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TRANSLATOR’S NOTICE

THE modern developments of Thermodynamics, and the
applications to physical and chemical problems, have
become so important, that I have ventured to translate
Professor Planck’s book, which presents the whole subject
from a uniform point of view.

A few notes have been added to the present English
edition by Professor Planck. He has not found it neces-
sary to change the original text in any way.

To bring the notation into conformity with the usual
English notation, several symbols have been changed.
This has been done with the author’s sanction. Here I
have followed J. J. van Laar and taken W to signify what
he calls the Planck’sches Potential, i.e. the thermodynamic
potential of Gibbs and Duhem divided by — 6.

Professor Planck’s recent paper, “ Uber die Grundlage
der Losungstheorie ” (Ann. d. Phys. 10, p. 436, 1903), ought
to be read in connection with his thermodynamical theory
of solution.

I am indebted to Herren Veit & Co., Leipzig, for
kindly supplying the blocks of the five figures in the text.

A. O.
\BRA
Devoxrozr, > or TH :R r
June, 1903. UNIVERSITY

ca OF
AL IFORNIA






PR EPACE

THE oft-repeated requests either to publish my collected
papers on Thermodynamics, or to work them up into a
comprehensive treatise, first suggested the writing of this
book. Although the first plan would have been the
simpler, especially as I found no occasion to make any
important changes in the line of thought of my original
papers, yet I decided to rewrite the whole subject-matter,
with the intention of giving at greater length, and with
more detail, certain general considerations and demonstra-
tions too concisely expressed in these papers. My chief
reason, however, was that an opportunity was thus offered
of presenting the entire field of Thermodynamics from a
uniform point of view. 'This, to be sure, deprives the work
of the character of an original contribution to science, and
stamps it rather as an introductory text-book on Thermo-
dynamics for students who have taken elementary courses in
Physics and Chemistry, and are familiar with the elements
of the Differential and Integral (‘alculus.

Still, I do not think that this book will entirely super-
sede my former publications on the same subject. Apart
from the fact that these contain, in a sense, a more original
presentation, there may be found in them a number of
details expanded at greater length than seemed advisable
in the more comprehensive treatment here required. To
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enable the reader to revert in particular cases to the
original form for comparison, a list of my publications on
Thermodynamics has been appended, with a reference in
each case to the section of the book which deals with
the same point.

The numerical values in the examples, which have been
worked, as applications of the theory, have, almost all of
them, been taken from the original papers; only a few,
that have been determined by frequent measurement, have
been taken from the tables in Kohlrausch’s “ Leitfaden der
praktischen Physik.” It should be emphasized, however,
that the numbers used, notwithstanding the care taken,
have not undergone the same amount of critical sifting
as the more general propositions and deductions.

Three distinct methods of investigation may be clearly
recognized in the previous development of Thermodynamics.
The first penetrates deepest into the nature of the processes
considered, and, were it possible to carry it out exactly,
would be designated as the most perfect. Heat, according
to it, is due to the definite motions of the chemical
molecules and atoms considered as distinet masses, which
in the case of gases possess comparatively simple properties,
but in the case of solids and liquids can be only very
roughly sketched. This kinetic theory, founded by Joule,
Waterston, Kronig and Clausius, has been greatly extended
mainly by Maxwell and Doltzmann. Obstacles, at present
unsurmountable, however, seem to stand in the way of its
further progress. These are due not only to the highly
complicated mathematical treatment, but principally to
essential difficulties, not to be discussed here, in the
mechanical interpretation of the fundamental principles of
Thermodynamies.
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Such difficulties are avoided by the second method,
developed by Helmholtz. It confines itself to the most
important hypothesis of the mechanical theory of heat,
that heat is due to motion, but refuses on principle to
specialize as to the character of this motion. This is a
safer point of view than the first, and philosophically quite
as satisfactory as the mechanical interpretation of nature
in general, but it does not as yet offer a foundation of
sufficient breadth upon which to build a detailed theory.
Starting from this point of view, all that can be obtained
is the verification of some general laws which have already
been deduced in other. ways direct from experience.

A third treatment of Thermodynamics has hitherto
proyed the most fruitful. This method is distinct from
the other two, in that it does not advance the mechanical
theory of heat, but, keeping aloof from definite assump-
tions as to its nature, starts direct from a few very general
empirical facts, mainly the two fundamental principles of
Thermodynamics. From these, by pure logical reasoning,
a large number of new physical and chemical laws are
deduced, which are capable of extensive application, and
have hitherto stood the test without exception.

This last, more inductive, treatment, which is used ex-
clusively in thls book, corresponds best to the present state
of the science. Tt cannot be considered as final, however,
but may have in time to yield to a mechanical, or perhaps
an electro-magnetic theory. TKlthough it may be of advan-

tage for a time to consider the activities of nature—Heat,
" Motion, Electricity, etc.—as different in quality, and to
suppress the question as to their common nature, still our
aspiration after a uniform theory of nature, on a mechanical
basis or otherwise, which has derived such powerful en-
couragement from the discovery of the principle of the °



X PREFACE.

conservation of energy, can never be permanently repressed.
Even at the present day, a recession from the assumption
that all physical phenomena are of a common nature
would be tantamount to renouncing the comprehension of
a number of recognized laws of interaction between different
spheres of natural phenomena. Of course, even then, the
results we have deduced from the two laws of Thermo-
dynamics would not be invalidated, but these two laws
would not be introduced as independent, but would be
deduced from other more general propositions. At present,
however, no probable limit can be set to the time which it
will take to reach this go_alj .
THE AUTHOR.

BERLIY,
April, 1897.









ERRATHA

The reader is requested kindly to make the following corrections in the
res where they occur :— L

Page 26, line 8, for “ occurs ” read “ occur.”

30, ,, 13 from bottom, for “ Hydrobromamylene” read “Amy-
lene hydrobromide.”

40, ,, 41in § 58, for “different” read * definite.”

78, ,, B, for “restablishment” read “ re-establishment.”

78, ,, 14, for “stakes” read *states.”

79, , 9 in § 108, for “ Occasionally,” ete., read “ That attempts
are still made to represent this law as contained in the
principle of energy may be seen from the fact that the
100 restricted term ¢ Energetics’ is sometimes applied to
all investigations on these questions.”

87, , 2in § 118, for “heat” read  work.”

104, , 10 fromend, for “ metaphysicists” read * metaphysicians.”
149, ,, 8, for “v” read “v,”

) ap d’p
152, lines 3 and 1 from end, read (4 and (—2> throughout.
0v/y, - \dv*/,

176, line 8, for “ AM,” read “ AM,".”

177, equation (149), for “M,"” read «“ M,".”
180, line 22, for ““quintiple” read ‘ quintuple.”
185, ,, 2,for “dM,” read § dM e

186, equation 153, for dM 39, a“  read dM,'3 9% g;{ :
191, line 3, left-hand side of equation, for “dlog p” read “d log p,.”
202, lines 6 and 8, for “¢” read “ @.”

214, line 15, for “n,(c.,” read “n,(c.,.”

229, ,, 14, for “are” read “is.”

230, ,, 14, for second minus read plus.

232, ,, 2 from end, for “equations” read “equation,”

241, equation (225), for < 6,” read ‘6.

241, line 5 from end, for * carbonic’’ read “carbon.”

24255 .. 8, for 6,7 fead 0%

243, ,, 11 from end, for “molecule ” read “gram molecule.”

Correcf}o'n& made.
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PART L

FUNDAMENTAL FACTS AND DEFINITIONS.

CHAPTER I
TEMPERATURE.

§ 1. THE conception of “heat” arises from that particular
sensation of warmth or coldness which is immediately
experienced on touching a body. This direct sensation,
however, furnishes no quantitative scientific measure of a
_body’s state with regard to heat; it yields only qualitative
results, which vary according to external circumstances.
For quantitative purposes we utilize the change of volume
which takes place in all bodies when heated under constant
pressure, for this admits of exact measurement. Heating
produces in most substances an increase of volume, and thus
we can tell whether a body gets hotter or colder, not merely
by the sense of touch, but also by a purely mechanical
observation affording a much greater degree of accuracy.
We can also tell accurately when a body assumes a former
state of heat.

§ 2. If two bodies, one of which feels warmer than the -
other, be brought together (for example, a piece of heated
metal and cold water), it is invariably found that the hotter
body is cooled, and the colder one is heated up to a certain

B
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point, and then all change ceases. The two bodies are then
said to be in thermal equilibrium. Experience shows that
such a state of equilibrium finally sets in, not only when
two, but also when any number of differently heated bodies
are brought into mutual contact. From this follows the
important proposition: If a body, A, be in thermal equili-
brium with two other bodies, B and C, then B and C are in
thermal equilibriwm with one another.* For, if we bring A,
B, and C together so that each touches the other two, then,
according to our supposition, there will be equilibrium at
the points of contact AB and AC, and, therefore, also at the
contact BC. If it were not so, no general thermal equili-
brium would be possible, which is contrary to experience.

§ 3. These facts enable us to compare the degree of heat
of two bodies, B and C, without bringing them into contact
with one another; namely, by bringing each body into
contact with an arbitrarily selected standard body, A (for
example, a mass of mercury enclosed in a vessel terminating
in a fine capillary tube). By observing the volume of A
in each case, it is possible to tell whether B and C are in
thermal equilibrium or not. If they are not in thermal
equilibrium, we can tell which of the two is the hotter. The
degree of heat of A, or of any body in thermal equilibrium
with A, can thus be very simply defined by the volume of
A, or, as is usual, by the difference between the volume of
A and its volume when in thermal equilibrium with melting
ice under atmospheric pressure. This volumetric difference,
which, by an appropriate choice of unit, is made to read 100
when A is in contact with steam under atmospheric pressure,
is called the femperature in degrees Centigrade with regard
to A as thermometric substance. Two bodies of equal
temperature are, therefore, in thermal equilibrium, and wvice
versd.

* As is well known, there exists no corresponding proposition for electrical
equilibrium.  For if we join together the substances Cu | CuSO, aq. |

Zn80, aq. | Zn to form a conducting ring, no electrical equilibrium is
possible.
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§ 4. The temperature readings of no two thermometric_~
substances agree, in .general, except at 0° and 100°. The
definition of temperature is therefore somewhat arbitrary.
This we may remedy to a certain extent by taking gases, in
particular those hard to condense, such as hydrogen, oxygen,
nitrogen, and carbon monoxide, as thermometric substances.
They agree almost completely within a considerable range
of temperature, and their readings are sufficiently in accord-
ance for most purposes. Besides, the coefficient of expansion
of these different gases is the same, inasmuch as equal
volumes of them expand under constant pressure by .the
same amount—about ;1 of their volume—when heated
from 0°C. to 1° C. Since, also, the influence of the external
pressure on the volume of these gases can be represented by
a very simple law, we are led to the conclusion that these
regularities are based on a remarkable simplicity in their
constitution, and that, therefore, it is reasonable to define
the common temperature given by them simply as tempera-
ture. We must consequently reduce the readings of other
thermometers to those of the gas thermometer, and prefer-
ably to those of the hydrogen thermometer.

§ 5. The definition of temperature remains arbitrary in
cases where the requirements of accuracy cannot be satisfied
by the agreement between the readings of the different
gas thermometers, for there is no sufficient reason for the
preference of any one of these gases. A definition of tem-
perature completely independent of the properties of any
individual substance, and applicable to all stages of heat
and cold, becomes first possible on the basis of the second
law of thermodynamics (§ 160, etc.). In the mean time, only
such temperatures will be considered as are defined with
sufficient accuracy by the gas thermometer.

§ 6. In the following we shall deal chiefly with homo-
geneous, isotropic bodies of any form, possessing throughout
their substance the same temperature and density, and-
subject to a uniform pressure acting everywhere perpen-
dicular to the surface. They, therefore, also exert the same
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pressure outwards. Surface phenomena are thereby dis-
regarded. The condition of such a body is determined by
its chemical nature; its mass, M; its volume, V; and its
temperature, ¢. On these must depend,in a definite manner,
all other properties of the particular state of the body,
especially the pressure, which is uniform throughout, in-
ternally and externally. The pressure, p,is measured by the
force acting on the unit of area—in the C.G.S. system, in
dynes per square centimeter, a dyne being the force which
imparts to a mass of one gramme in one second a velocity
of one centimeter per second.

§ 7. As the pressure is generally given in atmospheres,
the value of an atmosphere in absolute C.G.S. units is here
calculated. The pressure of an atmosphere is the weight
of a column of mercury at 0° C., 76 cm. high, and 1 sq. em.
in cross-section, when placed in mean geographical latitude.
This latter condition must be added, because the weight,
i.e. the force of the earth’s attraction, varies with the locality.
The volume . *° -~lumn of mercury is 76 c.c.; and since
the density w. 18 13:596, the mass is 76 X
13:596. Mu- .ag the mass by the acceleration of gravity
in mean latitude, we find the pressure of one atmosphere in
absolute units to be

76 x 13596 x 981 = 1,013,650 -y dy“es e ddT

m.? = cm.-sec.
This, then, is the factor for converting atmospheres into
absolute units. If, as was formerly the custom in mechanics,
we use as the unit of force the weight of a gramme in mean
geographical latitude instead of the dyne, the pressure of
an atmosphere would be 76 x 13:596 = 1033'3 grms. per
square centimeter.

§ 8. Since the pressure in a given substance is evidently
controlled by its internal physical condition only, and not
by its form or mass, it follows that p depends only on the
temperature and the ratio of the mass M to the volume V
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(i.e. the density), or on the reciprocal of the density, the
volume of unit mass—

A3
M
which is called the specific volume of the substance. For
every substance, then, there exists a characteristic relation—

p = fvi),

which is called the characteristic equation of the substance.
For gases, the function f is invariably positive; for liquids
and solids, however, it may have also negative values under
certain circumstances.

='U,

§ 9. Perfect Gases.—The characteristic equation as-
sumes its simplest form for the substances which we used
in § 4 for the definition of temperature. If the temperature
be kept constant, then, according to the Boyle-Mariotte
law, the product of the pressure and the svecific volume
remains constant for gases— - o nds

P
(¢]

p’U:T,. o7y - - (1)
where T, for a given gas, depends only on the tempera-
ture.

But if the pressure be kept constant, then, according to

§ 3, the temperature is proportional to the difference between
the present volume v and the volume v, at 0°; <.e.—

b= —wP o . . @)

where P depends only on the pressure p. Equation (1) for
v becomes

.pvo=T0, L I ()

where T is the value of the function T, when ¢ = 0° C. *
Finally, as has already been mentioned in § 4, the

expansion of all permanent gases on heating from 0° C. to

1? C. is the same fraction a (about ;1) of their volume at

PN
© OF THE
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0° (Gay-Lussac’s law). Tutting { = 1, we have v — vy = avy,
and equation (2) becomes

1 =aihi? o s o o NS,
By eliminating P, v, and v from (1), (2), (3), (4), we obtain
the temperature function of the gas—
T = To(1 4 at),

which is seen to be a linear function of £. The characteristic
equation (1) becomes

p= %(1 + at).

§ 10. The form of this equation is considerably simplified
by shifting the zero of temperature, arbitrarily fixed in § 3,

by % degrees, and calling the melting point of ice, not 0° C.,

but = C. (ie. sbout 273° C). For, putting ¢+ - =

(absolute temperature), and the constant aTo = C, the
characteristic equation becomes

C, OM
p=b=0 . . . . . ()

This introduction of absolute temperature is evidently tanta-
mount to measuring temperature no longer, as in § 3, by a
change of volume, but by the volume itself.

§ 11. The constant C, which is characteristic for the
perfect gas under consideration, can be calculated, if the
specific volume v be known for any pair of values of 6 and p
(e.g. 0° and 1 atmosphere). For different gases, taken at
the same temperature and pressure, the constants C evidently
vary directly as the specific volumes, or inversely as the

densities -1-1) It may be affirmed, then, that, taken at the

same temperature and pressure, the densities of all perfect
gases bear a constant ratio to one another. A gas is,
therefore, often characterized by the constant ratio which its
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density bears to that of a normal gas at the same tempera-
ture and pressure (specific density relative to air or hydrogen).
At 0° C. (0 = 273°) and 1 atmosphere pressure, the densities
of the following gases are: .

Hydrogen . . . . . . . . . . 000008988 5"
cm.

Oxygen . . . . . .-. . . . . 00014291

Nitrogen . . . . . . . .. . . 00012507

Atmospherie nitrogen . . . . . . 00012571

ATES DS TRRETA R E S e 00012930

whence the corresponding values of C in absolute units can
be readily calculated.

All questions with regard to the behaviour of a substance
when subjected to changes of temperature, volume, and
pressure are completely answered by the  characteristic
equation of the substance.

§ 12, Behaviour under Constant Pressure (Isopiestic
or Isobaric Changes).—Coefficient of expansion is the name
given to the ratio of the increase of volume for a rise of
temperature of 1° C. to the volume at 0° C. This increase
for a perfect gas is, according to (5), %M The same equa-

tion (5) gives the volume of the gas at 0° C. as %?—I x 273,
hence the ratio of the two quantities, or the coefficient of
expansion, is ,1, = a.

§ 13. Behaviour at Constant Volume (Isochoric or
Isopyenic Changes).—The pressure coefficient is the ratio
of the increase of pressure for a rise of temperature of 1° to
the pressure at 0°C. For a perfect gas, this increase, accord-
ing to equation (5), is 9{& The pressureat 0° C. is 03[ x 278,
whence the required ratio, ¢.c. the pressure coefficient, is ;1 3
therefore equal to the coefficient of expansion a.

§ 14. Behaviour at Constant Temperature (Isother-
mal Changes).—Cocfficient of elasticity is the ratio of }n
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infinitely small increase of pressure to the resulting con-
traction of unit volume of the substance. In a perfect gas,
according to equation (), the contraction of volume V, in
consequence of an increase of pressure dp, is

CM6 v

—dV=—3dp = Edp
The contraction of unit volume is therefore
2 P
Wl o
and the coefficient of elasticity of the gas is
E=»
i

that is, equal to the pressure.

The reciprocal of the coefficient of elasticity, <.e. the ratio
of an infinitely small contraction of unit volume to the
corresponding increase of pressure, is called the coefficient
of compressibility.

§ 15. The three coefficients which characterize the be-
haviour of a substance subject to isopiestic, isopycnie, and
isothermal changes are not independent of one another,
but are in every case connected by a definite relation.
The general characteristic equation, on being differentiated,
gives

T gjg)vd{) + (gﬁ)ydv,

where the suffixes indicate the variables to be kept constant
while performing the differentiation. By putting dp = 0
we impose the condition of an isopiestic change, and obtain
the relation between dv and d in isopiestic processes :—

e
6~

(6)
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For .every state of a substance, one of the three
coefficients, viz. of expansion, of pressure, or of compres-
sibility, may therefore be calculated from the other two.

Take, for example, mercury at 0° C. and under atmo-
spheric pressure. Its coefficient of expansion is (§ 12)

dvy 1 y
(a*a | < 5 = 000018,
its coefficient of compressibility in atmospheres (§ 14) is
dvy 1 .
= a_P)U 4 = 0000003,

therefore its pressure coefficient in atmospheres (§ 13) is
dv

| v
(gjé) g (gi))a ’ (gu e 'gz_)? = 09(%0(’)01683 e
(3]9 7]

This means that an increase of pressure of 60 atmospheres
is required to keep the volume of mercury constant when
heated from 0° C. to 1° C.

§ 16. Mixture of Perfect Gases.—If any quahtities of
the same gas at the same temperatures and pressures be
at first separated by partitions, and then allowed to come
suddenly in contact with another by the removal of these
partitions, it is evident that the volume of the entire system
will remain the same and be equal to the sum-total of the
partial volumes. Starting with quantities of different gases,
experience still shows that, when pressure and temperature
are maintained uniform and constant, the total volume
continues equal to the sum of the volumes of the con-
stituents, notwithstanding the slow process of intermingling
—diffusion—which takes place in this case. Diffusion goes
on until the mixture has become at every point of precisely
the same composition, 7.e. physically homogeneous.

§ 17. Two views regarding the constitution of mixtures
thus formed present themselves. KEither we might assume
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that the individual gases, while mixing, split into a large
number of small portions, all retaining their original volumes
and pressures, and that these small portions of the different
gases, without penetrating each other, distribute themselves
evenly throughout the entire space. In the end each gas
would still retain its original volume (partial volume), and
all the gases would have the same common pressure. Or,
we might suppose—and this view will be shown below (§ 52)
to be the correct one—that the individual gases change
and interpenetrate in every infinitesimal portion of the
volume, and that after diffusion each individual gas, in so
far as one may speak of such, fills the total volume, and is
consequently under a lower pressure than before diffusion.
This so-called partial pressure of a constituent of a gas
mixture can easily be calculated.

§ 18. Denoting the quantities referring to the individual
gases by suffixes—0 and p requiring no special designation,
as they are supposed to be the same for all the gases,— the
characteristic equation (5) gives for each gas before
diffusion

= O]_I\[lg . . 021\[20 .

e P Ve i
The total volume,
V=V1+Vg+ “o oy

remains constant during diffusion. After diffusion we as-
cribe to each gas the total volume, and hence the partial
pressures become

CM,6 V M0 V.
n=Tg =y =y =y (D)
and by addition
i L P
PAE AL s §+ p=p . (8

This is Dalton’s law, that in a homogeneous mixture of
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gases the pressure is equal to the sum of the partial pressures
of the gases. It is also evident that

Pripai. .. = V1:‘722 5 o o =-01\[1 C;\[g & (9)

t.e. the partial pressures are proportional to the volumes of
the gases before diffusion, or to the partial volumes which |
the gases would have according to the first view of diffusion
given above.

§ 19. The characteristic equation of the mixture, ac-
cording to (7) and (8), is

- (Cll\[l + 021\12 + .« .)%

(Oll\.[l + (/2“12 +77 \,0 - - (10)
which corresponds to the characteristic equation of a perfect
gas with the following characteristic constant :—

ClMl + C)M, + .

11
M+ M, + . ()

Hence the question as to whether a perfect gas is a
chemically simple one, or a mixture of chemically different
gases, cannot in any case be settled by the mvest1gat10n of
the characteristic equation.

§ 20. The composition of a gas mixture is defined, either
by the ratios of the masses, Mj, My, . . . or by the ratios
of the partial pressures pi, ps, . . . or the partial volumes
Vi, Vo, ... of the individual gases. Accordingly we
speak of per cent. by weight or by volume. Let us take
for example atmospheric air, which is a mixture of oxygen
(1) and “ atmospheric ” nitrogen (2).

The ratio of the densities of oxygen, ““atmospheric”
nitrogen and air is, according to § 11,

¢ . o pr— _]: . R
0-:0014291 : 0-0012571 : 00012930 = G0,
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Taking into consideration the relation (11)—

CiM,; + CoM,
M+ M,
we find the ratio M;:M;=0-2998, de. 231 per cent.

by weight of oxygen and 769 per cent. of nitrogen.
Furthermore,

C11\I1 Cgl\Ig Pi1ips = V1 V2 == 02637

i.e. 20°9 per cent. by volume of oxygen and 79-1 per cent. of
nitrogen.

C=

§ 1. Characteristic Equation of Other Substances.—
The characteristic equation of perfect gases, even in the
case of the substances hitherto discussed, is only an approxi-
mation, though a close one, to the actual facts. A still
further deviation from the behaviour of perfect gases is
shown by the other gaseous bodies, especially by those easily
condensed, which for this reason were formerly classed as
vapours. For these a modification in the form of the
characteristic equation is necessary. It is worthy of notice,
however, that the more rarefied the state in which we observe
these gases, the less does their behaviour deviate from that
of perfect gases, so that all gaseous substances, when suffi-
ciently rarefied, may be said in general to act like perfect
gases. The general characteristic equation of gases and
vapours, for very large values of v, will pass over, therefore,
into the special form for perfect gases.

§ 22. We may obtain by various graphical methods an
idea of the character and magnitude of the deviations from
the ideal gaseous state. An isothermal curve may, e.g., be
drawn, taking v and p for some given temperature as the
abscissa and ordinate, respectively, of a point in a plane.
The entire system of isotherms gives us a complete repre-
sentation of the characteristic equation. The more the
behaviour of the vapour in question approaches that of a
perfect gas, the closer do the isotherms approach those of
equilateral hyperbole having the rectangular co-ordinate
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axes for asymptotes, for pv = const. is the equation of an
isotherm of a perfect gas. The deviation from the hyper-
bolic form yields at the same time a measure of the
depdrture from the ideal state.

§ 23. The deviations become still more apparent when
the isotherms are drawn taking the product pv (instead of
p) as the ordinate and say p as the abscissa. Here a perfect
gas has evidently for its isotherms straight lines parallel to
the axis of abscisse. In the case of actual gases, however, the
isotherms slope gently towards & minimum value of pv, the
position of which depends on the temperature and the nature
of the gas. For lower pressures (i.e. to the left of the
minimum), the volume decreases at a more rapid rate, with
increasing pressure, than in the case of perfect gases; for
higher pressures (to the right of the minimum), at a slower
rate. At the minimum point the compressibility coincides
with that of a perfect gas. In the case of hydrogen the
minimum lies far to the left, and it has hitherto been
possible to observe it only at very low temperatures.

§ 24, To van der Waalsis due the first analytical formula
for the general characteristic equation, applicable also to
the liquid state. He also explained physically, on the basis
of the kinetic theory of gases, the deviations from the
behaviour of perfect gases. As we do not wish to introduce
here the hypothesis of the kinetic theory, we consider van
der Waals’ equation merely as an approximate expression of
the facts. His equation is

- RG a e ry
P=y3" E
where R}, @, and b are constants which depend on the nature
of the substance. I'or large values of v, the equation, as
required, passes into that of a perfect gas; for small values
of v and corresponding values of 0, it represents the charac-
teristic equation of a liquid.
Expressing p in atmospheres and calling the specific
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volume v unity for § = 273 and p = 1, van der Waals’
constants for carbon dioxide are

R = 000369 ; @ = 000874 ; b = 0-0023.

As the volume of 1 gr. of carbon dioxide at 0° C. and
atmospheric pressure is 505 c.c., the values of v cal-
culated from the formula must be multiplied by 505 to
obtain the specific volumes in absolute units.

§ 25. Van der Waals’ equation not being sufficiently
accurate, Clausius supplemented it by the introduction of
an additional constant. Clausius’ equation is

RO c
29—_-'1;—00—()(7;—]—7))2' R

For large values of w», this too approaches the ideal
characteristic equation. Inthe same units as above, Clausius’
constants for carbon dioxide are:

R = 0003688 ; @ = 0-000843 ; b = 0-000977; ¢ = 2:0935.

Andrews’ observations on the compressibility of gaseous
and liquid carbon dioxide are satisfactorily represented by
Clausius’ equation.

§ 26. If we draw the system of isotherms with the aid of
Clausius’ equation, employing the graphical method de-
seribed in § 22, the characteristic graphs for carbon dioxide—
Fig. 1—are obtained.* For high temperatures the isotherms
approach equilateral hyperbolze, as may be seen from equation
(12). In general, however, the isotherm is a curve of the
third degree, three values of v corresponding to one of
p. Hence, in general, a straight line parallel to the axis of
abscissee intersects an isotherm in three points, of which
two, as actually happens for large values of 6, may be
imaginary. At high temperatures there is, consequently,

* For the ealculation and construction of the curves, I am indebted to
Dr. Richard Apt.
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only one real volume corresponding to a given pressure,
while at lower temperatures, there are three real values of
the volume for a given pressure. Of these three values
(indicated on the figure by a, (3, v, for instance) only the
smallest (a) and the largest (y) represent practically realiz-
able states, for at the middle point (/3) the pressure along
the isotherm would increase with increasing volume, and the
compressibility would accordingly be negative. Such a
state has, therefore, only a theoretical signification.

§ 27. The point a corresponds to liquid carbon dioxide,
and vy to the gaseous condition at the temperature of-the
isotherm passing through the points and under the pressure
measured by the ordinates of the line q3y. In general
only one of these states is stable (in the figure, the liquid
state at o). For,if we compress gaseous carbon dioxide,
enclosed in a cylinder with a movable piston, at constant
temperature, e.g. at 20° C., the gas assumes at first states
corresponding to consecutive points on the 20° isotherm to
the extreme right. The point representative of the physical
state of the gas, then moves farther and farther to the left
until it reaches a certain place C. After this, further com-.
pression does not move the point beyond C, but there now -
takes place a partial condensation of the substance—a split-
ting into a liquid and a gaseous portion./ Both parts, of course,
possess common pressure and temperature. The state of the:
gaseous portion continues to be characterized by the point
O, that of the liquid portion by the point A4 of the same *
isotherm. C'is called the saturation point of carbon dioxidé
gas for the particular temperature considered. Isothermal
compression beyond C merely results in precipitating more -~
of the vapour in liquid form. During this part of the.
isothermal compression no change takes place but the con-
densation of more and more vapour; the internal conditions
(pressure, temperature, specific volume) of both parts of the
substance are always represented by the two points 4 and C.
At last, when all the vapour has been condensed, the whole
substance is in the liquid condition 4, and again behaves
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as a homogeneous substance, so that further compression
gives an increase of density and pressure along the isotherm.
The substance will now pass through the point « of the
figure. On this side, as may be seen from the figure, the
isotherm is much steeper than on the other, ¢.e. the compressi-
bility is much smaller. At times, it is possible to follow the
isotherm beyond the point ¢ towards the point +, and to
prepare a so-called supersaturated vapour. Then only a
more or less unstable condition of equilibrium is obtained,
as may be seen from the fact that the smallest disturbance
of the equilibrium is sufficient to cause an immediate con-
densation. The substance passes by a jump into the stable
condition. Nevertheless, by the study of supersaturated
vapours, the theoretical part of the curve also receives a
direct meaning.

§ 28. On any isotherm, which for certain values of p
admits ‘of three real values of v, there are, therefore, two
definite points, 4 and O, corresponding to the state of
saturation. The position of these points is not immediately
deducible from the graph of the isotherm. The propositions
of thermodynamics, however, lead to a simple way of finding
these points, as will be seen in § 172. The higher the tem-
perature, the smaller becomes the region in which lines
drawn parallel to the axis of abscisse intersect the isotherm
in three real points, and the closer will these three points
approach one another. The transition to the hyperbola-like
isotherms, which any parallel to the axis of abscisse cuts
in one point only, is formed by that particular isotherm
on which the three points of intersection coalesce into one,
giving a point of inflection. The tangent to the curve at
this point is parallel to the axis of abscisse. It is called
the critical point (K of Fig. 1) of the substance, and its .
position indicates the critical temperature, the critical
specific volume, and the critical pressure of the substance:
Here there is no longer any difference between the saturated
vapour and its liquid precipitate. Above the critical tempe-
rature and critical pressure, condensation does not exist,

C
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as the diagram plainly shows. Hence all attempts to
condense hydrogen, oxygen, and nitrogen necessarily failed
as long as the temperature had not been reduced below
the critical temperature, which is very low for these
gases.

§ 29. It further appears from our figure that there is
no definite boundary between the gaseous and liquid states,
since from the region of purely gaseous states, as at C,
that of purely liquid ones, as at 4, may be reached on
a circuitous path, that nowhere passes through a state of
saturation—on 4 curve, for instance, drawn around the critical
point. Thus a vapour may be heated at constant volume |
above the critical temperature, then compressed at constant-
temperature below the critical volume, and finally cooled
under constant pressure below the critical temperature.
Condensation nowhere occurs in this process, which leads,
nevertheless, to a region of purely liquid states./* The
earlier fundamental distinction between liquids, vapours,
and gases should therefore be dropped as no longer tenable.
A more modern proposal to denote as gaseous all states
above the critical temperature, and as vaporous or liquid
all others according as they lie to the right or left of the
theoretical regions (Fig. 1), has also this disadvantage, that
thereby a boundary is drawn between liquid and gas on
the one hand, and vapour and gas on the other hand, which
has no physical meaning. The crossing of the critical
temperature at a pressure other than the critical pressure
differs in no way from the crossing of any other temperature.

§ 80. The position of the critical point may be readily
calculated from the general characteristic equation. Accord-
ing to § 28 we have

) = 0,and (38) =o.

The first of these means that the tangent to the isotherm
. at I is parallel to the axis of abscissa ; and the second, that
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the isotherm has a point of inflection at K. On the basis
of Clausius’ form of the characteristic equation (12), we
obtain for the critical point

8e ¢R

(Rl ’pz = Lo, .
27(a + R 216(a +b)*

, v = 3a + 2b.*
These equations give for carbon dioxide from the above
data

0 = 304 = 273° 4 31°, p = 77 atm., v = 227 %g

gor.

Qualitatively, all substances conform to these regularities,
but the values of the constants differ widely.

§ 81. Regarding the transition from the liquid to the
solid state, the same considerations hold as for that from
the gaseous to the liquid state. The system of isotherms
might be drawn for this process, and it is probable that
theoretical regions and a critical point would be verified
here also, if the means of experimental investigation were
adequate. A continuous passage from the liquid to the
solid state would then become possible along a path inter-
secting the critical isotherm on either side of the ecritical

* Obtained as follows i—

Reo [

p= 1—3—_—a —m ....... (1)
opNC B ACHINE
311)9 =T w-ap ey =’ @
a'r\ _ 2Ré 6e .
) A Gt CE > S
From (2) and (3), v=3a4+26 . . . . . . . . .. (€3]
Substituting (4) in (2) and reducing, we get
8¢
B gt iR ®)
And substituting (4) and (5) in (1) and reducing, we have
gl GBI S e (6) Tr.

P = oT6(a ¥ by
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point. In fact, there are certain substances which under
ordinary pressures pass without appreciable discontinuity
from the solid to the liquid state (pitch, glass, etc.), while
others possess for a definite temperature a definite pressure
of liquefaction or pressure of solidification, at which the
substance splits into two portions of different densities. The
pressure of liquefaction, however, varies with temperature
at a much greater rate than the pressure of the saturated
vapour. This view is physically justified, in particular by
the experiments of Barus and Spring, in which the pressures’
were varied within wide limits.

In its most complete form the characteristic equation
would comprise the gaseous, liquid, and solid states simul-
taneously. No formula of such generality, however, has as
yet been established for any substance.

§ 32. Mixtures.— While, as shown in § 19, the charac-
teristic equation of a mixture of perfect gases reduces in
a simple manner to that of its components, no such simpli-
fication takes place, in general, when substances of any
kind are mixed. Only for gases and vapours does Dalton’s
law hold, at least with great approximation, that the total
pressure of a mixture is the sum of the partial pressures
which each gas would exert if it alone filled the total
volume at the given temperature. This law enables us
to establish the characteristic equation of any gas mixture,
provided that of the constituent gases be known. It also
decides the question, unanswered in § 17, whether to the
individual gases of a mixture common pressure and different
volumes, or common volume and different pressures, should
be ascribed. From the consideration of a vapour differing
widely from an ideal gas, it follows that the latter of these
views is the only one admissible. Take, for instance, atmo-
spheric air and water vapour at 0° C. under atmospheric
pressure. Here the water vapour cannot be supposed to be
subject to a pressure of 1 atm., since at 0° C. no water
vapour exists at this pressure. The only choice remaining
is to assign to the air and water vapour a common volume






CHAPTER IL
MOLECULAR WEIGHT.

§ 33. In the preceding chapter only such physical changes
have been discussed as concern temperature, pressure, and
density. The chemical constitution of the substance or
mixture in question has been left untouched. Cases are
frequent, however (much more so, in fact, than was formerly
supposed) in which the chemical nature of a substance is
“altered by a change of temperature or pressure./ The more
recent development of thermodynamics has clearly brought
out the necessity of establishing a fundamental difference
between physical and chemical changes such as will exclude
continuous transition from the one kind to the other (cf.
§ 42, et seq., and § 238). It has, however, as yet not been
possible to establish a practical criterion for distinguishing
them, applicable to all cases. However strikingly most
chemical processes differ from physical ones in their violence,
suddenness, development of heat, changes of colour and
other properties, yet there are, on the other hand, numerous
changes of a chemical nature that take place with continuity
and comparative slowness; for example, dissociation. One
of the main tasks of physical chemistry in the near future
will be the further elucidation of this essential difference.*

§ 34. Experience shows that all chemical reactions take
place according to constant proportions by weight. A

* In a word, we may, in a certain sense, say, that physical changes take
place continuously, chemical ones, on the other hand, discontinuously. In
consequence, the science of physics deals, primarily, with continuously vary-
ing numbers, the science of chemisiry, on the contrary, with whole, or with
simple rational numbers.
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certain weight (strictly speaking, a mass) may therefore
be used as a characteristic expression for the nature of
a given chemically homogeneous substance, whether an
element or a compound. Such a weight is called an equiva-
lent weight. It is arbitrarily fixed for one element—
generally for hydrogen at 1 gr.—and then the equivalent -
weight of any other element (e.g. oxygen) is that weight
which will combine with 1 gr. of hydrogen. The weight of
the compound thus formed is, at the same time, its equiva-
lent weight. By proceeding in this way, the equivalent
weights of all chemically homogeneous substances may be
found. The equivalent weights of elements that do not
combine directly with hydrogen can easily be determined,
since in every case a number of elements can be found that
combine directly with the element in question and also
with hydrogen. :

The total weight of a body divided by its equivalent
weight is called the number of equivalents contained in the
body. Hence we may say that, in every chemical reaction,
an equal number of equivalents of the different substances
react with one another.

§ 85. There is, however, some ambiguity in the above
definition, since two elements frequently combine in more
ways than one. For such cases there would exist several
values of the equivalent weight. Experience shows, how-
ever, that the various possible values are always simple
multiples or submultiples of any one of them. The
ambiguity in the equivalent weight, therefore, reduces itself
to multiplying or dividing that quantity by a simple integer.
We must accordingly generalize the foregoing statement,
that an equal number of equivalents react with one another,
and say, that the number of equivalents that react with one
another are in simple numerical proportions. Thus 16 parts
by weight of oxygen combine with 28 parts by weight of
nitrogen to form nitrous oxide, or with 14 parts to form
nitric oxide, or with 9% parts to form nitrous anhydride, or
with 7 parts to form nitrogen tetroxide, or with 52 parts to
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form nitric anhydride. Any one of these numbers may be
assigned to nitrogen as its equivalent weight, if 16 be taken
as that of oxygen. They are in simple rational proportions,
since

28:14:94:7:53=60:30:20:15:12.

§ 86. The ambiguity in the definition of the equivalent
weight of nitrogen, exemplified by the above series of
numbers, is removed by selecting a particular one of them
to denote the molecular weight of nitrogen. In the definition
of the molecular weight as a quite definite quantity depend-
ing only on the particular state of a substance, and
independent of possible chemical reactions with other sub-
stances, lies one of the most important and most fruitful
achievements of theoretical chemistry. Its exact statement
can at present be given only for special cases, viz. for
perfect gases and dilute solutions. We need consider only
the former of these, as we shall see from thermodynamies
that the latter is also thereby determined.

The definition of the molecular weight for a chemically
homogeneous perfect gas is rendered possible by the further
empirical law, that gases combine, not only in simple
multiples of their equivalents, but also, at the same tempera-
ture and pressure,in simple volume proportions (Gay-Lussac).
It immediately follows that the number of equivalents, con-
tained in equal volumes of different gases, must bear simple
ratios to one another. The values of these ratios, however,
are subject to the above-mentioned ambiguity in the
selection of the equivalent weight. The ambiguity is,
however, removed by putting all these ratios =1, 7.e. by
establishing the condition that equal volumes of different
gases shall contain an equal number of equivalents. Thus
a definite choice is made from the different possible values,
and a definite equivalent weight obtained for the gas, which
is henceforth denoted as the molecular weight of the gas. At
- the same time the number of equivalents in a quantity of
the gas, which may be found by dividing the total weight
by the molecular weight, is defined as the number of
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molecules contained in that quantity. Hence, equal volumes
of perfect gases at the same temperature and pressure contain
an equal number of molecules (Avogadro’s law). The mole-
cular weights of chemically homogeneous gases are, therefore,
directly proportional to the masses contained in equal
volumes, 7.e. to the densities. The ratio of the densities is
equal to the ratio of the molecular weights.

§ 37. Putting the molecular weight of hydrogen = m,
that of any other chemically homogeneous gas must be
equal to mp multiplied by its specific density relative to
hydrogen (§ 11). The following table gives the specific
densities relative to hydrogen, and the molecular weights of
several gases:—

Specific Density. Molecular Weight.
Hydrogen . . . . . . 10 . . . . . .m
Oxygen . . . . . . 160 . . . . 160m,
Nitrogen . . . . . . 140 . . . . 140m,
Water vapour . . . . 90 . . . . 90m,
Ammonia ., . . . . . 85 . . ... 85 m,

Now, since water vapour consists of 1 part by weight of
hydrogen and 8 parts by weight of oxygen, the molecule
of water vapour, 9 mo, must consist of m, parts by weight of
hydrogen and 8 m, parts by weight of oxygen—d.e., according
to the above table, of one molecule of hydrogen and half a
molecule of oxygen. In the same manner ammonia, accord-
ing to analysis, consisting of 1 part by weight of hydrogen
and 4% parts by weight of nitrogen, its molecule 85 m must
necessarily contain 15 m, parts by weight of hydrogen and
7 mo parts by weight of nitrogen—i.e., according to the
table, 1} molecules of hydrogen and % molecule of nitrogen.
Thus Avogadro’s law enables us to give in quite definite
numbers the molecular quantities of each constituent present
in the molecule of any chemically homogeneous gas, pro-
vided we know its density and its chemical composition.

§ 88. The smallest weight of a chemical element entering
into the molecules of its compounds is called an atom.
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Hence half a molecule of hydrogen is called an atom of
hydrogen, H ; similarly, half a molecule of oxygen an atom
of oxygen, O; and half a molecule of nitrogen an atom
of nitrogen, N. The diatomic molecules of these substances
are represented by H,, O, No.  An atom of mercury, on the
contrary, is equal to a whole molecule, because in the mole-
cules of its compounds no fractions of the molecular weight
of mercury vapour occurl§ It is usual to put the atomic
weight of hydrogen H = 1. Then its molecular weight
becomes Hy = my = 2, and the molecular weights of our
table become :

Molecular

Weight.
Hydrogen . . . . . . . . 2=H,
Oxygem . . . . . . . . . 32=0,
Nitrogen . . . . . . . . 28=N,
Water vapour . . . . . . . 18=1IL0
Ammonia ... . . . . . . 17T=HN

§ 89. In general, then, the molecular weight of a
chemically homogeneous gas is twice its density relative to
hydrogen. Conversely, the molecular weight, m, of a gas
being known, its specific density, and consequently the
constant C in the characteristic equation (5), can be calcu-
lated. Denoting all quantities referring to hydrogen by
the suffix 0, we have, at any temperature and pressure, for
hydrogen,

_ G

Vo

p

5

for any other gas at the same temperature and pres-
sure,

_ oo
D=
0 G = }':1=mo:m,
Yo vV
or C — 7,)22(;‘0 A (13)

m



MOLECULAR WEIGHT. 27

Now me = 2, and Cy is to be calculated from the density of
hydrogen at 0° C. and atmospheric pressure (§ 11).

Since l = 0-00008988, p = 1013650, § = 273,

S moCO _Mo P _ 2.1013650 82600000
™ m 0 m.273.000008988 =  m

Putting, for shortness, 826000’00 R, the characteristic

equation of a chemically homogeneous perfect gas of mole-

cular weight m becomes

I I (7

ShR-v
[SHES~)

p:

where I, being independent of the nature of the individual
gas, is generally called the absolute gas constant. The
molecular weight may be deduced directly from the charac-
teristic equation by the aid of the constant R, since

m:%. 5 o o o o o (L&)
. A%
Since v = A e have
Ve Ro ] 1\[.
p m

Bnt?—}f— is the quantity defined above as the number of

.M
molecules in the gas, and, therefore, if =

which means that at a given temperature and pressure the
volume of a quantity of gas depends only on the number of
the molecules present, and not at all on the nature of the
gas.

§ 40. In a mixture of chemically homogeneous gases of
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molecular weights m;, my . . . the relation between the
partial pressures is, according to (9),
pripete . . =CM:CM, . ..
But in (15) we have Cl=—R—;02'= R—,
m Mg
h 3 . 1 1\11 . :ME . _ o
SePripai... —;{1.%2.... =N N9 ..o

t.e. the ratio of the partial pressures is also the ratio of the
number of molecules of each gas present. Kquation (10)
gives for the total volume

v = €+ CMy + .. )0
: P
_ ROM, | M, )

n p \m Mgy

RO
=?(n1+n2+ ...)

R
= (16)
The volume of the mixture is therefore determined by

the total number of the molecules present, just as in the
case of a chemically homogeneous gas.

§ 41. Tt is evident that we cannot speak of the molecular
weight of a mixture. Its apparent molecular weight, how-
ever, may be defined as the molecular weight which a
chemically homogeneous gas would have if it contained in
the same mass the same number of molecules as the
mixture. If we denote the apparent molecular weight by
m, we have
My+Met+... M M
T Tmtm

M, + M, + ..

Y1l D e—m————
M, M,
Wb g

o

and
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The apparent molecular weight of air may thus be calcu-
lated. Since

my = 03 =32; mg =Ny =23; M;: M, =03

we have m = %t%- = 288,

32128
which is somewhat larger than the molecular - weight of
nitrogen.

§ 42. The characteristic equation of aperfect gas, whether
chemically homogeneous or not, gives, according to (16), the
total number of molecules, but yields no means of deciding
whether or not these molecules are all of the same kind. In
order to answer this question, other methods must be resorted
to, none of which, however, is practically applicable to all
cases. A decision is often reached by an observation of the
process of diffusion through a porous or, better, a semi-
permeable membrane. The individual gases of a mixture
will separate from each other by virtue of the differences in
their velocities of diffusion, which may even sink to zero in
the case of semi-permeable membranes, and thus disclose
the inhomogeneity of the substance. The chemical consti-
tution of a gas may often be inferred from the manmner in
which it originated. It is by means of the expression for
the entropy (§ 237) that we first arrive at a fundamental
definition for a chemically homogeneous gas.

§ 43. Should a gas or vapour not obey the laws of perfect
gases, or, in other words, should its specific density depend
on the temperature or the pressure, Avogadro’s definition of
molecular weight is nevertheless applicable. The number
of molecules in this case, instead of being a constant, will
be dependent upon the momentary physical condition of the
substance. We may, in such cases, either assume the number
of molecules to be variable, or refrain from applying Avoga-
dro’s definition of the number of molecules. In other words,
the cause for the deviation from the ideal state may be
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sought for either in the chemical or physical conditions. The
latter view preserves the chemical nature of the gas. The
molecules remain intact under changes of temperature and
pressure, but the characteristic equation is more complicated
than that of Boyle and Gay-Lussac—like that, for example,
of van der Waals or of Clausius. The other view differs
essentially from this, in that it represents any gas, not obey-
ing the laws of perfect gases, as a mixture of various kinds
of molecules (in nitrogen peroxide N;O, and NO,, in phos-
phorus pentachloride PCl;, PCl;, and Cly). The volume of
these is supposed to have at every moment the exact value
theoretically required for the total number of molecules of
the mixture of these gases. The volume, however, does not
vary with temperature and pressure in the same way as that
of a perfect gas, because chemical reactions take place
between the different kinds of molecules, continuously alter-
ing the number of each kind present, and thereby also the
total number of molecules in the mixture. This hypothesis
has proved fruitful in cases of great differences of density—
so-called abnormal vapour densities—especially where, be-
yond a certain range of temperature or pressure, the specifie
density once more becomes constant. When this is the
case, the chemical reaction has been completed, and for this
.. reason the molecules henceforth remain unchanged. Hydro=-

“bromamylene, for instance, acts like a perfect gas below
160° and above 360°, but shows only half its former density
at the latter temperature. The doubling of the number of
molecules corresponds to the equation

C5H11B1’ = C5H10 + HBr.

Mere insignificant deviations from the laws of perfect
gases are generally attributed to physical causes—as, e.g., in
water vapour and carbon dioxide—and are regarded as the
forerunners of condensation. The separation of chemical
from physical actions by a principle which would lead to a
more perfect definition of molecular weight for variable
vapour densities, cannot be accomplished at the present
time. The increase in the specific density which many






CHAPTER III.
QUANTITY OF HEAT.

§ 44. If we plunge a piece of iron and a piece of lead, both
of equal weight and at the same temperature (100° C.), into
two precisely similar vessels containing equal quantities of
water at 0° C., we find that, after thermal equilibrium has
been established in each case, the vessel containing the iron
has increased in temperature much more than that contain-
ing the lead. Conversely, a quantity of water at 100° is
cooled to a much lower temperature by a piece of iron at 0°,
than by an equal weight of lead at the same temperature.
This phenomenon leads to a distinction between temperature
and quantity of heat. As a measure of the heat given out
or received by a body, we take the increase or decrease of
temperature which some rormal substance (e.g. water) under-
goes when it alone is in contact with the body, provided all
other causes of change of temperature (as compression, etc.)
are excluded. The quantity of heat given out by the body
is assumed to be equal to that received by the normal sub-
stance, and vice versi. The experiment described above
proves, then, that a piece of iron in cooling through a given
interval of temperature gives out more heat than an equal
weight of lead (about four times as much), and conversely,
that, in order to bring about a certain increase of tempera-
ture, iron requires a correspondingly larger supply of heat
than lead.

§ 45. It was, in general, customary to take as the unit of
heat that quantity which must be added to 1 gr. of
water to raise its temperature from 0° C. to 1° C. (zero
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calorie). This is almost equal to the quantity of heat which
will raise 1 gr. of water 1° C. at any temperature. The
refinement of calorimetric measurements has since made it
necessary to take account of the initial temperature of the
water, and it is often found convenient to define the calorie
as that quantity of heat which will raise 1 gr. of water
of mean laboratory temperature (15° to 20°) 1 degree of
the Centigrade scale. This laboratory calorie is about

1'_(}076 of a zero calorie. Finally, a mean calorie has been

introduced, namely, the hundredth part of the heat required
to raise 1 gr. of water from 0° C. to 100° C. The mean
calorie is about equal to the zero calorie. DBesides these

-so-called small calories, there are a corresponding number

of large or kilogram calories, which contain 1000 small
calories.

§ 46. The ratio of Q, the quantity of heat each gram
of a substance receives, to A, the corresponding increase of
temperature, is called the mean specific heat, or mean heat
capacity of 1 gr. of the substance between the initial and
final temperatures of the process—

Q _
Al
Hence, the mean heat capacity of water between 0° and
1° is equal to one zero calorie.
Passing to infinitely small dlfferences of temperature,
the specific heat of a substance, at the temperature 0,
becomes

Chn

Q_
a9 —
This, in general, varies with temperature, but very slowly

for most substances. It is usually permissible to put the
specific heat at a certain temperature equal to the mean

 specific heat of an adjoining interval of moderate size.

§4’7. The heat capacity of solids and liquids is very
D
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nearly independent of any variations of external pressure
that may take place during the process of heating. Hence
the definition of the heat capacity is not, usually, encumbered
with a condition regarding pressure. The specific heat of
gases, however, is influenced considerably by the conditions
of the heating process. In this case the definition of
specific heat would, therefore, be incomplete without some
statement as to the accompanying conditions. Neverthe-
less, we speak of the specific heat of a gas, without further
specification, when we mean its specific heat at constant
(atmospheric) pressure, as this is the value most readily
determined.

§ 48. That the heat capacities of different substances
should be referred to unit mass is quite arbitrary. It arises
from the fact that quantities of matter can be most easily
compared by weighing them. Heat capacity might, quite
as well, be referred to unit volume. It is more rational to
compare masses which are proportional to the molecular
and atomic weights of substances, for then certain regu-
larities at once become manifest. The corresponding heat
capacities are obtained by multiplying the specific heats
(per unit mass) by the molecular or atomic weights. The
values thus obtained are known as the molecular or atomic
heats.

§ 49. The chemical elements, especially those of high
atomic weight, are found to have nearly the constant atomic
heat of 6-4 (Dulong and Petit). It cannot be claimed that
this law is rigorously true, since the heat capacity depends
on the molecular constitution, as in the case of carbon, and
on the state of aggregation, as in the case of mercury, as
well as on the temperature. The effect of temperature is
especially marked in the elements, carbon, boron, and
silicon, which show the largest deviations from Dulong
and Petit’s law. The conclusion is, however, justified, that
Dulong and Petit’s law is founded on some more general
law of nature, which has not yet been formulated.
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§ 50. Similar regularities, as appear in the atomic heats of
elements, are also found in the molecular heats of compounds,
especially with compounds of similar chemical constitution.
According to F. Neumann’s law, subsequently confirmed by
Regnault, compounds of similar constitution, when solid,
have equal molecular heats. Joule and Woestyn further
extended this law by showing that the molecular heat is
merely the sum of the atomic heats, or that in any com-
bination every element preserves its atomic heat, whether
or not the latter be 64, according to Dulong and Petit’s
law. This relation also is only approximately true.

§ 51. Since all calorimetric measurements, according to
§ 44, extend only to quantities of heat imparted to bodies or
given out by them, they do not lead to any conclusion as
. to the total amount of heat contained in a body of given
temperature. It would be absurd to define the heat con-
tained in a body of given temperature, density, etc., as the
number of calories absorbed by the body in its passage from
some normal state into its present state, for the quantity
thus defined would assume different values according to the
~way in which the change was effected. A gas at 0° and
atmospheric pressure can be brought to a state where its
temperature is 100° and its pressure 10 atmospheres, either
by heating to 100° under constant pressure, and then com-
pressing at constant temperature; or by compressing
isothermally to 10 atmospheres, and then heating isopie-
stically to 100°; or, finally, by compressing and heating
simultaneously or alternately in a variety of ways. The
total number of calories absorbed would in each case be
different (§ 77). It is seen, then, that it is useless to speak
of a certain quantity of heat which must be applied to a
body in a given state to bring it to some other state. If
the “total heat contained in a body” is to be expressed
numerically, as is done in the kinetic theory of heat, where
the heat of a body is defined as the total energy of its
internal motions, it must not be interpreted as the sum-
total of the quantities of heat applied to the body. As we
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shall make no use of this quantity in our present work, no
definition of it need be attempted.

§ 52. In contrast to the above representation of the facts,
the older (Carnot’s) theory of heat, which started from the
hypothesis that heat is an indestructible substance, neces-
sarily reached the conclusion that the “heat contained in a
body ” depends solely on the number of calories absorbed
or given out by it. The heating of a body by other means
than direct application of heat, by compression or by friction
for instance, according to that theory produces no change in
the “total heat.” To explain the rise of temperature which
takes place notwithstanding, it was necessary to make the
assumption that compression and friction so diminish the
body’s heat capacity, that the same amount of heat now
produces a higher temperature, just as, for example, a
moist sponge appears more moist if compressed, although
the quantity of liquid in the sponge remains the same. In
the meantime, Rumford and Davy proved by direct experi-
ment that bodies, in which any amount of heat can be
generated by an adequate expenditure of work, do not in
the least alter their heat capacities with friction. Regnault,
likewise, showed, by accurate measurements, that the heat
capacity of gases is independent of or only very slightly
dependent on volume; that it cannot, therefore, diminish,
in consequence of compression, as much as Carnot’s theory
would require. Finally, W. Thomson and Joule have
demonstrated by careful experiments that a gas, when ex-
panding without overcoming external pressure, undergoes
no change of temperature, or an exceedingly small one
(¢f. § 70), so that the cooling of gases generally observed
when they expand is not due to the increase of volume per
se, but to the work done in the expansion. Each one of
these experimental results would by itself be sufficient to
disprove the hypothesis of the indestructibility of heat, and
to overthrow the older theory.

§ 538. While, in general, the heat capacity varies con-
tinuously with temperature, every substance possesses,
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under certain external pressures, so-called singular values
of temperature, for which the heat capacity, together
with other properties, is discontinuous. At such tempera-
tures the heat absorbed no longer affects the entire body,
but only one of the parts into which it has split; and it no
longer serves to increase the temperature, but simply to
alter the state of aggregation, ¢.e. to melt, evaporate, or
sublime. Only when the entire substance has again become
homogeneous will the heat imparted produce a rise in
temperature, and then the heat capacity becomes once more
capable of definition. The quantity of heat necessary to
change 1 gram of a substance from one state of aggregation
to another is called the latent heat, in particular, the heat of
Jfusion, of vaporization, or of sublimation. The same amount
of heat is set free when the substance returns to its former
state of aggregation. Latent heat, as in the case of specific
heat, is best referred, not to unit mass, but to molecular or
atomic weight. Its amount largely depends on the external
conditions under which the process is carried out (§ 47),
constant pressure being the most important condition.

§ 54. Like the changes of the state of aggregation, all
processes involving mixture, or solution, and all chemical
reactions are accompanied by an evolution of heat of greater -
or less amount, which varies according to the external con-
ditions. This we shall henceforth designate as the heat
effect (Wirmetonung) of the process under consideration, in
particular as the heat of mixture, of solution, of combina-
tion, of dissociation, ete. It is reckoned positive when heat
is set free or developed, <.c. given out by the body (exo-
thermal processes); megative, when heat is absorbed, or
rendered latent, 7.c. taken up by the body (endothermal
Pprocesses).
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THE FIRST FUNDAMENTAL PRINCIPLE OF
THERMODYNAMICS.

CHAPTER I.
GENERAL EXPOSITION.

§ 85. THE first law of thermodynamics is nothing more
than the principle of the conservation of energy applied
to phenomena involving the production or absorption of
heat. Two ways lead to a dedunctive proof of this principle.
‘We may take for granted the correctness of the mechanical
view of nature, and assume that all changes in nature can
be reduced to motions of material points between which
there act forces which have a potential. Then the principle
of energy is simply the well-known mechanical theorem of
kinetic energy, generalized to include all natural processes.
Or we may, as is done in this work, leave open the question
concerning the possibility of reducing all natural processes
to those of motion, and start from the fact which has been
tested by centuries of human experience, and repeatedly
verified, viz. that ¢t is in no way possible, either by mechanical,
thermal, chemical, or other devices, to obtain perpetual motion,
t.e. it is impossible to construct an engine which will work
in a cycle and produce continuous work, or kinetic energy,
from nothing. We shall not attempt to show how this single
fact of experience, quite independent of the mechanical
view of nature, serves to prove the principle of energy in
its generality, mainly for the reason that the validity of
the energy principle is nowadays no longer disputed. It
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will be different, however, in the case of the second law of
thermodynamies, the proof of which, at the present stage
of the development of our subject, cannot be too carefully
presented. The general validity of this law is still con-
tested from time to time, and its significance variously
interpreted, even by the adherents of the principle.

§ 56. The energy of a body, or system of bodies, is
a magnitude depending on the momentary condition of
the system. In order to arrive at a definite numerical
expression for the energy of the system in a given state,
it is necessary to fix upon a certain normal arbitrarily
selected state (e.g. 0° C. and atmospheric pressure). The
energy of the system in a given state, referred to the
arbitrarily selected normal state, is then equal to the alge-
| braie sum of the mechanical equivalents of all the effects
produced outside the system when it passes in any way from
| the given to the normal state. The energy of a system is,
therefore, sometimes briefly denoted as the faculty to
produce external effects. Whether or not the energy of a
system assumes different values according as the transition
from the given to ,the normal state is accomplished in
different ways is not implied in the above definition. Tt
will be necessary, however, for the sake of completeness,
to explain the term “mechanical equivalent of an external
effect.”

§ 57. Should the external effect be mechanical in nature
—should it consist, eg., in lifting a weight, overcoming
atmospheric pressure, or producing kinetic energy—then
its mechanical equivalent is simply equal to the mechanical
work done by the system on the external body (weight,
atmosphere, projectile). It is positive if the displacement
take place in the direction of the force exercised by the
system—when the weight is lifted, the atmosphere pushed
back, the projectile discharged,—negative in the opposite
sense.

But if the external effect be thermal in nature—if it
consist, e.g., in heating surrounding bodies (the atmosphere,
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a calorimetric liquid, ete.)—then its mechanical equivalent is
equal to the number of calories which will produce the same
rise of temperature in the surrounding bodies multiplied
by an absolute constant, which depends only on the units
of heat and mechanical work, the so-called mechanical
equivalent of heat. This proposition, which appears here
only as a definition, receives through the principle of the
conservation of energy a physical meaning, which may be
put to experimental test.

§ 8. The Principle of the Conservation of Energy
asserts, generally and exclusively, that the energy of a
system in a given state, referred to a fixed normal state,
has a quite diﬂ'grfé“ﬁr‘(%lue; in other words—substituting
the definition given in § 56—that the algebraic sum of the
mechanical equivalents of the external effects produced
outside the system, when it passes from the given to the
normal state, is independent of the manner of the trans-
formation. On passing into the normal state the system
thus produces a definite total of effects, as measured in
mechanical units, and it is this sum—the “work-value”
of the external effects—that represents the energy of the
system in the given state.

§ 59. The validity of the principle of the conservation
of energy may be experimentally verified by transferring a
system in various ways from a given state to a certain other
state, which may here be designated as the normal state,
and measuring the mechanical equivalents of all external
effects in each case. Special care must be taken, however,
that the initial state of the system is the same each time,
and that none of the external effects is overlooked or taken
into account more than once.

§ 60. As a first application we shall discuss Joule’s famous
experiments, in which the external effects produced by
weights falling from a certain height were compared, first,
when performing only mechanical work (e.g. lifting a load),
and second, when by suitable contrivances generating heat
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by friction. The initial and final position of the weights
may be taken as the two states of the system, the work or
heat produced, as the external effects. The first case,
where the weights produce only mechanical work, is simple,
and requires no experiment. Its mechanical equivalent is
the product of the sum of the weights, and the height
through which they fall. The second case requires accurate
measurement of the increase of temperature, which the
surrounding substances (water, mercury) undergo in conse-
quence of the friction, as well as of their heat capacities, for
the determination of the number of calories which will
produce in them the same rise of temperature. It is, of
course, entirely immaterial what our views may be with
regard to the details of the frictional generation of heat, or
with regard to the ultimate form of the heat thus generated.
The only point of importance is that the state produced
in the liquid by friction is identical with a state produced
by the absorption of a definite number of calories.

Joule, by equating the mechanical work, corresponding
to the fall of the weights, to the mechanical equivalent of
the heat produced by friction, showed that the mechanical
equivalent of a gram-calorie is, under all circumstances,
equal to the work done in lifting a weight of a gram through
a height of 423-55 meters. That all his experiments with
different weights, different calorimetric substances, and
different temperatures, led to the same value, goes to prove
the correctness of the principle of the conservation of
energy.

§ 61. In order to determine the mechanical equivalent
of heat in absolute units, we must bear in mind that Joule’s
result refers to laboratory calories (§ 45), and the readings
of a mercury thermometer. At the temperature of the
laboratory, 1° of the mercury thermometer represents about
17(}—07 of 1° of the gas thermometer. A calorie referred to
the gas thermometer has, therefore, a mechanical equivalent
of 423:55 x 1007 = 427.



42 THERMODYNAMICS.

The acceleration of gravity must also be considered,
since raising a gram to a certain height represents, in
general, different amounts of work in different latitudes.
The absolute value of the work done is obtained by multi-
plying the weight, 7.e. the product of the mass and the
acceleration of gravity, by the height of fall. The follow-
ing table gives the mechanical equivalent of heat in the
different calories :—

| Corresponding height in | Absolute value of
Unit of heat referred to meters to which 1 gr. the mechanical equi-
gas thermometer. { must be raised in places valent (C.G.S.
of mean latitude. system, erg).
Laboratory caloric . 427 419 x 108
Zero calorie . . . 430 422 x 10°

The numbers of the last column are derived from those
of the preceding one by multiplying by 98,100, to reduce
grams to dynes, and meters to centimeters. Joule’s results
have been substantially confirmed by recent careful measure-
ments by Rowland and othe

§ 62. The determination of the mechanical equivalent
of heat enables us to express quantities of heat in ergs
directly, instead of calories. The advantage of this is, that
a quantity of heat is not only proportional to, but directly
equal to its mechanical equivalent, whereby the mathe-
matical expression for the energy is greatly simplified.
This unit of heat will be used in all subsequent equations.
The return to calories is, at any time, readily accomplished
by dividing by 419 x 105

§ 63. Some further propositions immediately follow from
the above exposition of the principle of energy. The
energy, as stated, depends on the momentary condition of
the system. To find the change of emergy, U; — U,
accompanying the transition of the system from a state 1
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to a state 2, we should, according to the definition of the
energy in § 58, have to measure U, as well as U, by the
mechanical equivalent of the external effects produced in
passing from the given states to the normal state. DBut,
supposing we so arrange matters that the system passes
from state 1, through state 2, into the normal state, it is
evident then that U, — U, is simply the mechanical equiva-
lent of the external effects produced in passing from 1 to 2.
The decrease of the energy of a system subjected to any
change is, then, the mechanical equivalent of the external
effects resulting from that change; or, in other words, the
increase of the energy of a system which undergoes any
change, is equal to the mechanical equivalent of the heat
absorbed and the work expended in producing the change:

Uy-Ti=Q+W. . . B.0a7)

Q is the mechanical equivalent of the heat absorbed by the
system, e.g. by conduction, and W is the amount of work
expended on the system. W is positive if the change takes
place in the direction of the external forces. The sum
Q + W represents the miciianical equivalent of all the
thermal and mechanical Ope.wcions of. the surrounding
bodies on the system. We shall use Q and W always in
this sense.

The value of Q + W is independent of the manner of
the transition from 1 to 2, and evidently also of the selec-
tion of the normal state. When differences of energy of
one and the same system are considered, it is, therefore, not
even necessary to fix upon a normal state. In the expres-
sion for the energy of the system there remains then an
arbitrary additive constant undetermined.

§ 64. The difference U, ~ U, may also be regarded as
the energy of the system in state 2, referred to state 1 as
the normal state. For, if the latter be thus selected, then
U, = 0, since it takes no energy to change the system from
1 to the normal state, and Uy — U; = Up. The normal
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state is, therefore, sometimes called the state of zero
energy.

§ 65. States 1 and 2 may be identical, in which case the
system changing from 1 to 2 passes through a so-called
eycle of operations. ~ In this case,

U2=U1andQ+W=0 o o o (18)

The mechanical equivalent of the external effects is zero, or
the external heat effect is equal in magnitude and opposite
in sign to the external work. This proposition shows the
impracticability of perpetual motion, which necessarily
presupposes engines working in complete cycles.

§ 66. If no external effects (Q = 0, W = 0) be produced
by a change of state of the system, its energy remains
constant (conservation of the energy). The quantities, on
which the state of the system depends, may undergo con-
siderable changes in this case, but they must obey the
condition U = const.

A system which changes without being acted on by
external agents is called a perfect system. Strictly speak-
ing, no perfect system can be found in nature, since there
is constant interaction between all material bodies of the
universe. It is, however, of importance to observe that by
an adequate choice of the system which is to undergo the
contemplated change, we have it in our power to make
the external effect as small as we please, in comparison
with the changes of energy of portions of the system itself.
Any particular external effect may be eliminated by making
the body which produces this effect, as well as the recipient,
a part of the system under consideration. In the case of a
gas which is being compressed by a weight sinking to a
lower level, if the gas by itself be the system considered,
the external effect on it is equal to the work done by the
weight. The energy of the system accordingly increases.
If, however, the weight and the earth be considered parts of
the system, all external effects are eliminated, and the






CHAPTER II.
APPLICATIONS 70 HOMOGENEOUS SYSTEMS.

§ 67. WE shall now apply the first law of thermodynamlcs
as expressed in equation (17),

U-U=Q+ W,

to a homogeneous substance, whose state is determined,
besides by its chemical nature and mass M, by two vari-
ables, the temperature 6 and the volume V, for instance.
The term homogencous is used here in the sense of physically
homogeneous, and is applied to any system which appears
of completely uniform structure throughout. The sub-
stance may be chemically homogeneous, 7.c. it may consist
entirely of the same kind of molecules, or chemical trans-
formations may take place at some stage of the process,
as, for example, in the case of a vapour, which partially
dissociates.on being heated. The homogeneous state must,
however, be a single valued function of the temperature
and the volume. As long as the system is at rest, the
total energy consists of the so-called internal energy U,
which depends only on the internal state of the substance
as determined by its density and temperature, and on its
mass, to which it is evidently proportional. In other cases
the total energy contains, besides the internal energy 1Uf
another term, namely, the kinetic energy, which is known
from the principles of mechanics.

In order to determine.the functional relation between U,
0, and 'V, the state of the system must be changed, and the
. external effects of this change calculated. Equation (17)
then gives the corresponding change of energy.
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§ 68. If a gas, initially at rest and at uniform temperature,
be allowed to suddenly expand by the opening of a stopcock,
which makes communication with a previously exhausted
vessel, a number of intricate mechanical and thermal
changes will at first take place. The portion of the gas
flowing into the vacuum is thrown into violent motion, then
heated by impact against the sides of the vessel and by
compression of the particles crowding behind, while the
portion remaining in the first vessel is cooled down by
expansion, ete. Assuming the walls of the vessels to be
absolutely rigid and non-conducting, and denoting by 2 any
particular state after communication between the vessels
has been established, then, according to equation (17), the
total energy of the gas in state 2 is precisely equal to that
in state 1, for neither thermal nor mechanical forces have
acted on the gas from without. The reaction of the walls
does not -perform any work. The energy in state 2 is,
in general, composed of many parts, viz. the kinetic and
internal energies of the gas particles, each one of which, if
taken sufficiently small, may be considered as homogeneous
and uniform in temperature and density. If we wait until
complete rest and thermal equilibrium have been re-estab-
lished, and denote this state by 2, then in 2, as in 1, the total
energy consists only of the internal energy U, and we have
U, = U;. But the variables 6 and V, on which U depends,
have passed from 05, Vi to 6z Vs, where V> Vi By
measuring the temperatures and the volumes, the relation
between the temperature and the volume in processes where
the internal energy remains constant may be established.

§ 69. Joule performed such an experiment as described,
and found that for perfect gases O, = 0. He put the two
communicating vessels; one filled with air at high pressure,
the other exhausted, into a common water-bath at the
same temperature, and found that, after the air had ex-
panded and equilibrium had been established, the change
of temperature of the water-bath was inappreciable. It
immediately follows that, if the walls of the vessels were
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non-conducting, the final temperature of the total mass of
the gas would be equal to the initial temperature ; for other-
wise the change in temperature would have communicated
itself to the water-bath in the above experiment.

Hence, if the internal energy of a mnearly perfect gas
remains unchanged after a considerable change of volume,
then its temperature also remains almost constant. In other
words, the internal enerqy of a perfect gas depends only on the
temperature, and not on the volume.

§ 70. For a conclusive proof of this important deduc-
tion, much more accurate measurements are required. In
Joule’s experiment described above, the heat capacity of
the gas is so small compared with that of the vessel and the
water-bath, that a considerable change of temperature in
the gas would have been necessary to produce an appreciable
change of temperature in the water. More reliable results
are obtained by a modification of the above method devised
by Sir William Thomson (Lord Kelvin), and used by him,
along with Joule, for accurate measurements. Here the
outflow of the gas is artificially retarded, so that the gas
passes immediately into its second state of equilibrium.
The temperature 0 is then directly measured in the stream
of outflowing gas. No limited quantity of gas rushes
tumultuously into a vacuum, but a gas is slowly transferred
in a steady flow from a place of high pressure, p;, to one of
low pressure, p, (the atmosphere), by forcing it through a
boxwood tube stopped at one part of its length by a porous
plug of cotton wool or filaments of silk. The results of the
experiment show that when the flow has become steady there
is, for air, a very small change of temperature, and, for hydro-
gen, a still smaller, hardly appreciable change. Hence the
conclusion appears justified, that, for a perfect gas, the
change of temperature vanishes entirely.

This leads to an inference with regard to the internal
energy of a perfect gas. When, after the steady state of
the process has been established, a certain mass of the gas
has been completely pushed through the plug, it has been
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operated upon by external agents during its change from
the volume, Vi, at high pressure, to the larger volume, Vs,
at atmospheric pressure. The mechanical equivalent of
these operations, Q + W, is to be calculated from the
external changes. The state of the porous plug remains
the same throughout ; hence the processes that take place
in it may be neglected. No change of temperature occurs
outside the tube, as the material of which it is made is
practically non-conducting ; hence Q = 0. The mechanical
work done by a piston in pressing the gas through the plug
at the constant pressure p, is evidently p; V), and this for a
perfect gas at constant temperature is, according to Boyle’s
law, equal to the work p,Vs which is gained by the
escaping gas pushing a second piston at pressure p, through
8 volume V,. Hence the sum of the external work W is
also zero, and therefore, according to equation (17), Us=U.
’As the experimental results showed the temperature to be
practically unchanged while the volume increased very con-
siderably, the internal energy of a perfect gas can depend
only on the temperature and not on the volume, ‘e,

au
5V)0_0 c o L)

For nearly perfect gases, as hydrogen, air, etc., the
actual small change of temperature observed shows how far
the internal energy depends on the volume. It must,
however, be borne in mind that for such gases the external
work,

W= 201V1 = P2V2;

does not vanish ; hence the internal energy does not remain
constant. For further discussion, see § 158.

§ 71. Special theoretical importance must be attached to
those thermodynamical processes which progress infinitely
slowly, and which, therefore, consist of a succession of
states of equilibrium. Strictly speaking, this expression is
vague, since a process presupposes changes, and, therefore,
disturbances of equilibrium. DBut where the time taken is

E
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immaterial, and the result of the process alone of con-
sequence, these disturbances may be made as small as we
please, certainly very small in comparison with the other
quantities which characterize the state of the system under
observation. Thus, a gas may be compressed very slowly to
any fraction of its original volume, by making the external
pressure, at each moment, just a trifle greater than the
internal pressure of the gas. Wherever external pressure
enters—as, for instance, in the calculation of the work of
compression—a very small error will then be committed, if
the pressure of the gas be substituted for the external
pressure. On passing to the limit, even that error vanishes.
In other words, the result obtained becomes rigorously
exact for infinitely slow compression.

This holds for compression at constant as well as at
variable pressure. The latter may be given the required
value at each moment by the addition or removal of small
weights. This may be done either by hand (by pushing
weights to one side), or by means of some automatic device
which acts merely as a release, and therefore does not con-
tribute towards the work done.

“ § 72. The conduction of heat to and from the system may
be treated in the same way. When it is not a question of
time, but only of the amount of heat received or given out
by the system, it is sufficient, according as heat is to be
added to or taken from the system, to connect it with a heat-
reservoir of slightly higher or lower temperature than that
of the system. This small difference serves, merely, to
determine the direction of the flow of the heat, while its
magnitude is negligible compared with the changes of the
system, which result from the process. We, therefore, speak
of the conduction of heat between bodies of equal tempera-
ture, just as we speak -of the compression of a gas by an
external pressure equal to that of the gas. This is merely
anticipating the result of passing to the limit from a small
finite difference to an infinitesimal difference of temperature
between the two bodies.
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This applies not only to strictly isothermal processes,
but also to those of varying temperature. One heat-reser-
voir of constant temperature will not suffice for carrying
out the latter processes. These will require either an
auxiliary body, the temperature of which may be arbitrarily
changed, e.g. a gas that can be heated or cooled at pleasure .
by compression or expansion ; or a set of constant-tempera-
ture reservoirs, each of different temperature. In the latter
case, at each stage of the process we apply that particular
heat-reservoir whose temperature lies nearest to that of the
system at that moment.

§ 73. The value of this method of viewing the process
lies in the fact that we may imagine each ¢nfinitely slow
process to be carried out also in the opposite direction. Ifsdir
a process consist of a succession of states of equilibrium
with the exception of very small changes, then evidently a
suitable change, quite as small, is sufficient to reverse the
process. This small change will vanish when we pass over
to the limiting case of the infinitely slow process, for a
definite result always contains a quite definite error, and if
this error be smaller than any quantity, however small; it
must be zero.

§ 74. We pass now to the application of the first law to
a process of the kind indicated, and, therefore, reversible in
its various parts. Taking the volume V (abscissa) and
the pressure p (ordinate) as the independent variables, we
may graphically illustrate our process by plotting its suc-
cessive states of equilibrium in the form of a curve in the
plane of the co-ordinates. Each point in this plane corre-
sponds to a certain state of our system, the chemical
nature and mass of which are supposed to be given, and
each curve corresponds to a series of continuous changes
of state. Let the curve a from 1 to 2 represent a reversible
process which takes the substance from a state 1 to a state 2
(Fig. 2). Along q, according to equation (17), the increase
of the energy is

Ug—U1=‘V+Q:

s

*«
58
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where W is the mechanical work expended on the substance,
and Q the total heat absorbed by it.

§ 75. The.value of W can be readily determined. W is
made up of the elementary quantities of work done on the
system during the infinitesimal changes corresponding to
the elements of arc of the curve a. The external pressure
is at any moment equal to that of the substance, since the
process is supposed to be reversible. Consequently, by the

P

—

Fic. 2.

laws of hydrodynamics, the work done by the external
forces in the infinitely small change is equal to the product
of the pressure p, and the decrease of the volume, —dV, no
matter what the geometrical form of the surface of the
body may be. Hence the external work done during the
whole process is

VV:-ﬁpdV,. &'y e R ey

in which the integration extends from 1 to 2 along the
carve a. If p be positive, as in the case of gases, and
V. >V; as in Fig. 2, W is negative.
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In order to perform the integration, the curve q, 7.c. the
relation Detween p and V, must be known. As long as only
the points 1 and 2 are given, the integral has no definite
value. In fact, it assumes an entirely different value along
a different curve, (3, joining 1 and 2. Therefore pdV is
not a perfect differential. Mathematically this depends on
the fact that p is in general not only a function of V, but
also of another variable, the temperature 6, which also changes
along the path of integration. As long as « is not given,
no statement can be made with regard to the relation be-
tween 6§ and V, and the integration cannot be performed.

The external work, W, is evidently represented by the
area (taken negative) of the plane figure bounded by the -
curve a, the ordinates at 1 and 2, and the axis of abscisse.
This, too, shows that W depends on the path of the curve
a. Only for infinitesimal changes, 7.c. when 1 and 2 are
infinitely near one another and « shrinks to a curve element,
is W determined by the initial and final points of the
curve alone.

§ 76. The second measurable quantity is Q, the heat
absorbed. It may be determined by calorimetric methods
in calories, and then expressed in mechanical units by mul-
tiplying by the mechanical equivalent of heat. We shall
now consider the theoretical determination of Q. It is, like
W, the algebraical sum of the infinitely small quantities of
beat added'to the body during the elementary processes
corresponding to the elements of the curye a. Such an
increment of heat cannot, however, be immediately calculated,
from the position of the curve element in the co-ordinate
plane, in a manner similar to that of the increment of work.
To establish an analogy between the two, one might, in
imitation of the explesswn — pdV, put the increment of
heat = Od#f, where df is the increment of temperature, and
C the heat capacity, which is usually a finite quantity.
But C has not, in general, a definite value. It does not
depend, as the factor p in the expression for the increment
of work, alone on the momentary state of the substauce, 6.
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on the position of the point of the curve considered, but
also on the direction of the curve element. In isothermal
changes C is evidently = * oo, because df = 0, and the
heat added or withdrawn is a finite quantity. In adiabatic
changes C = 0, for here the temperature may change in
any way, while no heat is added or withdrawn. For a given
point, C may, therefore, in contradistinction.to p, assume
all values between + oo and — . (Cf. § 47.) Hence the
analogy is incomplete in one essential, and does not, in the
general case, simplify the problem in -hand. 'We shall also
find that the breaking up of the-heat absorbed into the two
factors 0 and d® (§ 120), is permissible only in some very
special cases.

§ 77. Although the value of Q cannot, in general, be
directly determined, equation (17) enables us to draw some
important inferences regarding it. Substituting the value
of W from equation (20) in equation (17), we obtain

2
Q=U2—U1+flpdV,. e A2

which shows that the value of ¢ depends not only on the
position of the points 1 and 2, but also on the connecting
path (aor (3). Carnot’s theory of heat cannot be reconciled
with this proposition, as we have shown at length in
§§ 51 and 52.

§ 78. The complete evaluation of Q is possible in the
case where the substance returns to its initial state, having
gone through a cycle of operations. This might be done by
first bringing the system from 1 to 2 along a, then back
from 2 to 1 along (3. Then, as in all cycles (§ 65),

Q=-W.

The external work is

PR /ipdv,‘

the integral to be taken along the closed curve 1a2[31.
W evidently represents the area bounded by the curve,
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and is positive if the process follows the direction of the
arrow in I'ig. 2.

§ 79. We shall now consider the special case where the
curve a, which characterizes the change of state, shrinks
into an element, so that the points 1 and 2 lie infinitely
near one another. W here becomes the increment of work,
—pdV, and the change of the internal energy is dU.
Hence, according to (21), the heat absorbed assumes the
value : * | v

Q =dU + pdV.
Per unit mass, this equation becomes
g=du+tpdv, . . . . . (22)

where the small letters denote the corresponding capitals
divided by M. In subsequent calculations it will often be
.advisable to use 0 as an independent variable, either in
conjunction with p, or v. We shall, in each case, select as
independent variables those which are most conducive to a
simplification of the problem in hand. The meaning of the
differentiation will be indicated whenever a misunderstand-
ing is possible.

We shall now apply our last equation (22) to the most
important reversible processes.

§ 80. It has been repeatedly mentioned that the specific
heat of a substance may be defined in very different ways
according to the manner in which the heating is carried out.
But, according to § 46 and equation (22), we have, for any
heating process,

g du dv 23
C =-34= 945 o Mool ol
d0=do+ Py 5.

* It is usual to follow the example of Clausius, and denote this quantity
by dQ to indicate that it is infinitely small. This notation, however, has
frequently given rise to misunderstanding, for dQ has been repeatedly
regarded as the differential of a known finite quantity Q. We therefore

adhere to the notation given above. Other authors use d'Q, in order fo
obviate the aforesaid misunderstanding. :
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In order to give a definite meaning to the differential
coefficients, some arbitrary condition is required, which will
prescribe the direction of the change. A single condition
is sufficient, since the state of the substance depends on two
variables only.

§ 81. Heating at Constant Volume.—Here dv =0,
¢ = ¢,, the specific heat at constant volume. Hence, accord-
ing to equation (23),

c_gZ) (2

or : 01’:(8)(60,, e ()

§ 82. Heating under Constant Pressure.—Here dp=0,
¢ = ¢, the specific heat at constant pressure. According
to equation (23),

o =(o), +2(), - - - @
T ‘[(au) + ]( ) Yo /@7)9;
By the substitution of w-= Hrp

du ou du\ [0\ 9 ¢(V i
a@)f ao)ﬁ(a'v)g aé) -;(46 “("9)

"1 in (26), ¢, may be written in thé form \ U) : Dr‘ ﬁ \?v)
d 9 by | A
: Cp = (a% g [(a%)o +p:KaB g v
e by (24)’ ' :
¢, =16, + [(gi;)a -+ p](g% b (28)

§ 83. By comparing (25) and (27) and eliminating u, we
are led to a direct experimental test of the theory.

By (25), "-’ﬁ) =5 @ )

and by (27), (‘9“ ( ) 5
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whence, differentiating the former equation with respect to
v, keeping p constant, and the latter with respect to p,
keeping v constant, and equating, we have

av( "ap) ap( 23y~ )

acp a0 dey a0 - ¢
or (¢, = %)@a; it ap v “ov op (29)
This equation contains only quantities which may be
experimentally determined, and therefore furnishes a means
for testing the first law of thermodynamics by observations
on any homogeneous substance.

§ 84. Perfect Gases.—;-The above equations undergo
considerable simplifications for perfect gases. We have,
from (14),

R 6
p—-_

m v

(30)

where R = 826 x 10° and m is the (real or apparent) mole-
cular weight. Hence

m

0= RPY
and equation (29) becomes
' )2
6= 6+ p° 8, ey, R

6]) 81; Sm’

Assuming that only the laws of Boyle, Gay-Lussac, and
Avogadro hold, no further conclusions can be drawn from
the first law of thermodynamics with regard to perfect gases.

§ 85. We shall now make use of the additional property
of perfect gases,established by Thomson and Joule (§ 70),
that the internal energy of a perfect gas depends only on
the temperature, and not on the volume, and that hence
per unit mass, according to (19),

(31)

au) v
dv/y C VB RAR

Of THE i
UNIVERSITY
Ca: |.?.{nu\h
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The general equation,
‘Ju du
d a0 1v,
U= ) —+ ( )‘: v

then becomes, for perfect gases,

du = ( 3 ) do,
and, according to (24),

AT AT 1 R k(B2
It follows from (28) that

dv
G =Gy p( a_())p’
or, considering the relation (30),
R
« cp =e, + L

i.e. there is a constant difference between the specific heat
at constant pressure and the specific heat at constant
volume. Referring the heat capacity to the molecular
weight m, instead of to unit mass, we have

PGy == AN Coy = Vs S T e S (e 3

The difference is, therefore, independent even of the nature
of the gas.

§ 86. Only the specific heat at constant pressure, ¢, is
capable of direct experimental determination, because a
quantity of gas enclosed in a vessel of constant volume has
far too small a heat capacity to produce sufficient thermal
effects on the surrounding bodies. Since ¢, according to
(24), like u, depends on the temperature only, and not on
the volume, the same follows for ¢, according to (33).
This conclusion was first confirmed by Regnault’s experi-
ments. He found ¢, constant within a considerable range
of temperature. By (33), ¢, is constant within the same
range. ‘
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If the molecular heats be expressed in calories, R must
be divided by Joule’s equivalent J. The difference be-
tween the molecular heats at constant pressure and at
constant volume is then

826-10° ,
= ot = 197l - . (39

~| &

mcp - me, =

§ 87. The following table contains the specific heats
and molecular heats of several gases at constant pressure,
measured by direct experiment; also the molecular heats
at constant volume found by subtracting 1-97, and also
the ratio Zi’ = yi—

v

|
<, m me, me ! Cp _

. » 7 &5

Mivconst, | Molocular || 0L, visvoonst,
pressur(;. ECiEnt pressure. | volume. L
Hydrogen . . . 3410 2:0 682 485848 ]}
Oxygen. . . .| 02175 319 694 ' 497 | 140
Nitrogen . . .| 02438 28-0 6-83 4-86 141
INPOT o o0 e 0-2375 288 684 t 487 | 1-41

The spec1ﬁc heat generally increases slowly on con-
siderable increase of temperature. Within the range of
temperature in which the specific heat is constant, equation
(32) can be integrated, giving

w=cf +const.. . . . . (3D)

The constant of integration depends on the selection of the
zero point of energy. For perfect gases, we consider ¢, and
¢, s constants throughout, hence the last equation holds
good in general.

§ 88. Adiabatic Process.—The characteristic feature
of the adiabatic process is that ¢ = 0, and, according to
equation (22), .

0= du_ + pdv.

)
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Assuming, again, a perfect gas, and substituting the
values of du from (32) and of p from (30), we have

R 0 -
O=cvd0+;l-5clv, Fro o mud86)

or, on integrating,

¢, log 0 + % log v = const.

Replacing 7% according to ('33) by ¢ — ¢y, and dividing
by ¢., we get
log 0 + (y — 1) log v = const. . . (37)

(i.e. during adiabatic expansion the temperature decreases)
Remembering that according to the characteristic equation

(30)
log p + log v — log 0 = const,,
we have, on eliminating v,
— ylog 0 + (y = 1) log p = const.
(¢.e. during adiabatic compression the temperature rises);
or, on eliminating 0,
log p + v log v = const.

The values of the constants of integration are given by
the initial state of the process.
If we compare our last equation in the form

P = congh L.~ od Sl = S

. with Boyle’s law pv = const., it is seen that during adiabatic
compression the volume decreases more slowly for an in-
crease of pressure than during isothermal compression,
because during adiabatic compression the temperature rises.
The adiabatic curves in the pv— plane (§ 22) are, therefore,
steeper than the hyperbolic isotherms.

§ 89. Adiabatic processes may be used in various ways
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for the determination of +, the ratio of the specific heats.
The agreement of the results with the value calculated from
the mechanical equivalent of heat forms an importdant
confirmation of the theory.

Thus, the measurement of the velocity of sound in a gas
may be used for determining the value of y. It is proved
in hydrodynamics that the velocity of sound in a fluid is

lelj , where p = %, the density of the fluid. Since gases
f

are bad conductors of heat, the compressions and expansions
which accompany sound-vibrations must be considered as
adiabatic, and not isothermal, processes. The relation
between the pressure and the density is, therefore, in
the case of perfect gases, not that expressed by Boyle’s

lawg = pv = const., but that given by equation (38), viz.—

;!

= = const.
p')'
Hence, by differentiation ; ?
dp _yp
e S50 ) AR
%, - b P |
or, according to (30), >
dp R
dp = T
m  dp
7 R_H . (lp

In air at 0°, the velocity of sound is P, - ga0gn LS 0
; dp sec.
hence, according to our last equation, taking the values of
m from § 41, and of R from § 84, and 0 = 273,
288 33280 ..
1=go510r 278~ L4k

This agrees with the value calculated in § 87.

Conversely, the value of v, calculated from the velocity
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of sound, may be used in the calculation of ¢, in calories,
for the determination of the mechanical equivalent of heat
from (33). This method of evaluating the mechanical
equivalent of heat was first proposed by Robert Meyer in
1842, Tt is true that the assumption expressed in equation
(31), that the internal energy of air depends only on the
temperature, is essential to this method. In other words,
this means that the. difference of the specific heats at con-
stant pressure and constant volume depends only on the
external work. The direct proof of this fact, however,
must be considered as first given by the experiments of
Thomson and Joule, described in § 70.

§ 90. We shall now consider a more complex process,
a reversible cycle of a special kind, which has played an
important part in the development of thermodynamics,
known as Carnot’s cycle, and shall apply the first law to it
in detail.

Let a substance of unit mass, starting from an initial
state characterized by the values 0y, i, first be compressed
adiabatically until its temperature rises to 02(02>01) and its
volume reduced to vy(va<vi) (Fig. 3). Second, suppose it
be now allowed to expand dsothermally to volume v, (v > vy),
in constant connection with a heat-reservoir of constant
temperature, 0,, which gives out the heat of expansion Q,.
Third, let it be. further expanded adiabatically until its
’Eemperature falls to 6, and the volume thereby increased
to »/. Fourth, let it be compressed isothermally to the
original volume v;, while a heat-reservoir maintains the
temperature at 0, by absorbing the heat of compression.
All these operations are to be carried out in the reversible
manner described in § 71. The sum of the heat absorbed
by the system, and the work done on the system during
this eycle is, by the first law,

] e IO ok e e Ry
The heat Q, that has been absorbed by the substance, is
Q=Q+Q . . . . . (40
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(Qu is here negative). The external work W may be calcu-
lated from the adiabatic and the isothermal compressibility
of the substance. According to (20),

Vg, 02 v2', O vy, 01 V1,01
W= —fpdv—fpd.v—fpdv—/pdfu,
v, 8¢ vg, 2 vy/, Oy vy, 01

These integrals are to be taken along the curves 1, 2, 3, 4
respectively ; 1 and 3 being adiabatic, 2 and 4 isothermal.

0

Vs

6, —
6, 2

Uy U,

Fia. 3.

- Assuming the substance to be a perfect gas, the above
integrals can readily be found. If we bear in mind the
relations (30) and (36), we have

— P

R 0 B
v / I 1,
W =f 2l — mf —q;dv - f edl — mf 5 dv (41)
0y vy 0o v’
The work of the adiabatic compression in the first part of

the process is equal in value and opposite in sign to that
of the adiabatic expansion in the third part of the process.
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There remains, therefore, the sum of the work in the
isothermal portions—

R 112' (1
T = i T Pt )
W= - m((,a2 log * + 6, logwl,)
Now, the state (,0,) was developed from (v,0:) by an
adiabatic process ; therefore, by (37),
log 0 4 (y — 1) log v, = log 6: + (y = 1) log ».

Similarly, for the adiabatic process, which leads from (v, 05)
to (v1, 01),

log 0y + (y — 1) log v = log 6; + (y — 1) log v/

From these equations, it follows that

vy v
Vo i 7)]_’
R - 1}1’
and oW = —=2(0; — 6) log —
1’)‘),( & 1) g (41
v v
Since, in the case considered, 0, > 01, and o= ?2 =il
1 2

the total external work \V.is negative, 7.e. mechanical work
has been gained by the process. But, from (39) and (40),

QR=Q+Q=-W; .. . (42

therefore Q is positive, ¢.e. the heat-reservoir at temperature
0, has lost more heat than the heat-reservoir at tempera-
ture 6, has gained.

The value of W, substituted in the last equation,
gives

Q=Q+ Q= %(02 - 0) log%. RNCT:))

The correctness of this equation is evident from the direct
calculation of the values of Q; and Q, The gas expands
isothermally while the heat-reservoir at temperature 0, is
in action. The internal energy of the gas therefore remains
constant, and the heat absorbed is equal in magnitude and

a2
*
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opposite in sign to the external work. Hence, by equating
Q; to the second integral in (41),

4 R ’1)2 3 R ’L’ll
Q= 7%02 log 5 oF m92 log o

and, similarly, by equating Q: to the fourth integral in
(41),

_ R U1 i R 7,’1’
Q1 = m@l IOgE = _;1401 log ;1’

which agrees with equation (43).
There exists, then; between the quantities Q;, Q,, W,
besides the relation given in (42), this new relation—

Q1:Q2:W=(—01):62:(01—02) o o (4:4:)

§ 91. In order, now, to survey all the effects of the
above Carnot cycle, we shall compare the initial and final
states of all the bodies concerned. The gas operated upon
has not been changed in any way by the process, and may
be left out of account. It has done service only as a trans-
mitting agent, in order to bring about changes in the
surroundings. The two reservoirs, however, have undergone
a change, and, besides, a positive amount of external work,
W' = — W, has been gained; 7.c. at the close of the process
certain weights, which were in action during the compression
and the expansion, are found to be at a higher level than at
the beginning, or a spring, serving similar purposes, is at a
greater tension, etc. On the other hand, the heat-reservoir
at 0 has given out heat to the amount Q,, and the cooler
reservoir at 0; has received the smaller amount Q;' = — Q.
The heat that has vanished is equivalent to the work gained.
This result may be briefly expressed as follows: The
quantity of heat Q,, at temperature 6, has passed in part
(Q1) to a lower temperature (61), and has in part (Qa —
= Q1 + Qz) been transformed into mechamcal work. Carnot S
cycle, performed with a perfect gas, thus affords a means of
drawing heat from a body and of gaining work in its stead,
without introducing any changes in nature except the

F

-
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transference of a certain quantity of heat from a body of
higher temperature to one of lower temperature.

But, since the process described is reversible in all its
parts, it may be put into effect in such a way that all the
quantities, Qi, Q W, change sign, Q; and W becoming
positive, Q. = — Q' negative. In this case the hotter
reservoir at 0, receives heat to the amount Qy, partly from
the colder reservoir (at 0;), and partly from the mechanical
work expended (W). By reversing Carnot’s cycle, we have,
then, a means of transferring heat from a colder to a hotter
body without introducing any other changes in nature than
the transformation of a certain amount of mechanical work
into heat. We shall see, later, that, for the success of
Carnot’s reversible cycle, the nature of the transmitting
agent or working substance is immaterial, and that perfect

gases are, in this respect, neither superior nor inferior to
other substances (¢f. § 137).



CHAPTER III
APPLICATIONS TO NON-HOMOGENEOUS SYSTEMS.

§ 92. THE propositions discussed in the preceding chapter
are, in a large part, also applicable to substances which are
not perfectly homogeneous in structure. We shall, there-
fore, in this chapter consider mainly such phenomena as
characterize the inhomogeneity of a system.

Let us consider a system composed of a number of
homogeneous bodies in juxtaposition, separated by given
bounding surfaces. Such a system may, or may not, be
chemically homogeneous. A liquid in contact with its
vapour is an example of the first case, if the molecules
of the latter be identical with those of the former. The
beginning of a chemical reaction, inasmuch as a substance
is in contact with another of different chemical constitution,
is an example of the second. Whether a system is physi-
cally homogeneous or not, can, in most cases, be ascertained
beyond doubt, by finding surfaces of econtact within the
system, or, by other means—in the case of emulsions, for
example, by determining the vapour pressure or the freezing
point. The question as to the chemical homogeneity, 7.e.
the presence of one kind of molecule only, is much more
difficult, and has hitherto been answered only in special
cases. For this reason we classify substances according
to their physical and not according to their chemical
homogeneity.

§ 93. One characteristic of processes in non-homogeneous
systems consists in their being generally accompanied by
considerable changes of temperature, e.g. in evaporation or
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in oxidation. To maintain the initial temperature and
pressure consequently requires considerable exchange of
heat with the surroundings and corresponding external
work. The latter, however, is generally small compared
with the external heat, and may be neglected in most
chemical processes. In thermochemistry, therefore, the
external effects, L

Qe =i, ., . o . 4d5)

are generally measured in calories (the heat equivalent of
the external effects). The external work, W, is small com-
pared with Q. Furthermore, most chemical processes are
accompanied by a rise in temperature, or, if the initial
temperature be re-established, by an external yield of heat
(exothermal processes). Therefore, in thermochemistry, the
heat given out to the surroundings in order to restore the
initial temperature is denoted as the * positive heat effect
of the process. In our equations we shall therefore use Q
(the heat absorbed) with the negative sign, in processes with
positive heat effect (eg. combustion); with the positive
sign, in those with negative heat effect (e.g..evaporation,
fusion, dissociation).

§ 94. Tomake equation (45) suitable for thermochemistry
it is expedient to denote the internal energy U of a system
in a given state, by a symbol denoting its chemical con-
stitution. J. Thomsen introduced a symbol of this kind.
He denoted by the formule for the atomic or molecular
weight of the substances enclosed in brackets, the internal
energy of a corresponding weight referred to an arbitrary
zero of energy. Thus [Pb], [S], [PbS] denote the energies
of an atom of lead, an atom of sulphur, and a molecule of
lead sulphide respectively. In order to express the fact that
the formation of a molecule of lead sulphide from its atoms
is accompanied by a heat effect of 18,400 cal., the external
work of the process being negligible, we put

= [Pb] + [S]; U. = [PbS];
W =0; Q= ~ 18,400 cal,,
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and equation (45) becomes

— 18,400 cal. = [PbS] — [Pb] — [S],
or, as usually written,

[Pb] + [S] — [PbS] = 18,400 cal.

Th:s means that the internal energy of lead and sulphur,
when separate, is 18,400 calories greater than that of their
combination at the same temperature. That the internal -
energies compared actually refer to the same material
system, can be checked by the use of the molecular formulze.
The equation could be simplified by selecting the uncombined
state of the elements Pb and S as the zero of energy. Then
(§ 64), [Pb] + [S] =0, and

[PLS] = — 18,400 cal.

§ 95. To define accurately the state of a substance, and
thereby its energy, besides its chemical nature and mass, its
temperature and pressure must be given. If no special
statement is made, as in the above example, mean laboratory
temperature, ¢.e. about 18° C., is generally assumed, and the
pressure is supposed to be atmospheric pressure. The
pressure has, however, very little influence on the internal
energy; in fact, none at all in the case of perfect gases
[equation (35) ].

The state of aggregation should also be indicated. This
may be done, where necessary, by using brackets for the
solids, parentheses for liquids, and braces for gases. Thus
[H,0], (H,0), {H,0} denote the energies of a molecule of
ice, water, and water vapour respectively. Hence, for the
fusion of ice at 0° C,,

(H;0) — [H,0] = 80 x 18 = 1440 cal.

It is often desirable, as in the case of solid carbon, sulphur,
arsenic, or isomeric compounds, to denote by some means
the special modification of the substance.

These symbols may be treated like algebraic quantities,
whereby considerations, which would otherwise present
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considerable complications, ‘may be materially shortened.
Examples of this are given below.

§ 96. To denote the energy of a solution or mixture of
several compounds, we may write the formulse for the mole-
cular weights with the requisite number of molecules.
Thus,

(H,S80,) + 5(H:0) — (Hy80;. 5H;0) = 13,100 cal.

means that the solution of 1 molecule of sulphuric acid in -
5 molecules of water gives out 13,100 calories of heat.
Similarly, the equation

(H,80;) + 10(H;0) — (HyS04. 10H,0) = 15,100 cal.

gives the heat effect on dissolving the same in ten molecules
of water. By subtracting the first equation from the second,
we get

(HsS0,. 5H;0) + 5(I,0) — (H,80;. 10H,0) = 2000 cal,,

t.e. on diluting a solution of 1 molecule of sulphuric acid
dissolved in 5 molecules of water, by the addition of another
5 molecules of water, 2000 calories are given out.

§ 97. As a matter of experience, in very dilute solutions
further dilution no longer yields any appreciable amount of
heat. Thus, in indicating the internal energy of a dilute
solution it is often unnecessary to give the number of mole-
cules of the solvent. We write briefly

(H:S80,) + (aq.) — (HgSO4aq.) = 17,900 cal.

to express the heat effect of infinite dilution of a molecule
of sulphuric acid. Here (aq.) denotes any amount of water
sufficient for the practical production of an infinitely dilute
solution.

§ 98. Volumetric changes being very slight in chemical
processes which involve only solids and liquids, the heat
equivalent of the external work W (§ 93) is a negligible
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quantity compared with the heat effect. The latter alone,
then, represents the change of energy of the system—

U, - Ui =Q

It, therefore, depends on the initial and final states only,
and not on the intermediate steps of the process. These
considerations do not apply, in general, when gaseous sub-
stances enter into the reaction. It is only in the combustions
in the “calorimetric bomb,” extensively used by Berthelot
and Stohmann in their investigations, that the volume
remains constant and the external work is zero. In these
reactions the heat effect observed represents the total change
of energy. In other cases, however, the amount of external
work W may assume a considerable value, and it is
materially influenced by the process itself. Thus, a gas may
be allowed to expand, at the same time performing work,
which may have any value within certain limits, from zero
upwards. But since its change of energy U; — U; depends
on the initial and final states only, a greater amount of work
done against the external forces necessitates a smaller heat
effect for the process, and vice versi. To find the latter, not
only the change of the internal energy, but also the amount
of the external work must be known. This renders necessary
an account of the external conditions under which the process
takes place.

§ 99. Of all the e