proportional to the mass [sic.] 

Now, indeed, let us consider that in a given infinitely small differen
tial time there flows out through the orifice HI the small column 
HLMI, the length HL or IM of which we consider equal to ex. The 

mass of this column will be ex, and it will have the momentum exV 2v, 
but in the same time the mass of water contained in the tube acquired 

mdv . 1-
the momentum . 

1
_ (for it had mv 2V). Therefore, the absolute 

·y 2V 

d . h . d"ff, . I . . . ;- m dv momentum generate mt e given i erentla time is exv 2v + . 
1
_; 

V 2V 

but if this is divided by the same differential time (which is to be ex-

pressed by ;
2
J, as we saw in §7 the required pressure repelling the 

vessel will result, which, therefore, if it is called p, will be 

( 
• 1- m dv)/ ex 

p = exv 2 v + V 2V V 2V' 
or 

m dv 
p = 2V + -• 

ex 

(ex) It appears from this that the last definition of the question 
depends on the ratio which exists between dv and ex; this, in fact, we 
defined generally in Chapter III: however, no attention was paid to 
the hindrances which are due to this case. Therefore, the shape of 
the tube also contributes something here. 

(/3) Further, it follows that, if the flow is considered uniform, p is 
constantly equal to 2v, because then dv = o. In fact, this conforms 
with what we showed in §5. But, while the flow is being increased 
(which certainly it does noticeably, and this for long enough time if 
the conduit EI is rather long), the vessel experiences a continuously 
different repelling force. 

(y) At all times, dv has a real ratio to ex. Therefore, the repelling 
force is never null, so that from the first instant of flow the vessel is 
repelled, even if hardly any water then flows out on account of its 
trifling velocity. Truly, in order that the general use of our rule be 
clear to everyone, we will now apply it to a special case by attributing 
a cylindrical shape of area I to the tube EHID. 

§9. Therefore, if the tube is assumed cylindrical, entirely open at 
HI, with the other assumptions and designations having been re
tained, the live force of the water contained in the tube will be mv; the 
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increment of this is m dv, to which is to be added the live force of the 
little column HLMI, or av, and their sum is to be made equal to the 
product of the height of the surface AB of the water above the orifice 
HI, which we will call a, and the differential mass a. Therefore, 

. dv a - v 
m dv + av = aa, and from this there results - = --. But with 

a m 
that value substituted in the equation of the above paragraph, there 
results p = a + v from which I deduce the following conclusions: 

(a) The length of the tube contributes nothing to the repelling 
force which the vessel sustains if the velocity is assumed to be the same, 
because the letter m vanished from the calculation. However, this 
length (just as we showed in the above more than well enough) 
causes the velocities to assume faster or slower increments, for the 
longer the tube the more slowly the water will be accelerated, and 
vice versa, so that it acquires in an instant from rest its maximum rate 
of speed if the length of the tube is null. But if this same tube is of 
infinite length, the water can acquire a noticeable degree of speed 
only after an infinite time. 

(f3 ) Therefore, it can occur, when the height of the water has not 
been changed, the expenditure of water being howsoever small, that 
the repelling force is notable and lasts arbitrarily long. And, indeed, 
this can be obtained in a double manner, either by prolonging the 
tube or by closing off the orifice rather often before the water has 
attained a notable velocity. However, the former method assumes a 
free flow of the water through the tube; indeed, when the flow of 
water has been retarded by external hindrances, never to be avoided 
in overly long tubes, the repelling force is also diminished. 

(y) Let me be allowed here to mention in a few words a certain 
proposition from Principia Mathematica Philosophiae Natura/is, 2nd 
edition, of Newton. After he had changed his thinking shown in the 
first edition of the cited work about the velocity of water flowing out 
of a vessel, and after he had recognized in the second edition that, if it 
is ~jected vertically upward, it ascends to the full height of the surface 
of the water, the Author prest>nted the following words in the second 
book, proposition 36, corollary 2 : The force by which the entire motion ef 
the water flowing out can be generated is equal to the weight of a small cylin
drical column ef water, the base ef which is the orifice EF ( see Newton's 
figure ), and the height ef which is 2GI or 2CK. That thinking was once 
opposed by me and by some, and again confirmed by others. But 
now, after I have thought about this theory of moving water, it seems 
to me that the dispute is to be settled thus: when the water has arrived 
at a uniform motion, which, certainly, is Newton's hypothesis, then 
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that force is defined correctly by the height 2GI, but at the beginning 
of flow, when the velocity is still null, the force corresponds to the 
simple height GI, and soon, with the velocity increasing, the force 
animating the water to efflux increases simultaneously, and finally it 
rises to that magnitude which Newton assigned. Now these things 
are obvious to anyone, because the force generating the motion of the 
water about which Newton speaks cannot but be equal to the repel
ling force, which we saw to be equal to a + v. Also the Illustrious 
Ricatti, with whom I had a discussion concerning this argument, when 
asked whence that force corresponding to twice the height of the water could 
arise, whereas it is apparently manifest that, with the orifice blocked off, the 
volume element adjacent to the latter is pressed by the force corresponding to 
the simple height, answered that one must distinguish the state of rest from 
the state of motion. 

§10. If the tube attached to the vessel is not cylindrical, the calcu
lation will have to be performed thus: 

Let the area of the conduit at FG or Jg bey, the distance of the sec
tion FGgf from the orifice ED be x, and let the other designations be 
retained. The live force of the water contained in the tube will be 

v J ~' and its increment will be dv J ~' to which, as it was done in the 

preceding paragraph, is added the live force of the small column 

HLMI, or av, whereupon dv J ~ + av = aa, from which it thus appears 

that 

dv /Jdx -;; = (a - v) y · 

With this value having been substituted in the equation of §8, there 
results 

jJ = 2v + m(a - v) / J ~-
Therefore, since in the uniform flow of water v = a, it follows that 

p = 2a. In addition, as long as the flow of water is accelerated, the 
motion of the water in the vessel ACDB near the orifice DE, which we 
have disregarded in all this work, is not to be neglected here. But 
that motion cannot be determined correctly, and, therefore, the ex
pression which I gave for the repelling force does not apply accurately 
if the water has not yet been understood to flow uniformly; but when 
the water flows steadily, the expression prevails very accurately. 

§11. After we have thus proven for the uniform efflux of water that 
the repelling force is always equal to the weight of an aqueous cylinder 
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constructed above the orifice and rising up to double the height of the 
water, it is pleasing to show it also indirectly by reduction to the absurd, 
so that also those not knowing the rules of mechanics may perceive 
the truth of this somewhat paradoxical proposition. 

To this end we will consider water flowing vertically down from a 
cylinder, disregarding the hindrances taking something from the 
velocity of the water and [ disregarding] the contraction of the stream, 
which can be avoided. The vertical pipe which is seen in Fig. 76 
corresponds to the orifice, and all the things behave as stated in Chap
ter XII, §13: the water has constant flow; the walls of the vessel and 
conduit are understood to be free from gravity; the height of the 
cylinder is assumed equal to a, and the height of the small tube equal 
to b; the height cF = x; the area at E equals 1. The area at F will be 

v'a+b . . v'a+b v' , and at C 1t will be v' Finally, the area of the cylinder 
a+ x a 

is set equal to M. After these things have been assumed, we will seek 
the weight of all the water ABCE. We will express the weight of the 
water ABC by Ma, and thus the weight of the water CE will be 

2a + 2b - 2v' aa + ab; therefore, the weight of all the water ABCE 

will be Ma+ 2a + 2b -2v'aa + ab. Therefore, under the assump
tion that the water is at rest in the vessel and the tube, the force 

required for suspending the water is Ma + 2a + 2b - 2v' aa + ab. 
But now we will investigate a similar force when the water flows out 

through E at its full velocity (by which certainly it can ascend to the 
height a + b). But this will be obtained if the repelling force is 
subtracted from the former force. If, therefore, this repelling force 
is assumed, as we stated, equal to 2a + 2b, the force suspending the 

water during flow will be Ma - 2v' aa + ab. 
But, indeed, assume that the pipe CE is not present, and through 

our same rules the suspending force while the water is discharging 

through the orifice C will again be Ma - 2v' aa + ab, indeed because 
the weight of the water ABC is Ma and because the area of the orifice 

C is v'T, which, multiplied by double the height a, gives 

2v' aa + ab. Therefore, our estimate of the repelling forces shows 
that the suspending force during the effiux of the water is the same 
whether or not there is a small tube present, and the tube may have 
any length whatever as long as it has the shape described in §13, 
Chapter XII; and the necessity of this agreement and identity ap
pears also without calculation from the very nature of the matter, 
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because the tube thus formed makes no change in the water flowing 
through, since the stream of water assumes of its own accord the same 
shape that the tube has, as long as the water coheres. But ifwe esti
mate the repelling force differently, we will generally never obtain 
that agreement between suspending forces. Thus, for example, if 
according to common sense we say that the repelling force is equal to 
the weight of the often mentioned simple cylinder, then, while the 
water is assumed to flow out of the vessel ABC through the conduit 
CE, it will be a + b; and if this force is subtracted from the weight of 

the entire water ABCE, or Ma + 2a + 2b - 2-Vaa + ab, there 

remains Ma+ a+ b - 2-Vaa + ab, which is the force required for 
suspending the system ABCE while the water flows. Moreover, we 
saw that this force must be the same if the conduit CE is absent: but 

then the suspending force is Ma - Vaa + ab, because the weight of 
the water ABC is Ma and the repelling force by hypothesis is the simple 
cylinder erected above the orifice C to the height a. Therefore, 
according to this hypothesis it should always occur that 

Ma + a + b - 2-Vaa + ab = Ma - v aa + ab, 
or 

a+ b = Vaa + ab, 

which is absurd. A similar absurdity can be shown if the stream is 
considered to ascend vertically upward, and here in vain it would be 
stipulated for confirming common sense that the stream flowing out 
of CE cannot be assumed continuous unless some viscosity of the water 
is assumed at the same time (for otherwise the stream will be broken 
off in little drops directly in front of the orifice) and that the viscosity 
changes the state of the situation; for, certainly, neither are the velo
cities of the water changed by the mutual cohesion of the water at CE 
nor do the sides of the conduit CE sense any pressure, just as I demon
strated in Chapter XII, §13, so that I may pass in silence over the fact 
that the cohesion of the water does not arise from viscosity but from 
some other magnetic property or from mutual attraction, by virtue of 
which the center of gravity of no system can acquire either a greater 
or a lesser velocity. But, clearly, this exception for vertically ascend
ing streams [taken] by opponents has no significance when the water 
remains there continuously, even if the water has no viscosity or 
mutual attraction. 

But I could confirm our thinking in infinite other ways and by 
particular examples if I wished to pause here for a longer time. 
Thus, for example, in Fig. 29, described in Chapter V, §4, if the height 
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NS = 1, the orifice LM = 1, and the orifice RS = 2, then PB = ½; 
the repelling force which develops from the flow of water through RS 
is equal to 2 · ¾ = ½, and I can show that the repelling force which 
results from the effiux of water from the simple cylinder RN through 
LM is also½, and thus that the total repelling force is ¾, which con
stitutes precisely double the aqueous cylinder above the orifice LM 
standing to the height NS + PB. Moreover, such an agreement in 
no way appears in other theories erroneously conceived, so that there 
can be no further doubt concerning ours, except by those utterly 
unskilled in these matters. But if I wished to prove that what I said 
-that the repelling force of the water flowing out of the simple cylin
der RN through LM is ½-it is required that the repelling force be 
defined when water flows from a non-infinite vessel at some given 
nonvaried velocity. But lest I become too involved in this matter, 
I leave this to be accomplished by others, and it should now no 
longer be a great task. I proceed to other things. 

§12. The proofs which we gave up to now are valid only for straight 
tubes in which certainly the motive force of any of the volume ele
ments and the repelling force arising from it are in accordance with 
all the others, and they have a common direction. But when the 
tubes attached to the vessel through which the water flows are 
curved, another method of proof is to be employed. In order that 
we omit nothing further in this new argument, we will also show this 
case. And it will not happen that one regrets the work, since from 
this will appear the true laws of pressures which nature follows, not 
only in these cases but also in many others. 

§13. And so let us consider a tube attached to an infinite vessel, 
certainly of uniform area, but curved according to any curvature AS 
whatever (Fig. 83), so that A is the point of insertion and S the point 
of effiux. Let the tangents at A and S be drawn, namely AR and SB, 
and let AB be perpendicular to SB. The velocity of the water flow
ing through the tube will be uniform and that which is due to the 
height A. The area of the tube everywhere is r. I Sl!J' that the total 
repellingforce taken in the direction SB will again be 2A, and this alone will 
be present. 

For the sake of the proof, the infinitely close lines nq and ep are drawn 
perpendicular to SB, and nm is drawn parallel to the same SB; let 
Sq .= x, qp = dx, qn = y, and em = dy. The radius of the curve at en 

will be -}~:Y, the elements en, which I will call ds, having been con

sidered as constants. Moreover, the little column of water inter
cepted between e and n has a centrifugal force to be determined thus: 
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the gravity of the column is ds (because its base is I and its height is 
ds) and if the radius of the curve were 2A, there would result, by the 
theorem of Huygens, the centrifugal force of the particle equal to its 

C 

,---~------l}' 

f 

FIGURE 83 

gravity, and the centrifugal forces are, other things equal, in recipro: 
cal proportion to the radii. Therefore, the centrifugal force of the 

1. 1 1 · - 2A ddx h" "fi 1 r · d b 1tt e co umn 1s dy ; t 1s centn uga 10rce 1s expresse y ec 

perpendicular to the curve, and co is drawn parallel to BS itself. 
The force ec is resolved into oc and eo. There will be (on account of 
the similarity of the triangles eoc and nme) the force 

the force 

eo = 

oc = 
-2A ddx 

ds 

-2A dx ddx 
dyds 

(on account of ds being constant). 

2Addy 
~ 

But the elementary force oc alone acts in the direction SB, while the 
other eo is to be neglected with respect to this direction. Let the 
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integral of the elementary force oc be taken with such a constant that 
the integral vanishes together with the abscissa. This integral is 

2A dx . 
2A - ~' because at S 1t occurs that dx = ds. Now, in order that 

the force be obtained in the direction of the tangent SB for the entire 

tube,~ is to be substituted for!; therefore, the entire force follow-

ing the tangent SB is 2A - 2Ai~). This certainly develops from 

the centrifugal force of any volume element whatever, but another 
force remains to be considered: namely, when the water flows con
tinuously from the infinitely large vessel into the tube at a uniform 
velocity corresponding to the height A, the vessel is repelled along the 
direction RA by a force 2A (by §4); if this is resolved into a tangential 

along SB and a perpendicular along BA, the prior quantity 
2
A l~B) 

alone will have to be considered. And because it has a direction 

common with the force 2A - 2Ai~B) developing from the centri

fugal force and just defined, it will have to be added to the same, and 
2A(RB) 2A(RB) . 

thus the sum 2A - RA + RA , or 2A, expresses the repellmg 

force in the direction of SB. 
In order to show further that the vessel is repelled in no other 

direction, we will return to the elementary force eo, which we saw to be 
2

Ad~dy' the integral of which is 
2Aj!B), which is cancelled precisely 

by the force 2A repelling the vessel in the direction RA after the latter 
has been resolved in the proper manner. Q.E.D. 

§14. This simplicity of the most general theorem, by which cer
tainly the repelling force in the direction contrary to the uniformly 
flowing water is indicated constantly by 2A, can be the argumentum ad 
hominem, as it is called, for its excellence, against those who either do 
not understand our reasoning or who do not desire to examine it with 
sufficient attention. If, in truth, one states that the repelling force 
of the water flowing into the tube in the direction AR from the in
finite vessel is A, one sees that the system is repelled in the direction 

SB by a force which is 2A - AC::), which is absurd, as even the 

formula itself seems to indicate to me. And in this opinion the force 
in the direction perpendicular to the former would not be zero. For 
the vessel should be pressed back in the direction BA by the force 



HYDRODYNAMICS, CHAPTER XIII 

A ~A:), which again to me is absurd, and the falsity of this I learned 

from experiment in the case in which ARS was a right angle and 
AB= AR. 

Many other theorems in favor of this argument, taken in the full 
extension which it can have, could be elicited and demonstrated for 
the flow of water not yet uniform through a tube irregular in any way 
whatever, if only at the same time attention is paid to what was 
pointed out in §8. But because there is not space [enough] to go 
through the individual ones, I progress to examining another force 
equal to the prior but in the opposite direction, that indeed which a 
stream flowing out exerts on a plane when it impinges perpendicu
larly on it. 

§15. Concerning the impetus of an aqueous stream impinging on a 
plane, many have written and performed very many experiments. 
I also contributed something to this matter in the Commentaries of the 
Imperial Academy of Sciences of St. Petersburg, Book II. Experiments are 
conspicuous in the works of Mariotte in his traite du mouvement des eaux, 
in the History of the Academy of Science [Paris] contributed by Mr. 
Duhamel, p. 48, and elsewhere. Indeed, they do not all agree very 
closely; nevertheless, most of them seem to indicate at first glance that 
the pressure of the aqueous stream flowing uniformly is equal to the 
weight of an aqueous cylinder, the base of which is the orifice through 
which the water flows, and the height of which is equal to the height of 
the water above the orifice. To this thinking the majority, in fact all, 
adhered and do adhere up to this time, because it agrees wonderfully 
with other experiments also, especially those which are customarily 
performed on spheres moved in a resisting medium. Therefore, 
I myself followed the same [thinking] in the cited St. Petersburg 
Commentaries, although many made my mind uncertain, and I indeed 
did not hesitate in this work itself, which I have at hand, to make use 
of that as an example in Chapter IX, §31 and §32. However, after 
I had thought over the matter more attentively, had applied new 
principles, and at the same time had undertaken other experiments of 
a new type, at last I saw clearly that that common opinion about the 
impetus of a stream of water had to be changed in the same manner 
as that of Newton about the repelling force, so that in place of the 
orifice the section of the contracted stream should be considered, and 
in place of the height of the water twice the height corresponding to 
the actual velocity of the water should be applied. For I have proof 
that the force of repulsion shown in §2 is entirely equal to the impetus 
of the stream if all of it strikes the plane perpendicularly; it follows, 
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hence, that the impetus of the stream is greater, the smaller the con
centration of the stream and, with the latter simply vanishing and the 
water erupting at the same time at the full velocity which it can have 
in theory, then the impetus is twice as great as is commonly stated. 
Indeed, because the velocity always lacks something and the stream 
is seldom not contracted to almost one half, it is a fact that most 
experiments have seemed to support the simple height in the Cylinder 
in estimating that impetus. Moreover, I would wish that it be noted 
properly that I discuss here only solitary streams which the planes 
receive entirely, but not fluids surrounding bodies and making an 
impetus on the same, such as Winds or rivers. Indeed, I say that 
these two types of impetus which authors have confused up to this 
time are to be distinguished properly from one another on account of 
reasons to be'explained briefly below. 

§16. With respect to the aqueous stream I think as follows: I assume 
that water flows out horizontally at a uniform velocity from the in
finitely wide vertical cylinder ABM (Fig. 84) through the lateral ori-

fice CM, and that the stream impinges perpendicularly against the 
plate EF; thus I see easily, since the following particles hinder the 
prior ones so that they cannot rebound, that the individual particles 
will be deflected to the sides, and this in a motion parallel, or almost 
so, to the plate EF (if only the latter is large enough so that the entire 
stream, however dispersed, is intercepted). And because all things 
are in a state of permanence, it is permissible to assume that the plate EF 
is fixed to the vessel and that the stream is surrounded by the lateral 
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surfaces CHDGLM, so that the water can be assumed to flow out from 
the vessel ABCHDEFGLM through the circular opening DEGF. If 
this were so, we have shown in §13 that the volume elements flowing 
out at DE would certainly produce a repelling force in the direction 
of EF; but at the same time it appears that the repelling force at CF 
is opposite to the former, so that here no attention has to be paid to 
this class of repelling forces. But as far as the direction perpendicular 
to the layer EF or to the cylinder BC is concerned, we showed at the 
end of the same §r 3 that in this direction clearly no repulsion occurs. 
Therefore, the plate EF is propelled just as much as the cylinder is 
repelled. And this is what I wished to show. And hence it follows 
now that the total pressure ef the aqueous stream which strikes the plate is the 
same as the weight of the aqueous cylinder which has as base the cross section of 
the stream (after the latter has reached a uniform area) and as height twice that 
required for the velocity of the water ( after this has similarly been made 
uniform). 

§17. I do not doubt that there will be many to whom this wholly 
new proposition seems suspect and contrary to experiments. Indeed, 
I would wish those to consider that the experiments performed up to 
now by no means correspond accurately to the common rule, and in 
most cases our Rule differs little from the common, although in theory 
they are greatly different; then also I want those to have been in
formed beforehand that I have undertaken other experiments which 
individually confirm my thinking exactly, and clearly reject the old 
one! At the end of the Chapter I will review the experiments per
formed by me. Perhaps also the method of proof which I used will 
seem insufficiently accurate to some, but I have another direct proof 
which is supported by a new Mechanical property once observed by 
me, and which I will communicate here, both because anyone can 
deduce the said proof very easily, and also because he can apply the 
same to other uses. And thus it is presented. 

If a body is moved at a uniform velocity but changes its direction continuousry 
by any cause whatever acting in any way whatever until it has acquired a 
direction perpendicular to the first, and if the individual pressures deflecting the 
body are resolved into two groups, the one parallel to the first direction, the other 
perpendicular to it, and, finalry, if the individual parallel pressures are multi
plied by their proper times, I say that the sum of the products will be constantly 
the same and indeed equal to that which can generate the entire motion from rest 
or absorb the entire generated motion. 

In this dynamical relation, if we use it in our present problem, the 
plate EF is to be considered, which by its reaction on the water 
changes the direction of the latter until it has become perpendicular 
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to the first. Therefore, the proposition of the preceding paragraph, 
with the help of this relation, will be proven in the same manner which 
we used in §4 for determining the repelling force with the help of the 
principle shown in §3. Therefore, that idea, which we must under
stand about the impetus of water, seems true; however, it assumes 
that the individual particles of water rebound to the sides in the direc
tion of the plate, by which pattern I observed the water not always 
to recede; indeed, I even saw that some particles, though few, spring 
backwards; however, the latter produce a greater pressure than those 
which are deflected to the sides. And from this itself I am convinced 
firmly that if an aqueous stream with a great impetus impinges 
obliquely against a plane, for example at an angle of thirty degrees, 
a pressure will thence arise which is more than half of that which arises 
from the same stream impinging directly, while according to the ordi
nary rules it should exert exactly half the force; the reason for this 
matter is that in an oblique impulse more particles can rebound than 
in a direct one, in fact almost all [ can rebound] if the velocity should 
be great. 

However, if all particles are assumed to rebound so that the angle of 
incidence is equal to the angle of reflection, then each impulse will 
have to be considered the same. The best method of estimating the 
pressures of the water here is that in which the reasoning is supported 
a posteriori. 

§18. It follows further from the previously discussed well-known 
relationship that the same effect arises from the pressures whether the 
plate deflects the water to the sides or a cause is assumed which 
absorbs all the motion which the aqueous particles having flowed out 
of the cylinder have acquired. Hence it is understood what would 
happen if the orifice CM (Fig. 85), through which water flows out of 
the cylinder ABM, were submerged in other water standing in the 
vessel PQFE. Certainly the cylinder ABM would be repelled against 
PQ within the vessel PQFE if the latter were not connected to the 
cylinder; but if the vessels were fixed to one another, the system would 
undergo no prevailing pressure; for as great a pressure as there is 
against PQfrom the water flowing out, also as great an opposite pres
sure develops against EF from the continual destruction of the motion 
which the particles having flowed out of the cylinder have acquired. 

§19. I spoke about the pressure of a stream which, even if expanded, 
is intercepted completely by a plate. I come to the other type of 
impetus of water which indeed plates submerged in fluid on all sides 
sustain; however, I consider that this cannot be defined absolute!:)!, 
because the individual particles impinging on the plate are deflected 
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differently. But if the deviation of any particle whatever is assumed 
to be known, the solution of this question will no longer be difficult 
after the theorem which we used in §17 has been changed a little, and 

FIGURE 85 

this, given more generally, is as follows: if the angle of the change ef 
direction in a moving body is not right, but less than right, then the sum of the 
products ( which was the subject ef the discussion before) will also be less in 
proportion as the sine ef the changed direction is to the entire sine. 

Therefore, for any particle whatever it should be investigated how 
much it is forced to change its direction of motion by the obstacle or 
by the plate placed across its path. But this sort of definition can 
hardly be shown accurately in theory; experience does not prove the 
theorems customarily brought forth in this matter: such as that the 
force of a stream impinging directly against a disk is twice as great as 
the force of the same stream against a sphere of the same diameter, 
and others which are similar. However, the fact that the quantity 
of pressure for a sphere which is given customarily by authors agrees 
accurately enough with experiments made by Newton and others and 
recounted in Principia Mathematica Philosophiae Naturalis is, I consider, 
after thinking over everything well, to be attributed to a fortuitous case. 

In the Commentaries ef the Imperial Academy ef Science ef St. Petersburg, 
Book II and following, I gave theorems which were developed for 
motion in resisting media, considered theoretically, and also several 
physical observations. Therefore, I do not wish to repeat those here, 
although they pertain to our purpose; there is not space to delay any 
longer on these hydrodynamical meditations. Hence, I hasten to the 
end. I pursued this new theory about the reaction and the impetus of 
fluids, which upsets the opinion accepted by all authors up to now in a 
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matter of great importance, in a singular Dissertation which should be 
inserted in its own time in the Commentaries of the Imperial Academy of 
Science of St. Petersburg, and I confirmed the same with indubitable 
experiments. I come now to another argument, not at all unworthy 
of the attention of Geometers. 

§20. It entered my mind at one time that these things which I had 
pondered about the repelling force of fluids while they are ejected, 
which I exposed here for the most part, can be applied usefully to 
instituting a new method of navigation. For I do not see what would 
hinder very large ships from being moved without sails and oars by 
this method: the water is elevated continually to a height and then 
flows out through orifices in the lowest part of the ship, it being ar
ranged so that the direction of the water flowing out faces towards the 
stern. But lest someone at the very outset laugh at this opinion as 
being too absurd, it will be to our purpose to investigate this argument 
more accurately and to submit it to calculation, for it can be useful, 
and it is very fertile for many geometric investigations. 

Let me begin with this, for which then it will appear under what 
circumstances the maximum success should be expected from that 
new navigation. 

§21. Therefore, it is to be noted that a ship is retarded continuously 
by water drawn in on account of the inertia of the latter when the 
same velocity is communicated to it at which the ship is borne, and 
while it is communicated, the ship is forced backwards by the reaction 
of the water, but at the same time it is pressed forward by the effiux 
of the same. That meeting of the contrary actions places limits to 
the force propelling ships to be obtained from a given absolute poten
tial. For, if the prior action were not present (which, to tell the 
truth, I did not consider for a long time), a force, however great, for 
propelling ships could be obtained by the work, however little, of men, which I 
thus demonstrate. 

In Chapter IX (see especially §26) I showed that the work of men 
expended in elevating water, which I designate by the term absolute 
potential, is to be estimated from the product of the quantity of water 
multiplied by the height of elevation, so that, for instance, by the 
same labor, according to all measures, both four cubic feet can be 
elevated to a height of sixteen feet, and sixteen cubic feet to a height 
of four feet. Now, I say further that a uniform pressure is present, 
propelling ships forward, as long as the fluids flow out at an equal 
velocity; this pressure is to be estimated from the quantity of water 
flowing out and from the root of the height of the water placed in the 
vessel above the orifice; let the quantity of water flowing out in a given 
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time be Q and its height be A, then the magnitude of the orifice 
spewing forth the water will have to be considered proportional to the 

quantity ,h for that time; but the repelling force which in this case 

promotes the ship is indeed equal to the magnitude of the orifice 
multiplied by twice the height of the water (by§4), that is, equal to the 

quantity ,h 2A, or 2Q VA. From a comparison of both proposi

tions it follows that the labor of men engaged in elevating water for 

thence obtaining the force for propelling ships is as QA is to 2Q VA, 
or as VA is to some constant quantity. Therefore, the less the height 
to which the water is elevated, the greater a force propelling vessels is 
obtained from the same labor, so that by work of men, however little, an 
arbitrarily great force for propelling ships can be obtained. But also the 
inertia of the water which is taken in (about which we spoke at the 
beginning of this paragraph), retarding the ships, obtains a greater 
proportion to the force propelling the ships, the less the height A 
is taken, to which proper attention is to be paid here. 

§22. It is clear from the preceding paragraph that the height to 
which the water is to be elevated is of the class of those which some
where have a maximum. But in order that the height most bene
ficial to our purpose be determined, other questions present themselves 
to us for being examined first. 

PROBLEM 

Let a ship be assumed to progress at the uniform velocity which is 
generated by a free fall through the height B, and let it be assumed 
that water flows continuously into the ship, such as in the form of 
rain, and certainly at that quantity which a cylinder constantly full 
to a height A would supply through an orifice of magnitude M, with 
all alien hindrances removed. There is sought how much resistance 
the ship experiences from that perpetual and uniform inflow of water 
and its inertia. 

SOLUTION. Let any time t whatever be assumed; if this is established 
from the distance which the fluid flowing in travels at its own velocity 
divided by the same velocity, then the velocity is to be expressed by 

V 2A, and the quantity of water flowing in during the time twill be 

equal to the cylinder constructed above the base M of length tV 2A. 
But that quantity receives in the time t, while it is discharged from the 

ship, the velocity due to the height B, to be expressed by V2B; 
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therefore, the uniform force is to be sought which can in the time t 
communicate the velocity V 2B to the aqueous cylinder Mtv 2A, and 
that force will, on account of the reaction which acts on the ship, 
have to be considered equal to the resistance sought. Let the pre
viously mentioned force be p, and let it be assumed to have given the 

velocity v to the aqueous cylinder Mt'V 2A in the time 0, and there will 

result dv = p:; , and v = p J-· Now let V 2B be substituted 
Mt 2A Mt 2A 

for v, and t for 0, and it will occur that V 2B = ~ , or p = 
M 2A 

2MvAB. 
Therefore, the resistance sought is equal to the weight of an 

aqueous cylinder of which the base should be equal to the orifice M 
and of which the length should be equal to double the mean propor
tional between the heights A and B. 

PROBLEM 

§23. Let there be a cylinder in the ship of height A above the surface 
of the sea, through the orifice of which, placed at the same surface, 
of area M, water flows out toward the stern without any impediment, 
and let the cylinder be kept constantly full of water. Determine the 
force propelling the ship continuously. 

SOLUTION 

The force propelling the ship is equal to the reaction of the water 
while it flows out, or to the repelling force diminished by the force 
defined in the preceding paragraph developing from the intertia of 
the water which is continuously drawn in. The repelling force is 
equal, through §4 of this chapter, to 2MA, and this advances the ship; 
the other force, which retards the ship, is, through the preceding 

paragraph, 2MYAB. Therefore, the absolute force advancing the 

ship is 2MA - 2Mv AB. 
§24. COROLLARY. If the ship has no velocity, the force urging it 

will be 2MA; but if the ship is moved at the same velocity at which 
the water flows out in the opposite direction, it occurs that B = A, 
and then the ship will be propelled by no force. If, then, the ship 
were moved very freely across the sea, it would nevertheless not 
acquire from the action of the water which is taken in continuously 
and flows out below a velocity greater than that at which the water 
flows out, not because the water flowing out from a uniformly moved 
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vessel repels the vessel with a lesser force than from an unmoved 
vessel, but because then the inertia of the water produces a resistance 
equal to the repelling force. 

PROBLEM 

§25. For a given potential of the laborers who elevate the water 
and a given height to which the water is elevated, find the size of the 
orifice of effiux and the repelling force. 

SOLUTION. Let the potential be such that by it a number N cubic 
feet of water can be elevated in one second to a height of one foot, 
which potential a number of laborers to be designated by 5/,µV can 
develop according to the second experiment inserted following Chapter 
IX. Let the height to which the water is continually raised be equal 
to A, expressed in feet, and let the area of the orifice in square feet be 
equal to M. The number of cubic feet of water which the laborers 
can elevate to the height A in a single second by the given potential 

will be equal to j (through §22, Chapter IX). Therefore, the orifice 

will have to be constructed of an area so that in one second that num
ber of cubic feet of water can flow out through it if the water flows very 
freely. But let us assume instead of seconds the time which a body 
takes while it falls freely through the height A. This time is to be 

expressed here as ¼VA (it having been assumed for the sake of a 
more simple calculation that a body falling freely from rest travels 
r6 feet in one second), and in this time the number of cubic feet of 

NI,;- N 
water to be designated by -A· - v A or . 

1
_, must flow out. But 

4 4vA 
actually 2MA flows out, that is, the aqueous cylinder of which the 

N 
base is M and the length is double the height A; therefore, . ;-

4v A 
is equal to 2MA, whence the area of the orifice is 

M = 8A:A· 

However, the repelling force becomes equal to 2MA or ~--
4v A 

ScHOLIUM 

§26. In any ship, water is to be elevated to a different height, so 
that, by the same force which is expended in drawing in the water, 
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the maximum force advancing the ship is obtained, and two things 
are required for defining that most useful height for a certain number 
of laborers. First, it must be known what velocity the proposed ship 
acquires from a given potential: with regard to this postulate we 
assume that the ship receives a velocity which would be generated by 
free fall through the height C from a pressure which is equal to the 
weight of one cubic foot of water, or about 72 pounds; and since 
from now on we will always express all measures in feet, the weight of 
one cubic foot of water will have to be expressed by unity. Second, 
the relation between the velocities of the ship and forces propelling 
the ship is to be assumed as known; here it is commonly stated that 
velocities are in proportion to the square roots of the propelling 
forces; however, experiments do not confirm this hypothesis exactly 
for slow motions; meanwhile, nevertheless, we consider this [hypoth
esis] preferable to all the remaining. If someone wishes to explore 
the matter under another hypothesis, he can perform the calculation 
by the same method which we will now use. 

PROBLEM 

§27. To find the height most useful to our purpose to which the 
water is to be elevated continuously, namely, such that for the same 
potential applied for elevating the water the force advancing the ship 
becomes a maximum. 

SOLUTION. Let all designations applied in the previous argument be 
retained. First of all, one is to find the velocity of the ship or the 
height required for this velocity, which we called B. But, because the 
velocities of the ship are assumed proportional to the square roots of 
the forces propelling the ship, the heights of the velocities will be 
proportional to the forces themselves. Therefore, the following 
analogy will have to be established. 

Just as the weight of one cubic foot of water is to the height C (see 

§26), so the pressure driving the ship or 2MA - 2Mv AB (see §23) 
is to the height corresponding to the velocity of the ship, which there-

fore will be 2MC(A - V AB). But this height we called B; therefore, 

B = 2MC(A - v AB). 

Hence the pressure driving the ship becomes equal to f, and there

fore proportional to the height B, because C is a constant quantity; 
therefore, both the pressure advancing the ship and the height corre
sponding to the velocity of the ship become maximum at the same 
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time. If, therefore, for the present purpose the quantity 2MA -

2Mv'Ai3, which expresses the pressure propelling the ship, is differen
tiated, one can set dB = o. But before the differentiation is per
formed, it is appropriate to substitute for M its value from §25, and 

h h d . h h' b N Nv'B . t en t e pressure a vancmg t e s 1p ecomes . 
1

_ - -A , 1n 
4vA 4· 

which the letter N is a constant, but the letters B and A are variables. 
Now let the differential of this be taken, and by making dB = o, one 
sees that the former becomes equal to o, and thus it will be found that 
A=~. 

Therefore, the force advancing a ship is greatest when the height 
to which the water is elevated is four times the height appropriate to 
the velocity of the ship. 

Let A =~be substituted in the equation B = 2MC(A - v' AB) 

found above, and it will be seen that M = 
4
~, and because (through 

N 
§25) M = . ;-, there then results 

8AvA 

A = (½NC)213, and B = H½NC)2/3, 

§28. COROLLARY. If, according to the precept of the preceding 

paragraph, the area 
4
~ is attributed to the orifice through which 

water flows out of the conduit from below towards the stern, that is, 
one which is to an area of one square foot as a measure of one foot is to 
four times the height appropriate to the velocity of the ship animated 
by a force of 72 pounds, it will then occur that the ship is moved at 
half the velocity at which the water flows out, and the repelling force 
of the water flowing out will be 

2MA = 
2

~ (½NC) 213. 

But the force advancing the ship will be half of this, so that half the 
effect is lost by the inertia of that water which is continuously drawn 
1n. 

ScHOLIUM 

§29. After we have thus demonstrated how that method of naviga
tion is to be undertaken most usefully and with the greatest success, 
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I believe that now this matter has to be illustrated by an example 
which, I should think, does not agree poorly with the very nature of 
the matter, in order that it be shown at the same time how the occur
rence might take place, more or less. 

Let us consider a trireme, commonly called a galley, with 260 
rowers; let us assume that this galley, drawn by the weight of one 
cubic foot of water, or 72 pounds, completes a length of two feet in 
one second, the generating height of which velocity, indicated by C, 
is / 6, under the assumption that a heavy body falling freely from rest 
travels 16 feet in the first second. Because, further, 260 laborers are 
furnished, any one of which according to the second experiment per
taining to Chapter IX, can elevate four-fifths ofa cubic foot to a height 
of one foot in one second, there will be N = (4/5) · 260 = 208. 
Therefore, let the orifice through which the water flows out be of an 
area of 4 square feet; the laborers will be able to maintain the water 
elevated in the conduit above the orifice at a height of approximately 
3½ feet, which is indicated by the letter A, and if one takes the fourth 
part of this height, one will have B = t foot, so that the ship will 
progress by that navigation at the velocity that a weight acquires by 
free fall through a height of i foot; thus, therefore, the ship completes 
a length of 7½ feet in any one second and 27,000 feet in one hour, that 
is, more than two Gallic miles; such a great velocity of a ship can indeed 
barely, or not even barely, be obtained by rowing. 

But now let me apply the calculation to another hypothesis, which 
I trust those understanding nautical matters will not reject com
pletely, for it agrees with many observations which I myself made at 
sea: let me suppose that the sails of a trireme, expanded perpendicu
larly to the keel, have a surface of 1600 square feet, and that a wind 
which travels through a distance of 18 feet in one second strikes them, 
impinging directly, but that the ship thus travels a distance of 6 feet 
in one second in the same direction. So the wind strikes the sails at 
a relative velocity of 12 feet; I estimate the force of that wind equal to 

the weight of 9 '
8
1600 

cubic feet of water, or almost 17 cubic feet of 
50 

water. 
If these things are so, it follows that a ship can be propelled by the 

elevating of water by 260 laborers at that velocity at which it travels 
through a length of6½ feet in one second. 

An estimate not very different from this follows from those things 
which Mr. Chazelles has in the Commentaries of the Royal Academy of 
Science of Paris for I702, p. 98, Paris edition. But in order that they 
can be applied properly to our purpose, it will have to be noted that, 
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in rowing, the force propelling the trireme is not to be estimated from 
the pressure of the rowers against the oars, but from the pressure 
which the extremities of the oars submerged in the water exert against 
the water. In order that we may define this [pressure] approximately, 
these things will have to be observed first: 260 rowers were furnished, 
rowing with all their might; in the first minute 24 strokes (palades in 
French) of the oars were made; the entire agitation of the oars occurs 
in three motions, which I assumed to be of the same duration, and of 
which only one advances the trireme. In this way the trireme was 
carried forward at a velocity by which it traveled a length of 7½ feet 
in any one second. The part of the oar inside the ship was 6 feet, 
and outside the ship r 2 feet. But the surfaces of all the oars (Les pales 
in French) which are impelled against the water, gathered into one, 
make r 30 square feet according to Mr. Chazelles. He noted further 
that the internal extremity of the oar describes a distance of 6 feet in 
any one agitation, and because any one agitation is completed in a 
time of ~ ~ of one second, and at the same time consists of three 
motions, which I assume tautochronous, it appears that any retrac
tion of the oar occurs in the time of~~' or i of one second, and in this 
time the internal extremity of the oar completes a length of 6 feet. 
Further, on account of the length of the surface of the oars which 
is impelled against the water, not the entire [surface] is to be con
sidered at a distance of r 2 feet. Therefore, I will assume that to be 
at a distance of IO feet, just as if the part of the oar beyond the ship 
projected a length of IO feet. The extremity of this part describes 
IO feet in the time of i of one second; but because the trireme itself 
has a velocity by which it travels 6 feet in the same time, it is to be 
understood that the extremities of the oars are impelled against the 
water at a relative velocity which describes 4 feet in a time of¾ of a 
second. Therefore, the force propelling the trireme is equal to the 
force which the water would exert against a surface of r 30 square feet 
if it were to strike against it at that velocity by which it travels 4 feet 
in i of one second. I find this force, according to common estima
tion, to be more or less equal to the weight of 40 cubic feet of water; 
however, that force is not applied continuously, but only during that 
time in which the oars are drawn back: therefore, two thirds of that 
force is to be removed, so that the force which propels the trireme 
continuously is to be considered finally as equal to the weight of 
r 3¼ cubic feet of water. 

It follows thence, if the velocities of the ship are assumed to be in 
proportion to the square roots of the propelling forces, that this same 
trireme, if driven by the weight of one cubic foot of water, would 
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have had a velocity by which it could travel approximately two feet 
in any one second. This hypothesis is the same as that which we 
applied in the first place, so that it again follows therefrom that the 
trireme will acquire from that navigation a velocity by which it can 
travel 7½ feet in any one second, which velocity is a little greater than 
that which was given to the trireme by the very strong rowing of 
260 oarsmen. 

With these things having been well considered, I am at a loss as to 
which kind of navigation is to be preferred, rowing or elevation of 
water, and I should believe that the success of either is almost equal, 
and I dare to affirm for certain that if a ship is advanced less by the 
elevation of water, the defect will be slight; but perhaps it will be 
advanced more. Meanwhile, I do not doubt but that this new idea 
of navigation appears to be groundless and ridiculous to those ignorant 
of these things. But I feel otherwise, and I should wish that attention 
be paid further to the following: 

First. That water can be elevated easily in every kind of ship where 
oars clearly cannot be provided, so that by that new navigation even 
very heavy warships such as are used in naval battles can be driven 
as it pleases in the absence of any wind. 

Second. That thus in theory an example occurs in which the motive 
or propelling forces are given, which can be called intrinsic. In
genious minds will be incited by this example to devising other 
principles for this kind of motion, to perfecting them further, and to 
applying them to use in navigation. 

Third. That in many ways the work of men in elevating water can 
be assisted other than by the use of oars; there are indeed natural 
things, extraordinary and furnished with almost incredible value as 
compared to their moderate expense, by which the same can be 
produced as by the work of men; the use of these things can serve 
especially in establishing short passages during serene and tranquil 
periods. I wrote in Chapter X, §40 and following, concerning the 
innate value of natural things of that sort and concerning the effects to 
be obtained therefrom and their measures, but especially I would wish 
that attention be paid to §43, by which all to whom productive genius 
was given by nature for devising machines should be incited to attempt 
the perfection of that matter. 

Fourth. That several other purely mechanical devices can be 
applied similar to that which was given in §27, by help of which, 
certainly, the effect of the same work in advancing ships increases not 
a little; but it is not permitted now to treat all things according to the 
true nature of the matter. 
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EXPERIMENTS WHICH PERTAIN TO CHAPTER XIII 

In order that it be possible to understand the repelling force cor
rectly by experiment, a vessel can be furnished which has the form of 
a parallelopiped, and the weight can be taken empty as well as full of 
water, and afterwards the ratio can be investigated between the area 
of the vessel and the area of the orifice which must be in the side of the 
vessel, just as also the ratio between the heights of the water above 
the orifice and above the base. Then it will be possible to deduce the 
ratio between the weight of the vessel full of water and that of 
the aqueous cylinder lying vertically above the orifice. Further, from 
the observed amplitude of the thrust, the velocity of the water will be 
obtained; from this, if at the same time one applies in addition the 
quantity of water flowing out in a given time, also to be observed, one 
deduces the area of the contracted stream, which one would be able 
to compare with the area of the orifice. 

After all these things have been investigated, let a vessel be sus
pended from a very long thread, with care having been taken at the 
same time so that it cannot have any motion other than that which is 
opposite to the direction of the water flowing out. Then at last let 
effiux be granted to the water, and it will be observed that the thread 
forsakes the vertical position, and from the angle of declination the 
repelling force will be ascertained, and one will be able to compare 
this with the measurements which we indicated. 

EXPERIMENT I. At one time I myself did all the things that I just 
indicated, and it was seen that our rule of §2 is properly confirmed; 
nevertheless, I was not able then to perform the experiment with 
sufficient accuracy with respect to time, nor did I repeat it later. 

EXPERIMENT 2. At another time I tried the matter differently: 
namely, I placed a vessel full of water, of which I had taken all re
quired measurements, at the stern of a small boat; the boat was 
floating on the water in a tub. Then, with the water flowing out of 
the vessel (however, so that it did not strike against the boat), the boat 
progressed in the opposite direction; I determined the velocity of the 
boat very accurately from the space traveled through in a given time. 
Then I inquired as to what elemental weight should be appended to 
the boat [by means of string and a pulley J in order that, stimulated 
by that weight, it would acquire the same velocity. Then, after the 
comparison of that weight had been made with the weight of an 
aqueous cylinder of given diameter, I saw that our theory was con
firmed very accurately. 
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EXPERIMENT 3. With the water from the vessel (superimposed on 
the boat) flowing out into the boat, the latter remains wholly unmoved. 
This indicates that the impetus of the aqueous stream is equal to the 
repelling force, as I showed in § 16 and § 1 7. Then, as well, if the 
aqueous stream was impinging directly on a plane affixed to the boat, 
the latter similarly stayed unmoved, which again proves the equality 
of impetus and repelling forc;e; but if the stream was striking obliquely 
against the plane, the boat obtained a certain, but slower, motion. 

Finally, if the water flowing out of the boat was intercepted so that 
the orifice was submerged in the water standing within the boat, 
similarly the boat remained without motion, as proof that the same 
pressure arises from the stream, whether it happens that all its motion 
is confined or that it is declined at a right angle, just as was demon
strated in §18. I confirmed very precisely by several other methods 
the equality between the repelling force and the force of the aqueous 
stream striking perpendicularly against a plane. Moreover, I veri
fied this force conforming to our theory and contrary to the opinion 
common to everyone until now by an experiment overcoming all 
objections; I conducted this in my home in the presence of Mr. 
Emanuel Koenig, my paternal uncle icolaus Bernoulli, and my 
Father, with such great confidence that, after all measurements had 
been taken, I predicted with all precision how great the pressure of the 
aqueous stream would be, although the experiment had never been 
performed by me before. I communicated all these things found out 
through new mechanics principles to the Academy of Science of 

FIGURE 86 
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St. Petersburg, in the Commentaries of which they should be inserted 
at some time. 

EXPERIMENT 4. In order that I might also show the falsity of the 
accepted rule concerning both the repelling force and the impetus 
of the water, I furnished the vessel which Fig. 86 shows, connected 
to the curved conduit AB of uniform area, of which the direction at 
A was horizontal, at B vertical. I saw clearly that the vessel was not 
repelled horizontally; therefore, by §14, the rule is false which 
adheres to the simple cylinder defined in that place. 

FINIS 
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Previously indeed I highly praised Your Theory of flowing 
water because of the true and genuine Method which You 

alone, Most Excellent Sir, first revealed for fully treating Problems 
of this type. But now, after I had examined another portion of Your 
Studies, I was thoroughly astounded by the very fluent application 
of Your principles to the solution of the most intricate Problems, 
because of which most useful and also most profound finding Your 
very distinguished Name will forever be revered among future 
generations. But You also so distinctly and plainly explained the 
most obscure and most abstruse question about the pressure which 
the sides of vessels experience as a result of water flowing through 
them that there remains nothing more to be desired concerning this 
rather troublesome matter. Although indeed no one has undertaken 
this matter except Your very renowned Son, who, however, defined 
pressure in a rather indirect manner only so far as the entire motion 
has already acquired the steady state, nevertheless, after the genuine 
method had been brought to light, You at once determined most 
accurately the pressure in every state of water, because of which 
Your most praiseworthy discovery I congratulate You from my heart, 
Most Excellent Sir, and for this communication I give You the 
greatest of thanks. 



CONTENTS 

PREFACE 

FIRST PART 

Treating the motion of Water through Vessels and Cylindrical 
Conduits which are Composed of Several Cylindrical Pipes 

Page 

35 1 

attached to one Another in Succession 356 

SECOND PART 

Containing the Direct and Universal Method for Solving all 
Hydraulics Problems whatsoever which can be Formed and 
Proposed Concerning Water Flowing through Conduits 
of any Shape 39 I 

HYDRAULICS PROBLEM 446 



PREFACE 

Hydrostatics, v:hich deals with water standing in vessels which are 
closed below the water surface, has its laws demonstrated and its 
principles deduced from reason, whence the performance and the 
phenomena are explained clearly and distinctly such that concerning 
this Science there is scarcely any more to be desired. The situation 
is different in Hydraulics, where not so much is done concerning the 
gravitation of water and its pressure, but where, besides this, both the 
motion which is thence produced if water can flow out of a given 
aperture, or is forced to go from one pipe to another of different size, 
and any other effects to be regarded which attend this motion must 
be determined demonstratively. Surely this Science, commonly 
called Hydraulics, is extremely difficult and up to this time has not 
been subjected to the laws and rules of mechanics. Whatever 
material Authors have written on this matter, they rely either on 
experience alone or on theories that are wholly uncertain, having 
insufficient foundation. 

In the book Hydrodynamics which my Son published not long ago,* 
he undertook that subject under luckier auspices, but he relied upon 
an indirect foundation, namely the conservation of live forces, which 
is most certainly true and was proven by me as well, but is still not 
accepted by all Philosophers. It was I who first presented this 
hypothesis in the Dynamics of solids (after Huygens used a similar 
principle to determine the center of oscillation), and from that 
hypothesis I firmly exhibited the same solution for a water-course 
which is given by the ordinary principles of dynamics accepted by all 
Geometers; t this clearly general conformity of the solutions elicited 
by either procedure should by itself be sufficient for overcoming the 
obstinacy of Skeptics. Thus far no one has given a direct method by 
which, a priori and only through the principles of Dynamics, one can 

* Daniel Bernoulli, Hydrodynamica, siue de uiribus & motibus jluidorum Commentarii. 
Strassburg, I 738. 

t See Nos. CXXXV, CXXXVI, CXL [Opera Omnia, Johann Bernoulli, Lau
sanne et Geneve, 1743]. 
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investigate the nature of the motion of water issuing forth from vessels 
through orifices or flowing through conduits of nonuniform size. 

Having wondered from what source there is so much more difficulty 
in successfully applying the principles of dynamics to fluids than to 
solids, finally, turning the matter over more carefully in my mind, 
I found the true origin of the difficulty; I discovered it to consist of 
the fact that a certain part of the pressing forces important in forming 
the throat (so called by me, not considered by others) was neglected, 
and moreover regarded as if of no importance, for no other reason 
than that the throat is composed of a very small, or even an infinitely 
small, quantity of fluid, such as occurs whenever fluid passes from a 
wider place to a narrower, or vice versa, from a narrower to a wider. 
In the prior case, the throat is formed before the transition, in the 
other, after the transition. 

On the other hand, I will demonstrate that in the forming of the 
throat, however small a size it may have, a pressing force is required, 
nevertheless, which is not negligible and by no means infinitely small 
but finite and determinate, and so far not at all to be disregarded but 
wholly worthy of being taken into account. ow, that force re
quired for the latter effect, which amazingly enough can be observed, 
plainly does not depend upon the length of the throat, which can be 
understood to be greater or lesser as long as it is considered extremely 
small; it always consumes the same portion of the pressing forces in its 
formation, if all other conditions are unchanged. 

What the throat may be and in what manner it may be formed will 
be understood from the very discussion of the matter, and at the same 
time it will be evident that the formation of the throat is accomplished 
without noticeable loss oflive forces with respect to the amount which 
is present in the whole aqueous mass. Hence the reason is apparent 
wherefore, safely and without error, the Theory of live forces can be 
applied in Hydraulics, even if those who use this theory pay no atten
tion to the throat, provided that they are not ignorant of the existence 
of the throat and that they see that it detracts nothing from the con
servation of live forces; for otherwise they cannot contend that they 
themselves have arrived at the truth of the matter wholly and 
scientifically. 

I shall treat this investigation in two parts. In the first I will 
consider the phenomena of flowing water and efflux from cylindrical 
or prismatic vessels, be they either simple or composed of several 
[sections], such as conduits composed of various pipes of different 
size or of cylindrical pipes joined as syphons. In the other part I 
shall examine completely all perforated vessels, whatever may be 
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their shape, whether regular or irregular, and the conduits and pipes 
attached to them. 

In order to have a clearer understanding of things, I am setting 
forth the following Definitions and Lemma ta, the validity of which is 
manifest from Dynamics as well as Hydrostatics. 

I. A uniform accelerative force [i.e., force per unit mass, or accelera
tion] is that which impresses a given velocity on a given body in a 
given time. 

II. A motive force is that which, when it acts on a body at rest, 
excites it into motion, or which can cause a body already moving to 
accelerate, decelerate, or change its direction. 

III. Motive forces are in proportion to the products of masses and 
accelerative forces. Thus, for example, in order to move twice the 
mass with the accelerative force tripled, or, which is the same thing, 
in order to move three times the mass with the accelerative force 
doubled, a six-fold motive force is required. 

IV. The motive force divided by the mass gives the accelerative 
force, but divided by the latter gives the mass. 

V. The absolute gravity g, or the cause of gravity, whatever it may 
be, is an accelerative force which, when it causes a prescribed mass m 
of a body to move, produces in it a motive force gm. However, in our 
thinking it will be permissible to separate it from the body and thus 
to consider it in the same way as if it were acting externally upon the 
body. We therefore consider that that same body, free from gravity, 
will be accelerated by an external motive force gm according to the 
same law by which it is accelerated naturally. However, it is con
venient to call that same force gm, inasmuch as it exists beyond the 
body, an immaterial motive force; therefore, if that force, translated 
in another manner, acts on another mass M, the latter will be accele
rated by an accelerative force gm/M. 

VI. An immaterial and invariable motive force, acting without 
impediment on a body, accelerates it in the same manner whether it 
be at rest at this point or already in motion. Since this force always 
follows the body, there is no relative motion between them, and thus 
a motive force acts on a body in motion in the same way as if it were 
completely at rest. This is the reason why heavy bodies, while 
descending, are continuously and uniformly accelerated in accordance 
with time, it having been supposed, certainly, that the intensity of the 
accelerative force is not changed during the action, that is, neither 
augmented nor diminished, just as in fact the force of gravity con
tinually maintains the same intensity on a descending heavy body 
from the beginning of the descent. 



354 HYDRAULICS 

VII. The intensity of an invariable motive force is the measure 
according to which, on a body to be moved, there is produced a 
greater or lesser accelerative force; thus gravity, on a body falling 
vertically, has a greater intensity than it has on the same body sliding 
on an inclined plane. In the first case, to be sure, a greater accelera
tive force is produced than in the other; in either, however, gravity 
is invariable. 

VIII. A variable motive force is one of which the intensity is changed 
while acting. Thus, for instance, the force of a stretched elastic has 
a greater intensity, and as a consequence impresses on the body to be 
propelled a greater accelerative force at the beginning than during 
the progression of the relaxation. From the above, these Rules result: 

Let the space traveled by a body = x, 
the mass of the propelled body = m, 
the motive force within the limit of the 

region traveled = p, 
the velocity acquired = v, 
the time through x = t. 

Hence dt = - ; there will be - or - = dv, and therefore p dx = dx . p dt p dx J 
v m mv 

½mvv, which is very well known. 
IX. The lower portions of the water contained in any vessel are 

pressed upon by the aqueous mass lying above in accordance with the 
depth alone, whatever shape the vessel may have. That is, if in one's 
thinking the aqueous mass be divided into horizontal strata of in
finitely small thickness, every one of these strata is pressed the same 
amount as if an aqueous cylinder of water were lying over it having 
the same altitude as that which corresponds to the depth of the stratum 
itself in the vessel. 

X. Hence the following is concluded directly: if the areas of the 
strata, each having the same infinitely small thickness, are m, m', m" 
m"', etc., and their corresponding weight elements are also in propor
tion as m, m', m", m"', etc., their own gravitations can be imagined as 
separable from the strata, so that their substance remains alone 
without weight. But the same pressure will arise in the individual 
strata as if they had remained in their natural state if, in place of the 
gravitations which have been removed, just as many others are sub
stituted, which together press the uppermost surface of the water; 
[this is done,] certainly, by observing the following analogy at any 
instant: as the area of an arbitrary stratum is to the area of the upper-
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most surface, so the proper gravitation of the stratum is to the gravi
tation to be substituted. 

XI. I call that mental substitution Translation. In order that I 
might explain myself, let some stratum from the lower regions have 
an area m, let its gravitation, or its own weight element, be rr, and let 
the area of the uppermost surface be h. The translated gravitation to 

the uppermost surface will be !!_ rr, which together with all the re-
m 

maining translated in this way, constitutes the total immaterial motive 
force by which all the water in the vessel is pressed downward, in the 
same way as it happens naturally. 

ADMONITION 

It is now appropriate to say in advance that through all this 
treatment of the motion of flowing water I avoid consideration of the 
foreign and accidental hindrances which can alter the motion de
termined through the rules. Such hindrances are the imperfect 
fluidity of the water, also its adhesion, the friction at the walls of 
vessels, excessive slenderness of pipes, narrowness of orifices or aper
tures, tenacity of fluid particles on account of which they do not very 
easily separate from one another, and others existing of this sort to 
which I do not attend. 

I would also wish it to be noted that it is not of absolute necessity 
that the strata of water always be considered in a horizontal position. 
They are more conveniently assumed perpendicular to the direction 
of the motion of the water. Thus, for example, when water from a 
larger vessel flows out into a narrower horizontal pipe through an 
orifice or aperture lying in a vertical plane perpendicular to the wall 
of the pipe, the water contained in the pipe is considered to be divided 
very appropriately into vertical strata parallel to the plane of the 
aperture, and more so in addition because by its very nature it tends 
toward this sort of orientation. We see, for instance, that a column 
of water in some pipe not greatly exceeding two lines in diameter 
[ 1 Paris line = 0.226 centimeter] has both its extreme surfaces dis
posed in positions perpendicular to the sides of the pipe, whether the 
pipe itself is oblique to the horizontal or altogether horizontal. The 
line joining the centers of gravity of the strata, whether it be straight 
as in rectilinear pipes or curved as in curvilinear pipes, will be called 
the center line, or simply the centric. Of course, individual strata 
which have their substance concentrated at their own centers are 
understood to have that motion which the [ actual] strata themselves 
have. 



FIRST PART 

Treating the Motion of Water through Vessels and 
Cylindrical Conduits which are Composed of 

Several Cylindrical Pipes Attached 
to one Another in Succession 

SECTION I 

First, let the conduit ABCFDE be given (Fig. 1), composed of two 
cylindrical pipes of different size, AGDE and GBCF, of which the 
former has a base GD open at the orifice CF through which it connects 
to the narrower pipe BF. Now let the whole conduit BE be full of a 
homogeneous liquid of no weight of its own but driven from a section 
at the orifice AE by a given motive force [per unit density] = p, 
which, by pressing equally, is expanded through the whole surface 
AE of the liquid. The law of acceleration is sought according to 
which the liquid flows through the conduit. Moreover, I consider 
the conduit to be always full ofliquid, which occurs by understanding 
that a new supply of liquid is provided freely from another connected 
source, flowing into the pipe GE at any instant at the same velocity, 
for the purpose of replacing that which is flowing out through the 
other orifice CF into the pipe GC and from there is escaping into the 
air through the opening BC. 

E D 
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SECTION II 

From Hydrostatics I assumed that the immaterial motive force p 
by which the surface of the liquid AE is being pressed is extended 
instantaneously to the surface GF of the liquid contained in the pipe 
BF, and this whether the liquid is standing still in the entire conduit 
or is flowing, as long as it remains full. 

SECTION III 

While the liquid goes from one pipe to the other, in any case the 
velocity will be changed in a manner reciprocal to the areas; on the 
other hand, no change is sudden, but successive and gradual, pro
ceeding through all possible intermediate values from the lesser to the 
greater, or from the greater to the lesser. 

SECTION IV 

Hence when the liquid flows with a parallel motion in the direction 
from AE toward GD so that at any moment the same velocity pertains 
to the individual portions of the liquid, before the portions near to 
GF itself arrive at the orifice GF, it is necessary that they begin to be 
accelerated, at least through the small distance HG, and that they 
continue accelerating until, at the entrance GF itself, they will have 
acquired the velocity of the liquid flowing through the tube BF in a 
motion uniformly parallel and common to the individual particles. 

SECTION V 

And, accordingly, there is formed along the indefinitely small 
length HG something like a throat, IFGH, contracting from the wide 
into the narrow, through which the liquid must pass, the acceleration 
being continuous but nevertheless augmented gradually, with a 
rather small portion of the liquid (which fills the small space IFD ) 
remaining at perpetual rest. 

SECTION VI 

Let the curve IMF defining the throat be of any nature whatever, 
for it is not necessary to assume it of some prescribed shape. Directly, 
indeed, I will show: that there is always the same motive force unique
ly required for this purpose; that the liquid be driven through the 
throat, whatever length HG it may have, as long as it be infinitely 
small; and that the line IMF which connects the extremities I and F 
may be of any nature whatever. 
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SECTION VII 

Let no one consider that that motive force (which pushes a small, 
in fact infinitely small, portion of liquid through the throat) must be 
and is always very small and thus can be disregarded. Indeed, the 
motive force is by all means one of finite quantity, because, although 
the quantity of material moving is infinitely small, on the other hand 
the accelerative force must be infinitely large compared to the former, 
in order. that certainly in the infinitely short time in which the liquid 
passes through the small space HG, a finite change in velocity can 
nevertheless be created, since that which had been the velocity at H 
is to that which now prevails at Gas GF is to HI. 

SECTION VIII 

The neglect of this motive force as if of little import has been the 
reason why no one up to this day could have given from statical and 
purely mechanical principles the laws ofliquids flowing through non
uniform conduits. But those who undertook to determine those laws 
exactly returned, by my example indeed, to the principle oflive forces, 
the application of which to this problem and to others in solids as well 
as in fluids they perhaps never would have considered if they had not 
followed me, who by all means first showed how to derive these laws 
from the conservation of live forces. But I myself, being dissatisfied 
since this method was indirect and also founded on a theory of those 
forces which is still not universally accepted, did not hesitate to 
search for a direct method which would be supported solely by 
dynamical principles denied by no one. Finally, after a rather long 
meditation, I achieved my aim in the year 1 729, when I saw the crux 
of the whole matter to lie in the contemplation of the throat, previously 
considered by no one. And so now I am undertaking to share my 
discoveries, already explained privately to certain friends, with the 
public as well. Since the generation of the throat has now been 
indicated, it is pleasing to pursue this task as far as I can with [any] 
clarity. 

SECTION IX 

Let there be considered [Fig. 1] the abscissa HL = x, the ordinate 
LM = y, and an element of the former Ll = dx. Let the area AE 
or HI of the pipe HE be called h, the area BC or GF of the pipe GC be 
called m, and the velocity of the liquid in the pipe GC be v. Accord-
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ingly, the velocity of the liquid in the pipe HE will be Xv, as the 

velocities are reciprocally proportional to the areas. By the same 
reasoning, the velocity of the liquid LMml at any place in the throat 

will be:!! v, which may be set equal to u. Now therefore let there be 
y 

an accelerative force y which excites the section Lm of the liquid. 
From the nature of the acceleration, it follows that y dx = u du, and 
therefore yy dx = _yu du. That is, the motive force by which the 
liquid section LMml is excited is equal to yu du. But this motive force, 
according to §II, is generated by a single motive force existing in the 
pipe HE and distributed over the entire area AE; in order that this 
may be explained, yu du must be made into hu du in proportion as 
LM is to HI, or as y is to h. The particular motive force in pipe HE 
(translated certainly from yu du itself) will be hu du, which can pro
duce the motive force yu du in the section LMml of the throat; and by 

integrating through the whole throat, one has ½h( vv - :: vv), or 

hh - mm h" h d · h · fc • h · HE 
2

h vv, w 1c es1gnates t e motive orce m t e pipe 

required uniquely for creating the acceleration in the throat neces
sary to change the lesser velocity to the greater, which must be done 
in order that the liquid may flow into the narrower pipe GC. 

COROLLARY 1. Hence it is evident that the nature of the curve 
IMF, as well as the length of the throat HG, does not enter into the 
determination of the motive force for generating the motion in the 
throat. Thus, if the areas of the end sections HI and GF are given as 
hand m and the velocity as v, one always has the motive force in the 

. HE . h . . h h 1 hh - mm pipe , generatmg t e motion m t e t roat, equa to 
2

h vv. 

COROLLARY 2. If now with a continuous flow of liquid the velocity 
v in the pipe BF remains always constant, it is manifest that the 
other velocity-in the pipe HE-remains constant as well, and 
accordingly that the motive force, or the pressure p, adds nothing 
more to accelerating the motion in either pipe; thus it is clear that the 
entire force pis uniquely applied to forming the throat and maintain-

hh - mm 
ing it in its proper state. Consequently, p = 

2
h vv. 

COROLLARY 3. Let us consider the pipe HE or GE to be vertically 
erect in the manner of a cylindrical vessel and to be connected to the 
horizontal pipe GC [Fig. 2]. Also consider the force p to be the very 
weight of the column ofliquid contained in GE, so that (withg having 
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been taken to designate the natural accelerative force of heavy bodies, 
and also HA or GA = a) one hasp = gah equal to the weight [per 
unit density J of the liquid contained in GE, from which gha = 
hh - mm 

2
h vv. But in order that v be determined by the vertical 

altitude z through which some freely falling weight has acquired the 
velocity v, g dz must equal v dv, from which gz = ½vv. Therefore by 

substituting gz for ½vv, we will have gha = hh ~ mm gz, from which 

emerges z = hh hh a, which gives the following hydraulics 
-mm 

Theorem. 

SECTION X 

THEOREM. Let the cylindrical vessel AGFE (Fig. 2) be vertically erect 
and furnished at the base with a horizontal cylindrical pipe FB open at either 

FIGURE 2 

end. Likewise let both the vessel and the pipe be continuously full ef water, so 
that, ef course, as much water as flows out through the opening BC is continu
ously supplied through AE at the same velocity that the water has in the vessel. 
I say that the velocity ef the water which flows out (if it starts from rest) 
converges very rapidly to that which is acquired by a weight falling freely 

through a height hh hh a. 
- mm 

The truth of this is evident from Corollary 3 preceding. 
COROLLARY I. Whence if the opening BC be very small with re

spect to the area AE of the vessel, such that m can be neglected with 
respect to h, there will result z = a, that is, the velocity of the water 
flowing from the pipe will be equal to that which a weight, having 
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fallen freely from a height EF, acquires. This is a very well known 
Theorem, but up to now not shown from dynamic principles, es
pecially if the attached pipe BF were present, since previously the 
Theorem was believed correct only for a small orifice placed at F. 

COROLLARY 2. The greater is the opening BC with respect to the 
area AE of the vessel, the greater becomes the maximum efflux 
velocity of the water. Thus for m large, the value of the fraction 

hh · · d ·1 fc . . h h . 
hh 

1s increase , untl or m 1ncreas1ng to t e maximum 
-mm 

velocity is infinite; and also from here it is evident that this is true 
because in that case both the vessel and the pipe are of the same size 
and they form one continuous bent pipe. And the force of the 
weight of the water in the portion AF, always full, continuously 
accelerates the entire aqueous mass such that finally its velocity, 
generated in an infinite time, becomes also infinite itself. Now, with 
the length of the pipe FC being called b, the mass [per unit density] of 
all the water in the bent pipe AGC will be ha + hb; and this will not 
be accelerated in any way other than as is some solid body which is 

animated by an accelerative force equal to ha g1a hb = a ~ b' and 

certainly such a body by falling for an infinite time would acquire 
an infinite velocity. 

COROLLARY 3. Surely if m were greater than h, that is, if the 
horizontal pipe were larger than the vertical vessel, the maximum 
velocity would certainly never be attained even in an infinite time, 

since hh hh would be negative, with the result that, during flow 
-mm 

to eternity (if the flow lasts into eternity), the acceleration of the water 
flowing out will not cease to be augmented. In this case, for instance, 
an inverse throat will be formed in the pipe, looking back at the orifice 
BC, which, as will be evident from the following, is of the nature that 
it increases the motive force rather than decreases it, during which 
time it disappears, so to speak, toward the pressure being produced 
in the rear, whereby the water can descend rather freely in the vessel. 

ScHOLIUM 

So far we have considered the vessel and the pipe constantly full 
of water and the water flowing out at its maximum and therefore 
constant or uniform velocity, so that no additional motive force is 
required for accelerating the water either through the vessel or through 
the pipe, but that the total motive force p is used for controlling the 
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throat which is formed in front of the entrance from the wider region 
to the narrower. Now we shall consider the velocity of the flow of 
water as if it were increasing, starting from rest, such that its own 
equally special portion of the motive force pis required for developing 
the acceleration in the vessel as well as in the pipe. First we shall 
examine the case in which a constantly full vessel is connected to a 
pipe. 

SECTION XI 

Let x be the length of the region through which the water passes in 

the pipe from rest. Then X x will be the length through which it 

passes in the same time in the vessel. Thus, similarly, with the exist
ing velocity in the pipe equal to v, the velocity in the vessel will be 

Ji v. From this the accelerative force in the pipe equals vd:v, and this 

multiplied by the mass of the water mb will give the motive force 

mb:/v, which, translated to the vessel (by§2), will give the equivalent 

hbv dv f h' h . 1 h . h . mbv dv b --;fx' rom w ic , certam y, t at m t e pipe, --rx-, can e pro-

duced. And so also the accelerative force in the vessel equals 

mm d Im d mv dv h' h 1· d h h . h . Ith v v h x = h dx , w ic , app ie to t e mass a, gives t e motive 

force m;x dv for propelling the water in the vessel; and thus the sum of 

those three motive forces-through the throat, through the pipe, and 
through the vessel-must equal the total motive force p. This gives 
us the equation 

hh - mm hbv dv mav dv 
2h vv + --;Ix + ~ = p. 

Therefore, as before, let p = gah be the weight itself of the aqueous 
column, and let gz = ½vv be established as in Coroll. 3, §IX; with these 
being substituted, this equation will result: 

hh - mm hb dz ma dz 
h z + -y;- + ~ = ha, 

or 

(hh - mm)z dx + (hhb + hma) dz = hha dx, 
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from which dx = hh hh\: hma dz, which properly treated and 
a - z + mmz 

integrated logarithmically, will give 

x = hhb + hma ln ( hha ) , 
hh - mm hha - hhz + mmz 

from which, by progressing to numbers (assuming I = ln e), one has 

z = ( hha )(I _ i//hh-mm)x/(hhb+hmal). 
hh - mm 

But if the water in the vessel ( which, for the sake of brevity, is con
sidered to have only an orifice of area m, without the annexed pipe) 
be animated by a gravity g' different from the natural gravity g, it 
will be found that 

z = g'hha (I _ i / /hh-mm)x /(hhb+hma)). 
g(hh - mm) 

COROLLARY. If x = co, which gives the case of the maximum 
velocity to which the flow converges, it will be true that 

I/e<hh-mm)x/(hhb+hma) = O, 

and therefore z = hh hha for natural gravity g, which conforms 
- mm 

wholly to Coroll. 3, §IX; and if, in addition, mis infinitely small with 
respect to h itself, then z = a, just as is developed in Coroll. 1, §X, all 
of which confirms the method splendidly. 

SECTION XII 

Let us consider now the case where the vessel AF (Fig. 2) does not 
remain full of water, but, as a measure of the water flowing out, it is 
emptied gradually, and its surface AE descends continually. 

Consider the water in the horizontal pipe to have passed through 
the length x, hence that a quantity of water mx, that is, equal to an 
aqueous cylinder of which the base is m and the length is x, has 
flowed out from it (for I assume the vessel and the pipe to be full at 
the beginning). But if, accordingly, in EF the portion EI is assumed 

equal to Xx, it is clear that the horizontal HI is the location of the 

uppermost surface to which the water descends in the vessel after the 
portion of water mx has flowed out through the pipe. Therefore, 
there will remain in the vessel the aqueous column GI= ha - mx, of 
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which the weight g(ha - mx) is directly that very thing which we 
called p. Thus if, therefore, the accelerative force of the water re
maining in the vessel (which in §XI is generally found equal to 

:v d:v) is applied to the aqueous mass, which now is ha - mx, we will 

have the motive force :vd~ (ha - mx), which is compatible with the 

water flowing down through the vessel; from which now by collecting 
the three forces-through the throat, through the pipe, and through 
the vessel-and by equating the sum top itself, that is, to g(ha - mx), 
we will acquire this equation: 

hh - mm hbv dv mv dv 
2

h vv + dx + h dx (ha - mx) = g(ha - mx). 

By substituting g dz for v dv, and gz for ½vv, as we did in Coroll. 3, 
§IX, we will change our equation to this other: 

hh - mm hb dz m dz (h ) h 
h Z + ~ + h dx a - mx = a - mx; 

and, by multiplying by h dx, into this: 

(hh - mm)z dx + hhb dz + m dz (ha - mx) = (hha - hmx) dx. 

This is the very equation from which, if the value of z itself is found, 
the height will be obtained through which a heavy weight, having 
fallen freely, will acquire the sought velocity, certainly equal to that 
which the water in the pipe will have after the quantity mx has 
flowed out. 

The derived equation in which the unknowns are found to be 
interrelated can also be integrated according to our rules with the 
support of the Lemmata following shortly, and thus the value of z 
itself may be known in finite terms. However, at this point one 
should not tarry any longer on this matter: it suffices to me to have 
reduced the Problem to a differential equation by using purely 
mechanical principles, which might have been presented by someone 
else before me, although I do not recall ever having seen it. Indeed, 
it should be known that this very equation can be derived through 
the method of live forces, so that their use and their validity hence are 
substantiated against Adversaries. 

COROLLARY r. In order to determine the maximum velocity of the 
liquid flowing out and, furthermore, that of the liquid descending in 
the vessel, one need merely set dz = o; after this has been done, our 
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equation will furnish (hh - mm)z = hha - hmx, from which z = 
hha - hmx h" h . ·1 . . h k . lf hh , w 1c , smce unt1 now 1t contams t e un nown x 1tse , 

-mm 
indeed determines nothing unless the value of z itself is also found at 
the same time from the general equation. 

COROLLARY 2. If m is very small with respect to h itself, the general 
equation assumes this form: z dx + b dz = a dx; from which dx = 

b dz , which gives z = a - a/extb_ Thus, in this case, in order that 
a - z 
z be a maximum, it is necessary that x be infinite, and then it will 
occur that z = a, which certainly can be gathered at once from 

dx = b dz , or from dx(a - z) = b dz; for by making dz = o, on 
a - z 

account of z itself being a maximum, one will have a - z = o, and 
from that, z = a. From there, in turn, it is clear that in a very wide 
vessel the water flowing out through a very narrow pipe immediately 
acquires a maximum velocity, always constant thereafter and equal 
to that which a weight falling freely from the height of the vessel 
would acquire, as we saw above in Coroll. 1, §X. Obviously, in this 
case the vessel can be considered as always full because, on account 
of the comparatively infinite area of the vessel with respect to the 
constricted [one] of the pipe, an almost infinite time as well would 
certainly be required before the water descended noticeably in the 
former. 

SECTION XIII 

Now take another case. Let the pipe (which is assumed full of 
water right up to C at the beginning before the flow) be extended 
indefinitely; thus it is certain that while the water is descending in the 
vessel, nothing can flow out of the pipe, but always some of the liquid 
descends from the vessel into the pipe, and this together with that 
which is already assumed to be present there is forced to flow, pro
pelled jointly within the pipe. The law of acceleration and the 
velocity itself are sought after an arbitrary space has been flowed 
through within the cavity of the pipe. The accelerative force in the 
pipe, as was shown in §XI, here also will be v dv/dx, but the mass of 
water to be propelled now is mb + mx, which, multiplied by the 
accelerative force v dv/dx, gives the motive force in the pipe (mbv dv + 
mxv dv )/dx; this, translated to the area of the vessel, gives the equiva
lent motive force in the vessel equal to (hbv dv + hxv dv) /dx. And so 
the three motive forces-through the throat, the pipe, and the vessel
having been joined, and these having been equated to the total 
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motive force p, for the vessel always filled by new water flowing in, 
this equation (see §XI) will result: 

hh - mm hbv dv + hxv dv mav dv _ _ h . 
2h vv + dx + dx - p - g a' 

but for the vessel accepting no new liquid, this other will appear 
(see §XII): 

hh - mm hbv dv + hxv dv 
2h vv + dx 

mvdv + h dx (ha - mx) = p = g(ha - mx). 

With gz substituted for ½vv, the prior equation gives this: 

(hh - mm)z dx + (hhb + hma + hhx) dz = hha dx; 

but the latter gives this: 

(hh - mm)z dx + (hhb + hma + hhx - mmx) dz = (hha - hmx) dx. 

However, either equation can be integrated through the Lemma 
promised above, which I now show. 

SECTION XIV 

LEMMA. Let the equation to be integrated (and indeed without the 
necessity of separating the unknowns) be 

az dx + (f3 + yx) dz = (E + 0x)-dx. 

I write y for f3 + yx, from which dx = dy/y, and the equation 1s 

changed into this: ~ z dy + y dz= (E + 0x) dx; after this has been 
y 

multiplied by f fr -1, there will be obtained 

a 
- .zya/y -1 dy + ya fy dz= (€ + 0x) dx-ya fy -1 
y 

I 
(E + 0x) ·-· (f3 + yx)afr - 1 y dx. 

y 

After integration there will result 

f 1Yz = f (E + 0x)t(f3 + yxttr- 1 y dx 

= ~(f3 + yx)afy·(E + 0x) -J..!!_ (f3 + yx)a fr ydx 
a ya 
I 0 = - (f3 + yx)afy(E + 0x) --- (f3 + yx)afy+l 
a aa + ya 
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Let it be noted here that the last two terms given are added for the 
purpose of rectifying the equation, as is customary; for, with x 

vanishing, z certainly vanishes also. Now let the equation be divided 
by ya1r, that is, by (/3 + yx)a1r, and the correct value of z itselfresults, 
namely 

I 0 
z = - (E + 0x) - --- (/3 + yx) 

IX <XIX + ya 

+ ( B 13a1r+l _ ~ 13a1r) · (/3 + yx)-alr. 
<XIX+ ya IX 

SECTION xv 
Therefore, in order that the application of this might be made to 

the prior equation, (hh - mm)z dx + (hhb + hma + hhx) dz = hha dx, 
here there will be a = hh - mm, f3 = hhb + hma, y = hh, E = hha, 
and 0 = o, by substitution of which there will be obtained 

Z = hha - hha ( hhb + hma) (hh - mm)/hh 
hh-mm hh-mm 

X (hhb + hma + hhx)<-hh+mml/h\ 

or, which is the same thing, 

hha ( ( hb + ma ) (hh - mm)/hh). 
Z = hh - mm 1 

- hb + ma + hx 

But if on the contrary it is applied to the latter, where a = hh - mm, 
f3 = hhb + hma, y = hh - mm, E = hha, and 0 = - hm, there results 

hha - hmx hm 
Z = hh + (hh )2 (hhb + hma + hhx - mmx) -mm 2 -mm 

[ 
-hm 2 hha ] + 2 (hh _ mm) 2 (hhb + hma) - hh _ mm (hhb + hma) 

· ( hhb + hma + hhx - mmx) - 1 ; 

after these have been separated in order, by proceeding as usual, one 
has at last 

( 
hhax - ½hmxx ) 

z = hhb + hma + hhx - mmx · 

COROLLARY I. If m is very small with respect to h, there will be, 

for the case of the vessel always full, z = b ax ; similarly, for the 
+x 

ax 
other case, there results z = -b --, which certainly must happen 

+x 
thus generally, because, indeed, on account of m being infinitely 
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small, the water must flow out for an infinite time before its uppermost 
surface descends noticeably in the very large vessel. In any case, it 
is evident that it is the same as if the vessel remained always full, and 
accordingly these two cases certainly reduce to the same. 

COROLLARY 2. If b = o, that is, if no water is contained in the 
indefinitely long horizontal pipe FB at the beginning of flow, for the 
case of the vessel always full, 

Z = hha (r - ( ma )<hh-mm)/hh); 
hh-mm ma+hx 

but for the other case in which no new liquid is received, 

hhax - ½hmxx z = -c---,-,-~---
hma + hhx - mmx 

In this last case the following is also noteworthy: at that moment at 
which the surface of the liquid will have descended all the way to the 

bottom of the vessel, which is done by assuming x = !!_ a, one will have 
m 

z = ½a, that is, the velocity of the water in the pipe after total deple
tion of the vessel will be that which a weight would acquire by falling 
from half the height of the vessel. 

CONCERNING A CONDUIT OF THREE OR MORE 
PIPES 

SECTION XVI 

Let there now be (Fig. 3) the conduit AL consisting of three pipes, 
AD, CC, and BL, all full of water. And let there be a motive force p 

FIGURE 3 

-- -
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which, expanded uniformly over the surface AE, drives or presses on 
the same. The acceleration and the actual velocity with which the 
water flows out of the pipe BL are sought. 

First of all it should be noted here that two very short throats are 
formed, one in the transition at GF, the other in the transition at BK, 
which individually require their own motive forces which are to be 
translated to the area AE, to which then are to be added the motive 
forces of the aqueous columns contained in the individual pipes, after 
translation of these forces to the area AE; after this has been done, the 
sum of all these translated forces is to be equated to the total motive 
force p, from which the desired equation will result. 

SECTION XVII 

Consequently, let the lengths of the pipes be AG = a, GB = b, 
BM = c, and their areas be AE = h, GF = m, and BK = n. Here 
also let the velocity in the last pipe BL be designated as v, the velocity 

in the second pipe GC as u = !: v. Thus there will be, through the 
m 

reasoning furnished in §IX, a motive force at the surface 
quired for forming the throat through GF, equal to 

hh - mm hhnn - mmnn 
2h uu = 2hmm vv 

AE, re-

nn 
(by substitution of the value of uu itself, which 1s - vv); 

mm 
likewise the motive force in the pipe GC required for the throat 

through BK is mm - nn vv, which indeed, after having been trans-
2m 

1 d h AE b k
. mm - nn . hmm - hnn . 

ate to t e area , y ma mg ---- vv mto ----- vv, 1n 
2m 2mm 

proportion as m is to h, gives the motive force in the first pipe AD for 
producing the throat through BK; and so both forces added together 

hhnn - mmnn hmm - hnn h . hhmm - mmnn 
give h vv + vv, t at 1s, h vv or 

2 mm 2mm 2 mm 
hh - nn 

2
h vv, equal top. And ·thus is determined the velocity of flow 

through the three pipes after the former has reached constancy. 
COROLLARY. Hence it is evident that the water is moved through 

the three pipes in the same manner as if, the second having been 
removed, the third were immediately attached to the first, after it has 
been stipulated, of course, that the flow has reached the greatest and 
constant velocity; finally, it is now clear that henceforth, no matter 
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how many pipes are considered, the motive forces at the individual 
throats, translated to the first pipe and added together, are equivalent 
to that unique motive force in the first pipe to be applied to the 
unique throat which would be made by attaching the last pipe im
mediately to the first pipe. And thus the same constant velocity to 
which the flow converges is obtained in each case, whether the water 
goes through the entire conduit composed of all the pipes, or, the 
intermediate ones having been omitted, through the first and the 
last connected to each other directly. Everything, therefore, which 
we have shown above concerning constant velocity through two pipes 
is to be applied to a conduit consisting of as many pipes as one might 
wish. 

SECTION XVIII 

Now there comes up to be considered the acceleration in a conduit 
of many pipes when indeed the flow of water begins from rest, with 
the first pipe, however, remaining always full by means of the influx 
of new water following the descending [ water J at the same velocity. 
In this matter, nothing else is to be done than to translate the motive 
force, considered to be in proportion to the aqueous mass to be driven 
through the individual pipes, to the area of the first pipe. If the sum 
of these translated motive forces is added to the motive force through 
the throats, that is, through that single one which would be formed if 
the last pipe were attached directly to the first, the force of all will 
result, which is to be made equal top itself. 

SECTION XIX 

Thus let us apply this rule to a conduit of three pipes the lengths of 
which are a, b, and c, and areas h, m, and n. Let x be the length of the 
space through which the water, beginning from rest, travels in the 
last or third pipe and v be the velocity acquired in this pipe. For 

the purpose of imitating the process in §XI, !!:.. x will be the distance 
m 

which the water travels in the same time in the second pipe, and !!:.. v 
m 

its acquired velocity. Likewise ix will be the distance traveled 

m the first pipe, and iv the acquired velocity. Hence the 

accelerative force in the third pipe is vd!v, and this multiplied by the 
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· h' · ·11 · h · fc ncv dv h' h aqueous mass nc m t 1s pipe w1 give t emotive orce ~' w 1c , 

1 d h fi · ·11 · h · 1 hcv dv Th 1 trans ate to t e rst pipe, w1 give t e eqmva ent --z;:-· us a so 

h 1 · fc . h d . . nn d I n d nv dv t e acce erat1ve orce m t e secon pipe 1s - v v - x = -d , 
mm m m x 

which, applied to the mass of water mb of the second pipe, gives the 

. fc nbv dv h' h 1 d h fi . . ld hnbv dv motive · orce -d-, w 1c , trans ate to t e rst pipe, y1e s --d-· 
X m X 

Thus the accelerative force in the first pipe, ~~ v dv /~ dx = 7 ::, 
applied to the mass ha of the first pipe, gives the motive force of the 

· h fi · nav dv h' h · · · 1 d · h fi · water mt e rst pipe -;fx' w 1c , smce 1t 1s area y mt e rst pipe, 

is not to be translated farther. Those three forces are therefore 
hcv dv hnbv dv nav dv . 
-d-, --d-, and -d-' the sum ofwh1ch, added to the force caused 

X m X X 

. hh - nn ( hnb ) v dv 
by the throats, will be found to be 

2
h vv + he + -;; + na Tx' 

equal to the total force p. 

SECTION xx 
Now let there be four pipes, of which the lengths are a, b, c, and e 

and the areas are h, m, n, and q; let x be the distance traveled in the 
last pipe and v the velocity acquired in the last pipe. In order to 
observe the uniformity and the law of progression from one pipe to 
another, I will begin at the first, in which the accelerative force is 

hh v dv It dx, the velocity is % v, and the element of velocity is t dv. 

And as the element of distance to be traveled is t dx, so there results 

from the law of acceleration the accelerative force 

qq /q qv dv. 
hh v dv h dx = h dx ' 

and by multiplying this by the mass of water to be moved, [ one 
causes] this motive force hqav dv/h dx to appear, which, because 
it is already in the first pipe, does not require further translation. 

But in the second pipe, the accelerative force .!l!!_ v dv/i dx = qv ddv, 
mm m m x 

applied to the aqueous mass mb, gives the motive force in the second 
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pipe mqbv dv/m dx, which, translated to the first pipe, gives the 
equivalent hqbv dv/m dx. In the same manner, the motive force 
translated from the third pipe to the first will be hqcv dv /n dx, and the 
motive force translated from the fourth to the first will be hqev dv/q dx. 
Therefore, all added together equal 

hqav dv + hqbv dv + hqcv dv + hqev dv = (~ + ! + ~ + ~) hqv dv_ 
b~ m~ n~ q~ h m n q ~ 

Generally, therefore, for any number of pipes whatever, the lengths of 
which are a, b, c, . .. , 7T and areas h, m, n, . .. , w, the sum of all the 
motive forces translated to the first pipe will be equal to 

(~ + l1_ + ~ + ~ ... + ~) hwv dv; 
h m n q w dx 

to which if the motive force hh ~h ww vv for all the throats is added, 

there emerges the total motive force to be set equal top itself. This 
equation results therefrom: 

hh - ww (a b c 7T) hwv dv 
2h vv + 1t + ;; + ri · · · + z:; --;Jx = P; 

or, by writing gz for ½vv, this other: 

hh ~ ww z + (~ + l1_ + ~ ... + ~) hw dz = !.. p 
h m n w dx g ' 

or, 

(hh - ww) z dx + (~ + ! + ~ · · · + ~)hhw dz = ~ p dx. 
h m n w g 

COROLLARY I. If the lengths a and 7T of the first and last pipes and 
the lengths of the intermediate ones as well remain invariable, the 
first certainly through continual influx, the last through efflux, the 

sum of the series _ha + ! + ~ · · · + ~ will be constant, which may be 
m n w 

called M, and p = gha, from which this equation appears: 

hh - ww Mhw dz _ h 
h Z + dx - a, 

or, 
(hh - ww)z dx + Mhhw dz= hha dx, 

of which x is computed by logarithms given in z, z itself by numerals 
given in x. 
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COROLLARY 2. But if now, with no new water flowing in, the first 
pipe be depleted by the flowing out through the last, of given length
just as would be done if the first pipe in the form of a vertically 
erected vessel were to contain liquid pressed by its own weight during 
the time in which it would be expelled through the horizontal conduit 
which the remaining pipes form-and if the distance traveled through 
the last pipe from rest be called x, the height of the liquid remaining 

in the cylindrical vessel will be a - :x; and therefore from the series 

a b C 7T • WX I 

h
- + - + - · · · + - there 1s now to be removed hh, and for - p there 

m n w g 
must be written ha - wx, which gives this equation: 

(hh - ww)z dx + Mhhw dz - wwx dz = (hha - hw x) dx, 

which through the Lemma of§XIV, can be integrated. 
COROLLARY 3. Furthermore, if the last pipe be prolonged indefi

nitely, such that with the uppermost surface of the water descending 
in the vessel, the water indeed does not flow out of the last pipe but is 
continually thrust forward in it more and more, there is to be written 

in the series not only a - :x for a, but also 7T + x for TT, and so for 

this case we will acquire this other equation: 

(hh - ww)z dx + Mhhw dz - wwx dz + hhx dz = (hha - hwx) dx. 

This is integrable through the same Lemma. 
COROLLARY 4. Ifby consideration of the vessel itself as the first pipe 

there results _ha = !!_ = !:. · · · = :!., that is, if the lengths of the pipes of 
m n w 

which the number be N be everywhere proportional to their respec
tive sizes, our general equation is changed to this: 

I 
(hh - ww)z dx + Nhaw dz = - hp dx. 

g 

COROLLARY 5. But if, with exception of the vessel or the first pipe, 

there results!!._ = !:. · · · = :!., and if the number of remaining pipes be 
m n w 

N, surely there will be 
Nhhw dz I 

(hh - ww)zdx + haw dz+ --- = -hpdx. 
m g 

COROLLARY 6. There shall now be an infinite number of pipes, but 
each one of them, except the first, of infinitely short length, such that 
all of them combined represent a truncated conoidic conduit of which 



374 HYDRAULICS, PART I 

the anterior area equals m, and posterior equals w, such as RSTV 
(Fig. 4). If this is conceived to be cut by two closely spaced planes, 

FIGURE 4 

sr and tv, parallel to SR and TV themselves, srvt will be one of those 
short pipes, having for a length an element of the length RV of the 
whole conduit, and for an area the plane sr. From this, in order to 

b . h f h . b C ff M b . d o tam t e sum o t e senes - + - · · · + -, - must e mtegrate , 
m n w sr 

which in many examples can be done algebraically: for instance, if 
ST be a straight line, that is, if SRVTbe an ordinary truncated cone; 
likewise if ST be the arc of a hyperbola of any kind whatever asymp
totic to RV. 

SECTION XXI 

Let us illustrate the very matter in the prior example. Let 
SRVT be a truncated cone of which the anterior area SR = m, the 
posterior area TV = w. Furthermore let their semidiameters be 

proportional to Vm and Vw. Henceforth let its abscissa Vv be equal 
to t, its element vr = dt, the semidiameter of the area tv = y, and the 
total length of the pipe RV= L; y will be found proportional to 

(tVm - tV~ + LVw)/L; but the area sr itself, which is proportional 

toyy, is (tvm - tV~ + LV~) 2/L2, because of which 

vr L 2 dt 

sr (tVm - tV w + LV w)2 ' 

the integral of which, rectified in an appropriate manner, is 

V Lt ; and therefore, through the whole conduit RSTV, 
t mw - tw + Lw 

taking Vv, or t, = VR = L, the required integral is found as./ 
vmw 

!!_ + : · · · + :!.. And thus our general equation of§XX, 
m n w 

(hh - ww)z dx + (~ + !!_ + : · · · + :!.)hhw dz = ~ p dx 
h m n w g 
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will give the following equation for the conduit or conic pipe the length 
of which is L and the two extreme areas of which are m and w, for the 
height of the vessel being a and the area being h: 

hhLw dz 1 
(hh - ww)z dx + haw dz+ v' = - hp dx. 

mw g 

SECTION XXII 

For the case of Coroll. 1, §XX, there will result as well 

(hh - ww )z dx + Mhhw dz= hha dx, 

where M = ~ + v'~w· For the case ofCoroll. 2 of the same section, 

the same having been assumed for M, there will result 

(hh - ww )z dx + Mhhw dz - wwx dz = (hha - hwx) dx. 

For the case of Coroll. 3, it must be understood that the conic pipe 
has a cylindrical pipe of indeterminate length and of area w attached 
to it at its extremity so that the propelled water may always be con
tained in it and travel through the distance x from the beginning of 
motion; there will then result 

(hh - ww)z dx + Mhhw dz - wwx dz+ hhx dz = (hha - hwx) dx. 

SECTION XXIII: GENERAL ScHOLIUM 

Many other corollaries could be derived from these, useful no less 
than curious and elegant. Certainly those which pertain to this 
matter have their entire basis in the ones already transmitted and 
explained; it is clear that I did not indicate this in expressed words. 
For example, we have supposed that some water or any other liquid 
gravitates in the first pipe only, just as in a vessel, and from there is 
forced through a conduit having a horizontal position, through which 
the water, while it is being moved, is deserted, so to speak, by its 
own gravity. Meanwhile if in this conduit, or in the pipes which 
compose it, it also retains its own gravity, whether the total or only a 
part, as would happen if the pipes were not horizontal but either 
vertical or inclined to the horizontal in some diverse manner, this 
causes no difficulty at all. For instance, the very weight of the water 
from any pipe whatever, by means of §II, can be translated to the 
vessel or the first pipe so that the water in the remaining pipes may be 
considered as being without gravity. But the translated gravities, 
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added together with the weight of the water in the vessel or the first 
pipe, can be considered in place of that which we called p or the fun
damental motive force by which the flow of the total aqueous mass is 
generated. Thus if, arbitrarily, the conduit EGEL (Fig. 5) were to 

' ' ' ' : 
HL. .. Bi 

l 
' ' 

0 L ............ - - L 
M 

FIGURE 5 

consist of three pipes, AD, GC, and BL, of different areas, the first of 
which, AD, would have an area AE or GD, the second GC an area GF 
or BC, the third BL an area BK or ML; and if the first were vertical, 
the second were to make the angle GBH with the horizontal, the third 
the angle BMO; and if the areas be AE = h, GF = m, and BK = n; 
then the force of gravity or the natural accelerative force is g, and the 
motive force in the pipe AD, full of water, is gh -AG. Likewise 

GB/GH = g ;g·:;t is the accelerative force of the liquid in pipe GC. 

Similarly BM/BO = g /g~e: is the accelerative force in the pipe 

BL. Thus g -:/eH m. GB or gm· GH will give the motive force of the 

water in the second pipe; similarly gn-BO gives the motive force of the 
water in the third pipe. But the motive forces are now to be trans
lated from the oblique pipes GC and BL to the vertical one by setting 
m/h = gm-GH/gh-GH, and n/h = gn-BO/gh-BO. And so in this way 
all the water in the pipes can be considered as being without gravity, 
but in its place the first column AD can be considered pressed by the 
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motive force expanded uniformly over the surface AE, which force 
would be equal to gh(AG + GH + BO) = gh · A = p (because 
AG + GH + BO equals the total vertical height of the conduit, 
which let be A). And so we have reduced this case and other similar 
ones to our general method. 

Note: If one or more of the oblique pipes is directed upward, 
there will be, on account of it or them, a negative motive force trans
lated to the first pipe, and there will have to be assumed for A an 
excess by which the sum of the positives is greater than the sum of the 
negatives, or vice versa. In a word, A will be the excess or defect 
by which the surface of the water in the first pipe is higher or lower 
than the horizontal which is the surface of the water in the last pipe. 
This serves in the determination of the law according to which 
liquids oscillate in pipes curved in any shape whatever. At this point 
also refer to the following Problem, proposed to me by my Son six 
or seven years ago but expressed slightly more generally. 

HYDRAULICS PROBLEM 

SECTION XXIV 

ABCD [ Fig. 6] is a vessel filled with water to EF. GI is a cylindrical pipe 
the section KI of which is also full of water. With the thumb spread over the 
orifice GO, the pipe is immersed in the water contained in the vessel, but just to 
the extent that the section MI of the pipe, greater than KI, penetrates the external 
water up to MN. The thumb now having been removed, the surface KL will 
scend ( on account of the prevailing pressure of the external water ), and on account 
of the impulse received, it will reach above the surface EF up to PQ,. The 
height MP or NQ, is sought to which without question the water in the pipe cer
tainly can rise. 

SOLUTION. Let the immersed part HM of the pipe be set equal to 
a, its portion HK originally full of water equal to b (less than a), the 
area EF of the vessel h, the area GO or HI of the pipe m. But the 
water now surrounding the pipe and pressing down by its own weight 
tries to enter through the opened orifice HI and to ascend by pro
pelling the portion of water HL lying above. I understand that action 
and effect in this way. Let another pipe, facing downward, having 
an area h equal to the area EF of the vessel and having a height 
HM= a, be attached to the orifice HI. Let this pipe be full of water, 
but of water such that it would be raised, that is, would be pushed 
upward, and certainly by a force precisely as large as that by which 
the water gravitates downward in the vessel of height MH (in place 
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of which that in the pipe is substituted through a fiction of the mind). 
Accordingly, the motive force of the water in this fictitious pipe ex
tending upward will be gha, and thus, with respect to this, the negative 
motive force of the water HL in the pipe HO will be gmb, which 
translated to the fictitious pipe gives ghb, which, of course, being 
opposite to that gha, is to be subtracted from the same, and there 
remains gha - ghb or gh(a - b) for the motive force which we 
called p, to which, therefore, are to be equated the motive forces 
which are generated by the flow through the throat to be formed at 
the entrance HI in flowing through the pipe HO and rising in the 
fictitious pipe. Thus if, beginning at KL, the distance traveled by the 
water within the pipe HO is called x, and as well the distance through 
which the surface of the water in the fictitious pipe travels in rising is 

Xx, for the sake of an imitation of the reasoning of §XIII we shall 

have the accelerative force in the pipe HO equal to v d:v, which, multi

plied by the mass of the water to be pressed upward, mb + mx, gives 

the motive force in this pipe as (mb + mx) vd:v, [which force is] to be 

translated to the fictitious pipe in order that from there we might 
V dv 

obtain the equivalent motive force (hb + hx) Tx· And since in 

addition in the fictitious pipe (in which the water ascends at the 

velocity 7i v through the distance Xx) its own motive force, which is 

. mv dv 
not to be translated any further, 1s (ha - mx) h dx, therefore, after 

that which is required for forming the throat has been added to these 
two forces, we will obtain the total motive force 

hh - mm v dv mv dv 
2
h vv + (hb + hx) dx + (ha - mx) h dx · 

However, since here 

p = gh( a - )i X - b - X) or g(ha - hb - mx - hx), 

there will result the equation for determining the velocity v, namely 
this: 

hh - mm ( mm ) v dv 
2
h vv + hb + hx + ma - h x dx = g(ha - hb - mx - hx); 
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which having been reduced, and gz having been written for ½vv, will 
yield 

(hh - mm)z dx + (hhb + hhx + hma - mmx) dz 
= (hha - hhb - hmx - hhx) dx, 

which through the Lemma of §XIV is integrable. If the vessel AC 
or the fictitious pipe is of exceedingly great size (which is the tacit 
understanding of the Problem), there emerges, obviously, this much 
simpler equation (after the terms in which m appears have been 
neglected, and the remaining ones divided by hh) 

z dx + ( b + x) dz = ( a - b) dx - x dx; 

this, integrated, gives (b + x)z = (a - b)x - ½xx, from which, if 
z = o, that is, if the surface KL ceases to rise, which happens when it 
reaches the maximum height PQ_ to which it can ascend, it is neces
sary then that also (a - b)x - ½xx becomes = o, wherefore a - b = 
½x or x = 2a - 2b; therefore KP= 2KM. 

SECTION XXV 

The same Problem can be solved more easily if it is considered as 
the case in §XIII. By understanding, of course, that the vessel AF 
in Fig. 2, full of water at the beginning of flow, has a height a = MH 
in Fig. 6, and the pipe FC, which is horizontal in Fig. 2, is now verti-

D 

G ··· 0 

FIGURE 6 

cally erect and continued indefinitely, in the latter let the lowest part 
of length b = HK be full of water at the beginning in Fig. 6. Now, 
therefore, if because of the prevailing pressure of the aqueous column 
in the vessel the water in the pipe ascends above b through the dis
tance x, and likewise that in the vessel descends through the distance 
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Ji x, we will have the motive force about to arise in the vessel due to 

the weight of the water lying above equal to g(ha - mx), and the 
motive force opposite to the prior [force J in the vertical pipe coming 
from the weight of all the water existing in the pipe equal to 
g(mb + mx), which, translated to the vessel, gives g(hb + hx), to be 
subtracted from the former g(ha - mx). And so there remains 
p = g(ha - hb - hx - mx), to which must be equated the sum of the 
three motive forces generated by the motion through the throat, the 
pipe, and the vessel, as we found in §XIII; after that has been done, 
the following equation is obtained: 

(hbv dv + hxv dv) mv dv (h ) 
dx + hdx a-mx 

hh - mm 
2h vv + 

= p = g(ha - hb - hx - mx); 

which, after corresponding terms have been joined together, will have 
this form: 

hh - mm ( mmx) v dv 
2

h vv + hb + hx + ma - h dx = g(ha - hb - hx - mx), 

exactly that which we found just above. 

SECTION XXVI 

From our Theory set forth so far, the physical reason can be given 
(which, certainly, neither Newton nor anybody else gave correctly 
from purely dynamical principles) as to why obviously a solid cylin
drical body which is moved uniformly in a continuous infinite fluid 
of the same density as the body, with its own base directed forward, 
suffers a resistance equal to the weight of the cylindrical body, with 
the assumption, of course, that the velocity of the body is equal to that 
which a heavy weight can acquire by falling freely from a height 
equal to the side of the cylinder. From a number of proofs, which 
are mine, it is pleasing to give the following support to our Hydraulics 
Theory in this writing. 

Let the cylinder RMNS (Fig. 7), which may be moved in the direc
tion of side MN, be in a standing fluid, equally dense, continuous, and 
infinite. Let the velocity of the cylinder be v, the side MN be a, and 
the base, or the area NS, be h. Let us imagine that in place of the 
solid cylinder there is the pipe MS full of the same fluid matter, and 
through this stationary pipe (where beyond the boundary configura
tion I consider nothing additional) there flows at a continuous and 
constant velocity v an integral fluid cylinder, such that the pipe re-
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mains always full, and that as much as flows out through NS is brought 
in through MR as a new supply at the same speed. To an observer 
it becomes manifest at once that the fluid cylinder in efflux through 

TF 

FIGURE 7 

NS meets, of course, the same resisting force by the approach to the 
standing fluid external and opposed to the motion as a solid cylinder 
itself would meet, because the fluid cylinder, while it is moved 
through the pipe, can be considered as solid, and all the other cir
cumstances are equal. Therefore, it is only to be seen how great the 
resistance is which the fluid going out is experiencing at the moment 
of egress itself. However, it is evident that this resistance develops 
from the throat TNSV which is formed behind the orifice NS of the 
pipe; the shape of this throat must be such that at an arbitrary small 
distance it has the asymptote FG perpendicular to the direction of the 
axis of the pipe for the reason that, on account of the very rapidly 
decreasing and wholly vanishing motion of the fluid which has come 
out, the areas of the throat must increase in turn, and in a very short 
time they must be spread out practically to infinity. I assume, to be 
sure, that the fluid coming out of the pipe is not miscible with the 
other at rest outside. Thus through those matters which were ex
plained in §IX, and because the ultimate velocity in the throat is v, 
the force through the throat will be ½hvv, and as well, on account of 
the constant velocity in the pipe, there will result, through Coroll. 2, 

§IX, ½hvv = p = gha, that is, ½vv = ga. Thus by writing gz for ½vv, 
there will result z = a. It is proper, therefore, in order that the resis
tance become equal to the weight of the cylinder, that the required 
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velocity of the fluid in the pipe should be that which a heavy object 
falling freely from the height a would acquire. Q.E.D. 

COROLLARY. From the fundamental property shown (previously 
not sufficiently accurately established), there follow all things beyond 
this which are commonly transmitted concerning the resistances of 
continuous and nonelastic fluids. Certainly the resistances in fluids 
of this sort exerted perpendicularly on opposite planes of bodies are 
composed in proportion to the square of the relative velocity and the 
first power of the density of the fluid. From this at last the remaining 
are deduced. 

CONCERNING THE PRESSURE ON THE BASE OF A 
CYLINDRICAL VESSEL (WITHOUT AN ATTACHED 
PIPE) DUE TO A FLUID FLOWING OUT THROUGH 

AN ORIFICE 

SECTION XXVII 

Let there be constantly filled by fluid the cylindrical vessel AF 
(Fig. 8), of which the area AE = h, the length AG or EF = a, and the 

FIGURE 8 

area GB of the orifice = m. Let the discharging fluid, after [fluid] 
has already been flowing out for some time, have a velocity v, so that 

in the vessel itself it has the velocity 7i v. Let x be the length CL of 

a cylinder of which the base is m, which cylinder may define the 
quantity of fluid already having flowed out. Now, furthermore, let 
the velocity which will exist afterwards be u, and the length of the 
previously mentioned cylinder of fluid which will flow out further be 
y, and also the total length of that which has flowed out and that which 
will flow out be x + y. Let us also consider the fluid to be free from 
all gravity, and likewise to have no other force for pressing the base 
than that which stems from the motion. This force meets an equal 
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resistance from the opposition of the base on account of the equality 
between action and reaction. But the resistance is found if the re
tardative force, which diminishes the velocity of the column of fluid, 
is found in the usual manner, and that [force], multiplied by the mass 
of the column, that is, by ha, will give the resistance of the pressure on 
the base. I accomplish the matter as follows: the equation shown 
in§XI, 

hh - mm hbv dv mav dv 
2h vv + ~ + ~ = p, 

is changed in the present case (where the length b of the pipe, since it 
is absent, is o, and the weight p of the column of fluid in the vessel is 
o) into this particular equation, 

hh - mm mav dv 
2h vv + ~ = o, 

and by replacing v by u, into this similar one, 

hh - mm mau du 
2h uu + ~ = 0. 

SECTION XXVIII 

Through reduction, and after dy has been written for dx (for x is 
now constant, while x + y is the indeterminate and variable length of 
the cylinder of fluid flowing out), the equation appears in this form: 

hh - mmd ma du 
DI+ -- = o· 

2h U ' 

and after integration, 

hh - mm hh - mm 
2h (x + y ) + ma In u = ma Inv + 

2
h x. 

I write this so by adding the last two constant terms for the sake of 
rectification, to the end that, for y vanishing and u beginning at v, the 
equation itself becomes an identity. And so there will result 

ma In(;) = - (hh ~h mm)y, from which, by going to numbers and 

by putting I = In e, one has uu = vve-<hh-mm)y/hma. 

SECTION XXIX 

After proper differentiation of this derived equation (after certainly 
having assumed v as constant), there will result 

u du = -vv dy --=--- e<hh-mm)y/hma_ (
hh - mm)/ 

2hma 
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However, the accelerative force in the vessel is negative, that is, it is 

d h d . r mu du h' h d' 1 transforme into t e retar ative wrce - h dy , w 1c accor mg y 

will be VV (hh - mm)/e<hh-mm)y/hma_ 
2hha 

SECTION XXX 

This force, which is useful to us at the very first moment after the 
abolition or supposed cessation of the gravity which previously the 
column of fluid in the vertically erect vessel had, will be vv = 2gz, as 
certainly y = o; and so that force which was found will be 

gz (hh ~amm) (see §XI, where 

z = (hh ~amm). (I _ i//hh-mm)x/hma)), 

and hence by multiplying by the mass ha of the fluid, the resistance or 
the pressure on the base arising from the motion of the fluid alone is 
found to begha(1 - 1/e<hh-mm)x/hma), to which ifin addition is added 
the weight gha of the column of fluid, which in a vertical position acts 
constantly on the base whether the fluid is moving or at rest, there 
will result a total pressure gha + gha(1 - 1/e<hh-mm)x/hma). 

COROLLARY. If x = oo, the total pressure will be gha + gha/e0 = 

2gha, as e0 = 1. But if x = o, the pressure at the base will be 
gha + gha ( 1 - 1) = gha, which is also obviously true from the fact 
that initially only the weight of the fluid cylinder acts on the base, 
and afterwards, with x increasing, the pressure also increases, and in 
such a way that it never attains 2gha, much less exceeds it, although 
it may approach this quantity rather closely. 

ScHOLIUM. On the other hand, let no one believe that the heavy 
liquid in the vessel perhaps presses on the base differently when it is 
being moved from when it is at rest; notwithstanding that the con
trary is readily evident to an observer of the nature of immaterial 
forces; just as for example the cause of gravity was considered to be 
apart from a body, so these forces act instantly throughout the total 
mass to be set in motion, and thus they act in the same manner and 
they exert the same pressure on an obstacle as if the heavy liquid 
lying over it were at rest. Nevertheless, I will prove the truth of the 
matter in our case through calculus. Certainly it is clear at once 
that the heavy liquid is accelerated by descending in the vessel. 
Moreover, its motive force, however great it may be, must have two 
parts, of which one is given over to the retardative force at the base 
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opposed to that to be considered, but the other part remaining is 
employed in the acceleration of the actual descent. But this latter is 
exactly that which results from the equation of §XI which is to be 
solved, that is, 

hha z = ___ (I _ i /e<hh-mm)x/hma), 
hh - mm 

by differentiating which and multiplying it by g we will have 

h g dz = V dv = - g dx je<hh-mm)x/hma. 
m 

Therefore, the remaining accelerative force in the vessel, or :v d~' 

is equal to g/e<hh-mm>x/hma, to which if there is added the [accelera
tive] force which the above-found retardative force diminishes, 
g( 1 - 1 /e<hh- mm>xlhma), together they constitute an accelerative force 
g, and therefore they constitute a pressure gha developing from the 
weight, that is, equal to the weight itself. Q.E.D. 

And indeed one will have to proceed thus in the remaining cases 
where one or more pipes are attached to the vessel, so that, naturally, 
first of all one may find the retardative force on the base of any one of 
the given pipes by supposing that the fluid suddenly parts with its 
gravity, and then one may add to the discovered retardative force the 
pressure provided by the weight only of the fluid (by considering it as 
being at rest and stagnant) and propagated either directly to the first 
base or indirectly through the preceding pipes to whatever base we 
wish. 

APPENDIX: 

OUTLINE OF THE CALCULATION TO BE EMPLOYED 
FOR DETERMINING IN A SINGULAR WAY THE 
VELOCITIES OF WATER FLOWING THROUGH 
MANY PIPES FROM ONE TO ANOTHER, AND 
ESPECIALLY IF IT SHOULD FLOW OUT THROUGH 

SEPARATE INDIVIDUAL PIPES, AND HENCE TO 
BE EMPLOYED FOR FINDING THE PRESSURES 

EXERTED UPON THE BASES OF THE 
INDIVIDUAL PIPES. 

In advance it is necessary to point out that we assume this conduit 
to be composed of several pipes attached to each other one by one, 
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having any position whatever, vertical, horizontal, or inclined. We 
next assume that the conduit is constantly full of water and that the 
flow has come to steadiness, during which time as much liquid flows 
out of any pipe as is necessary for supplying the next smaller pipe, 
such that therefore every one is constantly full, and that they may be 
thus considered individually as if they were isolated and set apart. 

Let the length of the first and largest pipe be a, that of the second 
and next smaller be b, that of the third be c, etc.; the area of the first 
be h, of the second be m, of the third be n, of the fourth be q, etc.; the 
orifice of the first pipe, equal to the area of the second pipe, be m, the 
orifice of the second be n, the orifice of the third be q, etc. The 
natural gravity beg, the natural gravity in different oblique directions 
bey', y", y'", etc. But for the vessel or first pipe let the gravity arising 
from the mutual action in the attached pipes beg', for the second g", 
for the third g"', etc. Let the length of the aqueous cylinder having 
flowed out through the first orifice be x', that through the second x", 
that through the third x'", etc. Let the height from which a weight 
having fallen naturally acquires the velocity of the water flowing out 
through the first orifice be z', that which pertains to the second z", to 
the third z"', etc. 

And so with these things having been set forth, and the remaining 
things as they are in hydraulics Literature, certainly there results, for 
pipes attached to each other in succession, through the translation of 
forces, and indeed for a conduit of two pipes gha + y' hb = g' ha + 
g"hborga + y'b = g'a + g"b;foraconduitofthreepipesga + y'b + 
y"c = g'a + g"b + g"'c. I call these equations fundamental. 

Next it is clear that there results z' = !!!!.. z" = .!l!L z'", etc. Like-
mm mm 

wise x' = !!:.. x" = !l.. x"', etc. On the other hand, through §XI, the 
m m 

following equations result for the individual pipes being vertically 
erect: 

For the first pipe, 

g(hh - mm)z' dx' + ghma dz' = g'hha dx' 

For the second pipe, 

g(mm - nn)z" dx" + gmnb dz" = g"mmb dx" 

For the third pipe, 

g(nn - qq)z"' dx"' + gnqc dz'" = g'"nnc dx"', 

and so on in succession. 
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Note that, if any one of the pipes were horizontal, the y pertaining 
to it would vanish in the fundamental equation. Thus for example 
if there were three pipes, of which the first were vertical but the re
maining two were horizontal, the fundamental equation would be 
this: ga = g' a + g11 b + g111 c; but if in fact all three were vertical, this 
fundamental equation would result: g(a + b + c) = g'a + g11b + g11'c. 
Now since that is the prize achievement in this investigation, it is 
necessary to define the forces of the gravities g', g11

, g'", etc., resulting 
from the mutual action of the natural gravity, from which later the 
velocities as well as pressures on the bases of the pipes become known. 
Moreover, I describe this so. By imitation of the operations applied 
in §XI, that which follows is found for the individual pipes: 

For the first pipe, 

z' = !{ ( hha )(r _ r/e<hh-mm)x'/hma) 
g hh-mm 

For the second pipe, 

11 _ g" ( mmb )( Z -- ---- I 
g ,mm - nn 

For the third pipe, 

,,, g nnc ( Ill ( ) z=----I 
g nn - qq 

_ I / e<mm - nn)x" /mnb) 

- r/e<nn-qq)x"' /nqc) 

And so on. 
And accordingly, since z', ;:,

11
, z'", etc., as well as x', x 11

, x"', are given, 

· 1 · f h h 1 ' nn II qq 111 respective y, m terms o eac ot er-name y z = - z = - z , 
mm mm 

and also x' = !!.. x11 = !l x"'-let the values of the individual z and x 
m m 

be expressed by one of them, and there will result as many equations, 
less by one, as there are pipes, or as there are hypothetical gravities 
g', g11

, g'", etc. Certainly, for example, for three pipes, z' having been 
retained to which the remaining z", z"' are to be reduced, and also 
x 11

, x"' to the retained x', there will result these two equations: 

z' g' ( hha ) ( _ 1 /e<hh - mm)x' /hma) = .!!!!_ z11 

or g hh - mm 1 mm 
or 

nng
11 

( mmb )( r/e<nlm)(mm-nn)x' /mnb), 
mmg mm - nn 

1 
-

and that first one is also the same as 

qqg'" ( nnc )(r - rfe(q/m)(nn-qq)x' /nqc). 
mmg nn - qq 
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But since there are three hypothetical gravities g', g", g'", to be sought, 
another equation is required at this point for the solution of the 
Problem. Moreover, this must be sought from the fundamental 
equation ga + y'b + y"c = g'a + g"b + g"'c, or (if indeed the two 
pipes are assumed horizontal) from this there is merely ga = g' a + 
g" b + g'" c, since y' and y" vanish. 

Let us make an application, for the sake of brevity, to the very 
simple case of two pipes constantly full of water, of which the first may 
be vertical, the other horizontal, and let us stipulate that the flow has 
reached uniformity, that is, x', x", etc., = oo. There will result one 
equation drawn from z', 

'( hha ) nng" ( mmb ) 
g hh-mm = mm mm-nn' 

another from the fundamental ga = g'a + g"b, from which, by pro
ceeding customarily, one has 

, gnn(hh - mm) 
g = mm(hh - nn) and 

,, ghha(mm - nn) 
g = mmb(hh - nn) · 

H llh .. d"d . 1 , hhnna 
ence a t e rema1nmg are enve , as certain y z = (hh ) mm - nn 

and z" = hh hha , agreeing absolutely with those which we have 
- nn 

proven and given above. Likewise the pressures on the base of any 
pipe are most easily determined. Since surely the individual pipes 
can be considered as if they were solitary, the formula must be em
ployed which we found above for the first and only pipe with the 
writing of only the letters which are suitable for any other pipe con
sidered as if alone or separate. Accordingly, since for that one alone 
the total pressure was found as gha + gha[1 - 1//hh-mm>xlhma], here 
the total pressure will have to be written: 

For the first pipe, g'ha + gha[I - 1//hh-mm)x'Jhma], 
For the second, g"mb + gmb[I - 1/e<mm-nn)x"/mnb], 
For the third, g"'nc + gnc[ I - 1 je<nn-qq)x"'/nqc]; 

and so, after the values of g', g", and g"' themselves have been substi
tuted--or, because we make the application to only two pipes, and 
indeed where x = oo, merely the values of g' and g" must be substi
tuted, which are g' = gnn(hh - mm) /mm(hh - nn), and g" = 
ghha(mm - nn) /mmb(hh - nn)-the first pressure will result as 

nn(hh - mm) 2ghha (mm - nn) 
2gha (hh )' and the second pressure as -- hh · mm -nn m -nn 
If in addition h = oo, but m and n are finite, the first pressure will be 
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h M . b h d "11 b 2g a - = oo, as 1s proper, ut t e secon pressure w1 e 
mm 

2ga (mm - nn), which is finite. 
m 

This method having been observed properly, the gravities for 
5 pipes, g', g", g'U, g1v, gv, are found as follows: 

g' = ghhssa(hh - mm) /hhmma(hh - ss) 
g" = ghhssa(mm - nn)/mmnnb(hh - ss) 
g'" = ghhssa(nn - qq) /nnqqc(hh - ss) 
g1v = ghhssa(qq - rr) /qqrrd(hh - ss) 
gv = ghhssa(rr - ss) /rrsse(hh - ss). 

From this foundation, the law of progression for any number of 
pipes develops more satisfactorily. And so in the truncated conoidic 
conduit FE (Fig. g) attached to the cylindrical vessel AF, which conduit 

FIGURE 9 

is considered as being made up of innumerable pipes of infinitely small 
length, there will be found, for any area NO, the hypothetical gravity 
by which the layer of water of infinitely small thickness is set into 
motion when the flow will have reached constancy. By designating 
the area NO by y and the thickness of the aqueous layer by dx, and by 
employing the rest of the nomenclature which we have used so far, 
[ one finds that] the gravity setting this layer into motion will be 
ghhwwa · 2_y dy ghhwwa · 2dy 

Further, the weight itself of this 
y 4 dx(hh - ww) y 3 dx(hh - ww)" 
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layer, or the pressure by which it is agitated, will result if one multi
plies by the quantity of matter y dx; therefore this pressure will be 
ghhwwa,2dy 

yy(hh - ww)' 
To this then there are to be added the pressures of all 

the following layers from O right through to the limit B, but gathered 
by translation to the position 0, as our method explained at the be
ginning requires. In the meantime, to this end lety be assumed to be 
constant and the other area, RS = t, to be variable; the pressure of the 

. ghhwwa · 2dt . 
latter layer t dx will be (hh )' which may be translated to the tt - WW 

b k
. ghhwwa · 2dt . ghhwway · 2dt 

invariable position NO y ma ing ----,,,-,----..,. mto ----- as 
tt(hh - WW) t3 (hh - WW) 

t is to y, the properly correct integral of which gives 
ghhwway ghhwway 

ww(hh - ww) - tt(hh - ww)' 

. ghha(J.i'I! - ww) 
where now, by puttmg t - y one has "---,-,-'"--',__,~----,--~ as the 

- ' y(hh - ww) 
total pressure by which certainly the water at NO is compressed. 
Therefore, in order that z, the altitude of the aqueous cylinder 
of which the base is y and the weight is equal to this pressure, 

may be found, gyz is to be set equal to g~:~y--w:)), from which 

hha(yy - ww) 
"' - ---,-"--'---~~ And thus the water in the pipe inserted at the 
,._ - yy(hh - ww) · 

position N will remain at this height NM. But it is to be noted that 
the conduit FPBC is considered as having the diameters of the maxi
mum area FP and minimum area CB small enough with respect to 
the length PB so that certainly the tangent to the curve FNC at 
any point N makes a very small angle with the horizontal PB. For 
otherwise, from the impact of the water while moving toward the 
overly curved side FNC of the conduit, there would arise a new 
force of pressure (which is here being neglected as accidental) 
which, augmenting the prior [force], would increase the height 
NM, just as actually occurs if the conduit FB ends in a plate, per
forated by an orifice of area w, on which the water, impinging 
perpendicularly, can increase the compression in the regions near the 
orifice. In the more remote regions that increase becomes less 
noticeable, and it varies as the curvature of the throat postulates, 
which moreover I consider to depend upon the peculiar nature of the 
water or other fluid flowing through, and so to be generally indeter
minable. 



SECOND PART 

Containing the Direct and Universal Method for 
Solving all Hydraulics Problems whatsoever 

which can be Formed and Proposed 
Concerning Water Flowing through 

Conduits of any Shape 

SECTION I 

Consider any conduit whatever; let it be straight or curved, or let it be 
continuous or composed of many cylindrical pipes, or, finally, let it be 
vertical, or horizontal in part, or inclined differently in its different 
parts. Let this conduit be full of water, or some other heavy liquid, 
homogeneous and very fluid. Moreover, let it begin and continue to 
flow by accelerating (as much and as long as it can), and indeed in 
such a way that the conduit remains constantly full, with new water, 
of course, entering from another source; this replaces that escaping 
from the last orifice at any moment by flowing in through the first 
orifice with that velocity with which the uppermost surface would 
subside if the inflow were suddenly stopped. This condition is added 
for the sake of easier calculation; the method is surely valuable if no 
new liquid were to enter, right up to the complete depletion of a 
vessel or conduit. First, the velocity of the liquid flowing out is 
sought for any given quantity of liquid already having flowed out. 
Then is sought how much the sides of a conduit are pressed at indivi
dual points by the liquid flowing through, or, since it comes back to 
the same thing, to what vertical height a liquid of the same kind as 
that flowing through must remain elevated in a pipe inserted at any 
point and erected vertically. 

SECTION II 

And so let the arbitrary conduit ECce be given (Fig. 10), the vertical 
line AB considered as the axis of the abscissas, attached to which in 
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order are AEe, PFJ, TNn, and BCc, the parts Ee, Ff, Nn, and Cc, of 
which may define the areas or horizontal sections of the conduit. Let 
the liquid contained in it be considered as divided into horizontal 

FIGURE IO 

layers of infinitely small thickness, FMmf, NLln, etc., the intermediate 
points of which, or the centers of gravity G, H, V, I, etc., may form the 
line GHVI, either straight or curved, which I shall call the center line, 
or simply the centric; the latter certainly will be given, on account of 
the given curves EFG, and efc, which are determined from the given 
Shape of the conduit. 

Let the first area Ee be h, the last area Cc be w, some intermediate 
area Ff bey, another intermediate one Nn be r, and the thickness of 
the individual layers PR or TS be dt. The layers themselves will be 
Fm = y dt, Nl = r dt. Let, furthermore, some indeterminate straight 
line ID, which is oflength x, touching the centric at I, be equal to the 
length of the oblique cylinder of liquid flowing out in the direction of 
ID itself, the base of which cylinder is Cc, and let this contain the 
quantity of liquid already emitted. The velocity of the liquid 
flowing out at that very moment is v. Let the gravity by which bodies 
are naturally set in motion beg. Now by designating the elements 
Hh, etc., of the centric line as ds, the gravities by which the layers are 

set in motion in the directions Hh, Vu, etc., will beg it, and therefore 
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directions will be gyd~t
2

, gr ;;2, etc.; but the absolute motive forces 

themselves [ acting] in the vertical direction will be gy dt, gr dt, and 
so on. 

SECTION III 

By translating these absolute forces (through the Hydrostatic 
Principle as it was shown in the first Part) to the first area h, the former 
will be gh dt for the individual areas. Therefore, by integrating 
through all dt, that is, through the total height AB (let this be equal 
to a), gha will be equal to the total pressure to be applied vertically 
to Ee, equivalent to the sum of the absolute motive forces in all the 
sections. And this total pressure gha to be applied to the first area is 
that which is customarily called p by me. 

Now let the tangent to the center line CHI at I be to its vertical 
subtangent [i.e., vertical projection] as ex is to 1, and the tangent G to 
its subtangent as f3 is to 1, but the tangent at any intermediate point 
H to its subtangent as ds is to dt. Certainly through the resolution of 
the motion, v, or the actual effiux velocity of the liquid at I, will also 
be to its vertical subvelocity [i.e., vertical velocity component] as ex 

is to 1, and therefore that subvelocity is !!.. Similarly, by calling u 
ex 

the actual velocity at Hin the direction of Hh, its subvelocity will be 
u dt 

In order that the actual velocity u may be found, however, it 

is to be noted that the subvelocities of the layers are in reciprocal ratio 
to their areas, to the end that they transmit equal quantities of liquid 

in the same elementary time interval; and so, by setting y /w = ~;vw, 
ex exy 

vw will be equal to the subvelocity of the layer Fm. Furthermore, by 
exy 

. vw;vw ds vw ds . 
settmg dt/ds = - -d-, -d- will be equal to u, or the actual 

exy exy t exy t 
velocity of the layer Fm in. the direction Hh. Hence the actual velo
city of the first layer adjacent to the area Ee (wherey is inserted for h, 

and ds : dt = f3 : 1) will be {3:v· 

By no means is one to reason differently in finding the actual dis
placement of the layer Fm in the direction Hh. For by calling dx 
the instantaneous displacement of the last layer Cc in the direction 
the weights or the motive forces of the layers themselves in those 
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ID, its subdisplacement in the vertical direction will be dx; more
a 

over, here the subdisplacement of the layers are also in reciprocal 
. . dx;w dx w dx rat10 to the areas, and so, by settmg y /w = - --, [then] --

a ay ay 
will be equal to the subdisplacement of the layer Fm. Therefore by 

. w dx;w dx ds w dx ds . . 
settmg dt/ds = -- --d-, --d- will be equal to the actual d1s-

ay ay t ay t 
placement of the layer Fm in the direction of its motion, Hh. 

SECTION IV 

With the water already in motion, its layers act mutually on each 
other in different ways by pushing and resisting, and certainly with 
different forces, on account of the diversity of the surroundings with 
respect to position as well as speed. And so, in the meantime, let the 
indeterminate accelerative force which arises from the mutual action 
be called y, and let the acquired velocity which some layer Fm has in 
the direction Hh be called u. Therefore y ds = u du, from which 

u du 
y = ds . Let this be multiplied by the mass of the layer, y dt, and 

its motive force yy dt = yu ~; dt will develop in the direction Hh. 

However, in order that this may be obtained in the vertical direction, 
from which the former can be produced, one has to set 

yu du dtl dt/ds = ----;J;- yu du. 

This will be the motive force required in the vertical direction, which, 
therefore, translated to the first area h, gives the equivalent hu du . 
Let this be integrated so that ½huu is obtained, which, through the 
necessary correction, is to be applied to all layers contained and added 
together in the entire conduit ECce. Therefore (since the velocity of 

the last layer is v, and that of the first is f3a:v), the correct integral is 

h ( f3f3ww ) vv (aahh - f3f3ww) h. . l h · 
- vv - -hh vv or h ; t 1s 1s equa to t e eqmva-
2 aa 2aa 
lent vertical force to be applied at Ee by which, of course, the indivi
dual layers obtain their own particular forces for pushing each other 
mutually, to the effect that they merely conserve their own effort at 
the moment at which the water is flowing out at the velocity v; thus, 
since it occurs not continuously but in an indivisible instant and 

--------- - -
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[since it] depends upon the shape of the conduit only, this force, 
having arisen from the translation, can be called the static force or 
static potential, or, if it be more pleasing, the hydrostatic potential, since it 
consists in the effort alone of making the transition from one layer to 
the next lower, no attention having been given to the actual accelera
tive force. 

SECTION V 

Further, the other force is to be sought which arises from the actual 
acceleration of the liquid flowing through. To this end I set the 
actual accelerative force of any arbitrary advancing layer Fm = y'; 
( on account of the actual displacement of the last layer Cc through 

the small space dx) the displacement of the layer Fm will be w dxdds, 
ay t 

y'w dx ds , , wwv dv(ds) 2 . 
and therefore (§III) d = u du = (d ):.i , from which 

ay t aayy t 

I WV dv ds d h 1 . fc • h d" . f h 1 y = d d , an t e actua motive orce m t e irection o t e ayer 
ay X t 

uh ' d . wv dv ds d h . 1 . fc fi h" h n, , or y y t, is d , an so t e vertica motive orce rom w 1c 
a X 

the latter can be produced is wv ~(~)
2

, which, translated to the first 
a X t 

h . h . 1 hwv dv(ds)2 . d h h" b area , gives t e eqmva ent d d ; m or er t at t is may e 
ay X t 

integrated through the total length AB of the axis corresponding to 
the whole conduit, for any layer and for any acquired velocity v, herein 

not only h and w but also v ddv must be considered as constant; and so, 
a X 

by integrating, we will have hwvddv J (dsd)
2 

equal to the other force 
a X y t 

that is to develop from the actual acceleration of the liquid flowing out, 
which it may please one to call the hydraulic force, as distinguished 
from the hydrostatic force, which consists of effort alone, or pressure 
employed instantaneously, and this at every instant, however the 
liquid may be moved. 

SECTION VI 

These two forces, the hydrostatic and the hydraulic, compose the total 
force which certainly is generated by the action of the primitive p, 
which was found in §III to be gha. Accordingly, by equating this 
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to the sum of those two found in §§IV and V, we will obtain the 
most general equation for the determination of the velocity with which 
the liquid flows at any moment, which equation is this: 

vv(aahh - f3{3ww) + hwv dv J (ds) 2 = ha. 
2aah a dx y dt g 

Here it is to be understood that J ~1t
2 

denotes the sum of all the 

dsd
2 

which are contained not only between Cc and Ff but everywhere 
y t 
between the extremes, by including all from one [extreme] to the 
other. 

SECTION VII 

If one now wishes to express the equation in z, or the height from 
which a given body, by falling under natural gravity g, would acquire 
the desired velocity v, then one should write, according to dynamic 
principles, 2gz for vv and g dz for v dv, which will give this equation: 

gz(aahh - f3{3ww) + ghwdzf(ds) 2 = ha· 
aah a dx y dt g ' 

or, after a reduction has been made, this: 

( aahh - f3{3ww) z dx + ahhw dz I ~1t
2 

= aahha dx; 

or, because J ~dsJt2 ' to be taken through the total length of the axis, 

can be considered as constant, and thus as given, at least through 
quadratures, let that be called M; and the equation will be reduced 
to the following form: 

(aahh - f3{3ww)z dx + aMhhw dz = aahha dx. 

From the resolution of this equation, z will be found in quantities 
given in x and the constants M, a, h, w, a, {3. 

COROLLARY r. For an existing uniform velocity of efflux, to which 
it reasonably arrives very quickly, and almost in one wink of the eye, 
as will be shown in the proper place in this writing, dz vanishes; 
therefore, after this has been neglected, the following algebraic 
equation develops: (aahh - f3{3ww)z = aahha, from which the desired 

aahha 
Z = aahh - f3{3ww · 
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COROLLARY 2. Hence let two vessels or two conduits have any 
shapes whatever, even though very different from each other, provided 
only that they have the same vertical height a, and that they have the 
uppermost and the lowest areas, or the first and the last, h and w, in 
the same ratio, and furthermore that they have a and f3 in either case 
proportional to each other. The water will fl.ow out from either 
conduit or vessel at the same velocity after the flows in both cases have 
become uniform. 

COROLLARY 3. If the centric line GHJis a straight line, whether it be 
vertical or oblique, there will be f3 = a, and ds : dt = a : r. Hence, 

ds = a dt, and J ~1t
2

' or M, = aa J ~' which changes the general 

equation (aahh - f3f3ww)z dx + aMhhw dz= aahha dx to this: 

Jdt 
(hh - ww)z dx + ahhw dz y = hha dx. 

But, whatever might be the position of the straight center line, whether 
vertical or oblique, in the case of uniform effiux z will always be 

hha 
hh - ww· 

COROLLARY 4. Now, with the shape of the conduit or vessel being 
maintained, and both the uppermost and lowermost areas Ee and Cc 
as well, if a little change is made in the direction of the inflowing and 
outflowing liquid, that change, even if it be hardly noticeable, can 
produce a marked change in velocity. In Fig. 11, for example, if 
borders or lips Emne and Cpqc, having very little height Em and cp, are 
added to the vessel or conduit ECce such that the areas mn and pq 
are kept the same as the previous values Ee and Cc, and such that the 
total height of the vessel is not increased noticeably, no one will 
easily believe how much the change in velocity is going to be due to 
this operation. Whereas now certainly the water flows in and out no 
longer obliquely but vertically, on account of the vertical direction of 
the lips, which even gives a vertical orientation to the extreme tan
gents of the center line, and so yields a = f3 = I, it is clear that the 
general equation 

( aahh - f3f3ww) z dx + aMhhw dz = aahha dx 

now at once assumes this form: 

(hh - ww)z dx + Mhhw dz= hha dx; 

and, for a uniform velocity, there will be z = hh hha ; I consider it 
- WW 
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worthwhile to show this, lest otherwise, if, in experiments yet to be 
performed, one does not attend accurately enough to trifling circum
stances which seem to be ofno importance, and then, what is produced 

E 

FIGURE II 

seems, falsely, to agree less accurately with ours; lest, I say, our theory 
be immediately suspected of being in error. And so it happened once 
to the illustrious Poleni, otherwise a well-regarded and industrious 
Man in experimental matters, who, about to see what different quan
tities of water in a given time openings of different size would emit, 
[the openings] having been affixed to the same vessel full of water, 
had arranged for this purpose that there should be several thin plates 
not altogether compact but that every one be pierced by an orifice of 
some particular size, so that first one and then another [plate] would 
cover the aperture at the bottom of the vessel. Moreover, it occurred, 
unless I am perchance mistaken, that he repeated the experiment twice 
with some of those plates, and diligently many times thereafter, where, 
to his astonishment, he observed that that one and the same plate, 
through its same orifice, had emitted a sometimes greater or sometimes 
lesser amount of water in the same time, accordingly as one or another 
face of that plate was looking outward. Finally the form of the orifice 
was examined more carefully, and then it was observed that the shape 
of the orifice, obviously having been cut in a thin plate, was not exactly 

-----
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cylindrical, but rather like a small truncated cone, having one base a 
little larger than the other, which was already sufficient for revealing 
the reason why, with the larger base of the orifice being open out
wards, the water would flow out more fully than in the contrary 
sense; and this on account of a double reason, for both the aqueous 
stream springing forth was wider, and its velocity was greater, just as 

is evident from our formula, z = hh hha , where it is clear that the 
- WW 

value of this fraction would be greater if w were greater, h and a 
remaining fixed, and contrarily, it would be less if w were less. 

COROLLARY 5. In the case in which ah = (3w, or where a : /3 = 

w : h, it will be true that M- w · dz = aa dx, from which z = Ma ax, 
·w 

whence it is clear that, with the effiux x increasing to infinity, z also 
increases to infinity, and thus that the velocity never converges to 
uniformity. This certainly appears also from the very formula of 

C 11 c aahha (" h" ) oro ary I, 1or z = hh /3/3 = 1n t 1s case aa - ww 

aahha a 
aahh - aahh 0 

= 00. 

SECTION VIII 

ScHOLIUM I. It is to be noted that in conduits and pipes [that are] 
not very wide and not sufficiently long, it is commonly observed, as I 
already hinted in the Preface,* that the sections Fm (Fig. 10), being in 
a state of flow, easily adjust themselves from a horizontal position to 
a position perpendicular to the sides, or rather to the centric line 
CHI, which is clearly evident, in any case, from the motion of the 
uppermost surface Ee (if no other liquid follows), as for example in 
barometric tubes and other syphons of that sort having diameters of 
not more than one or two lines; whether this is accomplished on 
account of the adhesion of the fluid to the sides, which must be uni
form around the boundary in a circuit of the layers, in order that the 
fluid may be moved as aptly as possible and without noticeable 
friction, or it occurs on account of some other physical reason, is not 
to be determined at this point. It is sufficient to insert here that this 
circumstance does not oppose our Theory. For, because, through 
the general rule, the center of gravity of bodies urged into motion by 

* p. 355. 
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any cause whatever is moved in the same manner and at the same 
velocity in its initial direction as if their entire material were concen
trated at the center of gravity itself, certainly the material of any 
layer Fm can be considered as concentrated at the center of gravity 
Hor h. As, therefore, in not very wide oblong conduits any arbitrary 
small portion of them can be taken as quasi-cylindrical or prismatic, 
it is evident that every layer Fm, for the slightest reason, can change 
its horizontal position Ff to rs, perpendicular to Hh, during which Hh 
retains the same length, and the quantity of the new layer rtos is 
equal to [that of] the layer FMmf Therefore, let us consider how 
individual remaining layers NL (without any other change either in 
velocity or in direction with respect to Vu) may adjust themselves into 
a position perpendicular to the sides of the conduit or, preferably, to 
the centric line. If now we consider further what would happen if 
the exit Cc were closed and in its place the orifice cd, of the same area 
as Cc, were opened in the wall of the conduit, with no difficulty we 
understand that the water must go out through the aperture cd under 
the same inclination to cd under which it was going out through Cc, 
and thus that its direction bg will be horizontal. Since in addition 
the aperture cd is set equal to the area Cc, and the tendency of flowing 
through Cc already is diverted towards de (through the common 
hydrostatic law), it is necessary, certainly, that the velocity of the water 
flowing out through cd will be the same as we determined for Cc. 
Whence it is also realized that if to the orifice cd were attached a new 
horizontal conduit, in which certainly the centric line would be hori
zontal, the motion and the velocity of the water flowing through it 
and flowing out will obtain in the same manner as they would obtain 
if that same new conduit (cd being closed) were attached to Cc in the 
direction ID, but in which the water flowing would have to be con
sidered as deprived of its own gravity. Thus, in order that here as 
well the weights of the layers translated to the area Ee yield the same 
sum gha, just as if the new conduit were not present, nothing in the 
expressed (§VII) general equation 

( acxhh - fJfJww) z dx + aMhhw dz = aahha dx 

should be changed other than that M, or J ~jt2

' now expresses the 

sum of all the (dsd)
2 

which are contained in both conduits. But the 
y t 

uniform velocity on either hand will be the same, whether in the 
simple or in the combined conduit (because the term in which Mis 
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found vanishes in the case of uniformity), as it is always that which is 
mxhha 

found through z = hh /3/3 · aa - ww 

CONCERNING THE PRESSURES WHICH THE SIDES 
OF A VESSEL SUSTAIN BECAUSE OF LIQUID 

FLOWING THROUGH 

SECTION IX 

In order that we might comprehend clearly and correctly in what 
that force consists which is exerted on the sides of a conduit while 
liquid flows in it, it is to be understood that that force is nothing more 
than that which takes its origin from a compression force by which, 
certainly, consecutive portions of the fluid, for example EFfe and 
CFfc, are driven one against the other; whence at Ff by this very con
tact there arises through action and reaction an intermediate force 
which I customarily call immaterial, because it is apart, so to speak, 
from the portions pressing each other and yet intermediate between 
the two, and it does not pertain to one more than to the other. It is 
characteristic of this force to drive the preceding portion of liquid 
forward, or in the direction in which it is going, but the following 
portion backward, or in the direction from which it comes, and to make 
the following portion ofliquid, which is propelled by translated forces, 
and the preceding portion of liquid, against which some of the accel
eration must press, acquire at this very contact an equality of acceler
ative forces; just as we showed a short while ago,* the same effect 
occurs in solid bodies, where, after they have been animated indivi
dually by different accelerative forces, there arises in their contact, 
when they begin to act on each other, an intermediate immaterial 
force, appearing to be truly common to each body, which thus would 
regulate the particular accelerative force of each, the one by diminish
ing, the other by increasing, in order that thence in the total mass 
combined from these two bodies one common accelerative force may 
result. 

SECTION X 

This, however, is the distinction in the manner of acting: that in 
solid bodies acting directly upon each other, that immaterial force 
acts forward and backward like some elastic straight line which, 

* Nos. CLXXVII, p. 262, and CLXXIX, pp. 333, 340. [Opera Omnia, 
Book IV.] 
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placed between the bodies, tries to expand itself; but in portions of 
fluid acting mutually on each other, the immaterial force lying be
tween must be considered just as elastic air, which extends itself not 
only in opposite directions, but into all surrounding regions; from 
which now it is easily understood that from this immaterial force 
itself the pressure, which is the subject here, develops. This certainly 
is exerted on the walls of a conduit, by which in turn it must be con
fined while it acts freely forward and backward on the portions of the 
liquid wherein it exists. 

SECTION XI 

It therefore remains that, according to this given idea concerning 
the immaterial force, we determine its quantity or measure. Let 
that [ which is] to be sought, which we may say is 1r, be anywhere in 
Ff [Fig. 10]. Now I proceed thus: for the time consider a part of 
the conduit EFfe ( during flow) to be removed suddenly, the remaining 
CFfc staying in its place with all its environs, and [consider] at that 
same moment that there is placed at the area Ff a new motive force 
equal to 1r itself. One understands at any rate that in this way the 
effiux of liquid flowing out of the truncated conduit is to be accelerated 
(at least in the first instant of time) just as if the conduit had remained 
whole. Therefore, I will already consider the residual conduit 
CFfc as an integral conduit, the uppermost or first area of which is y, 
or Ff, any variable intermediate area Nn is r, and the adjacent 
section NL is r dt. Thus if (§IV) for h I substitute y, I will have 

vv(aayy - ww(ds )
2
f( dt )2) as the hydrostatic force; indeed that which 

2aay 
at the first point G was called /3 is ds/dt at point H, the ratio, of course, 

ywv dv J (ds)2 
• h of the tangent to the subtangent, and (§V) a dx r dt rs t e 

hydraulic force, where, in the integration, r is considered to be con
tinuous from w right on toy. 

SECTION XII 

The sum of these two forces, the hydrostatic and the hydraulic, 
should be equated to the original force p, which here should be 
(§§ III and VI) gyt, if indeed this alone were acting on the liquid 
contained in the truncated conduit; but, because 1r acts together with 
gyt, it is necessary by all means to establish this equation: 

vv(aayy - ww(ds) 2/(dt)2
) ywv dv J (ds)2 

_ + d d - gyt + 7T. 2aay a x r t 
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From this emerges at once the sought value of 7T itself: namely, for 
gyt having been transposed, there results 

vv(aayy - ww(ds)2/(dt) 2
) + ywv dv J (ds) 2 _ t = 7T 

2aay a dx r dt gy ' 

where also it is to be warned that, in the integration J (:1t2

' r must be 

taken as variable from B to P, whence, for any assumed y, J (:1t2 

will 

be given. Therefore, let this be set equal to N, and there will result 

vv(aayy - ww(ds) 2/(dt)2) Nywv dv + d - gyt = 7T. 2aay a x 

Since, therefore, from the resolution of the general equation (§VII) 
there evolves the value of vv itself, or 2gz, this substituted in the 
latter will give the value of 7T itself in terms of g and purely linear 
quantities. Thus, now, 

gz(aayy - ww(ds) 2/(dt) 2) gNyw dz + d - gyt = 7T. aay a x 

SECTION XIII 

If now, furthermore, it is desired to know, if some tube open at both 
ends is introduced at some arbitrary place j in the conduit and is 
erected to a vertical position, how far the liquid must ascend in it on 
account of this pressure 7T which makes it ascend, it is agreed to con
sider that 7T is equal to the weight of some cylinder formed from the 
liquid, animated by the natural gravity g, which has for a base the 
area Ff or y, and for a height that very [height] of the liquid standing 

in the tube; whence 2 will be this height at which the suspended 
gy 

liquid will stand in the tube, invariable indeed, after the velocity of 
the liquid flowing out will have reached reasonable uniformity; but 
before this occurs (although it happens in an instant, more or less), 
the liquid proceeds to ascend in the tube until it will have acquired 
the appropriate stable location, when indeed the liquid flowing out is 
no longer noticeably accelerated. 

SECTION XIV 

It happens in certain cases that the value of 7T itself might be nega-

. . h h 11 h . . . -vvww(ds)2 tive, e1t er w en, natura y, t e negative quantities (d )2 - gyt 
2aay t 
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·1 h . . 1 ywv dv J (ds)2 . h h 1 . prevai over t e positive 2 vl!)I + ·--d- --d-' or, wit t eve ocity 
ex x r t 

1 d b . ·rc h d h vvww(ds )2 
• area y eing um orm, so t at v = o, w enever (d )2 + gyt is 

2exexy t 
greater than ½ Vl!JI; this can happen not only in those cases where exy 

. 1 h w ds b 1 . h h . h w ds .f 1 is ess t an dt' ut a so mt ose w ere exy is greater t an dt' i on y 

at the same time gyt be great enough that its excess over 

ywv dv J (ds )2 

ex dx r dt 

be greater than the defect of the prior. However, in whatever 
manner it may occur, it is plain that in cases of this sort the pressure is 
changed into relaxation, which causes the walls of the conduit around 
Ff not only not to be pressed outward, but to be contracted inward 
everywhere (if the rigidity of the walls is not interfered with). Hence 
it follows that the liquid can be elevated upward as ifby suction to the 

height !!.... through a tube implanted in the conduit as before but 
gy 

directed vertically downward to a very low point where it opens into 
a little vessel full of liquid. 

SECTION xv 

ScHOLIUM 2. Thus far we have not attended to certain particular 
and accessory causes (not always having importance) which can 
change either the pressures or the suctions TT determined by our 
method. Among such causes, one occurs principally which acts 
such that the water, being in motion and striking an immobile surface 
in its path, impresses a force upon it during [its] approach which is 
called the force of fluid resistance, unquestionably proportional to both 
the square of the velocity and the square of the sine of the obliquity 
of the incidence, as is known. And so, for this very reason, that 
force becomes unnoticeable in rather narrow oblong conduits; for in 
these, on account of FM being almost parallel to hH itself, which is 
the direction of the motion of the fluid when it reaches Ff, just as at 
any other place Nn where the direction Vu is almost parallel to NL 
and nl, and the sine of incidence can be regarded as negligible. In a 
conduit made up of cylindrical pipes that sine is absolutely zero, 
because the direction of the fluid is everywhere parallel to the sides 
of the cylinders throughout the total length of the conduit. Besides, 
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another accessory cause which can confound the effect arising from 
the pressure 7T is found in an exceedingly curved conduit, in which of 
course swiftly flowing liquid acquires a centrifugal force (which we 
discussed elsewhere); this centrifugal force would render a greater 
pressure 7T than is correct in the convex part of the conduit, but a 
lesser one in the concave part of the same. And therefore, if one 
would like to conduct an experiment with the aid of a tube to be 
implanted in this conduit, the insertion should be made neither in the 
convexity nor in the concavity of the curve, but at the side, such that 
the tube extends out from the conduit perpendicularly to the plane of 
convexity and concavity, and therefore, if that plane be not hori
zontal, the tube as well as the structure is to be turned until the tube 
attains a vertical position. 

GENERAL COROLLARIES ABOUT VELOCITIES AND 
PRESSURES 

SECTION XVI 

In the uniform and constant efflux of liquid, the general equation 
(§VI) is changed, on account of dv = o, to this: 

vv( aahh - {3{3ww) _ h 
h 

- g a, 
2<X<X 

or, 
2aaghha 

vv = --c-:----=--=---· 
aahh - (3(3ww 

Hence this elegant Theorem is deduced: If there are two vessels or 
conduits having equal vertical heights and equal uppermost and 
lowest areas, no matter what shapes the remaining portions of the 
conduits may have and however different [they may be] from each 
other, if only their centric lines be so comparative that the ratio be
tween a and /3 in one be the same as between a and /3 in the other 
vessel or conduit, I say that from either (understandably both being 
full) the liquid, after the efflux will have reached equilibrium, will 
flow out on either hand at the same velocity. This surely is evident 

from the very value of vv itself, which is h:aag~; , inasmuch as 
<X<X - WW 

herein the intermediate areas y are not obtained at all. Let there be, 
for example, two vessels of which the shapes are ABCD and EFGH 
(Fig. 12), of which the centric lines are straight, and indeed it matters 
not whether they be vertical or oblique, or one more or less oblique 
than the other, since in all of these cases on either hand it will always 



HYDRAULICS, PART II 

be that a = {3, provided only that those two vessels have equal 
vertical heights a, likewise equal extreme areas AD = EH= h and 
BC = FG = w, or, which suffices, only that AD : EH = BC: FG, and 

B 

FIGURE 12 

that those vessels be constantly full of water or some other homo
genous liquid in which on either hand there is, of course, the same 
natural gravity g animating the sections; the maximum and uniform 
velocity of the water flowing out through BC will be equal to the 
maximum and uniform velocity of the water flowing out through FG. 
Indeed in such a case, on either hand (§VI), on account of dv = o, 
and a= {3, there results, I say, (hh - ww)z = hha, and thus 

z = hh hha , conforming to Corollary 2, §VII, and such others 
- WW 

as we found in this way in the first Part for a cylindrical vessel. 

Meanwhile, it is manifest that the value hh hha for a given height a 
- WW 

of each vessel is the same if the ratio between h and w is the same for 
each, that is, if AD: EH= BC: FG. But it is to be noted that here 
we avoid the contraction of the aqueous stream which is customarily 
observed somewhere beyond the orifice, particularly in those vessels 
which suddenly terminate in an orifice opened in a rather wide base, 
contrary to what occurs in those having the shape of EFGH, con
verging, so to speak, into a cylindrical pipe in which no noticeable 
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contraction of the stream is apparent. Meanwhile, if the under
standing of this is also to be obtained, the vessel should be considered 
as if continued to the maximum contraction of the stream where it 
stops drawing together, and then the area of the vena contracta should 
be taken as the smaller orifice w itself, and its distance from the 
greatest area as the true vertical height. 

SECTION XVII 

With the same conditions existing, as in the preceding, of two vessels 
of equal height, ABCD and EFGH (Fig. 12), [being] equally large at 
the extremities and having straight centric lines, if now in addition to 
this they [each] have a third area LM and NO mutually equal to 
each other and equally distant from the orifices BC and FG, then not 
only will the maximum velocity of each (by the preceding) be equal, 
but also the pressures at LM and NO will be equal, and therefore in 
tubes inserted in these places and bent to a vertical position, the 
water in each will stand at the same height. The truth of this 
is evident from the equation (§XII) which, on account of 

a = f3 = ~' in the case of uniform velocity results in this simpler one, 

vv(yy - ww) 
-~--~ - gyt = TT, or (by writing 2gz for vv) in this, 

qy 

gz(yy - ww) 
----- - gyt = TT, 

y 

in which, because for either vessel z, y, w, g, and t are the same, the 
same value of TT itself must result by all means, and hence also of 

TT 

gy 
z(yy - ww) _ t = hha(yy - ww) _ t. 

yy yy(hh - ww) 

SECTION XVIII 

Thus if all the LM and NO at equal vertical distances from BC and 
FG were equal-which would occur if those two vessels ABCD and 
EFGH were, for example, truncated conoids of the same type, one 
right, the other scalene-in this case not only would the uniform 
velocities at which the water would flow out from each vessel be equal 
but also the pressures at the individual equal heights would be 
identical, and thus even the suspensions of water standing in the tubes 
would have the same height in each vessel. 
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SECTION XIX 

The equation found in §VII for determining velocity in general, 
whether it be already steady or not yet steady, gives 

dx = aMhhw dz . 
mxhha - aahhz + (3{3wwz 

If this value is substituted in the equation for the pressures 7T (§XII) 
and 2gz for vv, we will have: 

gz(aayy- ww(ds) 2 /(dt) 2
) (aahha - aahhz + (3(3wwz)gNy 
+ Mhh - gyt = 7T. aay aa 

Thus the height of the liquid in the tube, or .:!..., is 
gy 

z(aayy - ww(ds) 2 /(dt)2) N(aahha - aahhz + (3{3wwz) --'----'-'-------'----'--'--'--'- + -'------~--'--'---'- - t, 
aayy aaMhh 

which, therefore, for any determined z whatever expresses generally 
the height of the liquid in the tube. Next, which is interesting, that 
initial height is found at once, that is, that which would be observed 
in the tube at the instant that the orifice below is opened and the 
liquid is about to flow. Since indeed at the first instant of time 

z = o, it will surely occur that (z having been deleted) .:!... = N,Ma - t. 
gy 

SECTION xx 

Previous to this proof someone might have doubted whether or not 
perhaps at that instant that the orifice BC is opened and before the 
liquid pours forth into actual motion, whether or not, I say, the 
pressures at any location LM were still the same, at least for an in
stant, as they had been previously when the orifice BC had still been 
closed or blocked off. Truly, the often-used and common hydro
static law accepted everywhere shows, for the case of the vessel closed 
at BC, that the liquid in a tube inserted somewhere in the circum
ference of some section LM, and vertically erect, will stand suspended 
at some height a - t, that is, at the same horizontal as the uppermost 
surface AD of the liquid contained in the vessel. But now we see that 
the situation develops in one way in the case of the orifice BC closed 
and in another in the case of the same opened, even if the liquid is not 
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yet actually flowing out. Since N, as a part, is certainly less than M, 
Na . Na 

the whole, M will be less than a, and therefore as well M - t less than 

a - t. Hence it is evident that in the first instant in which the ori
fice BC is opened some of the liquid is already lost, so to speak, or, 
rather, emits because of its own gravity: this does not contribute to 
pressing the sides but to propelling the liquid to such an extent that it 
no longer presses the sides of the vessel as greatly as it had done before 
the aperture was formed. Meanwhile, surely, it should be indicated 
here that I avoid the accessory causes which can alter the determined 

height in the tube, ":,; t. For example, something should be men

tioned concerning the shape of the vessel; for instance, if it were very 
wide, and suddenly it converged into a narrow orifice, then un
doubtedly our Theory could be out of tune with what experience 
would show. The reason is that the Theory supposes that the sec
tions Fm and Nl (Fig. ro) aspire to this arrangement with respect to 
the motion (although they are not yet moved by the impulse) : that 
[on the one hand] the areas Ff, Nn, etc., through the whole traverse 
retain a horizontal position, extended throughout to the sides, and 
[ on the other] that the centric line GHI everywhere passes through 
the midpoints G, H, V, and I, which certainly must thus prevail 
accurately enough, as the Theory shows it, in those vessels and con
duits the sides of which gradually, not suddenly, converge or diverge 
toward the orifice below. But in others, being very large and ending 
in a large base which contains a narrow orifice for an exit, in these, as 
one would expect, the layers do not spread throughout entire cross 
sections of the vessel, but rather to various [radial] extents, in propor
tion as the quality of the liquid, not perfectly fluid but more or less 
viscous, requires this, that it may experience the minimum possible 
~esistance from friction, with the remaining part of the liquid near the 
sides of the vessel certainly being at rest or without sufficient disposi
tion to motion. From this it can happen that in such a vessel a 
continuous throat or some sort of cataract is formed, such as Newton 
fully conceived, although not according to that law which he indicated 
as necessary. It is understood from the foregoing remarks that in 
vessels of this sort it is not the external and artificial shape of them that 
is to be considered, but that internal [shape] of the continuous throat 
formed by nature, not such as Newton conceived, but that which is 
best suited to the quality or the constitution of the liquid. There
fore, if in the enclosing surface of this throat a tube could be im
planted, the height of the liquid suspended in it would always be 
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observed entirely as our rule postulates, whether the liquid is already 
in motion or is beginning to be moved in the vessel. 

SECTION XXI 

But since it cannot be easily noticed by observation just when a 
throat or cataract is terminated in a very wide vessel or just where its 
enclosing surface is located, it will be safer if the tube penetrates 
perpendicularly within the vessel as far as the middle, that is, right to 
the centric line, and then the other part of the tube, bent upwards 
outside the vessel, is vertical. In this way, then, the height of the 
liquid in the tube shows uniquely how great is the compression of 
the liquid at the place on the centric line with which the orifice of the 
tube is in contact, where those accessory causes altering the effect of 
the compression, concerning which we have treated above (§XV), 
have no effect. Nevertheless, care is to be taken that at least the 
portion of the tube to be projected into the liquid in the vessel be 
slender enough, lest otherwise its very great thickness present some 
impediment to the free motion of the liquid. These precautions 
having been properly taken, I do not doubt that the following will be 
most accurately observed: r, that the general height of the liquid in 
a tube, with the acceleration of the effiux continuing to this time, will 
be (§§XII & XIII), 

71' z(aayy - ww(ds)2
/ (dt )2

) Nw dz - = --'-~----'----'----'---'-'- + -- - t. 
gy aayy a dx ' 

2, but with the noticeable acceleration ceasing, at which time 
certainly the velocity will have reached reasonable uniformity, there 

will be!!.... = z(aayy - ww(ds )
2
/ (dt )

2
) - t; 3, that the initial height 

gy aayy 

will be (§ XIX) !!.... = N,Ma - t. 
gy 

APPLICATION OF OUR THEORY TO EXAMPLES OF 
VESSELS AND CONDUITS ALWAYS FULL 

SECTION XXII 

Let the center line of some vessel be in a vertical position. For 
this rather simple case, where a = f3 = r, it is true that (§VII) 
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hha z = ---- (r - r /e<hh-ww)x/Mhhw), which is found from the reduc-
hh - WW 

tion of the equation (hh - ww)z dx + Mhhw dz = hha dx developed 
there and applied to this case, after, of course, ln e = r has been 
agreed upon; and thus for x = oo, that is, in the case of steady 

efflux or uniform velocity, there will result z = hh hha , from which 
- WW 

follows the Theorem already demonstrated in §XVI. Therefore, 
let the vessel ABCD (Fig. r 3) be of any shape whatever, its centric or 

A 

FIGURE 13 

vertical height be a, and let [the vessel] have attached to it the con
duit CK composed of many pipes, for example, of three cylindrical 
pipes CG, FI, and HK, placed in a horizontal position. Let the upper
most area AD (to which the vessel with the pipes is assumed [to be] 
always full) be h, the areas CE= m, FG = n, and HI= q, and the 

orifice of the last pipe be w. I say that z will always be hh hha , 
- WW 

and thus that neither the shape of the vessel nor the number of pipes 
nor their sizes come into consideration, provided only that the first 
h and the last w be given, and the height a of the vessel be given. 
And also it is not of concern to know whether the throat or cataract 
extends throughout the whole internal region of the vessel or only 
occupies some portion of it around the centric line. The matter is 
clear by §XV, because the conduit CK is assumed horizontal, and 
thus the uniform velocity is always the same as if the orifice w were 
attached immediately to CE by applying some perforated section to 
the aperture CE. 

COROLLARY. If w is very small with respect to h, there will result 
z = a, and accordingly the velocity of the water flowing out 
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uniformly, which is the greatest velocity that it can acquire, will be 
equal to that which a heavy body acquires by falling from a height a. 

SECTION XXIII 

For finding the height of the liquid in a tube to be implanted some
where in the horizontal conduit CK, let it be noted that in this case 
t = o, since t signifies the excess of vertical height of the place where 
the tube is inserted above the height of the orifice through which the 
liquid is flowing, or, which is the same, t signifies the height of the 
place of insertion of the tube above the place of efflux. Here, more
over, on account of the horizontal position of the conduit, the centric 
itself is also considered as horizontal, especially if its pipes, of which 
the conduit is composed, are not at all large enough that (§XXII) 
the sections of liquid flowing through them may become vertical. 
Therefore, the height of the liquid in the tube (§XIX) will be 
:!.... _ z(yy - ww) .N(hha - hhz + wwz) . _ R _ <!:._ In 
gy - yy + Mhh ' smce a - t-' - d( 

the case of uniform velocity, where (preceding paragraph) one has 

z = hh hha , after this value has been substituted for z, the latter 
- WW 

.N(hha - hhz + wwz) . z(yy - ww) 
term Mhh vamshes, and the former yy 

hha(yy - ww) 
becomes (hh ) . yy - WW 

Therefore, the height in the tube will be 

1T hha(yy - WW) 

gy yy(hh - ww) · 
Let the results which we have already found in 

the Appendix* at the end of the first Part be compared, although 
in another way. Indeed, for the first pipe CG, where y = m, that 

height will be hha(0; - ww/; for the second pipe FI, where y 
mm - ww 

is n, the height will be hhag; - ww/ ; for the third pipe HK, where nn - ww 

y = q, the height in the tube will be hha(~: - ww/, and so on for 
qq - WW 

however many pipes there may be composing the conduit. All of 
this corresponds most accurately to the experiments performed 
concerning this matter. 

COROLLARY. The initial height in the tube is 1;_;, as we found above 

for vessels themselves without conduits. 

* Above, p. 390. 



METHOD FOR SOLVING HYDRAULICS PROBLEMS 413 

SECTION XXIV 

And thus this is related to the height of the liquid in the tube to be 
implanted somewhere in the vessel itself (and if it is desired, to be 
extended right to the center line, which for the future we always 
assume as a vertical straight line, but with the conduit attached to the 
vessel, we assume the other [center line] as horizontal) ; let the place 
of insertion be at some point in the indeterminate section LM, the 
distance of which from the lowest horizontal is t, and the area of the 
throat (if it is not LM itself), whatever it may be in the experiment, 
should be taken as r . The height of the liquid in the tube (by §XI, 
applied to this) will be obtained as 

z(rr - ww) N(hha - hhz + wwz) 
rr + Mhh - t, 

J& . J& where N = r contamed between BE and LM, and M = r' but 

contained between BE and AD (§VII). For the velocity of the 

liquid flowing out uniformly, where z = hh hha , let this value be 
- WW 

substituted for z, and the height in the tube will appear as 

hha(rr - ww) . h . h. h ~r dM . h ) 
(hh ) 

- t (smce t e term m w 1c .; , an appear vams es , 
rr - ww 
and thus, after the height t of the place of insertion has been added, 
the total height, above the lowest horizontal BE, of the whole of the 

1. .d d. . h b ·11 b hha(rr - ww) Th .f b . 1qm stan mg m t e tu e w1 e (hh ) . us 1 w e 1n-
rr - ww 

finitely small with respect to h and r, that total height will be a, that 
is, the whole of the liquid in the tube is at the same level as the upper
most area AD; that this must so occur we certainly should be able 
to understand also from the fact that the liquid in the vessel is, so to 
speak, at rest. Finally, the initial total height in the tube, with 

z = o certainly, here is also 1;;. All these results are in excellent 

accord with each other. 

SECTION XXV 

Now let us assume that the horizontal conduit CK converges in a 
truncated cone, or any conoidic whatever, and has its greater base 
directed toward the vessel. For uniform velocity of the outflowing 
water, the height in the tube implanted at any place whatever be
tween F and H (by designating the area FG = y ) will be, I say, 
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. hha(yy - ww) 
that height (as expressed m §XXIII) (hh ) . Hence if the 

JJ - WW 

smaller base were attached to the vessel, and the oblong conduit were 
not suddenly to diverge too greatly, lest the water diffuse in it, but the 
sections succeeding in order follow the preceding ones as the cus
tomarily established Theory supposes, then, on account ofy being less 
than w, the pressure on the sides will be negative, and therefore it is 
changed to suction, by which it occurs that, with the water descending 
vertically in the tube and discharging into the water contained in the 
vessel below, [the water in the tube] is raised through suction to 

. hha(ww - yy) 
the height (hh ) . But if also w be greater than h, then the 

YJ - WW 

numerator and denominator of the fraction become negative, and 
thus its value is again positive, which indicates that pressure is 
present. Whereby, the vessel ABCD being always full, so that the 
uppermost area AD would be less than the orifice of the divergent 
conoidic, through the larger base of which the water emits, it is to be 
observed again that the water will continually and without end rise 
in the upwardly erected tube. In fact, in such a case the acceleration 
of the flowing water never ceases, hence it never reaches a constancy 
of velocity, which is evident from the general equation (from Art. VII 
applied here) (hh - ww)z dx - Mhhw dz = hha dx; or, more clearly, 
from the equation shown in Art. XXII in finite terms, 

hha ..,....,--- (I i / /hh-ww)x /Mhhw), 
Z = hh - WW -

which is equivalent to z = hha (e<ww-hh)x /Mhhw - 1), from which 
WW - hh 

it is clear at once that in the case in which w is greater than h, it turns 
out that z = oo, and therefore that the velocity is infinite when x is 
infinite, contrary to what occurs if his greater than w. 

CONCERNING THE SHORTNESS OF TIME FROM 
THE BEGINNING OF EFFLUX RIGHT UP TO THE 
ESSENTIALLY CONSTANT OR UNIFORM VELOCITY 

SECTION XXVI 

Although, accurately speaking, an infinite time is required before 
the flow of water springing forth from vessels through orifices would 
arrive gradually to perfect and geometric uniformity, experience 
nevertheless shows daily that water, especially from rather wide 
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vessels, even though hardly three or four feet high, converges with 
such rapidity from the first moment of flow to its maximum and con
stant velocity of flow, while it flows through an admittedly somewhat 
narrow orifice, that the gradual increments of velocity through which 
it goes from rest to the uniform and maximum possible velocity 
which it can essentially attain cannot be perceived by observation. In 
order that we might interpret the reason for this phenomenon from 
our Theory, let us consider a cylindrical or prismatic vessel of suffi
ciently large area h and of suitable height a, from which water rushes 
forth in a horizontal direction through a narrow orifice w which may 
be formed either immediately beyond the vessel itself or [beyond] an 
intermediate conduit having the orifice w at its extremity. However, 
let us first consider, for the sake of brevity, that, of course, the orifice 
w is formed near the bottom in the very wall of the vessel. 

SECTION XXVII 

The general equation (§VI) for the determination of the velocity 
increasing to this point was this: 

vv(hh - ww) + hhwv dv Jc!!= ha· 
2h dx y g ' 

which, in our case, where J t = ~' and ww as compared to hlz can be 

neglected, is changed to this: 

2awv dv = 2gha dx - hvv dx, or dx = 2awv dv . 
2gha - hvv 

And thus the element of time d0, or dx, will be equal to 
V 

2aw dv 2aw dv/h aw ( dv dv ) 
2gha - hvv = 2ga - vv = hv2ga V + v2ga + -v + V2ga . 

By integrating one has 

0 = __!!!!!_ In ( v + V2ga ) 
hv2ga -v + v2ga 

- aw ( vz + -,/a ) 
= (since v = V 2gz) , 1- In V- y1-

hv 2ga - z + a 

= (§XXII) 
hv2ga 

aw 

X In (1 + 'Vr - r/ehx/aw) / (1 - VI - r/ehx/aw). 
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Indeed in this case z = a( 1 - I / e"xfaw). Hence 

hv'2ga y1---- y1------- 8 = In (1 + I - 1 /ehx/aw) /( 1 - I - 1/ehx/aw). 
aw 

By transferring from logarithms to numbers and proceeding in the 
customary way, one finds that ehxt2aw is equal to the fraction 

SECTION XXVIII 

Certainly from the dynamic principle for the free fall of heavy 
bodies, by letting C equal the height through which a freely falling 

weight travels in the given time 8, one finds that 8 = J~C· Let this 

value be substituted in the fraction found above, and it will result that 
ehxt2aw equals this other fraction (e2h../acJaw + 1)/2eh../ac/aw. 

Now, because the area h of the vessel is assumed to be much greater 
than the area w of the orifice, and the height C of free fall to be traveled 
through in one second is 15 feet, and in addition, from the nature of 
the logarithmic curve, e is greater than two, it is manifest that for any 
ordinary height a of the vessel, the number e2h../actaw is immensely 
greater than unity, such that the latter can be disregarded in the 
numerator of our fraction. Therefore there will be, essentially, 

e"xf2aw = e2h../ac/aw; 2 e1t...Jac/aw = ½e"../ac/aw, 

or 

b k. h I . h hx I hv' aC fi h' h or, y ta mg t e ogant ms, -- + n 2 = --, rom w 1c 
2aw aw 

v'- 2aw In 2 v'-
x = 2 aC - h = 2 aC ( on account of w being incomparably 

less than h), which is equal to 2v'60 feet (by putting a = 4 feet and 
C = 15 feet), or roughly 16 feet. Thus if, therefore, in the equation 
z = a( 1 - 1 /ehx/aw) which determines the velocity for any effiux of 
water of length x, we substitute 4 for a, 16 for x, 2 for e (although, 
which would prove the case better, e is greater than 2), and ifwe con
sider the area h of the vessel to be to the area w of the orifice as I oo 
is to 1, we will have z = 4( 1 - 1 / 2 400) , which, on account of the 
extremely small value of the fraction 1/ 2 400, is reckoned to be not 
different from four feet, which defines the height of the vessel, and 
likewise that height from which a weight having fallen acquires a 



METHOD FOR SOLVING HYDRAULICS PROBLEMS 417 

velocity equal to that which the effiux has when it will have come to 
uniformity; from this it is evident that after one second of time has 
elapsed, the water flowing out already has essentially that uniform 
velocity. 

But in order that it be more evident with what promptness the 
velocity of effiux may converge to uniformity, let us see how insig
nificantly the velocity of the outflowing water acquired after one 
tenth of a second has passed should be out of accord with the maxi
mum velocity which it could acquire if the effiux were to endure for 
an infinite length of time. Let us reduce feet to inches, and we will 
have a = 48 inches, and C is found to be about 2 inches, from which 

x or 2V aC is about 20 inches, and t!'xlaw = e2000148, for which I write 
merely 2 40 • Thus there will be z = a( 1 - 1 /2 40), which still, on 
account of the imperceptible smallness of the fraction 1 /2 40, is to be 
considered as differing not at all from that very a defining the uniform 
velocity. 

COROLLARY. The effiux of water from rather wide vessels through 
narrow orifices can safely be considered as constant the instant after 
the beginhing of motion. 

GENERAL HYDRAULICS THEOREM DEDUCED 
DIRECTLY FROM THE PRINCIPLES OF 

HYDRODYNAMICS, PROVED THROUGH THE 
INDIRECT METHOD OF LIVE FORCES 

SECTION XXIX 

For a more substantial confirmation of the validity of our direct and 
universal method, it is pleasing now to propose an indirect solution, 
to be derived from the Theory of the conservation of live forces, of the 
principal Proposition concerning the velocity of water fl.owing out of a 
vessel or conduit which is always full, just as we established through 
the equation shown in §VII. 

Let us consider that the water fl.owing out through Cc (Fig. rn) is 
directed immediately to a horizontal position, so that it can be re
garded as without ascent and without descent in its displacement. 
Let x actually be the length along the oblique direction ID of the 
aqueous cylinder having Cc for a base, which cylinder contains as 
great a quantity of water as has already flowed out. That quantity 

will be wx, the differential w dx of which defines the elementary 
a a 

particle of water about to flow out from Cc immediately after the 
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quantity wx has been emitted. Let z be the vertical height from 
(X 

which some heavy body having fallen freely may acquire the sought 

velocity which of course that elementary particle of water w dx must 
(X 

have. Through the principle of its live forces, the velocity will be 

Vz and its subvelocity will be .:. Vz, from which the subvelocity at G is 
(X 

w~z; but the actual velocity itself in the tangential direction at G is 

/3w-Vz Similarly the subvelocity at any point H is w-Vz, and 
~ ~ 

therefore the actual velocity itself at His /3 dzjz. 
ay t 

SECTION XXX 

But since, through the individual cross sections in the entire con-

d · h · h · wdx f fl mt at t e same mstant, t e same quantity -- o water must ow, 
(X 

such an elementary quantity w dx is to be considered as stationed 
(X 

above the uppermost surface Ee at a vertical height equal to 13!:;z in 

order that, beginning to fall by its own gravity at a suitable time, it 
might arrive at the area Ee, and there replace, at the same moment 

d h 1 . /3w-Vz h . l w dx d an at t e same ve ocity --h-' t e uppermost partlc e -- e-
a ex 

scending in the conduit, and in this way the conduit will be kept 
continually full, as the statement of the Problem requires. 

SECTION XXXI 

Thus, if therefore each individual w dx has been set at the proper 
(X 

height /3::h~Z above Ee, and if all have fallen successively and are 

about to enter through Ee, maintaining the conduit always full, it is 

evident that an equal quantity of water Jw dx or wx, which we under-
a ex 

stand to be moving in the extended plane Cc, must have flowed out 
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through the orifice Cc, and certainly in such a way that each of its 

individual particles w dx has the proper acquired velocity Vz. For 
a 

h f h . l w dx . b 'd d t at reason any one o t ose partlc es -- 1s to e cons1 ere as 
a 

having fallen from the original place of rest all the way to the lower-
. {3{3wwz {3{3wwz 

most level, BCc extended, from the height aahh + AB = aahh + a. 

Accordingly, it is necessary to multiply the descents by the descending 

. l . d b . {3{3w3 z dx aw dx h' h . d . part1c es m or er too tam a3hh + -a-, w 1c mtegrate gives 

~;: f z dx + a:x as the live force acquired from the universal de

scent of the heavy particles. This, moreover, must be equal to its 
own effect, which consists of the sum of the products which are formed 
by multiplying the individual particles by the squares of their re
spective velocities. 

SECTION XXXII 

For this reason I multiply the particle w dx, which has already 
a 

flowed out of the conduit, by the square of its velocity, which is z, and 

I will have wz dx, the integral ~ f z dx of which expresses the live 
a a 

force arising from the velocities of the entire aqueous matter flowing 
out of the conduit; at this point one must add to this [the live force] 
that all the matter flowing within the conduit has, and which is de
termined by multiplying the individual layers y dt by the squares of 

h . . l . l . . wwz(ds)2 h r l d t eir respective u t1mate ve oc1t1es (d )2 , so t at 10r any ayer y t, 
aayy t 

h 1. r . . fi . . wwz(ds) 2 d wwz(ds) 2 
t e 1ve 1orce ansmg rom its own motion, (d )2y t = d , 

aayy t aay t 
is found. Therefore, the live force of all the layers to be considered 

h h h . d . . wwz f (ds)
2 

( f f ds
2 

t roug t e entire con mt 1s -- -d = on account o -d , 
(X(X y t y t 

which may be called M, having been given throughout the entire 
. Mwwz 

condmt) ---. Therefore, by considering the sum of both these 
(X(X 

live forces arising from the motion, we will have the live force of the 

. WI Mwwz entire aqueous systems equal to - z dx + ---· 
a aa 
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SECTION XXXIII 

Thus, by equating this force, determined from the motion, with that 
which we determined immediately above from the descent of the 
particles, the following equation will be yielded to us: 

f3/3w
3 f awx w f Mwwz --· zdx+-=-· zdx+--, 

a.3 hh a a aa 

which, differentiated and freed of fractions, furnishes this: 

f3{3wwz dx - aahhz dx = Mahhw dz - aahha dx, 

or finally ( after the reduction has been completed), this: 

(aahh - f3f3ww)z dx + aMhhw dz = aahha dx, 

just as we found through the direct method (§VII). 
COROLLARY. If h or Ee be of very great size with respect tow or Cc, 

the equation found reduces to this: az dx + Mw dz= aa dx; and for 
uniform effiux to this: z = a. If, however, Ee indeed be not of very 
great size with respect to Cc, let us assume, nevertheless, that new 
water follows by continuously descending within the conduit, not 
with some acquired velocity, but that it begins to follow from rest, 

FIGURE 14 
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such that also in this manner the conduit is kept always full. This 
should be applicable to the result if to Ee (Fig. 14) is attached a very 
wide vessel, but of very small height, which is full of water. Cer
tainly the water flows out therefrom taking its motion from rest, and 
yet, flowing into the conduit with the required velocity, it will con
tinually maintain the fullness of it. The very matter is evident from 
the figure, where the conduit ECce has the very wide cylindrical vessel 
AQVK attached, the height AK or QV of which is assumed very small, 
so that essentially it does not increase the vertical height AB of the 
conduit Ee, so that KB can be taken for AB, and still the volume AV 
of this cylindrical vessel may enclose a very great amount of water. 
For this reason, in order that the velocity of the water already emitted 
through Cc may be determined, no longer Ee but KV is to be taken for 
the first area h, with the vertical height a of the conduit nevertheless 
being maintained, because according to the hypothesis AB does not 
differ noticeably from KB. This having been agreed upon, we will 
always have z = a for uniform velocity, that is, that velocity which a 
weight would acquire by falling freely from the height a = AB or KB. 

A SINGULAR EXAMPLE OF DETERMINING THE 
MOTION OF WATER DESCENDING VERTICALLY IN 
A CONOIDIC CONDUIT WHERE NOTHING FLOWS 

OUT AND NO NEW WATER FOLLOWS THE 
DESCENDING [WATER] 

SECTION XXXIV 

Let the Hyperbola BEG (Fig. 15) exist between orthogonal asymp
totes, the one AM vertical, the other AH horizontal, the ordinates 
DI, EK, FL, GM, etc. of which let define the very areas of the conoidic 
conduit, continued to infinity, which is known to be generated if 
another hyperbola described between the same asymptotes (the ordi
nates of which are in proportion to the roots of the first ordinary 
hyperbola) is revolved about the vertical asymptote just as about an 
axis. Let it be understood that at some place in the conduit desig
nated by the hyperbolic area DK a portion of water is furnished, 
beginning to descend from rest, and that by descending it has arrived 
at some other place FM, so that, as a consequence, FM = DK. The 
velocities at GM, FL, etc., and the velocity at any other intermediate 
section POop are sought. 
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------------------,A 
H 

FIGURE 15 

SECTION XXXV 

Let every individual rectangle of coordinates, that is, the product of 
each area PO by the altitude AO of the conoid, be aa; likewise let 
the abscissas be given as AI= b, AK= c, and any descent AL of the 
upper area be assumed as x. There will result, from the nature of 

the hyperbola, the area DI = aba' EK = aa, FL = aa, and in addition 
C X 

a . Mb 
(on account of DK= FM) AM= -b, from which GM= -, and the 

ex 
very area, or rather the solid DK or FM, is aa(ln c - ln b). Further 
(with the calculus proving it), the distance of the center of gravity of 

C - b 
the area DK from the horizontal AH will be 

1 1 
b and the 

nc - n 
distance of the center of gravity of the area FM (note that I always 
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understand the solid to be represented by the area) from AH 
. x(c - b) 

will be b(ln c _ In b )' Thence let the descent of the center of gravity 

from the position DK to the position FM, (:(I: :)~c 
1
: ~), be multi

plied by the quantity of descending water, defined by aa(In c - In b), 
aa(x - b)(c - b) 

and the product _,___---'--'---'- will be equal to the live force 
b 

produced from the descent. 

SECTION XXXVI 

Now if the velocity at GM be set equal to Vz, the velocity at FL will 

be ~ Vz. Also, if any AO equaly, [then] PO will be aa, the section 
C y 

Po will be aa dy' and its velocity will be precisely by Vz. Therefore, 
y ex 

the square of this applied to the layer Po gives aabbzy dy' equal to the 
CCXX 

live force of the layer Po, the properly corrected integral of which (by 

k. b d ) . aabbz aabbz (' ta 1ng a, , c, z, an x as constants 1s --yy - -- = 1n case y, 
2CCXX 2cc 

.a ~~ ~ . 
or AO, 1s -b, or AM) ½aaz - -- = - (cc - bb), equal to the hve 

2cc 2cc 
force arising from the motion of the entire aqueous mass. By com
paring this with the preceding, we will have 

aa(x - b)(c - b) = aaz (cc_ bb), 
b 2cc 

from which, by reduction, there is found z = (~c ~ bi~c, equal to the 

square of the velocity at GM; correspondingly, the square of the 

velocity at FL is (x - btb, and the square of the velocity at any 
c+ 

intermediate section Po whatever (pertaining to the abscissa AO or y) is 
(x - b)2byy 
(c + b)xx · 

COROLLARY 1. The lowermost layer EK, descending from rest to 
the position GM, acquires a greater velocity than a heavy body falling 
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freely from the height KM. 
(x - b)2cc . 

For (c + b)b 1s greater than KM or 

ex 
than b - b. 

COROLLARY 2. But the uppermost layer DI, descending to the 
position FL, acquires a lesser velocity than a weight falling freely 

from the height IL. For (x - btb is less than IL or than x - b. 
c+ 

COROLLARY 3. Therefore, the lower parts of the aqueous mass are 
accelerated more vigorously and the upper parts more sluggishly than 
if they were to descend freely, animated only by natural gravity. 
This could also have been foreseen before the calculation from the 
fact that the portions of water in the narrower places are pressed upon 
by those lying above and so are incited to greater acceleration. But 
on the other hand, they resist those portions which occupy the wider 
places, and thus the upper [portions] are retarded in relation to their 
own natural acceleration. 

COROLLARY 4. Hence, somewhere an intermediate layer Po is 
given which is neither incited nor retarded but which is accelerated in 
the same manner as if it were to descend freely. In order that this 
may be determined, I make AL to AO, or x toy, in proportion as 

AI or b is to Aw, which will be by; and 11w will be the original position 
X 

of the layer Po. Thus wO, ory - by' is the height through which the 
X 

layer Po descends. Therefore, in order that the acceleration of this 
layer be equal to the natural [acceleration], it is necessary only to 

makey - by= (( - bityy; now this will yieldy = (c +/)x, which 
X C + XX 2 

shows that the distance AO is the arithmetic mean between AL and 
AM, just as Aw is the arithmetic mean between AI and AK. And 
similarly, LO = OM and Iw = wK. And so in these places the inter
mediate layer Po is pressed downward by the water FO lying above 
just as much as it is pressed upward by the water pM lying below, 
such that it descends by no means differently than if it were to de
scend freely, animated by natural gravity alone. Furthermore, this 
is also to be observed, that in these same places the compression of the 
water becomes a maximum, from which we conclude that if at the 
position of the section Po a tube were inserted vertically, the water in 
it would ascend to a greater height from the place of insertion than if 
it were inserted in a section at any other place between FL and GM. 
For truly the height in the tube depends upon the pressure of the 
water alone, as is evident from that explained above. 
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COMPARISON OF THIS SOLUTION THROUGH LIVE 
FORCES WITH THAT WHICH IS SHOWN THROUGH 
OUR DIRECT METHOD OBTAINED MERELY FROM 

DYNAMIC PRINCIPLES 

SECTION XXXVII 

In the second Part of this hydraulics Paper, §VII,* we gave 
through dynamic principles the most general equation for the deter
mination of velocity, namely this: 

(aahh - fJ{Jww)z dx + aMhhw dz = aahha dx. 

But there it is supposed that the vessel or conduit is always full, indeed 
with new liquid following continuously at the same velocity [and] 
adjoining to that which is already descending at the uppermost area, 
and the conduit itself is of a given and determined vertical height. 
But since in the present example this conduit is of indefinite height, 
and of course, only the portion FM is filled by liquid which always 
changes its position, and accordingly has its height LM variable at any 
instant, it may not immediately be seen that the case of this example 
is included by that formula found in §VII, especially since no new 
liquid here succeeds that descending, but its one and the same quan
tity DK or FM is always retained in the conduit, occupying one place 
after another. 

SECTION XXXVIII 

Meanwhile, we will show by what means, through some fiction of 
the mind, the present case can be resolved according to the hypo
thetical laws established in §VII. Certainly the original space 
DEKI [Fig. 15] is to be considered as a conduit of given height IK, 
the upper area of which is DI, the lower EK, both given and deter
minate. Now while liquid flows from EK, about to occupy the lower 
positions in the prolong~d conduit, I consider some fluid to be flowing 
in through the uppermost area DI, free from gravity as well as from 
all inertia or resistance, which, although this may not exist in the 
nature of things, nevertheless can be assumed such that it does nothing 
other than fill the space which would be left empty by the descending 
liquid. Thus, this having been presupposed, the actual liquid will 
have descended from DK to the position FM. I translate the forces 
of these individual layers PO, hydrostatic as well as hydraulic, to the 

* Page 396 above. 
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uppermost area DI, where the fictitious fluid which occupies the space 
DFLI presses and [ where it] must maintain the same effect that the 
force arising from the real liquid FM, similarly translated to the upper
most area DI, maintains by gravity, and this is that force which I 
called p or gha, [ determined] by applying all these things to the 
reasoning of our Theory explained in this hydraulics Paper. And 
thus no forces come into account other than those which result from 
gravity and the motion of the real fluid, the fictitious fluid contributing 
absolutely nothing and serving no other purpose than to transmit the 
translated forces [required] for expelling the real liquid FM. 

SECTION XXXIX 

Therefore nothing remains other than that the required application 
be made of the method explained in §§IV and V, to the end that 
it may be adapted to the proposed example, where it is immediately 
evident that a = f3 = I. But here the remaining letters define those 
things which follow: surely h = DI; w = EK; a, or the height of the 

real liquid, LM; M equals the sums of all f; contained in the height 

LM; further, z is the height from which a weight having fallen 
freely acquires the velocity v with which, immediately after the 
beginning of the descent, the real liquid or, afterwards, the fictitious 
fluid flows out through EK; and, finally, dq is the instantaneous 
displacement from the area EK. 

SECTION XL 

These things having been properly attended to, I now proceed as 
follows: after the velocity through EK has been set equal to v, the 

velocity through FL will be :v; the velocity through GM is ~v; the in-

stantaneous displacement through GM is d(AM) = c ix; the dis

placement through PO is d(AO) = y dx; the displacement through 
X 

EK, or dq, is c dx; all of these displacements, since they must be 
X 

simultaneous, are therefore in reciprocal proportion to the areas, 
just as are the velocities themselves, and thus in direct proportion to 
the distances from the horizontal AH. Now there is to be sought, 
by repetition of §IV (since a = f3 = I), the hydrostatic force which 
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is expressed through half of the uppermost area DI multiplied by 
the difference of the squares of the maximum velocity through GM 

aa 
and the minimum velocity through FL. Moreover, DI= b' the 

velocity through GM is ~v, and the velocity through FL is :v, from 

which the total hydrostatic force is 

aa (~ _ xxvv) = aaxxvv ( cc _ bb). 
2b bb cc 2b3cc 

SECTION XLI 

By repetition of §V, I determine the hydraulic force in the 
following manner. I multiply the accelerative force of the indefinite 

layer Po, which I call y', by its displacement y dx, and I will have, 
X 

through the dynamical principle, yy dx = u' du' = yyv dv, from which 
X CC 

the progressive accelerative force y' = xyvddv, and the motive force 
CC X 

itself of the layer Po, that is, y' Po, is aaxv ~v dy' which, translated to 
CC X 

h DI aa fc aaxv dv y dy h. h . d . 
t e area , or to b' orms bee dx , w 1c integrate gives 

aaxv dvyy 
2bcc dx 

(by rectifying it, or by applying it to all yy that are con-

. d . h . 1 LM) aax3 v dv ( cc - bb) 1 h h d 1· tame m t e mterva b3 d equa to t e y rau 1c 
2 CC X 

force. The sum of the hydrostatic and hydraulic forces will be 

aaxxvv(cc - bb) aax3v dv(cc - bb) + ___ __,__ __ ....:,' 
2b3cc 2b3cc dx 

or 

aaxx ( xv dv) 
2b3cc vv + dx (cc - bb), 

which sum of forces must be equal to the original translated force 
about to arise from the gravity of the layers. Moreover, the original 
translated force of any layer Po whatever is found by changing 

g(Po) or ga; dy into ga: dy just as PO is to DI, or as AI is to AO, that is, 
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just as b is toy, which properly integrated through the interval LM 

gives gaax~b - b) for the total basic translated force. 

SECTION XLII 

Thus we obtain the equation between the sum of the hydrostatic 
and hydraulic forces and the original translated force, which equation 

aaxx ( xv dv) gaax(c - b) 
thus appears as 2bcc vv + dx (cc - bb ) = bb , from 

which, by dividing by aha; ( cc - bb), there results: 

or, by reducing: 

x ( xvdv) - vv +--
2bcc dx 

=-g __ 
C + b' 

2gbcc dx 
xvv dx + XXV dv = b ; 

c+ 

and so, by integrating and organizing in the proper manner (in order 
that v itself equals o when AL, or x, equals AI orb) there will result 

.l 2gbccx - 2gbbcc b . . d' h d . 
2 xxvv = b,. , or y wntmg, accor mg to t e ynam1c 

c+ 

I fi db d . 'd' b h ·11 b 2bccx - 2bbcc aw, 2gz or vv, an y 1v1 mg y g, t ere w1 e xxz = b , 
c+ 

and thus z = (x(b)
2t;', which determines the velocity through EK, 

XX C + 
from which now the velocity through any other area whatever is 

. . (x - b)2bcc . (x - b)2cc 
determined. And m fact, by changmg xx(c + b) mto b(c + b) 

just as (GM)2 is to (AM)2, that is as cc is to c~t, or just as bb is to xx, 

this will be equal to the height from which a weight falling freely 
acquires the velocity which the liquid has at the lowermost point M. 

F h b h 
. (x - b)2bcc . (x - b)2b . . 

urt er, y c angmg ( b) mto b JUSt as cc 1s to xx, 
XX C + C + 

[this result will be] equal to the height from which a weight having 
fallen freely will have that velocity which pertains to the liquid at the 

uppermost point L. And finally, by changing (x ( b)
2:;c into 

XX C + 
(x ( b )

2:r just as cc is to yy, this will indicate the height from which 
XX C + 
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a weight must fall freely in order to acquire the appropriate velocity 
which the liquid will have at any given intermediate point 0. All 
this agrees marvelously with those [results] which we found through 
the Theory of live forces. 

SECTION XLIII 

On the other hand we can now show that which cannot be shown 
as easily through live forces, that is, how to find how much the liquid 
at any section may be pressed during descending. We certainly saw 
above in Caroll. IV that the liquid, after it descends from its initial or 
original position DK to the position FM, undergoes different pres
sures at its individual sections PO, and that the maximum of these 
occurs where PO cuts LM in half; truly, to determine its magnitude 
[there] and to compare it with some given weight-much less in 
other places inasmuch as PO certainly divides LM in some other 
proportion-would be a matter of more profound involvement if 
someone would wish to show this from the nature of live forces. 
Through our direct method, explained in the chapter on pressures, it 
is by no means difficult to obtain what is desired, even for this special 
example. 

SECTION XLIV 

And so let it remain to be investigated by how large a force the 
mass FM of the liquid is pressed at any place PO whatever, which 
force to be sought here I will now call 1r. I showed in §§XI and 
XII that, if only the portion PM, the remainder FO having been 
removed, were to proceed to descend so that it was driven not only 
by its own gravity, but in addition by 1r as well, it will ( except for the 
first instant) be accelerated in the same manner as the total mass FM 
must be accelerated by its own gravity alone. Let IK be cut at win 
a similar ratio as LM has been cut at O, so that AI: Aw = AL : AO; 
1rw will be the initial position of P itself. And 1rK = PM. Let AL 
be to AO, or AI to Aw, as I is ton, from which AO = nx and Aw = nb. 
And let us imagine that the liquid contained in 1rK descends by the 
force of its own gravity and, in addition, by the force 1r which pertains 
to it at any position of descent, in order that the acceleration occur 
just as if the total mass DK were to descend by the force alone of its 
own gravity. Therefore, that which was AL, or x, now is AO, or 
nx, and that which was AI, or b, now is nb. And so the hydrostatic 
and hydraulic forces are found, if one writes nx for x, n dx for dx, and 
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. aannxxvv 
likewise nb for b; and thus there will result 3b3 ( cc - nnbb) or 

2n cc 
aaxxvv . 
-b

3 
(cc - nnbb), equal to the hydrostatic force, and also 

2n cc 

aan3x3v dv 
3b3 d (cc - nnbb) 

2n ccn x 
or 

aax3v dv 
b3 d (cc - nnbb), 

2n CC X 

equal to the hydraulic force. Moreover, the force of gravity arising 

h h h 1 . h" h gaax(c - b) . d d . t roug t e trans at10n, w ic was bb , now m ee is 

gaanx ( gaax ( 
nnbb c - nb) or nbb c - nb). 

SECTION XLV 

Now, by taking the sum of the hydrostatic and hydraulic forces, 
and by equating that to the original translated force arising from 

gravity, g:ba; (c - nb), to which must be added the force of pressure 

translated from PO to TTw, which is obtained if we change rr into x; 
just as PO is to rrw, or as AI is to AL, that is, just as b is to x, we get this 
equation: 

(
aaxxvv aax3v dv ) ( bb) --+--- cc-nn 
2nb3cc 2nb3cc dx 

= gaax (c _ nb) xrr 
nbb + b' 

which, adjusted, assumes this form: 

aa gaa dx 
-bb [d(½xxvv)(cc - nnbb)] = -b- (c - nb) + rrdx. 
2n cc n 

Since, moreover, the velocity of the diminutive mass PM, which, 
however, is pressed by the force rr, must be the same as the velocity of 
the whole mass FM, for which velocity we found just above that 

I 2gbccx - 2gbbcc l . h d" rr . 1 f h" h" h . -xxvv = b , et us wnte t e iuerentia o t is, w 1c is 
2 C + 
2gbcc :x, for d(½xxvv), and this will yield 
c+ 

gaa dx gaa dx 
nb(c + b) (cc - nnbb) = ---,;r- (c - nb) + rr dx. 

By dividing by dx and transposing, we will obtain 

gaa[cc - nnbb - (c - nb)(c + b)] gaa(cn - c - nnb + nb) 
7T = 

nb(c + b) n(c + b) 
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Therefore, if at PO a tube, which should be erected vertically, is 
inserted in order that it may be known to what height the liquid can 
stand suspended in it (at least for a rather short time), 7T is to be 

divided by g(PO), that is, by gaa, in order to obtain 
nx 

7TnX x(cn - c - nnb + nb) 
gaa c + b ' 

the height of the liquid in the tube, from which height the absolute 
compression of the liquid at PO is to be evaluated. Q.E.I. 

SECTION XL VI 

Thus, if it be desired further to determine the point O in any given 
LM where the intensity of the pressure is greatest, that is, where the 
liquid in the tube will obtain a maximum height, the derived quantity 

x(cn - C - nnb + nb) . b d·cr · d · h h · b 
b 

1s to e 1uerent1ate , wit n av1ng een 
c+ 

assumed as variable and the rest as constants; this having been done, 

there will appear c + b - 2bn = o, from which results n = c ~ b, 

and thus 

nx or AO = (c + b)x = c + b AL = !_AL + !..AL= !_AM+ !..AL. 
2b 2b 2b 2 2 2 

From this it is evident that the point O of maximum pressure is half 
way between M and L, clearly just as we foretold by conjecture in 
Coroll. IV above. 

SECTION XL VII 

In addition, if the derived value of n itself, which is c :b b, is substi-

d . h . x(cn - c - nnb + nb) h . h . h tute m t e express10n b , t e maximum e1g t 
c+ 

itself of the liquid in the tube, :i~c-+bi;, will result. Thus, because 

½LM or LO= x(c 
2
~ b), LO or the height of the liquid in the conduit 

above the point O where the tube is inserted will be to the height of 

h 1. .d. h b x(c - b) . x(c - b) 2 
( b) . 

t e 1qm mt e tu e as 2b 1s to 
4

b(c + b)' or as 2 c + 1s to 
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c - b, or as double the sum of the original distances AK + AI is to the 
simple difference of the same, that is, as 4Aw is to IK. 

SECTION XL VIII 

Finally, sound reason alone dictates that the mass of the descending 
liquid FM undergoes no pressure at the extremities FL and GM, and 
therefore that the height in a tube inserted either at Lor at M must be 
zero. And this very fact is certainly confirmed by the formula, for in 

x(cn - c - nnb + nb) 
the prior case where n = 1 the formula --------- 1s 

C + b 
changed to this: 

x(c - c - b + b) 
C + b 

= o; 

but in the latter, where n = i, the same is changed into this: 

x(cc - cb - cc + cb) 
= o also. 

b(c + b) 

SECTION XLIX 

ScHOLIUM 3. This example of a liquid descending by its own 
gravity in an indefinitely continued hyperbolic pipe, which I treated 
rather extensively as an example, shows in what manner one is to 
proceed in other cases of this type where a liquid descends within a 
sufficiently long conduit, with the identical quantity always, so that 
certainly nothing flows out from it and, equally, no new liquid flows 
in. Besides, it reveals the access to the solution of Problems concern
ing the determination of oscillatory motion of fluids in bent or reflex 
pipes, whatsoever may be their shapes, and of area varying in any 
way whatever. For, in fact, in such pipes or siphons, while a certain 
portion of the fluid descends through one leg, through the other leg, 
albeit very dissimilar, another portion of the fluid equal to the former 
ascends, that is, descends negatively, so that, just as in pipes continu
ously inclined downward, the same mass of fluid is always contained 
within. Thus, if, with the signs in the calculation having been 
changed for those quantities which require it, one proceeds by the 
same method which we showed in the example presented, by no 
means will it be difficult to perform the computation of the velocity 
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of the fluid flowing through in the individual places for any ascent or 
descent of it whatever; from this all the remaining [relationships] 
are derived. 

CONCERNING VESSELS WHICH, DURING THE TIME 
WHEN THEY ARE EMITTING LIQUID THROUGH AN 
APERTURE MADE IN OR NEAR THE BASE, RECEIVE 

NO NEW LIQUID FLOWING IN FROM ABOVE 

SECTION L 

For those cases of vessels which by emitting liquid, but by accepting 
no other, are finally depleted and evacuated, that method could be 
applied which I explained in §XLIV and following, where [the 
text] is concerned with the determination of the motion of a given 
aqueous mass falling continuously within a hyperbolic-conoidic con
duit, certainly with the aid of a fictitious fluid which does nothing 
other than fill the space left empty by the descending fluid. But, 
moreover, after that fiction of the mind has been considered and 
ignored, in the present situation our equation suffices [ which was] 
given in §VII, (aahh - f3f3ww)z:, dx + aMhhw dz:, = aahha dx, which 
we say to be valid for vessels always remaining full. Of course, that 
equation will be accommodated easily to these vessels also which are 
depleted slowly on account of no new liquid flowing in, and in which, 
hence, the uppermost surface Ee (Fig. 10) continuously descends. 

SECTION LI 

In repetition of that which has already been solved in the first 
Part, §XII,* for the case of a cylindrical vessel, let us consider here 
a vessel of any shape whatever into which no new liquid is flowing 
from above, while that which is already within is escaping by con
tinuously passing through the final orifice. And so let us prescribe 
that the uppermost surface, by descending from the position Ee, has 
arrived at the position Ff, at which moment the velocity of the 
flowing liquid is to be determined. For this purpose the area Ff 
itself, or y, obviously variable, is to be taken as the uppermost area to 
which the variable height BP or t corresponds (indeed the nature of 
the translation of motive forces in fluids permits this, as will be evident 

* Pages 363-64 above. 
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to anyone who considers it); but M itself, or J dsd
2

, which was con
y t 

stant in vessels constantly full, is now variable; certainly it is to be 
applied throughout the variable height BP. 

Therefore, in our equation let one write yy for hh, t for a, and ~ 
for f3, and the following equation, which is the one desired, will be 
produced: 

[aayy - ww ~!;~:] Z dx + ayyw dz J ~Jt
2 

= aayyt dx. 

But from this, since the element of falling water w dx equals the de
a 

scending layer -y dt (I put -y dt because t decreases with increas-

\ d ·11 b - ay dt Th c b b . . h. I mg x 1, x WI e --w-. erewre, y su st1tutmg t IS va ue 

for dx, the equation will have this appearance: 

[ 
(ds)

2
] J ds

2 

aayy - ww (dt) 2 z dt - wwy dz y dt = aayyt dt; 

for vessels having a vertical centric where a = I and ds = dt, this 
transforms into the rather simple equation 

J
dt 

(yy - ww)z dt - wwy dz y = yyt dt. 

SECTION LII 

From this equation we will now pursue to the end the example 
shown in the first Part (§XII), where the vessel was assumed 
cylindrical, and we will add certain worthwhile notes. Here, there-

fore, h is to be used, contrarily, in place of the constant y, and J ~ 
will be J ~' or ~' and the whole term wwy dz J ~ will be wwt dz, 

whence the equation for the case of the straight cylinder will have this 
form: 

(hh - ww)z dt - wwt dz = hht dt; 

then, by the method of integrating used formerly by me, this gives in 
finite terms the required value of z itself as 

hht [I _ (t/a)<hh-2ww)/ww]. 
hh - 2WW 
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Here at once it is evident that the velocity, whether initial or final, 
is zero, that is, in the case in which t = o, as well as [in that] in 
which t = a. Hence it is deduced that somewhere the velocity of the 
water will be a maximum while flowing out of the vessel or while 
descending in the vessel itself. In order that this [ maximum velocity] 
be determined, the maximum z is to be found which would result 
when the surface of the water in the cylinder descends to that distance 

( 

WW )WW/(hh-2ww) 
t from the base which is a hh _ ww ; this may be found 

in two ways: namely, either by differentiating the ascertained value 
of a itself in the usual way, or, as is easier, by setting the second term 
wwt dz in the preceding differential equation, (hh - ww)z dt -

wwt dz = hht dt, equal to zero, from which there results z = hh hht , 
- WW 

which, compared with the ascertained general value 

hht [i _ (~a)(hh-2ww)/ww], 
hh - 2ww 

will give, as I said, 

t=a---- · 
( 

WW ) ww/(hh - 2ww) 

hh - WW 

SECTION LIII 

Meanwhile, in the very special case where hh = 2ww, where the 

area of the cylindrical vessel is to the area of the orifice as V2 is to 1, 

this inconvenience occurs, that ~--- 1 - -
hht [ (t )(hh -2ww)/ww] 

hh - 2ww a 

becomes hht ( 1 - 1), and indeed that the other, 
0 

( 

WW )WW/(hh-2ww) (ww)WW/0 
00 a hh , becomes - , or 1 , 

- WW WW 

from either of which nothing can be concluded. However, this in
convenience is taken up through the rule, applied with some dex
terity, which I communicated some time ago to the illustrious 
L'H6pital, as is to be seen in the Analysis of infinitesimals, Art. r 63. * 

hht [ (t)<hh-2ww)tww] 
First, then, the recently introduced hh _ 2ww I - a 

is found for the present case as -2(a - t) ln (a - t), but the other, 

* See No. LXXI, p. 401, [Opera Omnia] Book I. 
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( 

WW ) ww/(hh - 2ww) I 
a hh _ ww , as~' by assuming, naturally, a as unity and 

In e = I; and so here either quantity, the subtangent of which, 
a = I, is determined very easily through common Logarithms. 

CONCERNING THE MAKING OF CLEPSYDRAS 

SECTION LIV 

Until now we treated the shapes of vessels passing water through an 
orifice below exclusively as if the shapes had been given, so that we 
might surely bring out the laws according to which the motion of the 
water would proceed. But now I should like to inquire in reverse 
order into the shape of the vessel required in order that the uppermost 
surface of the water might subside according to some proposed law; 
for example, that it might be lowered at uniform speed, whence from 
the magnitude of the descent the duration of flow is known imme
diately; this very frequent use of Clepsydras was instituted long ago 
among the Ancients for measuring time. Moreover, this can be 
obtained principally in two ways; one certainly is from the quantity 
of water having flowed out, the other from the quantity of water still 
remaining in the vessel; from either, judgment can be passed concern
ing the interval of time. Let us treat each one separately. 

SECTION LV 

Let us consider the rather simple vessels which indeed have their 
centrics vertical, and of which the equation (§LI) is this: 

J
dt 

(yy - ww)z dt - wwy dz y = yyt dt, 

where the unknown t andy have their origin at the lowest point, or at 
the orifice w. Thus, if now we wish to consider that the water flows 
out at a uniform velocity, z is to be put equal to the constant c, which, 
this having been done, will give dz = o; and so the second term 

wwy dz J y vanishes, and the others, divided by dt, will give this 

algebraic equation: 
(yy - ww)c = yyt, 

from which it 1s found that yy = cw'::._ct and y = jcw'::._ct or 

v- - :J wwc 
y - C - f

0 
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COROLLARY 1. The nature and shape of the vessel are therefore 
such that it can be generated from the revolution of a plane biquad
ratic Hyperbola described between two asymptotes, of which one is 
vertical, the other horizontal [ and] distant from the orifice w by a 
height C. 

COROLLARY 2. Assume that the first height or the initial t equals c, 
and that the initial areay is infinite; then indeed one has 

y = J wwc = J wwc = 00. 
c-t c-c 

COROLLARY 3. The quantity of water remaining in the vessel for 
any height t, or f y dt, is found by integrating and properly organizing 

Jdt j wwc = 2wc - 2w'Vcc - ct. Thus the total quantity of water 
C - t 

from the beginning of flow is 2wc, that is, equal to the cylinder of 
water of which the base is w and the height is 2c. 

COROLLARY 4. Therefore, if a cylindrical receptacle of capacity 
not less than 2wc is placed under the water about to flow out of the 
orifice w, the water that has flowed out and has been collected in that 
receptacle ascends equally in equal times, and so, after the height of 
the receptacle has been divided into equal graduations, the Clepsydra 
will result. 

SECTION LVI 

ScHOLIUM 4. It should not be concealed that this type of Clepsydra 
can hardly have any use in practice on account of the immense 
height which should be given to the hyperbolic vessel in order that the 
efflux can endure through a period of time, even if it be rather short; 
this can be understood satisfactorily from the fact that if the vessel 
were 15 feet high, that is, if c = 15 feet, it would contain water 
2wc = 30w, that is, an aqueous column the height of which is 30 feet 
above the base w. Since, moreover, from the orifice w the water 
flows out at the uniform velocity required for the height of 15 feet, 
and since the time of fall through this height is less than one second, 
it is certainly evident that within one second the aqueous cylinder of 
area w and of length twice fifteen, or thirty, feet flows out of the 
vessel, and therefore in such a short time the whole vessel will be 
emptied. Let me say nothing yet about the impossibility of the 
structure of the vessel, since one supposes that its uppermost area is 
infinite; I would certainly like to correct for this inconvenience by 
prolonging-the vessel near enough to the upper horizontal asymptote 
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that it may acquire an area much greater than that of the orifice w, 

which area then could be enclosed by a lip rising up to the asymptote. 

SECTION L VII 

The Clepsydra can be made in a more convenient manner by means 
of constant descent of the uppermost aqueous layer in the vessel itself; 
a suitable shape of vessel is therefore to be investigated in order that, 
with water escaping through the orifice w, the surface of the water 
remaining in the vessel may descend equally in equal times, so that, 
in a given interval of time, the water surface passes through a given 
number of equally spaced divisions into which the vertical axis of the 
vessel has been divided. But there are two cases in which the in
tended [ effect] can be obtained: namely, either the area w of the 
opening is so small that it has no sensible ratio to the area y in the 
vessel; or the area w is large enough that it is comparable with any y 
whatever. We will now treat the first case, since it is easier and more 
useful in practice; the other will be treated later. 

SECTION LVIII 

It is certainly evident that our equation 

Jdt 
(yy - ww)z dt - wwy dz y = yyt dt 

is reduced, in the case in which w is very small in proportion toy, to 
precisely these two terms: yyz dt = yyt dt, from which z = t; that is, 
in any vessel whatever having an orifice w, water certainly emanates 
from it at that velocity which is acquired by a heavy body falling from 
the height t which the residual water in the vessel has; of the truth of 
this matter (found scientifically by us) hydraulics Writers of previous 
years had knowledge only through experiments. However, once this 
had been supposed, it was then easy to discover the nature of that 
conoidic vessel having the orifice w as if it were its vertex, facing 
downward, because then it has this effect, that at any moment the 
uppermost surface y of the residual water descends at a uniform or 
constant speed. For since the velocities of the fluid flowing in the 
same quantity and at the same time through two different areas are 

· · 1 · f h / , r;wvz m rec1proca rat10 o t e areas, one must set y w = v z y' and 

there will result ~ Vz designating the speed of the descending surface 
y 
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Y, which speed, since it must be constant, let be set as ~ -Vz = Ve, 
y 

from which there will be 0'Y = z = t. Moreover, in straight conoids 
WW 

the areas are nothing else but circles, of which the areas y are as the 
squares of the radii, or of the ordinates of the generating curve which 
by its revolution about the axis describes the desired conoid. There
fore, by designating the ordinate in the generating curve as s, and 
the radius of the circular orifice w as b, and likewise by saying that 
the area of the circle is to the square of the radius as n is to r, one will 
have, certainly, y = nss, yy = nns4, w = nbb, and ww = nnb4; and so 

fi h . 0'Y h ·11 1 cs4 b4t 4 h' or t e equat10n t = - t ere w1 resu t t = -b4 or - = s ; t 1s 
WW C 

shows the generating curve of the desired conoid to be a biquadratic 
Parabola, at the lowest point of which, or, at the vertex facing 
downward, the orifice w emitting the aqueous stream must be 
fashioned. 

COROLLARY. The parameter of the derived Parabola is b{/bJc, 
where c is arbitrary; and therefore c can be assumed so small that 

b {I b Jc can be made as great as desired, to the end that the areas of the 
conoid become incomparably greater than the area of the orifice w. 

Accordingly, therefore, for the pleasure of it, the capacity of the vessel 
can be made so large and the area of the orifice w can be made so 
small that the efflux of water may persist for a very long time before 
the vessel is completely exhausted; attention is paid to this especially 
in the design of Clepsydras. 

SECTION LIX 

Now consider the other case, where the orifice w is not assumed of 
so insensible an area that in the universal equation 

J
dt 

(yy - ww)z dt - wwy dz y = yyt dt 

those terms vanish in which w appears; it is surely necessary that all 

terms remain, and then that 0'Y be substituted for z, and 
2
0' dy for dz, 

WW WW 

to the end certainly that the uppermost surface of the water in the 
vessel descend at uniform speed, which speed is due to the arbitrary 
height c, whence the resulting equation to be solved is 

Jdt 
(yy - ww)c dt - 2cww dy y = wwt dt. 
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There are certain indications from which I suspected at once that 
there exists a certain algebraic curve which agrees with that equation 
taken in the abstract. Thus after a short investigation, this appeared 
directly to me: 

ww (t + 3c ) 
yy = C ; 

and for the generating curve, this: 

which again is a biquadratic Parabola, but with abscissas t which take 
their origin not from its very vertex, but indeed from below the same, 
on the axis, at a distance 3c. Meanwhile, the derived equation 

yy = ww(t + 3c), which certainly satisfies in the abstract, cannot for 
C 

that reason be accepted in this instance because it does not fulfill a 
tacit condition, which condition consists in this: that for t = o, the 

entire equation must go to zero, and therefore even J t must vanish, 

which does not occur in the case of the equation yy = ww (t + 3c). 
C 

Of course, it is nothing new that a certain proposition which is true 
in general is not always correct in particular, especially when it is 
required to satisfy additional conditions to which it is not necessary 
to attend when taking the matter in general. Moreover, the true 
generative curve for the desired shape of the conoidic vessel is ascer
tained if by this art the equation 

J
dt 

(yy - ww)c dt - 2cww dy y = wwt dt 

can be universally solved so that y is determined through t, or vice 
versa, t throughy, either that it be done in finite algebraic terms or in 
exponentials, or, indeed, through quadratures. But I leave this 
matter, since it is not important here, to be resolved by others to whom 
time is available. 

SECTION LX 

ScHOLIUM 5. An opportune occasion is now given for exammmg 
the Newtonian cataract, which that Author describes in the second 
edition of Principia Mathematica Philosophiae Naturalis, Prop. 36, 
Book II, pp. 303 ff. There at once it is to be observed that that form 



METHOD FOR SOLVING HYDRAULICS PROBLEMS 441 

which Newton gave to his cataract ABNFEM (see Fig. 16, which is 
Newton's from that selected place) certainly is the same as that which 

p 
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I :L 
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R 

FIGURE 16 

I found above (§L V) for the shape of the Clepsydra which emits water 
through the orifice w at a constant speed. Let us note now what 
Newton himself recognizes, that in such a cataract any layer MN 
whatever descends with that velocity which it would acquire if it 
would fall freely from a given point I through the height JO, ani
mated by no force other than its own natural gravity; from this it 
follows certainly that the layers remain in contact with each other in 
descending, but nevertheless such that they exert no force on each 
other, either by pressing or by resisting, just as if individual particles 
were descending by their own weight. And thus that pressure con
cerning which I treated above in a particular section will be null 
through the whole Newtonian cataract, and accordingly, concerning 
the force of pressure which I called Tr, not even the least will be exerted 
on the sides AME, BNF, which also will be evident from my very 
formula which I gave for TT in §XII. If indeed that is applied to the 
present case, it is obtained, as I said, that the value of Tr itself is null 
through the whole height of the cataract. What therefore must be 
concluded from this? Undoubtedly the following: that if the sides 
AME and BNF of the cataract were rigid, resembling those of a 
funnel, with which Newton compares it, and if at any place whatever, 
an orifice having been made, a tube erected to a vertical position 
were inserted, none of the flowing water would enter from the 
cataract into the tube and ascend, as would happen if the sides were 
pressed by the water flowing through. Meanwhile, the sides AME 
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and BNF are pressed inwardly against the axis HG by the weight of the 
water standing in AMEC and BNFD, through the common hydro
static law which shows that pressures experienced at the individual 
places M and N are proportional to the heights HO. Moreover, 
since the sides of the cataract are not rigid, and those pressures of the 
standing water have no pressures opposed to them from the water 
flowing through, it is of course necessary that the water which is 
considered to stand and which presses continuously obtain its own 
effect, that is, that it pour into the cataract and mix together with the 
flowing water itself. Therefore, the shape of the cataract will be 
destroyed and will be thrown into disorder, and the water descends 
differently than according to our explanation. 

Therefore the Newtonian explanation, since it is adverse to the laws 
of hydrostatics, cannot stand. 

EPIMETRUM: CONCERNING THE FORCE BY WHICH 
A VESSEL IS PUSHED BACKWARD WHEN WATER 
FLOWS OUT OF IT IN A HORIZONTAL DIRECTION 

It is a very well-received truth that Action is equal to reaction, that is, 
that any external force whatever which acts on a certain body or any 
other obstacle also acts backwards in the directly opposed direction on 
whatever barrier it may have or find, just as we see it happen when, 
for example, a stretched elastic placed between two bodies begins to 
be relaxed at once upon release of the restraint; it propels each body 
by equal forces, one forward, the other backward. We observe that 
it does not occur otherwise when an iron shot is fired with great 
violence from a cannon by the ignition of gunpowder, that similarly 
the cannon itself is driven back in the opposite direction, however by 
a much lesser impetus on account of the huge mass of the cannon with 
respect to that of the shot itself. 

In an equal manner, when we see that water is expelled from a 
vessel in a horizontal direction, whether it occurs immediately 
through an orifice opened in the side of the vessel or intermediately 
through some conduit having a horizontal position, we must conclude 
that some force or power exists which may produce this expulsion, 
which then acts equally strongly in pressing backward at the wall of 
the vessel directly opposed to the final orifice of the conduit. There
fore, this effect is to be considered in order that the magnitude or 
measure of that force driving backwards and forwards may be prop
erly estimated. At once several ideas come to mind which at first 
glance seem to reduce to the desired result, but, since the various ideas 
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show measures of that quantity differing from each other, 1t 1s un
certain whether one or another of them is correct, or, rather, whether 
or not all of them are out of tune with the truth. And, therefore, the 
path which we shall follow will be safest and most certain ifwe deduce 
the solution immediately from the very principles confirmed in this 
hydraulics Theory of ours. 

To this end let us consider what was stated at the beginning con
cerning the translation of the motive forces of the individual aqueous 
sections Fm, Nl, etc. (Fig. ro), to the common uppermost area Ee, 
where it is shown that those forces, thus collected into one, furnish 
the same effect in expelling the liquid, assumed free of gravity, 
through the aperture Cc, and this at the same velocity at all times as 
that which occurs in the natural manner through the gravitation of 
the liquid descending without translation. Now indeed we clearly 
understand that that translation to the uppermost area Ee is arbitrary, 
inasmuch as it can easily be gathered from the same hydrostatics 
principle which we assumed that the motive forces of the individual 
layers can be transferred to any other assumed area whatever, for 
example to Ff, which may be considered as given or constant; and it 
is not so that one may say that the forces translated to that [area] act 
only by pressing the layers below but not those above. For while the 
continuous layers are thus joined to each other so that the one without 
the other cannot be moved from a [particular] place, with no difficulty 
at all do we understand that the propelled aqueous mass below 
FCif carries, so to speak, that above, EFfe, along with it as well, and 
that with that [mass] the effect of the pressing potential at Ff must be 
shared to such a degree that the liquid will flow out through Cc at no 
other velocity than as if the motive forces of the layers had been 
translated to the uppermost area Ee. 

With these things properly understood, let us now consider that the 
forces of the layers are translated not to the uppermost area Ee, nor 
to some intermediate one Ff, but to the lowermost Cc, so that the 
resultant force from rhe collection of all the forces of the layers, while 
it acts immediately only on the lowermost layer, nevertheless must 
drive the entire aqueous mass ECce into motion precisely by the same 
law as if the motive forces had been translated to the uppermost 
surface Ee, or to any other whatever, Ff. Moreover, from the 
common hydrostatic principle, the sum of the motive forces translated 
to any area whatever is proportional to the area itself, just by making 
gha, or the weight of the aqueous cylinder the base of which is Ee 
and the vertical height is AB, into gwa, or the weight of the aqueous 
cylinder which has the same height a or AB and the base w or Cc, just 
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as Ee is to Cc, or h is to w; let this weight be designated p, and thus we 
have the quantity of pressure p by which the water is expelled through 
the orifice Cc, and which, in pushing forward, at the same time is 
pushing backward in a common direction. 

Let an application be made: Let the vessel ABD (Fig. 13) having 
any shape whatever be attached to the not very large oblong conduit 
CEK lying in a horizontal position. For the sake of brevity, let the 
centric of this vessel be vertical, and it is not important what shape 
the conduit may have, whether it be a truncated conoid or composed 
of many pipes, of which [ conduit] the extreme orifice at K through 
which water is expelled equals w. Now when the vessel has been 
assumed constantly full, we saw above that for the determination of 
the velocity v of the water flowing out, this equation results: 

vv(hh - ww) hMwv dv _ h 
2h + dx - g a, 

if, of course, the motive forces are translated to the uppermost area h, 
or to AD; whence if we translate the same to the lowermost area w, 

. vvw(hh - ww) Mwwv dv 
there will result 

2
hh + dx = gwa = p, [ equal] to 

the weight of the aqueous cylinder the base of which is w and the 
height is a, the height of the water above the horizontal BK. There
fore, imagine the small surface Bb in the wall BA of the vessel from 
the region opposite and equal [in area] to the orifice K; this Bb will 
endure a similar pressure on itself, equal top, from the retroaction 
expelling the fluid. 

Certainly this retropressure p exerted at Bb rises to its full intensity 
immediately as it begins to be moved; that is, from the first instant of 
motion when the velocity is as yet infinitely small right up until it 
reaches the level of equilibrium, that force of retropressure is con
stantly the same. Certainly whatever v is, there always results 

vvw(hh - ww) Mwwv dv . . 
gwa or p = 

2
hh + dx , whence at the begmnmg of 

fl h . . fi . 1 11 ·11 h Mwwv dv ow, w en v = o or 1s 1n n1te y sma , one w1 ave p = dx ; 

but when v will have arrived 
vvw(hh - ww) 

similarly, p = 
2

hh . 

Mwwvdv 
dx 

at uniformity, so that dv = o, then, 

From this it follows that 

vvw(hh - ww) 
2hh ' 

assuming, certainly, v for the initial velocity in the first term, but v for 
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the uniform velocity in the other. Further, it is also evident from 
here that our retropressure is equal to the weight itself of an aqueous 
cylinder having a base w and that height which the water has in the 
vessel above the horizontal BK, because a very well-known hydro
static principle shows that the area CE through which the water enters 
into the conduit CK is pressed by the weight of the aqueous column 
lying above, of which the base is CE itself and the height is that of the 
uppermost surface AD above EC. And so with the area CE having 
been set equal to m and the height of the water in the vessel equal to a, 
the pressure which drives the water in the conduit from CE against K 
will be gma; with gma having been made into gwa in proportion as the 
area CE is to the area K of the aperture, that is, as m is to w, the force 
gwa will be, through the same hydrostatics principle, that very 
[force] which drives the water to eruption through the orifice w; 
therefore, the force directly opposed to this, arising from the reaction 
and action at Bb, will likewise be gwa = p. Q.E.D. 

COROLLARY. It turns out that in vessels constantly full the force of 
retropressure is invariable from the first instant of efflux right up to 
the constant velocity, inasmuch as it is always gwa. Therefore, they 
err who state that it is variable: namely, less in slower efflux, greater 
in faster, a maximum in constant efflux. 
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AB is a cylindrical pipe, uniformry wide and open at both ends A and B 
[Fig. 17]. Let it be immersed perpendicularry anywhere in an infinite fluid the 
surface of which is LR, and let the immersed part of the pipe be BC. Let it 
be understood that the whole pipe AB is full of the same fluid, so that with the 
thumb held over it at A nothing can.flow out. Now there is sought, if freedom is 
given to the descending fluid by the thumb having been removed, how far it will 
descend below LR, and afterwards how far it will ascend again above LR; that 
is, P having been taken for the termination of the descent and O for the termina
tion of the subsequent ascent, the length GP and as well the length CO are sought. 
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FIGURE 17 

SOLUTION 

First it is to be considered that the portion of the fluid contained in 
CB has no weight, or rather, that its attempt to descend developing 
from gravity is eliminated by the opposing pressure of the fluid 
surrounding the pipe; and thus at once some of the fluid while de
scending from the projecting part AC descends into the submerged 
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part of the pipe; further, the former is to be considered to be separated 
from its own gravity so that the total accelerative force at any time 
depends only on the weight of that portion of the fluid which exists as 
yet in the projecting part of the pipe. Thus at once it is evident that 
the descent of the fluid must be accelerated as long as some remains in 
AC and hence that the maximum velocity will occur when it will have 
descended to the horizontal LR; that then again it must be retarded 
on account of the prevalent pressure of the ambient fluid; that, when 
the velocity has been completely eliminated at P, the fluid is com
pelled to ascend again to O by the external ambient pressure, and 
that it will have a maximum velocity again at C. Then from 0, by 
another change, it falls, but not to as great a depth as previously, at 
once about to ascend upward again, and thus it will continue oscilla
ting successively. And so are sought the first descent to P and the 
first subsequent ascent to 0, inasmuch as upon these all the remaining 
depend. 

As far as the determination of the descent is concerned, it is achieved 
in a two-fold way, either directly from the principles of mechanics or 
indirectly from the nature of live forces. Accordingly, I accomplish 
the task by each method. 

FIRST METHOD. The principles of mechanics show that the instan
taneous increment of velocity is obtained if the element of time is 
multiplied by the accelerative force; moreover, the element of time is 
obtained by dividing the element of space to be traversed by the ac
quired velocity. Thus let the total length of the pipe AB be a, the 
immersed part CB be I, any arbitrary part AE passed through by the 
descending fluid be x, and the natural gravity by which, certainly, 
bodies are naturally animated or urged to descent be g. Let the 
velocity acquired by the fluid having fallen from A to Ebe designated 
by v. With these [terms] so defined, the weight of the fluid filling up 
the whole pipe will be ga; the weight of the part CB, g(r) = g; and 
the weight of the part CE, g(CE) = ga - g - gx. Now, because equal 
to the weight of the portion CB is eliminated by the equivalent pres
sure of the ambient fluid, only the weight of the fluid CE remains, 
which must accelerate all the remaining fluid EB into descending. 

Thus the accelerative force will be g(BCE'E) = ga - g - gx, whence 
a-x 

ga - g - gx (dx) 
a _ x '"v = dv; accordingly 

v dv = ga dx - g dx - gx dx = g dx _ g dx , 
a-x a-x 
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and by integration, 

½vv = gx + g ln (a - x) - g ln a. 

(Note: I add g ln a here for the sake of correction, so that certainly for 
x equal to o, where the velocity is null, the value derived for it 
vanishes. ) And thus, in order that it be known how far the liquid 
must descend in the pipe so that v again becomes o, it is necessary 
to make x + ln (a - x) - ln a = o, and, by taking AP as the root of 
this equation, the point P will be the terminus at which the descent is 
ended. 

Indeed the root x is obtained with the help of a Logarithmic 
[curve] in this way: let the Logarithmic be HCC [Fig. 18], the sub
tangent of which equals r = BC, the immersed portion of the pipe. 

H 

L B 

FIGURE 18 

In BC extended, let BA be taken equal to the length of the entire pipe, 
up to which [length J certainly at the beginning it is full of 
liquid; [the line] AH, parallel to the asymptote BL, is drawn 
from A, meeting the Logarithmic at H, and from this point H 
[the line] HG, which cuts the curve at G, is drawn parallel to the 
tangent at C; whence, further, GP is drawn parallel to the asymptote 
BL; the point P will be the terminus to which the fluid descends and 
at which the descent will be completed. The proof is simple. Indeed 
because AH= ln AB= ln a, and PG= -ln PB= -ln (AB - AP) 
= - ln (a - x), and AH+ PG= AP, there will beln a - ln (a - x) 
= x, from which x + ln (a - x) - ln a = o. This is the very same 
equation [which is] to be developed. Q.E.D. 
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SECOND METHOD. From the Theory of live forces I find the same in 
the following way, by indicating here again (Fig. 17) AB by a, CB 
by r, and the indeterminate portion AE of the descent by x. Let z 
be a certain vertical height through which a weight falling freely would 
acquire a velocity equal to that which the fluid acquires after it has 

fallen in the pipe from A to E. This velocity will therefore be Vz. 
Moreover, by cutting off BF = AE, it is clear that through the de
scent of the fluid from A to E the column AF is translated to EB and 

that then its individual parts have a velocity v1z; wherefore all the 
fluid substance constituting this column EB will have a live force 

( a - X) Vz-VZ = az - xz , to which are to be added the particular 
collectively taken live forces of the individual particles contained in 
the space BF, which, with the fluid descending from A to E, have 
flowed out successively from the orifice B, of which certainly the sum 
is f ,<; dx. Therefore, the magnitude of the live force of the entire 
substance then in motion is az - xz + f z dx. 

Because, indeed, this live force must be the effect of the gravity of 
the portion of the fluid lying above the horizontal LR, therefore it is 
necessary that that quantity of the live force az - xz + f z dx, as the 
effect, be equal to its own adequate cause, that is, to the sum of the 
products which are formed by multiplying the individual particles of 
descending fluid by the appropriate height of each through which any 
one of them is depressed by its own gravity. Therefore, CD = AE 
having been assumed, DC will be the descent of the column AD, and 
therefore AD(DC) expresses the live force arising from the gravity of 
the substance of the fluid contained in the column AD after it de
scends to the position EC, where the lower portions that will already 
have fallen below the horizontal are beginning to be freed of their 
own gravity. This, moreover, relates to the particles of fluid con
tained in DC. Individual [particles] make individual descents before 
they arrive at the horizontal LR according to their different distances 
from LR; since these distances are expressed through the indeter
minate x, and any particle pertaining to it through dx, the product 
x dx will be the live force arising from gravity of any particle what
ever, and thus f x dx or ½xx is the live force of all the particles con
tained in CD, taken collectively, which, therefore, having been added 
to AD(DC), that is, to (a - r - x)x, or to ax - x - xx, will become 
the total live force arising from gravity, ax - x - ½xx, consequently 
equal to the derived live force gathered from the motion, az - xz + 
f z dx. And thus, by differentiating, there is a dx - dx - x dx = 

dx 
a dz - x dz, from which dz = dx - --· integrating again, 

a - x' 
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z = x + In (a - x) - ln a. But z is proportional to the square of 
the velocity sought, vv. Therefore vv, or, if you prefer, ½vv, equals 
x + In (a - x) - ln a, wholly as we found above by the direct 
method, because certainly the square of the velocity of the fluid de
scending through the height x must be proportional to the same 
x + In (a - x) - ln a. 

Now further, in order that one may determine the point O [Fig. 17] 
to which, after the descent has been completed, it ascends again, it is 
to be noticed first of all that the liquid will have ascended right up to 
the uppermost point A if the same particles which had gone out of the 
orifice B during the descent, their own acquired velocities having 
been retained, were now again to enter individually in reverse order 
through the orifice B, and thus any one of them together with the 
preceding would be thrust on upward by the pressure of the ambient 
fluid, just as it occurs in every type of oscillation which, when the 
resistance has been removed, always does the same thing going and 
returning. But since the particles of fluid flowing out fall within the 
ambient liquid immediately after discharge and then diffuse from 
here, it is manifest that those same particles no longer flow into the 
pipe at their own acquired velocities, but other [particles] in their 
place, which surround the orifice without motion, are driven upward 
successively with the preceding column of fluid; these particles there
fore, since as yet they have no motion at the beginning of the entering, 
cause the column of fluid preceding together with those [particles] 
attaching themselves to ascend more slowly than it would do if the 
particles were to flow in with some velocity which would aid the 
ascent. Hence the liquid cannot ascend to A but to some lower 
point O. In order that the height CO of this point O above the hori
zontal may be known, let us understand, meanwhile, that the par
ticles which have fallen from the orifice B into the ambient liquid 
within which they have no gravity are directed upward, and there
fore, with no loss in their velocity having occurred, arrive at the 
horizontal LR, from which afterward the individual [particles], with 
their gravity recovered, spring upward as much as they can according 
to the velocity of each, occupying in order a position according to 
some curve LMN. Indeed now because the amount of live force 
must be conserved, it is necessary that the sum of the products of the 
individual particles contained in CO and their respective ascents above 
the horizontal LR, together with the sum of the products which are 
formed as well by multiplying the individual particles on the curve 
LMN by their ascents and distances from LR, be equal to the sum of 
the similar products of the entire column AC; certainly the liquid 
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possessed this at the beginning of descent. Therefore, if from the 
sum of the products of the column AC there is subtracted the sum of 
the products of the particles LMN, there will remain the sum of the 
products in the column CO, and hence the height CO itself becomes 
known. For the prior sum is ½AC(AC) = ½(AC) 2 = ½aa - a + ½; 
the other is f z dx = ax - x - ½xx - az + xz = (in the case in 
which x, or the indeterminate AE, becomes AP, where z vanishes) 
ax - x - ½xx, and therefore ½aa - a + ½ - ax + x + ½xx is the 
sum of the products in CO, or ½(CO)2; from this, 

CO = V aa - 2a + I - 2ax + 2x + xx = I + x - a 
= (in this same case where x = AP) GP. 

From this it is evident that the fluid in the pipe ascends to a height 
CO above the horizontal LR [which is] as great as the depth GP 
to which it had descended below LR immediately before. 

COROLLARY. With CO known, one can find, through the construc
tion given above, the second descent and the subsequent second 
ascent; and then from this the third descent and ascent; and so on. 
In this way the extents of the individual oscillations can be 
determined. 
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