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PREFACE TO ORIGINAL EDITION.

The present book has for its object the presentation of the

lectures which I delivered as foreign lecturer at Columbia Uni-

versity in the spring of the present year under the title : "The
Present System of Theoretical Physics." The points of view

which influenced me in the selection and treatment of the

material are given at the beginning of the first lecture. Essen-

tially, they represent the extension of a theoretical physical

scheme, the fundamental elements of which I developed in an

address at Leyden entitled: " The Unity of the Physical Concept

of the Universe." Therefore I regard it as advantageous to

consider again some of the topics of that lecture. The presen-

tation will not and can not, of course, claim to cover exhaus-

tively in all directions the principles of theoretical physics.

The Author.
Berlin, 1909.





TRANSLATOR'S PREFACE.

At the request of the Adams Fund Advisory Committee, and
with the consent of the author, the" followinj]^ translation of Pro-

fessor Planck's Columbia Lectures was undertaken. It is hoped

that the translation will be of service to many of those inter-

ested in the development of theoretical physics who, in spite of

the inevitable loss, prefer a translated text in English to an

original text in German. Since the time of the publication of

the original text, some of the subjects treated, particularly that

of heat radiation, have received much attention, with the result

that some of the points of view taken at that time have under-

gone considerable modifications. The author considers it de-

sirable, however, to have the translation conform to the original

text, since the nature and extent of these modifications can

best be appreciated by reference to the recent literature relat-

ing to the matters in question.

A. P. Wills.
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FIRST LECTURE.

Introduction: Reversibility and Irreversibility.

Colleagues, ladies and gentlemen: The cordial invitation, which

tlie President of Cokimbia University extended to me to

deliver at this prominent center of American science some

lectures in the domain of theoretical physics, has inspired in

me a sense of the high honor and distinction thus conferred

upon me and, in no less degree, a consciousness of the

special obligations which, through its acceptance, would be

imposed upon me. If I am to count upon meeting in some

measure your just expectations, I can succeed only through

directing your attention to the branches of my science with

which I myself have been specially and deeply concerned, thus

exposing myself to the danger that my report in certain respects

shall thereby have somewhat too subjective a coloring.

From those points of view which appear to me the most

striking, it is my desire to depict for you in these lectures the

present status of the system of theoretical physics. I do not

say: the present status of theoretical physics; for to cover this

far broader subject, even approximately, the number of lecture

hours at my disposal would by no means suffice. Time limita-

tions forbid the extensive consideration of the details of this great

field of learning; but it will be quite possible to develop for you, in

bold outline, a representation of the system as a whole, that is, to

give a sketch of the fundamental laws which rule in the physics

of today, of the most important hypotheses employed, and of

the great ideas which have recently forced themselves into the

subject. I will often gladly endeavor to go into details, but not

in the sense of a thorough treatment of the subject, and only with

the object of making the general laws more clear, through api)ro-

1
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priate specially chosen examples. I shall select these examples

from the most varied branches of physics.

If we wish to obtain a correct understanding of the achieve-

ments of theoretical physics, we must guard in equal measure

against the mistake of overestimating these achievements, and

on the other hand, against the corresponding mistake of under-

estimating them. That the second mistake is actually often

made, is shown by the circumstance that quite recently voices

have been loudly raised maintaining the bankruptcy and,

debacle of the whole of natural science. But I think such

assertions rnay easily be refuted by reference to the simple fact

that with each decade the number and the significance of the

means increase, whereby mankind learns directly through the

aid of theoretical physics to make nature useful for its own
purposes. The technology of today would be impossible without

the aid of theoretical physics. The development of the whole

of electro-technics from galvanoplasty to wireless telegraphy

is a striking proof of this, not to mention aerial navigation. On
the other hand, the mistake of overestimating the achievements

of theoretical physics appears to me to be much more dangerous,

and this danger is particularly threatened by those who have

penetrated comparatively little into the heart of the subject.

They maintain that some time, through a proper improvement

of our science, it will be possible, not only to represent com-

pletely through physical formulae the inner constitution of the

atoms, but also the laws of mental life. I think that there is

nothing in the world entitling us to the one or the other of

these expectations. On the other hand, I believe that there is

much which directly opposes them. Let us endeavor then to

follow the middle course and not to deviate appreciably toward

the one side or the other.

When we seek for a solid immovable foundation which is able

to carry the whole structure of theoretical physics, we meet

with the questions: What lies at the bottom of physics? What
is the material with which it operates? Fortunately, there is
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a complete answer to this question. The material with which

theoretical physics operates is measurements, and mathematics

is the chief tool with which this material is worked. All physical

ideas depend upon measurements, more or less exactly carried

out, and each physical definition, each physical law, possesses

a more definite significance the nearer it can be brought into

accord with the results of measurements. Now measurements

are made with the aid of the senses; before all with that of sight,

wath hearing and with feeling. Thus far, one can say that the

origin and the foundation of all physical research are seated in

our sense perceptions. Through sense perceptions only do we

experience anything of nature; they are the highest court of

appeal in questions under dispute. This view is completely

confirmed by a glance at the historical development of physical

science. Physics grows upon the ground of sensations. The

first physical ideas derived were from the individual perceptions

of man, and, accordingly, physics was subdivided into: physics

of the eye (optics), physics of the ear (acoustics), and physics of

heat sensation (theory of heat). It may well be said that so

far as there was a domain of sense, so far extended originally

the domain of physics. Therefore it appears that in the be-

ginning the division of physics was based upon the peculiarities

of man. It possessed, in short, an anthropomorphic character.

This appears also, in that physical research, when not occupied

with special sense perceptions, is concerned with practical life,

and particularly with the practical needs of men. Thus, the

art of geodesy led to geometry, the study of machinery to me-

chanics, and the conclusion lies near that physics in the last

analysis had only to do with the sense perceptions and needs

of mankind.

In accordance with this view, the sense perceptions are the

essential elements of the world; to construct an object as opposed

to sense perceptions is more or less an arbitrary matter of will.

In fact, when I speak of a tree, I really mean only a complex of

sense perceptions: I can see it, I can hear the rustling of its



FIRST LECTURE.

branches, I can smell its fragrance, I experience pain if I knock

my head against it, but disregarding all of these sensations,

there remains nothing to be made the object of a measurement,

wherewith, therefore, natural science can occupy itself. This is

certainly true. In accordance with this view, the problem of

physics consists only in the relating of sense perceptions, in ac-

cordance with experience, to fixed laws; or, as one may express

it, in the greatest possible economic accommodation of our ideas

to our sensations, an operation which we undertake solely

because it is of use to us in the general battle of existence.

All this appears extraordinarily simple and clear and, in ac-

cordance with it, the fact may readily be explained that

this positivist view is quite widely spread in scientific circles

today. It permits, so far as it is limited to the standpoint here

depicted (not always done consistently by the exponents of

positivism), no hypothesis, no metaphysics; all is clear and

plain. I will go still further; this conception never leads to an

actual contradiction. I may even say, it can lead to no contra-

diction. But, ladies and gentlemen, this view has never con-

tributed to any advance in physics. If physics is to advance, in

a certain sense its problem must be stated in quite the inverse

way, on account of the fact that this conception is inadequate

and at bottom possesses only a formal meaning.

The proof of the correctness of this assertion is to be found

directly from a consideration of the process of development

which theoretical physics has actually undergone, and which

one certainly cannot fail to designate as essential. Let us

compare the system of physics of today with the earlier and

more primitive system which I have depicted above. At the

first glance we encounter the most striking difference of all, that

in the present system, as well in the division of the various

physical domains as in all physical definitions, the historical

element plays a much smaller role than in the earlier system.

While originally, as I have shown above, the fundamental ideas

of physics were taken from the specific sense perceptions of man,
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the latter are today in lurj,^e measure excliulctl from j;liy.sical

acoustics, optics, aud the theory of heat. The physical defi-

nitions of tone, color, and of temperature are today in no

wise derived from perception through the corresponding senses;

but tone and color are defined tlirough a vibration number or

wave length, and the temperature through the volume change

of a thermometric substance, or through a temperature scale

based on the second law of thermodynamics; but heat sensation

is in no wise mentioned in connection witli the temperature.

With the idea of force it has not been otherwise. Without

doubt, the word force originally meant bodily force, correspond-

ing to the circumstance that the oldest tools, the ax, hammer,

and mallet, were swung by man's hands, and that the first

machines, the lever, roller, and screw, were operated by men
or animals. This shows that the idea of force was originally

derived from the sense of force, or muscular sense, and was,

therefore, a specific sense perception. Consequently, I regard

it today as quite essential in a lecture on mechanics to refer, at

any rate in the introduction, to the original meaning of the force

idea. But in the modern exact definition of force the specific

notion of sense perception is eliminated, as in the case of color

sense, and we may say, quite in general, that in modern theoret-

ical physics the specific sense perceptions play a much smaller role

in all ph}'sical definitions than formerly. In fact, the crowding

into the background of the specific sense elements goes so far

that the branches of physics which were originally completely

and uniquely characterized by an arrangement in accordance

with definite sense perceptions have fallen apart, in consequence

of the loosening of the bonds between different and widely

separated branches, on account of the general advance towards

simplification and coordination. The best example of this is

furnished by the theory of heat. Earlier, heat formed a sepa-

rate and unified domain of physics, characterized tlirough the

perceptions of heat sensation. Today one finds in well nigh all

physics textbooks dealing with heat a whole domain, that of
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radiant heat, separated and treated under optics. The signi-

ficance of heat perception no longer suffices to bring together

the heterogeneous parts.

In short, we may say that the characteristic feature of the entire

previous development of theoretical physics is a definite elimina-

tion from all physical ideas of the anthropomorphic elements, par-

ticularly those of specific sense perceptions. On the other hand,

as we have seen above, if one reflects that the perceptions form

the point of departure in all physical research, and that it is im-

possible to contemplate their absolute exclusion, because we can-

not close the source of all our knowledge, then this conscious

departure from the original conceptions must always appear

astonishing or even paradoxical. There is scarcely a fact in the

history of physics which today stands out so clearly as this.

Now, what are the great advantages to be gained through such

a real obliteration of personality? What is the result for the

sake of whose achievement are sacrificed the directness and

succinctness such as only the special sense perceptions vouchsafe

to physical ideas?

The result is nothing more than the attainment of unity

and compactness in our system of theoretical physics, and, in

fact, the unity of the system, not only in relation to all of its

details, but also in relation to physicists of all places, all times,

all peoples, all cultures. Certainly, the system of theoretical

physics should be adequate, not only for the inhabitants of this

earth, but also for the inhabitants of other heavenly bodies.

Whether the inhabitants of ]\Iars, in case such actually exist,

have eyes and ears like our own, we do not know,—it is quite

improbable; but that they, in so far as they possess the necessary

intelligence, recognize the law of gravitation and the principle of

energy, most physicists would hold as self evident: and anyone

to whom this is not evident had better not appeal to the physicists,

for it will always remain for him an unsolvable riddle that the

same physics is made in the United States as in Germany.

To sum up, we may say that the characteristic feature of the
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actual development of the system of theoretical physics is an

ever extending emancipation from the anthropomorphic elements,

which has for its object the most complete separation possible

of the system of physics and the individual personality of the

physicist. One may call this the objectiveness of the system

of physics. In order to exclude the possibility of any misunder-

standing, I wish to emphasize particularly that we have here

to do, not with an absolute separation of physics from the

physicist—for a physics without the physicist is unthinkable,^

but with the elimination of the individuality of the particular

physicist and therefore with the production of a common system

of physics for all physicists.

Now, how does this principle agree with the positivist con-

ceptions mentioned above? Separation of the system of physics

from the individual personality of the physicist? Opposed to

this principle, in accordance with those conceptions, each

particular physicist must have his special system of physics, in

case that complete elimination of all metaphysical elements is

effected; for physics occupies itself only with the facts discovered

through perceptions, and only the individual perceptions are

directly involved. That other living beings have sensations is,

strictly speaking, but a very probable, though arbitrary, conclusion

from analogy. The system of physics is therefore primarily an

individual matter and, if two physicists accept the same system,

it is a very happy circumstance in connection with their personal

relationship, but it is not essentially necessary. One can regard

this view-point however he will; in physics it is certainly quite

fruitless, and this is all that I care to maintain here. Certainly,

I might add, each great physical idea means a further advance

toward the emancipation from anthropomorphic ideas. This

was true in the passage from the Ptolemaic to the Copernican

cosmical system, just as it is true at the present time for the

apparently impending passage from the so-called classical me-

chanics of mass points to the general dynamics originating in

the principle of relativity. In accordance with this, man and
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the earth upon which he dwells are removed from the centre

of the world. It may be predicted that in this century the

idea of time will be divested of the absolute character with

which men have been accustomed to endow it (cf. the final

lecture). Certainly, the sacrifices demanded by every such

revolution in the intuitive point of view are enormous; conse-

quently, the resistance against such a change is very great. But

the development of science is not to be permanently halted

thereby; on the contrary, its strongest impetus is experienced

through precisely those forces which attain success in the strug-

gle against the old points of view, and to this extent such a

struggle is constantly necessary and useful.

Now, how far have we advanced today toward the unification

of our system of physics? The numerous independent domains

of the earlier physics now appear reduced to two; mechanics and

electr9d\'namics, or, as one may say: the physics of material

bodies and the physics of the ether. The former comprehends

acoustics, phenomena in material bodies, and chemical phenom-

ena; the latter, magnetism, optics, and radiant heat. But is

this division a fundamental one? Will it prove final? This

is a question of great consequence for the future development of

physics. For myself, I believe it must be answered in the

negative, and upon the following grounds : mechanics and electro-

dynamics cannot be permanently sharply differentiated from

each other. Does the process of light emission, for example,

belong to mechanics or to electrodynamics? To which domain

shall be assigned the laws of motion of electrons? At first

glance, one may perhaps say: to electrodynamics, since with

the electrons ponderable matter does not play any role. But

let one direct his attention to the motion of free electrons in

metals. There he will find, in the study of the classical re-

searches of H. A. Lorentz, for example, that the laws obeyed by

the electrons belong rather to the kinetic theory of gases than

to electrodynamics. In general, it appears to me that the

original differences between processes in the ether and processes
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in material bodies are to be considered as disappearing. Electro-

dynamics and mechanics are not so remarkably far apart, as is

considered to be the case by many people, who already speak of a

conflict between the mechanical and the electrodynamic views

of the world. Mechanics requires for its foundation essentially

nothing more than the ideas of space, of time, and of that which

is moving, whether one considers this as a substance or a state.

The same ideas are also involved in electrodynamics. A suffi-

ciently generalized conception of mechanics can therefore also

well include electrodynamics, and, in fact, there are many indica-

tions pointing toward the ultimate amalgamation of these two

subjects, the domains of which already overlap in some measure.

If, therefore, the gulf between ether and matter be once bridged,

what is the point of view which in the last analysis will best

serve in the subdivision of the system of physics? The answer

to this question will characterize the whole nature of the further

development of our science. It is, therefore, the most important

among all those which I propose to treat today. But for the

purposes of a closer investigation it is necessary that we go some-

what more deeply into the peculiarities of physical principles.

We shall best begin at that point from which the first step was

made toward the actual realization of the unified system of

physics previously postulated by the philosophers only; at the

principle of conservation of energy. For the idea of energy is

the only one besides those of space and time which is common to

all the various domains of physics. In accordance with what I

have stated above, it will be apparent and quite self evident to

you that the principle of energy, before its general formularization

by Mayer, Joule, and Helmholz, also bore an anthropomorphic

character. The roots of this principle lay already in the recog-

nition of the fact that no one is able to obtain useful work from

nothing; and this recognition had originated essentially in the

experiences which were gathered in attempts at the solution of a

technical problem: the discovery of perpetual motion. To this

extent, perpetual motion has come to have for physics a far

2
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reaching significance, similar to that of alchemy for the chemist,

although it was not the positive, but rather the negative results

of these experiments, through which science was advanced.

Today we speak of the principle of energy quite without reference

to the technical viewpoint or to that of man. We say that the

total amount of energy of an isolated system of bodies is a

quantity whose amount can be neither increased nor diminished

through any kind of process within the system, and we no longer

consider the accuracy with which this law holds as dependent

upon the refinement of the methods, which we at present possess,

of testing experimentally the question of the realization of

perpetual motion. In this, strictly speaking, unprovable general-

ization, impressed upon us with elemental force, lies the eman-

cipation from the anthropomorphic elements mentioned above.

While the principle of energy stands before us as a complete

independent structure, freed from and independent of the acci-

dents appertaining to its historical development, this is by no

means true in equal measure in the case of that principle which

R. Clausius introduced into physics; namely, the second law

of thermodynamics. This law plays a very peculiar role in the

development of physical science, to the extent that one is not

able to assert today that for it a generally recognized, and there-

fore objective formularization, has been found. In our present

consideration it is therefore a matter of particular interest to

examine more closely its significance.

In contrast to the first law of thermodynamics, or the energy

principle, the second law may be characterized as follows. While

the first law permits in all processes of nature neither the creation

nor destruction of energy, but permits of transformations only,

the second law goes still further into the limitation of the pos-

sible processes of nature, in that it permits, not all kinds of trans-

formations, but only certain types, subject to certain con-

ditions. The second law occupies itself, therefore, with the

question of the kind and, in particular, with the direction of any

natural process.
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At this point a mistake has frequently been made, which has

hindered in a very pronounced manner the advance of science

up to tlie present day. In the endeavor to give to the second

law of thermodynamics the most general character possi})le, it

has been proclaimed by followers of W. Ostwald as the second

law of energetics, and the attempt made so to formulate it that

it shall determine quite generally the direction of every process

occurring in nature. Some weeks ago I read in a public academic

address of an esteemed colleague the statement that the imj)ort

of the second law consists in this, that a stone falls downwards,

that water flows not up hill, but down, that electricity flows from

a higher to a lower potential, and so on. This is a mistake which

at present is altogether too prevalent not to warrant mention

here.

The truth is, these statements are false. A stone can just as

well rise in the air as fall downwards; water can likewise flow up-

wards, as, for example, in a spring; electricity can flow very well

from a lower to a higher potential, as in the case of oscillating dis-

charge of a condenser. The statements are obviously quite cor-

rect, if one applies them to a stone originally at rest, to water at

rest, to electricity at rest; but then they follow immediately from

the energy principle, and one does not need to add a special second

law. For, in accordance with the energy principle, the kinetic

energy of the stone or of the water can only originate at the

cost of gravitational energy, i. e., the center of mass must descend.

If, therefore, motion is to take place at all, it is necessary

that the gravitational energy shall decrease. That is, the

center of mass must descend. In like manner, an electric cur-

rent between two condenser plates can originate only at the

cost of electrical energy already present; the electricity must

therefore pass to a lower potential. If, however, motion and

current be already present, then one is not able to say, a priori,

anything in regard to the direction of the change; it can take

place just as well in one direction as the other. Therefore, there

is no new insight into nature to be obtained from this point of

view.
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Upon an equally inadequate basis rests another conception of

the second law, which I shall now mention. In considering the cir-

cumstance that mechanical work may very easily be transformed

into heat, as by friction, while on the other hand heat can only

with difficulty be transformed into w^ork, the attempt has been

made so to characterize the second law, that in nature the trans-

formation of work into heat can take place completely, while

.

that of heat into work, on the other hand, only incompletely and

in such manner that every time a quantity of heat is transformed

into work another corresponding quantity of energy must neces-

sarily undergo at the same time a compensating transforma-

tion, as, e. g., the passage of heat from a higher to a lower

temperature. This assertion is in certain special cases correct,

but does not strike in general at the true import of the matter,

as I shall show by a simple example.

One of the most important laws of thermodynamics is, that

the total energy of an ideal gas depends only upon its tempera-

ture, and not upon its volume. If an ideal gas be allowed to

expand while doing work, and if the cooling of the gas be prevented

through the simultaneous addition of heat from a heat reservoir

at higher temperature, the gas remains unchanged in temperature

and energy content, and one may say that the heat furnished

by the heat reservoir is completely transformed into work without

exchange of energy. Not the least objection can be urged

against this assertion. The law of incomplete transformation

of heat into work is retained only through the adoption of a

different point of view% but which has nothing to do with the

status of the physical facts and only modifies the way of looking

at the matter, and therefore can neither be supported nor con-

tradicted through facts; namely, through the introduction ad hoc

of new particular kinds of energy, in that one divides the energy

of the gas into numerous parts which individually can depend

upon the volume. But it is a priori evident that one can never

derive from so artificial a definition a new physical law, and it is

with such that we have to do when we pass from the first law,

the principle of conservation of energy, to the second law.
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I desire now to introduce such a new physical law: " It is not

possible to construct a periodically functioning motor wliicli in

principle does not involve more than the raising of a load and the

cooling of a heat reservoir." It is to be understood, that in one

cycle of the motor quite arbitrary complicated processes may
take place, but that after the completion of one cycle there shall

remain no other changes in the surroundings than that the heat

reservoir is cooled and that the load is raised a corresponding

distance, which may be calculated from the first law. Such a

motor could of course be used at the same time as a refrigerating

machine also, without any further expenditure of energy and

materials. Such a motor would moreover be the most efficient

in the world, since it would involve no cost to run it; for the

earth, the atmosphere, or the ocean could be utilized as the heat

reservoir. We shall call this, in accordance with the proposal of

W. Ostwald, perpetual motion of the second kind. Whether in

nature such a motion is actually possible cannot be inferred from

the energy principle, and may only be determined by special

experiments.

Just as the impossibility of perpetual motion of the first kind

leads to the principle of the conservation of energy, the quite

independent principle of the impossibility of perpetual motion of

the second kind leads to the second law of thermodynamics,

and, if we assume this impossibility as proven experimentally,

the general law follows immediately: there are processes in

nature which in no possible u-ay can he made completely reversi-

ble. For consider, e. g., a frictional process through which me-

chanical work is transformed into heat with the aid of suitable

apparatus, if it were actually possible to make in some way such

complicated apparatus completely reversible, so that everywhere

in nature exactly the same conditions be reestablished as existed

at the beginning of the frictional process, then the apparatus

considered would be nothing more than the motor described

above, furnishing a perpetual motion of the second kind. This

appears evident immediately, if one clearly perceives what the
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apparatus would accomplish : transformation of heat into work

without any further outstanding change.

We call such a process, which in no wise can be made completely

reversible, an irreversible process, and all other processes re-

versible processes; and thus we strike the kernel of the second

law of thermodynamics when we say that irreversible processes

occur in nature. In accordance with this, the changes in nature

have a unidirectional tendency. With each irreversible process

the world takes a step forward, the traces of which under no

circumstances can be completely obliterated. Besides friction,

examples of irreversible processes are: heat conduction, diffusion,

conduction of electricity in conductors of finite resistance,

emission of light and heat radiation, disintegration of the atom

in radioactive substances, and so on. On the other hand, ex-

amples of reversible processes are: motion of the planets, free

fall in empty space, the undamped motion of a pendulum,

the frictionless flow of liquids, the propagation of light and

sound waves without absorption and refraction, undamped

electrical vibrations, and so on. For all tlies'e processes are

already periodic or may be made completely reversible through

suitable contrivances, so that there remains no outstanding

change in nature; for example, the free fall of a body whereby

the acquired velocity is utilized to raise the body again to its

original height; a light or sound wave which is allowed in a suitable

manner to be totally reflected from a perfect mirror.

What now are the general properties and criteria of irreversible

processes, and what is the general quantitative measure of

irreversibility? This question has been examined and answered

in the most widely different ways, and it is evident here again

how difficult it is to reach a correct formularization of a prob-

lem. Just as originally we came upon the trail of the energy

principle through the technical problem of perpetual motion, so

again a technical problem, namely, that of the steam engine,

led to the differentiation between reversible and irreversible

processes. Long ago Sadi Carnot recognized, although he util-
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ized an incorrect conception of the nature of heat, that irre-

versible processes are less economical than reversible, or that in

an irreversible process a certain opportunity to derive mechan-

ical work from heat is lost. What then could lui\e been

simpler than the thought of making, quite in general, the meas-

ure of the irreversibility of a process the quantity of mechanical

work which is unavoidably lost in the process. For a reversible

process then, the unavoidably lost work is naturally to be set

equal to zero. This view, in accordance with which the import

of the second law consists in a dissipation of useful energy, has

in fact, in certain special cases, e. g., in isothermal processes,

proved itself useful. It has persisted, therefore, in certain of

its aspects up to thepresent day; but for the general case, how-

ever, it has shown itself as fruitless and, in fact, misleading. The
reason for this lies in the fact that the question concerning the

lost work in a given irreversible process is by no means to be

answered in a determinate manner, so long as nothing further is

specified with regard to the source of energy from which the work

considered shall be obtained.

An example will make this clear. Heat conduction is an

irreversible process, or as Clausius expresses it: Heat cannot

without compensation pass from a colder to a warmer body.

What now is the work which in accordance with definition is

lost when the quantity of heat Q passes through direct conduction

from a warmer body at the temperature Ti to a colder body, at

the temperature 7^2? In order to answer this question, we make

use of the heat transfer involved in carrying out a reversible

Carnot cyclical process between the two bodies employed as

heat reservoirs. In this process a certain amount of work

would be obtained, and it is just the amount sought, since it is

that which would be lost in the direct passage by conduction;

but this has no definite value so long as we do not know whence

the work originates, whether, e. g., in the warmer body or in the

colder body, or from somewhere else. Let one reflect that the

heat given up by the warmer body in the reversible process is cer-
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tainly not equal to the heat absorbed by the colder body, because

a certain amount of heat is transformed into work, and that we

can identify, with exactly the same right, the quantity of heat Q
transferred by the direct process of conduction with that which in

the cyclical process is given up by the warmer body, or with that

absorbed by the colder body. As one does the former or the latter,

he accordingly obtains for the quantity of lost work in the process

of conduction:

We see, therefore, that the proposed method of expressing mathe-

matically the irreversibility of a process does not in general effect

its object, and at the same time we recognize the peculiar reason

which prevents its doing so. The statement of the question is

too anthropomorphic. It is primarily too much concerned with

the needs of mankind, in that it refers directly to the acquirement

of useful work. If one require from nature a determinate

answer, he must take a more general point of view, more disin-

terested, less economic. We shall now seek to do this.

Let us consider any typical process occurring in nature. This

will carry all bodies concerned in it from a determinate initial

state, which I designate as state A, into a determinate final

state B. The process is either reversible or irreversible. A
third possibility is excluded. But whether it is reversible or

irreversible depends solely upon the nature of the two states A
and B, and not at all upon the way in which the process has been

carried out; for we are only concerned with the answer to the

question as to whether or not, when the state B is once reached, a

complete return to A in any conceivable manner may be ac-

complished. If now, the complete return from 5 to ^ is not

possible, and the process therefore irreversible, it is obvious that

the state B may be distinguished in nature through a certain

property from state A. Several years ago I ventured to express

this as follows: that nature possesses a greater "preference" for

state B than for state A. In accordance with this mode of
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expression, all those processes of nature are impossible for whose

final state nature possesses a smaller preference than for the

original state. Reversible processes constitute a limiting case;

for such, nature possesses an equal preference for the initial and

for the final state, and the passage between them takes place as

well in one direction as the other.

We have now to seek a physical quantity whose magnitude

shall serve as a general measure of the preference of nature for

a given state. This quantity must be one which is directly

determined by the state of the system considered, without

reference to the previous history of the system, as is the case with

the energy, with the volume, and with other properties of the

system. It should possess the peculiarity of increasing in all

irreversible processes and of remaining unchanged in all revers-

ible processes, and the amount of change w^hich it experiences

in a process would furnish a general measure for the irre-

versibility of the process.

R. Clausius actually found this quantity and called it

"entropy." Every system of bodies possesses in each of its

states a definite entropy, and this entropy expresses the pref-

erence of nature for the state in question. It can, in all the

processes which take place within the system, only increase and

never decrease. If it be desired to consider a process in which

external actions upon the system are present, it is necessary

to consider those bodies in which these actions originate as

constituting part of the system; then the law as stated in the

above form is valid. In accordance with it, the entropy of a

system of bodies is simply equal to the sum of the entropies of

the individual bodies, and the entropy of a single body is, in

accordance with Clausius, found by the aid of a certain re-

versible process. Conduction of heat to a body increases its

entropy, and, in fact, by an amount equal to the ratio of the

quantity of heat given the body to its temperature. Simple

compression, on the other hand, does not change the entropy.

Returning to the example mentioned above, in which the
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quantity of heat Q is conducted from a warmer body at the

temperature Ti to a colder body at the temperature 7^2, in

accordance with what precedes, the entropy of the warmer body

decreases in this process, while, on the other hand, that of the

colder increases, and the sum of both changes, that is, the change

of the total entropy of both bodies, is:

~
Ti + 7^2

^

This positive quantity furnishes, in a manner free from all

arbitrary assumptions, the measure of the irreversibility of the

process of heat conduction. Such examples may be cited

indefinitely. Every chemical process furnishes an increase of

entropy.

We shall here consider only the most general case treated by

Clausius : an arbitrary reversible or irreversible cychcal process,

carried out with any physico-chemical arrangement, utilizing

an arbitrary number of heat reservoirs. Since the arrangement

at the conclusion of the cyclical process is the same as that at

the beginning, the final state of the process is to be distinguished

from the initial state solely through the different heat content

of the heat reservoirs, and in that a certain amount of mechanical

work has been furnished or consumed. Let Q be the heat given

up in the course of the process by a heat reservoir at the tem-

perature T, and let A be the total work yielded (consisting,

e. g., in the raising of weights) ; then, in accordance with the first

law of thermodynamics:
2^ = A.

In accordance with the second law, the sum of the changes in

entropy of all the heat reservoirs is positive, or zero. It follows,

therefore, since the entropy of a reservoir is decreased by the

amount Q/T through the loss of heat Q that:

This is the well-known inequality of Clausius.
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In an isothermal cyclical process, T is the same for all reservoirs.

Therefore

:

2Q ^ 0, hence: A ^ 0.

That is: in an isothermal cyclical process, heat is produced and

work is consumed. In the limiting case, a reversible isothermal

cyclical process, the sign of equality holds, and therefore the

work consumed is zero, and also the heat produced. This law

plays a leading role in the application of thermodynamics to

physical chemistry.

The second law of thermodynamics including all of its con-

sequences has thus led to the principle of increase of entropy.

You will now readily understand, having regard to the questions

mentioned above, why I express it as my opinion that in the

theoretical physics of the future the first and most important

differentiation of all physical processes will be into reversible

and irreversible processes.

In fact, all reversible processes, whether they take place in

material bodies, in the ether, or in both together, show a much

greater similarity among themselves than to any irreversible

process. In tlie differential equations of reversible processes

the time differential enters only as an even power, corres-

ponding to the circumstance that the sign of time can be

reversed. This holds equally well for vibrations of the pen-

dulum, electrical vibrations, acoustic and optical waves, and

for motions of mass points or of electrons, if we only ex-

clude every kind of damping. But to such processes also

belong those infinitely slow processes of thermodynamics which

consist of states of equilibrium in which the time in general

plays no role, or, as one may also say, occurs with the zero power,

which is to be reckoned as an even power. As Ilelmholtz has

pointed out, all these reversible processes have the common
property that they may be completely represented by the principle

of least action, which gives a definite answer to all questions con-

cerning any such measurable process, and, to this extent, the-

ory of reversible processes may be regarded as completely estab-

lished. Reversible processes have, however, the disadvantage that
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singly and collectively they are only ideal: in actual nature there

is no such thing as a reversible process. Every natural process

involves in greater or less degree friction or conduction of heat.

But in the domain of irreversible processes the principle of least

action is no longer sufficient; for the principle of increase of

entropy brings into the system of physics a wholly new element,

foreign to the action principle, and which demands special

mathematical treatment. The unidirectional course of a process

in the attainment of a fixed final state is related to it.

I hope the foregoi ig considerations have suflSced to make clear

to vou that the distinction between reversible and irreversible

processes is much broader than that between mechanical and

electrical processes and that, therefore, this difference, with better

right than any other, may be taken advantage of in classifying

all physical processes, and that it may eventually play in the

theoretical phj'^sics of the future the principal role.

However, the classification mentioned is in need of quite an

essential improvement, for it cannot be denied that in the form

set forth, the system of physics is still suffering from a strong

dose of anthropomorphism. In the definition of irreversibility,

as well as in that of entropy, reference is made to the possibility

of carrying out in nature certain changes, and this means, funda-

mentally, nothing more than that the division of physical proc-

esses is made dependent upon the manipulative skill of man in

the art of experimentation, which certainly does not always

remain at a fixed stage, but is continually being more and more

perfected. If, therefore, the distinction between reversible and

irreversible processes is actually to have a lasting significance

for all times, it must be essentially broadened and made inde-

pendent of any reference to the capacities of mankind. How this

may happen, I desire to state one week from tomorrow. The

lecture of tomorrow will be devoted to the problem of bringing

before you some of the most important of the great number of

practical consequences following from the entropy principle.
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Thermodynamic States of Equilibrium in Dilute

Solutions.

In the lecture of yesterday I sought to make clear the fact

that the essential, and therefore the final division of all processies

occurring in nature, is into reversible and irreversible processes,

and the characteristic difference between these two kinds of

processes, as I have further separated them, is that in irreversible

processes the entropy increases, w^hile in all reversible processes

it remains constant. Today I am constrained to speak of some

of the consequences of this law which will illustrate its rich fruit-

fulness. They have to do with the question of the laws of ther-

modynamic equilibrium. Since in nature the entropy can only

increase, it follows that the state of a physical configuration

which is completely isolated, and in which the entropy of

the system possesses an absolute maximum, is necessarily a

state of stable equilibrium, since for it no further change is

possible. How deeply this law underlies all physical and chem-

ical relations has been shown by no one better and more com-

pletely than by John Willard Gibbs, whose name, not only in

America, but in the whole world will be counted among those of

the most famous theoretical physicists of all times ; to whom, to

my sorrow, it is no longer possible for me to tender personally

my respects. It would be gratuitous for me, here in the land

of his activity, to expatiate fully on the progress of his ideas,

but you will perhaps permit me to speak in the lecture of to-

day of some of the important applications in which thermo-

dynamic research, based on Gibbs works, can be advanced be-

yond his results.

These applications refer to the theory of dilute solutions, and

21
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we shall occupy ourselves today with these, while I show you

by a definite example what fruitfulness is inherent in thermo-

dynamic theory. I shall first characterize the problem quite

generally. It has to do with the state of equilibrium of a material

system of any number of arbitrary constituents in an arbi-

trary number of phases, at a given temperature T and given

pressure p. If the system is completely isolated, and there-

fore guarded against all external thermal and mechanical

actions, then in any ensuing change the entropy of the system will

increase:

dS> 0.

But if, as we assume, the system stands in such relation to

its surroundings that in any change which the system under-

goes the temperature T and the pressure p are maintained

constant, as, for instance, through its introduction into a calorim-

eter of great heat capacity and through loading with a piston

of fixed weight, the inequality would suffer a change thereby.

We must then take account of the fact that the surrounding

bodies also, e. g., the calorimetric liquid, will be involved in the

change. If we denote the entropy of the surrounding bodies by

So, then the following more general equation holds:

dS + dSQ > 0.

In this equation

doQ = -jp

,

if Q denote the heat which is given up in the change by the

surroundings to the system. On the other hand, if U de-

note the energy, V the volume of the system, then, in accord-

ance with the first law of thermodynamics,

q= dU-\- pdV.

Consequently, through substitution:
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or, since p and T are constant:

If, therefore, we put

:

S-'-l+^=^, (1)

then
d^ > 0,

and we have the general law, that in every isothermal-isobaric

{T = const., p = const.) change of state of a physical system

the quantity $ increases. The absolutely stable state of

equilibrium of the system is therefore characterized through

the maximum of <l>:

8^ = 0. (2)

If the system consist of numerous phases, then, because <l>, in

accordance with (1), is linear and homogeneous in S, U and T\

the quantity $ referring to the whole system is the sum of the

quantities $ referring to the individual phases. If the expression

for $ is known as a function of the independent variables for

each phase of the system, then, from equation (2), all ques-

tions concerning the conditions of stable equilibrium may be

answered. Now, within limits, this is the case for dilute solutions.

By "solution" in thermodynamics is meant each homogeneous

phase, in whatever state of aggregation, which is composed of a

series of different molecular complexes, each of which is rep-

resented by a definite molecular number. If the molecular

number of a given complex is great with reference to all the

remaining complexes, then the solution is called dilute, and the

molecular complex in question is called the solvent; the remain-

ing complexes are called the dissolved substances.

Let us now consider a dilute solution whose state is determined

by the pressure p, the temperature T, and the molecular numbers

no, Til, 712, Ws, • • • , wherein the subscript zero refers to the solvent.

Then the numbers Wi, W2, ria, • • • are all small with respect to 7io,
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and on this account the volume V and the energy U are linear

functions of the molecular numbers:

V = rioVo + tliVi + 712^2 + • • •

,

U = TioUo + niUi + W2M2 + • • •

,

wherein the v's and us depend upon p and T only.

From the general equation of entropy

:

,_, dU + pdV
a« = ji ,

in which the differentials depend only upon changes in p and T,

and not in the molecular numbers, there results therefore:

duo + pdvo
,

dui + pdvi
,db = no—

—J,
h ni

J,
h • • •,

and from this it follows that the expressions multiplied by no, ni

• • • , dependent upon p and T only, are complete differentials.

We may therefore write:

duo + pdvo J dui + pdvi

J,

= aso,
J,

= dsi, •
" {6)

and by integration obtain:

S = UoSo + niSi + n2S2 + • • • + C.

The constant C of integration does not depend upon p and T,

but may depend upon the molecular numbers no, n\, n2, • • •

.

In order to express this dependence generally, it suffices to know

it for a special case, for fixed values of p and T. Now every

solution passes, through appropriate increase of temperature and

decrease of pressure, into the state of a mixture of ideal gases,

and for this case the entropy is fully known, the integration

constant being, in accordance with Gibbs:

C = — Rino log Co + ni log ci + • • •),

wherein R denotes the absolute gas constant and Co, Ci, C2, • • •
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denote the "molecular concentrations":

no wi

7?.0 + Wi + 712 + • • •

' ^

Wo + Wi + W2 + • • •

'

Consequently, quite in general, the entropy of a dilute solution is:

S = no(sQ — R log Co) + ni{si — R log Ci) + • • •,

and, finally, from this it follows by substitution in equation (1)

that

:

$ = Wo(<^o — R log Co) + ni((pi — 7? log ci) + • • •, (4)

if we put for brevity:

Wo + pvo wi + pvi
<Po = So

J,

—
, <pi = si -ji ,

••• (5)

all of which quantities depend only upon p and T.

With the aid of the expression obtained for <l> we are enabled

through equation (2) to answer the question with regard to

thermodynamic equilibrium. We shall first find the general

law of equilibrium and then apply it to a series of particularly

interesting special cases.

Every material system consisting of an arbitrary number of

homogeneous phases may be represented symbolically in the

following way

:

Womo, itimi, • • •

I

no'mo, ni'mi, • • •
\
n^'mo", nx'mi", • • •

\

• • •

.

Here the molecular numbers are denoted by n, the molecular

weights by m, and the individual phases are separated from one

another by vertical lines. We shall now suppose that each

phase represents a dilute solution. This will be the case when

each phase contains only a single molecular complex and there-

fore represents an absolutely pure substance; for then the con-

centrations of all the dissolved substances will be zero.

If now an isobaric-isotliermal change in the system of such

kind is possible that the molecular numbers

8

no, wi, 712, '•-, no', 7ii, Tit, • • •, no", rii", n<2.", • •
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change simultaneously by the amounts

duo, drii, 8?i2, • • , d)io', 8iii, bii-i' , • • , duo", dui", diio", • • -

then, in accordance with equation (2), equilibrium obtains with

respect to the occurrence of this change if, when T and p are held

constant, the function

$ + $' + $"+ • • •

is a maximum, or, in accordance with equation (4)

:

2(^0 — R log Co)dno + (<pi— R log ci)8ni + • • • =0

(the summation S being extended over all phases of the system).

Since we are only concerned in this equation with the ratios of

the 5/i's, we put

5wo : 8ni : • • • : 8no' : 5/?/ . • • • : Suq" : 5/?i" : • • •

wherein we are to understand by the simultaneously changing

j''s, in the variation considered, simple integer positive or negative

numbers, according as the molecular complex under consider-

ation is formed or disappears in the change. Then the con-

dition for equilibrium is:

Hvq log Ci + J^i log Ci + • • • = -^llVQifQ+ Vi<pi + • • • = log i^. (6)

K and the quantities ^o? <Pi, <P2,
• • • depend only upon p and

T, and this dependence is to be found from the equations:

d log Z 1 d<pQ d(pi

dlog K 1 d(po d(pi

~dI^ = R^''df'^'''df'^
'"'

Now, in accordance with (5), for any infinitely small change of p
and T:

duo -}- pdvo + vodp Uo+pvo
d<pQ = dsQ Tj,

1 ^o • dl,
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and consequent!}', from (o)

:

, n')+ -pro jrn i^odp
a<Po = —2^2— "^ 2^-,

and hence:

d(Po _ _ ^ d<PQ _ Wo_+ pvo

dp ~ T' dT~ r~'
Similar equations liold for tlie other (p's, and therefore we get:

d loff K 1'b — -^-rfiUvQVo + VlVl +dp RT

d log K 1

"~^2' ^ ~ J^2^^oUo + V2U2 -t • • • + pivoVo + J'll'l + • • •)

or, more briefly:

dp Rf ' dT Rr' ^^

if AV denote the change in the total volume of the system and

AQ the heat which is communicated to it from outside, during

the isobaric isothermal change considered. We shall now inves-

tigate the import of these relations in a series of important

applications.

I. Electrolytic Dissociation of Water.

The system consists of a single phase:
+

The transformation under consideration

vq : vi : V2 = briQ : hiii : dno

consists in the dissociation of a molecule II2O into a molecule //

and a molecule HO, therefore;

^0 = — 1, vi = 1. ^2 = 1.

Hence, in accordance with (6), for equilibrium:

— log Co + log ci + log C2 = log A',
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or, since Ci = Ci and cq = 1, approximately:

2 log Ci = log K.

The dependence of the concentration Ci upon the temperature

now follows from (7)

:

dlogci AQ
2

ar i^p*

AQ, the quantity of heat which it is necessary to supply for the
+ -

dissociation of a molecule of //2O into the ions // and 110, is,

in accordance with Arrhenius, equal to the heat of ionization in

the neutralization of a strong univalent base and acid in a

dilute aqueous solution, and, therefore, in accordance with the

recent measurements of Wormann,^

AQ = 27,857- 48.5rgr. cal.

Using the number 1.985 for the ratio of the absolute gas constant

R to the mechanical equivalent of heat, it follows that:

a log ci _ 1 / 27,857 _ 48.5 \

ar ~ 2- 1.985 V P T )'

and by integration:

10 3047 3 10

log cx= Y 12.125 log T + const.

This dependence of the degree of dissociation upon the temper-

ature agrees very well with the measurements of the electric

conductivity of water at different temperatures by Kohlrausch

and Heydweiller, Noyes, and Lunden.

II. Dissociation of a Dissolved Electrolyte.

Let the system consists of an aqueous solution of acetic acid:

+

The change under consideration consists in the dissociation of a

1 Ad Heydweiller, Ann. d. Phys., 28, 506, 1909.
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molecule JliCzO-i into its two ions, tlierefore

VO = 0, Pi = — 1, P2 =1, V3 = 1.

Hence, for the state of eciuilibrium, in accordance with (G):

— log Ci + log C2 + log Cz = log K,

or, since c^ = c^:

Now the sum Ci + C2 = c is to be regarded as known, since the

total number of the undissociated and dissociated acid molecules

is independent of the degree of dissociation. Therefore ci and

ci may be calculated from K and c. An experimental test of the

equation of equilibrium is possible on account of the connection

between the degree of dissociation and electrical conductivity of

the solution. In accordance with the electrolytic dissociation

theory of Arrhenius, the ratio of the molecular conductivity X of

the solution in any dilution to the molecular conductivity Xa

of the solution in infinite dilution is:

X C2 C2

X«, C]_ -\- c-i c
'

since electric conduction is accounted for by the dissociated mole-

cules only. It follows then, with the aid of the last equation, that

:

A • Xoo = const.
Xoo — X

With unlimited decreasing c, X increases to Xa,. This "law of

dilution " for binary electrolytes, first enunciated by Ostwald, has

been confirmed in numerous cases by experiment, as in the case

of acetic acid.

Also, the dependence of the degree of dissociation upon the

temperature is indicated here in quite an analogous manner to

that in the example considered above, of the dissociation of water.
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III. Vaporization or Solidification of a Pure Liquid.

In equilibrium the system consists of two phases, one liquid,

and one gaseous or solid:

no77io
I

no'mo'.

Each phase contains only a single molecular complex (the

solvent), but the molecules in both phases do not need to be the

same. Now, if a liquid molecule evaporates or solidifies, then

in our notation

z^o = — 1, ^0 = ": ,, Co =1, Co = 1,
Too

and consequently the condition for equilibrium, in accordance

with (6), is:

= log K. (S)

Since K depends only upon p and T, this equation therefore

expresses a definite relation between p and T: the law of de-

pendence of the pressure of vaporization (or melting pressure)

upon the temperature, or vice versa. The import of this law is

obtained through the consideration of the dependence of the

quantity K upon p and T. If we form the complete differential

of the last equation, there results

:

dlogK d\ogK
= ^~^^dp+-j^dT,

or, in accordance with (7)

:

AV AQ
= Y^P~^ J^

^^•

If t'o and Vq' denote the molecular volumes of the two phases, then

:

Ar = —r — ^0,
mo

consequently:

An r/^^'o^o' \^P
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or, referred to unit mass:

= 7Y -- - — ^
\ viQ mo J

the well-known formula of Carnot and Clapeyron.

IV. The Vaporization or Solidification, of a Solutum of Non-Volatile

Substances.

Most aqueous salt solutions afford examples. The symbol of

the system in this case is, since the second phase (gaseous or solid)

contains only a single molecular complex:

WqWo, WiWi, W2//12, • • •

I

no'mo'.

The change is represented by:

VO = — I, Vi ^ 0, V2 = i), '
•

' vo = —-,,

and hence the condition of equilibrium, in accordance with (6), is:

— log Co = log A',

or, since to small quantities of higher order:

no
Co

Wo + Ml + W2 +
ni + W2 +

no

1 -
Wl + 112 + • •

•

Wo

= log A'. (9)

A comparison with formula (S), found in example III, shows

that through the solution of a foreign substance there is involved

in the total concentration a small proportionate departure from

the law of vaporization or solidification which holds for the pure

solvent. One can express this, either by saying: at a fixed pres-

sure p, the boiling point or the freezing point T of the solution

is different than that (To) for the pure solvent, or: at a fixed

pressure T the vapor pressure or solidification pressure jJ of the

solution is different from that (po) of the pure solvent. Let us

calculate the departure in both cases.
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1. If 7'o be the boiling (or freezing temperature) of the pure

solvent at the pressure p, then, in accordance with (8)

:

{\ogK)r^ro= 0,

and by subtraction of (9) there results:

^1+^2+ • •
•

logii:- {log K)T^ro =
Wo

Now, since T is little different from To, we may write in place of

this equation, w^ith the aid of (7)

:

dT ^ "' RT^^ "'
no

and from this it follows that:

r-ro = '" + "'+---
.gg. (10)

no A^

This is the law for the raising of the boiling point or for the

lowering of the freezing point, first derived by van't Hoff : in the

case of freezing AQ (the heat taken from the surroundings during

the freezing of a liquid molecule) is negative. Since no and AQ
occur only as a product, it is not possible to infer anything from

this formula with regard to the molecular number of the liquid

solvent.

2. If po be the vapor pressure of the pure solvent at the

temperature T, then, in accordance with (8)

:

(log K),^,, = 0,

and by subtraction of (9) there results:

Wl + ?i2 + • •
•

log K - (log K)p=p, =
no

Now, since p and po are nearly equal, with the aid of (7) we may
write:

dlogK^
^

AV . . ni-\-n2+"'
(P - Po) = - jJTf, {p - Po) =dp ^'^

^"^ RT^'^ """ no
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and from this it follows, if AV be placed equal to the volume of

the gaseous molecule produced in the vaporization of a liquid

molecule:

AV = —-, —

,

Wo 2^

po— p mo' wi + W2 + • • •

p tuq no

This is the law of relative depression of the vapor pressure,

first derived by van't Hoff. Since no and mo occur only as a

product, it is not possible to infer from this formula anything

with regard to the molecular weight of the liquid solvent. Fre-

quently the factor mo'/mo is left out in this formula; but this is

not allowable when mo and mo' are unequal (as, e. g., in the

case of water).

V. Vaporization of a Solution of Volatile Substances.

(E. g., a Sufficietitly Dilute Solution of Propyl Alcohol in Water.)

The system, consisting of two phases, is represented by the

following symbol

:

nonio, nijrii, n^m-i, • • •
| no'mo, ni'mi, Ui'mi', • • •,

wherein, as above, the figure refers to the solvent and the

figures 1, 2, 3 • • • refer to the various molecular complexes of

the dissolved substances. By the addition of primes in the case

of the molecular weights {mo, m/, m^ • • •) the possibility is

left open that the various molecular complexes in the vapor

may possess a different molecular weight than in the liquid.

Since the system here considered may experience various sorts

of changes, there are also various conditions of equilibrium to

fulfill, each of which relates to a definite sort of transformation.

Let us consider first that change which consists in the vaporiza-

tion of the solvent. In accordance with our scheme of notation,

the following conditions hold:

Vq= — \, Vi= 0, V2= Q, • • • Vo = -,, Vl =0, I'o' = 0, • • •,

nio
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and, therefore, the condition of equilibrium (G) becomes:

- log Co + -~ log Co' = log K,

or, if one substitutes:

7ii + W2 + • • •
- , ^ ni -\- n^' + •

Co = 1 and Co = 1
Uq

"

Uq

nx + W2 + • • • mo ni + n^ + = loff K.
no Wo' no'

'^

If we treat this equation upon equation (9) as a model, there

results an equation similar to (10):

^ / 111 + n-i + • • • _ nV + 71'/ + • • • \ R
\ Homo no'mo )

rrr o
J o-mo

Here AQ is the heat effect in the vaporization of one molecule

of the solvent and, therefore, AQ/mo is the heat effect in the

vaporization of a unit mass of the solvent.

We remark, once more, that the solvent always occurs in the

formula through the mass only, and not through the molecular

number or the molecular weight, while, on the other hand, in the

case of the dissolved substances, the molecular state is character-

istic on account of their influence upon vaporization. P^inally, the

formula contains a generalization of the law of van't Hoff, stated

above, for the raising of the boiling point, in that here in place

of the number of dissolved molecules in the liquid, the difference

between the number of dissolved molecules in unit mass of the

liquid and in unit mass of the vapor appears. According as the

unit mass of liquid or the unit mass of vapor contains more

dissolved molecules, there results for the solution a raising or

lowering of the boiling point; in the limiting case, when both

quantities are equal, and the mixture therefore boils without

changing, the change in boiling point becomes equal to zero.

Of course, there are corresponding laws holding for the change

in the vapor pressure.
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Let US consider now a change which consists in the vaporization

of a dissolved molecule. For this case we have in our notation

j/Q = 0, I'l = — 1, 1^2 = • • •, I'o' = 0, ^'i' = —-,, v-/ = 0, • • •

and, in accordance with (G), for the condition of equilibrium:

7)1

1

- log ci + -;^log ci' = log K
or:

Cl
= K.

This equation expresses the Nernst law of distribution. If

the dissolved substance possesses in both phases the same

molecular weight (?wi = w/), then, in a state of equilibrium a

fixed ratio of the concentrations c\ and c/ in the liquid and in the

vapor exists, which depends only upon the pressure and tempera-

ture. But, if the dissolved substance polymerises somewhat in

the liquid, then the relation demanded in the last equation ap-

pears in place of the simple ratio.

VI. The Dissolved Substance only Passes over into the Second

Phase.

This case is in a certain sense a special case of the one preceding.

To it belongs that of the solubility of a slightly soluble salt,

first investigated by van't Hoff, e. g., succinic acid in water. The

symbol of this system is:

W0//2O, nJhCiO,
I

Uo'IhCiOi,

in which we disregard the small dissociation of the acid solution.

The concentrations of the individual molecular complexes are:

Wo rii , no' ^

Co =
i

, ci = 1

J Co = —}= 1-
no + ni no + wi Hq'

For the precipitation of solid succinic acid we have:

Po = 0, f'l = — 1, vo' = 1,
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and, therefore, from the condition of equilibrium (6)

:

— log ci = log K,

hence, from (7)

:

AQ= - Rr
dT

By means of this equation van't Hoff calculated the heat of

solution AQ from the solubility of succinic acid at 0° and at 8.5°

C. The corresponding numbers were 2.88 and 4.22 in an arbi-

trary unit. Approximately, then:

a logo, bg 4.22 - log 2.88

dT ~ 8.5
" ^'^^^^^'

from which for T = 273:

AQ = - 1.98 • 2732 • 0.04494 = - 6,600 cal.,

that is, in the precipitation of a molecule of succinic acid, 6,600

cal. are given out to the surroundings. Berthelot found, how-

ever, through direct measurement, 6,700 calories for the heat

of solution.

The absorption of a gas also comes under this head, e. g.

carbonic acid, in a liquid of relatively unnoticeable smaller

vapor pressure, e. g., water at not too high a temperature. The

symbol of the system is then

noH^O, niCOi
\
iioCOi.

The vaporization of a molecule CO2 corresponds to the values

I'D = 0, vi = — 1, Vo' = 1.

The condition of equilibrium is therefore again:

— log ci = log K,

i. e., at a fixed temperature and a fixed pressure the concentration

ci of the gas in the solution is constant. The change of the concen-
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tration with 2> and T is obtained through substitution in equation

(7). It follows from this that:

^logci AT^ d\ogCi_ AQ

AF is the change in volume of the system which occurs in the

isobaric-isothermal vaporization of a molecule of CO2, AQ the

quantity of heat absorbed in the process from outside. Now,

since AF represents approximately the volume of a molecule of

gaseous carbonic acid, we may put approximately:

RT

and the equation gives

:

AF =
V

'

b log Ci 1

which integrated, gives:

log Ci = log p + const., Ci = C p,

i. e., the concentration of the dissolved gas is proportional to the

pressure of the free gas above the solution (law of Henry and

Bunsen) . The factor of proportionality C, which furnishes a meas-

ure of the solubility of the gas, depends upon the heat effect in

quite the same manner as in the example previously considered.

A number of no less important relations are easily derived as

by-products of those found above, e. g., the Nernst laws con-

cerning the influence of solubility, the Arrhenius theory of iso-

hydric solutions, etc. All such may be obtained through the

application of the general condition of equilibrium (6). In

conclusion, there is one other case that I desire to treat here.

In the historical development of the theory this has played a

particularly important role.

VII. Osmotic Pressure.

We consider now a dilute solution separated by a membrane

(permeable with regard to the solvent but impermeable as

regards the dissolved substance) from the pure solvent (in the
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same state of aggregation), and inquire as to the condition of

equilibrium. The symbol of the system considered we may again

take as

noWo, niMi, W2m2, • • •
|
no'viQ.

The condition of equilibrium is also here again expressed by
equation (G), valid for a change of state in which the temperature

and the pressure in each phase is maintained constant. The
only difference with respect to the cases treated earlier is this,

that here, in the presence of a separating membrane between

two phases, the pressure jp in the first phase may be different from

the pressure y' in the second, phase, whereby by "pressure," as

always, is to be understood the ordinary hydrostatic or mano-

metric pressure.

The proof of the applicability of equation (6) is found in the

same way as this equation was derived above, proceeding from the

principle of increase of entropy. One has but to remember that,

in the somewhat more general case here considered, the external

work in a given change is represented by the sum ydV+ p'dV

,

where V and V denote the volumes of the two individual phases,

while before V denoted the total volume of all phases. Accord-

ingly, we use, instead of (7), to express the dependence of the

constant K in (6) upon the pressure

:

(11)
aiogZ _ _ AF a log K _ _ af;

dy ~ RT' ' dp' ~ ~ RT'

We have here to do with the following change:

^0 = — 1, ^1=0, J'2 = 0, • • •, Vq = 1,

whereby is expressed, that a molecule of the solvent passes out

of the solution through the membrane into the pure solvent.

Hence, in accordance with (6)

:

— log Co = log K,
or, since

ni + ?i2 + • • • ni -\- 712 -\- • • . ^.
Co = 1

, = log K.
no no

'»
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Here K de])oii(ls only upon T, y and y'. If a pure solvent were

present upon both sides of the membrane, we should have

Co = 1, and p =
X>'> consequently:

(\ogK)j,^p, = 0,

and by subtraction of the last two equations:

?^l + 112+ • • •

, .. ,, „, d log K
^^

= log A - (log A)p=p, =
^^

(p - p')

jyid in accordance with (11):

wi + W2 + • • •

, ,^ AF
=-(p-v)-jif

Here AF denotes the change in volume of the solution due to the

loss of a molecule of the solvent (^o = — 1). Approximately

then:
- AF • Wo = F,

the volume of the whole solution, and

ni + W2 + • • •
. ,^ F

n, =(''-2')-5r-

If we call the difference p — p'y the osmotic pressure of the

solution, this equation contains the well known law of osmotic

pressure, due to van't Hoff.

The equations here derived, which easily permit of multiplica-

tion and generalization, have, of course, for the most part not been

derived in the ways described above, but have been derived,

either directly from experiment, or theoretically from the con-

sideration of special reversible isothermal cycles to which the

thermodynamic law was applied, that in such a cyclic process

not only the algebraic sum of the work produced and the heat

produced, but that also each of these two quantities separately, is

equal to zero (first lecture, p. 19). The employment of a cyclic

process has the advantage over the procedure here proposed,
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that in it the connection between the directly measurable quan-

tities and the requirements of the laws of thermodynamics

succinctly appears in each case; but for each individual case a

satisfactory cyclic process must be imagined, and one has not

always the certain assurance that the thermodynamic realization

of the cyclic process also actually supplies all the conditions

of equilibrium. Furthermore, in the process of calculation

certain terms of considerable weight frequently appear as

empty ballast, since they disappear at the end in the sum-

mation over the individual phases of the process. ,,

On the other hand, the significance of the process here em-

ployed consists therein, that the necessary and sufficient condi-

tions of equilibrium for each individually considered case appear

collectively in the single equation (6), and that they are derived

collectively from it in a direct manner through an unambiguous

procedure. The more complicated the systems considered are,

the more apparent becomes the advantage of this method, and

there is no doubt in my mind that in chemical circles it will be

more and more employed, especially, since in general it is now

the custom to deal directly with the energies, and not with cyclic

processes, in the calculation of heat effects in chemical changes.
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The Atomic Theory oe Matter.

The problem with which we shall be occupied in the present

lecture is that of a closer investigation of the atomic theory of

matter. It is, however, not my intention to introduce this

theory with nothing further, and to set it up as something apart

and disconnected with other physical theories, but I intend above

all to bring out the peculiar significance of the atomic theory as

related to the present general system of theoretical physics; for

in this way only will it be possible to regard the whole system

as one containing within itself the essential compact unity, and

thereby to realize the principal object of these lectures.

Consequently it is self evident that we must rely on that sort

of treatment which we have recognized in last week's lecture as

fundamental. That is, the division of all physical processes into

reversible and irreversible processes. Furthermore, we shall be

convinced that the accomplishment of this division is only pos-

sible through the atomic theory of matter, or, in other words,

that irreversibility leads of necessity to atomistics.

I have already referred at the close of the first lecture to the

fact that in pure thermodynamics, which knows nothing of an

atomic structure and which regards all substances as absolutely

continuous, the difference between reversible and irreversible

processes can only be defined in one way, which a priori carries

a provisional character and does not withstand penetrating anal-

ysis. This appears immediately evident when one reflects that

the purely thermodynamic definition of irreversibility which

proceeds from the impossibility of the realization of certain

changes in nature, as, e. g., the transformation of heat into

work without compensation, has at the outset assumed a defi-

nite limit to man's mental capacity, while, however, such a
41
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limit is not indicated in reality. On the contrary: mankind is

making every endeavor to press beyond the present boundaries

of its capacity, and we hope that later on many things will be

attained which, perhaps, many regard at present as impossible

of accomplishment. Can it not happen then that a process,

which up to the present has been regarded as irreversible, may

be proved, through a new discovery or invention, to be reversible?

In this case the whole structure of the second law would undeni-

ably collapse, for the irreversibility of a single process conditions

that of all the others.

It is evident then that the only means to assure to the second

law real meaning consists in this, that the idea of irreversibility

be made independent of any relationship to man and especially of

all technical relations.

Now the idea of irreversibility harks back to the idea of entropy;

for a process is irreversible when it is connected with an increase

of entropy. The problem is hereby referred back to a proper

improvement of the definition of entropy. In accordance with

the original definition of Clausius, the entropy is measured by

means of a certain reversible process, and the weakness of this

definition rests upon the fact that many such reversible processes,

strictly speaking all, are not capable of being carried out in

practice. With some reason it may be objected that we have

here to do, not with an actual process and an actual physicist,

but only with ideal processes, so-called thought experiments, and

with an ideal physicist who operates with all the experimental

methods with absolute accuracy. But at this point the difficulty

is encountered : How far do the physicist's ideal measurements

of this sort suffice? It may be understood, by passing to the

limit, that a gas is compressed by a pressure which is equal to

the pressure of the gas, and is heated by a heat reservoir which

possesses the same temperature as the gas, but, for example,

that a saturated vapor shall be transformed through isothermal

compression in a reversible manner to a liquid without at any

time a part of the vapor being condensed, as in certain ther-
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modynamic considerations is supposed, must certainly appear

doubtful. Still more striking, howe\'er, is the liberty as regards

thought experiments, which in physical chemistry is granted the

theorist. With his serai-permeable membranes, which in reality

are only realizable under certain special conditions and then

only with a certain approximation, he separates in a reversible

manner, not only all possible varieties of molecules, whether or

not they are in stable or unsta})le conditions, but he also sepa-

rates the oppositely charged ions from one another and from the

undissociated molecules, and he is disturbed, neither by the

enormous electrostatic forces which resist such a separation, nor

by the circumstance that in reality, from the beginning of the

separation, the molecules become in part dissociated while the

ions in part again combine. But such ideal processes are nec-

essary throughout in order to make possible the comparison of

the entropy of the undissociated molecules with the entropy of

the dissociated molecules; for the law of thermodynamic equi-

librium does not permit in general of derivation in any other way,

in case one wishes to retain pure thermodynamics as a basis. It

must be considered remarkable that all these ingenious thought

processes have so well found confirmation of their results in

experience, as is shown by the examples considered by us in the

last lecture.

If now, on the other hand, one reflects that in all these results

every reference to the possibility of actually carrying out each

ideal process has disappeared—there are certainly left relations

between directly measurable quantities only, such as tempera-

ture, heat effect, concentration, etc.—the presumption forces

itself upon one that perhaps the introduction as above of such

ideal processes is at bottom a round-about method, and that

the peculiar import of the principle of increase of entropy with

all its consequences can be evolved from the original idea of

irreversibility or, just as well, from the impossibilit}' of perpetual

motion of the second kind, just as the principle of conservation

of energy has been evolved from the law of impossibility of

perpetual motion of the first kind.
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This step : to have completed the emancipation of the entropy

idea from the experimental art of man and the elevation of the

second law thereby to a real principle, was the scientific life's

work of Ludwig Boltzmann. Briefly stated, it consisted in

general of referring back the idea of entropy to the idea of

probability. Thereby is also explained, at the same time, the

significance of the above (p. 17) auxiliary term used by me;

"preference" of nature for a definite state. Nature prefers the

more probable states to the less probable, because in nature

processes take place in the direction of greater probability. Heat

goes from a body at higher temperature to a body at lower

temperature because the state of equal temperature distribution

is more probable than a state of unequal temperature distribution.

Through this conception the second law of thermodynamics

is removed at one stroke from its isolated position, the mystery

concerning the preference of nature vanishes, and the entropy

principle reduces to a well understood law of the calculus of

probability.

The enormous fruitfulness of so " objective " a definition of

entropy for all domains of physics I shall seek to demonstrate

in the following lectures. But today we have principally to do

with the proof of its admissibility; for on closer consideration we
shall immediately perceive that the new conception of entropy

at once introduces a great number of questions, new requirements

and difficult problems. The first requirement is the introduction

of the atomic hypothesis into the sj'stem of physics. For, if one

wishes to speak of the probability of a physical state, i. e., if he

wishes to introduce the probability for a given state as a definite

quantity into the calculation, this can only be brought about, as

in cases of all probability calculations, by referring the state back

to a variety of possibilities; i. e., by considering a finite number
of a priori equally likely configurations (complexions) through

each of which the state considered may be realized. The greater

the number of complexions, the greater is the probability of the

state. Thus, e. g., the probability of throwing a total of four
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with two ordinary six-sided dice is found throu^di counting the

complexions by which the throw with a total of four may be

reaUzed. Of these there are three complexions:

with the first die, 1, with the second die, 3,

with the first die, 2, with the second die, 2,

with the first die, 3, with the second die, 1.

On the other hand, the throw of two is only realized through

a single complexion. Therefore, the probability of throwing a

total of four is three times as great as the probability of throwing

a total of two.

Now, in connection with the physical state under consideration,

in order to be able to differentiate completely from one another

the complexions realizing it, and to associate it with a definite

reckonable number, there is obviously no other means than to

regard it as made up of numerous discrete homogeneous elements

—for in perfectly continuous systems there exist no reckonable

elements—and hereby the atomistic view is made a fundamental

requirement. We have, therefore, to regard all bodies in nature,

in so far as they possess an entropy, as constituted of atoms, and

we therefore arrive in physics at the same conception of matter as

that which obtained in chemistry for so long previously.

But we can immediately go a step further yet. The conclu-

sions reached hold, not only for thermodynamics of material

bodies, but also possess complete validity for the processes of

heat radiation, which are thus referred back to the second law

of thermodynamics. That radiant heat also possesses an entropy

follows from the fact that a body which emits radiation into a sur-

rounding diathermanous medium experiences a loss of heat and,

therefore, a decrease of entropy. Since the total entropy of

a physical system can only increase, it follows that one part

of the entropy of the whole system, consisting of the body and the

diathermanous medium, must be contained in the radiated heat.

If the entropy of the radiant heat is to be referred back to the

notion of probability, we are forced, in a similar way as above, to
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the conclusion that for radiant heat the atomic conception

possesses a definite meaning. But, since radiant heat is not

directly connected with matter, it follows that this atomistic con-

ception relates, not to matter, but only to energy, and hence,

that in heat radiation certain energy elements play an essential

role. Even though this conclusion appears so singular and even

though in man}' circles today vigorous objection is strongly urged

against it, in the long run physical research will not be able

to withhold its sanction from it, and the less, since it is confirmed

by experience in quite a satisfactory manner. We shall return

to this point in the lectures on heat radiation. I desire here

only to mention that the novelty involved by the introduction

of atomistic conceptions into the theory of heat radiation is by no

means so revolutionary as, perhaps, might appear at the first

glance. For there is, in my opinion at least, nothing which makes

necessary the consideration of the heat processes in a complete

vacuum as atomic, and it suffices to seek the atomistic features at

the source of radiation, i. e., in those processes which have

their play in the centres of emission and absorption of radiation.

Then the Maxwellian electrodynamic differential equations can

retain completely their validity for the vacuum, and, besides,

the discrete elements of heat radiation are relegated exclusively

to a domain which is still very mysterious and where there is

still present plenty of room for all sorts of hypotheses.

Returning to more general considerations, the most important

question comes up as to whether, with the introduction of atomis-

tic conceptions and with the reference of entropy to probability,

the content of the principle of increase of entropy is exhaustively

comprehended, or whether still further physical hypotheses are re-

quired in order to secure the full import of that principle. If this

important question had been settled at the time of the intro-

duction of the atomic theory into thermodynamics, then the

atomistic views would surely have been spared a large number of

conceivable misunderstandings and justifiable attacks. For it

turns out, in fact—and our further considerations will con-
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firm this conclusion—that there has as yet nothing been done with

atomistics which in itself requires much more than an essen-

tial generalization, in order to guarantee the validity of the

second law.

We must first reflect that, in accordance with the central

idea laid down in tlie first lecture (p. 7), the second law must

possess validity as an objective physical law, independently of

the individuality of the physicist. There is nothing to hinder

us from imagining a physicist—we shall designate him a "mi-

croscopic" observer—whose senses are so sharpened that he

is able to recognize each individual atom and to follow it in

its motion. For this observer each atom moves exactly in

accordance with the elementary laws which general dynamics

lays down for it, and these laws allow, so far as we know, of an

inverse performance of every process. Accordingly, here again

the question is neither one of probability nor of entropy and its

increase. Let us imagine, on the other hand, another ob-

server, designated a "macroscopic" observer, who regards an

ensemble of atoms as a homogeneous gas, say, and consequently

applies the laws of thermodynamics to the mechanical and thermal

processes within it. Then, for such an observer, in accordance

with the second law, the process in general is an irreversible

process. Would not now the first observer be justified in saying:

"The reference of the entropy to probability has its origin in

the fact that irreversible processes ought to be explained through

reversible processes. At any rate, this procedure appears to me
in the highest degree dubious. In any case, I declare each change

of state which takes place in the ensemble of atoms designated

a gas, as reversible, in opposition to the macroscopic observer."

There is not the slightest thing, so far as I know, that one can

urge against the validity of these statements. But do we not

thereby place ourselves in the painful position of the judge who

declared in a trial the correctness of the position of each separately

of two contending parties and then, when a third contends tliat

only one of the parties could emerge from the process victorious.
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was obliged to declare him also correct ? Fortunately we find our-

selves in a more favorable position. We can certainly mediate

between the two parties without its being necessary for one or

the other to give up his principal point of view. For closer

consideration shows that the whole controversy rests upon a mis-

understanding—a new proof of how necessary it is before one

begins a controversy to come to an understanding with his

opponent concerning the subject of the quarrel. Certainly, a

given change of state cannot be both reversible and irreversible.

But the one observer connects a wholly different idea with the

phrase "change of state" than the other. What is then, in

general, a change of state? The state of a physical system cannot

well be otherwise defined than as the aggregate of all those phys-

ical quantities, through whose instantaneous values the time

changes of the quantities, with given boundary conditions, are

uniquely determined. If we inquire now, in accordance with

the import of this definition, of the two observers as to what

they understand by the state of the collection of atoms or the

gas considered, they will give quite different answers. The
microscopic observer will mention those quantities which deter-

mine the position and the velocities of all the individual atoms.

There are present in the simplest case, namely, that in which

the atoms may be considered as material points, six times as many
quantities as atoms, namely, for each atom the three coordinates

and the three velocity components, and in the case of combined

molecules, still more quantities. For him the state and the

progress of a process is then first determined when all these

various quantities are individually given. We shall designate

the state defined in this way the "micro-state." The macro-

scopic observer, on the other hand, requires fewer data. He will

say that the state of the homogeneous gas considered by him is

determined by the density, the visible velocity and the tempera-

ture at each point of the gas, and he will expect that, when these

quantities are given,their time variations and, therefore, the prog-

ress of the process, to be completely determined in accordance
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witli the two laws of thermo-dynamics, and therefore accompanied

by an increase in entropy. In this connection he can call upon

all the experience at his disposal, which will fully confirm his ex-

pectation. If we call this state the " macro-state," it is clear that

the two laws: "the micro-changes of state are reversible" and

"the macro-changes of state are irreversible," lie in wholly

different domains and, at any rate, are not contradictory.

But now how can we succeed in bringing the two observers to

an understanding? This is a question w^hose answer is obviously

of fundamental significance for the atomic theory. First of all,

it is easy to see that the macro-observer reckons only with mean

values; for what he calls density, visible velocity and temperature

of the gas are, for the micro-observer, certain mean values, statis-

tical data, w^hicli are derived from the space distribution and from

the velocities of the atoms in an appropriate manner. But the

micro-observer cannot operate with these mean values alone, for,

if these are given at one instant of time, the progress of the process

is not determined throughout; on the contrary: he can easily

find with given mean values an enormously large number of

individual values for the positions and the velocities of the atoms,

all of which correspond with the same mean values and which, in

spite of this, lead to quite different processes with regard to the

mean values. It follows from this of necessity that the micro-

observer must either give up the attempt to undertand the unique

progress, in accordance with experience, of the macroscopic

changes of state—and this would be the end of the atomic theory

—or that he, through the introduction of a special physical

hypothesis, restrict in a suitable manner the manifold of micro-

states considered by him. There is certainly nothing to prevent

him from assuming that not all conceivable micro-states are

realizable in nature, and that certain of them are in fact thinkable,

but never actually realized. In the formularization of such a

hypothesis, there is of course no point of departure to be found

from the principles of dynamics alone; for pure dynamics leaves

this case undetermined. But on just this account any dynamical
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hypothesis, which involves nothing further than a closer specifi-

cation of the micro-states realized in nature, is certainly permis-

sible. Which hypothesis is to be given the preference can only

be decided through comparison of the results to which the

different possible hypotheses lead in the course of experience.

In order to limit the investigation in this way, we must obviously

fix our attention only upon all imaginable configurations and

velocities of the individual atoms which are compatible with

determinate values of the density, the velocity and the temper-

ature of the gas, or in other words: we must consider all the

micro-states which belong to a determinate macro-state, and

must investigate the various kinds of processes which follow in

accordance with the fixed laws of dynamics from the different

micro-states. Now, precise calculation has in every case always

led to the important result that an enormously large number of

these different micro-processes relate to one and the same macro-

process, and that only proportionately few of the same, which are

distinguished by quite special exceptional conditions concerning

the positions and the velocities of neighboring atoms, furnish

exceptions. Furthermore, it has also shown that one of the

resulting macro-processes is that which the macroscopic ob-

server recognizes, so that it is compatible with the second law

of thermodynamics.

Here, manifestly, the bridge of understanding is supplied. The

micro-observer needs only to assimilate in his theory the physical

hypothesis that all those special cases in which special exceptional

conditions exist among the neighboring configurations of inter-

acting atoms do not occur in nature, or, in other words, that the

micro-states are in elementary disorder. Then the uniqueness

of the macroscopic process is assured and with it, also, the fulfill-

ment of the principle of increase of entropy in all directions.

Therefore, it is not the atomic distribution, but rather the

hypothesis of elementary disorder, which forms the real kernel of

the principle of increase of entropy and, therefore, the pre-

liminary condition for the existence of entropy. Without ele-
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mentary disorder there is neither entropy nor irreversible process.*

Therefore, a single atom can never possess an entropy; for we
cannot speak of disorder in connection with it. But with a

fairly large number of atoms, say 100 or 1,000, the matter is

quite different. Here, one can certainly speak of a disorder, in

case that the values of the coordinates and the velocity com-

ponents are distributed among the atoms in accordance with the

laws of accident. Then it is possible to calculate the probability

for a given state. But how is it with regard to the increase of

entropy? May we assert that the motion of 100 atoms is irre-

versible? Certainly not; but this is only because the state of

100 atoms cannot be defined in a thermodynamic sense, since the

process does not proceed in a unique manner from the standpoint

of a macro-observer, and this requirement forms, as we have seen

above, the foundation and preliminary condition for the definition

of a thermodynamic state.

If one therefore asks : How many atoms are at least necessary

in order that a process may be considered irreversible?, the answer

is: so many atoms that one may form from them definite mean

values which define the state in a macroscopic sense. One must

reflect that to secure the validity of the principle of increase of

entropy there must be added to the condition of elementary dis-

order still another, namely, that the number of the elements

under consideration be sufficiently large to render possible the

formation of definite mean values. The second law has a

meaning for these mean values only; but for them, it is quite

1 To those physicists who, in spite of all this, regard the hypothesis of

elementary disorder as gratuitous or as incorrect, I wish to refer the simple

fact that in every calculation of a coefficient of friction, of diffusion, or of heat

conduction, from molecular considerations, the notion of elementary disorder

is employed, whether tacitly or otherwise, and that it is therefore essentially

more correct to stipulate this condition instead of ignoring or concealing it. But

he who regards the hypothesis of elementary disorder as self-evident, should

be reminded that, in accordance with a law of H. Poincare, the precise in-

vestigation concerning the foundation of which would here lead us too far,

the assumption of this hypothesis for all times ia unwarranted for a closed

space with absolutely smooth walls,—an important conclusion, against which

can only be urged the fact that absolutely smooth walls do not exist in nature.
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exact, just as exact as the law of the calcukis of probability, that

the mean value, so far as it may be defined, of a sufficiently large

number of throws with a six-sided die, is 3|.

These considerations are, at the same time, capable of throwing

light upon questions such as the following: Does the principle of

increase of entropy possess a meaning for the so-called Brownian

molecular movement of a suspended particle? Does the kinetic

energy of this motion represent useful work or not? The entropy

principle is just as little valid for a single suspended particle as

for an atom, and therefore is not valid for a few of them, but

only when there is so large a number that definite mean values

can be formed. That one is able to see the particles and not

the atoms makes no material difference; because the progress of a

process does not depend upon the power of an observing instru-

ment. The question with regard to useful work plays no role

in this connection; strictly speaking, this possesses, in general, no

objective physical meaning. For it does not admit of an answer

without reference to the scheme of the physicist or technician

who proposes to make use of the work in question. The second

law, therefore, has fundamentally nothing to do with the idea of

useful work (cf. first lecture, p. 15).

But, if the entropy principle is to hold, a further assumption is

necessary, concerning the various disordered elements,—an

assumption which tacitly is commonly made and which we

have not previously definitely expressed. It is, however, not

less important than those referred to above. The elements must

actually be of the same kind, or they must at least form a number

of groups of like kind, e. g., constitute a mixture in which each

kind of element occurs in large numbers. For only through the

similarity of the elements does it come about that order and law

can result in the larger from the smaller. If the molecules of a

gas be all different from one another, the properties of a gas can

never show so simple a law-abiding behavior as that which is

indicated by thermodynamics. In fact, the calculation of the

probability of a state presupposes that all complexions which
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correspond to tlie state are a priori equally likely. Without

this condition one is just as little able to calculate the probability

of a given state as, for instance, the probability of a given throw

with dice whose sides are unequal in size. In summing up we
may therefore say: the second law of thermodynamics in its

objective physical conception, freed from anthropomorphism,

relates to certain mean values which are formed from a large

number of disordered elements of the same kind.

The validity of the principle of increase of entropy and of the

irreversible progress of thermodynamic processes in nature is

completely assured in this formularization. After the intro-

duction of the hypothesis of elementary disorder, the microscopic

observer can no longer confidently assert that each process con-

sidered by him in a collection of atoms is reversible; for the

motion occurring in the reverse order will not always obey the

requirements of that hypothesis. In fact, the motions of single

atoms are always reversible, and thus far one may say, as before,

that the irreversible processes appear reduced to a reversible

process, but the phenomenon as a whole is nevertheless irre-

versible, because upon reversal the disorder of the numerous

individual elementary processes would be eliminated. Irre-

versibility is inherent, not in the individual elementary processes

themselves, but solely in their irregular constitution. It is

this only which guarantees the unique change of the macroscopic

mean values.

Thus, for example, the reverse progress of a frictional process

is impossible, in that it w^ould presuppose elementary arrange-

ment of interacting neighboring molecules. For the collisions be-

tw^een any two molecules must thereby possess a certain distin-

guishing character, in that the velocities of two colliding molecules

depend in a definite way upon the place at which they meet.

In this W'ay only can it happen that in collisions like directed

velocities ensue and, therefore, visible motion.

Previously we have only referced to the principle of elementary

disorder in its application to the atomic theory of matter. But
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it may also be assumed as valid, as I wish to indicate at this

point, on quite the same grounds as those holding in the case of

matter, for the theory of radiant heat. Let us consider, e. g.,

two bodies at different temperatures between which exchange of

heat occurs through radiation. We can in this case also imagine

a microscopic observer, as opposed to the ordinary macro-

scopic observer, who possesses insight into all the particulars

of electromagnetic processes which are connected with emission

and absorption, and the propagation of heat rays. The micro-

scopic obser\'er would declare the whole process reversible

because all electrodynamic processes can also take place in the

reverse direction, and the contradiction may here be referred

back to a difference in definition of the state of a heat ray. Thus,

while the macroscopic observer completely defines a mono-
chromatic ray through direction, state of polarization, color, and

intensity, the microscopic observer, in order to possess a complete

knowledge of an electromagnetic state, necessarily requires the

specification of all the numerous irregular variations of amplitude

and phase to which the most homogeneous heat ray is actually

subject. That such irregular variations actually exist follows

immediately from the well known fact that two rays of the same

color never interfere, except when they originate in the same source

of light. But until these fluctuations are given in all particulars,

the micro-observer can say nothing with regard to the progress

of the process. He is also unable to specify whether the exchange

of heat radiation between the two bodies leads to a decrease or

to an increase of their difference in temperature. The principle

of elementary disorder first furnishes the adequate criterion of

the tendency of the radiation process, i. e., the warming of the

colder body at the expense of the warmer, just as the same princi-

ple conditions the irreversibility of exchange of heat through con-

duction. However, in the two cases compared, there is indicated

an essential difference in the kind of the disorder. While in

heat conduction the disordered elements may be represented

as associated with the various molecules, in heat radiation there
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are the numerous vibration periods, connected with a neat ray,

amonj^ which the energy of radiation is irreguhirlv^ distributed.

In other words: the (Hsorder among the molecules is a material

one, while in heat radiation it is one of energy distribution. 1'his

is the most important difference between the two kinds of dis-

order; a common feature exists as regards the great number of

uncoordinated elements required. Just as the entropy of a body

is defined as a function of the macroscopic state, only Avhen the

body contains so many atoms that from them definite mean
values may be formed, so the entropy principle only possesses

a meaning with regard to a heat ray when the ray comprehends

so many periodic vibrations, i. e., persists for so long a time, that

a definite mean value for the intensity of the ray may be obtained

from the successive irregular fluctuating amplitudes.

Now, after the principle of elementary disorder has been

introduced and accepted by us as valid throughout nature, the

fundamental question arises as to the calculation of the proba-

bility of a given state, and the actual derivation of the entropy

therefrom. From the entropy all the laws of thermodynamic

states of equilibrium, for material substances, and also for

energy radiation, may be uniquely derived. With regard to

the connection between entropy and probability, this is inferred

very simply from the law that the probability of two independent

configurations is represented by the product of the individual

probabilities:

W = J]\ W2,

while the entropy S is represented by the sum of the individual

entropies:

Accordingly, the entropy is proportional to the logarithm of the

probability:

S = k log W. (12)

A; is a universal constant. In particular, it is the same for atomic

as for radiation configurations, for there is nothing to prevent
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US assuming that the configuration designated by 1 is atomic,

while that designated by 2 is a radiation configuration. If k has

been calculated, say with the aid of radiation measurements,

then k must have the same value for atomic processes. Later

we shall follow this procedure, in order to utilize the laws of heat

radiation in the kinetic theory of gases. Now, there remains, as

the last and most difficult part of the problem^ the calculation of

the probability W of a given physical configuration in a given

macroscopic state. We shall treat today, by way of preparation

for the quite general problem to follow, the simple problem: to

specify the probability of a given state for a single moving

material point, subject to given conservative forces. Since the

state depends upon 6 variables: the 3 generalized coordinates

(fx, (p2, (fzy and the three corresponding velocity components

<Pi, <P2, <P3y and since all possible values of these 6 variables con-

stitute a continuous manifold, the probability sought is, that

these 6 quantities shall lie respectively within certain infinitely

small intervals, or, if one thinks of these 6 quantities as the

rectilinear orthogonal coordinates of a point in an ideal six-di-

mensional space, that this ideal "state point" shall fall within

a given, infinitely small "state domain." Since the domain is

infinitely small, the probability will be proportional to the mag-

nitude of the domain and therefore proportional to

J d(pi • dxpo • dcpz ' dcpi ' d(p2 • d<pz.

But this expression cannot serve as an absolute measure of

the probability, because in general it changes in magnitude with

the time, if each state point moves in accordance with the laws

of motion of material points, while the probability of a state

which follows of necessity from another must be the same for

the one as the other. Now, as is well known, another integral

quite similarly formed, may be specified in place of the one

above, which possesses the special property of not changing in

value with the time. It is only necessary to employ, in addition

to the general coordinates tpi, <p2, <pz, the three so-called momenta
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4^1, 4^-i- 'As, ill place of the three velocities (pi, <p2, <f>z, as the deter-

mining coordinates of the state. These are defined in the

following way:

•^' = (11)/ '^^=(S)'' ^'^(Ifs)/

wherein // denotes the kinetic potential (Ilelmholz). Tlien, in

Hamiltonian form, the equations of motion are:

, _ #1 _ (dE\ _d<Pi_f dE \

(E is the energy), and from these equations follows the "con-

dition of incompressibility "

:

Referring to the six-dimensional space represented by the coordi-

nates (pu (P'2, (fz, i/'i, t^2, ^z, this equation states that the magnitude

of an arbitrarily chosen state domain, viz.

:

J d(pi ' d(p2 • d<pz • d\pi • d\l/2 ' d\pz

does not change with the time, when each point of the domain

changes its position in accordance with the laws of motion of

material points. Accordingly, it is made possible to take the

magnitude of this domain as a direct measure for the prob-

ability that the state point falls within the domain.

From the last expression, which can be easily generalized for

the case of an arbitrary number of variables, we shall cal-

ulate later the probability of a thermodynamic state, for the

case of radiant energy as well as that for material substances.
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The Equation of State for a Monatomic Gas.

My problem today is to utilize the general fundamental laws

concerning the concept of irreversibility, which we established

in the lecture of yesterday, in the solution of a definite problem:

the calculation of the entropy of an ideal monatomic gas in a

given state, and the derivation of all its thermodynamic proper-

ties. The way in which we have to proceed is prescribed for us

by the general definition of entropy

:

S = k log W. (13)

The chief part of our problem is the calculation of W for a given

state of the gas, and in this connection there is first required a

more precise investigation of that which is to be understood as

the state of the gas. Obviously, the state is to be taken here

solely in the sense of the conception which we have called macro-

scopic in the last lecture. Otherwise, a state would possess

neither probability nor entropy. Furthermore, we are not

allowed to assume a condition of equilibrium for the gas. For

this is characterized through the further special condition

that the entropy for it is a maximum. Thus, an unequal dis-

tribution of density may exist in the gas; also, there may be

present an arbitrary number of different currents, and in general

no kind of equality between the various velocities of the molecules

is to be assumed. The velocities, as the coordinates of the

molecules, are rather to be taken a priori as quite arbitrarily

given, but in order that the state, considered in a macroscopic

sense, may be assumed as known, certain mean values of the

densities and the velocities must exist. Through these mean

58
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values the state from a macroscopic staiidi)oint is completely

characterized.

The conditions mentioned will all be fulfilled if we consider

the state as given in such manner that the numl^^r of molecules

in a sufficiently small macroscopic space, but which, howe\-er,

contains a very large number of molecules, is given, and further-

more, that the (likewise great) number of these molecules is

given, which are found in a certain macroscopically small velocity

domain, i. e., whose velocities lie within certain small intervals.

If we call the coordinates .r, y, z, and the velocity components

X, y, z, then this number will be proportional to^

dx • dy • dz • dx dij • dz = a.

It will depend, besides, upon a finite factor of proportionality

which may be an arbitrarily given function f{x, y, z, x, y, z) of

the coordinates and the velocities, and which has only the one

condition to fulfill that

2/ . (T = N, (14)

where N denotes the total number of molecules in the gas.

We are now concerned with the calculation of the probability

W of that state of the gas which corresponds to the arbitrarily

given distribution function /.

The probability that a given molecule possesses such coor-

dinates and such velocities that it lies w^ithin the domain <t is

expressed, in accordance with the final result of the previous lec-

ture, by the magnitude of the corresponding elementary domain:

difi • d(p2 • d<p3 • d\pi • d\l/2 • d\pz,

therefore, since here

(p\ = X, ip-i = ?/, (^3 = 2, '/'I = wi, )/'. = mij, \p3 = mz,

1 We can call a- a "macro-differential" in contradistinction to the micro-dif-

ferentials which are infinitely small with reference to the dimensions of a

molecule. I prefer this terminology fOr the discrimination between " physical

"

and " mathematical " differentials in spite of the inelegance of phrasing, because

the macro-differential is also just as much mathematical as physical and the

micro-differential just as much physical as mathematical.
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(m the mass of a molecule) by

mV.

Now we divide the whole of the six dimensional "state domain"

containing all the molecules into suitable equal elementary

domains of the magnitude w?V. Then the probability that a

given molecule fall in a given elementary domain is equally

great for all such domains. Let P denote the number of these

equal elementary domains. Next, let us imagine as many dice

as there are molecules present, i. e., N, and each die to be

provided with P equal sides. Upon these P sides we imagine

numbers 1, 2, 3, • • • to P, so that each of the P sides indicates

a given elementary domain. Then each throw with the N
dice corresponds to a given state of the gas, while the number of

dice which show a given number corresponds to the molecules

which lie in the elementary domain considered. In accordance

with this, each single die can indicate with the same probability

each of the numbers from 1 to P, corresponding to the circum-

stance that each molecule may fall with equal probability in any

one ot the P elementary domains. The probability W sought,

of the given state of the molecules, corresponds, therefore, to

the number of different kinds of throws (complexions) through

which is realized the given distribution /. Let us take, e. g.,

N equal to 10 molecules (dice) and P = 6 elementary domains

(sides) and let us imagine the state so given that there are

3 molecules in 1st elementary domain

4 molecules in 2d elementary domain

molecules in 3d elementary domain

1 molecule in 4th elementary domain

molecules in 5th elementary domain

2 molecules in 6th elementary domain,

then this state, e. g., may be realized through a throw for which

the 10 dice indicate the following numbers:

1st 2d 3d 4th 5th Cth 7th 8th 9th 10th

2 6 2 112 6 2 14. (15)
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Under eacli of the characters representing tlic ten dice stands

the number which the die indicates in the throw. In fact,

3 dice show the fi<i;ure 1

4 dice show the figure 2

(Hce show the figure 3

1 die shows the figure 4

dice show the figure 5

2 dice show the figure 6.

The state in question may Hkewise be reahzed through many other

complexions of this kind. The number sought of all possible

complexions is now found through consideration of the number

series indicated in (15). For, since the number of molecules

(dice) is given, the number series contains a fixed number of

elements (10 = N). Furthermore, since the number of molecules

falling in an elementary domain is given, each number, in all

permissible complexions, appears equally often in the series.

Finally, each change of the number configuration conditions a

new complexion. The number of possible complexions or the

probability W of the given state is therefore equal to the number

of possible permutations with repetition under the conditions

mentioned. In the simple example chosen, in accordance with

a well known formula, the probability is

10!
12,600.

3!4!0! 1!0!2!

Therefore, in the general case:

w =
n(/-cr)!

The sign 11 denotes the product extended over all of the P
elementary domains.

From this there results, in accordance with equation (13), for

the entropy of the gas in the given state:

S =^ klogNl- A-Slog (/• a)l
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The summation is to be extended over all domains a. Since

/ • <r is a large quantity, Stirling's formula may be employed for

its factorial, which for a large number n is expressed by:

= (-:)" ^-.n\= l-\ VlV/i, (16)

therefore, neglecting unimportant terms:

log n! = n(log n — 1);

and hence:

S=k log .V! - Jc^faQog [/ • cr] - 1),

or, if we note that a and .V = '^fcr remain constant in all changes

of state

:

S = const - k^f • log/ • (T. (17)

This quantity is, to the universal factor (— k), the same as that

which L. Boltzmann denoted by //, and which he showed to

vary in one direction only for all changes of state.

In particular, we will now determine the entropy of a gas in a

state of equilibrium, and inquire first as to that form of the law of

distribution which corresponds to thermodynamic equilibrium.

In accordance with the second law of thermodynamics, a state

of equilibrium is characterized by the condition that with given

values of the total volume V and the total energy E, the entropy

S assumes its maximum value. If we assume the total volume

of the gas

V = J fJ-v • dy • dz,

and the total energy

E^'^^{x'+f+z')f<T (18)

as given, then the condition

:

55 =

must hold for the state of equilibrium, or, in accordance with (17)

:

2(log/+l) -5/ -(7 = 0, (19)



EQUATION OF STATE FOR A MONATOMIC GAS. 63

wherein the variation 5/ refers to an arbitrary change in the

law of distribution, compatible with the given values of N, V
and E.

Now we have, on account of the constancy of the total number

of molecules N, in accordance with (14):

25/ • 0- =

and, on account of the constancy of the total energy, in accord-

ance with (IS):

Consequently, for the fulfillment of condition (19) for all per-

missible values of 5f, it is sufficient and necessary that

or:

log/+/S(i-2+7/2+i2) = const,

/= Q;g-3(i"-+t/--M-e-)^

wherein a and (3 are constants. In the state of equilibrium,

therefore, the space distribution of molecules is uniform, i. e.,

independent of x, y, z, and the distribution of velocities is the

well known IVIaxwellian distribution.

The values of the constants a and ^ are to be found from those

of N, V and E. For the substitution of the value found for /
in (14) leads to:

and the substitution of/ in (18) leads to:

From these equations it follows that:

_N fSmNy _SmN
" ~ F V 47r^ / ' ^ ~ 4E '

and hence finally, in accordance with (17), the expression for the
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entropy S of the gas in a state of equilibrium with given values

foriV, Fand E is:

S = const + kNil log E-\-\ogV). (20)

The additive constant contains terms in N and m, but not in

E and V.

The determination of the entropy here carried out permits

now the specification directly of the complete thermodynamic

behavior of the gas, viz., of the equation of state, and of the

values of the specific heats. From the general thermodynamic

definition of entropy:

dE + pdV
dS

T

are obtained the partial differential quotients of S with regard

to E and V respectively:

T

(21)

\dE)y~ T' \dV)j,~

Consequently, with the aid of (20)

:

/dS\ _3^_^
\dE)v~ 2 E ~ T'

and

/as\ _kN_p
\av)^~ V ~ T- ^ '

The second of these equations:

kNT

contains the laws of Boyle, Gay Lussac and Avogadro, the latter

because the pressure depends only upon the number N, and not

upon the constitution of the molecules. Writing it in the

ordinarv form:

RnT
V = -Try
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where n denotes the number of j?ram molecules or mols of the

gas, referred to O2 = 32(7, ^rid ^^ the absolute gas constant:

R= 8.315- 10^1^,
deg

we obtain by comparison:

* =f

.

(23)

If we denote the ratio of the mol number to the molecular

number by w, or, what is the .same thing, the ratio of the

molecular mass to the mol mass

:

n

and hence:

k = oiR. (24)

From this, if co is given, we can calculate the universal constant

k, and conversely.

The equation (21) gives:

E = IhNT. (25)

Now since the energy of an ideal gas is given by:

E = AnCyT,

wherein c„ denotes in calories the heat capacity at constant

volume of a mol, A the mechanical equivalent of heat:

A = 4.19. 10^ -f,
cai

it follows that:

_3kN
^''~2An'

and, having regard to (23), we obtain:
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the mol heat in calories of any monatomic gas at constant vokime.

For the mol heat Cp at constant pressure we have from the

first law of thermodynamics

R
A'

C p Ci)

and, therefore, having regard to (26)

:

— r £^ _ 6

Li)

a known result for monatomic gases.

The mean kinetic energy Z of a molecule is obtained from (25)

:

L = ^=lkT. (27)

You notice that we have derived all these relations through the

identification of the mechanical with the thermodynamic ex-

pression for the entropy, and from this you recognize the fruit-

fulness of the method here proposed.

But a method can first demonstrate fully its usefulness when

we utilize it, not only to derive laws which are already known,

but when we apply it in domains for whose investigation there

at present exist no other methods. In this connection its

application affords various possibilities. Take the case of a

monatomic gas which is not sufficiently attenuated to have the

properties of the ideal state; there are here, as pointed out by

J. D. van der Waals, two things to consider: (1) the finite size of

the atoms, (2) the forces which act among the atoms. Taking

account of these involves a change in the value of the probability

and in the energy of the gas as well, and, so far as can now be

shown, the corresponding change in the conditions for thermo-

dynamic equilibrium leads to an equation of state which agrees

with that of van der Waals. Certainly there is here a rich field

for further investigations, of greater promise when experimental

tests of the equation of state exist in larger number.
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Another important application of the theory has to do with

heat radiation, with which we shall be occupied the coming

week. We shall proceed then in a similar way as here, and shall

be able from the expression for the entropy of radiation to derive

the thermodynamic properties of radiant heat.

Today w^e will refer briefly to the treatment of polyatomic

gases. I have previously, upon good grounds, limited the treat-

ment to monatomic molecules; for up to the present real dif-

ficulties appear to stand in the way of a generalization, from

the principles employed by us, to include polyatomic molecules; in

fact, if we wish to be quite frank, we must say that a satisfactory

mechanical theorj^ of polyatomic gases has not yet been found.

Consequently, at present we do not know to what place in the

system of theoretical physics to assign the processes within a

molecule—the intra-molecular processes. We are obviously con-

fronted by puzzling problems. A noteworthy and much dis-

cussed beginning was, it is true, made by Boltzmann, who intro-

duced the most plausible assumption that for intra-molecular

processes simple laws of the same kind hold as for the motion of

the molecules themselves, i. e., the general equations of dynamics.

It is easy then, in fact, to proceed to the proof that for a mona-

tomic gas the molecular heat c„ must be greater than 3 and that

consequently, since the difference Cp — c„ is always equal to 2,

the ratio is

Cp ^ Cy -\- ^
g— ^ 3

.

C y Cy

This conclusion is completely confirmed by experience. But this

in itself does not confirm the assumption of Boltzmann; for,

indeed, the same conclusion is reached very simply from the

assumption that there exists intra-molecular energy which

increases with the temperature. For then the molecular heat

of a polyatomic gas must be greater by a corresponding amount

than that of a monatomic gas.

Nevertheless, uj) to this point the Boltzmann theory never leads
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to contradiction with experience. But so soon as one seeks to

draw special conclusions concerning the magnitude of the specific

heats hazardous difficulties arise; I will refer to only one of them.

If one assumes the Hamiltonian equations of mechanics as

applicable to intra-molecular motions, he arrives of necessity at

the law of " uniform distribution of energy," which asserts that

under certain conditions, not essential to consider here, in a

thermodynamic state of equilibrium the total energy of the gas

is distributed uniformly among all the individual energy phases

corresponding to the independent variables of state, or, as

one may briefly say; the same amount of energy is associated

with every independent variable of state. Accordingly, the

mean energy of motion of the molecules ^kT, corresponding to a

given direction in space, is the same as for any other direction,

and, moreover, the same for all the different kinds of molecules,

and ions; also for all suspended particles (dust) in the gas, of

whatever size, and, furthermore, the same for all kinds of motions

of the constituents of a molecule relative to its centroid. If

one now reflects that a molecule commonly contains, so far as

we know, quite a large number of different freely moving

constituents, certainly, that a normal molecule of a mon-

atomic gas, e. g., mercury, possesses numerous freely moving

electrons, then, in accordance with the law of uniform energy

distribution, the intra-molecular energy must constitute a much
larger fraction of the whole specific heat of the gas, and therefore

Cpjcy must turn out much smaller, than is consistent with the

measured values. Thus, e. g., for an atom of mercury, in

accordance with the measured value of Cplc.„ = 5/3, no part

whatever oft he heat added may be assigned to the intra-molecular

energy. Boltzmann and others, in order to eliminate this con-

tradiction, have fixed upon the possibility that, within the time

of observation of the specific heats, the vibrations of the con-

stituents (of a molecule) do not change appreciably with respect

to one another, and come later with their progressive motion so

slowly into heat equilibrium that this process is no longer capable
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of detection through observation. Up to now no such delay in

the establishment of a state of equilibrium has been observed.

Perhaps it would be productive of results if in delicate measure-

ments special attention were paid the question as to whether

observations which take a longer time lead to a greater value of

the mol-heat, or, what comes to the same thing, a smaller value

of Cp/cv, than observations lasting a shorter time.

If one has been made mistrustful through these considerations

concerning the applicability of the law of uniform energy dis-

tribution to intra-molecular processes, the mistrust is accentuated

upon the inclusion of the laws of heat radiation. I shall make
mention of this in a later lecture.

When we pass from stable atoms to the unstable atoms of

radioactive substances, the principles following from the kinetic

gas theory lose their validity completely. For the striking

failure of all attempts to find any influence of temperature

upon radioactive phenomena shows us that an application here of

the law of uniform energy distribution is certainly not warranted.

It will, therefore, be safest meanwhile to offer no definite con-

jectures with regard to the nature and the laws of these note-

worthy phenomena, and to leave this field for further development

to experimental research alone, which, I may say, with every

day throws new light upon the subject.
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Heat Radiation, Electrodynamic Theory.

Last week I endeavored to point out that we find in the

atomic theory a complete explanation for the whole content of

the two laws of thermodynamics, if we, w^ith Boltzmann, define

the entropy by the probability, and I have further shown, in the

example of an ideal monatomic gas, how the calculation of the

probability, without any additional special hypothesis, enables

us not only to find the properties of gases known from ther-

modynamics, but also to reach conclusions which lie essen-

tially beyond those of pure thermodynamics. Thus, e. g.,

the law of Avogadro in pure thermodynamics is only a defi-

nition, while in the kinetic theory it is a necessary conse-

quence; furthermore, the value of c„, the mol-heat of a gas, is

completely undetermined by pure thermodynamics, but from the

kinetic theory it is of equal magnitude for all monatomic gases

and, in fact, equal to 3, corresponding to our experimental

knowledge. Today and tomorrow we shall be occupied with

the application of the theory to radiant heat, and it will appear

that we reach in this apparently quite isolated domain con-

clusions which a thorough test shows are compatible with ex-

perience. Naturally, we take as a basis the electro-magnetic

theory of heat radiation, which regards the rays as electro-

magnetic waves of the same kind as light rays.

We shall utilize the time today in developing in bold outline

the important consequences which follow from the electro-

magnetic theory for the characteristic quantities of heat radiation,

and tomorrow seek to answer, through the calculation of the

entropy, the question concerning the dependence of these quan-

70
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titles upon the temperature, as was done last week for ideal

gases. Above all, we are concerned here with the determination

of those quantities which at any place in a medium traversed

by heat rays determine the state of the radiant heat. The state

of radiation at a given place will not be rej>re3ented by a vector

which is determined by three components; for the energy flowing

in a given direction is quite independent of that flowing in any

other direction. In order to know the state of radiation, we

must be able to specify, moreover, the energy which in the time

dt flows through a surface element dc for every direction in

space. This will be proportional to the magnitude of da, to

the time dt, and to the cosine of the angle i? which the direction

considered makes with the normal to da. But the quantity to

be multiplied by da • dt • cos t? will not be a finite quantity;

for since the radiation through any point of da passes in all direc-

tions, therefore the quantity will also depend upon the magnitude

of the solid angle d^, which we shall assume as the same for all

points of da. In this manner we obtain for the energy which in

the time dt flows through the surface element da in the direction

of the elementary cone c?^, the expression:

Kdadt cos t? • d^. (28)

K is a positive function of place, of time and of direction, and is

for unpolarized light of the following form:

XOOK=2\ ^4v . (29)

where v denotes the frequency of a color of wave length X and

whose velocity of propagation is q:

Q

and ^y denotes the corresponding intensity of spectral radiation

of the plane polarized light.



72 FIFTH LECTUKE.

From the value ofK is to be found the space density of radiation

€, i. e., the energy of radiation contained in unit volume. The

point in question forms the centre of a sphere whose radius r

we take so small that in the distance r no appreciable absorption

of radiation takes place. Then each element da of the surface

of the sphere furnishes, by virtue of the radiation traversing the

same, the following contribution to the radiation density at 0:

da ' dt K • dQ da • K
rHQ. • qdt r^q

For the radiation cone of solid angle dQ proceeding from a point

of da in the direction toward has at the distance r from da the

cross-section rHQ and the energy passing in the time dt through

this cross-section distributes itself along the distance qdt. By
integration over all of the surface elements da we obtain the

total space density of radiation at 0:

rdaK 1 r,,,^

J rq q J

wherein dQ denotes the solid angle of an elementary cone whose

vertex is 0. For uniform radiation we obtain

:

47rX Stt r ^ j
€ = = — • ^4v- (30)

q q Jo

The production of radiant heat is a consequence of the act of

emission, and its destruction is the result of absorption. Both

processes, emission and absorption, have their origin only in

material particles, atoms or electrons, not at the geometrical

bounding surface; although one frequently says, for the sake of

brevity, that a surface element emits or absorbs. In reality a

surface element of a body is a place of entrance for the radia-

tion falling upon the body from without and which is to be

absorbed; or a place of exit for the radiation emitted from

within the body and passing through the surface in the outward
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direction. The capacity for emission and the capacity for

absorption of an element of a body depend only upon its own

condition and not upon that of the surroundin<:f elements. If,

therefore, as we shall assume in what follows, the state of the

body varies only with the temperature, then the capacity for

emission and the capacity for absorption of the body will also

vary only with the temperature. The dependence upon the

temperature can of course be different for each wave length.

We shall now introduce that resv.lt following from the sec-

ond law of thermod\'namics which will serve us as a basis

in all subsequent considerations: " a system of bodies at rest

of arbitrary nature, form and position, which is surrounded by a

fixed shell impervious to heat, passes in the course of time from

an arbitrarily chosen initial state to a permanent state in which

the temperature of all bodies of the system is the same."

This is the thermodynamic state of equilibrium in which the

entropy of the system, among all those values which it may assume

compatible with the total energy specified by the initial condi-

tions, has a maximum value. Let us now apply this law to a

single homogeneous isotropic medium which is of great extent

in all directions of space and which, as in all cases subsequently

considered, is surrounded by a fixed shell, perfectly reflecting as

regards heat rays. The medium possesses for each frequency v

of the heat rays a finite capacity for emission and a finite capacity

for absorption. Let us consider, now, such regions of the medium

as are very far removed from the surface. Here the influence

of the surface will be in any case vanishingly small, because no

rays from the surface reach these regions, and on account of the

homogeneity and isotropy of the medium we must conclude that

the heat radiation is in thermodynamic equilibrium ever\'where

and has the same properties in all directions, so that ^^, the

specific intensity of radiation of a plane polarized ray, is inde-

pendent of the frequency v, of the azimuth of polarization, of the

direction of the ray, and of location. Thus, there will correspond

to each diverging bundle of rays in an elementary cone dQ,

6
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proceeding from a surface element d(T, an exactly equal bundle

oppositely directed, within the same elemental cone converging

toward the surface element. This law retains its validity, as a

simple consideration shows, right up to the surface of the medium,

For in thermodynamic equilibrium each ray must possess

exactly the same intensity as that of the directly opposite ray,

otherwise, more energy would flow in one direction than in

the opposite direction. Let us fix our attention upon a ray

proceeding inwards from the surface, this must have the

same intensity as that of the directly opposite ray coming

from within, and from this it follows immediately that the

state of radiation of the medium at all points on the surface is

the same as that within. The nature of the bounding surface

and the spacial extent of the medium are immaterial, and in a

stationary state of radiation ^^ is completely determined by the

nature of the medium for each temperature.

This law suffers a modification, however, in the special case

that the medium is absolutely diathermanous for a definite

frequency v. It is then clear that the capacity for absorption

and also that for emission must be zero, because otherwise no

stationary state of radiation could exist, i. e., a medium emits

no color which it does not absorb. But equilibrium can then ob-

viously exist for every intensity of radiation of the frequency con-

sidered, i. e., ^^ is now undetermined and cannot be found with-

out knowledge of the initial conditions. An important example of

this is furnished by an absolute vacuum, which is diathermanous

for all frequencies. In a complete vacuum thermodynamic

equilibrium can therefore exist for each arbitrary intensity of

radiation and for each frequency, i. e., for each arbitrary dis-

tribution of the spectral energy. From a general thermodynamic

point of view this indeterminateness of the properties of thermo-

dynamic states of equilibrium is explained through the presence

of numerous different relative maxima of the entropy, as in the

case of a vapor which is in a state of supersaturation. But

among all the different maxima there is a special maximum, the
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absolute, which indicates stable equilibrium. In fact, we shall

see that in a diathermanous medium for each temperature there

exists a quite definite intensity of radiation, which is desig-

nated as the stable intensity of radiation of the frequency v con-

sidered. But for the present we shall assume for all frequencies

a finite capacity for absorption and for emission.

We consider now two homogeneous isotropic media in thermo-

dynamic equilibrium separated from each other by a plane

surface. Since the equilibrium will not be disturbed if one

imagines for the moment the surface of separation between the

two substances to be replaced by a surface quite non-transparent

to heat radiation, all of the foregoing laws hold for each of the

da

FIRST MEDIUM

SECOND
I
MEDIUM

i\,v

Fig. 1.

da

BOUNDARY SURFACE

two substances individually. Let the specific intensity of radi-

ation of frequency v, polarized in any arbitrary plane within the

first substance (the upper in Fig. l)^ be ^^ and that within the

second substance ^/ (we shall in general designate with a dash

1 From my lectures upon the theory of heat radiation (licipzig, J. A. Barth),

wherein are to be found the details of the above somewhat abbreviated

calculations.
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those quantities which refer to the second substance). Both

quantities ^^ and ^/, besides depending upon the temperature

and the frequency, depend only upon the nature of the two sub-

stances, and, in fact, these values of the intensity of radiation

hold quite up to the boundary surface between the substances,

and are therefore independent of the properties of this surface.

Each ray from the first medium is split into two rays at the

boundary surface: the reflected and the transmitted. The direc-

tions of these two rays vary according to the angle of inci-

dence and the color of the incident ray, and, in addition, the

intensity varies according to its polarization. If we denote

by p (the reflection coefficient) the amount of the reflected

energy of radiation and consequently by 1 — p the amount of

transmitted energy with respect to the incident energy, then p

depends upon the angle of incidence, upon the frequency and

upon the polarization of the incident ray. Similar remarks hold

for p', the reflection coefficient for a ray from the second

medium, upon meeting the boundary surface.

Now the energy of a monochromatic plane polarized ray of

frequency v proceeding from an element da of the boundary

surface within the elementary cone c?12 in a direction toward the

first medium (see the feathered arrow at the left in Fig. 1) is

for the time dt, in accordance with (28) and (29)

:

dt ' da ' cos ^ dU ' ^Jv, (31)

where
dl2 = sin ^dM<p. (32)

This energy is furnished by the two rays which, approaching the

surface from the first and the second medium respectively, are

reflected and transmitted respectively at the surface element da

in the same direction. (See the unfeathered arrows. The surface

element da is indicated only by the point 0.) The first ray pro-

ceeds in accordance with the law of reflection within the sym-

metrically drawn elementary cone dQ: the second approaches

the surface w^ithin the elementary cone
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dQ' = sill d'dd'd<p', (33)

where, in accordance with the hiw of refraction,

, , sin i9 q ,„^^
<p = <p and -.—^, = —

•

(34)
sin d q

We now assume that the ray is either polarized in tlie plane of

incidence or perpendicular to this plane, and likewise for the

two radiations out of whose energies it is composed. The radia-

tion coming from the first medium and reflected from da con-

tributes the energy:

p dt da cost} dn Stjv, (35)

and the radiation coming from the second medium and trans-

mitted through d<x contributes the energy:

(1 - p') dt da- cos d' dn' S^/dv. (36)

The quantities dty da, v, and dv are here written without the

accent, since they have the same values in both media.

Adding the expressions (35) and (36) and placing the sum

equal to the expression (31), we obtain:

p cos ddm, + (1 - p') cos d'dO^'^J = cos t9r/fi.^,.

Now, in accordance with (34)

:

cos i}dt} _ cos t^'di}'

and further, taking note of (32) and (33)

:

q
do.' cos d' — do, cos i} • —^,

q-

and it follow^s that

:

/2

p^,+ (1 - p')^^/ = ^,

or:

^,9' 1 - P'

t/ q'' 1-p-
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In the last equation the quantity on the left is independent

of the angle of incidence ?? and of the kind of polarization, con-

sequently the quantity upon the right side must also be inde-

pendent of these quantities. If one knows the value of these

quantities for a single angle of incidence and for a given kind of

polarization, then this value is valid for all angles of incidence

and for all polarizations. Now, in the particular case that the

rays are polarized at right angles to the plane of incidence and

meet the bounding surface at the angle of polarization,

p = and p' = 0.

Then the expression on the right will be equal to 1, and there-

fore it is in general equal to 1, and we have always:

P = P', q'^. = q''^.'' (37)

The first of these two relations, which asserts that the coefficient

of reflection is the same for both sides of the boundary surface,

constitutes the special expression of a general reciprocal law,

first announced by Helmholz, whereby the loss of intensity which

a ray of given color and polarization suffers on its path through

any medium in consequence of reflection, refraction, absorption,

and dispersion is exactly equal to the loss of intensity which a ray

of corresponding intensity, color and polarization suffers in

passing over the directly opposite path. It follows immediately

from this that the radiation meeting a boundary surface between

two media is transmitted or reflected equally well from both

sides, for every color, direction and polarization.

The second relation, (37), brings into connection the radiation

intensities originating in both substances. It asserts that in

thermodynamic equilibrium the specific intensities of radiation

of a definite frequency in both media vary inversely as the square

of the velocities of propagation, or directly as the squares of the

refractive indices. We may therefore write

9^t. = F{v, T),
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wherein F denotes a universal function depending only upon v

and T, the discovery of which is one of the chief problems of the

theory.

Let us fix our attention again on the case of a diathermanous

medium. We saw above that in a medium surrounded by a

non-transparent shell which for a given color is diathermanous

equilibrium can exist for any given intensity of radiation of this

color. But it follows from the second law that, among all the

intensities of radiation, a definite one, namely, that corresponding

to the absolute maximum of the total entropy of the system,

must exist, which characterizes the absolutely stable equilibrium

of radiation. We now see that this indeterminateness is elimi-

nated by the last equation, which asserts that in thermodynamic

equilibrium the product q^^^ is a universal function. For it

results immediately therefrom that there is a definite value of

^j, for every diathermanous medium which is thus differentiated

from all other values. The physical meaning of this value is

derived directly from a consideration of the w^ay in W'hich this

equation w^as derived: it is that intensity of radiation which

exists in the diathermanous medium when it is in thermodynamic

equilibrium while in contact with a given absorbing and emitting

medium. The volume and the form of the second medium is

immaterial; in particular, the volume may be taken arbitrarily

small.

For a vacuum, the most diathermanous of all media, in which

the velocity of propagation 7 = c is the same for all rays, we can

therefore express the following law: The quantity

^, = \f{v,T) (38)

denotes that intensity of radiation which exists in any complete

vacuum when it is in a stationary state as regards exchange of

radiation with any absorbing and emitting substance, whose

amount may be arbitrarily small. This quantity ^^ regarded

as a function of v gives the so-called normal energy spectrum.



80 FIFTH LECTURE.

Let US consider, therefore, a vacuum surrounded by given

emitting and absorbing bodies of uniform temperature. Then,

in the course of time, there is estabhshed therein a normal energy

radiation Sty corresponding to this temperature. If now p^ be

the reflection coefficient of a wall for the frequency v, then of

the radiation ^^ falling upon the wall, the part p^.^^ will be re-

flected. On the other hand, if we designate by E^ the emission

coefficient of the wall for the same frequency v, the total radiation

proceeding from the wall will be:

p,t, + E,= ^„

since each bundle of rays possesses in a stationary state the in-

tensity' ^y. From this it follows that:

1 — pu

i. e., the ratio of the emission coefficient E^, to the capacity for

absorption (1 — p^.) of a given substance is the same for all

substances and equal to the normal intensity of radiation for

each frequency (Kirchoff). For the special case that p^ is equal

to 0, i. e., that the wall shall be perfectly black, we have:

that is, the normal intensity of radiation is exactly equal to the

emission coefficient of a black body. Therefore the normal

radiation is also called " black radiation." Again, for any given

body, in accordance with (39), we have:

Ey < Ki,,

i. e., the emission coefficient of a body In general is smaller than

that of a black body. Black radiation, thanks to W. Wien and

O. Lummer, has been made possible of measurement, through

a small hole bored in the wall bounding the space considered.

We proceed now to the treatment of the problem of deter-

mining the specific intensity ^^ of black radiation in a vacuum,
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as regards its dependence upon the frequency v and the temper-

ature T. In tlie treatment of this problem it will be necessary

to go further than we have previously done into those processes

which condition the production and destruction of heat rays;

that is, into the question regarding the act of emission and that

of absorption. On account of the complicated nature of these

processes and the difficulty of bringing some of the details into

connection with experience, it is certainly quite out of the ques-

tion to obtain in this manner any reliable results if the following

law cannot be utilized as a dependable guide in this domain: a

vacuum surrounded by reflecting walls in which arbitrary

emitting and absorbing bodies are distributed in any given

arrangement assumes in the course of time the stationary state

of black radiation, which is completely determined by a single

parameter, the temperature, and which, in particular, does not

depend upon the number, the properties and the arrangement of

the bodies. In the investigation of the properties of the state

of black radiation the nature of the bodies which are supposed

to be in the vacuum is therefore quite immaterial, and it is cer-

tainly immaterial whether such bodies actually exist anywhere

in nature, so long as their existence and their properties are

compatible throughout with the laws of electrodynamics and of

thermodynamics. As soon as it is possible to associate with

any given special kind and arrangement of emitting and absorbing

bodies a state of radiation in the surrounding vacuum which

is characterized by absolute stability, then this state can be no

other than that of black radiation. Making use of the freedom

furnished by this law, we choose among all the emitting and

absorbing systems conceivable, the most simple, namely, a single

oscillator at rest, consisting of two poles charged with equal

quantities of electricity of opposite sign which are movable

relative to each other in a fixed straight line, the axis of the

oscillator. The state of the oscillator is completely determined

by its moment /(O; i. e., by the product of the electric charge of

the pole on the positive side of the axis into the distance between
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the poles, and by its differential quotient with regard to the time:

The energy of the oscillator is of the following simple form:

U=m' + W', (40)

wherein K and L denote positive constants which depend upon

the nature of the oscillator in some manner into which we need

not go further at this time.

If, in the vibrations of the oscillator, the energy U remain ab-

solutely constant, we should have: dU = or:

Km + m) = 0,

and from this there results, as a general solution of the differential

equation, a pure periodic vibration:

/ = C cos {2iruot - t?),

wherein C and ^ denote the integration constants and ^o the

number of vibrations per unit of time:

Such an oscillator vibrating periodically with constant energy

would neither be influenced by the electromagnetic field sur-

rounding it, nor would it exert any external actions due to radi-

ation. It could therefore have no sort of influence on the heat

radiation in the surrounding vacuum.

In accordance with the theory of Maxwell, the energy of

vibration U of the oscillator by no means remains constant in

general, but an oscillator by virtue of its vibrations sends out

spherical waves in all directions into the surrounding field and,

in accordance with the principle of conservation of energy, if no

actions from without are exerted upon the oscillator, there must
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necessarily be a loss in the energy of vibration and, therefore, a

damping of the ami)litude of vibration is involved. In order to

find the amount of this damping we calculate the quantity of

energy which flows out through a spherical surface with the

oscillator at the center, in accordance with the law of Poynting.

However, we may not place the energy flowing outwards in

accordance with this law through the spherical surface in an

infinitely small interval of time dt equal to the energy radiated

in the same time interval from the oscillator. For, in general,

the electromagnetic energy does not always flow in the out-

ward direction, but flows alternately outwards and inwards, and

we should obtain in this manner for the quantity of the radia-

tion outwards, values which are alternately positive and nega-

tive, and which also depend essentially upon the radius of the

supposed sphere in such manner that they increase toward

infinity with decreasing radius—which is opposed to the funda-

mental conception of radiated energy. This energy will, more-

over, be only found independent of the radius of the sphere

when we calculate the total amount of energy flowing outwards

through the surface of the sphere, not for the time element

dt, but for a sufficiently large time. If the vibrations are purely

periodic, we may choose for the time a period; if this is not

the case, which for the sake of generality we must here assume,

it is not possible to specify a priori any more general criterion

for the least possible necessary magnitude of the time than that

which makes the energy radiated essentially independent of the

radius of the supposed sphere.

In this way we succeed in finding for the energy emitted from

the oscillator in the time from ttot-\- X the following expression:

pmt.
2 /•'+!

3?

If now, the oscillator be in an electromagnetic field which has the

electric component @z at the oscillator in the direction of its axis.
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then the energy absorbed by the oscillator in the same time is:

1 ^J dt.

Hence, the principle of conservation of energy is expressed in

the following form:

This equation, together with the assumption that the constant

47rVo

S(^L
= o- (42)

is a small number, leads to the follow^ing linear differential equa-

tion for the vibrations of the oscillator:

Kf-{-Lf-^J=(i.. (43)

In accordance with what precedes, in so far as the oscillator is

excited into vibrations by an external field (Ez, one may designate

it as a resonator which possesses the natural period vq and the

small logarithmic decrement (t. The same equation may be

obtained from the electron theory, but I have considered it an

advantage to derive it in a manner independent of any hypothesis

concerning the nature of the resonator.

Now, let the resonator be in a vacuum filled w^ith stationary

black radiation of specific intensity St^. How, then, does the

mean energy U of the resonator in a state of stationary vibration

depend upon the specific intensity of radiation ^^^ with the natural

period vq of the corresponding color? It is this question which

we have still to consider today. Its answer will be found by ex-

pressing on the one hand the energy of the resonator U and on

the other hand the intensity of radiation St,,'^ by means of the

component Q, of the electric field exciting the resonator. Now
however complicated this quantity may be, it is capable of
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development in any case for a very large time interval, from

t = to t = X, in the Fourier's series:

e. = £ C'n COS ^^- - t?„
^

,

(44)

and for this same time interval X the moment of the resonator

in the form of a Fourier's series may be calculated as a function

of t from the linear differential equation (43). The initial

condition of the resonator may be neglected if we only consider

such times t as are sufficiently far removed from the origin of

time 1^ = 0.

If it be now recalled that in a stationary state of vibration

the mean energy U of the resonator is given, in accordance with

(40), (41) and (42), by:

it appears arter substitution of the value of / obtained from the

differential equation (43) that:

wherein Cni? denotes the mean value of C„ for all the series of

numbers n which lie in the neighborhood of the value v^, i. e.,

for which V(^ is approximately = 1.

Now let us consider on the other hand the intensity of black

radiation, and for this purpose proceed from the space density

of the total radiation. In accordance with (30), this is:

Stt

C ^0
£^4V = £ ((Sx' + Qy' + (S/ + .SP.^ + €>/ + C%-), (46)

and therefore, since the radiation is isotropic, in accordance with

(44):
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If we write Aw/^ on the left instead of du, where An is a large

number, we get:

C „=i At OTT „=i

and obtain then by "spectral " division of this equation:

C -4L OTT no-(Are/2)

and, if we introduce again the mean value

1 no+(An/2) _
. y^ n 2 — fi 2

'' «o-(An/2)

we then get:

?>cZ -

647r'
"^"O ~ aA^2 ' ^nO-

By comparison with (45) the relation sought is now found:

^.0 = 5' U, (47)

which is striking on account of its simplicity and, in particular,

because it is quite independent of the damping constant a of the

resonator.

This relation, found in a purely electrodynamic manner,

between the spectral intensity of black radiation and the energy

of a vibrating resonator will furnish us in the next lecture, with

the aid of thermodynamic considerations, the necessary means of

attack in deriving the temperature of black radiation together

with the distribution of energy in the normal spectrum.
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Heat Radiation. Statistical Theory.

Following the preparatory considerations of the last lecture

we shall treat today the problem which we have come to recognize

as one of the most important in the theory of heat radiation:

the establishment of that universal function which governs the

energy distribution in the normal spectrum. The means for the

solution of this problem will be furnished us through the calcu-

lation of the entropy <S of a resonator placed in a vacuum filled

with black radiation and thereby excited into stationary vibra-

tions. Its energy U is then connected with the corresponding

specific intensity ^^ and its natural frequency v in the radiation

of the surrounding field through equation (47)

:

t, = -2 U. (48)
c

When S is found as a function of U, the temperature T of the

resonator and that of the surrounding radiation will be given by:

^^ = i
(49)

and by elimination of TJ from the last two equations, we then

find the relationship among ^^, T and v.

In order to find the entropy S of the resonator we will utilize

the general connection between entropy and probability, which

we have extensively discussed in the previous lectures, and inquire

then as to the existing probability that the vibrating resonator

possesses the energy U. In accordance with what we have seen

in connection with the elucidation of the second law through

87
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atomistic ideas, the second law is only applicable to a physical

system when we consider the quantities which determine the

state of the system as mean values of numerous disordered

individual values, and the probability of a state is then equal

to the number of the numerous, a priori equally probable, com-

plexions which make possible the realization of the state. Ac-

cordingly, we have to consider the energy C/ of a resonator

placed in a stationary field of black radiation as a constant mean

value of many disordered independent individual values, and

this procedure agrees with the fact that every measurement of

the intensity of heat radiation is extended over an enormous

number of vibration periods. The entropy of a resonator is

then to be calculated from the existing probability that the energy

of the radiator possesses a definite mean value U within a certain

time interval.

In order to find this probability, we inquire next as to the

existing probability that the resonator at any fixed time pos-

sesses a given energy, or in other words, that that point (the

state point) which through its coordinates indicates the state of

the resonator falls in a given "state domain." At the conclusion

of the third lecture (p. 57) we saw in general that this proba-

bility is simply measured through the magnitude of the cor-

responding state domain:

fd(p -d\l/,

in case one employs as coordinates of state the general coordinate

(p and the corresponding momentum i^. Now in general, the

energy of the resonator, in accordance with (40), is:

U = hKP + W\
If we choose / as the general coordinate ip and put, therefore,

if = j, then the corresponding impulse 4/ is equal

df
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and the energy U expressed as a function of <f and i/' is:

If now we desire to find the existing probability that the energy

of a resonator shall lie between U and t/ + Af7, we have to

calculate the magnitude of that state domain in the {(p, i/')-plane

which is bounded by the curves U = const, and C^+At^=const.

These two curves are similar and similarly placed ellipses and
the portion of surface bounded by them is equal to the difference

of the areas of the two ellipses. The areas are respectively U/u

and (U -\- AU)/v; consequently, the magnitude sought for the

state domain is: AU/v. Let us now consider the whole state

plane so divided into elementary portions by a large number of

ellipses, such that the annular areas between consecutive ellipses

are equal to each other; i. e., so that:

= const = h.
V

We thus obtain those portions AU of the energy which correspond

to equal probabilities and which are therefore to be designated

as the energy elements:

^ = i^U = hv. (50)

If the determination of the elementary domains is effected in

a manner quite similar to that employed in the kinetic gas theory,

there exist, with respect to the relationships there found, very

notable differences. In the first place, the state of the physical

system considered here, the resonator, does not depend as there

upon the coordinates and the velocities, but upon the energy

only, and this circumstance necessitates that the entropy of a

state depend, not upon the distribution of the state quantities

<p and 4/, but only upon the energy U. A further difference

consists in this, that we have to do in the case of molecules with

spacial mean values, but in the case of radiation with mean values

7
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as regards time. But this distinction may be disregarded when

we reflect that the mean time vakie of the energy ?7 of a given

resonator is obviously identical with the mean space value at a

given instant of time of a great number N of similar resonators

distributed in the same stationary field of radiation. Of course

these resonators must be placed sufficiently far apart in order

not directly to influence one another. Then the total energy of

all the resonators:

U^=NU (51)

is quite irregularly distributed among all the individual resonators,

and we have referred back the disorder as regards time to a

disorder as regards space.

We are now concerned with the probability W of the state

determined by the energy U^r of the N resonators placed in the

same stationary field of radiation; i. e., with the number of

individual arrangements or complexions which correspond to the

distribution of energy Ux among the N resonators. With this

in view, we subdivide the given total energy Ujf into its elements

e so that:

Ux = Pe. (52)

These P energy elements are to be distributed in every possible

manner among the N resonators. Let us consider, then, the

N resonators to be numbered and the figures written beside

one another in a series, and in such manner that the number

of times each figure appears is equal to the number of energy

elements which fall upon the corresponding resonator. Then

we obtain through such a number series a representation of a

fixed complexion, in which with each individual resonator there

is associated a definite energy. For example, if there are N
= 4 resonators and P = 6 energy elements present, then one of

the possible complexions is represented by the number series

113 3 3 4

which asserts that the first resonator contains two, the second 0,
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the third 3, and the fourth 1 energy element. The totality of

numbers in the series is 0, equal to the number of the energy

elements present. The arrangement of figures in the series is

immaterial for any complexion, since the mere interchange of

figures does not change the energy of a given resonator. The
number of all the possible different complexions is therefore

equal to the number of possible " combinations with repetition
"

of 4 elements with 6 classes:

(4 + 6-l)!^_9M^^
(4-l)!6! 3!6!

'

or, in our general case the probability sought is:

(.V+P- 1)!W =
(N- 1)!P!

We obtain, therefore, for the entropy S^roi the resonator system,

in accordance with equation (12), since N and P are large

numbers,

^If = k log ^jpj

and with the aid of Sterling's formula (16)

:

S^= k{(N+ P) log {N+ P) - NlogN- PlogPj.

If, in accordance with (52), we now write U^r/eior P, NU for U^^

in accordance with (51), and hv for e, in accordance with (50),

we obtain, after an easy transformation, for the mean entropy

of a single resonator:

--l(^+e'-('^3-^-r:
as the solution of the problem in hand.

We will now introduce the temperature T of the resonator,

and will express through T the energy U of the resonator and

also the intensity ^^ of the heat radiation related to it through a
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stationary state of energy exchange. For this purpose we utiHze

equation (49) and obtain then for the energy of the resonator:

hv
U ^hvlkT _ ^

It is to be observed that we have not here to do with a uniform

distribution of energy (cf. p. 68) among the various resonators.

For the specific intensity of the monochromatic plane polarized

ray of frequency v, we have, in accordance with (48)

:

hv^ 1

^v ~ ""2" ' phvtkT 1 • (5'j)

This expression furnishes for each temperature T the energy

distribution in the normal spectrum of a black body. A com-

parison with equation (38) of the last lecture furnishes us then

with the universal function:

If we refer the specific intensity of a monochromatic ray, not to

the frequency v, but, as is commonly done in experimental physics,

to the wave length X, then, since between the absolute values of

dv and d\ the relation exists:

, , c ' \d\\
\dv\ =

2 >

we obtain from

the relation:

X

E^d\\ = ^Adu\,

E ^'^ '

(54)

as the intensity of a monochromatic plane polarized ray of wave

length X which is emitted normally to the surface of a black

body in a vacuum at temperature T. For small values of XT



HEAT RADIATION. STATISTICAL THEORY. 93

(54) reduces to:

^A = S' • e-^^'l"''^, (55)

which expresses Wien's Displacement Law. For large values of

Xr on the other hand, there results from (54)

:

E, = -^, (5G)

a relation first established by Lord Rayleigh and which we may
here designate as the Rayleigh Law of Radiation.

From equation (30), taking account of (53), w^e obtain for the

space density of black radiation in a vaccuum:

(t) •

" = «^''

wherein

«= 1+^4 + ^4 + ^4+ ••• = 1-0823.

The Stefan-Boltzmann law is hereby expressed. In accordance

with the measurements of Kurlbaum, we have the constant

48xA:'' „ ^ ,^ erg
a = -^TT- • « = 7.0G1 • 10-^5 ^

(?]^
'

cm^ deg^
*

For that wave length X„i which corresponds in the spectrum

of black radiation to the maximum intensity of radiation E^

we have from equation (54)

:

(f) = 0.

Carrying out the diflferentiation, we get, after putting for brevity:

The root of this transcendental equation is

^ = 4.9G51;
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andXm7'= chlk^ = 6 is a constant (Wien's Displacement Law),

In accordance with the measurements of O. Lummer and E.

Pringsheim,

h = 0.294 cm • deg.

From this there follow the numerical values

k = 1.346 • 10~''|g^ , and h = 6.548 • IQ-^^ erg • sec.

The value found for k easily permits of the specification numeric-

ally, in the C.G.S. system, of the general connection between

entropy and probability, as expressed through the universal

equation (12). Thus, quite in general, the entropy of a physical

system is:

8 = 1.346 • 10-^« log W.

In the application to the kinetic gas theory w^e obtain from

equation (24) for the ratio of the molecular mass to the mol mass:

Jc

CO =-= 1.62- 10-24,
K

i. e., to one mol there corresponds l/oo = 6.175 • 10^^ molecules,

where it is supposed that the mol of oxygen

O2 = 32g.

Accordingly, the number of molecules contained in 1 cu. cm. of

an ideal gas at 0° Cels. and at atmospheric pressure is:

N = 2.76 • 10^^

The mean kinetic energy of the progressive motion of a molecule

at the absolute temperature T = I'm the absolute C.G.S. system,

in accordance with (27), is:

L= lk = 2.02 • 10-1^

In general, the mean kinetic energy of progressive motion of a
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molecule is expressed by the product of this number and the

absolute temperature T.

The elementary quantum of electricity, or the free electric

charge of a monovalent ion or electron, in electrostatic measure is:

e = 00 9G58 . 3 •
IQio = 4.69 • IQ-^".

This result stands in noteworthy agreement with the results of

the latest direct measurements of the electric elementary quantum

made by E. Rutherford and H. Geiger, and E. Regener.

—

Even if the radiation formula (54) here derived had shown itself

as valid with respect to all previous tests, the theory would still

require an extension as regards a certain point; for in it the

physical meaning of the universal constant h remains quite

unexplained. All previous attempts to derive a radiation formula

upon the basis of the known laws of electron theory, among which

the theory of J. H. Jeans is to be considered as the most general

and exact, have led to the conclusion that h is infinitely small*

so that, therefore, the radiation formula of Rayleigh possesses

general validity, but, in my opinion, there can be no doubt that

this formula loses its validity for short waves, and that the pains

which Jeans has taken to place^ the blame for the contradiction

between theory and experiment upon the latter are unwarranted.

Consequently, there remains only the one conclusion, that

previous electron theories suffer from an essential incompleteness

which demands a modification, but how deeply this modification

should go into the structure of the theory is a question upon

which views are still widely divergent. J. J. Thompson inclines

to the most radical view, as do J. Larmor, A. Einstein, and

with him I. Stark, w^ho even believe that the propagation of

electromagnetic waves in a pure vacuum does not occur precisely

in accordance with the ]\Iaxwellian field equations, but in

definite energy quanta hv. I am of the opinion, on the other

hand, that at present it is not necessary to proceed in so revolu-

1 In that the walls used in the measurements of hollow space radiations

must be diathermanous for the shortest waves.
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tionary a manner, and that one may come successfully through by

seeking the significance of the energy quantum hu solely in

the mutual actions with which the resonators influence one

another.^ A definite decision with regard to these important

questions can only be brought about as a result of further

experience.

^ It is my intention to give a complete presentation of these relations in

Volume 31 of the Annalen dor Phvsik.
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General Dynamics. Principle of Least Action.

Since I began three weeks ago today to depict for you the

present status of the system of theoretical physics and its

probable future development, I have continually sought to

bring out that in the theoretical physics of the future the most

important and the final division of all physical processes would

likely be into reversible and irreversible processes. In succeeding

lectures, with the aid of the calculus of probability and with the

introduction of the hypothesis of elementary disorder, we have

seen that all irreversible processes may be considered as reversible

elementary processes: in other words, that irreversibility does

not depend upon an elementary property of a physical process,

but rather depends upon the ensemble of numerous disordered

elementary processes of the same kind, each one of which in-

dividually is completely reversible, and upon the introduction

of the macroscopic method of treatment. From this standpoint

one can say quite correctly that in the final analysis all processes

in nature are reversible. That there is herein contained no con-

tradiction to the principle regarding the irreversibility of processes

expressed in terms of the mean values of elementary processes

of macroscopic changes of state, I have demonstrated fully in

the third lecture. Perhaps it will be appropriate at this place

to interject a more general statement. We are accustomed in

physics to seek the explanation of a natural process by the method

of division of the process into elements. We regard each com-

plicated process as composed of simple elementary processes,

and seek to analyse it through thinking of the whole as the sum

of the parts. This method, however, presupposes that through

97
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this division the character of the whole is not changed; in some-

what similar manner each measurement of a physical process

presupposes that the progress of the phenomena is not influenced

by the introduction of the measuring instrument. ^W^ have

here a case in which that supposition is not warranted, and where

a direct conclusion with regard to the parts applied to the whole

leads to quite false results. If we divide an irreversible process

into its elementary constituents, the disorder and along with it

the irreversibility vanishes; an irreversible process must remain

beyond the understanding of anyone who relies upon the funda-

mental law: that all properties of the whole must also be recog-

nizable in the parts. It appears to me as though a similar dif-

ficulty presents itself in most of the problems of intellectual life^.

Now after all the irreversibility in nature thus appears in a

certain sense eliminated, it is an illuminating fact that general

elementary dynamics has only to do with reversible processes.

Therefore we shall occupy ourselves in what follows with re-

versible processes exclusively. That which makes this procedure

so valuable for the theory is the circumstance that all known

reversible processes, be they mechanical, electrodynamical or

thermal, may be brought together under a single principle which

answers unambiguously all questions regarding their behavior.

This principle is not that of conservation of energy; this holds, it

is true, for all these processes, but does not determine unam-

biguously their behavior; it is the more comprehensive principle

of least action.

The principle of least action has grown upon the ground of

mechanics where it enjoys equal rank and regard with numerous

other principles; the principle of d'Alembert, the principle of

virtual displacement. Gauss's principle of least constraint, the

Lagrangian Equations of the first and second kind. All these

principles are equivalent to one another and therefore at bottom

are only different formularizations of the same laws; sometimes

one and sometimes another is the most convenient to use. But

the principle of least action has the decided advantage over all
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the other principles mentioned in that it connects together in a

single equation the relations between quantities which possess,

not only for mechanics, but also for electrodynamics and for

thermodynamics, direct significance, namely, the quantities:

space, time and potential. This is the reason why one may
directly apply the principle of least action to processes other

than mechanical, and the result has shown that such applica-

tions, as well in electrodynamics as in thermodynamics, lead to

the appropriate laws holding in these subjects. Since a repre-

sentation of a unified system of theoretical physics such as we
have here in mind must lay the chief emphasis upon as general

an interpretation as possible of physical laws, it is self evident

that in our treatment the principle of least action will be called

upon to play the principal role. I desire now to show how it is

applied in simple individual cases.

The general formularization of the principle of least action in

the interpretation given to it by Ilelmholz is as follows: among
all processes which may carry a certain arbitrarily given physical

system subject to given external actions from a given initial

position into a given final position in a given time, the process

which actually takes place in nature is that which is distinguished

by the condition that the integral

f\dH+ A)dt = 0, (57)

wherein an arbitrary displacement of the independent coordinates

(and velocities) is denoted by the sign 6, and A denotes the

infinitely small increase in energy (external work) which the

system experiences in the displacement 6. The function //

is the kinetic potential. When we speak here of the positions,

the coordinates, and the velocities of the configuration, we under-

stand thereby, not only those special ones corresponding to me-

chanical ideas, but also all the so-called generalized coordinates

with the quantities derived therefrom; and these may represent

equally well quantities of electricity, volumes, and the like.
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In the applications which we shall now make of the principle

of least action, we must first decide as to whether the gener-

ahzed coordinates which determine the state of the system con-

sidered are present in finite number or form a continuous infinite

manifold. We shall distinguish the examples here considered

in accordance with this viewpoint.

1. The Position {Configuration) is Determined by a Finite Number

of Coordinates.

In ordinary mechanics this is actually the case in every system

of a finite number of material points or rigid bodies among whose
coordinates there exist arbitrary fixed equations of condition.

If we call the independent coordinates (pi, <p2, • , then the

external work is:

A = ^id(pi + <i>o5<^2 + • • • = 5E, (58)

wherein $i, $2, • • • are the " external force components " which

correspond to the individual coordinates, and E denotes the

energy of the system. Then the principle of least action is

expressed by:

f/^ • E I r-5^1 + .-- 5^1 + *i5^i ) = 0.
Jto i,2,...\0(pi d(pi )

From this follow the equations of motion:

and so on for all the indices, 1, 2, • • •. Through multiplication

of the individual equations by ^1, ^2, • • • addition and integra-

tion with respect to time, there results the equation of conserva-

tion of energy, whereby the energy E is given by the expression:

^= E ^iT--//. (60)
1,2,... 0^1

In ordinary mechanics 11 = L — U, U L denote the kinetic and
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U the potciitiiil energy. Since i is a homogeneous function of

the second degree with respect to the <^'s, it follows from (GO)

that

:

E^2L- II = L+U.

But this expression holds by no means in general.

We pass now to the consideration of the quasi-stationary

motion of a system of linear conductors carrying simple closed

galvanic currents. The state of tlie system is given by the

position and the velocities of the conductors and by the cur-

rent densities in each of the same. The coordinates referring

to the position of the first conductor may be represented by

<Pi, <Pi, <Pi'y •? corresponding designations holding for the

remaining conductors. We inquire now as to the increase of

energy or the external work, A, which corresponds to a virtual

displacement of all coordinates. Energy may be conveyed to

the system through mechanical actions and through electro-

magnetic induction as well. The former corresponds to mechan-

ical work, the latter to electromotive work. The former will

be of the familiar form

:

^ld(pi + ^I'difi + • • • + <i>25^2 + • • •.

If we denote by Ei, E-i, • • • the electromotive forces which

are induced in the individual conductors through external

agencies (e. g., moving magnets which do not belong to the

system), then the electromotive work done from outside upon

the currents in the conductors of the sj'stem is

:

Eid€i + £"2562 + • • •

,

if 5ei, 5e2, • • • denote the quantities of electricity which pass

through cross sections of the conductors due to infinitelv small

virtual currents. The finite current densities will then be denoted

by €i, €-2, •••. The electrical state of the first conductor is

thus determined in general by the current density ^i, the

mechanical state (position and velocity) by the coordinates
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<Pi, (fi, ^\" , ' • • and the corresponding velocities <pi, <pi, ^/', • • •

.

The coordinates €i, €2, • • • are so-called " cyclical " coordinates,

since the state does not depend upon their momentary values,

but only upon their differential quotients with respect to time,

just as, for example, the state of a body rotatable about an axis

of symmetry depends only upon the angular velocity, and not

upon the angle of rotation. The scheme of notation adopted

permits of the direct application of the above formularization

of the principle of least action to the case here considered.

Thus // = 11^ + 11^, where H^, the mechanical potential, depends

only upon the ^'s and ^'s, while the electrokinetic potential 11^

takes the following form

:

H^ = 2-'^ll^l^ H~ Lnil^i + Li3€i€3 + • • • + 2-^2262^ + • • ••

The quantities in, Ln, iis • • • L22, • • • the coefficients of self

induction and mutual induction depend, however, in a definite

manner upon the coordinates of position cpi, <pi, (pi", • • • , <p2,

<P'i , ^2", • • ••

In accordance with (59), we have for the motion of the first

conductor:

dt \ d(pi J d(fx d(pi
*

with corresponding equations for cpi, (pi\ • • • , and for the electric

current in it:

--I(S)--
The laws for the mechanical (ponderomotive) actions may be

condensed into the statement that, in addition to the ordinary

force upon the first conductor expressed by #1, there is a me-

chanical force

dH, _ 1 dLn dLi2
. . . dLu

,

d<pi L a<p\ Oip\ Oifi

which is composed of an action of the current upon itself (first

term) and of the actions of the remaining currents upon it

(following terms).
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The laws of electrical action, on the other hand, are expressed

by the statement, that to the external electromotive force Ei

in the first conductor there is added the electromotive force

which likewise is composed of an action of the current upon itself

(self induction) and of the inducing actions of the remaining

currents, and that these two forces compensate each other.

The galvanic conductance or the galvanic resistance is not

contained in these equations because the corresponding energy,

Joule heat, is produced in an irreversible manner, and irreversible

processes are not represented by the principle of least action.

One can formally include this action, likewise any other irre-

versible action, in accordance w^ith the procedure of Helmholz,

by introducing it as an external force, in the present case as

the electromotive force due to the resistance ic, which operates

to cause a diminution in the energy of the system. For an

infinitely small element of time, the amount of this energy change

is:

— {wii^i + Wit'i^ + tuzez" + • • •) • dt

= — ("'iei(/ei + «'2e2(/€2 + • • •)•

Consequently, since the external work Eidex + Eide-i + • • • now

includes the Joule heat, the external force components E\, E2, • • •

in the electromotive equations must be increased by the addi-

tional terms — Wi€i, — lihh, ' .—

The application of the principle of least action to thermo-

dynamic processes is of special interest, because the importance

of the question relating to the fixing of the generalized coor-

dinates, which determine the state of the system, here becomes

prominent. From the standpoint of pure thermodynamics,

the variables which determine the state of a body can certainly

be quite arbitrarily chosen, e. g., in the case of a gas of invariable

constitution any two of the following quantities may be chosen
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as independent variables and all others expressed through them:

volume V, temperature T, pressure P, energy E, entropy S. In

the present case, the matter is quite different. If we inquire, in

order to apply the principle of least action, with regard to the

energy change or the total work A which will be done uj)on the

gas from without in an infinitely small virtual displacement, it

may be written in the form :

A = - p dV + T • 8S.

TdS is the heat added from without, — i)8]^ the mechanical work

furnished from without. In order to bring this into agreement

with the general formula for external work (58)

:

A = $i5^i + $25^2

it becomes necessary now to choose V and S as the generalized

coordinates of state and, therefore, to identify with them the

previously employed quantities <pi and (p2. Then — p and T
are the generalized force components $i and $2- Now, since in

thermodynamics every reversible change of state proceeds with

infinite slowness, the velocity components V and S, and in general

all differential coefficients with respect to time, are to be placed

equal to zero, and the principle of least action (59) reduces to

:

0(p

and, therefore, in our case:

-P+(|f)^.-0 and T+.(^

Further, in accordance with (60):

E= - H.

Now these equations are actually valid, since they only present

other forms of the relation

,^ dE + pdV
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The view here presented is fuii<lameutiilly tluit which is given

in the energetics of Much, Ostwakl, Ilehn, and Wiedehurg. The
generaHzed coordinates V and S are in this theory the "capac-

ity factors," — p and T tlie "intensity factors."^ So h)ng as

one Hmits himself to an irreversible process, nothing stands in

the way of carrying out this method completely, nor of a gener-

alization to include chemical processes.

In opposition to it there is an essentially different method of re-

garding thermodynamic processes, which in its complete general-

ity was first introduced into physics by Ilelmholtz. In accordance

with this method, one generalized coordinate is V, and the other

is not S, but a certain cyclical coordinate—we shall denote it,

as in the previous example, by e—which does not appear itself

in the expression for the kinetic potential H and only appears

through its differential coefficient, e; and this differential coef-

ficient is the temperature T. Accordingly, 11 is dependent only

upon V and T. The equation for the total external work, in

accordance with (58), is:

A= - pdV-\- Ede,

and agreement with thermodynamics is obviously found if we
set:

Ede = TdS, and also: Ede = TdS, Edt = dS.

The equations (59) for the principle of least action become:

or

d ( „ „ j
= Edt = dS,

1 The breaking up of the energy differentials into two factors by the ex-

ponents of energetics is by no means associated with a special property of

energy, but is simply an expression for the elementary law that the differential

of a function F{x) is equal to the product of the differential dx by the deriva-

tive Fix).

8
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or by integration

:

to an additive constant, which we may set equal to 0. For the

energy there results, in accordance with (60)

:

and consequently:

H= - {E- TS).

H is therefore equal to the negative of the function which

Helmholz has called the " free energy " of the system, and the

above equations are known from thermodynamics.

Furthermore, the method of Helmholz permits of being carried

through consistently, and so long as one limits himself to the

consideration of reversible processes, it is in general quite im-

possible to decide in favor of the one method or the other. How-
ever, the method of Helmholz possesses a distinct advantage

over the other which I desire to emphasize here. It lends itself

better to the furtherance of our endeavor toward the unification

of the system of physics. In accordance with the purely energetic

method, the independent variables V and S have absolutely

nothing to do with each other; heat is a form of energy which is

distinguished in nature from mechanical energy and which in

no way can be referred back to it. In accordance with Helmholz,

heat energy is reduced to motion, and this certainly indicates an

adv^ance which is to be placed, perhaps, upon exactly the same

footing as the advance which is involved in the consideration of

light waves as electromagnetic waves.

To be sure, the view of Helmholz is not broad enough to include

irreversible processes; with regard to this, as we have earlier

stated in detail, the introduction of the calculus of probability

is necessary in order to throw light on the question. At the

same time, this is also the real reason that the exponents of
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energetics will have nothing to do with the strict observance

of irreversible processes, and they either declare them as doubtful

or ignore them completely. In reality, the facts of the case are

quite the reverse; irreversible processes are the only processes

occurring in nature. Reversible processes form only an ideal

abstraction, which is very valuable for the theory, but which is

never completely realized in nature.

II. The Generalized Coordinates of State Form a Continuous

Manifold.

The laws of infinitely small motions of perfectly elastic bodies

furnish us with the simplest example. The coordinates of state

are then the displacement components, t)x, 'Oy, bz, of a material

point from its position of equilibrium (.r, y, z), considered as a

function of the coordinates x, y, z. The external work is given

by a surface integral

:

A =j'da{XM. + YMv + ZMz)

{da, surface element; v, inner normal). The kinetic potential

is again given by the difference of the kinetic energy L and the

potential energy U:

H= L- U.

The kinetic energy is:

X=/'~^(t)/+t)/+t..2),

wherein dr denotes a volume element, k the volume density.

The potential energy U is likewise a space integral of a homo-

geneous quadratic function / which specifies the potential energy

of a volume element. This depends, as is seen from purely

geometrical considerations, only upon the 6 "strain coefficients:"

dx ~ •'"'
dy ~ y^ dz ~ ^''

d\)y d)y, _ _ ^ , ^0^ _ _ ^^ I ^ _ _
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In general, therefore, the function / contains 21 independent

constants, which characterize the whole elastic behavior of the

substance. For isotropic substances these reduce on grounds

of symmetry to 2. Substituting these values in the expression

for the principle of least action (57) we obtain:

If we put for brevity

:

^f-Y-7 -^-Z-X --^-Y- xy

it turns out, as the result of purely mathematical operations in

which the variations St)^, 5d^, • • • and likewise the variations

hxx, hxy, • • • are reduced through suitable partial integration with

respect to the variations 5^^, 5^y, • • • , that the conditions within

the body are expressed by:

7C- I

dXx dXy dX,

dx ay dz

and at the surface, by:

X^, = Xx cos vx + A'j, cos vy + X^ cos vz, • • •

as is known from the theory of elasticity. The mechanical sig-

nificance of the quantities A'^, Yy, • • • as surface forces follows

from the surface conditions.

For the last application of the principle of least action we will

take a special case of electrodynamics, namely, electrodynamic

processes in a homogeneous isotropic non-conductor at rest, e. g.,

a vacuum. The treatment is analogous to that carried out in the

foregoing example. The only difference lies in the fact that in
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electrodynamics the dependence of the potential energy U upon

the generalized coordinate t> is somewhat different than in elastic

phenomena.

We therefore again put for the external work:

A =fd(T(XMx + YMy + ^>.), (Gl)

and for the kinetic potential

:

H = L- U,

wherein again

:

L=JdT\ (\)/ + \)y' + tor) = Jdr - (6)2.

On the other hand, we write here

:

U= fdT~{cm\t))\

Through these assumptions the dynamical equations including

the boundary conditions are now completely determined. The

principle of least action (57) furnishes:

fdt{fdThi\),d\);, + • • •) - fdrhicnrl \)8 curl, to + • • •)

+ fda{XM.+ •••)} = 0.

From this follow, in quite an analogous way to that employed

above in the theory of elasticity, first, for the interior of the

non-conductor:

/d cm\y to d curl^ to\

or more briefly

Jct^ = — h curl curl to, (62)

and secondly, for the surface

:

.Y^. = ^(curU to • cos vy — curly "o • cos vz), • •
• (63)

These equations are identical with the known electrodynamical

equations, if we identify L with the electric, and U with the
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magnetic energy (or conversely). If we put

L = ^^j dr • €(&'' and U = ~ f dr - n^f,

(@ and ^, the field strengths, e, the dielectric constant, fi, the

permeability) and compare these values with the above expres-

sions for L and U we may write:

It follows then, by elimination of b, that:

(64)

^ = - \~i - ^url G,
leh

IjxJc

and further, by substitution of 6 and curl t) in equation (62) found

above for the interior of the non-conductor, that:

fiih@ = -W^ curl §.

Comparison with the known electrodynamical equations ex-

pressed in Gaussian units:

/Xv*^ = — c curl a, ed = c curl ^
(c, velocity of light in vacuum) results in a complete agreement,

if we put:

c jeh , c fxh-=\-j and -=\~r'

From either of these two equations it follows that

:

k tji
'

the square of tlie velocity of propagation.

We obtain from (61) for the energy entering the system from

without

:

dt J da{Xj3^ + Fa + ^v^z),
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or, taking account of the surface equation (G3):

dt • J (hh{ (curU U cos uy — curl^ t) cos i'z)'6x + • • • },

an expression which, upon substitution of the values of 6 and curl

b from (64), turns out to be identical with the Poynting energy

current.

We have thus by an application of the principle of least action

with a suitably chosen expression for the kinetic potential H
arrived at the known IVIaxwellian field equations.

Are, then, the electromagnetic processes thus referred back to

mechanical processes? By no means; for the vector t) employed

here is certainly not a mechanical quantity. It is moreover not

possible in general to interpret b as a mechanical quantity, for

instance, I) as a displacement, 6 as a velocity, curl b as a rotation.

Thus, e. g., in an electrostatic field t) is constant. Therefore,

b increases with the time beyond all limits, and curl t) can

no longer signify a rotation.^ While from these considerations

the possibility of a mechanical explanation of electrical phenom-

ena is not proven, it does appear, on the other hand, to be un-

doubtedly true that the significance of the principle of least

action may be essentially extended beyond ordinary mechanics

and that this principle can therefore also be utilized as the

foundation for general dynamics, since it governs all known re-

versible processes.

^ With regard to the impossibility of interpreting electrodj'namic processes

in terms of the motions of a continuous medium, cf. particularly, H. Witte:

tJber den gegenwartigen Stand der Frage nach einer mochanischen Erklarung

der elektrischen Erscheinungen " Berlin, 1906 (E. Ebering).
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General Dynamics. Principle of Relativity.

In the lecture of yesterday we saw, by means of examples,

that all continuous reversible processes of nature may be repre-

sented as consequences of the principle of least action, and

that the whole course of such a process is uniquely determined

as soon as we know, besides the actions which are exerted upon

the system from without, the kinetic potential 11 as a function

of the generalized coordinates and their differential coefficients

with respect to time. The determination of this function

remains then as a special problem, and we recognize here a

rich field for further theories and hypotheses. It is my purpose

to discuss with you today an hypothesis which represents a mag-

nificent attempt to establish quite generally the dependency of

the kinetic potential // upon the velocities, and which is commonly

designated as the principle of relativity. The gist of this prin-

ciple is: it is in no wise possible to detect the motion of a

body relative to empty space; in fact, there is absolutely

no physical sense in speaking of such a motion. If, therefore,

two observers move with uniform but different velocities, then

each of the two with exactly the same right may assert that with

respect to empty space he is at rest, and there are no physical

methods of measurement enabling us to decide in favor of the one

or the other. The principle of relativity in its generalized form

is a very recent development. The preparatory steps were taken

by H. A. Lorentz, it was first generally formulated by A. Einstein,

and was developed into a finished mathematical system by

H. Minkowski. However, traces of it extend quite far back

into the past, and therefore it seems desirable first to say some-

thing concerning the history of its development.

112
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The principle of relativity has been recognized in mechanics

since the time of Galilee and Newton. It is contained in the

form of the simple equations of motion of a material point, since

these contain only the acceleration and not the velocity of

the point. If, therefore, we refer the motion of the point,

first to the coordinates .r, y, z, and again to the coordinates

x', y', z' of a second system, whose axes are directed parallel

to the first and which moves with the velocity v in the direc-

tion of the positive a:-axis:

.r' = .r — vt, y' = y, z' = z, (G5)

and the form of the equations of motion is not changed in the

slightest. Nothing short of the assumption of the general val-

idity of the relativity principle in mechanics can justify the inclu-

sion by physics of the Copernican cosmical system, since through

it the independence of all processes upon the earth of the progres-

sive motion of the earth is secured. If one were obliged to take

account of this motion, I should have, e. g., to admit that the piece

of chalk in my hand possesses an enormous kinetic energy, corre-

sponding to a velocity of something like 30 kilometers per second.

It was without doubt his conviction of the absolute valid-

ity of the principle of relativity wdiich guided Heinrich Hertz

in the establishment of his fundamental equations for the elec-

trodynamics of moving bodies. The electrodynamics of Hertz

is, in fact, wholly built upon the principle of relativity. It recog-

nizes no absolute motion with regard to empty space. It speaks

only of motions of material bodies relative to one another. In

accordance with the theory of Hertz, all electrodynamic pro-

cesses occur in material bodies; if these move, then the electro,

dynamic processes occurring therein move with them. To speak

of an independent state of motion of a medium outside of material

bodies, such as the ether, has just as little sense in the theory of

Hertz as in the modern theory of relativity.

But the theory of Hertz has led to various contradictions with

experience. I will refer here to the most important of these.



114 EIGHTH LECTURE.

Fizeau brought (1851) into parallelism a bundle of rays origi-

nating in a light source L by means of a lens and then brought it

to a focus by means of a second lens upon a screen S (Fig. 2).

L<

V

s

Fig. 2.

In the path of the parallel liglit rays between the two lenses he

placed a tube system of such sort that a transparent liquid could

be passed through it, and in such manner that in one half (the

upper) the light rays would pass in the direction of flow of the

liquid while in the other half (the lower), the rays w^ould pass in

the opposite direction.

If now a liquid or a gas flow through the tube system with the

velocity v, then, in accordance with the theory of Hertz, since

light must be a process in the substance, the light waves must

be transported with the velocity of the liquid. The veloc-

ity of light relative to L and S is, therefore, in the upper part

^0 + V, and the lower part qo — v, if go denote the velocity

of light relative to the liquid. The difference of these two

velocities, 2v, should be observable at *S through corresponding

interference of the lower and the upper light rays, and quite inde-

pendently of the nature of the flowing substance. Experiment

did not confirm this conclusion. Moreover, it showed in gases

generally no trace of the expected action; i. e., light is propagated

in a flowing gas in the same manner as in a gas at rest. On the

other hand, in the case of liquids an effect was certainly indicated,
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but notably smaller in amount than that demanded by the theory

of Hertz. Instead of the expected velocity difl'erence 2v, the

difference 2v{\ — l/n-) only was observed, where n is the re-

fractive index of the liquid. The factor (1 — l/ii^) is called

the Fresnel coefficient. There is contained (for n = 1) in this

expression the result obtained in the case of gases.

It follows from the experiment of Fizeau that, as regards

electrodynamic processes in a gas, the motion of the gas is

practically immaterial. If, therefore, one holds that electro-

dynamic processes require for their propagation a substantial

carrier, a special medium, then it must be concluded that this

medium, the ether, remains at rest when the gas moves in an ar-

bitrary manner. This interpretation forms the basis of the elec-

trodynamics of Lorentz, involving an absolutely quiescent ether.

In accordance with this theory, electrodynamic phenomena have

only indirectly to do with the motion of matter. Primarily all

electrodynamical actions are propagated in ether at rest. Matter

influences the propagation only in a secondary way, so far as it

is the cause of exciting in greater or less degree resonant vibrations

in its smallest parts by means of the electrodynamic waves

passing through it. Now, since the refractive properties of sub-

stances are also influenced through the resonant vibrations of its

smallest particles, there results from this theory a definite con-

nection between the refractive index and the coefficient of Fresnel,

and this connection is, as calculation shows, exactly that de-

manded by measurements. So far, therefore, the theory of

Lorentz is confirmed through experience, and the principle of

relativity is divested of its general significance.

The principle of relativity was immediately confronted by

a new difficulty. The theory of a quiescent ether admits the

idea of an absolute velocity of a body, namely the velocity

relative to the ether. Therefore, in accordance with this theory,

of two observers A and B who are in empty space and who
move relatively to each other with the uniform velocity v, it would

be at best possible for only one rightly to assert tliat he is at
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rest relative to the ether. If we assume, e. g., that at the moment

at which the two observers meet an instantaneous optical signal,

a flash, is made by each, then an infinitely thin spherical wave

spreads out from the place of its origin in all directions through

empty space. If, therefore, the observer A remain at the center

of the sphere, the observer B will not remain at the center and,

as judged by the observer B, the light in his own direction of

motion must travel (with the velocity c — v) more slowly than

in the opposite direction (with the velocity c -\- v), or than in a

perpendicular direction (with the velocity Vc^ — v~) (cf. Fig. 3).

>a;

Fig. 3.

Under suitable conditions the observer B should be able to

detect and measure this sort of effect.

This elementary consideration led to the celebrated attempt

of Michelson to measure the motion of the earth relative to the

ether. A parallel beam of rays proceeding from L (Fig. 4)

falls upon a transparent plane parallel plate P inclined at 45°,

by which it is in part transmitted and in part reflected. The

transmitted and reflected beams are brought into interference

by reflection from suitable metallic mirrors S\ and S2, which are

removed by the same distance I from P. If, now, the earth with

the whole apparatus moves in the direction PSi with the velocity

V, then the time which the light needs in order to go from P to

8\ and back is:
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c- v^ c+ v~ c\^^ c"-^
'"

)-

On the other hand, the time which the hght needs in order to pass

from P to (82 and back to P is:

I I _ 2/ / 1 ^2
\

If, now, the whole apparatus be turned through a right angle, a

noticeable displacement of the interference bands should result,

Si

Fig. 4.

since the time for the passage over the path PS^ is now longer.

No trace was observed of the marked effect to be expected.

Now, how will it be possible to bring into line this result,

established by repeated tests with all the facilities of modern

experimental art? E. Cohn has attempted to find the neces-

sary compensation in a certain influence of the air in which

the rays are propagated. But for anyone who bears in mind the

great results of the atomic theory of dispersion and who does

not renounce the simple explanation which this theory gives for

the dependence of the refractive index upon the color, without

introducing something else in its place, the idea that a moving
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absolutely transparent medium, whose refractive index is abso-

lutely = 1, shall yet have a notable influence upon the velocity

of propagation of light, as the theory of Cohn demands, is not

possible of assumption. For this theory distinguishes essentially

a transparent medium, whose refractive index is = 1, from a

perfect vacuum. For the former the velocity of propagation of

light in the direction of the velocity v of the medium with relation

to an observer at rest is

for a vacuum, on the other hand, q = c. In the former medium,

Cohn's theory of the Michelson experiment predicts no effect,

but, on the other hand, the Michelson experiment should give

a positive effect in a vacuum.

In opposition to E. Cohn, H. A. Lorentz and FitzGerald

ascribe the necessary compensation to a contraction of the whole

optical apparatus in the direction of the earth's motion of the

order of magnitude v^/c^. This assumption allows better of the

introduction again of the principle of relativity, but it can first

completely satisfy this principle when it appears, not as a neces-

sary hypothesis made to fit the present special case, but as a

consequence of a much more general postulate. We have to

thank A. Einstein for the framing of this postulate and H. Min-

kowski for its further mathematical development.

Above all, the general principle of relativity demands the

renunciation of the assumption which led H. A. Lorentz to the

framing of his theory of a quiescent ether; the assumption

of a substantial carrier of electromagnetic waves. For, when

such a carrier is present, one must assume a definite velocity of a

ponderable body as definable with respect to it, and this is exactly

that which is excluded by the relativity principle. Thus the

ether drops out of the theory and with it the possibility of

mechanical explanation of electrodynamic processes, i, e., of re-

ferring them to motions. The latter difficulty, however, does
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not signify here so much, since it was already known before,

that no mechanical theory founded upon the contiiuious motions

of the ether permits of being completely carried through (cf. p.

111). In place of the so-called free ether there is now substituted

the absolute vacuum, in which electromagnetic energy is inde-

pendently propagated, like ponderable atoms. I believe it follows

as a consequence that no physical properties can be consistently

ascribed to the absolute vacuum. The dielectric constant and the

magnetic permeability of a vacuum have no absolute meaning,

only relative. If an electrodynamic process were to occur in a

ponderable medium as in a vacuum, then it would have absolutely

no sense to distinguish between field strength and induction.

In fact, one can ascribe to the vacuum any arbitrary value of the

dielectric constant, as is indicated by the various systems of

units. But how is it now with regard to the velocity of propa-

gation of light? This also is not to be regarded as a property of

the vacuum, but as a property of electromagnetic energy which

is present in the vacuum. Where there is no energy there can

exist no velocity of propagation.

With the complete elimination of the ether, the opportunity is

now present for the framing of the principle of relativity. Ob-

viously, we must, as a simple consideration shows, introduce

something radically new. In order that the moving observer

B mentioned above (Fig. 3, p. 116) shall not see the light

signal given by him travelling more slowly in his own direction

of motion (with the velocity c — v) than in the opposite direction

(with the velocity c+ 1'), it is necessary that he shall not identify

the instant of time at which the light has covered the distance

c— vin the direction of his own motion with the instant of time at

which the light has covered the distance c -\- v in the opposite

direction, but that he regard the latter instant of time as later.

In other words: the observer B measures time differently from

the observer A. This is a priori quite permissible; for the

relativity principle only demands that neither of the two observers

shall come into contradiction with himself. However, the
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possibility is left open that the specifications of time of both

observers may be mutually contradictory.

It need scarcely be emphasized that this new conception of the

idea of time makes the most serious demands upon the capacity

of abstraction and the projective power of the physicist. It

surpasses in boldness everything previously suggested in specu-

lative natural phenomena and even in the philosophical theories

of knowledge: non-euclidean geometry is child's play in com-

parison. And, moreover, the principle of relativity, unlike non-

euclidean geometry, which only comes seriously into consider-

ation in pure mathematics, undoubtedly possesses a real physical

significance. The revolution introduced by this principle into

the physical conceptions of the world is only to be compared in

extent and depth with that brought about by the introduction

of the Copernican system of the universe.

Since it is difficult, on account of our habitual notions con-

cerning the idea of absolute time, to protect ourselves, without

special carefully considered rules, against logical mistakes in the

necessary processes of thought, we shall adopt the mathematical

method of treatment. Let us consider then an electrodynamic

process in a pure vacuum; first, from the standj)oint of an ob-

server A ; secondly, from the standpoint of an observer B, who

moves relatively to observer A with a velocity v in the direction

of the a--axis. Then, if A employ the system of reference x, y, z, t,

and B the system of reference x', y', z', f, our first problem is to

find the relations among the primed and the unprimed quantities.

Above all, it is to be noticed that since both systems of reference,

the primed and the unprimed, are to be like directed, the equa-

tions of transformation between corresponding quantities in the

two systems must be so established that it is possible through

a transformation of exactly the same kind to pass from the first

system to the second, and conversely, from the second back to

the first system. It follows immediately from this that the velocity

of light c' in a vacuum for the observer B is exactly the same

as for the observer A. Thus, if c' and c are different, c' > c,
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say, it would follow that: if one passes from one observer .1 to

another observer B who moves with respect to A with uniform

velocity, then he would find the velocity of propagation of light

for B greater than for A. This conclusion must likewise hold

quite in general independently of the direction in which B moves

with respect to A, because all directions in space are equivalent

for the observer A. On the same grounds, in passing from B to

A, c must be greater than c', for all directions in space for the

observer B are now equivalent. Since the two inequalities con-

tradict, therefore c' must be equal to c. Of course this impor-

tant result may be generalized immediately, so that the totality

of the quantities independent of the motion, such as the

velocity of light in a vacuum, the constant of gravitation

between two bodies at rest, every isolated electric charge, and

the entropy of any physical system possess the same values for

both observers. On the other hand, this law does not hold for

quantities such as energy, volume, temperature, etc. For these

quantities depend also upon the velocity, and a body which is

at rest for A is for B a moving body.

We inquire now with regard to the form of the equations

of transformation between the unprimed and the primed coor-

dinates. For this purpose let us consider, returning to the

previous example, the propagation, as it appears to the two

observers A and B, of an instantaneous signal creating an infi-

nitely thin light wave which, at the instant at which the observ-

ers meet, begins to spread out from the common origin of

coordinates. For the observer A the wave travels out as a

spherical wave:

a-2 + 2/2 + 2^ - c'e = 0. (66)

For the second observer B the same wave also travels as a

spherical w^ave with the same velocity:

a-'' + y'' + z'' - cY- = 0; (67)

for the first observer has no advantage over the second observer.
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B can exactly witli tlio same right as A assort that he is at rest

at the center of the splierical wave, and for B, after unit time, the

x'

Fig. 5.

wave appears as in Fig. 5, whik^ its appearance for the observer

A after unit time, is represented by Fig. 3 (p. IIC).^

The equations of transformation must therefore fulfill the

condition that the two last equations, which represent the same

physical process, are compatible with each other; and further-

more: the passage from the unjn'imed to the primed quantities

must in no wise be distinguished from the reverse passage from

the primed to the unprimed quantities. In order to satisfy

these conditions, we generalize the equations of transformation

(05), set up at the beginning of this lecture for the old mechanical

principle of relativity, in the following manner:

.r' = K\.r — I't), I/' — \t/, z' = I.IZ, f = vf + p.r.

Iloro I' denotes, as formerly, the velocity of the observer B relative

to .1 and the constants k, X. yu, r. p arc yet to be determined. We
must have:

.r = K ^.r — r / ), y = X i/ , z = n z , t = i- 1 -\- p x .

It is now easv to see that X and X' nuist botli = 1. For, if. e. jj.,

* The circumstance that the signal is a tinite one, however small the time

may be. has significance only as reganis the thickness of the spherical layer

and not for the conclusions hero under consideration.
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X l»(; ^rcjitcr tliiui I, tlicrji X' iiiiist ulso he; p^n'uUtr tliiiii I
;
lor tin;

two tnuisrormutioii.s arc; (•(jiiiviilcMf; vvitli r<'^iir<l to tli(; ;// axis.

Ill piirticiil.ir, it is inii^ossihh; tli;it X ;um1 X' <l<p(ii(| upon tlir;

direction ol" motion (»!" tin; (>tli(;r ohscuvcr. lint now, hincc, in

uccordanco witli v\li;i,t prcccidcs, X --
I /X', cadi of the two

inequalities contrjulict and tliercl'on; X - X' = 1 ; likewise!,

fi = f/ — 1. TIk; eondition Tor identity of tiie two hpherieul

waves then d<inands that the exi>resHi(>n (^00):

x' -f if + z' - cH^

heeoiiK;, through the traii:J'oiniution (if <oordinates, identical with

the expression (07j

:

/2
I /2 I /2 Vi/2

X + y -j- z — r/t
,

and from this the «-f)ii;i,tion ; of truiiJ'ormation folhiW without

amhij^Mjity

:

x' = k(x - vi). If'
- y, t! - z, i' = At- ^.^x\

, (08)

wherein

_ c

Conversely:

x= k{x' -VtA'), y = y', z=-z', i kU' + "^.yy (OU)

These equations j)ermit f|uitr: in general of the f;assaf^<; from the

system of rcfcrcti'-e of <i\\c ol> cr/er to that of the (jtlier (II. A.

Tifjn-ntzj, ;i,nd the prIiH-Ij>le of r<l;i,tivity asserts that all f>rofesses

in njitiirc; (jecur in ;i.f' ord;u)'-e witli tlx; same laws and with the

same constants for l^oth ohs(;rv(;rs (A. Kinstein). Mathernat-

if-aliy considered, the <f| nations of transformation correspond to

a rot;i,lioii in the fr,i;r (hmensional system of rc-ference (x,y,z,'u:t)

throngli the ini;i.;_'iii;ir/ lui^de a/ctg ({(v/c)) (U. Minkowski).

Accordingly, the jMlii'IpIe <)\' relativity simply teaches that there

is in the four dim(ii-,ion;i.l system of space anrl time no special

citaracteristic direction, and any douhts concerning the general
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validity of the principle are of exactly the same kind as those

concerning the existence of the antipodians upon the other side

of the earth.

We will first make some applications of the principle of

relativity to processes which we have already treated above.

That the result of the Michelson experiment is in agreement

with the principle of relativity, is immediately evident; for, in

accordance with the relativity principle, the influence of a

uniform motion of the earth upon processes on the earth can

under no conditions be detected.

We consider now the Fizeau experiment with the flowing

liquid (see p. 114). If the velocity of propagation of light in

the liquid at rest be again qo, then, in accordance with the

relativity principle, qo is also the velocity of the propagation

of light in the flowing liquid for an observer who moves with

the liquid, in case we disregard the dispersion of the liquid;

for the color of the light is different for the moving observer. If

we call this observer B and the velocity of the liquid as above,

V, we may employ immediately the above formulae in the cal-

culation of the velocity of propagation of light in the flowing

liquid, judged by an observer A at the screen S. We have only

to put

^ = a; = go,

jind to seek the corresponding value of

dx

dt^ ^'

For this obviously gives the velocity sought.

Now it follows directly from the equations of transformation

(69) that:

dx _ ^ _ x' -\- V

dt^
^^

vx^'
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and, therefore, through appropriate substitution, the velocity

sought in the upper tube, after neglecting higher powers in vjc

and vjqQ, is:

X = = qo+ v\ 1

1 + ^"
-(-?)•

and the corresponding velocity in the lower tube is

:

The difference of the two velocities is

K-^>-(-n^)'
which is the Fresnel coefficient, in agreement w'ith the measure-

ments of Fizeau.

The significance of the principle of relativity extends, not only

to optical and other electrodynamic phenomena, but also to

all processes of ordinary mechanics; but the familiar expression

i^mcf) for the kinetic energy of a mass point moving with

the velocity q is incompatible w'ith this principle.

But, on the other hand, since all mechanics as well as the

rest of physics is governed by the principle of least action, the

significance of the relativity principle extends at bottom only to

the particular form which it prescribes for the kinetic potential

H, and this form, though I will not stop to prove it, is char-

acterized by the simple law that the expression

H • dt

for every space element of a physical system is an invariant

= H' ' dt'

with respect to the passage from one observer A to the other
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observer B or, what is the same thing, the expression IIj^c^ — q^

is in this passage an invariant = //'/^^ ~ ?' •

Let us now make some applications of this very general law,

first to the dynamics of a single mass point in a vacuum, whose

state is determined by its velocity q. Let us call the kinetic

potential of the mass point for 9=0, IIq, and consider now the

point at an instant when its velocity is q. For an observer

B who moves with the velocity q with respect to the observer

A, q' = at this instant, and therefore //' = IIq. But now
since in general:

H H'

we have after substitution

:

With this value of //, the Lagrangian equations of motion (59)

of the previous lecture are applicable.

In accordance with (60), the kinetic energy of the mass point

amounts to

:

ax. dy dz oq 4^'
and the momentum to:

G = --= ^^'

^q c^c^ — q^'

Gjq is called the transverse mass iiit, and dGjdq the longitudinal

mass TYii of the point; accordingly:

Bo cHo
w« = — ~~7^=^ f mi = —

cVc^^^' ' {c'-q'y"'
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For 7 = 0, we have

Ih
mt = mi = mo = ,

,

It is apparent, if one replaces in tlie above expressions the constant

//o by the constant mo, that the momentum is:

G = ^°^

^^
g'

and the transverse mass:

mo
mt =

and the longitudinal mass:

mo
^' "~ / ^2\3/2»

(-3
and, finally, that the kinetic energy is

:

moc^
1 2 1E =

,

^
= moc- + ^moq^ -\-

^^-i

The familiar value of ordinary mechanics ^JUoq^ appears here

therefore only as an approximate value. These equations have

been experimentally tested and confirmed through the measure-

ments of A. H. Bucherer and of E. Hupka upon the magnetic

deflection of electrons.

A further example of the invariance of // • dt will be taken from

electrodynamics. Let us consider in any given medium any

electromagnetic field. For any volume element V of the medium,

the law holds that V • dt is invariant in the passage from the one

to the other observer. It follows from this that H/V is invariant;
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i. e., the kinetic potential of a unit volume or the " space density

of kinetic potential" is invariant.

Hence the following relation exists;

(5D - §53 = @'2)' - §'53',

wherein (S. and § denote the field strengths and !D and 53 the

corresponding inductions. Obviously a corresponding law for

the space energy density Q.T) + §53 will not hold.

A third example is selected from thermodynamics. If we
take the velocity g of a moving body, the volume V and the

temperature T as independent variables, then, as I have shown

in the previous lecture (p. 105), we shall have for the pressure

p and the entropy S the following relations

:

dH , dll „^= P and qY^ '

Now since V/ Vr^ — q^ is invariant, and S likewise invariant

(see p. 121), it follows from the invariance of /// Vc^— rf

that p is invariant and also that T/ -ylc- — q^ is invariant, and

hence that:

77 rp,

p = p' and

The two observers A and B would estimate the pressure of a

body as the same, but the temperature of the body as different.

A special case of this example is supplied when the body

considered furnishes a black body radiation. The black body

radiation is the only phj'sical system whose dynamics (for quasi-

stationary processes) is known with absolute accuracy. That the

black body radiation possesses inertia was first pointed out by

F. Hasenohrl. For black body radiation at rest the energy

Eq= aTW is given by the Stefan-Boltzmann law, and the entropy

^0 = f(:dEolT) = ^aTW, and the pressure po = {a/^)T\ and,

therefore, in accordance with the above relations, the kinetic
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potentiiil is:

Let us imagine now a black body radiation moving with the

velocity q with respect to the observer A and introduce an

observer B who is at rest (7 = 0) with reference to the black body

radiation; then:

H H' Ih'

wherein

Vc2 -' g2 Vc2 - q'^ C '

Ho' =
I
r'v.

Taking account of the above general relations between T' and

r, V and V, this gives for the moving black body radiation the

kinetic potential:

// = " "'
3

i^-W
from which all the remaining thermodynamic quantities: the

pressure p, the energy E, the momentum G, the longitudinal and

transverse masses irii and vit of the moving black body radiation

are uniquely determined.

—

Colleagues, ladies and gentlemen, I have arrived at the con-

clusion of my lectures. I have endeavored to bring before

you in bold outline those characteristic advances in the present

system of physics which in my opinion are the most important.

Another in my place would perhaps have made another and better

choice and, at another time, it is quite likely that I myself

should have done so. The principle of relativity holds, not only

for processes in physics, but also for the physicist himself, in

that a fixed system of physics exists in reality only for a given

physicist and for a given time. But, as in the theory of rela-

tivity, there exist invariants in the system of physics: ideas and
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laws which retain their meaning for all investigators and for

all times, and to discover these invariants is always the real

endeavor of physical research. We shall work further in this

direction in order to leave behind for our successors where pos-

sible—lasting results. For if, while engaged in body and mind

in patient and often modest individual endeavor, one thought

strengthens and supports us, it is this, that we in physics work,

not for the day only and for immediate results, but, so to speak,

for eternity.

I thank you heartily for the encouragement which you have

given me. I thank you no less for the patience with which you

have followed my lectures to the end, and I trust that it may be

possible for many among you to furnish in the direction indicated

much valuable service to our beloved science.
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