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PREFACE TO THE FIRST GERMAN
EDITION

TuE scheme of arrangement of the present volume runs
along precisely the same lines as those which guided me
in preparing the three first volumes of the present series,
which aims at giving a thorough introduction to theoretical
physics. In view of the great area over which theoretical
optics now extends, we have in this case, too, been able
to deal with only a mecagre sclection from the very
abundant material that is available. The choice made
was governed first and foremost by the desire to restrict
the discussion to the framework of the classical theory as
applied to bodies of continuous space-distribution. This
enabled me to lay greater stress on the system used in
arranging and developing the theorems, and on their
links with the other branches of theorctical physics. For
this reason there are numerous references to the preceding
volumes of this series; the Roman figure I refers to the
volume on General Mechanics, I to that on the Mechanics
of Deformable Bodies, IIL to that on the Theory of
Electricity and Magnetism.

Although the assumption of matter having absolutely
continuous properties could be maintained in all the
preceding volumes, it was found necessary here to overstep
this assumption in treating the problem of dispersion.
And since it is impossible to leave out dispersion in giving
an account of theorctical optics, I have included a first
introduction to the atomic point of view in the last part
of this volume and have seized this opportunity to make
an attempt to describe the way in which it links up
naturally with quantum mechanics. For the circum-
stance that access to quantum mechanics, as well as to
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vi PREFACE TO FIRST GERMAN EDITION

the theory of relativity, can be gained most readily from
the side of classical theory by making an appropriate
generalization seems to be indicated not only from the
didactic point of view but also from considerations of
concreteness of expression.
An index to the definitions and theorems is appended.
Max PraNCK.

Berlin-Grunewald,
July 1927.

PREFACE TO THE SECOND EDITION

Tue new edition differs from the old only in a few
minor points and in having a few additions.
Max PLANCK.

Berlin-Grunewald,
December 1930.
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INTRODUCTION

§ 1. PryYSICAL optics is a special department of electro-
dynamics—namely, that which comprises the laws of
rapidly varying fields. Its particular significance consists
in the fact that it represents the branch of physics in
which the most refined measurements are possible, and
which consequently enables us to penctrate furthest into
the details of physical phenomena. At the same time,
optics presents a clearer illustration than any other
branch of physics of the peculiar tendency of progressive
scientific rescarch to leave the original point of departure—
namely, the specific sense-impressions—and to place
physical concepts on more objective foundations. For,
whercas the most important optical concepts, those of
light and colour, were originally derived from the im-
prossions on our cyes, these concepts have nothing at all
“to do with the immediate sensation of sight in present-day
physics, but relate rather to clectromagnetic waves and
vibration periods—a trend of development which has
justified itself in the abundant fruit which it has borne.

§ 2. 'We can progress most easily by linking up with the
general system of Maxwoll’s equations for the eloctro-
magnetic field in stationary bodies, particularly if we
use the special form which they assume for transparent
and non-magnetic bodies. Since the transparency of a
body is associated with the condition that no transforma-
tion of electromagnetic energy into heat occurs in it, all
transparent bodies are electrical insulators in which the
vector J of the electric flux vanishes everywhere and at all
times. Besides excluding conductors, this also excludes
strongly magnetizable bodies; for other bodies we may,
without introducing an ap]_il)reciable orror, identify the

B



2 THEORY OF LIGHT

magnetic induction B with the magnetic intensity of field
H. Then, by III (31) the field equations assume the simple
form :

D=ccurlH, H= —ccurle . . . (1)

together with the supplementary equations IIT (49) and
51):

&1 divp=0,divE=0 . . . . (2
Here E denotes the electric intensity of field, H the
magnetic intensity of field, D the electric induction, ¢
the critical velocity, all quantities being measured in the
so-called Gaussian system of units (III, § 7).

The above system of equations embraces the optics of
all transparent substances. But the variables that occur
in them play the part only of auxiliary quantities, since
they are not directly measured. There is one quantity,
to determine which is the goal of all optical measurements
and to calculate which is therefore the proper task of
every optical theory. This quantity is the vector of the
electromagnetic flux of energy :

[4

which gives the intensity and direction of the intensity of
radiation [see I1I (26)].

For the subsequent treatment of these equations we
have to take into consideration the particular relation
which connects the vector of the electric intensity of field
E with the vector of electric induction P and which
endowsasubstance with its characteristic optical behaviour.
Accordingly we find it appropriate to divide the material .
into three parts, so that we successively discuss the optics
of isotropic homogeneous bodies, the optics of crystals and
the optics of non-homogeneous bodies in which the
phenomena of dispersion and absorption are included.



PART ONE

OPTICS OF ISOTROPIC AND HOMOGENEOUS
BODIES






CHAPTER 1
REFLECTION AND REFRACTION

§ 3. In the casec of an isotropic and homogeneous
substance the relation between electric induction and
cloctric intensity of ficld is expressed by the equation
IIT (28):

D=¢.E . . . . . . (4

where e denotes the diclectric constant. The field-
cquations (1) then become :

el =courl I, i == —courlE . . . (5)

Wo shall consider as the simplest particular solution of
these differential equations the case of a plane wave which
propagates itself in the direction of ono of the co-ordinates,
say in that of tho positive a-direction. Then all the
ficld-components are independent of y and z and we get
from (5) and (2), since static ficlds do not come into
question for optics :

Ez;=0, II,U:O

whereas the following differential equations hold for the
other components :

oBy _ _ O oB; _ oIy
a T gz’ St T "o’
oH, _ OF, OH._ _ 0%,
ot T “ox’ ot oz

Thus there are two pairs of conneccted quantities among
these four field-components; namely E, is connected
5



6 THEORY OF LIGHT CHAP.

with H, and E; with H,, and the same differential equation
holds for each individual component, namely :

PBy _ ¢ OBy ()
o T e ot
So if we set : \
g 7 )
€

it follows from the general integral already derived in 1T,
§ 35, for the differential equation (6) that the most gongrzml
expression for a plane wave which propagates itself in a
homogeneous isotropic medium in the direction of the
positive z-axis is :

1 x o _x
1 z x
s =—=gt—2) H=f(t-2
BV < q> ! < .«z>
where f and g represent arbitrary functions of a single

argument.

As we see, both field-strengths are perpendicular to the

direction of propagation; hence the wave is ocalled
“transversal.” It resolves into two components which
‘are in general independent of one another, and which
lie in the direction of the co-ordinate axes. In tho case
of each component the electric and the magnetic field-
strengths are proportional to one another. Their signs
are determined by the theorem that the directions of the
electric field-strength, of the magnetic field-strength and
of propagation form s right-handed system.

§ 4. If we now propose to ourselves the question as to
what is to be measured in this electromagnetic wave and
which of its properties can hence be ascertained
objectively, we find the answer in the vector of energy-
radiation (3) which in the bresent case reduces to its
Z-component :

c
S:c = E(Esz — E:Hy) = 4—%7 (f2 + 92)
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Thus in an isotropic body the dircction of the energy-
radiation coincides with that of the wave-normal z, and
the amount of energy radiated in the time d¢ through a
surface J' which lies in a wave-plane is :

=7 2
s;.F.dt-4W(f2+g).th. )]

Since, however, appreciable effects of radiation always
require a finite time, we mnever mecasurc the radiation
voctor S itself, but rather only its time-integral or its
mean value in time taken over a sufficiently great interval
of time 7. Hence if we use the following abbreviations
for the mean values :

]- Tn I ] r o
plre=r p[ea=g . o o a0

then the amount of energy radiated through the surface
F in unit time is :

q o ) ]
DR o B N €4

which can be recorded by any instrument that takes up
the radiant cnergy completely, and provided that it is
sufficiently sensitive (bolometor, radiometer, thermopile).

After the total radiation of the wave has been measured,
its further analysis presents a two-fold problem; firstly,
wo must separate the two summands 2 and g2 from each
other; sccondly, we must pass from the mean time values
to the functions themselves; that is, we must investigate
the exact form of the wave-functions f and ¢g. For this
purpose we require special optical contrivances the theory
and action of which we must derive in the sequel. At
this stage nothing at all can be stated about them. In
particular there is no reason for assigning any sort of
periodicity to the functions f and g. Actually there are
in optics no waves which have a sharply definite period in
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the mathematical sense, such as we have, say, in acoustics.
We therefore do best by leaving the question of the form
of the waves completely aside for the present, taking it
into consideration only when it becomes really nccessary.
There is only one assumption which we may make from
the very outset, namely, that the mean time valuos of
fand g vanish, that is :

f=0and g=0. . . . . (12

For if a wave-function has a mean value differont from
zero, we can imagine the wave in question to be roplaced
by another wave for which the conditions (12) aro fulfilled,
with a statical field superposed on it, the ficld being
characterized by the mean value, which is not equal
to zero. The presence of this field can be made mani-
fest by its ponderomotive action on a charged test-body
(electron) and can so be separated from the true optical
wave.

§ 5. A plane-wave of unlimited cross-soction cannot,
of course, be realized in naturec. Nevertheless we can
produce waves which approximate appreciably to the
character of plane-waves. For let us imagine a point-
like source of light which begins to emit light at a definite
moment of time—say when ¢ = 0. Then, since the
surrounding medium has been assumed to be homogeneous
and isotropic, the light will propagate itself uniformly in
all directions. The bounding surface which has been
reached by the light after a definite interval of time is
called a wave-front. There is thus a wavo-front corre-
sponding to every moment of time, and the whole of the
surrounding space is hence filled by the system of successive
wave-fronts which enclose one another. In the present
case these wave-fronts are obviously spherical surfaces
which surround the source of light concentrically, and so
a small portion of a sufficiently great spherical surface can
be regarded to a sufficient degree of approximation
as a plane wave-front or a wave-plane. Its normal is the
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corresponding radius of the sphere, and the radiation
vector S points in the same direction.

§ 6. Let us now investigate the phenomena that occur
when the plane-wave (8) falls on the plane bounding
surface of a sccond isotropic body. We shall take the
normal of this bounding plane, the so-called incident
normal, as the ¢-axis of a new co-ordinate system directed
towards the interior of the second body, whereas the origin
0 of the zyz-system is to be coincident with the origin of
the énl-system. Without reducing the generality of the
case we can then make the y-axis and also the »-axis lie
in the plane defined by x and §, the so-called incident
plane, and take this as the plane
of Fig. 1. Herc all points for £ro 7 £ro
which £~ 0 denote the first body x' x
(on the left), from which the '
wave (8) comes, and all points g
for which ¢>- 0 denote the second %
body (on the right); the points 0 b
for which ¢ = 0 (the 7-axis) /
constitute the boundary plane.
The z-axis is the direction of the Tia. 1.
ray which comes from the first
body—that is, from the left-hand side; it makos the
angle @ with the incidont normal é. The y-axis denotes
the wave-plane of the incident ray; this wave-plane is
porpendicular to the planc of the figure and also malkes
the angle 6 with the boundary plane. It has beon
omitted in the figure so as not to multiply the directions
to Do shown unnecessarily. The z-axis coincides with
thoe Z-axis and points from the plane of the figuro towards
the observer.

Wo base the solution of the problem before us on the
roflection that every systom of waves which satisfies the
diflerential equations in the interior of the two bodies and
also the boundary conditions, represents a process which
is possible in nature.

In order to have the differential equations satisfied in

First body Second hody
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the second body we imagine a plane-wave in it also, after
the model of equations (8), which has the ray-direction
(see Fig. 1), inclined at an angle 6, to the ¢-axis, and the
wave-plane ¥,2;, where we shall again suppose 2, to co-
incide with z and {. Then the equations (8) hold for the
six field-components E., Ey, E:, Hs, Hy, H,, except
that the co-ordinate x; now occurs in place of z on the
right-hand side of these equations, the functions f; and g,
replace the wave functions f and ¢, while the constants
e and q are supplanted by the dielectric constant ¢; and,
by (7), the velocity of propagation :

¢ €
9 v q\/e1 .. N € 1))
in the second body.

But this assumption does not suffice. For by III, § 6,
the boundary conditions require that for £ = 0 the values
of the tangential field-components—that is, the quantities.
E,, E;, H,, H—are coincident in both bodies. This gives
four equations connecting the wave-functions; to satisfy
them, however, we have only the two functions f, and g,
available, since the functions f and g are initially given.
To generalize our initial assumption still further, therefore,
we assume a second wave in the first body; this wave is,
of course, also represented by the equations (8), except
that it has a different ray-direction z’, which we shall
assume to make an angle 8’ with the £-axis (see Fig. 1),
and has the wave-plane y'2’, where again 2’ = 2. The
six field-components E.,, Ey, E., Hy, H,, H. are given
by the equatiofs (8), if we substitute in them the wave-
functions f' and g’ and the co-ordinate ', the constants
€ and ¢ remaining the same.

We have now approximately generalized our assumption
for the interior of the two bodies, and can proceed to set
up the boundary conditions. In the first body there is
an electromagnetic field which results from the super-
position of the two plane waves that we have assumed.
Hence, remembering that the field-components E,, H,
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E», I, vanish, we get for the field-components which
interest us in the first body :

, cosf cos 0
E, = Eycos f + E,cos b = VA -+ v -f
E; = E; + !:zr=-;l:-‘g—|—-—1-=--gl
Ve Ve
I, = Il,cos 0 + Hy.cos ' = — cosf.g — cosf .g'

;= IL + L. = f + f'

On the other hand, we obtain for the second body
(¢ > 0), remembering that the field-components Ez, and Hz,
vanish :
cos 0,

E, = Ey cos b = Ve N1
1
E; = E; = ! 1
Ve
II, = Hy .cos 0y = — cos b;. ¢y
II; = IIzl =f1.

Hence if we use the abbreviation :

\E:%: N )

we must have for the boundary plane £ = 0:

cos 0.f + cosf'. [’ = 99—%@1 J1

g =
g+9 =,

cos@.g+ cosf' .g =cosby.q
f+f =5

These four equations comprehend all the details of the
theory of reflection and refraction. As we sce, they fall
into two groups, one of which contains only the f-waves,
and the other only the g-waves. Thus these two kinds of
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waves behave quite independently of one another; each
obeys ils own laws.

§ 7. By mcans of the last four equations we first cal-
culate the unknown wave-functions f/, f, ¢’, ¢, from the
given wave-functions f and g. We get :

2z n cos § — cos 64

= Gosb—meose T =# S - - (19
_ !cos@—cos@’). .

= sost, —noose S=mf - (10)
, _cosf —mcosf;

7 = eost,—cose 900 - - (7

- mfcosd —cosf’)
g1-;’;“56g*01—’_‘_—c*&'6,'0—-0‘1.g . . (18)

As for the arguments of these functions, we have :
t— :(—j infandg
t—inf, andg,
I
t— %inf’ and ¢’

And ¢ = 0 everywhere, so that in transforming to the
co-ordinates £, n, { we have :

x=msinf, ¥, =nsinb;, ¥’ =nsinl’

which makes the arguments assume the values :

13

_7sind t_nsinel t_nsino’
g’ T q

Since the functional equations (15) to (18) must be
satisfied for all times ¢, and for all points n of the boundary
surface, it follows that these three arguments must be
equal to one another—as can also be seen directly if we
differentiate one of the functional equations by parts first
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with respec

1, to ¢ . ..
the resultin and then with respect to 7, and divide

£ Cquations by one another. We get :

S_l.n_e _ sinf; sin6’ N ¢ 1))
q 41 q
and henee arrive at the law of refraction :
sind g [q (
ST A \/%1 B
and the leo of reflection :
' =m—0 . . . . . (21)

If we eall the angle which the reflected ray makes with
the reversed ineident normal the angle of reflection, then
the angle of roflection is cqual to the angle of incidence.

’\‘ R. Suell’s law of refraction (20), which states that the
ratio of the sine of the angle of incidence 6 to the sine
of the anglo of refraction 6, is equal to the refractive
index n of the sccond body with respect to the first or
to the ratio of the velocities of propagation ¢ and ¢y, has
heen aecurately confirmed by innumerable measurements.
The refractive index of a substance is usually referred
to air as the first substance. Thus the refractive index
of water is cqual to 1-3, that of glass to 1-5. We then
ubtain the refractive index of a substance with respect
to any other substance by writing down the ratio of their
refractive indices with respect to air. If we exchange
the substances, the refractive index assumes the reciprocal
of its previous value.  Accordingly, the refractive index
with respect to a vacuum—the so-called ‘“ absolute
refeactive indoex—is the product of the refractive index
with respect. to air and of the absolute refractive index
of air namecly 1-0003; as we see, its value differs in
most. enses only inappreciably from the ordinary refrac-
tive index,

If we allow the angle of incidence 6 to vary from 0

(normal incidence) to % (grazing incidence), the angle
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of refraction 6, increases from 0 to sin"l%l (limiting

angle). But there is a point of fundamental importance
which must not be overlooked. It is only when n>1,
or if, as we say, the second substance is optically denser
than the first, that the limiting angle is real. Then the
angle of refraction 6, is always smaller than the angle of
incidence f—that is, the ray is bent towards the incident
normal by the refraction, and the limiting angle denotes
the greatest value which the refractive index can assume
at all. But if n <l—that is, if we exchange the two
substances with each other—the angles of incidence and
refraction also exchange their réles, and the angle of
refraction becomes greater than the angle of incidence;
a
2
has reached the value of the limiting angle. If the angle
of refraction is allowed to go beyond the limiting angle,
then (20) leads to an imaginary value for the angle of
refraction, and the solution which we have found for the
problem of refraction becomes meaningless. As there
is nothing to prevent our giving the angle of incidence

it attains the value  only when the angle of incidence

any arbitrary value between 0 and 7—7, a special question
y 5 P q

arises here, which we shall, however, deal with on a later
occasion (§ 12); for the present we shall restrict ourselves
to considering those cases for which the law of refraction
yields a real value for the angle of refraction 6,.

§ 9. But the electromagnetic theory of the refraction
of light states more than that the refractive index is
independent of the value of the angle of incidence ; it also
tells us the value of the refractive index. TFor by (20)
this is equal to the square root of the ratio of the dielectric
constants, or, if we take as our basis the absolute refractive
index :

n=4/eg. . . . . . (22

If we compare this relationship with observed facts, we
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find, in general, crass disagreement. For example, for
water n = 1-3, while ¢ = 80. But even apart from
this the fact that (22) cannot be gencrally valid follows
from the fact that by definition the dielectric constant e
is independent of the form of the wave-functions f and g,
whereas the refractive index n, in the case of all substances,
depends more or less markedly on the form of the light-
waves, that is, on the colour of the light. This phe-
nomenon, dispersion, long constituted a serious obstacle
to the acceptance of Maxwell’s theory. If we wish to
take adequate account of it in the theory here described,
nothing remains but to conclude that the fundamental
assumption which was introduced at the beginning of
this chapter into the field-equations for the optics of
homogeneous and isotropic bodies—namely, the relation
(4), which states that the electric induction is proportional
to the clectric intensity of field—does not in general
correspond with reality in the case of rapid optical
vibrations. To obtain a satisfactory theory of dispersion
we shall thercfore have to replace this relationship by
one that is more general. This will be done in the third
part of the present volume, where it will be found that
this generalization will have to be based on the circum-
stance that in the case of refined optical phenomena in
nature the assumption that matter is absolutely con-
tinuous and homogencous is no longer justified, but must
be modified by the introduction of characteristic structural
propertics to a certain extent.

If this view is correct, an important significance will
still have to be attached to the rclation (22)—mnamely,
that of a limiting law which is the better fulfilled the
less the dispersion makes itsclf observed. If we carry
out a tost in this direction, the rclationship in question
is found to be definitely confirmed. For the substances
which disperse least arc gases, and the earlicst measure-
ments, by L. Boltzmann, have accurately confirmed the
formula (22) in their case. A particularly noteworthy
feature is the exact quantitative parallelism between the
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dependence of the refractive index and of the dielectric
constant on the pressure in the case of gases, and this occurs
in the sense of equation (22). Hence, with reference to
this equation, we are right in speaking of a far-reaching
confirmation of the electromagnetic theory within the
admissible range of appheatlon

§ 9a. But besides giving the directions of the reflected
and the refracted rays, the theory also gives the form
of the reflected and the refracted rays, by demanding
that the wave-functions in question shall be proportional
to the corresponding wave-functions of the incident wave.
If in the formule (15) to (18) we replace the refractive
indices n according to (20) by the angles 6 and 6,, and
the angle 6 by = — 0, the constants of proportionality
assume the following values :

for the reflected wave (f', ¢') :

_tan(0—6;) _ sin(6 -6y
= t san (6 -+ Gi) ~ sin (6 - Oi) (23)

for the refracted wave (fy, ¢1) :

_ . Sn2 o sin20 .
F1 7 gin (0 + 6y) cos (6 — 6,)° 1 sin (0 + 6,) (24)

According to these formule (known as Fresnel's
formula) there is a fundamental difference between the
two wave-functions f and ¢, which corresponds to the
physical circumstance that, according to (8), in the case
of the f-wave the electric intensity of field lies in the
plane of incidence, whereas in the case of the g-wave the
electric intensity of field is in a direction perpendicular
to the plane of incidence. The coefficients u correspond
to the former, the coefficients ¢ to the latter.

To test the theory we have to measure the radiant
energy. Let us first consider the reflected wave. From
equation (11), using (15) and (17), we get for the ratio
of the intensity of radiation of the reflected wave to
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the intensity of radiation of the incident wave, that is,
the ““ reflection coefficient * :

e Y ik i

f& + g2 f2 + 92
As we sce, the reflection coefficient p lies between the
values u2 and o? which correspond with the limiting cases
where onc of the two waves f and ¢ is vanishingly small.
In general, by measuring p we find for the ratio of the
intensities of radiation of the waves fand g :

TE_CTP . . . . . (25
JEyg Py (25)

This relation may be tested experimentally by measur-
ing the reflection coefficient p of a definite incident
wave (f, g) for different angles of incidence 6 and, after
introducing the values of u and ¢ calculated from (23),
investigating whether the same value comes out for the
intensity ratio (25) for all angles of incidence. This has
been confirmed oxperimentally in all cases where the
surface of the body wused has been sufficiently smooth
and where sufficient precautions have been taken to
avoid the chemical impurities that often contaminate
surfaces, including those due to the use of polishing
agents.

Light derived from a body which has been made to
glow by having its temperature increased is called ¢ natural
light.” TFor this, mcasuremeni gives, as we should
expoct, f2 = ¢, and hence :

At L (26)
The dependence of the reflection cocfficient p on the

angle of incidence 6 is obtained from (23). For normal
incidence we have, since 8 and §, are infinitely small :

TR I
(o]
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The reflection is the greater, the more the refractive
index # differs from the value unity, that is, the more the
two bodies differ optically. Ior grazing incidence,

§ =35, or, for the limiting angle, 6; = 2, the reflection

coefﬁc1ent attains its maximum value 1; in that case no
radiation penetrates into the second body at all.

But the inferences to be drawn from the theory and its
possible applications go much further. For if we consider
the constitution of the reflected radiation we find that if
the incident light consisted of natural light, the reflected
light does not, but that rather, by (15) and (17):

5. 7m b2 _ cos? (0 + 06y ;
2 o2 cos?(0—0y) = (28)

Itis only for normal and grazing incidence (or in the case
of the limiting angle, respectively) that this ratio is equal
to 1 and that the reflected radiation consists of natural
light—which is obvious at once, since in the first case, the
incident plane is indeterminate, and hence there is no
physical difference between the waves'f’ and g’, whereas
in the latter case all the light is reflected. But in general
the two components have different intensities—that is,
the reflected radiation is ¢ polarized,” the intensity of ;the
f-wave, whose electric intensity of field lies in the incident
plane, being smaller than that of the g-wave. In fact, for
the case :

f+0, =2 ortanf=m . . . (29)

that is, when the reflected ray is perpendicular to the re-
fracted ray, the quotient (28) is equal to zero, so that
the f-wave is absent altogether in the reflected light, and
the g-wave alone remains. The radiation is then said to
be ¢ completely >’ polarized linearly,”” because in the
present case the electric and the magnetic intensity of
field of the wave have perfectly definite directions. The
angle of incidence defined by (29) is called the “angle of
polarization,”” the plane of incidence the * plane of polariza-
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tion ” and the reflecting Lody (mirror) is called the
“ polarizer.” If we call the plane defined by the direction
of the ray and the electric intonsity of ficld the ““ plane
of vibration ’’ of theray, then the plane of vibration in the
light reflected at the angle of polarization (29) is constant
and perpendicular to the plane of incidence (Brewster’s
Law). This law can be directly tested experimentally by
allowing the lincarly polarized ray to be reflected from a
sccond body of the same substance—namely, at the
polarizing angle—but in such a way that at the second
reflection the incident ray assumes the role of the f-wave—
that is, so that the plane of vibration coincides with the
new plane of incidence. This occurs when the planc of
incidence at the second reflection is perpendicular to the
plane of incidence at the first reflection. In this case
no light is reflected at all (Malus’s mirror experiment).
The second reflecting body then acts as an * analyser.”

Thus the reflection at the angle of polarization forms,
quite generally, a mcans of mecasuring the two wave-
components f and g present in any given radiation. For
by measuring the intensity of the whole reflected light we
obtain, since [ vanishes :

N2 — 1>2 .

g - ot = <n‘3 L e (80

and from this the intensity of the g-wave; and in the same
way, by reflection at an incident plane turned through g )

the intonsity of the f~wave is obtained.

When the reflection takes place at any arbitrary angle
of incidence @ the reflected ray is only partially polarized.
The intensitics of the two wave-components f2 and g™
are then obtained by multiplying the corresponding
components % and ¢% in the incident wave by the corre-
sponding reflection coefficients. Tor the light whose
vibrations are in the plane of incidence (f-wave) we have :

tan? (0 — 6,)
o= e N L) (31
PI=p7= pane @+ 6,) (31)
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For the light whose vibrations are perpendicular to the
incident plane (g-wave) we have :

,  sin? (6 —6)

P Ty

(32)

§ 10. Exactly similar considerations apply to the
radiation transmitted by the boundary surface. They can
be reduced to those of the preceding paragraph by re-
collecting that according to the principle of the conserva-
tion of energy the transmitted radiation is equal to the
excess of incident radiation over reflected radiation.
For the boundary conditions (cf. III, § 6) provide that no
energy of radiation still becomes lost. If we take as the
definition of the ° coefficient of transmissibility ”’ the
fraction of the incident radiation which passes through
the boundary surface into the second body, the trans-

mission coefficient for the light which vibrates in the plane
of incidence (f-wave) is :

sin 26 . sin 26, . (33)

l—p=1—p = sin? (6 + 6,) cos® (6 — 65)

whereas for the light which vibrates perpendicularly to
the incident plane (g-wave) :

sin 26 . sin 20,

=] g2 SN 49,
l-p=l-=awro)

(34)

Of course, we can also calculate the transmission co-
efficient directly from the ratio of the intensity of the wave
fi1 or g; which penetrates into the second body to that
of the incident wave forg. Now we may not, by referring
say to (16) and (18), set the transmission coefficient in
question equal to w;2 or 0,2, but must revert to the ex-
pression (11) which gives the energy radiated per unit of
time through a surface ¥ which lies in a wave-plane. This
is clear if we consider that in the passage into the second
body both the velocity of propagation ¢ and also the
extent of the surface F, which represents the normal
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cross-section of a selected cylindrical beam of rays,
change. A simple geometrical reflection shows that :

N .
cosf  cosf; (85)

Tor this is the size of the surface which is cut out of the
limiting plane (¢ = 0) on the one hand by the cylinder of
the incident rays, on the other hand by the cylinder of
transmitted rays which results from it.

Hence we get as the ratio of the transmitted energy of
radiation to the incident cnergy for the f-wave by (11),
(20), (35) and (16) :

@fFy _siny o, cosb
¢fF ~ sm0 M cos g
and correspondingly for the g-wave :
Gl _ sinby , cos 6y
qg}éF sinf "' cosé
and these expressions, by (24), agree with (33) and (34).

The ratio of the two components of radiation in the trans-
mitted radiation is :

f,}_mﬁ:&; 1 . 30

g2 o cost (6 —0,)

Since this expression can become neither zero nor
infinite, the transmitted radiation is never completely,
but only partially polarized in the case of incident natural
light; and the component whose vibrations lic in the plane
of incidence is the more intense ; this is the reverse of what
happens in the case of reflected radiation.

Finally we must refer to a relationship which expresses
a gencral law of optics. Both the equation (20) of the
law of refraction and the values of the reflection and the
transmission coefficients remain unaltered if we exchange
the two bodies and simultancously the angles 6 and 6,—
that is, if we allow the wave to fall in the reverse direction
from the second body on to the boundary surface of the
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first body. In other words, light does not only pursue the
reversed path, but is also divided in the same ratio into
reflected and transmitted radiation. A boundary surface
of two bodies reflects equally well in both directions and
also transmits equally well. This law is an application
of a law of reciprocity first enunciated by Helmholtz,
which states that the weakening of intensity which a
definite ray of light undergoes in its passage through
arbitrary different bodies in consequence of reflection,
refraction, diffusion and absorption is independent of the
direction in which the ray travels.

§ 11. Now that we have seen that the components f
and g of a given plane wave (8) which vibrate per-
pendicularly to one another can be separated from one
another by mecasurement and have seen how this can be
done, the further question arises whether the values of the
two intensities f2 and g2 also determine the intensity of the
component of radiation which vibrates in another direction
perpendicular to the direction of propagation, analogously
to the way in which two mutually perpendicular com-
ponents of a force also determine the component in any
other direction. We shall find that this is not the case
and shall see wherein the characteristic difference lies.

To decide this question, we again consider the most
general case (8) of a plane wave, but for convenience of
notation, we shall take the z-axis as the direction of pro-
pagation instead of the z-axis, so that the zy-plane be-
comes the wave-plane of the radiation. Let the f-wave
vibrate in the z-direction, and the g-wave in the y-direction.
If we now replace the axes # and y by two other mutually
perpendicular axes 2" and ' that lie in the same planc and
that make an angle ¢ with the former axes, then since
the wave-functions f' and ¢’ by (8) transform like the
components of the field-intensity, they become, when
referred to these new axes :

f=fcosd+gsing . . . . (37)
g =—fsing +gcosp . . . (38)
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and hence the corresponding intensities :

2 =f2cos? ¢ + 2fgsin ¢ cos  + g% sin? ¢

g% = f2sin2 ¢ — 2fg sin ¢ cos ¢ + g cos? ¢.
Adding these expressions we get :

FPr=f+e

that is, we always get the total intensity of radiation of the
whole wave if we add together the intensities of two
components which vibrate in perpendicular directions;
this is, indeed, obvious from the fact that the original
xy-system can be chosen quite arbitrarily. But the

intensity of anysingle component, say that whose direction
of vibration makes the angle ¢ with the z-axis, does not

alone depend on the intensities /2 and ¢2, but also on a third
quantity, fg. So if we use the abbreviations :

f_‘&=A’g-2=B,.E=O . . . (39)

then the component of the intensity of radiation vibrating
at an azimuth ¢ assumes the valuc :

fr=Jy=Acos?$ + Bsin?¢ + 20singcos ¢ . (40)

Accordingly, the intensity of radiation is not represented
by a vector, but by a tensor of the second degree (II, § 13,
§ 20)—namely, by a plane tensor which has only three
components and which is characterized by not having the
quantity (40) dependent on the choice of the co-ordinate
system. The component ¢ can have any value between
—4/4B and +4/4B, but it cannot overstep this range,
since J is positive for all values of J.

Tor one of the limiting cases, C = -+ /4B, J by (40)
becomes a perfect square :

J=(VA.cosp++/B.sing)2 . . (41)

So J = f? vanishes for the azimuth tan ¢ = :[:\/ %

and the whole radiation reduces itself to a single component
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¢’* which vibrates in the perpendicular azimuth. In this
case the light is linearly polarized. From jf? = 0 it
follows that f' = 0 and by (37):

§=““mn¢=:t4%' L. (42

that is, the two wave-functions f and g bear a fixed ratio
to each other which is independent of their argument.
In such a case, where the one wave-function is comp}etely
determined by the other, the two corresponding com-
ponents of radiation are said to be ‘ completely coherent.”
Thus linear polarization always implies complete coherence
of the two components into which the polarized ray can
be resolved. It follows directly from the relationships
(15) to (18) that linearly polarized light remains linecarly
polarized after refraction and reflection, since then the
ratios f; : gy and f' : ¢’ are also constant.

In general the light is only partially polarized, so that
the two components are partly non-coherent. Natural
light forms the opposite limiting case, for which the
intensity of radiation J, is quite independent of the
azimuth of vibration ¢é. By (40) this not only
leads to 4 = B, but also to C = 0. As may easily be
seen, the latter condition is always fulfilled in actual fact,
if the two vibration components f and ¢ are completely
non-coherent—that is, fully independent of each other.
For this means that to a given value of f there belongs not
one definite value of g, but an enormous number of values
of g, and that the mean of all these values, g, is inde-
pendent of the value assumed by f. From this there

follows as the mathematical expression for the complete
non-coherence of f and g :

fo=Fg. . . . . . (@43
and by (39) and (12) :

C=fg=0 . . . . . (44
Since the functions of f and ¢ depend uniquely on their
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common argument, a necessary preliminary condition for
the non-coherence of f and ¢ is, that corresponding to a
definite value of f or g there must be an enormous number
of values of the argument, or that the value in question
of the wave-function must recur enormously often in the
course of time.

Although the relation (44) has been shown to be a
necessary consequence of the complete non-coherence of
the two wave-functions f and g, this relation is by no means
sufficient to ensurc non-coherence. Indeed, we shall
soon sce (§ 20) that the components of f and ¢ can actually
be completely coherent even when the cquation (44) is
simultancously fulfilled. Of course f and ¢ are not pro-
portional to one another, as in (42)—that is, the light is not
lincarly polarized—Dbut nevertheless it is completely
polarized, since the onc component is completely doter-
mined at every moment by the other component.

Tf we now again turn to consider the gencral case, we
casily sce that the intensity of radiation J; has by (40) a
maximum and a minimum, both of which result from the
cquation :

dJ
dg =0
and occur for the angle ¢, which is obtained from :
20
tan 2¢ = iy SERECI (45)

These two dircctions, which arec mutually perpendicular,
are called the principal plancs of vibration of the ray;
the corresponding intensities—that is, the maximum and
minimum of J :

4 -+ B
J =7 s

are called the principal intensitics of radiation.
For lincarly polarized light we have, as we saw,

C =--4/4AB. Then by (46) the maximum intensity is :
J=A4+B

=+ %\/(A —BE+ 40 . . (46)
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and the minimum intensity is :
J=0

For natural light 4 = B and C = 0; hence, by (46),

J = A = B, whereas the principal planes of vibration
become indeterminate, by (45).

If the co-ordinate axes z and y are made to lie in the
directions of the principal planes of vibration, the equation

(45) is satisfied by ¢ =0 and ¢ = 7—;; Consequently

C = 0 in that case, and the component, of the intensity
of radiation in any arbitrary direction ¢ becomes, by (40) :

Jy=Acostd + Bsin?¢ . . . (47)

So 4 and B are the principal intensities, in agreement with
(46).

Since in general the intensity of radiation J, depends,
according to (40), on three constants, it follows that to
characterize the state of polarization of the radiation it is
not sufficient to measure the two components J, = 4 and
Jg = B. Actually, for example, when 4 = B, the light

might be natural light or light linearly polarized at an
azimuth of 45°, or it might be composed of some mixture
of natural and linearly polarized light. To determine the
third tensor-component fy = C, it is thus necessary to
make a third measurement, say of the component which

vibrates at the angle Z:

h=A;B+0. L. 8)
4

Then 4, B and C are fully determined.

§ 12. Total Reflection. Having disposed of the questions
relating to the phenomena of reflection and refraction,
we have still to deal with the case which we deferred
provisionally at the conclusion of § 8 because the solution
we found was inapplicable to it. This is the case where
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sin > n (n < 1) because the angle of refraction 6, then
becomes imaginary, by (20).

It is obvious that it is not sufficient to say here that
since the angle of refraction is imaginary, no refraction
can occur, and consequently all the light is reflected.
For the equations of the problem are by no means satisfied
by setting the wave-functions of the refracted wave equal
to zero and those of the reflected wave equal to those of
the incident wave. It is impossible to evade the task of
finding oxpressions for the wave-functions which fulfil
all the conditions demanded by the theory. On the other
hand, we must bear in mind that a complex solution of
an cquation is also a solution, and that even if it has no
real significance, it may casily serve as a guide in finding
a real solution.

In fact, cvery oquatlion between complex quantities
resolves into two cquations between only real quantities.
If wo remember also that all the equations between the
ficld-strengths of the incident, reflected and refracted
waves—Dboth those which hold in the interior of the body
and also those which express the boundary conditions,
are linear and homogeneous with respect to the field-
strengths and have real coefficients—it follows that if all
the equations are satisfied by certain complex values of
the field-strengths, the real parts of these complex values
also satisfy theso equations and hence represent a real
physical solution of the problem. Hence we immediately
derive a rcal solution from every arbilrary complex
solution merely by omitting the purcly imaginary parts
from the complex values of the field-intensities and
retaining only the real parts. In putting this idea into
practice we reflect that since the angle of refraction 8, is
complex, the coefficients u and o and the wave-functions
of the rofracted and reflected waves will also assume
complex values. For the sake of complete generality we
shall also assume the same for the incident wave ; that is,
we now take f and g to stand for two arbitrary complex
functions of a single complex argument. If we denote
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the real part of any complex quantity by preﬁxing an
R, then we get for the real field-components of the incident
wave, from (8), the expressions :

v; Bf oy= =Rl (4y)
E. = —1=Rg H, = Rf
€

where the quantity t—g is again to be put as the

argument of f and g. As hitherto, z is the wave-normal,
whereas the y-axis again lies in the incident plane and
the z-axis is perpendicular to it.

As for the refracted wave its wave-normal z, is complex.
Hence we shall refer its real field-components right from
the outset to the real co-ordinate system ¢, 9, {, which is
determined by the incident normal ¢ and the planc of
incidence &y (Fig. 1). For this purpose we shall first
form the complex field-strengths according to the
equations :

E¢ = E,,.co8 0, — E, . sin 0,
E, = E, .sin6, + E,, . cos 6,

and so forth, and replace the components E., Ey,
E; . . . in it by the wave-functions fy, g, after the model
of (8), and then replace these in turn, by (16) and (18), by
the wave-functions f and g of the incident wave. We then
get the following expressions for the real field-components
of the refracted wave :

'EE = — V];;_; . R.U,lf Sin 01 fIE = Ra'lg Sil’l 01
E,= T_-Rylfcos 6 Hy=—Rogcosfy. . (50)

T/= . RO’lg Hc = R“(‘lf
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Here we have to insert ¢ — -1 everywhere as the
argument of f and g, in that :

vy =§cos 0y +nsing, . . . . (5])

Finally, for the reflected wave, whose normal 2’ is real,
we obtain, by (8), (15) and (17), the real field-components :

I’Jz’ = O IIz’ = 0 1
] 1
By = Ve Ruf Hy=—Roy| (9

Ez/ = i_—Ra‘g Ilz’ = R‘[_Lf J
€

with the argument ¢ — a;« of f and g.

§ 13. Although the preceding equations solve the
problem of total reflection in principle, the theory
cannot be directly applied to the general case of arbitrary
wave-functions because it is not possible to specify the
real part of a complex expression so long as its form is
not known. For this rcason we are compelled, if we
wish to arrive at real expressions, first to consider par-
ticular solutions of the problem, and then to dispose of
the gencral case by appropriately combining these par-
ticular solutions.

In choosing the particular solutions that can be used
in optics, we bear in mind that, to represent natural
light, we must consider, as wo saw in § 11, only such
wave-functions as can assume cach one of its values
enormously often. Hence we choose as the simplest
particular solution a simple periodic function by setting :

f(t) = € =coswt +isinwt . . . (53)

and we treat the two waves [ and g separately by first
taking :
gy =0 . . . . . . (54)
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Then, by (49), we get for the incident wave :

1 x
Ey = \—7zcosw<t - ’q‘> H.V = O . . (55)
X
= II,,=GOSw<t——
hms 9

This is a special sine wave of “radian frequency” w

. . . w
and “ revolution ”’ frequency or vibration number v = o

and wavelength A = 274 (II, § 40).

To find the real field-components for the refracted wave
from (50) we first calculate the complex quantities cos 6,
and p;. For the former we get from (20) :

cos f; = 4 16’
where we set the positive real quantity :
sin? ) A
\/nz —-1=0. . . . . (86)

(which is not to be confused with the angle of reflection
in (21)). The coefficient u, is given by (24). We resolve
it into its real and its imaginary parts by writing :

_ 2 sin § cos 6 i
F1 ~ sin 6 cos § + sin §; cos b,

_ 2sin*f cos? 6 F i.2sin 6 cos § -0".sin 0,
sin® 6 cos?  + 0'2sin2 f, )

or, if we use the abbreviation :

6’ sin 6, )
m=t&n§, (0<8<7T). N (57)
S . .8 3 S 74l
=2 2 . —_ — == — P
Uy cos 2—T—z 2sm20032 2cos26 2

The choice of sign is determined by considering the
expressions (50).
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These contain the quantity f(t - ?), where, by (51):
1

= 440" + 7 sin 6.
If we therefore substitute the expression (53) for f, the
wqu" and, if the
solution is to be of use, this must not become o for
¢ = co—that is, at an infinite distance from the boundary

surface. Conscquently the lower sign is everywhere to
be taken and we have :

exponent contalns the real member -+

cosby = —10" . . . . . (588)
and correspondingly :

8 'L% 59
‘u,1=2cos~2-e B %))

Accordingly, by (50), the field-components of the
rofracted wave become :

. w08 .
E;= — 2800 00626 % cos {w <t _nEs 01> + §}

'\/61 2 1 2
200 8 % 7 sin 6 S) (60)
- 3" LA b — i -
'\/6 LOS e s lw( @ > - 2J'

B — 0, 1[4:?:0, H, =0

8, nsindy) 8l . . (61

;= 2cosze % coy {w(t @ ) k5 (61)
As we see, even in the case of total reflection appreci-
able vibrations occur in the second, optically less dense,
medium. But these vibrations have the peculiarity that
their phase does not depend at all on the co-ordinate ¢
which is normal to the boundary plane. This causes
the wave to advance in the second body in a direction
parallel to the boundary plane, in the direction 7, and
consequently does not penetrate into the interior of
the body at all. Rather, it remains confined within a
boundary layer whose thickness is of tho order of mag-
nitude of a single wave-length A;. The greater we
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assume the angle of incidence to be, the less the wave
penetrates into the second body, and the more slowly it
advances along the boundary plane.

For the reflected wave the expressions become much
simpler, in that here the wave-normal :

= —§cosf +xysind. . . . (62

which enters into the argument t——% of the wave-

function, is real. On the other hand, by using (58) and
(57) we get for the coefficient p from (23) the complex
value :

w = e L. PR .. (63)

Hence from (52) we get for the field-components of the
reflected wave :
1 x' \
Ey = O, Ey'= V—;COS{w(t —_— E‘> -+ 8}, Ey = 0

He =0, Hy =0, Hz»=oosfw<t—x—>+8\
ry e/

We can, of course, assure ourselves subsequently, by
means of a simple calculation, that the expressions (55),
(60), (61), (64) for the incident, refracted and reflected
waves in actual fact satisfy all the conditions in the

interior (¢ 2 0) and at the boundary (¢ = 0) of the two
bodies.

It is a characteristic of the reflected wave that it has
the same amplitude as the incident wave, but in contrast
with ordinary reflection, a phase which is displaced by
an angle 8 with respect to the incident wave.

This abrupt change of phase is equal to zero, by (57),
for the limiting angle (sin # = n, 6 = 0), where the
total reflection coincides with ordinary reflection, and
increases in the same sense as the angle of incidence 6
increases until it assumes the value 7 for grazing incidence

-9

The above results hold for the f-wave which vibrates

(64)
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in the plane of incidence. It is obvious that the g-wave
which vibrates perpendicularly to the incident plane obeys
fully analogous laws, which nevertheless arc distinguished
in a characteristic way from those which have hitherto
been obtained. Since the process of calculation is
exactly the same it will be sufficient to summarize the
results briefly :

E;=0 H;=0
E,=0 I, = — cos w<t - (—?) . (65)
E. = \}E cos w <t - (‘;) H, = 0
and if we set :
ab%—g—is%—f—g; = tan% O<r<w) . . (66)

we get from (24) and (23) :
oy = 2ncos%‘e’§, c=er . . . (87)

and hence, by (50), the ficld components of the refracted
wave become :

- K, =0
9 s < Slll 0 ) '7']
E» 4 = %t 9
s coq e cos {w b — 3
wrg sin, 6. ™
H; == 2sin 0 cos e % cos w< K 1> -5 0
| o JTE[Y (68)
_ . , T _(1)05 ’Y] Hll’l 01 T
I, = — 2n6’ cos ye o sin. +g

;=0
and by (52) the field-components of the reflected witvo
become :
1 x'

E.z'=0,Ey'"L‘~O,Ez'== = COH {w(t-— - ‘[“Tl ]

Ve ) J (69)
— 0, Uy = — AN -
Iy =0, H, co8 {w (t r]> |- -r}, Iy = OJ

D
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The wave g which vibrates perpendicularly to the
incident plane thus experiences a different phase change
T at total reflection from the wave f which vibrates in
the incident plane; by (57) and (66) we have in general
that 8 > =. Itisonly in the extreme cases of the limiting

angle <01 = g) and of grazing incidence <0 = g> that
3 and = coincide.

§ 14. To solve the problem of total reflection entirely
we have yet to generalize the particular solution that has
been found for the case of any arbitrarily given waves
f(t) and ¢(¢). This can be done simply by first multiply-
ing the expression (53) by means of any arbitrary complex
constant, by which the vibration acquires an arbitrary
amplitude and an arbitrary phase-constant, and then
performing a summation over the whole multiples of a
definite radian frequency w. This causes the real part

of f(t) or g(¢) respectively to assume the form of a Fourier
series (I, § 38) :

£ Ccos (Q_’ZL?+0,L>. ... (0

and it is known that every function which is periodic with
respect to the time 7' can be represented by such a series.
By (12) its initial term C, is set equal to zero. In assum-
ing the wave-functions f and g to be periodic we are not
actually introducing a limitation, for we can make the
period T so great that for the measurement only those
times ¢ come into question which lie within a period—
that is, between 0 and 7. This occurs, for example,
if we denote the moment of time at which the source
begins to emit light by ¢ = 0, and the moment of time

at which the last measurement has been performed by
t=T.



CHAPTER II

SPECTRAL RESOLUTION. INTERFERENCE.
POLARIZATION

§ 15. IN deriving the laws of reflection and refraction in
the preceding chapter no assumptions were made about
the form of the wave-functions f and g which were used.
This also applies to the laws of total reflection. For the
cxpansion of a wave-function into a Fourier series is only
a particular form of mathematical representation. In
particular we must guard ourselves against thinking that
the wave-functions must have any properties of periodicity
within the large fundamental period T. Rather they can
even have the value zero at times, and can behave quite
arbitrarily before and after these zero values. Hence it
also follows that no objective meaning for the form of the
wave-function can be ascribed to the amplitudes C. of
the Fourier series (70), nor to the fundamental period T
on which they are dependent.

To get information about the form of a wave it is there-
fore necessary to make special measurements. The
method which suggests itself most readily in principle is
that which was used by II. Hertz to find the form of the
electromagnetic waves which he had discovered—namely,
to produce stalionary wvibrations by means of reflection
from a perfectly conducting and hence perfectly reflecting
surface (111, § 92). Ifor it is in this process that the
periodic character of a wave manifests itself, owing to the
appearance of equidistant nodes and anti-nodes, which
allow the wave-length, and hence the frequency, to be
measured. The corresponding experiment with optical
waves was lirst success{ully performed by O. Wicner

(1890), who allowed the violet rays of an arc lamp to fall
35
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normally on a silver mirror. To make the resulting nodes
and anti-nodes of the electric field-strength visible, a very
thin membrane-like layer of collodion containing silver
chloride, which is sensitive to light and does not appreciably
disturb the vibrations of light, was placed obliquely at a
small angle a over the mirror (Fig. 2). No photographic
action was then found to occur at the places where the
membrane encountered a nodal plane of the electric field-.
strength, for example at the mirror itself, whereas a
maximum darkening of the membrane occurred at the
places midway between the nodes, where the planes of
the anti-nodes (shown by the broken lines in the figure)
are intersected by the membrane. The wave-length can
then be directly calculated from the distance between
the dark stripes and the angle of inclination of the mem-
brane to the mirror.

Mirrop L

Fia. 2.

On account of the smallness of the wave-lengths of
ordinary light, it is customary to use as the unit of length
in optics the micron, 1u = 10~* ecm., or 1uu (millimicron) ==
107 ¢m., or, more often, the Angstrom unit, 1A = 10-8
em. The visible spectrum stretches from about 0-4u
(violet) to about 0-8u (red).

§ 16. Although this experiment proves the periodic
character of a light-wave, it by no means follows from this
that the Fourier series (70) reduces for this wave to a
single term, a single order number n. For the measure-
ment, even in the case of the sharpest spectral lines,
always admits of a very great range of order numbers,
whose frequencies vary but imperceptibly. For since :

¢
wai}?f==2ﬂu B 2 )]
and since T is enormously great compared with the time
occupied by a single light vibration, the order numbers n
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that come into question are enormously great and a
change in the order number 7 by one or more units cffects
no appreciable change 1n w.

Thus we must conceive of light of a definite colour, so-
called monochromatic or “ homogeneous ” light, not as a
wave of a single period, like the sound-wave of a definite
tone in acoustics, but as composed of numerous waves of
almost equal periods. There is no monochromatic light
in the absolute sense, but only in a more or less approxim-
ate sense. Expressed mathematically, the condition for

homogeneous light of frequency w, = 2—11?9 is that in the

Fourier series (70) only those amplitudes ¢, differ from
zero for which :
B

2y TSI (1)

The degree of homogeneity is determined by the greatest
value which the ratio (72) can assume without (', vanishing.

A particularly clear picture of the behaviour of the
wave-function of homogencous light is obtained by
substituting in the Fourier scries (70) :

n =g + (n — )
and expanding the cosine correspondingly. The serics
(70) can then be written as the single term :

Cy . cos <‘mn°t + 6’0> e (T)
where :

(/0 CON 00 . 2:(/“ CcO8 <H7T(17/1 NO) | 811)

Uy sin 6y = ZC, sm< (nq )t + 0“)

and can be regarded as a single vibration of frequency w,,
amplitude 0, and phase-constant 6,. It is true that O,
and 6, arc not strictly constant, but on account of (72)
they only change rclatively slowly, and in gencral
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irregularly, with the time ¢; in fact, the more slowly the
more homogeneous the light.

This shows the close relationship which exists in the case
of homogeneous light between the fluctuations of the
amplitude and the phase on the one hand, and the degree
of homogeneity on the other. An absolutely constant
amplitude and an exactly regular phase could be possible
only in the case of absolutely homogeneous light; every
kind of fluctuation denotes a lack of homogeneity.

§17. A far sharper resolution than that given by
reflection at an opaque mirror is obtained by the re-

, flection or transmission
S B, of light through a trans-
parent  plane - parallel
plate.  This problem,
too, may in general be
solved by means of the
methods here developed.
P If a plane wave fallg
€ Pransmirgaq ON & transparent plane
; Tlﬁl;g}rﬂltted plate of thickness D at
an angle of incidence 4
(Fig. 3), it is partly re-
flected, it partly pene-
Fre. 3. tratesinto the plate ; the
penetrated portion of
the wave partly travels to and fro within tho plate
between its boundary faces and partly passes out through
the rear or the front face of the plate.

The complete solution of the problem is contained in the
following assumption. In the first medium (air) there are
two waves, one directed towards the plate at the angle of
incidence 6, the other directed away from the plate at
the angle of reflection §. In the second medium (glass)
there are also two waves, both making an angle 6, with the
normal to the plate, the one directed from the front to
the rear boundary surface, the other moving in the
contrary direction. In the third medium (air) there is a

0 A

4

Reflected
light

;ocgc,o’

-]
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single wave which advances in a direction parallel to the
original incident wave.

These five waves arc connected by four boundary
conditions—namely, one cach for the electric ficld-
strength and the magnetic field-strength at each of the two
parallel boundary surfaces. From these it is possible
uniquely to determine the other four waves, when the
incident wave is given.

We achieve the same object, not so directly but more
concretely than by the preceding method, if we take as
our starting-point the course of the process in time; this
has the fundamental advantage that it can then also be
applied when, as always happens in reality, the cross-
section of the incident wave and the surface of the plate
does not exceed all limits.

Let the incident wave [ <t — fj> be represented

graphically in Fig. 3 by any arbitrarily sclected ray, which
woe assume sirikes the first surface of the plate at 4, so
that » represents the wave-normal at the point 4,. The
reflected ray (that is, the reflected wave) then passcs from
A, out into the air again with the cocfficient of absorption
or ¢ weakening * (Schwdchungskoeffizient) u, which is given
by (23); whereas the refracted ray, which has the co-
cfficient of absorption u,, gets as far as B, in the plate.
Here it splits up again, partly to enter the air in the
forward direction and partly to turn back in the plate
towards 4,. And so the same process continues until
finally the energy of the ray is essentially used up and the
remainder can be neglected. According to this mothod
of reasoning, the four waves which were considered above
and which are to be calculated from the incident wave
present themselves as four sums having an infinite number
of terms cach of which is known and can be specified.
Let us first consider the fransmitled wave by choosing
any wave-plane By, B'y, B’y . . . sufficiontly far from
the plate. This wave arisos from the superposition of
those waves which are represented graphically by the rays
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A,B;,B', A,B14;B,B's, . . . . If we denote the length
AyBy =Bjd;=A,By= . .. by 8, and the lengths
BBy, ByB'y, . . . by p1, ps, . . . then the expressions

for the wave-functions which meet in the selected wave-
plane and which correspond to the individual rays result
if we substitute the light-paths quoted in the argument of
the function and add, besides, the absorption coefficients
&, py, ', 'y which present themselves at every reflection
and refraction. Here p’ and u’; denote the coefficients
which are valid for a wave which passes from glass into
air. They are derived from the expressions for u and u,
by exchanging the angles § and 6, with each other.

Accordingly the wave-function of the first ray, which
has undergone two refractions, at 4, and at B, runs, at
the point B, :

' € _ 0 _pt
By -f<t N q>

and the wave-function of the second ray, which has under-
gone two refractions at 4, and at B, and two reflections at
B, and 4,, is, at the point B, :

20y 8 =5 =22 —2) and so forth.
papPu'y f< P q>
Hence we get for the wave-function of the whole of the
transmitted light :

@ 2
2 () f <t _%_(@p+1)8_pr. .1> - (74)
=0 7 @ q
Here the coefficients uy, u” and u’; can be reduced in a
simple manner, in view of (23) and (24), to terms of the
single coefficient u by means of the equations :
pr=—pp=1ltppy=1—p . . (75
Concerning the argument of f, we can, by (14), express
the traversed lengths in terms of a common denominator :

_EACp+1)¥ntpp,y . (76)
q
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and so reduce the total path of the light to the equivalent
path in air (“ optical length of path ). We can then
reduce the lengths pp 4 to terms of the first of these, p;,
by means of the following relation which is immediately
cvident from Fig. 3 :

pr—pp=B10 =«

pL— ps =2, . .

P1— Ppr1 = P€
Finally we have the following expressions, which can be

easily obtained for the lengths 8§ and e which have been
introduced :

(77)

D

=T - e e 78

8 cos 0, (78)

€= BB, .sinf =28 sinf; sinf)

79
€ = 2D tan 0, sin @ J (79)

If we introduce the following abbreviations for the terms
of the argument f not involving p :

f_t+dmtp

g tEe (80
and {or those multiplied by 2 :
ang_e-p=,3p. N €2
then the wave-function (74) now runs :
S-p) . fa—pB) . . . (82)

p=0

§ 18. In order to bo able to perform this summation
wo roquire to make some assumption about the form of
f- Wo therefore suppose f to bo oxpanded into a Fourier
sories and first consider a single term of this series of
froquency w. Since it is often more convenient to cal-
culate with exponential functions than with trigono-
metrical functions, we regard the real vibration as the real
part of a complex vibration and so write :

fy=eot, . . . . . (83)
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where, for the sake of brevity, we follow the usual custom

and suppress the symbol R.
The expression (82) then becomes :

31 — p2)uzr gwla—op)

p=0
and this sum is equal to :
(1 — ) glwa
- ‘u.ze“"ﬂ R 1)

The real part of this complex expression represents the
required wave of the transmitted light. Since the
variables ¢ and p; are contained only in «, it is simply
periodic and has the radian frequency w. By (10) its
intensity is proportional to the square of the amplitude.
This square can be most simply calculated by observing
that it is at the same time the square of the absolute value
of the complex quantity (84); that is, it is the product of
(84) and its conjugate imaginary. Since we are concerned
only with the ratio of the intensity of the transmitted
light to the intensity of the incident light, and since the
absolute value of (83) is equal to 1, we obtain for the ratio
of the intensity of the transmitted light to that of the
incident light :

J _ (1 — Mz) . eiwa i (1 — Mz) A 6-—1'(:)(1

T— e h 1= p2 ¢iop

- (1 — p?? N € 1
J_l——zuzcoswﬁ-kluf" (85)
By (81), (78), (79) and (20) we here have :

B = 2nDcosy _ 2D o 0,
q T

Thus :
/3———~—cos@1~§ N €10

where ); denotes the wave-length in the substance of the
plate, and :
(1 — p2)? N Gl
J = 1—2,;%035»}-;» 87
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Maximum intensity is attained when ¢ = 2 . p, that is,
when :

&

\.cos 6y = p (integer). . . . (88)
1

and then J = 1. There arc intermediate minima of
intensity, of amount :

]:q%ﬁgf ... . (89)

The differences beiween the maxima and minima
become the greater the more p approximates to 1—that is,
the greater the angle of incidence 6.

But what characterizes the phenomenon here considered
most sharply in its bearing on the measurements is the
steepness of these maxima. This is due to the fact that
the parameter £ in (86), and consequently also p in (88),
is in general a very great number, on account of the
difference in the orders of magnitude of D and A;. Con-
sequently the intensity of the light varies very markedly
with the ray direction 6.

Now we must bear in mind, as already emerges from the
considerations of § 5, and as will be further explained in
§ 36, that in optics we never obscrve a single definite ray
direction or a single system of parallel wave-planes, but
always only a cone of ray directions, which may be only
very narrow. Thus if we ascribe to every ray direction 8
the point of an infinitely distant screen at which all rays
parallel to this direction aim, then there will always bo a
groat number of such adjacent points  on which the light
will impinge, and since .J varies groatly with 0, a great
number of maxima and minima of intensity will appear
next to cach other on the screen, the distances between
them being regulated by the succossive order numbers p
in (88). Now if u iy noarly equal to 1, the intensity J, by
(87), is in general weak, and it is only when the condition
(88) is exactly fulfilled that it becomes equal to 1—that is,
the maxima stand out in sharp contrast on the dark back-
ground.
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All these considerations refer to a perfectly definite
frequency w of the wave—that is, to absolutely homo-
geneous light. Since, as we have seen, real waves always
contain many, although very adjacent, frequencies, the
observed radiation always contains several systems of
maxima and minima of the type considered, each system
having the maxima and minima at different intervals;
and in every ray of the transmitted light or, respectively,
at the point 8 on the infinitely distant screen several rays
of different colours meet, and in general they are of
different intensity. It may also happen that two different
colours have their maximum intensity at a definite point
0, so that by (88):

PAy = p'Ay
or, referred to air :
pPA=pX. . . . . . (90)

Then the maximum of order p for the wave-length A
coincides with the maximum of order p’ for the wave-
length A’. If XA and X’ differ only slightly the nearest
maxima of the two wave-lengths, whose order numbers
p and p’ differ by only a few units, will fall close together,
and the two systems of maxima and minima will also
nearly coincide in the immediate neighbourhood. But
if we proceed to higher order numbers the little difference in
the distances between the maximum and minimum will
make itself felt, and the maxima of the two systems will
move apart, so that the maxima of the greater wave-
length, say A, will, on account of their greater separation,
move ahead of those of the smaller wave-length A of the
corresponding order number. Finally, when the order
number is sufficiently increased, the maxima of A’ with
the order number p’ + 7 will, so to speak, catch up those
of A with the next higher order number p + r + 1. Then
the two systems will again coincide, but in such a way that
the order number of the maximum of A will have increased
by one more than the maximum of \’, that is :

P+r+1A=(p +nrX
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This, combined with (90) gives :
AN — A

1
! (91)

Thus by counting up the maxima between two suc-
cessive coincidences of the two systems we have a very
oxact method for measuring small relative differences of
wave-length.

The intensity J’ can be found for the reflected light just
as has been done for the light transmitted from the plate.
But it is unneccessary to carry out the calculation in detail.
For the result comes out at once by applying the encrgy
principle, which states that the sum of the intensity J'
of the reflected light and of the intensity J of the trans-
mitted light is equal to the intensity 1 of the incident
light. Thus by (87):
4p? sinzg-

J=1—-J= (92)

1 — 2u2 cos & + pt

The reflocted light is, as we say, ¢ complementary ™’
to the transmitted light. The minima of intensity are
zero and stand out sharply from the surroundings when
w is nearly equal to 1. In other respects, the same laws
hold here as for transmitted light.

Hitherto we have considered only the light which
vibrates in the incident plane—namely, the f~wave. But
it is evident that the same inferences may be drawn also
for the light which vibrates perpendicularly to the incident
plane, namely the g-wave. The only difforence in the
rosults is that in the case of the g-wave the coefficient
o (§ 9) takes the place of tho coofficient u. The position
of the maxima and minima remaing precisely the same
as in the casce of the f-wave.

§ 19. According to the equation (86) the angle ¢ which
is charactoristic of the intensity of the light depends not
only on the ray-dircction 6, but also on the thickness of
plate ). This circumstance is made use of in interfero-
meters of variable thickness (air plate) in order to measure
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the dependence of the intensity of light J on the thickness
of layer D for the case where the light is incident normally
(f, = 0). Then by (88) those thicknesses of layer for
which the transmitted light has the maximum intensity
1 are whole multiples of the half wave-length in the
substance of the layer :

>

D=p.22 . . . . . (93

"2

This is easy to understand if we reflect that when the

thickness of layer is a multiple of the half wave-length

the phases of the waves which are superposed on each
other after several reflections
within the layer before passing
through it differ by 2=, so
that all the waves reinforce
each other.

R A phenomenon which ex-
hibits the effect of several
thicknesses of layer simul-

\p taneously is that of Newton’s

0% B Rings. If the curved surface

Fic. 4. of a plano-convex glass lens

is placed in close contact on

the surface of a plane-parallel glass plate (Fig. 4) a thin

air-film is formed, whose thickness increases from the

value zero to the value D at the distance p from 0. If

we now allow homogeneous light to fall in a parallel

beam normally on to the plate, we see in the transmitted

beam a system of light and dark rings with a bright

spot in the centre, and in the reflected light we see the
complementary pattern.

An approximate theory of this phenomenon is obtained
very simply from our preceding remarks. If we restrict
ourselves to values of p which are small compared with
the radius R of the sphere, we may write :

c

D=AB=PO=R— VR =
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or:

[

Lp
2R

Consequently, by (93), we obtain for the maxima of
intensity in the transmitted light or, respoctively, for the

minima in the reflected light, if X denotes the wave-length
in air :

.D=

p=VPAR . . . . . (94

Thus the radii of the dark rings in the reflected light
arc in the ratio of the square roots of the series of natural
numbers.

For two colours which differ only slightly from each
other, such as the two components of the yellow line
of sodium (5890 A and 5896 A) tho ring systems differ
slightly and move apart more and more as the distance
from the central point O increases, so that they blur
cach other’s cffects until for, say, p = r the maxima
and minima, respectively, coincide again, as can be
seen from the renewed sharpness of the again common
ring-system. This allows us to calculate, by (91),
the relative difference of wave-length of the two sodium
lines.

§20. In the preceding scction we have been led 1o
consider the combined action of several trains of waves
superposed on each other and moving in the same dirce-
tion; wo shall now treat the same question of the super-

position of light waves systematically for the gencral
case.

Lot f1<t —_ §> and j2<t - §> be the wave-functions of

two rays which vibrate in the same direction and which
propagate themsclves in the same direction. They com-
bine to form a single ray whose wave-function is :

A N

It follows from this that the intensity J of the rosulting
rays dopends on the intensities J; and J, of the two com-
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ponents in the following way, if we disregard a factor
which is of no importance :

T=F=FE TR+ o
J=Ji+Jy+2fife .« - - . . (96)

Thus the intensity of the composite ray deviates in
general from the sum of the intensities of the individual
rays. This phenomenon is called the ‘ interference ™
of the two rays 1 and 2. Under certain circumstances
no interference occurs—namely, when the wave-functions
f1 and f, are fully independent of one another—that is,
when the rays 1 and 2 are ‘“non-coherent.” For then,
as in (43), we have :

fifs=11.Ja=0.

This is always the case, for example, when the two rays
come from different sources. Hence two such rays, even
if they have exactly the same colour, never interfere
with each other. But non-coherence is not a necessary
condition for the absence of interference. Rays can even
be “fully coherent” and yet not interfere: we take
“fully coherent’ to mean that one of the two wave-
functions is completely determined by the other. This
occurs, for example, in the case of homogeneous light,
if the arguments of f; and f, always differ by an odd

multiple of 7—27 Then, in spite of complete coherence,

fife =0. The general case is exemplified by  partial
coherence,” where f; and f, are not independent of
each other, and yet are not completely defined by each
other.

§ 21. A somewhat different way of regarding the same
problem results if we write the two wave-functions f;
and f, as Fourier series having the same fundamental
period 7. Then the resulting wave-function f = f, + f,
may also be represented directly as a Fourier series by
compounding each two partial waves of the two series,
which have the same frequency, into a single partial
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wave. We then have, for example, for the radian
frequency w of the partial waves :

@ COS {w <t - g) + 01}

and: f x \

@y COS lw(t - §> + 021
. In summing these two expressions an important part
is played by the phase-difference of the two waves :

0, —0,=A. . . . . . (98)

Instead of the phase-angle 6, sometimes the constant

length d or the time constant § is introduced into the
wave-function by writing :

_ @ cos {277 (t; - i——;——%}

ovnfor(22-3)

and we then speak of the “ difference of path,” d; — d,,
of the two waves or of the “ retardation,” §; — 3,, of the
second wave with respect to the first. The phase differ-
ence 2m corresponds to a difference of path of one wave-
length, A, or a retardation of one period of vibration, .
By adding the two expressions (97) we get for the resulting
partial wave :

. (97)

or:

_x Voo (99
acos{w<t q>—l-0J (99)
where :
@ cos 0 = a, cos 6y + a, cos 02} .. (100)
a sin, 0 = a; sin 6; + a,8in 9,

Thus the amplitude and the phase-angle of the resultant
wave are formed from those of its components according
to the same rules as the absolute value and the direction
of a vector which results from two other vectors.

From (100) and (98) we obtain for the square of the
amplitude a :

@ = a,® + a2 + 2aya,c08 A. . . (101)
B
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This equation expresses that two absolutely homo-
geneous waves of the same frequency moving in the
same direction and with their vibrations in the same
direction interfere in general. This does not contradict
the law of § 20 that two rays coming from different
sources of light and having the same colour never interfere.
For, according to § 16, there is no absolutely homogeneous
light in nature ; rather, even the most near homogeneous
optical ray always contains very many partial waves of
nearly the same vibration frequency ; each of these partial
waves interferes with the partial waves of the same
frequency in the other ray. Now if the two rays are
non-coherent the phase-difference A changes in a quite
irregular manner in passing from one pair of waves to
another, so that no appreciable interference effect can
oceur.

§ 22. We shall next consider the composition of two
waves which propagate themselves in the same direction,
but whose directions of vibration are at right angles to
each other, as in § 11 except that now we start from the
Fourier expansion. As in § 11 let z be the direction of
propagation, z the direction of the electric field-strength,
y that of the second wave. We can then represent the
electric field-strengths of two partial waves of the same
frequency w after the model of (97) by :

acos{w(t——i>+01} =2

bcos\w<t—~>+0}=y hee)

where we choose appropriate units for x and y. Without
affecting the generality of our problem we may take
@2b=0. This method of representation enables us to
form a very clear picture of the law, according to which
the resultant electric field-strength of a definitec wave-

plane 2z varies in magnitude and direction with the time,
since it is represented at every moment by the position
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of the point z, ¥y which moves about in the plane z =
const.

As for the orbitof this point, it is obtained byeliminating
the time ¢ from the equations (102), which is done most

simply by calculating the values of cos w <t - Z—) and

sin w (t - g), then squaring and adding them and putting

their sum equal to 1. The equation of the path then
comes out as :

2 oy 2zxy .

C_ﬁ 52 —_ —cfb— cos A = sin2A. . . (103)

This is an ecllipse which degenerates into a straight line

when A = nmr; whereas when A = (n + §)x its axes coin-
cide with the co-ordinate axes. In general the angle ¢,
which one axis of the ellipse forms with the z-axis, is
determined by the relation :

2abcosA (104)

tann 2¢ = —m“z—'

which can be obtained directly from (45) if we insert the
following values, which correspond to our present case :

C=f§=%§cosA.

If, further, we inquire into the velocity with which the
elliptic orbit is traversed, we get from (102) by differ-
entiation :

2dy — ydx = wabsinA.dt . . . (105)

This signifies that the motion of the reference-point
x, y occurs in accordance with the law of sectional areas
(I, §50), and moreover, since ab > 0, it occurs in the
positive or negative sense according to the sign of sin A.
Since the z-axis of our right-handed co-ordinate system
(I, § 16) is the direction of propagation of the light, the

F'e G 2 0
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sense in which the rotation represented by the motion
occurs has a definite physical meaning.

In optics light is called dextrorotatory (or dextro-
gyrous) if the motion of the reference-point z, y is clock-
wise to an observer looking towards the light. For
this reason we have to regard the sense of rotation of
dextrorotatory light as negative, and that of levo-
rotatory light as positive.

We can obtain a clear conception of the way in which
the motion of the reference-point depends on the con-
stants a, b, A by keeping, say, ¢ and b constant, but
allowing the phase-difference A to increase from 0 to 2.
When A = 0 the elliptic motion degenerates into a recti-
linear vibration, which by (104) or (102) is inclined to
the z-axis and lies in the first and third quadrants, the
angle of inclination being :

¢ = tan~?

< (105a)

ISERS

T.
4
and the amplitude +/¢% + 32,

Now if the phase-difference A increases, the ellipse widens
and is traversed in the positive sense. The light is then

levorotatory. At the same time the angle ¢ becomes
smaller—that is, the major axis of the ellipse moves

towards the z-axis. When A =§~; the ellipse attains

its greatest curvature, the semi-axes are ¢ and b, and
their directions coincide with those of the co-ordinate

axes. If A increases beyond z—;, the major axis passes

over into the second and fourth quadrants and the ellipse
at the same time becomes flatter and flatter until, when
A = 7, it again shrinks together to a straight line which
isinclined at the angle given by (105a) to the xz-axis. From
then on, when A increases still further, the form of the
ellipse is exactly repeated in the reverse direction, as
we see from the fact that the orbital equation (103)
remains unchanged if A is replaced by 27 — A. The
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cllipse again widens and its major axis again moves

towards the z-axis, which it reaches when A = 3?" But

the orbit is now being continually traversed in the negative
direction. Finally, when A = 2, the original motion is
again resumed. An equally instructive example is that
obtained by considering the phase-difference A fixed and
the amplitudes @ and b of the components of vibration to
change gradually. Among other things we see from (104)
that then the direction ¢ of the axes depends only on the
ratio of the amplitudes o and b, and that the same holds
for the ratio of the lengths of the axes.

If we enquirc into the condition which makes the
vibration circular, we obtain the answer most simply
from the expression (104) for the direction of the axes,
which must become indeterminate in the case of a circle
—that is, must assume the form % This gives us the
following two conditions for a circular vibration :

a=b,A=<n+—;>7r .. . (106)

which must be fulfilled simultaneously. The circle is
traversed in the positive or negative sense according as
n is even or odd.

§ 23. The clliptic vibration considered in the preceding
section at the same time represents the most general case of
the composition of any arbitrary number of plane waves
moving in the z-direction and having the same radian
frequency w. For every linear vibration may be resolved
into two linear components which vibrate in the z- and
the y-direction and have the phase-difference zero, and
all the vibrations which occur in the z- or the y-direction
yield on being superposed, by § 21, a single vibration in
the direction in question.

We can also picture the general case of the elliptic
vibration in another manner besides that involving two
linear vibrations—namely, by means of two circular
vibrations with opposite senses of rotation. This is
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obvious, if we reflect that every linear vibration may
be regarded as the resultant of two circular vibrations
having the same radius but being performed in opposite
directions. For the two revolving points then always
meet at the same points, and these points define the

‘direction and half the amplitude of the resultant linear

vibration.

In this way we obtain for the general case your circular
vibrations; of these there are two pairs of vibrations
which occur in the same direction and so compound in
each case into a single circular vibration in the same
direction : the two single resultants vibrating in opposite
directions can then be compounded. The sense of the
final resultant circular vibration is, of course, that of
the single resultant which has the greater radius.

§ 24. Let us finally glance at the way in which the
electric field-strengths x and y in (102) depend on the
wave-normal z. If ¢ is constant, these equations repre-
sent the so-called ‘‘ wave-line,”” in the present case an
elliptical helix : and by (105), if we replace the df in it

by %%, we get a right-handed screw (II, §32) if

sin A < 0—that is, if the sense of rotation is negative.
The pitch of the screw is then equal to the wave-length A.

If we take into consideration what was said in § 23 about
the sense of traverse of the dextrorotatory light, it follows
that dextrorotatory light is represented by a right-
handed screw, and levorotatory light by a left-handed
screw. The motion of the reference-point z, y in the
plane 2 is obtained if we displace the helix in the direction z
with the velocity ¢ and fix our attention on its instantaneous
point of intersection with the plane z = const. If we
reverse the direction of displacement of the helix, a wave
results which propagates itself in the negative direction
of the z-axis and at the same time turns in the reverse
sense, so that a right-handed screw again represents
dextrorotatory light and a left-handed screw lavo-
rotatory light.
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§25. We shall next enquire what definite phase-
differences A can be realized between the two wvibration
components z and y. If we start with a linearly polarized
wave having its dircction of vibration in the first and
third quadrants, then in (102) the ratio of the amplitudes

is constant :

%:tanqs.f__l. ... .o

just as m (105¢); and the phase-dificrence is §; — 8, =
A =0. We shall cause this wave to be reflected at
some arbitrary angle of incidence, so that the clectric
ficld-strength 2 vibrates in the planc of incidence. Tor
ordinary reflection (sin § <n) no abrupt change of phasc
occurs, so the phase-diffcrence A remains cqual to zero,
and the two reflected waves again combine to form a
linearly polarized wave, cxcept that, by (105a), the
direction of vibration becomes changed owing to the
difference in the reflection coefficients p and o. This has
already been remarked in § 11.

But it is quite different in the case where the wave is
totally reflected (sin §>n). TFor here, conversely, the
amplitudes ¢ and D of the two wave-components remain
unchanged, whereas a phase-difference A =8 — 7 now
introduces itself, the valuc of which is obtamed from

(57) and (66)
A d—r 0'.cos
== - S  . (108
an 2 tan 2 sin 0 . sin 6, (108)
and 8’ is determined by (56).
This phasc-difference A is, as we have alrcady found at
the end of § 13, always positive and vanishes at the two

extremo cases of the limiting angle—namely, when 8 = 0
and when § = g (grazing incidence). Thus between these

values it attains a maximum. This occurs, by (108),
al the angle of incidence :

2n2
N2 — .. . . (109
sin?f = 5, (109)
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and the maximum value is :

A=m—4tan~in . . . . (110)
<0<tan‘1n<g>

The smaller the index of refraction », the greater the
phase-difference A that can be obtained. After the
reflection the two vibration components combine into an
elliptic vibration, the direction of whose axes, ¢, is by
(104) and (107), given by :

tan 2¢’ = tan 24cosA . . . (111)

To obtain circularly vibrating light we must, by (106),
produce a phase-difference of % If we enquire what is
the least value that n can have in order that the phase

T
9

difference 5
dd

(110) that :

may be obtained, we find that it follows from

n=tan§=\/§——l. L. (11

The reciprocal of this value is /2 + 1 = 2-414. A
substance must therefore have an index of refraction of
at least this value if it is to be possible for the phase-

difference er to be produced in it between the f- and the

g-waves by total reflection. Of the known substances
only diamond fulfils this condition.

Now if a phase-difference of g cannot be practically

obtained by means of a single reflection, we can achieve
this fairly conveniently by means of two successive
reflections, as by a Fresnel rhomb. This is an oblique-
angled parallelepiped of transparent glass (Fig. 5) whose
angle is chosen so that a ray of light which passes through
the glass and impinges on the air at the angle of incidence
6 = « undergoes total reflection with a phase-difference

A= '—Z between the two vibration components. By (108)
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this occurs for any definite sort of glass at two angles,
either of which may be chosen.

If we make the ray of light which was assumed at the
beginning of this section to vibrate in the direction ¢
with respect to the z-axis, fall normally from below on the
basc of the surface at 4 (Fig. 5), the equation (107) will
hold for the ratio of the amplitudes before and after the
entrance of the ray into the parallelepiped. The first
reflection at O on the oblique bounding surface then occurs

at the angle of incidence o, with a phase-difference of 77;

and unaltered amplitudes; the sccond reflection occurs

at P on the opposite bounding surface .
with a further phase-difference of 77;

and againunaltecredamplitudes ; finally, z

at B the ray emecrges normally into p
the air with uniformly diminished
amplitudes and wunchanged phase-

. w T ko
difference iti=53
which emerges at the top at B per- |
forms elliptic vibrations, whose princi-
pal axes coincide with the co-ordinate r
axes x (towards the right) and ¥ Fia. 5.
(towards the back of the figure).

Since the light which is incident at A4 is assumed to

Hence theray

be vibrating in the first and third quadrant (()<(/> _<=77;>,

the light which emerges at B is leevorotatory, by (105).
But if the light vibrates in the second and fourth quadrants

(Z" <4< 77) the emergent light is dextrorotatory. When

¢ = g or %71 wo have tan ¢ = £ 1 and ¢ = 0, and then the
light cxecutes left-handed or right-handed circular
vibrations.

§ 26. Our discussion so far has been entirely restricted
to a definite radian frequency w—that is, to a single
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partial vibration in the Fourier series of the optical
vibration. Now since even the most nearly homogeneous
light wave in nature includes a great number of partial
vibrations, we have in all cases to sum up over all these
partial vibrations and so arrive at the relevant laws for
the resultant vibration.

Instead of this, however, we may also, as in (73),
regard every homogeneous optical vibration as a single
elliptic vibration of the corresponding frequency with
the lengths and directions of the axes changing slowly
and irregularly, or as consisting of two circular vibrations
in opposite directions whose radii change slowly and
irregularly.

But since the laws which have been deduced in the last
sections, from § 22 onwards, are quite independent of the
particular value of the frequency w, they also apply
unaltered when many partial vibrations of almost the
same frequency are superposed. This holds, in particular,
for the ratio of the amplitudes (107) of the two vibration
components in a partial wave of linearly polarized light,
as well as for the phase-difference A between the two
vibration components, which is given by (108), and hence
also for the direction (111) and the ratio of the lengths of
the two principal axes of the resultant elliptic vibration
(cf. end of §22). All these quantities are the same for the
different partial waves—that is, they are subject to no
fluctuations. Optical vibrations whose direction of axes
and ratio of axes are constant are said to be “ elliptically
polarized.” This does not only express, then, that the
optical vibrations are elliptic—that is obvious—but also
that the vibration ellipse, even if it changes slowly and
irregularly, nevertheless retains the directions of its axes,
the ratio of its axes, and its sense of traverse unchanged
throughout. In the same way ‘‘ circularly polarized *’
light is represented by circular vibrations whose radius
alters slowly and irregularly. Elliptically or circularly
polarized light may be produced from linearly polarized
light by means of Fresnel’s rhomb, as above described.
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The direction of the axes is determined, as we saw, by the
plane of incidence at total reflection, and the ratio of the
axes by the azimuth of polarization. From this we
casily see that the two vibration components of light of
this kind are completely coherent (§ 20).

§ 27. Taking these results as a basis we are now in a
position to analyse up to a certain point any plane wave
that we may encounter. Let us take any light-wave
present in nature, whose origin is unknown to us, and
undertake the problem of determining its form by making
certain measurements, that is, to specify as far as possible
the properties of the two wave-functions f and g of which
it is composed.

First we resolve the light spectrally by onc of the
methods of interferometry above described. We arce
then able to deal only with homogencous light.

We then determino, by § 11, the two principal directions
of vibration and the two principal intensities for a homo-
geneous light-wave of this kind. Three cases can occur.
The first is that one of the principal intensitics vanishes
entirely. This means that the light is linearly polarized.
The second is the opposite extreme where the two principal
intensities are equal to each other. Thelight is then cither
circularly polarized or is natural light or a mixture of both
(partially circularly polarized light). To distinguish
between these three possibilities we allow the light to
fall normally on a Fresnel rthomb (Fig. 5). If the light is
circularly polarized, the amplitudes of the two vibration
components f and g are equal to each other and their
phase-difference then amounts to 127 or %—T according as
the light is levorotatory or dextrorotatory. After
emergence from the glass the amplitudes are still equal
to each other but the phase-diffcrence now amounts to =
or 2m, respectively-—that is, the emergent light is lincarly
polarized and vibrates in the second and fourth or first

3

and third quadrants, respectively, at the angle ¢ = - i or
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1’ to the z-axis. Thus here the double reflection supple-
ments the original phase-difference of the two components
to form a whole multiple of = —that is, the Fresnel rhomb
acts as a ‘‘ compensator.”

On the other hand, if we are dealing with natural light,
no compensation occurs, and the emergent light, like the
original light, shows no trace of differences in the different
directions of vibration.

If, lastly, the light is a mixture of circularly polarized
and natural light, the natural part remains unchanged,
whereas the circular part again yieldslinearly polarized light

. . 3w T . .
whose azimuth is 5 D respectively, and whose in-
tensity is represented by the difference in the principal
intensities of the emergent light.

In the third and most gencral case in which the two
principal intensities differ from zero and from cach other,
we allow the light to fall on the rhomb in such a way that
the direction of the greater principal intensity is coincident
with the z-axis (Fig. 5). If thelight is elliptically polarized
the two vibration components have the phase-difference

§ or %—, respectively, and the ratio of the amplitudes is

equal to %. Owing to the action of the compensator,
linearly polarized light is produced, which vibrates in the

direction ¢ = F tan~? g and forms an angle <Z with the

x-axis. But if the light is a mixture of linearly polarized
and natural light, the greater principal axis also coincides
with the z-axis in the case of the emergent light. If,
finally, the light is partially elliptically polarized the greater

principal axis in the emergent light forms an angle <g

with the z-axis, which indicates the ratio of the axes of
the vibration ellipse, while the intensity of the polarized

portion is obtained from the difference in the principal
intensities.
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In this way we obtain in every case that presents itself
a certain insight into the conditions of polarization of a
given ray. There is still, of course, a considerable re-
mainder which cannot be defined and which is caused by
the physical complexity of the elementary processes that
occur in every light source; it receives expression in the
numerous terms of the Fourier expansion.



CHAPTER III
GEOMETRICAL OPTICS

§28. TuE laws of reflection and refraction which we
have developed above owe their simple character essen-
tially to our assumption that both the wave-points of the
light (§ 5) and the boundary planes of the active body are
infinite planes. In reality these surfaces are neither
unlimited nor plane, and hence, strictly speaking, the
above simple laws are not applicable to nature at all.
Nevertheless, in practice they represent an extra-
ordinarily close approximation to reality, when these
assumptions are very nearly fulfilled, valid, that is, when
both the cross-sections of the wave-fronts and the
boundary planes, as well as the radii of curvature of these
surfaces, are very great in comparison with the wave-
length of the light under consideration. Now since in
optics the wave-lengths involved are, in general, of a
smaller order of magnitude than the dimensions of the
bodies used, the optical laws of propagation, reflection and
refraction assume a particularly simple form in contrast
with acoustics where, it is true, the laws of wave-motion
also hold, but where this assumption is not in general
fulfilled.

Geometrical optics comprises the relationships which
are obtained when the wave-fronts of the light and also
the surfaces of bodies are imagined to be divided up into
many small parts, and the laws of propagation, reflection
and refraction of plane waves of unlimited extent which
fall on unlimited plane surfaces are applied to these
individual small parts. Each of these small portions of
wave-front, which are rega,gged as plane, is graphically
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represented by the corresponding ray which is normal to it,
andeveryray propagatesitselfrectilinearly withthevelocity
characteristic for that body until it rcaches another body
where it is reflected and refracted as at a plane surface in
accordance with the rclative position of the normal.
Hence geometric optics is also called ““ray optics” in
contrast with ““ wave optics,”” which is more general but
also more complicated.

§ 29. We take as our first cxample the coursc of a ray
of light through a prism—that is, through a transparent
body which is bounded by two plane faces which are
inclined to cach other at an angle ¢. After what has been
said above, we must exclude processes which occur in the
immediate neighbourhood of the edge 4 (which in Fig. 6
we take perpendicular to the plane
of the diagram), because the radius
of the refracting surface becomes
infinitely small there.

A ray which is incident at B at
an angle 6 in the plane of the
diagram is refracted along BC and
emerges into the air again at C at
the angle 8’ to the normal at ¢. The following relations
hold for these two refractions :

Fra. 6.

sinf =nsing, . . . . (113)
sing =nsind’y . . . . (114)
Morcover, the sum of the three angles of the triangle
ABC gives :
(g— 01) ’l"(ﬁ +<g_611>=’=77'
that is :

-0y~ . . . . . (115)

I'rom these equations we can find how the angle of
emoergence §° depends on the angle of incidenco 0.
The total deviation § of the ray caused by the prism—
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that is, the angle between the emergent and the originally
incident ray—is given by :
8=(0—16,)+ (0" =0
or, in view of (115), by :
§=0+0"—¢ . . . . (116)

If we investigate the manner in which the total deflec-
tion § depends on the original angle of incidence 6, we
get, by using (113), (114) and (115) :

s _ ) _cosf.costy g7
dag cos 6, cos 6

This expression vanishes if 6’; = 6;, which simul-
taneously makes §° = §—that is, when the ray traverses
the prism symmetrically—so that the lengths AB and AC
are equal to one another. In this case the deflection §, is
a maximum or a minimum, and we find out which it is
by finding the value of the second differential coefficient.
This is obtained by differentiating (117) with respect to 8 ;
for the value 6" = 8, which we are considering, it has the
value :

d*¥\  2sin (8 + ;) .sin (0 — 6,)
<352>0 - sin f cos 6 cos? 4, (118)

If the index of refraction of the substance of the prism
n>1, then in the symmetrical position 6" = 8 the second
differential coefficient is positive and hence the deflection
is a minimum.

This limiting position can be determined fairly sharply
experimentally by leaving the position of the incident ray
unchanged, but rotating the prism to and fro on some axis
parallel to its edge and observing the direction of the
emergent ray. If the minimum deviation 8, has been
found by trial, the refractive index of the substance of the
prism is calculated from (116), (113) and (115) and comes
out as :

(119)
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§ 30. Before passing on to consider curved wave-fronts
and curved surfaces of bodies we must make some
remarks of a general character. The primary wave-front
in an isotropic body is a spherical surface. For every
point-like source of light sends out spherical waves of
light which can be represented at a sufficient distance
from the source by a beam of divergent rays. If these
rays are refracted or reflected at the curved surface of
another body, their directions will, in general, no longer
intersect at a point—that is, they will no longer be homo-
centric but ‘ astigmatic.” If, in a special case, they are
again homocentric, then the point at which they meet is
called the “ optical image * of the source of light, being
real or virtual according as the rays converge towards or

Fie. 7.

diverge from the point of intersection. Since light can
always traverse its path in the reverse direction (end
of §10), the source and the image can exchange places,
and are therefore also called ‘‘ conjugate *’ points. The
image of an infinitely distant point of light, or, what
amounts to the same thing, the point of intersection of
rays which result through refraction and reflection from
an incident beam of parallel rays, is called a ‘‘focus ’—
that is, when it exists. If, conversely, we make the focus
a source of light, we obtain a beam of parallel rays. It
is on this circumstance that we base the experimental
production of plane waves of light.

§ 81. We shall now investigate the refraction of light
at the spherical bounding surface between two bodies
1 and 2 (Fig. 7). Let n, and n, be the refractive indices
of the two bodies, C the centre of the curved surface, and
r = PC, the radius of the sphere. We first consider the
image of a point of light 4, situated on the straight line

F
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PC, the axis of the system. Of the rays which emerge
from 4, only the axial ray A4,P passes through the
spherical surface without being deflected. Let another
ray which emerges from 4, at an angle §; to the axis
meet the spherical surface at @. It becomes refracted
there according to the law :

sin 4,0C _ n,
sin 4,QC — ny
and meets the axis at the point 4, at an angle 0,. If we

calculate the two sines from the triangles 4,QC and 4,QC
we get the relation :

4,0 4,0 _ny (120)

4,07 4,0

In general the position of the point 4, will change with
the value of 6, or with the point @ at which the ray
impinges—that is, the beam which starts from 4, becomes
astigmatic after the refraction. But if 0, is taken
sufficiently small, we can replace the lengths 4,Q and
A,0Q in (120), except for errors of the second order, by the
distances 4,P and 4,P. We then obtain, if we denote
the distances of the points 4, and 4, from P by e, and e, :

atr.e—-r_ " . (121)
e € Ny
or:
T M T (122)
& & r

Since the point @ no longer occurs in the latter ex-
pressions, the beam of rays which starts out from A4, is
homocentric even after the refraction, provided the
conical angle of the beam is small; and the point 4, now
has an optical image, the conjugate point 4,. By (122)
the law for the formation of the image is expressed by a
linear equation between the reciprocals of the distances
of the conjugate points from the refracting spherical
surface.
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If 4, moves off to infinity on the left, 4, moves to the
focus F,, whose abscissa is :
=T .
fo= T roo. . (123)
If 4, moves to the right, 4, first moves off to infinity

on the right—namely, until 4, reaches the focus F;, whose
abscissa is :

Lo
fl = T _“h—l *r . . . . (124)
If 4, moves beyond F;, the refracted ray becomos
divergent—that is, 4, appears on the left as a virtual
image, which follows the light 4, as it moves further to
the right, until it catches up 4; at the point P. The
point P is its own conjugate, just like the point C, since
the rays which start from C' are not deflected at all.
The abscissee f; and f, of the foci exhibit the simple
relationships :

fa=fi=7 . . . . . (125)
om0 (120
Jfo  my

If we substitute for » and n from them, the law of
image formation (122) becomes simply :

fo fa
ate=1. . . . . (o

All these relations, as we shall sce, are capable of being
considerably generalized. We may add here that the
formation of an image by reflection at the spherical
surface may be included in the above by writing
Ny = — nz.

If the rays which start out from A, intersect at the
image point 4, after rofraction, the angular aperture or
the ““ divergence ** of a beam at 4, is different from that
of the conjugate beam at 4,. For from Fig. 7 we get
for the angle of inclination of the two conjugate rays
4,;Q and 4,0 to the central axis :
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and to a corresponding degree of approximation :
sin 6y :sin 0, = A,P: AP =¢ey:¢, . . (128)

§ 32. We shall now investigate the image of a point of
light which docs not lie on the central axis. Then B, has
an optical image, just as much as A,, namely the con-
jugate-point B, which lics on the straight line B,C. The
circle which results from rotating B; about the central
axis A,4, forms an image which is the circle described
by the rotation of B,, and the circular area of radius 4,8,
forms its image on a certain surface of rotation which is
bounded by the circle B, and which has its centro at 4,.
If we rostrict ourselves to distances which are not far
from the central axis, we may regard this surface of
rotation as a plane of circular contour (radius 4,B,)
which is perpendicular to the central axis. The surface
of light then forms a ¢ similar *’ image on the image plane,
and the following equation holds for the ratio of the
length of the light-path 4,B; = I, to the length of the
image-line 4,B, = I, :

I:ly = 4,0: 4,C
= (e, +1):(¢g —7)
and by (121) :
9%

l,:1, =
1= e,

Together with (128) this gives the following simple
relationship between the ratio of the linear dimensions
and the ratio of the ray directions in two conjugate planes :

Ml sin 0; = nmyly sinf, . . . (129)

If the point 4, coincides with the focus Fy, I, = o« and
6, = 0. The two plancs which pass through the two
foci and are perpendicular to the axis are called the
“focal planes.”

§ 33. All the above laws can easily be generalized for
the case of any arbitrary number of refracting spherical
surfaces. We only need to choose the measures for the
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abscissz of two conjugate points 4, and 4, appropriately.
Hitherto we have used for the abscissz their distances
e, and e, from the refracting spherical surface, and we
have reckoned the distances e; as positive towards the
left and the distances e, as positive towards the right.
The origin P is conjugate to itself. We shall now choose
a special origin for each of the two abscissee, but in
such a way that the two origins O; and O, are again
conjugate to each other, but otherwise arbitrary. Further,
we shall assume the directions of the abscisse z; and z,
to be positive towards the right in both cases. If @, and
ay then denote the new origins 0, and O, of the spherical
surface, where by (127) :

fi f
&11+a_22=1. N ¢ 1)

then the relations between the new absciss® 2, and z, and
the old abscisse ¢, and e, are (Fig. 7):

01A1 = 01P - A1P= al — 61 = x]_
02A2=PA2—P02=62—G2=W2
and we get for the law of imagc; formation from (127), if

wo replace the e’s in it by the z’s, and take (130) into
account :

@ —f1 fz‘"“z__
7 -+ z =1 . . . (131

This is again a linear equation between the reciprocals of
the abscissa of the two conjugate points.

§ 34. We now pass on to investigate a system con-
sisting of an arbitrary number of line-centred spherical
surfaces, that is, spherical surfaces whose centres all lie on
a straight line, the central axis of the system. If we
again restrict our attention to such rays and such points
of light as lie near tho central axis, that is, if we consider
only small values of § and [, the laws of image formation
may be derived directly from those obtained above. Let
us first take a point of light 4 situated on the axis and a
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narrow beam of light which starts out from it in the first
body. Corresponding to it there is a definite conjugate
point on the axis and a definite conjugate beam of rays
(real or virtual) in the second body; and corresponding
to these again there are definite conjugate quantities in
the third body. Proceeding in this way we finally arrive
at a definite conjugate point A’ and a definite conjugate
beam of rays in the last body.

Now since the reciprocals of the abscissee of two succes-
sive conjugate points, when referred to any two points as
origins, depend linearly on each other, there must also
be a linear relationship between the abscissee z and #” of
the conjugate points 4 and 4’ in the first and last bodies,
and the law of image-formation has a form similar to
(131), namely :

f.r
ztz=1- - - - (132)

For z =0, 2’ becomes equal to 0. 4 and A’ then
coincide with the origins O and O’. The constants f and f’
are clearly the abscisse of the foci in the first and the
last bodies. If the foci lie on different sides of the origins,
f and f’ have opposite signs.

By (129) the following relation holds for the lengths
7 and I’ of two conjugate lines that pass through 4 and 4’
and are normal to the central axis :

nlsind =nlsing . . . . (133)

where % and n’ denote the refractive indices, 8 and 6’ the
angles of inclination which any two conjugate rays that
pass through 4 and 4’ make with the central axis.

In the sequel we shall reckon both the lengths 7 and I’
and also the angles 6 and 6’ as positive in the same
direction : this causes no change of sign in (133).

§ 34a. Let us now see whether there are two conjugate
points for which [ = I’, that is, for which the representa-
tion of the two surfaces that pass through them normally
to the central axis is fully congruent. We shall call these
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two points H and H' and shall try to find their abscissz
xz and z’. From (133) we then get :
nsin 6 = n' sin §
or, if we draw any two conjugate rays through H and H'
which make the (small) angles § and 6’ with the central axis
and meet the planes that pass through the origins O and O’
at the distances [, and I’ from the origins (Fig. 8), we have:
x %
From this and (132) we get :
_ nly
v=r+ n'l, ]
!l!o

o =——f+f’J

¢V{ WS H

00X\ [
Fic. 8.

(134)

The points A and I’ which are uniquely defined by
these equations are called the “ principal points *” and the
planes which pass through thom and arc congruent
representatives of cach other are called the ‘‘ principal
planes ”’ of the system.

The results become particularly simple if we make the
origing O and O’ coincident with the principal points H
and H’. For then x and 2’ become equal to zero in (134),
and I, = l'y, consequently :

fiff=—=n:n" . . . . (185)
that is, the foci lie on opposite sides within or without the
principal points, and their distances from the principal
points, the so-called ‘‘focal distances,” are in the ratio
of the refractive indices. We then get for the law of
images (132) :

n_m_% . . . . (188
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If the first body is of the same nature as the last, for
example, air, then n” = # and the focal distances become
equal, so that the law of images becomes simplified to :

11 1 (136a)

§ 35. Analogous to the two principal points H and H’
whose planes form congruent images there are two con-
jugate points K and K’, the nodal points, whose beams
form congruent images, so that for each pair of conjugate
rays 8 = 6. Their position is obtained directly by
observing that two such conjugate rays which pass
through K and K’ and are parallel to each other intersect
the principal planes at the same distance [, = I’ from the
central axis; that is, the abscisse z and z’ of the two

Fia. 9.

nodal points are also equal to each other. Hence it
follows from (132) that :

x=x'=f+ff=_«f<1_%). o)

that is, the nodal points are at the same distance from the
principal points, namely a distance equal to the difference
of the focal lengths.

The relative position of the principal points, foci and
nodal points are depicted graphically in Fig. 9, in which
the absciss® of the nodes are positive and the foci lie out-
side the principal points, so that f + f'>0, f<0, f'>0.
Then :

HK = HK' =HF — HF
Consequently :
H'F' =HK + HF = FK
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that is, the point-pairs F#', HK’ and KH’, which, taken
together, arc also called the “cardinal points,” have a
common centre, the so-called optical centre of the system.
If there is only a single refracting surface (Fig. 7), this
surface forms a congruent image on itself; that is, the
two principal planes coincide 1n it. Consequently the
nodal points also coincide, namely with the other self-
conjugate point, the centre C' of the sphere, as is imme-
diately clear, since every ray which passes through C is
self-conjugate. This causes the equations (135) and (137)
for the ratio and the difference of the focal distances to
transform directly mnto the special equations (126) and
(125) which were found earlier in § 31.

If we have a system of glass lenses in air, the focal
distances arc cqual to cach other and the nodal points
coincide with the principal points. If only a single thin
lens is present, the principal points coincide at a point
within the lens.

In general, the position of the cardinal points leads
directly to a simple geometrical method of determining
the point P’ in the last body which is conjugate to any
point P in the first body (Fig. 9). We need only draw
the conjugate rays to any two rays that pass through P.
The simplest ray to use is PK which passes through the
nodal point K. The parallel ray P'K’ is conjugate to it.
Besides this, we can also take the ray through P parallel
to the axis. This ray has as its conjugate that ray in the
last body which passes through the focus F’ in it and
intersects the principal plane in it at the same distance
from the central axis as that at which the original ray
intersccted the principal plane in the first body. This
sorves to define P’. In addition, although this is un-
necessary, we may also consider the ray PF. This ray
has as its conjugate a ray, parallel to the axis, which
intersects the last principal plane at the same distance
from the axis as the first ray does the principal plane.

§ 36. A complete description of the laws of optical
image formation must deal not only with the course of
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the rays but also with the intensity of the rays. We
must above all bear in mind here that a finite quantity of
radiant energy never starts out from a point but always
from a surface, and never in a definite direction but
always within a cone of directions. We can depict this
circumstance graphically by representing the energy of a
beam of rays by means of the number of rays contained
in the beam. Every beam then contains a quadruply
infinite number of rays, since the surface from which it
starts out defines a doubly infinite number of points, and
- each point a cone comprising a doubly infinite number of
directions. But there is a certain difference which must
not be overlooked. The rays which start out in various
directions from a luminous point are coherent with one
another, corresponding to the circumstance that the point
is the centre of a wave-surface, every point of which is in
the same phase. But the rays which come from two
different points of the initial surface are in general non-
coherent, particularly when the initial surface acts as
the source of light. Hence in general no interference
occurs between such rays; their intensities simply become
added. But it may happen—and this is sometimes over-
looked—that two different points of a surface emit
coherent light; and again, conversely, non-coherent rays
may start out from a single point of the surface. For
example, when the surface (aperture or slit) is illuminated
by light from another source; in this case certain inter-
ference phenomena can occur for which geometrical optics
taken alone cannot account. We shall therefore always
assume that the initial plane is self-luminous.

If the source of light is placed in a focal plane, a beam
of parallel rays results, but, in conformity with the above
remarks, not in the sense that all rays of the beam are
parallel, but rather that, corresponding to every indi-
vidual point of the luminous surface there is a particular
direction of the rays of the beam, whereas the size of the
luminous surface determines the angle of aperture of the
cone of rays which emerge in various directions. Con-
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versely, rays which come from a practically infinitely dis-
tant source, such as the sun, will not all become focused
at one point; rather, a small picture of the sun will be
produced in the focal plane, since all the parallel rays
which come from a definite point of the sun meet at a
definite point in the focal plane.

The intensity J of the radiation emitted normally by a
small surface clement f perpendicular to the central axis,
the rays lying within a narrow cone of angular aperture
Q is, after what has been said above :

J=K.f.Q. . . . . (138)

where the finite quantity K is called the  specific inten-
sity of radiation ”” or the  specific luminosity *> of the
beam.

In the same way the following relation holds for the
conjugate beam which lies within the conjugate cone of
rays £’ and is incident on the conjugato surface f’:

J =K .. . . . . (139

By the laws of image formation there is a general
relationship between the quantities f and 2 in the first
and the last body, which is fixed by (133). Since, on
account of the similarity of the image with the object,
the form of the surface f is of no account, we may choose
it to be a circle of radius I. We then have

f=0Cm, [/ =12
If, further, we imagine 2 1o be a circular cone with a
small angle of aperture 6, then.
Q = 4n sin‘~’;§— = 0%,

In the same way :
Q' = 2.

These values, combined with (138) and (139), give the
relation :
n?fQ =2 . . . . (140)
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and, in consequence of (138) and (139) :

n2J  n'2J

K=&

If the total intensity of radiation J is the same in the
two conjugate beams—which will, however, never actually
be the case, if only because the radiation suffers a loss at
every refraction—we have :

K

K o r 19
7—’;’2 ES "Tb“j or Kq“ ] I{ q = . . . (14?2)

(141)

That is, the intensities are in the inverse ratio of the
squares of the velocities of transmission of the rays.
For n =n" we get K = K'. Hence the intensity of a
beam of rays can never be increased by optical image
formation alone. It is true that the radiation is concen-
trated on a smaller surface at the focus but then it
diverges in various directions.

§ 37. The simple laws above developed for optical image
formation by means of a system of line-centred spherical
surfaces mostly hold only as a first approximation to the
real conditions. TFor in practical optics we deal both
with surfaces of finite size as well as with finite cones of
rays. In addition to the corrections necessitated by these
circumstances there is another due to the fact that the
refractive index depends on the colour of the light (§ 9).
If all these influences are to be taken into account,
problems of a difficult kind arise; their solution has
played the predominant part in the highly developed
technique of construction of optical instruments. But
the laws of geometrical optics, such as we have described
them in § 28, are not affected by these practical problems.
They may all be condensed into a single simple graphical
law, which is one of the first examples of the equivalence
of an integral law with a differential law (cf. III, § 42),
namely, Fermat’s Principle of Least Time.

This principle controls the course of a ray of light
through any arbitrary number of different bodies with
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any boundary surfaces by asserting that the time which
light requires to pass from any definite point on a ray to
another definite point on the same ray is less along the
actual path of the ray than along any neighbouring
path.

A simple proof of this principle is obtained if we con-
sider the optical wave-surface that starts out from any
luminous point P as centre. According to § 5 there is a
definite wave-front corresponding to every moment of
time ¢. It signifies the boundary to which light which is
emitted by P at the time ¢t = 0 has advanced in all
directions during the interval of time 0 to ¢, independently
of the presence of any bodics whatsoever in the vicinity
of P. Thus the wave-front comprises the end-points of
all the rays which start out from P in all directions, each
propagating itself along its own particular path. Now if
@ is any point on the wave-surface, PQ denotes a definite
ray, and the light takes the time ¢ to propagate itself
from P along the path of the ray to Q. Now if the light
from P were to take a smaller time than ¢ to pass from
P along any neighbouring path to @, then the propaga-
tion of light from P in all directions would proceed
beyond @ in the interval 0 to ¢, and this contradicts the
definition of wave-surface. Consequently the time £ is
the minimum of all the times taken by the light to arrive
from P to @ along any path.

The whole of geometrical optics can be developed from
Fermat’s principle, and even for non-homogeneous and
anisotropic bodies. The result that a ray travels in a
straight line in a homogeneous isotropic medium follows
directly, according to Fermat’s principle, from the cir-
cumstance that the straight line is the shortest distance
between the two points P and Q.

Let us consider, as a sccond example, the passage of
light through the plane boundary surface of two homo-
gencous isotropic bodics. If ¢ and g, are the velocities
of propagation, 4 and B the projections of P and @ on
the boundary, ¢ the point through which the ray PQ



78 THEORY OF LIGHT CHAP. III.

passes through the boundary (Fig. 10), and 8 and 6, the
angles of incidence and refraction, then the time which
light takes to pass from P to @ is :

‘ pPC CQ _r  n

A
where :

2= AP2 + AC? and 72 = B@? + BC? . (1l44)

If the point C through which the ray crosses the
boundary is displaced, the distance AP, BQ and AB
remains constant, whereas AC = a and BC = b change,

(143)

so that :
P Sa+8b=0. . . . . (145)
; 9
j" ¢ B Consequently, by (143) and
N | (144) :
; ada , b3D
& = — + —
Q rg g
Fre. 10.

If we set 8 =0 and take (145)
into account, it follows that :

[/ . .
g'QI=?'¢*_1 = sin 6 : sin 6,
which is identical with (20).

Fermat’s principle may be used in a similar way to
find the direction of propagation of light through any
arbitrary bodies with any arbitrary surfaces.

If the end-point @ of a ray which starts out from a
luminous point P coincides with a point which is optically
conjugate to P the ray-path PQ is not definite; rather,
there are an infinite number of rays from P to @. Con-
- sequently the time which the light takes to pass from P
to @ is the same along all these paths, and the optical
wave-surface around P has a singular point in Q.



CHAPTER IV
DIFFRACTION

§ 38. Ir the wave-fronts or the surfaces of the bodies
may no longer be regarded as of infinite extent compared
with the wave-lengths, the laws of geometrical optics
fail, the conception of a ray and its propagation lose
their meaning, and phenomena occur which are denoted
by the term ‘‘ diffraction.” It is clear from the discus-
sion in § 28 that the part played by diffraction becomes
so much the greater the greater the wave-length of the
light used. An exact theory of diffraction is possible
only on the basis of, firstly, the differential equations for
electromagnetic waves in the medium under considera-
tion, which we shall always take to be a vacuum space
in which light has the velocity ¢ = ¢, and, secondly, the
boundary conditions which hold at the surfaces of the
diffracting bodies.

The differential equations for the interior can always
bo reduced to a single differential equation (III, § 87),
which must be satisfed by every component ¢ of every
veetor. It is the wave-equation :

d=c.Ap . . . . . (146)

The boundary conditions differ according to the nature
of the diffracting body. They come out most simply for
so-called absolute conductors (III, § 92), in which the
clectric intensity of field vanishes and which act as
perfect mirrors. The opposite extreme is given by the
so-called black bodies which absorb all the incident light.
Diffraction problems are among the most difficult encoun-
tered in optics. The exact solution of a problem of this

kind was first given by Arnold Sommerfeld in 1895.
79



80 THEORY OF LIGHT CHAP.

Since the wave-function ¢ can always be represented
as a Fourier series, the general solution of (146) can be
reduced to a sum of particular solutions, each of which
corresponds to a definite frequency w. We may write as
a particular solution of this kind :

p=y.ew . . . . . (l46a)

where ¢ denotes a certain complex function of the space-
co-ordinates, whose absolute value (modulus) character-
izes the amplitude and whose argument is the phase-
constant of the periodic motion (cf. § 18 above).

The wave-equation (146) then leads to the following
differential equation of the function ¢ in space-co-ordi-
nates :

2
Aj+ 254 =0
or:
2
A¢+%7;~¢=0 .. . . (146D

which is to be integrated with due regard to the boundary
conditions.

Now as the rigorous solutions of the diffraction problem
formulated in this way are of a very intricate character
and demand a relatively heavy mathematical equipment,
it is the more important that approximate solutions,
which are fully sufficient for the short optical waves,
should be obtained by introducing Huygen’s Principle.
This principle is founded on the idea that every point of
space on which a light-wave impinges itself becomes the
centre of a new light-wave which spreads out from it in
concentric spherical surfaces. G. Kirchhoff was the
first to succeed in formulating Huygen’s principle exactly ;
it forms an extension of Green’s theorem in the theory of
potential, which we proceed to deduce here.

§ 39. Let U and V be two uniform functions of the
space-co-ordinates z, y, 2. These functions, as well as
their differential coefficients, are to be continuous. Then
for a space whose volume-element is dr, surface-
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clement do and inwardly directed normal v we have,
by L1, § 18, equation (80) :

auray auav  allav bl
/< e ow I Qy Oy 1 0z *(.‘3)(% - _[V o do ——/ VAU dr

oV
=[S do— [UAVEr.
(‘onsequently :

[0 v Nie - [(vaU ~ vAVIE . (1a7)

If we set U7 ,L where r denotes the distance (taken

ag positive) of the point 2, ¥, z from any point 4 which
lies outside the region of integration, then (7 fulfils the
conditions of uniformity and continuity; further, we
have Laplace’™s equation I (129) AU/ 0. Congequently
(147) becomes :

1
0 -
v _ o, O AV
f(“)’ P -} '-(,7;)(10' N -—f ’ dr . . (148)

Tf the point o lies inside the assumed spaco, thiy oqua-
tion may also he applied, provided that we exclude a
very small sphere with its centre at A from the integra-
tion.  This does not appreciably alter the right-hand side
(ef. 1, § 33), but the left-hand side acquires an additional
term in the form of an integral over tho surface-clements
doy of the sphere whose normal, directed towards tho
interior of the integration space, coincides with », thus :

O 7 by

If tho radius of the sphere is taken sufficiently small,

. . oV . ,
this integral, since Py and V are finite, reduces to :

_[:;d"l V(,[(Zal - 4n ¥V,

r?

+
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where ¥V, denotes the value of ¥ for r = 0, that is, at the
point 4, and when this is added to the left-hand side of
the equation (148) we arrive at Green’s theorem :

1
o~
iV = — ¥d7+[<vé—%%g)da. (149)

which enables us to obtain the expression of a function
V at every point 4 of the assumed space, if the value of
AV is known at every point inside and the values of V

and %7 are known at every point on its surface.

If the function V satisfies Laplace’s equation AV = 0
the space integral drops out, and we require only the
data for the surface. It is particularly in this form that
Green’s theorem is often useful, but its importance is
essentially restricted in that the values of V and %{{ may
not be chosen independently of each other. For we know
that the expression for 7 is everywhere completely deter-
mined by the values of V at the surface (III, § 19) and

simultaneously by the values of %;I{ at the surface (II,

§ 71). Hence if either only V or only %—T—: is given at the

surface, Green’s law can be successfully applied to deter-
mining V in the interior only when we have in some
special way acquired a knowledge of the missing surface
values.

§ 40. Huygen’s principle follows directly from Green’s
law if we substitute for V a certain wave-function which
is chosen in such a way that the space-integral in (149)
can be reduced to a surface-integral. This is not, of
course, made possible by simply substituting for V a
solution ¢ of the wave-equation (146). We shall see, on
the other hand, that it is always possible to reduce the
space-integral to a surface-integral if, in any function ¢
of x, y, 2, ¢ which satisfies the wave-equation (146), we
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. r
substituto ¢ — P for t~—where 7, as before, denotes the

distance of the point , ¥, z from the point A, which is
situated in the interior of the integration space—and
then identify the expression so obtained with V in (149).
We must therefore be careful to note that ¥V now
depends in two ways on the co-ordinates @, ¥, z: in the
first place, oxplicitly, since ¢ is a space-function, and,

secondly, implieitly, since the argument :
t-" e L (150)

¢
containg the distance . To call attention 1o this we sot :
Voodo(eyyz) . o o o o (151)
in which we write the space co-ordinates in brackets on
the line but attach the time co-ordinato as asuffix.  There
is no reason to fear confusion between the time-argument

7 and tho space clement dr, particularly as the lattor will
soon vanish from the formulze.  Hence we got from (149) :

,)'l
Ad ro10
dadl(0) - [ ‘r/'(/-r 1 f b, ,q- ,r-,-‘-/i- do . (152)
This is the value of the wave-function ¢ at the time ¢
at any point « of the integration space enclosed by the
surface oo which has the inwardly directod normal v, To

reduce tho space-integral to a surfaco-intogral we first
caleulato tho value of Ad,, which may not, of courso, bo

sob oqual to (Ad),.  For this wo have:
_1_(?)</>> or
¢ \ot/, 0w
and, furthor:

(1) (00 ().
-2 5 0062

D o o/, O o/,
q )
Corresponding expressions hold for f' ; and ,}ﬂ'.
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By addition we get :

9 (@ or | 0 Or  o%0r
M= 0 -3 (bt + 3 syt oy T e az>,
1 /3% 2

e <W>,— cr <975 z

If we now substitute :
1/90
(Ad): = 2 <8t§26>

from the wave-equation (146), the expression for Ad,
may be written as a differential coefficient with respect
to the time :

200080  dpor opor 124 , 6
A¢’=~E§<8x8x+ayay+az8z cat T >

shi= 250 +%)

Using this expression we get for the space-integral in
(152) :
Ad. . dr (O, c/>.,
[Frar=-2al5 (& + %)

and if we express the space-element dr in terms of polar
co-ordinates with the origin 4 and the angle of aperture
dw of an elementary cone whose vertex is at 4 :

dr = r2drdew
[2ear = — 22 [ irde (r% + 4.)

- catfdw réd, . . . (153)

where we have now to insert in the definite integral con-
taining the square bracket the distance » of the surface-
element do from A4 as the upper limit and r = 0 as the
lower limit. Since the latter value vanishes, we are left
with only the term referring to the surface, and this is
related to the size of the surface-element do, cut out

or :
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from the integration space by the elementary cone do, as
follows :
. or
o - do.cos(ry) . - do.- . (154)
v
since the direetions of increasing r and increasing v form
an obtuse angle with cach other.  Hence it follows that :

/A(ﬁ,[ 20 bl 2/(&:(8«,5) O iss
PR LETS R VY N . (155)

If the elementary cone dw in question cuts the surface
of the integration space morethanonce- --whichcan happen
only an odd number of times, the integral (-153) in 7»
resolves into several separate parts, and we can then
casily convince ourselves that the relation (155) remains
valid so long as we perform the integration with respect
1o do over the whole of the surface which encloses the
integration space.

[f, finally, we remember that in (152) :

cp (Pc/;) 1 ﬂ«/;) anr 156
Y v/, (7<Pt . O (156)
Gireen's theorem (152) passesover into Huygoen’s principle:

drepe (0) f Qde . . . . (157

where, in accordanco with (155) and (156), wo have used
the abbreviation :

1
o |¢7r v vagar) .. ()
v rov  erob v/,

Instead of this wo sometimes find written :

o 20 1), o

which is, howevor, wrong in this form. For this does
not oxpress the fact that in the first term the differentia-
tion of ¢, (&, ¥, #) with respect to v must be performed
only with rospect to the functional dependence on the
argument = and not on that of the co-ordinates x, y, 2.



86 THEORY OF LIGHT OHAP.

The importance of Huygen’s principle is due to the
fact that, according to it, the wave-function ¢ at any
point 4 of space at any time ¢ is completely determined
by the values of ¢, %—f and gf at the surface of any space
which contains 4 and in which the wave-equation (146)
holds everywhere, these values being for certain moments
of time = which are different for every surface-element do
and which can easily be pictured owing to the circum-
stance that they precede the moment ¢ by the time which
the light takes to travel from do to 4.

Accordingly, every surface-element do continually sends
out, in consonance with the phenomena which occur in
it, certain spherical waves with the velocity of light in
all directions, and the value of the
wave-function at 4 is made up of the
sum of the contributions which arrive
there at the time ¢ from all directions.
We must not forget, however, that
this theorem is wvalid only if the
surface o is completely closed. There
is no definite physical meaning in
speaking of the effect of individual surface-elements do.
For the integral (157) can be resolved into its differentials
in an infinite number of ways.

The significance of the restriction just stated becomes
particularly clear in the case where, among the straight
lines that start from A, there are some which intersect
the surface ¢ in more than one point, say in the three
points P, @, R (Fig. 11). The length PQ does not then
‘belong to the integration space and so the wave-equation
(146) need not hold between P and @ ; indeed, any bodies
opaque to light may be situated there. Nevertheless
Huygen’s principle holds in the form (157); and we have
to perform the surface integration over the whole of the
surface o and may not omit the surface-elements at @
and R on the plea that the light from them cannot by
travelling in a straight line reach A4.

Fia. 11.
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§ 41. If we divide the whole integration space into two
parts 1 and 2, so that the part 1 containg the point A4,
we obtain two spaces with the surfaces doy, do, and doy ;
wo shall assume the latter two to denote the surface-
elements of the surface of separation.  Wo can then apply
Huygen’s principle in two different forms; fiestly to the
original total surface, with the surface-clements doy and
do,, so that :

dmp(0) [ Q. doy ¢ [ Qudoy

and secondly to the surface of the space 1, with the
surface-clements doy and doy, so that

dmp(0) [ Loy 1+ [ 2, doy

where vy denotes the normal of dey, directed inwardly
towards 1.

By subtracting the last oquation from the preceding
onoe we goet

0 - [ Qudoy — [ Doy
or, 8inee vy and yy, are opposite :
0 [Qdoy 1 [@ doy . . . (160)

Now, the eloments dey and do, form the closod surfaco
of space 2. Henco wo havo the general law that Hluygoen’s
integral, whon applied to a point A4 outside the integra-
tion spaco, hag tho valuo zero ~-which corresponds exactly
with Green’s thoorem in the form (148).

§ 42. Wo shall now apply Huygen’s principlo to a
space which is bounded on the one hand by a surface
which comprises all the bodies that are involved in the
process in quostion, namely, sources of light, seroons and
8o forth, on the othar hand by an immensely great
spherical surfaco of radius £ and with its centro in finito
space.  The equation (157) is then also applicable in this
case provided only that the oquation (146) holds in the
whole integration space.  But Huygen's integral then
resolves into two separate partial integrals : one which
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stretches over the surface in finite space, having as its
element do and as its normal v, directed towards the
integration space, that is, towards the point A4; the
other stretching over the spherical surface at a distance R
and having as its element dS. We cannot make this
second integral vanish by simply choosing R very great.
For even if the integrand £ decreases to an indefinite
extent as R increases, the magnitude of the surface S
increases beyond all limits. Nevertheless we can always
arrange that this integral can be neglected by making
an appropriate assumption about the form of the wave-
function ¢—an assumption which must be always admis-
sible and in no way restrict the actual course of the
process. Namely, we need only assume that for all times
t < T, where T denotes an immensely long period of time,
the wave-function ¢ with all its derivatives everywhere
vanishes; in other words, that all the sources of light
started into activity at a far distant moment of time.
For then the quantity ¢, and its derivatives vanish for
all surface-elements dS, so long as :

7=t—E<—T
(4]

that is, so long as we choose :
BR> (T +1).c

It is true that the variable time # is included in this
condition. But that introduces no difficulty. For we
can choose R from the outset so that the inequality is
also satisfied for even the greatest possible time that can
occur in the measurements. In physical language, R
must be chosen so great that an effect which starts out
from the distant spherical surface cannot make itself felt
at 4 at the time 2.

After these remarks we may also regard the equation
(157) as valid for the case where the point A lies outside
the surface o and where the bodies producing the effects
all lie inside the surface.
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Nummarising, we may say that Huygen’s principle holds
in the form (157) for every case where the surface o
completely shuts off the point A from all the active
bodies, so that there is no path from any of the bodies to
A which does not somewhere pieree the surface o.

§ 43. We shall formulate the general problem  of
diffraction which concerns us here as follows. A given
source of light is placed opposite a sereen which is opaque
to light and which has one or more apertures of deflinite
shapes at definite points. We enquire what is the
intensity of light at any point « behind the sereen.

We ean simplify the problem in the first place by
restricting our attention to a single point ¢ of the light-
source,  For the intensitios of light which are due to the
remaining points have merely to he added to the intensity
which is due to (') in accordance with the results of § 36.
We can imagine the wave-function which starts out from
the point of light ¢/ as a Fourier series and restrict tho
whole caleulation to a single term of the series.  For in
the case of natural light of constant intensity the indi-
vidual terms of the series are independent of one another
and lead to no appreciable interference effects.

To boable to apply Huygen's principle to the presentcase
wo place the Huygen plane in such a way that it completoly
shuts off both the sourco of light ¢/ and also the sereen
from the ** point of diffraction ™ #, namely closely at the
surface of the sereen and in front of the opening p, on
the side facing the point 4. According to (157) and
(158) we can then caleulate the value of ¢ at the point
A by integrating over the Huygen surface.

But, in order to be able to proceed, we now have to
make a cortain sacrifico in accuracy. The conditions
are oxactly the same as those encountered in applying
Greon’s theorem (end of § 39). Ior, to introduce the
quantity £ in (158) into the caleulation, we must know
the values of ¢ and all its derivatives with respect to v
and ¢ at all points of the Huygen surface; and this
assumos that tho problem of caleulating ¢ is already
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partially solved. This difficulty is accentuated by the
fact that the values of ¢, %Z,é and %;é at a definite point
of the surface are not independent of one another, and that
in general we cannot avoid arriving at an inherent con-
tradiction if we introduce any approximate values into
the expression for 2. Of course, it is always possible to
establish afterwards whether such a contradiction presents
itself and what its nature is, by making the diffraction
point 4 move into the Huygen plane and comparing the
values calculated for ¢ and its derivatives from (157) with
the values which were originally inserted.

In spite of this we shall here be able to proceed along
the lines proposed. For innumerable applications have
shown that Huygen’s principle, not only when formulated
rigorously but also when certain only approximately
correct values of Q are used, leads to results which are
fully sufficient for practical optics. These approximate
values of Q are simply obtained by assuming the value
of the expression for ¢ and its derivatives at all apertures
of the screen to be the same as it would be if the screen
were not present at all, and by assuming the value zero
at all other points of the surface 0. The integral (157)
is then only to be taken over the apertures of the screen,
and in (158) we can ignore the screen altogether.

Of course, (157) resolves into just as many component
integrals as there are apertures, and each component
integral refers to a particular aperture. Moreover, it is
easy to see that the value of the integral depends only
on the contour of the aperture. For there is nothing to
prevent the Huygen surface ¢ from assuming different
positions which have the same contour. Hence besides
speaking of a ‘ diffracting aperture ’ we may also
speak of a ‘ diffracting contour or edge.”

§ 44. In view of the above we are now concerned only
with calculating the wave-function ¢ and its derivatives
for all points of an aperture, without paying attention
to the screen; a simple integration of the wave-equation
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(146) serves for this purpose. Wo use as the simplest
form for a particular solution of this equation, which
corresponds to an absolutely homogencous wave which
starts out from the point-source of light ¢, by 1L (230),
the expression :
7
boALmED

. (161)
)

where | denotes the distance of the reference point from
tho source S, to distinguish it from », the distance of tho
diffraction point from the surface-clement do. A is any
complex constant, the other terms have the same meaning
as before.  (ff., for oxample, (83).

If woe substitute the expression for ¢ given by (161) in
(158) and perform the various difforentiations, the quantity
£ resolves into a number of terms which are of quite
difforent ordors of magnitude. For, sinco in the case of

“) »
. i VIR
optical processes the wave-length X - - o 8 small com-
)

pared with the distances » and »; of the diffraction point
~ and the point-source ¢/ from the diffracting aperture,
all those terms in &, which contain w as a factor are
large compared with the rest, so that the latter can be
nogleeted (ef. LLIL, § 88).

. . . 7,
Finally, if wo writo = == { — ;in place of £, wo got :

27”‘114 a’r 9" i (L i r‘)
) ) 1. ,
£, Arry < v '0;;) ¢ ‘
and from (167)
i [ do(Ory  OF iw (¢ 7Em) ,
(/’{(0) ! ZA- /rrl (av — au) ¢ ¢ . (I(Sd)

We shall simplify tho furthor treatment of this problem
by introducing a spocialization which does not affect tho
characteristio foatures of diffraction phenomena.  We
shall first assumo that the diffraction sercen is plane,
and socondly, that the light is incident normally, in
parallol rays and wavo-planes; that is, that »; has a
constant valuo at all points of the diffracting apertures,
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this value being great compared with the other dimensions
involved. Then g ! — 1, whereas, since the direction of
increasing v forms an obtuse angle with that of increasing
r, we may set g equal to — cos@, where 6 denotes the

‘“ diffraction angle.”
Hence (162) becomes :

14 1w(t—-— o .0 — i
¢(0) = rm / 5 costgeose

or: )
$:(0) = ’74 (%) (C—1i8) . . (163)
1

where we have used the abbreviations :

I/do ,0 P
C=s|—= cos? 5 COS —-

A .. (164)
S—-—-_ @0052631]3.%@
) 2 A

The real part of (163) represents a periodic vibration
in time, a measure of whose intensity may be obtained,
according to § 18, by multiplying the complex quantity
(163) with its conjugate imaginary. Since, however, we
are not concerned with the absolute value of the intensity
of the light, but only with the ratio of the diffracted
light to the incident light, we divide the quantity so
found by the corresponding quantity for the incident
light, namely by the product of the complex expression
(161) and its conjugate imaginary : Ir |2

1

In this way we arrive at the following expression for

the diffracted light at the diffraction point 4 :

J=0248. . . . . (165)
This reduces the diffraction problem to calculating the
two integrals ' and 8, in which do denotes any surface-

element of the diffracting aperture, » its distance from
the diffraction point 4, and 8 the angle of diffraction.
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§ 45, The most characteristic peeuliarity in the expres-
sions for ¢/ and S is the different manner in which the
(uantities contained in them depend on the integration
variables.  For whereas 8 and » change comparatively

slowly with de, the trigonometrical functions, on account
r - . .
of the great value of \ exhibit o very rapid fluctuation

to and fro between a maximum and a minimum, with
the sole exception of those surface-clements do for which
the distance » from the reference point is a minimum,
hecause then r changes only slightly with de. This is
the case for all those surface-clements do which lie in
the direet neighbourhood  of the straight line which
conneets the point of light ¢ with the diffraction point
A and which is perpendicular 1o the plane of the sereen.

Henee this straight line ¢/ which we may call the
*eentreal line," and in particular its point of intersection
P with the Huygen plane, plays a characteristic part
in determining the value of the intensity of the light
at o,

But there is a gpecial case for which the central line
does not exist at all, namely, when the point 4 is situated
at infinity, as well as (/. Then A denotes no particular
straight line, but only a definite direction; no point
of the Huygen plane plays a particular part and the
integrals ¢f and S change their character entirely.  This
is the case to which the diffraction phenomena discovered
by and named after Fraunhofer belong.

§ 46. We shall first deal with the general case, the
so-called Freswel diffraction phenomene, starting with the
question of the diffraction by a plane sercen which is
bounded by a single straight odge.  The answer to this
question is also of interest for the general case of any
arbitrary edge, that is, for the general problem of shadow
boundaries, because an edge of any shape whatsoever,
provided that its curvature does not compare with the
order of magnitude of the light-waves, may be imagined
to consist solely of parts of straight lines.
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We take as our plane of representation in Fig. 12 the
plane through the diffraction point 4 and perpendicular
to the edge of the screen ; further, the line of intersection
of the figure with the screen is the z-axis, the origin
O in the edge of the screen, a plane through the edge
of the screen and perpendicular to the plane of the
figure is the y-axis, and the z-axis lies in the plane of
the figure as shown. We designate the co-ordinates of
the diffraction point 4 by #,y = 0,2; that of a point in
the plane of the screen by £,%,¢ = 0. If the aperture
of the screen lies on the positive side of the x-axis, the

z integration is to be per-
. P ‘ 1} 4, formed overall the surface-
i i { elements do = d¢, dy of
§ the xy-plane with positive
! ! values of £, that is, in the

H
H

; oH erimee ey 0886 OF € from 0 to o0 and
& Fra. 12 d in the case of n from — o
T to 4+ o0,

To caleulate the integrals (164) we refer back to the
above remarks on their nature and imagine the central
line AC to be drawn, which cuts the screen-plane in
the point . 'We must now resolve the surface-integrals
(164), which are to be performed over ¢ and 7, into two
parts, namely firstly an integral over those points &, n
which lie in the neighbourhood of the point P, so that
their distance from P is small compared with AP = z,
and secondly, an integral over all the remaining points
of the region of integration. We shall reserve a more
definite delimitation of the first component integral till
later. After what has been said above we can replace
the slowly variable factors » and 6 in this integral by
z and 0 respectively, and so obtain :

O=;%E[fdqucosﬂ—;—r+ C.

) \ (166)
T’
S=x[[dgan o T+
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where the second component integral is denoted by the
dots. To perform the integration first for n we write :

"= (¢ =+ (g — Y+ (=2

or, since :
y=0and {=0:
=p24+n2. . . . . (167)
where :
pP=(E—-x)2+22 . . . . (168)

remains constant during the integration. We integrate
over n from — %’ to -+ 7', where :

<<z . . . . . (169)

Since according to our assumptions 7 < < p, we may
expand (167) in a power series :

12
r=p+§%+... ... (170

and omit the remaining terms.
If we substitute this expression in (166) and write :
277 _ 08 27 cos ™ — sin 27P gin 7L
€08 =y~ = GOS8 ~y= COS o sin = sin Ao (171)
the problem reduces to calculating the following two

integrals :
+n 2 + .2
d cosu—la,ndf dnsinTL. . (172)
‘/"’1' 7 Ap - " Ap

or, if we use the abbreviation :

7]\/;7./;= .. ..o (173)

we may write the integrals as :

N [+ 3T oA
J Ap f cos utdu and |2 / sinutdu . (174)
T I

T I

The quantity :

u'=q7'\/;\%. N L £
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may be regarded as very great compared with unity, in
spite of the condition (169), so that :

7>>42z . - . . . (176)

and, in writing this, we are supplementing our above
convention concerning the domain of integration of ¢
and 8, respectively.

The two integrals in (174) then run :

+ o +
/ cos u2du and f sinwdw . . (177)

These two ““ Fresnel Integrals ”” have, as we shall see
in the next paragraph, a finite value—namely \/ g in both
cases. If we substitute this value in (174), both integra;ls

(172) assume the value ,\/)_\2’.’, for which, on account of

(169), we may also write \/Az_f“, and so we obtain from

(166), in view of (171), the expressions :
1 1
C=-"<(c— C. = —= - .
\/ﬁ(c s) + , S v2(c+s)4
where we have used the abbreviations :

1 2
c=xéfcos—7;£df

(178)
— L [gn2me
s = V4w sm——x—df |
and, finally, from (165) :
J=c++ ... . . . (179)

. This reduces the problem to calculating the line-
integrals ¢ and s in (178), whose similarity to the integrals
C and § in (166) is immediately obvious. Of course
cand s, like ¢ and 8, are Ppure numbers.

A particularly striking feature of Fresnel’s integrals
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(177) is the fact that these integrals have a finite value
although they stretch to infinity in both directions and
although the functions that are to be mtegrated do not
vanish at infinity, as is usually the case with such
integrals, but retain finite values by fluctuating to and fro.
The finite value of the integral results in spite of this
because the maxima and minima -+ 1 and — 1 approach
continually ncarcr cach other as  increases, so that the
fluctuations in the value of the integral become smaller
and smaller. This peculiar behaviour is the mathematical
counterpart of the physical circumstance that the con-
tribution to the wave-function at the diffraction point A4
made by a strip dn of the Huygen surface does indced
retain its order of magnitude, but changes its sign the
more often the further the sirip of surface is from the
central line. Now what holds for the ineffective part
played by the surface-elements do whose co-ordinate 7 is
of the order of magnitude »’ in (176), must apply in a still
greater measure o those surface-clements which are still
further removed from the central line—that is, for all
those surface-clements whose co-ordinates % are still
greater than »’. Hence it follows that the second com-
ponent integral (164) of C, whose limits lic between n = n’
and 7 = o0, and also that of §, can make no appreciable
contribution to these quantities. Thefact that the factors
r and 0 in front of the cosine and sine can change appreciably
does not come into question here. Tor their range of
variation with n is so small comparatively that they can
be neglected entirely for any interval of %, which comprises
many maxima and minima of the cosines and sines.
Hence we may now omit the dots that were added in
our formula and may also, in dealing with the Fresnel
diffraction phenomena in the sequel, restriet the integra-
tion over the Huygen plane to such clements do as lie
near the central line, as determined by the conditions
(169) and (176). From now onwards the following
relation holds :
J=c+s . . . . (179a)
H
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§ 47. We shall make a digression here by discussing
Fresnel’s integrals. We have first to fill in a gap by
calculating the definite integrals (177). For this purpose
we start from Laplace’s integral :

L=[""e-wtin, wherea >0 . . (130)
We may write it in the form :
L= f+: e~ dy.
Multiplying the two integrals together, we get :
L2 = /_+: fj: dxdy . e~ A= +9)

which, if we introduce polar co-ordinates :
dady = p.dp.d¢

becomes transformed into :

w© (27
12 = dodd . e~
fofo pdpdé . e
which works out to :

=T
o

-

Fresnel’s integrals are related to the Laplace integral
in that ¢ replaces « in the latter. For the sake of brevity
we shall forgo the proof that the equation « = ¢ also
remains valid. Assuming this, we obtain from (180) :

Hence :

8131

(181)

+ 0
L =/ (cos 2% — 4 sin 2?) da
—o0

and from (181) :
L=\F=-0.y7
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If we equate the last two expressions we arrive at the
values already used in the preceding section :

+ -
f cos udu = \/7_7 1
—w 2

+ o -
f sin w?du = \/E J
o 9

~ Since we also require the values of Fresnel’s integrals
for variable limits, we shall carry the investigation a
little further. Since (+ u)? = (— «)® we easily obtain
the integral with the limit O :
0 © © -

/_ cos widu = jo cos udu = /0 sin u2du = —12—\/7% (183)

On the other hand, it is not possible to reduce the
integral with one variable limit % to terms of elementary
functions. We are compelled to resort to expansions in
series.

An expansion which is valid for the integral taken
from 0 to » and which is always convergent is derived by
applying the formule of integration by parts :

(182)

WU w
] cos u2du = w cos u? 4 2 / w? sin u2dw
0 0

U u
/ sin w2du = w sin 42 — 2 / u? cos udu
0 0

If we repeat the operation of integration by parts on
the integrals on the right, we ultimately get :

/:cos uldu = cosw?.X +sinw2.I" . . (184)
/ousin wldu =sinu?. X —cosu2.I'. . (185)

where we have used the abbreviations :
g=u_§..%u+§iggs I ¢ -1
P=§‘“3“’§%"3‘“7+32 52 72 9. 121 Mo (187)
These series converge for all positive and negative values
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of w, because the quotient of two successive terms
decreases to an unlimited extent as the order of the term
increases. But on account of the rapid increase of the
power indices they are quite unsuitable for calculation
for w’s of any considerable magnitude.

In the case of greater values of u we find it more
advantageous to use expansions in decreasing powers of
u, expansions which are often divergent but, as we shall
see, are sometimes of great service in the calculations.
Since a series with negative powers of » approximates to
the value zero as u increases, it is expedient to start out
from the integral which has u = o as its limit. We shall
therefore now apply integration by parts in the following
form :

«©

-]
1
j cosu2du=j uUcosu:—dy = —
u u U

sin u? /"" sin w2du

>0 2u % 22
-] o [--]
. . 1 cos u? ‘cos u2du
f S1nu2du=] wsinu?-=du = ——/ 5
" u u 2u w 2u

and we obtain by applying the same process to the integrals
on the right-hand side :

f:cos u?dy = cosu.y, — sinw®.on + R, . (188)
j:sin u?du = sinu?.y, + cosu.ox + R . (189)

The series :
(- gt g o)

. 1.3...(4n—-3 1 ,
"(‘1)“'2.2...( 2 )'u4"~1' - (191)

are divergent and hence have been broken off at a definite
order number 7.
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The remainder terms are :

1.3...04n -1 * cos u2du

Ro= (= 1)m 5 ot _(__2,_2 . fu - (192)
1.3...04n—-1 “ sin u2du

Bo= (=15 5° j.__~<__.2__).. RS (93)

They both increase beyond all limits as n incrcases.
Nevertheless these series may often be used successfully
in calculations. For closer inspection shows that for
certain values of the order number » the remainder terms
become very small and hence can be entirely neglected
without introducing an appreciable error.

For in the first place it is casy to sec that both R. and
R; are less than the expression R. which is obtained if we
replace the cosine and sine in the integrals (192) and (193)
respectively, by 1, that is less than :

1.3 .. @4n—1) [~du
R"=2.2... T2 ] um

1.3...@n—38 1 1

=92, 2 ggmar (199

This is preciscly the last term in the scries for ya, a
number which, in certain circumstances, is extremely
small, particularly when u is great. The essential step
is, of course, the choice of the order number n. If we
allow » to increase from 1 onwards, R, first decreases, on
account of the power (4n — 1) in the denominator, but
afterwards increases to an unlimited extent owing to the
factorial term in the numerator.

The minimum value of R, is that at the order number 7,
for which the ratio Rn ;: R approaches most nearly to 1.
This is the case when :

E_;B;J —_ £ﬂ_2__1_).__(ﬂ_;—_.];} . 1_2"4 nea,rly '= 1.

2
That is, » nearly = :u_z_ ... (195)

The greater the valuc of %, the more the number of
terms that must be given to the series y» and os in order
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that the remainder terms shall become as small as possible
and the smaller these remainder terms become. If we
neglect them we obtain approximate values for Fresnel’s
integrals from (188) and (189). Such series, which,
although divergent, approach a definite limit where a
definite number of terms are taken but afterwards recede
from this limit again, are said to be * semi-convergent.”
They can often be used to better purpose than convergent
series, but have the fundamental disadvantage that the
approximation cannot be carried as far as we please, as in
the case of convergent series, but comes to an end at a
definite point.

Nevertheless, even for moderate values of % the semi-
convergent series y» and o» are much more convenient
than the convergent series I and X for determining the
approximate value of Fresnel’s integrals. For u = 2, for
example, there are already very many terms to be taken
into account in the convergent series (186) and (187) if the
fluctuations in the sum are to be made even moderately
small, whereas the remainder term R of the divergent
expansion, in which, by (195), » has been put equal to 2,
has, by (194), the value :

1.3.61 1

Bi=553 5 5 =000

which, compared with 1, is already a fairly small number
and can in most circumstances be neglected without
danger.

§ 48. Reverting to our problem of determining the
intensity of light'J at the diffraction point 4, we proceed
to calculate the decisive integrals ¢ and s in (178), by first
expressing p in terms of the integration variable ¢ in
accordance with (168). Since, as we showed in § 46, we
need take *into consideration only the points near the
central line, we may assume ¢ — « to be small compared
with z and write the following approximate value for p :

_z+(f—m)2. ... (196)
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Thus :

2mrp 2wz w(§ — x)? i 2wz w(€ - x)2
COST = COS —X- OOST [SIN R A sin —

If we substitute this in the expression (178) for ¢, we
obtain the two integrals in it as :

fcos 77————(5); 22, d¢ and fsin F———————({’:); 2. d¢

which are both to be taken between the limits £ = 0 and
¢ = ». By introducing the integration variables :

U= (x — 5) . AZT% B ¢ X< k))

we may replace them by the integrals :
,\/f\_z / " cos u2duy, and ,\/ Az /u sin u2du
T J—oo ma J—ow

where u, the upper limit, denotes the value of (197) for
¢ =0, that is :

o
U= ® o ... (198)
This transforms the expression (178) for ¢ into :

¢= /= <cos 2mz C —si 2}‘—2- S)

where we have now used the abbreviations :

C’=]u cosurduand § = [ sinutdu . (199)

-

And in the same way we get from (178) :

V—(sm - C + cos —2—3’3 S>

from which, by (179a), we get for the desired value of the
intensity of light :

J=7—lr(02+82) ... . (200)
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This reduces the whole problem to the calculation of the
Fresnel integrals C and S, in which « has the value given
in (198).

Since the intensity of light J depends only on u, it is
quite independent of 7, as is obvious, and we can restrict
our attention to the plane of Fig. 12, ¥ = 0. Moreover,
ON every curve :

x
T/; = const.

we have that the intensity of the light is constant. This
is a branch of a parabola which touches the z-axis at its
end and vertex O and is more or less strongly curved at O.
If we make the constant assume all values from — o to

+ oo and bear in mind that 4/z is always positive, but z,
the abscissa of the diffraction point 4, is either positive or
negative,we first get z = 0, z < 0—that s, the points which
lie immediately behind the screen, and then the parabolic
branch which lies on the side of the screen; further, for
const. = 0 we have the positive z-axis, and then the
branches which lie on the side of the aperture, as far as
the positive z-axis: z = 0,2 > 0.

To obtain a survey of the relation between the intensity
of the light J on the position of the point 4, it is therefore
sufficient to displace the diffraction point A along any line
z = const. parallel to the z-axis. By (198) u is then a
direct measure of the abscissa x of the diffraction point
or of the distance OP of the central line 4P from the edge
of the screen.

We shall now allow the diffraction point 4 to move along
such a line (Fig. 12) from the right to the left across the
whole plane of the figure, and shall inquire as to the
intensity at such point as given by (200) and (199).

1. For very great positive values of « (for which 4 is
very far to the right, say at 4,) we can set the upper
limits of the integrals (199) equal to oo, and we obtain
from (182) and (200) that J = l1—that is, at a great
distance from the screen the intensity of the light is
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just as great as if the screen were not present, as is to be
anticipated.

2. If « has moderate positive values, then, as we have
scen, the expansions in semi-convergent series give us a
uscful approximation for estimating the values of Fresnel’s
integrals. In this case we can even go down as far as about
4 = 1-5. TFor then, when n = 1, the remainder terms
R. and R, which arc to be neglected are, by (194) always
smaller than :

11 1
2 2 1-5°

To be able to apply the formule (188) and (189) we

write instead of (199) :

+ oo 40
C= f cos udu — / cos udu
-0 w

= 0-074.

o
sin w2dwu.

+-
S = / sin wdu — /
o ,

23

On account of (182) we obtain the approximate values :

0 == 727: — Yu cos u? -+ on sin u?
o (201)
S = \/g — ynsinu? — oncos u?
Consequently, by (200), we get :
1 -
= 'ﬂ:l:ﬂ' — 24/myn cOS <u2 - Z) +
2’\/7—TO‘n Sin <u2 _ Z} "]“ 'ynz -]' 0'n2-’ . o (202)

The question arises whether the intensity of light J
has maxima and minima in the region of % under con-
sideration here. By (200) such points must result from
the cquation :

dc

a8
O +85-=0 . . . . (203)

or, since by (199) :

O osnz and ¥ — cinu? 20
= COSU and oy =S . (204)
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we have :

P W 4.
cos(u 4> s
1 /11 1351
—_— ., 2.2 D el ... ). (205
—2'\/'”( + ) (205)

The expression on the right-hand side is very small
for all the values of « that come into question; conse-
quently the equation will be satisfied by such values of

the argument wu? —E as approximate very closely to

one of the values g, -3—273, %Z, 7—27, . . . and this gives the

following approximate values of u :

u1=,ﬂ37;-7,u2=«/25, u3=4’1—i—71,u4=,\/~];i)—:ﬂ—', . oe e (206)

The first and smallest of these values %, is equal to
1-535 and lies just within the range of u which we are
considering.

In this range we thus actually have an infinite number
of maxima and minima of intensity. We determine
whether a value is a maximum or a minimum by substi-
tutingin (202). Since y. and o» are small positive numbers,
the value of J is essentially influenced by the term with

oasin <u2 - 77;) and the sign of the sine decides whether

J is a maximum or a minimum, greater or less than 1.
So we find that J is a maximum for the points u;, us,
us . . . and a minimum for the points wu,, u,, Ug
. . . From (202) and (190) we get as approximate values
for the maxima and minima :

1
J=1+ —=
iu\/ﬂ-
the maxima being, by (206) :
2 2
Jy=1 —=, Jg=1 === 4 e e
1T T T
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and the minima :

J,=1— 2

2
a7’ /15"

As u increases both these points and the values of
the maxima and minima continually approach each other
until they finally blur each other.

3. If the diffraction point A approaches so near to
the z-axis or the shadow boundary of the screen that the
abscissa » has rather small positive or negative values,
say between — 1-5and + 1-5, we find it advantageous, in
calculating the Fresnel integrals, to use the expansions
in convergent series. We thereforc write (199) in the
form :

Jy=1

0 U
C = / cos uidu - [ cos udu
o w 0

0 u
S = / sin widu -+ f sin u2du
—00 0
and by (183), (184), (185) and (200) :

_ul[g-]-\/?r.z.cos(uz—g)

T
+vm.I.sin(u2 = 7) ] L (20m)

If, to find whether there are maxima and minima of
J in this region we again proceed as above, we arrive at
the condition :

-\—gicos<u2~—2>+2=0

or, by (186) :

T

cos(uz-—;—)—{-—\;;(u—%%u‘i—}— ...>=0. (208)

In this equation the first summand is always positive
within the region under consideration (— 1-5 < < + 1:5);
the second changes its sign with w, but its absolute
value never reaches that of the cosines. To see this
it is sufficient to calculate the series X for the extreme
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case u = 1-5. We can then find the degree of approxi-
mation which corresponds to the number of terms used
by narrowing the neglected remainder term to the extent
corresponding to (194).

The question of the roots of the equation flg = 0 may

be illustrated still more strikingly if we represent geo-
metrically the dependence of the function J on u; this
dependence is fully fixed by the simple equations (200)
and (204) taken in conjunction with the boundary con-
ditions for 4 = 0. This is done by taking ¢ and § as
rectangular co-ordinates of a point in a plane and inter-
preting J as the square of the distance of this point from
the origin.

In accordance with what has been stated above, the
expression (208) has the sign of the cosine in the whole
region of u under consideration—that is, it is positive,

or %’-«i > 0, and the intensity of the light increases steadily

as the diffraction point A passes from the negative to
the positive abscisse, until it reaches the first maximum
at %;. In the immediate vicinity of the point 4, of
the boundary of the geometric shadow we have by (207)
and (186):

J = +:/3L C .. (209)

Bl

Ll

In A, itself we have J = i
4. If, lastly, the diffraction point 4 moves a greater
distance from the shadow-limit (v < — 1-5) towards the
left, say to 4,, we can again fall back on our semi-con-
vergent series by writing :
u=—u'(u > 15)

—.u’ 0
C = f cos udy = / cos u2du
o ,

w

- )
S = f sin w2dy = f sin uduy
- u’
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and by using the formulee (188) and (189) for these expres-
sions, omitting the remainder terms, this gives :

1
=St . . . . (210)

whereas the condition for a maximum or a minimum
reduces, by (203) and (204), to y. = 0, which is fulfilled
nowhere. Hence the intensity of the light decreases
steadily as «’ increases. [For very great values of w’
we finally get :

1
= . . . . . (211
7 47ru? 211)
and for v = — oo we get J = 0.

The above results also fix the intensity J for all other
points on the xz-plane. For a definite parabolic branch

of the family % = const. passes through every point 4
2

of the straight line 4, 4, 4, in question, and the intensity
of light at 4 is the same at all points of any particular
parabolic arc as far as the singular point O, where all
the curves touch. Thus when the straight line 4,4,
approaches the z-axis, always remaining parallel to it,
the maxima and the minima of J draw closer and closer
together, without altering their values, and when the
straight line coincides with the =z-axis, they all con-
centrate in O, while the negative axis of z represents the
parabolic branch of intensity zero and the positive axis
of = represents that of intensity unity. This accords fully
with the assumptions with which we started in § 43 in
applying Huygen’s principle.

§ 49. Having trcated the general case of Fresnel’s
diffraction phenomena, we shall now link up with the
remarks made at the conclusion of § 45 and discuss the
special case of Fraunhofer’s diffraction phenomena, which
have incomparably greater significance for practical optics
and which are fortunately much more amenable to mathe-
matical treatment. We shall again start from the equa-
tions (164) and (165), which hold for a plane diffraction
screen on which light falls normally. A further special
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assumption is that not only the point-source C but also
the diffraction point A lie at infinity. We shall use the
same notation as earlier—that is, we shall choose the
plane of the screen as the zy-plane and shall take z, ¥, 2
as the co-ordinates of the diffraction point, and ¢, 1, { = 0
as the co-ordinates of a point of the aperture. We shall
take as our origin any point within the aperture.

Since the distance of the diffraction point 4 from all
points of the diffracting aperture is to be infinitely great
compared with the linear dimensions of the aperture,
we shall assume the latter to be entirely in finite regions.
Then the rays which travel from points in the aperture
to A are all parallel and their direction. is characteristic
of the position of 4. TFor the distance of 4 plays no
part physically. Hence in this case it is sufficient to
speak of the direction of diffraction instead of the diffrac-
tion point. This direction is defined by the two polar
angles 6 and ¢ in the equations :

L. sin 8 cos ¢, Y _ sin 4 sin ¢, 2 _ cost . (212)
7o 7o 7o

where z, y, z and ry, the distance OA, are infinitely great.
When substituting these values in (164) we must note
that in the denominator 7 is to be regarded as constant,

as well as 6, in the integration, while in the ratio i the

variability of the numerator becomes of decisive import-
ance. Thus:
P=@—-&)2+H—n?+(z—?
== 7'02 — 2x§ — 2y77
_fx + 7y
To
If we substitute this value in (164), the expressions for
C and § may be written in the following form :

7'--"?‘0

_ 277y . 21,
0 = cos 5y ¢ + sin NS
stinzﬂ‘ro 2‘777'0

A -C—-COST'S



v. DIFFRACTION 111

where : ) 0
0 = 5y co8%5: f do cos («f + )
° 29 @13)
S == mcosz'é' [da'sin (OCf -+ B’Y])
2nz  2mwsinfcosd  2ry  2wsinfsing

This, combined with (165), gives us for the intensity J
in the direction of diffraction (8, ¢) the value :

J=c4+s . . . . . (215)

Since « and { remain constant during the integration,
there is no difficulty in performing it.

For the diffraction angle 6 = 0 (diffraction point 4
on the z-axis) « = f = 0, thus ¢ = 0 also, and we obtain
the « axial 7’ intensity of light from (215) and (213) as :

o?

J0=}\_270.é ... .. (21e)
where o denotes the area of the aperture. What strikes
us at once as unusual about this formula is that it is
proportional to o and not to ¢; for the energy which
passes from the source of light through the aperture is
certainly proportional to o. This apparent paradox is
explained by the fact that J, does not directly denote the
energy of radiation; rather, a finite amount of cnergy is
radiated only within a finite cone from the directions of
diffraction (0, ¢), as we established in § 18.

Since we arc not concerned with absolute values in
finding the intensity of the diffracted light, it is more
convenient to reduce it to terms of the axial intensity
and to write instead of (215) :

J=Jg. (C2+8) . . . . (217)
where, by (216) and (213), we have the newer meaning :

6 1
C = cos?3 - = | do cos (af + fn)
2 a[ % " (218)

S = coszg . %fdcsin(af + By)-
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§ 50. As an illustration let us calculate the diffraction
by a rectangular aperture of length 7 and width 0, so
that o = bl. If we take the centre of the rectangle as
the origin O, we have in the integration :

b b l ]
—-2-<§< tg —g<n1<+3
and we get from (218):
oab . Bl
sin - sin %y
C =cos? - 2. 2
B D pl
2 2

and from (217) :

0 2 2
- 42 e —— .. (219
J =Jy.costz <o£(_)>2 <9l>2 (219)
2 2
This, in conjunction with (214), is an explicit relation
between the intensity J of the light and the direction
of diffraction (6, ¢).

For 6 =0 we get J = J,, as should be. This axial
intensity is the greatest that occurs, which agrees with the

circumstance that the function %—9—0 has its greatest value

when x = 0. As 2 increases this function fluctuates to
and fro between a constantly decreasing maximum and
the minimum zero at regular intervals, until it ultimately
vanishes. Moreover, J is doubly variable in that two

systems of equi-distant zero-points become superposed.
The one is denoted by the values :
oo 2mE _ 2 dr b
PV b’"F""l

the other, by : (220)
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Between these two zero points there is a maximum
which decreases as the order number increases. To this
there is added the gradual decrease of J as the angle of
diffraction 6 increases.

These variations of intensity may be observed by allow-
ing the diffracted light to fall on a condensing lens. A
definite point in the focal plane of the lens then corresponds
to all the rays diffracted in a definite direction (6, ¢) and
our above discussion shows that the diffraction pattern
that appears will be a bright cross with two systems of
dark bands on both sides, situated symmetrically with
respect to the edges of the rectangle. The narrower the
breadth of the rectangular aperture and the longer the
wave-length used, the more the bands are separated.
It we have a long and narrow rectangle (slit), the bands
of the one system merge together and only the other
system, parallel to the length of the slit, remains.

This diffraction picture does not, of course, represent
an image of the diffracting aperture in the sense of
geometric optics; for we are not dealing with optically
conjugate points here. Hence we must not expect a
geometrical similarity betwcen the diffraction image and
the diffracting aperture.

§ 50a. The practical importance of Fraunhofer’s dil-
fraction phenomena becomes apparent when we use a
great number of diffracting apertures congruent to one
another. We assume a number N of such congruent
apertures, of arbitrary form and arbitrary distribution
but similarly placed on the screen. The intensity J of
the diffracting light can then be reduced simply to the
intensity J, of the diffracting light of a single aperture.

For we refer the co-ordinates £, n of the points of the
nth aperture to any arbitrarily chosen point O of the
aperture as origin, by writing :

E=bt+ &, np=m+q . . . (22])

where £. and n. are the co-ordinates of O» with respect

to the general origin of co-ordinates O, which may be
I
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chosen anywhere, and we take the points O in all the
other apertures at the corresponding point. Then each
of the two integrals (218) resolves into N separate integrals
each of which is to be taken over one aperture, with the

given limits ¢’ and »’, which are the same for each integral.
We obtain :

n=N
Cmcod 1S [ [2gay cos (altat £) +80mm)} - (222

n=1

The summation refers to the index =, the integration
to the co-ordinates &', n'. These two operations are
quite independent of one another, and so can have their
order reversed at will.

If, analogously to (218), we use the abbreviations :

6 1 > ’ no__
0032§~c71ffd§d71 cos («" + Bn') = Oy

0

(223)
costg - [ ag'an’ sin ot + p1) = 8

where, from now onwards, we use the index 1 to denote
the quantities that refer to a single aperture, and likewise :

g = .N . 0'1 . . - . . (224)
and :

=N :
2 cos (OCEn + ﬁnn) =Cxn
= ... (225)
n):'l sin (chn + pﬂn) = Sy

we get, by (222) :
0 = 3 (Ca0; — 838
Similarly :
S = z‘%r (S0, + OxSy)
and, by (217):
J= 7‘{,—‘; (Ce2 + 8:2)(Cx? + Sx?).
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Lastly, by (216) and (224) :

J == J01 (012 'l" Slz) (01\?2 + S_Nz) . . (226)
for which we may now write, by (217) :
J=J,(Cx®¥+8» . . . . (227)

This simple relationship reduces the intensity of the
diffracted light of the system of apertures to terms of
that of a single aperturc. It shows that the use of
several apertures docs not cause an extension and broaden-
ing of the diffraction pattern in space, but only an increase
in the mtensity of light of the diffraction pattern due to
a single aperture. But we shall sec that the intensifica-
tion factor assumes totally different values according as
the apertures are distributed regularly or irregularly over
the screen. For by (225) we have :

N
GN2 -+ SN2 = 2 cos? (O(é‘:n -+ B'Y]n)

n=1

N-1 N
+22 X cos (abn + PBnu) cos (aéw + Buyw)

n=1 0" =n-+1

N
+ 21 sin2 (aén + B7a)

N-1 N . .
- 2 2 2 S1m (Olgn -+ B'/]n) s (Otfn' -+ S'ﬂn’)

n=1n'~n--1

N-1 N

== N -+ 2'?1”2:”.'-?03{0((5'1{—&71) +B(‘f]n"—1’]n)} (228)
If the apertures are distributed quite irregularly—as,
for example, in the case of a card which has been picrced
by a pin indiscriminately, then the terms after the double
summation sign have partly positive and partly negative
values; this causes the sum to Auctuate violently for
different values of « and B, but it acquires no finite mean
value. The result is that, by (227), the intensity of the
diffracted light amounts, excopt for local fluctuations, to
N-times the intensity of the diffracted light for a single

aperture.
The result that emerges is quite different if we use
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regularly distributed apertures. If, for example, the
points O lie so that for certain values of « and f all
angles that occur in (228) are exact multiples of 2, the
double sum becomes equal to N (¥ — 1), and so, for
great values of N, it becomes of the order V2.

This peculiar behaviour is, of course, due to the fact
that in the case of irregular distribution the rays that are
diffracted in a certain direction by the N-apertures do
not interfere appreciably with onc another, so that their
intensities simply become added together, whereas in
the case of regular distribution these N-rays can all be
in the same phase, so that the absolute values of the
amplitudes of the field-strengths add themselves together,
and not the intensities. Now since the resultant intensity
is represented by the square of the resultant amplitude,
it amounts to N2 times the intensity due to a single
aperture. It is on this enormous increase in the intensity
of the light that the great practical importance of Fraun-
hofer’s diffraction phenomena depends.

§ 51. We shall perform the calculation for the case of
a grating.

Let b be the width of aperture of a single slit, ¢ the
grating-constant—that is, the distance between two corre-
sponding points of two neighbouring slits or the sum of
the width of a slit and of the space between two neigh-
bouring slits. Then we may set all the o’s in (225) equal
to zero, whereas :

£,=0,&=c¢, &=2¢ ... ¢r= (N -1

We may simplify the summation of the two trigono-
metric series (225) considerably by recollecting that the
expression Ox? + Sx?, with which we are alone concerned
here, is no other than the square of the absolute value of
the complex quantity :
e'taN c— 1

e1ac 1

N N
CN + @SN = J gwén — ) galn—T)c —
n=1

n=1

By multiplying this quantity with its conjugate imagin-
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ary we obtain the desired quantity and from this, by
' (227), the intensity of the diffracted light :

sin? N%g
J = J]_—-—-———— . . . - (229)

. o OC
2

The maxima of intensity lie at :

w=TE o T (@)
7 c’ ¢ c

that is, at equal intervals which arc directly proportional
to the wave-length and inversely proportional to the
grating constant. TFor axial light (§ = 0) the maximum
is common to all wave-lengths; a scattering of colours
first shows itself at the next maximum, for » = 1, which
gives the spectrum of the first order.

The valuc of the maximum is the same for all orders
and is equal to N2J,. Woe must take care to observe
that the factor J, in (229), the diffracted intensity of a
single aperture, is not constant but depends in its turn
on the angle of diffraction and the width of slit b in the
manner given by (219). Hence gralings with the same
grating constants often differ considerably from one
another in their effects. If, for example, the interval
between two neighbouring slits is exactly as great as the
slit width (¢ = 2b), the zero-points of J, in (220) coincide
with the maxima of cven order number » in (230), and
hence all spectra of even order numbers arc missing in
the diffraction pattern of such a grating.






PART TWO
OPTICS OF CRYSTALS






CHAPTER I
PLANE WAVES

§ 52. Tur optics of crystals is founded on the same
electromagnetic field equations (1), (2) and (3) as the
optics of isotropic bodies. The only difference is that
the relationship between the electric induction D and the
clectric intensity of field E, which is expressed in the case
of isotropic substances by the simple proportionality (4),
has a more general form in the case of crystals, in that
the components of clectric induction are certain linear
homogencous functions of the components of the electric
intensity of field, that is :

Dz = €11 Bz + €1, By + €3 E:

Dy = €g1 Bz + € By + €3 B - (231)

Dz = €31 E:c + €30 Ey + €33 .Ez
where the constants e depend on the nature of the crystal.
The higher the degrees of symmetry the crystal has (I,
§ 26), the more relationships therc are between these
constants. For the limiting case of an isotropic sub-
stance ey; = €55 = €33 and all the other €’s are equal to
zero, because (231) then becomes transformed into (4).

But even when there is no symmetry at all only six of
the nine quantitics ¢ are independent of one another.
This follows if we apply the energy principle to any
clectromagnetic process that occurs within the crystal.
For if we fix our attention on any portion of space in the
interior of the crystal and apply the energy principle to
it, exactly as was done in III, § 9, we get for the amount:
of cnergy that flows through all the elements do of the
surface into space in the time df, as in III (25) :

N dos, = — dt [ dr.di
dt fdas mdtf vSs
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and, by applying (3) and (1), this equation is converted
into :

Z—i . f dr (ExDy + EyDy + E:D. + H,H, + H,H, + H.H.) (232)

Hence by the energy principle this expression simul-
taneously also represents the change in the time di of
the electromagnetic energy contained in the part of the
crystal under consideration. It consists, as we see, of
two parts : electric and magnetic energy, as in the case
of isotropic bodies. The time differential of the electric
energy-density is :

4%1 (E«dD; + EydDy + E.dD:). . . (233)

that of the magnetic energy-density is :
21:}% (HAH, + HdH, + HAH) . . (234)

Now whereas the magnetic energy-density, as a com-
parison with ITI, 3 shows, is exactly equal to that of an
isotropic body of permeability u = 1, the electric energy-
density has a considerably more involved form. For if
we substitute (231) in (233) and then integrate we get a
quadratic form in the components of the electric intensity
of field, whose coefficients are composed of the constants
e. But if the integration is to be possible at all the
coefficient of E.dE, must be equal to that of E,dE,—
that is, we must have :

€13 = €, and likewise ey; = €g9, €5 = €55
Then the electric energy-density is :
§1; (e1:B2® + €poBy® + €g3BR + 21, By +
2¢53EyE; + 265 E:Ey) . (235)

This expression may be considerably simplified by
choosing as co-ordinate axes the three mutually perpen-
dicular directions which form the axes of the ellipsoid
represented by the tensor (235). These are the three
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““ principal axes’ of the crystal. The clectric energy
then assumes the form :

1
oo (B2 + B2 + 6B . . . (236)

and the relation between the clectric induction and
electric intensity becomes more simple :
D; = Es, Dy = By, D: =B . . (237)

The three constants e are called the * principal dielec-
tric constants ' ; they are always positive.

In the sequel we shall use the principal axes as the
co-ordinate axes throughout.

§ 53. Wo next propose the general question : are plane
lincarly polarized waves possible in a crystal? And if
50, what laws do they obey? ™To answer this question
we form the expressions for the field-components of such
a wave and substitute them in the field-equations (1) and
(2).

Let » be the normal to the plane wave, and «, 8, y its
direction cosines, thus :

n=or+Py+yr . . . . (238)

Further, let D be the value of the clectric induction, and
&, n. ¢ its dircction cosines, so that :

D.c=.Ds§,Dy=.D-‘Y],Dz=D.§. . (239)
and E the value of the electric intensity of field, and £,
', ¢’ its diroction cosines, so that :

Ez=E.§’, Eyz.E.T),, E3=E.€I. . (24:0)
Lastly, let I be the value of the magnetic field-strength
and A, p, v its diroction cosines, so that :

IIz=H.A, IIy=H.[.L, IIz=H-V. . (24:].)

The condition for a plane linearly polarized wave is
then that the quantities D, B and H, besides depending
on the time ¢ depend only on the length n, whercas the
direction cosines that have been introduced are all
constant.
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With this assumption the field-equations (1) become
transformed into the conditions :

D = oty — ) - o

1D = colyh — ) - 22 (242)
(D = cofogs — B) -

N = cylo'y — U8)- 2

WB = e — &) -2 (243
ol = €8 — 7/a)- 22

which contain the complete answer to the questions above
proposed. In them we have denoted the velocity of
light 4n vacuo by ¢, as the symbol ¢ will be used a little
later (§ 55) with another significance.

§ 54. Concerning the directions of the various vectors
which characterize a plane linearly polanzed wave it
follows from (242) that the electric induction is perpen-
dicular both to the wave-normals and to the magnetic
intensity of field :

Dln and DLH . . . (244)

Further, it follows from (243) that the magnetic inten-

sity of field is perpendicular both to the wave-normals
and the electric intensity of field :

Hln and HLE . . . (245)

These theorems also contain the results which are arrived
at by substituting the assumed values for the ﬁeld-com-
ponents in the field-equations (2).

If we add to these the fact that, by (3), the flux-vector
8 is perpendicular to both the electric intensity of field
and the magnetic intensity of field :

SLE and SLH . . . (246)



L PLANE WAVES 125

then all these relationships can be expressed in the single
theorem that the magnetic intensity of field H is per-
pendicular to all the other vectors that have been men-
tioned ; that is, the latter all lie in a plane, the electric
induction D being perpendicular to the wave-normal n
and the electric intensity of field E being normal to the
ray S. These relationships are represented graphically
in Fig. 13, the plane of which has the magnetic intensity
of field for its normal, its direction being towards the
observer. This plane is called the “ vibration plane,” as
in the case of isotropic bodics (§ 9). Thus the plane of
vibration contains the normals to the wave, the ray, and
directions of clectric induction and electric intensity of
field, which are perpendicular to the ray. The distinctive
part played by the magnetic
intensity of field in this relation-
ship is, of course, due to the fact
that it coincides with the magnetic
induction, whereas this is not,
in general, the case with the
electric intensity and the electric b
induction. Fic 13.
If we denote the angle between

the electric intensity of field and the electric induction
8, then § is also the angle between the ray and the
normal. Since the principal diclectric constants in (237)

o kol
aro positive, § < 5

The physical meaning of the difference between the
directions of the ray and the normal may be made clear
by the following considerations. If we imagine the
assumed planc-wave to be laterally limited—which is
effected by selecting any finite surface arca OA4 (Fig. 13)
in a wave-plane, this arca represents the cross-section of
a cylinder of light which propagates itself onwards from it.
It is formed by rays which proceed from all points of the
cross-section in an oblique direction, since they deviate
from the direction of the normal by the angle 8. In
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Fig. 13 the cross-section of the wave at different points
of the cylinder, from OA4 to PB, is indicated by broken
parallel lines.

The value of § comes out from its definition as :

cosd =¢& +' +80>0. . . (247)

or, if we also denote the direction cosines of the ray § by
al ’ I:

&t cosd =o' + PR + 9y . . . (248)

Both the unaccented and the accented direction cosines
form an orthogonal triplet with those of the magnetic
intensity of field.

§ 55. We shall now pass from the directions to the
actual magnitudes of the vectors in question. For this
purpose we eliminate the direction cosines by squaring
and adding the equations (242) and (243). The sum of
the squares of the bracketed quantities in (242) is 1, since
H_.lmn. The same result is not, however, obtained for the
corresponding sum in (243), since E is not Ln. Rather:

'y = TR? + (Low — EY)2 + (£8 — n'w)?
=2+ 2+ 0. (@ + B+ ) — (Eat B+ L)
=1 —gin?§ = cos? 4.

Consequently we obtain the relationships :

2 .
D =2 @%) and H® = ¢g2 @%)2 cos?d . (249)

In taking the square root, attention must be paid to
the signs. They may be obtained from any particular
case, for example, for that where the normal n lies in the
z-axis, the electric induction D in the y-axis, and the
magnetic intensity of field H in the z-axis. Then « = 1,
B=0,y=0,£¢=0,7=10=0,A=0,pu=0v=1,
n’ = cos 8. Hence the equations (242) and (243) become :

oH

D=—CO%,H=—00.00SS%§‘ . (250)
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and, by (249), these relationships also hold in the general
case.

If we eliminate H by differentiating the first equation
with respect to ¢ and the second with respect to =z, we
get :

922—020038-6%
oz~ 0 on?

On the other hand, we get from (237) .
D.§=¢.EB¢, D.yp=¢.By, D.{ =¢,.B.

If we take the value of D obtained from one of these
three equations and substitute it in (251) we obtain the
well-known wave-equation (6) in the form :

eL _ 08

o — 1 ont
where ¢% the squarc of the velocity of propagation, has
the following value :

(251)

(252)

2=§-62 cos 8 ——~~° cos 3 —-—C——cosS
1 § e N € ' e
or, if we introduce the ““ principal velocities of propaga-
tion 7’ :

Cn2 02 02
g, e, %2 L (253
€7 €9 €3

§'q® =£a%cos §, gt =nbcos§, ('t = {c®cosd . (254)
The differential cquation (252) is satisfied, as we know
from II, § 35, by the expression :

=f(e="). . . . . (255
B —f(; %) (255)
where f, the form of the wave, represents any arbitrary

function of the single argument ¢ — g TFrom this equa-

tion we further get :

o _ _leE (256
on qot
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and, by substituting in (250) :
H=%’-cosS.E ... (267)

D=%’;.cos8.E. ... (258)

Hence, as soon as we have found a value for ¢ which
satisfies all three equations (254), we know that it is
possible to have a wave of any form in the crystal with
the corresponding direction of propagation and polarization.

§ 56. Let us now see whether it is possible to find
expressions for the different constants which fulfil all the
necessary conditions, above all, the equations (254).

In the first place, it is easy to see that if the direction
of the electric induction D is assumed in any arbitrary
way, all the other quantities result uniquely.

For if £, y { are known then by multiplying the indi-
vidual equations (254) by &, 7, { and adding, we get, in
view of (247), that :

@=a2 2z . . . (259)
and, further, from (254), the direction of the intensity of
field E :

il =202 . . . (260)

But the directions of D and E fix the vibration-plane
and hence also the normal direction H, as well as that of
n and S. So the wave is completely determined except
for its form, which remains arbitrary.

In addition, we shall here derive only the expressions
for the direction cosines «, B, v of the wave-normals.

Since the wave-normal n lies in the same plane as the

intensity of field E and the induction D, the ratio of
their direction cosines is :

w:Bry= (¢ +26): (1" + @) :({ + 20)

where z denotes a certain number. But, on the other

hand, the wave-normal is perpendicular to the induction.
Hence :

w+Bp+yL=0 . . . . (261)
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whence we got, in view of (247) :
X c: — CO8
Thus :
w:ifry  (§ —Ecosd):(n —necosd):(l — {cos?d)

from which we get, by (254) :

wifBiy - (@) E (=) m:(E— ). . (262)

§ 57. Let us next inquire as to how far a plane wave is

determined if the direcetion of the wave-normal n is given

in any way. Our problem is then to express all quan-

vities in terms of «, B, p, and for this it is sufficient, as we

have scen, 1o determine the direction cosines &, %, .
These come out by (262) as :

o B 4 9
R o aig emgiestes . (263
£ @t @@= g (263)
The wvelocity of propagation ¢, which still remains
undetermined in this equation, is caleulated according to
(261) from the equation :

03 0

o &}
Y B 'l' q(
a2 - I

2 ,),2
__‘qg'l' iy =0 . . (264)
As an exactly similar investigation in TIT, § 25, shows,
this equation has two real positive roots in ¢%, and hence
also in ¢.  They lic in the two intervals that are bounded
by the values of the constants «, b, ¢.  1f we call them ¢,
and ¢, wo can, without restricting the gencrality of our
case, agree that
gy by =e oo .. . (265)
With cach of the two values ¢, and g, there is associated,
by (263), a definite direction of the electric induction Dy
and Dy, and henee, by § 56, all the other directions are fixed.
The two directions of induetion n, and D, that belong
1o o definite wave-normal , B, y, v are very simply related
1o cach other.  For if in tho equation (261) we substitute
for £ 9., ¢ tho values &, gy, ¢y, but for «, B, y the values
(262) with ¢y and £y, my, Ly, wo get

(@ — q )€€y 1o (U — @®)numg + (62 — 00 = 2{
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Similarly :

(@ — g)€sée + (02— gH)mma + (@ — 64l = 0.
From these we get by subtraction :

s+ mme+ Ll=0 . . . (266)

026,€y + b2y + 2015 =0. . . (267)

The first equation states that D; L D,, the second that
D, L E, and that D, L E;. From this we also obtain
further that H, || D; and H, || D,.

§ 58. The relationship between all these dlrectmns and
the quantities of the corresponding velocities of propaga-
tion ¢, and g, are realized graphically by considering the
so-called Cauchy ““ellipsoid of polarization.”” This is the
ellipsoid :

and :

a2 + b2+ cR2=1 . . . (268)

11
’ b’

If we wish to find the two waves that correspond to
an arbitrary given normal direction =m, we draw the
diametral plane of the ellipsoid perpendicular to n. The
directions of the two axes of the elliptic section then
represent the directions of the electric inductions D, and
D,, and the reciprocal lengths of the corresponding semi-
axes represent the corresponding velocities of propagation
g, and g,.

For if instead of z, y, z we introduce a new rectangular
co-ordinate system 2'y’z’ having the same origin and with
its 2’-axis coinciding with the given normal direction n
and its 2’- and y'-axes coinciding with the directions of
the electric inductions D, and D,, the equations of trans-
formation run :

which has the semi-axes — 1

x=&a' + &Y + a2’
Y=z + gy + fr'
2 =02 + Ly + y2

If we substitute these expressions in (268) and set
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2" - 0 we get the equation of the elliptic section in view
of (267) in the form .

(B2 1 D2 1 B2 | (aPE2 | DI |- e y? - 1
from which by (259) the values ¢ and ¢, result for the
reciprocals of the semi-axes of the ellipse.

Nince the magnetic intensity of field I is perpendicular
to both n and D cach of the two axes of the clliptic
soction simultancously represents the direction of the
magnetic intensity of field, which belongs to the diree-
tion of clectric induction represented by the other axis,
whereas the direetion of the clectric field-strength E s,
by (260) given by the normal of the ellipsoid at the end-
point of the axis which represents the eleetric induction.
Finally the ray-direction § is represented by that tangent
of the ellipsoid which lies in the vibration-plane defined
by m, D and L.

If o principal axis of the crystal, say the a-axis, is
a normal to the wave, then the other two axes  and 2 are
the corresponding directions of the induction with the
voloeities of propagation O and e.

All these theorems, of course, remain valid for the
case where @ -0 - c. The body is then isotropic
optically and the polarization ellipsoid is a sphere, the
elliptic section is a cirele, overy dinmeter is an axis
and the velocity of propagation ¢ -+ «.

§ 59. Whereas hitherto we have assumod o, 3, y as given
and ¢, and ¢, as determined by them, the case may also
arise where ¢, and ¢, are preseribed initially, of courso
within the limits (265), and the corresponding values
«, B, y of the wave-normals are to be found.

To solve this problem it iy useful to write the equation
(264) in the form :

() (et ) | (R - ) (0t = ) Rt ) (0 )
Py . (260)
This oquation iy an identity in so far as it holds, for

any avbitrary value of ¢, provided only that ¢, and g,
are the roots of (264).



1132 THEORY OF LIGHT CHAP.

According as we now set ¢ =a, b or ¢, we get from
(269) :,

2o (@) (02— 75
(b2 — a?) . (c® — a?) .
or = (P ¢:)-0P—g) | (270)
(@ —0%).(a* — b?)
s _ (=¥ (¢ — ¢5P)

These relationships enable o2, 2, ¥2 to be determined
as soon as ¢; and g, are given. It is easy to convince
oneself that by (265) the direction cosines «, @, y are
always real. They denote, according to their signs, eight
different directions, each of which lies in a particular
octant of the co-ordinate system of the principal axes,
or, if we take any two in opposite directions as standing
for one, we get four different directions.

Then, by § 58, the values of «, 8, ¥ also denote the
direction of the electric induction and so forth that
belong to ¢; and to g,.

The special case where ¢, = ¢, is of particular interest.
For by (265) we then have :

Gi=g¢a=b . . . . . (271)

and, by (270), the direction cosines of the corresponding
normals come out as :

— P2 D2 — 2
2 2= A 272
%o a_o:@o = 2 (272)
Of these four directions that lie in the xz-plane those
two which form an acute angle with the z-axis—namely,

the axis of the smallest principal velocity of propagation,
for which the following values hold :

a? — b? PR
= 2T =0, =528 )

are called the “ optic axes ”’ of the crystal. The crystal
is called ““ optically positive ’ if the two optic axes form



I PLANE WAVES 133

an acute angle with cach other— that is, when y, > \/ Lo

P)
2. 2 .
prs @l (274)
2

In the contrary case, the crystal is called “ optically
negative.”

In Cauchy's ellipsoid of polarization the optic axes
denote the normals of the two diametral planes which

cut the ellipsoid in a circle of radius +.  Since the circle

b
has an infinite number of axial directions, a wave
whose normals coincide with that of the optic axis has an
infinite number of directions for the clectric induction,
just as in the case of an isotropic body. Consequently
we may say that with respeet to an optic axis as
wave-normal a erystal behaves just like an isotropic body.
But an essential difference is that in an isotropie body the
electric intensity of field coincides with the eleetric induc-
tion and consequently also the ray with the wave-normal
in this dircction, whereas in the case of a crystal the
clectric intensity of field that is, the normal of the
cllipsoid of polarization at a point of a circular inter-
section  in general by no means coincides with the electric
induction that is, with the radius of the civcle at this
point.  Rather, each of the infinite number of directions
of induction has its own particular field-strength and its
own particular ray dircetion perpendicular to its field-
strength, so that for cach definite optic axis regarded as
a wave-normal there are an infinite number of different
rays, constituting a whole cone of rays. Among the
generators of this cone there is also to be found the
optic axis itself. KFor at the point where the circle of
interseetion meets the y-axis the normal ol the ellipsoid
coincides with the radius of the circle, and hence the
electric intensity of field with the clectric induction, and
consequently also the ray with the wave-normal.

If two of the three principal velocitios of propagation
@, b, ¢ arc equal the crystal is called uniaxial, being
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“ positive;,” by (274), if a =b>c¢, and “ negative 7’ if
a>b =c.

In numerical calculations it is customary to use, not
the values of the principal velocities of propagation, but
those of the ““ principal refractive indices.” Referred to
a vacuum these are :

¢y c Co

20 20 20— .. . (275
a—nl’b nZa c 7"’3 ( )

or, by (253) : B B
n]_ = '\/E_l ng = '\/62 %3 == '\/53 . . (276)
where, by (265) :

Thus for n,; = n, the crystal is positively uniaxial, and
for n, = ng it is negatively uniaxial.

The optical properties of a crystal are closely related
to its elastic structure; for every crystallographic sym-
metry also entails an optical symmetry. Hence the
crystals of the non-symmetrical, monosymmetrical and
rhombic system (II, § 26) are optically biaxial (topaz
positive; aragonite and mica negative);" those of the
hexagonal and tetragonal systems are optically uniaxial
(quartz, ice, zirconium positive, calespar, turmaline
negative); those of the regular system are optically
isotropic (rock-salt, sylvine).

§ 60. The physical significance of the velocity of
propagation g is best seen graphically in Fig. 13 (§ 54),
in which the wave-plane 04 is depicted as having moved
to PB in unit time. The magnitude of q is then repre-
sented by the corresponding increase in the normaj 7;
that is, by the distance 0Q. If instead of measuring the
velocity of propagation along the normal direction n we
measure it along the ray-direction S, we get the distance
OP, which we appropriately designate by ¢’.

The general relation :

q1,=g%=0083 N G )
then holds.



I PLANE WAVES 1356

The appropriateness of our nomenclature is shown in
the circumstance that cach of the different relationships
that have been set up between the divection cosines
introduced and the velocities of propagation retain their
validity if we exchange the accented and the unaccented
direction cosines with cach other and in addition replace
q by ([l,, q" by (l[ and a, b, ¢ by ;l(:, -(l;, (l: The direction of
the magnetic intensity of field A, w, v and the angle 8 then
remain unchanged in the transformation.

We have immediate proof of the correctness ol this
theorem if we consider that by § 54 the samoe laws hold
for the accented direction cosines as for the unaccented,
and that the equations (254) to (277), which serve to
determine the velocity of propagation ¢, remain corroct
if we execute the specified exchanges in them.

Tn this hehaviour we see a dualism, a general law of
reciprocity, which is validd throughout and which may
often bo profitably used to derive new relationships
between tho properties of a wave.  With its help we can
immediately enunciate o number of theorems which are
no less important than those which have preceded.  Weo
shall here mention a few of the most important of them.

Corresponding to every ray-direetion o, 8, y* thero are
two veloeitios of propagation ¢ and ¢'y, where :

a gy gy e o o o (278)
Thaey are the two roots of the equation :

(1o’ hRpe iyt

@t I ¢ -t 0. . (279)

Theso lengths represent the semi-axes of the ellipso
which is the interseetion of the diametral plane perpen-
dicular to o', B, " with the ellipsoid :

wr ot

Gl TiRE L (280)

The directions of the two axes give the divections of the
corresponding electric intensitios of field, whoreas the
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direction of the electric induction is indicated by the
normal of the ellipsoid at the end of an axis, and the
direction of the wave-normal by the tangent at the point
of the ellipsoid in the vibration-plane defined by the ray
and the electric intensity of field. The magnetic intensity
of field forms the normal of the vibration plane, and so
coincides with the other axis of the ellipse.

Conversely we have for any two arbitrarily given values
¢’y and ¢’,, which fulfil the conditions (278), eight ray
directions which are oppositely directed in pairs. They
are represented by the values :

o PO @ =09 @ =g

7RAE @) (@ =)
N IRCEY SN 2
SRR e N I
no OB (P =) (@)

= —

A G NGRS

If ¢'; and ¢’, can be set equal to each other, that is, if "
by (278) :
¢i=q¢,=b. . . . . (282
we get from (281) the two singular ray-directions which
are called the “ secondary optic axes * of the crystal :

v f az—b_z_c
°‘°‘ib'\/&§‘:‘gz"5'°‘°

B =08 .. (283)
r _Q b“"‘C" @
YO—'B. az_c_ —b-‘)IO

These are the normals of the two diametral planes
that pass through the y-axis and which cut the ellipsoid
(280) in circles of radius b. Comparison with the direc-
tion cosines oy, By, v, of the primary optic axes shows
that their angle with the z-axis is smaller—that is, it is
enclosed by primary optic axes. In uniaxial crystals
they coincide with the primary axes, for positive crystals
(o = b) with the z-axis, for negative crystals (b = ¢) with
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the positive and necgative z-axis. To a secondary optic
axis as a ray there belong a whole cone of wave-normals,
the generators of which include the ray itself. Corre-
sponding to cach of these normals there is a definite
vibration-plane which passes through it and the ray and
which contains the electric intensity of field and the
clectric induction.

All these theorems can, of course, also be deduced
directly without the usc of the law of reciprocity if we
repeat the line of reasoning used from § 56 onwards by
considering the unaccented quantitics to be everywhere
replaced by the accented quantities.



CHAPTER II
WAVE SURFACE

§ 61. Tir rcalisation of a plane wave is impossible in
nature if only on account of its unlimited cross-section.
But by applying the same considerations that were used
in dealing with isotropic bodies (§ 5) we arc able to realize
plane waves to a dogree of approximation that can be
carried as far as we please. We take a point-source of
light somewhere in the interior of a crystal which we
suppose of any sufficiently great extent and assume that
it beging to emit light at the moment ¢ = 0 and wo call
the surface to which the light has advanced after the
time ¢ (which entirely surrounds O) the wave-surface
belonging to the point O as centre. If we choose ¢
sufliciently large we can mark off on the wave-surface a
portion of any magnitude whose dimensions will yet bo
small compared with its distance from O and which may
therefore be regarded as nearly plane. The whole wave-
surface is then composed of facets, as it were, of thesc
plane portions, for each of which the laws of propagation
of plane-waves hold.

If there is difficulty in imagining the point-source of
light in the interior of the crystal we may suppose the
source to be situated at a point in the surface of the
crystal, from which it propagates light into the interior.
But in this case we do not obtain the completely closed
wave-surfaces, but only a part cut out by the surface of
tho crystal ; this does not, however, affect our subsequent
arguments, as they refer cssentially only to the considera-
tion of a single plane portion of the wave.

Such a plane portion of a.l ;’gavo propagates itself in the
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crystal, in accordance with the law which we deduced in
the preceding chapter, with a velocity and a polarization
which correspond with its orientation with respect to
the principal axes of the crystal, exactly like the limited
transverse section of an absolutely plane wave such as
we indicated by PB in Fig. 13 (§ 54). In this case OP or
OB, since PB < <OP, denotes the direction of the ray
and 0Q the direction of the wave normal; and we have
OP =¢q' .t, 0Q = ¢ .t The fact that in the neighbour-
hood of the light source O the wave surface can no longer
be supposed to consist of sufficiently great plane portions
causes no difficulty since we can always choose the time ¢
so great that the distances OP and O can be set pro-
portional to the time &.

The above reflections furnish two different methods of
determining completely the wave-surface corresponding
to a sufficiently great time, say ¢ = 1.

The first method uses the ray velocity. Let us draw
the distance ¢’ in any arbitrary direction «'fy’. The
end-points P of all these distances form the required wave-
surface. The sccond method uses the normal velocity.
We draw the distance ¢ in any arbitrary direction afy
and construct the plane perpendicular to this distance
through its end-point ¢. Then all the planes that are
constructed in this way form the tangential planes of the
required wave-surface. The first method gives us the
equation of the wave-surface in point-co-ordinates, the
second method gives us this equation in plane-co-ordinates.

It is possible to establish some propertics of the wave-
surface on the basis of these constructions, without having
to make particular calculations. Since for every ray there
are two values of the velocity of propagation, namely g’y
and ¢’,, every straight line drawn from O as starting-point
cuts the wave-surface in two points P, and P,; that is,
the wave-surface consists of two shells, the outer of which
is composed of the points P, and the inner of the points
P,. The tangential planes of the wave-surface at P, and
P, are the two wave-planes that belong to the ray OP,P,,
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their normals being the wave-normals. But there are
four singular directions, namely the secondary optical
axes (283) together with their opposite directions, which
give only a single point of intersection with the wave-
surface, at the distance b from 0. Thus the wave-surface
has four singular points situated in the zz-plane, at which
the two shells meet. Since corresponding to each of
the singular rays there are an infinite number of normal
directions, the wave surface has an infinite number of
tangential planes at each singular point =, that is, a
whole cone of tangents, which give the surface in the
immediate neighbourhood of the point a funnel-like
appearance. This causes the outer shell to appear dented
inwards at the point in question, and the inner shell to
appear to have an outward bulge. The secondary optic
axis itself is also a generator of the tangential cone.

On the other hand, corresponding to any arbitrary
direction of the wave-normals there are two tangential
planes of the wave-surface at the distances ¢, and g,
from O; these planes are perpendicular to the given
direction. The lines connecting the point of contact with
O represent the directions and the velocities of propaga-
tion of the two associated rays. But there are four
singular tangential planes, perpendicular to the optic axes
(273) and at the distance b from O, for which the distances
¢, and ¢, both coincide with b. Corresponding to each
of such singular tangential planes there are an infinite
number of rays, and hence also an infinite number of
points of contact with the wave-surface; that is, the
plane touches the wave-surface in a curve. Hence the
above-mentioned funnel has a plane edge; it can be
closed completely by a plane sheet. The optic axis itself
is also a member of the generators of the cone of rays
marked out by the curve of contact.

All the above theorems, which follow of necessity from
the developments of the last section, will be confirmed

and illustrated graphically in the following special applica-
tions.
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§ 62. We shall now build up the equation of the optical
wave-surface in the point-co-ordinates z, ¢, z for ¢t = 1;
for this purpose we shall use the first of the two above-
mentioned methods. According to this a point of the

wave-surface is represented by the co-ordinates :

x=ra, y=rp, z2="nr
where : B
r=72 Lyt F 2t =¢.

If we substitute these values of &', §', 9/, ¢" in equation
(279) we obtain as the equation of the optical wave-
surface : . e

alx? 22 22
az__,az"l" 02 ,,«2"' 2 = 72

The surface has O, of course, as centre and divides into
eight symmetrical octants. To obtain its order we mul-
tiply (284) by the common denominator. We then get
an cxpression of the sixth order, but easily see that it
containg the factor 2. If we omit this factor, we get
from (284):
a?lect — {a2(0? + a2 -+ D2(c? + a?)y? + c2(a? + b2)2%)

+ (2% 4+ Y2 + 22) (e + D%y 4 c%?) =0. . (285)

The surface is therefore of the fourth order and this
agrees with the fact that a ray which starts from O cuts
the surface in four points.

The form of the optical wave-surface is best shown
graphically by considering its sections with the three
principal planes. Let us first take the zy-plane. For
z = 0 (285) becomes :

(a20? — a2 — D2y (¢ — a2 —y*) =0 . . (286)

The curve of intersection of the wave-surface with the
ay-planc thus resolves into the ellipse :

=0 . . (284)

ol A
5""-+a,2_1

whose semi-axes arc b and @, and into the inscribed circle :
22 - y‘.! = ¢2
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Qf radius ¢. It is represented in Fig. 14. The points
(Py) of the cllipse form the trace of the outer shell, the
points (P2,) of the circle form the trace of the inner shell.
The wave-surfaces corresponding to a ray S which has
the points of intersection P; and P, are the tangential
planes of the surface at P, and P,, which are, of course,
perpendicular to the zy-plane. This simultaneously deter-
mines the two mutually perpendicular planes of vibration
which belong to the ray § and which pass through it and
the wave-normal n. The vibration-plane at P, is the
ay-plane, that at P, where the ray and the normal

2

Tra, 14. Fra. 15.

coincide, is the perpendicular plane. The vibration-plane
containg the electric intensity of field E and the electric
induction b, the first being perpendicular to S and the
socond to n. At P, they both lie in the plane of the
diagram (sce figure). At P, they are both perpendicular
to this plane and coincide. Conversely, the magnetic
intensity of field X at P, is perpendicular to the diagram,
whereas at P, it lies in the plane of the diagram.

Kxactly corresponding remarks may be made about
the curves of intersection of the wave-surface with the
other two principal planes. Let us first consider the
zy-plane.  Tor & = 0 (285) becomes :

(b%2 — D2y% — %) (a® —y2—2%) =0. . (287)
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We therefore obtain as the trace of the external shell
the circle :

of radius @, and as the trace of the inner shell the ellipse :
2 42

Gl

whose semi-axes are ¢ and b. The corresponding diagram
is shown in Fig. 15. It differs from that shown in Fig. 14
only in this respect, that for the points P, of the inner
shell the vibration-plane falls in the planc of the diagram,
whereas for the points P, of the
outer shell it is perpendicular to
that plane.

§ 63. The most interesting cross-
section of the wave-surface is that
made by the az-plane, that with
the greatest and least principal
velocity of propagation. For the
two spherical sections which the
plane y = 0 cuts out of the wave-
surface (285) :

(a2 — c%? — ax?)
@2 —22—22) =0 (288) Fia. 16.

that is, the ellipse with the semi-axes ¢ and a, and the
circle of radius b, intersects in four real points, as is shown
in Fig. 16. Since for every ray drawn from O to any
such point the two velocities of propagation ¢’, and ¢’,
corresponding to it coincide with cach other and with b,
those two of these four directions which make an acute
angle with the z-axis form the two secondary optic axes
of the crystal, and the trace of the outer shell of the
wave-surface is partly represented by the two elliptic
arcs which project beyond the circle and partly by the
two circular arcs that project beyond the ellipse. The
converse holds for the inner shell.

Like the secondary optic axes so the primary optic




144 THEORY OF LIGHT CHAP.

axes also lie in the zz-plane, and, in fact, they form the
normals of those tangential planes which touch the wave-
surface along a whole curve. Their distance from O
amounts to ¢; = ¢, = b, the angle between the primary
optic axis is, in accordance with (283), greater than that
between the secondary optic axes. The curve of contact
represents the plane edge of the funnel, described at the
end of § 61, which intersects the plane of the diagram at
the points 4 and B and for the rest runs perpendicularly
to this plane; for this reason it is depicted only by a
dotted line in Fig. 16. The straight lines drawn from O
to the points of the curve of contact constitute the cone
of rays that belong to the optical axis 04 ; the generators
of this cone also include the optic axis.

To find the form of the curve of contact we imagine
the point C' on the curve in the figure to be movable and
starting from A to pass along the front arc of the curve
to B and then to travel along the back arc of the curve
to 4 again. In any position of C the corresponding ray
is denoted by OC and hence the associated vibration-
plane is denoted by the plane OAC and. the corresponding
electric induction by the direction AC' which is perpen-
dicular to 04 and lies in the plane OAC.

The length of the distance 4C is obtained from the
right-angled triangle OAC and comes out as :

AC = 0A4. tan. A0C

ans (G -2)

=b'ta'ns__-b'cos,S= cO8 8

or, by (247) and since the wave-normal o, By, ¥, iS
perpendicular to the electric induction &, », { :

_ 3. %€+ Bon” 4 ol |
A0 =b

where :
%+ B+ vl =0. . . . (289)
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From this it follows by (260) that :

_ 7 18%gE -+ DBgn + cPyl]
A0 =0 " e o
and, by (259) and (289), we get, taking into account that
here ¢ =band By = 0:
a2 — c?

AC = ===l . . . . (290)

The required curve of contact is completely determined
by this rclationship. For from it we get for every value
of the direction cosine { and hence also for every direction
of the straight linc that rotates about 4 the corresponding
value for the distance AC. 1f C coincides with 4 then
AC =0 and { = 0; that is, the tangent of the curve at
A is perpendicular to the z-axis, and since it is also
perpendicular to the optic axis OA4 it lies in the direction
of the y-axis, perpendicular to the planc of the diagram.
If C' then moves towards /3 the angle botween AC and
the z-axis decreases and so { incrcases up to a maximum
which is attained when O coincides with B. For then,
since AB is perpendicular to OA, we have { = ay and
by (290) :

2 . p2
AB=2"Zay, . . . . (201)

When the point C returns along the other arc of the
curve the same values are traversed in the reverse direc-
tion until C again coincides with 4. The rclation (290)
becomes still simpler if we introduce the angle CAB in
place of . This is the angle between the direction AC.
which has the direction cosines £, n { and the direction
AB, which has the direction cosines — v, 0, ;. So:

cos CAB = — ’)/of - “oz
and by (289) :

~ (7 =L

cos CAB = (% tag)l=

Combined with (290) and (291) this gives :
AC = AB.cos CAB
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Hence it follows that the triangle ABC is right angled
at O, and that the curve of contact ACB is a circle. But
this does not imply that the cone of rays OC is a circular
cone. For the circular cross-section ACB is perpendicular
to a generator OA4 of the cone. We get as the simplest
expression for the size of the aperture of the cone of
rays:

2 _ 2
tan w = % = 'a'—'l—)"z—c—olo’)/o
where w denotes the angle between the rays 04 and OB.
And by (273) we get :

V@ =80 —¢) | (209)
b2

Exactly corresponding theorems may be derived from
the law of reciprocity (§ 60) for the secondary optic axes
and for the singular points of the optic wave-surface.
At every singular point there are, corresponding to the
singular ray connecting O to it, an infinite number- of
wave-planes and wave-normals, which form a cone of
aperture ', where, analogously to (292) : '

vt =G

tan o = Y@ = ch)(bz =) ... (293)

tan w

or:




CHAPTER III
NORMAL INCIDENCE

§ 64. SiNcE the reflection and the refraction of light
at the surface of a crystal obey considerably more com-
plicated laws than in the casc of isotropic bodies it secems
advisable to begin here by considering some rather simple
cases. We shall first take the simplest case, where a mono-
chromatic plane light-wave in air falls normally on the
surface of a crystal which we shall suppose to have any
arbitrary dircction with respect to its principal axes.

Since according to our assumption all points of the
surface of the crystal are excited simultaneously in the
same phase by the incident wave, the wave-plane and
the wave-normal remain preserved also in the interior
of the crystal. A peculiar feature, however, presents
itself in that within the crystal there are two waves that
propagate themsclves with quite different velocities of
propagation ¢, and ¢,, and they also have quite different
directions for their field-strengths and inductions as
obtained from the laws derived above for a definite
direction of the wave-normals. On emecrging from the
crystal cach of the two waves obeys its own laws of
refraction and reflection. Hence we may use the differ-
ence in the two velocities of propagation in the crystal
to separate the waves entirely from one another, for
example, by allowing one of them to be totally reflected
when it impinges on the opposite surface of the crystal,
while the other emerges refracted in the usual way. This
is effected in a Nicol prism, which furnishes the simplest
method of obtaining linearly polarized light from natural
light.

147
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For our discussion we shall now take a polished plane
parallel crystal plate, so that even when the wave-planes
emerge from the crystal they remain parallel to the
surface. Since the electric inductions of the two waves
are perpendicular to each other and to the wave-normals,
they lie in the surface of the crystal and are also called
the principal sections (optical) of the plate. They repre-
sent the wave-planes of the two waves and are denoted
by I and II in the plane diagram of Fig. 17, which is to
be imagined as parallel to the face of the plate. We shall
suppose the light-waves to enter the plate from the rear
and to pass out in the direction pointing towards the
observer.

If the incident light is natural light the transmitted

I light will also be natural light if, as we
A shall do here, we disregard losses due to
reflection. But the result is different if
we allow polarized light to fall on the
plate, say by allowing the light first to
1 Dass through a Nicol prism, which is in
Fre. 17. thiscase called a polarizer. The vibration-,
plane of thelight which has been polarized

in this way and is incident on the crystal is denoted in
Fig. 17 by OP; let it form an angle ¢ with the principal
section I. On entering the crystal the light-wave resolves
into two waves whose vibration-planes are I and II,
whose velocities of propagation are ¢, and @5 Whose
phase-difference is zero, and whose amplitudes have the
ratio cos ¢ :sin ¢ (§ 22). When these two waves have
passed through the crystalline plate, of thickness D, they

have the following difference of phase on emerging from
the plate :

d

A= (————>=—i~7—:(n1—n2)D. . (294)

where « denotes the frequency, A; the wave-length in
air, n; and 7, the indices of refraction. Hence in the air
they in general combine to form an elliptically polarized
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wave (§ 26), the directions of whose axes depend essentially
on the quantity A. It is only when A is a whole multiple
of # that linearly polarized light again results. If A is
an odd multiple of %, the axes of the cllipse fall in the
directions of the principal sections I and I7; if, in addition,
¢ = Z or "3::—7 the light is circularly polarized. Hence
a crystalline plate of this kind and of suitable thickness
(for example, a thin sheet of mica) provides us with a
simple means of transforming linecarly polarized light into
circularly polarized light, or vice versa by being used as
a compensator, and of analysing elliptically polarized
light into its rectilinear components.

If we make the light which emerges from the crystal
plate in the forward dircction pass through a second Nicol
prism acting as an analyser, 1ts direction of vibration OA
(Fig. 17) making an angle ¢ with the principal section I,
then of the wave J with amplitude cos ¢ only the com-
ponent cos ¢ . cos ¥ and of the wave II with amplitude
sin ¢ only the component sin ¢ . sin ¢y pass through the
analyser; and these two waves, both of which vibrate
in the direction 04, give the following intensity, according
to (101), the light delivered by the polarizer being taken
to be of unit intensity :

J =cos? ¢ cos? i +sin2 ¢ sin? -+ 2 cos ¢ cos Y sin ¢ sin g cos A
or:
J = cos? (¢ — ) — sin 24 sin 2 singg oo (299)

A particularly interesting case is that where the dirce-
tions of vibration 04 and OP are mutually perpendicular,
that is, where the polarizer and the analyser are in the

T

5 and from

“crossed ” position. For then ¢ = ¢ +
(295) wo get :
J = sin? 2qS.sin2%_ Coe . (296)
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In this case J vanishes simultaneously with A.  Hence
this proves that whenever light can pass through a plate
placed between two crossed Nicols the phase-difference
A and hence also q; — ¢, differ from zcro. This gives
us one of the simplest means of testing whether a sub-
stance is anisotropic or not. The directions of the prin-
cipal sections I and II can also be directly determined
then, since by (296) the transmitted light has its maximum

intensity for ¢ = %amd ¢ = '%E, whereas for ¢ -0 and ¢ 7

it vanishes entirely, ag is quite natural.

§ 65. So far in dealing with light-waves in the crystal
we have considered only the wave-normals and not the
rays. This is allowable so long as the
cross-section of the wave may be assumed
to be unlimited. But so soon as the
cross-section of the wave is limited the
circumstance asserts itself that the energy
of the wave does not propagate itself in
the direction of the wave-normal but in

Fra. 18. that of the ray as has been explained
earlier, in § 54, by means of Hig. 13.

Now since in general there are two different rays for a
definite wave-normal the two waves into which the plane
beam of rays that falls normally into the plate resolves
itself will sooner or later, depending on the size of its cross-
section, separate and emerge from the opposite side of
the crystal as two distinct beams of rays, as is indicated
in Fig. 18. In this sense the crystal plate is doubly refract-
ing even when the light is normally incident, although
the wave-planes in all the rays, inside and outside the
crystal, always retain the same direction. Here then the
double-refraction is not, as in the case of isotropic bodies,
determined by the difference between the substances in
contact but by the nature of the crystal alone.

§ 66. A particularly interesting case occurs when the
crystal plate, say of arragonite, is cut perpendicularly
to the optic axis. For then an infinite number of rays

'

A
Hilludaiidd
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belong to the one wave-plane parallel to the surface
of the plate, and the light, on entering the crystal,
propagates itself not in two, but, if it was originally
unpolarized, in all the directions of the generators of the
ray-cone which corresponds to the optic axis as normal.
The optic axis is also included among them. The plane
of the diagram of Fig.19, like that of Fig.16 in § 36, contains
besides the optic axis also the axis of the greatest and the
smallest principal velocity of propagation (zz-plane). The
directions 04 and OB denote, as in Fig. 16, the optic-axis
and the ray of the cone that diverges most from it. Since
the section of the surface of the plate, that is, the singular
wave-plane with the ray-cone, is a circle, the rays that
pass out into the air form the mantle
of a circular cylinder, whose diameter
AB is obtained, according to Fig. 19,
from the angle of aperture w of the B
ray-cone and the thickness 04 + D; df A
its value is D tan w, where the value w kY,
(292) must be inserted for tan w. 9 4
The phenomenon which has just been Tic. 19.
described is one of the most brilliant
confirmations of theoretical crystalline optics; it is called
“ gonical refraction,” and in the particular case considered
““internal conical refraction,”’ because the conical resolution
of the light occurs when the light enters into the crystal.
§ 67. As in the case of cvery law that refers to the
ray-direction in the crystal there is, corresponding to the
phenomenon of conical refraction just considered, a
reciprocal law which refers to the normal direction and
which is founded on the circumstance that certain singular
rays have not two but an infinite number of different
wave-normals corresponding to them. We have then
only to endeavour to produce a ray whose direction
coincides with a secondary optic axis. For this purpose
we may very well use tho same arragonite plate as in
the experiment described in the preceding section, but
in the following way.
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We place a point-source of light O at the surface of
the crystal, say by covering the surface by an opaque
screen having a fine hole O and then illuminating the
screen from all directions. Rays from O will then enter
the crystal in all directions. If we now also cover the
opposite surface of the plate likewise by an opaque
screen having a hole at P, then of all the entrant rays
only a single one, namely the one OP, can emerge from
the crystal. As we know, there are in general two
normals, that is, two wave-planes corresponding to this
ray, which make certain angles with them and pass
out into the air according to a definite law of refraction
which we shall learn more about in the next chapter.
Thus at P we obtain two rays of light
emerging in different directions.

¢  Bubinthespecial case where the direction
% OP coincides with a secondary optic axis
P of the crystal, there are an infinite number
>/ of differently directed normals and wave-
planes belonging to the ray OP in the
Fia. 20. crystal, and since each of them is refracted
in a particular way on emerging from
the crystal, the light from P propagates itself conically
in an infinite number of different directions into the air
(Fig. 20), a phenomenon which is known as  external
conical refraction ”’ because here the resolution of the light
occurs on leaving the crystal.

To find the appropriate direction P we must, of course,
arrange to be able to move one of the screens, and must
move it until the straight line OP connecting the two
holes coincides with a secondary optical axis.

Of course in the case of conical refraction, both internal
and external, each of the rays of the cylinder or cone
that emerges into the air has a perfectly definite plane
of vibration and polarization, which may be obtained
from the well-known laws of propagation and refraction.




CHAPTER 1V
OBLIQUE INCIDENCE

§ 68. Tz laws governing the passage of a planc wave
of light from an isotropic body into a crystal, or the
converse, may be derived by the same method as was
used in the first part of this volume: we first form the
expressions for plane waves in the interior of the two
bodies in contact and then set up the boundary conditions
for the surface of separation which cxpress the con-
tinuity of the tangential components of the clectric and
magnetic intensity of field. We get from this, if the
incident wave is arbitrarily given, definite expressions
for the refracted and the reflected wave.

Since, in order to be able to retain the relationships
that have hitherto been used, we have again taken the
principal axes of the crystal as co-ordinate axes, we cannot
here, as we could in the case of isotropic bodics, take the
normal of the incident wave as the z-axis; rather, we
shall call the direction cosines of this normal «g, B Ve
and the velocity of propagation in the first body, which
is isotropic, ¢,. Then, as in (8), an incident wave of
definite polarization will be characterized by its wave-
function (magnetic intensity of field) :

f <t — s Py ) L (207)
Qo

where f represents an arbitrarily given function of a

single argument. Let the normal of the planc of separa-

tion, the incident normal, have the direction cosines u, v, w.

We wish to find the wave-functlions of the refracted wave :

file-EEPEy) L (208)

q
153
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and the reflected wave :

(p X+ By +YR . (200
f <t W ) (299)

As in the case of isotropic bodies so here the problem
falls into two parts. Firstly we have to determine the
directions of the refracted and the reflected wave;
secondly we have to determine the wave-functions f; and
f'. Both these objects are accomplished by setting up
the boundary conditions which express the equality of
the electric and magnetic intensity of field at both sides
. of the plane of separation :

wr+vy+wz=0 . . . . (300)

As in (15) and (16), this again gives us two equations
which are linear and homogeneous in the quantities f,
f1, f', from which we find that f; and ' are proportional
to f.

§ 69. Let us first consider the directions of the refracted
and the reflected wave. Since the proportionality of f,
and f* with f is to hold for all times ¢ and for all points
of the boundary surface (300), therefore, just as in § 7,
the arguments of these functions must be equal to each
other; that is, at the boundary surface we must have :

% + By +yR_ o2+ By + 2 _ oo+ By + Y2
9 q %0
The first equation leads to :

G- G- r-gemo.

If this were to hold for any arbitrary values of z, y, 2
the bracketed quantities would all have to vanish. But
%, ¥, z are connected together by the condition (300).
So we may also proceed by expressing z in terms of z and
Y, substituting in (302) and then setting the coefficients
of z and y both equal to zero. It is more expedient to
use Lagrange’s method of undetermined multipliers as in
I, § 97. This consists in multiplying the expression (300)

(301)
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by a certain constant A, adding the result to (302), and
then sctting the coefficients of # y, z individually equal
to zero. This gives us the three equations :

o o

%0 =

q Qo+u 0

B_Bo

2 _re V=0 - .. (303)
q 90+

LYo dw=0

q Qo}—

These cquations allow of a simple geometrical inter-
pretation. In the first place the three directions repre-
sented by the dircction cosines all lie in a plane, that is,
the normal of the refracted wave lies in the plane of
incidence formed by the normal of the incident wave and
the normal to the surface; and secondly, if we multiply
the individual equations with the corresponding direction
cosines of the line of intersection of the incident plane
and the boundary plane and then add, we get :

sinf  sinf,

q do

where 6 and 6, denote the angles between the two wave-
normals and the normal to the plane. Hence Snell’s
law of refraction also holds for refraction at a crystal
surface so far as it refers to the normal of the refracted
wave. But here it has not the same significance as in the
case of isotropic bodies, because the velocity of propaga-
tion ¢ is not known and itself depends on the desired
angle of refraction 6. Hence in order to calculate the
direction of the refracted wave we must use the relation-
ship botweon ¢ and «, B, y expressed by (264). This is
done most simply and intelligibly by introducing the
abbreviations :

0 . . . . (304)

= 1

=
IR
It
®
I

== x’ -@
q (305)

= R R

[
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where, of course, z, y, 2 now have a different meaning from
before. For then it follows from (303) that :

<w—°q—cio’):<y—%>:<z—-goﬂ>=u:v:w. . (306)
and from (264) :

22 92 22
o Rl v R | =0 . . (307)

The first equation states that the point P represented by
the co-ordinates z, y, z lies on the straight line which is
parallel to the normal «, v, w to the plane of the crystal
and which passes through the point 4 whose co-ordinates

are 29, 99, Yo Here 04
d0° 90 9o

\\ and OP (Fig. 21) denote
2 \2 \2 the directions of the
% \

0

normals of the incident
and the refracted wave and
the reciprocal values of

,4{ the corresponding veloci-
%P ties of propagation ¢, and
g¢. The second equation
states that the point P lies on the surface (307). Com-
parison with (284) shows that this surface may be regarded
as the optical wave-surface of a hypothetical crystal whose

principal velocities of propagation are (%, %, —i— This

U

Fia. 21.

surface is also called the “‘index surface ” of the real
crystal whose principal velocities of propagation are
@, b, ¢, because the principal indices of refraction =,
Ny, N3 AT, by (255), inversely proportional to the quantities
@, b, c.

The index surface bears the same relationship to the
wave-surface as the ellipsoid whose semi-axes are a, b, ¢
(§ 60) bears to the Cauchy ellipsoid of polarization whose

. 1
semi-axes are , %, % (§ 58). Hence all the consequences



. OBLIQUE INCIDENCE 157

that follow from the general law of reciprocity also apply
to the properties of the index surface. For example,
the primary optic axes of the index surface are at the
same time the sccondary optic axes of the wave-surface
and vice versa.

§ 70. The preceding theorems give a simple geometrical
method for finding the dircction and the velocity of
propagation of the refracted wave. Through the central
point O of the index surface of the crystal draw a plane
parallel to the plane of incidence and take it as the plane
of the diagram (Fig. 21). This plane contains the normal
%oPoyo Of the incident wave and the normal of incidence
wow. The intersection with the two shells of the index
plane is denoted in the figure by two curves, one of which

encloses the other. Now draw the distance 04 = 1 in

0
the direction ayBgy, and through A draw the parallel to
the normal of incidence uvw. Every point of intersection
P, or P, with the index surface then gives, when joined
to O (that is, the line OPy, or OP,), the direction o3y and

the reciprocal velocity of propagation }l of the normal

of the refracted wave. So in gencral when the incident
wave enters the crystal it resolves into two different
refracted waves. Corresponding to cach of these two
wave-normals there is (1) a definite ray whose direction
is represented by the normal to the index plane at the
point P, and so in gencral leaves the plane of incidence
and (2) a definite planc of vibration which passes through
the normal and the ray, so that the direction of the
clectric and magnotic intensity of field and of the induc-
tion is determined.

If ¢, is not too great compared with the principal
velocities of propagation a, b, ¢ it can happen that the
point A lies outside the inner or even the outer shell of
tho index surface. In this case the point P, or both
points P, and P, possibly become imaginary, and the
conditions for total reflection obtain.
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The method of construction just described is graphically
verified if we apply it to the refraction of light by an
~ isotropic body, which may always be regarded as a special
case of a crystal. In the case of an isotropic body the
two curves of intersection of the index-surface coincide

with the circle of radius ?11, and from the relationships

between the angles 6, and 6, which the directions 04 and
OP form with the normal of incidence www, and the

lengths 1 and L of these distances we obtain Snell’s law
0
of refraction sin 6, : sin § = ¢, : q.
§ 70a. For the reflected wave the second equation (301)
gives :
(@'o — o)+ (B0 — Bo)y + (¥'o — 702 =0

and it follows from this, by reasoning fully analogous to
that given above, that the normal of the reflected wave
lies in the plane of incidence, and that its angle 6, with
the incident normal is determined by :

sin 'y = sin 6.
Hence :
0,0 = qT — 00-

That is, the angle of reflection is equal to the angle of
incidence, just as in the case of isotropic bodies.

§ 71. In the same way as we have here treated the
refraction. and reflection of a wave that emerges from
an isotropic body and falls on a crystal we may also treat
the converse case where a wave which advances within a
crystal impinges on the surface of an isotropic body.
We then obtain by the same method the corresponding
laws of refraction and reflection, which distinguish them-
selves in a characteristic way from those obtained earlier.
In general, for example, there are two different waves
which are reflected back into the crystal from the surface,
whereas only a single wave which can be determined
directly from Snell’s law escapes into the isotropic medium.
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§ 72. We shall sclect for treatment only a few of the
many applications which can be made of the laws which
we have derived for the reflection and refraction of
crystals. To simplify maticrs as much as possible wo
shall restrict oursclves to wunmiazial positive crystals, so
that by § 59 :

a=b>c . . . . . (308)

For this the equation (264) becomes :

(6 + B0t — ¢2) -+ 9@ — g} (@ — %) = O
whose roots are :

7 =a ) .
2 . (“2 - pe)cz - yeae J

The wave whose constant velocity of propagation is
a == ¢, is called the ¢ ordinary ” wave and that with the
variable vclocity of propagation g, is called the * extra-
ordinary > wave.

If we call the angle which the wave-normal makes with
the optic axis, the z-axis, 6, that is, y -= cos 8, and if, for
simplicity, we omit tho suffix 2 in ¢,, thon we get for the

velocity of propagation of the extraordinary wave, from
(309) :

(309)

2~ q2cos? 0 - ¢2sin20 . . . (310)
q

The equation (285) of the optical wave-surface becomes,
fora = 0:

(@%® + a%y? + %% — a2c?) . (2 + Y2+ 22 —a?) - 0 (311)

So the surface resolves into the elongated ellipsoid of
rotation whose semi-axes are c, ¢, ¢ :

v 319
02+c2‘* N G 15)

and into the sphere of radius @, where :
x2 + y2 _[_ z'Z P (112

which touches the cllipsoid at the ends of its axis.
The ecllipsoid forms the inner shell, the sphere the
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outer shell. The primary and the secondary optic axes
coincide with the z-axis.

In Fig. 22 the two wave-planes are drawn which corre-
spond to a definite wave-normal 0. They touch the
wave-surface at the point P of the internal and @ of
the external shell. The corresponding rays are OP and
0Q. The vibration-plane of the extraordinary ray OP
coincides with the plane of the figure, namely the prin-
cipal section of the crystal that contains the optic axis;
the vibration-plane of the ordinary ray O is perpen-
dicular to the latter. Accordingly the electric induction
at P also lies in the plane of the diagram, whereas that
at @ is at right angles to it (cf. Figs. 14 and 15).

z The angle which the ordinary ray
0@ makes with the z-axis is the same
2 as that between the wave-normals,
Q namely 6; that which the extra-
A ordinary ray OP malkes with the z-axis
is . The value of 8" can easily be
obtained by reflecting that in Fig. 22
the angle § denotes the direction of
Frq. 929, the normal to the ellipse at the ex-
tremity of the diameter OP drawn

in the direction 8. Thus :

sinf:cosf =500 .88 (313
C a
From this we obtain :
2
cos§’ = a? cos § .. (314)

Vatcos?§ + ctsin? f
For the angle § between the ray and the normal of the
extraordinary wave we get :
0?cos®f + ¢ sin® 315)
Va* cos? 6 + ¢t sin2f
and for the velocity of propagation measured in the
direction of the ray :

q \/af‘coszf) + c*sin?0 316
cos8 Va2cos?f + ¢2sin2 0 - (316)

cosd =cos (§ — ') =

q =



. OBLIQUE INCIDENCE 161

In calculating these quantities we may of course use
the- relationships which arise from the general law of
reciprocity (§ 60). For example, from equation (310) we
may immediately derive the following relationship :

2 9’ in2 g’
;}fss=°°220 +S”2_29 ¢ 31
which may casily be verified subsequently.

§ 73. We shall now consider the passage of a plane
monochromatic wave through a plane-parallel plate of
a uniaxial positive crystal which is cut perpendicularly
to the optic axis. Let the angle of incidence be 6, and
let the plane of incidence, which at the same time repre-
scnts a principal section of the crystal, be taken as the
plane of the diagram in Fig. 23, z

b

in which the z-axis represents /c/
the optic axis and the incident A B 7
ray is imagined as passing
from below on the left through
the plate up towards the right. A

Since we shall assume the
wave, like the plate, to De
unlimited laterally we need not take the ray-direction
into special consideration and may restrict ourselves to
congidering the wave-normals.

A ray of natural light which falls from below on the

point A of the plate there resolves according to Snell’s
law into an ordinary wave :

S

Fra. 23.

siny _qo_90 . . . . (318)
sinf, ¢ a

and an extraordinary wave :

sinfo _ ¢ . . . . . (319)
sin 6y ¢,
where ¢, and 6, arc related to cach other as in (310).
Bach of these two waves traverses the crystal and in
passing out through the opposite face, which contains

the point 4, cach yields a ray which is directed upwards
M
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towards the right which is parallel to the ray which
extends from below at 4, since the second refraction occurs
in exactly the opposite direction sense to the first. Hence
the two waves subsequently reunite again to form a
single wave which is parallel to the incident wave. But
since the path measured along the wave-normal is different
for the two waves the phase-difference between them
when they leave the plate is different from that on enter-
ing. We proceed to calculate this phase-displacement
A which arises from transmission through the plate.

The normal of the ordinary wave in the crystal is
represented in Fig. 23 by the distance AC, and the angle
CAA’' = 0;. At the point C the second refraction occurs

which restores the original direction which made an angle
6, with the z-axis.

The normal of the extraordinary wave in the crystal
is represented by the distance 4B, the angle BAA’ being
equal to 6,. At the point B the ray again escapes into
the air in the direction §,. The wave-plane of the trans-
mitted light is then CC’ which is perpendicular to BC’,
and the wavenormal is BC’. The desired phase-dis-
placement A is obtained if we fix our attention on two
definite wave-planes, the one before its entrance into the
plate, say that which passes through A, the other after
its emergence from the plate, say that through C, and
compare the changes which have occurred in the wave-

function w(t — %) in the case of each of the two waves in

the intervening space between the two wave-planes. In
this intervening space the normal of the ordinary wave
is the straight line AC, that of the extraordinary wave
1s the refracted straight line 4 B(”, of which the part AB
is traversed with the velocity gy, and the part BC’ with
the velocity gy, no sudden change of phase occurring in
the process of refraction. From this we get as the required
phase-displacement :

_ (AB  BC' 4
A_w<_é;_+?{"7' .. (820)
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The distances AB, BC’, AC as well as the velocity of
propagation ¢, are obtained from the angle of incidence
0, TFor simplicity we assume 6, to be small and restrict

our atiention to terms involving 2. It then follows
from (318) that:

[47 20,2
O, =" -0y cO80;=1—-."0
Yo t 2¢,2

and from (319) that :

[/
Bl “-0
T °

and by combining these results with (310) we get :

2

Q.2 — a — (a2 — ¢2)0,2

a2 — 2 o
(]2 - a<l —_ 2(102'“60“‘)
a
By 5 by = O

Further, if D) is the thickness of the plate :

ag - Do p(14 P

cos 0, 2g,2
AC 00{‘)91 -~ AB
wherceas the distance :
BC' — BC .4,

is of a smaller order than D . 62 and may therefore be
neglectoed.

The substitution of all these values in (320) leads to :
I 1\ oD a-¢ ,
A w.AB.<q2 -5 Ry}

or, if we introduce the principal coefficients of refraction
ny and n, and the wave-length A, in air we get :

aDny (1 1 o
A 0T )\0 1 (nlz — %;2) . 00“ . . . (321)
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The extraordinary wave has its vibration plane and
hence also its electric induction in the principal section,
that is, in the plane of incidence, the ordinary wave
being perpendicular to it. Hence the extraordinary wave
is given by that component of the incident ray which
vibrates in the plane of incidence-and the ordinary wave
is given by the component which is perpendicular to it.

If the incident light is linearly polarized, say by a
Nicol prism used as a polarizer, whose plane of vibration
makes the angle ¢ with the plane of incidence, the phase-
difference between the two waves on entering the plate
is zero and their amplitudes are in the ratio cos ¢ : sin ¢,
if we discard losses due to reflection. On leaving the
plate the phase-difference is, as we calculated, A, so that
the emergent light is in general elliptically polarized. If
we subsequently allow the light to pass through a second
Nicol prism, acting as an analyser, whose plane of vibra-
tion makes the angle s with the plane of incidence, we
obtain just as in (295) the intensity of the transmitted
light referred to the light delivered by the polarizer as
unity : ‘

J =cos? (¢ — ) — sin 2¢ . sin 24 . sin‘zg . (322)

where A is now given by (321).
If the two Nicols are crossed, then we have as in (296) :

J=sin22¢.sin2%—- ... (323)

If, finally, the light passes through a focusing lens
which is parallel to the crystal plate the light rays meet
at a single point of the focal plane of the lens, whose
position is denoted by the angle 8,, which is proportional
to the distance of the point from the axial point, that is,
the focus of the rays that pass perpendicularly through
the plate without being refracted.

From this we can derive the phenomena that occur
when a whole beam of nearly normally incident rays pass
through a plane-parallel plate of a uniaxial crystal cut
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perpendicularly to the optic axis and situated between
two crossed Nicols. Here we have an infinite number of
planes of incidence adjacent to one another, each corre-
sponding to a different value of ¢. Hence the intensity
of light J, besides depending on 6,, also depends on the
azimuthal angle ¢ of the plane of incidence, and we
obtain in the focal planc of the lens a black cross (¢ = 0,

¢ = Z—;) with concentric black rings superposed on it, whose

radii are given by those values of A which are integral
multiples of 2. For other positions of the Nicol prism
we obtain the value of J directly from (322).

§ 74. So far we have dealt only with the direction and
the velocity of propagation of the waves refracted and
reflected by a crystal.

If we now rovert to the remarks made in §68 and
inquire into the values of the wave-functions we must
take into account, just as in tho case of isotropic bodies,
the special form of the boundary conditions. But the
problem will bo considerably more complicated than for
isotropic bodics because here we are no longer able to
treat the refraction and the reflection of the component
vibrating in the planc of incidence completely separately
from the component that vibrates perpendicularly to the
plane of incidence. In general, rather, cach of these two
components will undergo double refraction when it en-
counters the crystal.

Novertheloss a moment’s consideration will show that
there is a way of separating the problem into iwo inde-
pondent parts and so to simplify the calculation con-
sidorably. Only, in doing so, we must take care not to
gtart with a dofinitec component of the wave incident
from the isotropic body, but must fix our attention
primarily on one of the two waves advancing in the
crystal. For if, with the help of the theorems of the last
section, the directions of propagation and the polarization,
as woll as tho velocities of propagation of the two refracted
waves, are completoly determined we may propose the
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question : of what nature must the incident wave be in
order that only one of the two refracted waves is formed ?

So we now consider as known the direction of the
normal n, of the electric and magnetic intensity of field
and of the induction, as well as of the velocity of propaga-
tion ¢ of one of the two refracted waves, and we deter-
mine the corresponding incident and reflected wave. This
is accomplished by setting up the boundary conditions,
which express the continuity of the tangential components
of the field-strengths.

If we denote the magnetic intensity of field of the
refracted wave by :

H=ﬁo_9 S (324)
then the electric intensity of field of the wave is, by
(257):

=2 _p(¢=") . . . (325

Co COS & f1<t q> (323)

The direction of the electric intensity of field, which
we also take as known, may be conveniently expressed
by means of its direction cosines, ¢ 7, {, referred to the
three following mutually-perpendicular directions : the
normal of incidence (¢£), the line of intersection of the
incident plane with the boundary face () and the normal
of the plane of incidence ({) (cf. Fig. 1).

Then, of the two components of the electric intensity
of field which are tangential to the boundary surface,
that in the plane of incidence is

q
m 'fl . ')7 . . . . . (326)
and that perpendicular to the plane of incidence is :
q
cocossS'fl'Z R

Th_e direction of the magnetic intensity of field is per-
pendicular firstly to the electric intensity of field which
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has the dircction cosines &, u, {, and secondly to the
wave-normal which lies in the plane of incidence which has
the direction cosines cos 6, sin §,0. Hence the direction
cosines of the magnetic intensity are :

{sinf —Lcosb ncosf— Esinf

s 2
cosd’ cosd ’ COS 8 (328)

The correct signs are obtained by considering a special
case, such as that, for example, for which § =0, =0, n=1.
Hence, by (324) and (328), of the two components of the
magnetic field-strength which are tangential to the bound-
ary surface that which lics in the plane of incidence is :

. Lcosf 5
_/1.._005_8_. S .. (329)

and that perpendicular to the plane of incidence is :

BT as - B30

We next form the corresponding quantities for the
incident wave, which we, of course, also assume to be
linearly polarized. If we denote its magnetic field-
strength by f, then by (8) and (7) its clectric field-strength

is f. Z(‘)’ If the vibration-plane makes the angle ¢ with

the plane of incidence, then of the two components of
the clectric field-strength which arc tangential to the
boundary surface that in the incident plane is :

j‘~;1°-cos¢.cos90 ... . (831
0
and that perpendicular to the incident plane is :
7904in ¢ L. (332)
Co
while the corresponding quantities for the magnetic field-

strength aroe :
—fsingcosfy . . . . (333)
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and :

f.cosp . . . . . (334)

Finally, for the reflected wave we obtain fully analogous
expressions, which we distinguish, as before, by accenting
them, noting that ¢’ = ¢, and 6’y == — 8,. TFor the
electric intensity of field we obtain in this way the
components :

—-f- —Z—Q cosp'cosf,. . . . (335)
0
and :
Flgng . . . . . (336)
Co
For the magnetic intensity of field we get the components :
f'sing’cosfy. . . . . (337)
and : ‘
fleosd” . . . . . (338)

At the boundary surface the tangential components of
all the field-strengths are continuous, that is, the sum of
each pair of field-strengths, of the same kind, of the
incident and reflected wave is equal to the correspond.ing
field-strength of the refracted wave. This gives us four
boundary conditions; namely, firstly, for the electric
field-strength in the incident plane, by (331), (335), (326):

fqo cos ¢ cos B, — f'q, cos ¢’ cos 8, = - fm (339)

secondly, for the electric field-strength perpendicular to
the plane of incidence, by (332), (336), (327) :

faosing + fasing’ = Lot .. (340)

thirdly, for the magnetic intensity of field in the plane of
incidence, by (333), 337), (329) :

— fsin ¢ cos 6y + f' sin ¢’ cos 6, = — f, - §cos60 . (341)
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and fourthly, for the magnetic intensity of field perpen-
dicular to the plane of incidence, by (324), (338), (330) :

y r_pmeosd —£sind
feos ¢ + ['cos ¢’ = f; - sy (342)

If, asin § 7, we sct:

fr=upf and f1 = f. . . (343)

the four equations may be satisfied by definite values of
é, ¢', p and p, ; that is, there is in fact an incident wave
of definite form and polarization which, besides producing
a reflected wave of a defimte but different form and
different polarization, only calls up in the crystal the
refracted wave here introduced. In view of (304) the
values in question come out as :

Lsin (6y-1-6)
tang = (i 6, cos B, cos O +-sin 0) — ¢ sin 6, cos G s1n 0

{sin (6,—0)

(344)

tané 7€ 5in 8, cos 8, sin 0 —x(sin 8, cos 6, cos § —sin §) (345)
. _8ing sin(6,—0) (346)

" sin ¢’ sin (8, + 0)
by = sin ¢ cos § . sin 200 ] (347)

Tsin (6, +0)

[for the special case whoro tho electrical intensity of
field of the refracted wave is perpendicular to the wave-
normal and lics in the plane of incidence (¢ = — sin 6,
n =¢08 0, { == 0, § = 0) the values of u and u, assume
the similarly nnmod values (23) and (24) (angle of inci-
dence 6, angle of rofraction 6), whereas the angles ¢ and
é’ both vanish.

§ 75. If we next cnquire how the incident wave must
be constituted, for the same angle of incidence 6, in
order that only the second of the two refracted waves
may come about, we may of course find the answer in
the samo way by starting out from the wave-function of

the second refracted wave : gl< — Z-“) The correspond-
2
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ing calculations then again lead to a definite incident
wave g which vibrates in the azimuth ¢, and a definite
reflected wave g’ which vibrates in the azimuth ¢’,. If,
as in § 7, we then set
g =og and g; =0y

the last four equations of the preceding section give the
corresponding values of ¢,, ¢'y, o and oy, if we substitute
for 6, 8, &, n, { the quantities calculated for the second
refracted wave.

For the special case where the electric intensity of field
of the refracted wave is perpendicular both to the wave-
normal and to the plane of incidence (£ =0, n = 0,
{ = 1,8 = 0) the values of ¢ and o; become equal to the
similarly named values (23) and (24), while the angles

é, and ¢’y both become equal to 7—;

From this we may now obtain the solution of the
general problem—namely that of finding, for an arbitrarily
given incident wave, the form of the two refracted waves
as well as the form and the polarization of the one
reflected wave. We resolve the incident wave into the
two wave-components f and ¢, each of which produces
independently of the other a refracted and a reflected
wave according to a definite law. Only we may not
here, as was possible in the case of isotropic bodies,

resolve the vibrations in the azimuths 0 and g———tha,t is,

in and perpendicular to the plane of incidence, but rather
in the azimuths ¢, and ¢,, as given by (344), if we sub-
stitute for 8, &, %, { the values calculated for the two
refracted waves from the angle of incidence 6, according
to § 69. Then y; . f and oy . g are the wave-functions of
the two refracted waves, whereas w .f and o.g, which
have the same normal, combine to form the reflected wave
according to their azimuths ¢’; and ¢’,. If the incident
light is linearly polarized, then so is the reflected light;
if it is natural light, then the reflected light is partially
" polarized.



Iv. OBLIQUE INCIDENCE 171

It is obvious that the results thus obtained now allow us
to treat all the special applications previously made for
isotropic bodies also for crystals. For example, we may
calculate the coefficients of reflection and transmission
(pand 1 — p), normal incidence (6, = 0), grazing incidence

<00 = 7—;>, angle of polarization (p = 0), total reflection

(6 imaginary). 1t would lead us too far to discuss all
these questions in detail here.






PART THREE

DISPERSION OF ISOTROPIC BODIES






CHAPTER T
FUNDAMENTAL EQUATIONS

§ 76. ReEvERTING from now on to the consideration of
isotropic bodics we shall next oceupy ourselves with a
phenomenon which intrudes itsclf to a greater or a lesser
degree and which we have been compelled to ignore up
to the present because it has no place at all in the original
theory of Maxwell—namely dispersion.  We encountered
this peculiar circumstance quite carly, in § 9, and we
have already envisaged the only escape from the difficulty
in which it involves the theory : this consists in letting
fall the assumption that space is filled absolutely con-
tinuously by matter and introducing instead an atomistic
point of view.

In taking this step we essentially discard the point of
view to which we have hitherto clung without exception
in all our discussions and enter a field in which, to be
able to make progress at all, we are from the very outset
at the mercy of more or less arbitrary hypotheses.  This
difficulty is inherent in the nature of the problem and
may be mitigated to a certain extent by assuming tho
atoms or, expressed more generally, the smallest elemoent-
ary bricks (Bausteine) of matier to be extremely tiny
and extremely numerous. While this assumption pro-
vides us with the possibility, on the one hand, of attri-
buting to the material body which is composed of atoms
new kinds of properties which have not been expressible
in the theory hitherto developed, the body yet behaves
practically, provided that the phenomena in question do
not oceur in dimensions of too small an order of magni-

tude, as if it were perfectly homogencous. A good
175
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example of this is given by the propagation of sound in
a body constituted of atoms, for which, provided the
wave-length is not too small, exactly the same laws hold
as in an absolutely homogeneous body of corresponding
density and elasticity. Regarded from this point of view
the whole theory hitherto discussed appears as a limiting
theory which is valid for comparatively slow and ‘ coarse-
grained ”’ events, and our present task is to extend the
range of validity of the theory a step further towards
the side of more rapid and “ finer-grained ” events.
§ 77. To preserve connection with what has gone before
" we retain, as in crystal optics, the fundamental equations
(1), (2) and (3) and only introduce a more general relation-
ship in place of equation (4), which expresses the pro-
portionality between the electric induction D and the
electric intensity of field E. Such a relationship is sug-
gested to0 a certain extent by a graphical physical inter-
pretation which can be given, by III, § 26, to the difference
between induction and field strength. For if we set, by
IIT (141) :
D—E

“*Z;_~-=M o ... (348)

M may be regarded as the electric moment of the unit of
volume, that is, as the sum of the moments of all the
infinitely small electric dipoles which are to be supposed
contained in the volume 1 (taken sufficiently small).

The advance which we now intend to make beyond
this view consists in ascribing individually to each of
these dipoles a real physical existence, that is, we no
longer assume an infinite number of infinitely small
dipoles in immediate contact with one another, to enquire
into the individual size of which has no meaning, but
rather we assume that their number, size and distances
from one another are real and finite. The most essential
feature of this hypothesis is that now there is only a
single medium which is continuous in the true gense,
namely, the vacuum in which all electromagnetic field
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effects occur, whereas the material bodies share only in a
secondary way in these processes, in that their electrically
charged components, the ions and electrons, fly about
individually in the vacuum. This endows the critical
velocity ¢, the velocity of propagation of light in a
vacuum, with a much deeper meaning than it had in the
original theory, where it was only one velocity of pro-
pagation among many.

§ 78. If we now enquirc what gencral relationship may
take the place of equation (4) if we adopt the new view
suggested above, we must first reflect that by equation
(4) the electric moment of all the dipoles contained in
volume 1 is proportional to the simultancous ficld-strength.
As we now wish to ascribe a real existence to the dipoles,
we shall also have to give them a certain independence ;
that is, we shall not demand that their electrical moment
owing to some intimate coupling shall instantancously
participate in all the fluctuations of the electric field that
acts on them, but rather we shall generalize the law for
the relationship between the electrical moment and the
exciting electrical intensity of field by distinguishing
between the fluctuations of the electrical moment of the
dipoles and the fluctuations of the exciting electrical
intensity of field. The former will, indeed, be determined
by the latter, not by means of a simple relationship of
proportionality, but by mecans of a special equation of
vibration in which also the individual properties of the
dipoles, in particular their inertia, play a part. There
are various possibilitics for choosing the form of the
equation of vibration. For cxample, we may assume the
dipoles to be rigid and capable of rotation and having
constant electrical moments. Their moments of inertia
then enter into the equation of vibration and the olec-
trically neutral state is characterized by the complotely
chaotic arrangement of the dipoles.

The phenomena of optical dispersion here under dis-
cussion can be best accounted for, at least to a first

order of approximation, if we represent the vibration of
N

e i e R < W TS e KT T T
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a dipole by means of the equation for the forced oscil-
lations of a point-mass in carrying an invariable electric
charge e and oscillating about a definite position of
equilibrium which has an equal and opposite charge. In
vectorial form this equation runs (II, 203) :

mr + mwdr=¢.E . . . . (349)

Here w, denotes the proper frequency of the oscillating
dipole, » its distance from the position of equilibrium,
and hence, by III, § 26, e . r its electric moment, and, if
there are N such dipoles in unit volume :

Noer=M. . . . . (350

is the electric moment per unit of volume.

The exciting field-strength E’ must be carefully dis-
tinguished from the total field-strength E. For the former
arises only from the electric charges which are situated
outside the dipole in question, since a dipole does not
excite itself; the latter contains besides, however, the
field due to the dipole in question itself. The difference
between E’ and E would be vanishingly small only if a
sufficiently small volume v with the electric moment M . v
were to produce no appreciable field in its interior. But
this is in no way true. Rather, the intensity of field
which an arbitrary small sphere, polarized uniformly with
the moment M per unit of volume, produces in its interior
is everywhere in that interior, according to III (189),

4

equal to — 3 M, that is, independent of the size of the

sphere. It is only when we add this amount to the

exciting field-strength E’ that we obtain the total intensity
of field E, thus:

E-TmM-r . . . . @5

If we combine the last three equations we get the
relationship between the electric moment M and the
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electric intensity of field E, namely, the equation of
vibration, in the form :

mM + (mawe® — %NeZ)M =Ne?E. . (352)

and, if we combine this with (348), we arrive at the
desired generalization of the fundamental equation (4).

The expression on the left-hand side of the equation of
vibration is often supplemented by a damping term in
M and a positive coefficient, as in I (20) or in III (375),
which allows us to take into consideration any damping
that may be caused either by the loss of electromagnetic
cnergy or by collisions with neighbouring oscillators; we
shall not, however, consider this extension here.

If we use the abbreviations:

2
AnlVe _ 4 (353)
m
wg? — % —w'® . . . . (354)
the equation of vibration assumes the simpler form :
. o a
M + o' 2M = 417'E' .. . (3b3)

The equations (1), (2), (3), (348) and (355) form the
basis of the theory of dispersion which we have described.
This theory is largely due to H. A. Lorentz. Our first

deduction from it is that w02>fﬁ, which imposes a certain

upper limit on the density of distribution of a definite
kind of oscillator. TFor otherwise E and M would have
different signs in the statical field.

§ 79. In order first to link up with the original theory
of* Maxwell we consider processes which occur so slowly
that in the equation of vibration (355) the term in M
may be neglected in comparison with M; this amounts
to the frequency of the vibrations of the dipoles, caused
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by the exciting wave, being small compared with their
proper frequency. It then follows from (355) that :

a
M= 4:7TLU0’2 E

and, if (348) is taken into account:
D= (1 + —“—2> ‘E
@Wo

Here, therefore, as in (4), we have strict proportionality
between the electric induction and electric intensity of
field, the factor of proportionality, namely, the dielectric
constant, having the value :

€=1+_‘}_2. .. . . (856)
W

This is the region to which the consequences deduced
in § 9 refer. The dispersion vanishes entirely and, by
(22), we get for the refractive index :

nz=1+_‘}_2. ... . (887)
@ o
The formule (356) and (857), which, as we see, contain
a physical explanation of the nature of the dielectric
constants, and hence also of the electric induction, may
be tested experimentally by measuring the dependence
of the dielectric constants or of the refractive index on
the density of distribution N of the dipoles. We must
note, however, that, by (353) and (354), @ as well as w,?
depends on N.
If we substitute the values in question in (357), we
" may write :
n—1 4me?
n2+2 7 3mwg?

(358)

Since the constants e, m and w, are independent of N,
this relationship is very convenient for determining the
connection between the quantities » and N. Indepen-
dently of H. A. Lorentz it has also been derived by the
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Danish physicist L. Lorenz and is satisfactorily confirmed
by measurement.

§ 80. For treating the gencral case it is advantageous
to eliminate the magnetic intensity of field H and the
clectric induction D from the equations (1) and (348).
In view of (2) this gives

E+4nM=cAE . . . . (359)

This equation together with (355) may serve for obtaining
solutions of the dispersion problem.



CHAPTER 1II
PLANE WAVES

§ 81. PassiNg on now to develop the most important
laws of the electromagnetic processes that occur in a
dispersive body from the fundamental equations that
have been established, we follow along the line of reasoning
adopted in § 3 in treating isotropic bodies and first con-
sider a plane wave; that is, we assume that, of the
three space co-ordinates z, ¥, 2z, only the co-ordinate x
comes into action. We also assume the wave to be
linearly polarized, the vibrations being in the y-direction,
as formerly for the f-wave. Then E, = 0, E; = 0, H; =0,
H, = 0, and the equations (355) and (359) reduce to :

. , a
Mg/ + Wo 2My = Z:T/'I'_Eﬂ . . . (360)
and:
. . 2B .
Ey + 47M, = c? -EEQ’.’ .. . . (361

Compared with the differential equation (6) for a body
free from dispersion this equation exhibits the funda-
mental difference that it has no longer to satisfy the
differential equations without introducing a definite
assumption regarding the form of the wave-function.
Nothing remains but to set up a particular solution of
the equations and then, by combining a sufficient number
of particular solutions, also to write down the general
solution, exactly as was done in dealing with the problems
of total reflection in § 12.

As there, we also assume:

Ey _ ezw(t— —c)

—c S ... (362
182
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and, correspondingly :
My = e D (363)

This denotes a singly periodic wave with the velocity
of propagation :

Cc

Hence we also call the constant n the refractive index,
as in the case of bodies free from dispersion. A pecu-
liarity in this case, however, is, as we shall sce, that n
can also be imaginary. Then, as in the case of total
reflection, the wavo is spatially damped.

The assumed values of E, and M,, when substituted in
equations (360) and (361), satisfy them in actual fact
provided that the following relationships hold betwoeen
the constants :

o
n —1 =4no = , 2 °
UJOH_(U

(365)

Since the constants @ and w’y are determined by the
constitution of the body, there is accordingly for any
frequency w of the wave a definite index of refraction n
and a definite ratio « of the clectric momont M to the
field-strength E. It then [ollows from (1) that tho
magnetic field-strength is given by :

M.=nl, . . . . . (366)

§ 82. Lot us next enquire into the dependence of the
refractive index » on the frequency w of the wave. By
(365) m is either real or purely imaginary. In the formor
case we choose n positive; that is, we make the wave
proceed in the positive dircction of z. For very small
values of w we obtain the relationship (357), as is obvious.
If w increases, » also increases, and, in fact, to an unlimited
extent if w approaches indefinitely close to the value w’,
(cf. Tig. 24). After this value has been excoeded =
becomes purely imaginary and oqual to — ik, where «
is real and positive, since otherwise E; would become
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infinite for x = oo . This lasts until w reaches the value
V'@ +a. In this interval x decreases continuously
from o to 0, as is indicated in Fig. 24 by the dotted
line. From then onwards the refractive index again
becomes real and increases from zero asymptotically to
the value 1, which it attains for w = . The result is
that the whole spectral region from w = 0 t0 w = o is
divided into three different parts (Fig. 24) by an
“ absorption band >’ which stretches from w = o', to
w =V wy? +a To the left and to the right of the
absorption band there is no absorption, but the refractive

Fra. 24.

index always increases as the frequency increases; the
dispersion is, as we say, ‘“normal.” But there is the
essential difference that on the left, for smaller frequencies,
the index of refraction is always greater than A€ (cf.
(356)), whereas on the right, for greater frequencies, it is
always less than 1. Within the absorption region there
is no propagation of energy at all, the vibrations are
stationary and are spatially damped, as in the case of
total reflection in the optically less dense medium.
Concerning the ratio « of the amplitudes of the dipole-
moment M and the field-strength E, it is to be noted that
by (365) it is positive on the left of the absorption band,
but negative on the right and vanishes entirely when
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w = oo ; that is, for infinitely rapid vibrations the dipoles
Plajy no part in the wave, the body behaves optically
like a perfect vacuum.

§ 83. The laws of dispersion and absorption which
hawve here been derived become a little more goneralized
if, in accordance with the idea already mentioned in
§ 78, a small damping term &, where k.~ 0, is addoed to
the left-hand side of the equation of vibration (355).
The term kM, then becomes added in (360), and the
same assumption (362) and (363), instead of leading to
(365), leads to the values :

m—Vmdm =, . (367)
w'yf — w? |- ik
whereas the relationship (366) remains unaltered.

The only difference from the result previously obtained
is that » is no longer cither real or purely imaginary, but
is always complex. If in place of 2 we now unite gener-
ally n — ik, then by (362) n again represents tho real
refractive index, « the absorption index; and Fig. 24 iy
to be changed in that the curve for n no longer extonds
to infinity, then falling to zero and remaining zero in tho
whole region of absorption, but rather » remains con-
tinuous cverywhere, rising to a steep maximum aftor
entering the absorption region and then falling continu-
ously to zero, corresponding to so-called ** anomalous ™
dispersion, whereas conversely the curve for the absorp-
tion index « keeps close 1o the axis of abscisswe in the
two rogions of normal dispersion and has appreciable
values only in the region of the absorption band.

§ 84. A further generalization of practical importance
enters into formula (367) if the dispersing body containg
different kinds of simultancously vibrating dipoles whoso
number per unit volume we shall denote by N, N,,
Ny . .. Inplace of (348) we then have the relationship :

DK

L EM. L (308)
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which must be summed up over all the kinds of dipoles ;
for each individual kind there is a vibration equation of
the form (349), with or without a damping term, with
constant coefficients wq, a4, and possibly also &y, while the
equations (351) and (359) become generalized to :

F-Tim-E . . . . (369)
E+4rZM, =c?AE . . . (370)
The same assumption (362) for the electric intensity of
field and (363) for the dipole-moments M,, M,, . . . with
the amplitudes oy, oy, o3 . . . then leads, as in (367), to
the general relationships :
-1 1
i — 371
nE+ 2 2 w? — w2 F ik (371)
and:
dmoy = ot DM (379

3(wy? — w? + ko)

which determine the complex index of refraction n — i«
and the amplitudes of the vibrating dipoles of all kinds
for every wave-frequency w. In geometrical language,
as shown diagrammatically in Fig. 24, this relationship
states that every kind of oscillator in the spectral region
gives rise to a particular absorption band, caused by its
proper constants, within which anomalous dispersion and
appreciable absorption take place, whereas outside the
absorption band the dispersion is always normal. But
there is this difference, that in every intervening region
between two absorption bands the real refractive index
increases from very small to very great values, whereas
in the outer region on the left (small values of w) it is
always greater than 4/e and in the outer region on the
right (great values of w) it is always less than 1. In
general we may say that every a.bsorptmn—band whose
frequency exceeds the wave-frequency w, increases the
real refractive index, whereas every absorption-band
whose frequency is less than w, reduces the refractive
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index. Hence a refractive index which is greater than 1
always points to the presence of higher proper frequencies.
In all the following considerations we shall assume as
known the complex refractive index n — ik, by which the
whole optical behaviour of the body is characterized.

§ 85. Concerning the laws of refraction and reflection
of a plane periodic wave at the surface of a dispersive
body or of two dispersive bodies in contact, these may be
derived directly from the formule which hold for non-
dispersive bodies. For if we reflect that the expressions
which we have set up in (362) and (366) for the electric
and for the magnetic ficld-strength of a wave which is
progressing in the dispersive body arc contained as
special cases in the equations (8), and further, that the
boundary conditions at the surface of separation, which
express the contlinuity of the tangential field-components,
are the same for dispersive as for non-dispersive bodies,
it is clear that all the formulwe that were derived carlier
for the reflected and the refracted wave also retain their
validity here. The only diffcrence is that here we must
in general insert for the refractive index » and conse-
quently, by (20), also for the angle of refraction 6, a
complex value. This also makes the constants u, o, uy,
6y, defined by the formulae (23) and (24), of the reflected
and refracted wave complex, as well as in the case of
total reflection. The physical significance of this circum-
stance is expressed, as we saw carlicr, by the occurrence
of a sudden phase-change on reflection and refraction.
Since this sudden change of phase is different for the
wave which vibrates in the angle of incidence, the f-wave,
from what it is in the case of the wave which vibrates
perpendicularly to the planc of incidence, the g-wave,
linearly polarized light is not lincarly polarized after
reflection, but elliptically polarized, and the measure-
ment of the phase-difference of the two-wave components
by means of a compensator, say a Fresnel rhomb (§ 27)
or a sheet of mica (§ 64), leads to a relationship which,
combined with the measurement of the refractive index,
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gives us the two equations which are necessary if we wish
to calculate the two constants # and x, by which all the
optical properties of the body are determined.

According to the general discussion of § 18 the intensity
of radiation of the reflected and the refracted light is
defined by the squares of the absolute values of the coef-
ficients p and o, the quantities :

I,lb]2=p|| &nd ]o-[z =Py . . . (373)

directly representing the reflection coefficients of the two
wave-components, while in the case of the refracted wave
the transmission coefficient is, by § 10, calculated more
simply from the reflection coefficient than from the
quantities u, and ¢;. For the special case of normal
incidence (f = 0) we get from (23) : ‘

6 —0,

Pl =pPL= 9+91
-l o= 9

T (ng — k) + (n — 1K)

2

T (= m)? A+ (kg — K)?
=l T (g + 2 T

From this we see among other things that the reflection
coefficient vanishes only if both 7, = » and also x; = «,
that is, if there is no optical difference at all between the
two bodies in contact. Hence a ‘ black body,” that is,
one which absorbs all light that falls on it, cannot have
a plane surface. On the other hand, the reflection coeffi-
cient can very well approximate closely to 1, namely
always when any one of the four quantities n,, 7, xy, k
is very great compared with the rest. In this case we
speak of ¢ metallic *’ reflection as in the case of an absolute
conductor of electricity (III, § 92).

§ 86. The method which we have here adopted to
derive the laws of dispersion and absorption from the
hypotheses assumed concerning the nature and the dis-
position of the vibrating dipoles may be replaced by a
totally different method, whose results may therefore
simultaneously be used to test those just obtained.
For instead of first setting up differential equations for
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the electromagnetic phenomena that occur in a body by
passing on from the assumption of an atomic constitution
to that of a continuous constitution of the dispersive
body and then forming particular integrals of these
equations, there is essentially nothing to prevent our
performing this transition later (indeed, we shall see
that this deepens our comprehension of the phenomena
in question) and first considering directly the electro-
magnetic waves that arc cmitted by the individual
vibrating dipoles. On this view there is only one medium
in which the waves propagate themselves, namely in the
vacuum; in this vacuum there are embedded a great
number of vibrating dipoles, cach of which forms the
centre of a spherical wave which propagates itself accord-
ing to known laws independently of the remaining dipoles.
For by IIT, 396 the external eleciromagnetic field pro-
duced by a dipole vibraling with the moment f(¢) is
uniquely determined for all points of space and for all
times. So we arrive at a particular solution of the
problem, corresponding to the equations (362) and (363),
if we agsume the vacuum to contain firstly a periodic wave
advancing with the velocity ¢ in the direction of the
z-axis and vibrating in the direction of the z-axis with
the frequency w-—this is the  primary wave —and
secondly a great number of spherical waves, ““ secondary *’
waves, which are emitted by the individual dipoles in
accordance with the vibrations which they emit with the
same frequency ; these sccondary waves superpose them-
selves on cach other and also on the primary wave. Thoe
result is the  effective ” wave, whose field-strengths E
and H are formed directly by vectorial addition of the
corresponding field-strengths of the primary and the
secondary waves. Since the dipoles lie very closely
together, we may replace the addition by an integration.

Account is taken of the interactions of the dipoles
among themselves and with the primary wave in that the
equation (349) now holds, just as before, between the
moment of vibration of a dipole and of the field-strength



190 THEORY OF LIGHT CHAP.

E’ which excites it, the equation (351) or (369) again
holding for the relationship between E and E'.

It is clear that these relationships give rise to a perfectly
definite law for the propagation of an effective wave in
the body in question; and if there is no inherent contra-
diction in any part of the theory, this law must be identical
with that deduced earlier, although here we have made
use neither of the differential equations of dispersion nor
of the conception of electric induction, but only of the
laws of waves in a pure vacuum.

This postulate is fulfilled in actual fact, as we can
easily show by direct calculation. It must be par-
ticularly emphasized that compounding the secondary
spherical waves due to the dipoles vectorially must give
and does give two results—firstly a wave which advances
with the velocity ¢ and is equal and opposite to the
primary wave, which also advances with the velocity
¢ and hence just neutralizes it; secondly a wave which

advances with the velocity g, where n is determined by

(365) or (371) respectively. In all directions other than
that of the z-axis the secondary waves destroy each other
by interference.

We see that this new method of regarding the problem
gives us a direct understanding of the nature of dispersion.
But its physical significance goes still further. For it
also leads to a new derivation of the laws of refraction
and reflection. Let us imagine, for simplicity, a plane
periodic wave to fall from a vacuum on to the plane
surface of a dispersive body at the angle of incidence 6.
This wave, which we may again call the primary wave,
passes completely undisturbed through the body; for
it propagates itself with the velocity ¢ in the body just
as in the vacuum. According to this view, then, there
is no meaning in speaking of a surface of separation
or contact. The influence of the body makes itself felt
solely by the simultaneous vibration of its dipoles, and
we may again regard the effective wave-process as the
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superposition of the primary wave on the secondary
waves emitted by the vibrating dipoles of the body,
by making the appropriate assumptions for the moments
of the dipoles, which must of course satisfy the equation
of vibration (349). The result of the calculation again
confirms in every detail the laws derived in the preceding
section by a totally different method. For the result of
superposing the secondary spherical waves is firstly a
plane wave which completely destroys the primary wave
by interference; and sccondly a plane wave which
advances in the direction of the ray refracted according
to Snell’s law, and thirdly a wave which is reflected
back into the vacuum at the angle §. The amplitudes
of the waves also come out as above calculated.

Although this method of deriving the laws of rcflection
and refraction is more complicated mathematically, it
is more significant physically than the former method.
For since it involves no boundary condition it gives a
direct and complete cxplanation of the phenomena of
reflection and refraction, which, according to it, are
nothing but the combined cffects of spherical waves that
have been emitted and interfere in a particular way.

§ 87. All the preceding discussion refers exclusively to
such particular solutions of the ficld-equations as corre-
spond to singly periodic waves. 1f we now turn more
generally to the investigation of non-periodic plane waves
which advance in the z-dircction within a dispersive
body, it must be cmphasized that the conception of
velocity of propagation here loses completely the general
meaning which it has for non-dispersive bodies. For in
a dispersive body it is not always possible to represent
the wave-function as a definite function of a single
argument which depends only on « and ¢, as was done in
equations (8); or, in other words, the wave does mnot
advance unchanged, but becomes deformed in the course
of time, and it is impossible to recognize with cortainty
any selected point of the wave again at a later timoe.

From this it follows at once that we arc at liberty to
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define an infinite number of different kinds of velocities
of propagation according to the characteristic feature
that we fix on as the wave advances. TFor example, we
can fix on the value of the field-strength E, at a point
z at any time ¢ and enquire what is the neighbouring
point z + dx at which the field-strength has the same
value at the time ¢ + d¢ (E, = const.). This gives the
following value for the velocity of propagation of the
field-intensity E, :

oEy,
dx o
et L 375
- (375)
ox

a value which is always constant for non-dispersive
mediums, but for dispersive mediums it is constant only
for singly periodic waves, and hence in general has no
deeper significance. The same applies if we consider the
velocity of propagation of a maximum or a minimum
of the field-strength. Its value is obtained from (375)
if we substitute %%—’ in it for E, and is of course different
in general from (375).

It follows from this discussion that it is altogether
impossible to define for a dispersive body a velocity of
propagation which is constant in space and in time,
so long as we make no assumption about the special
form of the wave. It is easy to see, moreover, that for
different forms of the wave the velocity of propagation
may be defined in quite different ways. We shall see this
confirmed in several particularly important cases.

If we now enquire into the general integral of the wave
equation (360) and the associated equation of vibration
(361) we can find an essentially adequate solution by
the same method as was successful in the case of the
problem of total reflection, in § 14. For we may express
any arbitrary function over any arbitrarily great region
of its argument as a Fourier series, and then every indi-
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vidual term of the Fourier sories represents a singly
periodic occurrence which obeys the laws of propagation
found above. Since the differential equations (360)
and (361) arc linear and homogencous, the individual
processes become superposed on each other and hence
it follows that every wave which advances in a dispersive
body may be regarded as composed of a number of singly
periodic waves cach of which advances unchanged with

the velocity of propagation :2 which iy characteristic of it

and which is constant in space and in time. But since
n is different for the individual waves, the phases of
the individual partial wave become displaced relatively
to one another and so cause the deformation of the total
wave.

§ 88. We shall now fix our attention on the special
case where the dispersive body, which we shall suppose
stretches from 2 = 0 to 2z = o, iy perfectly unexcited
at first and that from a certain moment of time onwards,
say ¢ = 0, a singly periodic wave of frequency w is con-
tinuously incident on its surface in the normal dircction.
With what velocity will the disturbance propagate itself
into the body? We may be tempted to assume at first
sight that the wave simply propagates itself into the body

with the velocity % , a8 is the case with a permancntly

periodic wave. But this is not so. Tor here we are
concerned with a mnon-periodic wave which becomes
deformed as it advances. The complete solution of this
problem has been given by Sommerfeld,r who resolved
the waves into a Fourier integral. But we can find the
answer to the above question without making special
calculations if we apply the line of rcasoning which was
fully discussed in § 86.

The primary wave also advances in the dispersive
body with the velocity ¢. The secondary waves due

(1 A. Sommorfeld, Webor-Fostsehrift, 3. (. Teubner, p. 338,
1912.

0



194 THEORY OF LIGHT CHAP.

to the vibrating dipoles do the same. But the result
of this joint action is not the same as in the case of a
permanently periodic wave. For the dipoles do not
vibrate periodically; they were at rest initially and, on
account of their inertia, they will only gradually be made
to vibrate, the later the greater their abscisse 2, and these
vibrations, strictly speaking, will acquire their constant
character only after an infinitely long period of time
and so give rise to the singly periodic wave-motion whose

velocity of propagation is ®. Solong as this is not the
Yy ol propag oy g

case the primary wave will not be neutralized by the
sccondary waves and so it manifests itself as a disturbance
which advances in the dispersive body with the velocity
c. Since on the other hand the secondary waves, no
matter what their form may be, also propagate themsolves
with the velocity ¢ it follows that the desired velocity
with which the head of the wave advances into the body,
the ¢ front velocity,” is always equal to ¢. In contrast

with the front velocity is the ““ phase-velocity,” % , which

a permanently singly periodic wave has; in future we
shall denote it by w :
¢
S . (37)

We must not regard it as an inherent contradiction
to the theory that the phase-velocity v may also be greater
than the front velocity ¢ (n<1). TFor the wave is not
singly periodic and the head of the wave that penetrates
into the body has no constant phasc. Hence there can
be no question of the head of the wave which advances
with the front velocity being passed by the hinder part
of the wave which advances with the phase-velocity.

It further follows from this that the velocity of propaga-
tion of a light-signal emitted into the body, the * signal
velocity,” can at most be equal to ¢. This maximum
value is attained in an ideal detector, that is, a receiver
which reacts to oven the smallest disturbance. Othet-
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wise the signal velocity must be made correspondingly
smaller according to the sensitivity of the receiver.  The
value of the phasec-velocity does not come into ¢uestion
at all in the matter; for it is not possible to send signals
by means of singly periodic waves. o
§ 89. We shall now fix our attention on a non-periodic
wave of a form which is in principle still more important.,
namely a wave which is wearly singly periodic.  For this
case is realized in nature in all so-called monochromadic
rays which are actually produced (§ 16). The general
expression for o wave of this kind which is nearly periodic
and which advances in a dispersive body is, by (362) :
PR ST G B 7
mo
where
Wy — wy

e 3
o I (378)

Here m is the order number with which the froquency
wn increases, the total number N is arbitrarily great, and
Un is any complex constant. Lot us fisst consider the
form of such a wave, {that is, B, as o funetion of a0 at o
definite time /£, say represented by o curve with the
abscissa . This curve is formed by thoe superposition
of a number of simple sine curves of very nearly the
same wave-length. The result is, as emerged from our
exhaustive discussion in § 16, a nearly periodic curve of
the same wave-length, but with a slowly and in general
irregularly changing amplitude and phase.

Let us consider the conditions a litble more closoly.
The decisive features for tho amplitudo and phase of
the resultant wave aro tho phase-difforences with which
the individual singly periodic partial waves meot, If
we fix on any one of them of frequency w and phase-

Lo G
velocity W then the phase of any other partial wave of

o
frequency o’ and phase-velocity e B by (377), for all
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points z and all times ¢, be set equal to the phase of the
first wave plus the phase-difference :

(0 —@)t =2 (n —wn) +0'—0. . (379)

where 6’ and 6 denote the angular arguments of the
complex constants O’ and C. So long as this phase-
difference remains appreciably unchanged for all com-
binations of any two partial vibrations, the partial waves
interfere in the same way and the resultant wave has a
constant amplitude and phase. Now if the time ¢ is
assumed constant the phase-difference changes only with
the abscissa z. If we pass from the point z to a neigh-
bouring point #;>z the phase-difference (379) changes
by :

Xy — %

c

(@n —wn) . . . (380)

Hence so long as the two points lie so close together
that for all pairs of partial vibrations :

T — < < |————
1 w"n'—-—wn

c ‘...(381)

the resultant wave forms between the two points a simple
sine curve of wave-length :

_ 2me or, respectively, —2—,77—6, .. (382)

Nnw nw

which, by (378), are appreciably the same. But if we
pass so far along the axis of abscisse with the point a;
that the relationship (381) ceases to be valid, the inter-
ference effect of the partial waves changes and the result-
ing wave acquires a new amplitude and a new phase-
constant. Accordingly we may say: the form of the
resultant wave E, at any time ¢ may be regarded in
general as compounded of a number of successive groups
of simple sine-curves. Every single group stretches over
a region of abscisse for which the relationship (381) is
fulfilled ; a characteristic of the group is a definite phase-
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differcnce (379) for any two partial vibrations, and con-
sequently also a definite amplitude and a definite phase-
constant. All these quantities vary from group to group.
The number of wave-periods that belong to a group is,
by (382) :

T -2 @ —%).n0 (383
A 2me

where x and =z, denote the initial and the final points of
the group. This number may be very large; for the
relationship :

(2 — ) - nw

- >>1 . . . . (384)

is, on account of (378), certainly compatible with the
relationship (381).

Let us enquire further into the changes that occur in
the course of the time ¢ firstly when we keep a definite
point z in space fixed. Then, by reasoning which is fully
analogous to that given above, we [ind that within an
interval of time ¢, — ¢ which is so small that for every
pair of partial vibrations :

fh—t<<
w — w

= ‘ .. .. (385)

the resultant field-strength E, executes pure sine vibra-
tions of frequency w, but that at later times ¢ & change in
the amplitude and the phase-constant occurs.

The process is a little casier to picture if we fix our
attention not on a definite point # of space but on a
definite phasce of the resultant wave, say the peak of the
crest of & wave. This crest advancos with the phase-

velocity % and retains its value and its velocity of propaga-

tion along a certain distance which may include many
wave-lengths. But after that it will slightly change its
value and also its velocity of propagation. The latter
will always be nearly equal to the phase-velocity, but the
value of the crest of the wave can increase or decrease
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by an arbitrary amount. In other words, any definite
wave-crest on which we fix our attention does not remain
in the same group in the course of time, but passes over
into a neighbouring group.

This circumstance leads us to enquire with what
velocity a definite selected group advances. The answer
is contained in the above given property of a group that
for it the phase-difference (379) for every combination
of any two partial vibrations retains a definite invariable
value. Hence if we set the value (379) for «, ¢ equal to
that for z,, ¢, we get :

B—w (@ —we o (386)
h—t on—own
which is independent of z and ¢. This velocity, which is
constant for all points and all time and which may, on
account of (378), also be written in the form :

dw
[ El’m ==, . . . . (387)
represents the required group-velocity. It is connected
with the phase-velocity w, according to (376), by the

relationship :
a(3)

dw

The difference in % and v of course depends on the
circumstance already pointed out above, that a definite
selected wave-crest advancing with its phase-velocity
changes from group to group in the course of time.

(388)

1
v

It is only in the case of dispersionless bodies ((‘Zi s 0>

that v = u, and every wave-crest remains permanently

in its group. In the case of normal dispersion (gﬁ > 0)
w

we have v <u, that is, in the course of time a definite
wave-crest moves out of its group forwards into the next
group and so catches up one group after another. In
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the case of anomalous dispersion the reverse oceurs.  But
we must bear in mind that a group does not form a
configuration which is permanent for all time. For since
the differential-quotient in (386) is not, strictly speaking,
equal to the differential quotient in (387) but has a
different value for cvery combination of two partial
vibrations, in a fairly great intcerval of time £, — ¢ the
distance z; — x traversed will be appreciably different
for different combinations, that is, the group will fall
apart. Hence in rather greal intervals of time a gradual
change also occurs between the groups in that every
group cventually splits up and fuses partly with the
preceding group and partly with the following group.



CHAPTER 1H

GEOMETRTCAL OPTICS OF NON HOMOGENEOD'S
BODIES., RELATIONSHIPS TO QUANTUM
MECHANICS

§ 90. AN optically non-homogencous hody s charac
terized in having its refractive index # dependent in
some definite way on the space co-ordinntes o,y =0 We
shall also assume that the body is dispersive, that s we
also make n depend on the frequency w. But we shall
asgume that it is isotropic, so that at a definite point
and for a definite frequency # is the same i alldivections,
The laws of propagation of light waves for such a by
are in general very complicated, hut an essentinl simaphtis
cation may boe achieved by rvestricting onrsclves to the
region of geometrical opties or ray-optics which, by § 25,
embraces those phenomena for whose representation the
laws which hold for plane waves suftice,

Let us again begin with singly periodic vibrations,
Then every wave-function has the phanse :

wl—dlr .2y @ . [N

where w denotes the frequency, and ¢ a cortain funetion
of position, the * ecikonal; the conception of ¢ i
generalized from (362),

If we define a wave-surfaco as a surface whose points
at & dofinite time ¢ are all in the same phase ®, then
wave-surface is represented by the equation :

dla,y,z) o const. (a0

The family of wave-surfaces which results when we allow

the constant to run through all its values is the same for

all times and hence is fixed in the body. If we fix on a
200
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definite phase @, then, by (389), it will be found at the
time ¢ in the surface ¢ = wt — O, and so as the time
increases it passes uniformly from smaller to greater values
of ¢. If, on the other hand, we fix on a definite point
2, ¥, # in space, the phase at it increases uniformly with

the time :
00

YRR (391)

The characteristic thecorem of geometrical optics is that
every sufficiently small portion of a wave-surface can be
regarded as a plane wave which propagates itself inde-
pendently in the direction of its normal with the phase-

velocity u =% which it has at the point in question.

Since the body is isotropic, the direction of the normal is
simultancously that of the ray; and, if any particular
wave-surface is known, we obtain an inlinitely near wave-
surface by marking off from cvery point of the given
wave-surface the distance w . df in the direction of the
normal and then conneet the end-points of all these
distances together. Thus if ds is the normal distance
between the two surfaces, we have :

ds — qult.

Since, on the other hand, the phase @ remains the
same during the propagation of the wave-- for % is the
phase-velocity—we have, by (389) :

wdl — dp 0
and this, combined with the preceding equation, gives

the following value for the differential cocfficient of ¢ in
the direction of the normal :

0p w nw 00 (392)
08 U ¢ 08 .

By means of this differential equation, the so-called

eikonal equation, it is possible to caleulate from a singlo

wave-surface all the remaining wave-surfaces, gince n is
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given as a function of z, y, 2. The whole of geometric
optics is in essence contained in this equation. For if
the system of wave-surfaces is known, its orthogonal curves
represent the rays which propagate themselves through
the body.

§ 91. The laws of geometric optics, besides allowing
themselves to be expressed by equation (392), may also
be represented by Fermat’s principle, the derivation of
which may be made clear in a way similar to that used
in § 37 for a special case.

According to Fermat’s principle, the time which a
definite phase requires to arrive with its characteristic
velocity  from a definite point P to a definite other point
Q of the body along the path of the ray which goes from
P to @ is less than that taken along any other line
connecting P and @, or, symbolically :

Qds
8]1’-1—&—= =9 mls ... (393)
If we substitute for the variations in the equation :
on on on
8n—a dx + aySy—l— F 3z
s = 92 ds + W sy + %5z

and then, as in I, § 108, integrate by parts so as to
reduce the variations 8dxz, 8dy, 8dz to 8z, Sy, 8z, after-
wards setting the coefficients individually equal to zero,
the differential equations for the path of the ray from P
to @ is obtained in the form :

dnge):aln) aln) =55 O

These equations, by which the path of the rays can be
calculated if the starting-point and the direction of the
ray are given, also c¢ontain all the laws of geometric
optics. In content they are completely identical with
equation (392) for the wave-surfaces, ag can also be seen
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directly if we imagine the construction described in § 90
to be carried out for a wave-surface adjacent to a given
wave-surface and if we calculate the resultant change in
the direetion of the normal, that is, the difference between
the normals of the new and the original surface. We
then arrive at cxactly the relationship (394).

§ 92. In order to be sure of our subsequent procedure
we shall first formulate a little more accurately the con-
ditions under which geometric optics may be applied.
In general the differential equations of dispersion (359)
and (355) hold. The former containg only the universal
constant ¢, in the latter we assume for a non-homogeneous
body that the constants w,” and e are given functions of
the space-co-ordinates z, ¥, z.

The two differential equations are then satislied by a
generalization of the assumptions (362) and (363) made
for plane waves in a homogencous body :

o=, M=o . . . . (305)
where « is now to be a certain function of position, while
i, the wave-function, depends in some way on phase and
time.

By substituting in (355) and (359) we obtain ;

e /o a ¢ )
o - @ ol - 477'/' c o (396)
and:

- dmafy - A
or:

c? .
VA gpt AP A L (397)
where 7 is again related to o by (365).
If we now introduce the assumption that the process is
singly periodic in time, that is :
l/l 67((:)! ) . . . ) . (398)

where the function of position ¢, being a generalization
from (389), may also be complex, then

.

$oo—ed . L L (398a)
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and the relationship (396) leads to the same value of »
as the relationship (365) deduced for plane waves in
homogeneous bodies. So the whole problem is in general
reduced to a differential equation (397) in the wave-
function .
Substituting the equation (398) we get :
nw? . 0B\2 | [O\% | (Oh\2
?r““W+<%>+<@>+<5>
or, if ds again denotes the element of length of the normal
to the surface b = const. :

Peming+(ZF. . L o)

This relationship becomes the same as the fundamental
equation (392) of geometric optics if and only if the
term in A¢ can be neglected. Since the equation (399)
is complex, two conditions follow from this. Firstly the
differential coefficients of the imaginary part of ¢ must
be very small or, what comes to the same thing, according
to (398), the amplitude of the wave-function must be
only slowly variable in space; secondly, the term in the
second differential coefficient of the real part of ¢ must
be small compared with each of the other two terms of
the equation (399). In view of (382) this means that
the radii of curvature of the wave-surfaces must be great
compared with the wave-length—the same postulate as
we set up earlier in § 28. Or, the radii of curvature of
the rays must be great compared with the wave-length.
So long as these conditions are fulfilled, the laws of
geometric optics may be applied as a first approximation.
But as soon as they are transgressed at any point the
exact wave-equation (397) enters into force in place of
them.

§ 93. We now turn from singly periodic rays to the
natural monochromatic rays, that is, nearly singly periodic
rays of the same kind as those we investigated in § 86.
We saw there that such a ray may be regarded as a
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progressive series of consecutive groups of singly periodic
rays whose velocity of propagation v is characterized by
the condition that the difference @ — @ of the phases
of any two partial vibrations »” and @ remains constant.
Thus by (389) :

(0 — ).t — (¢" — ¢) -~ const.
or:

(o —w) .t — (P - ) s - 0.

Trom this we get, taking (392) into account :

s v w —w
dt W' — nw

which agrees perfectly with (386), (387) and (388).

Since the group velocity » is different from the phase-
velocity #, a point which advances with the group-
velocity will in the course of time change its phase, and
by (389) we have :

i 20
de T 9t 0s

and by (391) and (392) :

e Ve v
0o L, =T 9. 00 (400
@ T T <l u) (400)
Combined with (376) and (387) we get from this :
on
@ Lo . 4ol
e~ 2 L
ow W

The differential coefficients have here been written with
round &’s because 7 also depends on position.

For a non-dispersive body gi = 0, 0o that in this case

the phase @ remains constant, that is, the group-velocity
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coincides with the phase-velocity. This holds for non-
homogeneous as well as for homogeneous bodies.

§ 94. The fundamental equations of geometric optics
above derived for a non-homogeneous dispersive isotropic
body for the case of a nearly singly periodic ray exhibit
in their formal structure a remarkable analogy with the
fundamental equations of classical mechanics for a free
point-mass which moves in a given statical conservative
field of force (I, § 49)—an analogy which expresses itself
in the circumstance that a wave-group (restricted to a
small portion of space) moves in the direction of its ray
according to the same laws as the point-mass moves in
the direction of its orbital curve. It is, indeed, possible,
by appropriately allocating the optical constants in the
first case to the mechanical constants in the second case,
to make the optical and the mechanical equations
identical. This will now be shown.

For this purpose we first consider our two equations
(391) and (401), which specify the time-change of phase
© for a stationary point and for a point moving along
the ray with the group-velocity ». We compare these
equations with the two corresponding equations of
mechanics for the integral of action W, considered as a
function of z, y, 2, #, namely (I, 420) :

ow .
S=—F . . . . - (402)
for a stationary point, and (I, 419) :
Wep-owv . . . . o)

for a point which moves on its orbital curve according to
the laws of motion. Here X is the energy and £ — 2U is
the kinetic potential or Lagrange’s function, namely, the
difference of the kinetic energy :

E—Ux-%mzﬂ L L (404)

and the potential energy U, which we consider as a given
function of the co-ordinates z, ¥, 2.
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In addition to the formulae for the time derivatives of
® on the onc hand and W on the other we have those
for the space derivatives, namely, cquation (392) for @
and the equations I (417) for W, which cxpress that
the space gradient of W is equal to the momentum of the
moving point-mass, that iy, that the direction of the
velocity at every moment is perpendicular to the surface

W = const. and that the valuc of the gradient ﬂak:f
represents the product of the mass and the velocity :
ow ~
pe T ... (405)

1f we now identify the velocity » of the moving point-
mass in size and direction with the velocity of propaga-
tion of the wave-group designated by » carlier, and if we
reflect that the ray-direction is perpendicular to the wave-
surface @ = const., we shall be led to set the functions
W and @ proportional to one another. Tt then follows
by comparison with (391) and (402) that the optical
constant w is proportional to the mechanical constant J7.
Since these two quantitics have different dimensions, the
factor of proportionality is not a purc number. Therefore
we set :

Bobeg oo (406)

and interpret A as a certain constant whose dimensions
are the product of an energy and a time. Then (391)
and (402) become identical, if we further set :

W. -, -6 . . . . 407

This also establishes the relationship between the equa-
tions (405) and (392) :

aw h 00 nwh  nll

IV == 2 — -2
aﬁk 27T aqﬁ‘ 27]'(' ¢

(408)
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and from this we get, if v is calculated from (404), the
following value of the refractive index :

n~—— Vem(E =T) . . . (409)

The dependence of the refractive index on the function
of position U is caused by the non-homogeneity of the
body, the dependence on the energy constant K or,
respectively, w, is due to the dispersion of the body in
which the wave-group in question is propagated.

It is now easy to convince ourselves of the fact that
through the relationships which have been introduced
between the mechanical and the optical quantities the
two systems of equations become fully identical. In
particular the equation (387) for the group-velocity :

}_ la(wn) la(En) 410
v ¢ ow ¢ oB =~ ° (410)

leads identically to the value of » in (404), if we substitute
from (409), and in the same way (401) transforms directly
into (403).

So we may perfectly generally enunciate the theorem :
according to the laws of classical mechanics a point-mass
m moves in a field of force of given potential energy U
exactly like a singly periodic ray in a non-homogeneous
dispersive isotropic body whose index of refraction is :

2”0\/2 w’im‘w. L. (411)

Just as the motion of the point-mass is determined by
the initial position, the initial direction and the energy X,
so the propagation of the ray corresponding to it is
determined by the initial point, the initial direction and

the frequency w = ‘—2—%@ .

Although a far-reaching agreement is established in
- this way, between the laws of classical mechanics and
those of geometrical optics, the agreement is not perfect.



QUANTUM MECHANICS 200

III.

For there is a fundamental difference in the followingy
respoct.  Classical mechanies demands absolute \ﬂ“‘i?f_\ V
it is complete in itself and is not hound hy assumption:
concerning orders of magnitude.  OF geometrical optic.
we know, however, that it does not hold generally. bt
by § 92 only if the wave-length (382) correspondune to
the frequency  of the ray is small compared with the
radius of curvature of the path of the ray. Ao soon s
this condition is infringed the laws of geometrical aptic,
become inadequate and we have to fall bach o the
general wave-equation (397) or (399).

§ 95. We would be able to rest satistied with the e
results if classical moechanies accounted for all the dy v
cal processes that occur in nature.  But this is nat the
case.

Rather the facts of experience compel us to assnne
that in the case of very small quick movements cortam
of the circumstances arise which are quite foreirn to the
basic assumptions of clagsical mechaniva; for evonple,
in the motion of an cleetron aboutl an atomic nnelens
certain perfectly definite values of the enerey 8 wpqiar
to be favoured a theorem which is totally fopreisn to
classical theory.

Hence if it has heen shown to he necessrs tochange
classical mechanics, it can only he o question of weneralisz
ing the laws hitherto established for it; for these law .
would then retain their significance under all viveum
stances. Now we must hear in mind that clnsiconl
mechanics can never bhe goneralized fromm within o alf
for, like overy system thad is perfoct in itaelf, it hears §he
stamp of inner completeness and concenls no germ which
allow of further devolopment.  Rather, the gt
come from without. A beautiful example of thin i pisven
by the theory of relativity, which, starting from Gprtics,
has penetrated into mechanics and has added s totally
new side to it. '
. In the present case, too, help has come from the diro
tion of optics. L. do Broglie first, adduced the Jong

'0
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familiar analogy, discussed in the previous section,
between classical mechanics and geometric optics to
account for quantum phenomena, and E. Schrédinger
then developed the idea further, showing that the exten-
sion which the laws of classical mechanics must incur in
order to adapt themselves to reality is of exactly the
same type as that which must be applied to geometric
optics when the limits within which it holds are over-
stepped. In other words, the laws of the new mechanics
are found simply by retaining throughout the analogy of
mechanics with optics and accordingly modifying the
laws of the old mechanics so that the basic difference
mentioned at the end of the previous section is eliminated.
The equations (406) and (411), which are characteristic
for the analogy between mechanics and optics, then remain
valid beyond the range of validity of geometric optics,
and out of classical mechanics, ray mechanics, we thus
get wave mechanics, which contains the former as a
special case. Its characteristic feature is that it no longer
allows the motion of a point-mass to be represented by
the motion of a geometrical point, but that the point-mass
is in a certain sense resolved into a number of waves of
a definite kind, just as a light-ray, strictly speaking, does
not allow itself to be represented by a single curve, but
arises only from the combined action of optical waves.

The first great success of this idea is shown by intro-
ducing the wave-equation (397) into the new mechanics.
This gives with the value of (n) in (411):

872m (wh -
St v)i=ng .. . (1)
or, if we substitute the expression (398a) for i :
8m2m [ wh ;
ap+ T _p)g 0. L ()

for which, by (406), we may also write :

8mim

A+ (E-TU)p=0. . . (414)
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The peculiarity of this differential equation of Schré-
dinger consists in the fact that the coefficient (B — U)
can also become negative in some circumstances. If the
constant K is taken so great that for all points of the
space—and the wave has no spatial limits—(& — U) > 0,
there are finite and continuous solutions of the equation
for all values of . But if £ is not sufficiently great to
make the coefficient positive for even the greatest values
of U, there arc finite and continuous functions i every-
where, which satisfy the equation (414) only if E has
certain definite values £y, #y, li;, —, the so-called proper
values (figenwerte). Corresponding to these values we
have the proper functions (figenfunkiionen) gy, o,
3 . . . Porhaps this startling result appears less striking
it we consider that for negative values of (B — U) the
value (409) of the refractive index becomes imaginary
and so geometric optics loses its meaning entirely.

But the fact that gives the differential equation (414)
its great importance is that the proper values for F
calculated {rom it agree cxactly . all cases with those
proper values which had already been calculated carlier
by Heisenberg, Born and Jordan from the equations of
quantum mechanics in matrix form; these equations
had been based directly on experimental facts and had
been developed independently of any particular physical
assumptions. This subsequent agreement between results
which had been obtained by two totally independent
methods is a definite indication of their physical signifi-
cance, and hence there can be no doubt that Schrédinger’s
differential equation, in virtue of its close relationship to
classical mechanics, deepens our ingight into the nature of
quantum phenomena.

It is true that much still remains to be done before we
shall be clear about the physical nature of the wave-
function ¢ and before wo can satisfactorily answer all the
questions that thrust themselves upon us.

§ 96. We shall conclude by showing how it is possible
to calculate the numerical order of magnitude of the
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universal constant % in (406) by using the hypothesis
that was introduced in the preceding paragraph. In the
first case it is clear that if we assume % to be infinitely
small, wave-optics becomes merged into geometric opties,
and hence quantum mechanics becomes identical with
classical mechanics. For with this assumption it follows
from (406) that for every value of K there is an infinitely
great value of w, and hence by (382) an infinitely small
value for the wave-length A; so the condition that the
wave-length must be small compared with the radius of
curvature of the orbital curve is always fulfilled.

From this we see that the value of % will come out the
greater the greater the radii of curvature of the orbital
curve at which the deviations from classical mechanics
become appreciable. We shall now take as the basis of
our estimate the assumption that for an electron which
revolves around a stationary atomic nucleus which bears
a single positive charge the deviation from classical
mechanics becomes appreciable when its orbital radius
shrinks to atomic size.

We have by classical mechanics in general that if »
denotes the orbital radius, v the orbital velocity, e the
charge, m the mass of the electron, then in the case of
uniform circular motion the centripetal force is equal to
the attractive force of the nucleus, thus :

mv? _ef
r o r2
and :
e (415)
= — . . N . -
v

On the other hand, we get for the wave-length A
which is to be allocated to the motion here considered,
by (382), (411), (406) and (404) :
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and by (415):

-
’\=Z\/¢fﬁ' ... . (416)

Thus the ratio of the wave-length A to the radius of
curvature 7 is :

A__kh @
r e«\/ mr
If this ratio is to assumec an appreciable valuc the

numerator and the denominator of the fraction must be
of the same order of magnitude, that is :

he~evVmr . . . . . (418)

If, in accordance with our above assumption, we set r
equal to the value 10-7 cm., then in clectrostatic units:

e = 477 . 107(crg . cm)¥, m = 9:02 . 10~Bgrm.
h~45.10"%crg.gec. . . . (419)

The more exact value of the quantum of action is :

h = 6:55.10"%erg.sec. . . . (420)
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