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PREFACE
THE present volume is the fifth and last of Professor

Planck's series on Theoretical Physios Hia reasons for

treating the theory of heat at the end are baaed on the
idea of systematization which characterizes the whole work.
His method of presentation shows clearly that the theory
of heat can be erected on the foundations of mechanics
and electrodynamics (of. p 223), but that the converse is

not possible. As previously, references to other volumes
are made by means of Roman numerals, thus I refers to
the volume on General Mechanics, II to that on the
Mechanics of Defonnable Bodies, IH to that on the

Theory of Electricity, IV to that on the Theory of Light.
For example, on p. 89 of the present volume the refer-

ence II (284) stands for equation (284) of volume II

(" Mechanics of Deformable Bodies ").
It is hardly necessary to mention that some of the

most important developments of the theory of heat are
due to Professor Planck's own brilliant researches, which
have become classics in the history of physical thought.
The idea of quanta of radiation, introduced at the dawn
of the present century, has played a dominant part in

physical theory up to the present time. Its significance
is such that all efforts to construct a unitary field theory
of physical phenomena that is, a theory which would
bring gravitational and electrodynamic events under a
single scheme of laws are doomed to failure unless a
quantum assumption is included as an inherent part of
the theory from the outset, as was recently remarked by
Einstein in his Bouse Ball lecture at Cambridge (May 6,

1932).
* y

To explain Professor Planck's procedure in the present
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volume reference must be made to some of the terms

used in the earlier sections. In 14 the author introduces

the term
"
equivalent weights," which is followed by a

definition of the term " molar weight
"
(gramme mole-

cular weight, MolgewicM) and molar number (
Molzahl) on

p. 20. There is a certain unfamiliarity, however, to the

English reader in the term Molatom (p. 23) since the

term "
gramme atom " has not come into common use.

As the author reminds the reader at the top of p. 223,

the weights of moles are standardized by convention, and
it is only when we come to deal with

"
microscopic

"
as

opposed to
"
macroscopic

"
conditions that it becomes

necessary to introduce the idea of atoms and molecules ;

for example, to lead up to a discussion of thermodynamio

probability (p. 222). Atomicity plays no part in the

earlier sections. I have therefore considered it advisable

to adhere closely to the German terminology even if the

expression
" molar atom "

(gramme atomic weight,

gramme atom) appears at first sight to contain a contra-

diction in terms. Other words which I have found it

useful to introduce are : isochorio (or isosteric) on p. 10,

isopiestic, also on p. 10, and enthalpy on p. 48. The
term ergodic hypothesis (p. 229) has already appeared
elsewhere in English. A more detailed explanation of

this hypothesis is to be found in Berliner and Scheel's

Worferbuch der PJiysik.

Pains have been taken to make the English rendering
as clear as possible, consistent with accurate translation,

and it is hoped that any reader who may detect faults

will kindjly bring them to the attention of the translator.

My thanks are due to Mr. N. Davy, M.Sc., and Mr.

E. H. Saayman, M.A., B.So., for carefully reading the

proofs, and to Mr. C. N. Hinshelwood, M.A., F.R.S.,

Fellow of Trinity College, Oxford, for some helpful

suggestions.
HENRY L. BROSE.

University College, Nottingham,
June 1932.
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ESTTBODUCTION

1 . The concept of heat, like all other physical concepts,

originates in a sense-perception, "but it acquires its

physical significance only on the basis of a complete

separation of the events in the senae-organs from the

external events which excite the sensation. So heat,

regarded physically, has no more to do with the sense

of hotness than colour, in the physical sense, has to do
with the perception of colour.

The external events that excite our thermal sense are

manifold in their variety. They may have their seat

either in material bodies with which we come into con-

tact, or they may consist of electromagnetic waves which

impinge on our organs of sense. According as the case

may be, then, we speak of the heat in bodies or of radiant

heat. These two types are quite different and are in

general independent of each other. For example, very
intense radiant heat can propagate itself through very cold

air without heating the air to the slightest degree. We
shall treat these two kinds of heat in succession.

As a starting point we here, as in the case of electricity,

again choose the only trustworthy foundation on which
we can build a new structure, namely, the Principle of the

Conservation of Energy This is usually called the First

Law of Thermodynamics in the theory of heat. This

principle forms the link between heat theory and mechanics
and so serves as a basis for what is called Thermodynamics

2. But the Principle of the Conservation of Energy
does not in itself suffice for building up a complete

theory of heat. This is rendered possible only by adducing
another principle, the Second Law of Thermodynamics,
the content of which depends on a special peculiarity of

thermal processes which distinguishes them in a character-

l



2 THEORY OF HEAT

istio way from mechanical and electromagnetic processes,

andwhich, therefore, places the theory of heat in a special

position as compared with other physical theories. That is

also the reason why the treatment of the theory of heat

forms the concluding volume of the present work.

For, let us imagine any (not too small) physical con-

figuration, that is, any "bodies in any electromagnetic field,

which is completely cut off from its surroundings, so that

the energy of the configuration remains constant (I, 120)

Within tVi" configuration certain events will then occur

the course of which is uniquely determined if we start out

from a definite initial state. The following phenomenon
then manifests itself. So long as only the laws of mechanics

and electrodynamics are assumed to hold, the events will

never come to an end and will retain their character for

all time. Indeed, it may be proved that a state which

has once existed can in the course of time occur any
number of times again, if not in absolutely exactly the

same way, at least to any desired degree of approximation

(cf. 131 below) But as soon as heat no matter

whether it be heat contained in bodies or radiant heat

enters into the question in any way the sequence of events

finally, even if only asymptotically, approaches a definite

end, in that the configuration tends to a state in which

every mechanical or thermal change has ceased in the

macroscopic sense
( 115); this state is therefore called

the state of thermal equilibrium. Hence all occurrences

in which heat plays a part are in a certain sense uni-

directional, in contrast with mechanical and electro-

magnetic events, which can equally well take place in the

reverse direction, since for them the sign of the time factor

is of no consequence. The essential feature of the second

law of thermodynamics is that it furnishes a numerical

criterion for the direction of the changes that occur in

physical nature ( 47)

in the first two parts of this book we shall deal with the

heat in bodies,and afterwards,from the third part onwards,
also with radiant heat.



PART ONE

THEBMODYNAMCS





CHAPTER I

TEMPERATURE. MOLAR WEIGHT

3. The first requirement of a theory of heat consists in

defining in numerical terms the thermal state of a body
concerning which our sensation when touching the body
gives us only very imperfect information. To accomplish
this we may make use of the experience that every body,
if kept at constant pressure (say atmospheric pressure),

changes its volume when heated, and so we can define the

thermal state of a body by the amount of its volume at a

particular instant. Instead of this, however, we may,
to define its thermal state, also adduce any other property
of the body which depends on the thermal state, for

example, its thermo-electric e m f or its galvanic resistance.

To be able to compare the thermal states of two different

bodies numerically we require a further law denved from

experience, which represents a special case of the general

principle discussed in 2 and whioh runs as follows . if two
or more bodies (at rest) exert a thermal action on each

other then, in contradistinction to mutual mechanical or

electromagnetic actions, a state of thermal equilibrium

always establishes itself, in whioh all change ceases.

Using an expression which has been borrowed from

mechanics, we then say that the bodies are in thermal

equilibrium.
From this there immediately follows the important

theorem : if a body A is in thermal equilibrium with two

other bodies B and G, then B and C are themselves also

in thermal equilibrium with each other. For if we make
the bodies A, B and O form a connected ring so that each

6
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of the three bodies makes contact with the other two,

then, by our assumption, thermal equilibrium also exists

at the contact of (AS) as well as at that of
v'-10), and

consequently also at the points of contact of (BC). For

otherwise no general thermal equilibrium would be possible

at all and this would contradict the principle above laid

down.

The fact that this theorem is by no means obvious can

be recognized particularly clearly if we apply it to the

question of electrical equilibrium, for which it does not

hold. For if we bring a copper rod which is in electrical

equihbrium with dilute sulphuric acid into contact with a

zinc rod which is in electrical equilibrium with the same

sulphuric acid, equilibrium does not exist at the point of

contact, but rather electricity flows from the copper to

the zinc.

4. It is because the above law holds for heat that we
are able to compare the thermal states of any two bodies

B and G with each other without bringing them into

direct contact. We need only bring each body individually
into contact with the arbitrarily chosen body A, which

serves as
1 a measuring instrument (for example, a quantity

of mercury ending in a narrow tube), and define its thermal

state by the prevailing volume of A, or still more

appositely by the difference between this volume and some

arbitrarily fixed
"
normal volume," namely, that volume

which the body A occupies when it is in thermal equili-

brium with melting ice. If the unit of this volume
difference is chosen so that 100 is indicated when A is in

thermal equilibrium with the steam of boiling water under

atmospheric pressure, then it is called the temperature

(in degrees Centigrade) with respect to the body A re-

garded as the thermometrio substance. Two bodies at

the same temperature are thus always in thermal equili-

brium, and conversely.
5. The temperature data of two different thermo-

metric substances in general never agree except at and
100. Hence, to complete the definition of temperature
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there is no alternative but to make an expedient choice

from among all substances and to use one of them to

define the conventional temperature B. It suggests itself

to choose a gas or this purpose, since different gases,

particularly at low densities, exhibit a very approximate

agreement in their temperature data over a considerable

range of temperature when used as thermometric

substances. Even the absolute value of their expansion
is almost the same for all gases, in so far as equal volumes

when equally heated expand by the same amount, the

pressure being assumed constant. The amount of this

expansion is 9 of the volume for the temperature'

rise from C. to 1 C. In the sequel we shall therefore

refer the temperature 9 to the gas thermometer, in

particular to the hydrogen thermometer.

In spite of the advantages mentioned the temperature
B here introduced has in principle only a conventional and

provisional significance. On the basis of the second law

of thermodynamics we shall later, however, find it possible

to define the so-called absolute temperature ( 45) to which

a real objective significance may be attached in so far as

it is quite independent of the mechanical or electrical

properties of individual bodies.

6. In the following pages we shall occupy ourselves

principally with homogeneous isotropio bodies of arbitrary

shape, which have a uniform temperature and density in

their interior and are subject to a uniform pressure acting

everywhere normally to their surfaces and consequently
themselves exert the same pressure outwards [of. IE (211)].

We shall take no account of surface phenomena. The

state of such a body is determined by its chemical nature,

its mass My its volume F and its temperature 6 Thus

all other properties of the state are dependent in a definite

way on those just given ;
above all, the pressure p and

the energy E depend on them. We shall discuss the

former property in the present chapter and the latter in

the next.
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Since the pressure of a body clearly depends only on
its internal constitution but not on its external shape and
its mass, it follows that, besides depending on the temper-
ature 6, the quantity p depends only on the ratio of the

mass M to the volume V, that is, on the density or,

respectively, on the inverse ratio, the volume of unit

mass :

S- ...... W
which, following accepted usage, we call the specific

volume of the body So there exists a definite relation-

ship, characteristic of every substance :

JP=/(M) ...... (2)

which is called the equation of state of the substance. The
function/is always positive for gases ;

for liquid and solid

substances it may also have negative values in some
circumstances.

7. The equation of state assumes its simplest form in

the case of gases when their density is not too great. For

by II (285) we have :

p = -* v

where depends only on the chemical nature of the gas
and on the temperature 6 (Boyle's Law, also known on the

Continent as the Law of Boyle and Mariotte). On the

other hand, by the definition of 4, the temperature 8 is

proportional to the difference between the volume v and

the
" normal volume "

v , that is :

0~(v-v ).P ..... (4)

where P depends only on the pressure p Accordingly we
have by (3) :

= ...... (5)

P

if denotes the value which the temperature function

assumes for = 0.

Finally we use the empirical fact also introduced above
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in 5, that the amount of the expansion for an increase of

temperature from to 1 is almost the same fraction :

= 0.00366 = a .... (6)

of the volume at (Law of Gay-Lussac). Thus if we set

= 1, then v VQ
= at?

,
and equation (4) becomes :

1 = a*; P . ... (7)

By eliminating p, P, v and v from the equations (3), (4),

(5) and (7) we get the temperature function :

=
(l + a0) ..... (8)

where now the constant depends only on the chemical

nature of the gas If we designate it by C, the equation of

state (3) of a gas assumes the form .

n riT\/r

p = ^(l
+ a0)=^(l + 0). . . (9)

The numerical value of C is determined, as soon as the

specific volume v of the gas is known, for any pair of values

of 6 and p, for example, and atmospheric pressure ;

the values of C for different gases at the same temperature
and under the same pressure are then obviously in the same

ratio as the specific volumes v, or inversely as the densities,

-. We may therefore flay at the same temperature and

under the same pressure the densities of all gases bear

perfectly definite ratios to one another. A gas is therefore

often also characterized by the constant ratio of its density
to the density of a normal gas at the same temperature
and pressure (specific density with respect to air or

hydrogen). Thus if we denote the quantities referred to

hydrogen, for example, by means of a suffix H, the specific

density of a gas with respect to hydrogen is :

I JL _ JL ..... (10)""""
s~i

v vn G

The following are the actual specific densities of various
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gases with respect to hydrogen : oxygen 16, nitrogen 14,

air 14-4, water-vapour 9, ammonia 8-5, hydrogen peroxide
17,

8. The equation of state (2) of a substance allows all

questions concerning the behaviour of the substance with

regard to arbitrary changes of temperature, volume and

pressure to be answered completely. Attention must be

paid to the way in which the quantities are chosen as

independent and dependent variables. If, first, the

pressure p is kept constant the changes are called isobaric

or isopiestic. The term "volume coefficient of ex-

pansion
"

is then given to the ratio of the increase of

volume for an increase of 1 to the volume at 0, that is,

T7 _ TT.

to the quantity L -. For a gas we have by the

equation of state (9) that:

CM* , w CM
-7--dF =ir'

So that the
" volume coefficient of expansion

"
for all

gases is equal to a. If, in the second place, the volume is

kept constant we speak of isochorio or isosterio changes.
The pressure coefficient of expansion is then the ratio of

the increase of pressure for a temperature increase of 1

to the pressure at 0, that is, the quantity
^g+1

~ ^fl

Po
For a gas we have by the equation of state (9) that

G&. G
JPa+i pa = and p -

\ thus the pressure coefficient

of expansion for all gases likewise becomes equal to a.

H, thirdly, the temperature is kept constant, the changes
are called isothermal and the name "

isothermal coefficient

of elasticity
"

is given to the ratio of an infinitely small

increase of the pressure to the resulting contraction per
unit volume ; thus it is the quantity :

v.

e
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For a gas we have, by the equation of state (9) :

Q
and hence the coefficient of elasticity of the gas is -(1 + a0),

that is, it is equal to the pressure p. The value of the

reciprocal of the coefficient of elasticity is called the
"

coefficient of compressibility."
The three coefficients which characterize the behaviour

of a substance in isobaric, isochoric and isothermal changes
are not independent of one another, but are connected in

the case oi any arbitrary substance by a fixed relation-

ship. For by differentiating the equation of state we get

generally :

dp=(l

If we now set dp = 0, we obtain the relation which holds

for an isobaric change between the differentials dd and
dv ; expressed in corresponding notation fthia relation is :

(dv
\de,)

--?: . . . (ii)
/ *>

Accordingly, for every State of a body it id possible to

calculate one of the three quantities, volume coefficient of

expansion, pressure coefficient of expansion and coefficient

of compressibility from the other two.

9. Gas Mixtures. If different but arbitrarily great

quantities of one and the same gas at the same temperature
and pressure which are initially separated by partitions

are suddenly brought into contact with one another by the

removal of the partitions, the volume of the total system

obviouslyremainsequal to the sum of the separate volumes.

Further, if the gases brought into contact are different in

character, experiment shows that in this case too, provided
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the temperature is kept constant and uniform and the

pressure is kept uniform, the total volume remains

permanently equal to the sum of the originally separate

volumes, although at the same time a slow process of

mixing, diffusion, takes place -which is ended only when
the composition of the mixture in every part of the space

occupied by the gases is the same, that is, when the

mixture has become physically homogeneous.
We may regard the resulting mixture as constituted in

one or other of two ways. Either we may assume that in

the process of miTmg each individual gas divides up
into an enormously large number" of small parts, each of

which, however, retains its volume and its pressure, and
that these small parts of the different gases mix together

during diffusion without penetrating into one another.

Then each individual gas would, after the completion of

the diffusion process, still retain its old volume (partial

volume) and all the individual gases would have the same
common pressure. Or else and this is the view which,
as we shall later find ( 12), can alone be justified we

may assume that the individual gases also change m the

smallest parts of their volumes and inter-penetrate one

another, so that when diffusion is completed each in-

dividual gas, so far as one may still speak of such, occupies
the whole volume of the mixture and fills it uniformly

densely. Then, corresponding to the resulting dilution,

the pressure of the individual gas has sunk to a smaller

value, that of its partial pressure
If we denote the individual gases by numerical suffixes,

while the volume V, the temperature 9 and the pressure

p of the mixture are written without a suffix, the partial
volumes of the individual gases in the mixture are (if we

adopt the first view), by (9) :

where:

F! + Fa + . . . - F . - . (13)
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and the partial pressures (if we take the second view) are :

#i = ^(l + a0),pa =^a
(l + a0). . . (14)

By addition we have :

=-' --p+ ...=#. (15)

which is Dalton's Law. It states that in a mixture of

gases the pressure is equal to the sum of the partial

pressures of all the individual component gases. We
further see that :

3V.2V . . . -C^iCyf,: . . . = F^Fa. . . . (16)

That is, the partial pressures, on the second view, are in

the ratio of the partial volumes on the first view.

The composition of a gas-mixture is defined either by
the ratios of the masses Ml3 MZi ... or by the ratios

[which, by (16), are constant] of the partial pressures or,

respectively, by the partial volumes of the individual

components. Accordingly we speak of either percentages

by weight or percentages by volume. For example,

atmospheric air contains about 23-1% of oxygen and

76-9% of nitrogen by weight but 20-9% of oxygen and

79-1% of nitrogen by volume.

The equation of state of a gas mixture is, by (12) and

(13) :

or:

Thus it corresponds perfectly with the equation of state

(9) of a simple gas whose characteristic constant is :

- M! + M, + . . .

Hence an investigation of the equation of state can never

decide whether a gas is chemically simple or whether it is

formed of a mixture of different simple gases.
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10. The equation of state (9) holds for all gases and

vapours if their densities are sufficiently low. But if

their densities exceed a certain order of magnitude certain

deviations always occur and the equation of state must
then be given a more general form. In the course of time

a whole series of different equations of state has been

given which fulfil their purpose more or less well. The
first and simplest of them is due to van der Waals ; it is

of particular interest because it also applies to the liquid

state. Van der Waala' equation runs :

_ C(l + afl) a ,
19)P= v-b -* - - - d9)

where a and b are other constants which depend on the

nature of the substance. For great values of v the

equation reduces to (9), as it should do.

The functional dependence of the pressure p on the

volume v and the temperature 6 may be conveniently

depicted by drawing "isothermal" curves; for any
arbitrary constant temperature 9 two associated values of

v and p are plotted as abscissa and ordinate of a point in

a plane. The complete family of all isothermals then

gives a complete picture of the equation of state. By the

equation of state (9) all isothermals are clearly rectangular

hyperbolas which have the co-ordinate axes for their

asymptotes. For pv = const, holds for them. By van
der Waals'equation (19), onthe other hand, the isothermals

assume quite different forms, whose character is indicated

in Fig. 1. In general, as can be seen from (19), there are

actually three values of v for each value of p. Hence an
isothermal will in general be intersected at three points by
a straight line parallel to the v-axis. But two of them

may be imaginary, ad actually occurs for high values of

6. At high temperatures (for example, 0' in the figure)
there ifl thus for a given pressure only a single real volume,
whereas at low temperatures (for example, 6 in the

figure) three real values of the volume correspond to a
definite value of the pressure. Of these three values,
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represented in the figure, for example, by a, (3, y, only the

smallest (a) and the greatest (y) can signify a stable state

of the substance, such as can be produced in physical
nature. For in the case of the intermediate volume

(ji)

the pressure along the isothermal clearly increases as

the volume increases; that is, the compressibility is

negative. Such a state is only of theoretical importance.
The point a corresponds to the liquid state ; the point

y corresponds to the gaseous state at the temperature 6

and at the pressure p represented by the common ordinate

FIG l.

of a, p and y. But, again, in general only one of these

two states a and y is stable (in the figure it is the state a).

For if the gaseous substance, which, say, is enclosed in a

cylinder with a movable piston, is compressed, the temper-
ature 8 being kept constant during the process, the

successive states will be denoted in the first place by the

points to the right on the isothermal 6. As the volume

decreases the graph point moves continually further to

the left along the isothermal until it reaches a perfectly

definite point G. On further isothermal compression,

however, the point does not go beyond G; rather the

substance partially condenses, that is, it resolves into a
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liquid and a gaseous part which, of course, have a common

pressure and temperature. If the isothermal compres-
sion is continued still further the state of the gaseous

part is always denoted by the fixed point C, that of the

liquid part accordingly always by the fixed point A of the

same isothermal. The only change that occurs in the

process is that more and more vapour is precipitated.

C is called the saturation point of the gaseous substance

at the temperature 6 Finally, when all the vapour has

been condensed the whole substance is in the liquid state

A and so again behaves homogeneously. Further iso-

thermal compression then again leads to increase of

density and of pressure along the isothermal 6, during
which also the point a of the figure is passed through.
The figure shows that on this side the isothermals are

much steeper than on the other, that is, the compressibility
is far less.

Sometimes, in compressing a vapour, the isothermals

are successfully continued beyond the point C a certain

distance towards y and te

super-saturated vapour
"

is

produced. Only more or less unstable states of equili-

brium are obtained, as may be recognized from the fact

that very small disturbances of the equilibrium may be

followed by sudden condensation, that is, by an abrupt
transition to the stable state. Nevertheless the study of

super-saturated vapours invests also the theoretical part
of the isothermals with a certain practical importance.

11. From the above remarks we see that every iso-

thermal which admits of three real volumes for certain

values of p has two definite points A and C which denote

the condition of saturation. Their position cannot be

directly read off from the graph of the isothermals. But
the laws of thermodynamics lead to a simple geometrical
construction for giving these points; this method is

worked out in Chapter IV ( 61). The higher we choose

the temperature the more the region intercepted between
the isothermal and the line parallel to the v-axis, which
cuts it in three points, shrinks together, and the closer
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these three points approach one another. The transition

to those isothermals which resemble hyperbolas and are

cut by parallels to the v-axis in only one point is indicated

by a definite isothermal for which the three previous points
of intersection coincide. This point thus represents a

point of inflexion of the isothermal in question, at which
the tangent of inflexion runs parallel to the 0-axis. It is

the critical point K of the substance (see Fig. 1); it

specifies the critical temperature 61, the critical volume

Vk and the cntical pressure p*. At the critical point the

saturated vapour becomes identical with its condensate.

Above the critical temperature (&>&*) and above the

critical pressure (p >pk) no condensation at all occurs, as

is easily seen from the figure. From the figure we also

learn directly that there is no definite boundary between

the gaseous and the liquid state, as it is easy to pass from

the region of definitely gaseous states, for example, from
the point <7, to a curve which passes over and around the

critical point into the region of definitely liquid states,

for example, to A, without anywhere encountering a

saturated state. For this reason, too, we cannot in

principle distinguish between gases and vapours.
The critical state may easily be calculated from the

equation of state (2) . For from the preceding observations

we know that the following two equations hold for it :

The first of these expresses that the tangent of the iso-

thermal at K runs parallel to the v-axis
;
the second states

that the isothermal has a point of inflexion at K.

For van der Waals' equation we have in particular :

12. If two gases or vapours mix which have so great a

density that the simple equation of state (9) no longer holds

for them, it is possible by applying Dalton's Law to arrive
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at an expression which is very approximately valid for

the equation of state of the mixture. This law states

that the pressure of the mixture is equal to the sum of the

partial pressures which each gas (or vapour) would exert

if it alone filled the whole volume at the same temperature.
This law also furnishes us with an answer to the question,

which was left open above in 9, as to whether we must
ascribe to the individual components of a gas mixture a

common pressure and different volumes or a common
volume and different pressures. That the latter view is

alone admissible follows from the consideration of a vapour
whose temperature is below the critical temperature.
For example, if we take a mixture of air and water vapour
at and at atmospheric pressure, it is impossible to

assume the water vapour as being at the pressure of one

atmosphere, as water vapour at does not exist at all

at this pressure. There is no course open, then
s
but to

ascribe a common volume and different pressures to the

air and the water vapour.
13. Having dealt with the interdependence of the

variables p, v and 6 of the equation of state we shall next

fix our attention on the significance of the constant G in

the gas equation (9). Its value is dependent on the

chemical constitution of the gas. What distinguishes
chemical from physical events is above all the fact that

the former in general occur discontinuously, spasmodically,
whereas the latter in general occur continuously. For
the chemical nature of a substance is something constant

and between different constants no continuous transitions

are possible, but only steps. Accordingly the different

chemical substances do not form a uniform series connected

by continuous transitions, but rather a discrete series in

which the individual members are sharply differentiated

from one another. This manifests itself in the experi-
mental fact that in every chemical change the substances

which are reacting with one another combine or dissociate

in quite definite and constant proportions by weight.
We may therefore ascribe to every chemically homo-
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geneous substance, whether it be an element or a com-

pound, a definite weight (more correctly mass), namely, its

equivalent weight, as follows. We fix the equivalent

weight arbitrarily for some particular substance, for

example, 1 gramme, say, of hydrogen We then find

the chemically equivalent weight for another element, say

oxygen, by ascertaining that weight of oxygen which
combines chemically with 1 gramme of hydrogen to form

water, namely, 8 grammes. The amount, by weight, of

the resulting compound, 9 grammes, is then the equivalent

weight of water. Proceeding in this way we easily arrive

at the equivalent weight for all chemical substances, even
for those elements which do not combine directly with

hydrogen at all, since elements can always be found that

combine both with the element in question as well as with

hydrogen and so establish an indirect connexion.

This law of the constancy of equivalent weights im-

presses itself clearly on our minds if we regard the equi-
valent weight a of a substance as a definite single quantity,
as a sort of individual Every chemically homogeneous
quantity of mass M then contains a definite number n of

equivalent weights or equivalents :

n = ** ...... (22)

and the following law then holds : in every chemical

change equal numbers of equivalent weights react with

one another.

This definition, however, suffers from a defect which

was seriously felt for a time in theoretical chemistry. It

is due to the fact that twq elements can often enter into

combination in. more than one way with each other, which

makes the equivalent weight have more than one value.

For example, 1 gramme of hydrogen combines not only

with 8 grammes of oxygen to form water but also with

16 grammes of oxygen to form hydrogen peroxide, and

there isno material reason for preferring the one compound
to the other in defining the equivalent weight. But
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experiment shows that in such a case the different possible

values of the equivalent weight always bear simple

integral ratios to one another ; thus in the case of oxygen

just quoted 8 : 16= 1 : 2. So we must generalize the

assertion that
"
equal

" numbers of equivalents react

with one another by stating that the equivalents react

with one another in
"
simple integral proportions."

14. This indefiniteness in the definition of the equi-

valent weight which we have just described is overcome

in the case of gaseous substances by selecting from the

different values that offer themselves for the equivalent

weight a of a gas a definite value and calling it the molar

weightm of the gas (of. also end of 1 1 5) . This is rendered

possible by the further experimental law that gases react

not only, like all other substances, in accordance with

simple equivalent numbers but also according to simple
volume ratios, when taken at the same temperature and

pressure (Gay-Lussao's Law). From this it follows

immediately that the equivalent numbers n contained

in equal volumes of different gases and denned by (22)

bear simple integral ratios to one another. The values of

these simple ratios are, of course, subject to the same

uncertaiuty as the values of the equivalent weights a.

If we now make the last law more precise by defining
that the equivalent numbers n contained in equal volumes
of different gases and defined- by (22) are equal, to one

another, this means that we are making a particular choice

among the different values that come into question for the

equivalent weight a, and in this way we obtain for every

gas a perfectly definite molar weight m and likewise, by
(22), for a given quantity M of a gas a definite molar

number :

7i = ^ (23)m

Equal volumes of all gases under the same conditions of

temperature and pressure contain the same numbers of

moles (Avogadro's Law).



i. MOLAR WEIGHT 21

The definition of the molar weight m as a definite

quantity dependent only on the nature of the gas itself

and not on chemical reactions with other substances

represents one of the most important and fruitful achieve-

ments of theoretical chemistry. It allows m to be

measured by physical methods. For, since for any two

gases 1 and 2 the numbers of moles n contained in equal
volumes under the same conditions of temperature and

pressure are the same, we have by (23) :

That is, the molar weights m^ and mz are in the ratio of

the masses contained in equal volumes, namely M :MZ)

or in the ratio of the densities. Now, by 7, the ratio of

the densities of the two gases is represented by the constant

ratio TT 7T- Accordingly we obtain :

G! O 2

and so the molar weight can be calculated from the

equation of state.

If we set the molar weight of hydrogen equal to win, the

molar weight of any other gas is by (24)

Cam = -~- ' ms ..... (25)

By (10) the factor ^ is the specific density of the gas with

respect to hydrogen ;
the value of the specific density is

given at the end of 7 tor several gases

15. Having fixed the molar weight of any gas un-

ambiguously by (25), we may now also give an equally

definite answer to the further question as to how the molar

weight of a chemical compound is composed of the molar

weights of its chemical elements. Let m be the molar

weight of a chemical compound which is formed by two
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jhemioal elements having the molar weights ml and mz .

Che question is : how many moles of each element combine

.ogether to form a mole of the compound? We are to

egard the molar weights m, mls m2 as known, by (25), and
ve> require to find the molar numbers n and n& .

To calculate these two unknowns we first have the

quation

m . . . . (26)

nd, secondly, the ratio of the weights of the two elements

i the compound :

(27)

i'rom these equations it follows that :

' ' ' ' (28)

--- r <29>

For example, for a mole of water vapour, consisting of

hydrogen (1) and oxygen (2), we have m: mn. Further,

by (25), taking into account the numerical values, given
at the end of 7, for the specific densities of oxygen and

water vapour with respect to hydrogen,we havem2
= 16ma,
Mm = 9mH, and for the ratio of the weights we have ^~

= 8.

Consequently, by (28) and (29) :

nt
= 1, n%

~
% > that is, a mole of water vapour consists of

a mole of hydrogen and half a mole of oxygen.
For a mole of ammonia, consisting of hydrogen (1) and

nitrogen (2) we have :

Further, by (25) and 7 .
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and for the ratio of the weights we have :

-Ma_14
M!~ 3

Consequently by (28) and (29) :

3 1% =
2
* -

2

That is, a mole of ammonia consists of one and a half

moles of hydrogen and half a mole of nitrogen.
16. The smallest amount by weight of a chemical

element which occurs in the molecules of the compounds
of the element is called an atom or, more accurately to

distinguish it from the true atom a molar atom (of. the

remarks in the preface and in 1 15) . Hence half a mole of

hydrogen is called a molar atom of hydrogen and denoted

by H\ half a mole of oxygen is called a molar atom of

oxygen, ;
half a mole of nitrogen is called a molar atom

of nitrogen, N. Thus a mole of any of these elements

consists of two molar atoms : Hz, Oz, Nz . In the case of

mercury and the inert gases, on the other hand, the

molar atom is equal to the whole mole, because none of

their compounds contains fractions of a mole. The mole of

water vapour is denoted by HZ0, that of ammonia by

To arrive at definite numerical values for the molar

atomic and molar weights it yet remains to fix in some

arbitrary way the molar atomic weight of some one

element ohosen at random. FormerlyH was set = 1 grm.
and therefore 0=16 grins. But after it had been shown

that the ratio of the molar weights of oxygen and hydrogen
is not exactly equal to 16 but to .16-87, and in view of the

fact that in the case of most elements the oxygen com-

pounds have been much more accurately analysed than

the hydrogen compounds, it has become customary to

use the molar atomic weight of as 16 for the purpose of

definition. The molar weight of oxygen is then :

2
= 32 ...... (30)
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and the molar weight of hydrogen :

o

. . . (31)

and the molar atomic weight of hydrogen :

# = 1-008 (32)

In general the molar weight of a gaseous chemical com-

pound is, by (25) and (31) :

m- 2-016-^=
C

or, equivalently :

m = 32
--^

if C denotes the constant of the equation of state for

oxygen.

Conversely, if the molar weight m of a gas is known, it

is possible to give the value of the constant C of its

equation of state (9) :

2-016.

m m (33)

Now the density of oxygen at 0. and atmospheric

pressure is :

- = 0-0014291 grm./cm
8

v

so that by (9), with 6= and_p= 1,013,250 [grm cm 1
.

sec.~ 2
], which is given in H (284), we have :

7 '09 - 10" m -
2 secrsr

and, by (33), the equation of state (9) becomes :

2-27101
fl

2-27.10"..M
,. , m ....

p =- (1 + a.6)
=-

17
--

(1 + oc0) . (34)* mv x ' mV \ / \ j

M
But is the number of moles contained in the gas.m 6 '
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namely n
; therefore :

2.97 1010^7 - 1U
-n.(l + gg) . . . (35)

That is, the volume of a gas at a definite pressure p and
definite temperature 6 depends only on the number of

moles it contains and not at all on the nature of the gas ;

and this is in conformity with Avogadro's Law.

Equation (35) also holds for a mixture of gases, that is,

for the case when the n moles of a gas are not all of the

same kind. This can be seen immediately from (17) if we

replace the constants Glt Cz ,
... in it by the corres-

ponding molar weights wi
19
mz ,

. . . from (33) and if

we reflect that the ratios -,
-

. . represent the
7% m%

f

numbers of moles n i} n%, . . . that occur in the gas.

Simultaneously we get the result that the ratios (16) of

the partial pressures or the partial volumes are no
other than the ratios of the numbers of moles of the

individual component gases of the mixture :

Pi-.pz : . . . =n :nz : ..... (36)

If, accordingly, the equation of state of a mixture of

gases differs in no way from the equation of state of a

chemically homogeneous gas we cannot speak of a definite

molar weight of the mixture but only of a " mean " molar

weight, that is, of that molar weight which a chemically

homogeneous gas would have if it contained the same
number of moles in the same mass as the mixture. Thus :

M! + Jf, + . . _ M! M2 ,

3?)m TTij ma
\ /

Erom this we can calculate the mean molar weight of the

mixture. In the case of atmospheric air, for example,
the mean molar weight is 28-8, which corresponds with the

value given for the specific density of air at the end of

7.

17. Up to this point of the discussion we have assumed

that the gas under consideration satisfies the equation of
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state (9). For in the equation (35) the number of moles

n is then a constant quantity independent of the pressure
and the temperature. But if a gas or a vapour manifests

a behaviour which deviates from that expressed by this

equation of state we are faced with the >alternative of

applying a generalized equation of state, such as that of

van der Waals, or else of retaining equation (36) and

assuming a value for the number of moles n which is

dependent on the temperature and the pressure : in other

words, to regard as the cause of the deviation from the

equation of state (9) either physical or chemical circum-

stances. According to the first view the moles of the

gas remain unchanged but they act on one another in a

complicated manner, while on the second view the gas
forms a mixture of variable percentages whose constituents

individually satisfy the equation of state (9). The per-

centage content may then be calculated by (26) for every

temperature and every pressure from the mean molar

weight m =
, corresponding to the number of moles n,

if the molar weights m1} mz ,
of the constituents are known.

This view is found to be most fruitful in the cases where

very considerable changes of the specific density are

involved, that is, in the case of the so-called abnormal

vapour densities ; it applies particularly when the specific

density beyond a certain range of temperature or pressure

again becomes constant. For then the chemical trans-

formation has been completed and the molar constituents

no longer change. For example, amyl bromide satisfies

the gas equation (9) both below 160 C. as well as above
360 0., but in the latter state it has only half the density,
that is, double the number of moles, corresponding to the

transformation :

6H10 + HBr

But if the deviations from the equation of state (9) are

unimportant they are usually ascribed to physical causes

and are regarded as heralding condensation. A funda-
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mental separation of the chemical influences from the

physical influences which would complete the definition

of molar weight for variable specific densities cannot be

given from the standpoint of pure thermodynamics. In

general, therefore, physical as well as chemical changes
will have to be considered as causes for these deviations

from the equation of state (9). All that we may state

with certainty is that when the density becomes less the

physical influences become progressively less important

compared with the chemical influences. For when the

density is sufficiently small the equation of state (9) holds

for all gases and vapours of constant chemical composition.



CHAPTER H
FIRST LAW OF THERMODYNAMICS

18. THB first law of thermodynamics is no other

than the universal Principle of Conservation of Energy

applied to heat processes. The energy E of a physical

configuration may be regarded as a "
capacity

"
to do

work (I, 49) which is conditioned and uniquely deter-

mined hy the momentary state of the configuration, and
which can occur in various forms and undergo various

transformations but, so long as the configuration is iso-

lated from the exterior, is of definite amount which does

not vary with respect to the tune : thus E= const, or

E' E= if E refers to the initial state and E' to the

final state of the configuration.

So soon as the configuration is subjected to influences

from without or exerts an action on the outside its energy
E alters according to the measure of this external action.

If the external action is of a mechanical nature the change
of energy is equal to the work A which the external forces

perform on the material points of the configuration or

system (I, 120). If the external action is electromagnetic

by nature the change of energy is equal to the Poynting
energy-flux P (HI, 4) directed inwards through the

surface of the system. If, finally, the external action is

of a thermal nature the energy change is equal to the

quantity of heat Q which has passed from without into the

system.
For the general case when all three kinds of external

effects are to be taken into consideration we thus obtain

as the expression for the principle of the conservation of

energy :

E'-E = A+P + Q (38)
28
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The sum on the right-hand side is called the mechanical

equivalent of ike external effects which are produced on the

configuration during its transition from the initial state

to the final state

This equation must not be regarded as being only a

definition. For its validity depends on an assumption
which is not self-evident and which can be justified only

by experiment. This assumption is that the value of the

energy E is to be taken as determined by the momentary
state of the system. Thus if a physical system is allowed

to pass m several ways or, as it is often expressed, along
different routes from a definite initial state to a definite final

state, the mechanical equivalent of the external actions

must every time lead to the same value. This law is not

self-evident but may be tested by measurements in an

infinite number of ways. If itwerefound tobe transgressed
in one single instance, that is, if we could point to a case of

two transitions of any physical system from a given initial

state to a given final state, for which the above sum
were to have two different values, the possibility of con-

structing a
"
perpetual motion " machine would arise in

that the configuration could be brought along the one

route to the final state and then back along the other

route to Hhe initial state. The whole process then

constitutes a
"
cycle." Now a cycle can be repeated any

desired number of times and so gives us a machine which

functions regularly, its effect being represented by the

difference of the mechanical equivalents corresponding to

the two individual transitions. By the energy principle
this difference is nil, as can also be seen directly from (38)

if we consider that for a cycle E'= E, and hence for every

cyclic process the algebraic sum of the mechanical equiv-
alents of all external actions must satisfy :

A + P + Q = . . . . (39)

This excludes the possibility of reahzing a perpetual
motion machine.

Since the choice of the physical systems to be con-
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sidered is quite open, the energy principle (38) may be

applied to a definite physical event 111 very different ways.
For example, we may eliminate all external actions by
including the body or bodies, to which the action is due,

in the physical system. The external action in question
is then disposed of and instead of it there appears a new
term in the energy E of the system. In this way it is

possible, by extending the system appropriately, to dispose
of all external actions and to isolate the system so that

its energy can be regarded as constant. It is not possible,
of course, to take measurements if the configuration is

completely isolated from its surroundings, for every
measurement requires communication with the outside

world.

19. The quantity of heat Q taken up by a body may be
of a mechanical or an electrical nature. According as

the case may be we speak of heat conduction or heat radia-

tion. But in each case the quantity Q refers only to the

heat transmitted to the body and not, say, to the heat
"
contained

"
in the body. To be able to give a definite

meaning to the latter concept general thermodynamics does

not suffice; it becomes necessary to introduce a special

hypothesis about the atomic constitution of bodies. All

that can be measured directly, independently of any
hypothesis, is the transmission of heat, not the thermal
state in terms of energy. It is in agreement with this

circumstance, too, that by equation (38) only energy
differences can be measured; that is, the value of the

energy E of a body always contains an indefinite additive

constant.

In the first two parts of the present volume we shall

consider only heat conduction, leaving heat radiation to

be dealt with in the third part. Furtherwe shall in general
restrict our attention to considering bodies at rest. The

energyE of a body then reduces to its so-called
" internal

"

energy U which, like the pressure p, is to be regarded as a
function which is determined by the chemical constitution,
the temperature 6 and the volume V= Mv of the body,
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apart from an additive constant. If we also leave out of

account external electromagnetic actions the equation of

energy (38) reduces to the form

U'-U=A + Q . . . . (40)

20. Since Q denotes the mechanical equivalent of the

heat transferred to the body, it is understood that Q is

expressed in mechanical units (ergs, I, 47). In thermal

measurements, however, practical considerations lead us

to use a special unit, the calorie. This is the quantity of

heat which 1 grm of water must take up from without

in order that its temperature may rise from 14-5 C. to

15*5 C. All calorimetric measurements are expressible in

terms of this unit.

The ratio of the quantity of heat Q taken up by a body
to the resulting increase of temperature 6' 8= A0 is

called the
" mean heat-capacity

"
of the body between

the temperatures 6 and 8' :

m = Cm

The heat capacity of 1 grm. of a substance is called its
"

specific heat."

On^ Q = q
M M . A0 A0

Accordingly the mean specific heat of water between

14*5 C. and 15-5 C. is equal to one calorie. If we make
the temperature intervals infinitely small we obtain the

so-called
"
true heat-capacity" of a body and the "true

specific heat
"

of a substance, respectively, at the temper-
ature 6 :

which in general varies only slightly with the temperature.
To be rigorous the above definitions of heat-capacity

and of specific heat require to be supplemented. For
since the internal state of a body, besides depending on the

temperature, also depends on a second variable, say the
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pressure, the change of state associated with an increase

of temperature is not definite until we know how the

second variable behaves in the process In the case of

solid and liquid bodies, it is true, the heat-capacity is

almost independent of whether the heating is performed at

constant or variable external pressure; for this reason

we do not usually add a particular condition about the

pressure in defining the heat capacity of such bodies.

In the case of gases, however, the value of the heat

capacity depends very decidedly on the external circum-

stances under which the heating process is carried out,

hence, for them, the definition of heat-capacity must be

supplemented by having these external circumstances

specified, which can, of course, be controlled at will. The

heat-capacity of a gas is taken simply to be that at

constant atmospheric pressure, since this can be most

conveniently measured.

21. To enable calorimetric measurements to be used

in applying the energy equation (40) it is necessary to

know the factor which converts the unit of heat, the calorie,

into the mechanical unit, the erg. This conversion

factor, called the mechanical equivalent of heat, is a

constant which depends only on the system of measure-

ment used, its value may be found most directly by
making a system pass from a definite initial state to a

definite final state in one case by external mechanical

means alone and in another case by means of external

heat processes alone. For since W E has the same
value in both cases the mechanical equivalents of the

external actions are equal in both cases, by (40), and the

mechanical work A in the first case is equal to the heat

Q transferred to the system in the second case.

Such measurements were first carried out by J. P. Joule,
who caused a liquid (water, oil) to pass by two routes

from a definite state of lower temperature to a definite

state of higher temperature. This was done in the one
case only by adding a certain quantity of heat, in the other

only by performing a certain amount of mechanical work
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by means of the friction caused in the liquid by paddle-
wheels which were made to turn by falling weights. In

this process no importance attaches to the ideas we may
have about the manner in which the heat is generated by
friction, all that matters is that the final state of the

liquid must be the same as that produced by the transfer

of heat to the system. The measurements indicated that

a calorie is equivalent to 4-19.107
ergs; consequently

the mechanical equivalent of heat is :

a, = 4-19 . 107
ergs/cal (42)

This numerical value has subsequently been tested by
numerous measurements. The fact that it always comes

out as practically the same in all kinds of experiments
with different substances, temperatures, friction apparatus
and weights is a striking experimental confirmation of the

law of conservation of energy (40).

22 We shall now apply the first law of thermo-

dynamics to a homogeneous body of given mass M whose

state is denned by its temperature 6 and its volume V,

Here and everywhere in the sequel we shall use the word
"
homogeneous

"
simply in the sense of

"
physically

homogeneous," that is, a homogeneous configuration is

one whose smallest visible parts (in the macroscopic

sense, cf. 115 below) may be regarded as exactly of the

same kind. It is not a question of the body being

chemically homogeneous, that is, consisting of exactly

similar moles throughout. For a partly dissociated

vapour ( 17) can very well be physically homogeneous
All that we wish to assume here is that the state of the

homogeneous body in question is uniquely determined

by the temperature and volume no matter whether or

what sort of internal chemical transformations occur in

the course of the changes of state under consideration.

The pressure p and the internal energy U are then to be

regarded as definite functions of 8 and V.

Whereas the pressure p may be measured directly the

energy equation (40) must be applied if we wish to
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determine the energy function U. We shall first consider

the particular case of a gaseous body.
23. If we allow a gas which is initially in thermal

eqmlibrium and has an amount U of internal energy to

flow out of one vessel into another, previously evacuated,

a number of complicated mechanical and thermal changes
will take place within the gas during this process The

issuing part of the gas will set itself into rapid motion and

will afterwards become warmer owing to collision with the

walls of the second vessel and the compression of the

immediately following masses, while the part which

remains in the vessel will become cool owing to expansion,
and so forth. If we assume that the walls of both vessels

are absolutely rigid and are perfect non-conductors of

heat, then in equation (40) both A and Q = 0, and the

energy of the gas remains constant. This energy is

composed of many parts, namely of the kinetic energies
and the internal energies of all the individual gas particles.

If, however, we wait sufficiently long, until a completely

steady state and thermal equilibrium have become estab-

lished, the energy in the final state again consists only of

internal energy, and it then follows from (40) that U' = U.

But the variables 6 and V, on which U depends, have

passed from their original values to the values 6' and V,
V being greater than 7. We may also find out by
measuring the temperature and the volume before and
after the process how the temperature of the gas varies

as the volume V changes, while the internal energy U
remains constant

Joule carried out an experiment of thus kind and found
that for gases 6' is nearly equal to 8. He placed the two

vessels, one of which was initially filled with air at high
pressure and the other evacuated, in a common water-

bath at the same temperature On carrying out the above

process of allowing the gas to stream into the vacuum and
after waiting for the state of equilibrium to be attained,
he found that the change of temperature in the water-bath
was inappreciably small. From this it follows that even
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in the case of walls that are perfect non-conductors of

heat the final temperature of the gas is equal to the initial

temperature; for otherwise the change of temperature
would have been communicated to the water in the above

experiment.
Thus when the internal energy of a gas remains constant

while its volume is changed, the temperature also remains

practically constant; or, in other words, the internal

energy of a gas is determined almost entirely by the

temperature alone and is independent of the volume.

24. To make this conclusion appear quite convincing

still more accurate measurements are necessary. For in

the experiment by Joule just described the heat-capacity

of the gas is so small compared with that of the walls of

the vessel and the water-bath that it would have required

A A' B B'
i

. 2.

a very considerable change of temperature in the gas to

produce a measurable change of temperature in the water.

An essential modification of the method was devised by
W. Thomson (later Lord Kelvin) and carried out by him

in conjunction with Joule ; this allowed refined measure-

ments to be made which gave more trustworthy results.

It consists in artificially retarding the outflow of gas so

that it passes directly into its second state of thermal

equilibrium and the temperature d' is then directly

measured in the gas. It does not in this case stream out

tumultuously as a limited mass of gas into a vacuum,
rather the gas is led in an iinlimited steady stream from

the region of higher pressure into that of lower pressure by

being forced through a cylindrical tube of beech-wood

which is blocked at one point by a porous plug of cotton

wool or teased silk (shown shaded in Fig. 2).

This enables us to draw an inference about the internal
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energy of a gas. For this purpose we apply the energy

equation (40) to the system AB when the stream has be-

come steady; the system AB consists of a mass of gas
which is on the left side of the porous plug (we reckon it

from an arbitrary cross-section A) and the plug together

with the gases contained in it. Let the volume of the

gas between A and A' be V. We shall choose as our

final state that which exists when the gas particles

which were originally in A have reached the boundary A'

of the plug. At this moment those gas particles which

were initially at the cross-section B have now arrived at

B'. The masses of gas AA
1 and BB' are then equal,

whereas their volumes V and V will of course be different.

Let us next calculate the mechanical equivalent A -f- Q
of the external forces acting on the configuration in

question. The transferred heat Q is nil
;
for the wood of

which the tube is composed is practically a perfect non-

conductor, and at A and B1
there is no conduction of heat

because the temperatures 6 and 6' in the gas are constant.

There then only remains the mechanical work which is

performed by the external forces of pressure acting on the

slowly moving system. The force acting on its left side

is equal to the pressure multiplied by the cross-section of

the tube; the displacement of the system AA' is equal
to the volume V divided by the cross-section of the tube.

Hence the work done, namely the product of the force

and the displacement, is equal to pV. On the right side

of the plug the work done is correspondingly equal to

p'V, because here the displacement is in the sense

opposed to the external force, which acts from right to left

So the total external work is A = pV p'V. Now tho

difference of energies of the system in question in the

initial and in the final state clearly reduces to the difference

of the internal energies U and Ur

of the equal masses of

gas AB and A'B'. For the plug and the gas contained in

it are in the same state at the end as at the beginning.
However complicated the events that occur in the plug
may be, they do not come into consideration for the



ii. FIRST LAW OF THERMODYNAMICS 37

energy equation so long as the process is steady. All in

all we find then that if we apply the energy equation (40)

to the steady process in question we have :

-p'V . . . . (43)

This id the general theory of Joule and Thomson's porous

plug experiment.
As for the results obtained by actual measurement it

was found that in the case of air in the steady state there

was a very small change of temperature 8 6' in the gas
on the two sides of the plug ; in the case of hydrogen it

was still smaller, being hardly measurable. From this

it follows by (9) that the right-hand side of equation (43)

and hence also the left-hand side, U' U, almost vanishes.

That is, the internal energy of the gas has remained,
like the temperature, almost unchanged in spite of its

greatly changed volume, and the inference already drawn
at the end of 23 that the internal energy of a gas at a

definite temperature is almost independent of its volume
is confirmed, namely that :

25. Those processes which, as it is usually expressed,
occur infinitely slowly and therefore consist of states of

equilibrium alone are of particular importance for the

theory. Taken literally this mode of expression is not

precise, for the nature of a process necessarily involves

changes, that is, it assumes disturbances of the state of

equihbrium. But if we are concerned, not with the time

but only with the final result of the changes we may assume

these disturbances to be as small as we please compared
with those quantities which are characteristic of the state

of the system in question For example, we can compress
a gas as slowly as we wish to any fraction of its initial

volume by making the external pressure at every moment

very slightly smaller than the pressure of the gas, and in

calculating the external work only a very small error is
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incurred if we use the pressure of the gas instead of the

external pressure. In passing to the limit, this error

disappears altogether and the result becomes rigorously

accurate. For the error in a definite result always has a

definite value, and if this error is smaller than any

arbitrarily small quantity, it is of necessity equal to zero.

What has just been said applies equally well to a com-

pression at constant pressure as to one in which the

pressure is varying. In the latter case the exactly

appropriate value must be given to the external pressure

at every moment. This can be achieved by means of

special regulating devices which do not involve the per-

formance of work.

The position with heat that has been taken up or

given out is just the same as with the external work. If

we are concerned with the value of the quantity of heat

which a body has received from or given to its surroundings
it is sufficient to assume the temperature of the heat-

container used to be greater or smaller by an arbitrarily

small value than the temperature of the body, according
as the heat is taken up or given out. This slight excess

simply determines the direction of the process but its

value does not come into question compared with the

whole change produced by the process. For this reason

just as we spoke of the compression of a gas by means of

an external pressure equal to that of the gas so also we

speak of the transference of heat from one body to another

at the same temperature; and doing this means only
that we anticipate the result which is obtained in passing
to the limit by making the finite small difference of

temperature of the two bodies become vanishingly small.

This also applies not only to isothermal processes but
also to those in which the temperature vanes In the case

of the latter it is not sufficient to have a single heat-

reservoir at constant temperature but rather we must
have a sufficiently great number of appropriate heat-

reservoirs at different temperatures and must at each
moment use just that reservoir whose temperature is as
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nearly as possible equal to that of the body under con-

sideration.

The great theoretical importance of the point of view

underlying this method of treatment is that every
"
infinitely slow

"
process can be imagined to be carried

out in the reverse direction. For if a process consists,

except for extremely small changes, of nothing but states

of equilibrium, then clearly an equally small change
appropriately applied will always suffice to make the

process occur in the reverse direction, and the magnitude
of this very small change can, as above, be made vanish-

ingly small by passing to the limit.

26 We now proceed to apply the first law of thermo-

dynamics to a process of this

kind which consists only of

states of equilibrium and is

therefore reversible It may be

pictured graphically in a simple

way by plotting the series of

equilibrium states successively

passed through by the body as

a curve in the plane of a co-

ordinate system whose axes

represent the values of the Flo> 3>

independent variables We
shall here again choose as our independent variables

the volume V (abscissae) and the pressure p (ordi-

nates). Corresponding to every point in the co-ordinate

plane there is then a definite state of the homo-

geneous body in question and every curve denotes a

definite continuous and reversible change of state. A
reversible process, for example, which brings the body
from a state 1 to a state 2 is indicated by a curve a which

passes from the point 1 to the point 2 (Fig. 3) . By equation

(40) the increase of energy of the body is :

where A denotes the work done by the external pressures

and Q the heat transferred to the system from without
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27 The value of A can be calculated directly. For A
is the algebraic sum of the elementary portions of work
which are performed by the external pressure during the

successive infinitely small changes of the body, corres-

ponding to the individual elements of arc of the curve a

Now since the external pressure at any moment is to be
set equal to the pressure p of the body as the process is

assumed to be reversible the external work done in an

infinitely small change of state is, by II (278), in general

equal to p dV and is independent of the shape of the

surface of the body Accordingly the external work done

during the course of the whole process is :

(46)

where the integration is to be taken along the curve a
from the point 1 to the point 2. If p is positive, as in the

case of gases, and F2 > Vv as in Fig 3, then A is negative ;

that is, no external work is done on the gas but work is

done by the gas, say, by raising a weight which is pressing
down on the gas.

To be able to carry out the integration it is necessary
to know how the pressure p depends on the volume F,
that is, we must know the shape of the curve a. So long
as only the points 1 and 2 are known and the connecting
curve is not given, the integral has no definite value.

Thus if the transition from 1 to 2 occurs along another
curve p the result of the integral will be quite different

Hence the differentialpdV is, we may say, an
"
incomplete

differential." Regarded mathematically, this circum-
stance is due to the fact that besides depending on V the

quantity p also depends on another variable, the temper-
ature 6, which will change in a certain way in passing
along the path of integration a. So long as a is not known
nothing can be said about the dependence of 6 on the

integration variable V ; and so the integration cannot be
performed.
The external work A has a very simple graphical mean-
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mg in Fig 3 By (46) it is clearly equal to the negative
value of the area of the figure enclosed by the curve a,

the F-axis and the ordinates through the points 1 and 2.

From this, too, we see that the value of A is essentially

conditioned bv the course of the curve a. It is only for

infinitely small changes of state, that is, when the points
1 and 2 are infinitely close to each other, or when a

contracts to a curve element, that A is determined by the

initial and final point of the curve alone.

28. From the value (46) for A and the energy equation

(45) the heat transferred to the body comes out as :

Q= Ut-Ut + fav . . . (47)

From this we see that the value of Q as well as that of A
is conditioned not by the points 1 and 2 alone but also by
the shape of the curves a and

(3
that connect them. In

addition, to be able to calculate Q, we require to know
the energy U of the body in the states 1 and 2.

The quantity Q can be calculated independently of the

energy U in the case where the body is finally again brought
to its initial state 1, that is, when it performs a cycle. This

can happen, for example, when it is first brought to the

state 2 along the path a and then back to the state 1 along
the path p. For then, as has already been shown in 18 :

Q = _ A =
f]pdV .... (48)

where the integral is to be taken over the closed curve

1 a 2 p 1. A at the same time represents the area of the

surface enclosed by this composite curve; it is positive

when the cycle takes place in the direction indicated by
the arrow (Fig. 3).

Such a cycle, when performed any number of times in

the appropriate direction, represents the type of a machine

working periodically, which continually converts heat into

mechanical energy.
29. In this paragraph we shall consider more closely

the special case in which the curve a characteristic of
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the change of state contracts into a curve element and so

brings the points 1 and 2 infinitely close to each other.

Equation (47) then becomes

Q=dU+pdV ..... (49)

Referred to unit mass of the body this equation runs :

q = du + pdv .... (60)

if the quotients of Q, U and F by the mass M are denoted

by the corresponding small letters. An important con-

sideration for the following calculations is to know which
of these quantities are used as independent variables. It

is usual to take the temperature Q for one and either the

volume v or the pressurep for the other. We shall choose

the independent variable according to requirements and,
to avoid confusion, we shall specially note the sense of the

differentiation

We shall now apply equation (60) to the most important

properties of a homogeneous body.
30. By (41) and (60) the specific heat of the body is :

<7 du
,

dv

As has already been emphasized in 20 this quantity has a

definite value only when the manner of heating is specified.

Actually, the differential quotients in (51) acquire a mean-

ing only when an equation of condition between the two

independent variables, say Q and v, is given. The most

important cases are those in which either the volume v

or the pressure p is kept constant during the heating

process.

When heat is added at constant volume we have
dv = 0, and by (61) we get for the specific heat at constant

volume .

<*= ......
<
62

>

When heat is added at constant pressure dp 0, and

by (51), the specific heat at constant pressure is

.... (53){ }
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or, since :

we have, taking into account (62) :

31. Let us apply the last equation to a gas. For this

we have by (44) :

and by (34) :

2-27. 1010 ,. , mv = (i + a0)mp v '

Consequently we have by (64), bearing in mind (6) :

2-27 1010

mcp - me, =
273.2

= 8 31 . 107 = R . . (55)

That is, the value of the difference of the molar heat at

constant pressure and the molar heat at constant volume
is almost the same value for all gases, namely B
There are difficulties in subjecting this formula to a

direct experimental test because in the case of a gas only
the specific heat Cp at constant pressure can be con-

veniently measured, but not the specific heat at constant

volume. For a quantity of gas contained in a closed

vessel of constant volume has a far too small heat capacity

compared with external bodies, in particular the walls of

the vessel, to be able to produce thermal effects measurable

with ordinary apparatus (of . 23 above) . But nevertheless

the equation (65) admits of an important practical con-

sequence in itself For since, by (62), d, like u depends

only on the temperature and not on the volume, the same
follows by (55) for Cp.

This conclusion was first verified by the measurements

of Regnault and was by no means obvious at the outset.

On the contrary, in the older theory of heat due to Carnot,

which regarded heat as an indestructible substance, it was
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inferred from the fact that a gas is heated by compression
that the heat capacity of a gas is considerably diminished

by reducing its volume, inasmuch as during the com-

pression the heat is as it were pressed out of the gas in

much the same way as water is squeezed out of a wet

sponge. Regnault's results prove that this view is

untenable. Moreover Regnault found that Cp is constant

over a fairly wide range of temperature. By (55) d, is

then also nearly constant over the same range of temper-
ature, and by (52) the energy of the gas is :

u = & . + const (56)

The additive constant of integration is essentially indefinite

( 19)-

If the molar heat is not measured in mechanical units

but in calories, the quantity R in (55) must of course be

divided by the mechanical equivalent of heat a given in

(42) ; and we have as the difference of the molar heats at

constant pressure and constant volume :

R 8-31 . 107
. ftoo ,.

a
"
4^00*

- 1 '088 ' ' ' '
<
67

>

According to the measurements obtained for all mon-
atomic gases the molar heat is almost equal to 5; for

diatomic gases it is nearly equal to 7, for polyatomic gases
it is still greater. From this we obtain by (57) for the

molar heat at constant volume the corresponding values

of approximately 3, 5 and more. And so we get for the

ratio of the two molar heats

Cp 5 7 _ ......

"-S-I'3-"- 1 - ' ' ' (58)

As the number of atoms in the mole increases K de-

creases without limit towards 1. A reason for this

regular behaviour is given only by modern atomic theory

( 144).

32. Now how is the heating of a gas by compression
to be explained on the theory that has been developed ?

To answer this question we need only apply the equation
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(50) of the first law to a process in which the gas is com-

pressed without heat being allowed to pass through the

walls of the vessel, and which is therefore called
"
adiabatic." The condition q= which is characteristic

of adiabatic processes gives, by (50) :

du + pdv =
and by (56) and (34) :

2-27 1010
cd8 +

**' ' 1U
(1 + a6)dv =

WIV

This differential equation may be interpreted term by
term, if we first divide by (1 -f- <x#). We then get .

c,, ... m ,
2-27 1010 , ,

log (1 + a0) H log v = const.
OC 17i

or by (6) and (65) :

me* log (1 + a#) + -B log v = const. . . (69)

The values of the constants of integration are given by the

initial state. By using the relation (55) and introducing
the ratio K of the specific heats (58) we may also write

this in the form

log (1 + a0) + (*-!) log v = const. . . (60)

and in this way we obtain the law of the increase of

temperature with decrease of volume, which is completely
determined by the numerical value of K

If we wish to know the adiabatic relation between the

volume and the pressure, we must eliminate 6 from (60)

by means of the equation of state (34) ;
for this purpose

we conveniently write (34) in the form .

log p + log v log (1 + <x0)
= const.

By adding the last two equations we then get :

log p + K log v = const or pv
K = const. . . (61)

as the law for the adiabatic compression of a gas. A
comparison with the law of isothermal compression,

pv const
,
shows that in adiabatic compression the
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pressure increases more rapidly as the volume decreases

than in the case of isothermal compression, as is natural.

33. Since by (61) adiabatic processes may be used to

measure K they furnish us with an important means of

testing the theory since we can compare this value "with

the numerical values (58) calculated from the mechanical

equivalent of heat.

For example, we can use the measurement of the

velocity of sound in a gas to calculate K, By II (293)

this velocity is :

VK-pT
where k denotes the density of the gas and is also equal to

-. IYom this it follows that :

v

K =
P

If in this formula we substitute for air at C. and at one

atmosphere pressure :

a = 33200 cms /sec.

p = 1013000 gnns./cm. sec.2

and, by II (284) :

k= 0-001293 grms./cm.s

we get K= 1-40 which agrees with the numerical value
7 .~ in (68) for a diatomic gas.

Of course we may conversely also use the value of K
calculated from the velocity of sound to calculate c in
calories and then, by applying (55) to calculate the
mechanical equivalent of heat. This method of evaluating
the mechanical equivalent of heat was originally used by
Robert Mayer rn 1842. It is true that we must have for
this purpose the relation (44) which expresses that the

energy of the air is independent of its volume or, in other
words, that the difference of Cp and c* is conditioned only
by the external work, as otherwise the general relation
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(54) would have to be assumed an assumption which

could be regarded as directly proved only after the

experiments of Joule and Thomson described in 24 had
been carried out.

34 Leaving the reversible changes of state of a

homogeneous body we next turn to those processes which
are connected with changes of the aggregate state or

chemical transformations . In each case we can again

apply equation (47) to the process. In this equation Q
then denotes the

"
heat of transformation

"
or

"
heat tone

"

(Warmetonung) and is positive if the heat is transferred

from without. In this process we always assume the

final temperature 6Z equal to the initial temperature t .

In changes of the aggregate state Q occurs with its

appropriate sign as heat of vaporisation, heat of condens-

ation, heat of fusion or heat of solidification ; m chemical

processes it occurs as heat of reaction, heat of combination,
heat of solution, heat of dissociation and so forth. We
see that the value of Q does not in general depend only
on the initial and final states of the configuration in

question but also on the path followed between these

states and, in particular, on the external work For

processes which occur at constant volume as, for example,
combustion in a hermetically sealed vessel, a so-called

calorimetric bomb, we have Q = Uz U1} that is, simply

equal to the difference of the energies. On the other

hand, for isobanc processes such as most chemical

processes are, as they occur at ordinary atmospheric

pressure we have :

Q = Uz
- Ui + p(Vz

- FJ . . - (62)

or, referred to unit mass :

q = uz HI -f p(vz %) . . . . (63)

If we unite these equations in the form :

we see that in the case of isobaric processes, too, the heat

of transformation depends only on the initial and the
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final states. But it is not represented as in isochonc

processes by the difference of the energy U but by the

difference of the function :

W = U +pV . . (64)

which Gibbs calls the
"
heat function at constant pressure,'

'

while Molher calls it the
"
enthalpy." For unit mass it is

w = u -f pv (65)

In many cases, particularly in vigorous chemical reactions,

but also in changes of the aggregate state in which no

gases participate, the amount of the external work is so

small compared with the heat of transformation Q that

we can exchange the heat function at constant pressure
with the energy without incurring an appreciable error.

If the configuration contains gaseous parts in its initial

or its final state, then, in calculating the external work,
it is as a rule sufficient to consider these parts alone;

that is, the volume change of the solid and liquid bodies

may be neglected If n^ and nz are the numbers of

gaseous moles in the initial and final state, respectively,
we obtain, by (62) and (35), for an isobanc process, using
mechanical units :

Q Uz
- Ui + 2-27 . 1010 (nz

- nj . (1 + a0) . (66)

Thus the amount of the external work done depends only
on the change in the number of gaseous moles and the

temperature, but not on the pressure.
The fact that the heat function W at constant volume

plays the same part in isobaric processes that the energy
U plays in isochoric processes also manifests itself in the

case of the specific heats For, corresponding to the

equation (52) for ca we have the equation :

i'dw\ /R7 N

*-W, (67)

which, on account of (65), is identical with (53).
35 Since the heat of transformation Q refers to a

definite temperature 6 the value of Q will in general depend
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on 8. There is a simple relation for this dependence,
which is obtained by differentiating Q with respect to

For in the case of isochoric transformations Q= U2 Z7
1}

and

(C7}z
~

(Gv}l ' ' (68)

On the other hand, for isobaric transformations we have

Q= Wz
- Wv and by (67)

,

}m '
( }

where Cv and GP denote the heat capacities of the system at

constant volume and constant pressure, and the indices 1

and 2 refer to the state of the configuration before and

after the transformation.

Thus we find the influence of temperature on the iso-

baric heat of combustion of hydrogen in forming liquid

water by subtracting the isobaric heat capacity of an

explosive mixture of oxygen and hydrogen (state 1), con-

sisting of one mole of hydrogen and half a mole of oxygen,
from the heat capacity of one mole of liquid water (state

2). Since, by 31, the molar heat of hydrogen and oxygen
is 7 and the specific heat of water is 1, while its molar

weight is 18, we have :

= 7 + 1-7 = 10-5

= 18 1 = 18.

Hence, by (69)

Now in the present case Q is negative because the heat of

reaction is given to the surroundings Consequently the

amount of the heat of combustion of a mole of hydrogen
decreases by 7-5 calories per degree as the temperature
increases.



CHAPTER HI

SECOND LAW OF THERMODYNAMICS

36. THE content of the second law of thermodynamics

is sharply distinguished from that of the first law because

it concerns a question which is not touched on by the latter

at all, namely the question of the direction in which a

thermal process occurs in nature. For not every change

which is compatible with the principle of conservation

of energy satisfies the further condition imposed by the

second law on the processes that actually occur in nature.

If, for example, an exchange of heat occurs by conduction

between two bodies at different temperatures, the first

law requires only that the amount of heat given out by
the one body should equal the amount of heat taken up by
the other body. Whether the heat conduction occurs in

the one or the other direction cannot be decided on the

strength of the first law. Indeed, the concept of temper-

ature is in itself foreign to the energy principle, as can be

seen from the fact that this principle does not lead to an

exact definition of temperature.

As for the direction in which processes occur in nature

and the way in which this question is answered by the

second law there is an essential difference between

mechanical and electrodynamic events on the one hand and

thermo-chemical events on the other hand a difference

to which we have already alluded in 2. For whereas the

former can always also occur in the exactly opposite
direction a heavy body can rise just as well as it can fall,

a spherical electrodynamic wave can propagate itself just

as well inwards as outwards according to the second

law no thermal event can be directly reversed.

50
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The problem of formulating the second law correctly

has occupied physicists for decades. A long time passed
before it was recognized that the content of the second

law is not exhausted if as was done occasionally even by
Clausius and later with renewed emphasis by Ostwald

every process in nature is resolved into a series of energy
transformations and the direction of each individual

transformation is enquired into. It is true that in each

individual case we can name the different kinds of energy
that are transformed into one another this follows from

the first law but there always remains a certain

arbitrariness as to how the individual transformations

are allocated to one another, and this arbitrariness cannot

be removed by a general convention.

Even nowadays the nature of the second law is some-

times sought in the tendency of natural phenomena to
"
degrade

"
energy on the ground that, for example,

mechanical energy can be completely transformed into

heat but heat can be transformed only incompletely into

mechanical energy, in the sense that if a quantity of heat

is transformed into mechanical energy then another

transformation, such as a thermal transition from a higher
to a lower temperature which serves as a compensation

process, must always occur simultaneously.
That this formulation, which is useful in special cases,

by no means gets to the root of the matter can be seen

from the following simple illustration. If a gas is allowed

to expand, doing work in the process, and if at the same
time the temperature of the gas is kept constant by the

transference of heat from a reservoir at a higher temper-

ature, we may say that the heat transferred by the

reservoir has been completely transformed into work. For

while the gas has retained its temperature it has also

retained its internal energy unchanged ( 24), and other

transformations of energy are not occurring. No fact of

any kind can be objected to in this assertion. But in the

case of the second law we are concerned with particular

facts that can be ascertained by measurement. That is
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also why the second law cannot be deduced a priori. We
can speak of proving it only in so far as its total content

may be deduced from a single simple fact of experience of

convincing certainty.

37. In connexion with what has just been said we
shall now base the general proof of the second law on the

following empirical law :

"
it is impossible to construct

a machine which functions with a regular period and which

does nothing but raise a weight and cause a corresponding

cooling of a heat reservoir
"

Such a machine could be used simultaneously as a

motor and as a cooling machine without any other ex-

penditure of energy or materials. It would at any rate be

the most advantageous in the world It would n6t be

equal to the perpetual motion machine, for it by no means

produces work from nothing, but from the heat which it

abstracts from the reservoir. That is also the reason why
it does not, like the perpetual motion machine, conflict

with the first law. But it would nevertheless possess the

most essential advantage of the perpetual motion machine
for mankind, that of supplying work without expenditure.
For the heat contained in the soil, in the atmosphere and
in the ocean is always available, just like the oxygen
of the air, in inexhaustible quantities for direct use

by anyone This circumstance also accounts for our

beginning with the above empirical law. For as we shall

deduce the second law from it we secure for ourselves, in

the event of our ever discovering any deviation of a
natural phenomenon from the second law, the prospect of

immediately being able to apply it practically in a very
important way. For as soon as any phenomenon is

found that contradicts a single inference from the second

law, the contradiction would be due to an inaccuracy in

the very first assumption on -which it is based and it would
be possible, by following the above reasoning backwards

step by step, to use the phenomenon to construct the
machine above mentioned. For the sake of brevity we
shall in the sequel follow a suggestion of Ostwald and call
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it a "
perpetual motion machme of tlie second kind/' since

it bears the same relation to the second law that the

perpetual motion machine of the first kind bears to the

first law.

38. If we compare the two kinds of perpetual motion
machine we at once observe a fundamental difference :

the law forbidding the perpetual motion machine of the

first kind also applies conversely, that is, work can neither

be produced absolutely nor annihilated absolutely,

whereas the law which forbids the perpetual motion

machine of the second kind does not apply conversely,
that is, it is certainly possible to construct a machine

which does nothing more than lower a weight while a

heat reservoir is correspondingly warmed As an illustra-

tion of this kind of machme we have that used by Joule

to measure the mechanical equivalent of heat, it is set

into motion by means of a falling weight which causes

rotating paddle-wheels to warm a liquid by friotion For
if the weight reaches the floor with vanishingly small

velocity no change has taken place in nature except that

the liquid which is here to be regarded as a heat reservoir

has been warmed In fact it is clear that every
frictional process represents a reversed perpetual motion

machine of the second kind, so that our empirical law

stated above may also be formulated as follows . there is

no possible way of completely reversing a process in which

heat is generated by fnotion. The word "
completely

"
is

used here to express that the initial state of the frictional

process has everywhere been exactly restored. To take a

definite example, if after a Joule's fnotion experiment had

been carried out it were possible by some process to bring
the fallen weight back to its original height and to cool the

liquid correspondingly without any other changes re-

maining this would obviously be a perpetual motion

machine of the second land. For it does nothing beyond

raising a weight and correspondingly cooling a heat

reservoir.

For the sake of brevity we shall call a process which can
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in no waywhatsoever be completely-reversed
"
irreversible

"

and all other processes
"
reversible." For a process to be

reversible, then, it is not sufficient to restore the bodies
that participate in the process to their initial state this

is always possible in principle but it is required that it

should in some way be possible to restore the initial

condition of the process everywhere in nature, no matter
what technical devices and mechanical, thermal, chemical

and electrical apparatus are used. All that is essential is

that any material and apparatus used should at the

end be again in exactly the same state as in the beginning
when they were taken for use.

39. Any process that occurs in nature is either re-

versible or irreversible. We have as examples of reversible

processes all purely mechanical and electrodynamic

processes. For if they occur in the reverse direction the

initial state is completely restored As an example of an
irreversible process we have had the generation of heat

by friction ; other examples will be given in the sequel.
The significance of the second law consists in the fact

that it furnishes us with a necessary and sufficient criterion

as to whether a definite process that occurs in nature is

reversible or irreversible. Since the decision on this

question depends only on whether the process can be com-

pletely reversed or not, we are concerned only with the
constitution of the initial state and the final state of the

process but not on its intermediate course. For it is

merely a question as to whether, starting from the final

state, we can or cannot again arrive at the initial state

without anything bemg changed. Hence the second law
furnishes for any process whatsoever in nature a relation-

ship between those quantities which refer to the initial state
and those which refer to the final state. In the case of

irreversible processes the final state is distinguished by a
certain property from the initial state, whereas in the case
of reversible processes these two states are in a certain
sense of equal value. We shall express this briefly by
saying that in the case of an irreversible process the
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final state hag a greater
"
thermodynarmc probability

"

or a greater
"
thennodynamic weight

"
(we say

"
thermo-

dynamio
"

to distinguish it from "
mathematical

"

probability or mechanical weight, respectively) than the

initial state. These words are to conveyno more thanwhat
has been said above. We may then formulate the content

of the second law by saying that it gives us a measure of

the magnitude of the thermodynamic probability or the

thermodynamic weight of a physical configuration in a

given state. Our next task is to find this measure.

40. To solve this problem we shall adopt the following
course Let us imagine an arbitrary system of bodies and

let us consider any two different and exactly defined

states of the system, which we shall denote by Z and Z' .

The question is whether and under what conditions a

process in nature is possible such that it transfers the

system of bodies in some way from the state % to the state

Z1

or conversely, without anything being left changed
outside the system. We can make the last proviso super-

fluous by including all the bodies in the world in the

system under consideration. In other words, our object is

to specify to which of the two states Z and Z' the greater

thennodynamic probability is to be assigned There are

clearly three different possibilities. A transition may be

possible both from the state Z to the state Z' and also

conversely from Z' to Z \ this process is then reversible

every time and, indeed, in all its parts, and so the

probabilities are equally great for both states. Or a

transition may be possible from Z to Z' but not reversely

from Z' to Z , the process in question is then irreversible

and the probability of Z' is greater than that of Z Or,

lastly, the opposite case may occur, namely if an irrever-

sible process from Z' to Z is possible of execution, so that

Z has a greater probability than Z'.

If the definition of the two states Z and Zr
is quite

arbitrary at the outset, they must nevertheless fulfil the

condition that the transition from one state to the other

involves the loss neither of matter nor of energy. For
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otherwise the process in question would be impossible

from the very start. The system of bodies must therefore

have the same chemical constituents and the same energy
in both states. Otherwise, however, Zt and Z' may be

selected arbitrarily.

41. We start from the simplest case that the states

Zi and % are distinguished from each other only by the

behaviour of a single homogeneous body of the kind

considered above in 22. Let this body have the volume

V and the temperature 6 in the state Z, the temperature

being measured by any thermometer, for example, a

mercury thermometer or any gas thermometer; and in

the state Zr
let it have the volume V and the temperature

6'. The volume and the temperature also determine

the energies of the body, U and U', respectively. Since

U and Uf
are in general different from each other and

since on the other hand we must ensure that the transition

from Z to Z' satisfies the energy principle, we imagine an
invariable weight G included in the configuration in

question, the centre of gravity of this weight being at a

height h in the state Z and at a height h
f
in the state Z',

so that :

G.(h -h') = U'-U . . (70)

From the standpoint of the energy principle a transition

of the system from one state to the other is possible
without anything remaining changed outside the system.
We now start from the state Z and endeavour to reach

the state Z'. To do this we first subject the body in

question to a reversible adiabatic change, as was done in

32 with a gas. We then have Q = and by (49) :

Q ..... (71)
A 1

Also:

Thus we get :
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The expression on the left-hand side is not a complete
differential, as we saw in 27. But there is always an
"
integrating factor

"
.ft", that is, a function of the two

independent variables 9 and V which when divided into

the expression makes it a complete 'differential, so that

we may always write :

- -

where S is now a finite function of toe two independent
variables 6 and V. We may thus regard Sa just like the

energy U, as a definite property of the state of the body.
We shall follow Clausius and call it the

"
entropy

"
of the

body in the state defined by and V
But the definition of the entropy given by (72) is not

yet unique For there is not only one, buta indeed, an
infinite number of quantities N, which when divided

into the expression (71) make it a complete differential..

This is. easily seen by writing N. f(S) instead, of N, where/
denotes any arbitrary function of a single variable.

Corresponding to every expression for / there is then a

different complete differential (72) and hence a different

definition for the entropy.
Hence there is in the quantityN one factor, dependent

only on S, which can be selected arbitrarily; and to

complete the definition of entropy it is necessary to fix

fr.Hs factor. For the present, however, we shall leave our

decision on this question open and shall calculate for the

present with any arbitrarily chosen N, which we take as

positive
N>Q ..... (73)

The following theorems hold independently of the

arbitrariness still left in the definition of entropy
Now that S has been determined by (72) we may

integrate the differential equation (71) and we obtain :

S = const...... (74)

a definite relation between 6 and V which holds for the
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process described, or a relation between U and F, the

so-called reversible adiabatic relation.

42. To pass from the state Z to the state Z' let us now
make V transform into V, U transforming into U' during
the process, by (74). At the same time a certain amount
of mechanical work is performed by or on the system ; let

it correspond to the transference of the weight G from the

height h to the height h*. We have, by the energy

principle :

<?.(A*-A) = U- U*
or, by (70) :

G.(h*-V) = U'-U* . . . (76)

Three cases are then possible :

1. Z7*= U'. The body then satisfies the conditions of

the state Zf

, and since the weight G is then also at the

height h* = h' determined by (76), the state Z' is com-

pletely attained ; the desired transition is then realizable,

the process being reversible. Thus in this case the states

Z and Z' have the same probability.

2. U*<U'. The transferred energy of the body, U*,
is then less than in the state Z'. In this case the state

Z' may be attained by heating the body by friction, the

volume V being kept constant
;

this is done by allowing
the weight G which, by (76), is situated at the height

h*>h', to m'nk to the level h'. The state Z' is then com-

pletely realized but now, according to 39, by an irrever-

sible process, that is, the state Z' possesses a greater

probability than the state Z.

3. U*>U'. Then h*<h' and the transition to the

state Z' is impossible as it would represent a perpetual
motion machine of the second kind

( 38). Hence in this

case the stateZ has a greater probability than the state Z'.

Let us next enquire into the behaviour of the entropy
of the body in question in the three different cases. By
the definition of entropy (72) and by (73) the entropy
changes in the same sense as the energy, if the volume
remains constant (dV= 0). Now when the volume V
and the energy U* are attained the entropy has retained
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its original value S by (74), the difference of S and S',

that is, the difference of the entropies of the states (F',

U*) and (V, Ur

) has the same sign as the difference of

U* and Ur
. Thus in the first case 8= S' ; in the second

S<S'; in the third 8>S'.
From this it also follows conversely that according as

the entropy S' of the body, in the state Z1
is just as great,

greater than or less than the entropy S of the body in the

state Z, the state Zr has a probability which is just as great

as, greater than or smaller than that of the state Z.

43. The last deduction leads us directly to a theorem

of far-reaching importance. If any arbitrary physical

configuration has passed by means of some reversible

physical or chemical process from a state Z to another

state Z', which differs from the state Z only by the circum-

stance that a single body of the kind just considered has

undergone a change and that a weight has correspondingly
shifted its centre of gravity, then the entropy of the body
in both states is the same. For if it had become greater
the transition from Z to Z' would be irreversible according
to the preceding paragraph, which would contradict the

initial assumption. And if it had become smaller the

transition would be impossible, which would also lead to a

contradiction. But if the supposed process was

irreversible, then the entropy of the body in the state Z'

is necessarily greater than in the state Z.

A simple illustration is given by the adiabatic expansion
of a gas without the performance of external work, which

was described in 23 and 24. Since, for this, dU =
and dV>0, we have by (72) that dS>0; that is, this

process is irreversible, just hke friction.

44. We shall now assume that the two states Z and Z 1

given from the outset differ owing to the differentbehaviour

of two bodies, which we shall denote by 1 and 2 Let them

be characterized in the state Z by the values 61} Vlt 9%, F2

and in the state Z' by the values 8'v F' I} 0'2 , F'2 Then

the internal energies and the entropies of the bodies in

the two states are determined, the entropies being fixed
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except for the arbitrary factor still involved in the

definition of entropy.
To make a transition from Z to %' possible at all we

shall suppose an invariable weight to be included in

the system of bodies, the centre of gravity of G in the state

Z being at the level h and in the state Z' at the level h' so

that:

Q(7i
- V) = (U\ + U'j - (U^ + *72) . . (76)

The mechanical work necessary for the transition from

Z to Z' is then available to exactly the right amount.

Starting from the state Z we now again endeavour to

effect the transition to the state Z' by means of an
irreversible process. So long as we treat each individual

body adiabatically their original entropies 8^ and
$2 remain constant by (74) and we make no progress.

But we have a means of altering the entropies in a re-

versible way. For we first bring the two bodies singly by
an adiabatic reversible path to a quite arbitrary

temperature 6 and then put them into thermal connexion

with each other (but not so that their pressures can

equalize). This does not disturb the thermodynamic
equilibrium, and the two bodies now represent a single

system capable of certain reversible changes, and its

state is determined by three mutually independent
variables 6,Vl} Vz

If we now subject this composite system to a further

reversible adiabatic process by slowly altering the volumes

V-i and F2 independently of each other in some way by
compression or dilatation, the change in the total internal

energy is, by the first law, equal to the total external

work, thus .

dUi + dUi +p1dV1 + psdV2
=

or, by (72) :

N1dS1 + N2dSz
= Q .... (77)

In this algebraic sum the first summand denotes, by (49),
the heat transferred to the firstbodyfrom without while the
second term denotes the heat transferred to the second
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body, which is equal and opposite to the former amount.

Equation (77) imposes a condition on the three variables

9, Y! and V2 , so that only two of them, say 6 and FI} may
be arbitrarily chosen, while the third, F2, is then fixed.

Hence by a reversible process of this kind it is possible to

bring the body 1 into any arbitrary state, whereas the state

of the body 2 has necessarily to adjust itself to that of

the body 1.

45. But we can assert still more. Every time when
the body 1 assumes its original entropy St at an arbitrary

temperature 6 the second body 2 also possesses its original

entropy Sz For as soon as the entropy of the body 1

has again become S the bodies can be separated and the

body 1 can be brought alone into its initial state (91} Vj)

by means of a reversible adiabatic process. The state

of the system of bodies which is produced in this way
then differs from the original state Z only in the behaviour

of the body 2
,
and since the whole process is reversible,

the entropy of this body is, by 43, the same as at the

beginning, namely, Sz . And, indeed, corresponding to a

definite value of the entropy of the body 1 there is always
a perfectly definite value of the entropy of the body 2.

Otherwisethegeneraltheorem of 43would becontradicted.
In other words, if in place of the independent variables

0, F19 F2 we introduce the independent variables 6, S^
and Sz in the equation (77), 6 disappears from the equation

altogether and it reduces itself to a relation of the form :

-

or, expressed in differential form :

fiTI 3ZT

mu* +
Is;"'

-
<78>

But in order that (77) should merge generally into (78) it

is necessary and sufficient for the differential expressions
of the two equations to differ only by a factor of pro-

portionality :

N&! + NzdS2
m
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or:

Consequently :

That is, the quotient of N^ and N2 depend only on S^
and $2 but not on 9. But since N^ andNz are themselves

determined by 6 and S2 they are necessarily of the form :

.r and ff, -/,(,). Z1
. . (79)

respectively, where f and /a are functions of a single

argument and the function T which is the same for both

bodies depends only on the temperature 6. The quantity
T contains a constant arbitrary factor. We choose its

value positive and fix its unit by making the difference of

the values which T assumes for 9= 100 and 9 = equal
to 100 thus : .... (80)

and we call the quantity T which is completely defined in

this way the
"
absolute temperature

"
of the two bodies.

By (72) the absolute temperature of a lody is the positive

temperaturefunction which satisfies the normalizing equation

(80) and which when divided into the incomplete differential
dU+ pdV converts it into a complete differential. Concern-

ing the way in which it is measured see 49.

To complete the definition of entropy as well we bear
in mind that the functions /x and /a in (79) are positive
on account of the conventions about the signs of Nlt Nz

and T, but otherwise, as is clear from the discussion of

41, they may be arbitrarily chosen. We therefore set

/!= 1, /a= 2 and thus obtain from (79) :

Ni-Ns-T ..... (81)
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And from (72) we get :

dS .... (82)

or, referred to unit mass :

du + pdv . ...... (83)

is obtained as the entropy of a homogeneous body whose
state is determined by its temperature and its volume.

In the expression for the entropy there is still, as we see,

an arbitrary additive constant.

46. The results just obtained make it easy for us to

give a complete answer to the question proposed in 44

about the conditions governing the transition of the two
bodies in question from the state Z to the state Z'. For
in the reversible process described, to which the two

thermally coupled bodies are subjected, we have by (77)

and (81) :

dSi + dSz
= Q

Thus:

&i + #2 = const..... (83a)

That is, the sum of the entropies remains constant. So
if we bring the body 1 to the desired state of entropy S^
the body 2 acquires fche entropy :

S*2
= St + S, - 8\ .... (84)

If we then separate the two bodies and bring the volume of

the first to V\ and its temperature to 6\ by means of a

reversible adiabatic process, then the first body is in the

desired final state and may be left out of consideration in

the sequel. All that we are concerned with now is whether

S*2 is as great, smaller than or greater than S'z or, what
amounts to the same, by (84), whether :

In the first case the state Z' is fully attainable according to

42, namely, by a reversible process ;
in the second case
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the state Z' is attainable by an irreversible process , m
the third case the state Z' cannot be reached at all

Hence the sum of the entropies of the two bodies in

any state is a measure of the probability of this state.

47. It now remains to generalize the last theorem

for any arbitrary number of bodies. Let us imagine a

system of n such bodies in two quite arbitrary states

Z and Z' and enquirewhat is the condition that a transition

from Z to Z' should be possible without changes of any
sort remaining in other bodies.

In order that the transition should satisfy the energy

principle we include an invariable weight in the system,
whose centre of gravity in the state Z is at the level h

and in the state Z' at the level Ji
r

,
so that :

Starting from the state Z we now put the bodies 1 and 2

into thermal communication with each other in the

manner described in 44 and so bring the body 1 by a

reversible process into the state of entropy S\ We then

separate the two bodies and proceed in just the same way
with the bodies 2 and 3 by bringing the body 2 to the

state of entropy S'2 Proceeding in the same way we

bring the body n I to the state of entropy $'_!. Let

the body n then have the entropy S*n . Since during each

one of these reversible processes the total sum of all the

entropies of all the bodies must on account of (83a)
remain constant, we have :

8**-(Bi+8i+. . . +Sn)-(S\ + S't + , . . +S'n-j (85)

Now each of the bodies from 1 to n 1 may separately
be brought along a reversible adiabatic path into its

desired final state. Hence the decision as to whether the

state Z' is fully attainable depends on whether the entropy
S*n of the body n is just as great, smaller than or greater
than S'n or, by (85), if we denote the sum of the entropies
of all the n bodies by ZS, whether 28 is just as great as,

smaller than or greater than ZS f
. In the first case the

state Z' is attainable by a reversible process, in the



ra SECOND LAW OF THERMODYNAMICS 65

second by an irreversible process, whereas in the third

the transition is altogether impossible.
From this it follows conversely that every physical or

chemical process that occurs in nature takes place in such a

way that the sum of the entt opies of all the bodies that undergo

change in the process either remains unchanged or becomes

augmented. Expressed more briefly the entropy is a

measure of the thermodynamic probability ( 39)

In a reversible process the sum of the entropies remains

unchanged. But the reversible processes in reality are

only ideal limiting caseswhich are, however, of considerable

importance for theoretical considerations

The content of the second law of thermodynamics

may be regarded as exhaustively described in the above

sentences.

48. Passing on to the applications of the second law

we shall next investigate the conclusions that follow from

the fact that the expression (83) for the entropy of unit

mass of a homogeneous body is a complete differential.

If we choose T and v as independent variables, we have :

and by (83) :

On the other hand :

Consequently, since dT and dv are independent of each

other :

(ds\ i(du\ ..... {86)
VaTA, T\dTJv

and:

fds\ 1 J/3zA ,
I

( _ 1 = . -{ - J- /n >W* T \\dvJT
p

)
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If we differentiate the first equation with respect to v,

and the second with respect to T we get, by equating the

two expressions so obtained

and by (62), (86) and (87) :

(89)fd&\ _ Co

\82V.~ T

(90)v '

where &, now denotes the specific heat referred to the

absolute temperature.

By differentiating (89) with respect to v and (90) with

respect to T we obtain the relation :

(91)V '

which brings the connexion between the specific heat

afcd volume into relationship with the connexion between
the thermal coefficient of expansion ( 8) and the temper-
ature. Both quantities are very small in the case of

49. The relations just derived can now serve as a

measure of the way in which the absolute temperature

depends on any conventional temperature. So far we
have had to remain satisfied with a conventional temper-
ature 6 referred to an arbitrarily chosen thermometric
substance (see 4), and itwas onlyon grounds of expediency
that in 5we decided infavour of using a gas as the thermo-
metric substance. But the uniformity achieved in this

way was only of a practical nature and involved no matter
of principle. For, strictly speaking, all gases behave

differently, particularly at high densities and low temper-
atures, and therefore, to be accurate, we should select

some definite gas as a thermometric gas. Hence it is of

the greatest importance to have a process of measurement
which enables us quite generally to reduce the conventional
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temperature 6 of a body to its absolute temperature T.

In principle we can adapt every equation which follows

from the second law for measuring T (of. 61 below).

Let us take, for example, the equation (88) and introduce

the independent variables 8 and v into it in place of T and
v. For it is these variables Q and v with which all measure-

ments are effected. Since T depends only on 6, we
obtain:

Here
(=-J , p and f } are to be regarded as measurable

functions of and v. This differential equation may be

integrated in the following way :

-
vaw/fl

p

and hence :

1M (If)
dfl

. . (93)

+ p

The last two equations together with the normalizing

equation (80) determine T completely as a function of 0,

and so the conventional temperature is reduced to the

absolute temperature.
In particular the values of Two and TQ may be derived

from (93) and (80).

In the integration on the right-hand side the volume v

must clearly disappear altogether ; this requirement can

also be used to test the second law. The numerator of

the integrand is obtained directly from the equation of

state of the body, but the denominator is derived from

the quantity of heat which the body takes up from without

during reversible isothermal expansion or, respectively,
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gives up to its surroundings during reversible isothermal

compression. For by equation (50) of the first law the

ratio of the transferred quantity of heat q to the change of

volume dv during a reversible isothermal expansion is :

50. We shall now assume in particular that 6 is

measured by a gas thermometer and we choose as our

thermometric substance hydrogen, as in 5. Then the

coefficient of expansion a that occurs in the equation of

state (9) of the gases is constant only for hydrogen ; for

all other gases it is different and varies with the temper-
ature 6. Thus if we apply the last equations to any gas

very simple expressions present themselves for the pressure

p and the energy u, but all the simple relations that we
have deduced above for gases have the disadvantage that

they are qualified by the word "
nearly." Not a single

one of them holds rigorously. To escape from this un-

satisfactory state of affairs we proceed to introduce by
definition a certain type of gases, which we call

"
ideal

gases
" and which satisfy the above simple relations

completely. Thus we define as the equation of state of

an ideal gas the equation (9), and as the energy of an ideal

gas the expression (56). We now determine the relation

between the absolute temperature T and the conventional

temperature 6 referred to an ideal gas as the thermometric
substance By substituting the values of p and u in

(92) we get after integration .

Thus:
T = TQ + <*T 6 ..... (94)

Likewise, by (93) :

From this it follows by (80) that :

0^= 1.
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That is, the coefficient of expansion of an ideal gas is the

reciprocal of the value of the absolute temperature of the

freezing point of water and hence has the same value for all

ideal gases. Since the numerical value of is sufficiently

well known we have for the absolute temperature of the

freezing point of water, by (6)

T = - = 273-2
a

and, in general, by (94) :

T = 273-2 + 6 . . . . (95)

Thus the absolute temperature is nothing more than the

conventional temperature referred to an ideal gas as the

thermometric substance but with the zero point displaced-

Since, by definition, T is positive, we also have 0> 273.

The limiting point T is called the absolute zero of

temperature. It is not attainable practically because the

integral in (92) becomes infinite for it.

In future we shall as a general rule use the absolute

temperature in our calculations. The equation of state

of any ideal gas or of a mixture of ideal gases is then, by
(35):

RnT

where n denotes the total number of moles and M is

the numerical factor which has the value (55) and which is

now equally great for all ideal gases and is hence called

the
"
absolute gas constant

"
Further the energy of an

ideal gas is, by (56) :

u = cvT + const .... (97)

Although the different ideal gases satisfy the same

equation of state (96) they nevertheless have different

specific heats and different molar heats between which,

however, the relation (55) of course always holds.

51 The equation (88) together with the equation

(54) of the first law in which, as always, by (95), dG
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can be put in place of dT, leads to the generally valid

relation

' ' ' (98)

which may be applied to calculating d> from Cp. Since it

is not easy to measure (} in the case of solid and liquid

bodies, it is advantageous to use the relation (11) here,

from -which :

follows.

Since (f )
is necessarily negative, we always have Cp> c,

H/U/21

except in the limiting case, as for water at 4 C.,

at which the expansion coefficient is zero, when we have

Cp &>. For solid and liquid bodies the difference ,Cp d,

is in general relatively small, or the ratio - = K is only
Cv

slightly greater than 1. That is, in the case of soHd
and liquid bodies the dependence of the energy on
the temperature plays a much greater part than the

volume.

The case is different with gases, as we have seen from

equation (55).

52. We shall now make a further application of the

second law to a physical system that represents the general

type of a machine which functions with a definite period
and generates mechanical work from heat. The essence

of such a machine consists in executing a cycle after the

completion of which no other change has occurred in

nature except that a certain amount of mechanical work
has been performed, say in lifting a weight, and that
certain bodies that serve as heat reservoirs have given up
or received heat. Such a process can, for example, be
carried out by a gas which experiences a series of successive

adiabatic and isothermal compressions and dilatations.
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During an adiabatic change the gas remains thermally
isolated; during an isothermal change it is in thermal

connexion with a heat reservoir at the temperature in

question. The process may, however, also be connected

with changes of the aggregate state or with chemical

transformations ,
all that is essential is that the process

shall be cyclical and that at the end of a period no changes
shall have remained except those above mentioned. For
from each of the two principal laws it is possible to derive

a relation between the different changes caused by the

process.

According to the first law we have for the cycle, by
(39):

A + SQ =
(100)

Here A denotes the sum total of the external work per-

formed, Q the heat that has been transferred from a heat

reservoir to the system under consideration during the

process, the summation being extended over all heat

reservoirs.

According to the second law the sum of the entropies

of all the heat reservoirs becomes increased as a result of

the cycle. If we assume for simplicity that the heat

capacities of the reservoirs are so great that the loss of the

quantity of heat Q does not appreciably alter the temper-
ature of the reservoir, the change of entropy of the reservoir

due to the loss of Q amounts, by (82) and (49), to
J^,

since on account of the constancy of T this expression also

holds for finite values of Q. Accordingly we have, by
the second law, summing over all the reservoirs .

|^0 ... . (101)

This was the first exact formulation of the second law and

was due to Clausius.

We shall now consider the case of only two heat

reservoirs, at the temperatures T and T2(>?
7

1) and shall
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assume that the process is a reversible cycle (CAKNOT'S

CYCLE). The two equations then run

A + Qi + Q* = . . . (102)

1^+^ = .... (103)
-L i -LZ

If the cycle is carried out in the direction which leads to

the production of externalwork (raising a weight), then A,
the external work done, is negative; so we set A' =
A > 0. Further, we see from (103) that Q and Qz

have opposite signs and that the absolute value of Qz is

greater than that of Q . Now since A is negative, Qz is

positive by (102) and <2i negative. So we set Q' i
=

Qi> and we can picture the result of the cycle in the

following simple way. The heat reservoir 2 has given up
the quantity of heat Q2 - Of this quantity the part Q\
has passed into the cooler reservoir 1

;
the other part

<22 Q\ = A' has been transformed into mechanical

work. Between these three positive quantities the

following relations hold :

which are entirely independent of the nature of the

substance used in the process. In other words, by allow-

ing a hotter reservoir at the temperature T2 to give up a

quantity of heat Q\ to a cooler reservoir at the temperature
T^ we can arrange a reversible cycle such that it enables us

to obtain work :

from the hotter reservoir.

If the cyclic process is not reversible the energy equation
(102) remains in force but in place of the entropy equation
(103) we have the inequality

m ^ m
-L i ./a
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which, combined with (102), gives :

or:

Comparison with (104) shows that the work to be obtained

by the transition of a quantity of heat Q\ at the temper-
ature T2 to the temperature T is always less for an
irreversible process than for a reversible process. Thus
the latter amount, represented by (104), is the maximum
amount of heat which can be obtained by means of a

cyclic process with any physical system through the

passage of heat Q\ from the hotter reservoir at the

temperature Tz to the temperature T
A very special case of such a cycle is that in which heat

passes directly by conduction from the hotter reservoir

to the cooler reservoir Then nothing except the two
reservoirs has altered at all, and so A = 0. Consequently,

by (100), Ql + Qz
= and by (101)

Hence if T^ differs from TZ) and if Q does not vanish,

the sign of Qv the heat given up by the reservoir 1, is the

same as that of T^ T%, that is, the heat passes in the

direction of the higher to the lower temperature, and the

process of heat conduction is irreversible, just like friction

and the process of expansion when no external work is

done.

Lastly, let us apply our results to an isothermal cycle,

otherwise arbitrary, reversible or irreversible, performed
on any physical system whatsoever Then we need

consider only a single heat reservoir at the constant

temperature T. The equations (100) and (101) become :

A + Q =
and .
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From this it follows that ^4^0, that is, work is used up
and the equivalent heat is produced in the reservoir.

This inequality is the analytical expression of the im-

possibility of a perpetual mo'tion machine of the second

kind.

If the process is reversible the sign of inequality vanishes

and both the heat Q and the work A become zero. It is

due to this theorem that the second law is so fruitful when

applied to reversible isothermal cycles.

53. We shall now leave cyclic processes in order to

deal with the general question of the direction in which

any change in an arbitrarily given physical-chemical

configuration occurs in nature. Let us imagine any
system of bodies at the same temperature T and at the

same pressurep . Let us enquire into the conditions under
which a physical or a chemical change occurs in these

bodies. The difference between this and our earlier

discussions consists in our not necessarily assuming
that the system is isolated from its surroundings.

Accordingly we may not assert that its entropy necessarily
increases.

For an infinitely small change of state we have by the

first law :

... (104a)

where U denotes the total energy, V the total volume of

the system and Q the heat transferred to it from outside.

According to the second law the change in the sum
of the entropies of all the bodies changed by the process
is :

where S denotes the entropy of the system, Sa the entropy
of the external bodies (atmospheric air, walls of the vessel,
the liquid in the calorimeter), which we assume also to be
at the temperature T. Now by (82) and (49) :
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so by substituting the value of Q from (104cs) :

dS ~ dU +
/
dF >0 . . . . (106)

In this relation only such quantities occur as refer to the

system in question itself ; the influences of the external

surroundings are completely eliminated. It represents
the most general statement of the second, law with regard
to the occurrence of any physical or chemical change in a

configuration.
It is to be observed that the inequality (105) by no

means contradicts the equation (82). For the latter

refers only to a physical change of state of a homogeneous
body but the former to any physical or chemical change of

any configuration whatsoever. Hence in general the

expression (105) is an incomplete differential and cannot

as a rule be integrated ; that is, the second law does not

allow us to make a general statement about a finite

physical or chemical change of state of a system in the

case where we do not know the external conditions to

which the system is subject. This is really evident from

the outset and holds equally well for the first law.

To arrive at a law for a finite change of state of a

system we must know such external conditions as allow

(105) to be integrated. Since the external conditions can

be chosen at will, there are of course several of them, of

which three, however, are distinguished by their special

importance : firstly, we may completely isolate the system
from its surroundings, keeping the volume V constant;

secondly, we may keep the temperature T and the volume

V constant (isothermal-isochorio process); thirdly, we

may keep the temperature T and the pressure p constant

(isothermal-isobaric process) . We shall discuss these three

cases in turn., of which each offers special points of interest.

54. ISOLATED SYSTEM or CONSTANT VOLUME. Since

Q= as well as V= const., we have from the first law

also that U= const., and the relation (105) gives :
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That is, the entropy of the system increases. This is the

formulation of the second law which has already been

obtained in 47. But we shall here make a further

deduction from it. For it furnishes us directly with a

sufficient condition for the stableequilibrium of the system.

If, namely, the system is in the state for which its entropy
has its maximum value, no further change is possible.

The absolute maximum, of the entropy is therefore a

sufficient condition for equilibrium. This condition is

not exactly necessary ;
for it is possible for a system to

remain unchanged, although the second law would allow

a change. Since the maximum of the entropy is of course

fully determined by the values of U and V, we may say
that the entropy S of the configuration in the case of

absolute equilibrium is a definite function of U and V-

The way in which it depends on U and V is shown by
equation (82) from which we get :

(107)

If, in particular, we assume a single homogeneous body,
we see that its entire thermodynamic behaviour is deter-

mined by expressing $ as a function of U and V. For
the elimination of U from the last two equations gives p
as a function of T and V, and the equation (106) alone

gives U as a function of T and V.

In Part Four of the present volume ( 125) we shall

become acquainted with a method of expressing S in

terms of U and V \ this makes it possible to solve the

principal problem of thermodynamics.
Let us calculate S for the particular case of an ideal gas.

From (82), (97) and (96) we get

- - . (IDS)



in. SECOND LAW OP THERMODYNAMICS 77

where Cv denotes the heat capacity of the gas at constant

volume. Thus :

S = C, log T + En log F + const. . .
( 109)

and by (97) :

8 = O, log U + En log F + const. . . (110)

The integration constant depends on the chemical com-

position of the gas; it must remain undetermined here

because the differential dS in (82) refers only to changes in

U and F but not to such as involve the chemical com-

position.
55. TEMPERATUBE AND VOLUME GIVEN. Since T and

F are constant the relation (105) may be written in the

form :

dW^Q . . . (Ill)
where :

So in this case, too, every change of state occurs in the

sense of the growth of a definite quantity ;
this quantity

is not now the entropy, however, but the function !P

which is characteristic for the variables T and F. Further,

we can deduce from this function results similar to those

deduced in the previous section from the function 8.

What makes this point of view so important is the fact

that the temperature T can be measured in practice much
more directly than the energy U and is therefore more

appropriate as the independent variable.

By (HI) the sufficient condition for stable equilibrium
is that the function W should be a maxiinum Hence in

stable equilibrium the quantity W is a perfectly definite

function of T and F. The way in which it depends on

T and F results by (112) from the complete differential:

or, by (82) :
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Consequently :

(?T) = ^
\32V7 T*

-P. ..... (115)~T * '

Hence if we know the way in which the characteristic

function !P depends on T and V, we obtain unique values of

the energy and the pressure. Concerning the theoretical

determination of ^F see 125 . If we differentiate (114) with

respect to V, (115) with respect to T and equate the

expressions obtained, we arrive at the relation (88) already
known to us. For an ideal gas we have, by integrating

(113), (97) and (96), or more directly from (112) and

(109) :

y = O, log T + Rn log V +^^ + const. . (116)

Thus the expression for W contains two undetermined

constants.

56. TEMPERATTTRE .OTD PEESSTJEB GIVEN. This case is

important because it is even easier to measure the pressure
than the temperature. Here the relation (105) assumes
the form :

d&^0...... (117)
where :

* = S_^ + PZ = S _| . . (118)

In the latter expression we have introduced the enthalpy
W (heat function at constant pressure, see 34), by (64).
Here 3> is the characteristic function and the maximum
value of determines the state of stable equilibrium.
For the dependence of the function <Z> on T and p in the
state of equilibrium we get from (118) :

(119)

and by (82) :
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Hence :

-- (12

If we differentiate (120) with respect to p, (121) with

respect to T and equate the two results, we get :

For an ideal gas we have, hy (118), (109), (96), (97) and

(55).

+ const. . (123)

So in this case, also, two constants remain undetermined.

56a An example of the advantages that accrue from

introducing the independent variables T and p is given hy
the theory of Joule and Thomson's experiment which

was described in 24
;

this involved the adiabatic ex-

pansion of a gas without external work being done The

theory is contained in equation (43), which, by introducing
the enthalpy w of unit mass, we may write in the form
ID' u)= 0. If we now assume the difference of pressure

p' p on both sides of the valve to be very small and

equal to Ap, the difference in temperature T' T on both

sides will also be very small (= AT), and we then have :

Consequently, by using (67) and (122), we get :

v

-.Ap . . (124)
Cp

For an ideal gas the numerator on the right-hand side is

equal to zero, and the temperature difference A27
vanishes,

as it should do. From this we see that the Joule-Thomson

effect affords a very direct and delicate means of detecting
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deviations in the behaviour of a gas from that of an ideal

gas. Actually, hT at ordinary temperatures and

pressures is appreciably negative in the case of air It is

on this fact that the idea of Linde's method of liquefying
air is founded. In the case of hydrogen A2

7
is appreciably

positive.

If we take as our equation of state that of van der

Waals (19) we get from (124), for small values of a and Z>,

to a first approximation :

. . . . (125)

a relation which agrees approximately with the results of

measurements . For most gases the expression in brackets

is as in the case of air positive, which corresponds to a

cooling effect, since Ap is always negative. Hydrogen
is an exception because a is particularly small in its case.

But by means of an appropriate preliminary cooling it is

even possible in the case of hydrogen to make the first

term in the bracket exceed &, the second term.

57. The general relationships developed above may
also be formulated in other ways. One expression which
is particularly distinguished by its clarity is worth

mentioning. It depends on the introduction of the

function :

F = U-TS=-T.y . . . (126)

which, like the W, may by 55 serve as the characteristic

function of the independent variables T and V Intro-

ducing I instead of W we see that the relations (114)
and (115) become :

(127)

..... < 128>

By comparing (127) and (126) we see that :
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The quantity F is endowed with a clear meaning owing
to the fact that, as we see from (126), it represents an

energy. If we now consider any isothermal process, the

general relation (105) may be written m the following
form:

dF^-pdV (129)

or, if we integrate from any initial state to any final state

denoted by a dash
F' -F^A (130)

where A denotes the mechanical work performed by
external forces during the process. If the isothermal

process is reversible, the equation is

F' - F = A . . . . (131)

and a comparison with the equation (40) of the first law

shows that the function F is related to the external work
A in exactly the same way as the total energy U to the

sum A + Q of the external work and the heat received

from without. This can also be expressed as follows .

in a reversible process the law (40) concerning the con-

servation of energy resolves into two separate laws, namely
the equation (131) and the supplementary equation :

G'-G=Q . . . (132)
where :

G=U-F = TS. . (132o)

The theorem which asserts that the mechanical equivalent
of the external work is independent of the path taken from

the initial to the final state ( 18) thus does not hold only
for the sum A + Q, but also for the individual summands
A and Q.

Hence, following Helmholtz, we call F the
"
free

"

energy, G the
" bound "

energy. The free energy F has

the same meaning for the external mechanical work as

the total energy U for the sum of the work and the heat.

In particular we see that for a cyclic process we have not

only A + Q = but also A = and Q = 0, as has already

been deduced at the end of 52.
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If the isothermal process is irreversible the inequality :

F' -F <A (133)

holds. That is, the free energy increases less than would

correspond to the external work performed, so that in this

sense external work is lost. If the process occurs without

external work being done, for example, at constant volume

( 65), then 4=0, and :

F' - F < (134)

That is, the free energy decreases The amount of this

decrease may be regarded as a measure of the work of the

forces (chemical relationship, affinity) which bring about

the process; this work is lost as far as mechanical

work is concerned. To find its amount we must carry
out the same change in some reversible way. Then, by
(131), the amount desired, F 1

F, is actually obtained as

external work A.
A particular example will make this clearer. If an

aqueous solution of a non-volatile salt is diluted in some
isothermal way by adding pure water, the heat of dilution

can be negative or positive, according to the sign of

U' U, where U denotes the sum of the energies of the

original solution and of the water that is to be added

(initial state) and U' denotes the energy of the final

solution. The externalwork arisingfrom the simultaneous

change of volume can always be neglected. On the other

hand the difference F1 F is always negative. To
measure it we perform the isothermal process of dilution

in some reversible way, such as the following. We first

allow the water which is to be added to vaporize infinitely

slowly We then allow the vapour to expand further

until the density of the vapour is equal to the density which
saturated water vapour has in contact with the solution.

We then brmg the vapour into contact with the solution ,

the equilibrium is not disturbed by this step. Finally

by compressing the vapour over the solution Infinitely

slowly we completely condense it. The whole process is
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reversible, and so by (131) the total external work done is

equal to F' - JP<0 ; that is, work is gained (a weight is

raised). This work is lost if the liquid water is added

directly to the solution.

It is to be noted that all these theorems hold only for

isothermal processes The introduction of the free

energy does not suffice for formulating more general
laws.

In the expression (126) for the free energy the first

term U as a rule easily predominates over the second
term T8 in chemical processes. 'For this reason we may
often, especially in the case of low temperatures, regard
the decrease of U, that is, the heat of transformation

(Wtirmetonung), instead of the decrease of F, as a measure
of the chemical work ; so we may enunciate the additional

theorem that chemical changes always occur in the sense

of decreasing U, that is, are accompanied by the generation
of external heat (BEBTHELOT'S PRINCIPLE). But at high

temperatures where T and, in the case of gases and dilute

solutions, S assume great values, the term T8 can no

longer be neglected without causing an appreciable error.

Hence in such cases chemical changes often occur in the

direction of increasing total energy, that is, heat is taken

up from the surroundings.



CHAPTER IV

EQUILIBRIUM OF A SUBSTANCE IN
DIFFERENT STATES OF AGGREGATION

58. IN the following sections we investigate the

thermodynamio equilibrium of a given substance whose
individual parts can belong to different states' of aggrega-

tion, solid, liquid, or gaseous. Let UB suppose each of

these parts is physically homogeneous and is com-

pletely determined "by mass, temperature and volume.

For this to be so it is not necessary for the substance or

even one of its parts to be chemically homogeneous (22)
The question of chemical homogeneity cannot even be

answered with certainty. For example, it is still a very

open question whether the molecules m liquid water are

the same as in ice
; indeed, on account of the abnormal

properties of liquid water near its freezing point it is

probable that the molecules even in liquid water are not
all of the same kind.

We shall pursue the following line of thought. Let the

substance, whose total mass M is given, be enclosed in a
solid envelope of given volume V and let it be kept at a
definite temperature T by being connected with a suitable

heat reservoir. We set out to find the state or, if there are

more, states of equilibrium, which the body can assume
and to specify the conditions under which the equilibrium
is stable or unstable. It is possible to carry out this

investigation successfully and completely on account of

the theorem deduced in 55, which states that among
all the states that can result from one another under the

given conditions the most stable state of equilibrium is

distinguished by having the characteristic function W a
84
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maximum. In general, however, as we shall see, the

quantity y will be able to have several relative maxima ;

then, corresponding to every maximum which is not the

absolute maximum there will be a more or less stable state

of equilibrium. If the substance happens to be in such

a state (for example, as a super-saturated vapour) then

under favourable circumstances a very slight disturbance

can cause the substance to pass over into another state

of equilibrium, for which the corresponding value of W is

necessarily greater.

We have first to find those states for which the function

y possesses a maximum, that is, <5y= 0. The most

general assumption we can make about the state of the

substance is that three different parts of it are in the three

different aggregate states. Let MI} Mz , Mz denote the

masses of these three parts, the allocation of the suffixes

being left open for the present. We then have for the

total given mass :

Mi + M2 + M3
= M . . . (135)

The quantities M i} Mz, Ma are positive or individual

members may be zero.

If, further, vv v2 ,
vz denote the specific volumes, then

the given volume is :

M!! + Mzvz + M&s = F . . (136)

We now obtain for the characteristic function :

in which the quantities y refer to unit mass

From this we get for any infinitely small change of

state:

where here, as also in the sequel, the symbol Z denotes

the sum over the indices 1, 2, 3. In view of the fact that

by (113) we have generally :

W--dT + dv .... (137)
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we get, since BT=

VP =
jj,SM&$Vi

+ Zil>Mi . . (138)

But the variations are not all independent of one another
;

rather, it follows from the expressions above set down for

the mass and the volume that :

2$Mx
= and EM-fiv^ + Sv^M-^ =

By means of these equations we must eliminate any two
variation terms from the expression for 8!f in order to get

purely independent variables in it. If, for example, we
take the values of 8Jf2 and Bvz out of the equations and
substitute them in (138), we get :

K/f MW =
(Pi

- PJ8i - 1 (Pa
-

Since the four variation terms that occur in this expression
are completely independent of one another, each of the

four coefficients must vanish individually if 8W is to vanish .

Accordingly we have :

. . (139)

These four equations represent necessary properties of a
state of equilibrium. Sincethe quantities that occur in them
refer only to the internal constitution of the substance, in

contrast with equations (136) and (136) which also contain

the masses, we can call them the
"
internal

"
conditions

of equilibrium. We shall deal with them next and shall

find that they have several solutions, that is, that several

states of equilibrium exist.
* Later ( 65) we shall discuss

the further question as to which of the different kinds of

solutions furnish the most stable state of equilibrium,
that is, the greatest value of y for each individual case.
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59. FIRST SOLUTION. If we set :

VI
= VZ

= VB = V

all four equations (139) are satisfied by these values. The
three aggregate states are then identical and the whole

substance is homogeneous. Since the temperature T is

given from the outset the state is fully defined by the

external condition (136), which in the present case runs :

(Mi + M2 + Ms)v
= Mv=V

and gives the value of v.

This solution always has a definite meaning, but it

represents a state of equilibrium only if ^ is negative.

If this is the case, the equilibrium is unstable or stable

according to whether the function has anothermaximum
of greater value under the given external conditions or

not (of. 65).

60. SECOND SOLUTION. If we set :

Vl * v2 = v
s

the aggregate states denoted by 2 and 3 become identical

and the equations (139) reduce to

ft -a. (li(

In this case the substance exists in two different aggregate
states together, for example, as vapour and liquid. The
two equations (140) contain two unknowns v and v

a ;

so, since p and
ifi
are to be regarded as known functions of

T and v, these equations may serve to express vt and vz,

as also the pressure p: pz and the values
J/T

and ^r2 ,
in

terms of the given temperature T. Thus the temperature

completely determines the internal state of two hetero-

geneous parts of the same substance which are in contact

and in equilibrium. The masses of the two parts are

obtained from the external conditions (135) and (136),

which in the present case run :

Mx + (Jf, + M3)
= M \

= V J
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These two equations enable us to calculate M: and

(Mz+ M3), so that the state of the system is completely
determined ; for in the case of the massesM2 andM3 only
their sum is of account. Of course, the result has a

physical meaning only if Ma as well as
(M2 + Ms) comes

out positively.
61. Let us now consider the equations (140) more

closely. The first is obvious ; the second may be inter-

preted very simply if we use as our basis the general

equation of state (2) of the homogeneous substance.

For, from (137) it follows by integration, since dT= 0,

that :

and substituted in (140), this gives ..

Va) ... (142)f
l

pdv =
*S

This equation has a simple geometrical meaning, if we
use the graphical method already mentioned in 10,

of representing the equation of state by means of the

system of isothermals (Fig. 1). For since the integral
in (142) represents the area of the surface which is enclosed

by the isothermal, the a;-axis and the ordinates denoted by
the parts v and vz of the isothermals, whereas on the

other hand the product p^v^ vz) denotes the area of the

rectangle formed by the same ordinates and the length

V-L
vz along the a-axis, the equations tell us the following.

Along every isothermal the pressure at which two

aggregate states of the substance can be in equilibrium
is represented by that straight line parallel to the

jc-axis which marks off equal areas on both sides of the

isothermal (in Fig. 1 it is the straight line ABO). Thus
we can derive the law of the dependence of the pressure
andthe density of the saturatedvapour on the temperature
directly from the equation of state established for homo-

geneous stable and meta-stable states.

Let usnow consider howthemtemalequllibrium depends
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on the temperature T, the only independent variable.

Differentiating equations (140) we get

dpi = dpz

i\ j,t, _ (pi
-

*2)<gpi
i

UYI aifjz
--

-f

--
1

or, taking into account (137) :

^}-r = T(v1 -v (143)

where the quantity r, by (63), denotes the isothermal-

isobanc heat of transformation per unit mass for a

transition from the aggregate state 2 to the aggregate
state 1 (heat of vaporization, heat of fusion, heat of

sublimation).
This equation which was early derived from Carnot's

theory ( 31) by Clapeyron and first established rigorously

by Clausius allows us among other things to calculate

the heat of vaporization for any arbitrary temperature
from the relation between the vapour pressure p l and the

temperature. For example, we have for water vapour
at 100 C. . T = 273+ 100= 373, v

l
= 1674 cm.8/gnn ,

v2= 1 cm.3
/grm , y>^= 760 nuns, of mercury, ^= 27-12

mms. of mercury. Reduction to absolute units gives, by
II (284)

dT
~~ - 1013250

and hence by (143) the heat of vaporization is, if we divide

by the mechanical equivalent of heat (42) :

r = 539 calories/grm.

which agrees excellently with the results of direct measure-

ment.

Since all the quantities that occur in (143) can be

measured fairly precisely this relation can also be used to

reduce any conventional temperature B to the absolute
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temperature T ( 49). By introducing 9 as the independent
variable in place of T it follows from (143) that :

and, by integration :

(144)

from which T is to be calculated as a function of 9 in the

manner explained earlier.

A simple approximate formula, which in some cases gives

good results but in others only moderately good results,

is obtained if in equation (143) the specific volume vz is

neglected in comparison with that of the vapour v^ and

if, in addition, the equation of state of an ideal gas is

assumed to hold for the vapour. Then, by equation

(96), the volume of a mole of molar weight m is .

17V = mv-, =-1
Pi

and the formula (143) becomes .

m Pi dT

ITor example, for water at 100 C., E = 1-983 m calories by

(57), m= #20= 18, T= 373, p= 760 mm., ^= 27-12

mm. as above, and hence by (145) the heat of vaporisation
is r = 547, which is a little too large. The reason for this

deviation is that the volume of the saturated water

vapour at 100 C is in reality smaller than that calculated

from the gas equation (96).

The equation (143) of Carnot and Clapeyron can be

applied to the process of fusion or of sublimation in the

same way as to the process of vaporization. In the

former case r denotes the heat of fusion of the substance,
if the index 1 denotes the liquid and the index 2 the solid

state ; further p^ signifies the pressure of fusion at which
the solid and the liquid substances are in equilibrium with
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each other. The pressure of fusion, according to this,

depends, like the pressure of vaporization, on the temper-
ature, or conversely, by changing the pressure the temper-
ature of fusion is changed :

dT_ = Tfa - vj (U6)
dPl r

For example, for ice at C. and hence at atmospheric

pressure, we get r=80 calories, T=273, ^= 1-000,

vz= 1-091, and so by (146), expressing the result in

atmospheres, we get :

jrn-=- 0-0075. . . . (147)

That is, by increasing the pressure by one atmosphere the

melting temperature of ice is lowered by 0-0075 C., which

agrees with the experimental results. For substances

which, in contradistinction to ice, expand on fusion, the

melting temperature is raised by increasing the pressure,
so that we can say : increasing the pressure favours the

aggregate state that has the smaller volume.

62. The variation of the heat of transformation r with

the temperature may also be calculated from our formulse.

For if we introduce the enthalpy from (65) and write

(143) in the form :

r = Wi wz

and differentiate with respect to T, we get, by regarding
w as a function of T and p :

dr _ (dwj\ (dwz\ f(fa>i\ _ (du>z\ [dp^
dT

~
\WJP

~
\W)f

+
\\dp JT \*pJf}W

'

Taking into account (67) and (122) we obtain :

dr . di

Finally, according to (143) :
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Let us again take saturated water vapour at 100 C. as an
illustration. Then T= 373 and, in calories, Cpt

= 0-47,

Cp,= 1-01, r= 539, 0!= 1674, vz
= 1, (!&) = 4-81,

^Ojt /p
ft*

(aTs) =0-001, from which we calculate from (148) that :

\oJ. /P

that is, the heat of vaporisation of water decreases by
0-64 calorie per degree rise of temperature.

If we again neglect vz in comparison with v and treat

the vapour as an ideal gas, the relation (148) assumes the

much simpler but less exact form :

j7p
= cPl -cP ,

. . . (149)

from which we would obtain for the case in question :

63. The relation (143) may also be used for quite
different purposes. As we have seen above in 30, besides

defining the specific heat at constant pressure and at

constant volume we can also define any number of other

specific heats according to how we regulate the external

conditions under which the heating is effected. In every
case the equation (51) of the first law holds.

In the case of saturated vapours interest attaches to

that process of heating by which the vapour is continually

kept exactly in the state of saturation. If we call the

specific heat of the vapour corresponding to this process

AJ dausius called it the
"

specific heat of the saturated

vapour
" we obtain by (51) in our nomenclature :

, du-\ dv-t / -\Kf\\
- ( 15 )

Initially we can say nothing at all about the value of ht ;

in fact, we must even leave the sign of the quantity open.
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For if when the temperature of the vapour is raised by
1 it is still to remain saturated, it must at any rate be

simultaneously compressed, because the density of the

saturated vapour increases as the temperature rises. But

compression generates heat and the question arises

whether this heat is not sufficiently considerable to

necessitate a conduction of heat to the outside surround-

ings to prevent the vapour from becoming super-heated.
Hence two cases are conceivable from the outset : 1. The
heat of compression is so considerable that the originally
saturated vapour becomes super-heated when compressed

adiabatically. To maintain the state of saturation it is

then necessary to conduct heat away to the outside, that

is, AH is negative. 2. The heat of compression is too small

for the compressed vapour to be kept saturated without

the addition of external heat; Ax is then positive.

Between these two cases there lies the limiting case

&x
= for which the heat of compression just suffices to

maintain the vapour in the state of saturation and so the

saturation curve coincides with the curve of adiabatic

compression This limiting case was assumed by James

Watt, the inventor of the steam engine, to be valid for

water vapour.
In contradistinction to the specific heat h^ of the

saturated vapour the specific heat of the
"
saturated

liquid
"

:

, du dv

can be directly specified numerically For this quantity

corresponds to heating a liquid in such a way that it is

always kept just below the pressure of its saturated

vapour. Now since the pressure, unless it amounts to

many atmospheres, has no appreciable effect on the state

of a liquid, the value of hz practically coincides with the

value of the specific heat of the liquid at constant pressure,
that is, we have :

A-<fc ..... (162)
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Subtracting equation (151) from equation (150) :

, , dfa - uz) d(Vi
- vz)

A! - A. =-^ + pi-
ffl

---

But by (143) we have, differentiating with respect to T
dr du - u

Pl + (Vl
~

z

dr

dT
~

dT l dT

Consequently :

or, by (152) and (143) :

For saturated water vapour at 100 C. we have, as above

CP,
= 1-01, ^ = - 0-64

r = 539, T= 373. Consequently :

A! = - 1-07.

Thus water vapour at 100 C. represents the case 1

described above ;
that is, saturatedwater vapour at 100 C.

when adiabatically compressed becomes super-heated.
Or conversely, water vapour when adiabatically expanded
becomes super-saturated. Other vapours exhibit the

opposite effect .

64. TEJED SOLUTION. If we substitute

in the conditions (139) that hold for internal equilibrium,
these remain unaltered in the form given in 58. This

case denotes a type of equilibrium in which the substance

occurs in all three states of aggregation together. The
four equations (139) contain four unknowns, namely
T, vv va , ^3, so that quite definite values of these four

quantities correspond to them. The three aggregate
states can thus exist together in equilibrium only at a
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certain definite temperature and for certain definite

densities, and hence also only at a certain definite pressure.
If we call this temperature the

"
fundamental temper-

ature
" we see by (139) that it is characterized by the

condition that for it the pressure of the saturated vapour
over the liquid is equal to the pressure of fusion or equal
to the pressure of sublimation at which the solid substance

is in equilibrium in contact with the gaseous substance.

As, according to the assumption we made in 58, the

temperature is given at the outset, we have two cases to

distinguish. Eitherthe given temperature is differentfrom
the fundamental temperature this will in general be so

and then the three aggregate states cannot be in equili-

brium with one another at all. Or the given temperature
is equal to the fundamental temperature; then the

assumed state of equilibrium is possible and the masses

of the different parts of the substance can be calculated

from the equations (135) and (136). But since these are

only two equations, whereas there are three unknowns
Mlt Mz , MI, their values are not yet determined and an
infinite number of equilibrium states of the kind in

question exist, only positive values ofM, however, coming
into consideration.

Let us enquire, for example, into the fundamental

values for water. Since at C. the pressure of the

saturated vapour above liquid water is 4-58 mm., but the

pressure of fusion of ice is 760 mm , C. is not the funda-

mental temperature of water. To find it we consider

how the value of the saturation pressure depends on the

temperature. In considering this we must observe that

forevery combination of two aggregate states the pressure,

like the densities of the two parts of mass in contact, is

determined, according to (140), by the temperature alone

We must be careful to distinguish, however, whether, for

example, the saturated vapour is in contact with the

liquid or with the solid substance, since the functions

which represent the way in which the saturation pressure

depends on the temperature come out quite differently
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for these two cases. The state of the saturated vapour
is determined only when we know besides the tempera-
ture with what state of aggregation the vapour is in.

contact; and the same thing holds for the other two

aggregate states. If, therefore, from now onwards we

assign the suffixes 1, 2, 3 to the gaseous, liquid and solid

states respectively, we must use two indices to designate
a part of matter which is in the state of saturation. Of

these two indices one specifies the aggregate state of the

part of matter in question, the second indicates the

aggregate state with which it is in contact Thus to

denote the specific volume of the saturated vapour we
use the two expressions vlz and v13 ,

the first of which

represents the vapour in contact

with liquid substance, the second

that in contact with solid sub-

stance. We have analogous

symbols vZ3 and v2i ,
v31 and vS2

for the specific volumes of the

liquid and the solid substance in

the state of saturation. Each of

these six quantities is a definite

FIG. 4. function of the temperature alone.

The corresponding pressures are :

(pressure of vaporisation), pza p3Z (pressure
of fusion), psl

= p ls (pressure of sublimation). At
the fundamental temperature these two pressures
become equal to each other and so also to the third

pressure. Thus if we express the dependence of the
three pressures on the temperature by means of three

curves by plotting the temperatures as abscissae and the

pressures as ordmates, the three curves intersect at a

single point, the fundamental point F of the substance

(see Fig. 4).

As we have already remarked, for water at C. we have

Piz<Pzs- Since p lz increases as the temperature rises,

whereas pM decreases, the two pressures will coincide at a

higher temperature than C., but only at a very slightly
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higher temperature. For, by (147), pzs varies compara-

tively rapidly with the temperature, and an increase of

0-0075 C in the temperature suffices to lower the pressure
of fusionpZ3 of the ice from 760 mm to the vapour pressure
plz of the water. Hence the temperature 0-0075 is very

approximately the fundamental temperature of water,
at which the pressures of fusion, vaporisation and sublima-

tion coincide From this value we then obtain the

specific volumes of water vapour, water and ice as :

Vi = 206,000, v2 = 1-00, v3 = 1-09.

To characterize the behaviour of a substance near its

fundamental state it is expedient to establish the course

of the three curves^ 12 , pz3 , psi in the neighbourhood of the

fundamental pointF (Fig. 4). This is done by calculating
the directions in which the curves pass through F. The

angles that these directions make with the z-axis are

given by the differential quotients -S^, -j^,
-&1

-

Now, by (143) :

dT T(VJ_
- v2)

and corresponding equations hold for the other two

pressures Hence we can obtain the directions of the three

curves at the fundamental point as soon as we know the

corresponding heat of transformation.

Let us compare, for example, the pressure p^ of water

vapour with the pressure #13 of ice vapour near the

fundamental temperature Here we have, in calories

r12= 600, r13
= 80+ 600= 680, and so, according to the

last equation, multiplying by the mechanical equivalent of

heat and using the values above given for the specific

volumes, we get in terms of millimetres of mercury .

^ = 0-335

and likewise .

^ - ' 38 .
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The curve of the sublimation pressure jp13 thus takes a

steeper course at the fundamental pointF than that of the

vaporisation pressure p 12 . Or, for temperatures above

the fundamental temperature (to the right of F) pI3 > p12)

for temperatures below this temperature (to the left of

F) Pw < Piz- Thus if we measure the pressure of

saturated water vapour over water above the fundamental

point and over ice below the fundamental point, the

vapour pressure curve suffers a bend, whose amount is

given by the sudden change of the differential quotient :

_
dT dT

~

For example, at 1 C. (dT = 1) we get approximately:

Pis Piz=~ 0-045.

That is, at 1 C. the pressure of ice vapour is 0-054

millimetre of mercury less than that of water vapour ,
a

result which agrees with experimental determinations.

But the existence of a sharp bend of the amount specified

can be inferred only from the theory.
65. Having considered the individual properties of the

different possible solutions of the equations of condition

that hold in the case of equilibrium we arrive at the

further question as to which of these solutions has the

preference in each given case, that is, which represents
the most stable state of equilibrium. In view of 58 we

may formulate the question in the following brief form .

given the total mass M
,
the total volume V and the

temperature T of a substance, required to find the most
stable state, that is, the absolute maximum of the

characteristic function W. A complete treatment of this

problem would take up too much space here, so we shall

give only a few of the important results. We found ]ust
above that in general the conditions of equilibrium allow

three different kinds of solutions according as the substance

exists in one, two or three aggregate states. Particular

account, however, must be taken of the fact that the second
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and the third solutions have a physical meaning only if

the values for the masses that result from equations (141),

(135) and (136), respectively, come out positively. This

limits the range of validity of the two solutions. A
closer investigation further shows that within its range of

validity the third solution always has the preference

above the first two and that the second has the preference

above the first. This may briefly be formulated as

follows the substance has the tendency to divide into

its aggregate states. But this statement does not

uniquely determine the state of equilibrium in all oases.

3?or we saw in 64 that when the substance split up into

its three aggregate states an indefiniteness remained in the

values of the masses Mv Mz, Ma . The corresponding
states of equilibrium are all equally stable, that is, the

equilibrium is neutral. The difficulty that seems to lie

in the circumstance that in nature a definite state of

equilibrium always presents itself, is removed when we
reflect that the occurrence of even very small fluctuations

of temperature, which are inevitable, will in reality prevent
the temperature which is given at the outset from

permanently coinciding exactly with the fundamental

temperature.
If instead of the temperature T the energy U of the

substance is given the stable equilibrium will, by 54, be

characterized by the maximum of the entropy. Corres-

ponding theorems then hold. But under no circumstances

does an mdefiniteness occur, rather there is always a

well-defined stable state of equihbrium which is deter-

mined uniquely.



CHAPTER V

SEVERAL INDEPENDENT COMPONENTS

66. WE shall now investigate generally the thermo-

dynamic equilibrium of a system consisting of different

parts with common surfaces of contact in space, which,
in contrast with the system treated in the preceding

chapter, may be composed of any number of chemical

constituents. We assume that each of the different and

differently constituted parts of the system with their

common boundaries in space but separated from each

other by definite surfaces of contact is homogeneous ( 22)

and, following Gibbs, we call each part a "phase
"
of the

system. For example, every aggregate state of a partially
condensed substance represents a particular phase. The

possible number of phases is arbitrarily great from the

outset. Also we can see immediately that a system in

equilibrium can have any number of solid and liquid

phases but only one gaseous phase. For two different

gases adjoining each other can never be in thermodynamic
equilibrium with each other. If the gaseous phase is

absent in the system it is called
"
condensed."

Besides the number of phases a characteristic of the

system is the number of its
"
independent components,"

for these serve to fix the chemical constitution of the

phases. We define the number of independent com-

ponents of a system in the following manner. We first

obtain the number of the chemically simple substances

(elements) that are present in the whole system, and then
exclude those substances from this series as independent
substances whose quantity is determined for every phase
from the outset by the quantity of the remaining sub-

100
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stances : the number of the remaining substances

is then the number of the independent components
of the system Which of the components is regarded
as independent and which as dependent is a matter

of indifference since we are here concerned not with the

kind of the mdependent components but only with their

number.

The question of the number of different components
has nothing to do with the type of chemical combination

of the individual substances in the different phases, or, in

particular, with the number of different kinds of moles

For example, a quantity of water in any states of aggrega-
tion always forms a single independent component, no
matter how many or how many kinds of associations and

dissociations of water moles, whether as mixtures of

hydrogen and oxygen or as ions, occur, so long only as the

quantity of the oxygen is determined at the outset for

every phase by that of the hydrogen or conversely.
Whether this last assertion is actually true must, strictly

speaking, be established by a special investigation. For

example, as soon as we take into account the fact that

water vapour at every temperature is partly dissociated

mto hydrogen and oxygen we obtain different proportions
of the two elements H and in the two phases of a

system consisting of liquid water and water vapour, even

rf only complete moles of HZ have been used to build

up the system; and hence we have two independent

components and not simply one

If we denote the number of mdependent components
of the system by a we get from the definitions set up for

this number, that the state of thermodynamic equilibrium
of any phase is determined by the temperature T, the

pressure p and the masses of the a components contained

in it, no matter whether they have finite values or are in

part infinitely small. It is more convenient to choose

the pressure p as the mdependent variable instead of

the specific volume v, as was done in the previous chapter,

because here the pressure in thermodynamio equilibrium
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is common to all phases of the system that are in free

contact.

67. Let us assume the total masses of the a inde-

pendent components of the system as given : M
1?Mz , . . Ma, and likewise the temperature T and the

pressure pi and let us enquire into the conditions of

thermodynamic equilibrium. By 66 this is characterized

by the maximum of the function $ defined in (118) ; thus :

80 = ...... (154)

holds for every change of state which is possible for a

constant T and p.
Let p be the number of phases. The quantities S, U

and V and hence also then consist of a sum of
(3 terms,

each of which refers to an individual phase, that is, to a

physically homogeneous body :

# = 0' + 0" + . . . $0 . . . (155)

where now as well as in the sequel we distinguish the

different phases by upper indices. For the first phase we
then have :

Sr

, U', V and <&' are determined by T, p and the masses

M\, Jf'8 , . . . M'a of the independent components con-

tained in the phase. Concerning the nature of the

dependence on the individual masses we can 1

only say at

the outset that if all the masses are changed in a definite

ratio, for example, are doubled, each of the above

quantities is changed in the same ratio. For in this

change the chemical constitution of the phase remains

constant, only its mass changes, this change being in

exactly the ratio assumed ; and the above quantities also

change in the same ratio. In other words, 0' is a homo-

geneous function of the first degree in the masses M\ t

M'z , . . . M'a (which need not of course be linear).

To express this analytically we increase all the masses
in the ratio 1 + e : 1, where e is a very small number.
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All changes are then very small and we get for the corre-

sponding change of $'

But by our assumption we have :

A0' = e0'
hence :

1 1

- (157)

This Eulerian equation mathematically defines a homo-

geneous function of the first degree. The differential

quotients that occur in it, for which we shall use the

following abbreviations :

' '

,,
f

s&a - (1B8)

besides depending on T andp, depend only on the chemical
constitution of the phase and not on its total mass since,

if the individual masses are all changed uniformly, the

numerators and denominators of the differential coefficients

are changed,in the same ratio.

What holds for the first phase may be immediately

applied to every other phase.

By using (165) the condition of equilibrium (154) now
runs

80' + 80" + . . . + 84* = . . . (159)

or, since T and p are not varied, and bearing in mind

(158), we get :

+ <^2SJf"2 + . . . + ^.SJf*. = . (160)

If the variations of the masses were quite arbitrary, this

equation would be satisfied only if all the coefficients of
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the variation terms were equal to zero But the following

condition holds between the masses :

M\ + M'\ + + M/ = M

Jf
' + Jf". + ... + Mta

= Jf.

and so for any possible change of state .

8Jf\ + SM'\ + . . +8Jf^ =

8Jf',+8Jf",+ . - +8^2
=

,
_ (162)

8Jf'. + 5M"a + . . . + 8Jf*. =

From this we get as the necessary and sufficient condition

for the vanishing of the expression (160) :

A8

. (163)

So there are
(3

1 equations for each independent com-

ponent and a((i 1) equations for all the independent

components . all these equations must be fulfilled in the

equilibrium state. Each of them refers to the transition

of an independent component from one phase into another

phase ;
it asserts that it is just in reference to this transi-

tion that equilibrium exists This condition depends
only on the temperature, the pressure and the internal

constitution of the phases and not on their total masses

this is as it should be.

As the equations that refer to a definite component and
form one row in (163) may be rearranged in any order we
deduce the following theorem : If a phase is in equilibrium
with two other phases the two other phases are also in

equilibrium with each other (they "co-exist") If we
combine with this the theorem already enunciated above

( 66), that every system in equilibrium has at most a

single gaseous phase, we infer that two co-existing phases,



v SEVERAL INDEPENDENT COMPONENTS 105

for example, two liquids which form two separate layers

(water and ether) emit the* same vapour. For since the

one phase by hypothesis co-exists with the other phase
and, of course, also with its own vapour, the other phase
also co-exists with the same vapour. Hence the co-

existence of solid and liquid phases can be tested by
comparing their vapours.

68. It is now easy to see how the state of equilibrium
of the system for definite values of the temperature and

pressure is determined in general from the external

conditions (161) initially given and the conditions of

equilibrium (163). There are a of the former and a(p 1)

of the latter, so there are ap equations altogether. On
the other hand the state of the p phases for given values of

T and p depends on the a(3 masses M' lt . . . M<P of the

independent components contained in them Thus there

are just as many equations as there are unknowns.

A new position arises, however, if one divides the

variables on which the state of the system depends into

such as concern only the internal constitution of the phases

(internal variables, namely temperature, pressure and the

ratios of the independent components) and into such as

determine only the total masses of the phase (external

variables) There are (a 1)P+ 2 of the former, since

in each of the p phases there are a 1 mass ratios of the

a independent components contained in it, and, besides,

the temperature and the pressure , there are p of the latter,

namely the total masses of the phases.
Now the <x(p 1) equations (163) contain only internal

variables, so that after these equations have been satisfied

there still remain of the total number of internal variables

[(a
-

l)p + 2]
-

[a(p
-

1)]
= a - p + 2

variables that are indefinite. This number cannot be

negative, for otherwise the internal variables would not

be sufficient to satisfy all the conditions of equilibrium

(163). So we must have .

2 (164)
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that is, the number of phases can exceed the number of

independent components by at most 2
; or, a system of

a independent components can form at the most <x+ 2

phases (GiBBs's PHASE RULE).
In the limiting case, (i

= a + 2, the number of internal

variables is just sufficient to satisfy the internal conditions

of equilibrium (163). Their values are then completely
determined for the equilibrium state, independently of

the external conditions ; they form a so-called (a 2)-fold

point. By modifying the external conditions, for example,

by altering the volume, or adding heat or new quantities
of substance, only the total masses of the phases but not

their chemical constitution nor their temperature nor

then* pressure become changed. This holds until one of

the phases vanishes from the system. An example for

a = 1, and hence
{3
= 3, is given by the case, treated in the

preceding chapter, of the fundamental point of a single

substance, in which all three aggregate states are in

contact. For a= 2 we get (i
= 4, that is, a four-fold

point, as, for example, an aqueous solution of common
salt in contact with solid salt, ice and water vapour.
In this case besides the temperature and the pressure the

concentration of the solution is also fully determined.

If, further, (3=a + 1, the internal constitution of all

phases, including temperature and pressure, depends on a

single variable, which can be chosen at will, say the

temperature or the pressure. This case is usually called

that of
"
completely heterogeneous equilibrium." For

a= 1 we here have
(3
= 2 : a single independent com-

ponent in two phases, for example, liquid and vapour.
Both the pressure and the density of the liquid and the

vapour depend only on the temperature, as has already
been shown in the preceding chapter. This type of

equihbrium includes vaporization when it is accompanied
by chemical decomposition in so far as the system contains

only a single independent component, as, for example,
the vaporization of solid ammonium chloride (NH4C1).

So long as hydrochloric acid vapour (HC1) or ammonia
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vapour (NH3) is not present in excess there is a perfectly
definite dissociation pressure corresponding to every
temperature T. For a= 2, we have

(3
= 3, as, for example,

when a salt solution is in contact simultaneously with its

vapour and with the solid salt, or if two liquids that

cannot be mixed in all proportions (water and ether) are

present together with their common vapour. Vapour
pressure, density and concentration in every phase are

then functions of the temperature alone.

If, further, (3
= a, the internal constitution of all the

phases still depends on two variables, for example, on the

temperature and the pressure. Every substance in the

homogeneous state affords an illustration of a= 1, (3
= 1.

An example of a = 2, (3
= 2 is given by a liquid solution of a

salt or of an alcohol in contact with its vapour. The

concentration, both in the solution and also in the vapour,
is determined by the temperature and the pressure.
Instead of the temperature and the pressure the concen-

tration of the liquid solution is often taken either with the

temperature or with the pressure as the two independent
variables. In the first case we say that a solution of

arbitrarily chosen concentration at an arbitrarily chosen

temperature emits a vapour of definite tension and definite

composition ,
in the second case we say that a solution of

arbitrarily chosen concentration at an arbitrarily chosen

pressure has a definite boiling point at which a vapour
of definite composition is distilled off.

69. As we have seen, the determination of the

equilibrium state of any system depends essentially on our

knowinghow the characteristic function <& for every phase
of the system depends on the temperature T, the pressure

p and the chemical constitution of the phase. The

dependence on the temperature and the pressure is in

general given by the relations (120) and (121). We have

already established the expression for for a gaseous

phase in (123). In the case of a condensed phase (that is,

liquid or solid) the pressure plays only a small part, so

that we shall here need concern ourselves only with



108 THEORY OF HEAT CHAP

investigating the dependence on the temperature For
this the relation (120) gives the value

WdT

The integration is to be performed at constant pressure.

The enthalpy (Gibbs' heat function at constant pressure,

34) is related by (67) to the heat capacity CP at constant

pressure. Thus if we integrate the last equation by parts,

we get .

__ W fdW dTv- T +
1 dT' T

and, if we substitute Gf for W by (67), then :

. . (165)

This relation reduces the characteristic function directly
to heat measurements. On account of the two indefinite

integrals two additive constants remain undetermined in

it (just as in the case of a gas in (123)) one of which has T
in the denominator.

70. Let us next enquire into the dependence of the

characteristic function $ of a phase on its chemical con-

stitution We shall first consider the question of an ideal

gaseous phase, that is, a physically homogeneous mixture
of different ideal gases To answer this question we must,

by (118), know the volume 7, the energy U and the

entropy S of the gas mixture. We see at once that it is

better to use, instead of the individual masses of the

different kinds of gases contained in the mixture, the

numbers of moles of each, viz . n i} nz , n3 . . . . For
then we have simply :

V = 2hi ..... (166)

The energy U of the gas mixture is obtained from the

energies of the separate gases with the help of the first

law. For according to this law the energy of a system
remains unchanged if no external forces are exerted on it.
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If -we now allow any arbitrary number of gases at the same

temperature and pressure to diffuse into one another

isothermally and at the same pressure (along an isobar),

experiment teaches us that neither the total volume is

changed nor is heat taken up from without. Consequently
the system retains its initial value unchanged right to the

end of the process of inter-diffusion, and the energy of the

mixture is equal to the sum of the energies of the separate

gases before mixing, or by (97)

U = EnfaF + 6X) .... (167)

Here, as always in the sequel, Ci^
does not denote the

specific heat as earlier, but the molar heat at constant

volume of the gas 1 . The constant b depends only on the

nature of this gas.

We have yet to determine the entropy S of the

gas mixture. Its dependence on the molar numbers
n 1} nz , n& . . . can be found in no other way than by
applying the second law to a reversible process that is

accessible to measurement and that produces a change
in the ratios of the molar numbers. We may not,

however, use the diffusion process above applied to

determining the energy U : for this process, as we may
conjecture and as is shown below, is irreversible and so

leads to an inequality. On the other hand a reversible

process which presents itself as suitable for our purpose
is to use a "

semi-permeable membrane "
with the gas

mixture . such a membrane can act as a partition which

is permeable o one type of moles and absolutely

impermeable to another type. It is true that perfet

semi-permeable membranes of this kind do not exist in

reality for any gases whatsoever. Indeed, it will be shown

later by theory ( 73) that in principle every gas penetrates

into the substance of the membrane and will hence also

diffuse through it. All that matters here, however, is

that we may assume, without infringing the laws of

thermodynamics, that the rate c* diffusion of one kind of

moles can be maac *<* small as itc. "lease compared with
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that of another kind. This assumption is justified by the
fact that the property of being semi-permeable is possessed

by some substances to a very high degree of approximation
in practice. For example, glowing platinum foil is

permeable towards hydrogen but almost impermeable
towards oxygen. The error that is incurred in setting
the rate of diffusion of one type of moles equal TO zero
falls below any measurable limit

;
it resembles the error

made in assuming that a salt does not absolutely vaporize
or freeze out of a solution, for this assumption, too, is not

rigorously true (73).
By using semi-permeable membranes as partitions we

shall separate the constituents of a gas mixture from
one another by means of an infinitely
slow reversible isothermal process of

the simplest possible kind. Let a
hollow cylinder (Fig. 5) be provided
with four pistons in all Of these A
and A' are fixed while B and B' are

movable, but in such a way that
the distance BB' is kept constant

, 6. and equal to AA' as is denoted by
the two brackets in Eig. 5.

Let the base A' and the cover B of the vessel be im-
penetrable for all substances, while A and B' are semi-
permeable, A being permeable only to a certain gas 1,
while B' is permeable only to another gas 2. Above B
the space is to be evacuated and to remain so.

Let the pistonB be at A initially, so that B' is at A', and
let the enclosed space contain a mixture of the gases 1

and 2. Now let the piston B and hence also B' be raised

infinitely slowly The gas 1 flows into the space that
opens up between B and A, while the gas 2 flows into the
space which opens up between B' and A'. When B' has
arrived at A, the two gases have been completely
separated.

Let us first calculate the external work done during the
process. As the upper space is evacuated the movable

(!) (2)

(2)

t
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pistonB is acted on only by the pressure of the gas 1, which
moves it in the upward direction. The other movable

piston is acted on only by the partial pressure of the gas 1

in the mixture in the downward direction, since the density
and pressure of the gas 2 are the same on both sides of

B'. But these two opposite pressures are equal in

magnitude, since the presence of the piston A is of no
account for the gas 1. Consequently the motion of the

two rigidly connected pistons B and B' occurs without

the performance of external work. Hence, if the temper-
ature and, therefore, also the energy of the system are kept
constant, no exchange of heat with the surroundings
occurs.

The process, if carried out infinitely slowly, is reversible,

and so the entropy in the initial state is equal to that in

the final state, that is the entropy of the gas mixture is

equal to the sum of the entropies of the individual gases
if each alone occupies the whole volume of the mixture at

the same temperature. This law may be generalized to

apply to a mixture of any number of gases as follows :

"
the entropy of an ideal gas mixture is equal to the sum

of the entropies of the individual gases, if each alone

occupies the whole volume of the mixture at the same

temperature." It was first enunciated by Gibbs.

The entropy of a single gas consisting of % moles and
at the temperature T and the pressure p is, by (109) and

(96):

% (e* log T + E
log^

+

where the constant ax depends only on the constitution of

the gas but not and this is an essential point on the

number of moles %, because the entropy at^
a definite

temperature T and pressure p is proportional to the

number of moles present. Instead of this expression we

may also, by (55), write :

i (CA loS T R loS P + i) i 167a)

where now Cp, like c, refers to a mole and not to a
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gramme By Gibba's law for the entropy of a gas mixture

we get from this

JS = Zn^ log T - R log Pi+ctj) .
( 168}

where p : denotes the partial pressure (9) of the moles
of type 1 in the mixture.

By (15) the sum of all the partial pressures is equal to

the total pressure p, and their ratios are, by (36) equal to

the ratios of the numbers of moles nlt nz , na . .

Consequently, if we denote the concentrations of the

individual types of moles in the mixture by :

>- *-& *-& (169)

we have :

Pt = ciP, Pz = W, p3
= C3p .

and by (168) the entropy of the mixture is then

S = % (flp, log T - R log (cjp) + ad . (170)

Having obtained the expression for the entropy of a

gaseous mixture we are now in a position to answer the

question proposed above, as to whether a diffusion

process is reversible Let us take the simplest case of

the inter-diffusion of two gases, containing n: and nz

moles, respectively, at constant temperature and con-

stant pressure, hence also having constant volume and
constant energy.
At the beginning of the process the entropy of the

system is equal to the sum of the entropies of the separate

gases, which, by (167a) amounts to

Wi^log^ -
.Slog p + aj + nz(Cps logT - filogp + az]

When the inter-diffusion is complete the entropy of the

mixture is by (170) .

% (OP. log T - R log (c^) + aj)

+ 7i2 (CftlogT-R log (e,p) + aa)

Thus the change in the entropy of the system is

. . (171)
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On account of (169) this is a positive quantity, from which
it follows that diffusion like friction and heat conduction

is an irreversible process.

At the same time we see that the increase of entropy
due to diffusion depends only on the numbers of moles

n-L and nz , but not on their nature, for example, on their

molar weight. So far as the increase of entropy is

concerned, then, it makes no difference whether the gases
are more or less

"
similar

"
chemically. This leads us to

make a strange inference. If the two gases are assumed
to be identical, the increase of entropy is obviously zero,

because then no change of state occurs at all. From this

it follows that the chemical difference between two gases

and, in fact, between any two substances at all, cannot be

represented by a continuously variable quantity, so that

we can speak in this case only of relations that go in steps

(sprungweise), or of quantities that are definitely equal
or unequal, as we have in the case of integers. Of. 13

above.

From the values found for the entropy S in (170), the

energy U in (167) and the volume V in (166) the required
characteristic function of an ideal gas mixture comes out

by (118) as .

= Sn^logT -
log (Clp) + !

-
e*
-
^
- S)

or, if for brevity we set the constant :

ai
~

Vi
~R = ai GPI

=
a>\ - (172)

and the quantity :

Cftlogr-^-JRlogp + ,'!-&. . (173)

which depends only on T and p and the nature of the

gases but not on the number of moles, we finally get .

<P = ZI 1 (^i-J21ogc1)
. . . (174)

71 We shall now take a fundamental step forward in

our theory which will be of considerable practical im-

portance. We shall assume that the expressions for



S, U, V and $ obtained for a gaseous mixture are also

valid when the numbers of moles %, n2 , n& , . . are

not given constants at the outset, but are variable

quantities; in other words, when the given number a

of independent constituents of the system ( 66) is less

than the number of different kinds of moles. Equa-
tion (174) then gives us the value of the characteristic

function < for all arbitrarily chosen values of the numbers
of moles, and hence also for meta-stable states; the

stable state of equilibrium is distinguished by having # a

maximum. This gives us a method of calculating

physical-chemical equilibrium uniquely. For if a

chemical change is possible in the gaseous mixture and
is such that the numbers of moles %, nz . . .

simultaneously change by 8
15

8nz . . ., then, by 66

equilibrium exists with respect to this change if 8<2>=0

when 8^=0 and 8;p
= 0. Or, by (174) :

Z(^ - R log c^Sttj + Zni 8(^ - .R log cx)
= . (175)

Since the quantities ^x , a . . . depend only on T and p
their variations are zero. Further, we have :

%S log G! + 7128 log Ca+ . . . =^8c14--
2
8ca + . . .

Cl C2

and, by (169) :

=%.(8c1 + 8c2 + . . . )=%. 8(^ + 02 + . . .
)
= 0.

Hence there remains of the condition for equilibrium :

S(^ E log 0^8% = 0.

Since only the ratios of the variations 8%, . . . are

important in this equation, we set

8%! : Bn2 : . . .
= v^ : vz : (176)

where we take v1} v2 , . . . to stand for simple positive
or negative integers, namely moles that combine or

decompose during the chemical change under considera-

tion. The condition for equilibrium then runs :

. . . (177)
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or:

v1logc1+v2 logca+ . . . - Vl*1++
"-.-lDg.g . (178)

Since the right-hand side of tlie equation, logK, depends,

by (173), only on T and p, the equation gives a definite

characteristic relation between the concentrations of the

different kinds of moles, if T and p are given. This

relation may also be written in the form :

Ci*<W* . . =K. . . . (179)

From this we see that at finite temperatures and finite

pressures none of the concentrations can be zero, or, in

other words, that in the gas mixture all the kinds of

moles possible at all are present in finite quantity
even if only to a very small extent. So, for example, in

water vapour even at low temperatures there is always
a small amount of uncombined hydrogen and oxygen
(cf . also 66 below). For many phenomena this circum-

stance is of course, of no importance.
The relation between the equilibrium constants K and

the temperature and pressure is, by (178) and (173) of

the form :

or:

log^log^- ^ + <71ogZ
7

-("i+'a+ . . . )logp (180)

where we have used the abbreviations :

via\ + "aa/2 + .
= -K log ^4

]

v^ + vj5&2 + . . . = RB -. (181)

From this we can derive a close relation between the value

of K, the heat tone (Warmetonung) and the change of

volume that present themselves during the chemical

change in question.
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For, by (180), we have for any change of T and p

Now by the first law (62) we have for the quantity of heat

which must be transferred to the system from without

during any isobaric change of state

Q=U'-U+p(V -V)
and so for the isothermal-isobaric change characterized

by the numbers v we have by (167), (166) and (55)

Zvibj.
= R(GT + B) =r . . (183)

and correspondingly by (166) for the volume change which

occurs during the same isothermal-isobaric change :

i + v* + -.) = v . . . (184)

By comparison with (182) this gives :

91og.g_l. r
. . . .

/186)

dT ~R Tz
'

and :

JM = _!.... (186)
dp ET

Thus by measuring the heat tone and the corresponding

change of volume we can determine how the equilibrium
state depends on the temperature and the pressure. For
a thermally neutral reaction (r

= 0) the equilibrium is

independent of the temperature, and if the volume is

not changed by the transformation (v
= 0) the equilibrium

is independent of the pressure, as may also be seen

directly from (180), because the change of volume is

proportional to the change in the total number of moles.

72. As for the ideal gaseous phase so also for any
arbitrary other phasethefunction 0,which is the character-

istic function for thermodynamio equilibrium, can be

found as a function of T, p and the numbers of moles

%, 94 ... by determining V, U and S. But, as we may
well expect, the expressions for these quantities are in
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general found to be fairly complicated. They become

relatively simple, however, for the case now to be con-

sidered, which represents the phase of a dilute solution,

that is, a phase in which a definite kind of moles far

exceeds in number all the other kinds of moles. We call

this kind of moles the
"
solvent

" and denote the number
of moles in it by nQ ;

all the others are called
f '

dissolved

substances
"

(or solutes) and the number of their moles

is denoted by n 1} nz ,
ns . . . Then, according to our

assumption, nQ is very large compared with the sum

T&I + nz + n$+ . The aggregate state of the solution is

immaterial; it can be solid, liquid or "gaseous.
The reason for the great simplification in the case of

a dilute solution is founded on the mathematical theorem

that a function of small variables, which is finite and
continuous and has finite and continuous differential

coefficients, is necessarily a linear function of these

vanables. This allows us to specify the way in which
U and 7 depend on n0) n 1} nz t . . from the very outset.

In physical language this means that, apart from the

actions of the moles of the solvent on one another, the

properties of a dilute solution necessarily depend only on
the mutual actions between the moles of the solvent and
the moles of the dissolved substances, but not on the

actions of the dissolved substances on each other ; for the

latter are small quantities of a higher order.

In actual fact let us first consider the energy U of the

solution and let us form the quotient of U and nQ ,
the

number of moles of the solvent. Since U is a homo-

geneous function of the first degree in the number of

moles, this quotient will remain unaltered if all the

numbers of moles of each kind n ,
n1} nz . . . are changed

in the same ratio, that is, it is a function of the ratios

,
?

, . . : and since these ratios are all small, it is a

linear function :

U n-,
,

nz
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in which the quantities u
,
ult uz . . . do not depend on

the numbers of moles of each kind, but only on the

temperature Tt the pressure p and the nature of the kinds

of moles present in the solution , and, indeed, in such a

way that UQ depends only on the nature of the solvent,

whereas u-L depends only on the nature of the solvent and
the first dissolved substance, and so forth. Thus u

corresponds to the mutual actions of the moles of the

solvent on one another, u^ on those of the solvent with the

moles of the first dissolved substance and so forth.

A fully analogous argument applies to the volume- V of

the solution. Thus we have :

V =nv 4-

\

)

We regard these fonnulee, exactly like the corresponding

expressions for a gaseous phase, as valid for other cases

besides that for which the numbers of moles n are given
constants, that is, for others besides the thermodynamic
states of equilibrium (cf. 71) They may be tested by
actual measurement For if we dilute the solution still

further, by adding say a mole of the solvent by, say,
an isothennal-isobanc process, then by means of the last

equations just above we may calculate the resulting heat

of transformation and change of volume, provided that

the numbers n remain constant

A mole of the pure solvent, taken always at the same

temperature and pressure, has the volume v and the

energy UQ . After the dilution has been effected the volume
of the solution has become :

V (nQ + l)vQ

arid the energy has become :

'

U' = (nQ + I)u

The increase of volume caused by the dilution is obtained

by subtracting the sum of the original volume V of the

solution and the volume of one mole of the pure solvent

from the final volume V ; thus 7' (V+ v
). That is,
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the increase of volume is ml. The heat transferred from
without is, by the first law (62) :

Q = U' - (U + u
) + p (V - (V + v

) )

and likewise vanishes.

In drawing these conclusions it is assumed that the

numbers of moles of the dissolved substances, n1}
nz . . .

remain unchanged during the process of dilution, that is,

that no chemical changes occur. We may accordingly
enunciate the following theorem . A dilute solution has

the property that further dilution, so long as no chemical

changes are produced by it in the dissolved substances,

causes neither an appreciable increase of volume nor

appreciable heat of transformation (Warmetonung). Con-

versely, every change of volume or heat of transformation

that occurs when a dilute solution is further diluted must
be ascribed to a chemical change among the dissolved

substances.

We now proceed to calculate the entropy iS of a dilute

solution as a function of the independent variables T, p,
nQ, %, n2 . . . . By (82) we have, provided the numbers
of moles T&O , n1} nz . , . are kept constant :

and by (187) :

, _ _ du +pdv duj.--
Now since the 's and the w's depend only on T and p,
but not on the n'a, the coefficients of nQ ,

nv nz . . . must
also separately be complete differentials, that is, there

must be certain variables 8, which depend only on T and

P, and such that :

, _ du + pdv-
+ . . . . (188)
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We then have .

S = n sQ + n^ + nas2 4- + C . . (189)

where the integration constant C is independent of T and p
but may, however, depend on the numbers of moles

present.
Hence if for any particular value of the temperature and

the pressure we know how C depends on the numbers of

moles, this value of C is also its general value for any

temperature and pressure.

We proceed to calculate C as a function of the n's for the

special case when the temperature is high and the pressure
is low. If the temperature is sufficiently raised and the

pressure sufficiently lowered, the solution, no matter

what its aggregate state may be initially, will transform

completely into the gaseous state In reality this will

be accompanied by chemical changes and changes of the

aggregate state, that is, the numbers of moles, n, will

change, the phases will split up and so forth For in

nature only such states can be realized as lie fairly close to

stable states of equilibrium Here, however, we wish to,

and indeed are compelled to, assume that the process is

such that all the numbers of moles n remain unchanged
and that the whole configuration always forms only a

single phase ; for it is only then that the quantity C retains

its value. This assumption is allowed because the

numbers of moles n together with T and p form the

independent variables of the system. Of. the comment
on (187). Such a process can only be imagined since it

passes through meta-stable states ; but there is no objection
to its use, since the above expressions for V, U and S are

valid not only for stable states but for all states which
are characterized by arbitrary values of the independent
variables T, p, nQ , n1} nz , For the stable state of

equilibrium arises from the general states as a particular
case in consequence of a special condition which is to be
set up below.

Since when the temperature has been sufficiently
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raised and the pressure sufficiently lowered, every gaseous

phase assumes so small a density that itmay be regarded as

a mixture of ideal gases (see end of 17) the expression

(189) for the entropy must here transform into (170); it

must be carefully noted that the moles constituting the

first kind are denoted by the index 0. But this transition,

during which the values of the n's remain constant, is

possible only if the integration constant C in (189) is

identical with that additive term in (170) which is

independent of T and p. Thus :

C = -
R(n,Q log c + % log G! +...). (!90)

where the concentrations are :

(191)

Hence, by (189) the entropy of a dilute solution for any

arbitrary temperature and pressure is :

8 = n (o
- X log c

) + i(*i
- -K log Cj) -f . . . . (192)

If we further use the following abbreviations for the

quantities which depend only on T and p but not on the

n'a .

. . . . (193)

then, by (118), (192) and (187), the characteristic function

# of the solution finally becomes :

# = n (^ -.Rlogc ) +n1(^1
-

JRlogc1) + .... (194)

This concludes the determination of the thermodynamio
properties of a dilute solution.

73. We shall now proceed to set up the condition of

equilibrium for a system consisting of any number of
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phases. As regards notation, we shall as before distinguish

the different groups of moles in one and the same phase

by means of suffixes but the different phases will be

distinguished by dashes, the first phase being left for the

sake of simplicity without a dash The whole system is

then represented by the symbol :

nom^njmi^m^ . . .
|

n'Q m'Q , n\ m\, n'z m'z , . . .
|

" "o"i"i'Wfc . . .
|

. . (195)

The numbers of moles are denoted by n
}

3 } their individual

weights by m's, and the individual phases are separated by
vertical lines. In the general formulas we denote the

summations over the different kinds of moles in one and

the same phase by noting down the individual terms of

the summation; but the summing over the different

phases is denoted as usual by the symbol S.

To be able to apply the expressions above derived we
shall assume that every phase represents either a mixture

of ideal gases or a dilute solution. The latter is true

even in the case when the phase contains only one kind of

mole, as, for example, a chemically homogeneous pre-

cipitate from a solution. For one kind of mole taken

alone is a dilute solution in which the concentrations of

the dissolved substances are all equal to zero.

Let us suppose that the system (195) can be subjected
to an isothermal-isobaric change such that the numbers
of moles fto/tt].,^ > ^'o>n'i)

n
'z change simul-

taneously by the amounts 8nQ) Snv 8w2 . . ., 8n'Q , Bn\,
&n'z . . . Then, by 56, equilibrium persists for this

change if, T and p being constant, we have 8$ = 0, or,

by (194), if:

- R log c )Sn + (^ - R log c^S^ + . . .

R log c ) + WjS^i
- R log GJ) + . . . =0

The summation 2 is to be performed over all the phases.
The second row vanishes identically for the same reason
as was given in 71 for the case of a single gaseous phase.
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If we again introduce the simple integral ratios that are

characteristic of the change in question :

= v 'v1 :vz . . . : v' : v'i v'2 : ..... (196)

the condition of equilibrium runs :

2((f>
- E log CQ)VO + (^ - E log c1)v1 + . . .

=
or:

ZV log cQ + v1 logc1 + . . . =-27^
+ vl(f>1 + . . . = logK . . (197)

The equilibrium constant K depends, lite the quantities <f>,

not on the numbers of moles but only on the temperature,
the pressure and the nature of the constituents of the

different moles. Its dependence on T and p comes out

of its definition :

. . . . (198)

Now, by (193) we have :

- **
a

and, on account of (188) :

,, _Wo =

Likewise

Consequently, by substituting in (198) :

In these equations the sums 2 taken over all the phases

denote, by (187), nothing other than the heat of trans-

formation r represented by (62) and the volume change v,



124 THEORY OF HEAT CHAP.

which occur during the isothermal-isobaric process here

characterized by the numbers v. Hence we have :

8Jgfc?-
' .... (199)

which are exactly the same relations as (186) and (186)

which were found above for a mixture of ideal gases
The elimination of K from the last two equations leads

to a general relationship between the heat of transforma-

tion r and the change of volume v -

I--* IP
(2oi)

which can also be derived directly from (122)

By means of equation (197) it is possible to set up for

every thennodynamic system exactly as many conditions

of equilibrium as there are possible kinds of transforma-

tions, the constant of equilibrium K having of course a

different value in each case. This corresponds fully with

the requirements of Gibbs's Phase Rule. For we must

carefully distinguish the numbers of different kinds of

moles of a phase from the number of its independent

components ( 66). Both numbers determine the mass
and the chemical constitution of the phase but the former

does this quite generally while the latter does so only on
the assumption that the phase ism thermodynamic equili-

brium. That is why the latter alone, as we saw in 68,

is of importance for Gibbs's Phase Rule. For when a

new kind of moles is taken into account, then although
the number of variables is increased, thenumber of possible
transformations increases at the same time and hence

also the number of conditions of equilibrium.
The equation (197) tells us further that in the state of

equilibrium all the kinds of moles that are at all possible
in the system are represented m every individual phase
to a finite degree of concentration; as otherwise the

corresponding logarithm would become negative. This
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also means, for example, that in a solid precipitate
thrown down by an aqueous solution water moles always
occur or that in the case of a solution some salt always

evaporates together with the solvent. This view, which
seems strange at first sight, receives support in various

ways ,
for example, it accounts for the fact that neither a

gas nor a liquid nor a solid body can ever be completely
freed from the last traces of foreign contaminating
substances It also proves that there can be no such

thing as a semi-permeable partition in the absolute sense

(of. 70). This does not, of course, prevent our ascribing
an arbitrary small value to the concentration of a dissolved

substance.

The above discussion is based on the assumption that

the equilibrium constantK has a finite value which depends
only on the temperature and the pressure. But if the

temperature T approaches the absolute zero, a glance at

equation (199) informs us that, provided the heat of trans-

formation r of the change in question remains finite, the

quantity log K assumes, when the temperature decreases

to an indefinitely small value, an infinite value, positive
or negative according to the direction of the reaction

indicated by the signs of the numbers v. By (197) it

follows from this that at the absolute zero of temperature
the reaction continues until it is fully completed, the

concentrations of the moles that become transformed in

the process becoming equal to zero.

This result agrees with the general deduction made in

57 that Berthelot's Principle holds at low temperatures.
This principle states that chemical transformations

always proceed in the direction m which the greatest

possible amount of heat is generated, that is, until all the

kinds of moles that are richer in energy have been

completely used up.
74. Some particularly interesting applications of the

condition of equilibrium (197) will now be discussed.

Krstly we consider the case, already treated in the

previous chapter, of a single independent component in
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two aggregate states, as this brings out very clearly the

peculiarities of the method here used. The system consists

of two phases, say a liquid and a gaseous or a solid phase.

By (195) the symbol of the system is .

Let each phase contain only a single kind of mole ; but

the moles in both phases need not be the same.

If a liquid mole vaporizes or solidifies, then, in our new
notation :

i ' _ mo- "~

Q ~n j
n'

and consequently the condition of equilibrium (197)

becomes :

0-logjr--& +^f - - (202)

Since K depends only on T and p, this equation expresses
a definite relation between p and T : the law of the

dependence of the vaporization pressure or fusion pressure

on the temperature, or the converse. The actual content

of this law becomes clear if we take into account the

dependence of K on p and T. For if we differentiate the

last equation totally, we get :

or, by (199) and (200) :

Now the volume change of the system in the change in

question is, in our present notation :

Consequently :
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or, referred to unit mass :

m
which is identical -with the Carnot-Clapeyron formula

(143).

75. Two independent components in a phase. Accord-

ing to the Phase Rule the pressure and temperature are

not the only variables in this case ; there is another, for

example the quantity of dissolved substance in 1 litre of

the solution. The concentration of any kind of mole is

then determined for the equilibrium state, no matter

whether the mole is produced by dissociation, association,

hydration or hydrolysis. Consider the simple case of

the electrolytic dissociation of a binary electrolyte, for

example, acetic acid in water. If the theory is to be

applicable we must assume that the electrolyte is weak,
that is, that in the expression for the energy and the

volume of the solution we may neglect the actions which
the ions exert on one another in virtue of their charges.

For it is only under this condition that the equations

(187) are valid.

The symbol of the system is :

where % denotes the number of undissociated moles

and n%= nz the number of dissociated moles. The total

number of moles is :

n = n + n1 + nn + n$ (which only slightly exceeds nQ.)

The concentrations are :

The transformation in question consists in the dissociation

of a dissolved mole, thus :

"o
=

.
vi = ~

!> vz = v = 1-

Accordingly we have, by (197), in the equiUbrium state :

log cx + 2 log GZ logK
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or:

G = K ...... (203)ci

which is the law, first enunciated by Ostwald, for the

dilution of a binary electrolyte.

76. Two independent components in two phases.

According to the Phase Rule the equilibrium state is

determined by two variables, such as the temperature
and pressure, or concentration of a phase and temperature
or pressure. To get a better survey of this wide field of

phenomena it is found advantageous to consider the

special case where the second of the two phases contains

only a single component in appreciable quantity This

case sub-divides further into two subordinate cases which

are to be well distinguished ; they result according as the

component that alone occurs in the second phase forms

the solute or the solvent in the first phase. We treat

these two subordinate cases in succession, beginning with

that in which the component that occurs isolated in the

second phase forms the solute in the first phase. An illustra-

tion of this is given by the absorption of a gas, say carbon

dioxide, in a liquid of comparatively inappreciable vapour
pressure, say water at a low temperature. By (195) the

symbol of the system is .

We leave open the possibility of the dissolved mole m^
being a multiple of the free gaseous mole w' . The con-

centrations of the different kinds of moles of the system
in the two phases are :

The transformation in question consists in the vaporiza-
tion of a dissolved mole, thus
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Hence the condition of equiHbrium (197) .

"o log C + vj. log GJ. + j/' log c' = logK
becomes :

-logc^logJT . . . (204)

That is, for a definite temperature and a definite pressure

(which also determines K) the concentration ct of the gas
in the solution also assumes a definite value. The de-

pendence of the concentration on the pressure and the

temperature is obtained by substituting the last equation
in the equations (199) and (200). This gives :

91 8 ci _ _ 1 L. . . . . (205)~ ^ '

..... <208>

where r is the amount of heat to be taken up from the

surroundings during the isothermal-isobario vaporization
of a mole of liquid, v being the resulting increase of

volume. Now, since v represents to a close approximation

the volume of i>' = j gaseous moles, we may, by (96),m o

set :

m-^ETV ~m' p

and the equation (206) gives

9 log G! _ m-L \

dp nfo'p'

Integrating, we get :

m

G! = . ?"' ..... (207)

That is, the concentration of the dissolved gas in the

liquid is proportional to that power of the pressure which

denotes the degree of association of the gaseous moles

in the liquid. Thus if the dissolved quantity of gas is

proportional to the pressure (Henry's Law; also known
as the Bunsen-Henry Law on the Continent), as in the
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case of the absorption of carbon dioxide in water, it

follows that the mole of carbon dioxide dissolved m the

water is identical with the gaseous mole.

The factor of proportionality C, which gives us a measure

of the solubility of the gas, also depends on the temperature ;

the manner of its dependence is derived from (205) com-

bined with (207), which gives :

_!!.. . . . (208)RTZ ^ }

Thus if the gas escapes from the solution owing to the

addition of heat from outside, as in the case of carbon

dioxide in water, then r > and the solubility decreases

as the temperature increases. Conversely the heat of

transformation during the process of absorption can be

calculated from the variation of C with the temperature.
77. The component which occurs alone in the second

phase forms the solvent in the first phase. This case

is realized when a pure solvent separates out from a

solution which is in any arbitrary aggregate state, and

passes over into any other aggregate state during the

process, such as by freezing, vaporizing, melting or

subliming. The general type of such a system is, by (1 95) .

nQm , n^rni, nzm2 ,
n3 7W3 ,

. . .
|
n' m'

The nature and the number of the different kinds of moles

which form the solute in the solution are left quite open ;

and likewise the question as to whether the moles of the

solvent have the same or different weights in the two

phases. The sum of all the moles in the solution is

n n + % + fl-2 + (which only slightly exceeds n ) .

The concentrations of the different lands of moles are .

A possible change is the transition of a mole of the solvent

from the first phase into the second, thus :

i/ = -
1, /!

= 0, v2 = 0, . . . v'Q
= .
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Hence, by (197), equilibrium requires that :

^ = log-n & n
Now:

n
T= i

and therefore, since the fraction on the right is very small :

% + %+ . . .

=logjg u m m (209)n

According to the general definition of (197) we here have :

log =
5 Mo + vifa + v2 2 + . . . + v'o^'o).

Consequently, if we insert the values of the v's, we get :

, + , + .,+ ... _ 1
/m^ _ \ _

TIO .RW ^ r J 6 ^ '

According to this equation log K is also very small.

If we compare this condition for equilibrium with the

corresponding condition (202) which was established for

the pure solvent, it is evident that the prissure of the

dissolved moles n i}
n

2) ns . . . effects a deviation from
the relationship between pressure and temperature that

holds for the pure solvent; moreover, this deviation

depends only on the total number of dissolved moles but

not on their nature. To formulate this appropriately
we can use either p or jT as the independent variable.

In the former case we say : at a definite pressure p the

boiling or the freezing temperature T of the solution

differs from that of the pure solvent. In the second case

we say for a definite temperature T the vapour pressure
or the sohdifaction pressure of the solution differs from

that of the pure solvent. We proceed to calculate the

deviations in each case.

If T is the boiling or the freezing temperature of the

pure solvent at the pressure p, we have by (202) :

(log K)T. =
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and, by subtracting (210) :

(log Z), - (log *)*. -
n* + n*+

n

Now since T differs only slightly from T we obtain by
applying Taylor's Theorem and making use of (199) :

From this it follows that :

This is van't HofE's law for the raising of the boiling point
or the lowering of the freezing point, respectively. For in

the case of solidification r, the heat transferred from

outside to a liquid mole, is negative. Since n and r

occur multiplied together in the formula, it tells us

nothing about the number of moles nQ and the weight m
of a mole of the solvent. If r is expressed in calories we
must, by (57), set .R= 1-983.

Thus for the vaporization of 1 litre of water at

atmospheric pressure we have, very approximately,
nQr= 1000 539 calories, T= 373 Hence the boiling point
of a dilute aqueous solution becomes raised by the amount :

T~-TQ
= Q'51.(n1 + nz + n3 + . .

) . (212)

Further, when 1 litre of water freezes under atmospheric

pressure, we have, very approximately, nQr= 1000.80

calories, T =* 273 and hence the boiling point of a dilute

aqueous solution is :

T - T = 1-86 .(% + + 8+) (213)

If on the other hand pQ is the vapour pressure of the

pure solvent at the temperature T, we have by (202) :

and by subtracting (210) :
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Since p differs only slightly from p , we may, using
(200), write :

From this it follows, if we set v, the volume increase during
the isothermal isobanc vaporization of a liquid mole,

equal to the volume of the resulting gaseous moles,
m BT ,, ,

v = -
, that :

* o P
p - p = m'Q ni + tta + .

. , (214)
P m '

n

This is van't Hoff's law of the relative lowering of the

vapour pressure Since n and mQ occur only as a product,
this formula tells us nothing of the weight of a mole of

the liquid solvent.

Sometimes we find this relation expressed in the form
that the relative lowering of the vapour pressure gives the

ratio of the number of moles of the solvent nQ to the

number of moles n of the solution, or, what comes to

the same thing in the case of dilute solutions, to the total

number of moles of the solution. But, as we see here,

this law holds only if m' = m , that is, if the moles of the

solvent in the solution and in the vapour are the same.

Moreover, in general, this will not be so ; as, for example,
in the case of water.

The result is that each of the equilibrium states last

treated, namely boiling point, freezing point, vapour

pressure of a dilute solution, contains a method for deter-

mining the total number % + nz+ . . .of foreign moles

present in the solution. If the number thus found by
measurement deviates from the number calculated from

the percentage content of the solution on the assumption
of normal moles, then by the theory above developed a

chemical change of the moles by dissociation, association

or suoh-like processes must necessarily have occurred.

It is not possible, however, to deduce from the theory
wJuxt type of change has occurred, that is, whether the
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dissociation, for example, was electrolytic or electrically

neutral.

78. Both phases contain the two eompr uk> in

appreciable quantity. If during the vaporization or

freezing of a solution the solute vaporizes or freezes at

the same time, the laws deduced in the previous section

become modified in a way which we shall now investigate.
The symbol for such a system is :

where, as hitherto, the index refers to the solvent while

the remaining indices refer to the different Mnds of moles

of the solute. If we perform exactly the same calculations

as in the previous paragraph, we get instead of (120) the

following equation :

\ + n'z + . . -

t==l K (216)& \ ;

and for the raising of the boiling point, instead of (211) :

T _ T (i
+ *i+. .- _ 'i+ '+...\ VET*

' v '

Here r is the heat of transformation corresponding to the

isothermal-isobaric vaporization of a mole of the solvent ;

At

so that is the heat of transformation for the vaporiza-W *

tion of unit mass.

We again observe that in each of the two phases the

mass of the solvent enters into the formula but not the

number of moles or the molar weight, whereas in the case

of the solute the number of moles exerts a characteristic

influence on the boiling-point. Moreover the formula

contains a generalization of van't HofE's law, in that

here we have, instead of the number of moles dissolved in

the liquid %+ na + . . ., the difference in the number of

moles dissolved in unit mass of the liquid and in unit mass
of the vapour. According as unit mass of the liquid

or unit mass of the vapour contains more dissolved moles,
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the boiling point of the solution is raised or lowered

respectively. In the limiting case when hoth amounts are

equal, that is the solution
"
boils constantly," the change

in the boiling point is zero Corresponding laws hold of

course for the change of vapour pressure and the change of

the freezing point. Corresponding to solutions with

constant boiling points we have "
eutectic amalgams

"

whose composition does not alter during the melting

process. Such amalgams therefore have a melting point
which is independent of the concentration.





PART TWO

THE CONDUCTION OF HEAT





CHAPTER I

FUNDAMENTAL EQUATION

79. WHEREAS time entered inno way into the questions
considered in the first part of this book, since we were
concerned only with the direction and never with the rate

of events that occurred in physical nature, we shall now
turn our attention to the course of irreversible occurrences

m time. For irreversible thermodynamic processes are

only ideal and occur infinitely slowly ( 25). We have
now to deal with friction, including flow through a valve,
heat conduction and diffusion. For all these processes
laws hold which are to some extent analogous. We shall

choose from among phenomena the simplest, heat conduc-

tion, and shall accordingly consider the time change of

temperature at the different points of a non-uniformly
heated, rigid, and homogeneous body at rest. As we wish
to exclude all motions we shall also neglect the varia-

tions in density and volume caused by the changes in

temperature.
Heat conduction in a body consists in the transport of

energy effected by the interactions of the contiguous
material elements of the body which are at different

temperatures. Measurements in heat conduction consist

in determining the temperature T as a function of the

space-co-ordinates x, y, z and the time t. To be able to

derive the fundamental law for calculating this function

in a given case we must apply the two fundamental laws

of thermodynamics. Let us consider the first law. This

states that the amount of energy contained in any
arbitrarily selected part of a body in the element of time

dt changes according to the action exerted on this part of

the body from without ( 18). Now since the external
139
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actions in the present case are neither mechanical nor

electromagnetic by nature but exclusively thermal their

amount is simply the quantity of heat Q transferred during
the tune dt by conduction to the selected part of the body
from -without.

The transference of heat takes place through the surface

of this part; it is thus composed of the sum of all the

quantities of heat that pass into the interior through all

the individual surface elements da during the time dt.

We therefore denote such a quantity of heat by qv da dt,

where v stands for the inward direction of the normal to

the part of the body in question, and we regard qv as a

finite quantity. By applying the energy principle to

an element of the body in the form of an infinitely small

tetrahedron it may be proved, exactly as in III, 4 for

the flux of electromagnetic energy, that q is a vector, the
"
vector of heat conduction," and the principle of the

conservation of energy when applied to any arbitrarily
selected part of the body states :

?^.dr
=
dtfq4<r

. (217)

where dr denotes an element of volume, k the density,
henceMT an element of mass, c the specific heat at constant

volume, which we consider constant ( 20).

If we transform the surface integral into a space

integral by H (78) :

I (qx cos vx + qv cos vy + qt cos vz)da = / div q . dr

then the equation (217) may be written in the form :

f f

J (

dT
ck -

-f div qdr =

and if we make the part of the body infinitely small, so

that its volume shrinks to that of a single element dr, the

expression for the first law becomes :

JVTT

ck-ft
+divgr = .... (218)

which holds for any place and time.
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80. To apply the second law of thermodynamics to any
part of the body we choose the inequality of 53 which
holds generally for every irreversible process :

dS + dSa > . . . (219)

Here d/S is the change of entropy of the part of the body
or the sum of the entropy changes of all its mass elements

kdr. Since volume changes do not come into consideration

the change of entropy of a mass element kdr is, by (82),

equal to its change of energy divided by its temperature.
So:

/]
75T

7

^.cJc-jjj-.dr.dt
. . . (220)

On the other hand dSa is the change of entropy of the

surrounding parts of the body. But since the entropy

change of any body, as we saw in 52 in the case of heat

reservoirs, is equal to the quotient of the heat transferred

from without by its temperature, the entropy change of

that part of the surroundings which lies on the outer side

of the surface element da is

For qdadt is the amount of heat taken from this part in

the time dt. This gives for the entropy change of the

whole surroundings .

Substituting in (219) we get :

ckdT, q,

or, by transforming the surface integral into a space

integral, as above, and applying the result to an infinitely

small part of the body we get :
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as the expression of the second law, which holds for any

place and time.

If we expand the expression for the divergence :

substitute this in (221) and make use of equation (218) of

the first law, we see that the second law requires that :

q.gr&dT<0 .... (222)

More than this cannot be deduced from the second law.

An analogous equation can be set up for any other

irreversible process, for example, for diffusion.

81. To arrive at a differential equation for heat

conduction it is necessary to make a plausible physical

assumption which will allow us to introduce a quantitative

relationship between the vectors q and grad T, which will

replace the inequality (222) by a precise equation For

isotropic substances, towhichwe shall restrict our attention
in the sequel, such an assumption suggests itself immedi-

ately. For since no favoured directions exist in an iso-

tropic substance, nothing remains but to set the two
vectors q and grad T proportional to each other, thus .

q = - K grad T . . . . (223)

which identically satisfies the inequality (222), if the
constant /c, the so-called coefficient of heat conductivity
of the substance, is taken as positive.

Substituting this value of <i m the equation (218) of the
first law we get as the fundamental equation of heat
conduction :

where we have written a2 for the positive constant
-^-,CK



x. FUNDAMENTAL EQUATION 143

that is :

Since for mathematical reasons it is often convenient

to calculate with a zero point of temperature, -whereas on

the other hand the zero point of the absolute temperature
T is not attainable physically, it is found advantageous in

dealing with problems of heat conduction to use instead

of the absolute temperature T the temperature 6 referred

to the freezing point of water and defined by (95), so that

the differential equation for heat conduction becomes :

on

f = aA0 ..... (225)

To some extent it resembles in form the wave-equation
n (222). But there is the fundamental difference that in

the wave-equation the second differential coefficient with

respect to the time occurs, whereas here it is the first

differential coefficient. This corresponds with the

irreversibility of the process of heat conduction, which

excludes the possibility of reversing the tune, whereas

this is possible in the case of vibration phenomena. It

is also connected with this circumstance that the constant

a, which signifies a velocity in the wave-equation, has in

the case of heat conduction the dimensions of length

divided by the square root of the time,
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INTERNAL HEAT CONDUCTION

82. WE shall apply the term internal conduction of

heat to those problems in which the temperature at the

whole surface of the body in question is given for all times.

Our task is then to integrate (225) for prescribed boundary
values of 6. We shall first convince ourselves that if in

addition the initial temperature at all points of the body
is also known, only one solution of the problem exists.

For, if there were two solutions, 6 and 6', the difference

8' B= 6 would represent a function of space and time

which would likewise satisfy the differential equation

(225), and would moreover vanish for t= at all points,
and at the surface it would vanish at all times.

Let us now consider the positive integral (cf. H (8J))

taken over the whole body :

Here the surface integral vanishes, since is zero every-
where on the surface ; and from (225) we get :

r
<226>

Since J is positive it follows that the positive integral

\8<fdr can only decrease as the time t increases. But
this integral vanishes for t= Hence it continually
remains zero and therefore 6Q also vanishes at all places
and for all times, so that the solutions 6' and 6 become
identical.
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We can draw a further general conclusion from this

result. If 6 is given as before at the surface for all tunes,
so that 6' 9= vanishes there at all times, whereas
we now assume that the initial state, and so also the

function
,
are arbitrary for t= 0, we can deduce from

(226) that the integral \8fibr which may have any finite

values initially, when t= 0, continually decreases in the

course of tune, and so the quantity and consequently
also the difference of the two solutions 6 and 6' continually
decrease until they finally vanish. This may be in-

terpreted physically as follows. If the temperature
over the whole of the surface of the body is given as a

function of the tune, then the temperature in the interior,

whatever its initial value may have been, also gradually

approaches a perfectly definite time function which is

independent of the original distribution of temperature.
This is also an expression of the irreversible character of

heat conduction

We shall now fix our attention on several simple

particular solutions of the problem which are of physical
interest.

83 Let us first take the stationary states, that is,

those states for which the temperature at any place is

independent of the time. For then we have, by (225),

the condition :

A0 = . . (227)

If the temperature given for the surface is every-

where constant in time, then, as we have seen, a

perfectly definite state establishes itself in the interior

in the course of time, no matter what the initial tem-

perature may hav& been. By III, 19 we see that 6,

in fact, is uniquely defined by (227) and the boundary
condition.

If 6 depends only on a single co-ordinate, say x, (227)

reduces to .
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and we obtain the law for stationary linear heat

conduction :

90
.5-
= const, or g* = const.

ox

for which the temperature gradient and with it the heat

current have constant magnitude and direction. Their

amounts are determined by the value of the temperature 6

at two different points x, corresponding exactly with the

properties of the electric potential in a homogeneous
electric field (HI, 16).

84. We shall now assume that 6 depends on the time
t as well as on x. Equation (225) then runs :

x.

37 = a 5Z2
ot dx*

A simple particular solution is obtained by setting :

= eo*+/te ..... (229)

Then (228) is satisfied by the relation :

a = a8p
2
.

Particular interest attaches to those events in which the

temperature varies periodically with the time. Hence
we take a as purely imaginary :

a = co*

and then obtain :

B = = V^. 1 +
*'_p a a

'

V2
'

We choose the lower sign here in order that 6 may not
become infinitely great for x= + oo . By substituting
this value for 3 in (229) and omitting the imaginary part
we obtain as the solution of the differential equation (228) :

J" or, a little more generally, if and X denote any two
constants :

-0 (230)
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If we suppose the body to reach, from a;=0toa;=+oo
the expression (230) represents an event which, inde-

pendently of the initial state, takes place in the interior

of the body in the course of time if the temperature at the

bounding surface x= varies with a single period given

by:
6 = X cos cot -f . . . . (231)

The amplitude of the vibration is 6lt the mean temperature

, the period of vibration r =

By (230) the process may be pictured as occurring in

the following way : heat waves from the bounding surface

x penetrate into the body; these waves are conditioned

by the temperature-vibration at the boundary and then*

amplitude decreases more or less rapidly as the distance

x from the bounding surface increases. The wave-length
is : _

= 2-jraJ-"
a)

(232)
a)

The velocity of propagation is :

?. . - - (233)

The constant of space damping is :

..... (234)l

Thus the more rapidly the vibrations occur the shorter

the waves become, the more rapidly they propagate them-

selves in the body and the less deeply they penetrate into

it.

A simple example of such periodic vibrations is given to

a certain degree of approximation by the temperature
fluctuations at the surface of the earth. In this case two

different periods can be distinguished, the diurnal and the

annual period. Corresponding to them there are two

different Mads of heat waves that penetrate into the body
of the earth. The first are shorter than the second and
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although they ^propagate themselves more rapidly, they

penetrate less deeply than the second. These deductions

from the theory have been satisfactorily confirmed by
measurements. The velocity of propagation amounts to

about 1 metre per day for the waves of the diurnal period
and about 0-046 metre per day for the annual period.

Since the constant a is the same in both cases the ratio

of these two numbers should, by (233), be equal to the

square root of. the number of days in a year, that is, to

V366, which is a sufficiently good agreement, if we con-

sider that the actual temperature fluctuations are not

singly periodic and that the earth is not a homogeneous
body.

Exactly as for singly periodic fluctuations of temper-
atures at the surface x the problem may be solved

for any arbitrarily prescribed temperature fluctuations by
resolving the given time function into a Fourier series

(II, 38) and superposing the corresponding solutions (230) .

85. Another method of finding a particular solution

of the differential equation (228) is based on the introduc-

tion of new independent variables. Instead of t and x
we shall now introduce the independent variables t and

3?

% =
-j=

where we always take the positive sign for the

root. This substitution suggests itself to some extent
because v, has the dimensions of the constant a of heat
conduction. We then have :

dl} f^L] -(di\ l x ftd\
du/ t

'

\dtJx
~ W 2 y'fi \du)t

Further :

/

tfxJt

and:

(W
>
t t \du*Jt
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and hence by substituting in (228) :

=
dt 2 tdu

~
t

or:

z
&o

a

This differential equation is satisfied by setting ^-=0
and also :

which may be written in the form :

d(}
\du/ _ udu

du
or:

i
d6 u*

, j.

log j- = . = + const.& du 4a2

dd .~ _JL
j- = C . e 4a

du

[V ^
6 = C . I e~&du.

Let us first consider the special case in which 6= for

u= and 9=1 for u = + co . The lower limit of the

integral then becomes zero, and the constant C becomes

equal to the reciprocal value of Laplace's integral (IV,

47)'

L
and hence :

e
o

avrr o
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To simplify this expression we shall introduce in place of

X
the integration variable u = -. the variable :

v t

-
2a

and so obtain as a particular integral of the equation of

heat conduction (228) :

. .... (235)V "" JO

Let us consider its physical significance for the case where
the body extends from x co to a;= + co and the

process occurs from the time t= till t co . Initially,
when t= 0, we have 6= 1 for all points on the negative
side, 61 for all points on the positive side, whereas
= and remains at that value for x= As t increases

the temperature on the positive side gradually falls to

zero, the more slowly the further the point is situated

from the origin , whereas on the negative side the temper-
ature increases in an exactly analogous way towards the
zero value. Finally, when t= oo the temperature has
become zero for all finite values of #.

This course of events may be considered to be realized

by the following process Bring into contact two very
large bodies of the same material, one of which is at the

temperature of 1
, the other at the temperature of

1 C , in such a way that their plane boundary surfaces

(x= 0) touch. Now consider theway in which the temper-
atures balance. Since the initial state and the boundary
conditions correspond to the expression (235) and since

only a single solution of the problem exists the process
must occur in the manner prescribed by (235).
From this we see, among other things, according to

what law the cooling in the originally warmer body takes

place. As the time t increases the cooling advances

continually further into the interior. But nevertheless
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there is no sense in talMng of a certain velocity of propa-

gation of a heat wave or a cooling wave ; for, no matter
how small the time t may be, the temperature change at

any distance however great already has a finite value.

The characteristic feature of the process is rather the fact

that the temperature at every point x depends only on

the one quantity ^, so that for every place the time has
Vt

a definite order of magnitude within which the temperature

change becomes appreciable; the nearer the boundary
surface is the sooner this time arrives.

The behaviour of the temperature near the boundary
surface x= is of special interest. In general the

temperature gradient is, by (235) :

|?= -j=>6-&t
.... (236)

and for x= :

/5/}\ 7
fOo\ JL f(>Q ft\

(jrj
=

7=^
. (237)

V&E/,=O aV-ni3S=

By (223) the temperature gradient at the same time gives

us the amount of the heat conducted from the one body
into the other. For t= this amount is infinitely great
and then decreases, at first rapidly and then progressively

more slowly until it becomes vanishingly small. It is

noteworthy too that the question of the value of 6 for

x= and t admits of no definite answer. For this

answer depends on the way in which the two mdependent
variables change in crossing the boundary. According
as a; or V* is of the higher order of magnitude, 8= I or 0,

and when they are of the same order of magnitude 8 has

some value between 1 and 0.

The particular solution (235) of the equation of heat

conduction may be directly generalized into the following

form .

y + B m ^ < (23g)
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where A and B denote two arbitrary constants. This

solution can be adapted to the case where one of the two

bodies (x > 0) is initially at the temperature dlt while the

other (x < 0) is initially at the temperature 2 Then

when *= we have for the first, by (238), that X
= A + B

and for the second that 2 -4 + -B this gives us the

value of the two constants .

A - dl
~ d* B - fll + 6*

. . . (239)22
When the body in question does not extend to infinity

in both directions but is bounded by the plane x=
on the one side and reaches to x= -f oo on the other

side, (238) represents the change of the temperature for

the case where the initial temperature is uniform and of

the value A-}- B and the surface of the body, x= 0, is kept

constantly at the temperature B.

86. An interesting application of the last formula was
made by Sir William Thomson (Lord Kelvin) in connexion

with the question of the age of the earth. If we consider

the earth as homogeneous and infinite in extent and having
the plane surface x as its boundary, and if we take the

time = from the instant when the solidification of the

earth, supposed liquid previously, had advanced from the

interior to the surface, that is, it is everywhere at the

temperature at which molten masses of rock solidify, say
4000 C., then we obtain from (238) the law for the secular

cooling of the earth, if we assume that from the very
beginning the temperature of the surface was constant,

say 0= C. For then, by the last remark of 85 we
must set B 0, A = 4000 and then (238) gives us the
value of the temperature 6 for every place and time.

In particular the temperature gradient or the flow of

heat by conduction, respectively, is determined at the

surface, if we generalize (237), by :

.... (240)
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Actual measurements show an increase of temperature by
1 as the depth increases by about 25 metres. Hence for

the present time we have :

1 j= ^ degree per metre.

Now in 84 we found that the velocity of propagation

(233) of the diurnal period of the temperature for T, which

equals one day, is equal to one metre, that is, 2a-v
/
7r= 1.

Substituted in the last equation this gives .

24
_!_

V*~26
and for the value A = 4000 this becomes :

t= 4 1010 days, that is, about 100 million years
for the age of the earth, calculated from the time at which

its crust sohdified. This estimate is in reality far too low,

which is clearly due to the inadequate assumptions made.

We shall find occasion to improve on one of them later

( 89).

87 Another generalization of the particular solution

(235), which is of still more far reaching importance, can

be obtained it we first start out from the simple solution 6

of the equation of heat conduction (228), which is obtamed

by differentiating (235) with respect to x :

~&t .... (241)

Regarded physically, this is the temperature in a body
which extends from x= QO to a; = +00 and in which

initially, when t = 0, the temperature is everywhere zero

except at the plane x = 0, where it is infinitely great. As
t increases the heat flows away to both sides, so that at

t= oo the temperature becomes zero everywhere,
This particular solution may now be generalized by

displacing the favoured plane from the position x = to

any other position x= and by adding together an

infinite number of such solutions with an infinite number
of favoured points f lying very close to one another
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at a distance dg, eacli solution having been multiplied by

any infinitely small constant peculiar to the point g, thus

f(g)
. dg. We then get as the solution of the equation of

heat conduction (228) :

,+ GO (J g)'

dg - - (242)

doser inspection shows that this is the general solution.

For by choosing f(g) suitably this solution can be adapted
to any arbitrary initial state. To take an actual case .

at the time t= let the temperature 9Q(x) be given in some

way for all values of x between oo and + o Let

us on the other hand now calculate the temperature 6

from (242) for t= 0. If we first take t as very small, the

integrand in (242) vanishes for all values of g except those

which lie very near the value x. Hence if we introduce

g x= in place of g as the variable of integration, the

integral in (242) reduces to :

J x

where ev the limiting value of e, is small compared with x,

but large compared with a\/t Or, if we make the sub-

stitution
T)
=

_, /- ail(i omit e in the argument of the

function / :

r- f
+t

2aVt .f(x) I e"* d-rj
= ZaVirt f(x).

If this value of the integral is substituted in (242) we get
for t

which relates /(a;) to In this way we obtain the temper-
ature of the body at any point x for any time *, if the

temperature 6Q(x) is given in some way for t=0 for all

points from x= oo toa= +eo :
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This general solution of course contains the particular

solution (235) previously obtained for a special case.

For if we set (fl- - 1 for f < 0, (f)- + I for f > Ot

then (243) becomes transformed into (236), as may easily

be verified by calculation.

88. We shall here add the case where the two homo-

geneous bodies which are in contact along the plane
x= and extend to infinity on opposite sides, have the

initial temperatures 0j and 2 but do not consist of the

same substance ; that is, their constants a and a' of heat

conduction are different. The solution of the problem is

then also obtained from the expression (238) by inserting

the constants a, A, B for positive values of x and the

constants a', A', B' for negative values of x While a

and a' are given at the beginning we have also four

equations to determine the four quantities A, B, A' } B f

.

Two of these are the equations for the initial temperatures :

The third is the condition for a steady temperature at

x= 0, B=B f

. The fourth is the condition, which

follows from the energy principle (cf . EH, 6), that the

normal component qv of the heat current is constant :

fc+V=0. Or, by (240):

A_A
a~ a"

so that everything is determined.

The preceding problem is to be included in those dealing

with internal heat conduction because, on account of the

assured constancy of the temperature, no other material

constants occur apart from the conductivity (Warmdei-

tungskoeffizient), K or, respectively, the constant a of

every body.
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EXTERNAL HEAT CONDUCTION

89. IN reality the temperature at the common

bounding surface of two bodies that are not in heat

equilibrium is never constant, but always exhibits a more

or less abrupt transition. In place of the condition for

the constancy of the temperature another boundary
condition then appears, which expresses a definite relation

between the abrupt change of temperature (T&mp&ratur-

sprung) and the normal component of the heat current

The simplest relation is that in which we set the two

quantities proportional to each other, thus :

qv
= 7i(d'-6) (244)

where v denotes the inward normal of the body which has

the temperature 8. The positive constant h is called the
"
coefficient of external heat conduction

"
or

"
external

conductivity" and depends on the nature of both bodies.

An infinitely great value of h denotes constant temperature,
that is, the case treated in the preceding chapter; an

infinitely small value of 7i, on the other hand, denotes

thermal isolation, that is, it represents the adiabatic

condition

In discussing particular solutions we shall first link up
with the problem of the secular cooling of the earth which
was treated in 86. We agam assume the earth to

extend from x= to x= oo and to have an initial temper-
ature of 4000 C. In 86 we used as the boundary
condition the equation 6= for x= and any values of

t, and we obtained as the solution the expression (238)
with 5= 0.

We now allow the temperature to undergo an abrupt
156



CHAP. m. EXTERNAL HEAT CONDUCTION" 157

transition at the bounding surface between the earth and
external space, namely from 9 to zero, and, by (244), we
write for the heat current :

or, if we set

- = b ..... (245)K
we have :

s- M ..... <2 >

which holds for x and for all values of the time t.

This formulates the problem completely. For 6 = co

the boundary condition becomes 8= and then the earlier

solution (238) results.

For a finite value of 6 the solution can be obtained

if we can determine the following function
<f>

of x and t :

*. - - . (247)

This function
<f>

satisfies the differential equation (228) in

particular, if we insert
<f)

in it instead of 6. Further
75/9

tf>
= A when t = since B A and~-= 0. Lastly, on

account of (246) <= for x= and for all values of t.

From this it follows that the function is no other

than that temperature which in 86 represented the

solution of the problem and which corresponds to an

in finitely great value of &. So by (238)

^ . . . (248)

AH that now remains is to calculate the function 9 from

the differentialequation (247) . This is a non-homogeneous
linear equation of the first order m a single variable x.

We integrate it by setting :

e = ifi.e
bx

. . . . (249)
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It then follows from (247) that :

and by integrating :

if,
= b I e-*"<f>dx.

Hence, by (249) :

6= -b.ebj:

f

X

e-bxcj>dx . . . (250)
Jto

We must take oo for the lower limit of the integral, as

otherwise 6 would become infinitely great for x= oo .

The expression (250) for 6, together with the value (248)
for

<f>, represents the solution of the problem. For t=
we have by (248) that <= A and by (250) 9= A, corre-

sponding to the initial temperature; but at the surface

x= 0, B is not zero right from the beginning but changes
continuously with the time t.

To be able to introduce $ in a somewhat less complicated

way we first transform (250) by integrating by parts :

and have now only to deal with ^ in the integrand, that

is, with an exponential function.

Since we are interested in the temperature at the

surface of the earth we set x= and obtain :

6 =

or, substituting "for
<f>
from (248) :

^ <

_
8 =

7
==-/ e 4a't .dx . . . (251)

Cfyut Jo

This time-function represents the course of the temperature
at the earth's surface. For small values of t the first

term in the exponential predominates; 6 then becomes



m. EXTERNAL HEAT CONDUCTION 159

equal to A For large values of t the second term, pre-

dominates
;
the integral then becomes equal to -r and :

If, as in 86, we again wish to know the temperature

gradient at the earth's surface, its value can be obtained

directly from the boundary condition (246) as &0, and so

for great values of t by (252) :

d6\ A

which is identical with (240) Prom this we see that

by introducing a finite value for the external heat con-

duction the value of the temperature gradient at the

earth's surface is not influenced at all for great values of t.

External heat conduction thus seems to offer no prospects
of accounting for the above-mentioned deviation of the

age of the earth according to Thomson's theory from its

actual age, which is much greater. The true reason is

in fact to be sought in quite another quarter, namely the

continual development of heat by radio-active processes
which strongly counteract the cooling of the earth.

90 Hitherto we have always imagined the body to

extend to infinity. We shall now consider the case of a

plane parallel plate of finite thickness with the boundary
surfaces x= and x= I, whose temperature 6 at t=
we shall suppose given as an arbitrary function of the

space co-ordinates. And we shall suppose that the body
can exchange heat through its two boundary surfaces with

the surrounding medium (air), which is at zero temper-

ature, according to the law (246) of external heat con-

duction. We then require to integrate the differential

equation (228) for 0, taking into account the boundary
conditions .

- M <263)
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for x = 0, and :

I? = - b6 . . . (254)
ex

for x= I.

We treat this problem as in all similar cases by first

finding a simple particular solution of the differential

equation, which satisfies the boundary conditions. We
then add together a sufficient number of such particular

solutions, multiplied by appropriate constants, thus

generalizing the solution in such a way that it can be

adapted to the given initial state.

Let us apply this method first to the special case for

which the constant & of external heat conduction becomes

infinitely great. The two boundary conditions then reduce

to 6= and the following expression offers itself as the

simplest particular integral of (228) which also satisfies

both boundary conditions :

tf\ff\
(255)

where n denotes any integer. We see that the differential

equation (228) is actually satisfied by setting .

(256)

and 6 vanishes for both x= and x = I.

In the initial state (t= 0) the spatial distribution of

temperature in the case of the particular solution (255)
is represented by a sine curve. But if we multiply the

expression by a constant An and sum up over all values

of n from 1 to oo (negative values of n do not add to the

generalization), we obtain the general solution of the

problem :

9="fle'"'sm^2. (2S7)
n-1 *

where the expression (256) is to be substituted for yn .

Actually the coefficients An can always be chosen in

such a way that for t= the temperature 6 becomes any
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arbitrarily prescribed space function (x). For when
t= we obtain from (257) :

/ TT A nirX
/2*!8^

and this is a Fourier series (II (182)) with a period x 21,

whose coefficients are uniquely determined if the function

QQ(x) is given in any way within the half period I (II, 39)

91. Reverting to our treatment of the general case

in which the constant 6 of external heat conduction is

finite we choose as the particular integral, generalizing

(255) :

= cos (arc + (3)
. &" . . . (259)

The differential equation (228) is satisfied if we set :

y = a2aa . . . . (260)

The first boundary condition (253) is satisfied if we set :

6 .... (261)
a

With these values for y and
(3,

and simplifying the

expression (259) by dividing by cos
(3,
we get :

= (cos (xx + - sin oz) . e~ ala'*
. . (262)

DC

(27T\
= -r-) IS

still arbitrary. We shall use it to satisfy the second

boundary condition (254) as well. This gives, by (262) :

This equation which involves a transcendental function

in a may be reduced to two simpler equations. For if we
consider that on the one hand :

tan cd
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and on the other hand :

2- - 2
2yb a

it follows that the equation (263) is satisfied by :

.... (264)
2 a

as well as by :

"'--? (265)

The roots of both equations can be clearly demonstrated

by means of graphical representation if we plot the values

of a, say, as the abscissae and then look for the points of

oZ
intersection of the curve y = tan 5- with one of the two

A

curves y=- and y = -r (Kg. 6). The first curve is a tan-
<x o

gent curve with the values and oo succeeding each other

IT

regularly at distances j apart. The second curve is an
i

equilateral hyperbola with its branches in the first and the

third quadrants, the co-ordinate axes being asymptotes.
The third curve is a straight line which passes through the

origin and the second and fourth quadrants In Fig. 6

only the positive a-axis is shown, as a reversal of the sign
of a leads to nothing new.

We see from the figure that there are an infinite number
of roots both on the hyperbola and on the straight line

If we number them in the order of their magnitude we
obtain on the hyperbola the roots with odd indices

1, 3, 5 . . . , and on the straight line those with even
indices 2, 4, 6 . . A root Oo= does not enter into

the question, as we see from (262) if we set a= in it.

The quantities al5 a2 . . . an . . . which are determined

by the equation (263) are called the
"
proper values

"
of
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the wave-number a, and the expressions (262) which
involve the proper values of a are called the "proper
functions

"
of the system in question. Even if the exact

values of an cannot be directly given their approximate
values can easily be read off from Kg. 6. Each of the

FIG 6

intervals marked off along the a-axis and of width
-j

evidently contains a root, so that :

(n 1) 7 < an <^
i I/
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As the order number n increases a,, approaches more and

more closely to the lower limiting value "I '""" which

for odd values of n (points of intersection with the hyper-

bola) denote the zero points of the curve of tangents,

whereas the even values of n (points of intersection with

the straight line) denote the points at infinity on the curve

of tangents ; so that the distance between two successive

proper values an asymptotically approaches the value
-j.

92. Having found a series of particular solutions of

the problem under consideration we have now to combine

these together to form the general solution corresponding
to any arbitrary initial state. For brevity we denote the

proper function of x } by (262), by :

Xn = cos Knx -{ sin <x.nx . . (266)
V.n

We multiply it by a constant An and by summation form
the solution :

6 = SAnXne-^^ .... (267)
n = l

To recognize that this is the general solution it is sufficient

to prove that it can be adapted to an arbitrary given
initial state (value of 6 for t= 0), or that every given
function BQ(x) in the interval from x = to x = I can be

expanded in a series of progressive proper functions

00

o y A y fQRQ\
PQ ^J -Lrt-d.n . . . ^UOj

n-1

We shall here restrict ourselves to showing that unique
values can be obtained for the coefficients A n if 6Q(x) is

given between x= and x= I.

The method resembles that used in II, 38, to expand a
function f(x) in a Fourier series, and actually in fact

represents a generalization of it. For in the Fourier series

the proper values of a are the whole multiples of j and the

proper functions are the series of the whole multiples of
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fSf*

-=-, as can be seen directly by comparing the formula

(268) with the special formula (258) derived in the preced-

ing section for the case 5 = oo .

As in II, 38, so also here we multiply the given function

with a proper function Xn and then integrate with

respect to x over the whole series of values between x =
and x= I. By (268) we then obtain .

f e^Krdx ^JfAm fXmXndx . . (269)
Jo m 1 Jo

Here, as in the case of the Fourier series, the integral

on the left must be directly calculated whereas the sum
on the right reduces to a single term, namely that for which

the index m= n. This happens in the following way in

working out the integral on the right-hand side. Since

the function Xn> by its definition (266), satisfies the

differential equation :

.... (270)

we have, intergrating by parts :

,

I

Jo

z dzXnXmXndx --s / X j *dx*

1 I"- dXnJ 1 dX= ~
0^ L

Anl
~d

or:

(271)

If we exchange the indices m and n in this equation, the

left-hand side remains unchanged, and consequently
also the right-hand side, so that we get by subtraction :

Now, by (253), (262) and (266) we have for x= :

-j-5 = bXn and likewise ^ bXm .

dx
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Hence the expression on the right-hand side vanishes for

x= and the same holds for x= L Consequently :

a2n - a2
.

/ XnKndx = . . . (272)
Jo

Thus if m and n are different from each other, we have

generally :

x = ..... (273)

which is the so-called
"
condition of orthogonality,"

The name recalls the analogously constructed formulae

I (332) and III (115) for the orthogonality of co-ordinates.

Of the sum (269) only the term m= n then remains :

= f
JQ

(274)

Here the integral on the left-hand side may either be
calculated by substituting (266) in it and performing the

integration, or indirectly as follows. From (27 1 ) it follows
when m= n that :

On the other hand from (266) and the differential co-
efficient :

-jjj*
OH sin 0*2; -f b cos a^x . . (276)

we have, by squaring and adding, that :

ft
\ dx /

~ ff* ' '

/

or, integrated :

, . (278)

If we subtract the equations (275) and (278) from each
other one of the integrals cancels out and we are left with
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Now when x= we have, by (266) and (276) :

Z =1 dZn = b

whereas for x=* I, we have, by (254), (262) and (266) :

dx

that is, by (277) :

and:

Y n hY 2 hA.nj 0-^-n
==

So we have finally :

26.
Q

Substituting this value in (274) we get :

- (279)

In this way we have obtained the value of the coefficient

An in the expansion of the function 9Q(x) in terms of the

proper functions Xn and hence, by (267), our problem is

solved.

93. Hitherto we have assumed the body to be of

infinite extent in the direction perpendicular to the

a;-axis. We shall now conversely investigate the heat

conduction in a body in the form of a relatively long

cylindrical rod which has a very small cross-section of

any shape whatsoever, one of its ends being kept at a

definite temperature while the whole rod projects freely

into a medium (air) which is at the constant temperature
zero. (This is the experimental arrangement used by
Wiedemann and Franz.) If we take the axis of the

cylinder as our re-axis, the temperature in this case too

essentially depends only on the co-ordinate x this is,

however, not because 6 is independent of y and z, as in the

cases hitherto treated, but because the co-ordinates y and
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z have such small values for all points of the rod, so that 6

varies only very little over a definite cross-section x of

the cylinder.

In view of this circumstance we cannot neglect the

differential coefficients with respect to y and z in the

general differential equation (226) of heat conduction, but

must take their values into account. This is done by
setting up the boundary conditions which hold at the

surface of the rod. These are, by (244) :

36 ,

qv = K~- = hd
ov

or:

where v denotes the inward normal to the surface. If we

integrate the equation (225) for a constant x over the

corresponding cross-section q of the rod, we get :

This double integral may be transformed, in a manner

exactly analogous to that used in transforming the triple

integral in II (82), by performing the integration and

converting the integral into a contour integral, namely .

'

where dX denotes the element of length, taken positively,
of the contour of the cross-section. If we take into

account the condition (280) that holds along the whole
contour the double integral assumes the value .

-bfe.dX
-- b6. A

where A now denotes the length of the contour. And
the differential equation (281) assumes the form
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or :

= op fz Q /283\

where we have set :

25* -/i (M)

or, by (224) and (245) :

/" = J| (285)

Thus the constant / depends on the specific heat of the

substance, its specific gravity, the surface area and length
of the contour of the cross-section and, finally, on the

coefficient of external heat conduction h, but not on the

coefficient of internal heat conduction K. From this it

follows that in the differential equation (283), which gives
the variation of the temperature with the time, the

influences of the internal and the external heat conduction

are simply become added.

For* the state which is stationary in time we get from

(283)

aa^_/20 =

which, when integrated, gives .

6 = Ae
a
+ Be

a
. . . . (286)

The boundary conditions at both ends of the rod serve to

determine the two integration constants A and B. The
one end (x= 0) is maintained at the constant temperature

; so :

= A + B (287)

The other end (x= I) projects freely into the air. For
this we have the boundary condition (280) :

---
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and hence, by (286), for rc= I :

ft f \ fl

. . (288)

Equations (287) and (288) determine A and B If the

length I of the rod is great compared with
j, then, by

(288), A vanishes compared with B\ and, by (287), we

get simp]y B= QQ>



PART THREE

HEAT RADIATION





CHAPTER I

INTENSITY OF RADIATION. EMISSION AND
ABSORPTION

94. THE equalisation of temperature in bodies at rest

is effected not by heat conduction alone but also by heat

radiation, which is a totally different mode of propagation
of heat For whereas the heat conduction in a body, as

we saw in the second pait of this book, is represented by a

vector which is completely determined by the temperature

gradient at the point and hence vanishes simultaneously
with it, the radiant heat at a point is in itself quite in-

dependent of the temperature of the body at this point.
Thus the radiation from the sun can pass through a lens

made of ice and can be brought to a focus. Moreover the

state of radiation at a definite point is not characterized

by a single directed quantity but in general comprises an
in finite number of rays which traverse the point in all

possible directions, their intensity, frequency and polariza-
tion being entirely independent of one another. Further,

two rays moving in diametrically opposite directions but

having exactly the same frequency and polarization do
not combine into a single resultant but behave as if

entirely independent of one another.

We regard heat rays, just as we regarded optical rays in

Volume IV, as electromagnetic waves, but for simplicity
we shall restrict our investigations to those eases for which

the laws of geometrical optics or ray optics (IV, 28) hold,

by excluding the phenomena of
"
diffraction

" and
"
scattering." We also require to separate all lengths

that come into question into two sharply differentiated

groups according to their order of magnitude : the one
173
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group comprises wave-lengths, the other the linear di-

mensions of "bodies. The former are vamshingly small

compared with the latter and even compared with the

differentials of the latter. It is only under this condition

that we may assume the laws of ray optics to be valid

It is usually fulfilled if we assume the dimensions of the

bodies under consideration to be sufficiently great.
But although the distinction between great and small

lengths is as important in heat theory as in optics, the
distinction between great and short times is still more
important. For the very definition of the intensity of a
beam of heat as that energy which is supplied by the beam
per unit of time contains the assumption that the unit of

time chosen is great compared with duration of the
vibration corresponding to the colour of the beam (cf.

IV, 4). Otherwise the amount of the intensity of radia-

tion would in general obviously depend on the phase of the
vibration at which we begin to measure the energy pro-
vided by the beam. Only when the unit of time happened
to include a whole number of vibrations would the intensity
of a beam be of constant period and constant amplitude
independent of the initial phase. To escape from this

inconsistency we find ourselves compelled to postulate
that the unit of time or, better, the tune which is used to
obtain the mean value of the radiant energy is great com-
pared with the period of any of the vibrations contained
in the beam.

95. The great simplification which we gain by re-

stricting ourselves to ray optics is due to the fact that it

allows us to imagine the radiant energy to be localized
in separate independent beams. On this view every body
is filled with a group of energy rays, each of which describes
its own definite path with a velocity which is determined
by the index of refraction of the body ; and each ray is

refracted and reflected at the surface of the body accord-

ing to the laws of optics (Format's Principle, IV, 91).
An infinite number of rays pass through each definite

point of the body, but only one passes through two definite
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given points. To be able to speak of the intensity of

radiant energy we must start out not from two points but

from two elements of area da and da both of which we
assume infinitely small compared with their distance

apart, but otherwise arbitrary. In particular, one of the

elements of area can be Infinitely great compared with the

other. From each point of the element da a definite ray
then goes to each point of the other element of area da',

and conversely. All t^ese rays taken togetherform a four-

fold infinity of rays, or a two-fold infinity of cones of rays
with their vertices at da or da', which we call the beam or

pencil of rays (Strdhleriblindel) having the "focal

surfaces
"

(Brennfldchen) da and da'. The focal surfaces

which characterize the beam play a very important part
in it. For if we intersect the beam at any point by means
of any plane other than da or da' we can no longer speak of

a definite cross-section of the beam; rather, each of the

infinite number of conical beams with their vertices on

da or da' has a distinctive cross-section

If the body is homogeneous and isotropic, as we shall

assume, the rays are straight and then: velocity of propa-

gation is the same in all directions Then the energy
which is radiated per unit of tune by the beam of rays
from da through da' will be proportional to the areas of

the surface elements da and da' and inversely proportional
to the square of the distance between them (III, 90),

but, further, it will also be proportional to the cosine of

the (acute) angle which the direction of r makes with the

directions of the normals v and v' to da and da' respectively.

For the number of rays which belong to the beam is not

determined by the quantities da and da' themselves but

by their projection on the plane perpendicular to r, as is

seen from simple geometrical considerations.

Thus we obtain for the energy which is radiated through
the surface element da in unit time to the surface element

da' the expression .

K fo.da'.w*(v r) ooBKr).^ (2gfl)
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where K is the
"

specific intensity of radiation" or the
"
emissivity," a finite positive quantity, which in general

depends on the space co-ordinates, time and direction.

If, in particular, K is constant, the two surface elements

da and da' radiate equal quantities of energy to each other,

as is evident from the symmetry of the expression (289).

If we introduce the quantity :

M^fr'.ooBfr'.r) . . . (289a)

for the solid angle (Offnungswinkd) which the surface

element da' appears to make when seen from a point of

the surface element da, the expression for the energy
which is radiated becomes still simpler

K .da COB (v,r) .dQ dt

or, if we denote the angle which the direction r makes
with the normal v to da by :

K.da.Goa6 dQ .dt . . . (290)

From this we see, among other things, that we can speak
of a finite radiation of energy in a definite direction only
in so far as the radiation occurs within a cone of finite

aperture. There is no finite light or heat radiation which

propagates itself in one direction only, or, what amounts
to the same thing, there is in nature no absolutely parallel

light, there are no absolutely plane waves of light. A
finite amount of rad^jit energy can be obtained from a

so-called parallel beam of rays only if the rays or the

wave-normals of the beam diverge within a finite, even
if only very small, cone (cf . IV, 36).

A fundamental difference between light- and sound-

waves is due to this circumstance, which, as we shall see

later, Li intimately connected with the fact that the second
law is of importance only for optics, not for acoustics.

From (290) we see that the total radiation through the

element of surface da towards the one side is obtained by

integrating with respect to 9 from to ^ and with respect
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to
(f)
from to 2-n-, since d2 = sin 6 d6 d<f>

:

da dt . I d(f> I ddKsia.6 cos
JQ

T
Jo

where K is a given function of 6 and <. If the radiation

is uniform in all directions, that is, if K is constant, it

follows from this expression that the total radiation

through da towards one side is

irKdadt ..... (291)

96. Since the radiant energy propagates itself in the

medium with the finite velocity q, if we leave out of account

dispersion, a finite amount of energy exists in a finite

part of space. We therefore speak of the "
spatial energy

density
" u as the ratio of the total radiant energycontained

in an element of volume to the magnitude of the element

of volume. Let us now calculate the spatial density of

radiation u at any point by assuming that the specific

intensity of radiationK at this point is given as a function

of 6 and
<f>.

With the pomt as centre describe a sphere,
then all rays that intersect at the point will pass through
the surface of the sphere ; each of these rays contributes

its portion to the required density of radiation u. The

energy which is emitted in a time dt from a surface element

da of the sphere to a parallel surface element da' which is

infinitely great compared with da and passes through the

centre of the sphere is, by (289) .

When this energy has reached the centre it fills the space
of a rectangular parallelepiped whose area of base is da'

and height q.dt, that is, whose volume is da' .qdt.

By dividing this into the expression just obtained for the

energy we get for the spatial density of radiation produced

by the beam at the centre of the sphere

Kda K ,-
sr = d<i

qr* q
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where d2 denotes the solid angle which the element dcr of

the spherical surface appears to subtend at the centre.

By integrating over all directions in space we obtain the

required spatial density of the whole radiation at the point
in question .

u = - iKdQ = -ffx sin & dB d<f>
. (291a)

In the case of uniform radiation K is again constant, and
so we get :

u= ..... (292)

97. The specific intensity K of the radiant energy in

every direction subdivides further into the intensities of

the individual rays, which belong to the different parts of

the spectrum and propagate themselves independently of

one another, that is, into the rays of different
"
colours.' 5

The important factor that here enters is the intensity of

radiation within a definite range of frequencies, say from
v to v'. If the interval v

r
v is sufficiently small, equal

to dv, then the intensity of radiation over this range is

proportional to dv . the radiation is then called
" homo-

geneous
*'

or
"
monochromatic." But we must bear in

mind that even fr the case of such homogeneous radiation

there is always a finite although small interval of

frequencies corresponding to a finite amount of radiant

energy.
The last characteristic of a ray, besides its definite

intensity, direction and frequency v is its type of polariza-
tion. IE we denote the two principal intensities corre-

sponding to the two mutually perpendicular principal

planes of vibration (IV, 11) by E^dv and Kfvdv, we get,
if we sum up over the whole spectrum :

=
("(*;
JQ

(293)

where K, is now to be regarded as a finite function of the

space co-ordinates, the time, the direction and the

frequency v.
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For unpolarized rays Kv
= K'v ,

hence :

. . . . (294)

If further the radiation is uniform, in all directions we get,

by (291), for the total radiation through a surface element

da towards one side :

27rdadt ( E4v . . . (295)
Jo

Just as we speak of the spatial density of the total

radiation u so we also speak of the spatial density of the

radiation of a definite frequency t*,, by subdividing the

spectrum thus :

* .... (296)
/

u =
\

Jo

Combining the equations (292) and (294) we get for light

which is unpolarized and uniform in all directions :

(297)

98. Hitherto we have dealt only with the propagation
of radiant energy in a body. We shall now turn our

attention to the birth and the annihilation of heat rays.

The process of birth of a heat ray is generally called

"emission." According to the energy principle the

emission always takes place at the expense of some other

energy (internal heat of bodies, chemical energy, electrical

energy) . Erom this it follows that only material particles,

including electrical particles, can emit heat rays, but not

geometrical spaces or surfaces. We commonly speak
of the surface of a body emitting heat to its surroundings,
but this expression only means that the rays which,

coming from the interior of the body, impinge on the

surface, are partly transmitted through the surface to

the outside, the remainder being reflected back into the

interior.

Let us now consider the interior of a physically homo-

geneous substance emitting rays and let us mark off some
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element of volume dr(^ A3). Then the total amount of

radiant energy emitted in the time dt by all the particles

in the element of volume will be proportional to dr. If

the substance is isotropic the radiation mil be emitted

uniformly in all directions and the energy emitted within

a cone will be proportional to the solid angle of the cone.

Further, the radiation will be unpolarized . Hence the

total energy emitted in the time dt by the element of

volume dr in the direction of the elementary cone dQ and

having frequencies between v and v + dv may be set equal
to:

dt.dr.dQ.dv.2e, . . . . (298)

We call the finite quantity ev the coefficient of emission

or emissivity of the substance for the frequency v. It

refers to a linearly polarized ray. The total emission of

the volume element dr is obtained by integrating over all

directions and all frequencies. This leads to :

[

dt.dr.87r erfv .... (299)
Jo

The emissivity ev, besides depending on the frequency v,

also depends on the state of the emitting substance

contained in the volume element; in general this de-

pendence is very complicated. But in the sequel we shall

everywhere introduce the simplifying assumption that

the substance is in thermodynamic equilibrium in the

element of space dr. It necessarily follows then that the

emissivity e,, besides depending on the density and the

chemical nature of the substance, depends on nothing else

except the temperature T and the frequency v. In this

case the radiation is called
"
temperature radiation

"
in

contrast with
"
fluorescence radiation."

99. The annihilation of a heat ray is called
"
absorp-

tion
"

According to the energy principle the energy of

the radiation must be transformed in this process into some
other form of energy (such as internal heat of bodies,
chemical energy), and hence it follows that only material

particles can absorb heat rays, but not surface elements,
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although we speak for the sake of brevity of absorbing
surfaces

The process of absorption manifests itself in the fact

that a heat ray which is advancing through a medium is

weakened in its passage to a fraction of its original

intensity; for a sufficiently small distance s of its path
this fraction is proportional to the length traversed. We
shall set it equal to .

o,.s . . . . . (300)

and shall call <x.v the absorption coefficient of the substance

for a ray whose frequency is v. Since we are considering

only homogeneous and isotropic substances we may
assume a, to have the same value at all points and in all

directions and to depend only on the frequency v, the

temperature T and the nature of the substance.

If a differs from zero only for a limited range of the

spectrum the substance possesses
"
selective

"
absorption.

For those colours for which 0,= the substance is

completely transparent or
"
diathermanous

" The

properties of selective absorption and diathermancy may,
however, vary greatly with the temperature. In general
we assume a* to have a moderate magnitude ,

this implies
that the absorption along a single wave-length is very
weak. For the distance 5, although small, yet contains

many wave-lengths ( 94).

If the radiation arrives at the boundary of the medium
and there impinges on the surface of another medium, in

general a part will be reflected, the remainder being
allowed to pass through. Reflection and refraction either

occur regularly, in accordance with the law of reflection

and SnelTs law of refraction (IV, 8), or they occur
"

diffusely," that is, the rays are scattered at the surface

in different directions with different intensities in the two

media In the former case we call the surface of the

second medium "
absolutely plane

"
or

"
smooth," in the

latter we call it
"
rough." If a smooth surface completely

reflects all the rays that fall on it we call it a "
mirror
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surface." But if a rough surface completely reflects all

the incident rays uniformly in all directions we call it

"
white." The converse limiting case in which the surface

of a medium completely transmits all the incident rays

does not occur in the case of smooth surfaces if the

media in contact are optically different at all, Besides

speaking of white surfaces we also speak of
"
black "

surfaces. We call a body black when it absorbs all the

incident rays, reflecting none and transmitting none.

To be black a body must therefore fulfil two different and

entirely independent conditions. Firstly, it must have a

black surface. Since the properties of a surface are in

general influenced by the substances on both sides of it

this condition shows that the degree of blackness of a body

depends not only on its own nature but also on the nature

of the neighbouring medium. A body which is black for

air need not be so for glass, and conversely. Secondly,

the black body must have at least a certain thickness,

which is determined according to the degree of its absorp-
tive power, in order that the rays received by it may be

completely absorbed in its interior and cannot again pass

out through the surface at any other point. The more

strongly a body absorbs the less will be the thickness

necessary for complete absorption.

These distinctions and definitions in the first place refer

only to rays of a definite colour. A surface, for example,
which is rough for a certain kind of rays may be smooth

for another kind of rays. In general a surface becomes

less and less rough for rays of increasing wave-length, as is

easy to understand. Since, as above remarked, smooth

non-reflecting surfaces do not exist, all black surfaces

that can be prepared in practice (lamp black, platinum

black) exhibit appreciable reflection for rays of sufficiently

great wave-length. Concerning the possibility of realising

black bodies experimentally see 104 below.
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KIRCHHOFF'S LAW. BLACK BODY
RADIATION

100. WE shall now apply the theorems worked out in

the preceding chapter to the special case of thermo-

dynamic equilibrium. We therefore preface our discussion

by drawing the following inference from the second law :

a system of bodies of any Mnd which are at rest and
enclosed by an envelope impervious to heat passes in the

course of time from any arbitrarily chosen initial state

into a state of equilibrium for which the temperature in

all the bodies of the system is the same. In this final

state the entropy of the system has reached the maximum
of all those values which it may assume with the total

energy given by the initial conditions.

In certain cases it may happen that under the given
conditions the entropy can assume not only one but
several different maxima, one of which is the absolute

maximum, whereas the others are of only relative im-

portance. In these cases there are several different states

of thermodynamic equilibrium. But of these only that, to

which the maximum value of the entropy corresponds,
denotes the absolutely stable state of equilibrium. The
others are in a certain sense unstable or metastable, m
that if the equilibrium is disturbed appropriately, be it

ever so slightly, a permanent change of the system
occurs in the direction of a more stable equilibrium.

Cf. 54 and 58 above.

We next enquire into the conditions which the radiation

phenomena must obey to be in harmony with these laws

We therefore investigate the thermodynamic state of

183
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equilibrium of one or more bodies filled with, radiation.

First we take the simplest case, a single medium
which extends very far in every direction of space

and, like all other systems here to be considered, is

surrounded by an envelope which is opaque to heat.

Let us provisionally assume that the medium has a

finite emissivity e, and a finite absorption coefficient a, for

every frequency v.

We shall first consider those regions of the medium
which are far removed from the surface. For them, at

any rate, the influence of the surface becomes vanishingly

small , and on account of the homogeneity and isotropic

character of the medium we shall have to conclude that

in the state of thermodynamic equilibrium the heat radia-

tion is of the same quality everywhere and in all directions,

or, by 97, that K, is independent of the azimuth of the

polarization, the direction and the space co-ordinates

Hence corresponding to every beam of rays which starts

from a surface element da and diverges within an

elementary cone dD we must have an exactly similar

beam travelling in the opposite direction and converging
within the same elementary cone towards the surface

element.

As the state of the radiation remains unchanged it

follows immediately that during an arbitrary length of

time just as much heat radiation is absorbed in every
element of volume as is emitted; this applies to every

frequency individually. For the different kinds of rays
behave quite independently of one another, and the

radiation of a definite frequency can be influenced in no
other way than by emission or absorption. We calculate

the energy emitted and absorbed during any time t within
a volume element by fixing our attention on the radiation

contained in a volume element within a definite elementary
cone fQ To simplify the calculation we choose the
volume element in the form of a rectangular parallelepiped
with its base da perpendicular to the direction of the

elementary cone and of height s, so that the volume
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dr= s . da Then the energy of the unpolanzed radiation

emitted is, by (298) :

t .s .da dQ dv . 2e,.

On the other hand the radiation that enters the volume
element through its base da is, by (290) and (294) .

t . da . dQ . 2K, . dv

and of this the fraction a, . s is absorbed in the distance s,

by (300). If we multiply the last expression by o^.s
and set this product equal to the expression given just

above, we get as the condition of equilibrium :

J^ = ^ . . . . (301)
Oy

That is, in the interior of a medium which is in thermo-

dynamic equilibrium the specific intensity of radiation

corresponding to each vibration number is equal to the

quotient of the emissivity and the absorption coefficient of

the medium for the frequency concerned. Since ev and a,

depend, in addition to the nature of the medium, only on

T and v, the intensity of radiation of a definite colour in a

definite medium is completely determined, in thermo-

dynamic equilibrium, by the temperature.
An exception occurs, however, when a, = 0, that is

when the medium does not absorb the colour in question
at all. Since Kv cannot become infinitely great, it follows

that in this case also ev = , that is, a medium emits no
colour which it does not absorb. Further we see that

when e and a vanish simultaneously the equation (301)

is satisfied by every value of K Hence in a medium of

given temperature which is diathermanous for a definite

colour ihermodynamic equilibrium can existfor any arbitrary

intensity of radiation of this colour.

Here we already have an example of the cases discussed

above, in which for a given total energy of a system

adiabatically enclosed several states of equUibrium are

possible corresponding to the different relative maxima of

the entropy. For since the intensity of radiation of the
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colour in question in thermodynamic equilibrium is quite

independent of the temperature of the medium which is

diathennanous for it, the given total energy may be

distributed quite arbitrarily over the radiation of that

colour and the heat of the body without the equilibrium

becoming impossible. Among all these distributions

there must, however, be a perfectly definite one which

corresponds to the absolute maximum of the entropy and

which denotes absolutely stable equilibrium. This

distribution, in contrast with the rest, which are in a

certain sense unstable, has the property that it undergoes
no appreciable change when subjected to a very small

disturbance. We shall actually see below ( 105) that

among the infinite number of values which the quotient

may assume when both the numerator and the de-
ft*

nominator vanish, there is one special value which depends
in a definite way on the nature of the medium, the

frequency v and the temperature. This particular value

is to be called the stable intensity of radiation K? at the

temperature in question in the medium which is dia-

thermanous for the frequency v.

What has been stated for a medium which is diather-

manous for a definite frequency holds equally well for an
absolute vacuum, as this is diathermanous for all colours,

except that in this case we cannot speak of the heat of

the body or of the temperature of the medium. For the

present, however, we shall not deal with the special case

of diathermancy at all but shall assume that the medium
has a finite absorption coefficient.

101. All the theorems so far deduced apply to only
such parts of the medium as are at a very great distance

from the surface, since it is only for them that we may
immediately assume the radiation to be independent of

position and direction But a simple reflection shows that
the value for E, calculated in (301) is also vah'd right up
to the surface of the medium. For in thermodynamio
equilibrium every beam of rays must have exactly the
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same intensity as the exactly opposite beam; otherwise
a one-sided transport of energy would be brought about

by the radiation. If therefore we fix our attention on a
beam coming from the surface of the medium, it must
have the same intensity as the exactly opposite beam
coming from the interior. Hence it follows immediately
that the whole state of radiation of the medium at the surface
is the same as in the interior.

But although the radiation which starts from an element
of the surface and is directed towards the interior of the

medium is in every way the same as the radiation which is

propagating itself at great distances from the surface, it

nevertheless has a different history. For since the surface

has been assumed to be opaque to heat rays, it can only
have arisen owing to radiation which has come from the

interior and been reflected at the surface. This can occur in

many different ways according to whether the surface is

assumed to be smooth, in this case mirror-like, or rough,

say white. In the former case there corresponds to every
beam of rays incident on the surface a perfectly definite

reflected beam which is situated symmetrically with

respect to it and has the same intensity. In the second

case, however, each incident beam splits up into an
infinite number of reflected beams of different intensity,

direction and polarization, but always in such a way that

the beams which come from all directions with the same

intensity K, when reflected by the surface again produce
as a whole a uniform radiation of the same intensity

which propagates itself towards the interior.

Nothing now stands in the way of revoking the assump-
tion made in 100 that the medium in question must be

of very great extent in all directions. For by the result

just obtained the thermodynamic equilibrium of an

infinitely extended medium is in no wise disturbed if we

imagine any number of fixed surfaces, smooth or rough,
which are impervious to heat to be placed in it. This

divides the whole system up into an arbitrarily great

number of completely closed systems, each of which can
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be taken as small as we please. From this it follows that

the value given for the specific intensity of radiation 1L,

in (301) also holds for the thermodynamic equilibrium of

a body of any size and form.

102 We shall now turn to the question of the equili-

brium of radiation in a diathermanous medium, for which

equation (301) fails, since a, = and ev = The fact

that a perfectly definite state of radiation also exists for

such a medium at every temperature when there is thermo-

dynamic equilibrium is shown by the following reasoning.

We completely surround the medium with different kinds

of fixed walls of any material whatsoever, which we choose

so thick that no heat rays can penetrate through the walls

either from the inside or from the outside
;
and we keep

the walls at a definite uniform temperature. Then, on

account of the consequent definite emission and absorption
of the walls, a perfectly definite stationary state of radia-

tion will establish itself in the medium This will corre-

spond to the state of stable thermodynamic equilibrium
and will be determined by the temperature alone, and so

will be independent of the material of the walls. This

reflection allows us not only to calculate the state of the

radiation in the medium, but also to establish a general

relationship which must hold between the emission and
the absorption of each individual wall in order that the

radiation within the medium may become independent
of the material of the wall. For simplicity we shall

assume the surfaces of all the different walls to be smooth.
After thermodynamic equilibrium has been established

we have by (290) and (294) the following expression for

the energy of the unpolarized radiation lying within the

range denoted by the frequencies v and v + dv and which

coming from the interior of the medium impinges in the
time dt on the surface element dor of a wall within the

elementary cone dQ at an angle 6 to the normal to the

surface

2B, .dv.da. cos B dQ dt = 2JV .da.dt . (302)

where J, refers to a linearly polarized radiation. The
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same amount of energy is radiated in the reverse direction

back into the medium. The latter amount of energy is

composed of the energy emitted by da and of that re-

flected by da. The energy emitted will be of the form :

2Ev .dv.dcr.cos6.dQ.dt . . . (303)

where EV) the
"
emissive power

"
of the material of the

wall, signifies a definite finite quantity in general also

dependent on the direction 9.

The reflected energy comes from the beam of rays of

intensity Jv which lies symmetrically with respect to the

normal to the surface and falls on da\ after reflection it

becomes the beam in question and has the energy :

^.2,7, da.dt..... (304)

where pv denotes the reflection coefficient of the wall for

the direction in question.
If we set the sum of the expressions (303) and (304)

equal to the expression (302) we get :

or, if we set :

1 - pv
= Av

where A V} the
"
absorbing power

"
of the wall, denotes

the fraction of the incident radiant energy that penetrates
into the wall, we get ,

K, =f ..... (305)Av

For different walls Ev and Av are different, but their ratio

is always equal to Kf This is KirchhofE's Law, which

states that the ratio of the emissive power of a ~body to its

absorptive power is independent of its nature.

From this we see that even for any diathermanous body
there is a definite specific intensity of radiation H^for each

temperature when there is thermodynamic equilibrium;
and Ky is obtained by dividing the emissive power of any
substance which is in contact with the body by its absorp-
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tive power. We may also call this value of EV the
"
true

value
"

of the quotient (301) for a, = 0. The relation

(305) of course also holds for the ease where the medium
emits and absorbs to a finite degree. The method of

proof follows exactly similar lines.

For a black wall
/>
= and Av

=
1, hence Hv

= Ev

That is, the emissive power of a black body is independent of

its nature and is equal to the stationary specific intensity of

radiation in the contiguous medium. Hence this radiation

is often shortly called
"
black body radiation

"
or

"
black

radiation." Further, since Ar < 1, the emissive power of

a black body is always greater than that of any other

body
103. Allthe relationsdeduced in the preceding paragraph

hold for a singledefinitemedium traversed by the radiation.

But we can also generalize them so that they become

applicable to arbitrary media and acquire a universal

character. This is performed by bringing into contact

two different media, say air and glass, which are traversed

by radiation, and investigating the stationary state which

corresponds to thermodynamic equilibrium. Since the

equilibrium is in no way disturbed if we imagine the plane
of separation of the two media to be replaced by a surface

which is impervious to heat radiation, all the results of

101 apply. Let the specific intensity of the linearly

polarized radiation of frequency v in the interior of the

first medium (air, in Fig 7 on the left) be K,,, and that in

the interior of the second medium (glass, on the right of

Fig 7) be called 1C
7

,; we shall denote all quantities re-

ferring to the second medium by a dash, as in the case of

K'v . Both quantities K, and E?v, besides depending on
the temperature and the frequency, depend only on the

nature of the two media Moreover, these values of the

intensity of radiation hold right up to the bounding
surface, quite independently of the nature of t.hia surface.

We next assume the bounding surface to be smooth and
fix our attention on some monochromatic linearly polarized
radiation. The energy of this radiation which is emitted
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during the time dt by an infinitely small element da at the

point of the bounding surface within the elementary
cone dQ at an angle 6 with the normal to the surface is,

in air (upwards towards the left in the Fig.), by (302) :

where :

. dv . do . cos 6 . dQ , dt

dQ = Bi

(306)

(307)

FIG 7.

This energy is furnished by the two beams which, coming
from the air (on the left) and the glass (on the right),

respectively, are reflected by the surface element da or

are refracted. The former beam travels along inside the

symmetrically situated cone dQ, the latter inside the cone :

dQ' = am 6' d6' d<f>'

the law of refraction giving :

. , . , sin 6 q6=6 and -
3-,
= -^ r sni 6 a

(308)

(309)
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The contribution of the former beam to the energy is, by

(306) :

fr.K,.dv.da.CQ&Q.dQ.dt. . (310)

where /v again denotes the reflection coefficient for the

radiation in question from glass in air. On the other

hand the contribution of the latter beam of radiation to

the energy is :

(1-p'r) K', dv dv. cos B'.dQ'.dt . (311)

where
/>'

denotes the reflection coefficient and hence

1 p'v the transmission coefficient for glass in air.

If we add the last two expressions together and set the

sum equal to the expression (306), we get :

pv .Kv cos 9 . dQ + (1 />') . K', cos 8' dQ1 Kv cos . dQ

Now, by 309 :

cos 8 . dd _ cos 6' . dQ'

and if (307) and (308) are taken into account :

Consequently

or:

l-pv

In this equation the quantity on the left is independent
of the angle of incidence 6 and of the nature of the polariza-
tion ; consequently so is the expression on the right-hand
side. Hence if we know its value for a single angle of

incidence and a definite azimuth of the polarization this

value holds good for all angles of incidence and all

directions of polarization. Now in the special case when
the rays vibrate in the plane of incidence and fall on the

bounding surface at the angle of polarization we have

p,= and p'v
= (IV, 9a). The expression on the
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right then becomes equal to 1 Hence it is in general

equal to 1, and we always have :

Pv
=

p'v .

'

. . . . (312)

and:

q'*K'v ..... (313)

The first of these two relations, which states that the

reflection coefficient of the bounding surface is the same
towards both sides, expresses for a special case a general
law of reciprocity which was first proved by Helmholtz

,

it states that the loss of intensity which a ray of definite

colour and polarization experiences in its passage through

any media owing to reflection, refraction and absorption is

exactly equal to the loss of intensity which a ray corre-

spondingly constituted experiences when travelling in the

exactly opposite direction. From this it follows directly
that the boundary surface of two media is equally trans-

parent in both directions and reflects equally well on both

sides for every colour, direction and kind of polarization.
The second relation, (313), brings into relationship the

intensities of the black body radiation in the two media

It states that in thermodynamic equilibrium the specific

intensities of radiation of a definite frequency in the two
media are inversely proportional to the squares of the

velocities of propagation or directly proportional to the

squares of the indices of refraction.

If we substitute the value forKv from (301), we may also

say, the quantity .

q^ = q^ = F(V,T) . . . (314)
Dtp

does not depend on the nature of the medium , hence it is a

universal function of the temperature T and the frequency v.

To find this universal function F is the fundamental

problem of the theory of heat radiation. In view of

(297) we may also formulate this theorem as follows :

the quantity :

t^8 ...... (315)
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is, for thermodynamie equilibrium, identically the same

function of the temperature T and the frequency v for all

substances. Or, since q = AV, we may say that in the case

of black body radiation the energy contamed m a cube

whose length of side is the wave-length A, namely :

<uv .dv.X* (316)

is the same for all bodies.

104. The laws deduced in the preceding pages also

enable us to measure the emissive power of a black body
in spite of the fact that absolutely black bodies do not

exist in nature ( 99). We form a diathermanous cavity

bounded by walls which emit more or less strongly and

are kept at a certain constant temperature T. Then,
when thermodynamic equilibrium has been established,

the radiation in the cavity acquires for each frequency the

intensity K, which is conditioned by the velocity of

propagation q in the medium, as given by the universal

function (314). If we now make a hole of size da in one

of the walls, so small that the intensity of the radiation

directed from the interior towards the hole is not changed,
then radiation will pass through the hole to the outside

where we may assume the same diathermanous medium
to exist as in the interior, and this radiation will have

exactly the same properties as if do were the surface of

a black body of temperature T
There is only one medium which is diathermanous for

all kinds of rays, that is an absolute vacuum, which,
however, can be produced only approximately in nature.

Yet many gases, for example atmospheric air, if not too

dense, have very approximately the optical properties of a

perfect vacuum. Hence in the sequel we shall as a rule

write in place of q the value of the velocity of light c in a
vacuum

105. As we have already seen in 100 any arbitrary
state of radiation can be stationary from the very outset
m a perfect vacuum enclosed by totally reflecting walls.

But as soon as one of the walls or even an arbitrarily small
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part of a wall manifests even the slightest emissive or

absorptive power for a colour, or as soon as we introduce

into the cavity space even the smallest quantity of any
substance which absorbs or emits rays of some colour, then

in the course of time a stationary state of radiation will

establish itself in the whole cavity , this state will be such

that the radiation of the colour in question will have the

intensity K, which is determined by the universal function

(314) and which corresponds to the temperature of the

part of the wall in question or of the substance introduced

If this substance is completely diathermanous for no
colour at all, for example, a piece of charcoal, then in the

stationary state the intensity of all colours will be U,,

namely that corresponding to black body radiation at the

temperature of the substance. Regarded as a function

of v the quantity JK, gives the spectral distribution of black

body radiation in vacua or the so-called normal energy

spectrum. In the normal spectrum, since it is the emission

spectrum of a black body, the intensity of radiation for

any colour is the greatest that a body can emit at the

temperature in question. By determining the normal

energy spectrum we immediately amve at the universal

function (314).

Thus we can transform any radiation contained in an

evacuated cavity enclosed by totally reflecting walls into

black body radiation by simply introducing a tmy speck
of charcoal. A characteristic feature of this process is

that the "
body heat

"
of the speck of charcoal can be

arbitrarily small compared with the energy of radiation

that is present in the cavity, for this may be assumed to

be as large as we please, hence in this case the total

radiant energy remains essentially constant even when the

transformation to black body radiation is occurring, since

the changes in the contained heat of the charcoal particle

do not come into consideration even for finite changes of

temperature of the particle The particle then merely

plays the part of a releasing agent; by absorption and

emission it gives the impulse to the process of give and
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take which changes the intensities of the beams of radiation

of different frequencies, differentlypolarized and travelling
in different directions in the original radiation; this

corresponds to the transition of the system from a less

stable to a more stable state, or from a state of smaller

to a state of greater energy. From the thermodynamic
point of view this process is fully analogous to the change
which a tiny spark produces in a quantity of electrolytic

gas (H2 and
2 )

or a tiny drop of liquid produces in a

quantity of super-saturated vapour or, again, that a

catalyser produces in a mixture which has a slow rate of

reaction For the time of the transformation does not
count : all that matters is that the manner and the

magnitude of the disturbance should be exceedingly small
so that they can be entirely neglected in comparison with
the quantity of the energies transformed as well as with the
increase of entropy of the system. In the case of heat
radiation the essential feature of the particle of charcoal
is its function as an indicator of temperature, for without
it we should have no means of defining a temperature.



CHAPTER

PRESSURE OF RADIATION. THE STEFAN-
BOLTZMANtt LAW

106. THE next step towards finding the universal

function (316) consists in applying the two fundamental
laws of thermodynamics to black body radiation in a
vacuum of variable volume. For this system can be

treated according to exactly the same methods as a
material body, say a gas, because the validity of the two
laws is independent of the nature of the system under

consideration. To make the calculation fruitful we must
above all know the mechanical force which the radiation

exerts on a wall with which it is in communication ; just

as we must know the equation of state of a gas if we wish

to apply the two fundamental laws to gases. Let us then

first consider the mechanical pressure which any plane

electromagnetic wave in vacuo exerts on a black body
on whose surface it impinges at an angle 9. For this

purpose we may use the formulae HI (230) which give the

mechanical pressure exerted by an electromagnetic field.

Actually these formulae were there deduced only for the

case of an electrostatic field, but they also apply more

generally, because the derivation of the pressure involved

only the momentary state of the field and not its variation

with the time. If we choose the inward normal of the

surface of the body as our positive -axis, as in IV, 6,

Fig. 1, the pressure in the direction of the normal, which

alone comes into question, is, by the above-mentioned

formulae :

p = - -&ES
* - JB

2
)
= -(Ej + JBc

2 -
JE^) . (317)

197
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The expressions for E(, E^ Ec are given in IV, 6, and

we must note here that since the body is black there is an

incident but no reflected wave, so that we now have :

Ex cos 6 Ey sin 6 / . sin

Ex sin 4- Ey cos 6 = /. cos 6

where / and g denote the wave-functions of the wave-

components that vibrate in directions parallel and

perpendicular to the plane of incidence. Substitution

in (317) gives :

p-*..(f*Qo&e+~f-J*m*6) . (318)
O7T

The mean values indicated by the bars must be taken

because the radiation pressure, like the radiation energy,
is defined only for a time which is great compared with that

of a vibration ( 94).

In addition to the pressure of the electric field we have
also the pressure of the magnetic field which is given by
the analogous formulae III (239), thus :

p - -^W + H:
2 - H?}

with the corresponding values :

Hg = Hx cos 6 Hv sin 6 = g sin 9

&n
= Hs sin 6 +Hy cos 6 g cos 6

HC
= JET,=/.

This gives .

p = ^(?cos
2 + /*

-
0*sin

2
0)

Adding this to (318) we get as the total pressure of the
wave in question on the black body .

For an unpolarized wave we have^= ^ and :
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We shall now bring the pressure into relationship with the

radiation that falls on the surface element da of the body,

firstly for the case of a monochromatic beam. By IV

(11), for an unpolarized plane ware in vacuo the energy
radiated in the time dt on to a cross-sectionF perpendicular
to the direction of the ray is in general :

that is, since F = da . cos 6, the radiant energy incident

on the surface element da is :

We set this amount of energy equal to the energy given in

(302) for an incident monochromatic beam. Then from

(320) we get
2/v COS 9 /Q91\

p = :- .... (641)
G

for the pressure of unpolarized monochromatic radiation

incident on a black body at an angle 0.

If the body is a perfect reflector there must be added to

the incident wave the reflected wave, whose intensity and

energy, when added to the first, double the pressure :

= 4JV cos e..... (322)*
c

107. Erom this we now calculate the pressure which

any arbitrary radiation incident uniformly in all directions

exerts on a perfectly reflecting surface. By integrating

(322) over all directions and all frequencies, that is, by
substituting the value of J from (302), we get

p = -JJK, . cos2 d.dQdv

and since dQ= sin 6 dd
d<f> we get by using (294) and inte-

grating with respect to
<f>
from to 2?r and with respect to

6 from to -s :

..... (323)
oC
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or, if instead of K we introduce the spatial density of

radiation u from (292) :

p = l
(324)

This value for the radiation pressure at present holds only
for a perfectly reflecting wall. But it is easy for us to

convince ourselves that it always holds if the radiation

which leaves the wall is the same as the incident radiation
;

that is, if it makes no difference whether the radiation is

reflected by the wall or emitted by it. For if we imagine
a cavity space filled with black body radiation and com-

pletely surrounded by any walls at a uniform temper-
ature but free to move as a whole, then it is not only in

thermodynamic equilibrium but also in mechanical

equilibrium, as otherwise we should be deriving mechanical

energy from heat without compensation, which is contrary
to the second law. From this it follows that the pressure
of radiation is the same on all the enclosing walls no
matter whether they are good or bad reflectors, so long
as the radiation occurs uniformly in all directions.

108. Let us next imagine an evacuated enclosure

filled with black body radiation but of variable volume, say
in the form of a cylinder with a perfectly fitting freely

movable piston. For the radiation to remain continuously
black during the changes of state which are to be effected,

it is sufficient to assume any part of the enclosing wall,

say the bottom of the cylinder, as emitting and, further,

to allow the changes to take place infinitely slowly so

that the changes in the direction of motion of the piston

may take long enough to let the radiation get steady again.
The energy density u of the black body radiation is then
determined by the temperature T of the emitting wall.

This is a system whose state depends on two variables,

namely the volume 7 and the temperature T \ it can be

subjected to any arbitrary reversible changes. The

system has the energy U= V.u which depends on the

temperature and which, on account of the radiation
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pressure p, can be used to perform mechanical work.
Hence the condition (82) of the second law must be

obeyed

(326)

This states that the entropy of cavity radiation depends

only on the momentary state in question, that is on V
and?1

.

Since the quantities U, p> F, 8 are all properties of the

state of radiation, so also is T
,

that is, black body
radiation also has a definite temperature, namely the

temperature of the enclosing wall with which its exchange
of heat is stationary.
To introduce the two independent differentials dT and

dV in the differential expression (325) we set, since u

depends only on T :

dU = d(V . u)
=
VffidT +

vdV

and, in view of (324), obtain :

, V du 4w,

From this, we get :

Vdu

If we differentiate the first equation partially with respect

to V, the second partially with respect to T, we get

du _ 4u

dT~ T

which, integrated, leads to :

u = aT*> . ... (326)

By (292) the specific intensity of the black radiation is :

JT-.tt-^fl* . . . (327)
4?T 4:77
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Consequently the total emission from unit surface of a

black body is in unit time, by (291) :

. . . . (328)

Also, the pressure of black radiation is :

P = lTi
.... (329)

and the total energy of radiation :

U = aT*.V ..... (330)

This is the Stefan-Boltzmann law of black radiation.

The value of the constant a in (328) is, according to the

best measurements hitherto made :

ft**

^ = ^ = 5-75 10'5
erg/cm.

2 sec. degree* (331)

The value of the entropy S of the black radiation, which is

obtained by integrating the differential equation (325),

is :

(332)

if when T= and U= we also assume S= 0. From
this it follows that the entropy per unit volume or the

spatial entropy density of black radiation is

|
= 5 =

|aT3
.... (333)

109 If while the cavity is being increased in volume
the temperature of the enclosing walls is kept constant,
the process takes place isoth&rmally. Then, besides T,
also u, p and 8 remain constant. Consequently the total

energy of the radiation increases from U= V . u to

V = V . u, the entropy increases from S = V . s to

S'= V . 5, and we get for the heat Q that is to be taken

up from outside, by integrating (49), keeping T constant :

-
7) = (tT-I7)
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We observe that the heat taken up from outside exceeds

the amount by which the energy of radiation increases,

TJ'- U, by the fraction (U'- U}. This additional

amount of heat is necessary to perform the external work
involved in reversibly enlarging the volume of the

radiation.

Let us also consider an adidbatic process. For this

purpose it is necessary to assume that the whole enclosing
wall of the cavity is either a perfectly reflecting mirror or,

better still, is perfectly white The heat taken up from

outside during the volume change is then Q= 0, and the

energy of the radiation changes only by the amount of

external work done, p.dV. To be certain, however,
that the radiation actually remains black during a finite

adiabatic process, that is
t
that it retains its normal distribu-

tion of energy evenwhen the energy density is changed, we
shall further assume that a very small particle of charcoal

is present in the cavity. This little body, which we may
assume to have a finite absorptive power for every kind

of ray, serves the sole purpose of bringing about the

stable state of radiation
( 105) and so guarantees the

reversibility of the process, while its contained heat may
be assumed to be vanishingly small compared with the

energy of radiation U. The radiation is then at every
instant equal to that of the charcoal particle.

During the reversible adiabatic change in question the

entropy S of the system remains constant, and so by (332) :

Ts
. V = const,

or by (329) :

p . Vs = const.

That is, during adiabatic compression the temperature
and the pressure of the radiation increase in a manner

definitely specified. The energy U changes during the

same process according to the law :

V 3 a A
-fp
= TO = const.
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That is, it increases proportionally to the temperature T
although the volume hecomes smaller.

Mnally let us consider the simple case of an irreversible

process. Let the cavity of volume V, surrounded by
perfectly reflecting walls, be uniformly filled with black

body radiation. Now let us make an opening at some

point in the walls, say by opening a tap, through which

the radiation can enter into an evacuated space of larger

dimensions and also enclosed by perfectly reflecting rigid

walls. After a time the radiation will again become

uniformly distributed over all directions and will uniformly
fill the connected cavities, whose combined volume is

V, say. Let us assume a charcoal particle present to

ensure that all conditions for black radiation are also

fulfilled in the new state. Since neither external work nor

transference of heat from outside comes into question, we
have by the first law of thermodynamics that Z7' = U,
and hence by (330) :

or:

T'

T"'

which defines the new state of equilibrium. Since

V > V, the temperature of the radiation becomes

lowered by the process.

According to the second law the entropy of the system
must have increased. By (332) we actually have

(334)

If radiation of volume V is expanded adiabatically
and irreversibly to the volume V as above described

but with no charcoal particle present, then after the state

of radiation has become uniform in all directions in the

new volume V the radiation will no longer have the

character of black radiation and so will have no definite

temperature. But nevertheless the radiation, as indeed
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every physical system in a definite state, will have a

definite entropy which, by the second law, will be greater

than the initial entropy $, but not so great as that, S'
}

expressed in (334). We shall show how it is calculated

in the next chapter. If we subsequently introduce a

charcoal particle into the vacuum, the absolutely stable

state of equilibrium of the radiation will establish itself

by means of a second irreversible process, the energy

assuming the normal energy distribution for constant

total energy U and constant total volume V, while the

entropy attains its maximum value S' given by (334).



CHAPTER IV

ENTROPY AND TEMPERATURE OF A BEAM
OF RADIATION. WIEN'S DISPLACEMENT

LAW

110. THE Stefan-Boltzmann Law deals with the total

energy of stationary cavity radiation, but it gives no

information about the spectral distribution, that is,

about the form of the universal function (314). To find

this we must make use of the theorem that the normal

distribution of energy is the most stable of all possible

energy distributions; in other words, it is that which

makes the entropy of the radiation for given total energy
and given volume a maximum. This theorem becomes

fruitful only if the entropy of a radiation having any
arbitrary distribution is known. Hence the solution

ultimatelydepends on finding the entropy of any arbitrarily

given radiation.

Now every radiation consists of a system of individual

beams of rays of different direction, colour and polariza-

tion, which act quite independently of one another Hence
the entropy of the radiation is composed by adding

together the entropies of all these individual beams.
Each beam of definite intensity and frequency has a

definite entropy which it carries along with it. Hence
we can speak of an entropy radiation just as well as of an

energy radiation, and this entropy radiation will propagate
itself according to the laws of geometric optics. Corre-

sponding to the specific intensity E,, of the energy of a
monochromatic linearly polarized beam there is the

specific intensity L, of the entropy of this beam, where L,
is a definite function of K and v

;
and corresponding to

206
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the energy of the beam -which is incident on, or emitted by,
a surface element da ( 102) during the tune dt :

. da . cos 6 . dQ . dt = Jv . da . dt . (335)

there is the entropy :

L,.dv.dcr.cos6.dQ.dt = H,da . dt . (336)

which is simultaneously incident on, or emitted by, the

surface element

Similarly, just as we speak of the spatial energy-density
of unpolarized radiation uniformly distributed in direction

(296) and (297) :

.... (337)

so we can speak of the spatial entropy density of this

radiation :

(338)

for which the spectral distribution of the energy can be

quite arbitrary.

If we now assume the dependence of the function L,

on K and v as known, then the law of normal energy
distribution comes out as follows.

We consider unpolarized cavity radiation which is

uniformin all directions ,hasvolume V and energy U= V.u,

and has any spectral distribution of energy whatsoever.

Then the normal distribution of energy is that which makes

the entropy of the radiation S= V.s a maximum for

a constant V and constant U. By (338) the condition

for this is :

8
J

since v is not subject to variation (Sv
= 0) On the other

hand, since W= 0, we have by (337) also :

8 I"sdv = I SXdv =
J Jo
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whereas SK is otherwise quite arbitrary. The last two

equations can exist simultaneously only if . is inde-

pendent of v and hence can be placed outside the integral

sign.

The equation :

|^ = const (339)
on.

is therefore the necessary and sufficient condition that the

entropy should be a maximum, that is, for the normal

energy distribution. The physical significance of the

constants in (339) is obtained by considering the de-

pendence of the maximum values of the entropy $ on

the energy Z7. Eor when the volume is constant (87= 0)

we have in general .

SS =^00 m

8u
and hence also Ss= ~-, and by (338) and (337), in view

of (339) :

^1 (340)
dK T

Since Lv is assumed to be a known function of K and v

this equation gives us the energy distribution of black

body radiation at the temperature T, and hence also the

universal function (314). Thus the central problem of the

theory of heat radiation is reduced to the problem of represent-

ing the entropy of a linearly polarized beam of monochro-
matic radiation as a function of the energy and thefrequency .

This is the actual path that was followed in originally

solving the problem and we shall do the same here.

The equation (340) compels us to ascribe to every single
beam ol radiation in addition to its entropy a definite

temperature T denned by this very equation The
temperature ot a beam of radiation is the temperature of a
black body which emits the beam in question, and the
normal energy distribution is distinguished from all other



iv. ENTROPY OF RADIATION 209

energy distributions in that all its beams have the same

temperature.
The necessity of introducing a radiation temperature as

well as a body temperature has also made itself increasingly
felt in experimental physics. Thus, since a considerable

time ago it has been found useful to speak, not only of the

actual temperature of a body but also of an "
effective

"

temperature or a "
black body

"
temperature of the body,

that is, of that 'temperature which the body would need to

have if it were black in order to send out the radiation

which it actually emits. The "
black-body

"
temperature

of a body is no other than the actual temperature
of the rays emitted by it. Consequently in general a

body has an infinite number of black-body temperatures,

namely, a different one for each direction, colour and

polarization. The black body temperature is always
lower than the actual temperature of the body, because the

intensity of a beam emitted by the body is always less

than that of a beam emitted by a black body
111. To find out how the entropy of a beam of radia-

tion depends on its energy and its frequency we use the

same method which served earlier, in 70, for calculating

the entropy of a gas mixture. We carry out a reversible

adiabatic process with our system, which is here a linearly

polarized monochromatic beam. From the second law

we then know that the entropy of the beam does not

change. Now, if we can arrange the processm such a way
that the energy and the frequency change in a known way,
we can deduce from this how the entropy of thebeam must

depend on the energy and the frequency in order that it

may remain constant during these changes.

A suitable reversible adiabatic process with the desired

properties presents itself to us in the reflection of a beam
of radiation from a moving mirror. For, firstly, this

process, like all purely mechanical and electrodynamic

processes, is reversible ( 39) and, secondly, the frequency

and the energy of the beam are changed by it in a manner

which can be specified. Moreover, the velocity of the
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mirror may be assumed as great as we please. It is

sufficient, however, and serves to simplify the calculation,

if we assume it to be very small compared with c, the

velocity of light.

Let us first calculate the change in the frequency v

caused by the reflection. If we again use the notation

and Fig. 1 of IV, 6, then in the wave function of the

incident monochromatic wave the argument is identical

with the phase :

- = fa, .
-

In the same way the argument in the wave-function of

the reflected wave is the phase :

if here, in contradistinction to our earlier usage (loc. cit.),

we now take 8
f

to stand for the acute angle of reflection.

Since the electric intensity of field must always vanish

everywhere at the reflecting surface, which wemay imagine
as the bounding surface of an absolute conductor (III,

92), the electric intensities of both waves must be equal
and opposite at all points of this surface and at all times,

that is, for all values of
17
and t , this is possible only if the

coefficients of
17
and t are identical in the arguments of the

two wave-functions. If we take the velocity v positive
and assume that the mirror moves towards the incident

radiation (to the left), then in the notation there used we
have for the reflecting surface :

= vt + const.

and the two arguments assume the values :

/. vt cos 0+tt sin 9\
,

, ,

v\t
--- '--

)+ const, and

,(. vtcos &'+ rjsin0'\ ,
,

v \t
--*-

) + const.
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By identifying the coefficients of t and q we get, -since we
have assumed v <^ c :

, ,
v' v ( 1

and:
v' sin 8' = v sin 5 . . . (342)

Consequently, also :

^9'

and:

cos 0' = cos0-|- sin2
c

We next enquire into the specific intensity E! of the

reflected beam and calculate it by applying the first law.

Since work is done in moving the mirror against the

pressure of the radiation, the energy which is emitted into

the vacuum by the mirror during the time dt is greater
than the energy of radiation that falls on the mirror in the

same time dt by the amount of the work simultaneously

performed. The latter is calculated from (335) for a

monochromatic linearly polarized beam within the

elementary cone dQ, referred to the element of area da

of the mirror. But this expression holds only for a mirror

at rest. When the mirror moves towards the incident

radiation, it receives still more energy ; and the additional

amount is that contained in the space swept out in the

time dt by the surface element da, which we may assume

arbitrarily great The size of this space is da . vdt, and,

by (291) and (298) the spatial energy-density of the

monochromatic linearly polarized radiation in it is :

tv = -.<ft2. . . (345)
t

c

Hence the additional amount of energy taken up by the

mirror is :

- EdQdv . da . v . dt
c
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ind the total energy incident on the mirror in the time

It is :

J^dadt + - JK&Q . dv . da . v . dt
c

(346)

En a fully analogous way we can derive the following

expression for the energy reflected into the vacuum by the

mirror in the tiiAe dt for the case where the mirror moves

in the direction of the reflected radiation and consequently

causes less energy to be received than when it is at rest .

'-? - (347)

On the other hand, the work performed against the

radiation by the mirror in the time dt is :

v . dt . da . p ..... (348)

In this expression the pressure of radiation p is composed
of the pressures of the incident and the reflected linearly

polarized beams. Hence by (321) :

Jv cos0
[

Here we may, without introducing an appreciable error,

use for Jv and J"V the formula (335) for a surface at rest,

because the correction to be applied to the work term

(348) owing to the motion of the mirror, as expressed in

the factor v, would be of lower order of magnitude than the
first. We may even treat the two summands of (349) as

equally great, but we refrain from this in order to maintain
the symmetry between the incident and the reflected

radiation

If, according to the first law, we set the difference of the

expressions (347) and (346) equal to the expression (348).
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inserting the value for the pressure from (349), we get the

equation :

K'dv'dQ'(GQB 0' -
-)
- KdvdQ

(cos
6 +

-)
=

-
(Jp cos 6 -h JV cos 0')

c

or, substituting the values of Jv and /V from (335) :

K'dv'dQ' (cos 6' - - - - cos2 9
\ c c

'}/

(cos0 + - + -cos2
0)\ c c /

= 1 . (350)

This equation gives the desired relationship between the

specific intensities K' and K of the reflected and the

incident radiation To evaluate it we must introduce the

relations worked out above between the frequencies and

the directions of the two beams. As regards the ratio of

the differential expressions :

'

dd'

dvdQ dv . sin d . dB

we must bear in mind that v and 6 are independent of one

another, so that this ratio is expressed by the functional

determinant of the transformation

sin0'

W dv'

fo de

W'W
sm^
sin Vav /

fl

"

\ 80' /

since, by (343), g-
= 0.

If we use the relations (341) and (343) this gives us the

desired value :

, a= i - cos e = -
c v
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Further, by (344) and (341) we have :

---<x>B*d' . z

2 - = l-^cos0 = - . (352)

c c

Hence equation (350) runs :

E 2^
K

'

v'*

or:

<353>

That is, when a monochromatic beam of radiation is reflected

by a moving mirror tTw specific intensity of the energy
radiation increases proportionally to the cube of thefrequency.
We now pass on to calculate the specific intensity I/ of

the entropy radiation in the reflected beam. This is

essentially easier because according to the second law,

since the process is reversible and adiabatic, the entropy
of the reflected beam is the same as that of the incident

beam. In other respects the discussion runs along

exactly analogous lines to that used for the energy in the

preceding section, so that, corresponding to the relation

(350) for the first law, we here obtain as the relation for

the second law :

. . . (354)

Consequently, since by (344) and (341) :

cos ff - -
c i 20 a V-.,10080--,,

cos e + - c v

C

we get :
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or :

(355)

That is, when a monochromatic beam of radiation is reflected

try a moving mirror the specific intensity of the entropy

radiation increases proportionally to the square of the

frequency.
112. The above results enable us to follow out the

train of ideas described in 111. We know that L is a

perfectly definite function of the independent variables

K and v and we know further that for reflection at a plane
K L

mirror - and also -g remain invariant. Hence it necessarily

L
' K

follows that the quantity -^
can depend only on -3 and not

on a second variable, such as v ; for in that case
-g
would

have to change during the reflection, since v changes.
Hence we have .

(356)

where / denotes a certain function of a single argument.
The equation (356) expresses Wien's Displacement Law.
Its importance lies in the fact that it reduces the function

L which is dependent on two variables to a function

of a single variable.

Wien's Displacement Law may be formulated in many
different ways and is capable of being applied in corre-

spondingly different ways which can in part be subjected
to experimental tests.

Krstly, it follows from (340) that :

i ar, i

where the dot over / denotes differentiation with respect
to the argument ; or, conversely, in terms of K :
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where g again denotes a certain function of a single

argument.
All these equations hold for radiation in a vacuum.

But we can immediately make them independent of the

nature of the medium traversed by introducing the

universal function (314). For if we substitute in the left-

hand side of equation (314) the values that refer to a

vacuum, we get for the expression of the universal function-

- - - (358)

Hence c2
Q\7fiJ

*& a^ a universal function
<j>

of v and T

and we obtain, no matter what medium is traversed by
the radiation :

*- <369>

as the expression of Wien's Displacement Law, which

relates the specific intensity of the energy radiation to

the frequency, temperature and velocity of propagation
in any arbitrary medium. If we again choose a vacuum
then the relation becomes

(360)

113. In black body radiation all the beams have the

same temperature T, and their intensities are independent
of then* direction. Then, by (297), the spatial energy-

density of unpolarized monochromatic radiation in a
vacuum is :

and the total spatial energy-density is :

. . (362)
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If we transform from the variable v to the variable

= x, the expression becomes :

u =
l<*

I x*<f>(x)dx
JO

Since the integral here has a constant value, this equation

represents the Stefan-Boltzmann law (326).

The expressions (360) and (361) contain all that Wien's

Displacement Law has to say about the energy distribution

in the normal spectrum. According to this it is only

necessary to know the energy distribution for a single

definite temperature T in order to be able to determine

the dependence of the function ^ on its argument and

hence also the energy distribution for every other temper-
ature. Since Kv and u* vanish both for v = and v = oo

in the latter case because the integral (362) has a

finite value these quantities have a maximum for a

certain value of v, and so Wien's law gives us information

about the way in which the maximum depends on the

temperature and also its magnitude.
114. In experimental physics it is usual to characterize

monochromatic radiation not by the frequency v but by
A

the wave-length A = - which is directly measurable.

Similarly we set the specific intensity of radiation not

equal to KV but to JE^; moreover E\ is not equal to KV,

but rather :

Ei.dX = K*.dv = K,.!LdX . . (363)

Hence by (360) :

(3M)

It is to be particularly noted that the maximum of E*
lies at a different point of the spectrum and has a different

value from the maximum of K*. The maximum of 28* is

obtained from the equation :
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or by (364) :

^; = o

This equation gives a perfectly definite universal value for
/t

the argument r so that in vacua the following relation
A-i

holds for the wave-length \m of the maximuni of the

intensity of radiation E^ at the temperature T :

\ ffl t\ /O/>r\
AjnJ. O lOOOj

The numerical value of 6 has been measured, the result

being :

b = 0-290 [cm. degree] . . . (366)

The value of the maximum of the radiation in the spectrum
is obtained from (364) by writing in it A = A*. Then,
on account of (365), we have :

JS'max
= const. Ts

. . (367)

All these consequences of Wien's Displacement Law
have been confirmed as accurately as we may well expect
by many measurements On the other hand this law
leaves the important question of the dependence of the
universal function

<j>
on its argument entirely untouched.

This is, as a matter of fact, a problem which cannot be

successfully dealt with by the classical theory and which,
on this account, has dealt it a fatal blow. Its solution
can be found only by taking a fundamentally new step
on the road to discovering the nature of entropy.
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CHAPTER I

THE MACROSCOPIC AND THE MICROSCOPIC
VIEW

FLUCTUATIONS
115. ALL our previous discussions have been founded

on assumptions which, we could regard as valid without

restriction both as regards range and content, namely on
the fundamental principles of mechanics and electro-

dynamics as well as on the two principal laws of heat

theory. This constitutes the strength but also the weak-

ness of our deductions. Their strength consists m the

fact that the theorems we have deduced hold in all cases

with absolute accuracy, and their weakness is that these

results for the most part are rather general in character

and so leave a number of interesting special questions
unanswered. Thus we were able to reduce the whole

thermodynamic behaviour of a substance to a single

characteristic function ( 54 to 56) of the independent
variables involved. But our discussion taught us nothing
at all of the form of this function. The same holds of the

laws of heat radiation ( 114).

Hence, if we wish to make progress in unravelling the

laws underlying thermal phenomena, we must first fix

our attention on the nature of the characteristic function

by which all thermodynamic properties of the system
are conditioned, namely on the nature of entropy. Our
task will consist in endeavouring to grasp the significance
of this quantity from the mechanical and the electro-

dynamic point of view. That this is not a simple task is

obvious. For the remarkable property of entropy in

virtue of which it changes only uni-directionally with the
221
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time stands in opposition to all mechanical and electro-

dynamic laws, in which the sign of the time factor plays
no part. We can make progress here only by introducing
a special idea entirely new in principle, an idea which was

first introduced, into science for a definite purpose and with

conscious intention by L. Boltzmann.

A hint of the direction in which we have to strike out

is furnished by the train of ideas used in deriving the

second law. To give ourselves a clearer view we there

( 39) assigned to every given state of a physical system
a certain

"
thermodynamic probability

"
or a certain

"
thermodynamic weight

"
in a certain sense, and we

found quite generally ( 47) that the entropy of the system
is a measure of this thermodynamic probability. The

question which we now propose to deal with is this :

how is it possible to explain from the point of view of

mechanics and electrodynamics that different states of a

system have different- thermodynamic weights ?

An answer to this question is possible only by first

obtaining a closer insight into the nature of physical

systems To accomplish this it is necessary to introduce

a higher order of refinement into our considerations.

Hence, besides the point of view hitherto used, which was
founded on thermal measurements and which we shall call

the macroscopic view, we shall make use of a finer, micro-

scopic, point of view of which we assume that it will force

itself upon us whenever we wish to analyse the physical

system in question in far greater detail than has hitherto

been done. In the macroscopic view the state of a system
is determined by its temperature, its density, the number
of moles of all kinds, the intensities of radiation in all

directions, colours and states of polarization. In the

microscopic view all these quantities disappear as self-

dependent concepts ; the only meaning they retain is that

of quantities denoting certain mean values. The homo-

geneity of a body resolves itself into an irregular hurly-

burly of an immense number of extremely small electrically

charged particles moving with great speed among
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themselves; in place of the moles, whose weight is

standardized by convention ( 16), we now have perfectly
definite molecules', in place of a heat ray of definite

intensity we have an electromagnetic wave with an

intensity which varies in a definite way with the time.

The importance of the microscopic point of view,

according to this, consists primarily in the fact that, by
adopting it, we deprive heat entirely of its position as an

independent concept and apparently reduce it to

mechanical and electrodynamic concepts, or, as we may
briefly say, to dynamic concepts. This signifies a funda-

mental step forwards in unifying the physical picture of

the world. Henceforth heat forms a part of dynamics,
and so all the laws that hold in the latter will now also

come into force for the former.

116. However revolutionary in principle the intro-

duction of the dynamical or microscopic point of view may
be in the theory of heat, it seems at first sight to be of no

practical advantage and doubts even arise as to whether

it is permissible.
For in dynamics the course of every event in time is

uniquely determined according to well-known laws by the

initial state of the system under consideration. That is

the most that can be expected of any theory. But when

applied to thermal phenomena +>" direct method fails

completely for the microscopic point of view because the

initial state of . thermal system is never known in the

microscopic sense. All that we can control, that is,

measure, are only macroscopic quantities, and there are

far too few of them to allow the corresponding microscopic

quantities to be deduced. We can only say that for a

particular value of a macroscopic quantity, for example,
the density or the intensity of radiation, there is an

enormous number of values of the corresponding micro-

scopic quantities, namely the positions of the individual

molecules or the field intensities of the electromagnetic
waves which are compatible with the given value of the

macroscopic quantity. Or, expressing this more shortly
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and more generally, we may say that a definite macroscopic
state of a system admits of an enormous number of

microscopic states. And, since the course of the event

in time depends on the initial state, it will by no

means be determined by the macroscopic state, since

very many different events may follow from a given

macroscopic state. We might, therefore, easily be led to

surmise that the progress promised by the dynamic view is

illusory. For apart from the fact that we can neither

calculate nor experimentally control microscopic events

we are even compelled to expect that an initial state which

is defined macroscopically with absolute precision is not

of necessity followed by another definite macroscopic
event and this is in striking contradiction to all our

experimental knowledge.
To arrive at definite and precise results in spite of the

uncertainty mentioned we make use of the following

expedient. We eliminate the uncertainty which is

contained in the fact that a very great number of micro-

scopic states belong to a given macroscopic state by
allowing the event to be repeated very many times,

namely, by starting out always from the same macro-

scopic state of the system and investigating how the event

takes place each time. We shall then obtain many
different events, depending on the kind and the number of

different microscopic states possible under the assumed
conditions But if we now form the mean of all these

results we may hope to amve at perfectly definite laws

These laws will then have only a statistical or probability

character, but they can be formulated no less exactly
than any other law of dynamics. A simple example of a

statistical law, which claims to be absolutely accurate,
will illustrate this. If an ordinary die, symmetrically
constructed as a cube, is thrown only once, the throw is

fully mdeterminate. But if we repeat the throw

sufficiently often and take the average by dividing the

total number of points (" spots ") thrown by the number
of throws, we get the result 3-5 to any degree of accuracy.
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We see that in this case too we are dealing with a strict

law, but one of a totally different kind from those of

dynamics. We may therefore call it a statistical law and
contrast it with dynamical laws. Statistical laws deal

not with individual cases but only with mean values.

And whereas in the domain of the microscopic view, that

is, in mechanics and electrodynamics, the dynamical laws

hold sway, the macroscopic view and with it the whole

theory of heat leads to statistical or probability laws.

We see immediately that the practical importance of

these statistical laws must not be rated lower than that

of dynamical laws if we consider that a physicist never

performs an experiment once but always repeats it

several times and often a very great number of tunes.

117 By introducing the microscopic point of view we
are enabled to answer the question as to the nature of

entropy and to examine more closely the concept of

thermodynamic probability. It does not, indeed, give us

a direct answer to the question ; for this we further require
a special hypothesis But it furnishea us with a frame

within which such a hypothesis can find a place. For it

now suggests itself to us very simply and naturally to

bring the thermodynamic probability of a state which is

denned by macroscopic thermal data into relationship

with the number of microscopic states compatible with

this state. In dynamics the concept of probability plays
no part or, as we may say, att microscopic states are equally

probable in dynamics. Since the probability of a result

is given quite generally by the number of equally probable
states that produce the result, it suggests itself to us to

define the probability of a macroscopic state by means of

the number of microscopic states that belong to it. In

so-called classical theory the question as to what is meant
when we speak of a definite number of microscopic states

as belonging to a definite macroscopic state can be

answered in only a restricted and relative sense For in

classical theory the totality of microscopic states forms a

continuum, a continuously extended manifold.
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In view of this we shall immediately express the hypo-
thesis in its most definite and most far-reaching form, a

form which goes considerably beyond the classical theory
and has shown itself to be superior in competition with it.

It runs : ike totality of microscopic states forms a discrete

manifold. Every macroscopic state of a physical system

comprises a perfectly definite number of microscopic states

of the system, and this number represents the thermodynamic

probability or the statistical weight G of the macroscopic
state. It is a measure of the entropy 8 of the system in

the corresponding macroscopic state, thus .

S=f(G) (368)

where / denotes a universal function of a single argument.
One objection against this relationship suggests itself

at once, namely that the entropy S is continuously
variable whereas the statistical weight G, being a whole

number, varies discontinuously This difficulty can be

overcome only by assuming G to be enormously great,

so great that a change of one unit in G influences / to only
a vanishingly small degree. This condition of course

fundamentally limits the region in which the macroscopic

thermodynamical point of view is applicable. If the

number of microscopic variables is so small tliat only a

moderately large number results for the statistical weight
G, thermodynamics loses its meaning. But this agrees

perfectly with what we found earlier, namely that we can

speak neither in the case of absolutely plane waves ( 95)
nor in that of absolutely monochromatic waves

( 97) of

a finite specific intensity of radiation nor, therefore, of a
finite temperature of the radiation; no more than we
can speak of a temperature or entropy when we have only
a few molecules. We cannot, however, fix a definite

minimum value for G or a definite limit within which the

thermodynamic point of view ceases to hold. We can

only say that the relations that follow from (368) hold the
more accurately the greater the value of G In all our
future considerations we shall assume G to be sufficiently
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great so that we can treat it as a continuously variable

quantity.
118. The form of the universal function / in (368)

comes out directly if we consider how, in the case of two

mutually independent systems (1) and (2), the entropy on

the one hand and the statistical weight of the total system

(12) on the other are built up from the properties of the

individual systems. For in the first place we have, by
47:

SM =#! +
,,

. . . . (369)

Secondly, since every microscopic state of the one system
can be combined with every microscopic state of the other

system :

#12 = #! #2 ..... (370)

If we now write the relation (368) both for the total

system (12) as well as for each of the separate systems (1)

and (2), and substitute the values for Slz , $! and Sz in

(369), we get, taking into account (370) :

/(i0a)=/(ai) +/(#*) - . - (371)

Differentiating with respect to G: we get :

and differentiating, further, with respect to

=
or:

The general integral of this differential equation of the

second order is :

Hence, by (371) :

k' =
and by (368) : .... (372)

which expresses the entropy quite generally in terms only
of the statistical weight or the thermodynamic probability.

The logarithmic relationship between entropy and



228 THEORY OF HEAT CHAP

probability was first disclosed by L Boltzmann. But
the equation (372) differs in two essential points from that

of Boltzmann.

Firstly the universal factor k is missing in Boltzmann's

expression; this is because Boltzmann never calculated

with molecules but only with moles and it therefore never

occurred to him to introduce auch a factor. Secondly,
and this is a much more significant point, in Boltzmann's
classical statistics a factor of proportionality remains

completely indefinite in the value of the quantity here

denoted by G '
this causes the value of the entropy to

contain an undetermined additive constant. For Boltz-

mann regarded the counting up of the microscopic states

belonging to a definite macroscopic state only as an
arithmetical device of a certain arbitrary character.

In contrast with this the value of the entropy here has,

according to (372) a perfectly definite, absolute, and,
indeed, positive value. This is a theorem of fundamental

importance which goes beyond the classical theory.
From it we obtain, as will be shown, the law of energy
distribution in the normal spectrum for radiant heat and
also Nernst's Heat Theorem for the, heat content in bodies :

both these consequences are foreign to the classical theory.

Comparison with experimental measurements then also

yields the numerical value of the constant k. At the

present point we can state only the order of magnitude of

k. For since G is enormously great ( 117) and S has
moderate values in the usual units, k, measured in calories

and degrees centigrade, will have a very small value.

119. Although the fundamental relation (372)
furnishes a method of expressing the whole thermo-

dynamic behaviour of a system in terms of its microscopic
structure we have not yet, of course, solved the problem
by merely establishing the relation. For we have yet
to calculate the number G for any case that may present
itself

; this problem has been solved completely for only
a few systems of simple type. But before we proceed to
the applications we shall make a few remarks on the
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physical meaning of the whole theory, which will lead to

remarkable consequences and will at the same time

furnish the means of testing the validity of the theory

experimentally.
The starting point of our discussion was the statement

( 117) that all microscopic states are equally probable.

If we enquire into the physical meaning of this statement

the only possible reply surely appears to be this : the

probability of finding a physical system, which is subject

to definite fixed macroscopic conditions, in a definite

microscopic state at any time, is equally great for all the

microscopic states possible under the given conditions.

From this it necessarily follows that in the course of time

the system really passes through all the microscopic
states corresponding to its macroscopic conditions. If,

for example, we have a body enclosed in an envelope

impermeable to heat, it will in the course of time assume
all the microscopic states that are possible at constant

volume and for a constant value of the energy. This is

usually known as the "
ergodic hypothesis

"
(Ergoden-

hypotkese)

At first sight this appears to be an amazing and un-

acceptable statement. For the microscopic states in the

case in question include not only those corresponding
to the macroscopic thern-jdynamic state of equilibrium
but also those which belong to all the other macroscopic

states, provided only that the volume and the energy
are the same. In other words, the body exhibitsabehaviour

totally in disagreement with the thermodynamic laws.

There is no question of the state of equilibrium being in

any sense a state of rest. Even if the body should once

find itself in a state of uniform density and uniform

temperature it will subsequently change this state of

itself; differences of density and temperature will arise

spontaneously, to such an extent, in fact, that ultimately

every possible deviation from thermodynamic equilibrium
will be realised as often as we like. This appears to

contradict flatly the demands of the second law.
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Nevertheless this contradiction can be disposed of.

For quantitative tests will not only show that it is ground-

less but will also lead further to positive deductions which

are directly confirmed by experiment and, therefore, lend

valuable support to the theory.

If thermodynamio equilibrium is not a static but a

statistical equilibrium about which fluctuations of every
kind occur we are led to enquire particularly to what

extent and how often these fluctuations occur. An
answer to this is clearly given by the theorem that the

mathematical probability for the occurrence of any

macroscopic state is represented by a fraction, whose

numerator is the statistical weight of the macroscopic
state and whose denominator is the sum of the statistical

weights of all the macroscopic states that are at all possible
under the given conditions. The probability is greatest
forthestate of thermodynamic equilibrium, sincemaximum
entropy corresponds to it. Let its statistical weight be

Gm . Then the ratio of the probability of any state to

the probability of the equilibrium state is as G is to Gn ;

and this quotient gives a quantitative measure for the

frequency of occurrence of the corresponding deviation

from equilibrium. Using (372) we obtain for its values :

a a - s*

where Sm denotes the maximum value of the entropy.
If we set :

# - & = A# . . . . (373)

then A$ is negative, and we get :

This is a proper fraction, as it should be. This relation

allows us to calculate the relative frequency with which
each deviation from equilibrium occurs. Now we have
seen that the constant k has a very small value, hence for
a moderate value of AS the quotient (374) will come out



i. FLUCTUATIONS 231

extremely small, that is, an appreciable deviation from

equilibrium is extremely rare. If the deviation is to

occur more frequently then A$ must be of the order of

magnitude of k, that is, the fluctuations about the state

of thennodynamic equilibrium must have an exceedingly
small amplitude.

120. Let us carry our argument a little further by
treating a specially simple case, say that of an ideal gas.

Let the number of moles n, the energy U and the volume
7 be given. Then in the state of equilibrium the gas has

uniform density and uniform temperature throughout its

volume. Let us now consider a part of the gas containing
7T

n^ moles which has the energy Uj_
= -^ and the volume

n V
V-i
= -1 in the state of equilibrium and let us enquire

71

into the frequency with which small deviations At^ and

AFj from the normal values occur. Since the total

energy U and the total volume 7 of the gas remain

constant, we have :

-Ol
m m . (376)=

JA7X + A7a

where the number of the remaining moles is nz ,
their

energy Z72 and their volume 72 . Also, the change of

entropy :

= #! + ,

corresponding to the fluctuation will be, if we disregard

vanishingly small terms :
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where the bracketed quantities all refer to the state of

equilibrium.
If we now apply the known relations .

and also take (375) into account, the last equation

simplifies to :

A*. l (1+ iW* ^foi + ^V 1
I

1

^-"^TH^-^;^ 1 2F2 W "

If, further, we assume 7ia to be great compared with n

the terms in vanish, and introducing the molar volume
HZ

v=- and omitting the index 1, we obtain .6

If we substitute this value in (374) we have the probability
that an ideal gas in thermal equilibrium, consisting of n
moles at the temperature T and molar volume v and
forming part of a much greater quantity of gas, deviates

by the amounts AC7 and AF from the normal values of the

energy and volume. Or in other words, the fluctuations

of the energy and the volume about the values for thermo-

dynamic equilibrium for such a gas are of the order of

magnitude :

AC7 - V2c*T*nk .... (377)

. . . (378)

Since, as we shall see later ( 141), the universal constant k

when given in ergs is of the order 10~16 and hence of the

order lO-^in calories,the fluctuations AUandAV ordinarily
have extremely small values

But we can go a step further. If by integrating the

exponential function (374) with respect to ACT" and AF
between Infinitely great positive and negative values of
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these variables we form the sum of the probabilities of all

the deviations from the values in the equilibrium state

taken together we again obtain in general a small value ;

that is, the probability for any deviation from the equili-

brium state is appreciable, under ordinary circumstances,

only for very small deviations, or the. statistical weight of

the state of thermodynamic equilibrium is very great compared
with the statistical weight of all the possible states taken

together.

It is clear from this statement that under ordinary
circumstances every kind of fluctuations about this state

of thermodynamic equilibrium are quite inaccessible to

measurement. The position is different, however, in

extreme cases At high temperatures T and when the

volume v of the moles is very great, that is, when the

dilution is great, the fluctuations must become appreciable ;

if, however, the number n of moles increases then,

although the fluctuations of the energy U and of the

volume V increase, the fluctuations of the energy u referred

to a mole and of the volume v of a mole decrease.

Various experimental methods have been devised to

produce the actual conditions under which the deviations

of a physical system from the state of equilibrium can be

made manifest; in each case the fluctuations have been

found to be of the amount calculated. Hence the im-

portant result follows that the statistical theory of thermo-

dynamic equilibrium is not only compatible with experi-

mental results but is indeed demanded by it.

121. It is obvious that in the light of the point of

view here developed the second law of thermodynamics

acquires a fundamentally different character. The

entropy of a physical system completely isolated from its

surroundings can also decrease and will, indeed, decrease

if we wait long enough. But what then remains of the

second law? Its physical meaning is that any given
state of a system is followed by a still more probable
state or a state of still greater statistical weight not, it is

true, of necessity, but still, in most cases. As we have
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already seen in 116 we can escape from the unsatis-

factory feature contained in this mode of formulation by
adding the words

"
in the mean." With this qualification,

which is of no importance whatsoever in ordinary practice

and which does justice to the actual facts, the law of the

increase of entropy again holds with absolute accuracy.



CHAPTER H

GROUP OP SIMILAR SYSTEMS. SUM OF
STATES. DEGENERATE SYSTEMS

122. A OAIAJULATIOTS of the entropyof a physical system
can be effected on the basis of equation (372) for the case

when the system consists of a group of systems entirely

alike but completely isolated from one another
',
we shall

call each of the component systems an "
elementary

system." Eor in this case we can directly specify the

statistical weight G of a definite macroscopic state

According to our assumption ( 117) each of these ele-

mentary systems which we regard, for example, as a kind

of oscillators, can have discrete series of states, whose

energies (positive) we shall denote in their order of

magnitude as :

Just as a definite amount of energy corresponds to each

individual state let a definite state correspond to each

individual amount of energy. Suppose JV"such elementary

systems are present in all. Let us fix our attention on a
definite macroscopic state of the system having an amount
of energy E and let this state be characterized by the

number of elementary systems which have each a definite

energy, or, as we may say, by the way in which the total

energy E is distributed over the individual elementary
systems. If we denote the number of elementary
systems that have the energy e by JVn then the numbers
NQ, Nv Nz . . . Nn . . ., represent the way in which
the energy has been distributed or the law of distribution

235
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of the energy. Let this law define the macroscopic state

of the total system. The following relations then hold .

NO + N! + Nz + . . . =N . . (379)

We next enquire into the statistical weight G of a definite

macroscopic state which is to be regarded as given, that

is, into the number of microscopic states of the total

system which are possible for the distribution law given

by the numbersN , N^, Nz . ... In general a macroscopic
state will comprise very many microscopic states. For,

knowing the number of elementary systems which have
a definite energy does not mean that we also know
which systems have this energy. Rather, if we exchange
the energies of any two elementary systems we get a new
allowable microscopic state for each exchange. We can

obtain a concrete picture of a definite microscopic state by
means of an array of figures thus . number the elementary

systems from 1 to N, write these numbers in a row and
write below each number the amount of energy which the

corresponding elementary system has in the microscopic
state in question. Thus forN = 10, that is, ten elementary
systems . 123456789 10

64 Q z Q Z 6g ^ 63 6j 63

This microscopic state belongs to the macroscopic state

which is characterized by the law of distribution of energy

Nn = 2 Ni = 1 AT = 4 N 1 AT 2* 3 1 ' *2 J -"fl A
5 * ' 4

But the same macroscopic state still contains many other

microscopic states, namely just as many as there are

permutations of these quantities in the second row. All

together these come to :

aiiui'mi
= 3780

microscopic states.
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By generahzing this calculation appropriately we get

immediately for the desired statistical -weight of the given

macroscopic state :g-' (381 >

123. We shall assume now and everywhere in the

sequel that the number of elementary systems N is

enormously great, so great, indeed, that not only the N
in the numerator of the expression (381) but also the

great majority of the Nn'a in the denominator hare a very

great value. Without introducing an appreciable error

we can then neglect those factors in the denominator, in

which Nn are smaller numbers and we then have to do

only with the terms formed of large Nn's. This assump-
tion gives us the mathematical advantage that we can

regard the NnB as continuously variable, since a change of

one unit in a large number is vanishmgly small compared
with the number itself . Formally the factorialN although

actually an integer can be replaced by a continuous

function of N. For this purpose we first take the

logarithm n-N N
logN I = 2 log n = log n , Aw

n-l

In the sum on the right the terms with rather small values

of n play only a subordinate part ; and in the terms with

the greater values for n we may replace A?!, by dn.

Hence we have :

fir

logN I
=

/ log n . dn 4-

So:

The dots are to indicate a small correction term.

Accordingly we may write :

/Ar\JN I = (-) .f(N) .... (382)
\ 6 /
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wheref(N) is now at any rate of a lower order of magnitude
than the power term preceding it. We shall calculate

f(N) only for the limit N > oo . To do this we start out

from the infinite product :

And for x = :

or:

TT 1.3 3.5 5.7
2'2.2'4.4'6.6

' ' '

This is known as Wallis's equation and may be written

in the form :

LU.I"
"^ r>

'
~ri & ' ' ' /c\-\r TV /n~\T ', ~\

==
S"

*
'

1.3.5. . . . (2N - 1)

*

1.2.3.4. . . .

or, more briefly :

and hence, substituting from (382) .

/A7\2^
!*.-.

(f) /-(

This simpMes to
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This functional equation is satisfied by the assumption :

/(#) =<x.JP . . . (385)
For it gives :

.

from which :

Hence by (385) :

f(N) =
and by (382) :

. . (386)

This is Stirling's formula except that a factor has been

neglected which becomes unity when N tends to infinity.
If we substitute the value (386) in the expression (381)

for the statistical weight of a macroscopic state given by
the numbers NQ, NI} Nz . .

, we get :

a , ,

p (Ntf* (Ntf*

Factors have been neglected here which on account of

their small order of magnitude make no appreciable
difference. If we substitute for the index N from (379)
we get : "--

<387>

or, written in a more convenient form :

log=> -N^SwnlogWn . . . (388)=
where :

i*-^ ..... (389)

denotes the so-called distribution number, which expresses
the fraction of the elementary systems which has the
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energy e in the macroscopic state assumed for the whole

system. By (379) and (380) the distribution numbers
fulfil the conditions :

Swn = 1 . . . . (390)
o

and.
E

ZWn =
TIT
= ? '

(391 )"

where i denotes the mean energy of an elementary system.
124. The different macroscopic states which are

possible for a definite value E of the energy of the total

system will have very different statistical weights G and

among them there will be one which has the greatest
statistical weight. To determine it is a simple problem
in the calculus of variations. Keeping N and E constant

we vary all the distribution numbers by an infinitely small

amount and seek out that distribution for which S#
vanishes. From (388) we get for this :

= Q . . . (392)

in which, by (390) and (391) the conditions :

= and Sur&Wn =
hold.

Eliminating by means of Lagrange's undetermined

multipliers (I, 97), we get :

log wn + A + pen =
or:

wn = a.e-fo* ..... (393)

as the distribution which has the greatest statistical

weight The constants a and
(3

are both positive; the
former because wn is positive, the latter because wn

cannot become infinite when en increases. Their values

may be obtained from equations (390) and 391). From
(390) :
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and hence by (393) :

and then we get (3
from (391) :

< - E
(395)

This is a transcendental equation in
(3.

Hence it is often

more convenient to regard, not E, but
(3
as the independent

parameter.
The value of the maximum of G is then obtained by

substituting (393) in (388) :

log G = - N2wn(log a
-

fa) ^= -
#(log a - J3e) I . (396)

= NlogZe-f
i>* + pE J

Before we enter into the physical meaning of the energy
distribution (393) that we have found we shall first

briefly consider the type of maximum for log G represented

by it. For this purpose we shall calculate the change in

the value (388) of log G for any finite small variations A
of the distribution numbers wn . Thus :

A log G = - NS(wn -f Aw;,,) log (wn + Ak) + NHwn log W*

XT i / , A \ i ,
A"'* l/AwA 2

.

Now, since log (wn + Ato) = log Wn + --
l J

' m
wn *> ^ Wn '

which we have neglected the smaller terms, it follows that

the deviation of the statistical weight from its maximum
value is :

? . . . (397)

and this is in fact always negative. But we also see that

even when the Aiw's are small the deviation can become

very great ; this is always so when the AWs exceed the

order of magnitude
~' From this it follows a fortiori
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that for finite variations of the AWs the change in log G
assumes great values. In other words, the maximum of

the statistical weight is very steep and very pronounced,
and accordingly the energy distribution that corresponds

to it is distinguished by being particularly sharp.

125. Before proceeding to use the calculated statistical

weight G of a given macroscopic state of our system in order

to find its entropy and so to give it a thermodynamical

meaning, we have first to fulfil an essential preliminary
condition. We must do away with the assumption made
in 122 that the elementary configurations of which the

system m question is composed are completely isolated

from one another For, as we see from the discussion

in the preceding chapter, the statistical interpretation of

the second law has a meaning only if the different micro-

scopic states of a system can become interchanged in the

course of tune. But in the case where the elementary con-

figurations are all isolated from one another each retains

its energy unchanged for all time and a microscopic state

that once exists continues without cessation . We are there-

forecompellednow to introduce an exchange of energy even
if it be only small and quite irregular, or, to use the technical

expression, we mtroduce a very loose coupling between
the elementary systems This loose coupling is to serve

the sole purpose of allowing an elementary system here

and there to change its state even if it occur only arbitrarily

rarely. Then, on account of the interactions between the

individual elementary systems, different microscopic states

of the total configuration can relieve one another, and since

all the microscopic states occur equally often, that micro-

scopic state which occurs most often will be that to which
the greatest number of microscopic states, that is, the

greatest statistical weight, corresponds Hence this state

represents the state of thermodynamic equilibrium or of

maximum entropy. On account of the steepness of the
maximum (see end of 124) the fluctuations of the

entropy about the maxunum value will always be very
small and may be neglected if the N'a are sufficiently
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great. By (372) and (396) the maximum value itself

comes out as :

S ^NklogZe-P**-}- fikE . . (398)

The temperature of the configuration is then also deter-

mined by the entropy.
To enable us to picture the state of affairs more easily

we may imagine the coupling between the elementary

configurations to be realized by placing them all in a

common bath having the temperature of the whole system,
and we shall suppose this bath to consist of a highly
rarefied gas We must of course bear m mind that by
introducing a heat-bath as a means of communication
between the elementary configurations the assumptions
under which the results of the preceding section were

deduced undergo a slight change For the energy E of

the whole system is no longer constant in time as now

energy can be transferred to the heat-bath Since, how-

ever, the relative fluctuations of energy in a gas contain-

ing a great number of moles are extremely small, as our

calculation in 120 shows, we may regard the equations

(395) and (398), by which the entropy S is determined as a

function of the energy in the state of thermodynamic

equilibrium, as valid to an appreciable degree of accuracy.

It is important to remark that the substance and the

constitution of the heat-bath used can exert no influence

on the nature of the thermodynamic equilibrium. For if

two different heat-baths have the same temperature then,

by 3, a body which is in thermal equihbrium with one

of these heat baths will also be in equilibrium with the

other. Hence we can speak of the entropy and hence also

of the temperature of the configuration in question with-

out referring to a heat-bath at all, this is actually ex-

pressed in equation (398).

The temperature T of the configuration and

simultaneously the temperature of every heat-bath in

equilibnum with the configuration are obtained from the

entropy S by means of the general thermodynamic
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relation (106) between the entropy 8 and the energy E
(called U in the equation) in the case of a configuration

isolated from its surroundings :

1 = ^ ..... (398a)T dE
'

Since 8 cannot be expressed explicitly in terms of E, but

only by way of the parameter (3
we write :

_
T~ dpi dp

and determine the numerator of this quotient by (398) and

the denominator by (395). Calculation gives :

(399)

which closely relates the parameter (3
with the temper-

ature T. So the equations (395) and (398) become .

S - 2K = N.- . . (400)

2e~
and:

ft
. . - (401)

If we compare these equations with the general thermo-

dynamic relations (112) and (126) we obtain the expressions
for the characteristic function of the configuration :

y= NJc log Se~ = N$ . (402)

and for the free energy :

F = - NkT log Se~
l

"

f
. (403)

As we see, all these functions and hence the whole thermo-

dynamic behaviour of the configuration in question are

essentially conditioned by the value of the sum :

Z*~ =2 ..... (404)
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which is therefore called the
" sum of the states

"
of an

elementary system or configuration.

We also write down here, for later use, the general
relations (114) and (128a) :

E=ST
*ffi

(
405

^

and:

O jm = -T + J.

-jjjjrrj

'

(4UO)

which can easily be verified by means" of the above

expressions.
126. We shall now consider more closely the physical

properties of the statistical thermal equilibrium that has

been found. The distribution number corresponding to a

definite amount of energy en of an elementary configuration

is, by (394) and (399) :

_*2L

Wn=*^~ (407)
*JI

27e **

It represents the mathematical probability that any

arbitrarily chosen elementary configuration should have

the energy en. Hence the smallest energy e is most

frequently represented ; this is followed by the increasingly

greater amounts of energy e1} e2 . . ., which occur less

and less frequently.
But we may also give the distribution numbers w

another meaning. For since the elementary systems are

all of the same kind, they also pass through the same

changes of state in time, and these changes of state taken

togethercondition thevarious microscopic states of thetotal

configuration. According to this view wn in (407)

simultaneously denotes the probability that, when we
consider the changes which a definite individual elementary

system undergoes in the course of time, the energy e

should occur at an arbitrarily chosen point of time. In

considering the time changes of state of an individual

elementary system we must of course regard them as
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caused by the action of the heat-bath since this is the only

body that affects the elementary system. Otherwise the

temperature would not be defined at all.

So we see that the energy of an individual elementary

system, which is in a heat-bath of temperature T but otherwise

completely heat-insulated performs quite definite fluctuations

as represented by (407); these fluctuations depend only
on the temperature and not on the nature of the heat-bath.

Since the mean energy e will in general differ considerably
from the most frequently occurring energy ,

the difference

of the momentary energy en from the mean energy e will

as a rule be very appreciable, being sometimes negative
and sometimes positive. To obtain a quantitative
measure of these deviations from the mean value, which

are also denoted by the terms
"
scattering

"
or

"
dis-

persion," we cannot of course simply form the mean value

of the difference en e ; for its value is zero. But we
arrive at a serviceable measure of the scattering if we
form the mean value of the square of the difference

(en e)
2

; this is called the
" mean square fluctuation." If

this quantity is very small any appreciable deviations from
the mean value will occur only rarely. To make the value

of the mean square fluctuation independent of the units

chosen we form the
"
relative

" mean square fluctuation :

. . . (408)

The numerator of this expression is :

Hence : _
A = p

- 1 (409)

Whereas the mean energy e is obtained by (400) directly
from the total energy E the mean square energy :

n
. . (410)

Se **
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may be derived from (400) by differentiating with respect
to the temperature. For if we perform this differentiation

and simplify we get :

dE _ N ,-5 _
9X

dT~

and so, taking into account (409) :

This enables us to state the value of the relative mean

square fluctuation as soon as we have calculated by (400)

how the mean energy e depends on the temperature T.

To do this we must of course know the energy values en

of the elementary system, concerning which we have
made no assumptions at all so far. But we may take this

opportunity of giving as a striking example of the energy
fluctuations of an individual elementary system in a heat-

bath the motion of a fine particle of dust suspended in a

liquid ; this is the so-called
" Brownian movement "

which is the more vigorous the smaller the particle,

because for a definite energy-fluctuation of a moving
point-mass the fluctuation of velocity increases as the mass
decreases.

127. Hitherto we have assumed in our elementary

system that there is a perfectly definite microscopic state

of the system corresponding to every possible quantity of

energy en of it. This will be so only in the case of systems of

quite simple construction. In general, however, and

particularly when the elementary system has a rather

large number of degrees of freedom, we shall also have

to take into consideration the case where every possible

amount of energy en has "several or even many different

microscopic states of the configuration belonging to it. In

such a case we call the configuration
"
degenerate." The

question now is how can the laws which have so far been

found to be valid for a group of elementary systems of

exactly the same kind be generalized for the cases where
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the elementary systems are degenerate to a greater or a

lesser degree. This question can be answered by the

simple procedure of passing to the limit. For since we
have made no assumptions about tlie quantities e of

energy nothing prevents us from assuming the elementary

system at present non-degenerate to be such that the

possible energies accumulate in groups in the immediate

neighbourhood of certain favoured values
; we may, then,

without introducing an appreciable error, comprise all

terms that belong to such a group in a single term :

in the sum of the states as expressed by (404). Here <

denotes the energy at the point of accumulation, gn the

number of microscopic states that constitute the group.
The sum of the states then runs :

Z = Zgne~^ . ... (412)

and, by (402), the characteristic function is :

Y=Nklo%Z = Nf. . . . (413)

Hence by (405) the energy is :

. . . (414)

Now if the energies of a group draw together more and
more closely the configuration finally merges into a de-

generate system with gn microscopic states corresponding to

every possible amount of energy cn . This number gn is

called the statistical weight of the energy e or the degree
of degeneracy. The introduction of the statistical weight
gn in the expression for the sum of the states thus makes
all the previous laws valid also for a family of degenerate
systems.
A very important consequence follows on this generaliza-

tion. For let us again consider an individual elementary
configuration in a heat-bath of temperature T and let
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us investigate the fluctuations which its energy undergoes.

According to (407) these may be represented by the

distribution number :

^=-^l . (415)

So long as gn was equal to 1 we had to conclude that the

smallest amount of energy e occurred most frequently.
The position is, however, now altered. For if the ele-

mentary configuration is degenerate, as, for example,
when it contains many degrees of freedom by consisting,

say, of many oscillators, the statistical weight gn with the

ordinal number n will rapidly increase, since a greater
amount of energy en will be able to distribute itself over

the different degrees of freedom in many more different

ways than a smaller amount of energy. Thus as n
increases the numerator of (415) will also at first increase

,

but later, when the en's become sufficiently great, it will

Rink to vanishingly small values on account of the

exponential function. The maximum of wn ,
the point

when the most frequent energy occurs, thus no longer
lies at e but is displaced towards e

;
that is, the energy

fluctuations are less than in the case of a non-degenerate

configuration.
A quantitative measure of the scattering is given by the

relative mean square fluctuation A, whose amount, also

for a non-degenerate elementary system, is again repre-

sented by the expression (411), as is easily seen by
differentiating the equation (414) with respect to T. The

greater the degree of degeneracy, the more the number of

degrees of freedom possessed by the elementary system,
and the greater the mean energy e of the system corre-

sponding to a definite temperature T of the heat-bath

will be, for the simple reason that the total energy of many
oscillators becomes infinite when their number becomes

rnfinitely large. From this it follows by (411) that the

value of A becomes vanishingly small for a highly de-
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generate elementary system, or that the distribution

number wn in (415), regarded as a function of eft, possesses

a narrow and steep maximum
In other words, an elementary system of many degrees of

freedom in a heat-bath of definite temperature T performs

only very small relative energy fluctuations, and the energy
that occurs most frequently coincides appreciably with the

mean energy ^. Hence an elementary system having

many degrees of freedom will have at every temperature a

perfectly definite energy e given by (414) ; and, of course,

conversely for every amount of energy there is a perfectly
definite temperature, so that we can speak of the temper-
ature of the elementary system in a definite sense without

referring to the temperature of the heat-bath

Now since we have made no hypothesis about the con-

stitution of an elementary system, there is nothing to

prevent our treating any body whatsoever so long as it is

not too small which has quite arbitrary macroscopic

properties, as an individual elementary system, and so

applying to it the equations (412) and (413). Now if

we indicate the occurrence of many degrees of freedom

by writing E for <F, G for g and W for
ifi, omitting the bars,

which have now become superfluous, the equations just
mentioned become :

_?
Z = ZGne . . . . (416)

. . . (417)

This equation determines how the function W depends on
the temperature T and so fixes the whole thennodynamic
behaviour of the system. It is completely equivalent to
the relation (372) by which the entropy 8 is determined
when the energy ]S is given. For by 55 W is the character-
istic function when the temperature T is the independent
variable, whereas when the energy E is the independent
variable the entropyS, by 54, represents the characteristic

function.

Just as by starting from (372) we arrive at (417) so,
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conversely, we can derive the relation (372) from (417),

the way being very direct. For if we reflect that in the

sum of the states (416), on account of the narrow and steep
maximum of the distribution numbers, all those terms are

inappreciable whose energy En deviates markedly from
the most frequent or mean value, we may write the mean
value of the energy E instead of En in all the terms that

come into question. The sum of the states then assumes

the form :

Z^G.e'**

where G now denotes the sum of the statistical weights of

all those states of the system in which the energy differs

only , slightly from E-. and in so far as they contribute

appreciably to the sum of the states . Hence the character-

istic function by (417) becomes :

If we compare this relation with the general thenno-

dynamic relation (112) in which the energy is denoted by
U, we get :

(418)

which has brought us back to the relation (372).

But there still remains an unsatisfactory discrepancy
which requires to be elucidated. It consists in the fact

that in (372) the quantity G refers to a perfectly definite

amount of energy E whereas in (418), as we expressly

remarked, G also includes those states whose energy
deviates slightly from E. This difficulty resolves itself

when we consider that in forming the quantity G in (372)

the energyE of the system is to be regarded as determinate

only in a macroscopic sense and that a value which has

been determined in this way still allows small deviations,

in complete analogy with the small fluctuations of energy
considered in 120. How far the deviations of the energy
from the macroscopically given value E may and must be

taken to include exactly all the states that contribute
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appreciably to the value of the statistical weight is

determined by the circumstance that an increase of the

deviation must produce no appreciable change in the value

of 0.

But an essential point must be noted here. In the

egression (417) of the characteristic function W the

summation formula is to be taken over all the energies

En of the system, from to <. As we have seen, the

sum of the states then involves only those terms whose

energy En differs but little from the mean value E. The

steepness of the maximum at the point En= E is caused

on the one side, En < E, by the first factor, : on the

other side, En > Et it is due to the second factor, the

exponential function. On the other hand, in the expression

(372) for the entropy $ the second factor is absent. Con-

sequently, in forming $ by means of (372), we may not

count microscopic states whose energy exceeds the

macroscopically given energy E in the upward direction,

whereas in the downward direction the deviation may be

as great as we please
In other words, the statistical weight which, must be

substituted in (372) to give the value of the entropy S of a

physical system of given energy E is appreciably equal to

the total numlber of microscopic states of the system whose

energy does not exceed the value E
At first sight it may seem strange that although all the

microscopic states with arbitrarily small amounts of

energy are used to form the total number G the value of

G yet essentially depends only on such states as have

energies that lie near the maximum energy ; that is, that
the number of all those microscopic states whose energy
is appreciably less than E is of no account compared with
the number of those whose energy lies near the value E.
We are tempted to surmise that a small increase in the

energy &E<^E would of necessity correspond to only a
small increase A6?<^6? of the number of all the micro-

scopic states that are possible between and E. A simple
example shows that this is not so. Let G= Ef. Then
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for a given AJ5 <^ E, no matter how small AJS? is, we can

always choose the number / to be so great that A6?=

The circumstances are exactly similar in our present
case. All we require to do is to assume the number of

degrees of freedom of the physical system under con-

sideration to be so great that contributions to the value of

the statistical weight calculated according to the above

rule are made only by those microscopic states whose

energies lie near the value of the energy of the system.
If this condition is incapable of fulfilment there is no

definite entropy at all corresponding to a definite energy
E of the system. And then we can speak of the temper-
ature of the system, too, only in the sense that if we place
it in a heat-bath of a definite temperature the energy of the

system undergoes the familiar more or less appreciable
fluctuations.

Numerical examples proving the validity of all these

laws may be obtained from the special applications given
in the next chapter.

128. To evaluate the sum of the states Zt it is often

more convenient to replace the expression (416) by another

in which we write down individually the microscopic
states that have a common energy En, thus :

Z = SGnfT** = Se~** . . . (419)n *

and:
En

'**
. . . . (420)

The index z is to denote that the summation is to be per-
formed not over the order numbers n of the energy but
over the individual states, so that every amount of energy
En is counted just as many times as there are states which
have this amount of energy. Thus the sum in (420)

simply includes all the microscopic states of the system,
from the smallest amount of energy to the greatest, and
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to perform the summation we may arrange the terms of

the sum in any order.

The equation (420) is considerably more general than

the equation (402), although it looks quite similar. ?or

it is valid for any system whatsoever of many degrees of

freedom, while (402) holds only for those which are com-

posed of N components which are independent of one

another frui are of the same kind. Since the latter is a

special case it is evident that the equation (402) can be

derived from (420) We show this in the foUowmg way.
If the system consists of a great number N of elementary

systems which are of the same kind but independent of

one another and non-degenerate, their energies being
assumed to be eQ , i} e2 , . . . en ,

.
3 then any possible

value of the whole system is given by :

en

wheretheindividualsumsreferto the individual elementary
systems, and so by (420) :

n _n . .

W = IclogXZS . . . e
--^-

n n' n"

Since there is a microscopic state corresponding to every
combination of the order numbers n, n', n" . . ., and

conversely, the summation must be performed over every
order number from to oo . The exponential function

resolves into a product of corresponding exponential
functions having one order number each. If we now
sum over the order number n, keeping all the other order

numbers fixed, we get the following sum, a constant factor

being disregarded :

And by continuing this process we get, since this sum is

the same for all the N kinds of order numbers .

which is identical with the equation (402).



CHAPTER in

CLASSICAL THEORY. LIOUVILLE'S
THEOREM. QUANTUM STATISTICS

129. THE laws which have been derived in the two

preceding chapters represent the methods which enable

us to determine the characteristic function and hence the

whole thermodynamic behaviour of a given physical

system. They prescribe the line of reasoning which must
be followed in. every statistical theory of heat. But to be
able to fill the form that has been obtained with content
we have yet to know the values En, which the energies of

the system can assume, as well as the corresponding
statistical weights Gn . This is the point where the
different statistical theories diverge, namely the theories

of Boltzmann and Gibbs, of Bose and Einstein, and of

Pauli, and Fermi and Dirac.

As an introduction to this complex of problems we find

it advantageous to start out from classical statistics not only
because it is the oldest but rather because it linfea up most

directly with classical mechanics and electrodynamics,
and also because it is necessary on the one hand to convince
oneself of its insufficiency and, on the other hand, to

establish the limits within which it is valid. Let us con-

sider any mechanical system completely isolated from its

surroundings and having / degrees of freedom, where / is

an arbitrarily great or small integer, then by the classical

theory the state of the system is determined by 2/

quantities, namely by the / general co-ordinates qlt

qZ) . . . qf and the / corresponding velocities q1} gz ,
. . .

qf (I, 124). The sum total of all the possible states of the
265
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system thus forms a continuously extended manifold of

2/-dunensions ( 117), which is most easily pictured by

considering a space of 2/-dimensions, called
"
phase-

space," whose rectangular co-ordinates are the quantities

q and q. Then for every point of the phase-space there is

a definite state of the system. Further, by the laws of

classical mechanics, the state at any particular moment of

time determines the whole motion, that is, the succession

of states for all subsequent times. This expresses itself

in phase-space in the fact that every phase-point traverses

a perfectly definite curve with a definite velocity. This

curve is called the "phase-orbit." Since the phase-

points fill the phase-space continuously all these motions

together present the picture of a flowing liquid, and the

stream is stationary because the velocity and the direction

of flow at every point of the phase-space are independent
of the time. Thus if we consider any arbitrary region of

the phase-space all the points of this region will move in a

definite way and so we may say that every region of the

phase-space displaces itself in a definite way in the course

of time and becomes deformed.

130 The problem with which we are now confronted

is as follows What mimbn1 of microscopic states of the

system is contained in a given region of phase-space 2

For by our definition ( 117) this number represents the

statistical weight or the thermodynamic probability of

the whole region.
In the first place it is clear that in this form of the

question the answer of the classical theory can only be
''

infinitely great." For by classical theory the micro-

scopic states and the phase-points corresponding to them
'orm a continuous manifold Hence it follows that the

ilassical theory can give only a relative and not an absolute

inswer to the question by fixing a more or less arbitrary
neasure for the unit of statistical weight. Now since

-he greater the number of microscopic states contained
n a given phase-region the more extended it is, we find it

.ppropriate to set the statistical weight of a given phase-
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region proportional to the extent or the
" volume "

of

this region, that is, to the quantity :

fdr,

where dr = dq^. dq2 . . . dq/ dqv dqz . . . dq/.

Accordingly, the statistical weight of this region is

. . . . (421)

where the factor of proportionality C denotes a certain

infinitely great universal constant, which remains in-

determinate and arbitrary.

Nevertheless this definition still suffers from a serious

fault. For if we apply it to calculate the statistical weight
of a definite region in phase-space the result comes out very

differently according to the choice of the co-ordinates q,

and a no less serious matter it changes its value in the

course of time corresponding to the deformation of the

region which was mentioned at the end of the preceding
section

;
this is incompatible with a general theorem of the

theory of probability, which demands that a state which

necessarily emerges from another state must also have the

same probability as the latter state.

A theorem proposed by Idouville offers an escape
from this difficulty. For if we use as the co-ordinates of

the phase-space besides the / generalized co-ordinates q
of the system the corresponding /momentum-co-ordinates

p (I, 128) in place of the velocities q, and if we define

as the element of volume of the phase-space the

differential :

dr = dg . dq% . . . dq/ . dp . dpz . . . dpf . . (422)

then the quantity G in (421) is, far a given region of the

phase-space, independent of both the choice of co-ordinates

q and the time.

We first prove the latter assertion. We proceed by
considering an extremely small region of phase-space at

the time t in the form of a 2/-dimensional rectangular
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parallelepiped whose edges are parallel to the co-ordinate

axes of the phase-space. The volume of this region is :

AT = A& Ag^ . . . Ap! Ap2

After the lapse of an infinitely small interval of time,

during which the co-ordinates of every phase-point have

changed by :

. . dpt
=

p-fit, dp2
=

all the phase-points belonging to the selected region again
form approximately a rectangular parallelepiped of size :

AT' = A( + qdt . A(2 +

where we neglect terms of vanishingly small order of

magnitude.
If we now reflect that in the preceding expression :

in which all the remaining co-ordinates are kept constant

during the differentiations, we get for the change of size of

thephase-region, disregardingvanishingly small quantities :

and, by the equations of motion (413) of 128, Vol. I, this

expression is equal to zero.

Thus an arbitrarily selected part of phase-space

Ar= dq-L . . dpi . . . . (423)

does not change in size if all points of the region move in

their phase-orbits in accordance with the equations of

dynamics. Hence our above model of a stationary flow

of liquid becomes further specialized by the condition

that the liquid must be incompressible.
131. Let us here interpolate an interesting consequence

of the last result which immediately suggests itself. If,
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starting from any arbitrary point of a phase-orbit, we
follow this orbit for a sufficiently long time we shall

ultimately arrive at the starting-point exactly or at least

to any desired degree of approximation, so long as we
assume that phase-space extends to infinity in no direction

whatsoever (Poincar6's Recursion Law, Wiederkehrsatz).

For since the flowing liquid is incompressible the space
traversed by the cross-section of a thin current-filament

(II, 61) will in the course of time exceed any arbitrary

quantity no matter how thin the filament may be chosen.

And if the volume of the whole of phase-space is finite

this can happen only if the current-filament either returns

exactly into itself the motion is then periodic or at

least meets itself again at some point.

132. We haveyet to prove that thevalue of the integral

(423) taken over a definite region of phase-space is in-

dependent of the choice of co-ordinates q. This may be

shown as follows If in place of the co-ordinates ql3

q2, . . . qf we introduce any other co-ordinates $lf

^2 ,
... fa where the co-ordinates

<f>
are functions of the

co-ordinates q then our object is to compare the quantity

(423), which we shall denote by Ar2 for the sake of clear-

ness, with the quantity :

. . dfa (424)

where the
rft's

are the momentum co-ordinates correspond-

ing to the co-ordinates
<f>,
and the contour of the integral

(424) corresponds with that of (423). We choose the

region ATC to be very small and hence also the region

AT>
If we now allow a comparatively long time to pass, say

from t to t', the region Arff
will have moved a considerable

distance from its original position and will be in a distant

part of phase-space. The region AT^ will likewise have
moved a long way from its original position. By Liou-

ville's Theorem we have that :

AT'JJ
= AT^ and AT' = AT .
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We shall next introduce a third kind of co-ordinates

!,
#2>

xf> which are also definite functions of the

co-ordinates q. But we shall choose these co-ordinates

in such a way that in the original portion of phase-space

they coincide with the co-ordinates q except for in-

appreciable deviations, whereas in the distant region of

the phase-space they coincide with the co-ordinates <.

There is nothing to prevent this choice since no restriction

has been imposed on the functional relationship between

the co-ordinates. Since the monlentum co-ordinates are

completely determined by the generalized space co-

ordinates for we are dealing with a perfectly definite

motion the same is true of the momentum co-ordinates

that belong to x. We therefore have

Arg
= Ara> and AT'^

= AT'*

But according to liouville's Theorem :

AT* = AT'*

and consequently, by the preceding relations :

which was to be proved.
133. After having justified, so far as is possible from

the point of view of classical theory, the definition of the

statistical weight Q of a definite region in phase-space by
means of the equation (421) in conjunction with the

expression (422) for dr we may use it directly in (418) to

calculate the entropy S for the case of a configuration

having many degrees of freedom. On account of taking
logs, an additive infinitely great universal constant log C
occurs which is indeterminate and hence remains arbitrary.
In classical theory the entropy therefore has no definite

value. But this does not make it impossible to draw
certain definite conclusions from the entropy in the
classical theory, since in differentiating the entropy the
indeterminate additive constant disappears. So its

presence is not in itself a reason for giving up the classical

theory. In the hands of L. Boltzmann it has, indeed, led
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to far-reaching consequences which agree, excellently

with experimental results. Nevertheless, among the

results of the classical theory we shall also become

acquainted with some that are violently opposed to the

results of experiment ( 139). It is this which has led to

the introduction of the quantum theory.

According to the quantum theory the statistical weight
G of a definite region of phase-space or the number of

microscopic states contained in this, region is a definite

finite number. This hypothesis leads to a totally new
view of the concept of a microscopic state. For in

classical theory a definite point in the phase-space is

assigned to each microscopic state.

But if, as in the quantum theory, an arbitrarily great

region of 2/-dimensional space is to contain a finite number
of microscopic states it is evident that to every individual

microscopic state there is assigned a ^/-dimensional region

of phase-space. The size of this region, which we may call

an "
elementary region

"
or

"
element

"
of the phase-

space, is obtained if we set G= 1 in (421), that is :

(426)

which is a relatively small but finite universal constant.

In general the statistical weight of a phase-region is then

equal to the number of elements included in the phase-

region.

We see that by these theorems the classical concept of

the "state" of a mechanical system becomesfundamentally

changed, or, we may say, blurred. In the quantum theory
the state comprises, not a single phase-point, but all the

points of a whole phase-orbit, and the phase-orbits, each

of which indicates a definite energy, form a discrete

manifold in the phase-space which can be counted. An
individual element of phase-space is 2/-dimensional ;

it

thus forms a
"
current-filament

"
of finite though small

cross-section, and the phase-orbits allowedby the quantum
theory form the boundary of the current-filament.
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However strange these deductions may sound, they have

nevertheless in many cases stood the test of experiment
and hence have led to radical changes in the theory
the complete explanation has only recently been given by
wave-mechanics

The following simple consideration is sufficient for our

purpose. The universal constant ^ in (425) has the

dimensions dr and hence, by (422), the dimensions of the

/th power of the product q.p. By I, 128, this product

q p has the dimensions of energy multiplied by time, that

is, of
"
action." Hence we set :

(426)

and we call the universal comtant h the
"
elementary

quantum of action." IVom this we get the following
value for the size of an element of volume of phase-

space :

= hf. . . (427)

where AT stands for the expression given in (422). And
the statistical weight of an arbitrarily great volume of

phase-space comes out, by (421), as :

*-/* ..... <428>

But it must be observed that this relation has a meaning
only if the phase-volume contains an integral number of

elements of volume. Since, however, the definition

(418) for the entropy holds only for systems having very
many degrees of freedom no essential limitation is im-

posed by the condition just stated.

134. Although by introducing the elementary

Quantum of action into thermodynamic statistics we have

diverged appreciablyfrom classical theory, there is nothing
to prevent our reverting to it at any moment We have

only to make Ji infinitely small to regain from (426) the
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constant C of the classical theory with all its properties.

This circumstance will be of frequent use to us in the sequel.

For it enables us by means of a simple mathematical

operation to write alongside every quantum formula

the corresponding classical formula and so to compare

directly any laws given by the classical theory with those

of the quantum theory.



CHAPTER IV

SIMPLY PERIODIC OSCILLATORS. ENERGY
DISTRIBUTION IN THE NORMAL SPECTRUM

135. IN applying the theory developed above to

special cases we have always the choice of two different

methods. We either calculate the entropy S as a function

3f the energy E by the formula (418), or we calculate the

sharacteristic function !f as a function of the temperature
T by the formula (420). Since both methods lead to the

jame result our choice must be guided by practical con-

siderations. We shall use the second method in the sequel,

'or two reasons. Firstly because the summation (420) can
be effected more conveniently than the calculation of

3 in (418), since the former applies to all the states of the

system whereas in the latter the boundary condition

tvhich corresponds to the given value of E must be taken
nto consideration. Secondly the temperature T is found
bo be more appropriate as the independent variable for

;he experimentally important consequences than the

mergy J8

We begin our calculations by considering a system
ivhich consists of a great number N of similar simply
Deriodic oscillators isolated from each other, each having
Dne degree of freedom in the sense of 122. The law of

notion of a simply periodic oscillator is expressed by the

'ollowing differential equation (I, 12) in the generalized
3O-ordinate of position q :

q + 47rV = (429)

inhere v is the vibration number, or by its integral .

q = a cos 2<m>t + (3
sin 2wt . . . (430)

a and
(3
denote the two integration constants.

264
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The energy is :

= 27r
1W(aa + p

2
)

. . . . (431)

where m denotes the mass, and the momentum co-ordinate

has the value :

" ' ' ' ' (432)

We have first of all to determine the discrete series of

the quantities e , c^ e2 . . ., the so-called proper-values
of the energy. The equation (427) serves for this purpose.
Since/= 1 here the phase-space is a plane, and the phase-
orbits or the

"
stream lines

"
or

"
lines of flow

"
( 129)

are the curves :

z>2
e = + 27r

2mv = const.

in the co-ordinates q and p.
These are similar and similarly situated ellipses having

the semi-axes :

a=V*i^ and b = J=- . (433)

Corresponding to every ellipse there is a definite amount
of energy. In classical theory every point of the phase-

plane represents a possible microscopic state of the

oscillator, but in the quantum theory we have, corre-

sponding to a microscopic state, a whole
"
current-

filament
"

of finite cross-section, namely the intermediate

space between two different ellipses; the area of this

space is, by (427), of amount h. Only the two boundaries
of the current-filament, say the ellipses with the energies
en and en- 1 have a physical meaning. Now since the area

of an ellipse is, by (433) :

<nab = -



266 THEORY OF HEAT OHAP.

it follows from (427) that the intermediate space is .

6n 6n-l ,= ti.

V

Likewise :

n-l ~ 6n -8 _ T

V

and so forth, down to :

By adding these equations we get :

en = 6o -f nhv ..... (434)

ffhia relation contains the law which governs the

quantising of a simply periodic oscillator. We shall leave

the value of the smallest amount of energy e < Jiv

undetermined for the present.

Since corresponding to every amount of energy en of the

oscillator there is a single microscopic state, the elementary

system is non-degenerate and so the relations deduced in

Chapter n hold for this case of a system composed of

a great number N of such oscillators of one and the same

type. In particular the sum of the states at the

temperature T is, by (404) and (434) :

_ !.
gj n oo nttv ip

. (435)_

and, by (402), the characteristic function of the whole

system is .

. . (436)

From this we get for the energy by (405) :

. (437)
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and for the entropy, by (406) :

-
Nklog(l-e~**) . (438)

If the temperature increases to an unlimited extent the
7a> -L

exponential function ^ merges into 1 + p*,
and the

expressions for the energy and the entropy become :

JS = 2WF, S = Nklog^> (439)
nv

The same expressions are obtained if for any arbitrary

temperature T the quantum of action Ji is assumed to be

infinitely small, but we must observe that when h becomes

vanishingly small e < Tiv also vanishes. Hence by 134

the expressions (439) also represent the values of the

energy and the entropy that follow from the classical

theory for the system in question. In particular, we see

that according to the classical theory the mean energy
is i = JcT and so is independent of the nature (period of

vibration) of the oscillators. It is in this deduction that

the classical law of equvpcurtition of energy over all the

different kinds of oscillators expresses itself.

On the other hand, with unlimited decreasing tem-

perature the energy of the system becomes by (437) :

fa

E = N . e = Ne + Nhve~ *r
. . . (440)

and the entropy, by (438) :

8 -*.*-* .... (441)

Hence, whereas the entropy converges to zero together
with the temperature, a finite amount of energy remains

left over at zero temperature. This is the
"
zero point

energy," which is easy to understand since the energy of

an oscillator cannot fall below e .

A single oscillator which is immersed in a heat-bath at a
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temperature T undergoes fluctuations of energy, which

are regulated according to (407) and (434) by the law :

Wn = 6
kT

.
(l
- e

"")
. . . (442)

This expresses the mathematical probability that the

oscillator will have the energy en + rihv at any moment.

The relative mean square of the fluctuation will be given

by (411). It assumes a particularly simple value if we
set the zero-point energy Q

= Then we get, by (437) :

d

and by (411):

A = e^=l + - - - - - (443)
e

The relative mean square of the fluctuation of the energy
thus consists of vfcwo parts a constant term of the amount
1 and a term proportional to the quantum of action h

and the vibration number v and inversely proportional
to the mean energy e. In the classical theory the second

term vanishes and fluctuations of only the first kind

remain.

136. Let us glance at the case when the number of

oscillators N is not very great but has arbitrary values

down to 1. In this case there is not a definite energy E
of the system corresponding to a definite temperature T,
but the system performs energy fluctuations, whose

scattering, by 127, is again represented by the relative

mean square of the fluctuations (411) if we substitute for

e in it the mean value of the energy of the now degenerate

system. If we again leave out of account the zero-point

energy, we accordingly have, by (437) :

... . (444)

tf*-l
and, by (411) :
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For N= 1 we get the earlier expression (443) for an in-

dividual oscillator. If we now allow N to increase at a

definite temperature T the magnitude A of the relative

mean square of the fluctuation decreases to an unlimited

extent, as is to be expected. But in the case of the two

components of A, the classical and the quantum terms,

a characteristic difference manifests itself. When N
increases the first decreases like -??, that is, independently

of the temperature; but the second term decreases like

1 ( **
\_ . \&$_ i \

. Prom this it follows that in order to make

the energy fluctuation vanish N must be given a greater
value as the temperature decreases. In other words, for

every configuration, no matter how many oscillators it

contains, there must be a range of temperature below which
it cannot be cooled down, if a perfectly definite value of the

energy of the configuration is to correspond to its temper-
ature. Hence for every system, no matter how great it may
l>e, the concepts and laws of thermodynamics lose their

validity if the temperature is appropriately lowered, and this

occurs before the zero-point is reached; and all thermo-

dynamic reasoning based on a cooling of a definite system
down to the absolute zero-point becomes void (cf. 149

below).
137. We have now covered, the preliminary ground

necessary to take up again with a greater prospect of

success the energy distribution in the normal spectrum
which we had to break off in 114. As we there pointed

out, this problem amounts to calculating the entropy and
the other thermodynamic properties of pure cavity
radiation. Having found that the microscopic considera-

tion of a system furnishes us with the means of determining
its entropy, we next undertake a microscopic investigation
of pure cavity radiation, which we suppose enclosed in

a volume of as simple and convenient a form as possible,

namely in that of a cube whose length of edge is Z. For

the electromagnetic field equations referred to a vacuum
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(IV, 2) can be completely integrated in this case and so

furnish the general solution of the problem from the

microscopic point of view. To introduce the correspond-

ing boundary conditions we assume the six sides of the

hollow cube to be perfectly conducting (HI, 92) and

consequently totally reflecting, and we have therefore to

set the intensity components of the electric field

tangential to a side equal to zero.

If we take the origin of co-ordinates at a corner of the

cube a particular solution of the differential equations

of the field is represented by the following expressions,

where we pay due regard to the boundary conditions :

_ . amX vrtJ . cirZ t n , . t .

Ey
= sin -y- cos-y

2- sln-7- (ea cos 2m>t+e 2sm 2

_ . . b-iry CTTZ , n .
, , . n ,Et= sin -T- sin

j
2- cos

j- (es cos xirvt+e, 3 sin zm>t)

. amx biry cirz ,, n . ,. _Hx sin
-j

cos
j
3- - cos T- (A!sm Zirvt h\ cos 2<nvt)

__ a-jrX . birtJ cirZ ,, . n . -,. _ ..Hy cos -y- . sin Y-
cos

j- (A2 sin 2m>t h 2 cos 2m>t)

__ CLTTX Itiry . crrZ ,-, . n . -,, _ ,.Ht= cos -y- cos
Y-

sin -y- (n3 sin 2uvt n 8 cos 2m>t) }

where a, b, c denote any three positive integers; for

negative integers produce nothing new. The boundary
conditions are satisfied in these expressions by the fact

that the tangential components of the electric intensity
of field E vanish for the six bounding faces x= 0, x= I,

y = 0, y = I, z = 0, z = I It is easy for us to convince

ourselves directly that the field equations (IV, 2) are

likewise all satisfied if certain relations exist between the
constants which may all be summarized in one theorem
as follows : if we denote a certain positive constant by a,

the velocity of light by c, then there exist between the
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nine following quantities which we have arrayed in a

square .

ac be cc

2lv 2lv %lv

a o> a>

61 Cg 63

a a a

all those relations which are fulfilled by the nine direction

cosines of two orthogonal right-handed co-ordinate

systems, that is, the cosines of the angles between each

pair of axes of both systems (I, 100).

Hence the sum of the squares of the members of each

horizontal row or each vertical column is equal to 1, for

example :

^(a* + 6' + e*)
= l . - . (447)

hi* +V + V = a2 = e^ + e2
2 + e3

2
.

Further the sum of the products of corresponding terms

in each pair of parallel rows is equal to zero. Thus, for

example :

ofii + 6e2 + ces = 0\ _ ^ ^

+ bhz + ch3
= OJ

Finally relations of the form I (492) hold :

A! ez cc e% be

a
~

a
'

2lv a' 2lv

Thus:

. . (449)

and so forth.

If any values are given to the integers o, b, c, then by
(447) the vibration number v is determined. This means
that of the six quantities ei} ez , e3 ,

h
1} h%, H3 only two can be

chosen arbitrarily; the others are then uniquely derived

from them in a linear and homogeneous form. If, for

example, we give e^ and e% any arbitrary values then ea can
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be calculated from (448), and the values of h^ hz , ha

follow from the relations of the form (449). The same
relations hold between the accented constants e\, e'z, e's,

h'
ls

A'2, Ti's as hold between the unaccented constants,

the two sets of constants being otherwise quite independent
of each other. Hence two terms of the accented system
can also be arbitrarily chosen, so that of all the constants

that occur in the above equations four constants still

remain undetermined when a, b and c are given
Now if for each triplet of numbers a, b, c we form ex-

pressions of the form (446) and sum tip the corresponding
field components, we again obtain a solution of the field

equations, which, however, is now sufficiently general to

represent any possible arbitrary radiation whatsoever in

the hollow cube in question and in fact, in a unique form.

To prove this let us consider the initial state of the electro-

magnetic field. If we set t 0, we get for the general
initial state, from (446) :

_ oatx . brry
Ex 2&i cos p sm -y^ sin -ill

. fJfTtX bTTy . C7TZ
JEy
= 2/e2 sin 5 cos ^ sm -y-

l I I

aarx . biry CTTZ
E* = 2/e3 sin -=- sm

-f-
cos -=-

D- PA' i~ a7TX ^Try CTTZHx = h i sm, -y- cos -=- cos -=-

_, ,, OTTX , bltV CTTZHv
= - Hh'2 cos -j- sm f-

- cos^ILL
r,, OfirX bTry cirzHs= Hh 3 cos j- cos ^ sin -=-ill

where the summation is to be performed over all the
numbers a, ft, c from 1 to o . Now if the vectors E and jff

are given for t= in any way, but of course so that
div E and div H= and so that the boundary con-
ditions are fulfilled, the above sums represent the Fourier

expansions of the functions E and ff
; the coefficients of
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these expansions are, as we know, uniquely determined

(of n, 39) and can be calculated by simple rules. This

then determines the course of events for all values of the

time t.

Now if we wish to apply the solution just found to heat

radiation, we must, after what has been said in 94,

assume the length of the edge of the cube I to be very
/

great compared with the wave-lengths A= -; from

this it follows by (447) that o2 + 62 + c2 is very great.

Starting from this result, we can easily calculate how

many different triplets of numbers a, 6, c give a

vibration number which lies within the narrow spectral
interval between v and v+ Av. For by (447) these are

obviously characterized by the condition :

. . (<t50)

If we now depict every triplet of numbers a, b, c by means
of a geometrical point by regarding the values of the

positive integers a, b, c as co-ordinates in a rectangular

system of co-ordinates, the points so obtained fill an

octant of infinite space, and the condition (450) states

that the distance of one of these points from the origin

t j- A i v j_ 4-t. i
2lv A 2l(v + Ap)

of co-ordinates lies between the values and i--.

c c

The required number is therefore equal to the number of

points which lie between the two octants of the spherical

surfaces that correspond to radii of the values just

mentioned. Since a cube of volume 1 corresponds to every

point, this number is simply equal to the volume of the

thin spherical shell, that is, to :

8
'

No matter how small the frequency interval Av may be

assumed to be, we can nevertheless choose I sufficiently

great to make this number have a very great value.



274 THEORY OF HEAT

138. Now that we have succeeded by microscopic
considerations in dividing the most general process of

monochromatic - radiation that can take place in the

assumed cavity into a great but definite number of

mutually independent simply periodic vibrations of the

same frequency it suggests itself readily to us to compare
its thermodynamic probability with that of a system of

like but mutually independent simply periodic oscillators

of the same frequency such as have been investigated in

the preceding sections. For the question as to whether
the vibrations are of an electromagnetic or a mechanical
nature cannot affect the probability. The only essential

condition is that the microscopic events in the two
systems shall correspond uniquely, that is, that a definite

state of the system of oscillators shall be assigned to each
state of the cavity radiation and conversely. For if this

condition is fulfilled the number of microscopic states

that correspond to a definite macroscopic state does not

depend on whether the system of oscillators or the cavity
radiation is used in the discussion

But another point is also to be considered. According
to the preceding paragraph the state of radiation for a
definite frequency v is determined by four mutually
independent constants, whereas the state of vibration of

an oscillator with a single degree of freedom contains, by
(430), only two independent constants. From this we
must infer that two degrees of freedom belong to radiation
of frequency v, and that therefore a definite state of two
mutually independent operators corresponds to every
state of radiation of this frequency, and conversely.
Hence the processes of monochromatic radiation in the

cavity in question are by (451) statistically equivalent to
the vibrations of :

simply periodic oscillators with a single degree of freedom,
and then: energy is given for a definite temperature T by
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(437). If we also consider that the zero-point energy of

the radiation vanishes, by (330), we get for the energy of

the monochromatic cavity radiation in question :

*-!)' (453)

and, dividmg by the volume Z
3 of the hollow cube, we get

for the spatial density of this energy :

*T _
l)

= u,.A v . (454)

where we use the notation already introduced in (296)
From this it follows by (297) that the specific intensity
of the linearly polarized radiation in any direction is :

which represents th,e required law of radiation. If we

compare it with (360) we see that it agrees exactly with

Wien's Displacement Law.
From (436) and (452) we obtain for the characteristic

function W of the monochromatic radiation in the volume

If we refer the specific intensity of radiation to the wave-

length A instead of to the frequency v, we obtain from

(363) and (456) :

^-^(^-l)"
1

-^-!)"
1

. (457)

as the specific intensity of a monochromatic linearly

polarized beam of wave-length A radiated by a black body
at the temperature T into empty space.

139. For large values of XT (> ca) the expression

(457) merges into the equation :
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In the same way (455) becomes :

__ ICyJL /A KO\
KV = g- (459)

which is Rayleigh's Law of Radiation. The same law

results if at any arbitrary temperature T we assume the

quantum of action h to become mfinitely small. Thus, by
134, it represents the

"
classical

" law of radiation. The
fact that this law is contrary to experimental results and

that therefore the classical theory is not generally valid

is simply seen by observing that the expression K, . dv

when integrated from v= to v= oo becomes infinitely

great by (459).

For small values of A!Tc2),
on the other hand, we

get from (457) that :

^*-$"* (460)

This equation expresses Wien's Law of Energy Distribu-

tion, which has been proved to be very successful in the

optical region but fails at high temperatures, because E^
actually increases beyond all limits when the temperature
increases to an unlimited extent, which is not the case in

(460) According to the most accurate measurements

the value of the constant ca
=

-^-
is :

ch
c2 = - == 1-430 cm. x degree . . (461)

140. The spatial total density u of cavity radiation at

the temperature T is given by (454) as :

/flO Q T- .GO / nf \ . ^

u==
L

u dv=* J
3r L

v
*(*

T - 1
)

- dv

If 2hv 8fo

and by integrating each member in turn we get :
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where we have used the result :

This is the Stefan-Boltzmann Law (326) or (328), in which

the constant now has the value :

141. With the help of the measured values of a and
ca we can now easily calculate the universal constants h

and Tc. For it follows from the equations (461) and (464)

that:

, _ 15<rc2
3

(465)~~' ' ' '

With the values given for the constants cr in (331) and c2

in (461) we get :

h = 6-55. 10-2' erg sec. 1. . . (466]
k = 1-373 . 10-16 erg/degree)

Erom equation (457) we get for the wave-length Am, to

which the maxiniuni of the radiated intensity EI corre-

sponds hi the spectrum of Mack body radiation

Car)
-

\aA /A-AB,

Differentiation gives .

e -/J + & _ i = o
o

where, for brevity, we have set :

=
p.

ICAmJ-

The root of this transcendental equation is :

= 4-9651.

Accordingly, \mT=-^r=
-

, that is, constant, as is demanded
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by Wien's Displacement Law (365). The value of the

constant 6 comes out as :

eg 1-430

4-9651

which agrees with the measured value (366).

142. Our calculation of the energy distribution in the

normal spectrum was built up only on the statistical

definition of entropy. It was independent of any assump-
tion whatsoever about the nature of the processes by which

cavity radiation of any arbitrary distribution of energy is

transformed into normal cavity radiation. But, as we
have already had occasion to emphasize repeatedly in

105 and 125, it is obvious that in nature such processes,

which act as coupling agencies between the energies

of different spectral regions, must be active in promoting
normal energy distribution, and it is important to enquire
what sort of coupling nature actually makes use of in the

present case. Everything of course depends on gaining
a closer insight into the acts of, emission and absorption
of radiation.

The atomic modelproposed byBohr certainlyapproaches

reality most closely This model is an oscillator which can

have, a number of discrete energy-values e < e < ez . . .

< en < . . ., as in 122. If such an atom is situated in a

field of radiation the absorption of radiant energy takes

place by the abrupt transition of the atom from a state

of lesser energy en to a state of greater energy P ; the

emission of radiant energy is carried out by a transition

in the reverse direction. In this process the absorbed
or emitted energy, respectively, is always monochromatic,
and its frequency v is related to the abrupt change in the

energy of the atom as follows :

hv = P
- en (467)

Hence the amount of transformed radiant energy is always
equal to hv, a so-called ligM-quantiwi or photon.
The stationary state in this exchange of energy between
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atomic energy and radiant energy is characterized by the

fact that over a very long time the transition of the atomic

energy from en to ep occurs just as often as the opposite
transition from ep to en. But we have here to take into

account the fact that during this time the atom finds itself,

by 126, more often in the state with lesser energy ea

than in that with greater energy ep . For, by (407), the

corresponding numbers denoting these frequencies of

occurrence are .

_i* _ *

& kT J e **
wn =- and wp =-f

Thus on the average the atom remains longer in the one

state than in the other. Now to represent the frequency
of transition of the atomic energy from en to ep and

conversely, Einstein has introduced some very plausible

assumptionswhich bring us to our goal bymeans of a simple
calculation. He assumes that the frequency with which

absorption occurs, that is, the transition from en to ep ,
is

firstly proportional to the frequency number wn ,
and

secondly to the intensity of radiation which strikes the

atom and which has the frequency v determined by (467),

that is, equal to aJLyWn. In the same way the frequency
with which the opposite transition occurs, the act of

emission, is equal to aJB^Wj,. But besides the so-called
"
induced "

emission caused by the incident radiation

there is also a so-called
"
spontaneous

"
emission which is

quite independent of the external field of radiation and
its frequency is expressed simply by $wp . Here

(3
like a

is a certain factor of proportionality which is independent
of the temperature. The condition for the stationary
state runs

+
and in view of (467) and (467o) it follows from this that :

*-
in agreement with (455).



280 THEORY OF HEAT OHAP.IV.

Of course, in establishing the above condition of stability

we may just as well, and perhaps more
"
picturesquely,"

use the concept of
"
frequency

"
in a spatial sense, referring

to the simultaneous state of a great number of similarly
constituted atoms instead of m the time sense, referring
to a single atom.



CHAPTER V

EQUATION OF STATE OF MATERIAL BODIES.
CHEMICAL CONSTANT. NERNST'S HEAT

THEOREM

143. THE most general and the most direct way of

arriving at the equation of state of any given material

body consists, as we have seen in Chapter II, in calculat-

ing the sum of the states by (419) and from it, by (420),

the characteristic function of the body. We shall first

carry out this process for a gas which consists of N
similar monatomic molecules and which occupies a given
volume V.

Our first step is to calculate the sum of the states.

For the sake of simplicity we shall assume that the gas
is in an ideal state, that is, that the energy of the gas
reduces itself essentially to the kinetic energy of the

molecules. Smce the molecules are all of the same kind,

it suggests itself to us to treat the gas according to 122

as a group of N similar elementary systems isolated from
one another, these systems being the molecules, and

accordingly to apply the formulae (404) and (402) for the sum
of the states of an elementary system and the characteristic

function of the total system ; this is founded on the fact

that every individual molecule can possess every value of

the energy and can occupy any place in the volume V.

But closer inspection reveals that this procedure is in-

admissible. For the formulae quoted hold only for the

case where the elementary systems are isolated from one
another. In deriving them we assumed that for every
distribution of states among the elementary systems there

is a particular microscopic state; that is, that if two
281
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elementary systems exchange their states a new micro-

scopic state of the total system results. But in the case

of similar molecules of a gas this assumption no longer
holds. For if two similar molecules of a gas exchange
their states, that is their positions and their velocities,

the microscopic state of the gas remains unchanged ; it is

distinguished in no way from the preceding microscopic

state, and does not therefore require to receive special

consideration again when the statistical weight is being
calculated. In spite of this antithesis in the primary
conditions the procedure above suggested has frequently
been applied and the error incurred has expressed itself

in a difficulty for which the whole theory has unjustifiably
been held responsible.

We shall avoid committing this error and shall therefore

encounter no such difficulty. Accordingly we do not

regard our gas, in the sense of 122, as a group of many
similar isolated elementary systems, namely molecules,

but in the sense of 127 as a single elementary system
having a certain number of degrees of freedom so that,

corresponding to a definite temperature, there is a perfectly
definite value for energy. Then the'expressions (419) and

(420) hold for the sum of the states Z and the characteristic

function W of the gas.

To calculate the sum of the states Z we must take into

consideration all the different possible microscopic states

of the gas and substitute the values of their energies in

(419). This requires us to set up an hypothesis about the

constitution of the gas, on the basis of which we can derive

the possible microscopic states ; that is, we can quantise.
Several such hypotheses have been put forward in the

course of time; they naturally lead to different results.

But there is a very wide range over which the results

agree with one another ; it is the only range which has so

far been accessible to direct measurement, since the cases

that can be realized physically all fall within this range.
It is characterized by the fact that in the phase-space of

the gas the size of an elementary system (427) is very
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small compared with the size of the whole region in

question. We shall see below, in (475), how this condition

expresses itself in physically measurable quantities. If

we assume it to be fulfilled we can write every individual

term in the sum of the states as a differential by multi-

plying it according to (427) by :

l=^'dr . . . . (468)

Further, the sum of the states (419) :

_?
Z = Se kT

. . . (469)
e

becomes a phase integral which is to be taken over the

whole phase-space of the gas.

Since each of theN monatomic molecules moving freely

in space has three degrees of freedom, /= 3N , and the

differential element of space becomes, by (422) :

dr = dqi .dpi.dq^.dpz. . . . dq3If . dpa# . . (470)

where q^ qz . . . qSN denote the 3N rectangular co-

ordinates of the N molecules, and pv pz Pw denote

the corresponding momentum co-ordinates
; so that the

energy of the gas is :

where E is used to designate the zero-point energy, that

is, the internal energy of the gas molecules.

The integration is to be performed over all the different

microscopic states of the gas, each microscopic state

being counted once. Now if we integrate for every
molecule over all the values of its co-ordinates which are

permissible within the given volume and over all the

momentum components from oo to +00 we do not

obtain the microscopic state of the gas once but just as

often in number as there are permutations between N
molecules, namely N I times For since the molecules

are all similar, every permutation of the co-ordinates and
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momenta gives a new integration term but no new micro-

scopic state. Accordingly the expression for the sum of

the states runs, according to (469), if we take into account

(468) and (470) :

k!r
dqi - dpi . . dq3J!f . dpaff . (472)

where the integration is now to be taken for every molecule

over all the points within 7 and over all the momenta
from oo to + oo . Substituting the value (471) for

E and performing the integration over the BN point co-

ordinates q, we get, using Stirling's formula (386) :

Z =
-\ T5Tff / I I & uffJ-i WfJ<& i*//3

Here the triple integral is equal to (ZirmkT)}, consequently :

and by (420) :

-. - (474)

This last equation expresses all the thermodynamic
properties of the gas.

The expression Y also gives us information about the

physical meaning of the condition which we introduced

by means of (468) and which states that h may be treated

as an infinitely small quantity For we must have :

According to thip the product of the atomic volume
7
-^.

and the cube of ^/T must not fall below a certain

order of magnitude, which depends on the nature of the gas,
if the formula (474) is still to remain applicable. If this

condition is transgressed, more complicated relationships

replace the ordinary gas laws; these relationships are
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sometimes called degenerate, but here the word de-

generate is to be interpreted in quite a different way from

that of 127. This phenomenon of gas degeneracy is

entirely foreign to classical theory, since the condition

(475) is always fulfilled for an Infinitely small value of h.

So gas degeneracy corresponds to the deviation of the law

of radiation (457) from Rayleigh's Classical Law of Radia-

tion (458). But it is to be noted that an essential difference

exists in that although the classical theory leads to Ray-
leigh's Law of Radiation it does not lead to the expression

(474) of the characteristic function of an ideal gas. For
in classical theory the value of the infinitely small constant

h remains quite indeterminate (cf. 133 above). It is

only the introduction of the quantum theory that leads

to an absolute value of the entropy and the characteristic

function . Concerning the significance of this circumstance

see 150 below.

144. We shall now derive the thermodynamic
properties of the gas under consideration from the ex-

pression (474) found for Y. By (115) we obtain for the

pressure

<

If we compare this equation with the equation of state

of the ideal gas (96) we see that there is complete agree
ment if JcN= En or :

k = ..... (477)R N ^ }

That is, the universal gas constant k is nothing else than

the absolute gas constant in the equation of state, re-

ferred to molecules and not to moles. Substituting the

numerical values (466) and (65) we get :

^
= 1-65 . 10-2* .... (478)

as the ratio of the number of moles to the number of

molecules, or, what amounts to the same, of the molecular

mass to the molar mass (Avogadro's number).
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According to this the elementary charge of electricity,
that is, the charge of an electron or of a univalent ion in

electrostatic units is, by HE, 66 :

2-895 . 1014 . 1-65 . 10-24 = 4-78 . lO'10

which agrees with the measurements of R. A. Millikan.

Further, we obtain from (405) for the energy of the gas :

(479)
W.4. **

That is, for the molecular heat at constant volume we

have ~; and for the molar heat at constant volume

op
-ft-, which, measured in calories, is about equal to 3,

according to (57). This agrees with the values given in

31 for a monatomic gas.

Finally, the entropy of the gas is, by (406) :

. . (480)

which agrees with (109), except that here, too, the in-

definite additive constant of the classical theory is re-

placed by a perfectly definite quantity.
145. Whereas the energy fluctuations of the whole

gas at a definite temperature are only extremely small
each individual molecule undergoes considerable fluctua-

tions in its energy, and so also in its velocity. The law

governing these fluctuations results from the formula

(415) for the energy fluctuations of a system of arbitrary
degeneracy, which is immersed in a heat-bath of definite

temperature. Here n denotes any possible amount of

energy of the molecule, thus :

f .
*? i -

where p denotes the total momentum Vpi*+ p + pa*, e
the internal energy of the molecule, and gn is the number
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of microscopic states of the molecule that correspond to

the energy interval between en and en + den :

9 = p I dqt dqz dqa dpi dpz dps ,

where the integration is to be performed with respect to

the three momentum components over the infinitely

small region between p and p + dp ; thus :

Since the value of (415) does not depend on a constant

factor in gn ,
we get :

\-l
iT

.p
z
dp)

If we integrate, taking into account (481) and omitting
the index n which now becomes superfluous, we get :

. . (482)

or, if we introduce the velocity v by writing the mo-
mentum p= mv we get :

w = ^-

as the probability that the molecule will at any instant

have a velocity between v and v+ dv. Of course, this

expression also gives a measure of the number of times

that the velocity v occurs simultaneously in a great

number of molecules of a gas at temperature T (Maxwell's
Law of the Distribution of Velocities). It is to be

observed that m and k occur only in the form of their

ratio, so that the probability law (483) remains correct

if we calculate with moles instead of with molecules.

146 If the N molecules of the gas are not all of the

same kind, but sub-divide into different types 1, 2, 3, . . .,

so that :

N! + Nt + N3 + . . . N . . (484)
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the expression for the characteristic function becomes

correspondingly more general : this modification is

effected by making the calculation according to the same

method as was used above in 143. In forming the sum
of the states Z we then have in place of the equation

(468) the following :

where the number of degrees of freedom of the system is

now :

f=BN1 + 3N2 + 3JV3 + ...

and dr1} dr2i . . . denote the elementary systems of the

phase-spaces corresponding to the different kinds of gases.

The exponential function having the energy E in the

exponent sub-divides by (471) into the product of the

exponential functions referring to the individual kinds

of gases, and the integrations over the elementary regions
are performed in exactly the same way as above Finally
the number of permutations N \ in the denominator of

the sum of the states is replaced by the smaller product

N^ N2 \ N8 \..... For the microscopic state of the gas
remains unchanged only when similar molecules are

permuted among themselves

We thus obtain as a result of the calculation the follow-

ing characteristic function of the gaseous mixture :

- (486)

where the summation refers to the individual kinds of

molecules. This expression is analogous to (474). We
obtain for the energy :

N2 + . . . )T + E . . (486)

which is analogous to (479) ; and for the entropy :

fl -2^! log (|| (2^*20*1. (487)
1,2, .. (/I MI J

which is analogous to (480).
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Comparison with (170) again shows the complete

agreement of these formulae with those of general thermo-

dynamics, except that here there is no indefiniteness,

not even in the additive constants a
lt
a

Z) as . . . Thus
the additive constant is a definite quantity which is

characteristic of the gas It is called the
"
chemical

constant
"

of the gas.

147. As a further example let us now calculate the

characteristic function of a solid body consisting of N
atoms supposed similar for the present. As regards the

constitution of the body we shall assume that the atoms,
or at least the very great majority of them, are subject to

quasi-elastic forces. The energy of the body is then of

the form .

E = U + K + J0 . . . (488)

where Z7, the potential energy, is a homogeneous quadratic
function of the components of the relative displacements
of theN atoms ,

K is the kinetic energy, a purely quadratic
function of the 3JV velocity components, and EQ is the

zero-point energy.

By introducing 3N suitably chosen homogeneous linear

functions q lt qz ,
. . . g^y of tho displacement components

we can always arrange so that the two functions U and K,

expressed in terms of the co-ordinates q and their

derivatives q, become purely quadratic and that therefore

the dependence of tho energy on the co-ordinates q and
the momenta p can be represented in the form :

E = c^q^ + btfi* + azqz
* + b&<? + + J0 . (489)

The motions of the N atoms can thus be reduced to the

superposition of the vibrations of 3-ZV independent linear

oscillators of the same kind as those considered in 136.

A particular solution of thoequations of motion is obtained,

for example, if all the components q and p are set equal to

zero except one, say qv and pt. Then all the atoms of the

body vibrate with tho same period, which is determined by
constants at and 6 t , and in tho same phase, smce all the

displacement components are proportional to the one
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co-ordinate gt. In other words, the most general motion

of the N atoms of the body may be regarded as composed
of 3N simply periodic stationary vibrations of the whole

atomic complex The slow vibrations correspond to the

elastic or acoustic spectrum, the rapid vibrations to the

thermal spectrum. So we here have a spectral resolution

similar to that which occurs in cavity radiation. Yet
there is an essential difference, firstly in the occurrence

of the zero-point energy EQ ,
which cannot be left out of

account in a material body, and secondly in the fact that

the spectrum of the cavity radiation stretches to infinity,

whereas in the spectrum of the atomic vibrations only
3^ vibration periods occur.

From. (419) we obtain for the sum of the states of the

body .

Z = 2e~n
e

If we here substitute the value of E from (489), Z is

represented as the product of the sums of the states of the

whole 3N oscillators, multiplied by a constant factor due
to the zero-point energy; that is, by (435)

E, , ^i\-l / *LA-1
Z = e IT

(1
- e~ kT

) (l
- e kT

)
... (490)

We must here interpose a remark. The fact that every

body sends out vapour into neighbouring space shows
that in reality the atoms do not all act on one another

with quasi-elastic forces, but rather that there are certainly
some among them which move progressively forwards.

These
"
vagabond

"
or

"
loosely bound " atoms will not,

however, always be the same ones ; rather there will be a
kind of continual exchange between them and the
"
localized

"
or

"
tightly bound

" atoms A consequence
of this is that after a fair length of tune the atoms of the

body will partly or totally have changed their places, and
the question arises whether this circumstance will not

correspondingly increase the possible microscopic states of
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the body. If we take into account, however, that the

atoms are all of the same kind it follows, just as above m
the case of a gas, that no new microscopic state is produced

by a permutation of the atoms and that therefore the

expression (490) for the sum of the states will also remain

unchanged when we take into account the process of

exchange among the atoms By (420) we get from (490)
as the characteristic function of the body .

78 =s^v / fo>\

IP = - =P - kS log (l
-

fl~*') (491)
L t-l x '

If we denote the number of vibration frequencies v

that lie in the interval between v and v + dv by f(v)dv, so

that

(v)dv = 3tf . . (492)

then .

W = -
|S>

- k
ff(

v)
-

log (l
- e~ *tyv

. (493)

It now remains for us to determine the function f(v) So

long as v is fairly small, that is, for long waves, we shall

obtain an approximate value for f(v) if we assume the

matter in the body to be continuously distributed. With
this assumption an approximate value for the required
number can be derived from a comparison with the

spectrum of cavity radiation treated above For in

equation (452), 138, we found for the electromagnetic
vibrations in an evacuated cavity space of volume 7= Z

3

the following value for the number of vibrations, each of

one degree of freedom, that lie m the frequency interval

v and v + dv :

c

If we take into consideration the fact that in electro-

magnetic radiation only transverse vibrations, m mechan-

ical vibrations transverse and longitudinal vibrations

occur, and that the number of the latter is half as great
as that of the former for every direction of propagation, it
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is clear that in the present case the number (494) must be

increased by half its value, so that we obtain *

^-3
-
=f(v}dv . . . (495)

as the number of vibrations, each of one degree of freedom,
which belong to the interval between v and v + dv. Here

c[ denotes a certain mean value for the velocity of propaga-
tion of elastic waves in the substance of the body.
For greater values of v (495) of course loses its validity,

since, on account of (492), the function f(v) must rapidly

converge to zero as v increases. But according to Debye
we obtain a very good approximate value if we regard
the formula (495) as exactly valid up to a certain frequency

1/u thus .

for v < vj, we set f(v]
=

^j~-
1

^ ^
but for v > vi we set f(v)

=

Moreover, we are encouraged to make this assumption
because at low temperatures the higher frequencies exert

no influence at all on the value of the integral in (491),

whereas at high temperatures the classical law of the

equipartition of energy retains its validity, as in (439),
in which the form of f(v) is of no importance, since we are

concerned only with the total number of the degrees of

freedom

The condition (492) serves to determine the limiting

frequency v Combined with (496) this gives .

fJn /=3#.
JQ 2"

Consequently :

Vl
= q ^jjl (497)

If this value is inserted as the upper limit of the integral
in (493) and if we transform the integration variable by
means of .

hv
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and use the abbreviation :

... (498)

we get as the expression for the characteristic function

e

-
'

Using (499) -we get the entropy S from (406), the energy E
from (406) and the pressure p as a function of the temper-
ature T and the volume V from (115). In calculating p
we must note that not only 6> but also E depends on the

volume V.

148. For high temperatures (T^>@) only small

values of the variable of integration x come into question.
Hence we may write in the integral :

log (1 e~x
)
= log a;

and if we then perform the integration we get for the

characteristic function :

- - (500)

and for the energy :

3WE = T*
|^

= E + SNJcT . . (501)

while the entropy comes out as .

. - - (502)

From (501) we get for the atomic heat of a solid body at

constant volume, corresponding to the empirical law of

Dulong and Petit :

3J (603 >

a value which is twice as great as the atomic heat given in

(479) for a monatomic gas.

For low temperatures (T^.9) the upper limit of the
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integral in (499) becomes infinitely great and we get by

repeated integration by parts :

3

Hence we get the characteristic function :

__ _ j2/ A f
Tt J.\ fCJ. / & t\ A \

*P = H TZZ (504)T 5@3

and the energy
*\-trr r s.~\~n.mA.

. (505)

From this Debye's law of atomic heats at constant volume

follows .

For the entropy we get
*

#- ^ -t- ^

This relation corresponds to Nernst's Heat Theorem, which

may be formulated to express its most general meaning
in the following way : the entropy of every body of finite

volume which contains exactly similar component parts
decreases to an unlimited extent as the temperature de-

creases to an unlimited extent.

149 If the body in question is chemically non-homo-

geneous, consisting, say, of NI} N2 , N3 . atoms of

different types, whose sum is

#-#! + #, + #,+ . .

we may calculate the characteristic function by following
the same course as in 147. An essential modification

occurs only at one point For as we noticed in connexion
with equation (490) we must take into account not only
the microscopic states which contributed to the sum of the

states there found but also those microscopic states which
result from all possible interchanges of the atoms of the

body ; it was only because the atoms were all assumed to
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be of the same kind there that this correction did not

have to be applied But if the atoms are, in part, of

different kinds an interchange between two atoms of

different kinds signifies a new microscopic state and so

the sum of the states becomes increased by a new term.

As a result of the whole correction we shall get the sum
of the states (490) just as many times as there are different

permutations among the N atoms The sum of the

states will therefore have to be multiplied by .

or, by Stirling's Theorem (386), by .

where the concentrations c l9
c2 . are the same as in

(191). Hence we get for the required sum of the states

of the body .

and, by (420), for the characteristic function .

ET t _: 3JV / M\
W = -

7^
- k S log(l

- e' KT
J
- kSNi log cx . (508)

an expression which differs from the corresponding

expression (491) for a chemically homogeneous body only
in having the additional term :

kZN1 log G! . . . . (509)

This term has no influence on the energy E, because rfc does

not depend on the temperature; but it occurs in the

entropy and this is in agreement with the result (190) of

the thermodynamic calculation, since kN = Rn.

For low temperatures, for example, the entropy of a

solid solution becomes by (507) .

- (510)
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The entropy, then, does not diminish to an unlimited
extent as the temperature decreases but approaches the
finite value (509).

It is fitting to recall here the general law stated at the
end of 136, that if a body is cooled down sufficiently far

all thermodynamic concepts lose their meaning.
150. The knowledge of the absolute value of the

characteristic function and the entropy of a body enables

us to state completely the conditions of its physical and
chemical equilibrium in contact with other substances,
whereas general thermodynamics must always leave an
undetermined additive constant in the equilibrium
formula. As an example we shall apply our results to the

equilibrium of a monatomic vapour in contact with its

condensate.

By (139) the equilibrium formula runs

where
/r
and v are not here to refer to the unit of mass but

to the mass of an atom of the gas, while ^' and v
f

denote
the corresponding quantities for the condensate
We shall assume the temperature to be so low that in

the last equation all those terms may be neglected which
decrease without limit as the temperature decreases. If

we substitute (474) for 0, (504) for
t/i'

and neglect v' in

comparison with v we get :

Here the constant multiplied by 7- denotes the difference

of the zero-point energies of a gaseous and a condensed
atom, that is, the heat of vaporization r per atom at the
zero of temperature. If instead of the atomic volume v
we use (476) to introduce the pressure p, the last equation
becomes
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or, if we now represent p, the pressure of the saturated

vapour, as a function of the temperature T we get :

ro , i 7r /7m.j /KIO\= - + log (kT}<\ . (512)

We have for the relation between the mass of an atom and
a mole :

-f -RM =
^-m

and for the heat of vaporization in calories, by (42) :

Consequently if we measure the pressure in atmospheres,
that is, divide p by 1,013,250 and take logs to the base

10 we have .

fe
4

)

1013250/

Taking the value of a from (42), E from (55), & and h

from (466) we get :

logp= -
O219.;p

+ 2-5. log ir + l-5logir- 1-59 (513)

This formula agrees with the results of measurement for

the pressure of the saturated vapour of monatomic gases
in most cases and so remarkably justifies our faith in the

assumption that there is an absolute entropy as derived

from the quantum theory. In applying it we must note

that the numerical value of the chemical constant on the

right depends on the units chosen for pressure, temperature
and atomic weight. Any deviation of the measured

value from the theoretical value must be interpreted in

the sense that the atoms are either not all of the same

kind or are not invariable. In the first case the constant
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(509) becomes added to the expression for the character-

istic function; in the second case the equation (471) for

the energy of the gas is to be correspondingly generalized,

since then not only the Mnetic energies of the atomic

motions but also other lands of energy must be taken into

consideration.
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