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PREFACE

THE present volume is the fifth and last of Professor
Planck’s series on Theoretical Physics His reasons for
treating the theory of heat at the end are based on the
idea of systematization which characterizes the whole work.
His method of presentation shows clearly that the theory
of heat can be erected on the foundations of mechanios
and electrodynamics (cf. p 228), but that the converse is
not possible. As previously, references to other volumes
are made by means of Roman numerals, thus I refers to
the volume on General Mechanics, II to that on the
Mechanics of Deformable Bodies, IIT to that on the
Theory of Electricity, IV to that on the Theory of Light.
For example, on p. 89 of the present volume the refer-
ence II (284) stands for equation (284) of volume IT
(* Mechanics of Deformable Bodies *’).

It is hardly necessary to mention that some of the
most important developments of the theory of heat are
due to Professor Planck’s own brilliant researches, which
have become clasgics in the history of physical thought.
The idea of quanta of radiation, introduced at the dawn
of the present century, has played a domnant part m
physical theory up to the present time. Its significance
is such that all efforts to construct a umtary field theory
of physical phenomena—that is, a theory which would
bring gravitational and electrodynamic events under a
single scheme of laws—are doomed to failure unless a
quantum assumption is included as an inherent part of
the theory from the outset, as was recently remarked by
Einstein in his Rouse Ball lecture at Cambridge (May 6,
1932).

To explain Professor Planck’s procedure in the present
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volume reference must be made to some of the terms
used in the earlier sections. In § 14 the author introduces
the term “ equivalent weights,” which is followed by a
definition of the term ‘‘ molar weight ” (gramme mole-
cular weight, Molgewicht) and molar number (Molzahl) on
p. 20. There is a certain unfamiliarity, however, to the
English reader in the term Molatom (p. 23) since the
term ‘‘ gramme atom * has not come into common use.
As the author reminds the reader at the top of p. 223,
the weights of moles are standardized by convention, and
it is only when we come to deal with “ microscopic ”’ as
opposed to ““ macroscopic ” conditions that 1t becomes
necessary to introduce the idea of atoms and molecules;
for example, to lead up to & discussion of thermodynamioc
probability (p. 222). Atomicity plays no part mn the
earlier sections. I have therefore considered 1t advisable
to adhere closely to the German terminology even if the
expression “molar atom ” (gramme atomic weight,
gramme atom) appears at first sight to contain a contra~
diction in terms. Other words which I have found it
useful to introduce are : 1sochorie (or isosteric) on p. 10,
isopiestic, also on p. 10, and enthalpy on p. 48. The
term ergodic hypothesis (p. 229) has already appeared
elsewhere in English. A more detailed explanation of
this hypothesis is to be found in Berliner and Scheel’s
Worterbuch der Physik.

Pains have been taken to make the English rendering
as clear as possible, consistent with accurate translation,
and 1t is hoped that any reader who may detect faults
will kindly bring them to the attention of the translator.

My thanks are due to Mr. N. Davy, M.Sc., and Mr.
E. H. Saayman, M.A., B.Sc., for carefully reading the
proofs, and to Mr. C. N. Hinshelwood, M.A., F.R.S,,
Fellow of Trinity College, Oxford, for some helpful

suggestions.
Hprry L. BrosE.
T College, gh
Jum"lo32fﬂ ’
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INTRODUCTION

§ 1. The concept of heat, like all other physical concepts,
originates in a sense-perception, but it acquires its
physical significance only on the basis of a complete
separation of the events in the sense-organs from the
external events which excite the sensation. So heat,
regarded physically, has no more to do with the sense
of hotness than colour, in the physical sense, has to do
with the perception of colour.

The external events that excite our thermal sense are
manifold in their variety. They may have their seat
either in material bodies with which we come into con-
tact, or they may consist of electromagnetic waves which
impinge on our organs of sense. According as the case
may be, then, we speak of the heat in bodies or of radiant
heat. These two types are quite different and are in
general independent of each other. For example, very
intense radiant heat can propagate itself through very cold
air without heating the air to the slightest degree. We
shall treat these two kinds of heat in succession.

As a starting point we here, as in the case of electricity,
again choose the only trustworthy foundation on which
we can build a new structure, namely, the Principle of the
Conservation of Energy This is usually called the First
Law of Thermodynamics in the theory of heat. This
principle forms the link between heat theory and mechanics
and so serves as a basis for what 1s called Thermodynamics

§ 2. But the Principle of the Conservation of Energy
does not in 1tself suffice for bwlding up a ocomplete
theory of heat. Thisis rendered possible only by adducing
another principle, the Second Law of Thermodynamics,
the content of which depends on a special pecularity of
thermal processes which distinguishes them 1n a character-

1



2 THEORY OF HEAT

istic way from mechanical and electromagnetio processes,
and which, therefore, places the theory of heat in a special
position as compared with other physical theories. That is
also the reason why the treatment of the theory of heat
forms the concluding volume of the present work.

For, let us imagine any (not too small) physical con-
figuration, that is, any bodies in any electromagnetic field,
which ig completely cut off from its surroundings, so that
the energy of the configuration remains constant (I, § 120)
Within this configuration certain events will then occur
the course of which is uniquely determined if we start out
from a definite initial state. The following phenomenon
then mamfests itself. So long as only the laws of mechanics
and electrodynamics are assumed to hold, the events will
never come to an end and will retain their character for
all time. Indeed, it may be proved that a state which
has once existed can in the course of time occur any
number of times again, if not in absolutely exactly the
same way, at least to any desired degree of approximation
(of. § 131 below) But as soon as heat—no matter
whether it be heat contained in bodies or radiant heat—
enters into the question in any way the sequence of events
finally, even if only asymptotically, approaches a definite
end, in that the configuration tends to a state in which
every mechanical or thermal change has ceased in the
macroscopio sense (§ 115); this state is therefore ocalled
the state of thermal equilibrium. Hence all ocourrences
in which heat plays & part are in a certain sense uni-
directional, in contrast with mechanical and electro-
magnetic events, which can equally well take place 1 the
reverse direction, since for them the sign of the time factor
is of no consequence. The essential feature of the second
law of thermodynamics ig that it furnishes a numerical
criterion for the direction of the changes that ocour in
physioal nature (§ 47)

In the first two parts of this book we shall deal wath the
heat in bodies, and afterwards, from the third part onwards,
also with radiant heat.



PART ONE
THERMODYNAMICS






CHAPTER I
TEMPERATURE. MOLAR WEIGHT

§ 3. The first requirement of a theory of heat consists in
defining in numerical terms the thermal state of a body
concerning which our gensation when touching the body
gives us only very imperfect information. To accomplish
this we may make use of the experience that every body,
if kept at constant pressure (say atmospheric pressure),
changes 1ts volume when heated, and so we can define the
thermal state of & body by the amount of 1ts volume at a
particular instant. Instead of this, however, we may,
to define its thermal state, also adduce any other property
of the body which depends on the thermal state, for
example, its thermo-electrice m f orits galvanic resistance.

To be able to compare the thermal states of two different
bodies numerically we require a further law derived from
experience, which represents a special oage of the general
principle digoussed in § 2 and which runs as follows . if two
or more bodies (at rest) exert a thermal action on each
other then, in contradistinction to mutual mechanical or
electromagnetio actions, a state of thermal equilibrium
always establishes itself, in which all change ceases.
Using an expression which has been borrowed from
mechanics, we then say that the bodies are in thermal
equilibrium.

From this there immediately follows the important
theorem : if a body 4 1s in thermal equilibrium with two
other bodies B and C, then B and C are themselves also
m thermal equilibrium with each other. For if we make

the bodies 4, B and C form a connected ring so that each
5



6 THEORY OF HEAT cHAP,

of the three bodies makes contact with the other two,
then, by our assumption, thermal equilibrium also exists
at the contact of (4B) as well as at that of _iC), and
consequently also at the pomts of contact of (BO). For
otherwise no general thermal equilibrium would be possible
at all and this would contradict the principle above laid
down.

The fact that this theorem is by no means obvious can
be recognized particularly clearly if we apply it to the
question of electrical equilibrium, for which 1t does not
hold. For if we bring a copper rod which 18 1n electrical
equibibrium with dilute sulphuric acid into contact with a
zine rod which is in electrical equilibrium with the same
sulphurio acid, equilibrium does not exist at the point of
contact, but rather electricity flows from the copper to
the zine.

§ 4. It is because the above law holds for heat that we
are able to compare the thermal states of any two bcdies
B and O with each other without bringing them into
direct contact. We need only bring each body individually
into contact with the arbitrarly chosen body A4, which
serves as'a measurmg instrument (for example, a quantity
of mercury ending in a narrow tube), and define its thermal
state by the prevailing volume of 4, or still more
appositely by the difference between this volume and some
arbitrarily fixed ‘“ normal volume,” namely, that volume
which the body A occupies when it 18 in thermal equili-
brium with melting ice. If the unit of this volume
dufference is chosen so that 100 is indicated when 4 is in
thermal equilibrium with the steam of boiling water under
atmospheric pressure, then it is called the femperature 9
(in degrees Centigrade) with respect to the body A re-
garded as the thermometric substance. Two bodies at
the same temperature are thus always in thermal equili-
brium, and conversely.

§ 5. The temperature data of two different thermo-
metric substances in general never agree except at 0° and
100°. Hence, to complete the definition of temperature
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there i no alternative but to make an expedient choice
from among all substances and to use one of them to
define the conventional temperature §. It suggests itself
to choose a gas for this purpose, since different gases,
particularly at low densities, exhibit a very approximate
agreement 1n their temperature data over a considerable
range of temperature when wused as thermometric
substances. Kven the absolute value of their expansion
is almost the same for all gases, in so far as equal volumes
when equally heated expand by the same amount, the
pressure being assumed constant. The amount of this
expansion is 5——713*2 of the volume for the temperature
rise from 0° C. to 1° C. In the sequel we shall therefore
refer the temperature 6 to the gas thermometer, in
particular to the hydrogen thermometer.

In spite of the advantages mentioned the temperature
8 here introduced has in principle only a conventional and
provisionsl significance. On the basis of the second law
of thermodynamics we shall later, however, find 1t possible
to define the so-called absolute temperature (§ 45) to which
a real objective sigmfioance may be attached in so far as
1t is quite independent of the mechanical or electrical
properties of individual bodies.

§ 6. In the following pages we shall occupy ourselves
principally with homogeneous isotropic bodies of arbitrary
shape, which have a uniform temperature and density m
therr interior and are subject to & uniform pressure acting
everywhere normally to their surfaces and consequently
themselves exert the same pressure outwards [of. IT (211)].
We shall take no account of surface phenomena. The
state of such a body is determined by its chemical nature,
1ts mass M, its volume ¥V and its temperature § Thus
all other properties of the state are dependent in a definite
way on those just given; above all, the pressure p and
the energy B depend on them. We shall discuss the
former property in the present chapter and the latter in

the next.
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Since the pressure of a body clearly depends only on
ity internal constitution but not on its external shape and
1ts mass, 1t follows that, besides depending on the temper-
ature 6, the quantity p depends only on the ratio of the
mass M to the volume V, that 1s, on the demsity or,
respectively, on the inverse ratio, the volume of unit
mass : -

F=V - o - - - (D)
which, following accepted usage, we call the specific

volume of the body So there exists a defimite relation-
ship, characteristic of every substance :

p=f®8. . . . . . (2
which is called the equation of state of the substance. The
function f is always positive for gases; for liquid and solid
substances it may also have negative values in some
circumstances.

§ 7. The equation of state assumes its simplest form in
the case of gases when their density 18 not too great. For
by II (285) we have:

N )
P v
where ® depends only on the chemical nature of the gas
and on the temperature § (Boyle’s Law, also known on the
Continent as the Law of Boyle and Mariotte). On the
other hand, by the definition of § 4, the temperature 6 is
proportional to the difference between the volume v and
the “ normal volume *’ ,, that 1s:
0=@w-2v).P. . . . . (4
where P depends only on the pressure p Accordingly we
have by (3) :
=2 . ... ..0
P
if @, denotes the value which the temperature function

© assumes for § = 0.
Fmally we use the empirical fact also introduced above



S TEMPERATURE 9

in § 5, that the amount of the expansion for an mcrease of
temperature from 0° to 1° 18 almost the same fraction :
1
F735 = 000386 =0a . . . . (6)
of the volume at 0° (Law of Gay-Lussac). Thus if we set
6 =1, then v — v, = aw,, and equation (4) becomes :

l=ov, P. RN (7)

By eliminating p, P, v, and » from the equations (3), (4),
(5) and (7) we get the temperature function :

O=0,1+ab) . . . . . (8
where now the constant @, depends only on the chemical

nature of the gas If we designate 1t by C, the equation of
state (3) of a gas assumes the form .

p=%(1+a0)=g—g[(l+a9). RN

The numerical value of C is determined, as soon as the
specific volume » of the gas is known, for any pair of values
of 6 and p, for example, 0° and atmospheric pressure ;
the values of C for different gases at the same temperature
and under the same pressure are then obviously in the same
rat1o as the specific volumes v, or inversely as the densities,

"_IJ‘ ‘We may therefore say * at the same temperature and

under the same pressure the densities of all gases bear
perfectly definite ratios to one another. A gas is therefore
often also characterized by the constant ratio of its density
to the density of & normal gas at the same temperature
and pressure (specific density with respect to awr or
hydrogen). Thus if we denote the quantities referred to
hydrogen, for example, by means of a suffix H, the specific
density of a gas with respect to hydrogen 1s :

11 _Cx . (10

The following are the actual specific densities of various
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gased with respect to hydrogen : oxygen 16, nitrogen 14,
air 14-4, water-vapour 9, ammonia 8-5, hydrogen peroxide
17.

§ 8. The equation of state (2) of a substance allows all
questions concerning the behaviour of the substance with
regard to arbitrary changes of temperature, volume and
pressure to be answered completely. Attention must be
paid to the way in which the quantities are chosen as
independent and dependent variables. If, first, the
pressure o is kept constant the changes are called isobaric
or isoplestic. The term ‘‘volume coefficient of ex-
pansion ” is then given to the ratio of the increage of
volume for an increase of 1° to the volume at 0°, that is,

. Vo - Va

to the t +1 .
e quantity ——70—
equation of state (9) that:

CM cM
Voﬂ—— Vo= —p—e‘ and Vu =7,

For a gas we have by the

go that the “volume coefficient of expansion” for all
gades is equal to «. If, in the second place, the volume is
kept constant we speak of isochoric or isosteric changes.
The pressure coefficient of expansion is then the ratio of
the increase of pressure for & temperature increase of 1°

to the pressure at 0°, that 1s, the quantity 2e+L— e
o

For a gas we have by the equation of state (9) that

Doy — Do = %5 and p, = g ; thus the pressure coefficient

of expansion for all gases likewise becomes equal to a.
I, thirdly, the temperature is kept constant, the changes
are called isothermal and the name “ isothermal coefficient
of elastioity > is given to the ratio of an infinitely small
increase of the pressure to the resulting contraction per
umt volume; thus it is the quantity :

=@
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For a gas we have, by the equation of state (9) :

2 c
%), =~ +ad)

and hence the coefficient of elasticity of the gas is 61—:( 1+ af),

that is, it is equal to the pressure p. The value of the
reciprocal of the ocoefficient of elasticity is called the
““ ooefficient of compressibility.”

The three coefficients which characterize the behaviour
of a substance in isobaric, isochoric and 1sothermal changes
are not independent of one another, but are connected in
the case of any arbitrary substance by a fixed relation-
ship. For by differentiating the equation of state we get

generally :
ap =(%) .40 + () .av

If we now set dp = 0, we obtain the relation which holds
for an isobaric change between the differentials d6 and
dv; expressed in corresponding notation this relation is :

@),
( L 11)
66) (g (

Accordingly, for every state of a body it is possible to
caloulate one of the three quantities, volume coefficient of
expansion, pressure coefficient of expansion and coefficient
of compressibility from the other two.

§ 9. Gas Mixtures. If different but arbitrarily great
quantities of one and the same gas at the same temperature
and pressure which are initially separated by partitions
are suddenly brought into contact with one another by the
removal of the partitions, the volume of the total system
obviouslyremainsequal to the sum of the separate volumes.
Further, if the gases brought into contact are different in
character, experiment shows that in this case too, provided
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the temperature is kept constant and uniform and the
pressure is kept umiform, the total volume remains
permanently equal to the sum of the orginally separate
volumes, although at the same time a slow process of
mixing, diffusion, takes place which is ended only when
the composition of the mixture i every part of the space
ocoupied by the gases is the same, that 18, when the
mixture has become physically homogeneous.

We may regard the resulting mixture as constituted in
one or other of two ways. Bither we may assume that in
the process of mixing each individual gas divides up
into an enormously large number of small parts, each of
which, however, retains i1ts volume and its pressure, and
that these small parts of the different gases mix together
during diffusion without penetrating into one another.
Then each individual gas would, after the completion of
the diffusion process, still retain 1ts old volume (partial
volume) and all the individual gases would have the same
common pressure. Or else—and this is the view which,
a3 we shall later find (§ 12), can alone be justified—we
may assume that the individual gases also change in the
smallest parts of their volumes and inter-penetrate one
another, so that when diffusion 18 completed each -
dividual gas, so fax as one may stall speak of such, occupies
the whole volume of the mixture and fills it umformly
densely. Then, corresponding to the resulting dilution,
the pressure of the individual gas has sunk to a smaller
value, that of 1ts partial pressure

If we denote the individual gases by numerical suffixes,
while the volume V, the temperature § and the pressure
p of the mixture are written without a suffix, the partial
volumes of the mdividual gages in the mixture are (if we
adopt the first view), by (9) :

V1=%M1(1+ae), V,:%’(l rab). . (19)

where :
Vit Vot ...=V . . . (13
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and the partial pressures (if we take the second view) are :

Py = 01#[1(1 + ab), py =g‘7§¥—’(1 +ab). . . (14)
By addition we have :

Vi |4

Prtpat . =Fp+Foot. . =p . (18)
which is Dalton’s Law. It states that in a mixture of
gases the pressure is equal to the sum of the partial
pressures of all the individual component gases. We
further see that :

P1:Pp ... =0 M;:CeMy: ... =V, :V,. ... (18)
That 18, the partial pressures, on the second view, are m
the ratio of the partial volumes on the first view.

The composition of & gas-mixture 18 defined either by
the ratios of the masses My, M,, . . . or by the ratios
[which, by (16), are constant] of the partial pressures or,
respectively, by the partial volumes of the individual
components. Accordingly we speak of either percentages
by weight or percentages by volume. For example,
atmospheric air contains about 23-1%, of oxygen and
76-9%, of mitrogen by weight but 20-9%, of. oxygen and
79:19%, of nitrogen by volume.

The equation of state of a gas mixture 18, by (12) and
(13):

p:.o_fl_[}%(l.*_ae) .. (1)
or:
p=01M1+0,M,+ . .%{(1_{_“0)
Thus it corresponds perfectly with the equation of state
(9) of a simple gas whose characteristic constant 1s :
C My + 0 M+ . . . . (18
C= e (18)
Hence an investigation of the equatmn of state can never
decaide whether a gas is chemically simple or whether it is
formed of a mixture of different simple gases.
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§ 10. The equation of state (9) holds for all gases and
vapours if their densities are sufficiently low. But if
their densities exceed & certain order of magnitude certain
devistions always occur and the equation of state must
then be given a more general form. In the course of time
& whole series of different equations of state has been
given which fulfil their purpose more or less well. The
first and simplest of them 15 due to van der Waals; it is
of particular interest because it also applies to the liquid
state. Van der Waals’ equation runs :

Cl+abf) a
P=Tr T (19)

where @ and b are other constants which depend on the
nature of the substance. For great values of » the
equation reduces to (9), as it should do.

The functional dependence of the pressure » on the
volume v and the temperature 6 may be conveniently
depicted by drawing ‘isothermal” ourves; for any
arbitrary constant temperature § two associated values of
v and p are plotted as abscissa and ordinate of & point in
& plane. The complete family of all isothermals then
gives a complete picture of the equation of state. By the
equation of state (9) all isothermals are clearly rectangular
hyperbolas which have the oo-ordinate axes for their
agymptotes. For pv= const. holds for them. By van
der Waals’equation (19), on the other hand, the isothermals
agsume quite different forms, whose character is indicated
in Fig. 1. In general, as can be seen from (19), there are
actually three values of v for each value of p. Hence an
isothermal will in general be intersected at three points by
& straight line parallel to the v-axis. But two of them
may be imaginary, as actually occurs for high values of
6. At high temperatures (for example, §’ m the figure)
there 18 thus for a given pressure only a single real volume,
whereas at low temperatures (for example, 6 in the
figure) three real values of the volume correspond to a
definite value of the pressure. Of these three values,
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represented in the figure, for example, by «, 8, y, only the
smallest («) and the greatest (y) can sigmfy a stable state
of the substance, such as can be produced in physical
nature. For in the case of the intermediate volume (8)
the pressure along the isothermal clearly increases as
the volume increases; that is, the compressibility is
negative. Such a state is only of theoretical importance.

The point « corresponds to the liquid state; the point
y corresponds to the gaseous state at the temperature 8
and at the pressure p represented by the common ordinate

of «, B and y. But, again, in general only one of these
two states « and y is stable (in the figure it is the state «).
For if the gaseous substance, which, say, is enclosed in &
oylinder with a movable piston, is compressed, the temper-
ature 6 bemg kept constant during the process, the
sucoessive states will be denoted in the first place by the
points to the right on the isothermal 6. As the volume
decreases the graph point moves continually further to
the left along the isothermal until it reaches a perfectly
definite point 0. On further isothermal compression,
however, the point does not go beyond C; rather the
substance partially condenses, that is, it resolves into &
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lignid and a gaseous part which, of course, have a common
pressure and temperature. If the isothermal compres-
sion is continued still further the state of the gaseous
part is alwayg denoted by the fixed point C, that of the
liquid part accordingly always by the fixed pownt 4 of the
same 1sothermal. The only change that occurs in the
process 18 that more and more vapour is precipitated.
C is called the saturation point of the gaseous substance
at the temperature § Finally, when all the vapour has
been condensed the whole substance is in the liquid state
A and so again behaves homogeneously. Further iso-
thermal compression then again leads to increase of
density and of pressure along the isothermal 6, during
which also the point « of the figure is passed through.
The figure shows that on this side the isothermals are
ruch steeper than on the other, that is, the compressibility
is far less.

Sometimes, in compressing a vapour, the isothermals
are successfully continued beyond the point C a certain
distance towards y and ° super-saturated vapour” is
produced. Only more or less unstable states of equili-
brium. are obtamed, as may be recognmzed from the fact
that very small disturbances of the equilibrium may be
followed by sudden condensation, that is, by an abrupt
transition to the stable state. Nevertheless the study of
super-saturated vapours mvests also the theoretical part
of the isothermals with a certain practical importance.

§ 11. From the above remarks we see that every iso-
thermal which adouts of three real volumes for certain
values of p hag two defimte points 4 and C which denote
the condition of saturation. Their position cannot be
directly read off from the graph of the wothermals. But
the laws of thermodynamics lead to & simple geometrical
construction for giving these points; this method is
worked out 1 Chapter IV (§ 61). The higher we choose
the temperature the more the region intercepted between
the 1sothermal and the line parallel to the v-axis, which
cuts 1t in three points, shrinks together, and the oloser
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these three points approach one another. The transition
to those isothermals which resemble hyperbolas and are
cut by parallels to the v-axis in only one point 18 indicated
by a definite isothermal for which the three previous points
of intersection coincide. This point thus represents a
point of inflexion of the isothermal in question, at which
the tangent of inflexion runs parallel to the v-axis. It is
the critical point K of the substance (see Fig. 1); it
specifies the oritical temperature 6:, the critical volume
v and the critical pressure p:. At the critical point the
saturated vapour becomes identical with its condensate.
Above the critical temperature (§>6:) and above the
critical pressure (p>p:) no condensation at all ocours, as
is easily seen from the figure. From the figure we also
learn directly that there is no definite boundary between
the gaseous and the liquid state, as it is easy to pass from
the region of definitely gaseous states, for example, from
the point C, to a curve which passes over and around the
critical pomnt into the region of definitely liquid states,
for example, to A, without anywhere encountering a
saturated state. For this reason, too, we camnot in
principle distinguish between gases and vapours.

The critical state may easily be caloulated from the
equation of state (2). For from the preceding observations
we know that the following two equations hold for it :

o\ _ P\ _
(3”5),, =0 and (W)a 0 . . @0
The first of these expresses that the tangent of the iso-
thermal at K runs parallel to the v-axis; the second states
that the isothermal has a point of inflexion at K.
For van der Waals’ equation we have in particular :
1/ 8a a
= = = amn, — = 21
u = 3b, 0 = (5750 1)’ P =57 (21)
§ 12. If two gases or vapours mix which have so great a
density that the simple equation of state (9) no longer holds
for them, it is possible by applying Dalton’s Law to arrive
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at an expression which is very approximately valid for
the equation of state of the mixture. This law states
that the pressure of the mixture is equal to the sum of the
partial pressures which each gas (or vapour) would exert
if 1t alone filled the whole volume at the same temperature.
This law also furnishes us with an answer to the question,
which was left open above in § 9, as to whether we must
agoribe to the individual components of a gas mixture &
common pressure and different volumes or & common
volume and different pressures. That the latter view is
alone admissible follows from the consideration of a vapour
whose temperature is below the critical temperature.
For example, if we take a mixture of air and water vapour
at 0° and at atmospheric pressure, it is impossible to
assume the water vapour as bemg at the pressure of one
atmosphere, as water vapour at 0° does not exist at all
at this pressure. There is no course open, then, but to
ascribe & common volume and different pressures to the
air and the water vapour.

§ 13. Having dealt with the interdependence of the
variables p, v and 6 of the equation of state we shall next
fix our attention on the significance of the constant C in
the gas equation (9). Its value is dependent on the
chemical constitution of the gas. What distingmshes
chemical from physical events is above all the fact that
the former in general occur discontinuously, spasmodically,
whereas the latter in general occur continuously. For
the chemical nature of a substance is something constant
and between different constants no continuous transitions
are possible, but only steps. Accordingly the different
chemical substances do not form a uniform series connected
by continuous transitions, but rather a discrete series in
which the individual members are sharply differentiated
from one another. This manifests itself in the experi-
mental fact that in every chemical change the substances
which are reacting with one another combine or dissociate
in quite definite and constant proportions by weight.
We may therefore ascribe to every chemically homo-
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geneous substance, whether it be an element or a com-
pound, a definite weight (more correctly mass), namely, its
equivalent weight, as follows. We fix the equivalent
weight arbitrarily for some particular substance, for
example, 1 gramme, say, of hydrogen We then find
the chemically equivalent weight for another element, say
oxygen, by ascertaining that weight of oxygen which
combines chemioally with 1 gramme of hydrogen to form
water, namely, 8 grammes. The amount, by weight, of
the resulting compound, 9 grammes, 1s then the equivalent
weight of water. Proceeding in this way we easily arrive
at the equvalent weight for all chemical substances, even
for those elements which do not combme directly with
hydrogen at all, since elements can always be found that
combine both with the element in question as well as with
hydrogen and 8o establish an indirect connexion.

This law of the constancy of equivalent weights im-
presses itself clearly on our minds if we regard the equi-
valent weight a of a substance as a definite single quantity,
ag & sort of individual Every chemically homogeneous
quantity of mass M then contains a definite number 7 of
equivalent weights or equivalents :

w22
a
and the following law then holds: in every ohemical
change equal numbers of equivalent weights react with
one another.

This definition, however, suffers from a defect which
was seriously felt for a time in theoretical chemistry. It
is due to the fact that twq elements can often enter into
combination in more than one way with each other, which
makes the equivalent weight have more than one value.
For example, 1 gramme of hydrogen combines not only
with 8 grammes of oxygen to form water but also with
16 grammes of oxygen to form hydrogen peroxide, and
there is no material reason for preferring the one compound
to the other in defining the equivalent weight. But
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experiment shows that in such a case the different possible
values of the equivalent weight always bear simple
integral ratios to one another; thus in the case of oxygen
just quoted 8:18=1:2. So we must generalize the
asgertion that * equal” numbers of equivalents react
with one another by stating that the equivalents react
with one another in *“ simple integral proportions.”

§ 14. This indefiniteness in the definition of the equi-
valent weight which we have just described is overcome
in the case of gaseous substances by selecting from the
different values that offer themselves for the equivalent
weight @ of & gas a definite value and calling it the molar
weight m of the gas (cf. also end of § 115). This is rendered
possible by the further experimental law that gases react
not only, like all other substances, m accordance with
simple equivalent numbers but also according to simple
volume ratios, when taken at the same temperature and
pressure (Gay-Lussac’s Law). From this it follows
immediately that the equivalent numbers n contained
in equal volumes of different gases and defined by (22)
bear simple integral ratios to one another. The values of
these simple ratios are, of course, subject to the same
uncertainty as the values of the equivalent weights a.

If we now make the last law more precise by defining
that the equivalent numbers » contained in equal volumes
of different gases and defined- by (22) are equal to one
another, this means that we are making a particular choice
among the different values that come 1nto question for the
equivalent weight a, and in this way we obtain for every
gas & perfectly definite molar weight m and likewise, by
(22), for a given quantity M of a gas a definite molar
number :

X . .. ... (2
m
Equal volumes of all gases under the same conditions of
temperature and pressure contain the same numbers of
moles (Avogadro’s Law).
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The definition of the molar weight m as a definite
quantity dependent only on the naturs of the gas itself
and not on chemiocal reactions with other substances
represents one of the most important and fruitful achieve-
ments of theoretical chemistry. It allows m to be
measured by physical methods. For, since for any two
gases 1 and 2 the numbers of moles » contained in squal
volumes under the same conditions of temperature and
pressure are the same, we have by (23) :

M, _H,

my My
That is, the molar weights m, and m, are in the ratio of
the masses contained in equal volumes, namely M, : M,,
or in the ratio of the densities. Now, by § 7, the ratio of
the densities of the two gases is represented by the constant

ratio & ¢ L. Accordingly we obtain :
0,70,

1.1
My = ~:A4 - - -+ - - (24
1:My 01 A ( )
and so the molar weight can be calculated from the
equation of state.
If we set the molar weight of hydrogen equal to mz, the
molar weight of any other gas is by (24) *

C
m=?‘g-m‘q A ¢ 1)

By (10) the factor %1 is the specific density of the gas with

respect to hydrogen; the value of the specific density is
given at the end of § 7 tor several gases

§ 15. Having fixed the molar weight of any gas un-
ambiguously by (25), we may now also give an equally
definite answer to the further question as to how the molar
weight of a chemical compound is composed of the molar
weights of its chemiocal elements. Let m be the molar
weight of a chemiocal compound which is formed by two
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shemical elements having the molar weights m, and m,.
Che question is : how many moles of each element combine
ogether to form a mole of the compound? We are to
'egard the molar weights m, my, m, as known, by (25), and
ve require to find the molar numbers 7, and n,.
To caloulate these two unknowns we first have the
quation
Ny + MMy =m . . . . (26)
nd, secondly, the ratio of the weights of the two elements
1 the compound :
namy My (@1
nymy My &0
from these equations it follows that :
nl.:__(F":_l). ... (28)
mi\77 +
1 M1

Ll 29
ng = _<m .. .. (29)
my 7 + 1
2\77, +

For example, for a mole of water vapour, consisting of
hydrogen (1) and oxygen (2), we have m, = mz. Further,
by (25), taking into account the numerical values, given
at the end of § 7, for the specific densities of oxygen and
water vapour with respect to hydrogen, we have my =16mxg,

m = 9ma, and for the ratio of the weights we have f‘i‘—‘ = 8.
1
Consequently, by (28) and (29) :
ny= 1, ng=%; that is, a mole of water vapour consists of
a mole of hydrogen and half a mole of oxygen.

For a mole of ammonia, consisting of hydrogen (1) and
mitrogen (2) we have :

my = mg
Further, by (25) and § 7.
my = ldmg, m = 8-5mg
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and for the ratio of the weights we have :
M, 14

M~ 3
Consequently by (28) and (29):

3 1
=g Ma=35

That is, & mole of ammonia consists of one and a half
moles of hydrogen and half a mole of nitrogen.

§ 16. The smallest amount by weight of a chemical
element which oceurs in the molecules of the compounds
of the element is called an atom or, more acourately—to
distinguish it from the true atom—a molar atom (cf. the
remarks in the preface and in § 115). Hence half & mole of
hydrogen is called & molar atom of hydrogen and denoted
by H; half a mole of oxygen is called a molar atom of
oxygen, O; half a mole of nitrogen is called a molar atom
of nitrogen, N. Thus a mole of any of these elements
consists of two molar atoms : H,, Oy, N,. In the case of
meroury and the inert gases, on the other hand, the
molar atom is equal to the whole mole, because none of
their compounds contains fractions of a mole. The mole of
water vapour is denoted by H,0, that of ammonia by
NH,.

To arrive at definite numerical values for the molar
atomic and molar weights it yet remains to fix in some
arbitrary way the molar atomic weight of some one
element chosen at random. Formerly H was set = 1 grm.
and therefore O = 16 grms. But after it had been shown
that the ratio of the molar weights of oxygen and hydrogen
is not exactly equal to 16 but t0.16-87, and in view of the
fact that in the case of most elements the oxygen com-
pounds have been much more accurately analysed than
the hydrogen compounds, it has become customary to
use the molar atomic weight of O as 16 for the purpose of
definition. The molar weight of oxygen is then:

0,=32. . . . . . (30)
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and the molar weight of hydrogen :

32
H,=mx—m77—2016 ... (31
and the molar atomic weight of hydrogen :
H=1008 . . . . . (32

In general the molar weight of a gaseous chemical com-
pound is, by (25) and (31) :

Ca
m = 2:016- T
or, equivalently :
m =32 %’“

if C, denotes the constant of the equation of state for
oxygen.

Conversely, if the molar weight 7 of a gas is known, it
is possible to give the value of the constant C of 1ts
equation of state (9):

0=2-016.Ox 32.C, .. (33)

Now the density of oxygen at 0° C. and atmospheric
pressure 18 :

:—) = 0-0014291 grm,/cm 3

so that by (9), with 6 = 0 and p = 1,013,250 [grm cm 1.
sec.%], which is given in IT (284), we have:

1013250
0-0014291

and, by (33), the equation of state (9) becomes :

227 10 (1+ ab) = 227’;01 J’if(1+u9) (34)

Cy=pv= = 17-09. 108 [cm.2 sec.”?]

But % is the number of moles contained in the gas,
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namely 7 ; therefore:
7 o 227100
P
That is, the volume of a gas at a definite pressure p and
definite temperature 6 depends only on the number of
moles it contamns and not at all on the nature of the gas;
and this 18 in conformity with Avogadro’s Law.

Equation (35) also holds for a mixture of gases, that is,
for the case when the n moles of a gas are not all of the
same kind. This can be seen 1mmediately from (17) if we
replace the constants C;, C, . . . in it by the corres-
ponding molar weights m,, m,, . . . from (33) and if

we reflect that the ratios %, o, . . . represent the
my - Mg

n.(1+«d) . . . (35)

numbers of moles 7;, 7, ... that ocour in the gas.
Simultaneously we get the result that the ratios (16) of
the partial pressures or the partial volumes are no
other than the ratios of the numbers of moles of the
individual component gases of the mixture :
PriPet . .. =MpiMg: ... . . (36)
If, accordingly, the equation of state of a mixture of
gases differs in no way from the equation of state of a
chemically homogeneous gas we cannot speak of a definite
molar weight of the mixture but only of a “ mean ** molar
weight, that is, of that molar weight which a chemically
homogeneous gas would have if it contamned the same
number of moles in the same mass as the mixture. Thus :
M +My+ . . M, M
S it U G
From this we can calculate the mean molar weight of the
mixture. In the case of atmospheric air, for example,
the mean molar weight is 28-8, which corresponds with the
value given for the specific density of air at the end of
§17.
§ 17. Up to this point of the discussion we have assumed
that the gas under consideration satsfies the equation of
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state (9). Tor in the equation (35) the number of moles
7 is then a constant quantity independent of the pressure
and the temperature. But if a gas or a vapour manifests
a behaviour which deviates from that expressed by this
equation of state we are faced with the alternative of
applying a generalized equation of state, such as that of
van der Waals, or else of retaining equation (35) and
agsuming a value for the number of moles n which is
dependent on the temperature and the pressure : in other
words, to regard as the cause of the deviation from the
equation of state (9) either physical or chemical circum-
stances. According to the first view the moles of the
gas remain unchanged but they act on one another in a
complicated manner, while on the second view the gas
forms a mixture of variable percentages whose constituents
individually satisfy the equation of state (9). The per-
centage content may then be caloulated by (26) for every
temperature and every pressure from the mean molar

weight m = %, corresponding to the number of moles n,

if the molar weights m,, m,, of the constituents are known.
This view is found to be most fruitful in the cases where
very considerable changes of the specific density are
involved, that is, in the case of the so-called abnormal
vapour densities ; it applies particularly when the specific
density beyond a certain range of temperature or pressure
again becomes constant. For then the chemical trans-
formation has been completed and the molar constituents
no longer change. For example, amyl bromide satisfies
the gas equation (9) both below 160° C. as well as above
360° C., but in the latter state it has only half the density,
that is, double the number of moles, corresponding to the
transformation :

OgH,,Br = C;Hyy + HBr
But if the deviations from the equation of state (9) are

unimportant they are usually ascribed to physical causes
and are regarded as heralding condensation. A funda-
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mental separation of the chemical influences from the
physical influences which would complete the definition
of molar weight for variable specific densities cannot be
given from the standpoint of pure thermodynamics. In
general, therefore, physical as well as chemical changes
will have to be considered as causes for these deviations
from the equation of state (9). All that we may state
with certainty 1s that when the density becomes less the
physical influences become progressively less important
compared with the chemical influences. For when the
density is sufficiently small the equation of state (9) holds
for all gases and vapours of constant chemical composition.



CHAPTER IT
FIRST LAW OF THERMODYNAMICS

§18. Tan first law of thermodynamics is no other
than the universal Principle of Conservation of Energy
applied to heat processes. The energy E of a physical
configuration may be regarded as a ‘ capacity ’ to do
work (I, § 49) which is conditioned and uniguely deter-
mined by the momentary state of the configuration, and
which can occur in various forms and undergo various
trangformations but, so long as the configuration is iso-
lated from the exterior, is of definite amount which does
not vary with respect to the time: thus = const. or
E'— E= 0 if E refers to the initial state and E’ to the
final state of the configuration.

So soon as the configuration is subjected to influences
from without or exerts an action on the outside 1ts energy
E alters according to the measure of this external action.
1f the external action is of & mechanical nature the change
of energy is equal to the work 4 which the external forces
perform on the material points of the configuration or
system (I, § 120). If the external action is electromagnetic
by nature the change of energy is equal to the Poynting
energy-flux P (ILI, § 4) directed inwards through the
surface of the system. If, finally, the external action is
of a thermal nature the energy change is equal to the
quantity of heat Q which has passed from without into the
system.

For the general case when all three kinds of external
effects are to be taken into consideration we thus obtain
as the expression for the principle of the conservation of

energy :
E-BE=A+P+@ (38)
28
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The sum on the right-hand side is called the mechanical
equivalent of the external effects which are produced on the
configuration during its transition from the imtial state
to the final state

This equation must not be regarded as being only a
definition. For its vahdity depends on an assumption
which is not self-evident and which can be justified only
by experiment. This assumption 1s that the value of the
energy F is to be taken as determined by the momentary
state of the system. Thus if a physical system is allowed
to pass 1 several ways or, as it is often expressed, along
different routes from a definite initial state to a definite final
state, the mechanical equivalent of the external actions
must every time lead to the same value. This law is not
self-evident but may be tested by measurements in an
infinite number of ways. Ifitwerefound tobe transgressed
1 one single instance, that is, if we could point to & case of
two transitions of any physical system from a given imitial
state to a given final state, for which the above sum
were to have two different values, the possibility of con-
structing a ‘‘ perpetual motion ” machme would arise m
that the configuration could be brought along the one
route to the final state and then back along the other
route to “the initial state. The whole process then
constitutes a ““ cycle.” Now a cycle can be repeated any
desired number of times and so gives us a machine which
functions regularly, its effect being represented by the
difference of the mechanical equivalents corresponding to
the two individual transitions. By the energy principle
this difference 18 nil, as can also be seen directly from (38)
if we consider that for a cycle B’ = E, and hence for every
cyclic process the algebraic sum of the mechanical equiv-
alents of all external actions must satisfy :

A+P+Q=0 . . . . (39
This excludes the posmbility of reahizing a perpetual

motion machine.
Since the choice of the physical systems to be con-
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sidered is quite open, the energy principle (38) may be
applied to a definite physical event i very different wajys.
For example, we may eliminate all external actions by
including the body or bodies, to which the action is dus,
in the physical system. The external action in question
is then disposed of and instead of 1t there appears a new
term in the energy E of the system. In this way it is
possible, by extending the system appropriately, to dispose
of all external actions and to isolate the system so that
its energy can be regarded as constant. It is not possible,
of course, to take measurements if the configuration is
completely isolated from its surroundings, for every
measurement requires communication with the outside
world.

§ 19. The quantity of heat @ taken up by a body may be
of a mechanical or an electrical nature. According as
the case may be we speak of heat conduction or heat radia-
tion. But in each case the quantity Q refers only to the
heat transmitted to the body and not, say, to the heat
“ contained * in the body. To be able to give a definite
meaning to the latter concept general thermodynamics does
not suffice; it becomes necessary to introduce a special
hypothesis about the atomic constitution of bodies. All
that can be measured directly, independently of any
hypothesis, is the transmission of heat, not the thermal
state in terms of energy. It is in agreement with this
circumstance, to0o, that by equation (38) only energy
differences can be measured; that is, the value of the
energy B of a body always contains an indefinite additive
constant.

In the first two parts of the present volume we shall
consider only heat conduction, leaving heat radiation to
be dealt with in the third part. Further we ghall in general
restrict our attention to considering bodies at rest. The
energy E of a body then reduces to its so-called * internal *’
energy U which, like the pressure p, 18 to be regarded as a
function which is determined by the chemical constitution,
the temperature 6 and the volume V= Mv of the body,
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apart from an additive constant. If we also leave out of
account external electromagnetic actions the equation of
energy (38) reduces to the form

U—U=4+Q . . . . (40)

§ 20. Since @ denotes the mechanical equivalent of the
heat transferred to the body, it is understood that @ is
expressed in mechanical units (ergs, I, § 47). In thermal
measurements, however, practical considerations lead us
to use a special unit, the calorie. This is the quantity of
heat which 1 grm of water must take up from without
in order that 1ts temperature may rise from 14:5° C. to
15-5° C. All calorimetric measurements are expressible m
terms of this unit.

The ratio of the quantity of heat @ taken up by a body
to the resulting increase of temperature §'— 6= Af is
called the “mean heat-capacity ” of the body between
the temperatures 6 and 6’ :

Q
AT = Om
The heat capacity of 1 grm. of a substance is oalled its
‘“ gpecific heat.”
Cn Q q

Cm=TM=I.56 Ab
Accordingly the mean specific heat of water between
14-5° C. and 15-5° C. is equal to one calorie. If we make
the temperature intervals infimtely small we obtain the
so-called “ true heat-capacity *’ of a body and the *‘ true
specific heat *’ of a substance, respectively, at the temper-
ature 6 :

'%=amddis=c. C . (4

which in general varies only slightly with the temperature.

To be rigorous the above definitions of heat-capacity
and of specific heat require to be supplemented. For
since the internal state of a body, besides depending on the
temperature, also depends on a second variable, say the
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pressure, the change of state associated with an increase
of temperature 1s not definite until we know how the
second variable behaves in the process In the case of
solid and lhiquid bodies, it 1s true, the heat-capacity is
almost independent of whether the heating is performed at
constant or variable external pressure; for this reason
we do not usually add a particular condition about the
pressure 1 defimng the heat capacity of such bodies.
In the case of gases, however, the value of the heat
capacity depends very decidedly on the external circum-
stances under which the heating process is carried out,
hence, for them, the definition of heat-capacity must be
supplemented by having these external circumstances
specified, which can, of course, be controlled at will. The
heat-capacity of a gas is taken simply to be that at
constant atmospheric pressure, since this can be most
conveniently measured.

§ 21. To enablo calorimetric measurements to be used
in applying the energy equation (40) it is necessary to
know the factor which converts the unit of heat, the calorie,
into the mechanical umt, the erg. This conversion
factor, called the mechanical equivalent of heat, is a
constant which depends only on the system of measure-
ment used, 1ts value may be found most directly by
making a system pass from a definite initial state to a
definite final state in one case by external mechanical
means alone and in another case by means of external
heat processes alone. For since E'— E has the same
value m both cases the mechanical equivalents of the
external actions are equal in both cases, by (40), and the
mechanical work 4 n the first case is equal to the heat
@ transferred to the system in the second case.

Such measurements were first carried out by J. P. Joule,
who caused a liquid (water, oil) to pass by two routes
from a definite state of lower temperature to & definite
state of higher temperature. This was done in the one
case only by addmng a certain quantity of heat, i the other
only by performing a certain amount of mechanical work
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by means of the friction caused in the liquid by paddle-
wheels which were made to turn by falling weights. In
this process no importance attaches to the ideas we may
have about the manner in which the heat is generated by
friction, all that matters is that the final state of the
ligmd must be the same as that produced by the transfer
of heat to the system. The measurements mdicated that
a calorie 18 equvalent to 4:19.107 ergs; consequently
the mechanical equivalent of heat 1s :

@ =419.107 ergsjeal.. . . . (42)

This numerical value has subsequently been tested by
numerous measurements. The fact that it always comes
out as practically the same in all kinds of experiments
with different substances, temperatures, friction apparatus
and weights is a striking experimental confirmation of the
law of conservation of energy (40).

§ 22 We shall now apply the first law of thermo-
dynamics to a homogeneous body of given mass M whose
state 18 defined by 1ts temperature § and 1ts volume V.
Here and everywhere 1n the sequel we shall use the word
‘ homogeneous ” simply in the sense of “ physically
homogeneous,” that is, a homogeneous configuration 18
one whose smallest visible parts (in the macroscopic
sense, cf. § 115 below) may be regarded as exactly of the
same kind. It is not a question of the body being
chemically homogeneous, that 1s, consisting of exactly
siular moles throughout. For a partly dissociated
vapour (§ 17) can very well be physically homogeneous
All that we wish to assume here is that the state of the
homogeneous body in question 18 uniquely determined
by the temperature and volume no matter whether or
what sort of internal chemical transformations occur in
the course of the changes of state under consideration.
The pressure p and the mternal energy U are then to be
regarded as definite functions of 6 and V.

Whereas the pressure p may be measured directly the
energy equation (40) must be apphed if we wish to
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determine the energy function U. We shall first consider
the particular case of a gaseous body.

§ 23. If we allow a gas which is imtially in thermal
equilibrium and has an amount U of imternal energy to
flow out of one vessel mto another, previously evacuated,
a number of complicated mechanical and thermal changes
will take place within the gas during this process The
issuing part of the gas will set itself into rapid motion and
will afterwards become warmer owing to colligion with the
walls of the second vessel and the compression of the
immediately following masses, while the part which
remains in the vessel will become cool owing to expansion,
and so forth. If we assume that the walls of both vessels
are absolutely rigid and are perfect mon-conductors of
heat, then in equation (40) both 4 = O and @ = O, and the
energy of the gas remams constant. This energy is
composed of many parts, namely of the kinetic energies
and the internal energes of all the individual gas particles.
If, however, we wait sufficiently long, until a completely
steady state and thermal equilibrium have become estab-
lished, the energy in the final state again consists only of
internal energy, and it then follows from (40) that U’ = U.
But the varables § and ¥V, on which U depends, have
passed from their original values to the values 6’ and V’,
V' being greater than V. We may also find out by
measuring the temperature and the volume before and
after the process how the temperature 0 of the gas varies
ag the volume V changes, while the internal energy U
remains constant

Joule carried out an experiment of this kind and found
that for gases 6’ 18 nearly equal to §. He placed the two
vessels, one of which was initially filled with air at high
pressure and the other evacuated, in a common water-
bath at the same temperature ~ On carrying out the above
process of allowing the gas to stream into the vacuum and
after waiting for the state of equilibrium to be attained,
he found that the change of temperature m the water-bath
was inappreciably small. From this it follows that even
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in the case of walls that are perfect non-conductors of
heat the final temperature of the gas is equal to the initial
temperature; for otherwise the change of temperature
would have been communicated to the water in the above
experiment.

Thus when the internal energy of a gas remains constant
while its volume is changed, the temperature also remains
practically constant; or, in other words, the internal
energy of a gas is determined almost entirely by the
temperature alone and is independent of the volume.

§ 24. To make this conclusion appear quite convincing
still more accurate measurements are necessary. KFor in
the experiment by Joule just described the heat-capacity
of the gas is so small compared with that of the walls of
the vessel and the water-bath that it would have required

A A B B’
2

—

l

Fia. 2.

a very considerable change of temperature in the gas to
produce & measurable change of temperature in the water.
An essential modification of the method was devised by
W. Thomson (later Lord Kelvin) and carried out by him
in conjunction with Joule; this allowed refined measure-
ments to be made which gave more trustworthy results.
Tt consists in artificially retarding the outflow of gas so
that it passes direotly imto its second state of thermal
equilibrium and the temperature §’ is then directly
measured in the gas. It does not in this case stream out
tumultuously as a limited mass of gas into a vacuum,
rather the gas is led in an unlimited steady stream from
the region of higher pressure into that of lower pressure by
being forced through a cylindrical tube of beech-wood
which is blocked at one pomnt by & porous plug of cotton
wool or teased silk (shown shaded in Fig. 2).

This enables us to draw an inference about the internal
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energy of a gas. For this purpose we apply the energy
equation (40) to the system 4B when the stream has be-
come steady; the system 4B consists of a mass of gas
which is on the left side of the porous plug (we reckon it
from en arbitrary cross-section 4) and the plug together
with the gases contained in it. Let the volume of the
gas between A and A’ be V. We shall choose ag our
final state that which exists when the gas particles
which were origimally in 4 have reached the boundary 4’
of the plug. At this moment those gas particles which
were initially at the cross-section B have now arrived at
B’. The masses of gas 44’ and BB’ are then equal,
whereas their volumes ¥ and V’ will of course be different.
Let us next calculate the mechanical equivalent 4 + @
of the external forces acting on the configuration in
question. The transferred heat @ is nil; for the wood of
which the tube is composed is practically a perfect non-
conductor, and at 4 and B’ there is no conduction of heat
because the temperatures § and ' in the gas are constant.
There then only remains the mechanical work which is
performed by the external forces of pressure acting on the
slowly moving system. The force aoting on its left side
is equal to the pressure multiplied by the cross-section of
the tube; the displacement of the system 44’ is equal
to the volume ¥V divaded by the cross-section of the tube.
Hence the work done, namely the product of the force
and the displacement, is equal to p¥. On the right side
of the plug the work done is correspondingly equal to
— p'V', because here the displacement is in the sense
opposed to the external force, which acts from right to left

So the total external work is 4= pV — p'V’. Now tho
difference of energies of the system in question i the
initial and in the final state clearly reduces to the difference
of the internal energies U and U’ of the equal masses of
gas AB and A'B’. For the plug and the gas contained in
it are in the same state at the end as at the beginmng.
However complicated the events that occur in the plug
may be, they do not come into consideration for the
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energy equation so long as the process is steady. Allin
all we find then that if we apply the energy equation (40)
to the steady process in question we have :

U—-U=pV—pV . . . . (43)

This 18 the general theory of Joule and Thomson’s porous
plug experiment.

As for the results obtained by actual measurement it
was found that in the oase of air in the steady state there
was & very small change of temperasure § — 6’ in the gas
on the two sides of the plug; in the case of hydrogen it
was still smaller, being hardly measurable. From this
it follows by (9) that the right-hand side of equation (43)
and hence also the left-hand side, U’ — U, almost vanishes.
That is, the internal energy of the gas has remained,
like the temperature, almost unchanged in spite of its
greatly changed volume, and the inference already drawn
at the end of § 23 that the internal energy of a gas at a
definite temperature is almost independent of its volume
is confirmed, namely that :

(?37%5:0 C L (4

§ 25. Those processes which, as it is usually expressed,
occur infinitely slowly and therefore consist of states of
equilibrium alone are of perticular importance for the
theory. Taken literally this mode of expression is not
precise, for the nature of a process necessarily involves
changes, that is, it agsumes disturbances of the state of
equilibrium. But if we are concerned, not with the time
but only with the final result of the changes we may assume
these disturbances to be as small as we please compared
with those quantities which are characteristic of the state
of the system in question For example, we can compress
a gas as slowly as we wish to any fraction of its initial
volume by making the external pressure at every moment
very slightly smaller than the pressure of the gas, and in
caloulating the external work only a very small error is
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inourred if we use the pressure of the gas instead of the
external pressure. In passing to the limit this error
disappears altogether and the result becomes rigorously
aocurate. For the error in a definite result always has a
definite value, and if this error is smaller than any
arbitrarily small quantity, it is of necessity equal to zero.

‘What has just been said applies equally well to a com-
pression at constant pressure as to one in which the
pressure is varymg. In the latter ocase the exactly
appropriate value must be given to the external pressure
at every moment. This can be achieved by means of
special regulating devices which do not involve the per-
formance of work.

The position with heat that has been taken up or
given out is just the same as with the external work. If
we are concerned with the value of the quantity of heat
which & body has received from or given to its surroundings
it is sufficient to assume the temperature of the heat-
container used to be greater or smaller by an arbitrarily
gmall value than the temperature of the body, according
a8 the heat is taken up or given out. This slight excess
gimply determines the direction of the process but its
value does not come into question compared with the
whole change produced by the process. For this reason
just as we spoke of the compression of a gas by means of
an external pressure equal to that of the gas so also we
speak of the transference of heat from one body to another
at the same temperature; and doing this means only
that we anticipate the result which is obtained in passing
to the limit by making the finite small difference of
temperature of the two bodies become vanishingly small.

This also applies not only to isothermal processes but
also to those in which the temperature varies In the case
of the latter it is not sufficient to have a single heat-
reservoir at constant temperature but rather we must
have a sufficiently great number of appropriate heat-
reservoirs at different temperatures and must at each
moment use just that reservoir whose temperature 18 as
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nearly as possible equal to that of the body under con-
sideration.

The great theoretical importance of the point of view
underlying this method of treatment is that every
“ infinitely slow * process can be imeagined to be carried
out in the reverse direction. For if a process consists,
except for extremely small changes, of nothing but states
of equilibrium, then clearly an equally small change
appropriately applied will always suffice to make the
process occur in the reverse direction, and the magnitude
of this very small change can, as above, be made vanigh-
ingly small by passing to the limit.

§ 26 We now proceed to apply the first law of thermo-
dynamics to a process of this
kind which consists only of £
states of equilibrium and 18
therefore reversible It may be
pictured graphically in a simple
way by plotting the series of
equilibrium states successively
passed through by the body as
a curve m the plane of a co-
ordinate system whose axes
represent the values of the
independent variables @ We
shall here again choose as our independent variables
the volume V (abscissae) and the pressure p (ordi-
nates). Corresponding to every point in the co-ordinate
plane there is then a definite state of the homo-
geneous body in question and every curve denotes a
definite contmuous and reversible change of state. A
reversible process, for example, which brings the body
from a state 1 to a state 2 18 mdicated by a curve « which
passes from the point 1 to the point 2 (Fig. 3). By equation
(40) the increage of energy of the body 1s:

Uy—U; =4+ . . . . (49
where A denotes the work done by the external pressures
and Q the heat transferred to the system from without

v
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§ 27 The value of 4 can be calculated directly. For A
18 the algebraic sum of the elementary portions of work
which are performed by the external pressure during the
successive infinitely small changes of the body, corres-
ponding to the mndividual elements of arc of the curve «
Now since the external pressure at any moment 18 to be
set equal to the pressure p of the body—as the process is
agsumed to be reversible—the external work done in an
infinitely small change of state is, by II (278), in general
equal to —p dV and is independent of the shape of the
surface of the body Accordingly the external work done
during the course of the whole process is :

A=—f1’p.dv. TP

where the integration is to be taken along the curve «
from the point 1 to the pomt 2. If p is positive, as in the
cage of gages, and V,>V,, as in Fig 3, then 4 18 negative;
that is, no external work is done on the gas but work is
done by the gas, say, by raising a weight which is pressing
down on the gas.

To be able to carry out the integration it is necessary
to know how the pressure p depends on the volume ¥,
that is, we must kmow the shape of the curve a. So long
as only the points 1 and 2 are known and the connecting
curve is not given, the integral has no definite value.
Thus if the transition from 1 to 2 occurs along another
curve § the result of the integral will be quite different
Hence the differential pdV is, we may say, an “ incomplete
differential.” Regarded mathematically, this circum-
stance is due 1o the fact that besides depending on V the
quantity p also depends on another vamable, the {emper-
ature 0, which will change in & certain way in passing
along the path of mtegration . So long as « is not known
nothing can be said about the dependence of 6 on the
integration variable V; and so the mtegration cannot be

performed.
The external work 4 has a very simple graphical mean-
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mg in Fig 3 By (46) it is clearly equal to the negative
value of the area of the figure enclosed by the curve «,
the V-axis and the ordinates through the points 1 and 2.
From this, too, we see that the value of 4 is essentially
conditioned bv the course of the curve «. It is only for
infinitely small changes of state, that is, when the points
1 and 2 are infinitely close to each other, or when «
contracts to a curve element, that 4 is determined by the
mitial and final point of the curve alone.

§ 28. From the value (46) for 4 and the energy equation
(45) the heat transferred to the body comes out as :

Q=m—m+&w T

From this we see that the value of @ as well as that of 4
is conditioned not by the pomts 1 and 2 alone but also by
the shape of the curves « and f that connect them. In
addition, to be able to calculate @, we require to know
the energy U of the body in the states 1 and 2.

The quantity @ can be calculated independently of the
energy U n the case where the body is finally again brought
to its initial state 1, that 1s, when 1t performs a cycle. This
can happen, for example, when 1t is first brought to the
state 2 along the path « and then back to the state 1 along
the path . For then, as has already been shown in § 18:

1
Q=~A=£MV. ... (48)

where the integral is to be taken over the closed curve
1 2B 1. A at the same time represents the area of the
surface enclosed by this composite curve; it is positive
when the cycle takes place in the direction indicated by
the arrow (Fig. 3).

Such a cycle, when performed any number of times in
the appropriate direction, represents the type of a machine
working periodically, which continually converts heat into
mechanical energy.

§ 29. In this paragraph we shall consider more closely
the special cage in which the curve « characteristic of
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the change of state contracts into & curve element and so
brings the points 1 and 2 infinitely close to each other.
Equation (47) then becomes *

Q=dU+pdV. . . . . (49)
Referred to unit mass of the body this equation runs:
g=du+pdv . . . . (50)

if the quotients of @, U and V by the mass M are denoted
by the corresponding small letters. An important con-
sideration for the following calculations is to know which
of these quantities are used as independent variables. It
is usual to take the temperature § for one and either the
volume v or the pressure p for the other. We shall choose
the independent variable according to requirements and,
to avoid confusion, we shall specially note the sense of the
differentiation

‘We shall now apply equation (50) to the most 1mportant
properties of & homogeneous body.

§ 30. By (41) and (50) the specific heat of the body is :

q du dv
o=t—m=z'9-+.‘?zg . (51)

As has already been emphasized in § 20 this quantity has a
definite value only when the manner of heating is specified.
Actually, the differential quotients in (51) acquire a mean-
ing only when an equation of condition between the two
independent variables, say 6 and v, is given. The most
mmportant cases are those in which either the volume »
or the pressure p 18 kept constant during the heating
process.

When heat is added at constant volume we have
dv= 0, and by (51) we get for the specific heat at constant
volume .

o,=(%)’. N 7))

When heat is added at constant pressure dp= 0, and
by (51), the specific heat at constant pressure is

c,=<g_'gp+p(g§)’. ... (83)
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T @@,

we have, taking into account (52) :

ome (@)@, - -

§ 31. Let us a.pply the last equation to & gas. For this
we have by (44)
du
(%)ﬁ 0

227 10

and by (34):
(1 + af)

Consequently we have by (54), bearing in mind (6) :

2:27. 1010
mcp—mc,=T3_2—=831.107=R‘ . (55)
That is, the value of the difference of the molar heat at
constant pressure and the molar heat at constant volume
is almost the same value for all gases, namely B

There are difficulties in subjecting this formula to a
direct experimental test because in the case of a gas only
the specific heat ¢, at constant pressure can be con-
veniently measured, but not the specific heat at constant
volume. For a quantity of gas contained in a closed
vessel of constant volume has a far too small heat capacity
compared with external bodies, in particular the walls of
the vessel, to be able to produce thermal effects measurable
with ordinary apparatus (of. § 23 above). Butnevertheless
the equation (55) admits of an important practical con-
sequence in itself For since, by (52), ¢, like u depends
only on the temperature and not on the volume, the same
follows by (85) for cp.

This conclusion was first verified by the measurements
of Regnault and was by no means obvious at the outset.
On the contrary, in the older theory of heat due to Carnot,
which regarded heat as an indestructible substance, it was
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inferred from the fact that & gas is heated by compression
that the heat capacity of a gas is considerably diminished
by reducing its volume, inasmuch as during the com-
pression the heat is as it were pressed out of the gas m
much the same way as water is squeezed out of a wet
sponge. Regnault’s results prove that this view is
untenable. Moreover Regnault found that ¢, is constant
over a fairly wide range of temperature. By (55) cv is
then also nearly constant over the same range of temper-
ature, and by (52) the energy of the gasis :

u=¢.0+const. . . . . (56)

The additive constant of integration 18 essentially indefinite
(§ 19).

If the molar heat is not measured in mechanical units
but in calories, the quantity R in (55) must of course be
divided by the mechanical equivalent of heat a given in
(42); and we have as the difference of the molar heats at
constant pressure and constant volume :

R 831.107

@~ 419.107
According to the measurements obtained for all mon-
atomic gases the molar heat is almost equal to 5; for
diatomic gases it is nearly equal to 7, for polyatomic gases
it is still greater. From this we obtain by (57) for the
molar heat at constant volume the corresponding values
of approximately 3, 5 and more. And so we get for the
ratio of the two molar heats *

-2 51
“TuTEE
As the number of atoms in the mole increases « de-
oreases without limit towards 1. A reason for this
regular behaviour is given only by modern atomic theory
(§ 144).

§ 32. Now how is the heating of a gas by compression
to be explained on the theory that has been developed ?
To answer this question we need only apply the equation

=108 . . . . (57)

1. . . . (58)
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(50) of the first law to a process in which the gas is com-
pressed without heat being allowed to pass through the
walls of the vessel, and which is therefore called
“ adiabatic.” The condition g= 0 which is characteristic
of adiabatic processes gives, by (50) :
du + pdv =0
and by (56) and (34) :
2-27.10%
cdd + T(l + af)dy =0
This differential equation may be interpreted term by
term, if we first divide by (1+ «f). We then get.

Co 2:27 101
;log (1+ «f) + —m log v = const.
or by (6) and (55) :
mevlog (1 + «f) + Rlogv =const. . . (59)

The values of the constants of integration are given by the
initial state. By using the relation (55) and introducing
the ratio « of the specific heats (58) we may also write
this in the form

log (1 + «f) + (x — 1)logv =const. . . (60)

and in this way we obtain the law of the increase of
temperature with decrease of volume, which is completely
determined by the numerical value of «

If we wish to know the adiabatic relation hetween the
volume and the pressure, we must eliminate § from (60)
by means of the equation of state (34); for this purpose
we conveniently write (34) m the form .

log p + log v — log (1 + af) = const.
By adding the last two equations we then get :
log p + klogv = const or pv*=const.. . (B1)

ag the law for the adiabatic compression of a gas. A
comparison with the law of isothermal compression,
pv= const , shows that in adiabatic compression the
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pressure mcreages more rapidly as the volume decreases
than m the case of isothermal compression, as is natural.

§ 33. Since by (61) adiabatic processes may be used to
measure « they furnish us with an important means of
testing the theory since we can compare this value with
the numerical values (58) calculated from the mechanical
equivalent of heat.

For example, we can use the measurement of the
velocity of sound in & gas to calculate . By II (293)

this velocity is : .
- J@
C=NE

where k& denotes the density of the gas and is also equal to
3. From this it follows that
kal

K=—

»
If in this formula we substitute for air at 0° C. and at one
atmosphere pressure :
a = 33200 cms [sec.
2 = 1013000 grms. /cm. sec.?

and, by IT (284):

k= 0-001293 grms. /cm .3
we get x= 140 which agrees with the numerical value
% in (68) for & diatomic gas.

Of course we may conversely also use the value of x
calculated from the velocity of sound to calculate ¢, in
calories and then, by applying (55) to calculate the
mechanical equivalent of heat. This method of evalusting
the mechanical equivalent of heat was originally used by
Robert Mayer m 1842. It is true that we must have for
this purpose the relation (44) which expresses that the
energy of the air is independent of its volume or, in other
words, that the difference of ¢, and ¢, is conditioned only
by the external work, as otherwise the general relation
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(54) would have to be assumed—an assumption which
could be regarded as directly proved only after the
experiments of Joule and Thomson described in § 24 had
been carried out.

§ 34 Leaving the reversible changes of state of a
homogeneous body we next turn to those processes which
are connected with changes of the aggregate state or
chemical transformations. In each case we can again
apply equation (47) to the process. In this equation Q
then denotes the “ heat of transformation ” or “ heat tone ”
(Warmetonung) and is positive if the heat is transferred
from without. In this process we always assume the
final temperature 6, equal to the imtial temperature 6,.
In changes of the aggregate state @ occurs with its
appropriate sign as heat of vaporisation, heat of condens-
ation, heat of fusion or heat of sohdification; in chemical
processes it occurs as heat of reaction, heat of combination,
heat of solution, heat of dissociation and so forth. We
see that the value of @ does not m general depend only
on the imnitial and final states of the configuration in
question but also on the path followed between these
states and, in particular, on the external work For
processes which occur at constant volume as, for example,
combustion 1n a hermetically sealed vessel, a so-called
calorimetric bomb, we have Q= U, — U,, that is, simply
equal to the difference of the energies. On the other
hand, for isobaric processes—such as most chemical
processes are, as they occur at ordinary atmospheric
pressure—we have :

Q=U,—Us+p(Vy—TVy) . . . (62)
or, referred to unit mass :
g=uy—uy+ply—v). . . . (83)

If we unute these equations in the form :
Q@=U+2pV)s—(U+pV)h

we see that in the case of isobaric processes, too, the heat
of transformation depends only on the imtial and the
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final states. But 1t is not represented as m isochore
processes by the difference of the energy U but by the
difference of the function :

W=U+pV . . (64)

which Gibbs calls the * heat function at constant pressure,”
while Moller calls it the ‘ enthalpy.” TFor unit mass it is -

w=u+py . . . . . (85)

In many cases, particularly in vigorous chemical reactions,
but also mn changes of the aggregate state in which no
gases participate, the amount of the external work is so
small compared with the heat of transformation @ that
we can exchange the heat function at constant pressure
with the energy without incurring an appreciable error.
If the configuration contains gaseous parts in its initial
or its final state, then, in calculating the external work,
it is a8 a rule sufficient to consider these parts alone;
that is, the volume change of the solid and liquid bodies
may be neglected If n, and n, are the numbers of
gaseous moles in the initial and final state, respectively,
we obtain, by (62) and (35), for an 1sobaric process, using
mechanical units :

Q=Uy— Uy + 227.10° (n, —ny) . (L + af) . (68)
Thus the amount of the external work done depends only
on the change i the number of gaseous moles and the
temperature, but not on the pressure.

The fact that the heat function W at constant volume
plays the same part in isobaric processes that the energy
U plays in isochoric processes also manifests itself in the
cage of the specific heats For, corresponding to the
equation (52) for ¢, we have the equation :

°»=(3~'§),~ N )

which, on account of (65), is 1dentical with (53).
§ 35 Since the heat of transformation @ refers to a
definite temperature 6 the value of @ will n general depend
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on §. There is a simple relation for this dependence,
which 1s obtained by differentiating { with respect to 0
For in the cage of isochoric transformations Q= U,— U,,

d
2Q U, U
(a_o)f (a—t)z)f G =Cn—@). . ()
On the other hand, for isobaric transformations we have
Q= Wy~ W, and by (67)

(%)}f (%)p‘ (aaLgl)p= (Gl = (Cp)y - - (89)

where Cy and O, denote the heat capacities of the system at
constant volume and constant pressure, and the indices 1
and 2 refer to the state of the configuration before and
after the transformation.

Thus we find the mfluence of temperature on the iso-
baric heat of combustion of hydrogen n forming liquid
water by subtracting the isobaric heat capacity of an
explosive mixture of oxygen and hydrogen (state 1), con-
sisting of one mole of hydrogen and half a mole of oxygen,
from the heat capacity of one mole of hquid water (state
2). Since, by § 31, the molar heat of hydrogen and oxygen
is 7 and the specific heat of water 18 1, while its molar
weight is 18, we have:

Gy =T+57=105
(Co)y =18 1=18.
Hence, by (69) -

o

Now in the present case @ 1s negative because the heat of
reaction 18 given to the surroundings Consequently the
amount of the heat of combustion of a mole of hydrogen
decreases by 7-5 calories per degree as the temperature
increases.

(B*Q>,= 18 — 10:5 = 76.



CHAPTER IO
SECOND LAW OF THERMODYNAMICS

§ 36. TaE content of the second law of thermodynamics
is sharply distinguished from that of the first lJaw because
it concerns a question which is not touched en by the latter
at all, namely the question of the direction in which a
thermal process ocours in nature. For not every change
which is compatible with the principle of conservation
of energy satisfies the further condition imposed by the
gecond law on the processes that actually ocour in nature.
If, for example, an exchange of heat occurs by conduction
between two bodies at different temperatures, the first
law requires only that the amount of heat given out by
the one body should equal the amount of heat taken up by
the other body. Whether the heat conduction occurs in
the one or the other direction cannot be decided on the
strength of the first law. Indeed, the concept of temper-
ature is in itself foreign to the energy principle, as can be
seen from the fact that this principle does not lead to an
exact definition of temperature.

As for the direction m which processes oceur in nature
and the way in which this question is answered by the
second law there 13 an essential difference between
mechanical and electrodynamic events on the one hand and
thermo-chemical events on the other hand—a difference
to which we have already alluded in § 2. For whereas the
former can always also occur m the exactly opposite
direction—a heavy body can rise just as well as it can fall,
a spherical electrodynamic wave can propagate iteelf just
ag well inwards as outwards—according to the second

law no thermal event can be directly reversed.
50
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The problem of formulating the second law correctly
has ocoupied physicists for decades. A long time passed
before it was recognized that the content of the second
law is not exhausted if—as was done occasionally even by
Clausius and later with renewed emphasis by Ostwald—
every process in nature is resolved into a series of energy
transformations and the direction of each individual
transformation is enquired into. It is true that in each
individual case we can name the different kinds of energy
that are transformed into one another—this follows from
the first law—but there always remains a certain
arbitrariness as to how the individual transformations
are allocated to one another, and this arbitrariness cannot
be removed by a general convention.

Even nowadays the nature of the second law is some-
times sought in the tendency of natural phenomena to
“ degrade ” energy on the ground that, for example,
mechanical energy can be completely transformed into
heat but heat can be transformed only incompletely into
mechanical energy, in the sense that if a quantity of heat
is transformed into mechanical energy then another
transformation, such as a thermal transition from a higher
to a lower temperature which serves as a compensation
process, must always ocour simultaneously.

That this formulation, which is useful in special cases,
by no means gets to the root of the matter can be seen
from the following simple illustration. If a gas is allowed
to expand, domg work in the process, and if at the same
time the temperature of the gas is kept constant by the
transference of heat from & reservoir at a higher temper-
ature, we may say that the heat transferred by the
reservoir has been completely transformed into work. For
while the gas has retained its temperature it has also
retained its internal energy unchanged (§ 24), and other
transformations of energy are not occurring. No fact of
any kind can be objected to in this assertion. But in the
case of the second law we are concerned with particular
facts that can be ascertained by measurement. That is
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also why the second law cannot be deduced o priori. We
can speak of proving 1t only in so far as its total content
may be deduced from a single smple fact of experience of
convinemng certainty.

§ 37. In connexion with what has just been said we
shall now base the general proof of the second law on the
following empirical law : “it is impossible to construct
& machine which functions with a regular period and which
does nothing but raise a weight and cause a corresponding
cooling of a heat reservoir ”

Such a machine could be used simultaneously as a
motor and as a cooling machine without any other ex-
penditure of energy or materials. It would at any rate be
the most advantageous in the world It would nét be
equal to the perpetual motion machine, for it by no means
produces work from nothing, but from the heat which it
abstracts from the reservoir. That is also the reason why
it does mot, like the perpetual motion machine, conflict
with the first law. But it would nevertheless possess the
most essential advantage of the perpetual motion machine
for mankind, that of supplying work without expenditure.
For the heat contained in the so1l, in the atmosphere and
in the ocean is always available, just like the oxygen
of the air, in inexhaustible quantities for direct use
by anyone This ciroumstance also accounts for our
beginning with the above empirical law. For as we shall
deduce the second law from it we secure for ourselves, in
the event of our ever discovering any deviation of a
natural phenomenon from the second law, the prospect of
immediately being able to apply 1t practically in a very
important way. For as soon as any phenomenon is
found that contradicts a smgle inference from the second
law, the contradiction would be due to an inaccuracy in
the very first assumption on which it is based and it would
be possible, by following the above reasomng backwards
step by step, to use the phenomenon to construct the
machine above mentioned. For the sake of brevily we
shall in the sequel follow a suggestion of Ostwald and call
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it & * perpetual motion machine of the second kind,” since
it bears the same relation to the second law that the
perpetual motion machme of the first kind bears to the
first law. :

§ 38. If we compare the two kinds of perpetual motion
machine we at once observe a fundamental difference :
the law forbidding the perpetual motion machine of the
first kind also applies conversely, that is, work can neither
be produced absolutely nor anmhilated absolutely,
whereas the law which forbids the perpetual motion
machine of the second kind does not apply conversely,
that 1s. it 18 certainly possible to construct a machine
which does nothing more than lower a weight while a
heat reservoir is correspondingly warmed As an illustra-
tion of this kind of machme we have that used by Joule
to measure the mechanical equivalent of heat, it is set
into motion by means of a falling weight which causes
rotating paddle-wheels to warm a hqmd by friction For
if the weight reaches the floor with vanishingly small
velocity no change has taken place in nature except that
the liquid—which is here to be regarded as a heat reservoir
—has been warmed In fact it is clear that every
frictional process represents a reversed perpetual motion
machine of the second kand, so that our empirical law
stated above may also be formulated as follows . there 1s
no possible way of completely reversing a process in which
heat 1s generated by friction. The word “ completely ™ is
used here to express that the imitial state of the frictional
process has everywhere been exactly restored. To take a
definite example, 1f after a Joule’s friction experiment had
been carried out it were possible by some process to bring
the fallen weight back to its original height and to cool the
liquid correspondingly without any other changes re-
maimng this would obviously be a perpetual motion
machine of the second kaind. For it does nothing beyond
raismg a weight and correspondingly cooling a heat
reservoir.

For the sake of brevity we shall call a process which can
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in no way whatsoever be completely reversed ‘irreversible *
and all other processes * reversible.”” For a process to be
reversible, then, it is not sufficient to restore the bodies
that participate in the process to their initial state—this
is always possible in principle—but it is required that it
should in some way be possible to restore the initial
condition of the process everywhere in nature, no matter
what technical devices and mechanical, thermal, chemical
and electrical apparatus are used. All that is essential is
that any material and apparatus used should at the
end be again in exactly the same state as in the beginning
when they were taken for use.

§ 39. Any process that ocours in nature is either re-
versible or irreversible. We have as examples of reversible
processes all purely mechanical and electrodynamic
processes. For if they occur in the reverse direction the
initial state is completely restored As an example of an
irreversible process we have had the generation of heat
by friction; other examples will be given in the sequel.

The significance of the second law consists in the fact
that it furnishes us with a necessary and sufficient criterion
as to whether a definite process that occurs in nature is
reversible or irreversible. Smce the decision on this
question depends only on whether the process can be com-
pletely reversed or not, we are concerned only with the
constitution of the initial state and the final state of the
process but not on its intermediate course. For it is
merely a question as to whether, starting from the final
state, we can or cannot again arrive at the initial state
without anything bemng changed. Hence the second law
furnishes for any process whatsoever in nature a relation-
ship between those quantities which refer to the mitial state
and those which refer to the final state. In the case of
irreversible processes the final state 1s distinguished by a
certain property from the initial state, whereas in the case
of reversible processes these two states are in a certain
sense of equal value. We shall express this briefly by
saying that in the case of an irreversible process the
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final state has a greater ‘‘ thermodynamec probability
or a greater ““ thermodynamic weight ” (we say “ thermo-
dynamic ¥ to distinguish it from ‘‘mathematical ”
probability or mechanical weight, respectively) than the
1nitial state. These words are to convey no more than what
has been said above. We may then formulate the content
of the second law by saymng that it gives us & measure of
the magnitude of the thermodynamic probability or the
thermodynamic weight of a physical configuration o &
given state. Our next task 1s to find this measure.

§ 40. To solve this problem we shell adopt the following
course Let us imagine an arbitrary system of bodies and
let us consider any two different and exactly defined
states of the system, which we shall denote by Z and Z’.

The question is whether and under what conditions a
process in nature 1s possible such that it transfers the
system of bodies in some way from the state Z to the state
Z' or conversely, without anything being left changed
outside the system. We can make the last proviso super-
fluous by mecluding all the bodies in the world 1n the
system under consideration. In other words, our object is
to specify to which of the two states Z and Z' the greater
thermodynamic probability is to be assigned There are
clearly three different posmbilities. A transition may be
possible both from the state Z to the state Z' and also
conversely from Z’ to Z; this process is then reversible
every time and, indeed, in all i1ts parts, and so the
probabilities are equally great for both states. Or a
transition may be possible from Z to Z’ but not reversely
from Z’ to Z, the process in guestion is then irreversible
and the probability of Z’ is greater than that of Z Or,
lastly, the opposite case may occur, namely if an irrever-
stble process from Z’ to Z is possible of execution, so that
Z has a greater probability than Z'.

If the definition of the two states Z and Z’ is quite
arbitrary at the outset, they must nevertheless fulfil the
condition that the transition from one state to the other
involves the loss neither of matter nor of energy. For
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otherwise the process in question would be impossible
from the very start. The system of bodies must therefore
have the same chemical constituents and the same energy
in both states. Otherwise, however, Z and Z’ may be
selected arbitrarily.

§ 41. We start from the simplest case that the states
Z and Z' are distinguished from each other only by the
behaviour of a single homogeneous body of the kind
considered above m § 22, Let this body have the volume
V and the temperature 6§ m the state Z, the temperature
being measured by any thermometer, for example, a
mercury thermometer or any gas thermometer; and mn
the state Z’ let it have the volume ¥’ and the temperature
¢’. The volume and the temperature also determine
the energies of the body, U and U’, respectively. Since
U and U’ are mn general different from each other and
since on the other hand we must ensure that the transition
from Z to Z’ satisfies the energy principle, we imagine an
mvanable weight G included m the configuration in
question, the centre of gravity of this weight bemng at a
height % in the state Z and at a height A4’ 1n the state Z’,
so that:

Gh-H)=U-U . . (70)

From the standpoint of the energy principle a transition
of the system from one state to the other 1s possible
without anything remaining changed outside the system.

‘We now start from the state Z and endeavour to reach
the state Z’. To do this we first subject the body in
question to a reversible adiabatic change, as was done in
§ 32 with a gas. We then have Q= 0 and by (49) :

aU +pdV=0. . . . . 71
Also: b (71)

dU=(%0 d0+( av

oV/y

(55),00 + {(gg} +P}"”’ =0

Thus we get :
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The expression on the left-hand side 18 not a complete
differential, as we saw 1 § 27. But there is always an
‘“ integrating factor ” N, that s, a function of the two
independent variables § and ¥V which when divided mto
the expression makes 1t a complete’ differential, so that
we may always write :

aU + pd

—}'VP—V —d8 . . (72)
where S is now a finite function of the two independent
variables 6 and V. We may thus regard S, just like the
energy U, as & definite property of the state of the body.
‘We shall follow Clausius and call it the *“ entropy *’ of the
body in the state defined by § and ¥

But the definition of the entropy given by (72) is not
yet unique For there is not only one, but, indeed, an
infinite number of quantities N, which when divided
into the expression (71) make 1t a complete differential.
This is easily seen by writing N. f(S) instead of N, where f
denotes any arbitrary function of a single variable.
Corresponding to every expression for f there is then a
different complete differential (72) and hence a different
definition for the entropy.

Hence there is in the quantity &N one factor, dependent
only on S, which can be selected arbitrarily; and to
complete the definition of entropy it is necessary to fix
this factor. For the present, however, we shall leave our
decision on this question open and shall calculate for the
present with any arbitrarily chosen &N, which we take as
positive

N> . . . . . (73)

The following theorems hold independently of the
arbitrariness still left in the definition of entropy

Now that S has been determmed by (72) we may
mtegrate the differential equation (71) and we obtain :

S=const. . . . . . (74)
a definite relation between 6 and V which holds for the
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process described, or & relation between U and V, the
so-called reversible adiabatic relation.

§ 42. To passfrom thestate Z to the state Z’ let us now
make V transform into V”, U transforming into U’ during
the process, by (74). At the same time a certain amount
of mechanical work is performed by or on the system ; let
it correspond to the transference of the weight G from the
height 5 to the height A*. We have, by the energy
principle :

G.(h*—h)=U—-U*

G.(B*—-p)=U-U* . . . (7b)
Three cases are then possible :

1. U*= U’. The body then satisfies the conditions of
the state Z’, and since the weight G is then also at the
height h*= h' determined by (75), the state Z’ is com-
pletely attained ; the desired transition is then realizable,
the process being reversible. Thus in this case the states
Z and Z' have the same probability.

2. U*<U’. The transferred energy of the body, U*,
is then less than in the state Z'. In this case the state
Z' may be attained by heating the body by friction, the
volume 7’ being kept constant; this is done by allowing
the weight G which, by (75), is situated at the height
h*> R, to sink to the level #’. The state Z’ is then com-
pletely realized but now, according to § 39, by an irrever-
sible process, that is, the state Z’ possesses a greater
probability than the state Z.

3. U*>U’. Then h*<h' and the transition to the
state Z' is impossible as it would represent a perpetual
motion machine of the second kind (§ 38). Hence in this
cage the state Z has a greater probability than the state Z’.

Let us next enquire into the behaviour of the entropy
of the body in question in the three different cases. By
the definition of entropy (72) and by (73) the entropy
changes in the same sense as the energy, if the volume
remains constant (V= 0). Now when the volume V'
and the energy U* are attained the entropy has retained

or, by (70) :
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its original value 8 by (74), the difference of 8 and &',
that 1s, the difference of the entropies of the states (V’,
U*) and (V’, U’) has the same sign as the difference of
U#* and U’. Thus in the first case §= §'; in the second
8<8’; in the third §>8'.

From this it also follows conversely that according as
the entropy S’ of the body. in the state Z’ is just as great,
greater than or less than the entropy § of the body in the
state Z, the state Z’ has a probability which 1s just as great
a8, greater than or smaller than that of the state Z.

§ 43. The last deduction leads us directly to a theorem
of far-reaching importance. If any arbitrary physical
configuration has passed by means of some reversible
physical or chemical process from a state Z to another
state Z’, which differs from the state Z only by the circum-
stance that a single body of the kind just considered has
undergone a change and that a weight has correspondingly
shifted its centre of gravity, then the entropy of the body
in both states is the same. For if it had become greater
the transition from Z to Z’ would be irreversible according
to the preceding paragraph, which would contradict the
initial assumption. And if it had become smaller the
transition would be impossible, which would also lead to &
contradiction. But if the supposed process was
irreversible, then the entropy of the body in the state Z’
is necessanly greater than in the state Z.

A gimple illustration is given by the adiabatic expansion
of a gas without the performance of external work, which
was described in §§ 23 and 24. Since, for this, dU =0
and dV >0, we have by (72) that dS>0; that is, this
process 1s irreversible, just like friction.

§ 44. We shall now assume that the two states Z and Z’
given from the outset differ owing to thedifferent behaviour
of two bodies, which we shall denote by 1and 2  Let them
be characterized in the state Z by the values 8;, V1, 0,, ¥,
and in the state Z’ by the values 6’5, 'y, 63, V'y Then
the internal energies and the entropies of the bodies in
the two states are determined, the entropies being fixed
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except for the arbitrary factor still involved in the
definition of entropy.

To make a transition from Z to Z’ possible at all we
shall suppose an invariable weight G to be included in
the system of bodies, the centre of gravity of G'in the state
Z beng at the level » and in the state Z’ at the level 2’ so
that:

QR —K)=(U'1+ U — (U, +TUy) . . (76)
The mechanical work necessary for the transition from
Z to Z' 18 then available to exactly the right amount.

Starting from the state Z we now again endeavour to
effect the transition to the state Z’ by means of an
irreversible process. So long as we treat each individual
body adiabatically their original entropies §, and
S, remain constant by (74) and we make no progress.
But we have a means of altering the entropies in & re-
versible way. For we first bring the two bodies singly by
an adiabatic revermble path to a quite arbitrary
temperature § and then put them into thermal connexion
with each other (but not so that their pressures can
equalize). This does not disturb the thermodynamic
equilibrium, and the two bodies now represent a single
gystem capable of certain reversible changes, and its
state is determimed by three mutually imdependent
variables 6,Vy, V,

If we now subject this composite system to a further
reversible adiabatic process by slowly altering the volumes
¥, and ¥, independently of each other in some way by
compression or dilatation, the change in the total internal
energy is, by the first law, equal to the total external
work, thus.

aU; + dU; + p1dVy + pdVs = 0
or, by (72):
NdS, + NydS;=0 . . . . (77)
In this algebraic sum the first summand denotes, by (49),
the heat transferred to the first body from without while the
second term denotes the heat transferred to the second
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body, which is equal and opposite to the former amount.
Equation (77) imposes a condition on the three variables
0, V4 and Vy, so that only two of them, say § and V,, may
be arbitrarily chosen, while the third, ¥,, is then fixed.
Hence by a reversible process of this kind it is possible to
bring the body 1 into any arbitrary state, whereas the state
of the body 2 has necessarily to adjust itself to that of
the body 1.

§ 45. But we can assert still more. Every time when
the body 1 assumes its original entropy S, at an arbitrary
temperature @ the second body 2 also possesses its original
entropy S, For as soon as the entropy of the body 1
has again become S, the bodies can be separated and the
body 1 can be brought alone into its mitial state (8,, ¥Vy)
by means of a reversible adiabatic process. The state
of the system of bodies which is produced in this way
then differs from the original state Z only in the behaviour
of the body 2, and since the whole process is reversible,
the entropy of this body is, by § 43, the same as at the
beginning, namely, S;. And, indeed, corresponding to a
definite value of the entropy of the body 1 there is always
a perfectly definite value of the entropy of the body 2.
Otherwisethegeneral theorem of §43 would becontradicted.

In other words, if in place of the independent variables
8, V4, V, we introduce the independent variables 6, S,
and 8,in the equation (77), § disappears from the equation
altogether and it reduces itself to a relation of the form:

F(8,,8;) =0

or, expressed in differential form :

oF
a5,
But in order that (77) should merge generally into (78) it
is necessary and sufficient for the differential expressions
of the two equations to differ only by a factor of pro-
portionality :

N8, + NydSy= N (gT{’l a8y + %’:dﬂ,)

oF
379_1d31+ d8y=0. . . . (18)
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or:
oF oF
N1=N3_$_,'_&ndN’=NZTS_,
Consequently :

oF

N, _38,

N,"F

8,

That is, the quotient of N, and N, depends only on S,
and 8, but not on §. But since N, and N, are themselves
determined by @ and 8, they are necessarily of the form :

Ny=f1(8y).T and Ng=£5(8;) . T . . (79)

respectively, where f; and f, are functions of a single
argument and the function T' which is the same for both
bodies depends only on the temperature §. The quantity
T contains a constant arbitrary factor. We choose its
value positive and fix its unit by making the difference of
the values which 7' assumes for §= 100 and 6= 0 equal
to 100 thus :

Tyoo—Ty=100 . . . . (80)

and we call the quantity 7' which is completely defined in
this way the ‘‘ absolute temperature >’ of the two bodies.
By (72) the absolute temperature of a body is the positive
temperature function which satisfies the normalizing equation
(80) and which when divided tnto the incomplete differential
dU + pdV converts it into a complete differential. Concern-
ing the way in which it is measured see § 49.

To complete the definition of entropy as well we bear
in mind that the functions f, and f, in (79) are positive
on account of the conventions about the signs of N,, Ny
and T, but otherwise, as is clear from the discussion of
§ 41, they may be arbitrarily chosen. We therefore set
f1=1, fy= 2 and thus obtain from (79):

Ny=Ny=T . . . . . (81)
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And from (72) we get :

WArV _gs . . . . @
or, referred to unit mass :

du + pdv

BT —ds. .89

is obtained as the entropy of a homogeneous body whose
state is determined by its temperature and its volume.
In the expression for the entropy there is still, as we see,
an arbitrary additive constant.

§ 46. The results just obtained make it easy for us to
give a complete answer to the question proposed in § 44
about the conditions governing the transition of the two
bodies in question from the state Z to the state Z’. For
in the reversible process described, to which the two
thermally coupled bodies are subjected, we have by (77)

and (81):
a8y +dS;=0
Thus :
8S;+8=const. . . . . (83a)
That is, the sum of the entropies remains constant. So
if we bring the body 1 to the desired state of entropy 8’;
the body 2 acquires the entropy :

Sty =8+ 8=y . . . . (89)

If we then separate the two bodies and bring the volume of
the first to ¥’; and its temperature to 6, by means of a
reversible adiabatic process, then the first body is in the
desired final state and may be left out of consideration in
thesequel. All that we are concerned with now is whether
8*; is as great, smaller than or greater than §’, or, what
amounts to the same, by (84), whether:

8y + Sﬂgsll +8

In the first case the state Z’ is fully attainable according to
§ 42, namely, by a reversible process; in the second case
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the state Z' is attamable by an irreversible process, in
the third case the state Z' cannot be reached at all

Hence the sum of the entropies of the two bodies in
any state is & measure of the probability of this state.

§ 47. It now remains to generalze the last theorem
for any arbitrary number of bodies. Tet us imagine a
system of » such bodies in two quite arbitrary states
Z and Z’ and enquire what1s the condition that a transition
from Z to Z' should be possible without changes of any
sort remaining in other bodies.

In order that the transition should satisfy the energy
principle we include an invariable weight in the system,
whose centre of gravity in the state Z 1s at the level &
and in the state Z’ at the level 2/, 8o that :
G.(h—k)=(U"1+ U+ +U'n) = (Uy+Us+.. +Un)
Starting from the state Z we now put the bodies 1 and 2
into thermal communication with each other in the
manner described in § 44 and so bring the body 1 by a
reversible process into the state of entropy 8’; We then
separate the two bodies and proceed in just the same way
with the bodies 2 and 3 by bringing the body 2 to the
state of entropy 8, Proceeding in the same way we
bring the body n — 1 to the state of entropy 8'n_;. Let
the body » then have the entropy §*,. Since during each
one of these reversible processes the total sum of all the
entropies of all the bodies must on account of (83a)
remain constant, we have:

B=(83+83+. .. +8n)— (81 +85+... +804) (85)

Now each of the bodies from 1 to n — 1 may separately
be brought along a reversible adiabatic path into its
desired final state. Hence the decision as to whether the
state Z’ is fully attainable depends on whether the entropy
8*, of the body = is just as great, smaller than or greater
than §', or, by (85), if we denote the sum of the entropies
of all the n bodies by XS, whether ZS is just as great as,
smaller than or greater than 58'. In the first case the
state Z’ is attainable by a reversible process, in the
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second by an irreversible process, whereas in the third
the transition is altogether impossible.

From this it follows conversely that every physical or
chemical process that occurs in nature takes place in such a
way that the sum of the entr opies of all the bodes that undergo
change in the process either remawns unchanged or becomes
augmented. Expressed more briefly - the entropy is a
m ¢ of the thermody ic probabilaty (§ 39)

In a reversible process the sum of the entropies remains
unchanged. But the reversible processes in reality are
only 1deal limiting cases which are, however, of considerable
1mportance for theoretical considerations

The content of the second law of thermodynamics
may be regarded as exhaustively described in the above
sentences.

§ 48. Pagsing on to the applications of the second law
we shall next investigate the conclusions that follow from
the fact that the expression (83) for the entropy of unit
mass of a homogeneous body is a complete differential.
If we choose 7' and v as independent variables, we have:

ou ou
2r).41 + (32 av
and by (83):

ds-——(gu>d’l’+ {() }

On the other hand :

ds = () ar + (%) av

Consequently, since d7' and dv are independent of each

other :
(%)f%(a%), .. .. (88)

@,-5{@),+2}- - - - @0

du =

and:
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If we differentiate the first equation with respect to v,
and the second with respect to 7' we get, by equating the
two expressions so obtained -

@) =r@)-» - - . @9
and by (52), (86) and (87):
(%‘) =% - ... (89)
(a-’ - gg, N 1)
where ¢, now denotes the specific heat referred to the
absolute temperature.

By differentiating (89) with respect to » and (90) with

respect; to 7' we obtain the relation :
o¢y %p

<%)T= T(Wﬂ R O
which brings the connewion between the specific heat
gnd volume into relationship with the connexion between
the thermal coefficient of expansion (§ 8) and the temper-
ature. Both quantities are very small in the case of
gases.

§ 49. The relations just derived can now serve as a
measure of the way in which the absolute temperature
depends on any conventional temperature. So far we
have had to remain satisfied with a conventional temper-
ature 6 referred to an arbitrarily chosen thermometric
substance (see § 4), and it was only on grounds of expediency
that in § 5we decided in favour of using a gas as the thermo-
metric substance. But the umiformity achieved in this
way was only of a practical nature and involved no matter
of principle. For, strictly speaking, all gases behave
differently, particularly at high densities and low temper-
atures, and therefore, to be accurate, we should select
some definite gas as a thermometric gas. Hence it is of
the greatest importance to have a process of meagurement
which enables us quite generally to reduce the conventional
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temperature § of a body to its absolute temperature 7'.
In principle we can adapt every equation which follows
from the second law for measuring 7' (cf. § 61 below).
Let us take, for example, the equation (88) and introduce
the independent variables # and v into it mn place of 7' and
v. Forit is these variables § and v with which all measure-
ments are effected. Since 7' depends only on 8, we

obtain :
2)-2(), 8-»

Here (g_:>a’ p and <5%)” are to be regarded as measurable

functions of # and ». This differential equation may be
integrated in the following way :

/ (g’%) d0 "dT

=logT —logT,. . (92)
'Bre "
and hence : (a )
) g
log T'ygo — log Ty = fo @%L.;_—p .. (93)

The last two equations together with the normalizing
equation (80) determine 7' completely as a function of 6,
and so the conventional temperature is reduced to the
absolute temperature.

In particular the values of 7'y, and 7, may be derived
from (93) and (80).

In the integration on the right-hand side the volume v
must clearly disappear altogether; this requirement can
also be used to test the second law. The numerator of
the integrand is obtained directly from the equation of
state of the body, but the denominator is derived from
the quantity of heat which the body takes up from without
during reversible isothermal expansion or, respectively,
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gives up to its surroundings during reversible isothermal
compression. For by equation (50) of the first law the
ratio of the transferred quantity of heat g to the change of
volume dv during a reversible isothermal expansion is :

g\ _ (%u
(%),,‘ 5;),,+ P

§ 50. We shall now assume in particular that 6 is
measured by a gas thermometer and we choose as our
thermometric substance hydrogen, as in § 5. Then the
coefficient of expansion « that occurs in the equation of
state (9) of the gases is constant only for hydrogen; for
all other gases 1t is different and varies with the temper-
ature §. Thus if we apply the last equations to any gas
very simple expressions present themselves for the pressure
p and the energy u, but all the simple relations that we
have deduced above for gases have the disadvantage that
they are qualified by the word ‘nearly.” Not a single
one of them holds rigorously. To escape from this un-
satisfactory state of affairs we proceed to introduce by
definition a certain type of gases, which we call “ideal
gages” and which satisfy the above simple relations
completely. Thus we define as the equation of state of
an ideal gas the equation (9), and as the energy of an ideal
gas the expression (56). We now determine the relation
between the absolute temperature 7' and the conventional
temperature § referred to an ideal gas as the thermometric
substance By substituting the values of p and » in
(92) we get after integration .

log T' — log Ty = log (1 + af)
Thus :
T=Ty+aTof. . . . . (94
Likewise, by (93) :
Tygo = Ty + 1007,
From this it follows by (80) that:

«fly=1.
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That is, the coefficient of expansion of an 1deal gas is the
reciprocal of the value of the absolute temperature of the
freezing point of water and hence has the same value for all
ideal gases. Since the numerical value of « is sufficiently
well known we have for the absolute temperature of the
freezing point of water, by (6)

1

Ty= 3= 2132

and, in general, by (94) :
T=2732+6. . . . (95)

Thus the absolute temperature is nothing more than the
conventional temperature referred to an 1deal gas as the
thermometric substance but with the zero point displaced.
Since, by definition, 7' is positive, we also have > — 273.
The limiting point 7'= 0 is called the absolute zero of
temperature. It is not attainable practically because the
integral in (92) becomes infinite for it.

In future we shall as a general rule use the absolute
temperature in our calculations. The equation of state
of any ideal gas or of a mixture of ideal gases is then, by
(35):

BaT
== (96)

where 7 denotes the total number of moles and R is
the numerical factor which has the value (56) and which is
now equally great for all ideal gases and is hence called
the ““ absolute gas constant ’ Further the energy of an
ideal gas is, by (56) :

w=c¢T+const . . . . (97)

Although the different ideal gases satisfy the same
equation of state (96) they nevertheless have different
specific heats and different molar heats between which,
however, the relation (55) of course always holds.

§ 51 The equation (88) together with the equation
(54) of the first law in which, as always, by (95), df
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can be put in place of d7, leads to the generally valid

relation *
omomt(®).(Z) - - - 0

which may be applied to calculating ¢, from c,. Smce it

is not easy to measure (g% in the case of solid and liquid
v

bodies, it is advantageous to use the relation (11) here,

from which :
op\ (w)?
amem 1@ o
follows.
Since (g—g)z is necessarily negative, we always have ¢, > ¢y

except in the limiting case, as for water at 4° C,
at which the expansion coefficient is zero, when we have
cp= cv. For solid and hquid bodies the difference ¢, — ¢,
4
[
slightly greater than 1. That is, in the case of solid
and liquid bodies the dependence of the energy on
the temperature plays a much greater part than the
volume,

The case is different with gases, as we have seen from
equation (55).

§ 52. We shall now make a further application of the
second law to a physical system that represents the general
type of a machine which functions with a definite period
and generates mechaniocal work from heat. The essence
of such a machine consists in executing a cycle after the
completion of which no other change has occurred in
nature except that a certain amount of mechanical work
has been performed, say in hfting a weight, and that
certain bodies that serve as heat reservoirs have given up
or received heat. Such a process can, for example, be
carried out by a gas which experiences & series of successive
adiabatio and isothermal compressions and dilatations.

is in general relatively small, or the ratio 2= « is only
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During an adiabatic change the gas remains thermally
isolated ; during an isothermal change it is in thermal
connexion with a heat reservoir at the temperature in
question. The process may, however, also be connected
with changes of the aggregate state or with chemical
transformations, all that is essential is that the process
shall be cyclical and that at the end of a period no changes
shall have remained except those above mentioned. For
from each of the two principal laws it 1s possible to derive
a relation between the different changes caused by the
process.
According to the first law we have for the cycle, by
(89):
A4+2Q=0. . . . . (100

Here 4 denotes the sum total of the external work per-
formed, @ the heat that has been transferred from a heat
reservoir to the system under consideration during the
process, the summation being extended over all heat
reservolrs.

According to the second law the sum of the entropies
of all the heat reservoirs becomes increased as a result of
the cycle. If we assume for simplicity that the heat
capacities of the reservoirs are so great that the loss of the
quantity of heat @ does not appreciably alter the temper-
ature of the reservoir, the change of entropy of the reservoir

due to the loss of @ amounts, by (82) and (49), to — jg,,

since on account of the constancy of 7' this expression also
holds for finite values of @. Accordingly we have, by
the second law, summing over all the reservoirs .

2%;0 .. . (101

This was the first exact formulation of the second law and
was due to Clausius.

We shall now consider the case of only two heat
reservoirs, at the temperatures 7'y and T'y(>T',) and shall
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assume that the process is a reversible cycle (CarNoT’S
CycLg). The two equations then run

A+Q+Qu=0 . . . (109
%4.%:0 .. .. 03

If the cycle is carried out in the direction which leads to
the production of external work (raising a weight), then 4,
the external work done, is negative; so we set A'=
— A > 0. Further, we see from (103) that @, and @,
have opposite signs and that the absolute value of @, is
greater than that of @,. Now since 4 18 negative, @, is
positive by (102) and @, negative. So we set @Q';=
— @,>0 and we can picture the result of the cycle in the
following simple way. The heat reservoir 2 has given up
the quantity of heat @;. Of this quantity the part Q’,
has passed into the cooler reservoir 1; the other part
@,—@,=A' bhas been transformed into mechanical
work. Between these three positive quantities the
following relations hold :

Q:Q1: A" =Ty Ty (T — T

which are entirely independent of the nature of the
substance used in the process. In other words, by allow-
ing & hotter reservoir at the temperature 7' to give up a
quantity of heat @', to a cooler reservoir at the temperature
T, we can arrange a reversible cycle such that it enables us
to obtain work :
A= u Q' (104)

from the hotter reservoir.

If the cyclic process is not reversible the energy equation
(102) remains in force but in place of the entropy equation
(103) we have the inequality

%4 <o
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which, combined with (102), gives :

A= —A=Qt Q<22
or: '
1 T —=Ty o

4' < T Q'
Compamnson with (104) shows that the work to be obtained
by the transition of & quantity of heat Q’; at the temper-
ature 7', to the temperature 7', 1s always less for an
irreversible process than for a reversible process. Thus
the latter amount, represented by (104), 1s the maximum
amount of heat which can be obtained by means of a
cyclic process with any physical system through the
passage of heat Q’; from the hotter reservoir at the
temperature 7', to the temperature 7',

A very special case of such a cycle is that in which heat
passes directly by conduction from the hotter reservoir
to the cooler reservoir Then nothing except the two
reservoirs has altered at all, andso 4 = 0. Consequently,
by (100), @, + Q,= 0 and by (101) -

Hence if 7', differs from 7T, and if @, does not vanish,
the sign of @,, the heat given up by the reservoir 1, is the
same as that of T'; — T, that is, the heat passes in the
direction of the higher to the lower temperature, and the
process of heat conduction is irreversible, just like friction
and the process of expansion when no external work is
done.

Lastly, let us apply our results to an isothermal cycle,
otherwise arbitrary, reversible or irreversible, performed
on any physical system whatsoever Then we need
consider only a single heat reservoir at the constant
temperature 7. The equations (100) and (101) become :

A+Q=0
Q=0

and .
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From this it follows that 4=0, that is, work is used up
and the equivalent heat is produced in the reservoir.
This inequality is the analytical expression of the im-
possibility of a perpetual motion machine of the second
kind.

1If the process is reversible the sign of inequality vanishes
and both the heat @ and the work A become zero. It is
due to this theorem that the second law is so fruitful when
applied to reversible isothermal cycles.

§ 63. We shall now leave cyclic processes in order to
deal with the general question of the direction in which
any change in an arbitrarily given physical-chemical
configuration occurs in nature. Let us imagine any
system of bodies at the same temperature 7' and at the
same pressure p. Let us enquire into the conditions under
which a physical or a chemical change occurs in these
bodies. The difference between this and our earlier
discussions consists in our not necessarily assuming
that the system is isolated from its surroundings.
Accordingly we may not assert that its entropy necessarily
increases.

For an infinitely small change of state we have by the
first law :

AU=Q—pdV . . . . (104a)

where U denotes the total energy, ¥V the total volume of
the system and @ the heat transferred to it from outside.

According to the second law the change in the sum
of the entropies of all the bodies changed by the process

is
d8 + dSaz0

where § denotes the entropy of the system, Sa the entropy
of the external bodies (atmospheric air, walls of the vessel,
the liquid in the calorimeter), which we assume also to be
at the temperature 7. Now by (82) and (49) :

-_9
dSu——T
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so by substituting the value of @ from (104a) :
dU + pdV
R LLAFY T 1)

In this relation only such quantities occur as refer to the
system in question itself; the influences of the external
surroundings are completely eliminated. It represents
the most general statement of the second law with regard
to the occurrence of any physical or chemical change in a
configuration.

It is to be observed that the inequality (105) by no
means contradicts the equation (82). For the latter
refers only to & physical change of state of a homogeneous
body but the former to any physical or chemical change of
any configuration whatsoever. Hence in general the
expression (105) is an incomplete differential and cannot
as a rule be integrated; that is, the second law does not
allow us to make a general staterment about a finite
physical or chemical change of state of a system in the
cage where we do not know the external conditions to
which the system is subject. This is really evident from
the outset and holds equally well for the first law.

To arrive at a law for a finite change of state of a
system we must know such external conditions as allow
(105) to be integrated. Since the external conditions can
be chosen at will, there are of course several of them, of
which three, however, are distinguished by their special
importance : firstly, we may completely isolate the system
from its surroundings, keeping the volume V constant;
secondly, we may keep the temperature 7' and the volume
¥V constant (isothermal-isochoric process); thirdly, we
may keep the temperature 7' and the pressure p constant
(isothermal-isobaric process). We shall discuss these three
cases in turn, of which each offers special points of interest.

§ 54. IsoLaTED SysTEM oF CoNsTANT VOoLUME. Since
Q=0 as well as V = const., we have from the first law
also that U = const., and the relation (105) gives :

aszo
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That is, the entropy of the system increases. This is the
formulation of the second law which has already been
obtained in § 47. But we shall here make a further
deduction from 1t. For 1t furnishes us directly with a
sufficient condition for the stableequilibrium of the system.
If, namely, the system is in the state for which its entropy
has its maximum value, no further change is possible.
The absolute maximum of the entropy is therefore a
sufficient condition for equilibrium. This condition is
not exactly necessary; for it is possible for a system to
remain unchanged, although the second law would allow
a change. Since the maximum of the entropy is of course
fully determined by the values of U and ¥, we may say
that the entropy 8 of the configuration in the case of
absolute equilibrium is a definite function of U and V.
The way in which it depends on U and V is shown by
equation (82) from which we get :

(g%l’:%. N 111

If, in particular, we assume a single homogeneous body,
we see that its entire thermodynamic behaviour is deter-
mined by expressing 8 as a function of U and V. For
the elimination of U from the last two equations gives p
a8 a function of 7' and ¥, and the equation (106) alone
gives U as a function of 7" and V.

In Part Four of the present volume (§ 125) we shall
become acquamted with a method of expressing S in
terms of U and V; this makes it possible to solve the
principal problem of thermodynamics.

Let us calculate S for the particular case of an ideal gas.
From (82), (97) and (96) we get

_0dr | Endv

A (L)
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where C, denotes the heat capacity of the gas at constant
volume. Thus:

8=0CologT + Rnlog V + const. . . (109)
and by (97):
8 =0CylogU + BRnlog V + const.. . (110)

The integration constant depends on the chemical com-
position of the gas; it must remain undetermined here
because the differential 8 in (82) refers only to changesn
U and V but not to such as involve the chemical com-
position.

§ 55. TEMPERATURE AND VOLUME GIVEN. Since 7' and
V are constant the relation (105) may be written in the
form :

arzo . . .11
where :
24
) Y- - - - - (112
So 1n this case, t00, every change of state occurs in the
sense of the growth of & definite quantity; this quantity
18 not now the entropy, however, but the function ¥
which 18 characteristic for the variables 7'and V. Further,
we can deduce from this function results similar to those
deduced in the previous section from the function §.
‘What makes this point of view so important is the fact
that the temperature 7' can be measured in practice much
more directly than the energy U and is therefore more
appropriate as the independent variable.

By (111) the sufficient condition for stable equihbrium
is that the function ¥ should be & maximum Hence in
stable equilibrium the quantity ¥ is a perfectly definite
function of 7' and V. The way in which it depends on
T and V results by (112) from the complete differential :

alu , U
d¥ = dS -7 + qdl
or, by (82):
Y pav 113
A¥ = mdT +5 « - - - (113)
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(g_;’)v:%. L. (119

(3_51'7’)147’. . . . . (115)

Hence if we know the way in which the characteristic
function ¥ depends on 7' and V, we obtain unique values of
the energy and the pressure. Concerning the theoretical
determination of ¥ see § 125. If we differentiate (114) with
respect to V, (115) with respect to 7' and equate the
expressions obtained, we arrive at the relation (88) already
known to us. For an ideal gas we have, by integrating
(118), (97) and (96), or more directly from (112) and

(109):
¥ =0C,logT + Bnlog V + cm; + const. . (116)

Consequently :

Thus the expression for ¥ contains two undetermined
constants.

§ 56. TEMPERATURE AND PB.ESSU‘B.E GrveN. Thiscaseis
important because it is even easier to measure the pressure
than the temperature. Here the relation (105) assumes
the form :

d6=o0. . . . . . (117)
where :
_ U+pV _ w 11
O=8-"Fp—=8-7 - - (118)

In the latter expression we have introduced the enthalpy
W (heat function at constant pressure, see § 34), by (64).
Here ¢ is the characteristic function and the maximum
value of @ determines the state of stable equilibrium.
For the dependence of the function @ on 7' and p in the
state of equilibrium we get from (118) :

iD= dg - dU+pdV+Vdp WT

and by (82):

ao=Far Yo, . .. (9

T
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Hence:

(g%),=%' ... . (120)
@91:—% N )

If we differentiate (120) with respect to p, (121) with
respect to 7' and equate the two results, we get :
oW 14
(% = V_T(B—T), ... (122)
For an ideal gas we have, by (118), (109), (96), (97) and
(65) .
& = CplogT — Rnlog p +

const.

+ const. . (123)

So in this case, also, two constants remain undetermined.
§ 56¢ An example of the advantages that accrue from
introducing the independent variables T' and p is given by
the theory of Joule and Thomson’s experiment which
wag described in § 24; this involved the adiabatic ex-
pansion of & gas without external work being done The
theory is contained in equation (43), which, by introducing
the enthalpy w of unit mass, we may write in the form
w'— w= 0. If we now assume the difference of pressure
p'— p on both sides of the valve to be very small and
equal to Ap, the difference in temperature 7 — 7' on both
sides will also be very small (= AT), and we then have:

@), a7 + (), tr=0

Consequently, by using (67) and (122), we get:

T (%, -

AT = ———E2——  Ap L. (129)
Cp

For an ideal gas the numerator on the right-hand side is

equal to zero, and the temperature difference A7' vanishes,

asitshould do. From this we see that the Joule-Thomson

effect affords a very direct and delicate means of detecting
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deviations in the behaviour of a gas from that of an ideal
gas. Actually, AT at ordinary temperatures and
pressures is appreciably negative in the case of air It is
on this fact that the idea of Linde’s method of liquefying
airis founded. In the case of hydrogen AT is appreciably
positive.

If we take as our equation of state that of van der
Waals (19) we get from (124), for small values of a and b,
to a first approximation :

(2 _N\oe,

AT = T b % (125)
a relation which agrees approximately with the results of
measurements. For most gases the expression in brackets
is as in the case of air positive, which corresponds to a
cooling effect, since Ap is always negative. Hydrogen
is an exception because a is particularly small in its case.
But by means of an appropriate preliminary cooling it is
even possible in the case of hydrogen to make the first
term in the bracket exceed b, the second term.

§ 57. The general relationships developed above may
also be formulated in other ways. One expression which
is particularly distinguished by its clarity is worth
mentioning. It depends on the introduction of the

function :
F=U-T8=-7T.% . . . (126)

which, like the ¥, may by § 56 serve ag the characteristic
function of the independent variables 7' and ¥V  Intro-
ducing F instead of ¥ we see that the relations (114)
and (116) become :

U=F_T<g§,)y. ...
p=_(%)r Coe L (129

By comparing (127) and (126) we see that :
oF
s=_<ﬁ)'. ) . . (1280)
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The quantity F' is endowed with & clear meaning owing
to the fact that, as we see from (126), it represents an
energy. If we now consider any sothermal process, the
general relation (105) may be written in the following

form:
AP —pdV . . . . . (129)

or, if we integrate from any initial state to any final state
denoted by & dash -

F—F=<A. . . . . (130
where A denotes the mechanical work performed by
external forces during the process. If the isothermal
process is reversible, the equation is*

F—F=A. .. .18y

and a comparison with the equation (40) of the first law
shows that the function ¥ is related to the external work
A in exactly the same way as the total energy U to the
sum A4 4+ @ of the external work and the heat received
from without. This can also be expressed as follows .
in a reversible process the law (40) concerning the con-
servation of energy resolves into two separate laws, namely
the equation (181) and the supplementary equation :

¢-6=¢ . . . (132
G=U~F=TS. . (132)

The theorem which asserts that the mechanical equivalent
of the external work is independent of the path taken from
the initial to the final state (§ 18) thus does not hold only
for the sum A + @, but also for the individual summands
A and Q.

Hence, following Helmholtz, we call F the *free”
energy, @ the ““ bound ” energy. The free energy F has
the same meaning for the external mechanical work as
the total energy U for the sum of the work and the heat.
In particular we see that for a cyclic process we have not
only A+ Q= 0 but also 4= 0 and @= 0, as has already
been deduced at the end of § 52.

where :
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Tf the isothermal process is srreversible the inequality :
F—-F<d4. . . . . (133)

holds. That is, the free energy increases less than would
correspond to the external work performed, so that in this
sense external work is logt. If the process occurs without
external work being done, for example, at constant volume
(§ 65), then 4= 0, and :

F—F<0. . . . . (139

That is, the free energy decreases The amount of this
decrease may be regarded as a measure of the work of the
forces (chemical relationship, affinity) which bring about
the process; this work is lost as far as mechanical
work is concerned. To find its amount we must carry
out the same change in some reversible way. Then, by
(181), the amount desired, F' — F, is actually obtained as
external work 4.

A particular example will make this clearer. If an
aqueous solution of a non-volatile salt is diluted in some
isothermal way by adding pure water, the heat of dilution
can be mnegative or positive, according to the sign of
U'— U, where U denotes the sum of the energies of the
original solution and of the water that is to be added
(initial state) and U’ denotes the energy of the final
solution. The external work arising from the simultaneous
change of volume can always be neglected. On the other
hand the difference F'— F 18 always negative. To
meagure it we perform the isothermal process of dilution
in some reversible way, such as the following. We first
allow the water which 1s to be added to vaporize infinitely
slowly We then allow the vapour to expand further
until the density of the vapour is equal to the density which
saturated water vapour has in contact with the solution.
We then bring the vapour into contact with the solution,
the equilibrium is not disturbed by this step. Finally
by compressing the vapour over the solution infinitely
slowly we completely condense it. The whole process is
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reversible, and go by (131) the total external work done is
equal to F'— F<0; that is, work is gained (a weight is
raised). This work is lost if the liquid water is added
directly to the solution.

It is to be noted that all these theorems hold only for
isothermal processes The introduction of the free
energy does not suffice for formulating more general
laws.

In the expression (128) for the free energy the first
term U as a rule easily predominates over the second
term 7'8 in chemical processes. For this reason we may
often, especially in the case of low temperatures, regard
the decrease of U, that is, the heat of transformation
(Warmetonung), instead of the decrease of F, as a measure
of the chemical work ; so we may enunciate the additional
theorem that chemioal changes always occur in the sense
of decreasing U, that is, are accompanied by the generation
of external heat (BrrTEELOT’S PRINCIPLE). But at high
temperatures where 7' and, in the case of gases and dilute
solutions, § assume great values, the term TS can no
longer be neglected without causing an appreciable error.
Hence in such cases chemical changes often occur in the
direotion of increasing total energy, that is, heat is taken
up from the surroundings.



CHAPTER IV

EQUILIBRIUM OF A SUBSTANCE IN
DIFFERENT STATES OF AGGREGATION

§ 68. In the following sections we investigate the
thermodynamic equilibrium of & given substance whose
individual parts can belong to different states of aggrega-
tion, solid, ligwd, or gaseous. Let us suppose each of
these parts is physically homogeneous and is com-
pletely determined by mass, temperature and volume.
For this to be so it is not necessary for the substance or
even one of its parts to be chemically homogeneous (§ 22)
The question of chemical homogeneity cannot even be
answered with certainty. For example, it is still a very
open question whether the molecules i liquid water are
the same as in ice; indeed, on account of the abnormal
properties of liquid water near its freezing point it is
probable that the molecules even in liquid water are not
all of the same kind.

‘We sghall pursue the following line of thought. Let the
substance, whose total mass M is given, be enclosed in a
solid envelope of given volume ¥ and let it be kept at a
definite temperature 7' by being connected with a suitable
heatreservoir. We set out to find the state or, if there are
more, states of equilibrium, which the body can assume
and to specify the conditions under which the equilibrium
is stable or unstable. It is possible to carry out this
investigation successfully and completely on account of
the theorem deduced in § 55, which states that among
all the states that can result from one another under the
given conditions the most stable state of equilibrium is
distinguished by having the characterstic function ¥ a

84



omr v THERMODYNAMIC EQUILIBRIUM 85

maximum. In general, however, as we shall see, the
quantity ¥ will be able to have several relative maxima ;
then, corresponding to every maximum which is not the
absolute maximum there will be a more or less stable state
of equilibrium. If the substance happens to be in such
a state (for example, as a super-saturated vapour) then
under favourable circumstances a very slight disturbance
can cause the substance to pass over into another state
of equilibrium, for which the corresponding value of ¥ is
necessarily greater.

‘We have first to find those states for which the function
¥ possesses & maximum, that is, §%¥=0. The most
general assumption we can make about the state of the
substance is that three different parts of it are in the three
different aggregate states. Let M., M,, M, denote the
masgses of these three parts, the allocation of the suffixes
being left open for the present. We then have for the
total given mass :

M+ My, +Mg=M . . . (135)
The quantities M,, M,, M, are positive or mdividual
members may be zero.

If, further, v,, v,, v, denote the specific volumes, then
the given volume 1s :

M, + Mgy + Mvy =TV .. (138)
We now obtain for the characteristic function :
¥ =My + Mahs + My
in which the quantities ¥ refer to unit mass

From this we get for any infinitely small change of

state :

8¥ = X M8y + Zip10M,
where here, as also in the sequel. the symbol Z denotes
the sum over the indices 1, 2, 3. In view of the fact that
by (118) we have generally :

d-ﬁ=%d1’+%dv. N O £ 1))
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we get, since 87 = 0
S¥ = L EMpidoy + TpSMy . . (138)

But the variations are not all independent of one another;
rather, it follows from the expressions above set down for
the mass and the volume that:
Z8M, = 0 and ZM,8v; + Zv,0M; =0

By means of these equations we must eliminate any two
variation terms from the expression for 8% in orderto get
purely independent variables in it. If, for example, we
take the values of 8, and 8v, out of the equations and
substitute them in (138), we get:

M. M
¥ = —T‘l(h — pa)dvy — '1—18(272 — D5)d0,

+ (¢1 — s _Pa(”lT* ”’))SMI _ ('ﬁn — iy — Pa(ve —Ux)>aMa

Since the four variation terms that occur in this expression
are completely independent of one another, each of the
four coefficients must vanish individually if % is to vanish.
Accordingly we have :
P1=1Pa=Ps l
gy — g = P20

403 = )
%~%=L%#LI

These four equations represent necessary properties of a
state of equilibrium. Sincethe quantities that occur in them
refer only to the internal constitution of the substance, in
contrast with equations (185) and (136) which also contain
the masses, we can call them the “ intérnal ”’ conditions
of equilibrium. We shall deal with them next and shall
find that they have several solutions, that is, that several
states of equilibrium exist. - Later (§ 65) we shall discuss
the further question as to which of the different kinds of
solutions furnish the most stable state of equilibrium,
that is, the greatest value of ¥ for each individual case.

(139)
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§ 59. First SoruTioN. If We set:
V=V =V =20
all four equations (139) are satisfied by these values. The
three aggregate states are then identical and the whole
substance is homogeneous. Since the temperature 7' is
given from the outset the state is fully defined by the
external condition (136), which in the present case runs :

(My+ My + M)v=Mv=V
and gives the value of v.
This solution always has a definite meaning, but it

represents a state of equilibrium only if g—g is negative.

If this is the case, the equilibrium is unstable or stable
according to whether the function ¥ has another maximum
of greater value under the given external conditions or
not (cf. § 65).
§ 60. SrcoxDp SoruTioN. If we set:

Vy V=V
the aggregate states denoted by 2 and 3 become identical
and the equations (139) reduce to *

D1 = D2 ‘ﬁl"ﬁn:?"l(u—};v’) - - (140

In this case the substance exists in two different aggregate
states together, for example, as vapour and liquid. The
two equations (140) contain two unknowns v, and v,;
80, since p and i are to be regarded as kmown functions of
T and v, these equations may serve to express v, and v,,
a8 also the pressure p, = p, and the values y, and i, in
terms of the given temperature 7. Thus the temperature
completely determines the internal state of two hetero-
geneous parts of the same substance which are in contact
and in equilibrium. The masses of the two parts are
obtained from the external conditions (135) and (138),
which in the present case run :

M1+(M1+M3)=M} .. (141

My + (My + M)y, =T
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These two equations enable us to calculate M, and
(My+ M), so that the state of the system is completely
determined ; for in the case of the masses M, and M; only
their sum is of account. Of course, the result has a
physical meaning only if M, as well as (M, + M;) comes
out positively.

§ 61. Let us now consider the equations (140) more
closely. The first is obvious; the second may be inter-
preted very simply if we use as our basis the general
equation of state (2) of the homogeneous substance.
For, from (137) it follows by integration, since d7 = 0,
that :

12
1=t = Tjﬂl’d”

and substituted in (140), this gives .
j;lpdv =pylvr—v) . . . (142)

This equation has a simple geometrical meaning, if we
use the graphical method already mentioned in § 10,
of representing the eguation of state by means of the
system of isothermals (Fig. 1). For since the integral
in (242) represents the area of the surface which is enclosed
by the isothermal, the z-axis and the ordinates denoted by
the parts », and v, of the isothermals, whereas on the
other hand the product p,(v, — ;) denotes the area of the
rectangle formed by the same ordinates and the length
v, — v, along the z-axis, the equations tell us the following.

Along every isothermal the pressure at which two
aggregate states of the substance can be in equilibrium
is represented by that straight line parallel to the
z-axis which marks off equal areas on both sides of the
isothermal (in Fig. 1 it is the straight line ABC). Thus
we can derive the law of the dependence of the pressure
and the density of the saturated vapour on the temperature
directly from the equation of state established for homo-
geneous stable and meta-stable states.

Let us now consider howtheinternalequilibrium depends
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on the temperature 7', the only independent variable.
Dafferentiating equations (140) we get -

dp; = dp,
iy — dify = (vs —;z)dp1 + P1(‘Z”1T—d”z) _ P1(‘U§l‘: ) ar

or, taking into account (137) :

Uy =ty + paloy — o) =7 = Ty — o) T4 (143)
where the quantity r, by (63), denotes the isothermal-
isobaric heat of transformation per unit mass for a
transition from the aggregate state 2 to the aggregate
state 1 (heat of vaporization, heat of fusion, heat of
sublimation).

This equation which was early derived from Carnot’s
theory (§ 31) by Clapeyron and first established rigorously
by Clausius allows us among other things to calculate
the heat of vaporzation for any arbitrary temperature
from the relation between the vapour pressure p; and the
temperature. For example, we have for water vapour
at 100° C.. T'= 273+ 100= 3873, v, = 1674 cm3/grm ,

vg=1 cm3/grm , p, = 760 mms. of mercury, %= 27-12

mms. of mercury. Reduction to absolute units gives, by
IT (284) -

dp, _ 2712

T = 80 1013250
and hence by (143) the heat of vaporization is, if we divide
by the mechanical equivalent of heat (42) :

r = 539 calories/grm.

which agrees excellently with the results of direct measure-
ment.

Since all the quantities that occur in (143) can be
measured fairly precisely this relation can also be used to
reduce any conventional temperature § to the absolute
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temperature 7' (§ 49). By introducing 6 as the independent
variable in place of 7' 1t follows from (143) that:
_ dp,  d8
"—T(1’1~”a)mg— aT
and, by integration : p
= (L YalPs,
log T = P T do .. (149

from which 7' is to be calculated as a function of 6 in the
manner explained earlier.

A simple approximate formula, which in some cases gives
good results but in others only moderately good results,
is obtained if in equation (143) the specific volume v, is
neglected 1n comparison with that of the vapour v, and
if, in addition, the equation of state of an ideal gas 18
assumed to hold for the vapour. Then, by equation
(96), the volume of a mole of molar weight m 1s .

V — vy = BT
Py
and the formula (143) becomes .
_E T2 dp, 145
=mmdar (145)

For example, for water at 100° C., R = 1-983 n calories by
(87), m= Hy0= 18, T= 373, p,= 760 mm., %& 27-12
mm. as above, and hence by (145) the heat of vaporisation
is = 547, which is a little too large. The reason for this
deviation is that the volume of the saturated water
vapour at 100° C is in reality smaller than that calculated
from the gas equation (96).

The equation (143) of Carnot and Clapeyron can be
applied to the process of fusion or of sublimation in the
same way as to the process of vaporization. In the
former case r denotes the heat of fusion of the substance,
if the index 1 denotes the liquid and the index 2 the solid
state; further p, signifies the pressure of fusion at which
the solid and the liquid substances are in equilibrium with
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each other. The pressure of fusion, according to this,
depends, Iike the pressure of vaporization, on the temper-
ature, or conversely, by changing the pressure the temper-
ature of fusion is changed :
T _Tli—v) | | | | (146)
dpy r
For example, for ice at 0° C. and hence at atmospheric
pressure, we get r= 80 calories, 7'= 273, v = 1-000,
vy=1-091, and so by (146), expressing the result in
atmospheres, we get:

& = —00075. . . . (147)

That is, by inoreasing the pressure by one atmosphere the
melting temperature of ice is lowered by 0-0075° C., which
agrees with the experimental results. For substances
which, in contradistinction to ice, expand on fusion, the
melting temperature is raised by increasing the pressure,
so that we can say : increasing the pressure favours the
aggregate state that has the smaller volume.

§ 62. The variation of the heat of transformation r with
the temperature may also be calculated from our formule.
For if we introduce the enthalpy from (65) and write
(143) in the form :

r=w; —
and differentiste with respect to 7', we get, by regarding
was a funetion of T'and p:

=), - @), + (). - &) Ja-

Taking into account (67) and (122) we obtain :

%’ =¢p, —Cp, + (1 — 1),,) apy _ T{(a"ﬁ)p Bun) _.

Finally, according to (143):

%,=c,‘-— c”‘+1£'_viiv, {(g?') (2?),} - (49)
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Let us again take saturated water vapour at 100° C. asan
illustration. Then 7 = 373 and, in calories, ¢, = 0-47,

cp=101, r=539, v,=1674, v,=1, (a—"—l) = 481,
P

3T
(%) = 0:001, trom which we caloulate from (148) that :
b
dr
ar= 08t

that is, the heat of vaporisation of water decreases by
0-64 calorie per degree rise of temperature.

If we again neglect v, in comparison with »; and treat
the vapour as an ideal gas, the relation (148) assumes the
much simpler but less exact form :

d

T - - - (149
from which we would obtain for the case in question :

dr

ar = — 054

§ 63. The relation (143) may also be used for quite
different purposes. As we have seen above in § 30, besides
defining the specific heat at constant pressure and at
constant volume we can also define any number of other
specific heats according to how we regulate the external
conditions under which the heating is effected. In every
case the equation (51) of the first law holds.

In the case of saturated vapours interest attaches to
that process of heating by which the vapour is continually
kept exactly in the state of saturation. If we call the
specific heat of the vapour corresponding to this process
hy—Clausius called it the * specific heat of the saturated
vapour ’—we obtain by (51) in our nomenclature :

h=Saypdy L 0
Initially we can say nothing at all about the value of &, ;
in fact, we must even leave the sign of the quantity open.
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For if when the temperature of the vapour is raised by
1° it is still to remaimn saturated, it must at any rate be
simultaneously compressed, because the density of the
saturated vapour increases ag the temperature rises. But
compression generates heat and the question arises
whether this heat is not sufficiently considerable to
necessitate a conduction of heat to the outside surround-
ings to prevent the vapour from becoming super-heated.
Hence two cases are conceivable from the outset: 1. The
heat of compression is so considerable that the originally
saturated vapour becomes super-heated when compressed
adiabatically. To maintain the state of saturation it is
then necessary to conduct heat away to the outside, that
is, h, is negative. 2. The heat of compression is too small
for the compressed vapour to be kept saturated without
the addition of external heat; h, is then positive.
Between these two cases there lies the limiting case
hy= 0 for which the heat of compression just suffices to
maintain the vapour in the state of saturation and so the
saturation curve comcides with the curve of adiabatic
compression This limiting case was assumed by James
‘Waitt, the inventor of the steam engine, to be valid for
water vapour.

In contradistinction to the specific heat %, of the
saturated vapour the specific heat of the ‘‘saturated
liqud ™ :

- B (L
can be directly specified numerically For this quantity
corresponds to heating a liqud in such a way that it is
always kept just below the pressure of its saturated
vapour. Now since the pressure, unless it amounts to
many atmospheres, has no appreciable effect on the state
of a liquid, the value of A, practically coincides with the
value of the specific heat of the liguid at constant pressure,
that is, we have:

Be=¢y . . . . . (162
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Subtracting equation (151) from equation (150):

By — Ty = d(ulcl; Ug) o d(UIdE vg)

But by (143) we have, differentiating with respect to 7' :

dr _dluy —ug) | (v, —vy) — o)1
=" dr ThTar T
Consequently :

d d
hz—hz—d—r'“("’l—”a)aﬂ
or, by (152) and (143) :

dr r
= ———_ . . . . (183
=t +gm— 7 (183)
For saturated water vapour at 100° C. we have, as above *
¢, = 1:01, g—;, = — 064
r= 539, T= 3873. Consequently:
hy= — 1-07.

Thus water vapour at 100° C. represents the case 1
described above ; thatis,saturated water vapourat 100°C.
when adiabatically compressed becomes super-heated.
Or conversely, water vapour when adiabatically expanded
becomes super-saturated. Other vapours exhibit the
opposite effect.

§ 64. Taxep SoruTioN. If we substitute

Yy F Uy F Vg

in the conditions (139) that hold for internal equilibrium,
thege remain unaltered in the form given in § 58. This
cage denotes a type of equilibrium in which the substance
occurs in all three states of aggregation together. The
four equations (139) contain four unknowns, namely
T, vy, vy, vy, so that quite definite values of these four
quantities correspond to them. The three aggregate
states can thus exist together in equilibrium only at a
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certain definite temperature and for certain definite
densities, and hence also only at a certain definite pressure.
If we call this temperature the *fundamental temper-
ature ”’ we see by (139) that it 1s characterized by the
condition that for it the pressure of the saturated vapour
over the liquid is equal to the préssure of fusion or equal
to the pressure of sublimation at which the solid substance
is in equilibrium in contact with the gaseous substance.

As, according to the assumption we made 1n § 58, the
temperature is given at the outset, we have two cases to
distinguish. Eitherthe given temperature is different from
the fundamental temperature—this will in general be so
—and then the three aggregate states cannot be in equili-
brium with one another at all. Or the given temperature
is equal to the fundamental temperature; then the
agsumed state of equilibrium is possible and the masses
of the different parts of the substance can be calculated
from the equations (135) and (136). But since these are
only two equations, whereas there are three unknowns
My, My, M, their values are not yet determined and an
infinite number of equlibrium states of the kind in
question exist, only positive values of M, however, coming
into consideration.

Let us enquire, for example, into the fundamental
values for water. Since at 0° C. the pressure of the
saturated vapour above liquid water 18 4:58 mm., but the
pressure of fusion of ice is 760 mm , 0° C. is not the funda-
mental temperature of water. To find it we consider
how the value of the saturation pressure depends on the
temperature. In considermg this we must observe that
forevery combination of two aggregate states the pressure,
like the densities of the two parts of mass m contact, is
determined, according to (140), by the temperature alone
‘We must be careful to distinguish, however, whether, for
example, the saturated vapour is in contact with the
liquid or with the solid substance, since the functions
which represent the way in which the saturation pressure
depends on the temperature come out quite differently
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for these two cases. The state of the saturated vapour
is determined only when we know besides the tempera-
ture with what state of aggregation the vapour is in
contact; and the same thing holds for the other two
aggregate states. If, therefore, from now onwards we
assign the suffixes 1, 2, 3 to the gaseous, liquid and sohd
states respectively, we must use two indices to designate
a part of matter which 1s in the state of saturation. Of
these two indices one specifies the aggregate state of the
part of matter in question, the second indicates the
aggregate state with which 1t is in contact Thus to
denote the specific volume of the saturated vapour we
use the two expressions v;, and v, the first of which
represents the vapour in contact
) 4 with liqud substance, the second
that in contact with sohd sub-
Pss3 stance. We have analogous
symbols wy; and vy, v5; and vg,
” for the specific volumes of the
P2 liquid and the sohd substance in
the state of saturation. Each of
7 these six quantities 18 a definite
Fia. 4. function of the temperature alone.
The corresponding pressures are :
P1a= Py1 (pPressure of vaporsation), p,3= P, (Pressure
of fumon), pg;=p,s (pressure of subhmation). At
the fundamental temperature these two pressures
become equal to each other and so also to the third
pressure. Thus if we express the dependence of the
three pressures on the temperature by means of three
curves by plotting the temperatures as abscisse and the
pressures as ordinates, the three curves intersect at a
single point, the fundamental point F of the substance
(see Fig. 4).

As we have already remarked, for water at 0° C. we have
P12<Pgg- Since p,, increases as the temperature rises,
whereas p,; decreases, the two pressures will coincide at a
higher temperature than 0° C., but only at a very slightly
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higher temperature. For, by (147), p,s varies compara-
tively rapidly with the temperature, and an increase of
0-:0075° C m the temperature suffices to lower the pressure
of fusion p,;, of the ice from 760 mm to the vapour pressure
Pqg of the water. Hence the temperature 0-0075 is very
approximately the fundamental temperature of water,
at which the pressures of fusion, vaporisation and sublima-
tion comcide From this value we then obtain the
specific volumes of water vapour, water and ice as :

vy = 206,000, vy = 100, vy = 1-09.

To characterize the behaviour of a substance near its
fundamental state it is expedient to establish the course
of the three curves s, Pa3, Ps; in the neighbourhood of the
fundamental point F (Fig. 4). This is done by calculating
the directions in which the curves pass through #. The
angles that these directions make with the z-axis are
given by the differential quotients ‘%‘, ‘ZLIE,“, ddl_;,l

Now, by (143) :

dp _ T

dT — T(vy — vy)
and corresponding equations hold for the other two
pressures Hence we can obtain the directions of the three
curves at the fundamental point as soon as we know the
corresponding heat of transformation.

Let us compare, for example, the pressure p,, of water
vapour with the pressure p,; of ice vapour near the
fundamental temperature Here we have, in calories
719=600, 7,3= 80+ 600= 680, and so, according to the
last equation, multiplying by the mechanical equivalent of
heat and using the values above given for the specific
volumes, we get in terms of millimetres of mercury .

aP1s _ 0.
a7 = 0-335

and hkewise .

dp1s _ .
a7 = 0-380.
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The curve of the sublimation pressure p,s thus takes a
steeper course at the fundamental point F' than that of the
vaporisation pressure p;,. Or, for temperatures above
the fundamental temperature (to the right of F') p,3 > py,,
for temperatures below this temperature (to the left of
F) py3 < pys. Thus if we measure the pressure of
saturated water vapour over water above the fundamental
point and over ice below the fundamental pont, the
vapour pressure curve suffers a bend, whose amount 18
given by the sudden change of the differential quotient :

dpis _ GP1a _ .
a0~ ar = 0-045.

For example, at — 1°C. (47 = — 1) we get approximately:
P13 — P12 = — 0-045.

That is, at — 1° C. the pressure of ice vapour is 0-054
milhmetre of mercury less than that of water vapour, a
result which agrees with experimental determinations.
But the existence of a sharp bend of the amount specified
can be inferred only from the theory.

§ 65. Having considered the individual properties of the
different possible solutions of the equations of condition
that hold mn the case of equilibrium we arrive at the
further question as to which of these solutions has the
preference 1n each given case, that is, which represents
the most stable state of equilibrium. In view of § 58 we
may formulate the question in the following brief form .
given the total mass M, the total volume ¥V and the
temperature 7' of a substance, required to find the most
stable state, that is, the absolute maximum of the
characteristic function ¥. A complete treatment of this
problem would take up too much space here, so we shall
give only a few of the important results. We found just
above that in general the conditions of equilibrium allow
three different kinds of solutions according as the substance
exists in one, two or three aggregate states. Particular
account, however, must be taken of the fact that the second
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and the third solutions have a physical meaning only if
the values for the masses that result from equations (141),
(135) and (136), respectively, come out positively. This
limits the range of validity of the two solutions. A
closer investigation further shows that within its range of
vahdity the third solution always has the preference
above the first two and that the second has the preference
above the first. This may briefly be formulated as
follows - the substance has the tendency to divide into
its aggregate states. But this statement does not
uniquely determine the state of equilibrium in all cages.
For we saw in § 64 that when the substance split up into
its three aggregate states an imndefiniteness remained in the
values of the masses M,, M,, M,. The corresponding
states of equilibrium are all equally stable, that 1s, the
equibibrium is neutral. The difficulty that seems to lie
m the circumstance that in nature a definite state of
equilibrium always presents itself, 18 removed when we
reflect that the occurrence of even very small fluctuations
of temperature, which are inevitable, will in reality prevent
the temperature which is given at the outset from
permanently coinciding exactly with the fundamental
temperature.

If instead of the temperature 7' the energy U of the
substance is given the stable equilibrium will, by § 54, be
characterized by the maximum of the entropy. Corres-
ponding theorems then hold. But under no circumstances
does an 1ndefiniteness occur, rather there is always &
well-defined stable state of equihibrium which 18 deter-
mined uniquely.



CHAPTER V
SEVERAL INDEPENDENT COMPONENTS

§ 66. WE shall now investigate generally the thermo-
dynamic equilibrium of a system consisting of different
parts with common surfaces of contact in space, which,
mn contrast with the system treated in the preceding
chapter, may be composed of any number of chemical
constituents. We assume that each of the different and
differently conmstituted parts of the system with their
common boundaries in space but separated from each
other by definite surfaces of contact 18 homogeneous (§ 22)
and, following Gibbs, we call each part a ‘‘ phase ” of the
system. For example, every aggregate state of a partially
condensed substance represents a particular phase. The
possible number of phases is arbitrarily great from the
outset. Also we can see immediately that a system in
equilibrium can have any number of solid and liquid
phases but only one gaseous phase. For two different
gases adjomning each other can never be in thermodynamic
equibbrium with each other. If the gaseous phase is
absent in the system it 1s called * condensed.”

Besides the number of phases a characteristio of the
system is the number of 1ts ‘‘ independent components,”
for these serve to fix the chemioal constitution of the
phases. We define the number of independent com-
ponents of a system in the following manner. We first
obtain the number of the chemically simple substances
(elements) that are present in the whole system, and then
exclude those substances from this series as independent
substances whose quantity is determined for every phase

from the outset by the quantity of the remaining sub-
100
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stances : the number of the remaining substances
is then the number of the independent components
of the system Which of the components is regarded
as independent and which as dependent is a matter
of indifference since we are here concerned not with the
kind of the ndependent components but only with their
number.

The question of the number of different components
has nothing to do with the type of chemical combination
of the individual substances in the different phases, or, in
particular, with the number of different kinds of moles
For example, a quantity of water in any states of aggrega-
tion always forms & single independent component, no
matter how many or how many kinds of associations and
dissociations of water moles, whether as mixtures of
hydrogen and oxygen or as ions, accur, so long only as the
quantity of the oxygen is determined at the outset for
every phase by that of the hydrogen or conversely.
‘Whether this last assertion is actnally true must, strictly
speaking, be established by a special investigation. For
example, as soon as we take into account the fact that
water vapour at every temperature is partly dissociated
mnto hydrogen and oxygen we obtain different proportions
of the two elements H and O in the two phases of a
system consisting of hiquid water and water vapour, even
if only complete moles of HyO have been used to build
up the system; and hence we have two independent
components and not simply one

If we denote the number of mdependent components
of the system by o we get from the definitions set up for
this number, that the state of thermodynamic equilibrium
of any phase is determined by the temperature 7, the
pressure p and the masses of the « components contained
in it, no matter whether they have finite values or are in
part infinitely small. It is more convenient to choose
the pressure p as the independent variable instead of
the specific volume v, as was done in the previous chapter,
because here the pressure in thermodynamic equilibrium
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is common to all phases of the system that are in free
contact.

§ 67. Let us assume the total masses of the « inde-
pendent components of the system as given: M,
M,, . .M, and lhikewise the temperature 7' and the
pressure p; and let us enquire into the conditions of
thermodynamic equilibrium. By § 56 this is characterized
by the maximum of the function & defined in (118); thus:

86=0. . . . . . (154)

holds for every change of state which is possible for a
constant 7' and p.

Let B be the number of phases. The quantities S, U
and ¥ and hence also @ then consist of & sum of B terms,
each of which refers to an individual phase, that is, to a
physically homogeneous body :

O=0'+P"+ ... . . . (155)

where now as well as in the sequel we distinguish the
different phases by upper indices. For the first phase we
then have:

o—g_U+pV . (156)

T
S’, U’, V' and @’ are determined by 7', p and the masses
M\, M'y, . .. M, of the independent components con-

tained in the phase. Concerning the nature of the
dependence on the individual masses we can' only say at
the outset that if all the masses are changed in a definite
ratio, for example, are doubled, each of the above
quantities is changed in the same ratio. For m this
change the chemical constitution of the phase remains
constant, only its mass changes, this change being
exactly the ratio assumed; and the above quantities also
change 1n the same ratio. In other words, @’ is a homo-
geneous function of the first degree in the masses M',,
M',, . . . M', (which need not of course be linear).

To express this analytically we increase all the masses
i the ratio 1+ e:1, where ¢ is a very small number.
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All changes are then very small and we get for the corre-
sponding change of ¢ -

AP = =AM’

aM' 1+ 7377, aM' AM’

M’y +

o’
= oo, <M1+ aM',
But by our assumption we have :
AP’ = P’

hence :

. 4 T (L)
This Eulerian equation mathematically defines a homo-
geneous function of the first degree. The differential
quotients that occur in it, for which we shall use the
following abbreviations :

g g U
L . .
besides depending on 7' and p, depend only on the chemical
constitution of the phase and not on its total mass since,
if the individual masses are all changed uniformly, the
numerators and denomimators of the differential coefficients
are changed,in the same ratio.

What holds for the first phase may be immediately
applied to every other phase.

By using (155) the condition of equilibrium (154) now

8P’ + 80" 4 ... +8PF=0. . . (169)

or, gince 7' and p are not varied, and bearing in mind
(168), we get: :

FIUy + FSM . . .+ $SH
A A R A
+ PP A SIUR + . . . + PIUE =0 . (160)

If the variations of the masses were quite arbitrary, this
equation would be satisfled only if all the coefficients of
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the variation terms were equal to zero  But the following
condition holds between the masses :

M+ M+ + M, —Mll
Mo+ My + . M%:Ma (161)
WoAM s . M =M,

and so for any possible change of state .
SM'y + My + . . +8MB =
SM'y + 8M"y + . . +8MF, = (162)
S\t 5M7. + . .. +8ME =0

From this we get as the necessary and sufficient condition
for the vanishing of the expression (160):

9‘:1—4’::1— ceo =98
¢2“¢ 2= . - =9Sﬂ2 . . (163)
Y

So there are 8 — 1 equations for each independent com-
ponent and a(B — 1) equations for all the independent
components . all these equations must be fulfilled mn the
equilibrium state. Each of them refers to the transition
of an independent component from one phase into another
phase; it asserts that it is just in reference to this transi-
tion that equilibrium exists This condition depends
only on the temperature, the pressure and the internal
constitution of the phases and not on their total masses
this is ag it should be.

As the equations that refer to a definite component and
form one row in (163) may be rearranged in any order we
deduce the following theorem :—If a phase is n equilibrium
with two other phases the two other phases are also in
equilibrium with each other (they ‘‘co-exist”) If we
combine with this the theorem already enunciated above
(§ 66), that every system in equilbrium has at most a
single gaseous phase, we infer that two co-existing phases,
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for example, two liquids which form two separate layers
(water and ether) emit the same vapour. For since the
one phase by hypothesis co-exists with the other phase
and, of course, also with 1ts own vapour, the other phase
also co-exists with the same vapour. Hence the co-
existence of solid and liquid phases can be tested by
comparing their vapours.

§ 68. It 18 now easy to see how the state of equilibrium
of the system for definite values of the temperature and
pressure is determined in general from the external
conditions (161) initially given and the conditions of
equilibrium (163). There are « of the former and «(f —1)
of the latter, so there are af equations altogether. On
the other hand the state of the B phases for given values of
T and p depends on the «f masses M’'y, . . . M2 of the
independent components contained in them Thus there
are just as many equations as there are unknowns.

A new position arises, however, if one divides the
variables on which the state of the system depends into
such as concern only the internal constitution of the phases
(internal variables, namely temperature, pressure and the
rati08 of the independent components) and mto such as
determine only the total masses of the phase (external
variables) There are (x— 1)B+ 2 of the former, since
in each of the B phases there are « — 1 mass ratios of the
o independent components contaned 1n it, and, besides,
the temperature and the pressure, there are p of the latter,
namely the total masses of the phases.

Now the «(8 — 1) equations (163) contain only internal
variables, 8o that after these equations have been satisfied
there still remain of the total number of internal variables

[a—1DB+2]—[x(B—D]=a—-B+2
variables that are indefinite. This number cannot be
negative, for otherwise the internal varables would not
be sufficient to satisfy all the conditions of equilibrium
(163). So we must have.

psat2 . . . . . (164
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that is, the number of phases can exceed the number of
mdependent components by at most 2; or, a system of
o independent components can form at the most «+ 2
phases (GiBBs’s PrasE Runn).

In the limiting case, = «+ 2, the number of internal
variables is just sufficient to satisfy the internal conditions
of equilibrium (163). Their values are then completely
determined for the equilibrium state, independently of
the external conditions; they form a so-called (« — 2)-fold
point. By modifying the external conditions, for example,
by altering the volume, or adding heat or new quantities
of substance, only the total masses of the phases but not
their chemical constitution nor their temperature nor
therr pressure become changed. This holds until one of
the phases vanishes from the system. An example for
o= 1, and hence § = 3, is given by the case, treated in the
preceding chapter, of the fundamental point of a smgle
substance, in which all three aggregate states are in
contact. For a=2 we get B=4, that is, a four-fold
point, as, for example, an aqueous solution of common
salt m contact with solid salt, ice and water vapour.
In this case besides the temperature and the pressure the
concentration of the solution is also fully determined.

If, further, B=a + 1, the internal constitution of all
phases, mcluding temperature and pressure, depends on &
single variable, which can be chosen at will, say the
temperature or the pressure. This case is usually called
that of “completely heterogeneous equilibrium.” For
o=1 we here have B=2: a single independent com-
ponent in two phases, for example, liquid and vapour.
Both the pressure and the density of the liquid and the
vapour depend only on the temperature, as has already
been shown in the preceding chapter. This type of
equilibrium includes vaporization when 1t 18 accompanied
by chemiocal decomposition in go far as the system contains
only a single independent component, as, for example,
the vaporization of sold ammomum chloride (NH,CI).
So long as hydrochloric acid vapour (HCl) or ammonia
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vapour (NH;) is not present in excess there is a perfectly
definite dissociation pressure corresponding to every
temperature I'. For«= 2, we have = 3, as, for example,
when a salt solution is in contact simultaneously with its
vapour and with the solid salt, or if two liquids that
cannot be mixed in all proportions (water and ether) are
present together with their common vapour. Vapour
pressure, density and concentration in every phase are
then functions of the temperature alone.

If, further, 8 = «, the internal constitution of all the
phases still depends on two variables, for example, on the
temperature and the pressure. Every substance m the
homogeneous state affords an illustration of a= 1, p= 1.
An example of & = 2, 8 = 2is given by a liquid solution of &
salt or of an alcohol in contact with its vapour. The
concentration, both in the solution and also in the vapour,
is determined by the temperature and the pressure.
Instead of the temperature and the pressure the concen-
tration of the liquid solution is often taken either with the
temperature or with the pressure as the two independent
variables. In the first case we say that a solution of
arbitrarily chosen concentration at an arbitrarily chosen
temperature emits a vapour of definite tension and definite
composition, in the second case we say that a solution of
arbitranly chosen concentration at an arbitrarily chosen
pressure has a definite boiling point at which a vapour
of definite composition is distilled off.

§69. As we have seen, the determination of the
equilibrium state of any system depends essentially on our
knowimg how the characteristic function @ for every phase
of the system depends on the temperature 7', the pressure
p and the chemical constitution of the phase. The
dependence on the temperature and the pressure is in
general given by the relations (120) and (121). We have
already established the expression for @ for a gaseous
phase m (123). In the case of a condensed phase (that is,
liquid or solid) the pressure plays only a small part, so
that we shall here need concern ourselves only with
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mvestigating the dependence on the temperature For
this the relation (120) gives the value

The mtegration is to be performed at constant pressure.
The enthalpy (Gibbs’ heat function at constant pressure,
§ 34) is related by (67) to the heat capacity Cp at constant
pressure. Thus if we integrate the last equation by parts,

we get.
w oW dT

e=-7t|lwT .
and, 1f we substitute Cp for W by (67), then:
ar 1
<D=/0,.-T—T/O,dil’ ) . (165)

This relation reduces the characteristic function @ directly
to heat measurements. On account of the two indefinite
integrals two additive constants remain undetermmed in
it (just as . the case of a gas in (123)) one of which has 7'
in the denominator.

§ 70. Let us next enquire into the dependence of the
characteristic function @ of a phase on, 1ts chemucal con-
stitution We shall first consider the question of an ideal
gaseous phase, that is, a physically homogeneous mixture
of dufferent ideal gases To answer this question we must,
by (118), know the volume ¥, the energy U and the
entropy S of the gas mixture. We see at once that 1t 18
better to use, instead of the individual masses of the
different kinds of gases contamned in the mixture, the
numbers of moles of each, viz .—ny, ng, ng . . . . For
then we have simply :

V=l:12nl. ... . (166)

The energy U of the gas mixture is obtained from the
energles of the separate gases with the help of the first
law. For according to this law the energy of a system
remains unchanged 1f no external forces are exerted on it.
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If we now allow any arbitrary number of gases at the same
temperature and pressure to diffuse mnto one another
18othermally and at the same pressure (along an isobar),
experiment teaches us that neither the total volume 1s
changed nor is heat taken up from without. Consequently
the system retains its initial value unchanged right to the
end of the process of inter-diffusion, and the energy of the
mixture is equal to the sum of the energies of the separate
gases before mixing, or by (97)

U=2ny(cT+by). . . . (167)

Here, as always in the sequel, ¢, does not denote the
specific heat as earlier, but the molar heat at constant
volume of the gas 1. The constant b; depends only on the
nature of this gas.

‘We have yet to determine the entropy S of the
gas mixture. Its dependence on the molar numbers
Ny, Ny, Ng . . . can be found in no other way than by
applying the second law to a reversible process that is
accesgible to measurement and that produces a change
in the ratios of the molar numbers. We may not,
however, use the diffusion process above applied to
determining the energy U : for this process, as we may
conjecture and as 18 shown below, is irreversible and so
leads to an inequality. On the other hand a reversible
process which presents itself as smtable for our purpose
is to use a  semi-permeable membrane >’ with the gas
mixture. such & membrane can act as a partition which
is permeable to one type of moles and absolutely
impermeable to another type. It 18 true that perfec
semi-permeable membranes of this kind do not exist m
reality for any gases whatsoever. Indeed, it will be shown
later by theory (§ 73) that in prmciple every gas penetrates
nto the substance of the membrane and will hence also
diffuse through it. All that matters here, however, is
that we may assume, without infringing the laws of
thermodynamics, that the rate ¢f diffusion of one kind of
moles can be maac s small as u. nlease compared with
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that of another kind. This assumption is justified by the
fact that the property of being semi-permeable is possessed
by some substances to a very high degree of approximation
in practice. For example, glowing platinum foil is
permeable towards hydrogen but almost impermeable
towards oxygen. The error that is mcurred m setting
the rate of diffusion of one type of moles equal to zero
falls below any measurable limit; it resembles the error
made in assuming that a salt does not absolutely vaporize
or freeze out of a solution, for this assumption, too, is not
rigorously true (§ 73).

By using semi-permeable membranes as partitions we
shall separate the constituents of & gas mixture from
one another by means of an infinitely
slow reversible 1sothermal process of
the simplest possible kind. Let a
77 8 hollow cylnder (Fig. 5) be provided

Ag- -t with four pistons in all Of these 4
@ @ T and 4’ are fixed while B and B’ are

b | g/ movable, but in such a way that
A2 the distance BB’ is kept constant
Fie. b. and equal to 44’ as is denoted by

the two brackets in Fig. 5.

Let the base 4’ and the cover B of the vessel be im-
penetrable for all substances, while 4 and B’ are semi-
permeable, 4 being permeable only to a certain gas 1,
while B’ is permeable only to another gas 2. Above B
the space is to be evacuated and to remain go.

Let the piston B be at 4 initially, so that B’ is at A',and
let the enclosed space contain a mixture of the gases 1
and 2. Now let the piston B and hence also B’ be raised
infinitely slowly The gas 1 flows into the space that
opens up between B and 4, while the gas 2 flows into the
space which opens up between B’ and A’. When B’ has
arrived at A4, the two gases have been completely
separated.

Let us first calculate the external work done during the
process. As the upper space is evacuated the movable
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piston Bis acted on only by the pressure of the gas 1, which
moves it in the upward direction. The other movable
piston is acted on only by the partial pressure of the gas 1
in the mixture 1n the downward direction, since the density
and pressure of the gas 2 are the same on both sides of
B’. But these two opposite pressures are equal in
magnitude, since the presence of the piston 4 is of no
account for the gas 1. Consequently the motion of the
two rigidly connected pistons B and B’ occurs without
the performance of external work. Hence, if the temper-
ature and, therefore, also theenergy of the system are kept
constant, no exchange of heat with the surroundings
occurs.

The process, if carried out infinitely slowly, is reversible,
and so the entropy in the initial state is equal to that in
the final state, that is the entropy of the gas mixture is
equal to the sum of the entropies of the individual gases
if each alone occupies the whole volume of the mixture at
the same temperature. This law may be generalized to
apply to a mixture of any number of gases as follows :
““ the entropy of an ideal gas mixture is equal to the sum
of the entropies of the individual gases, if each alone
occupies the whole volume of the mixture at the same
temperature.” It was first enunciated by Gibbs.

The entropy of a single gas consisting of n, moles and
at the temperature 7' and the pressure p is, by (109) and
(96) :

Ny (c,,, log 7T+ R logz + a1>
P

where the constant a, depends only on the constitution of
the gas but not—and this is an essential point—on the
number of moles n,, because the entropy at a definite
temperature 7' and pressure p is proportional to the
number of moles present. Instead of this expression we
may also, by (55), write :

nq(cp logT— Rlogp+a,) . . {1l67a)

where now cp, like cv, refers to a mole and ngt to a
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gramme By Gibbs’s law for the entropy of a gas mixture
we get from this

8 =2Zny(cp,logT ~ Rlogp; +a)) . (168)
where p, denotes the partial pressure (§ 9) of the moles
of type 1 1 the mixture.

By (15) the sum of all the partial pressures is equal to
the total pressure p, and their ratios are, by (36) equal to
the ratios of the numbers of moles n,, ny, 7, ..
Consequently, if we denote the conceniraiions of the
individual types of moles i the mixture by :

M =2 =2

1= zTn_l’ Cy = Z'nl’ G = an (169)

we have:

P1=0C1D, DPp = CoP; Pg= CgP
and by (168) the entropy of the mixture 18 then

8 = Zn,(cp log T — Rlog (¢4p) + a;) . (170)
Having obtamed the expression for the entropy of a
gaseous mixture we are Now in a position to answer the
question proposed above, as to whether & diffusion
process is reversible Let us take the sumplest case of
the mter-diffusion of two gases, contaming n; and n,
moles, respectively, at constant temperature and con-
stant pressure, hence also having constant volume and
constant energy.

At the begmning of the process the entropy of the
system is equal to the sum of the entropies of the separate
gases, which, by (167a) amounts to

71 (cp, log T' — Rlogp + a;) + ny(cp,logT — Rlog p + ay)

When the inter-diffusion is complete the entropy of the
mixture 18 by (170) .

ny (6, Jog T' — Rlog (¢1p) + ay)
+ na(cp, Jog T — Rlog (cyp) + @3)
Thus the change in the entropy of the system 1s

~ ny; Rlogey —ny Rloge, . . (171)
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On account of (169) this is a positive quantity, from which
it follows that diffusion like friction and heat conduction
is an wrreversible process.

At the same time we see that the increase of entropy
due to diffusion depends only on the numbers of moles
n, and ny, but not on their nature, for example, on their
molar weight. So far as the increase of entropy is
concerned, then, 1t makes no difference whether the gases
are more or less “‘ simular ”’ chemically. This leads us to
make a strange inference. If the two gases are assumed
to be 1dentical, the increase of entropy is obviously zero,
because then no change of state occurs at all. From this
it follows that the chemical difference between two gases
and, in fact, between any two substances at all, cannot be
represented by a contimuously variable quantity, so that
we can speak in this case only of relations that go in steps
(sprungweise), or of quantities that are definitely equal
or unequal, as we have in the case of integers. Cf. § 13
above.

From the values found for the entropy § in (170), the
energy U m (167) and the volume ¥ mn (166) the required
characteristic function @ of an 1deal gas mixture comes out
by (118) as .

D = Zn, (cp, Jog T — Rlog (c1p) +a,_—c,,—z,—1—R)

or, if for brevity we set the constant:

Gy —C,—R=a;— ¢, =0a"y . . (172)
and the quantity :
c,,log[l'-—%‘,—ﬂlogp+a’1 =¢;. . (173)

which depends only on 7' and p and the nature of the
gages but not on the number of moles, we finally get .
D = Zny (p; — Rlogey) . . . (174)

§ 71 We shall now take a fundamental step forward in

our theory which will be of considerable practical im-
portance. We shall assume that the expressions for



8, U, V and @ obtained for a gaseous mixture are also
valid when the numbers of moles 7, n, g , . . are
not given constants at the outset, but are variable
quantities; in other words, when the given number «
of independent constituents of the system (§ 66) is less
than the number of different kinds of moles. Equa-
tion (174) then gives us the value of the characteristic
function @ for all arbitrarily chosen values of the numbers
of moles, and hence also for meta-stable states; the
stable state of equilibrium is distinguished by having @ a
maximum. This gives us a method of calculating
physical-chemical equilibrium uniquely. For if a
chemical change is possible mn the gaseous mixture and
is such that the numbers of moles 7, 7, ...
simultaneously change by 8n,, dn, . . ., then, by § 56
equilibrium exists with respect to this change if 30 =0
when 87'= 0 and §p= 0. Or, by (174):

2Z($1 — Rlog ¢1)8ny + Zny 8(p; — Rloge,) =0 . (175)
Since the quantities ¢,, ¢; . . . depend only on 7' and p
their variations are zero. Further, we have :

n,8loge; + ngdlogeya + . . . = Z—"lb‘cl+ ?Sc, + ...
1 2
and, by (169) :
=Xn;.(8c; + 8+ ...)=2n .8y +ec+ ...)=0.
Hence there remains of the condition for equilibrium :
Z(¢y — Rlogcy)dny = 0.

Since only the ratios of the variations &n,, . . . are
important in this equation, we set

Smy:8ngt .« o . =wyivgi ... . . (178)
where we take vy, v, . . . to stand for simple positive

or negative integers, namely moles that combine or
decompose during the chemical change under considera-
tion. The condition for equilibrium then runs:

(¢, — Rlogeyyvy =0 . . . (177)
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or:
viloge, +vglogea+ ... —ﬂﬁ—”ﬁ%——l'—— =logK . (178)
Since the right-hand side of the equation, log K, depends,
by (173), only on 7' and p, the equation gives a definite
characteristic relation between the concentrations of the
different kinds of moles, if T and p are given. This
relation may also be written in the form :

ccnegn . . =K. . . . (179)

From this we see that at finite temperatures and finite
pressures none of the concentrations can be zero, or, in
other words, that in the gas mixture all the kinds of
moles possible at all are present in finite quantity
even if only to & very small extent. So, for example, in
water vapour even at low temperatures there is always
a small amount of uncombined hydrogen and oxygen
(cf. also § 66 below). For many phenomena this circum-
stance is of course, of no importance.

The relation between the equilibrium constants K and
the temperature and pressure 1s, by (178) and (173) of
the form :

B
Ae T Te
K=

or:
log K=1log A— g + OlogT—(v3+ve+ ...)logp (180)

where we have used the abbreviations :

vi6'y +v8s + ... =Rlog4d
viby +why + ...=RB . . (181)
viCp, + Valp, + .. .= RO

From this we can derive a close relation between the value
of K, the heat tone (Warmetdnung) and the change of
volume that present themselves during the chemieal
change in question.
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For, by (180), we have for any change of 7' and p
B dp
d1og K = (B + )ar — gy +m+ . )2 . (8

Now by the first law (62) we have for the quantity of heat
which must be transferred to the system from without
during any isobaric change of state -
Q=U-T+p(V'-7)
and so for the isothermal-isobaric change characterized
by the numbers » we have by (167), (166) and (55) -
TXviep, + Zviby = R(CT + B) =r. . (183)
and correspondingly by (166) for the volume change which
occurs during the same isothermal-isobaric change :

R——;'(v1+v2+...)=v ... (184
By comparison with (182) this gives:
PlogX 1 r (85
T TR T (186)
and : o K
dlgk 1w 186
» RT (186)

Thus by measuring the heat tone and the corresponding
change of volume we can determine how the equilibrium
state depends on the temperature and the pressure. For
a thermally neutral reaction (r= 0) the equilibrium is
independent of the temperature, and if the volume 18
not changed by the transformation (v = 0) the equilibrium
is independent of the pressure, as may also be seen
directly from (180), because the change of volume is
proportional to the change in the total number of moles.

§ 72. As for the ideal gaseous phase so also for any
arbitrary other phage the function @, which is the character-
istic function for thermodynamic equilibrium, can be
found as a function of 7, p and the numbers of moles
Ny, Ny . . . by determining ¥, U and 8. But, a8 we may
well expect, the expressions for these quantities are in
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general found to be fairly complicated. They become
relatively simple, however, for the case now to be con-
sidered, which represents the phase of a dilute solution,
that is, & phase in which a definite kind of moles far
exceeds in number all the other kinds of moles. We call
this kind of moles the ‘ solvent ”’ and denote the number
of moles in it by n,; all the others are called ‘‘ dissolved
substances ”’ (or solutes) and the number of their moles
is denoted by 7, g, 73 . . . Then, according to our
assumption, n, is yery large compared with the sum
ny+ Ny + ng+ - The aggregate state of the solution is
immaterial ; it can be solid, liquid or'gaseous.

The reason for the great simplification in the case of
a dilute solution is founded on the mathematical theorem
that a function of small variables, which is finite and
contmmuous and has finite and continuous differential
coefficients, is necessarily a linear function of these
varables. This allows us to specify the way in which
U and V depend on 7y, %y, 7, . . . from the very outset.
In physical language this means that, apart from the
actions of the moles of the solvent on one another, the
properties of a dilute solution necessarily depend only on
the mutual actions between the moles of the solvent and
the moles of the dissolved substances, but not on the
actions of the dissolved substances on each other; for the
latter are small quantities of a higher order.

In actual fact let us first consider the energy U of the
solution and let us form the quotient of U and n,, the
number of moles of the solvent. Since U is a homo-
geneous function of the first degree in the number of
moles, this quotient will remain unaltered if all the

numbers of moles of each kind ng, 7y, 7y . . . are changed
in the same ratio, that is, it is a function of the ratios
7y My

, —2, . .; and since these ratios are all small, it is a
Ty Mg
linear function :

U_ ny Ty
;L-o-—uo+u1no+u, + ...

T
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in which the quantities g, %;, %3 . . . do not depend on
the numbers of moles of each kind, but only on the
temperature 7', the pressure p and the nature of the kinds
of moles present in the solution, and, indeed, in such a
way that u, depends only on the nature of the solvent,
whereas u, depends only on the nature of the solvent and
the first dissolved substance, and so forth. Thus u,
corresponds to the mutual actions of the moles of the
solvent on one another, %, on those of the solvent with the
moles of the first dissolved substance and so forth.

A fully analogous argument applies to the volume ¥ of
the solution. Thus we have :

U =nguy + nyuy + Bl + . . . } . (187)
V =n@w, + nqvy + 0905 + . . .

‘We regard these formulee, exactly like the corresponding
expressions for a gaseous phase, as vald for other cases
besides that for which the numbers of moles » are given
constants, that is, for others besides the thermodynamic
states of equilibrium (cf. § 71) They may be tested by
actual measurement For 1f we dilute the solution still
further, by adding say a mole of the solvent by, say,
an isothermal-isobaric process, then by means of the last
equations just above we may calculate the resulting heat
of transformation and change of volume, provided that
the numbers » remam constant

A mole of the pure solvent, taken always at the same
temperature and pressure, has the volume v, and the
energy u,. After the dilution has been effected the volume
of the golution has become:

V' = (ng + )vg + nyvy + nva + . . .
and the energy has become :

U’ = (ng+ Dug + nquy + ngug + . . .
The increage of volume caused by the dilution is obtained
by subtracting the sum of the original volume ¥ of the

solution and the volume of one mole of the pure solvent
from the final volume V’; thus ¥’— (V + v,). That is,
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the increase of volume is nil. The heat transferred from
without is, by the first law (62) :

Q=U = (U+u)+p(V' —(V + 1))

and likewise vanishes.

In drawing these conclusions it is assumed that the -
numbers of moles of the dissolved substances, .y, n, . . .
remain unchanged during the process of dilution, that is,
that no chemical changes occur. We may accordingly
enunciate the following theorem .—A dilute solution has
the property that further dilution, so long as no chemical
changes are produced by it in the dissolved substances,
causes neither an appreciable increase of volume nor
appreciable heat of transformation (Warmeionung). Con-
versely, every change of volume or heat of transformation
that occurs when a dilute solution is further diluted must
be ascribed to a chemical change among the dissolved
substances.

‘We now proceed to calculate the entropy S of a dilute
solution as a function of the independent variables T, p,

Ny, My, Ny « « . . By (82) we have, provided the numbers
of moles ng, 7y, ny . . . are kept constant :

as = ‘iU‘z'i’
and by (187):

dS=nodu"_;,pdv“+n1dul‘§,pdv1+n,du“-;,pdv”+...

Now since the u’s and the »’s depend only on 7' and p,
but not on the n’s, the coefficients of 7y, n,, 74 . . . must
also separately be complete differentials, that 1s, there
must be certain variables s, which depend only on 7' and
p, and such that :

dsy = duy -;1 pdy,
o e . 1
doy = duy -II‘-ppdvl (188)
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‘We then have.
8 = mysy + 138 + NSy + +C. . (189)

where the integration constant C 18 independent of 7' and p
but may, however, depend on the numbers of moles
present.

Hence1f for any particular value of the temperature and
the pressure we know how C depends on the numbers of
moles, this value of C 1s also its general value for any
temperature and pressure.

‘We proceed to calculate C as a function of the n’s for the
special case when the temperature 18 high and the pressure
18 low. If the temperature 18 sufficiently raised and the
pressure sufficiently lowered, the solution, no matter
what its aggregate state may be nitially, will transform
completely mto the gaseous state In reality this wall
be accompanied by chemical changes and changes of the
aggregate state, that 1s, the numbers of moles, n, wll
change, the phases will split up and so forth For in
nature only such states can be realized as he fairly close to
stable states of equlibrmum Here, however, we wish to,
and indeed are compelled to, assume that the process 1s
such that all the numbers of moles » remain unchanged
and that the whole configuration always forms only a
single phase ; for it1s only then that the quantity C retains
its value. This assumption 1s allowed because the
numbers of moles n together with 7' and p form the
independent, variables of the system. Cf. the comment
on (187). Such a process can only be mmagined smnce 1t
passes through meta-stable states ; but there is no objection
t0 1t8 use, smce the above expressions for ¥, U and S are
valid not only for stable states but for all states which
are characterized by arbitrary values of the independent
variables T, p, ny, nq, My . For the stable state of
equilibrium arses from the general states as a particular
case 1n consequence of a special condition which 1s to be
set up below.

Smce when the temperature has been sufficiently
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raised and the pressure sufficiently lowered, every gaseous
phase assumes so small a density that it may be regarded as
a muxture of ideal gases (see end of § 17) the expression
(189) for the entropy must here transform into (170); it
must be carefully noted that the moles constituting the
first kind are denoted by the index 0. But this transition,
during which the values of the »’s remain constant, is
possible only if the integration constant C in (189) is
identical with that additive term in (170) which is
independent of 7' and p. Thus:

C = — Rmylogcy +nyloge; + ... ) . (190)
where the concentrations are :

= o = ™ ... (191

%o 11,0+'n,1+n,,+...’61 Ng+M+7mg+ ... (193
Hence, by (189) the entropy of a dilute solution for any
arbitrary temperature and pressure is :
8 = ny(8y — Rlogey) + my(sy — Rlogey) + . .. . (192)
If we further use the following abbreviations for the
quantities which depend only on 7' and p but not on the
n's .

U + PV
8 — 25" =4,
T
sl_ul';P'h:?;l coe .. (193)
+ pv,
32_uBTpg=¢2

then, by (118), (192) and (187), the characteristic function
@ of the solution finally becomes :
D = no(po — Rlogce) + my(dy — Rloge) + . . . . (184)
This concludes the determination of the thermodynamic
properties of a dilute solution.

§ 73. We shall now proceed to set up the condition of
equilibrium for & system consisting of any number of
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phases. Asregards notation, we shall as before distinguish
the different gfoups of moles in one and the same phase
by means of suffixes but the different phases will be
diwstinguished by dashes, the first phase being left for the
sake of simplicity without a dash The whole system is
then represented by the symbol :

,
Mg MMy Mg, + « . | Blogm'g, n'ym'y, n'gm’y, . . .|
n'ym, n'im,nym! oL | . . (195)

The numbers of moles are denoted by n’s, their individual
weights by m’s, and the ndividual phases are separated by
vertical lines. In the general formule we denote the
summations over the different kinds of moles m one and
the same phase by noting down the individual terms of
the summation; but the summing over the different
phases 13 denoted as usual by the symbol Z.

To be able to apply the expressions above derived we
shall assume that every phase represents either a mixture
of 1deal gases or a dilute solution. The latter is true
even in the case when the phase contains only one kind of
mole, as, for example, a chemically homogeneous pre-
cipitate from & solution. For one kind of mole taken
alone is a dilute solution in which the concentrations of
the dissolved substances are all equal to zero.

Let us suppose that the system (195) can be subjected
to an 1sothermal-isobaric change such that the numbers
of moles mnymy,ny . ., ngn'ymy . . . change simul-
taneously by the amounts 8ng, dn,, 8ny . . ., 8n'y, 8n'y,
8n'y . .. Then, by § 56, equlibrium persists for this
change if, 7' and p being constant, we have §& = 0, or,
by (194), if :

Z(po — Rlog c)dny + (¢ — Rlogey)dmy + . . .
+ Zngd(do — Blogcy) + m8(dy — Rlogey) + . .. =0

The summation 2 is to be performed over all the phases.
The second row vanishes identically for the same reason
as was given in § 71 for the case of a single gaseous phase.
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If we again introduce the simple integral ratios that are
characteristic of the change in question :

Bng:8my:8my . . . 2 8 g:8n' 80y L L .
=vpivgivg ... 2 VY YL 0 L . (196)
the condition of equilibrium runs :
o Z(gy — Rlog co)vg + (¢ — Rloge)vy + . . . =0
Zvglogcy +vyloge + . . . =%E‘vo¢o
+nd+ ... =gk . . (197)

The equilibrium constant K depends, like the quantities ¢,
not on the numbers of moles but only on the temperature,
the pressure and the nature of the constituents of the
different moles. Its dependence on 7' and p comes out
of its definition :

d(10g K) = 3 Svgdhy + iy + . . . . (198)
Now, by (193) we have :
iy = o, Bt 000 0D |t 00

and, on account of (188) :
dpy = — R | Yo X Py,
Likewse

91 1
—aog'_K=WZ(uuuo+u1ul+ o) Pyt v+ L)

31;;‘31‘ = = o Sy + v +

RT

In these equations the sums 3 taken over all the phases
denote, by (187), nothing other than the heat of trans-
formation r represented by (62) and the volume change v,
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which occur during the isothermal-isobaric process here
characterized by the numbers v. Hence we have :

al§§K=RLT2 ... (199)
31;51{:_?”5'. ... (200)

which are exactly the same relations as (185) and (186)
which were found above for a mixture of ideal gases

The ehmination of K from the last two equations leads
to a general relationship between the heat of transforma-
tion r and the change of volume v

or )
m=v=Tag- - (201)
which can also be derived directly from (122)

By means of equation (197) it is possible to set up for
every thermodynamic system exactly as many conditions
of equilibrium as there are possible kinds of transforma-
tions, the constant of equilibrium K having of course a
different value in each case. This corresponds fully with
the requirements of Gibbs’s Phase Rule. For we must
carefully distingwish the numbers of different kinds of
moles of & phase from the number of its independent
components (§ 66). Both numbers determine the mass
and the chemical constitution of the phase but the former
does this quite generally while the latter does so only on
the assumption that the phase is in thermodynamic equili-
brium. That is why the latter alone, as we saw in § 68,
is of importance for Gibbs’s Phase Rule. For when a
new kind of moles is taken into account, then although
the number of variables is imncreased, the number of possible
transformations increases at the same time and hence
also the number of conditions of equilibrium.

The equation (197) tells us further that in the state of
equilibrium all the kinds of moles that are at all possible
in the system are represented mn every individual phase
to a fimte degree of concentration; as otherwise the
corresponding logarithm would become negative. This
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also means, for example, that in a solid precipitate
thrown down by an aqueous solution water moles always
occur or that in the case of a solution some salt always
evaporates together with the solvent. This view, which
seems strange at first sight, receives support in various
ways, for example, 1t accounts for the fact that neither a
gas nor & hiquid nor a sohd body can ever be completely
freed from the last traces of foreign contaminating
substances It also proves that there can be no such
thing as a semi-permeable partition m the absolute sense
(cf. § 70). This does not, of course, prevent our ascribing
an arbitrary small value to the concentration of a dissolved
substance.

The above discussion 18 based on the assumption that
the equilibrium constant K has a finite value which depends
only on the temperature and the pressure. But if the
temperature 7' approaches the absolute zero, a glance at

_equation (199) informs us that, provided the heat of trans-
formation 7 of the change in question remains finite, the
quantity log K assumes, when the temperature decreases
to an indefinitely small value, an infinite value, positive
or negative according to the direction of the reaction
indicated by the signs of the numbers v. By (197) it
follows from this that at the absolute zero of temperature
the reaction contmues until it is fully completed, the
concentrations of the moles that become transformed in
the process becoming equal to zero.

This result agrees with the general deduction made in
§ 57 that Berthelot’s Principle holds at low temperatures.
This principle states that chemical transformations
always proceed m the direction m which the greatest
possible amount of heat is generated, that 1s, untal all the
kinds of moles that are richer in energy have been
completely used up.

§ 74. Some particularly interesting applications of the
condition of equilibrrum (197) will now be discussed.
Firstly we consider the case, already treated in the
previous chapter, of a single independent component in
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two aggregate states, as this brings out very clearly the
peculiarities of the method here used. The system consists
of two phases, say & liquid and & gaseous or a solid phase.
By (195) the symbol of the system is .
g | 1o M.

Let each phase contain only a single kind of mole; but
the moles in both phases need not be the same.

If a liquid mole vaporizes or sohdifies, then, in our new
notation :

vp=—1, vo=—-2
)
7, n'
Cp=-=1¢cp=-2=1
K o

and consequently the condition of equilibrium (197)
becomes :

O=logE=—~do+ 280 . . (202

L]

Since K depends only on 7' and p, this equation expresses
a definite relation between p and 7': the law of the
dependence of the vaporization pressure or fusion pressure
on the temperature, or the converse. The actual content
of this law becomes clear if we take into account the
dependence of XK on p and 7'. For if we differentiate the
last equation totally, we get:

dlogK 9 log K
—57 ar +
or, by (199) and (200) :
——dT - ——d@ 0.

Now the volume change of the system in the change in
question is, in our present notation :

v =y + ¥ o = :‘—;v’o -~ v,
0

Consequently :
r= T(m v— uo)

dp=0
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or, referred to unit mass :
I _ (Yo _ %)dp
my T(m’o mo)(lT
which is identical with the Carnot-Clapeyron formula
(143).

§ 75. Two independent components in a phase. Accord-
ing to the Phase Rule the pressure and temperature are
not the only variables in this case; there is another, for
example the quantity of dissolved substance in 1 litre of
the solution. The concentration of any kind of mole is
then determined for the equilibrium state, no matter
whether the mole is produced by dissociation, association,
hydration or hydrolysms. Consider the simple case of
the electrolytic dissociation of a binary electrolyte, for
example, acetic acid in water. If the theory is to be
applicable we must assume that the electrolyte is weak,
that is, that in the expression for the enmergy and the
volume of the solution we may neglect the actions which
the ions exert on one another in virtue of their charges.
For it is only under this condition that the equations
(187) are valid.

The symbol of the system is :

Ty, MMy, NgMg, NgMig

where 7, denotes the number of undissociated moles
and 7y = n,; the number of dissociated moles. The total
number of moles is :

n = ng + 7y + My + ng (which only slightly exceeds n,.)
The concentrations are :
N
-
The transformation in question consists in the dissociation
of a dissolved mole, thus :

vo=0,vy=—1L yp=y=1
Accordingly we have, by (197), in the equilibrium state :
— loge, + 2log ¢y = log K

) L.
=g =) a=6=
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or: .
oK. . . . . . (208
€1

which is the law, first enunciated by Ostwald, for the

dilution of a binary electrolyte.

§ 76. Two independent components in fwo phases.
According to the Phase Rule the equilibrium state 1s
determined by two variables, such as the temperature
and pressure, or concentration of a phase and temperature
or pressure. To get a better survey of this wide field of
phenomena it is found advantageous to consider the
special case where the second of the two phases contains
only a single component in appreciable quantity This
case sub-divides further into two subordinate cases which
are to be well distinguished ; they result according as the
component; that alone occurs in the second phase forms
the solute or the solvent in the first phase. We treat
these two subordinate cases in succession, begmning with
that in which the component that occurs isolated in the
second phase forms the solute in the first phase. An illustra-
tion of this is given by the absorption of a gas, say carbon
dioxide, in a hiquid of comparatively inappreciable vapour
pressure, say water at a low temperature. By (195) the
symbol of the system is .

B, namy | migm’y
We leave open the possibility of the dissolved mole m,
being a multiple of the free gaseous mole m’y. The con-
centrations of the different kinds of moles of the system
in the two phases are :

’

=

Mo
Ny + Ny

Ny o =
Mo+ my 0

€y =

01,

€y = ]
o

The transformation in question consists in the vaporiza-
tion of & dissolved mole, thus

m.
I 1
vog=10, vy =—1,vy=—%
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Hence the condition of equilibrium (197) .
volog ey + vilogey +v'glog ¢’y = log K

becomes :

—logey=logKk . . . (204)
That is, for a definite temperature and a definite pressure
(which also determines K) the concentration ¢, of the gas
in the solution also assumes a definite value. The de-
pendence of the concentration on the pressure and the
temperature is obtained by substituting the last equation
in the equations (199) and (200). This gives:

31;%°1=_712%. ... (205)
%g_cx:é%. ... . (208

where 7 18 the amount of heat to be taken up from the
surroundings during the isothermal-sobaric vaporization
of a mole of liquid, v being the resulting increase of
volume. Now, since v represents to a close approximation

the volume of v'j= 7%,1 gaseous moles, we may, by (98),
[

set :

- m BT

V=
mo P

and the equation (206) gives -

p m, P
Integrating, we get :

e =C.p% . . . . . (@0

That is, the concentration of the dissolved gas in the
liqud 1s proportional to that power of the pressure which
denotes the degree of association of the gaseous moles
in the liquid. Thus if the dissolved quantity of gas 18
proportional to the pressure (Henry’s Law; also known
as the Bunsen-Henry Law on the Continent), as mn the



130 THEORY OF HEAT oHAP

case of the absorption of carbon dioxide in water, it
follows that the mole of carbon dioxide dissolved m the
water is identical with the gaseous mole.

The factor of proportionality C, which gives us a measure
of the solubility of the gas, also depends on the temperature ;
the manner of its dependence is derived from (205) com-
bined with (207), which gives :

dlog C 1r

o ..« . (208)
Thus if the gas escapes from the solution owing to the
addition of heat from outside, as 1 the case of carbon
dioxide in water, then r > 0 and the solubility decreases
ag the temperature increases. Conversely the heat of
transformation during the process of absorption can be
calculated from the variation of C with the temperature.

§ 77. The component which occurs alone in the second
phase forms the solvent in the first phase, This case
18 realized when a pure solvent separates out from a
solution which is in any arbitrary aggregate state, and
passes over into any other aggregate state during the
process, such as by freezing, vaporizing, melting or
subliming. The general type of such a system is, by (195) .

NgMyg, NyMy, NgMy, NgMg, . . . | N gmg

The nature and the number of the different kinds of moles
which form the solute 1 the solution are left quite open;
and likewise the question as to whether the moles of the
solvent have the same or different weights in the two
phases. The sum of all the moles m the solution is -
=N+ Ny + Mg + . . . (which only slightly exceeds n,).
The concentrations of the different kinds of moles are .

, Ny Ny , 7
°o=f:cz=gs°z=;=- .co=;,—°=1.
[}

A possible change is the transition of a mole of the solvent
from the first phase into the second, thus :

vo=—1,v3=0,13=0...v;=—F.
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Hence, by (197), equilibrium requires that :
—log™ —log =
log = log e log K.
Now:

n
=1+

and therefore, since the fraction on the right is very small :

My +Ne+ ...
T

Tttt - 1ok . . . (209)
Mo
According to the general definition of (197) we here have :
1 ’
log K = 5 (vobo + vads + vada + . . . +V'od).

Consequently, if we insert the values of the »’s, we get :

Ny +Np+ng+ ... 1/img _
—m ='1—g<m¢u—¢o>—1°gK (210)

According to this equation log K 1s also very small.

If we compare this condition for equilibrium with the
corresponding condition (202) which was established for
the pure solvent, it is evident that the pr:ssure of the
dissolved moles nq, ny, ng . . . effects a dewiation from
the relationship between pressure and temperature that
holds for the pure solvent; moreover, this deviation
depends only on the total number of dissolved moles but
not on their nature. To formulate this appropmately
we can use either p or 7' as the independent varable.
In the former case we say : at a definite pressure p the
boiling or the freezing temperature 7' of the solution
differs from that of the pure solvent. In the second case
we say - for a definite temperature 7' the vapour pressure
or the sohdifaction pressure of the solution differs from
that of the pure solvent. We proceed to calculate the
deviations m each case.

If T, is the boiling or the freezing temperature of the
pure solvent at the pressure p, we have by (202) :

(log K)z, =0
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and, by subtracting (210) :

+ng+ . .
(log K)z — (log K)z, = 5208
Now since 7' differs only slightly from T, we obtain by
applying Taylor’s Theorem and making use of (199) :

dlog K r nyg+ng+ ..
ot (T~ To) = g (T~ Tg) = =0 e
From this it follows that :
T-T0=Mf':b+—-"lifj . . (L
0

This is van’t Hoff’s law for the raismg of the boiling point
or the lowering of the freezing point, respectively. For in
the case of solidification r, the heat transferred from
outside to & liquid mole, is negative. Since n, and r
occur multiphed together in the formula, it tells us
nothing about the number of moles 7, and the weight m,
of & mole of the solvent. If r is expressed in calories we
must, by (57), set B= 1-983.

Thus for the vaporzation of 1 litre of water at
atmospheric pressure we have, very approximately,
ngr = 1000 539 calories, T'= 373 Hence the boiling pomt
of a dilute aqueous solution becomes raised by the amount :

T~Ty=0581°.(ny+mg+ng+ .. ). (212
Further, when 1 litre of water freezes under atmospheric
pressure, we have, very approximately, ny = — 1000.80
calories, 7= 273 and hence the boiling point of a dilute
aqueous solution is :

Ty—T=186°.(ny+ng+mg+ .. ). (213)

If on the other hand p, is the vapour pressure of the
pure solvent at the temperature 7', we have by (202) :

(log K)p, = 0
and by subtracting (210) :

(log K)p — (log K)p, = Ta* Mt - - -

Mo
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Since p differs only slightly from p, we may, using
(200), write :

olog K + .
e (0P = — grp—py) =t
From thJs it follows, if we set; v, the volume increase during
the isothermal-isobaric vaporization of a liquid mole,
equal to the volume of the resulting gaseous moles,
v= "—nl li‘T that :
m'y P
Bo—p Mo Mttt ... | (914
P My o

This is van’t Hoff’s law of the relative lowering of the
vapour pressure Since n, and m, occur only as a product,
this formula tells us nothing of the weight of a mole of
the liguid solvent.

Sometimes we find this relation expressed in the form
that the relative lowering of the vapour pressure gives the
ratio of the number of moles of the solvent n, to the
number of moles » of the solution, or, what comes to
the same thing in the case of dilute solutions, to the total
number of moles of the solution. But, as we see here,
this law holds only if m’y= m,, that is, if the moles of the
golvent in the solution and in the vapour are the same.
Moreover, in general, this will not be so; as, for example,
in the case of water.

The result is that each of the equilibrium states last
treated, namely boiling point, freezing point, vapour
pressure of a dilute solution, contains & method for deter-
mining the total iumber 7y + 7y + . . . of foreign moles
present in the solution. If the number thus found by
measurement deviates from the number calculated from
the percentage content of the solution on the assumption
of normal moles, then by the theory above developed &
chemical change of the moles by dissociation, association
or such-like prc must 1 rily have occurred.
It is not possible, however, to deduce from the theory
what type of change has occurred, that is, whether the
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dissociation, for example, was electrolytic or electrically
neutral.

§ 78. Both phases contain the two ecompc~ wis in
appreciable quantity. If during the vaporization or
freezing of a solution the solute vaporizes or freezes at
the same time, the laws deduced in the previous section
become modified in a way which we shall now investigate.
The symbol for such a system is :

Nglitg, gy, Ngthg, - - . | n'gmy', w'ym’s, nigmly, . ..
where, as hitherto, the index 0 refers to the solvent while
the remaining indices refer to the different kinds of moles
of the solute. If we perform exactly the same calculations
a8 in the previous paragraph, we get instead of (120) the
following equation :

Ny +ngt .. -__"_"2‘114'1‘*'%'2“' i logK (215)
Mg m’y 7'y
and for the raising of the boiling point, instead of (211) :
U ’ 2
T__To=<n1+n,+...__n1+:ng:l-...  mRT (216)
TogMg noMmo r

Here 7 is the heat of transformation corresponding to the
isothermal~isobaric vaporization of & mole of the solvent;

so that 'an is the heat of transformation for the vaporiza-

tion of unit mass.

‘We again observe that in each of the two phases the
mass of the solvent enters into the formula but not the
number of moles or the molar weight, whereas in the case
of the solute the number of moles exerts a characteristic
influence on the boiling-point. Moreover the formula
contains & generalization of van’t Hoff’s law, in that
here we have, instead of the number of moles dissolved in
the liquid 7, + n,+ . . ., the difference in the number of
moles dissolved in unit mass of the liquid and in unit mass
of the vapour. According as unit mass of the liquid
or unit mass of the vapour contains more dissolved moles,
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the boiling point of the solution is raised or lowered
respectively. In the limiting case when both amounts are
equal, that is the solution “ boils constantly,” the change
in the boiling point is zero Corresponding laws hold of
course for the change of vapour pressure and the change of
the freezing point. Corresponding to solutions with
constant boiling points we have ‘‘ eutectic amalgams *
whose composition does not alter during the melting
process. Such amalgams therefore have a melting point
which is independent of the concentration.






PART TWO

THE CONDUCTION OF HEAT






CHAPTER I
FUNDAMENTAL EQUATION

§ 79. WHEREAS time entered in no wajy into the questions
considered in the first part of this book, since we were
concerned only with the direction and never with the rate
of events that occurred in physical nature, we shall now
turn our attention to the course of irreversible occurrences
m time. For irreversible thermodynamic processes are
only ideal and occur infinitely slowly (§ 25). We have
now to deal with friction, including flow through a valve,
heat conduction and diffusion. For all these processes
laws hold which are to some extent analogous. We shall
choose from among phenomena the simplest, heat conduc-
tion, and shall accordingly consider the time change of
temperature at the different points of a non-uniformly
heated, rigid, and homogeneous body at rest. .Aswe wish
to exclude all motions we shall also neglect the varia-
tions i density and volume caused by the changes in
temperature.

Heat conduction in a body consists in the transport of
energy effeoted by the interactions of the contiguous
material elements of the body which are at different
temperatures. Measurements in heat conduction consist
in determining the temperature 7' as a function of the
space-co-ordinates z, y, z and the time ¢. To be able to
derive the fundamental law for calculating this funoction
in a given case we must apply the two fundamental laws
of thermodynamics. Let us consider the first law. This
states that the amount of energy contained in any
arbitrarily selected part of a body in the element of time
di changes according to the action exerted on this part of
the body from without (§ 18). Now since the external

139
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actions in the present case are neither mechanical nor
electromagnetic by nature but exclusively thermal their
amount is simply the quantity of heat ¢ transferred during
the time di by conduction to the selected part of the body
from without.

The transference of heat takes place through the surface
of this part; it is thus composed of the sum of all the
quantities of heat that pass into the interior through all
the individual surface elements do¢ during the time dif.
We therefore denote such a quantity of heat by g, do dt,
where v stands for the inward direction of the normal to
the part of the body in question, and we regard g, as a
finite quantity. By applying the energy principle to
an element of the body in the form of an infinitely small
tetrahedron 1t may be proved, exactly as in IIT, § 4 for
the flux of electromagnetic energy, that q is a vector, the
“ vector of heat conduction,” and the principle of the
conservation of energy when applied to any arbitrarily
selected part of the body states :

Dot ar=dt[ade . (217)

where dr denotes an element of volume, % the density,
hence kdr an element of mass, ¢ the specific heat at constant
volume, which we consider constant (§ 20).

If we transform the surface integral into a space

integral by II (78):
f(q,cosvz+ 4y Co8 vy + e cOB v2)do = — fdlvq.dr
then the equation (217) may be written in the form :
[(#% + aiva)ar o

and if we make the part of the body infinitely small, so
that its volume shrinks to that of a single element dr, the
expresgion for the first law becomes :

ck—ai+divq=0 .- . (219)

which holds for any place and time.
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§ 80. To apply the second law of thermodynamics to any
part of the body we choose the inequality of § 53 which
holds generally for every irreversible process :

a8 +d8.>0. ) . (219)

Here dS is the change of entropy of the part of the body
or the sum of the entropy changes of all 1ts mass elements
kdr. Smce volume changes do not come into consideration
the change of entropy of a mass element kdr is, by (82),
equal to its change of energy divided by 1ts temperature.
So:

a8 = [- ck—thdt ... (220)

On the other hand dS, is the change of entropy of the
surrounding parts of the body. But since the entropy
change of any body, as we saw in § 52 m the case of heat
reservolrs, is equal to the quotient of the heat transferred
from without by 1ts temperature, the entropy change of
that part of the surroundings which lies on the outer side
of the surface element do 18

1
-7 q,dodt.

For qdodt is the amount of heat taken from this part in
the time di. This gives for the entropy change of the
whole surroundings .

a8 = — dt [ L2o
Substituting in (219) we get :

ckoT q,

T dr — f do > 0

or, by transformmg the surface integral into a space
integral, as above, and applying the result to an infinitely
small part of the body we get :

Zlfaaf+d.\v(f)>0. .. (221)
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as the expression of the second law, which holds for any
place and time.
If we expand the expression for the divergence :
4= & %
d1v< ) = ?.— A — a + =
T 0z

= Tdivq— TZ(q'gde)’
substitute this in (221) and make use of equation (218) of
the first law, we see that the second law requires that :

q.gradT<0 . . . . (222

More than this cannot be deduced from the second law.

An analogous equation can be set up for any other
irreversible process, for example, for diffusion.

§ 81. To arrive at a differential equation for heat
conduction it is necessary to make & plausible physical
assumption which will allow us to introduce a quantitative
relationship between the vectors g and grad 7', which will
replace the inequalty (222) by a precise equation For
isotropic substances, to which we shall restrict our attention
in the sequel, such an assumption suggests itself immedi-
ately. For since no favoured directions exist in an iso-
tropic substance, nothing remams but to set the two
vectors q and grad 7' proportional to each other, thus .

q=—xgrad? . . . . (223)
which identically satisfies the inequality (222), if the
constant «, the so-called coefficient of heat conductivity
of the substance, is taken as positive.

Substituting this value of ¢ m the equation (218) of the
first law we get as the fundamental equation of heat
conduction :

Z%ftz-1=a.’.AT,

where we have written a? for the positive constant c%’
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that is :
E%=a.“. Coe e (229)

Since for mathematical reasons it 18 often convenient
to calculate with a zero point of temperature, whereas on
the other hand the zero point of the absolute temperature
T is not attamable physically, it is found advantageous in
dealing with problems of heat conduction to use instead
of the absolute temperature 7' the temperature 6 referred
to the freezing point of water and defined by (95), so that
the differential equation for heat conduction becomes :

%i:=a=Ao. C . (228)

To some extent it resembles in form the wave-equation
IT (222). But there is the fundamental difference that in
the wave-equation the second differential coefficient with
respect to the time occurs, whereas here it is the first
differential coefficient. This corresponds with the
irreversibility of the process of heat conduction, which
excludes the possibility of reversing the time, whereas
this is possible in the case of vibration phenomena. It
is also connected with this circumstance that the constant
a, which signifies a velocity in the wave-equation, has in
the case of heat conduction the dimensions of length
divided by the square root of the time.
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INTERNAL HEAT CONDUCTION

§ 82. W shall apply the term internal conduction of
heat to those problems in which the temperature at the
whole surface of the body in question is given for all times.
Our task is then to integrate (225) for prescribed boundary
values of 6. We shall first convince ourselves that if in
addition the initial temperature at all points of the body
is also known, only one solution of the problem exsts.
For, if there were two solutions, § and 6, the difference
8 — 0= 8, would represent a function of space and time
which would likewise satisfy the differential equation
(225), and would moreover vanish for = 0 at all points,
and at the surface it would vanish at all times.

Let us now consider the positive integral (cf. IT (81))
taken over the whole body :

30,\2 | (36p\® | (36;)*
7= [ (G + G + G}
- - ] da-()u o — [ar6,00,.
Here the surface integral vanishes, simce 6, is zero every-
where on the surface; and from (225) we get :

J=— /eaaa"df— [0% . (226)

Za' o
Since J is positive it follows that the positive mntegral
§6,%dr can only decrease as the time ¢ increases. But
this integral vanishes for {=0 Hence 1t continually
remains zero and therefore 6, also vanishes at all places
and for all times, so that the solutions 8’ and 6 become
identical.
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We can draw a further general conclusion from this
result. If 6 1s given as before at the surface for all times,
so that 6’ — 8= 6, vamshes there at all times, whereas
we now assume that the initial state, and so also the
function 6, are arbitrary for ¢{= 0, we can deduce from
(226) that the integral {f,2dr which may have any finite
values mitially, when ¢{= 0, continually decreases in the
course of time, and so the quantity 6, and consequently
also the difference of the two solutions 6 and 6’ continually
decrease until they finally vanish. This may be in-
terpreted physically as follows. If the temperature
over the whole of the surface of the body is given as a
function of the time, then the temperature in the mterior,
whatever 1ts initial value may have been, also gradually
approaches a perfectly definite time function which 18
independent of the origmal distribution of temperature.
This is also an expression of the irreversible character of
heat conduction

‘We shall now fix our attention on several simple
particular solutions of the problem which are of physical
interest.

$ 83 Let us first take the stationary states, that is,
those states for which the temperature at any place is
independent of the time. For then we have, by (225),
the condition :

A =0 . . (227)

If the temperature given for the surface 1s every-
where constant in time, then, as we have seen, a
perfectly defimte state establishes itself in the interior
in the course of time, no matter what the initial tem-
perature may have been. By III, § 19 we see that 6,
in fact, is uniquely defined by (227) and the boundary
condition.
If 9 depends only on a single co-ordinate, say z, (227)
reduces to .
220

w0
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and we obtain the law for stationary linear heat
conduction :

Fri const. or g: = const.

for which the temperature gradient and with it the heat
current have constant magnitude and direction. Their
amounts are determined by the value of the temperature §
at two different points z, corresponding exactly with the
properties of the electric potential in a homogeneous
electric field (ITI, § 16).
§ 84. We shall now assume that 6 depends on the time

tas well as on 2. Equation (225) then runs :

%‘La-g oL (229)
A simple particular solution is obtained by setting :

Q=etfz | . (229)
Then (228) is satisfied by the relation :

o= a?p?
Particular interest attaches to those events in which the
temperature varies periodically with the time. Hence
we take « as purely imaginary :

o= wi
and then obtain :
g= .‘_/_ﬁ = 4+ ﬁ. 1+ '..
e ¢ V2

We choose the lower sign here in order that § may not
become infinitely great for 2= + . By substituting
this value for { in (229) and omitting the imaginary part
we obtain as the solution of the differential equation (228) :

0=e "cos wt .\/E

{ or, a little more generally, if 6, and 6; denote any two
constants :

a=01e‘“ffieos(wt—@f +6,. . (230)
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If we suppose the body to reach from z=0to 2= +
the expression (230) represents an event which, inde-
pendently of the initial state, takes place in the interior
of the body in the course of time if the temperature at the
bounding surface z= 0 varies with a single period given
by :

0=0,coswt+6, . . . . (281)
The amplitude of the vibration is 6, the mean temperature
6,, the period of vibration + = 20—?

By (230) the process may be pictured as occurring in
the following way : heat waves from the bounding surface
= 0 penetrate into the body; these waves are conditaioned
by the temperature-vibration at the boundary and their
amplitude decreases more or less rapidly as the distance
z from the bounding surface increases. The wave-length
is:

A= 2m\/% —2amr . . . (239)
The velocity of propagation is :
wmo.afiozafT . . . @)
w T

The constant of space damping is :

lﬁ=l T . . . . (239)
a¥2 alVrt

Thus the more rapidly the vibrations occur the shorter
the waves become, the more rapidly they propagate ther-
selves in the body and the less deeply they penetrate into
it.

A simple example of such periodic vibrations is given to
a oertain degree of approximation by the temperature
fluctuations at the surface of the earth. In this case two
different periods can be distinguished, the diurnal and the
annual period. Corresponding to them there are two
different kinds of heat waves that penetrate into the body
of the earth. The first are shorter than the second and
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although they ‘propagate themselves more rapidly, they
penetrate less deeply than the second. These deductions
from the theory have been satisfactorily confirmed by
meagurements. The velocity of propagation amounts to
about 1 metre per day for the waves of the diurnal period
and about 0-046 metre per day for the annual period.
Since the constant @ is the same 1 both cases the ratio
of these two numbers should, by (233), be equal to the
square root of the number of days m a year, that is, to
/365, which is a sufficiently good agreement, if we con-
sider that the actual temperature fluctuations are not
singly periodic and that the earth is not a homogeneous
body.

Exactly as for singly periodic fluctuations of temper-
atures at the surface = 0 the problem may be solved
for any arbitrarily prescribed temperature fluctuations by
resolving the given time function into a Fourier series
(LI, § 38) and superposing the corresponding solutions (230).

§ 85. Another method of finding a particular solution
of the differential equation (228) is based on the mntrodue-
tion of new independent variables. Instead of # and z
we shall now introduce the independent variables ¢ and

U= 1% where we always take the positive sign for the

root. This substitution suggests itself to some extent
because % has the dimensions of the constant a of heat
conduction. We then have :

G~ G+ G- (. = B~ 37 50,
- @37 G
(30) <Bu _ 1t gz

2. %(%‘D,

Further :

and:
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and hence by substituting in (228) :
00 _ 1udd _ a6

or:
2%, w30 99

et im Tl w

This differential equation is satisfied by setting gg= 0
and also :

920 | u b
(l’a'—‘uz + 5% =0
which may be written in the form :
(1)
d(th) _ _udu
I " T
du
or:
2
log% = - l%, + const.
a6 _z
= C.e %

6= O.Iue_l%du.

Let us first consider the special case in which §= 0 for
%u=0 and =1 for u= + 0. The lower hmt of the
mtegral then becomes zero, and the constant C becomes
equal to the reciprocal value of Laplace’s integral (IV,
§47)-

/ e du =l-2a1/1_r= a7
0

3
and hence :

1 6 _
= @ du.
o av'm fae “
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To simplify this expression we shall introduce in place of
the integration variable u = % the variable :

%

§=5

and so obtain as & particular integral of the equation of
heat conduction (228) :

2 Vi g
G“W'fo efag . . . . (285)
Let us consider its physical significance for the case where
the body extends from z= — o to = + o and the
Pprocess occurs from the time =0 till = . Initially,
when ¢ = 0, we have §= — 1 for all points on the negative
side, 6= 1 for all points on the positive side, whereas
0= 0 and remains at that value for z= 0 As ¢ increases
the temperature on the positive side gradually falls to
zero, the more slowly the further the point is situated
from the origin, whereas on the negative side the temper-
ature increases in an exactly analogous way towards the
zero value. Fmally, when {= co the temperature has
become zero for all finite values of z.

This course of events may be considered to be realized
by the following process Bring into contact two very
large bodies of the same material, one of which is at the
temperature of 1° C, the other at the temperature of
~ 1°C, m such a way that their plane boundary surfaces
(z= 0) touch. Now consider the wayy i which the temper-
atures balance. Since the mitial state and the boundary
conditions correspond to the expression (235) and smce
only a single solution of the problem exists the process
must occur in the manner prescribed by (235).

From this we see, among other things, according to
what law the cooling in the origmally warmer body takes
place. As the time ¢ increases the coolng advances
continually further into the interior. But nevertheless
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there is no sense in talking of & certain velocity of propa-
gation of a heat wave or a cooling wave; for, no matter
how small the time ¢ may be, the temperature change at
any distance however great already has a finite value.
The characteristic feature of the process is rather the fact
that the temperature at every pomt z depends only on

the one quantity Vm_t’ so that for every place the time has

a definite order of magnitude within which the temperature
change becomes appreciable; the nearer the boundary
surface is the sooner this time arrives.

The behaviour of the temperature near the boundary
surface =0 18 of special interest. In general the
temperature gradient is, by (235) :

o 1 _=

06 _ 1_, C ... (2

Erintry =t (236)
and for 2= 0:

%9y  _ _1 237

(az)z—o_a\/wt ¢ )

By (223) the temperature gradient at the same time gives
us the amount of the heat conducted from the one body
into the other. For t= 0 this amount is infinitely great
and then decreases, at first rapidly and then progressively
more slowly until it becomes vamshingly small. It 18
noteworthy too that the question of the value of 6 for
z= 0 and {= 0 admits of no definite answer. For this
answer depends on the way in which the two mdependent
variables change in crossing the boundary. According
a8 z or 4/% is of the higher order of magnitude, §=1or 0,
and when they are of the same order of magnitude § has
some value between 1 and 0.

The particular solution (235) of the equation of heat
conduction may be directly generalized into the following

form .

2.&4.']5«77

R e— _e' - . .
b=z [T+ B (238)
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where A and B denote two arbitrary constants. This
solution can be adapted to the case where one of the two
bodies (z > 0) is mutially at the temperature 6,, while the
other (z < 0) 18 initially at the temperature f, Then
when ¢= 0 we have for the first, by (238), that ;= 4+ B
and for the second that §,= — 4+ B, this gives us the
value of the two constants .

b6, — 6,
2

A= ,32912_02, .. (239)

When the body in question does not extend to infinity
n both directions but 1s bounded by the plane 2= 0
on the one side and reaches to z= + o on the other
side, (238) represents the change of the temperature for
the case where the itial temperature 1s uniform and of
the value 4+ B and the surface of the body, z = 0, is kept
constantly at the temperature B.

§ 86. An interesting application of the last formula was
made by Sir Wilham Thomson (Lord Kelvin) in connexion
with the question of the age of the earth. If we consider
the earth as homogeneous and infinite in extent and having
the plane surface z = 0 as its boundary, and if we take the
time ¢= 0 from the instant when the solidification of the
earth, supposed liquid previously, had advanced from the
interior to the surface, that is, it is everywhere at the
temperature at which molten masses of rock solidify, say
4000° C., then we obtain from (238) the law for the secular
cooling of the earth, if we assume that from the very
begmnning the temperature of the surface was constant,
say 6= 0° C. For then, by the last remark of § 85 we
must set B= 0, 4= 4000 and then (238) gives us the
value of the temperature 6 for every place and time.

In particular the temperature gradient or the flow of
heat by conduction, respectively, 15 determined at the
surface, if we generalize (237), by :

P 710
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Actual measurements show an increase of temperature by
1° ag the depth mcreases by about 25 metres. Hence for
the present time we have :
A 1 degree per metre
ar/nt 25 ’
Now in § 84 we found that the velocity of propagation
(233) of the diurnal period of the temperature for 7, which
equals one day, 1s equal to one metre, that is, 2a+/7= 1.
Substituted n the last equation thig gives .
24 1
Vi 2
and for the value 4 = 4000 this becomes :
t= 4 10 days, that 1s, about 100 million years
for the age of the earth, caloulated from the time at which
its crust solidified. This estimate is in reality far too low,
which is clearly due to the inadequate assumptions made.
We shall find occasion to 1mprove on one of them later
(§ 89).

§ 87 Another generalization of the particular solution
(235), which 1s of still more far reaching importance, can
be obtained 1t we first start out from the simple solution §
of the equation of heat conduction (228), which is obtained
by differentiating (235) with respect to z:

1
aVnt
Regarded physically, this is the temperature in a body
which extends from z= — o to 2= + o and i which
initially, when ¢ = 0, the temperature 18 everywhere zero
except at the plane z= 0, where it is infinitely great. As
¢ increases the heat flows away to both sides, so that at
t= oo the temperature becomes zero everywhere.

This particular solution may now be generahzed by
displacing the favoured plane from the position = 0 to
any other position z= ¢ and by adding together an
infinite number of such solutions with an infinite number
of favoured points ¢ lying very close to one another

9= cemE . . . . (24D
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at a distance d¢, each solution having been multiplied by
any infinitely small constant peculiar to the point £, thus
f(&) . d¢&. We then get as the solution of the equation of
heat conduction (228) :

(=

1 b= =i
0=W§t_/—-e @ f(g).dE . . (242)

Closer inspection shows that this is the general solution.
For by choosing f(£) suitably this solution can be adapted
to any arbitrary initial state. To take an actual case .
at the time ¢ = 0 let the temperature 8,(z) be given in some
way for all values of 2 between — o and + 0. Let
us on the other hand now calculate the temperature 8
from (242) for t= 0. If we first take ¢ as very small, the
integrand in (242) vanishes for all values of ¢ except those
which lie very near the value 2. Hence if we introduce
¢— o= ¢ in place of £ as the variable of integration, the
integral in (242) reduces to :

f“e'&t.f(x +¢€) . de

where ¢;, the limiting value of ¢, is small compared with z,
but large compared with a4/f Or, if we make the sub-

stitution » = 2{% and omit e in the argument of the

function f :
+
20/ .f(z) j_., e~ dy = 20V f(z).
If this value of the integral is substituted in (242) we get
fort=0-
B, = 2f(z)

which relates f(z) to §, In this way we obtain the temper-
ature of the body at any point z for any time #, if the
temperature fy(z) is given in some way for ¢=0 for all
points from 2= — 0 tozx= + oo :

B=2ax1/;¢/_+:‘—%%r-9o(f)-d£. . (243)
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This general solution of course contains the particular
solution (235) previously obtamed for a special case.
For if we set 0,(f)= — 1for £ < 0, B,(€)= + lfor{ > 0»
then (243) becomes transformed into (235), as may easily
be verified by calculation.

§ 88. We shall here add the case where the two homo-
geneous bodies which are in contact along the plane
z=0 and extend to infinity on opposite sides, have the
initial temperatures 6, and 6, but do not consist of the
same substance; that is, their constants a and a’ of heat
conduction are different. The solution of the problem is
then also obtained from the expression (238) by inserting
the constants a, 4, B for positive values of z and the
constants a’, A, B’ for negative values of z While a
and a' are given at the beginning we have also four
equations to determine the four quantities 4, B, 4’, B',
Two of these are the equations for the initial temperatures :

0=A+B,0,=—A4A"+B.
The third is the condition for a steady temperature at
=0, B=B'. The fourth is the condition, which
follows from the energy principle (cf. ITIL, § 6), that the
normal component g, of the heat current is constant :
q,+ @'y = 0. Or, by (240):

4_4
@ - al 3
8o that everything is determined.

The preceding problem is to be included in those dealing
with internal heat conduction because, on account of the
assured constancy of the temperature, no other material
constants occur apart from the conductivity (Warmelei-
tungskoeffizient), x or, respectively, the constant a of
every body.



CHAPTER III
EXTERNAL HEAT CONDUCTION

§ 89. IN reality the temperature at the common
bounding surface of two bodies that are not in heat
equilibrium is never constant, but always exhibits a more
or less abrupt transition. In place of the condition for
the constancy of the temperature another boundary
condition then appears, which expresses a definite relation
between the abrupt change of temperature (Zemperatur-
sprung) and the normal component of the heat current
The simplest relation 1s that m which we set the two
quantities proportional to each other, thus :

a@Q=hO'—0) . . . . . (244)

where v denotes the mward normal of the body which has
the temperature §. The positive constant % is called the
“ coefficient of external heat conduction ”’ or “ external
conductivity >’ and depends on the nature of both bodies.
An mfinitely great value of 4 denotes constant temperature,
that is, the case treated in the preceding chapter; an
infinitely small value of %, on the other hand, denotes
thermal 1solation, that is, it represents the adiabatic
condition

In discussing particular solutions we shall first link up
with the problem of the secular cooling of the earth which
was treated in § 86. We agamn assume the earth to
extend from z= 0 to = o and to have an mitial temper-
ature of 4000° C. In § 86 we used as the boundary
condition the equation #= 0 for = 0 and any values of
t, and we obtamed as the solution the expression (238)
with B= 0.

We now allow the temperature to undergo an abrupt

166
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transition at the bounding surface between the earth and
external space, namely from 6 to zero, and, by (244), we
write for the heat current :

26
Qz=—-Ka—2-:=—h9

or, if we set -

k

Z=b . ... (249)
we have :

20

Z=00 . . . (29

which holds for = 0 and for all values of the time #.
This formulates the problem completely. For b= co
the boundary condition becomes § = 0 and then the earlier
solution (238) results.

For a finite value of & the solution can be obtained
if we can determine the following function ¢ of 2 and ¢ :

0-3m=¢- - - . (247)

This function ¢ satisfies the differential equation (228) in
particular, if we insert ¢ mn 1t instead of §. Further
¢=A when ¢t = 0 since =4 and g—g= 0. Lastly, on
account of (246)¢=0 for =0 and for all values of ¢
From this 1t follows that the function ¢ is no other
than that temperature which in § 86 represented the
solution of the problem and which corresponds to an
infinitely great value of 5. So by (238) -

oo 24
Vo
All that now remains 1s to calculate the function § from
the differential equation (247). This1sa non-homogeneous
linear equation of the first order 1 & single variable z.
We integrate it by setting :
O=4¢.e= . . .. (249)

e-fd¢ . . . (248)
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It then follows from (247) that :

_ Ea_ﬁl‘ =g
and by integrating :
Y= - b/ e~ ddz.
Hence, by (249) :
= - b.e"‘/ evgde . . . (250)

We must take o for the lower limit of the integral, as
otherwise 6 would become infinitely great for z= o
The expression (260) for 0, together with the value (248)
for ¢, represents the solution of the problem. For z= 0
we have by (248) that $= 4 and by (250) = 4, corre-
sponding to the initial temperature; but at the surface
2= 0, 6 18 not zero right from the beginning but changes
continuously with the time ¢.

To be able to introduce ¢ in & somewhat less complicated
way we first transform (250) by integrating by parts :

0=¢— e”’/’e"“‘g—:dm

and have now only to deal with 8¢ in the integrand, that

is, with an exponential function.
Since we are interested in the temperature at the
surface of the earth we set = 0 and obtam :

0= fc-”‘%dz

or, substituting for ¢ from (248):

Ee . .. @
- \/m / e (251)
This time-function represents the course of the temperature
at the earth’s surface. For small values of ¢ the first
term in the exponential predominates; 6 then becomes



m. EXTERNAL HEAT CONDUCTION 159
equal to 4 For large values of ¢ the second term pre-
dominates; the integral then becomes equal to % and :

-4 . 252
0= v %)
If, as in § 86, we again wish to know the temperature
gradient at the earth’s surface, its value can be obtained
directly from the boundary condition (246) as b6, and so
for great values of ¢ by (252) :

@) A

02. Zwm0 a\/;t
which is identical with (240) F¥rom this we see that
by introducing a finite value for the external heat cou-
duction the value of the temperature gradient at the
earth’s surface 18 not influenced at all for great values of ¢.
External heat conduction thus seems to offer no prospects
of accounting for the above-mentioned deviation of the
age of the earth according to Thomson’s theory from its
actual age, which is much greater. The true reason is
in fact to be sought in quite another quarter, namely the
continual development of heat by radio-active processes
which strongly counteract the cooling of the earth.

§ 90 Hitherto we have always imagined the body to
extend to infinity. We shall now consider the case of a
plane parallel plate of finite thickness with the boundary
surfaces = 0 and z= I, whose temperature 6 at =0
we shall suppose given as an arbitrary function of the
space co-ordmates. And we shall suppose that the body
can exchange heat through its two boundary surfaces with
the surrounding medium (air), which is at zero temper-
ature, according to the law (246) of external heat con-
duction. We then require to mtegrate the differential
equation (228) for f, taking into account the boundary

conditions .

26
=00 . . . . . (269)
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for z= 0, and : N

f—g =-—b0 . . . (254)
cx

forz=1.

We treat this problem as mn all similar cases by first
finding a simple particular solution of the differential
equation, which satisfies the boundary conditions. We
then add together a sufficient number of such particular
solutions, multiplied by appropriate constants, thus
generalizing the solution in such a way that it can be
adapted to the given mitial state.

Let us apply this method first to the special case for
which the constant b of external heat conduction becomes
infimtely great. The two boundary conditions then reduce
to 6= 0 and the following expression offers itself as the
simplest particular integral of (228) which also satisfies
both boundary conditions :

0=sin’“—l“.evf. ... . (255)

where n denotes any integer. We see that the differential
equation (228) 1s actually satisfied by setting .
@t L, (258)

y=—-—5"

and 6 vanishes for both 2= 0 and 2= 1.

In the mitial state (¢= 0) the spatial distribution of
temperature in the case of the particular solution (255)
18 represented by a sine curve. But if we multiply the
expression by a constant 4, and sum up over all values
of » from 1 to o (negative values of # do not add to the
generalization), we obtamn the general solution of the
problem :

g =% Ape™ smylE e (287)
n=1
where the expression (256) is to be substituted for y,.

Actually the coefficients 4, can always be chosen in

such a way that for = 0 the temperature 6 becomes any
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arbitrarily prescribed space function 6y(z). For when
t= 0 we obtain from (257) :
oo.—_Z'A,,sm? .. . . (268
n=1
and this is a Fourier series (IT (182)) with a period z= 21,
whose coefficients are uniquely determined if the function
y(x) is given in any way within the half period ! (IT, § 39)
§ 91. Reverting to our treatment of the general case
in which the constant b of external heat conduction is
finite we choose as the particular integral, generalizing
(255) :
0 =cos (ax +B).e”. . . (259)
The differential equation (228) is satisfied if we seti :
y=—akd . . . . (260)
The first boundary condition (253) is satisfied if we set :

t,mp=_§. ... (e8]

With these values for y and B, and simphfying the
expression (269) by dividing by cos B, we get :

0=(eosax+§sinux).e““’“" .. (262)

Here only the constant a, the “wave number (=27“) is

still arbitrary. We ghall use it to satisfy the second
boundary condition (254) as well. This gives, by (262) :

tan of = (263)

20b
Py <
This equation which involves a transcendental function
in « may be reduced to two simpler equations. For if we
consider that on the one hand :

2 tnna—;l

tan ol = —
1—ta.n‘§
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and on the other hand :

b o«
25 2z - 23

N )

it follows that the equation (263) is satisfied by :

a2l L L (284)
2 o
ag well as by : a
“__% . . . . (265
ta.n2 B (265)

The roots of both equations can be clearly demonstrated
by means of graphical representation if we plot the values
of a, say, as the abscisse and then look for the points of

intersection of the curve y = tan%l with one of the two

eurvesy=ga.ndy= - %(Fig. 6). The first curve is a tan-

gent curve with the values 0 and oo succeeding each other
regularly at dist&ncesq—{ apart. The second curve is an
equilateral hyperbola with 1ts branches in the first and the
third quadrants, the co-ordinate axes being asymptotes.
The third curve is a straight line which passes through the
origin 0 and the second and fourth quadrants In Fig. 6
only the positive «-axis is shown, as a reversal of the sign
of « leads to nothing new.

‘We see from the figure that there are an infinite number
of roots both on the hyperbola and on the straight line
If we number them mn the order of therr magnitude we
obtain on the hyperbola the roots with odd indices
1,3,5...,and on the straight line those with even
indices* 2, 4, 6 . . A root ay= 0 does not enter into
the question, as we see from (262) if we set = 0 in it.

The quantitiesay, e . . . & . . . Which are determined
by the equation (263) are called the “ proper values ”’ of
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the wave-number «, and the expressions (262) which
involve the proper values of « are called the ‘‘proper
functions ” of the system in question. Even if the exact
values of «, cannot be directly given their approximate
values can easily be read off from Fig. 6. Each of the

v

o

()
R

2 ! :
' 1 1
1
' .
1 il 4 1
: |
' : :
1 . .
1 \ .
1 ' 0
I [l *
Fia 8
intervals marked off along the «-axis and of width 7{

evidently contains a root, so that :

ko naw
(n—1)7<u,.< 7
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As the order number 7 increases a, approaches more and

. -1 .
more closely to the lower hmiting value @ 7 I which

for odd values of 7 (points of intersection with the hyper-
bola) denote the zero points of the curve of tangents,
whereas the even values of # (ponts of mntersection with
the straight line) denote the pomts at infinity on the curve
of tangents; so that the distance between two successive

proper values «, asymptotically approaches the value llr

§ 92. Having found a series of particular solutions of
the problem under consideration we have now to combine
these together to form the general solution corresponding
to any arbitrary mutial state. For brevity we denote the
proper function of z, by (262), by :

X = cOS ot + f—nsinunx . (266)

‘We multiply it by a constant 4, and by summation form
the solution :

0=51AuX,.e—“'%" ... (267)

To recognize that this is the general solution 1t is sufficient
to prove that it can be adapted to an arbitrary given
initial state (value of 6 for {=0), or that every given
function 6y(z) in the interval from 2= 0 to 2= can be
expanded in a sertes of progressive proper functions

6, T.?xA”X" ... (268)

We shall here restrict ourselves to showing that unique
values can be obtamed for the coefficients 4, if §,(z) is
given between z= 0 and z= 1.

The method resembles that used in IT, § 38, to expand a
function f(z) in a Fourer series, and actually in fact
represents a generalization of 1t. For in the Fourier series

the proper values of « are the whole multiples of %and the

proper functions are the series of the whole multiplles of
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’—Tl—z, as can be seen directly by comparing the formula

(268) with the special formula (258) derived in the preced-
ing section for the case b= co.

As in IT, § 38, so also here we multiply the given function
8, with a proper function X, and then integrate with
respect to 2 over the whole series of values between 2= 0
and z=1. By (268) we then obtain .

/'o,,x,.dz e /'X,..X,dx .. (269)
0 Ml 0

Here, as in the case of the Fourier series, the integral
on the left must be directly calculated whereas the sum
on the right reduces to & single term, namely that for which
the index m = n. This happens in the following way in
working out the integral on the right-hand side. Since
the function X,, by its defimition (266), satisfies the
differential equation :

2
%= —n?Xe . . . . (270)
we have, intergrating by parts :
13 17 n
]ox,,.x,.dz= ——/x,,.dz, dz

17, dX. ] 1§Xn dX,
‘ajx[x”'dz]ﬁ A i

or:
'dXm dX,
p dx " dm
If we exchange the md.wes m and 7 in this equation, the
left-hand side remains unchanged, and consequently
also the right-hand side, so that we get by subtraction :
g dXm iX, |
(ot = o) - [ XKl = [2.8%= - x.2X

Now, by (253), (262) and (266) we have forz=10
ax,
dz

on gy = a,e (272)

= bX, and h.kewme = = bXm.
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Hence the expression on the right-hand side vanishes for
2= 0 and the same holds for z= 7. Consequently :

a=,.-¢=,.,./'x,.x,.dz=o Y
0

Thus if m and » are different from each other, we have
generally : .
/x.,,x,..zz=o. ... (21)
0

which is the so-called * condition of orthogonality.”
The name recalls the analogously constructed formuls
I(332) and III (115) for the orthogonality of co-ordinates.
Of the sum (269) only the term m = n then remains :

A,‘]:X,.ﬂdz= /:00X,,da: Y

Here the integral on the left-hand side may either be
calculated by substituting (266) in it and performmg the
integration, or indirectly as follows. From (271) it follows*
when m = n that :

VAXN 1 ax,
L(dx) dz = U"/‘)X"dx+ [X" dz :Iq'
On the other hand from (266) and the differential co-
efficient; :

(275)

%=—a,,sina,z+bcosa,.z .. (276)

we have, by squaring and adding, that :

2
@ Xq? + (dé") =0+ 0. . (21
or, integrated :
1 1 dx 2

? | X, —) dx = (o3, - %] . . 8
a,/o z+/.,(dz> (o2 + 5?) (278)

If we subtract the equations (275) and (278) from each
other one of the integrals cancels out and we are left with -
1 T dX,T

208 = (® + b2 — pniat
20t [ X = ot + 081 - [ 2,45
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Now when z= 0 we have, by (266) and (276) :

aX,
X,=1, T =b
whereas for z = 7, we have, by (254), (262) and (266) :
dX,
dx
that is, by (277):
Xz2=1
and:
e _pxpe b
©
So we have finally :

20t ' X2z = (o + B0 + 25.
0
Substituting this value in (274) we get :
!
4l Py B / 8o Xudz. . (279)

In this way we have obtained the value of the coefficient
A, in the expansion of the function ,(z) 1 terms of the
proper functions X, and hence, by (267), our problem is
solved.

§ 93. Hitherto we have assumed the body to be of
infinite extent in the direction perpendicular to the
z-axis. We shall now conversely investigate the heat
conduction in a body in the form of a relatively long
cylindrical rod which has & very small cross-section of
any shape whatsoever, one of its ends being kept at a
definite temperature 6, while the whole rod projects freely
into a medium (air) which is at the constant temperature
zero. (This is the expermmental arrangement used by
Wiedemann and Franz.) If we take the axis of the
cylinder as our x-axis, the temperature in this case too
essentially depends only on the co-ordinate z: this is,
however, not because 6 is independent of y and 2, as in the
cases hitherto treated, but because the co-ordinates y and
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2z have such small values for all points of the rod, so that §
varies only very little over a definite cross-section x of
the cylinder.

In view of this circumstance we cannot neglect the
differential coefficients with respect to y and z in the
general differential equation (225) of heat conduction, but
must take their values mto account. This is done by
setting up the boundary conditions which hold at the
surface of therod. These are, by (244) :

o= —xZ e b

or:

20
o
where v denotes the inward normal to the surface. If we

integrate the equation (225) for a constant & over the
corresponding cross-section ¢ of the rod, we get :

921):“2315 q+a”ff( o)dydz. . (281)

This double integral may be transformed, in & manner
exactly analogous to that used in transforming the triple
integral in II (82), by performing the mmtegration and
converting the integral into a contour integral, namely . *

ff(a?;+g;f)d da=—[2an . . sy

where dA denotes the element of length, taken positively,
of the contour of the cross-section. If we take into
account the condition (280) that holds along the whole
contour the double integral assumes the value .

—b[6.dA=—b6.2

where A now denotes the length of the contour. And
the differential equation (281) assumes the form

a_g = a’q— — a?hor

=b0 . . . . . (280)
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or:
%g— ’g—z—ﬁ—ﬂ 6. . . (283)

where we have set :
a—gqbi\=.)“z Coe e .. (284)

or, by (224) and (245) :
f’—-— . ... (285)

Thus the constant f depends on the specific heat of the
substance, its specific gravity, the surface area and length
of the contour of the cross-section and, finally, on the
coefficient of external heat conduction %, but not on the
coefficient of internal heat conduction x. From this 1t
follows that in the differential equation (283), which gives
the variation of the temperature with the time, the
influences of the internal and the external heat conduction
are simply become added.

For the state which is stationary in time we get from
(283)

220
@ — =0
which, when integrated, gives .
£z Iz
f=Ae"+Be © . . . . (286)

The boundary conditions at both ends of the rod serve to
determine the two integration constants 4 and B. The
one end (z= 0) is maintained at the constant temperature
@,; so:

’ Gg=A+B . . . . . (287)
The other end (z=I) projects freely into the air. For
this we have the boundary condition (280) :

20
— 5o = b0
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and hence, by (286), for x=1:

Hé Neh -
A+l +Bl-DeT=0 . . (sy
Equations (287) and (288) determine 4 and B If the
length 7 of the rod is great compared with %, then, by

(288), 4 vamshes compared with B; and, by (287), we
get ssmply B= 6.



PART THREE
HEAT RADIATION






CHAPTER 1

INTENSITY OF RADIATION. EMISSION AND
ABSORPTION

§ 94. THE equalisation of temperature in bodies at rest
is effected not by heat conduction alone but also by heat
radiation, which is a totally different mode of propagation
of heat For whereas the heat conduction in a body, as
we saw 1n the second part of this book, is represented by a
vector which is completely determined by the temperature
gradient at the pomt and hence vanishes simultaneously
with it, the radiant heat at a pomnt 18 in itself quite in-
dependent of the temperature of the body at this point.
Thus the radiation from the sun can pass through a lens
made of ice and can be brought to a focus. Moreover the
state of radiation at a definite point is not characterized
by a smgle directed quantity but in general comprises an
infinite number of rays which traverse the point mn all
possible directions, their intensity, frequency and polariza-
tion being entirely independent of one another. Further,
two rays moving in diametrically opposite directions but
having exactly the same frequency and polarization do
not combme mto a single resultant but behave as if
entirely independent of one another.

‘We regard heat rays, just as we regarded optical rays in
Volume IV, as electromagnetic waves, but for simplicity
we shall restrict our investigations to those cages for which
the laws of geometrical optics or ray optics (IV, § 28) hold,
by excluding the phenomena of ‘ diffraction” and
‘“ geattering.”” We also require to separate all lengths
that come into question into two sharply differentiated
groups according to their order of magnitude: the one

173
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group comprises wave-lengths, the other the linear di-
mensions of bodies. The former are vanishingly small
compared with the latter and even compared with the
differentials of the latter. It 1s only under this condition
that we may assume the laws of ray optics to be valid
It is usually fulfilled 1f we assume the dimensions of the
bodies under consideration to be sufficiently great.

But although the distinction between great and small
lengths is as important 1n heat theory as in optics, the
distinetion between great and short times is still more
important. For the very definition of the intensity of a
beam of heat as that energy which is supplied by the beam
per umt of time contains the assumption that the unit of
time chosen 18 great compared with duration of the
vibration corresponding to the colour of the beam (cf.
IV, §4). Otherwise the amount of the intensity of radia-
tion would m general obviously depend on the phase of the
vibration at which we begin to measure the energy pro-
vided by the beam. Only when the unit of trme happened
tonclude a whole number of vibrations would the intensity
of o beam be of constant penod and constant amplitude
independent of the initial phase. To escape from this
inconsistency we find ourselves compelled to postulate
that the unit of time or, better, the time which is used to
obtain the mean value of the radiant energy is great com-
pared with the period of any of the vibrations contained
1in the beam.

§ 95. The great simplification which we gain by re-
stricting ourselves to ray optics is due to the fact that it
allows us to imagine the racant energy to be localized
in separate independent beams. On this view every body
is filled with & group of energy rays, each of which describes
its own definite path with a velocity which is determined
by the index of refraction of the body; and each ray is
refracted and reflected at the surface of the body accord-
ing to the laws of optics (Fermat’s Principle, IV, 91),
An infinite number of rays pass through each definite
point of the body, but only one passes through two definite
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given points. To be able to speak of the intensity of
radiant energy we must start out not from two points but
from two elements of area do and do’ both of which we
assume infinitely small compared with their distance
apart, but otherwise arbitrary. In particular, one of the
elements of area can be infinitely great compared with the
other. From each point of the element do a definite ray
then goes to each point of the other element of area do’,
and conversely. All these rays taken together form a four-
fold infinity of rays, or a two-fold infinity of cones of rays
with their vertices at do or de’, which we call the beam or
pencil of rays (Strahlenbundel) having the ‘“focal
surfaces ”’ (Brennjlichen) do and do’. The focal surfaces
which characterize the beam play a very umportant part
init. For if we intersect the beam at any pomt by means
of any plane other than do or do’ we can no longer speak of
a definite cross-section of the beam; rather, each of the
infinite number of comical beams with their vertices on
do or do’ has a distinctive cross-section

If the body 18 homogeneous and isotropic, as we shall
agsume, the rays are straight and their velocity of propa-
gation 1s the same in all directions Then the energy
which 18 radiated per unit of time by the beam of rays
from do through do’ will be proportional to the areas of
the surface elements do and do” and inversely proportional
to the square of the distance between them (III, § 90),
but, further, it will also be proportional to the cosine of
the (acute) angle which the direction of » makes with the
directions of the normals v and »' to do and do’ respectively.
For the number of rays which belong to the beam is not
determined by the quantities do and do’ themselves but
by their projection on the plane perpendicular to r, as 18
seen from simple geometrical considerations.

Thus we obtain for the energy which is radiated through
the surface element do in umt time to the surface element
do’ the expression .

K‘dc.da’.cos(:;r) cos(v’,r)_dt' . (289)
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where K is the “ specific intensity of radiation” or the
“ emissivity,” & fimte positive quantity, which in general
depends on the space co-ordmates, time and direction.
1f, in particular, K is constant, the two surface elements
do and do' radiate equal quantities of energy to each other,
88 is evident from the symmetry of the expression (289).
If we introduce the quantity :

dQ:dgw%(vﬁ_ﬂ . . . (28%a)

for the sohd angle (Offnungswinkel) which the surface
element do’ appears to make when seen from a point of
the surface element do, the expression for the energy
which 1s radiated becomes still simpler -

K .docos (v,7) .dQ dt
or, if we denote the angle which the direction » makes
with the normal v to do by 8:

K .do.cosf dQ.di . . . (290)

From this we see, among other things, that we can speak
of a finite radiation of energy in a defimite direction only
in so far as the radiation occurs within a cone of finite
aperture. There is no finite light or heat radiation which
propagates itself in one direction only, or, what amounts
to the same thing, there 1s in nature no absolutely parallel
light, there are no absolutely plane waves of light. A
finite amount of radi.at energy can be obtamed from a
so-called parallel beam of rays only if the rays or the
wave-normals of the beam diverge within a finite, even
if only very small, cone (cf. IV, § 36).

A fundamental difference between light- and sound-
waves 18 due to this circumstance, which, as we shall see
later, is intimately connected with the fact that the second
law is of importance only for optics, not for acoustics.

From (290) we see that the total radiation through the
element of surface do towards the one side is obtained by

integrating with respect to 6 from 0 to g and with respect
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to ¢ from 0 to 2, since dQ2= sin 6 df d¢ :

do dt.f:’dgbfdezsmacosa

where K is a given function of § and ¢. If the radiation
is uniform in all directions, that is, if K is constant, it
follows from this expression that the total radiation
through do towards one side is *

aRdedt . . . . . (291)

§ 96. Since the radiant energy propagates itself in the
medium with the finite velocity g, if we leave out of account
dispersion, a finite amount of energy exists in a finite
part of space. We therefore speak of the *“ spatial energy
density *’ u as the ratio of the total radiant energy contained
in an element of volume to the magnitude of the element
of volume. Let us now calculate the spatial density of
radiation » at any point by assuming that the specific
intensity of radiation K at this point is given as a function
of 6 and ¢. With the pomnt as centre describe a sphere,
then all rays that intersect at the point will pass through
the surface of the sphere; each of these rays contributes
its portion to the required densmity of radiation u. The
energy which 18 emitted in a time df from a surface element
do of the sphere to a parallel surface element do’ which is
infinitely great compared with do and passes through the
centre of the sphere is, by (289) .

dodo’
K25t

When this energy has reached the centre it fills the space
of a rectangular parallelepiped whose area of base is do’
and height ¢.dt, that is, whose volume is do’.gdt.
By dividing this into the expression just obtained for the
energy we get for the spatial density of radiation produced
by the beam at the centre of the sphere

Kdo K

T aQ
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where df2 denotes the solid angle which the element do of
the spherical surface appears to subtend at the centre.
By integrating over all directions in space we obtain the
required spatial density of the whole radiation at the point
in question . . 1
u=E/Kd.Q—E//KEm0d9d¢ . (291a)

In the case of uniform radiation K is again constant, and
80 we get :
w=tE . (202
q

§ 97. The specific intensity K of the radiant energy in
every direction subdivides further into the intensities of
the individual rays, which belong to the different parts of
the spectrum and propagate themselves independently of
one another, that is, into the rays of different ‘‘ colours.”
The important factor that here enters is the intensity of
radiation within a definite range of frequencies, say from
v to »’. If the interval »'— v 1s sufficiently small, equal
to dv, then the intensity of radiation over this range is
proportional to dv . the radiation is then called * homo-
geneous ”’ or ““ monochromatic.” But we must bear in
mind that even ir the case of such homogeneous radiation
there is always a finite although small interval of
frequencies correspondng to & finite amount of radiant
energy.

The last characteristic of a ray, besides its definite
intensity, direction and frequency v is its type of polariza-
tion. If we denote the two principal intensities corre-
sponding to the two mutually perpendicular principal
planes of vibration (IV, § 11) by K,dv and K'.dv, we get,
if we sum up over the whole spectrum :

K= f:(K, + B .. (293)

where K, is now to be regarded as a finite function of the
space co-ordinates, the time, the direction and the
frequency ».
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For unpolarized rays K,= K',, hence :

K=2/"K,dv. L. (294)
0

If further the radiation is uniform in all directions we get,
by (291), for the total radiation through a surface element
do towards one side :

2mdodi /anv . . (295)
0

Just as we speak of the spatial density of the total
radiation u so we also speak of the spatial density of the
radiation of a definite frequency u,, by subdividing the
spectrum thus :

u=/:u,dv ... (208)

Combining the equations (292) and (294) we get for light
which is unpolarized and uniform in all directions :

..,=% e oL (291
§ 98. Hitherto we have dealt only with the propagation
of radiant energy in a body. We shall now turn our
attention to the birth and the annihilation of heat rays.
The process of birth of a heat ray is generally called
‘“ emission.” According to the energy principle the
emission always takes place at the expense of some other
energy (internal heat of bodies, chemical energy, electrical
energy). From this it follows that only materal particles,
including electrical particles, can emit heat rays, but not
geometrical spaces or surfaces. We commonly speak
of the surface of a body emutting heat to its surroundings,
but this expression only means that the rays which,
coming from the interior of the body, impinge on the
surface, are partly transmitted through the surface to
the outside, the remainder being reflected back into the
interior.
Let us now consider the interior of & physically homo-
geneous substance emitting rays and let us mark off some
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element of volume dr(>>A%). Then the total amount of
radiant energy emitted m the time d by all the particles
in the element of volume will be proportional to dr. If
the substance is isotropic the radiation will be emitted
uniformly in all directions and the energy emitted within
a cone will be proportional to the solid angle of the cone.
Further, the radiation will be unpolarized. Hence the
total energy emitted in the time dt by the element of
volume dr in the direction of the elementary cone d2 and
having frequencies between v and v + dv may be set equal
to:

dt.dr.dQ.dv.2, . . . . (298)

We call the finite quantity e, the coefficient of emission
or emissivity of the substance for the frequency ». It
refera to a linearly polarized ray. The total emission of
the volume element dr is obtamned by integrating over all
directions and all frequencies. This leads to :

dt.drse[edv . . . . (209)
0

The emissivity e,, besides depending on the frequency v,
also depends on the state of the emitting substance
contained in the volume element; in general this de-
pendence is very complicated. But in the sequel we shall
everywhere introduce the simplifying assumption that
the substance is in thermodynamic equilibrium in the
element of space dr. It necessarily follows then that the
emissivity e, besides depending on the density and the
chemical nature of the substance, depends on nothing else
except the temperature 7' and the frequency ». In this
cage the radiation is called “ temperature radiation ’ m
contrast with ‘‘ fluorescence radiation.”

§ 99. The annihilation of a heat ray is called *“ absorp-
tion ” According to the energy principle the energy of
the radiation must be transformed in this process into some
other form of energy (such as internal heat of bodies,
chemical energy), and hence it follows that only material
particles can absorb heat rays, but not surface elements,
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although we speak for the sake of brevity of absorbing
surfaces

The process of absorption manifests itself i the fact
that a heat ray which is advancing through a medium is
weakened m its passage to a fraction of its original
intensity; for a sufficiently small distance s of its path
this fraction is proportional to the length traversed. We
shall set it equal to .

%.8. . . .. (300)

and shall call «, the absorption coefficient of the substance
for a ray whose frequency is v. Since we are considering
only homogeneous and isotropic substances we may
assume «, to have the same value at all points and in all
directions and to depend only on the frequency v, the
temperature 7' and the nature of the substance.

If « differs from zero only for a limited range of the
spectrum the substance possesses “ selective  absorption.
For those colours for which «,= 0 the substance is
completely transparent or  diathermanous” The
properties of selective absorption and diathermancy may,
however, vary greatly with the temperature. In general
we assume o, to have a moderate magnitude, this implies
that the absorption along a smgle wave-length 18 very
weak. For the distance s, although small, yet contains
many wave-lengths (§ 94).

If the radiation arrives at the boundary of the medium
and there impinges on the surface of another medum, in
general a part will be reflected, the remainder being
allowed to pass through. Reflection and refraction either
occur regularly, in accordance with the law of reflection
and Snell’s law of refraction (IV, § 8), or they occur
¢ diffusely,” that is, the rays are scattered at the surface
in different directions with different intensities in the two
media In the former case we call the surface of the
second medium * absolutely plane ” or ““ smooth,” in the
latter we call it “rough.” If a smooth surface completely
reflects all the rays that fall on it we call it a ““ mirror
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surface.” But if a rough surface completely reflects all
the incident rays uniformly in all directions we call it
“ white.” The converse limiting case in which the surface
of a medium completely transmits all the incident rays
does not occur in the case of smooth surfaces if the
media in contact are optically different at all. Besides
speaking of white surfaces we also speak of “ black ”
surfaces. We call & body black when it absorbs all the
incident rays, reflecting none and transmitting none.
To be black a body must therefore fulfil two different and
entirely independent conditions. Firstly, it must have a
black surface. Since the properties of a surface are in
general influenced by the substances on both sides of it
this condition shows that the degree of blaclmess of a body
depends not only on its own nature but also on the nature
of the neighbouring medium. A body which is black for
air need not be so for glass, and conversely. Secondly,
the black body must have at least a certain thickness,
which is determined according to the degree of its absorp-
tive power, in order that the rays recerved by 1t may be
completely absorbed 1n 1ts interior and cannot again pass
out through the surface at any other point. The more
strongly a body absorbs the less will be the thickness
necessary for complete absorption.

These distinctions and definitions in the first place refer
only to rays of a definite colour. A surface, for example,
which is rough for a certain kind of rays may be smooth
for another kind of rays. In general a surface becomes
less and less rough for rays of increasing wave-length, as is
eagy to understand. Since, as above remarked, smooth
non-reflecting surfaces do not exist, all black surfaces
that can be prepared in practice (lamp black, platinum
black) exhibit appreciable reflection for rays of sufficiently
great wave-length. Concerning the possibility of realising
black bodies experimentally see § 104 below.



CHAPTER IL

KIRCHHOFF'S LAW. BLACK BODY
RADIATION

§ 100. WE shall now apply the theorems worked out 1
the preceding chapter to the special case of thermo-
dynamic equilibrium. We therefore preface our discussion
by drawing the following inference from the second law :
a system of bodies of any kind which are at rest and
enclosed by an envelope impervious to heat passes in the
course of time from any arbitrarily chosen iitial state
into a state of equilbrium for which the temperature in
all the bodies of the system is the same. In this final
state the entropy of the system has reached the maximum
of all those values which it may assume with the total
energy given by the initial conditions.

In certain cases it may happen that under the given
conditions the entropy can assume not only ome but
several different maxima, one of which is the absolute
maximum, whereas the others are of only relative im-
portance. In these cases there are several different states
of thermodynamic equilibrium. But of these only that, to
which the maximum value of the entropy corresponds,
denotes the absolutely stable state of equilibrium. The
others are in a certain sense unstable or metastable, 1n
that if the equihbrium is disturbed appropriately, be it
ever so slightly, a permanent change of the system
occurs in the direction of a more stable equilibrium.
Cf. §§ 64 and 58 above.

‘We next enquire into the conditions which the radiation
phenomena must obey to be in harmony with these laws
We therefore investigate the thermodynamic state of
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equilibrium of one or more bodies filled with radiation.
First we take the sumplest case, a single medium
which extends very far in every direction of space
and, hke all other systems here to be considered, 1s
surrounded by an envelope which is opaque to heat.
Let us provisionally assume that the medum has a
finite emissivity ¢, and a finite absorption coefficient e, for
every frequency v.

We shall first consider those regions of the medium
which are far removed from the surface. For them, at
any rate, the influence of the surface becomes vanishingly
small, and on account of the homogeneity and isotropic
character of the medium we shall have to conclude that
in the state of thermodynamic equilibrium the heat radia-
tion is of the same quality everywhere and 1n all directions,
or, by § 97, that K, is ndependent of the azimuth of the
polarization, the direction and the space co-ordmates
Hence corresponding to every beam of rays which starts
from a surface element do and diverges within an
elementary cone d2 we must have an exactly similar
beam travelling in the opposite direction and converging
within the same elementary cone fowards the surface
element.

As the state of the radiation remains unchanged it
follows immediately that during an arbitrary length of
time just as much heat radiation is absorbed 1n every
element of volume as is emitted; this applies to every
frequency individually. For the different kinds of rays
behave quite independently of one another, and the
radiation of a definite frequency can be influenced in no
other way than by emission or absorption. We calculate
the energy emitted and absorbed during any time ¢ within
a volume element by fixing our attention on the radiation
contained mn & volume element within a definite elementary
cone d2 To simplify the calculation we choose the
volume element in the form of a rectangular parallelepiped
with its base do perpendicular to the direction of the
elementary cone and of height s, so that the volume
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dr=3s . do Then the energy of the unpolarzed radiation
emitited 18, by (298) :

t.s.do dQ dv.2e,.

On the other hand the radiation that enters the volume
element through its base do is, by (290) and (294) .

t.do.dQ.2K, . dv

and of this the fraction o, .s 1s absorbed in the distance s,
by (300). If we multiply the last expression by a,.s
and set this product equal to the expression given just
above, we get as the condition of equilibrium :

m=§f .o . . (301)

That is, in the interior of a medium which is in thermo-
dynamic equilibrium the specific intensity of radiation
corresponding to each vibration number is egual to the
quotient of the emissivity and the absorpiion coefficient of
the medwum for the frequency concerned. Since ¢, and «,
depend, in addition to the nature of the medium, only on
T and v, the intensity of radiation of a definite colour in a
defimte medium 18 completely determined, in thermo-
dynamic equilibrium, by the temperature.

An exception occurs, however, when o, =0, that is
when the medium does not absorb the colour in question
at all. Since K, cannot become infinitely great, it follows
that in this case also ¢, = 0, that 18, & medium emits no
colour which it does not absorb. Further we see that
when ¢ and « vanish simultaneously the equation (301)
is satisfied by every value of K Hence in a medium of
given temperature which is diath 8 for a definit
colour thermodynamac equilibrium can exist for any arbitrary
intensy of radiation of this colour.

Here we already have an example of the cases discussed
above, in which for a given total energy of a system
adiabatically enclosed several states of equilibrium are
possible corresponding to the different relative maxima of
the entropy. For since the intensity of radiation of the
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colour in question in thermodynamic equilibrium is quite
independent of the temperature of the medium which is
diathermanous for it, the given total energy may be
distributed quite arbitrarily over the radiation of that
colour and the heat of the body without the equilibrium
becoming impossible. Among all these distributions
there must, however, be a perfectly definite one which
corresponds to the absolute maximum of the entropy and
which denotes absolutely stable equilibrium. This
distribution, in contrast with the rest, which are in a
certain sense unstable, has the property that 1t undergoes
no appreciable change when subjected to & very small
disturbance. We shall actually see below (§ 105) that
among the infinite number of values which the quotient

:—:ma.y assume when both the numerator and the de-

nominator vanish, there is one special value which depends
in a definite way on the nature of the medium, the
frequency » and the temperature. This particular value
is to be called the stable intensity of radiation K, at the
temperature in question in the medium which is dia-
thermanous for the frequency ».

What has been stated for & medium which is diather-
manous for & definite frequency holds equally well for an
absolute vacuum, as this is diathermanous for ol colours,
except that in this case we cannot speak of the heat of
the body or of the temperature of the medium. For the
present, however, we shall not deal with the special case
of diathermancy at all but shall assume that the medium
has a finite absorption coefficient.

§ 101. All the theorems so far deduced apply to only
such parts of the medium as are at a very great distance
from the surface, since it is only for them that we may
immediately assume the radiation to be independent of
position and direction  But a simple reflection shows that
the value for K, calculated in (301) is also valid right up
to the surface of the medium. For m thermodynamio
equilibrium every beam of rays must have exactly the
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same intensity as the exactly opposite beam; otherwise
a one-sided transport of energy would be brought about
by the radiation. If therefore we fix our attention on &
beam coming from the surface of the medium, 1t must
have the same intensity as the exactly opposite beam
coming from the interior. Hence it follows immediately
that the whole state of radiation of the medium at the surface
18 the same as in the wnterior.

But although the radiation which starts from an element
of the surface and is directed towards the interior of the
medium is in every way the same as the radiation which is
propagating itself at great distances from the surface, it
nevertheless has a different history. For since the surface
has been assumed to be opaque to heat rays, it can only
have arisen owing to radiation which has come from the
interior and been reflected at the surface. This can occur in
many different ways according to whether the surface 1s
assumed to be smooth, i this case mirror-like, or rough,
say white. In the former case there corresponds to every
beam of rays mcident on the surface a perfectly definite
reflected beam which is situated symmetrically with
respect to it and has the same intensity. In the second
case, however, each incident beam splits up into an
infinite number of reflected beams of different intensity,
direction and polarization, but always in such a way that
the beams which come from all directions with the same
intensity K, when reflected by the surface agamn produce
as & whole a umiform radiation of the same intensity
which propagates itself towards the interior.

Nothing now stands m the way of revoking the assump-
tion made in § 100 that the medium in question must be
of very great extent in all directions. For by the result
just obtained the thermodynamic equilibrium of an
infimtely extended medium is in no wise disturbed if we
imagine any number of fixed surfaces, smooth or rough,
which are impervious to heat to be placed in it. This
divides the whole system up into an arbitrarily great
number of completely closed systems, each of which can
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be taken as small as we please. From this it follows that
the value given for the specific intensity of radiation K,
in (301) also holds for the thermodynamic equlibrium of
a body of any size and form.

§ 102 We shall now turn to the question of the equili-
brium of radiation in & diathermanous medium, for which
equation (301) fails, since o, =0 and ¢, =0 The fact
that a perfectly definite state of radiation also exists for
such a medium at every temperature when there is thermo-
dynamic equilibrium is shown by the following reasoning.
We completely surround the medium with different kinds
of fixed walls of any material whatsoever, which we choose
g0 thick that no heat rays can penetrate through the walls
either from the inside or from the outside; and we keep
the walls at a definite uniform temperature. Then, on
account of the consequent definite emission and absorption
of the walls, a perfectly definite stationary state of radia-
tion will establish itself 1n the medium This will corre-
spond to the state of stable thermodynamic equilibrium
and will be determined by the temperature alone, and so
will be independent of the materal of the walls. This
reflection allows us not only to calculate the state of the
radiation in the medium, but also to establish a general
relationship which must hold between the emission and
the absorption of each individual wall in order that the
radiation within the medium may become independent
of the material of the wall. For sumplicity we shall
assume the surfaces of all the different walls to be smooth.

After thermodynamic equilibrium has been established
we have by (290) and (294) the following expression for
the energy of the unpolarized radiation lying within the
range denoted by the frequencies v and v + dv and which
coming from the interior of the medium impinges in the
time df on the surface element do of a wall within the
elementary cone df2 at an angle 6 to the normal to the
surface *

2K,.dv.do.cosb dQ dt =2J,.do.dt . (302)

where J, refers to a linearly polarized radiation. The
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same amount of energy is radiated in the reverse direction
back into the medium. The latter amount of energy is
composed of the energy emitted by do and of that re-
flected by do. The energy emitted will be of the form :

2B,.dv.do.cos6.dR.dt . . . (303)

where E,, the “ emissive power ” of the material of the
wall, signifies a definite finite quantity in general also
dependent on the direction 6.

The reflected energy comes from the beam of rays of
intensity J, which hes symmetrically with respect to the
normal to the surface and falls on do; after reflection it
becomes the beam in question and has the energy :

p.2J, do.dt. . . . . (304)

where p, denotes the reflection coefficient of the wall for
the direction in question.

If we set the sum of the expressions (303) and (304)
equal to the expression (302) we get :

E’
B=12,

or, if we set :

1—p =4,
where A4,, the * absorbing power ’ of the wall, denotes
the fraction of the incident radiant energy that penetrates
into the wall, we get .

E,
B . . .. . (@09

For different walls B, and 4, are different, but their ratio
is always equal to K, This is Kirchhoff’s Law, which
states that the ratio of the emissive power of a body to its
absorptive power is independent of its nature.

From this we see that even for any diathermanous body
there is a definite specific intensity of radiation K, for each
temperature when there is thermodynamic equilibrium ;
and K, 1s obtaned by dividing the emissive power of any
substance which is in contact with the body by its absorp-
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tive power. We may also call this value of K, the * true
value ** of the quotient (301) for «, =0. The relation
(303) of course also holds for the case where the medium
emits and absorbs to & finite degree. The method of
proof follows exactly similar lines.

For & black wall p,=0 and 4,=1, hence K, = E,
That is, the emussive power of a black body is independent of
its nature and is equal to the statonary specific intensity of
radiation in the contiguous medium. Hence this radiation
is often shortly called “ black body radiation ** or * black
radiation.” Further, since 4, < 1, the emissive power of
a black body is always greater than that of any other
body

§ 103. Allthe relationsdeduced in the preceding paragraph
hold for a singledefinite medium traversed by the radiation.
But we can also generalize them so that they become
applicable to arbitrary medis and acquire a universal
character. This is performed by bringing into contact
two dufferent media, say air and glass, which are traversed
by radiation, and investigating the stationary state which
corresponds to thermodynamic equiibrium. Smece the
equlibrium is in no way disturbed if we 1magine the plane
of separation of the two media to be replaced by a surface
which is impervious to heat radiation, all the results of
§ 101 apply. Let the specific intensity of the linearly
polarized radiation of frequency » in the mterior of the
first medium (air, in Fig 7 on the left) be K,, and that in
the interior of the seconda medium (glass, on the right of
Fig 7) be called K',; we shall denote all quantities re-
ferrmg to the second medium by a dash, as in the case of
K’,. Both quantities K, and K’,, besides depending on
the temperature and the frequency, depend only on the
nature of the two media Moreover, these values of the
intensity of radiation hold right up to the bounding
surface, quite independently of the nature of this surface.

‘We next assume the bounding surface to be smooth and
fix our attention on some monochromatic linearly polarized
radiation. The energy of this radiation which is emitted
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during the time d¢ by an infinitely small element do &t the
point O of the bounding surface within the elementary
cone df? at an angle § with the normal to the surface is,
in air (upwards towards the left in the Fig.), by (302) :

K,.dv.do.cos0.dQ,dt . . . (306)
where :

dQ = sin §d6d$ . (307)

This energy is furnished by the two beams which, commg
from the air (on the left) and the glass (on the right),
respectively, are reflected by the surface element do or
are refracted. The former beam travels along wnside the
symmetrically situated cone df, the latter imnside the cone :

dQ' =sin §'d0’dé’ . . . (308)

the law of refraction giving :
f sing g 309
¢’ =dand op = 7 (309)
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The contribution of the former beam to the energy is, by

(306) :
py-K,.dv.do.cos0.dQ.db. . (310)

where p, again denotes the reflection coefficient for the
radiation in question from glass in air. On the other
hand the contribution of the latter beam of radiation to
the energy is :

(1—p,) K, dv do.cos ' .dQ".dt . (311)
where p’, denotes the reflection coefficient and hence
1— p’, the transmission coefficient for glass in air.

If we add the last two expressions together and set the
sum equal to the expression (306), we get :
py- X, cos0.dQ + (1 — p',) . K',co86'd’ = K, cos 0.dQ2
Now, by 309 :
cos B.d6 _ cos§.df
q g
and if (307) and (308) are taken into account :
dQ'cos ' dRQ.cosh
T
Consequently -
'
(L= ) B = K
or:
92 -K, - 1- P’v
. K, 1-p

In this equation the quantity on the left is independent
of the angle of incidence 6 and of the nature of the polariza-
tion; consequently so is the expression on the right-hand
side. Hence if we know its value for a single angle of
incidence and a definite azimuth of the polamzation this
value holds good for all angles of incidence and all
directions of polarization. Now in the special case when
the rays vibrate in the plane of incidence and fall on the
bounding surface at the angle of polarization we have
pp=0 and p',=0 (IV, § 9a). The expression on the
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right then becomes equal to 1 Hence it 1s in general
equal to 1, and we always have :

p=p .. . . . (812
and :

Q°K,=q"K',. . . . . (313)

The first of these two relations, which states that the
reflection coefficient of the bounding surface is the same
towards both sides, expresses for a special case a general
law of reciprocity which was first proved by Helmholtz,
it states that the loss of intensity which a ray of definite
colour and polarization experiences m its passage through
any medis owing to reflection, refraction and absorption 15
exactly equal to the loss of intensity which a ray corre-
spondingly constituted experiences when travelling in the
exactly opposite direction. From this it follows directly
that the boundary surface of two media is equally trans-
parent in both directions and reflects equally well on both
sides for every colour, direction and kind of polarization.

The second relation, (313), brings into relationship the
intensities of the black body radiation in the two media
It states that in thermodynamic equilibrium the specific
intensities of radiation of a defimte frequency in the two
media are inversely proportional to the squares of the
velocities of propagation or directly proportional to the
squares of the mdices of refraction.

If we substitute the value for K, from (301), we may also
say, the quantity .

PR =@ 2=F(T) . . . (314

does not depend on the nature of the medium , hence 4 is a
untversal function of the temperature T' and the frequency v.
To find this umversal function F is the fundamental
problem of the theory of heat radiation. In view of
(297) we may also formulate this theorem as follows :

the quantity :
q v wed . . . . . . (31y
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is, for thermodynamic equilibrium, identically the same
function of the temperature T and the frequency » for all
substances. Or, since g = Av, we may say that in the case
of black body radiation the energy contamed m a cube
whose length of side 1s the wave-length A, namely :

w.dv.X®* . . . . . (3186)

is the same for all bodies.

§ 104. The laws deduced in the precedmg pages also
enable us to measure the emissive power of a black body
in spite of the fact that absolutely black bodies do not
exist in nature (§ 99). We form a diathermanous cavity
bounded by walls which emit more or less strongly and
are kept at a certamn constant temperature 7. Then,
when thermodynamic equlibrium has been established,
the radiation in the cavity acquires for each frequency the
intensity K, which 1s conditioned by the velocity of
propagation ¢ in the medium, as given by the universal
function (314). If we now make a hole of size do 1n one
of the walls, so small that the intensity of the radiation
directed from the interior towards the hole is not changed,
then radiation will pass through the hole to the outside
where we may assume the same diathermanous medium
to exist as in the interior, and this radiation will have
exactly the same properties as if do were the surface of
a black body of temperature 7'

There is only one medium which is diathermanous for
all kinds of rays, that is an absolute vacuum, which,
however, can be produced only approximately in nature.
Yet many gases, for example atmospheric air, if not too
dense, have very approximately the optical properties of a
perfect vacuum. Hence m the sequel we shall as a rule
write in place of g the value of the velocity of Iight ¢ in a
vacuum

§ 105. As we have already seen in § 100 any arbitrary
state of radiation can be stationary from the very outset
m a perfect vacuum enclosed by totally reflectmg walls.
But as soon as one of the walls or even an arbitrarily small
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part of a wall manifests even the slightest emissive or
absorptive power for a colour, or as soon as we introduce
into the cavity space even the smallest quantity of any
substance which absorbs or emits rays of some colour, then
in the course of time a stationary state of radiation will
establish itself in the whole cavity, this state will be such
that the radiation of the colour in question will have the
intensity K, which is determined by the universal function
(314) and which corresponds to the temperature of the
part of the wall in question or of the substance introduced
If this substance is completely diathermanous for no
colour at all, for example, a piece of charcoal, then in the
stationary state the intensity of all colours will be K,,
namely that corresponding to black body radiation at the
temperature of the substance. Regarded as a function
of » the quantity K, gives the spectral distribution of black
body radiation in wacuo or the so-called normal energy
spectrum. In the normal spectrum, since 1t is the emission
spectrum of a black body, the intensity of radiation for
any colour 18 the greatest that a body can emit at the
temperature mn question. By determining the normal
energy spectrum we immediately arrive at the universal
function (314).

Thus we can transform any radiation contained in an
evacuated cavity enclosed by totally reflecting walls into
black body radiation by simply introduemg a tmy speck
of charcoal. A characteristic feature of this process is
that the “body heat” of the speck of charcosl can be
arbitrarily small compared with the energy of radiation
that is present in the cavity, for this may be assumed to
be as large as we please, hence in this case the total
radiant energy remains essentially constant even when the
transformation to black body radiation is occurring, since
the changes in the contained heat of the charcoal particle
do not come into consideration even for finite changes of
temperature of the particle The particle then merely
plays the part of a releasing agent; by absorption and
emission it gives the impulse to the process of give and
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take which changes the intensities of the beams of radiation
of different frequencies, differently polarized and travelling
m different directions in the original radiation; this
corresponds to the transition of the system from a less
stable to a more stable state, or from a state of smaller
to a state of greater energy. From the thermodynamic
point of view this process is fully analogous to the change
which & tiny spark produces in a quantity of electrolytic
gas (H, and O,) or a tiny drop of hquid produces in &
quantity of super-saturated vapour or, again, that a
catalyser produces in a mixture which has a slow rate of
reaction For the time of the transformation does not
count : all that matters is that the manner and the
magnitude of the disturbance should be exceedingly small
8o that they can be entirely neglected in comparison with
the quantity of the energies transformed as well as with the
increase of entropy of the system. In the case of heat
radiation the essential feature of the particle of charcoal
is 1ts function as an indicator of temperature, for without
it we should have no means of defining a temperature.



CHAPTER II

PRESSURE OF RADIATION. THE STEFAN-
BOLTZMANN LAW

§ 106. TEE next step towards finding the universal
function (315) consists in applying the two fundamental
laws of thermodynamics to black body radiation in a
vacuum of variable volume. For this system can be
treated according to exactly the same methods as a
material body, say a gas, because the validity of the two
laws is independent of the nature of the system under
consideration. To make the calculation fruitful we must
above all know the mechanical force which the radiation
exerts on a wall with which it is in communication; just
as we must know the equation of state of a gas if we wish
to apply the two fundamental laws to gases. Let us then
first consider the mechanical pressure which any plane
electromagnetic wave in vacuo exerts on a black body
on whose surface it impinges at an angle §. For this
purpose we may use the formule ITI (230) which give the
mechanical pressure exerted by an electromagnetic field.
Actually these formuls were there deduced only for the
cage of an electrostatic field, but they also apply more
generally, because the derivation of the pressure involved
only the momentary state of the field and not its variation
with the time. If we choose the inward normal of the
surface of the body as our positive £-axis, as in IV, § 6,
Fig. 1, the pressure in the direction of the normal, which
alone comes into question, is, by the above-mentioned
formulze :

»= —81—,r(2Ee’—E‘)=18L"(EvF+Ec’—Ee’)- (817)
97
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The expressions for By, E,, E; are given in IV, § 6, and
we must note here that since the body is black there is an
inaident but no reflected wave, so that we now have :

E:=Ezco80 —Eysinf = —f.smé

En=E:sing + Eycos § =f.cos 8

E;=E=¢g
where f and g denote the wave-functions of the wave-
components that vibrate in directions parallel and
perpendicular to the plane of incidence. Substitution
in (317) gives :

p=g(Floostd +7i—Fisimie) . (31g)

The mean values indicated by the bars must be taken
because the radiation pressure, like the radiation energy,
is defined only for a time which is great compared with that
of a vibration (§ 94).

In addition to the pressure of the electric field we have
also the pressure of the magnetic field which is given by
the analogous formula ITT (239), thus :

1
? =g (B8 + B - B

with the corresponding values :
H; = H; 008§ — Hysin 6 = gsin §
H,=H.sin § + Hycos § = — gcos §
H =H=f.
This gives .
p= %1('9_%05‘30 +f2 — gisin? 6)
Adding this to (318) we get as the total pressure of the
wave in question on the black body .

1 = —
p=5r(f’+g’)cos’0 ... (319)
For an unpolarized wave we have f2= 72 and :

p=gfiestd . . . . (320)
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‘We shall now bring the pressure into relationship with the
radiation that falls on the surface element do of the body,
firstly for the case of a monochromatic beam. By IV
(11), for an unpolarized plane wave in vacuo the energy
radiated in the time di on to & cross-section F perpendicular
to the direction of the ray is in general :

C T
o F .t

that is, since F'=do . cos §, the radiant energy incident
on the surface element do is :

%rﬁcosa.da.dt.

‘We set this amount of energy equal to the energy given in
(302) for an incident monpchromatic beam. Then from
(320) we get:
2J, cos
== ... . (321
P - (321)

for the pressure of unpolarized monochromatic radiation
incident on a black body at an angle f.

If the body is a perfect reflector there must be added to
the incident wave the reflected wave, whose intensity and
energy, when added to the first, double the pressure :

Pt LA 2

§ 107. From this we now calculate the pressure which
any arbitrary radiation incident uniformly in all directions
exerts on a perfectly reflecting surface. By integrating
(322) over all directions and all frequencies, that is, by
substituting the value of J from (302), we get

p=2[[5 o0 404

and since dQ2=sin § df d¢ we get by using (294) and inte-
grating with respect to ¢ from 0 to 27 and with respect to

ofromowgz
Py (323)

3c
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or, if instead of K we introduce the spatial density of
radiation » from (292) :

(324)

Wi

p=

This value for the radiation pressure at present holds only
for a perfectly reflecting wall. But it is easy for us to
convince ourselves that it always holds if the radiation
which leaves the wall is the same as the incident radiation ;
that 18, if it makes no difference whether the radiation is
reflected by the wall or emitted by it. For if we imagine
& cavity space filled with black body radiation and com-
pletely surrounded by any walls at a uniform temper-
ature but free to move as a whole, then it is not only in
thermodynamic equilibrium but also in mechanical
equilibrium, as otherwise we should be deriving mechanical
energy from heat without compensation, which is contrary
to the second law. From this it follows that the pressure
of radiation 1s the same on all the enclosing walls no
matter whether they are good or bad reflectors, so long
ag the radiation occurs uniformly in all directions.

§108. Let us next imagine an evacuated enclosure
filled with black body radiation but of variable volume, say
in the form of a cylinder with a perfectly fitting freely
movable piston. For the radiation to remain contmuously
black during the changes of state which are to be effected,
it is sufficient to assume any part of the enclosing wall,
say the bottom of the cylinder, as emitting and, further,
to allow the changes to take place infinitely slowly so
that the changes in the direction of motion of the piston
may take long enough to let the radiation get steady again.
The energy density « of the black body radiation is then
determined by the temperature 7' of the emitting wall.
This is a system whose state depends on two variables,
namely the volume ¥ and the temperature 7T'; it can be
subjected to any arbitrary reversible changes. The
system has the energy U= V.x which depends on the
temperature and which, on account of the radiation
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pressure p, can be used to perform mechanical work.
Hence the condition (82) of the second law must be

obeyed *
M—:dﬁ’ ... (3%)

This states that the entropy of cavity radiation depends
only on the momentary state in question, that is on ¥V
and 7.

Since the quantities U, p, V, S are all properties of the
state of radiation, so also is 7', that 1s, black body
radiation also has a definite temperature, namely the
temperature of the enclosing wall with which its exchange
of heat is stationary.

To mtroduce the two independent differentials d7' and
dV in the differential expression (325) we set, since u
depends only on T':

aUu =4d(V. u)—V Y AT + udV

ar
and, in view of (324), obtain :

Vdup gy

48 = gl + 3

From this, we get :
a Vdu o8 4du
S) = Tar ™ (aV)T T 3r
If we differentiate the first equation partially with respect
to V, the second partially with respect to 7', we get *

du _du
ar~— T
which, integrated, leads to :
u=alT* . ... (326)

By (292) the specific intensity of the black radiation is :
=, =%m
K = 4"'u—4”T Coe . (827)
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Consequently the total emussion from unit surface of a
black body is m unit time, by (291) :
ﬂK=%GT‘=o'T4 ... . (328)
Also, the pressure of black radiation is :
p=g:ﬂ4 ... . (329)

and the total energy of radiation :
U=al*. V. . . . . (330
This is the Stefan-Boltzmann law of black radiation.

The value of the constant o 1n (328) is, according to the
best measurements hitherto made :

ac
o=

4
The value of the entropy S of the black radiation, which is
obtained by integrating the differential equation (325),
8

= 576 10 Ferg/om.2sec.degree* (331)

S=§aT=V. C ... (332)

if when 7'= 0 and U= 0 we also assume 8= 0. From
this it follows that the entropy per unit volume or the
spatial entropy density of black radiation is *

8

7

§ 109 If while the cavity is being increased in volume
the temperature of the enclosing walls is kept constant,
the process takes place isothermally. Then, besides T,
also u, p and s remam constant. Consequently the total
energy of the radiation mcreases from U= V.u to
U'=V'.u, the entropy mcreases from S=V.s to
8= V'.s, and we get for the heat @ that 18 to be taken
up from outside, by integrating (49), keeping 7' constant :

—s=fam . . . . (389

=Jamr -V =2w -1
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We observe that the heat taken up from outside exceeds
the amount by which the energy of radiation increases,
U’'— U, by the fraction } (U'— U). This additional
amount of heat is necessary to perform the external work
involved in reversibly enlarging the volume of the
radiation.

Let us also consider an adiabatic process. For this
purpose it is necessary to assume that the whole enclosing
wall of the cavity is either a perfectly reflecting mirror or,
better still, is perfectly white The heat taken up from
outside during the volume change is then Q= 0, and the
energy of the radiation changes only by the amount of
external work done, p.dV. To be certain, however,
that the radiation actually remains black during a finite
adiabatic process, that is, that it retains 1ts normal distribu-
tion of energy even when the energy density is changed, we
shall further assume that a very small particle of charcoal
is present in the cavity. This little body, which we may
assume to have a finite absorptive power for every kind
of ray, serves the sole purpose of bringing about the
stable state of radiation (§ 105) and so guarantees the
reversibility of the process, while its contained heat may
be assumed to be vanishingly small compared with the
energy of radiation U. The radiation is then at every
instant equal to that of the charcoal particle.

During the reversible adiabatic change in question the
entropy S of the system remains constant, and so by (332):

T8,V = const.
or by (329) :

P. V-"r = const.

That is, during adiabatic compression the temperature
and the pressure of the radiation increase in a manner
definitely specified. The energy U changes during the
same process according to the law :

2]

3
7= ;S = const.
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That is, it increases proportionally to the temperature 7'
although the volume becomes smaller.

Finally let us consider the simple case of an irreversible
process. Let the cavity of volume ¥, surrounded by
perfectly reflecting walls, be uniformly filled with black
body radiation. Now let us make an opening at some
point in the walls, say by opening a tap, through which
the radiation can enter into an evacuated space of larger
dimensions and also enclosed by perfectly reflecting rigid
walls. After a time the radiation will again become
uniformly distributed over all directions and will uniformly
fill the connected cavities, whose combined volume is
V’, say. Let us assume a charcoal particle present to
ensure that all conditions for black radiation are also
fulfilled in the new state. Since neither external work nor
transference of heat from outside comes into question, we
have by the first law of thermodynamics that U’'= U,
and hence by (330) :

TV’ =TV
or:
T :/7
T ANYVP
which defines the new state of equilibrium. Since
V' >V, the temperature of the radiation becomes
lowered by the process.

According to the second law the entropy of the system
must have increased. By (332) we actually have *

8 sy 4 V
TV =Ny !

If radistion of volume V is expanded adiabatically
and irreversibly to the volume V' as above described
but with no charcoal particle present, then after the state
of radiation has become uniform in all directions in the
new volume V' the radiation will no longer have the
character of black radiation and so will have no definite
temperature. But nevertheless the radiation, as indeed

(334)
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every physical system in a definite state, will have a
definite entropy which, by the second law, will be greater
than the initial entropy S, but not so great as that, S,
expressed in (334). We shall show how it is calculated
in the next chapter. If we subsequently introduce a
charcoal particle into the vacuum, the absolutely stable
state of equilibrium of the radiation will establish itself
by means of a second irreversible process, the energy
assuming the normal energy distribution for constant
total energy U and constant total volume ¥, while the
entropy attains its maximum value 8’ given by (334).



CHAPTER IV

ENTROPY AND TEMPERATURE OF A BEAM
OF RADIATION. WIEN’S DISPLACEMENT
LAW

§ 110. TeE Stefan-Boltzmann Law deals with the total
energy of stationary cavity radiation, but it gives ho
information about the spectral distribution, that is,
about the form of the universal function (314). To find
this we must make use of the theorem that the normal
distribution of energy is the most stable of all possible
energy distributions; in other words, it is that which
makes the entropy of the radiation for given total energy
and given volume a maximum. This theorem becomes
frutful only if the entropy of a radiation having any
arbitrary distribution is known. Hence the solution
ultimatelydepends on finding the entropy of any arbitrarily
given radiation.

Now every radiation consists of a system of individual
beams of rays of different direction, colour and polariza-
tion, which act quite independently of one another Hence
the entropy of the radiation is composed by adding
together the entropies of all these individual beams.
Each beam of definite intensity and frequency has a
definite entropy which it carries along with it. Hence
we can speak of an entropy radiation just as well as of an
energy radiation, and this entropy radiation will propagate
itself according to the laws of geometric optics. Corre-
sponding to the specific intensity K, of the energy of a
monochromatic linearly polarized beam there is the
specific intensmity L, of the entropy of this beam, where L,
is a definite function of K ;gd v; and corresponding to
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the energy of the beam which is incident on, or emitted by,
a surface element do (§ 102) during the tume d :

Edy.do.cos0.dQ.dt=J,.do.dt . (335)
there is the entropy :
L.dv.do.cosf.dQ.di = Hdo.dt . (336)

which is simultaneously incident on. or emitted by, the
surface element

Similarly, just as we speak of the spatial energy-density
of unpolarized radiation uniformly distributed in direction
(296) and (297) :

u=871’[x,dv. N 1))

so we can speak of the spatial entropy density of this
radiation :

87
s=?/L,dv .. ... (338

for which the spectral distribution of the energy can be
quite arbitrary.

If we now assume the dependence of the function L,
on K and v as known, then the law of normal energy
distribution comes out as follows.

We consider unpolarized cavity radiation which is
uniformin all directions, has volume ¥ and energy U= V. %,
and has any spectral distribution of energy whatsoever.
Then the normal distribution of energy is that which makes
the entropy of the radiation §= V.s a maximum for
a constant V and constant U. By (338) the condition
for this is :

sj:wy - ]:SL,dv - /:g—%"SK.dv -0

gince p is not subject to variation (Sv= 0) On the other
hand, since U = 0, we have by (337) also :

8/:Kdv=/:8Kdv=0
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whereas 8K is otherwise quite arbitrary. The last two
equations can exist simultaneously only if %—z is inde-
pendent of » and hence can be placed outside the integral

The equation :
oL,
K= const. . . . . . (339)
is therefore the necessary and sufficient condition that the
entropy should be a maximum, that is, for the normal
energy distribution. The physical significance of the
constants in (339) is obtained by considering the de-
pendence of the maximum values of the entropy S on
the energy U. For when the volume is constant (3% = 0)
we have in general .

8U

88 =

and hence also 88=8—11,l—', and by (338) and (337), in view
of (339):

oL, 1

e SN (340)
Since L, is assumed to be a known function of K and »
this equation gives us the energy distribution of black
body radiation at the temperature 7', and hence also the
universal function (314). Thus the central problem of the
theory of heat radiation is reduced to the problem of represent-
ing the entropy of a linearly polarized beam of monochro-
matic radiation as a function of the energy and the frequency.

This is the actual path that was followed in originally
solving the problem and we shall do the same here.

The equation (340) compels us to ascribe to every single
beam ot radiation in addition to its entropy a definite
temperature 7T' defined by this very equation The
temperature of a beam of radiation is the temperature of a
black body which emits the beam in question, and the
normal energy distribution 1s distingmshed from all other
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energy distributions in that all ts beams have the same
temperature.

The necessity of introducing a radiation temperature as
well as a body temperature has also made itself increasingly
felt mn experimental physics. Thus, since a considerable
time ago it has been found useful to speak, not only of the
actual temperature of a body but also of an * effective ”
temperature or a * black body >’ temperature of the body,
that is, of thattemperature which the body would need to
have if 1t were black in order to send out the radiation
which it actually emits. The “ black-body >’ temperature
of a body is no other than the actual temperature
of the rays emitted by 1t. Consequently in general a
body has an infimte number of black-body temperatures,
namely, a different one for each direction, colour and
polarization. The black body temperature is always
lower than the actual temperature of the body, because the
intensity of a beam emitted by the body is always less
than that of a beam emitted by a black body

§ 111. To find out how the entropy of a beam of radia-
tion depends on its energy and its frequency we use the
same method which served earlier, in § 70, for calculating
the entropy of a gas mixture. We carry out a reversible
adiabatic process with our system, which is here a linearly
polarized monochromatic beam. From the second law
we then know that the entropy of the beam does not
change. Now, if we can arrange the process i such a way
that the energy and the frequency change in & known way,
we can deduce from this how the entropy of the beam must
depend on the energy and the frequency in order that 1t
may remain constant during these changes.

A suitable reversible adiabatic process with the desired
properties presents itself to us in the reflection of a beam
of radiation from a moving mirror. For, firstly, this
process, like all purely mechanical and electrodynamic
processes, is reversible (§ 39) and, secondly, the frequency
and the energy of the beam are changed by it in a manner
which can be specified. Moreover, the velocity of the
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mirror may be assumed as great as we please. It is
sufficient, however, and serves to simplify the calculation,
if we assume it to be very small compared with ¢, the
velocity of light.

Let us first calculate the change in the frequency v
caused by the reflection. If we again use the notation
and Fug. 1 of IV, § 6, then in the wave function of the
incident monochromatic wave the argument is identical
with the phase :

2w(t—% —_-2m.(t- M}

In the same way the argument in the wave-function of
the reflected wave is the phase :

2m"<t _ EI) - o’ .(t— —~¢cos 6’ + nsm b’
c c

if here, in contradistinction to our earher usage (loc. cit.),
we now take 6’ to stand for the acute angle of reflection.

Since the electric intensity of field must always vanish
everywhere at the reflecting surface, which we may imagine
as the bounding surface of an absolute conductor (III,
§ 92), the electric intensities of both waves must be equal
and opposite at all points of this surface and at all times,
that is, for all values of » and ¢, this is possible only if the
coefficients of  and ¢ are identical in the arguments of the
two wave-functions. If we take the velocity v positive
and assume that the mirror moves fowards the incident
radiation (to the left), then in the notation there used we
have for the reflecting surface :

£ = — vt + const.
and the two argumerits assume the values

o(p—m2ic0sItnsind) | oonet. and

+(;_ vtcosd’ +nsin "
v (t 3 )+ const.
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By identifying the coefficients of ¢ and 5 we get, since we
have assumed » < ¢ :

v _ 2v cos L. 341
v = (14 220). @4
and :
Veing =ysing . . . (342)
Consequently, also :
sinf ~simn0(1- 2928 . (33)

and :

008§’ = cos b + 2—:sin’ 6 . (344)

We next enquire into the specific intensity E' of the
reflected beam and calculste it by applying the first law.
Since work is done in moving the mirror against the
pressure of the radiation, the energy which is emitted into
the vacuum by the mirror during the time df is greater
than the energy of radiation that falls on the mirror in the
same time df by the amount of the work simultaneously
performed. The latter is calculated from (335) for a
monochromatic linearly polarmzed beam within the
elementary cone d(, referred to the element of area do
of the mirror. But this expression holds only for a mirror
at rest. When the mirror moves towards the incident
radiation, it receives still more energy; and the additional
amount is that contained in the space swept out in the
time d¢ by the surface element do, which we may assume
arbitrarily great The size of this space is do . vdt, and,
by (291) and (298) the spatial energy-density of the
monochromatic hmearly polarized radiation in 1t is :

- %x. e . .. (345)
Hence the additional amount of energy taken up by the
mirror is :
2 KiQdy . do v .t
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wnd the total energy incident on the mirror in the time
ltis:

Jdodt + 1 KdQ .dv . do v . dt
—K.dv.dQ.do.dt cosﬂ+%) .. (348)

In a fully analogous way we can derive the following
expression for the energy reflected into the vacuum by the
mirror in the tirae d¢ for the case where the mirror moves
in the direction of the reflected radiation and consequently
causes less energy to be received than when it is at rest .

Kﬂdv’.d!)’.da.dt(cus@’—-%) .. (347)

On the other hand, the work performed against the
radiation by the mirror in the time df is :

v.di.do.p . . . . . (348)

In this expression the pressure of radiation p is composed
of the pressures of the incident and the reflected linearly
polarized beams. Hence by (321) :

_ Jycosf  J'ycos b’

(349)
[ [

Here we may, without introducing an appreciable error,
use for J, and J',- the formula (335) for a surface at rest,
because the correction to be applied to the work term
(348) owing to the motion of the mirror, as expressed in
the factor v, would be of lower order of magnitude than the
first. We may even treat the two summands of (349) as
equally great, but we refrain from this in order to maintain
the symmetry between the incident and the reflected
radiation

If, according to the first law, we set the difference of the
expressions (347) and (346) equal to the expression (348).
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inserting the value for the pressure from (349), we get the
equation :

K’dv’dﬂ'(cos 6 — %) — EdvdQ (cos 0+ %’) =
2 (7, 0088 + J'y cos 0')
or, substituting the values of J, and J’, from (335) :

K'dv'dQ' (cos 6" — % — Ecos” 0’)
=1. . (350)

EdvdQ (cos 0+ 1—; + goos" 0)

This equation gives the desired relationship between the
specific intensities K’ and K of the reflected and the
incident radiation To evaluate it we must introduce the
relations worked out above between the frequencies and
the directions of the two beams. As regards the ratio of
the differential expressions :

dv'dQ _dv'.sm @ db’
dvdQ ~ dv.sin0.d0

we must bear in mind that v and § are independent of one
another, so that this ratio is expressed by the functional
determinant of the transformation

R i o ’
e (o = g (3), (30),
ov o0

since, by (343), % = 0.

If we use the relations (341) and (343) this gives us the
desired value :
av'ds’ 2 v
=1-= =X . . . (3851
dg = 1 Goosb=1 (851)

v
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Further, by (344) and (341) we have :

v v
cos§’ — - — -cos? ' 2
e 1-Zoos0=l;- . (352)
cos0+:;—’+zcos“6 4

Hence equation (350) runs :

L
K v

| %

o
i
-

or:
ot

]

(353)

%

7.

x,
ol

That is, when a monoch tic beam of radiation is reflected
by a moving mirror the specific intensity of the emergy
radiation increases proportronally to the cube of the frequency.

‘We now pass on to calculate the specific mtensity L’ of
the entropy radiation in the reflected beam. This is
essentially easier because according to the second law,
since the process is reversible and adiabatic, the entropy
of the reflected beam is the same as that of the incident
beam. In other respects the discussion runs along
exactly analogous lines to that used for the energy in the
preceding section, so that, corresponding to the relation
(350) for the first law, we here obtain as the relation for
the second law :

L'dv'dQ (oos 9 — g)

=1. . . (354
Ldvd‘{)iooso+'—;;

Consequently, since by (344) and (341) :

v
eosﬂ'-—z o ’
- = 1—70050=7,
cos § 4 ~
c
we get :
L
=1
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or:
L' L
Se=m o+ o+ .« . . (366
T (356)
That is, when a monochromatic beam of radiation is reflected
by a moving mirror the specific intensity of the entropy
radiation increases proportionally to the sgquare of the
frequency.

§ 112. The above results enable us to follow out the
train of ideas described in § 111. We know that L is a
perfectly definite function of the independent variables
K and v and we know further that for reflection at a plane
mirror g and also ﬁ,remain invariant. Hence it necessarily
follows that the quantity VL—, can depend only on g and not

on a second variable, such as v; for in that case f‘a would

have to change during the reflection, since » changes.

Hence we have .

L=Vﬁ_f(§) .. . . . (358)
where f denotes & certain function of a single argument.
The equation (356) expresses Wien's Displacement Law.
Its importance lies in the fact that it reduces the function
L which is dependent on two variables to a function
of a gingle variable.

Wien’s Displacement Law may be formulated in many
different ways and is capable of being applied in corre-
spondingly different ways which can in part be subjected
to experimental tests.

Firstly, it follows from (340) that :

1 oL 1
r=am=3G)
where the dot over f denotes differentiation with respect
to the argument; or, conversely, in terms of K :
x_,,a_g(%) e e .. (367)



216 THEORY OF HEAT CHAP.

where g again denotes a certamn function of a single

argument.
All these equations hold for radiation in a vacuum.

But we can immediately make them independent of the
nature of the medium traversed by introducing the
universal function (314). Forif we substitute in the left-
hand side of equation (314) the values that refer to a
vacuum, we get for the expression of the universal function*

P, T) = cb3. g(%) ... . (358)
Hence ¢? g(%,) is also a umiversal function ¢ of v and T

and we obtain, no matter what medium is traversed by
the radiation :
3
KF%-«#(%) .o .. (359)

as the expression of Wien’s Displacement Law, which
relates the specific intensity of the energy radiation to
the frequency, temperature and velocity of propagation
in any arbitrary medium. If we agam choose a vacuum
then the relation becomes -

¥8 v
- ?""(T) .. . . (360)
§ 113. In black body radiation all the beams have the
same temperature 7', and their intensities are independent

of therr direction. Then, by (297), the spatial energy-
density of unpolarized monochromatic radiation in &

vacuum is :
3
-2z - e
and the total spatial energy-density is :

u= ]:u.dv=% /:v‘zﬁ(%)dv .. (389)
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If we transform from the variable » to the variable

v

7= z, the expression becomes :

TR
ok [t

Since the integral here has a constant value, this equation
represents the Stefan—Boltzmann law (326).

The expressions (360) and (361) contain all that Wien’s
Displacement Law has to say about the energy distribution
in the normal spectrum. According to this it is only
necessary to know the energy distribution for a single
definite temperature 7' in order to be able to determine
the dependence of the function ¢ on its argument and
hence also the energy distribution for every other temper-
ature. Since K, and w, vanish both forv=0andv=w»
—in the latter case because the mtegral (362) has a
finite value—these quantities have a maximum for &
certain value of v, and so Wien’s law gives us information
about the way im which the maximum depends on the
temperature and also 1ts magnitude.

§ 114. In experimental physics it is usual to characterize
monochromatic radiation not by the frequency » but by

the wave-length )\=§ which is directly measurable.

Similarly we set the specific intensity of radiation not
equal to g, but to H;; moreover E, is not equal to K,,
but rather :

U =

E’pd)\=K,-dv=K,-§5d)\ . . (369)
Hence by (360) :
c? ¢
E,=/\_s¢(ﬁ) .. . . (388)

It is to be particularly noted that the maximum of E,
lies at a different point of the spectrum and has a different
value from the maximum of K,. The maximum of B, is
obtained from the equation :

aB; _ 0

ax



218 THEORY OF HEAT OHAP. v,
or by (364) :
c ¢ (¢
# () + g 9 (i) = 0
This equation gives a perfectly definite universal value for
the argument A_GT_’ 8o that in vacuo the following relation

holds for the wave-length A= of the maximum of the
intensity of radiation K, at the temperature 7 :

MT=b . . . . . (365)

The numerical value of b has been measured, the result
being :
b=0290[cm.degree] . . . (366)
The value of the maximum of the radiation in the spectrum
is obtained from (364) by writing m it A= Aa. Then,
on account of (365), we have :
By = const. T5 . . (387)
All these consequences of Wien’s Displacement Law
have been confirmed as acourately as we may well expect
by many measurements On the other hand this law
leaves the important question of the dependence of the
universal function ¢ on its argument entirely untouched.
This is, as a matter of fact, a problem which cannot be
successfully dealt with by the classical theory and which,
on this account, has dealt it & fatal blow. Its solution
can be found only by taking a fundamentally new step
on the road to discovering the nature of entropy.

'
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CHAPTER I

THE MACROSCOPIC AND THE MICROSCOPIC
VIEW

FLUCTUATIONS

§ 115. ALL our previous discussions have been founded
on assumptions which we could regard as valid without
restriction both as regards range and content, namely on
the fundamental principles of mechanics and electro-
dynamics as well as on the two principal laws of heat
theory. This constitutes the strength but also the weak-
ness of our deductions. Their strength consists i the
fact that the theorems we have deduced hold in all cases
with absolute accuracy, and their weakness is that these
results for the most part are rather general in character
and so leave a number of interesting special questions
unanswered. Thus we were able to reduce the whole
thermodynamic behaviour of a substance to a single
oharacteristic function (§ 54 to § 56) of the independent
variables involved. But our discussion taught us nothing
at all of the form of this function. The same holds of the
laws of heat radiation (§ 114).

Hence, if we wish to make progress in unravelling the
laws underlying thermal phenomena, we must first fix
our attention on the nature of the characteristic function
by which all thermodynamic properties of the system
are conditioned, namely on the nature of entropy. Our
task will consist in endeavouring to grasp the significance
of this quantity from the mechanical and the electro-
dynamic point of view. That this is not a simple task is
obvious. For the remarkable property of entropy in
virtue of which it changes only uni-directionally with the

221
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time stands in opposition to all mechanical and electro-
dynamic laws, in which the sign of the time factor plays
no part. We can make progress here only by introducing
a special idea entirely new in prineiple, an idea which was
first introduced into science for a definite purpose and with
conscious intention by L. Boltzmann.

A hint of the direction in which we have to strike out
is furnished by the train of ideas used in deriving the
second law. To give ourselves a clearer view we there
(§ 39) assigned to every given state of a physical system
a certain ‘‘ thermodynamic probability ” or a certain
“ thermodynamic weight ” in a certain sense, and we
found quite generally (§ 47) that the entropy of the system
is a measure of this thermodynamic probability. The
question which we now propose to deal with is this:
how is it possible to explain from the point of view of
mechanics and electrodynamics that different states of a
system have different thermodynamic weights ?

An answer to this question is possible only by first
obtaining a closer msight into the nature of physical
systems To accomplish this it is necessary to introduce
a higher order of refinement into our considerations.
Hence, besides the pomt of view hitherto used, which was
founded on thermal measurements and which we shall call
the macroscopic view, we shall make use of a finer, micro-
scopic, point of view of which we assume that it will force
itself upon us whenever we wish to analyse the physical
system in question in far greater detail than has hitherto
been done. In the macroscopic view the state of a system
is determined by its temperature, its density, the number
of moles of all kinds, the intensities of radiation in all
directions, colours and states of polarization. In the
microscopic view all these quantities disappear as self-
dependent concepts ; the only meaning they retain is that
of quantities denoting certamn mean values. The homo-
generty of a body resolves itself into an irregular hurly-
burly of an immense number of extremely small electrically
charged particles moving with great speed among
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themselves; in place of the moles, whose weight is
standardized by convention (§ 16), we now have perfectly
definite molecules; in place of a heat ray of definite
intensity we have an eleciromagneiic wave with an
intensity which varies in a definite way with the time.

The importance of the microscopic point of view,
according to this, consists primarily in the fact that, by
adopting it, we deprive heat entirely of its position as an
independent concept and apparently reduce it to
mechanical and electrodynamic concepts, or, as we may
briefly say, to dynamic concepts. This signifies a funda-
mental step forwards in unifying the physical picture of
the world. Henceforth heat forms a part of dynamics,
and so all the laws that hold in the latter will now also
come into force for the former.

§ 116. However revolutionary m principle the intro-
duction of the dynamical or microscopic pownt of view may
be in the theory of heat, it seems at first sight to be of no
practical advantage and doubts even arise as to whether
it is permussible.

For in dynamics the course of every event in time is
uniquely determined according to well-known laws by the
initial state of the system under consideration. That is
the most that can be expected of any theory. But when
applied to thermal phenomena this direct method fails
completely for the microscopic pomt of view because the
initial state of & thermal system is never known in the
microscopic sense. All that we can control, that is,
measure, are only macroscopio quantities, and there are
far too few of them to allow the corresponding microscopic
quantities to be deduced. We can only say that for a
particular value of a macroscopic quantity, for example,
the density or the intensity of radiation, there is an
enormous number of values of the corresponding micro-
scopic quantities, namely the positions of the individual
molecules or the field intensities of the electromagnetic
waves which are compatible with the given value of the
macroscopio quantity. Or, expressing this more shortly
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and more generally, we may say that a definite macroscopic
state of a system admits of an emormous number of
microscopic states. And, since the course of the event
in time depends on the imtial state, it will by no
means be determined by the macroscopic state, since
very many different events may follow from a given
macroscopic state. We might, therefore, eagily be led to
surmise that the progress promused by the dynamic view 18
illusory. For apart from the fact that we can nerther
calculate nor expermmentally control microscopic events
we are even compelled to expect that an initial state which
18 defined macroscopically with absolute precision is not
of necessity followed by another defimte macroscopic
event—and this is i striking contradiction to all our
experimental knowledge.

To arrive at definite and precise results in spite of the
uncertainty mentioned we make use of the following
expedient. We eliminate the uncertainty which is
contained in the fact that a very great number of micro-
scopic states belong to a given macroscopic state by
allowing the event to be repeated very many times,
namely, by starting out always from the same macro-
scopic state of the system and investigating how the event
takes place each time. We shall then obtain many
different events, depending on the kind and the number of
different microscopic states possible under the assumed
conditions But if we now form the mean of all these
results we may hope to arrive at perfectly definite laws
These laws will then have only a statistical or probability
character, but they can be formulated no less exactly
than any other law of dynamics. A simple example of a
statistical law, which claims to be absolutely accurate,
will illustrate this. If an ordinary die, symmetrically
constructed as & cube, 18 thrown only once, the throw is
fully indeterminate. But if we repeat the throw
sufficiently often and take the average by dividing the
total number of points (* spots ’) thrown by the number
of throws, we get the result 3:5 to any degree of accuracy.



L FLUCTUATIONS 225

‘We see that in this case too we are dealing with a strict
law, but one of a totally different kind from those of
dynamics. We may therefore call it a statistical law and
contrast it with dynamical laws. Statistical laws deal
not with individual cases but only with mean values.
And whereas in the domain of the microscopic view, that
is, in mechanics and electrodynamics, the dynamical laws
hold sway, the macroscopic view and with it the whole
theory of heat leads to statistical or probability laws.
We see immediately that the practical importance of
these statistical laws must not be rated lower than that
of dynamical laws if we consider that a physicist never
performs an expermment once but always repeats it
several times and often a very great number of times.

§ 117 By introducing the microscopic point of view we
are enabled to answer the question as to the nature of
entropy and to examine more closely the concept of
thermodynamic probability. It does not, indeed, give us
a direct answer to the question ; for this we further require
& special hypothesis But it furnishes us with a frame
within which such a hypothesis can find a place. For it
now suggests 1tself to us very simply and naturally to
bring the thermodynamic probability of a state which is
defined by macroscopic thermal data into relationship
with the number of microscopic states compatible with
this state. In dynamics the concept of probability plays
no part or, as we may say, all microscopic states are equally
probable in dynamics. Since the probability of a result
is given quite generally by the number of equally probable
states that produce the result, it suggests itself to us to
define the probability of a macroscopic state by means of
the number of microscopic states that belong to it. In
go-called classical theory the question as to what is meant
when we speak of a definite number of microscopic states
as belonging to a definite macroscopic state can be
answered in only a restricted and relative sense For m
classical theory the totality of microscopic states forms a
continuum, a continuously extended manifold.
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In view of this we shall immediately express the hypo-
thesis in its most definite and most far-reaching form, a
form which goes considerably beyond the classical theory
and has shown itself to be superior in competition with it.
Tt runs : the totality of microscopic states forms a discrete
manifold. Every macroscopic state of a physical system
comprises a perfectly definite number of microscopic states
of the system, and this number represents the thermodynamic
probability or the stahwstical weight G of the macroscopic
state. It is a measure of the entropy S of the system in
the corresponding macroscopic state, thus .

S=f& . . . . . (368

where f denotes a universal function of & single argument.

One objection agamst this relationship suggests itself
at once, namely that the entropy S is continuously
variable whereas the statistical weight G, being a whole
number, varies discontinuously This difficulty can be
overcome only by assuming G' to be enormously great,
80 great that a change of one unit in @ influences f to only
a vanishingly small degree. This condition of course
fundamentally limits the region in which the macroscopic
thermodynamical point of view is applicable. If the
number of microscopic variables is so small that only a
moderately large number results for the statistical weight
@, thermodynamics loses its meaning. But this agrees
perfectly with what we found earlier, namely that we can
speak neither in the case of absolutely plane waves (§ 95)
nor in that of absolutely monochromatic waves (§ 97) of
a finite specific intensity of radiation nor, therefore, of a
finite temperature of the radiation; no more than we
can speak of a temperature or entropy when we have only
a few molecules. We cannot, however, fix a definite
minimum value for & or a definite limit within which the
thermodynamic point of view ceases to hold. We can
only say that the relations that follow from (368) hold the
more accurately the greater the value of @ In all our
future considerations we shall assume G to be sufficiently
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great so that we can treat it as a continuously variable
quantity.

§ 118. The form of the universal function f in (368)
comes out directly if we consider how, in the case of two
mutually independent systems (1) and (2), the entropy on
the one hand and the statistical weight of the total system
(12) on the other are bwlt up from the properties of the
individual systems. For in the first place we have, by

§47:

Sp=8,+8 . . . . (389)
Secondly, since every microscopic state of the one system
can be combined with every microscopio state of the other
system :

Gp=0.G,. . . . . (3870
If we now write the relation (368) both for the total
system (12) as well as for each of the separate systems (1)
and (2), and substitute the values for Sy, S; and 8; in
(369), we get, taking into account (370) :

f@G) =f(@G) +fG) . . . (371

Differentiating with respect to G4 we get :

Gof (6,8 =f(G)
and differentiating, further, with respect to G, :
f(@16) + G1G.f(G16) = 0
or:
@) +6f@ =o.
The general integral of this differential equation of the

second order is :
@) =klogQ + &'
Hence, by (371) :

and by (368) :

¥=0
S=klogd . . . . (379

which expresses the entropy quite generally in terms only
of the statistical weight or the thermodynamic probability.
The logarithmic relationship between entropy and
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probability was first disclosed by L Boltzmann. But
the equation (372) differs in two essential points from that
of Boltzmann.

Firstly the universal factor % is missing in Boltzmann’s
expression; this is because Boltzmann never calculated
with molecules but only with moles and it therefore never
occurred to him to introduce such a factor. Secondly,
and this is a much more significant point, in Boltzmann’s
classical statistics a factor of proportionality remains
completely indefinite in the value of the quantity here
denoted by & - this causes the value of the entropy to
contan an undetermmed additive constant. For Boltz-
mann regarded the counting up of the microscopic states
belongmng to a definite macroscopic state only as an
arithmetical device of a certain arbitrary character.

In contrast with this the value of the entropy here has,
according to (872) a perfectly defimte, absolute, and,
indeed, positive value. This is a theorem of fundamental
importance which goes beyond the classical theory.
From it we obtain, as will be shown, the law of energy
distribution in the normal spectrum for radiant heat and
also Nernst’s Heat Theorem for the heat content in bodies :
both these consequences are foreign to the classical theory.
Comparison with experimental measurements then also
yields the numerical value of the constant k. At the
present point we can state only the order of magmtude of
k. TFor since G is enormously great (§ 117) and S has
moderate values in the usual units, k, measured in calories
and degrees centigrade, will have a very small value.

§119. Although the fundamental relation (372)
furnishes a method of expressing the whole thermo-
dynamic behaviour of a system in terms of its microscopic
structure we have not yet, of course, solved the problem
by merely establishing the relation. For we have yet
to caleulate the number @ for any case that may present
itself; this problem has been solved completely for only
a few systems of simple type. But before we proceed to
the applications we shall make a few remarks on the
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physical meaning of the whole theory, which will lead to
remarkable consequences and will at the same time
furnish the means of testing the validity of the theory
experimentally.

The starting point of our discussion was the statement
(§ 117) that all microscopic states are equally probable.
If we enquire into the physical meaning of this statement
the only possible reply surely appears to be this: the
probability of finding a physical system, which is subject
to defimite fixed macroscopic conditions, in a defimite
microscopic state at any time, is equally great for all the
microscopic states possible under the given conditions.
From this it necessarily follows that in the course of time
the system really passes through all the microscopic
states corresponding to its macroscopic conditions. If,
for example, we have a body enclosed in an envelope
impermeable to heat, it will in the course of time assume
all the microscopic states that are possible at constant
volume and for a constant value of the energy. This is
usually known as the * ergodic hypothesis” (Ergoden-
hypothese)

At first sight this appears to be an amazing and un-
acceptable statement. For the microscopic states in the
cage in question include not only those corresponding
to the macroscopic thern.odynamic state of equilibrium
but also those which belong to all the other macroscope
states, provided only that the volume and the energy
are the same. In other words,the body exhibits abehaviour
totally in disagreement with the thermodynamic laws.
There is no question of the state of equilibrium being in
any sense a state of rest. Even if the body should once
find itself in a state of uniform density and uniform
temperature it will subsequently change this state of
itgelf; differences of density and temperature will arise
spontaneously, to such an extent, in fact, that ultimately
every possible deviation from thermodynamic equilibrium
will be realized as often as we like. This appears to
contradict flatly the demands of the second law.
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Nevertheless this contradiction can be disposed of.
For quantitative tests will not only show that it is ground-
less but will also lead further to positive deductions which
are directly confirmed by experiment and, therefore, lend
valuable support to the theory.

If thermodynamic equilibrium is not a static but a
statistical equilibrium about which fluctuations of every
kind occur we are led to enqure particularly to what
extent and how often these fluctuations occur. An
answer to this is clearly given by the theorem that the
mathematical probability for the occurrence of any
macroscopic state is represented by a fraction, whose
numerator is the statistical weight @ of the macroscopic
state and whose denominator is the sum of the statistical
weights of all the macroscopic states that are at all possible
under the given conditions. The probability is greatest
forthestate of thermodynamic equilibrium, since maximum
entropy corresponds to it. Let its statistical weight be
Ga. Then the ratio of the probability of any state to
the probability of the equilibrium state is as G is to Gn;
and this quotient gives a quantitative measure for the
frequency of occurrence of the corresponding deviation
from equilibrium. Uksing (372) we obtain for its values :

@ S-Se
&=’
where S» denotes the maximum value of the entropy.
If we set :
8—8n=A8 . . . . (373)
then AS is negative, and we get :
A8

C%=elb Ce . (374

This is a proper fraction, as it should be. This relation
allows us to calculate the relative frequency with which
each deviation from equilibrium occurs. Now we have
seen that the constant k has a very small value, hence for
a moderate value of AS the quotient (374) will come out
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extremely small, that is, an appreciable deviation from
equlibrium is extremely rare. If the deviation is to
occur more frequently then AS must be of the order of
magnitude of &, that is, the fluctuations about the state
of thermodynamic equlibrium must have an exceedingly
small amplitude.

§ 120. Let us carry our argument & little further by
treating a specially simple case, say that of an ideal gas.
Let the number of moles 7, the energy U and the volume
V be given. Then in the state of equilibrium the gas has
uniform density and uniform temperature throughout its
volume. Let us now consider a part of the gas containing

n, moles which has the energy U, = 7'_11_7 and the volume

Vi= V —1= in the state of equilibrium and let us enquire

into the frequency with which small deviations AU, and
AV from the normal values occur. Since the total
energy U and the total volume V of the gas remain

constant, we have :
AU +AU, =01 | (37)
AV, + AVy=0

where the number of the remaining moles is ,, their
energy U, and their volume ¥V, Also, the change of

entropy :
8=8+8;

corresponding to the fluctuation will be, if we disregard
vanishingly smell terms :
AS = A8, + A8,

(a’S

(gff AU1+(aV N Tﬁ) AU
+(3U87) AU, AV + (aw) AV

+ (50,40 + (59),47: + 357, 002
+<aUaV AUz AV +3 (3% AV
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where the bracketed quantities all refer to the state of
equilibrium.
If we now apply the known relations .
98 1 28 _p _BRBn _
=T w=T=TV U = nc,T" + const.
and also take (375) into account, the last equation
simplifies to :

1 /1,1 Ring +ng?/1 , 1
AS = — Z,G‘—Ts,(ﬂ—qjL;n)Avln_ e 771+172>A71=

If, further, we assume 7, to be great compared with n,

the terms in n}; vanish, and introducing the molar volume

= nlz ™ and omitting the index 1, we obtain .
AU?  RAV?
AS = — 2 287 . . . (876
2¢,%n  2v3n (376)

If we substitute this value in (374) we have the probability
that an 1deal gas in thermal equilibrium, consisting of »
moles at the temperature 7' and molar volume » and
forming part of a much greater quantity of gas, deviates
by the amounts AU and AV from the normal values of the
energy and volume. Or in other words, the fluctuations
of the energy and the volume about the values for thermo-
dynamic equilibrium for such & gas are of the order of

magnitude :
AU = v2eT%k . . . . (377)
AV = \/2";“ .o . (@378

Simce, as we shall see later (§ 141), the universal constant &
when given in ergs is of the order 10-1¢ and hence of the
order 10-%in calories, the fluctuations AU and AV ordinarily
have extremely small values

But we can go a step further. If by integrating the
exponential function (374) with respect to AU and AV
between infinitely great positive and negative values of
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these variables we form the sum of the probabilities of all
the deviations from the values in the equilibrium state
taken together we again obtain in general a small value;
that is, the probability for any deviation from the equuli-
brium state is appreciable, under ordinary circumstances,
only for very small deviations, or the statistical weight of
the state of thermodynamic equalibrium is very great compared
wnth the statistical weight of all the possible states taken
together.

It is clear from this statement that under ordinary
circumstances every kind of fluctuations about this state
of thermodynamic equilibrium are quite inaccessible to
measurement. The position is different, however, in
extreme cases At high temperatures 7' and when the
volume v of the moles is very great, that is, when the
dilution is great, the fluctuations must become appreciable ;
if, however, the number # of moles increases then,
although the fluctuations of the energy U and of the
volume V increase, the fluctuations of the energy u referred
to a mole and of the volume » of a mole decrease.
Various experimental methods have been devised to
produce the actual conditions under which the deviations
of a physical system from the state of equilibrium can be
made manifest; in each case the fluctuations have been
found to be of the amount caleulated. Hence the im-
portant result follows that the statistical theory of thermo-
dynamic equilibrium is not only compatible with experi-
mental results but is indeed demanded by 1t.

§ 121. It is obvious that in the light of the point of
view here developed the second law of thermodynamics
acquires & fundamentally different character. The
entropy of a physical system completely isolated from its
surroundings can also decrease and will, indeed, decrease
if we wait long enough. But what then remaing of the
second law? Its physical meaning is that any given
state of a system is followed by a still more probable
state or a state of still greater statistical weight—not, it is
true, of necessity, but still, in most cases. As we have
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already seen in § 116 we can escape from the unsatis-
factory feature contained in this mode of formulation by
adding the words “ in the mean.” With this quahfication,
which is of no importance whatsoever in ordinary practice
and which does justice to the actual facts, the law of the
increase of entropy again holds with absolute accuracy.



CHAPTER II

GROUP OF SIMILAR SYSTEMS. SUM OF
STATES. DEGENERATE SYSTEMS

§122. A 0ALOULATION of the entropy of a physical system
can be effected on the basis of equation (372) for the case
when the system consists of a group of systems entirely
alike but completely isolated from one another; we shall
call each of the component systems an ¢ elementary
system.” For in this case we can directly specify the
statistical weight G of a definite macroscopic state
According to our assumption (§ 117) each of these ele-
mentary systems which we regard, for example, as a kind
of oscillators, can have discrete series of states, whose
energies (positive) we shall denote in their order of
magnitude as :

g<ag<e< ...<a<aun< ...

Just as a definite amount of energy corresponds to each
individual state let a definite state correspond to each
individual amount of energy. Suppose N such elementary
systems are present in all. Let us fix our attention on a
definite macroscopic state of the system having an amount
of energy K and let this state be characterized by the
number of elementary systems which have each a definite
energy, or, a8 we may say, by the way in which the total
energy F is distributed over the individual elementary
systems. If we denote the number of elementary
systems that have the energy e» by Na then the numbers
Ng Nyy Ny . .. Nu. . . represent the way in which
the energy has been distribl;g‘esd or the law of distribution
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of the energy. Let this law define the macroscopic state
of the total system. The following relations then hold .

No+ N+ N+ ... =N . . (379)
Nyeg+ Nyeg + Noea+ . . . =E. . (380)

We next enquire into the statistical weight & of a definite
macroscopic state which 1s to be regarded as given, that
is, into the number of microscopic states of the total
system which are possible for the distribution law given
by the numbers Ny, Ny, Ny. . . . In general a macroscopic
state will comprise very many microscopic states. For,
knowing the number of elementary systems which have
a definite energy e, does not mean that we also know
which systems have this energy. Rather, if we exchange
the energies of any two elementary systems we get a new
allowable microscopic state for each exchange. We can
obtain & concrete picture of a definite microscopic state by
means of an array of figures thus . number the elementary
gystems from 1 to N, write these numbers in a row and
write below each number the amount of energy which the
corresponding elementary system has in the microscopic
statein question. Thusfor N = 10, thatis, ten elementary
systems .
1 2 3 45 6 7 8 9 10

€4 € €2 € €3 €2 € €3 € €2

This microscopic state belongs to the macroscopic state
which is characterized by the law of distribution of energy

Ny=2, Ny;=1, Ny=4, Ny=1, N,=2.
But the same macroscopic state still contains many other
microscopic states, namely just as many as there are
permutations of these quantities in the second row. All
together these come to :

10!

FTIT4TII1 = 87800

microscopic states.
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By generalizing this calculation appropriately we get
immediately for the desired statistical weight of the given
macroscopic state :

N
C=yrmE, w8

§ 123. We shall assume now and everywhere m the
sequel that the number of elementary systems N is
enormously great, so great, indeed, that not only the &
in the numerator of the expression (381) but also the
great majority of the Nx’s in the denominator have a very
great value. Without introducing an appreciable error
we can then neglect those factors in the denominator, in
which N, are smaller numbers and we then have to do
only with the terms formed of large N.’s. This assump-
tion gives us the mathematical advantage that we can
regard the N.’s as continuously variable, since a change of
one unit in a large number is vanishingly small compared
with thenumberitself. Formally the factorial N although
actually an integer can be replaced by a continuous
function of N. For this purpose we first take the
logarithm -

- N
log N'! =n2.'10gn =2Xlogn.An
Nl 1

In the sum on the right the terms with rather small values
of » play only a subordinate part; and in the terms with
the greater values for » we may replace Az by dn.
Hence we have :

N
logN!=/ logn.dn+ ...
So: !

logNl=Nlog1—Z+ e

The dots are to indicate a small correction term.
Accordingly we may write :

N'=(1?V>N.f(N). ... (389
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where f() 18 now at any rate of a lower order of magnitude
than the power term preceding it. We shall calculate
f(N) only for the limit N —>c . To do this we start out
from the infinite product :

inren (1= 9+ 9(- D)+ 2. e

Andforx=z2-r:
1-50-D0+D0-D0+
or:
1-7.1.8338.55.7
2 2 4.4 6.6

This is known as Wallis’s equation and may be written
in the form :

2.24.4 __2N.2N 7 (384
Im 535 mvoneysn -z O°F
or:
2.4.6....9N 1T
L‘“"l.a.s....(2N—1)‘\/2N+1"‘/;
or:
. (2.4.8....2N2 1 [z
Lim s 3.4 .. 2N yiN =

or, more briefly :

L2 (N1 -
S LY, A

and hence, substituting from (382) .
N 2
L1m2”<)f(N)( ) L1

feN)' VN
This simplifies to -

@) 1
L. om) v = vV
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This functional equation is satisfied by the assumption :

fN) =a. N2 . . . (385)
For it gives :
oAN% 1
NP VF =V
from which :
«=+/Zm B=1
Hence by (385) :
J&) = /2aN
and by (382):
mi-Tvam . .. (e

This is Stirling’s formula except that a factor has been

neglected which becomes unity when N tends to infinity.
If we substitute the value (386) in the expression (381)

for the statistical weight G of a macroscopic state given by

the numbers No, N,, N, . . , weget:

&

G= e -
CORICOICIRRES
Factors have been neglected here which on account of

their small order of magnitude make no appreciable
difference. If we substitute for the index N from (379)

we get : ” ”
NN (N (NND 3
G= <sz> (1\—71) (w,) - (387)
or, written in a more convenient form :
logG=—N.nz‘Ea,.logw,.. .. (388)
where : "
w=T (389)

denotes the so-called distribution number, which expresses
the fraction of the elementary systems which has the
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energy e in the macroscopic state assumed for the whole
system. By (379) and (380) the distribution numbers
fulfil the conditions :

Swn=1 . . . . (390)

and .

o B _
%'wn& =§y=F .. (391

where ¢ denotes the mean energy of an elementary system.

§ 124. The different macroscopic states which are
possible for a definite value E of the energy of the total
system will have very different statistical weights G' and
among them there will be one which has the greatest
statistical weight. To determme it 18 a simple problem
in the calculus of variations. Keeping N and E constant
'we vary all the distribution numbers by an infinitely small
amount and seelt out that distribution for which 8G
vanishes. From (388) we get for this :

Zlog wadws + ZBwa =0 . . . (392)
in which, by (390) and (391) the conditions :

2Bwn=0 and Zedwn=0
hold.
Eliminating by means of Lagrange’s undetermined
multiphers (I, § 97), we get :
logwn + A + pen =0
or:
wn=o.e"fa . . | (303)

ag the distmbution which has the greatest statistical
weight The constants « and B are both positive; the
former because w. is positive, the latter because wa
cannot become infinite when e increases. Their values
may be obtamed from equations (390) and 391). From
(390) :

l = Y~ fen

o
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and hence by (393) :

o—Pen
e e+ e e . 04
th =g (394)
and then we get 8 from (391) :
—fen
Z;:f g 1%17 .. .. (395)

This is a transcendental equation in f. Hence it 18 often
more convenient to regard, not &, but § as the independent
parameter.

The value of the maximum of @ is then obtained by
substituting (393) in (388) :

log G = — NZwa(log « — Bes) ]
— N(log « — Be) . (398)
N log Ze~Fe + BB f

Before we enter into the physical meaning of the energy
distribution (393) that we have found we shall first
briefly consider the type of maximum for log G represented
by it. For this purpose we shall calculate the change in
the value (388) of log @ for any finite small variations A
of the distribution numbers ws. Thus:

Alog @ = — NZ(wn + Aws) log (wn + Awn) + N Zun log wn
. Aw,  1/Awn\2 .
Now, since log (wn + Awn) = log ws + o E(E) > in

which we have neglected the smaller terms, it follows that
the deviation of the statistical weight from its maximum

value is :
2
A]ogG=-—l§VZA._‘;€"_ ... (3e7)

b

and this is in fact always negative. But we also see that
even when the Aw.’s are small the deviation can become
very great; this is always so when the Awa.’s exceed the

order of magnitude ‘—/% From this it follows a fortior:
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that for finite variations of the Aw.’s the change in log @
assumes great values. In other words, the maximum of
the statistical weight is very steep and very pronounced,
and accordingly the energy distribution that corresponds
to it is distinguished by being particularly sharp.

§ 125. Before proceeding to use the calculated statistical
weight G of a given macroscopic state of our system in order
to find its entropy and so to give it a thermodynamical
meaning, we have first to fulfil an essential preliminary
condition. We must do away with the assumption made
in § 122 that the elementary configurations of which the
system 1 question is composed are completely isolated
from one another For, as we see from the discussion
in the preceding chapter, the statistical interpretation of
the second law has a meaning only if the different micro-
seopic states of a system can become interchanged in the
course of tame. But in the case where the elementary con-
figurations are all isolated from one another each retains
its energy unchanged for all time and a microscopic state
that once exists continues without cessation. We are there-
forecompelled now to introduce an exchange of energy even
if 1t be only small and quite irregular, or, to use the technical
expression, we mtroduce a very loose couplmg between
the elementary systems This loose coupling is to serve
the sole purpose of allowing an elementary system here
and there to change its state even if it occur only arbitrarly
rarely. Then, on account of the interactions between the
individual elementary systems, different microscopic states
of the total configuration can relieve one another, and smce
all the microscopic states occur equally often, that micro-
seopic state which occurs most often will be that to which
the greatest number of mucroscopic states, that is, the
greatest statistical weight, corresponds Hence this state
represents the state of thermodynamic equilbrium or of
maximum entropy. On account of the steepness of the
maximum (see end of § 124) the fluctuations of the
entropy about the maximum value will always be very
small and may be neglected if the N’s are sufficiently
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great. By (372) and (396) the maximum value itself
comes out as : -

8 = Nklog Ze~bes + BEE . . (398)

The temperature of the configuration is then also deter-
mmed by the entropy.

To enable us to picture the state of affairs more easily
we may imagine the couplng between the elementary
configurations to be realized by placing them all in a
common bath having the temperature of the whole system,
and we shall suppose this bath to consist of a highly
rarefied gas We must of course bear ;n mind that by
introducing a heat-bath as a means of communication
between the elementary configurations the assumptions
under which the results of the preceding section were
deduced undergo a slight change For the energy £ of
the whole system is no longer constant in time as now
energy can be transferred to the heat-bath Since, how-
ever, the relative fluctuations of energy in a gas contain-
ing a great number of moles are extremely small, as our
calculation in § 120 shows, we may regard the equations
(396) and (398), by which the entropy § is determined as a
function of the energy in the state of thermodymamic
equilibrium, as vahid to an appreciable degree of accuracy-

It is important to remark that the substance and the
constitution of the heat-bath used can exert no influence
on the nature of the thermodynamic equbbrium. For if
two different heat-baths have the same temperature then,
by § 3, a body which is in thermal equilibrium with one
of these heat baths will also be in equilibrium with the
other. Hence we can speak of the entropy and hence also
of the temperature of the configuration in question with-
out referring to a heat-bath at all, this is actually ex-
pressed in equation (398).

The temperature 7' of the configuration and
simultaneously the temperature of every heat-bath m
equilibrium with the configuration are obtained from the
entropy § by means of the general thermodynamic
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relation (106) between the entropy 8 and the energy E
(called U in the equation) in the case of a configuration
isolated from its surroundings :
1_ds . (398
T=3E .o (398a)
Since S cannot be expressed explicitly in terms of E, but
only by way of the parameter § we write :
L 48 /a8
T~ dpldp
and determine the numerator of this quotient by (398) and
the denominator by (395). Calculation gives :
1
F=k . . . . . (309
which closely relates the parameter 8 with the temper-
ature 7. So the equations (395) and (398) become .

E=Ne=N.

(400)

and :
E _b!

8 =7+ Nklog Ze oL L L (40))
If we compare these equations with the general thermo-
dynamic relations (112) and (126) we obtain the expressions
for the characteristic function of the configuration :

fa —

Y= Nklog Ze ** = N . (402)

and for the free energy :
= — NiTlog 37 (403)

As we see, all these functions and hence the whole thermo-
dynamic behaviour of the configuration in question are
esgentially conditioned by the value of the sum :

TV =g .. (404
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which is therefore called the ‘“ sum of the states ”’ of an

elementary system or configuration.
We also write down here, for later use, the general
relations (114) and (128a) :

¥
E=T2W C v e .. (405)
and : ir
a¥
S=—Tp=Y+T% - - - (408)
which can easily be verified by means’ of the above
expressions,

§ 126. We shall now consider more closely the physical
properties of the statistical thermal equilibrium that has
been found. The distribution number corresponding to a
defimte amount of energy e» of an elementary configuration
is, by (394) and (399) :

e ¥ (407)

Wn = p.]

Ze iT
It represents the mathematical probability that any
arbitrarily chosen elementary configuration should have
the energy en. Hence the smallest energy e, is most
frequently represented ; this is followed by the increasingly
greater amounts of energy e;, € . . ., which ocour less
and less frequently.

But we may also give the distribution numbers w
another meaning. For since the elementary systems are
all of the same kind, they also pass through the same
changes of state in time, and these changes of state taken
togethercondition the various microscopicstates of the total
configuration. According to this view ws in (407)
simultaneously denotes the probability that, when we
consider the changes which a definite individual elementary
system undergoes in the course of time, the energy es
should occur at an arbitrarily chosen point of time. In
considering the time changes of state of an individual
elementary system we must of course regard them as
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caused by the action of the heat-bath since this is the only
body that affects the elementary system. Otherwise the
temperature would not be defined at all.

So we see that the energy of an individual elementary
system which is in a heat-bath of temperature T but otherwise
completely heat-insulated performs quite definite fluctuations
as represented by (407); these fluctuations depend only
on the temperature and not on the nature of the heat-bath.
Since the mean energy e will in general differ considerably
from the most frequently occurring energy €, the difference
of the momentary energy e from the mean energy e will
as a rule be very appreciable, being sometimes negative
and sometimes positive. To obtain a quantitative
measure of these deviations from the mean value, which
are also denoted by the terms ‘scattering ” or * dis-
persion,” we cannot of course simply form the mean value
of the difference ex — ¢; for its value is zero. But we
arrive at a serviceable measure of the scattering if we
form the mean value of the square of the difference
(en— €)?; this 15 called the “ mean square fluctuation.” If
this quantity is very small any appreciable deviations from
the mean value will occur only rarely. To make the value
of the mean square fluctuation independent of the units
chosen we form the * relative ” mean square fluctuation :

A= (‘"E;E‘f)” L (408)
The numerator of this expression is :
(n—t=—-2e+=ct—
Hence:

A=S5-1. . . . . (409

LR

Whereas the mean energy ¢ is obtamed by (400) directly
from the total energy E the mean square energy :

& = Zejwn =

&
Z&:’ (410)

PR
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may be derived from (400) by differentiating with respect
to the temperature. For if we perform this differentiation
and simplify we get :
and so, taking into account (409) :
ET® de d (1 X

AP E kTﬁﬂ<__€_) .. (41))
This enables us to state the value of the relative mean
square fluctuation as soon as we have calculated by (400)
how the mean energy ¢ depends on the temperature 7.
To do this we must of course know the energy values es
of the elementary system, concerning which we have
made no assumptions at all sofar. But we may take this
opportunity of giving as a striking example of the energy
fluctuations of an individual elementary system in a heat-
bath the motion of a fine particle of dust suspended in a
liquid; this is the so-called ‘ Brownian movement ”
which is the more vigorous the smaller the particle,
because for a definite energy-fluctuation of a moving
point-mass the fluctuation of velocity increases as the mass
decreases.

§ 127. Hitherto we have assumed in our elementary
system that there is a perfectly definite microscopic state
of the system corresponding to every possible quantity of
energy es of it. This will be so only 1n the case of systems of
quite simple construction. In general, however, and
particularly when the elementary system has a rather
large number of degrees of freedom, we shall also have
to take into consideration the case where every possible
amount of energy e has ®several or even many different
microscopic states of the configuration belonging to it. In
such a case we call the configuration “ degenerate.” The
question now is how can the laws which have so far been
found to be valid for a group of elementary systems of
exactly the same kind be generahized for the cases where
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the elementary systems are degenerate to a greater or a
lesser degree. This question can be answered by the
simple procedure of passing to the limit. For since we
have made no assumptions about the quantities e of
energy nothing prevents us from assuming the elementary
gystem—at present non-degenerate—to be such that the
possible energies accumulate in groups in the immediate
neighbourhood of certain favoured values; we may, then,
without introducing an appreciable error, comprise all
terms that belong to such a group in a single term :

Gne_ﬁ
in the sum of the states as expressed by (404). Here en
denotes the energy at the point of accumulation, g. the
number of microscopic states that constitute the group.
The sum of the states then runs :

Z = Z.'g,.e—:i" . A (3 )
and, by (402), the characteristic function is :
Y= NklogZ=N§. . . . (413)
Hence by (405) the energy is :
o
E=-N-Z Ty .. (a1
Zgue HT

Now if the energies of a group draw together more and
more closely the configuration finally merges into a de-
generate system with g» microscopic states corresponding to
every possible amount of energy e.. This number g is
called the statistical weight of the energy ex or the degree
of degeneracy. The introduction of the statistical weight
gn in the expression for the sum of the states thus makes
all the previous laws vahd also for a family of degenerate
systems.

A very important consequence follows on this generaliza-
tion. For let us agam consider an individual elementary
configuration in a heat-bath of temperature 7' and let
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us investigate the fluctuations which its energy undergoés.
According to (407) these may be represented by the
dstribution number :

o] NF

_ e
Zgue ¥

So long as g» was equal to 1 we had to conclude that the
smallest amount of energy ¢, occurred most frequently.
The position is, however, now altered. For if the ele-
mentary configuration is degenerate, as, for example,
when it contains many degrees of freedom by consisting,
say, of many oscillators, the statistical weight g» with the
ordinal number » will rapidly increase, smnce a greater
amount of energy e» will be able to distribute itself over
the different degrees of freedom in many more different
ways than a smaller amount of energy. Thus as =
increases the numerator of (415) will also at first increase ,
but later, when the ex’s become sufficiently great, it will
sink to vanishingly small values on account of the
exponential function. The maximum of wa, the point
when the most frequent energy occurs, thus no longer
lies at €, but is displaced towards €; that is, the energy
fluctuations are less than in the case of a non-degenerate
configuration.

A quantitative measure of the scattering is given by the
relative mean square fluctuation A, whose amount, also
for a non-degenerate elementary system, is again repre-
sented by the expression (411), as is easily seen by
differentiating the equation (414) with respect to 7. The
greater the degree of degeneracy, the more the number of
degrees of freedom possessed by the elementary system,
and the greater the mean energy € of the system corre-
sponding to a definite temperature 7' of the heat-bath
will be, for the simple reason that the total energy of many
ogcillators becomes infinite when their number becomes
mfinitely large. From this it follows by (411) that the
value of A becomes vanishingly small for a highly de-

W, (415)
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generate elementary system, or that the distribution
number wn in (415), regarded as a function of es, possesses
a narrow and steep maximum

In other words, an elementary system of many degrees of
freedom in a heat-bath of definite temperature T performs
only very small relative energy fluctuations, and the energy
that occurs most frequently coincides appreciably with the
mean energy e. Hence an elementary system having
many degrees of freedom will have at every temperature a
perfectly definite energy € given by (414); and, of course,
conversely for every amount of energy there is a perfectly
definite temperature, so that we can speak of the temper-
ature of the elementary system in a definite sense without
referring to the temperature of the heat-bath

Now since we have made no hypothesis about the con-
stitution of an elementary system, there is nothing to
prevent our treating any body whatsoever—so long as it is
not too small—which has quite arbitrary macroscopic
properties, as an individual elementary system, and so
applymg to it the equations (412) and (413). Now if
we mndicate the occurrence of many degrees of freedom
by wniting E for ¢, @ for g and ¥ for i, omitting the bars,
which have now become superfluous, the equations just
mentioned become :

_E
Z =367, .. (416)

En
¥ =rllogZ =klog ZGn.e ¥, . . (417)

This equation determines how the function ¥ depends on
the temperature 7' and so fixes the whole thermodynamic
behaviour of the system. It is completely equivalent to
the relation (372) by which the entropy § is determined
when the energy B is given. For by §55 ¥ is the character-
istic function when the temperature 7' is the independent
varable, whereas when the energy E is the independent
variable the entropy 8, by § 54, represents the characteristic
function.

Just as by starting from (372) we arrive at (417) so,
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conversely, we can derive the relation (372) from (417),
the way being very direct. For if we reflect that in the
sum of the states (416), on account of the narrow and steep
maximum of the distribution numbers, all those terms are
mappreciable whose energy E. deviates markedly from
the most frequent or mean value, we may write the mean
value of the energy E instead of B, in all the terms that
come into question. The sum of the states then assumes
the form : )

E
Z=@G.e ¥

where G now denotes the sum of the statistical weights of
all those states of the system in which the energy differs
only,shghtly from B.and in so far as they contribute
appreciably to the sum of the states. Hence the character-
1stic function by (417) becomes :

’!’=klogG—g-

If we compare this relation with the general thermo-
dynamic relation (112) in which the energy is denoted by
U, we get :

S=Fklog@ . . . . . (418)
which has brought us back to the relation (372).

But there still remains an unsatisfactory discrepancy
which requires to be elucidated. It consists in the fact
that in (372) the quantity G refers to a perfectly definite
amount of energy KB whereas in (418), as we expressly
remarked, @ also includes those states whose energy
deviates slightly from E. This difficulty resolves itself
when we consider that in forming the quantity G'in (372)
the energy E of the system is to be regarded as determinate
only in a macroscopic sense and that a value which has
been determined in this way still allows small deviations,
in complete analogy with the small fluctuations of energy
considered in § 120. How far the deviations of the energy
from the macroscopically given value F may and must be
taken to include exactly all the states that contribute
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appreciably to the value of the statistical weight G is
determined by the circumstance that an increase of the
deviation must produce no appreciable change in the value
of G.

But an essential point must be noted here. In the
expression (417) of the characteristic function ¥ the
summation formula is to be taken over all the energies
En of the system, from 0 to . As we have seen, the
sum of the states then involves only those terms whose
energy E. differs but little from the mean value E. The
steepness of the maximum at the point En= E is caused
on the one side, B: < E, by the first factor, G: on the
other side, B. > E, it is due to the second factor, the
exponential function. On the other hand, in the expression
(372) for the entropy S the second factor is absent. Con-
sequently, in forming S by means of (372), we may not
count microscopic states whose energy exceeds the
macroscopically given energy E in the upward direction,
whereas in the downward direction the deviation may be
ag great as we please

In other words, the statistical weight G which must be
substituted in (372) to give the value of the entropy S of a
physical system of given energy E is appreciably equal to
the total number of microscopic states of the system whose
energy does not exceed the value B

At first sight it may seem strange that although all the
microscopic states with arbitrarily small amounts of
energy are used to form the total number @ the value of
@ yet essentially depends only on such states as have
energies that lie near the maximum energy; that is, that
the number of all those microscopic states whose energy
is appreciably less than E 18 of no account compared with
the number of those whose energy lies near the value E.
We are tempted to surmise that a small increase in the
energy AE << E would of necessity correspond to only a
small increase AQ<€ G of the number of all the micro-
scopic states that are posaible between 0 and E. A simple
example shows that this is not so. Let G= E/. Then
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for a given AE < E, no matter how small AE is, we can
always choose the number f to be so great that AG'=
(B4 ABY — Bf > G.

The circumstances are exactly similar in our present
cage. All we require to do is to assume the number of
degrees of freedom of the physical system under con-
sideration to be so great that contributions to the value of
the statistical weight calculated according to the above
rule are made only by those microscopic states whose
energies lie near the value of the energy of the system.
If this condition is incapable of fulfilment there is no
definite entropy at all corresponding to a definite energy
E of the system. And then we can speak of the temper-
ature of the system, too, only in the sense that if we place
it in a heat-bath of a definite temperature the energy of the
system undergoes the familiar more or less appreciable
fluctuations.

Numerical examples proving the validity of all these
laws may be obtained from the special applications given
in the next chapter.

§ 128. To evalnate the sum of the states Z it is often
more convenient to replace the expression (416) by another
in which we write down individually the microscopic
states that have a common energy Es, thus :

_En _Zu
Z=§G,.e ”'={fe B L. (419)
and:
_En
¥=FklogZe ¥ . . . . (420)

The index 2 is to denote that the summation is to be per-
formed not over the order numbers n of the energy but
over the individnal states, so that every amount of energy
K is counted just as many times as there are states which
have this amount of energy. Thus the sum in (420)
simply includes all the microscopic states of the system,
from the smallest amount of energy to the greatest, and
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to perform the summation we may arrange the terms of
the sum in any order.

The equation (420) is considerably more general than
the equation (402), although it looks quite similar. Ior
it is valid for any system whatsoever of many degrees of
freedom, while (402) holds only for those which are com-
posed of N components which are independent of one
another but are of the same kind. Smce the latter is a
special case it 18 evident that the equation (402) can be
derived from (420) We show this in the following way.
If the system consists of a great number N of elementary
systems which are of the same kind but independent of
one another and non-degenerate, their energies being

agsumed to be ¢y, €;, €, . . . &, . , then any possible
value of the whole system 1s given by :
entewtent . .. =8

where theindividualsumsrefer to the individual elementary
systems, and so by (420) :

Y=FklogZZx...e

_eantewtayrt .,
T

n n’n’
Since there is a microscopic state corresponding to every
combination of the order numbers =, #’, »’’ . . ., and

conversely, the summation must be performed over every
order number from O to co. The exponential function
resolves into a product of corresponding exponential
functions having one order number each. If we now
sum over the order number #, keeping all the other order
numbers fixed, we get the following sum, a constant factor
being disregarded :
Ze—’:_;'

And by continuing this process we get, since this sum is
the same for all the N kinds of order numbers .

¥ = klog (Ze )"
which is 1dentical with the equation (402).



CHAPTER III

CLASSICAL THEORY. LIOUVILLE’S
THEOREM. QUANTUM STATISTICS

§ 129. TuE laws which have been derived in the two
preceding chapters represent the methods which enable
us to determine the characteristic function and hence the
whole thermodynamic behaviour of a given physical
system. They prescribe the line of reasoning which must
be followed in every statistical theory of heat. But to be
able to fill the form that has been obtained with content
we have yet to know the values En, which the energies of
the system can assume, as well as the corresponding
statistical weights G.. This is the point where the
different statistical theories diverge, namely the theories
of Boltzmann and Gibbs, of Bose and Emstem, and of
Pauli, and Fermi and Dirac.

As an mtroduction to this complex of problems we find
1t advantageous to start out from classical statistics not only
because it 18 the oldest but rather because it links up most
directly with classical mechanics and electrodynamics,
and also beoause it is necessary on the one hand to convince
oneself of its insufficiency and, on the other hand, to
establish the limits within which 1t is valid. Let us con-
sider any mechanical system completely isolated from its
surroundings and having f degrees of freedom, where f is
an arbitrarily great or small integer, then by the classical
theory the state of the system is determined by 2f
quantities, namely by the f general co-ordinates g,
@3, - - . qr and the f corresponding velocities ¢y, 45, . . .
g¢r(X,§124). Thesum tota.12 5°§ all the possible states of the
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system thus forms a continuously extended manifold of
2f-dimensions (§ 117), which is most easily pictured by
considermg a space of 2f-dimensions, called “ phase-
space,” whose rectangular co-ordinates are the quantities
gand g. Then for every pomt of the phase-space there is
s definite state of the system. Further, by the laws of
clagsical mechanics, the state at any particular moment of
time determines the whole motion, that is, the succession
of states for all subsequent times. This expresses itself
in phase-space in the fact that every phase-point traverses
a perfectly definite curve with a definite velocity. This
curve is called the ° phase-orbit.” Since the phase-
ponts fill the phase-space continuously all these motions
together present the picture of a flowing liquid, and the
stream is stationary because the velocity and the direction
of flow at every point of the phase-space are independent
of the time. Thus if we consider any arbitrary region of
the phase-space all the points of this region will move in a
defimte way and so we may say that every region of the
phase-space displaces 1tself in a definite way m the course
of time and becomes deformed.

§ 130 The problem with which we are now confronted
is as follows What numbrr of microscopic states of the
system is contained m a given region of phase-space ?
For by our definition (§ 117) this number represents the
statistical weight or the thermodynamic probability of
the whole region.

In the first place it is clear that m this form of the
question the answer of the classical theory can only be
** infinitely great.” For by classical theory the micro-
icopic states and the phase-points corresponding to them
‘orm & continuous manifold Hence it follows that the
“lassical theory can give only a relative and not an absolute
mnswer to the question by fixing a more or less arbitrary
neasure for the unit of statistical weight. Now since
e greater the number of microscopic states contained
n a given phase-region the more extended it is, we find it
ppropriate to set the statistical weight of a given phase-
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region proportional to the extent or the ‘ volume ” of
this region, that is, to the quantity :

far

wheredr=dq,.dgy . . . dgr dgy.dgy - . . dgr.
Accordingly, the statistical weight of this region is *

¢=0.[dr. . . . (421)

where the factor of proportionality C denotes a certain
mfimtely great universal constant, which remains in-
determinate and arbitrary.

Nevertheless this definition still suffers from a serious
fault. Forif we apply it to calculate the statistical weight
of a definite region in phase-space the result comes out very
differently according to the choice of the co-ordinates g,
and—a no less serious matter—it changes its value in the
course of time corresponding to the deformation of the
region which was mentioned at the end of the preceding
section; this is incompatible with a general theorem of the
theory of probability, which demands that a state which
necessarily emerges from another state must also have the
same probability as the latter state.

A theorem proposed by Liouville offers an escape
from this difficulty. For if we use as the co-ordinates of
the phase-space besides the f generalized co-ordinates g
of the system the corresponding f momentum-co-ordinates
p (I, § 128) m place of the velocities ¢, and if we define
as the element of volume of the phase-space the
differential :

dr=dg,.dqy . . . dgr.dpy.dp, . . . dpr. . (422)
then the quantity G in (421) 18, for a given region of the
phase-space, independent of both the choice of co-ordinates
q and the time.

We first prove the latter assertion. We proceed by
considering an extremely small region of phase-space at
the time ¢ in the form of a 2f-dimensional rectangular
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parallelepiped whose edges are parallel to the co-ordinate
axes of the phase-space. The volume of this region is :

Ar=Agy Agy ... Ap; Apy . ..

After the lapse of an infinitely small interval of time,
during which the co-ordinates of every phase-point have
changed by :

dgy = qudt, dqy = gudt . . . dpy = Padt, dpy = Pt . . .
all the phase-points belonging to the selected region agam
form approximately a rectangular parallelepiped of size :
Ae’ = Algy + @9 . Alga + ) - - . '

A(py + pidi) . A(py + podi)

where we neglect terms of vanishingly small order of

magunitude,
If we now reflect that in the preceding expression :

AQI=%'AQI:~ . Aﬁb1=g%i'AP1,

in which all the remaining co-ordinates are kept constant
during the differentiations, we get for the change of size of
the phase-region, disregarding vanishingly small quantities :

, gy , 04 oy , 0
Ar' —Ar=Ar (Z2+ 234 .+ 42224 ) dt
trdn (e P )
and, by the equations of motion (413) of § 128, Vol. I, this
expression is equal to zero.
Thus an arbitrarily selected part of phase-space

Af=[qu1. Ldpy .. .. (423)

does not change in size if all points of the region move in
their phase-orbits in accordance with the equations of
dynamics. Hence our above model of a stationary flow
of liquid becomes further specialized by the condition
that the liquid must be incompressible.

§ 131. Let ushere interpolate an interesting consequence
of the last result which immediately suggests itself. If,
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starting from any arbitrary point of a phase-orbit, we
follow this orbit for a sufficiently long time we shall
ultimately arrive at the starting-point exactly or at least
to any desired degree of approximation, so long as we
assume that phase-space extends to infinity in no direction
whatsoever (Poincaré’s Recursion Law, Wiederkehrsaiz).
For since the flowing liquid is incompressible the space
traversed by the cross-section of a thin current-filament
(II, § 61) will in the course of time exceed any arbitrary
quantity no matter how thin the filament may be chosen.
And if the volume of the whole of phase-space is finite
this can happen only if the current-filament either returns
exactly into itself—the motion is then periodic—or at
loast meets itself again at some point.

§ 132. We haveyet to prove that thevalue of the integral
(423) taken over a definite region of phase-space is in-
dependent of the choice of co-ordinates ¢g. This may be
shown as follows If in place of the co-ordinates g,
gy - . . g we introduce any other co-ordinates ¢,,
¢2, . . . ¢y where the co-ordinates ¢ are functions of the
co-ordinates ¢ then our object is to compare the quantity
(423), which we shall denote by A, for the sake of clear-
ness, with the quantity :

Af¢=[fd¢1...d¢1... L. (424)

where the ¢’s are the momentum co-ordingtes correspond-
ing to the co-ordinates ¢, and the contour of the integral
(424) corresponds with that of (423). We choose the
region A7, to be very small and hence also the region
A7y,

If we now allow a comparatively long time to pass, say
from ¢ to ¢', the region Az, will have moved a considerable
distance from its original position and will be in & distant
part of phase-space. The region A7, will hikewise have
moved a long way from its omginal position. By Liou-
ville’s Theorem we have that :

Ar'g=Ar; and Ar'y =Ary.
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We shall next introduce a third kind of co-ordinates
Zy, %y . . . %, which are also definite functions of the
co-ordinates g. But we shall choose these co-ordinates
in such & way that m the original portion of phase-space
they comcide with the co-ordinates g except for in-
appreciable deviations, whereas in the distant region of
the phase-space they coincide with the co-ordinates ¢.
There is nothing to prevent this choice since no restriction
has been imposed on the functional relationship between
the co-ordinates. Since the momentum co-ordinates are
completely determined by the generalized space co-
ordinates—for we are dealing with a perfectly definite
motion—the same is true of the momentum co-ordinates ¢
that belong to z. We therefore have *

Arg=Ars and Ar'y=A7"
But according to Liouville’s Theorem :

Arp = Ar'y
and consequently, by the preceding relations :
Aty = Ay,

which was to be proved.

§ 183. After having justified, so far as is possible from
the point of view of classical theory, the definition of the
statistical weight & of a definite region in phase-space by
means of the equation (421) in conjunction with the
expression (422) for dr we may use it directly in (418) to
calculate the entropy S for the case of a configuration
having many degrees of freedom. On account of taking
logs, an additive infinitely great universal constant log C
occurs which is indeterminate and hence remains arbitrary.
In classical theory the entropy therefore has no definite
value. But this does not make it impossible to draw
certain defimite conclusions from the entropy in the
classical theory, since in differentiating the entropy the
indeterminate additive constant disappears. So its
Ppresence is not in itself a reason for giving up the classical
theory. In the hands of L. Boltzmann it has, indeed, led
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to far-reaching consequences which sagree excellently
with experimental results. Nevertheless, among the
results of the classical theory we shall also become
aoquainted with some that are violently opposed to the
results of experiment (§ 139). It is this which has led to
the introduction of the guantum theory.

According to the quantum theory the statistical weight
@ of a definite region of phase-space or the number of
microscopic states contained in this region is a definite
finite number. This hypothesis leads to a totally new
view of the concept of a microscopic state. For in
classical theory a definite point in the phase-space is
asgigned to each microscopic state.

But if, as in the quantum theory, an arbitrarily great
region of 2f-dimensional space is to contain & finite number
of microscopic states it is evident that to every individual
miorosocopic state there is assigned a 2f-dimensional region
of phase-space. The size of this region, which we may oall
an “ elementary region ” or “element > of the phase-
space, is obtained if we set G= 1 in (421), that is :

1
fd"'=5 e e (425)‘

which is & relatively small but finite universal constant.
In general the statistical weight of a phase-region is then
equal to the number of elements included in the phase-
region,

‘We see that by these theorems the classical concept of
the “state” of a mechanical system becomes fundamentally
changed, or, we may say, blurred. In the quantum theory
the state comprises, not & single phase-point, but all the
points of a whole phase-orbit, and the phase-orbits, each
of which indioates a defimte energy, form a discrete
manifold in the phase-space which can be counted. .An
individual element of phase-space is 2f-dimensional; it
thus forms a “ current-filament ” of finite though small
cross-section, and the phase-orbits allowed by the quantum
theory form the boundary of the current-filament.
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However strange these deductions may sound, they have
nevertheless in many cases stood the test of experiment
and hence have led to radical changes in the theory
the complete explanation has only recently been given by
wave-mechanics

The following simple consideration is sufficient for our

purpose. The universal constant —é in (425) has the

dimensions dr and hence, by (422), the dimensions of the
fth power of the product g.p. By I, § 128, this product
g p has the dimensions of energy multiplied by time, that
is, of ““ action.” Hence we set :

1

S =h
0h......(426)
and we call the universal conitant % the * elementary
quantum of action.” From this we get the following
value for the size of an element of volume of phase-
space :

far=1. . . (427)

where dr stands for the expression given in (422). And
the statistical weight of an arbitrarily great volume of
phase-space comes out, by (421), as :

G=pfar . . . . . (429)

But 1t must be observed that this relation has a meaning
only if the phage-volume contains an integral number of
elements of volume. Since, however, the definition
(418) for the entropy holds only for systems having very
many degrees of freedom no essential limitation is im-
posed by the condition just stated.

§ 184. Although by introducmmg the elementary
quantum of action into thermodynamec statistics we have
diverged appreciably from classical theory, there is nothing
to prevent our reverting to it at any moment We have
only to make % infinitely small to regain from (428) the
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constant C' of the classical theory with all its properties.
This circumstance will be of frequent use to us in the sequel.
For it enables us by means of a simple mathematical
operation to write alongside every quantum formula
the corresponding clagsical formula and so to compare
directly any laws given by the classical theory with those
of the quantum theory.



CHAPTER IV

SIMPLY PERIODIC OSCILLATORS. ENERGY
DISTRIBUTION IN THE NORMAL SPECTRUM

§135. In applying the theory developed above to
special cases we have always the choice of two different
methods. We either calculate the entropy S as a function
>f the energy £ by the formula (418), or we calculate the
sharacteristic function ¥ as a function of the temperature
T by the formula (420). Since both methods lead to the
;ame result our choice must be guided by practical con-
siderations. We shall use the second method in the sequel,
‘or two reasons. Firstly because the summation (420) can
be effected more conveniently than the calculation of
Fin (418), since the former apples to all the states of the
system whereas in the latter the boundary condition
which corresponds to the given value of E must be taken
nto consideration. Secondly the temperature 7' is found
b0 be more appropriate as the independent variable for
she experimentally important consequences than the
snergy E

We begin our calculations by considering a system
which consists of a great number N of similar simply
oeriodic oscillators isolated from each other, each having
e degree of freedom 1n the sense of § 122. The law of
qotion of a simply periodic oscillator is expressed by the
‘ollowing differential equation (I, § 12) in the generalized
so-ordinate of position ¢ :

g+ 4ntig =0 (429)
where v is the vibration number, or by its integral .
g=acos2mt+Bein2mt . . . (430)

where o and p denote the two integration constants.
264
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The energy is :
€= "2—-”4'“ + 2m2myig?
= 2Bt +BY) . . . . (43])

where m denotes the mass, and the momentam co-ordinate
has the value :

p=(g—;)ﬂ='m§ N (e

‘We have first of all to determine the discrete series of
the quantities e, €;, € . . ., the so-called proper-values
of the energy. The equation (427) serves for this purpose.
Since f= 1 here the phase-space is a plane, and the phase-
orbits or the ““stream lines  or *lines of flow” (§ 129)
are the curves :

€= bl + 2n®my3g® = const.
2m q .

in the co-ordinates ¢ and p.
These are similar and similarly situated ellipses having
the semi-axes :

a=+/2me and b=«l2—"§in—va. . (433)

Corresponding to every ellipse there is a definite amount
of energy. In classical theory every point of the phase-
plane represents & possible microscopic state of the
oscillator, but in the quantum theory we have, corre-
sponding to a microscopic state, a whole * current-
filament ” of finite cross-section, namely the intermediate
space between two different ellipses; the ares of this
space i8, by (427), of amount ». Only the two boundaries
of the current-filament, say the ellipses with the energes
e and en—1 have a physical meanmmg, Now since the area
of an ellipse is, by (433) :

€
nab = =
v
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it follows from (427) that the intermediate space is .

€n — €n—1 = h.
14
Likewise :
€n—1 — €r—3 - h
v

and so forth, down to :

a-%_p
14

By adding these equations we get :
en=¢+mhv. . . . . (434)

#Phis relation containg the law which governs the
quantising of a simply periodic oscillator. We shall leave
the value of the smallest amount of energy e, < Av
undetermined for the present.

Sinee corresponding to every amount of energy es of the
oscillator there is a single microscopic state, the elementary
system is non-degenerate and so the relations deduced in
Chapter IT hold for this case of a system composed of
a great number N of such oscillators of one and the same
type. In particular the sum of the states at the
temperature 7' is, by (404) and (434) :

(435)

and, by (402), the characteristic function of the whole
system is .

Ne, b
v T Nelog(1-e ). . (436)
From this we get for the energy by (405) :

E=N.i=Ne+ -2 . . . @
e 1
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and for the entropy, by (406) :

By
S=7b_ _mrlog(1-<H) . sy

e — 1
If the temperature increases to an unlimited extent the
hy
exponential function ¢ merges into 1+ ’f—;,, and the

expressions for the energy and the entropy become :

B=NiT, §=Nklog®r. . . (439)
The same expressions are obtained if for any arbitrary
temperature 7' the quantum of action & is assumed to be
infinitely small, but we must observe that when 4 becomes
vanishingly small €, < kv also vanishes. Hence by § 134
the expressions (439) also represent the values of the
energy and the entropy that follow from the classical
theory for the system in question. In particular, we see
that according to the classical theory the mean energy
is €= %7 and so is independent of the nature (period of
vibration) of the oscillators. It is in this deduction that
the classical law of egquipartition of energy over all the
different kinds of oscillators expresses itself.
On the other hand, with unlimited decreasing tem-
perature the energy of the system becomes by (437) :

by
E=N.c=Ne+ Nhwe™ 5. . . (440)
and the entropy, by (438) :
_ Nw -E
== e L L L (a4))

Hence, whereas the entropy converges to zero together
with the temperature, a finite amount of energy remains
left over at zero temperature. This is the * zero point
energy,” which is easy to understand since the energy of
an oscillator cannot fall below ;.

A single oscillator which is immersed in a heat-bath at &
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temperature T undergoes fluctuations of energy, which
are regulated according to (407) and (434) by the law :

w,.=e_%.<l—-e_‘%) Lo (449)

This expresses the mathematical probability that the
oscillator will have the energy en = €, -+ nhv at any moment.
The relative mean square of the fluctuation will be given
by (411). It assumes & particularly simple value if we
get the zero-point energy ¢,= 0 Then we get, by (437) :

am_ 1k
(&) = ~ e

and by (411) : .
Amdfo1a™ | L L. (443

€

The relative mean square of the fluctuation of the energy
thus consists of bwo parts & constant term of the amount
1 and a term proportional to the quantum of action A
and the vibration number v and inversely proportional
to the mean energy e. In the classical theory the second
term vanishes and fluctuations of only the first kind
remain.

§ 136. Let us glance at the case when the number of
oscillators N is not very great but has arbitrary values
down to 1. In this case there is not a definite energy B
of the system corresponding to a definite temperature 7,
but the system performs energy fluctuations, whose
scattering, by § 127, is again represented by the relative
mean square of the fluctuations (411) if we substitute for
€ in it the mean value of the energy of the now degenerate
system. If we again leave out of account the zero-pomt
energy, we accordingly have, by (437) :

=L a4y
1
and, by (411):
I N Y 4 445
A_N.e" N+E . (445)
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For N=1 we get the earlier expression (443) for an in-
dividual oscillator. If we now allow N to increase at &
definite temperature 7' the magnitude A of the relative
mean square of the fluctuation decreases to an unlimited
extent, as is to be expected. But in the case of the two
components of A, the classical and the quantum terms,
a characteristic difference manifests itself. When N

increases the first decreases like llV’ that is, independently

of the temperature; but the second term decreases like
by

% . (eﬂ'-— l). From this it follows that in order to make

the energy fluctuation vanish N must be given a greater
value as the temperature decreases. In other words, for
every configuration, no matter how many oscillators it
contains, there must be a range of temperature below which
it cannot be cooled down, if a perfectly definite value of the
energy of the configuration is to correspond to its temper-
ature. Hence for every system, no matier how great it may
be, the concepts and laws of thermodynamics lose their
validity if the temperature 1s appropriately lowered, and this
occurs before the zero-point is reached; snd all thermo-
dynamioc reasoning based on a cooling of a definite system
down to the absolute zero-pomt becomes void (cf. § 149
below).

§ 137. We have now covered the preliminary ground
necessary to take up again—with a greater prospect of
success—the energy distribution in the normal spectrum
which we had to break off in § 114. As we there pointed
out, this problem amounts to calculating the entropy and
the other thermodynamic properties of pure cavity
radiation. Having found that the microscopic considera-
tion of a system furnishes us with the means of determining
its entropy, we next undertake a microscopic investigation
of pure cavity radiation, which we suppose enclosed in
a volume of as simple and convenient a form as possible,
namely in that of a cube whose length of edge is I. For
the electromagnetic field equations referred to a vacuum
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(LV, § 2) can be completely integrated in this case and so
furmsh the general solution of the problem from the
microscopic point of view. To introduce the correspond-
ing boundary conditions we assume the six sides of the
hollow cube to be perfectly conducting (IIL, § 92) and
consequently totally reflecting, and we have therefore to
get the intensity components of the electric field
tangential to a side equal to zero.

If we take the origin of co-ordinates at & corner of the
cube a particular solution of the differential equations
of the field is represented by the following expressions,
where we pay due regard to the boundary conditions :

by

2= COS ‘"Tm -8 == . 81 —ml'f - (e, 08 2t + €'y 8in 2mmvt)

Ey=sin "’l’_"_ cosb—lﬂ—'y- . sinc—? + (€3 cos 27yt + €'y 8in 2mvt)
E;= sina%w «sin l# t:(Jsc—1{~z - (eg 008 2mvt 4 €'g 8in 2mvt)

. (446)
H,= smg';—z- cosb%y . c:osglr—z + (hy 810 270t — B3 cOB 271vt)

any

1

H;=cos a%x . 0082717_1/ .gin chrz « (hgsin 2mt— b’y cos 2mvt)

Hy=008 —— sinz;—-y. cosc—T + (hy8in 2mvt— b’y c08 2mvi)

where @, b, ¢ denote any three positive integers; for
negative integers produce nothing new. The boundary
conditions are satisfied m these expressions by the fact
that the tangential components of the electric intensity
of field E vanish for the six bounding faces z= 0, z= I,
y=0,y=1,2=0,2=1 It is easy for us to convince
ourselves directly that the field equations (IV, § 2) are
likewise all satisfied if certain relations exist between the
constants which may all be summarized in one theorem
as follows : 1f we denote a certain positive constant by a,
the velocity of light by ¢, then there exist between the
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nine following quantities which we have arrayed in a
square .

ac be e
2 20y 2y
2 by hy
o o a
2 & &
a a a

all those relations which are fulfilled by the nine direction
cosines of two orthogonal right-handed co-ordinate
systems, that is, the cosines of the angles between each
pair of axes of both systems (I, § 100).

Hence the sum of the squares of the members of each
horizontal row or each vertical column is equal to 1, for
example :

J—:V,(a*+b’+c’)=l L. (447)
B2+ hyd + by = a? = e + eg? + gk

Further the sum of the products of corresponding terms
in each pair of parallel rows is equal to zero. Thus, for
example :
ae1+be,+ces=0} L. (448)
ahy + bhy + ehg = 0

Finally relations of the form I (492) hold :
hy e ec ey be

e a2 a2
Thus :

Iy = 5 (cey — beg) . - (a49)

and so forth.

If any values are given to the mtegers a, b, e, then by
(447) the vibration number » is determined. This means
that of the six quantuties ey, ey, €y, hy, kg, 7 only two can be
chosen arbitrarily; the others are then uniquely derived
from them in a linear and homogeneous form. If, for
example, we give e, and e, any arbitrary values then ey can



272 THEORY OF HEAT omAr.

be calculated from (448), and the values of Ay, ky, Ry
follow from the relations of the form (449). The same
relations hold between the accented constants 'y, €'y, €'y,
B’y By B's a8 hold between the unaccented constants,
the two sets of constants being otherwise quite independent
of each other. Hence two terms of the accented system
can also be arbitrarily chosen, so that of all the constants
that occur in the above equations four constants still
remain undetermined when &, b and ¢ are given

Now if for each triplet of numbers a, b, ¢ we form ex-
pressions of the form (446) and sum up the corresponding
field components, we again obtain & solution of the field
equations, which, however, 18 now sufficiently general to
represent any possible arbitrary radiation whatsoever in
the hollow cube in question and in fact, in & unique form.
To prove this let us consider the initial state of the electro-
magnetic field. If we set 1= 0, we get for the general
initial state, from (446) :

E,=L‘egsin"%z-cosb%y-sin91z'—z
E.=Z.'e,,|sm?-ain'i’;—y-cos—c"lrz
; ek b

H, = — Z¥;sin>g -oos—l"?l- cos?

Hy= — Zh'zcos%m-sinb%y-coscﬂTz

Hy = — Eh’scosme- oosbil'-y-smc%'z
where the summation 18 to be performed over all the
numbers a, b, ¢ from 1 to ©. Now if the vectors E and B
are given for =0 in any way, but of course so that
div E=0 and div H=0 and so that the boundary con-
ditions are fulfilled, the above sums represent, the Fourier
expansions of the functions E and H; the coefficients of



™. ENERGY DISTRIBUTION 273

these expansions are, as we know, umquely determined
(cf II, § 39) and can be calculated by simple rules. This
then determines the course of events for all values of the
time 2.

Now if we wish to apply the solution just found to heat
radiation, we must, after what has been said in § 94,
assume the length of the edge of the cube I to be very

great compared with the wave-lengths A=§; from

this it follows by (447) that a®+ b2+ ¢? 18 very great.
Starting from this result, we can easily calculate how
many different triplets of numbers a, b, ¢ give a
vibration number which lies within the narrow spectral
interval between v and v+ Av. For by (447) these are
obviously characterized by the condition :

2ly\? 2l(v + Av)\?
(—c-) <aﬂ+b2+c2<<—c-> .. (450)
If we now depict every triplet of numbers a, b, ¢ by means
of a geometrical point by regarding the values of the
positive integers a, b, ¢ as co-ordinates m a rectangular
system of co-ordinates, the points so obtamed fill an
octant of infinite space, and the condition (450) states
that the distance of one of these points from the origin
of co-ordinates hes between the values 2—2" and A +4v) _: Av).
The required number is therefore equal to the number of
points which lie between the two octants of the spherical
surfaces that correspond to radii of the values just
mentioned. Smce a cube of volume 1 corresponds to every
point, this number is simply equal to the volume of the
thin spherical shell, that is, to :

1 2\2 21Av _ 4nl%R. Av . (481

grar (B) 2= e

No matter how small the frequency interval Av may be
assumed to be, we can nevertheless choose ! sufficiently
great to make this number have a very great value.
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§ 138. Now that we have succeeded by microscopic
considerations in dividing the most general process of
monochromatic - radiation that can take place in the
assumed cavity into a great but definite number of
mutually independent simply periodic vibrations of the
same frequency it suggests itself readily to us to compare
its thermodynamic probability with that of a system of
like but mutually imdependent simply periodic oscillators
of the same frequency such as have been investigated in
the precedng sections. For the question as to whether
the vibrations are of an electromagnetic or a mechanical
nature cannot affect the probability. The only essential
condition is that the microscopic events in the two
systems shall correspond uniquely, that 1s, that a definite
state of the system of oscillators shall be assigned to each
state of the cavity radiation and conversely. For if this
condition is fulfilled the number of microscopic states
that correspond to a definite macroscopic state does not
depend on whether the system of oscillators or the cavity
radiation is used in the discussion

But another point is also to be considered. According
to the preveding paragraph the state of radiation for a
definite frequency v is determined by four mutually
independent constants, whereas the state of vibration of
an oscillator with a single degree of freedom contains, by
(430), only two independent constants. From this we
must infer that iwo degrees of freedom belong to radiation
of frequency v, and that therefore a definite state of two
mutually independent operators corresponds to every
state of radiation of this frequency, and conversely.
Hence the processes of monochromatic radiation in the
cavity m question are by (451) statistically equivalent to
the vibrations of :

N=2.4"’::'A" L. (46Y)

simply periodic oscillators with & single degree of freedom,
and therr energy is given for a definite temperature 7' by
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(4387). If we also consider that the zero-point energy of
the radiation vanishes, by (330), we get for the energy of
the monochromatic cavity radiation in question :
8mhv3Av - 13 - -t
B8 T (1) . ey
and, dividing by the volume 2 of the hollow cube, we get
for the spatial density of this energy :

hy -1
8”’;—;’%1’-(@,&7-1) —w.d, . (454)

where we use the notation already introduced in (296)
From this it follows by (297) that the specific intensity
of the linearly polarized radiation in any direction is :

by -1
m=°-_“v=’ZL:. eﬁ_1) .. (455)

which represents the required law of radiation. If we
compare it with (360) we see that it agrees exactly with
‘Wien’s Displacement: Law.

From (436) and (452) we obtain for the characteristic
function ¥ of the monochromatic radiation in the volume
V:

Sty . ¥ -
_W=——T“—log(1—eﬂ) .. (458)

If we refer the specific intensity of radiation to the wave-
length A instead of to the frequency », we obtain from
(363) and (455) :
o/ -1 & -1
E= F(em -1)7 = %(e"" - 1) . (467)

as the specific intensity of a monochromatic linearly
polarized beam of wave-length A radiated by a black body
at the temperature 7' into empty space.

§ 139. For large values of AT (>c¢;) the expression
(457) merges into the equation :

E‘”‘d‘T?” Co. .. (4B8)
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In the same way (455) becomes :

Kv="%f’. S .. (459)
which is Rayleigh’s Law of Radiation. The same law
results if at any arbitrary temperature 7' we assume the
quantum of action  to become mfinitely small. Thus, by
§ 134, it represents the “ classical ” law of radiation. The
fact that this law is contrary to experimental results and
that therefore the classical theory is not generally valid
is simply seen by observing that the expression K,.d,
when integrated from v= 0 to »= o becomes infinitely
great by (459).

For small values of AT(<Lc,), on the other hand, we
get from (457) that :

Ly

Fee? (460)
This equation expresses Wien’s Law of Energy Distribu-
tion, which has been proved to be very successful in the
optical region but fails at high temperatures, because K,
actually increases beyond all limits when the temperature
increases to an unlimited extent, which is not the case in
(460) According to the most accurate measurements

B =

the value of the constant ¢, = % is:
ch
¢y= = 1430 om. x degree . . (461)

§ 140. The spatial total density  of cavity radiation at
the temperature 7' is given by (454) as :

o o o -
u=/ou.dv=sc4l/ v’(e"_"—l) 1-du
0
o/ BBy _8h
=86L,7‘L (CEETE N e
and by integrating each member in turn we get :

%= 48wh (kT)‘ 7

& T (462)
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where we have used the result :
1 1 1 o
1+§A+3_‘+Z4'+ e =®=]-0823. (463)

This is the Stefan—Boltzmann Law (326) or (328), in which
the constant now has the value :
_ 8 _ ot 464
%= 15 % O T T5em s/
§ 141, With the help of the measured values of ¢ and
¢, we can now easily calculate the universal constants
and k. For it follows from the equations (461) and (464)
that :
_ 1bocy? 1506 | | (465)
T 257’ 275
With the values given for the constants o in (331) and c,
in (461) we get :
h = 6:55. 1027 erg sec. } .. (466)
k = 1-373 . 10718 erg/degree

From equation (457) we get for the wave-length As, to
which the maximum of the radiated intensity E; corre-
sponds in the spectrum of black body radiation -

YL

Differentiation gives .

e"’+%—1=0

h k=

where, for brevity, we have set :
ch
ow ks
The root of this transcendental equation is :
B = 4-9651.

Accordingly, AT = oh_c , that is, constant, asis demanded

e B
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by Wien’s Displacement Law (365). The value of the
constant b comes out as :

b=

% _
B~ £0661

which agrees with the measured value (366).

§ 142. Our calculation of the energy distribution m the
normal spectrum was built up only on the statistical
definition of entropy. It was independent of any assump-
tion whatsoever about the nature of the processes by which
cavity radiation of any arbitrary distribution of energy is
transformed into normal cavity radiation. But, as we
have already had occasion to emphasize repeatedly in
§ 106 and § 125, it is obvious that in nature such processes,
which act as coupling agencies between the energies
of different spectral regions, must be active in promoting
normal energy distribution, and 1t is important to enquire
what sort of coupling nature actually makes use of in the
present case. Everything of course depends on gaining
a closer insight into the acts of emission and absorption
of radiation.

The atomic modelproposed by Bohr certainly approaches
reality most closely This model is an oscillator which can
have, a number of discrete energy-valuese, < €; < €5 . . .
<e < ...a88in§122 If such an atom is situated in a
field of radiation the absorption of radiant energy takes
place by the abrupt transition of the atom from a state
of lesser energy es to a state of greater emergy ep; the
emission of radiant energy 1s carried out by a transition
in the reverse direction. In this process the absorbed
or emitted energy, respectively, 1s always monochromatic,
and its frequency v is related to the abrupt change in the
energy of the atom as follows :

bw=e—e . . . . . (467
Hence the amount of transformed radiant energy is always

equal to /v, a so-called light-quantum or photon.
The stationary state in this exchange of energy between
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atomic energy and radiant energy 1s characterized by the
fact that over a very long time the transition of the atomic
energy from e t0 €, occurs just as often as the opposite
transition from e, to es. But we have here to take into
account the fact that during this time the atom finds itself,
by § 126, more often in the state with lesser energy ea
than in that with greater energy . For, by (407), the
corresponding numbers denoting these frequencies of
occurrence are .

e e
Wn = e Fi and wp = € FT . . (467a)
Zewt Zeif

Thus on the average the atom remains longer m the one
state than in the other. Now to represent the frequency
of transition of the atomic energy from e, to e and
conversely, Einstein has introduced some very plausible
assumptions which bring us to our goal by means of a simple
calculation. He assumes that the frequency with which
absorption occurs, that is, the transition from en to e, is
firstly proportional to the frequency number ws, and
secondly to the intensity of radiation which strikes the
atom and which has the frequency v determined by (467),
that is, equal to a&,ws. In the same way the frequency
with which the opposite transition occurs, the act of
emission, 18 equal to aK,w,. But besides the so-called
“induced ” emission caused by the incident radiation
there is also a so-called ‘‘ spontaneous ” emission which is
quite independent of the external field of radiation and
its frequency is expressed simply by Bw,. Here § like &
is & certain factor of proportionality which is independent
of the temperature. The condition for the stationary
state runs
aK,wn = oKWy + ﬂw,

and in view of (467) and (467a) it follows from this that :
K = E(e"% - 1)~1
o

in agreement with (455).
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Of course, 1n establishing the above condition of stability
we may just as well, and perhaps more “ picturesquely,”
use the concept of “ frequency " in & spatial sense, referring
to the simultaneous state of a great number of similarly
constituted atoms instead of iu the time sense, referring
to a single atom.



CHAPTER V

EQUATION OF STATE OF MATERIAL BODIES.
CHEMICAL CONSTANT. NERNST’S HEAT
THEOREM

§ 143. Ter most general and the most direct way of
arrving at the equation of state of any given material
body consists, as we have seen in Chapter II, in calculat-
ing the sum of the states by (419) and from it, by (420),
the characteristic function of the body. We shall first
carry out this process for a gas which consists of N
similar monatomic molecules and which occupies a given
volume V.

Our first step is to calculate the sum of the states.
For the sake of simplicity we shall assume that the gas
18 mm an ideal state, that is, that the energy of the gas
reduces itself essentially to the kinetic energy of the
molecules. Since the molecules are all of the same kind,
it suggests itself to us to treat the gas according to § 122
as a group of N similar elementary systems isolated from
one another, these systems being the molecules, and
accordingly to apply the formulee (404) and (402) for the sum
of the states of an elementary system and the characteristic
function of the total system ; this is founded on the fact
that every individual molecule can possess every value of
the energy and can occupy any place in the volume V.
But closer mspection reveals that this procedure is in-
admiggible. For the formule quoted hold only for the
case where the elementary systems are isolated from one
another. In deriving them we assumed that for every
distribution of states among the elementary systems there
is a partioular microseopio2sslta.te; that is, that if two
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elementary systems exchange their states a new micro-
scopic state of the total system results. But in the case
of similar molecules of & gas this assumption no longer
holds. For if two similar molecules of a gas exchange
their states, that is their positions and their velocities,
the microscopic state of the gas remains unchanged ; it is
distinguished in no way from the preceding microscopic
state, and does not therefore require to receive special
consideration again when the statistical weight is being
calculated. In spite of this antithesis in the primary
conditions the procedure above suggested has frequently
been applied and the error incurred has expressed itself
in a difficulty for which the whole theory has unjustifiably
been held responsible.

‘We shall avoid committing this error and shall therefore
encounter no such difficulty. Accordingly we do not
regard our gas, in the sense of § 122, as a group of many
similar isolated elementary systems, namely molecules,
but in the sense of § 127 as & single elementary system
having a certain number of degrees of freedom so that,
corresponding to a definite temperature, there 1s a perfectly
definite value for energy. Then the’expressions (419) and
(420) hold for the sum of the states Z and the characteristic
function ¥ of the gas.

To calculate the sum of the states Z we must take into
consideration all the different possible microscopic states
of the gas and substitute the values of their energies in
(419). This requires us to set up an hypothesis about the
constitution of the gas, on the basis of which we can derive
the posaible microscopic states; that is, we can quantise.
Several such hypotheses have been put forward in the
course of time; they naturally lead to different results.
But there is a very wide range over which the results
agree with one another; it is the only range which has so
far been accessible to direct measurement, since the cases
that can be realized physically all fall within this range.
It is characterized by the fact that in the phase-space of
the gas the size of an elementary system (427) is very
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small compared with the size of the whole region in
question. We shall see below, in (475), how this condition
expresses itself in physically measurable quantities. If
we assume it to be fulfilled we can write every individual
term in the sum of the states as a differential by multi-
plying it according to (427) by :

1
l=gpedr . . . . (468)
Further, the sum of the states (419) :
By
Z =X ¥T | .. (489)

becomes & phase integral which is to be taken over the
whole phase-space of the gas.

Since each of the N monatomic molecules moving freely
in space has three degrees of freedom, f= 3N, and the
differential element of space becomes, by (422) :

dr =dg, .dp; .dgy.dp,y. . . . Ay .dpgy - . (470)
where ¢y, ¢, - . . gsy denote the 3N rectangular co-
ordmates of the N molecules, and py, pg . . . Psy denote
the corresponding momentum oco-ordinates; so that the
energy of the gas1s:

1
E= m(plz +p2+ . Ppsf) + By . . (471)

where E, is used to designate the zero-point energy, that
is, the mternal energy of the gas molecules.

The integration is to be performed over all the different
microscopic states of the gas, each microscopic state
being counted once. Now if we integrate for every
molecule over all the values of its co-ordinates which are
permissible within the given volume and over all the
momentum components from — o to + o we do not
obtain the microscopic state of the gas once but just as
often in number as there are permutations between N
molecules, namely N | times For since the molecules
are all similar, every permutation of the co-ordinates and
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momenta gives a new integration term but no new miero-
scopic state. Accordingly the expression for the sum of
the states runs, according to (469), if we take into account
(468) and (470)

Z= thl d91 dpy . . disy.dpsy - (472)

where the integration is now to be taken for every molecule
over all the points within ¥ and over all the momenta
from —c to + co. Substituting the value (471) for
E and performing the integration over the 3N pomnt co-
ordinates g, we get, using Stirling’s formula (386) :

{IIPN j j / * ‘;sz; . dp, dpadp a}”- e ff'

Here the triple integral is equal to (27mmkT)}, consequently :

_{};IZ’V (21rmlcT)“}N.e_%' .. (473)

and by (420) :
N B
¥ kN log {% (kaT)’} )

This last equation expresses all the thermodynamic
properties of the gas.

The expression ¥ also gives us information about the
physical meamng of the condition which we introduced
by means of (468) and which states that » may be treated
a8 an mfinitely small quantity For we must have :

V (mkT)}
W‘> 1.

According to this the product of the atomic volume

% and the cube of 4/7 must not fall below a certain

(475)

order of magnitude, which depends on the nature of the gas,
if the formula (474) 1s stall to remain applicable. If this
condition is transgressed, more complicated relationships
replace the ordinary gas laws; these relationships are
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sometimes called degenerate, but here the word de-
generate 18 to be interpreted in quite a different way from
that of § 127. This phenomenon of gas degeneracy is
entirely foreign to classical theory, since the condition
(476) is always fulfilled for an infinitely small value of .
So gas degeneracy corresponds to the deviation of the law
of radiation (457) from Rayleigh’s Classical Law of Radia-
tion (458). Butitisto benoted that an essential difference
exists in that although the classical theory leads to Ray-
leigh’s Law of Radiation it does not lead to the expression
(474) of the characterstic function of an ideal gas. For
in classical theory the value of the infinitely small constant
h remains quite indeterminate (cf. § 133 above). It is
only the introduction of the quantum theory that leads
to an absolute value of the entropy and the characteristio
function. Concerning the significance of this circumstance
see § 160 below.

§ 144, We shall now derive the thermodynamic
properties of the gas under consideration from the ex-
pression (474) found for ¥. By (115) we obtain for the

pressure
o _ENT | (476)

If we compare this equation with the equation of state
of the ideal gas (96) we see that there is complete agree
ment if kN = Rn or:

E_n

= . .. (477

R=N (477)
That is, the universal gas constant % is nothing else than
the absolute gas constant in the equation of state, re-
ferred to molecules and not to moles. Substituting the
numerical values (466) and (55) we get :
r_1 -24
N 1:65.10 N C Y £
a8 the ratio of the number of moles to the number of
molecules, or, what amounts to the same, of the molecular
mags to the molar mass (Avogadro’s number).
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According to this the elementary charge of electricity,
that is, the charge of an electron or of a univalent ion in
electrostatic units is, by I, § 66 :

2-895 .10%.1-65.10"% = 4-78 . 10-10

which agrees with the measurements of R. A. Millikan.
Further, we obtain from (406) for the energy of the gas :

¥ 3
E=T=-§T=§kNT+E'0. .. (479)
That is, for the molecular heat at constant volume we

have ‘;—k ; and for the molar heat at constant volume

%, which, measured in calories, is about equal to 3,

according to (67). This agrees with the values given in
§ 31 for a monatomic gas.
Fimelly, the entropy of the gas is, by (406) :

&
8=v 472 bV log {% (2mw)*}- . (480)
which agrees with (109), except that here, too, the in-
definite additive constant of the classical theory is re-
Placed by a perfectly definite quantity.

§ 145. Whereas the energy fluctuations of the whole
gas at a definite temperature are only extremely small
each individual molecule undergoes considerable fluctua-
tions 1n its energy, and so also in its velocity. The law
governing these fluctuations results from the formula
(415) for the energy fluctuations of a system of arbitrary
degeneracy, which is immersed in a heat-bath of definite
temperature. Here e denotes any possible amount of
energy of the molecule, thus :

2
€n=—‘?2;;+e,,. C. .. (481)

where p denotes the total momentum /p. 2+ pr + pgt, €
the internal energy of the molecule, and g is the number
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of microscopic states of the molecule that correspond to
the energy interval between e and ex -+ dea :

gn = ;% / dgy dgs dgs dpy dps dps,

where the integration is to be performed with respect to
the three momentum components over the infinitely
small region between p and p+ dp; thus:

[y dp, dp, = mp* dp.

Since the value of (415) does not depend on & constant
factor 1 g, we get :

Wn =p’dp.e_;_;'(/:e—‘.';'.p”d47)_1

If we integrate, taking into account (481) and omitting
the index n which now becomes superfluous, we get :

51 e
= A[= . .. (482
w \/; e P (482)
or, if we introduce the velocity v by writing the mo-
mentum p= mv we get :

mo*
w= Ji_(%)} e #WT.p2y . . (483)
as the probability that the molecule will at any instant
have a velocity between v and v+ dv. Of course, this
expression also gives a measure of the number of times
that the velocity v occurs simultaneously in a great
number of molecules of a gas at temperature 7' (Maxwell’s
Law of the Distribution of Velocities). It is to be
observed that m and % occur only in the form of their
ratio, 80 that the probability law (483) remains correct
if we calculate with moles instead of with molecules.
§ 146 If the N molecules of the gas are not all of the
same kind, but sub-divide into different types 1,2, 8, . . .,
so that :

Ny+Ny+Ny+ ...=N . . (489
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the expression for the characteristic function becomes
correspondingly more general: this modification is
effected by making the calculation according to the same
method as was used above in § 143. In forming the sum
of the states Z we then have in place of the equation
(468) the following :
1=$dﬁd@dﬁ o
where the number of degrees of freedom of the system is
now :
f=8N, + 3N, + 3N, +

and dry, drg, . . . denote the elementary systems of the
phase-gpaces corresponding to the different kinds of gases.
The exponential function having the emergy E in the
exponent sub-divides by (471) into the product of the
exponential functions referring to the individual kinds
of gases, and the mtegrations over the elementary regions
are performed in exactly the same way as above Finally
the number of permutations & | in the denominator of
the sum of the states is replaced by the smaller product
Ny Ng! Ngl. . ... For the microscopic state of the gas
remains unchanged only when similar molecules are
permuted among themselves

‘We thus obtain as a result of the calculation the follow-
ing characteristic function of the ga.seous mixture :

¥ = ZkN; log (@mmkT)} Eo .. (485)
hw

where the summa.tlon refers to the md.1v1dua.1 kinds of
molecules. This expression is analogous to (474). We
obtain for the energy

E=§k(N1+Ng+"')T+E°. . (486)
which is analogous to (479); and for the entropy :
8 < ’Z,'kNl log {h,N (2mn1km)*} - (487)

which is analogous to (480).
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Comparison with (170) again shows the complete
agreement of these formulse with those of general thermo-
dynamics, except that here there 1s no indefiniteness,
not even in the additive constants a,, @y, ag . . . Thus
the additive constant is a definite quantity which is
characteristic of the gas It is called the *chemical
constant >’ of the gas.

§ 147. As a further example let us now calculate the
characteristic function of a solid body conssting of N
atoms supposed sumilar for the present. As regards the
constitution of the body we shall assume that the atoms,
or at least the very great majority of them, are subject to
quasi-elastic forces. The energy of the body is then of
the form .

E=U+K+E, .. . (488)
where U, the potential cnergy, 18 a homogeneous quadratic
function of the components of the relative displacements
of the V atoms, K 18 the kinetic energy, a purely quadratic
function of the 3N velocity components, and E, 1s the
zero-poimnt energy.

By iniroducing 3 switably chosen homogeneous linear
functions ¢, @y, . . . ¢sy of the displacement components
we can always arrange so that the two functions U and K,
expressed m terms of the co-ordinates g and their
derivatives ¢, become purely quadratic and that therefore
the dependence of the energy on the co-ordinates g and
the momenta p can be represented in the form :

B = ay0)® + byp® + ags® + bapa® + ¢ ¢ - + Hy . (489)
The motions of the N atoms can thus be reduced to the
superposition of the vibrations of 3/V independent linear
oscillators of the same kind as those considered in § 136.
A particular solution of thoequations of motion is obtained,
for example, 1f all the components ¢ and p are set equal to
zero except one, say ¢ and .. Then all the atoms of the
body vibrate with the same period, which is determined by
constants a: and b,, and 1 the same phase, sice all the
displacement components are proportional to the one
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co-ordinate ¢.. In other words, the most general motion
of the N atoms of the body may be regarded as composed
of 3N simply periodic stationary vibrations of the whole
atomic complex The slow vibrations correspond to the
elastic or acoustic spectrum, the rapid wvibrations to the
thermal spectrum. So we here have a spectral resolution
similar to that which occurs in cawvity radiation. Yet
there is an essential difference, firstly in the occurrence
of the zero-pomt energy E,, which cannot be left out of
account in & material body, and secondly i the fact that
the spectrum of the cavity radiation stretches to mfinity,
whereas in the spectrum of the atomic vibrations only
3N vibration periods occur.

From (419) we obtain for the sum of the states of the
body .

_z
Z =Xe ¥

If we here substitute the value of E from (489), Z is
represented as the product of the sums of the states of the
whole 3N oscillators, multiplied by a constant factor due
to the zero-point energy; that is, by (435)

Z=e—‘%<1—e—’%)—1- (1 —e_%)_l cen (490)

‘We must here interpose a remark. The fact that every
body sends out vapour into neighbouring space shows
that in reahity the atoms do not all act on one another
with quasi-elastic forces, but rather that there are certanly
some among them which move progressively forwards.
These ““ vagabond ’ or “ loosely bound ”’ atoms will not,
however, always be the same ones; rather there will be a
kind of continual exchange between them and the
““localized ”’ or * tightly bound ” atoms A consequence
of this 18 that after a fair length of time the atoms of the
body will partly or totally have changed their places, and
the question arses whether this circumstance will not
correspondingly increase the possible microscopic states of
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the body. If we take mto account, however, that the
atoms are all of the same kind it follows, just as above
the cage of a gas, that no new microscopie state 1s produced
by a permutation of the atoms and that therefore the
expression (490) for the sum of the states will also remain
unchanged when we take into account the process of
exchange among the atoms By (420) we get from (490)
as the characteristic function of the body .

E =3 I
¥Y=— T" - kf; log (1 —e "‘) (491)

If we denote the number of vibration frequencies v,
that lie 1n the interval between v and v+ dv by f(v)dv, so
that

/:f(v) v = 3N L. (492)
then .

Pk /:f(v) og(1— e )y . (499

It now remains for us to determme the function f(v) So
long as v 18 fairly small, that 1s, for long waves, we shall
obtain an approximate value for f(v) if we assume the
matter in the body to be continuously distributed. With
this assumption an approximate value for the required
number can be derived from a comparison with the
spectrum of cavity radiation treated above For in
equation (452), § 138, we found for the electromagnetic
vibrations mn an evacuated cavity space of volume V=P
the following value for the number of vibrations, each of
one degree of freedom, that lie m the frequency interval
vandv+dv: _

8n Vvidv

—F (494)
If we take mto consideration the fact that in electro-
magnetic radiation only transverse vibrations, in mechan-
ical vibrations transverse and longitudnal vibrations
occur, and that the number of the latter 1s half as great
ag that of the former for every direction of propagation, 1t
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is clear that in the present case the number (494) must be
ncreased by half its value, so that we obtam *

”"Q—V;”d" —fo)y . . . (495)
as the number of vibrations, each of one degree of freedom,
which belong to the interval between v and v + dv. Here
¢ denotes a certain mean value for the velocity of propaga-
tion of elastic waves 1 the substance of the body.

For greater values of v (495) of course loses its validity,
gince, on account of (492), the function f(v) must rapidly
converge to zero as v increases. But according to Debye
we obtain a very good approximate value if we regard
the formula (495) as exactly valid up to a certain frequency
vy, thus .

for v < v, we set f(v) = 12;3%2

(496)
but for » > v, we set f(v) =0

Moreover, we are encouraged to make this assumption
because at low temperatures the higher frequencies exert
no influence at all on the value of the mtegral in (491),
whereas at high temperatures the classical law of the
equipartition of energy retans its vahdity, as in (439),
in which the form of f(») is of no importance, smce we are
concerned only with the total number of the degrees of
freedom
The condition (492) serves to determune the limiting
frequency v, Combined with (496) this gives .
/“1 127 V2
o ¢

s[3N
Vl=qﬂlm. N 2Ty

If this value is inserted as the upper limit of the integral
in (498) and if we transform the integration variable by
means of .

dv = 3N.

Consequently :

z__}w
T kT
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and use the abbreviation :

i _ kg 3N 498
N )

we get as the expression for the characteristic function

_ By oNkT®
V=—-7-"%
Using (499) we get the entropy S from (406), the energy B
from (405) and the pressure p as a function of the temper-
ature 7' and the volume ¥V from (115). In calculating p
we must note that not only ® but also B, depends or the
volume V.
§ 148. For high temperatures (7'>©) only small
values of the variable of mtegration 2 come into question.
Hence we may write in the integral :

]
/ Tatlog (1 —eo)dz  (499)
0

log (1 —e2) =logz
and if we then perform the integration we get for the
characteristic function :
. 3Nkloge*T .. (500)
and for the energy :
E = T*al’ =E,+3NeT . . (501)

while the entropy comes out as .
e
+ = ... (502
8S=v T 3Nklog — 5 (502)

From (501) we get for the atomic heat of a solid body at
constant volume, corresponding to the empirical law of
Dulong and Petit :

o8 _ g . (503)

a value which is twice as great as the atomic heat given in
(479) for a monatomic gas.
For low temperatures (T <) the upper limit of the
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mtegral in (499) becomes infinitely great and we get by
repeated mtegration by parts :

-2 * a¥dz mt
fzzlog(l—e d.v=—§ w—i= &

Hence we get the characteristic function :

E,  =NkT3
and the energy *
o 3miNET*
B.= Tﬂﬁ =K, + 55 (505)

From this Debye’s law of atomic heats at constant volume

follows .
10E  12+%T?

Co = T = 55 (506)
For the entropy we get *
E  4nrANETS
S=¥+ =" (507)

This relation corresponds to Nernst’s Heat Theorem, which
may be formulated to express 1ts most general meaning
in the following way : the entropy of every body of finite
volume whach contans tly t parts
decreases to an wnlimted extent as the temperatme de-
creases to an unlvmited extent.

§ 149 If the body in question 18 chemically non-homo-
geneous, consisting, say, of Ny, N,, Ny . atoms of
different types, whose sum is *

N=Ny+Ny+Ng+ .

we may calculate the characteristic function by following
the same course as in § 147. An essential modification
occurs only at one pomt  For as we noticed in connexion
with equation (490) we must take into account not only
the microscopic states which contributed to the sum of the
states there found but also those microscopic states which |
result from all possible interchanges of the atoms of the
body; it was only because the atoms were all assumed to
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be of the same kind there that this correction did not
have to be apphed But if the atoms are, in part, of
different kinds an mterchange between two atoms of
different kinds signifies a new microscopic state and so
the sum of the states becomes increased by a new term.
As a result of the whole correction we shall get the sum
of the states (490) just as many times as there are different
permutations among the N atoms The sum of the
states will therefore have to be multiplied by .
. N!

or, by Stirling’s Theorem (386), by .

NV [N\ 1V /1\%
@@ - OO
where the concentrations ¢,, ¢, . are the same as 1n
(191). Hence we get for the required sum of the states
of the body .

1\ 71\ __AI-' _hr’x -1 _h_vi -1
Z=(c—l> (c_> c.oe -<1—e ‘-") '(1~e ‘) R
and, by (420), for the characteristic function .

B, 1= 3N e
¥~ T 1T l0g(1- e ¥) — k2N, loge, . (508)
T 1=1

an expresgion which differs from the corresponding
expression (491) for a chemically homogeneous body only
in having the additional term :

— kZNyloge,. . . . (509)

This term has no mfluence on the energy E, because rt does
not depend on the temperature; but it occurs m the
entropy and this 18 1n agreement with the result (190) of
the thermodynamic calculation, since kN = Rn.

For low temperatures, for example, the entropy of a
sohd solution becomes by (507) .

LiANRT® _ kZNyloge, . . (510)

8=
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The entropy, then, does not diminish to an unlimited
extent as the temperature decreases but approaches the
finite value (509).

It 18 fitting to recall here the general law stated at the
end of § 136, that if & body is cooled down sufficiently far
all thermodynamic concepts lose their meaning.

§ 150. The lmowledge of the absolute value of the
characteristic function and the entropy of a body enables
us to state completely the conditions of its physical and
chemical equilibrium m contact with other substances,
whereas general thermodynamics must always leave an
undetermmed additive constant in the equihbrium
formula. As an example we shall apply our results to the
equilibrium of & monatomic vapour in contact with its
condensate.

By (139) the equlibrium formula runs -

’ p(”_v')
'ﬁ_'ﬁ:-——.’l‘ ... (51D)

where  and » are not here to refer to the unit of mass but
to the mass of an atom of the gas, while §' and v’ denote
the corresponding quantities for the condensate

‘We shall agsume the temperature to be so low that in
the last equation all those terms may be neglected which
decrease without limit as the temperature decreases. If
we substitute (474) for i, (504) for y’ and neglect v’ in
comparison with v we get :

B, By 1
b log {;—ﬁ(zmwﬁ} -(B-Iy. =2

Here the constant multiplied by 71,- denotes the difference

of the zero-point energies of a gaseous and a condensed
atom, that 1s, the heat of vaporization 7, per atom at the
zero of temperature. If instead of the atomic volume v
we use (476) to introduce the pressure p, the last equation

becomes *

klog {%’ (211-ka)3} — % =
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or, if we now represent p, the pressure of the saturated
vapour, as & function of the temperature 7' we get :

logp = — ,:—1‘;, + log {(—22—:”)* (kT)'#"}- . (612)

‘We have for the relation between the mass of an atom and
amole:

R
M= "
and for the heat of vaporization in calories, by (42) :
_EBn
=%

Consequently if we measure the pressure in atmospheres,
that 18, divide p by 1,013,250 and take logs to the base
10 we have .

logp = — %loge.)%’-{»glogfl’ +:—;10gM+

1°3{<£%%>E'iﬁi§%§6}

Taking the value of a from (42), R from (55), k and &
from (466) we get :

logp= — 0219 ‘%‘,’+ 2:5.1logT + 1-5log M — 1-59 (513)

This formula agrees with the results of measurement for
the pressure of the saturated vapour of monatomic gases
in most cases and so remarkably justifies our faith in the
assumption that there is an absolute entropy as derived
from the quantum theory. In applying it we must note
that the numerical value of the chemical constant on the
right depends on the units chosen for pressure, temperature
and atomic weight. Any deviation of the measured
value from the theoretical value must be interpreted in
the sense that the atoms are either not all of the same
kind or are not invariable. In the first case the constant
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(509) becomes added to the expression for the character-
istic function; in the second case the equation (471) for
the energy of the gas is to be correspondingly generalized,
since then not only the kinetic energies of the atomic
motions but also other kinds of energy must be taken into
consideration.
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