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PREFACE

The idea may seem quixotic, but it is nevertheless the

author's confident hope that this book will give a fresh interest

to the story of Greek mathematics in the eyes both of

mathematicians and of classical scholars.

For the mathematician the important consideration is that

the foundations of mathematics and a great portion of its

content are Greek. The Greeks laid down the first principles,

invented the methods ah initio, and fixed the terminology.

Mathematics in short is a Greek science, whatever new
developments modern analysis has brought or may bring.

The interest of the subject for the classical scholar is no

doubt of a different kind. Greek mathematics reveals an

important aspect of the Greek genius of which the student of

Greek culture is apt to lose sight. Most people, when they

think of the Greek genius, naturally call to mind its master-

pieces in literature and art with their notes of beauty, truth,

freedom and humanism. But the Greek, with his insatiable

desire to know the true meaning of everything in the uni-

verse and to be able to give a rational explanation of it, was

just as irresistibly driven to natural science, mathematics, and

exact reasoning in general or logic. This austere side of the

Greek genius found perhaps its most complete expression in

Aristotle. Aristotle would, however, by no means admit that

mathematics was divorced from aesthetic ; he could conceive,

he said, of nothing more beautiful than the objects of mathe-

matics. Plato 'delighted in geometry and in the wonders of

numbers ; (iyea)fj.irprjTos /J-rjSel^ da-irai, said the inscription

over the door of the Academy. Euclid was a no le.ss typical

Gi'eek. Indeed, seeing that so much of Greek is mathematics,
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it iH arguable that, if one would understand the Greek genius

fully, it Avould be a good plan to begin with their geometry.

The story of Greek mathematics has been written before.

Dr. James Gow did a great service by the publication in 1884

of his Short Hidory of Greek Mathematics, a scholarly and

useful work which has held its own and has been quoted with

respect and appreciation by authorities on the history of

mathematics in all parts of the world. At the date when he

wrote, however, Dr. Gow had necessarily to rely upon the

works of the pioneers Bretschneider, Hankel, AUman, and

Moritz Cantor (first edition). Since then the subject has been

very greatly advanced ; new texts have been published, im-

portant new doeumejits have been discovered, and researches

by scholars and mathematicians in different countries have

thrown light on many obscure points. It is, therefore, high

time for the complete story to be rewritten.

It is true that in recent years a number of attractive

histories of mathematics have been published in England and

America, but these have only dealt with Greek mathematics

as part of the larger subject, and in consequence the writers

have been precluded, by considerations of space alone, from

presenting the work of the Greeks in sufficient detail.

The same remark applies to the German histories of mathe-

matics, even to the great work of Moritz Cantor, who treats

of the history of Greek mathematics in about 400 pages of

vol. i. While no one would wish to disparage so great a

monument of indefatigable research, it was inevitable that

a book on such a scale would in time prove to be inadequate,

and to need correction in details; and the later editionshave

unfortunately failed to take sufficient account of the new

materials which have become available since the first edition

saw the light.

The best history of Greek mathematics which exists at

present is undoubtedly that of Gino Loria under the title

Le acieiize emtte iiell' antica Grecla (second edition 1914,
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Ulrico Hoepli, Milano). Professor Loria arranges liis material

in five Books, (1) on pre-Euclidean geometry, (2) on tlie

Golden Age of Greek geometry (Euclid to Apollonius), (3) on

applied mathematics, including astronomy, sphaeric, optics,

&c., (4) on the Silver Age of Greek geometry, (5) on the

arithmetic of the Greeks. Within the separate Books the

arrangement is chronological, under the names of persons or

schools. I mention these details because they raise the

question whether, in a history of this kind, it is best to follow

chronological order or to arrange the material according to

subjects, and, if the latter, in what sense of the word 'subject'

and within what limits. As Professor Loria says, his arrange-

ment is ' a compromise between arrangement according to

subjects and a strict adherence to chronological order, each of

which plans has advantages and disadvantages of its ow^n '.

In this book I have adopted a new arrangement, mainly

according to subjects, the nature of which and the reasons for

which will be made clear by an illustration. Take the case of

a famous problem which plays a great part in the history of

Greek geometry, the doubling of the cube, or its equivalent,

the finding of two mean proportionals in continued proportion

between tw^o given straight lines. Under a chronological

arrangement this problem comes up afresh on the occasion of

each new solution. Now it is obvious that, if all the recorded

solutions are collected together, it is much easier to see the

relations, amounting in some eases to substantial identity,

between them, and to get a comprehensive view of the history

of the problem. I have therefore dealt with this problem in

a separate section of the chapter devoted to ' Special Problems',

and I have followed the same course with the other famous

problems of squaring the circle and trisecting any angle.

Similar considerations arise with regard to certain well-

defined subjects such as conic sections. It would be incon-

venient to interrupt the account of Menaechmus's solutiou

of the problem of the"two mean proportionals in order to
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consider the way in which he may have discovered the conic

sections and their fundamental properties. It seems to me

much better to give the complete story of the origin and

development of the geometry of the conic sections in one

place, and this has been done in the chapter on conic sections

associated with the name of Apollonius of Perga. Similarly

a chapter has been devoted to algebra (in connexion with

Diophantus) and another to trigonometry (under Hipparchus,

Menelaus and Ptolemy).

At the same time the outstanding personalities of Euclid

and Archimedes demand chapters to themselves. Euclid, the

author of the incomparable Elements, wrote on almost all

the other branches of mathematics known in his day. Archi-

medes's work, all original and set forth in treatises which are

models of scientific exposition, perfect in form and style, was

even wider in its range of subjects. The imperishable and

unique monuments of the genius of these two men must be

detached from their surroundings and seen as a whole if we

would appreciate to the full the pre-eminent place which they

occupy, and will hold for all time, in the history of science.

The arrangement which I have adopted necessitates (as does

any other order of exposition) a certain amount of repetition

and cross-references ; but only in this way can the necessary

unity be given to the whole narrative.

One other point should be mentioned. It is a defect in the

existing histories that, while they state generally the contents

of, and the main propositions proved in, the great treatises of

Archimedes and Apollonius, they make little attempt to

describe the procedure by which the results are obtained.

I have therefore taken pains, in the most significant cases,

to show the course of the argument in sufficient detail to

enable a competent mathematician to grasp the method used

and to apply it, if he will, to other similar investigations.

The work was begun in 1913, but the bulk of it was

written, as a distraction, during the first three years of the
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war, the hideous course of which seemed day by day to

enforce the profound truth conveyed in the answer of Plato

to the Delians. When they consulted him on the problem set

them by the Oracle, namely that of duplicating the cube, he

replied, ' It must be supposed, not that the god specially

wished this problem solved, but that he would have the

Greeks desist from war and mckedness and cultivate the

Muses, so that, their passions being assuaged by philosophy

and mathematics, they might live in innocent and mutually

helpful intercourse with one another '.

Truly

Greece and her foundations are

Built below the tide of war,

Based on the cryst&.lline sea

Of thought and its eternity.

T. L. H.
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INTRODUCTORY

The Greeks and mathematics.

It is an encouraging sign of the times that more and more
effort is beiag directed to promoting a due appreciation and
a clear understanding of the gifts of the Greeks to mankind.
What we owe to Greece, what the Greeks have done for

civilization, aspects of the Greek genius : such are the themes
of many careful studies which have made a wide appeal and
will surely produce their effect. In truth all nations, in the

West at all events, have been to school to the Greeks, in art,

literature, philosophy, and science, the things which are essen-

tial to the rational use and enjoyment of human powers and
activities, the things which make life worth living to a rational

human being. ' Of all peoples the Greeks have dreamed the

di-eam of life the best.' And the Greeks were not merely the

pioneers in the branches of knowledge which they invented

and to which they gave names. What they began they carried

to a height of perfection which has not since been surpassed

;

if there are exceptions, it is only where a few crowded centuries

were not enough to provide the accumulation of experience

required, whether for the purpose of correcting hypotheses

which at first could only be of the nature of guesswork, or of

suggesting new methods and machinery.

Of all the manifestations of the Greek genius none is more

impressive and even awe-inspiring than that which is revealed

by the history of Greek mathematics. Not only are the range

and the sum of what the Greek mathematicians actually

accomplished wonderful in themselves ; it is necessary to bear

in mind that this mass of original work was done in an almost

incredibly short space of time, and in spite of the comparative

inadequacy (as it would seem to us) of the only methods at

their disposal, namely those of pure geometry, supplemented,

where necessary, by the -ordinary arithmetical operations.



2
• INTRODUCTORY

Let us, confining ourselves to the main subject of pure

geometry by way of example, anticipate so far as to mark

certain definite stages in its development, with the intervals

separating them. In Thales's time (about 600 B.C.) we find

the first glimmerings of a- theory of geometry, in the theorems

that a circle is bisected by any diameter, that an isosceles

triangle has the angles opposite to the equal sides equal, and

(if Thales really discovered this) that the angle in a semicircle

is a right angle. Rather more than half a century later

Pythagoras was taking the first steps towards the theory of

numbers and continuing the work of making geometry a

theoretical science ; he it was who first made geometry one of

the subjects of a liberal education. The Pythagoreans, before

the next century was out (i. e. before, say, 450 b. c), had practi-

cally completed the subject-matter of Books I-II, IV, VI (and

perhaps III) of Euclid's Elements, including all the essentials

of the 'geometrical algebra' which remained fundamental in

Greek geometry ; the only drawback was that their theory of

proportion was not applicable to incommensurable but only

to commensurable magnitudes, so that it proved inadequate

as soon as the incommensurable came to be discovered.

In the same fifth century the difficult problems of doubling

the cube and trisecting any angle, which are beyond the

geometry of the straight line and circle, were not only mooted

but solved theoretically, the former problem having been first

reduced to that of finding two mean proportionals in continued

proportion (Hippocrates of Chios) and then solved by a

remarkable construction in three dimensions (Archytas), while

the latter was solved by means of the curve of Hippias of

Elis known as the quadratrix ; the problem of squaring the

circle was also attempted, and Hippocrates, as a contribution

to it, discovered and squared three out of the five lunes which
can be squared by means of the straight line and circle. In

the fourth century Eudoxus discovered the great theory of

proportion expounded in Euclid, Book V, and laid down the

principles of the method of exhaustion for measuring areas and
volumes ; the conic sections and their fundamental properties

were discovered by Menaechmus; the theory of irrationals

(probably discovered, so far as V'2 is concerned, by the

early Pythagoreans) was generalized by Theaetetus ; and the
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geometry of the sphere was worked out in systematic trea-

tises. About the end of the century Euclid wrote his

Elements in thirteen Books. The next century, the third,

is that of Archimedes, who may be said to have anticipated

the integral calculus, since, by performing what are practi-

cally integrations, he found the area of a parabolic segment

and of a spiral, the surface and volume of a sphere and a

segment of a sphere, the volume of any segment of the solids

of revolution of the second degree, the centres of gravity of

a semicircle, a parabolic segment, any segment of a paraboloid

of revolution, and any segment of a sphere or spheroid.

Apollonius of Perga, the ' great geometer ', about 200 B. c,

completed the theory of geometrical conies, with specialized

investigations of normals as maxima and minima leading

quite easily to the determination of the circle of curvature

at any point of a conic and of the equation of the evolute of

the conic, which with us is part of analytical conies. With

Apollonius the main body of Greek geometry is complete, and

we may therefore fairly say that four centuries sufficed to

complete it.

But some one will say, how did all this come about? What
special aptitude had the Greeks for mathematics ? The answer

to this question is that their genius for mathematics was

simply one aspect of their genius for philosophy. Their

mathematics indeed constituted a large part of their philo-

sophy down to Plato. Both had the same origin.

Conditions favouring the development of philosophy

among the Greeks.

All men by nature desire to know, says Aristotle.^ The

Greeks,<beyond any other people of antiquity, possessed the

love of knowledge for its own sake ; with them it amounted

to an instinct and a passion.^ We see this first of all in their

love of adventure. It is characteristic that in the Odyssey

Odysseus is extolled as the hero who had ' seen the cities of

many men and learned their mind ',^ often even taking his life

in his hand, out of a pure passion for extending his horizon,

' Arist. Metaph. A. 1, 980 a 21.

2 Cf. Butcher, Some Aspects of the Greek Genius, 1892, p. 1.

s Od. i. 3.

B 2
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as when he went to see the Cyclopes in order to ascertain ' what

sort of people they were, whether violent and savage, with no

sense oi" justice, or hospitable and godfearing '.^ Coming

nearer to historical times, we iind philosophers and statesmen

travelling in order to benefit by all the wisdom that other

nations with a longer history had gathered during the cen-

turies. Thales travelled in Egypt and spent his time with

the priests. Solon, according to Herodotus,^ travelled 'to see

the world' (Oecopir]^ uveKiv), going to Egypt to the court of

Amasis,' and visiting Croesus at Sardis. At Sardis it was not

till ' after he had seen and examined everything ' that he had

the famous conversation with Croesus ; and Croesus addressed

him as the Athenian of whose wisdom and peregrinations he

had heard great accounts, proving that he had covered much
ground in seeing the world and pursuing philosophy.

(Herodotus, also a great traveller, is himself an instance of

the capacity of the Greeks for assimilating anything that

could be learnt from any other nations whatever; and,

although in Herodotus's case the object in view was less the

pursuit of philosophy than the collection of interesting infor-

matioUj yet he exhibits in no less degree the Greek passion

for seeing things as they are and discerning their meaning

and mutual relations ;
' he compares his reports, he weighs the

evidence, he is conscious of his own office as an inquirer after

truth '.) But the same avidity for learning is best of all

illustrated by the similar tradition with regard to Pythagoras's

travels. lamblichus, in his account of the life of Pythagoras,^

says that Thales, admiring his remarkable abilitj^, communi-
cated to him'all that he knew, but, pleading his own age and

failing strength, advised him for his better instruction to go

and study with the Egyptian priests. Pythagoras, visiting

Sidon on the way, both because it was his birthplace and
because he properly thought that the passage to Egypt would
be easier by that route, consorted there with the descendants

of Mochus, the natural philosopher and prophet, and with the

other Phoenician hierophants, and was initiated into all

the rites practised in Biblus, Tyre, and in many parts of

Syria, a regimen to which he submitted, not out of religious

1 Od. ix. 174-6. 2 Herodotus, i. 30.
" lamblichus, De vita Pythagorica, cc. 2-4.
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enthusiasm, ' as you might think ' (wy dv ns dnXm vnoXd^oi),
but much more through love and desire for philosophic
inquiry, and in order to secure that he should not overlook
any fragment of knowledge worth acquiring that might lie

hidden in the mysteries or ceremonies of divine worship

;

then, understanding that what he found in Phoenicia was in

some sort an offshoot or descendant of the wisdom of the
priests of Egypt, he concluded that he should acquire learning

more pure and more sublime by going to the fountain-head in

Egypt itself.

' There ', continues the story, ' he studied with the priests
and prophets and instructed himself on every possible topic,
neglecting no item of the instruction favoured by the best
judges, no individual man among those who were famous for
their knowledge, no rite practised in the country wherever it

was, and leaving no place unexplored where he thought he
could discover something more. . . . And so he spent 22
years in the shrines throughout Egypt, pursuing astronomy
and geometry and, of set purpose and not by fits and starts or
casually, entering into all the rites of divine worship, until he
was taken captive by Cambyses's force and carried off to

Babylon, where again he consorted with the Magi, a willing
pupil of mlling masters. By them he was fully instructed in

their solemn rites and religious worship, and in their midst he
attained to the highest eminence in arithmetic, music, and the
other branches of learning. After twelve years more thus
spent he returned to Samos, being then about 56 years old.'

Whether these stories are true in their details or not is

a matter of no consequence. They represent the traditional

and universal view of the Greeks themselves regarding the

beginnings of their philosophy, and they reflect throughout

the Greek spirit and outlook.

From a scientific point of view a very important advantage

possessed by the Greeks was their remarkable capacity for

accurate observation. This is attested throughout all periods,

by the similes in Homer, by vase-paintings, by the ethno-

graphic data in Herodotus, by the ' Hippocratean ' medical

books, by the biological treatises of Aristotle, and by the

history of Greek astronomy in all its stages. To take two

commonplace examples. Any person who examines the

under-side of a horse's hoof, which we call a ' frog ' and the
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Greeks called a 'swallow', will agree that the latter is

the more accurate description. Or again, what exactness

of perception must have been possessed by the architects and

workmen to whom we owe the pillars which, seen from below,

appear perfectly straight, but, when measured, are found to

bulge out (eVraaiy).

A still more essential fact is that the Greeks were a race of

thinkers. It was not enough for them to know the fact (the

on) ; they wanted to know the why and wherefore (the Slo. ti),

and they never rested until they were able to give a rational

explanation, or what appeared to them to be such, of every

fact or phenomenon. The history of Greek astronomy fur-

nishes a good example of this, as well as of the fact that no

visible phenomenon escaped their observation. We read in

Cleomedes^ that there were stories of extraordinary lunar

eclipses having been observed which ' the more ancient of the

mathematicians ' had vainly tried to explain ; the supposed
' paradoxical ' case was that in which, while the sun appears

to be still above the western horizon, the eclipsed moon is

seen to rise in the east. The phenomenon was seemingly

inconsistent with the recognized explanation of lunar eclipses

as caused by the entrance of the moon into the earth's

shadow ; how could this be if both bodies were above the

horizon at the same time ? The ' more ancient ' mathemati-

cians tried to argue that it was possible that a spectator

standing on an eminence of the spherical earth might see

along the generators of a cone, i.e. a little downwards on all

sides instead of merely in the plane of the horizon, and so

might see both the sun and the moon although the latter was
in the earth's shadow. Cleomedes denies this, and prefers to

regard the whole story of such cases as a fiction designed

merely for the purpose of plaguing astronomers and philoso-

phers ; but it is evident that the cases had actually been

observed, and that astronomers did not cease to work at the

problem until they had found the real explanation, namely

that the phenomenon is due to atmospheric refraction, which

makes the sun visible to us though it is actually beneath the

horizon. Cleomedes himself gives this explanation, observing

that such cases of atmospheric refraction were especially

^ Cleomedes, De motii circulari, ii. 6, pp. 218 sq.
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noticeable in the neighbourhood of the Black Sea, and com-
paring the well-known experiment of the ring at the bottom
of a jug, where the ring, just out of sight when the jug is

empty, is brought into view when water is poured in. We do
not know who the ' more ancient ' mathematicians were who
were first exercised by the ' paradoxical ' case ; but it seems
not impossible that it was the observation of this phenomenon,
and the difiiculty of explaining it otherwise, which made
Anaxagoras and others adhere to the theory that there are

other bodies besides the earth which sometimes, by their

interposition, cause lunar eclipses. The story is also a good
illustration of the fact that, with the Greeks, pure theory

went hand in hand with observation. Observation gave data

upon which it was possible to found, a theory ; but the theory
had to be modified from time to time to suit observed new
facts ; they had continually in mind the necessity of ' saving

the phenomena' (to use the stereotyped phrase of Greek
astronomy). Experiment played the same part in Greek
medicine and biology.

Among the diflerent Greek stocks the lonians who settled

on the coast of Asia Minor were the most favourably situated

in respect both of natural gifts and of environment for initiat-

ing philosophy and theoretical science. When the colonizing

spirit first arises in a nation and fresh fields for activity and

development are sought, it is naturally the younger, more

enterprising and more courageous' spirits who volunteer to

leave their homes and try their fortune in new countries

;

similarly, on the intellectual side, the colonists will be at

least the equals of those who stay at home, and, being the

least wedded to traditional and antiquated ideas, they will be

the most capable of striking out new lines. So it was with

the Greeks who founded settlements in Asia Minor. The

geographical position of these settlements, connected with the

mother country by intervening islands, forming stepping-

stones as it were from the one to the other, kept them in

continual touch with the mother country ; and at the same

time their geographical horizon was enormously extended by

the development of commerce over the whole of the Mediter-

ranean. The most adventurous seafarers among the Greeks

of Asia Minor, the Phocaeans, plied their trade successfully
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as far as the Pillars of Hercules, after they had explored the

Adriatic sea, the west coast of Italy, and the coasts of the

Ligurians and Iberians. They are said to have founded

Massalia, the most important Greek colony in the western

countries, as earl}^ as 600 B. C. Gyrene, on the Libyan coast,

was founded in the last third of the seventh century. The

Milesians had, soon after 800 B.C., made settlements on the

east coast of the Black Sea (Sinope was founded in 785) ; Iho

first Greek settlements in Sicily were made from Euboea and

Corinth soon after the middle of the eighth century (Syracuse

734). The ancient acquaintance of the Greeks with the south

coast of Asia Minor and with Cyprus, and the establishment

of close relations with Egypt, in which the Milesians had a

large share, belongs to the time of the reign of Psammetichus I

(664-610 B.C.), and many Greeks had settled in that country.

The free communications thus existing with the whole of

the known world enabled complete information to be collected

with regard to the different conditions, customs and beliefs

prevailing in the various countries and rac^ ; and, in parti-

cular, the Ionian Greeks had the inestimable advantage of

being in contact, directly and indirectly, with two ancient

civilizations, the Babylonian and the Egyptian.

Dealing, at the beginning of the Metaphysics, with the

evolution of science, Aristotle observes that science was
preceded by the arts. The arts were invented as the result

of general notions gathered from experience (which again was
derived from the exercise of memory) ; those arts naturally

came first which are directed to supplying the necessities of

life, and next came those which look to its amenities. It was
only when all such arts had been established that the sciences,

which do not aim at supplying the necessities or amenities

of life, were in turn discovered, and this happened first in

the places where men began to have leisure. This is why
the mathematical arts were founded in Egypt ; for there the

priestly caste was allowed to be at leisure. Aristotle does not

here mention Babylon; but, such as it was, Babylonian
science also was the monopoly of the priesthood.

It is in fact true, as Gomperz says,^ that the first steps on
the road of scientific inquiry were, so far as we know from

' Griechische Denker, i, pp. 36, 37.
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history, never accomplished except where the existence of an
organized caste of priests and scholars secured the necessary-

industry, with the equally indispensable continuity of tradi-

tion. But in those very places the first steps were generally
the last also, because the scientific doctrines so attained tend,

through their identification with religious prescriptions, to

become only too easily, like the latter, mere hfeless dogmas.
It was a fortunate chance for the unhindered spiritual de-

velopment of the Greek people that, while their predecessors

in civilization had an organized priesthood, the Greeks never
had. To begin with, they could exercise with perfect freedom
their power of unerring eclecticism in the assimilation of every
kind of lore. ' It remains their everlasting glory that they

discovered and made use of the serious scientific elements in

the confused and complex mass of exact observations and
superstitious ideas which constitutes the priestly wisdom of

the East, and threw all the fantastic rubbish on one side.'
^

For the same reason, while using the earlier work of

Egyptians and Babylonians as a basis, the Greek genius

could take an independent upward course free from every

kind of restraint and venture on a flight which was destined

to cany it to the highest achievements.

The Greeks then, with their ' unclouded clearness of mind '

and their freedom of thought, untrammelled by any ' Bible ' or

its equivalent, were alone capable of creating the sciences as

they did create them, i.e. as living things based on sound first

principles and capable of indefinite development. It was a

great boast, but a true one, which the author of the Epinomis
made when he said, ' Let us take it as an axiom that, whatever

the Greeks take from the barbarians, they bring it to fuller

perfection '.^ He has been speaking of the extent to which

the Greeks had been able to explain the relative motions and

speeds of the sun, moon and planets, while admitting that

there was still much progress to be made before absolute

certainty could be achieved. He adds a characteristic sen-

tence, which is very relevant to the above remarks about the

Greek's free outlook

:

' Let no Greek ever be afraid that we ought not at any time

to study things divine because we are mortal. We ought to

' Cumont, Neue Jahrhiicher, xxiv, 1911, p. 4. ^ Epinomis, 987 D.
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maintain the very eontiaiy view, namely, that God cannot

possibly be without intelligence or be ignorant of human
nature : rather he knows that, when he teaches them, men
will follow him and learn what they are taught. And he is

of course perfectly aware that he does teach us, and that we
learn, the very subject we are now discussing, number and
counting; if he failed to know this, he would show the

greatest want of intelligence ; the God we speak of would in

fact not know himself, if he took it amiss that a man capable

of learning should learn, and if he did not rejoice unreservedly

with one who became good by divine influence.'

'

Nothing could well show more clearly the Greek conviction

that there could be no opposition between religion and scien-

tific truth, and therefore that there could be no impiety in the

pursuit of truth. The passage is a good parallel to the state-

ment attributed to Plato that Oebs del yeoofJieTpei.

Meaning and classification of mathematics.

The words fiaOrjfxaTa and fiaOrj/iaTLKOs do not appear to

have been definitely appropriated to the special meaning of

mathematics and mathematicians or things mathematitjal until

Aristotle's time. With Plato jidOrjiia is quite general, mean-

ing any subject of instruction or study; he speaks of Koka

fiaO-qfjiaTa, good subjects of instruction, as of KaXd eTj-iTrjSev-

fiara, good pursuits, of women's subjects as opposed to men's,

of the Sophists hawking sound /laOij/xaTa ; what, he asks in

the Republic, are the greatest /ia6rj/j.aTa ? and he answers that

the greatest uddrifia is the Idea of the Good.^ But in the

Laws he speaks of rpia jxaOrjfiaTa, three subjects, as fit for

freeborn men, the subjects being arithmetic, the science of

measurement (geometry), and astronomy ^ ; and no doubt the

pre-eminent place given to mathematical subjects in his scheme

of education would have its effect in encouraging the habit of

speaking of these subjects exclusively as ixaOrjfiaTa. The

Peripatetics, we are told, explained the special use of the

word in this way ; they pointed out that, whereas such things

as rhetoric and poetry and the whole of popular fiovcnK-q can

be understood even by one who has not learnt them, the sub-

jects called by the special name oi /laOrjuara cannot be known

^ Epinomis, 988 a. ° Eepulilic, vi. 506 a. '' Lmcs, vii. 817 E.
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by any one who has not first gone through a course of instruc-

tion in them ; they concluded that it was for this reason that

these studies were called /xadrj/iaTLK^.^ The special use of the

word jiaOrjjjLaTLKri seems actually to have originated in the

school of Pythagoras. It is said that the esoteric members
of the school, those who had learnt the theory of know-
ledge in its most complete form and with all its elaboration

of detail, were known as fiaO-qjiaTiKoi, mathematicians (as

opposed to the dKovafiariKOL, the exoteric learners who were

entrusted, not with the inner theory, but only with the prac-

tical rules of conduct) ; and, seeing that the Pythagorean

philosophy was mostly mathematics, the term might easily

come to be identified with the mathematical subjects as

distinct from others. According to Anatolius, the followers

of Pythagoras are said to have applied the term /xaOrj/xaTiK-i]

more particularly to the two subjects of geometry and

arithmetic, which had previously been known by their own
separate names only and not by any common designation

covering both.^ There is also an apparently genuine frag-

ment of Archytas, a Pythagorean and a contemporary and

friend of Plato, in which the word /ladTJiiara appears as

definitely appropriated to mathematical subjects :

' The mathematicians {toI nepl to. fiadrj/xaTa) seem to me to

have arrived at correct conclusions, ancl it is not therefore

surprising that they have a true conception of the nature of

each individual thing : for, having reached such correct con-

clusions regarding the nature of the universe, they were

bound to see in its true light the nature of particular things

as well. Thus they have handed down to us clear knowledge

about the speed of the stars, their risings and settings, and

about geometry, arithmetic, and sphaeric, and last, not least,

about music ; for these naBrjjiaTa seem to be sisters.' ^

This brings us to the Greek classification of the different

branches of mathematics. Archytas, in the passage quoted,

specifies the four subjects of the Pythagorean quadrivium,

geometry, arithmetic, astronomy, and music (for 'sphaeric'

means astronomy, being the geometry of the sphere con-

' Anatolius in Hultsoh's Heron, pp. 276-7 (Heron, vol. iv, Heiberg,

p. 160. 18-24). _ ^ „ .,

2 Heron, ed. Hultsch, p. 277 ; vol. iv, p. 160. 24-162. 2, Heiberg.

' Diels, VorsoJcnitikef, i", pp. 330-1.
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sidered solely with reference to the problem of accounting for

the motions of the heavenly bodies) ; the same list of subjects

is attributed to the Pythagoreans by Nicomachus, Theon of

Smyrna, and Proclus, only in a different order, arithmetic,

music, geometry, and sphaeric ; the idea in this order was

that arithmetic and music were both concerned with number

{ttoo-ov), arithmetic with number in itself, music with number

in relation to something else, while geometry and sphaeric were

both concerned with magnitude (tttjXikoi'), geometry with mag-

nitude at rest, sphaeric with magnitude in motion. In Plato's

curriculum for the education of statesmen the same subjects,

with the addition of stereometry or solid geometry, appear,

arithmetic first, then geometry, followed by solid geometry,

astronomy, and lastly harmonics. The mention of stereometry

as an independent subject is Plato's own idea ; it was, however,

merely a formal addition to the curriculum, for of course

solid problems had been investigated earlier, as a part of

geometry, by the Pythagoreans, Democritus and others.

Plato's reason for the interpolation was partly logical. Astro-

nomy treats of the motion of solid bodies. There is therefore

a gap between plane geometry and astronomy, for, after con-

sidering plane figures, we ought next to add the third dimen-

sion and consider solid figures in themselves, before passing

to the science which deals with such figures in motion. But

Plato emphasized stereometry for another reason, namely that

in his opinion it had not been . sufficiently studied. 'The

properties of solids do not yet seem to have been discovered.'

He adds :

' The reasons for this are two. First, it is because no State
liolds them in honour that these problems, which are difficultj

are feebly investigated
; and, secondly, those who do investi-

gate them are in need of a superintendent, without whos^
guidance they are not likely to make discoveries. . But, to

begin with, jt is difiicult to find such a superintendent, and
then, even supposing him found, as matters now stand, those
who are inclined to these researches would be prevented by
their self-conceit from paying any heed to him.'^

I have translated coy vvu e'xei (' as matters now stand ') in

this passage as meaning ' in present circumstances ', i.e. so

^ Plato, RepuUic, vii. 528 A-c.
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long as the director has not the authority of t)ie State behind

him : this seems to be the best interpretation in view of the

whole context ; but it is possible, as a matter of construction,

to copnect the phrase with the preceding words, in which case

the meaning would be ' and, even when such a superintendent

has been found, as is the case at present', and Plato would

be pointing to some distinguished geometer among his con-

temporaries as being actually available for the post. If Plato

intended this, it would presumably be either Archytas or

Eudoxus whom he had in mind.

It is again on a logical ground that Plato made harmonics

or music follow astronomy in his classification. As astronomy

is the motion of bodies (<popa^d6ovs) and appeals to the eye,

so there is a harmonious motion {evapfiovios <popd), a motion,

according to the laws of harmony, which appeals to the ear.

In maintaining the sisterhood of music and astronomy Plato

followed the Pythagorean view (cf. the passage of Archytas

above quoted and the doctrine of the ' harmony of the

spheres ').

(a) Arithmetic and logistic.

By arithmetic Plato meant, not arithmetic in our sense, but

the science which considers numbers in themselves, in other

words, what we mean by the Theory of Numbers. He does

not, however, ignore the art of calculation (arithmetic in our

sense); he speaks of number and calculation {dpLOfibu koI

Xoyidfiov) and observes that ' the art of calculation (XoyicrTiKri)

and arithmetic (dpiOfir]TLKrj) are both concerned with number
';

those who have a natural gift for calculation (ol (pvaei Xoyi-

a-TLKoi) have, generally speaking, a talent for learning of all

kinds, and even those who are slow are, by practice in it,

made smarter.^ But the art of calculation (Xoytorri/c??) is only

preparatory to the true science ; those who are to govern the

city are to get a grasp of XoyicTTiKTJ, not in the popular

i

sense with a view to use in trade, but only for the purpose of

\
knowledge, until they are able to contemplate the nature of

number in itself by thought alone.^ .This distinction between

dpiOfLTjTiKi] (the theory of numbers) and XoyiaTLKrj (the art of

,

1 Republic, vii. 522 c, 525 A, 526 B.

2 lb. vii. 525 B, c.
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calculation) was a fundamental one in Greek mathematics.

It is found elsewhere in Plato,^ and it is clear that it was well

established in Plato's time. Archytas too has Xoyia-TiKr] in

the same sense ; the art of calculation, he says, seems to be far

ahead of other arts in relation to wisdom or philosophy, nay

it seems to make the things of which it chooses to treat even

clearer than geometry does ; moreover, it often succeeds even

where geometry fails.^ But it is later writers on the classification

of mathematics who alone go into any detail of what Aoyicm/c^

included. Geminus in Proclus, Anatolius in the Variae Collec-

tiones included in Hultsch's Hei'on, and the scholiast to Plato's

Charmides are our authorities. Arithmetic, says Geminus,^ is

divided into the theory of linear numbers, the theory of plane

numbers, and the theory of solid numbers. It investigates,

in and by themselves, the species of number as they are succes-

sively evolved from the unit, the formation of plane numbers,

similar and dissimilar, and the further progression to the third

dimension. As for the XoyicrTLKos, it is not in and by themselves

that he considers the properties of numbers but with refer-

ence to sensible objects; and for this reason he applies to

them names adapted from the objects measured, calling some

(numbers) /xrjXiTrjs (from /j.fjXoi>, a sheep, or ixfjXov, an apple,

more probably the latter) and others (pLaXirrjs (from ^idXr},

a bowl).* The scholiast to the Charmides is fuller still :
^

' Logistic is the science which deals with numbered things,

not numbers ; it does not take number in its essence,

but it presupposes 1 as unit, and the numbered object as

number, e.g. it regards 3 as a triad, 10 as a decad, and
applies the theorems of arithmetic to such (particular) cases.

Thus it is logistic which investigates on the one hand what
Archimedes called the cattle-problem, and on the other hand
vielites and 'phialites numbers, the latter relating to bowls,

the former to flocks (he should probably have said " apples ");

in other kinds too it investigates the numbers of sensible

bodies, treating them as absolute (coy Trept TiXeiMv). Its sub-

ject-matter is everything that is numbered. Its branches
include the so-called Greek and Egyptian methods in multi-

plications and divisions,"* the additions and decompositions

1 Cf. Gorgias, 451 B, c ; Theaetetus, 145 A with 198 A, &o.
' Dials, Vorsokratiker, i', p. 337. 7-11.
^ Proclus on Eucl. I, p. 89. 14-20. « lb., p. 40. 2-5.
5 On Charmides, 165 E. 6 See Chapter II, pp. 52-60,
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of fractions
; which methods it uses to explore the secrets of

the theory of triangular and polygonal numbers with reference
to the subject-matter of particular problems.'

The content of logistic is for the most part made fairly

clear by the schoha just quoted. First, it comprised the
ordinary arithmetical operations, addition, subtraction, multi-

plication, division, and the handling of fractions ; that is, it

included the elementary parts of what we now call arithmetic.

Next, it dealt with problems about such things as sheep
(or apples), bowls, &c. ; and here we have no difficulty in

recognizing such problems as we find in the arithmetical

epigrams included in the Greek anthology. Several of them
are problems of dividing a number of apples or nuts among
a certain number of persons ; others deal with the weights of

bowls, or of statues and their pedestals, and the like; as a
rule, thej' involve the solution of simple equations with one
unknown, or easj' simultaneous equations with two unknowns;
two are indeterminate equations of the first degree to be solved

in positive integers. From Plato's allusions to such problems

it is clear that their origin dates back, at least, to the fifth

century B.C. The cattle-problem attributed to Archimedes
is of course a much more difficult problem, involving the

solution of a ' Pellian ' equation in numbers of altogether

impracticable size. In this problem the sums of two pairs

of unknowns have to be respectively a square and a tri-

angular number; the problem would therefore seem to

correspond to the description of those involving ' the theory

of triangular and polygonal numbers'. Tannery takes the

allusion in the last words to be to problems in indeter-

minate analysis like those of Diophantus's Arithmetica. The
difficulty is that most of Diophantus's problems refer to num-
bers such that their sums, differences, &c., are squares, whereas

the scholiast mentions only triangular and polygonal numbers.

Tannery takes squares to be included among polygons, or to

have been accidentally oinitted by a copyist. But there is

only one use in Diophantus's Arithmetica of a triangular

number (in IV. 38), and none of a polygonal number; nor can

the Tpiycovovs of the scholiast refer, as Tannery supposes, to

right-angled triangles with sides in rational numbers (the

main subject of Diophantus's Book VI), the use of the mascu-
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line showing that only rpiycovovs dpid/iov?, triangular nwm-
hers, can be meant. Nevertheless there can, I think^ be no

doubt that Diophantus's Arithnietica belongs to Logistic.

Why then did Diophantus call his thirteen books Arithmetica ?

The explanation is probably this. Problems of the Diophan-

tine type, like those of the arithmetical epigrams, had pre-

viously been enunciated of concrete numbers (numbers of

apples, bowls, &c.), and one of Diophantus's problems (V. 30)

is actually in epigram form, and is about measures of wine

with prices in drachmas. Diophantus then probably saw that

there was no reason why such problems should refer to

numbers of any one particular thing rather than another, but

that they might more conveniently take the form of finding

numbers in the ahstgxict with certain properties, alone or in

combination, and therefore that they might claim to be part

of arithmetic, the abstract science or theory of numbers.

It should be added that to the distinction between arith-

metic and logistic there corresponded (up to the time of

Nicomachus) different methods of treatment. With rare

exceptions, such as Eratosthenes's koctkivov, or sieve, a device

for separating out the successive prime numbers, the theory

of numbers was only treated in connexion with geometry, and

for that reason only the geometrical form of proof was used,

whether the figures took the form of dots marking out squares,

triangles, gnomons, &c. (as with the early Pythagoreans), or of

straight lines (as in Euclid VII-IX) ; even Nicomachus did

not entirely banish geometrical considerations from his work,

and in Diophantus's treatise on Polygonal Numbers, of which

a fragment survives, the geometrical form of proof is used.

{^) Geometry and geodaesia.

By the time of Aristotle there was separated out from

geometry a distinct subject, yecoSaiaia, geodesy, or, as we
should sa.y, mensimxdion, not confined to land-measuring, but

covering generally the practical measurement of surfaces and

volumes, as we learn from Aristotle himself,^ as well as from

a passage of Geminus quoted by Proclus.^

• Arist. MeUiph. B.2, 997 b 26, 31.
2 Proclus on Euol. I, p. 89. 20-40. 2.
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(y) Physical subjects, mechanics, optics, harmonics,

astronomy, and their branches.

In applied mathematics Aristotle recognizes optics and
mechanics in addition to astronomy and harmonics. He calls

optics, harmonics, and astronomy the more physical (branches)

of mathematics/ and observes that these subjects and mechanics

depend for the proofs of their propositions upon the pure

mathematical subjects, optics on geometry, mechanics on
geometry or stereometry, and harmonics on arithmetic ; simi-

larly, he says, Phaenomena (that is, observational astronomy)

depend on (theoretical) astronomy.

^

The most elaborate classification of mathematics is that given

by Geminus.^ After arithmetic and geometry, which treat of

non-sensibles, or objects of pure thought, come the branches

which are concerned with sensible objects, and these are six

in number, namely mechanics, astronomy, optics, geodesy,

canonic {KavovcKri), logistic. Anatolius distinguishes the same

subjects but gives them in the order logistic, geodesy, optics,

canonic, mechanics, astronomy.* Logistic has already been

discussed. Geodesy too has been described as onensuration,

the practical measurement of surfaces and volumes; as

Geminus says, it is the function of geodesy to measure^ not

a cylinder or a cone (as such), but heaps as cones, and tanks

or pits as cylinders.^ Canonic is the theory of the musical

intervals as expounded in works like Euclid's KaraTo/ifj

Kavovos, Division of the canon.

Optics is divided by Geminus into three branches." (1) The

first is Optics proper, the business of which is to explain why

things appear to be of different sizes or difierent shapes

according to the way in which they are placed and the

distances at which they are seen. Euclid's Optics consists

mainly of propositions of this kind; a circle seen edge-

wise looks like a straight line (Prop. 22), a cylinder seen by

one eye appears less than half a cylinder (Prop. 28); if the

line joining the eye to the centre of a circle is perpendicular

' Arist. Phys. ii. 2, 194 a 8.

» Arist. Anal. Post. i. 9, 76 a 22-5 ; i. 13, 78 b 35-9.

^ Proclus on Eucl. I, p. 38. 8-12.

« See Heron, ed. Hultsch, p. 278 ; ed. Heiberg, iv, p. 164.

° Proclus on Eucl. I, p. 39. 23-5. ' lb., p. 40. 13-22.

loas C
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to the plane of the circle, all its diameters will look equal

(Prop. 34), but if the joining line is neither perpendicular to

the plane of the circle nor equal to its radius, diameters with

which it makes unequal angles will appear unequal (Prop. 35)

;

if a visible object remains stationary, there exists a locus such

that, if the eye is placed at any point on it, the object appears

to be of the same size for every position of the eye (Prop. 38),

(2) The second branch is Catoptric, or the theory of mirrors,

exemplified by the Catoptrica of Heron, which contains,

e. g., the theorem that the angles of incidence and reflexion

are equal, based on the assumption that the broken line

connecting the eye and the object reflected is a minimum.

(3) The third branch is aKrjvoypacptKrj or, as we might say,

scene-painting, i.e. applied perspective.

Under the general term of mechanics Geminus^ dis-

tinguishes (l) opyavoTTouKrj, the art of making engines of war

(cf. Archimedes's reputed feats at the siege of Syracuse and

Heron's /3eAo7roa'/ca), (2) 6avfj.aTOTrouKi], the art of making

ivonderfid machines, such as those described in Heron's

Pneumatica and Automatic Theatre, (3) Mechanics proper,

the theory of centres of gravity, equilibrium, the mechanical

powers, &c., (4) Sphere-making, the imitation of the move-

ments of the heavenly bodies ; Archimedes is said to have

made such a sphere or orrery. Last of all,^ astronomy

is divided into (1) yucofiouiKij, the art of the gnomon, or the

measurement of time by means of the various forms of

sun-dials, such as those enumerated by Vitruvius,^ (2) fierecopo-

(TKOTTLKTi, which seems to have included, among other things,

the measurement of the heights at which different stars cross

the meridian, (3) Siotttplkti, the use of the dioptra for the

purpose of determining the relative positions of the sun,

moon, and stars.

Mathematics in Greek education.*

The elementary or primary stage in Greek education lasted

till the age of fourteen. The main subjects were letters

(reading and writing followed by dictation and the study of

' Proclus on Eucl. I, p. 41. 3-18. » Ih., pp. 41. 19-42. 6.
° Vitruvius, De circhitedura, ix. 8.

* Cf. Freeman, Schools of Hellas, especially pp. 100-7, 159.
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literature), music and gymnastics ; but there is no reasonable

doubt that practical arithmetic (in our sense), including

weights and measures, was taught along with these subjects.

Thus, at the stage of spelling, a common question asked of

the pupils was, How many letters are there in sucH and such

a word, e.g. Socrates, and in what order do they come ?^ This

would teach the cardinal and ordinal numbers. In the same
connexion Xenophon adds, ' Or take the case of numbers.

Some one asks, What is twice five'?'^ This indicates that

counting was a part of learning letters, and that the multipli-

cation table was a closely connected subject. Then, again,

there were certain games, played with cubic dice or knuckle-

bones, to which boys were addicted and which involved some
degree of arithmetical skill. In the game of knucklebones in

the Lysis of Plato each boy has a large basket of them, and
the loser in each game pays so manj?- over to the winner.^

Plato connects the art of playing this game with mathe-
matics * ; so too he associates treTTtia (games with Trea-a-oi,

somewhat resembling draughts or chess) with arithmetic in

general.® When in the Laivs Plato speaks of three subjects

fit for freeborn citizens to learn, (1) calculation and the science

of numbers, (2) mensuration in one, two and three dimen-

sions, and (3) astronomy in the sense of the knowledge of

the revolutions of the heavenly bodies and their respective

periods, he admits that profound and accurate knowledge of

these subjects is not for people in general but only for a few.^

But it is evident that practical arithmetic was, after letters

and the lyre, to be a subject for all, so much of arithmetic,

that is, as is necessary for purposes of war, household

management, and the work of government. Similarly, enough

astronomy should be learnt to enable the pupil to understand

the calendar.'^ Amusement should be combined with instruc-

tion so as to make the subjects attractive to boys. Plato was

much attracted by the Egyptian practice in this matter :

^

' Freeborn boys should learn so much of these things as

vast multitudes of boys in Egypt learn along with their

' Xenoplion, Econ. viii. 14. '' Xenophon, Mem. iv. 4. 7.

' Plato, Lysis, 206 e ; cf. Apollonius Rhodius, ill. 117.

* Phaedrus, 274 c-d. ^ PoUticus, 299 E ; Laws, 820 c.

' Laws, 817 E-818 A. ' Ih. 809 c, D.

» Ih. 819 A-c.

C 2
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letters. First there should be calculations specially devised

as suitable for boys, which they should learn with amusement

and pleasure, for " example, distributions of apples or garlands

where the same number is divided among more or fewer boys,

or (distributions) of the competitors in boxing or wrestling

matches on the plan of drawing pairs with byes, or by taking

them in consecutive order, or in any of the usual ways ^ ; and

again there should be games with bowls containing gold,

bronze, and silver (coins?) and the like mixed together,^ or the

bowls may be distributed as undivided units ; for, as I said,

by connecting with games the essential operations of practical

arithmetic, you supply the boy with what will be useful to

Jiim later in the ordering of armies, marches and campaigns,

as well as in household management; and in any case you

make him more useful to himself and more wide awake.

Then again, by calculating measurements of things which

have length, breadth, and depth, questions on all of which

the natural condition of all men is one of ridiculous and dis-

graceful ignorance, they are enabled to emerge from this

state.'

It is true that these are Plato's ideas of what elementary

education should include ; but it can hardly be doubted that

such methods were actually in use in Attica.

Geometry and astronomy belonged to secondary education,

which occupied the years between the ages of fourteen and

eighteen. The pseudo-Platonic Axiochus attributes to Prodi-

cus a statement that, when a boy gets older, i. e. after he has

' The Greek of this clause is (Siayo/jai) nvKrStv koI naXma-Tav f^fSpfi'os

Te Kat itvWt]^€o>s €v fie'pet Ka\ ecjie^rjs Kal ws n€(l)vKaa-L ylyv^irQai, So far as

I can ascertain, iv fiipei (by itself) and e'<f)e^fjs have always been taken

as indicating alternative methods, ' in turn and in consecutive order'.

But it is impossible to get any satisfactory contrast of meaning between
' in turn ' and ' in consecutive order '. It is clear to me that we have

here merely an instance of Plato's habit of changing the order of words

for effect, and that ev fxtpei must be taken with the genitives e(p(tpeias ml

o-uXXij^fms ; i. e. we must translate as if we had ev ((fxSpdas re koi <Tv\ltf

ferns fj^epei, ' hy way of hjes and drawings '. This gives a proper distinction

between (1) drawings with byes and (2) taking competitors in consecutive

order.
' It is difficult to decide between the two possible interpretations

of the phrase (pidXas ap-a xP^<^ov kqI x"^''"'' ""' opyip"v Koi Toioiraiv Twm
I'iWoiv K.(piivvvi'Tei. It may mean ' taking bowls made of gold, bronze,

silver and other metals mixed together (in certain proportions)' or

' filling bowls with gold, bronze, silver, &c. {sc. objects such as coins)

mixed together '. The latter version seems to agree best with Traifoires

(making a game out of the process) and to give the better contrast to

' distributing the bowls as wholes ' (o\as iras hiaMivrfs).
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passed the primary stage under the paidagogos, grammatistes,
and paidotribes, he comes under the tyranny of the ' critics ',

the geometers, the tacticians, and a host of other masters.^

Teles, the philosopher, similarly, mentions arithmetic and
geometry among the plagues of the lad.^ It would appear
that geometry and astronomy were newly introduced into the

curriculum in the time of Isocrates. ' I am so far ', he says,^

' from despising the instruction which our ancestors got, that

I am a supporter of that which has been established in our

time, I mean geometry, astronomy, and the so-called eristic

dialogues.' Such studies, even if they do no other good,

keep the young out of mischief, and in Isocrates's opinion no

other subjects could have been invented more useful and
more fitting ; but they should be abandoned by the time that

the pupils have reached man's estate. Most people, he says,

think them idle, since (say they) they are of no use in private

or public affairs ; moreover they are forgotten directly because

they do not go with us in our daily life and action, nay, they

are altogether outside everyday needs. He himself, however,

is far from sharing these views. True, those who specialize in

such subjects as astronomy and geometry get no good from

them unless they choose to teach them for a livelihood ; and if

they get too deeply absorbed, they become unpractical and

incapable of doing ordinary business ; but the study of these

subjects up to the proper point trains a boy to keep his atten-

tion fixed and not to allow his mind to wander ; so, being

practised in this way and having his wits sharpened, he will be

capable of learning more important matters with greater ease

and speed. Isocrates will not give the name of ' philosophy ' to

studies like geometry and astronomy, which are of no imme-

diate use for producing an orator or man of business ; they

are rather means of training the mind and a preparation for

philosophy. They are a more manly discipline than the sub-

jects taught to boys, such as literary study and music, but in

other respects have the same function in making them quicker

to learn greater and more important subjects.

2 Stobaeus,' £'rf. iv. 34, 72 (vol. v,'p. 848, 19 sq., Wachsmuth and

Hense).
^ See Isocrates, Panathenaicus, §§ 26-8 ^238 b-d) ; nep\ diTiSoaias,

§§ 261-8.
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It would appear therefore that, notwithstanding the in-

fluence of Plato, the attitude of cultivated people in general

towards mathematics was not different in Plato's time from

what it is to-day.

We are told that it was one of the early Pythagoreans,

unnamed, who first taught geometry for money :
' One of the

Pythagoreans lost his property, and when this misfortune

befell him he was allowed to make money by teaching

geometry.' ^ We may fairly conclude that Hippocrates of

Chios, the first writer of Elements, who also made himself

famous by his quadrature of lunes, his reduction of the

duplication of the cube to the problem of finding two mean

proportionals, and his proof that the areas of circles are in

the ratio of the squares on their diameters, also taught for

money and for a like reason. One version of the story is that

he was a merchant, but lost all his propertjr through being

captured by a pirate vessel. He then came to Athens to

prosecute the offenders and, during a long stay, attended

lectures, finally attaining such proficiency in geometry that

he tried to square the circle.^ Aristotle has the different

version that he allowed himself to be defrauded of a large

sum by custom-house officers <at Byzantium, thereby proving,

in Aristotle's opinion, that, though a good geometer, he was

stupid and incompetent in the business of ordinary life.^

We find in the Platonic dialogues one or two glimpses of

mathematics being taught or discussed in school- or class-

rooms. In the Erastae * Socrates is represented as going into

the school of Dionysius (Plato's own schoolmaster ^) and find-

ing two lads earnestly arguing some point of astronomy;

whether it was Anaxagoras or Oenopides whose theories they

were discussing he could not catch, but they were drawing

circles and imitating some inclination or other with their

hands. In Plato's Theaetetus '' we have the story of Theodorus

lecturing on surds and proving separately, for the square root

of every non-square number from 3 to 17, that it is incom-

mensurable with 1, a procedure which set Theaetetus and the

1 lamblichus, Vit. Pyth. 89.
^ Philoponus on Arist. Phi/s., p. 327 h 44-8, Brandis.
s Eudemian Ethics, H. 14, 1247 a 17.
* Erastae, 32 a, b. ' Mog. L. iii. 5.
° TJieaetetiis.Ul t>-U8b.
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younger Socrates thinking whether it was not possible to

comprehend all such surds under one definition. In these two
cases we have advanced or selected pupils discussing among
themselves the subject of lectures they had heard and, in the
second case, trying to develop a theory of a more general
character.

But mathematics was not only taught by regular masters
in schools; the Sophists, who travelled from place to place

giving lectures, included mathematics (arithmetic, geometry,
and astronomy) in their very wide list of subjects. Theo-
doras, who was Plato's teacher in mathematics and is

described by Plato as a master of geometry, astronomy,
logistic and music (among other subjects), was a pupil of

Protagoras, the Sophist, of Abdera.^ Protagoras himself, if we
may trust Plato, did not approve of mathematics as part of

secondary education ; for he is made to say that

' the other Sophists maltreat the young, for, at an age when
the young have escaped the arts, they take them against their

will and plunge them once more into the arts, teaching them
the art of calculation, astronomy, geometry, and music—and
here he cast a glance at Hippias—whereas, if any one comes
to me, he will not be obliged to learn anything except what
he comes for.' ^

The Hippias referred to is of course Hippias of Elis, a really

distinguished mathematician, the inventor of a curve known
as the quadratrix which, originally intended for the solution

of the problem of trisecting any angle, also served (as the

name implies) for squaring the circle. In the Hijjpias Minor'^

there is a description of Hippias's varied accomplishments.

He claimed, according to this passage, to have gone once to

the Olympian festival with everything that he wore made by

himself, ring and seal (engraved), oil-bottle, scraper, shoes,

clothes, and a Persian girdle of expensive type ;
he also took

poems, epics, tragedies, dithyrambs, and all sorts of prose

works. He was a master of the science of calculation

(logistic), geometry, astronomy, ' rhythms and harmonies

and correct writing'. He also had a wonderful system of

mnemonics enabling him, if he once heard a string of fifty

1 Theaetetus, 164 e, 168 e.
'' Protagoras, 318 D, E.

^ Hippias Minor, pp. 366 c-368 e.
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names, to remember them all. As a detail, we are told that

he got no fees for his lectures in Sparta, and that the Spartans

could not endure lectures on astronomy or geometry or

logistic ; it was only a small minority of them who could

even count ; what they liked was history and archaeology.

The above is almost all that we know of the part played

by mathematics in the Greek system of education. Plato's

attitude towards mathematics was, as we have seen, quite

exceptional ; and it was no doubt largely owing to his influence

and his inspiration that mathematics and astronomy were so

enormously advanced in his school, and especially by Eudoxus

of Cnidos and Heraclides of Pontus. But the popular atti-

tude towards Plato's style of lecturing was not encouraging.

There is a story of a lecture of his on ' The Good ' which

Aristotle was fond of telling.^ The lecture was attended by

a great ci'owd, and ' every one went there with the idea that

he would be put in the way of getting one or other of the

things in human life which are usually accounted good, such

as Riches, Health, Strength, or, generally, any extraordinary

gift of fortune. But when they found that Plato discoursed

about mathematics, arithmetic, geometry, and astronomy, and

finally declared the One to be the Good, no wonder they were

altogether taken by surprise ; insomuch that in the end some

of the audience were inclined to scoff at the whole thing, while

others objected to it altogether.' Plato, however, was able to

pick and choose his pupils, and he could therefore insist on

compliance with the notice which he is said to have put over

his porch, ' Let no one unversed in geometry enter my doors
'

;
^

and similarly Xenocrates, who, after Speusippus, succeeded to

the headship of the school, could turn away an applicant for

admission who knew no geometry with the words, ' Go thy

way, for thou hast not the means of getting a grip of

philosophy '.^

The usual attitude towards mathematics is illustrated by
two stories of Pythagoras and Euclid respectively. Pytha-

goras, we are told,* anxious as he was to transplant to his own
country the system of education which he had seen in opera-

' Aristoxenus, Harmonica, ii. ad init.

' Tzetzes, Chiliad, viii. 972. = Diog. L. iv. 10.
* lambliclius, Vit. Pyth. c. 5.
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tion in Egypt, and the study of mathematics in particular,

could get none of the Samians to listen to him. He adopted
therefore this plan of communicating his arithmetic and
geometry, so that it might not perish with him. Selecting

a young man who from his behaviour in gymnastic exercises

seemed adaptable and was withal poor, he promised him that,

if he would learn arithmetic and geometry systematically, he

would give him sixpence for each ' figure ' (proposition) that he

mastered. This went on until the youth got interested in

the subject, when Pythagoras rightly judged that he would
gladly go on without the sixpence. He therefore hinted

that he himself was poor and must try to earn his daily bread

instead of doing mathematics ; whereupon the youth, rather

than give up the study, volunteered to pay sixpence himself

to Pythagoras for each proposition. We must presumably

connect with this story the Pythagorean motto, ' a figure and

a platform (from which to ascend to the next higher step), not

a figure and sixpence '}

The other story is that of a pupil who began to learn

geometry with Euclid and asked, when he had learnt one

proposition, 'What advantage shall I get by learning these

things 1
' And Euclid called the slave and said, ' Give him

sixpence, since he must needs gain by what he learns.'

We gather that the education of kings in the Macedonian

period did not include much geometry, whether it was Alex-

ander who asked Menaechmus, or Ptolemy who asked Euclid,

for a short-cut to geometry, and got the reply that ' for travel-

ling over the country there are royal roads and roads for com-

mon citizens : but in geometry there is one road for all '.^

' Proclus on Eucl. I, p. 84. 16.

' Stobaeus, Eel. ii. 31, 115 (vol. ii, p. 228, 30, Wachsmuth).
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GREEK NUMERICAL NOTATION AND ARITH-

METICAL OPERATIONS

The decimal system.

The Greeks, from the earliest historical times, followed the

decimal system of numeration, which had already been

adopted by civilized peoples all the world over. There are,

it is true, traces of quinary reckoning (reckoning in terms of

five) in very early times ; thus in Homer TrefLird^eiu (to ' five
')

is used for ' to count '} But the counting by fives was pro-

bably little more than auxiliary to counting by tens ; five was

a natural halting-place between the unit and ten, anci the use

of five times a particular power of ten as a separate category

intermediate between that power and the next was found

convenient in the earliest form of numerical symbolism estab-

lished in Greece, just as it was in the Roman arithmetical

notation. The reckoning by five does not amount to such a

variation of th-e decimal system as that which was in use

among the Celts and Danes; these peoples had a vigesimal

system, traces of which are still left in the French quatre-

vingts, quatre-vingt-treize, &c., and in our score, three-score

and ten, twenty-one, &c.

The natural explanation of the origin of the decimal system,

as well as of the quinary and vigesimal variations, is to

suppose that they were suggested by the primitive practice of

reckoning with the fingers, first of one hand, then of both

together, and after that with the ten toes in addition (making

up the 20 of the vigesimal system). The subject was mooted

in the Aristotelian Problems,^ where it is asked

:

'Why do all men, whether barbarians or Greeks, count up
to ten, and not up to any other number, such as 2, 3, 4, or 5,

so that, for example, they do not say one-|)Ztts-five (for 6),

1 Homer, Od. iv. 412. ^ ^v. 3, 910 b 23-911 a 4.
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two-|;/!us-five (for 7), as they say one-^J^ws-ten {efSeKa, for 11),
two-plus-ten (SwSeKa, for 12), while on the other hand they
do not go beyond ten for the first halting-place from"which to
start again repeating the units'? For of course any number
is the next before it plus 1, or the next before that plus 2,

and so with those preceding numbers
;
yet men fixed definitely

on ten as the number to count up to. It cannot have been
chance ; for chance will not account for the same thing being
done always : what is always and universally done is not due
to chance but to some natural cause.'

Then, after some fanciful suggestions (e.g. that 10 is a
' perfect number '), the author proceeds

:

' Or is it because men were born with ten fingers and so,

because they possess the. equivalent of pebbles to the number
of their own fingers, come to use this number for counting
everything else as well ?

'

Evidence for the truth of this latter view is forthcoming in

the number of cases where the word for 5 is either the same

as, or connected with, the word for ' hand '. Both the Greek

X^tp and the Latin manus are used to denote ' a number ' (of

men). The author of the so-called geometry of Boetius says,

moreover, that the ancients called all the numbers below ten

by the name digits (' fingers ').^

Before entering on a description of the Greek numeral signs

it is proper to refer briefly to the systems of notation used

by their forerunners in civilization, the Egyptians and

Babylonians.

Egyptian numerical notation.

The Egyptians had a purely decimal system, with the signs

I for the unit, n for 10, (2 for 100, | for 1,000, ] for 10,000,

"^^ for 100,000. The number of each denomination was

expressed by repeating the sign that number of times ; when

the number was more than 4 or 5, lateral space was saved by

arranging them in two or three rows, one above the other.

The greater denomination came before the smaller. Numbers

could be written from left to right or from right to left ;
in

the latter case the above signs were turned the opposite way.

The fractions in use were all submultiples or single aliquot

> Boetius, De Inst. Ar., Sec, p. 395. 6-9, Friedlein.
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parts, except f , which had a special sign <0:> or S-p" ;
the

submultiples were denoted by writing <=:> over the corre-

sponding whole number; thus

1^1 = A > ©se nn = ^h ff © nn" = ^t 9 o •

MM *i ^^^

Babylonian systems,

(a) Decimal. (jS) Sexagesimal,

The ancient Babylonians had two systems of numeration.

The one was purely decimal based on the following signs.

The simple wedge T i-epresented the unit, which was repeated

up to nine times: where there were more than three, they

were placed in two or three rows, e.g. W = 4, yty =7. 10

was represented by ^; 11 would therefore be /Y . 100 had

the compound sign T>-, and 1000 was expressed as 10 hun-

dreds, by ^T*^, the prefixed / (10) being here multiplicative.

Similarly, the \T*- was regarded as one sign, and ^Cf*- de-

noted not 2000 but 10000, the prefixed \ being again multi-

plicative. Multiples of 10000 seem to have been expressed

as multiples of 1000; at least, 120000 seems to be attested

in the form 100.1000 + 20.1000. The absence of any definite

unit above 1000 (if it was really absent) must have rendered

the system very inconvenient as a means of expressing large

numbers.

Much more interesting is the second' Babylonian system

the sexagesimal. This is found, in use on the Tables oi

Senkereh, discovered by W. K. Loftus in 1854, which may gc

back as far as the time between 2300 and 1600 B.C. In this

system numbers above the units (which go from 1 to 59) are

arranged according to powers of 60. 60 itself was callec

sussu { — soss), 60^ was called sar, and there was a name alsc

(ner) ior the intermediate number 10.60 = 600. The multi-

ples of the several powers of 60, 60^ 60^, &c., contained in th(

number to be written down were expressed by means of th(

same wedge-notation as served for the units, and the multi
pies were placed in columns side by side, the columns bein^

appropriated to the successive powers of 60. The unit-tern
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was followed by similar columns appropriated, iu order, to the

successive submultiples — , —-„, &c., the number of sixtieths,
60 60

&c., being again denoted by the ordinary wedge-numbers.

Thus ^^^ <^<^^^| << represents 44.602 + 26.60 + 40= 160,000;

^'Ql} (.'(J (:(.(}}}
"= 27. 60^+ 21.60 + 36 = 98,496. Simi-

larly we find ^^^ (^^ representing 30 + 1§ and ^^^ KKKI^
representing 30 + |^; the latter case also shows that the

Babylonians, on occasion, used the subtractive plan, for the 27

is here written 30 minus 3.

The sexagesimal system only required a definite symbol
for (indicating the absence of a particular denomination),

and a fixed arrangement of columns, to become a complete

position-value system like the Indian. With a sexagesimal

system would occur comparatively seldom, and the Tables of

Senkereh do not show a case ; but from other sources it

appears that a gap often indicated a zero, or there was a sign

used for the purpose, namely i, called the 'divider'. The

inconvenience of the system was that it required a multipli-

cation table extending from 1 times 1 to 59 times 59. It had,

however, the advantage that it furnished an easy means of

expressing very large numbers. The researches of H. V.

Hilprecht show that 60* = 12,960,000 played a prominent

part in Babylonian arithmetic, and he found a table con-

taining certain quotients of the number T^

= 608+10.60'', or 195,955,200,000,000. Since the number of

units of any denomination are expressed in the purely decimal

notation, it follows that the latter system preceded the sexa-

gesimal. What circumstances led to the adoption of 60 as

the base can only be conjectured, but it may be presumed that

the authors of the system were fully alive to the convenience

of a base with so many divisors; combining as it does the

advantages of 12 and 10.

Greek numerical notation.

To return to the Greeks. We find, in Greek inscriptions of

all dates, instances of numbers and values written out in full

;

but the inconvenience of this longhand, especially in such

things as accounts, would soon be felt, and efforts would be

made to devise a scheme for representing numbers more
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concisely by means of conventional signs of some sort. The

Greeks conceived the original idea' of using the letters of the

ordinary Greek alphabet for this purpose.

(a) The ' Herodianic ' signs.

There were two main systems of numerical notation in use in

classical times. The first, known as the Attic system and

used for cardinal numbers exclusively, consists of the set of

signs somewhat absurdly called ' Herodianic ' because they are

described in a fragment^ attributed to Herodian, a gram-

marian of the latter half of the second century a.d. The
authenticity of the fragment is questioned, but the writer

says that he has seen the signs used in Solon's laws, where
the prescribed pecuniary fines were stated in this notation,

and that they are also to be found in various ancient inscrip-

tions, decrees and laws. These signs cannot claim to be

numerals in the proper sense; they are mere compendia or

abbreviations; for, except in the case of the stroke I repre-

senting a unit, the signs are the first letters of the full words
for the numbers, and all numbers up to 50000 were repre-

sented by combinations of these signs. I, representing the

unit, may be repeated up to four times ; P (the first letter of

Treire) stands for 5, A (the first letter of SfKa) for 10, H
(representing eKarov) for 100, X (x^'AfOi) for 1000, and M
{fivpioL) for 10000. The half-way numbers 60, 500, 5000
were expressed by combining P (five) with the other signs

respectively; P, F, P, made up of P (5) and A (10), = 50;
P, made up of P and H, = 500 ; P = 5000 ; and P = 60000.
There are thus six simple and four compound symbols, and all

other numbers intermediate between those so represented are
made up by juxtaposition on an additive basis, so that each
of the simple signs may be repeated not more than four times

;

the higher numbers come before the lower. For example,
PI =6, Aim = 14, HP = 105, XXXXP'HHHHPAAAAPIIII
= 4999. Instances of this system of notation are found in
Attic inscriptions from 464 to about 96 B.C. Outside Attica
the same system was in use, the precise form of the symbols
varying with the form of the letters in the local alphabets.
Thus in Boeotian inscriptions P or P" = 60, f£= 100, r>E =600

1 Printed in the Appendix to Stephanus's Thesaurus, vol. viii.
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y = 1000, jr'='5000; and fI7£l-Ef€|-Et>>lll = 5823. But,
in consequence of the political influence of Athens, the Attic

system, sometimes with unimportant modifications, spread to

other states.^

In a similar manner compendia were used to denote units

of coinage or of weight. Thus in Attica l=^TciXavTov (6000
drachmae), M = fiva (1000 drachmae), Z or ^ = a-Tar^p

(l/3000th of a talent or 2 drachmae), h = SpaxiJ-V, I = 6/3oX6y

(l/6th of a drachma), C = ^jiicolBiXiov (l/12th of a drachma),

3 or T = TerapTTjixopiov (l/4th of an obol or l/24th of a

drachma), X = xaA'coOy (l/8th of an obol or l/48th of a
drachma). Where a number of one of these units has to be

expressed, the sign for the unit is written on the left of that

for the number; thus 1-PAI = 61 drachmae. The two com-
pendia for the numeral and the unit are often combined into

one ; e.g. fP, m = 5 talents, ^ = 50 talents, H = 100 talents,

n^= 500 talents, ^= 1000 talents. A = 10 minas, P= 6 drach-

mae, ^, i^, ^= 10 staters, &c.

(/3) The ordinary alphabetic numerals.

The second main system, used for all kinds of numerals, is

that with which we are familiar, namely the alphabetic

system. The Greeks took their alphabet from the Phoe-

nicians. The Phoenician alphabet contained 22 letters, and,

in appropriating the different signs, the Greeks had the

happy inspiration to use for the vowels, which were not

written in Phoenician, the signs for certain spirants for which

the Greeks had no use ; Aleph became A, He was used for E,

Yod for I, and Ayin for O ; when, later, the long E was

differentiated, Cheth was used, B or H. Similarly they

utilized superfluous signs for sibilants. Out of Zayin and

Samech they made the letters Z and H. The remaining two

sibilants were Ssade and Shin. From the latter came the

simple Greek 2 (although the name Sigma seems to corre-

spond to the Semitic Samech, if it is not simply the ' hissing

'

letter, from ai^co). Ssade, a softer sibilant (= o-o-), also called

San in early times, was taken over by the Greeks in the

place it occupied after n, and written in the form M or v\.

The form T (— era-) appearing in inscriptions of Halicarnassus

' Larfeld, Handhuch der griechischen Epigmxyhik, vol. i, p. 417.
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(e.g. 'AXtKapvaTlecoi'] — 'AkiKa.pvaiii(i>v) and Teos ([^JaAaT?;?

;

cf. QdXaiiav in another place) seems to be derived from some

form of Ssade; this T, after its disappearance from the

literary alphabet, remained as a numeral, passing through

the forms /\, m, P, <^, and "p to the fifteenth century form \
to which in the second half of the seventeenth century the

name Sampi was applied (whether as being the San which

followed Pi or from its resemblance to the cursive form of tt).

The original Greek alphabet also i^etained the Phoenician Vau (f)

in its proper place between E and Z and the Koppa= Qoph (9)

immediately before P. The Phoenician alphabet ended with

T ; the Greeks first added T, derived from Vau apparently

(notwithstanding the retention of F), then the letters $, X, ^
and, still later, il. The 27 letters used for numerals are

divided into three sets of nine each; the first nine denote

the units, 1, 2, 3, &c., up to 9 ; the second nine the tens, from
10 to 90; and the third nine the hundreds, from 100 to 900.

The following is the scheme :

A = 1 I = 10

B =2 K = 20

r =3 A = 30

A = 4 M = 40

E = 5 N = 50

C [5-] = 6 Z = 60

Z =7 O = 70

H =8 n = 80

e = 9 O = 90

The sixth sign in the first column (C) is a form of the

digamma F F. It came, in the seventh and eighth centuries

A. D., to be written in the form Cj and then, from its similarity

to the cursive t (= err), was called Stigma.

This use of the letters of the alphabet as numerals was
original with the Greeks ; they did not derive it from the

Phoenicians, who never used their alphabet for numerical
purposes but had separate signs for numbers. The earliest

occurrence of numerals written in this way appears to be in

a Halicarnassian inscription of date not long after 450 B.C.

Two caskets from the ruins of a famous mausoleum built at

Halicarnassus in 351 B.C., which are attributed to the time
of Mausolus, about 350 B.C., are inscribed with the letters

p
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tNA = 754 and ZpT = 293. A list of priests of Poseidon

at Halicarnassus, attributable to a date at least as early as the

fourth century, is preserved in a copy of the second or first

century, and this copy, in which the numbers were no doubt

reproduced from the original list, has the terms of office of the

several priests stated on the alphabetical system. Again, a

stone inscription found at Athens and perhaps belonging to

the middle of the fourth century B.C. has, in five fragments

of columns, numbers in tens and units expressed on the same

system, the tens on the right and the units on the left.

There is a difference of opinion as to the approximate date

of the actual formulation of the alphabetical system of

numerals. According to one view, that of Larfeld, it must

have been introduced much earlier than the date (450 B.C. or

a little later) of the Halicarnassus inscription, in fact as early

as the end of the eighth century, the place of its origin being

Miletus. The argument is briefly this. At the time of the

invention of the system all the letters from A to H, including

F and 9 in their proper places, were still in use, while

^sade (T, the double ss) had dropped out ; this is why the

last-named sign (afterwards '^) was put at the end. If

C (= 6) and 9 (= 90) had been no longer in use as letters,

they too would have been put, like Ssade, at the end. The

place of origin of the numeral system must have been one in

which the current alphabet corresponded to the content and

order of the alphabetic numerals. The order of the signs

0, X, t shows that it was one of the Eastern group of

alphabets. These conditions are satisfied by one alphabet,

and one only, that of Miletus, at a stage which still recognized

the Vau (F) as well as the Koppa (9). The 9 is found along

with the so-called complementary letters including H, the

latest of all, in the oldest inscriptions of the Milesian colony

Naucratis (about 650 B.C.); and, although there are no

extant Milesian inscriptions containing the F, there is at all

events one very early example of F in Ionic, namely 'Aya-

cnXeFo {'AyaaiXijFov) on a vase in the Boston (U.S.) Museum

of Fine Arts belonging to the end of the eighth or (at latest)

the middle of the seventh century. Now, as H is fully

established at the date of the earliest inscriptions at Miletus

(about 700 B.C.) and Naucratis (about 650 B.C.), the earlier
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exteTision of the alphabet by the letters <J) X t must have

taken place not later than 750 B.C. Lastly, the presence in

the alphabet of the Van indicates a time which can hardly

be put later than 700 B.C. The conclusion is that it was

about this time, if not earlier, that the numerical alphabet

was invented.

The other view is that of Keil, who holds that it originated

in Dorian Caria, perhaps at Halicarnassus itself, about

550-425 B.C.,, and that it was artificially put together by

some one who had the necessary knowledge to enable him

to fill up his own alphabet, then consisting of twenty-four

letters only, by taking over F and 9 from other alphabets and

putting them in their proper places, while he completed the

numeral series by adding T at the end.^ Keil urges, as

against Larfeld, that it is improbable that F and il ever

existed together in the Milesian alphabet. Larfeld's answer ^

is that, although F had disappeared from ordinary language

at Miletus towards the end of the eighth century, we cannot

say exactly when it disappeared, and even if it was practically

gone at the time of the formulation of the numerical alphabet,

it would be in the interest of instruction in schools, where

Homer was read, to keep the letter as long as possible in the

official alphabet. On the other hand, Keil's argument is open

to the objection that, if the Carian inventor could put the

F and 9 into their proper places in the series, he would hardly

have failed to put the Ssade T in its proper place also, instead

of at the end, seeing that T is found in Caria itself, namely

in a Halicarnassus (Lygdamis) inscription of about 453 B.C.,

and also in Ionic Teos about 476 b.c.^ (see pp. 31-2 above).

It was a long time before the alphabetic numerals found

general acceptance. They were not ofRcially used until the

time of the Ptolemies, when it had become the practice to write,

in inscriptions and on coins, the year of the reign of the ruler

'

for the time being. The conciseness of the signs made them
particularly suitable for use on coins, where space was limited.

When coins went about the world, it was desirable that the

notation should be uniform, instead of depending on local

alphabets, and it only needed the support of some paramount

1 Hermes, 29, 1894, p. 265 sq. 2 r^arfeld, op. cit., i, p. 421.
''

lb., i, p. 358.
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political authority to secure the. final triumph oi' the alphabetic

system. The alphabetic numerals are found at Alexandria

on coins of Ptolemy II, Philadelphus, assigned to 266 B.C.

A coin with the inscription 'AXe^dvSpov KA (twenty-fourth

year after Alexander's death) belongs, according to Keil, to

the end of the third century.^ A very old Graeco-Egyptian

papyrus (now at Leyden, No. 397), ascribed to 257 B.C.,

contains the number k6 = 29. While in Boeotia the Attic

system was in use in the middle of the third century, along

with the corresponding local system, it had to give way about

200 B.C. to the alphabetic system, as is shown by an^inventory

from the temple of Amphiaraus at Oropus ^ ; we have here

the first ofiieial use of the alphabetic system in Greece proper.

From this time Athens stood alone in retaining the archaic

system, and had sooner or later to come into line with other

states. The last certainly attested use of the Attic notation

in Athens was about 95 B.C.; the alphabetic numerals were

introduced there some time before 50 B.C., the first example

belonging to the time of Augustus, and by a.d. 50 they were

in official use.

The two systems are found side by side in a number of

papyrus-rolls found at Herculaneum (including the treatise

of Philodemus De pietate, so that the rolls cannot be older than

40 or 50 B.C.); these state on the title page, after the name of

the author, the number of books in alphabetic numerals, and

the number of lines in the Attic notation, e.g. ETTIKOYPOY
|

nEPI
I

OYZEnZ
I

IE aped . . XXXHH (where IE = 15 and

XXXHH = 3200), just as we commonly use Roman figures

to denote Books and Arabic figures for sections or lines?

> Hermes, 29, 1894, p. 276 «.

' Keil in Hermes, 25, 1890, pp. 614-15.
' Reference should be made, in passing, to another, gMasi-numerical,

use of the letters of the ordinary alphabet, as current at the time, for

numbering particular things. As early as the fifth century we find in

a Locrian bronze-inscription the letters A to ® (including f then and
there current) used to distinguish the nine paragraphs of the text. At

the same period the Athenians, instead of following the old plan of

writing out ordinal numbers in full, adopted the more convenient device

of denoting them by the letters of the alphabet. In the oldest known
example opos K indicated ' boundary stone No. 10

' ; and in the fourth

century the tickets of the ten panels of jurymen were marked with the

letters A to K. In like manner the Books in certain works of Aristotle

(the Ethics, Metaphysics, Politics, and Topics) were at some time
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(y) Mode of writing numhers in the ordinary alpliahetic

notation.

Where, in the alphabetical notation, the number to be

written contained more than one denomination, say, units

with tens, or with tens and hundreds, the higher numbers

were, as a rule, put before the lower. This was generally the

case in European Greece ; on the other hand, in the inscrip-

tions of Asia Minor, the smaller number comes first, i. e. the

letters are arranged in alphabetical order. Thus 111 may be

represented either by P I A or by A I P ; the arrangement is

sometimes mixed, as PA I. The custom of writing the numbers

in descending order became more firmly established in later

times through the influence of the corresponding Roman
practice.^

The alphabetic numerals sufficed in themselves to express

all numbers from 1 to 999. For thousands (up to 9000) the

letters were used again with a distinguishing mark ; this was
generally a sloping stroke to the left, e.g. 'A or ^A = 1000,

but other forms are also found, e.g. the stroke might be

combined with the letter as A = 1000 or again 'A= 1000,

"C = 6000. For tens of thousands the letter M (/xvpLOL) was
borrowed from the other system, e.g. 2 myriads' would be

p.

BM, MB, or M.

To distinguish letters representing numbers from the

letters of the surrounding text different devices are used:

sometimes the number is put between dots | or : , or separ-

ated by spaces from the text on both sides of it. In Imperial
times distinguishing marks, such as a horizontal stroke above
the letter, become common, e.g. 77 ^ovXrj tS>v X, other

variations being -X-, -X-, X and the like.

In the cursive writing with which we are familiar the

numbered on the same principle ; so too the Alexandrine scholars
(about 280 b.c.) numbered the twenty-four Books of Homer with the
letters A to O. When the number of objects exceeded 24, doubled
letters served for continuing the series, as AA, BB, &c. For example,
a large quantity of building-stones have been found ; among these are
stones from the theatre at the Piraeus marked AA, BB, &c., and again
AAjBB, BB|BB, &o. when necessary. Sometimes the numbering by
double letters was on a different plan, the letter A denoting the full
number of the first set of letters (24) ; thus AP would be 24 -l- 17 = 41

' Larfeld. op. cit., i, p. 426.
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orthodox way of distinguishing numerals was by a horizontal
stroke ahove each sign or collection of signs; the following
was therefore the scheme (with ^ substituted for F repre-
senting 6, and with '^ = 900 at the end) :

units (1 to 9) ^,0>yJ,i,f,C,V.^-^
tens (10 to 90) r, r, A, jl, P, I 6, fr, 9^
hundreds (100 to 900) p, a, f, v, f, x, ir, S>, ^ ;

thousands (1000 to 9000) ,a, ,$, ^y, /, ^e, p, I ^fj, fi

;

(for convenience of printing, the horizontal stroke above the
sign will hereafter, as a rule, be omitted).

{S) Gorrbj^arison of the two systems of numerical notation.

The relative merits of the two systems of numerical

notation used by the Greeks have been differently judged.

It will be observed that the initial-nnva&vaAs, correspond

closely to the Roman numerals, except that there is no

formation of numbers by subtraction as IX, XL, XC ; thus

XXXXPHHHHPAAAAPIIII = MMMMDCCCCLXXXX VI II

I

as compared with MMMMCMXCIX = 4999. The absolute

inconvenience of the Roman system will be readily appreci-

ated by any one who has tried to read Boetius (Boetius

would write the last-mentioned number as TV. DCCCCXCVIIII).
Yet Cantor ^ draws a comparison between the two systems

much to the disadvantage of the alphabetic numerals.
' Instead ', he says, ' of an advance we have here to do with

a decidedly retrogi-ade step, especially so far as its suitability

for the further development of the numeral system is con-

cerned. If we compare the older "Herodianic" numerals

with the later signs which we have called alphabetic numerals,

we observe in the latter two drawbacks which do not attach

to the former. There now had to be more signs, with values

to be learnt by heart ; and to reckon with them required

a much greater effort of memory. The addition

AAA4- AAAA = PAA (.30-1-40 = 70)

could be coordinated in one act of memory with that of

HHH-j-HHHH = PHH (300-1-400 = 700)

in so far as the sum of 3 and 4 units of the same kind added

» ' Cantor, Gesch. d. Math. P, p. 129.
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up to 5 and 2 units of the same kind. On the other hand

X + /i = did not at all immediately indicate that t + v = ^.

The new notation had only one advantage over the other,

namely that it took less space. Consider, for instance, 849,

whicli in the " Herodianic " form is PHHHA A A API 1 1 1, but

in the alphabetic system is a/iO. The former is more self-

explanatory and, for reckoning with, has most important

advantages.' Gow follows Cantor, but goes further and says

that ' the alphabetical numerals were a fatal mistake and

hopelessly confined such nascent arithmetical faculty as the

Greeks may have possessed '
!
^ On the other hand. Tannery,

holding that the merits of the alphabetic numerals could only

be tested by using them, practised himself in their use until,

applying them to the whole of the calculations in Archimedes's

Measurement of a Circle, he found that the alphabetic nota-

tion had practical advantages which he had hardly suspected

before, and that the operations took little longer with Greek

than with modern numerals.^ Opposite as these two views are,

they seem to be aUke based on a misconception. Surely we do

not ' reckon with ' the numeral signs at all, but with the

v:ords for the numbers which they represent. For instance,

in Cantor's illustration, we do not conclude that the figure 3

and i\ie figure 4 added together make the figure 7 ; what we
do is to say ' three and four are seven '. Similarly the Greek

would not say to himself ' y and 5 = ^
' but TpeTy /cat riaa-apes

inrd. ; and, notwithstanding what Cantor says, this would

indicate the corresponding addition ' three hundred and four

hundred are seven hundred ', TpiaKoaioi Kal TerpaKocrioi

(TTTaKoa-toi, and similarly with multiples of ten or of 1000 or

10000. Again, in using the multiplication table, we say

' three times four is twelve ', or ' three multiplied by four =
twelve '

; the Greek would say rph Tecra-ape^, or rpeis enl

ricraapas, SwSeKa, and this would equally indicate that ' thirty

times forty is twelve hundred or one thousand two hundred ',

or that ' thirty times four hundred is tiuelve thousand or a

myriad and two thousand ' (rpiaKovToiKLS reaaapaKovra x^'Xtot

Kal SiaKoaLOi, or TpiaKovTaKis reTpaKoaioi fwpioi koL 8La")(jiXL0i).

' Gow, A Short History of Greek Mathematics, p. 46.
^ Tannery, Memoires scieHtifiques (e<l. Heiberg and Zeuthen), i,

pp. 200-1.
.

/ '
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The truth is that in mental calculation (whether the opera-

tion be addition, subtraction, multiplication, or division), we
reckon with the corresponding loords, not with the symbols,

and it does not matter a jot to the calculation how wc choose

to write the figures down. While therefore the alphabetical

numerals had the advantage over the ' Herodianic ' of beino;

so concise, their only disadvantage was that there were more
signs (twenty-seven) the meaning of which had to be com-

mitted to memorjf : truly a very slight disadvantage. The
one real drawback to the alphabetic system was the absence

of a sign for (zero) ; for the for ovSe/xLa or ovSev which

we find in Ptolemy was only used in the notation of sexa-

gesimal fractions, and not as part of the numeral system. If

there had been a sign or signs to indicate the absence in

a number of a particular denomination, e.g. units or tens or

.hundreds, the Greek symbols could have been made to serve

as a position-value system scarcely less effective than ours.

For, while the position-values are clear in such a number

as 7921 (,^^/ca), it would only be necessary in the case of

such a number as 7021 to show a blank in the proper place

by writing, say, ^^- Ka. Then, following Diophantus's plan

of separating any number of myriads by a dot from the

thousands, &c., we could write ^"'h/ca . ^i^tttS for 79216384 or

^ . T - S for 70000304, while we could continually add

sets of four figures to the left, separating each set from the

next following by means of a dot.

(e) Notation for large numbers.

Here too the orthodox way of writing tens of thousands

was by means of the letter M with the number of myriads

above it, e.g. M = 20000, M /cooe = 71755875 (Aristarchus

of Samos) ;
another method was to write M or M for the

myriad and to put the number of myriads after it, separated

by a dot from the remaining thousands, &c., e. g.
Y
M pv.^f^TrS= 1507984

(Diophantus, IV. 28). Yet another way of expressing myriads

was to use the symbol representing the number of myriads

with two dots over it; thus H^rjcpQ^ = 18592 (Heron, Geo-

metrica, 17. 33). The word /xvpLoiSes could, of course, be
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written in full, e.g. jivpidSes ,l3(ror] Kal ^i/3 = 22780912

(ib. 17. 34). To express still higher numbers, powers of

myriads were used; a myriad (10000; was & first myriad

(TTpcoTT] fjivpids) to distinguish it from a second myriad (SevTipa

Hvpids) or lOOOO'*, and so on; the words irpmraL fivpidSes,

Sfvrepai fivpidSe^, &e., could either be written in full or

Y Y

expressed by M, MM, &e., respectively ; thus Sevrepac fivpidSe^

i<r wp&Tai (fivpidSfs) fi'^vr, M ^^0£ = 16 2958 6560 (Dio

O

phantus, Y. 8), where M = jiovaSis (units) is inserted to

distinguish the fi^^v-q, the number of the ' first myriads ',

from the ^<;-^^ denoting 6560 units.

(i) Apollonius's ' tetrads '.

The latter system is the same as that adopted by ApoUonius

in an arithmetical work, now lost, the character of which is,

however, gathered from the elucidations in Pappus, Book 11;

the only difference is that ApoUonius called his tetrads (sets

of four digits) pvpLaSe^ anXoL, SnrXai, TpLirXal, &c., ' simple

mj^riads', 'double', 'triple', &c., meaning 10000, 10000-,

10000^, and so on. The abbreviations for these successive

powers in Pappus are /x", /i
,
ji , &c. ; thus f/jev^^ Kal //^yx

Kal /i"^<5-i/ = 5462 3600 6400 0000. Another, but a less con-

venient, method of denoting the successive powers of 10000

is indicated by Nicolas Rhabdas (fourteenth century a.d.)

who says that, while a pair of dots above the ordinary

numerals denoted the number of myriads, the ' double

myriad ' was indicated by two pairs of dots one above the other,

the ' triple myriad ' by three pairs of dots, and so on. Thus
"^ = 9000000, /§ = 2 (10000)2, ^ = 40 (10000)", and so on.

(ii) Archimedes's system (by octads).

Yet another special system invented for the purpose of

expressing very large numbers is that of Archimedes's

Psam,mites or Sand-reckoner. This goes by octads

:

10000^ = 100000000 = 10^,

and all the numbers from 1 to 10** form the first order:

the last number, 10*, of the fii-st order is taken as the unit

of the second order, which consists of all the numbers from
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IQS, or 100000000, to 10", or 100000000^; similarly 10" is

taken as the unit of the iliird order, which consists of all

numbers from lO^'' to 10^*, and so on, the 100000000th order
consisting of all the numbers from (lOOOOOOOO)''''"'^^'' ^^
(100000000)"'"'0'">o^

i.e. from lOS-do'-i) to lOS'"'. The aggre-
gate of all the orders up to the 100000000th form the ^rsi
2Mriod; that is, if P = (1 00000000)"', the numbers of the
first period go from 1 to P. Next, P is the unit of the first
order of the second 2oeriod; the first order of the second
period then consists of all numbers from P up to 100000000 P
or P. 1 OS; P. 10** is the unit of the second order (of the
second 'period) which ends with (100000000)^ P or P. 10";
P. 10" begins the tidrd order of the second period, and so
on

;
the lOO'oOOOOOth order of the secoiid 2Jeriod consists of

the numbers from (lOOOOOOOO)^'^'"'^'-"' P or P.IO^-^"'-!) to
(100000000)"ooo»«<"' P or P. 108"^ i.e. PI Again, P' is the
unit of the first order of the third period, and so on. The
first order of the 100000000th jxriod consists of the numbers
from P""-! to P"-i.lO^ the second order of the same

period of the numbers from pw'-i
.
iqs to Z^""-i. 10"^ and so

on, the (10*)th m^der of the (lOS)th period, or the pieriod

itself, ending with P^""'' .108"', i.e. P""- The last number
is described by Archimedes as a ' myriad-myriad units of the

myriad-myriadth order of the myriad-myriadth period [ai

fivpiaKicrfivpLOCTTds nepLoSov /ivpiaKicr/xvpiocrTa)!^ dpi6fia>y fivpiai

/ivpidSes) ' This system was, however, a tour deforce, and has

nothing to do with the ordinary Greek numerical notation.

Fractions.

(a) The Egyptian system.

We now come to the methods of expressing fractions. A
fraction may be either a submultiple (an ' aliquot part ', i. e.

a fraction with numerator unity) or an ordinary proper

fraction with a number not unity for ]iumerator and a

greater number for denominator. The Greeks had a pre-

ference for expressing ordinary proper fractions as the sum
of two or more submultiples ; in this they followed the

Egyptians, who always expressed fractions in this way, with

the exception that they had a single sign for |, whereas we
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should have expected them to split it up into i + |, as | was

split up into A + i- The orthodox sign for a submultiple

was the letter for the corresponding number (the denomi-

nator) but with an accent instead of a horizontal stroke

above it; thus y' = |, the full expression being y' jxepos =
rpLTOv fiipo9, a third part (y' is in fact short for rpiros, so

that it is also used for the ordinal number ' third ' as well

as for the fraction ^, and similarly with all other accented

numeral signs); \fi' — ^^, pi^' = ttz' &<=• There were

special signs for |-, namely U' or CV and for |, namely w'.

When a number of submultiples are written one after the

other, the sum of them is meant, and similarly when they

follow a whole number ; e.g. U' 5' = ^ ^ or | (Archimedes)

;

k6 or' ly' X6' = 29f J3 3^3 = 29| + J3 + -^^ or 29if;

fjiO I' iC X8' va'= 49i tV aSf sV = 49^

(Heron, Geom. 15. 8, 1.3). But ty' to ly' means Jjth times

TS 01' 1^9 {ibid. 12. 5), &c. A less orthodox method found

in later manuscripts was to use two accents and to write,

e.g., (" instead of ^', for i. In Diophantus we find a different

mark in place of the accent ; Tannery considers the genuine

form of it to be >;, so that y"^ = i, and so on.

(;8) The ordinary Greek form, variously written.

An ordinary proper fraction (called by Euclid pep-q, farts,

in the plural, as meaning a certain number of aliquot parts,

in contradistinction to pepo?, ijart, in the singular, which he

restricts to an aliquot part or submultiple) was expressed in

various ways. The first was to use the ordinary cardinal

number for the numerator followed by the accented number
representing the denominator. Thus we find in Archimedes

I oa = Yx and ^a(o\-q la! = ISSSjy: (it should be noted,

however, that the I oa is a correction from oia, and this
oa

seems to indicate that the original reading was t, which

would accord with Diophantus's and Heron's method of

writing fractions). The method illustrated by these cases is

open to objection as likely to lead to confusion, since l oa

^ It has been suggested that the forms Q and 3 for 1 found in
inscriptions may perhaps represent half an O, the sign, at all -events
in Boeotia, for 1 obol.
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onewould naturally mean lO^i and d la' 0^\ ; the context al

shows the true meaning. Another form akin to that just
mentioned was a little less open to misconstruction ; the
numerator was written in full with the accented numeral
(for the denominator) following, e.g. Svo /xe' for 2/45ths
(Aristarchus of Samos). A better waj^ was to turn the
aliquot part into an abbreviation for the ordinal number
with a termination superposed to represent the case, e.g.

rV = -? (Dioph. Lemma to V. 8), u kj"" = |f (ibid. I. 23),

pKo"' ^acoXSl.' = 18341/121 {ibid. IV. 39), just as y*" was
written for the ordinal rpiTos (cf. to q", the |th part, Dioph.
IV. 39; aipco ra ly" 'I remove the 13ths', i.e. I multiply up
by the denominator 13, ibid. IV. 9). But the trouble was
avoided by each of two other methods. *

(1) The accented letters representing the denominator were
written twice, along with the cardinal number for the

numerator. This method is mostly found in the Geometrica

and other works of Heron : cf. e Ly' ly' — 3-%, ra ^ ^'^ = f

.

The fractional signification is often emphasized by adding
the word XeTrrd ('fractions' or 'fractional parts'), e.g. in

XeTTTo. ly' Ly' i/3 = if (Geom. 12. 5), and, where the expression

contains units as well as fractions, the word ' units ' (/xovdSes)

is generally added, for clearness' sake, to indicate the integral

number, e.g. jiovaSe? t/3 ical XenTo. ly' ly' t/3 = 12i| {Geom.

12. 5), fiovdSes pfiS XeTTTo. ly' ly' crp^ = 14i-^-f'-i- {Geom. 12. 6).

Sometimes in Heron fractions are alternatively given in this

notation and jn that of submultiples, e.g. /S y' n' rjToi /3 koI

j8 e' €' = '2| XT or 2|' {Geom. 12. 48) ; ^ U' t' n' oe' ijroi

jiovdSis ii i y KM. 13 e e' t&v e' e' = ' 7i yV ^3- ^-g or 7| + 1 x i',

i.e. 7-| + -f-^
{ibid.) ; -qWc Ke tJtol /jioudSes rj e' e' y koi e' to e' —

'Hts^'-s or 8| + ixi', i.e. 8| + ^V i^Hd. 12. 46). (In

Hultsch's edition of Heron single accents were used to de-

note whole numbers and the numerators of fractions, while

aliquot parts or denominators were represented by double

accents ; thus the last quoted expression was written

rj S I Ke rjTOL /lovaoes rj e e y Kai e to e .)

But (2) the most convenient notation of all is that which

is regularly employed by Diophantus, and occasionally in the

Metrica of Heron. In this system the numerator of any

fraction is written in the line, with the denominator above it.
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without accents or other marks (except where the numerator

or denominator itself contains an accented fraction) ; the

method is therefore simply the reverse of ours, but equally

convenient. In Tannery's edition of Diophantus a line is

put between the numerator below and the denominator above :

-?- 121
thus pKa = — . But it is better to omit the horizontal line

pi^V 100
(cf. p = — in Kenyon's Papyri ii, No. cclxv. 40, and the

128

fractions in Schone's edition of Heron's Metrica). A few

"^'^ 2456
more instances from Diophantus may be given : .^w^ = —

—

(IV. 28); eri'T? = - _ (V. 9) ; ttt^U' = ''-^„^ The deno-
^ '' ' ' ' 10201 "- " 152

minator is rarely found above the numerator, but to the

right (like an exponent) ; e. g. Te^ = -— (L 39). Even in the

case of a submultiple, where, as we have said, the orthodox

method was to omit the numerator and sjmply write the

denominator with an accent, Diophantus often follows the

method applicable to other fractions, e.g. he Av^rites a for

TT^ (IV. 28). Numbers partly integral and partly fractional,

where the fraction is a submultiple or expressed as the sum

of submultiples, are written much as we write them, the

fractions simply following the integer, e.g. a y-^ = 1^;

(3 I' 5-^ = 2|| (Lemma to V. 8) ; to I' l<^^ = 370i Jg (III. 11).

Complicated fractions in which the numerator and denomi-

nator are algebraical expressions or large numbers are often

expressed by writing the numerator first and separating it

by fioptov or kv fiopioi from the denominator; i.e. the fraction

is expressed as the numerator divided by the denominator

:

Y
thus Mpv .^^'^nS /xopiov k^ . fipfiS - 1507984/262144 (IV. 28).

(y) Sexagesimal fractions.

Great interest attaches to the system of sexagesimal

fractions (Babylonian in its origin, as we have seen) which

was used by the Greeks in astronomical calculations, and
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appears fully developed in the Syntaxis of Ptolemy. The
circumference of a circle, and with it the four right angles

subtended by it at the centre, were divided into 360 parts

{rjirjuaTa or fioipai), as we should say degrees, each jioipa

into 60 parts called (npaiTa) i^rjKoa-Td, (first) sixtieths or

miniites (XenTd), each of these again into 60 Sivrepa e^r/zcoora,

seconds, and so on. In like manner, the diameter of the

circle was divided into 120 TfiTJuara, segments, and each of

these segments was divided into sixtieths, each sixtieth

again into sixty parts, and so on. Thus a convenient

fractional system was available for arithmetical calculations

in general ; for the unit could be chosen at will, and any

mixed number could be expressed as so many of those units

plus so many of the fractions which we should represent

by -^0, so many of those which we should write (-ioY, (-io)^,

and so on to any extent. The units, T/xrifjiaTa or noipai (the

latter often denoted by the abbreviation /i°), were written

first, with the ordinary numeral representing the number

of them ; then came a simple numeral with one accent repre-

senting that number of first sixtieths, or minutes, then a

numeral with two accents representing that number of

second sixtieths, or seconds, and so on. Thus /i° /3 = 2°,

lioipSav n( /i/3' n''
= 47° 42' 40". Similarly, tfirjfidrmv ^(

S' j/e" = 67P i' 55", where p denotes the segment (of the

diameter). Where there was no unit, or no number of

sixtieths, second sixtieths, &c., the symbol O, signifying

ovSep-ia fioTpa, oiiSff l^rjKocrTov, and the like, was used; thus

IxoLpoov O a /3" O'" — 0°!' 2" 0"'. The system is parallel to

our system of decimal fractions, with the difference that the

submultiple is ^- instead of ^ ; nor is it much less easy to

work with, while it furnishes a very speedy way of approxi-

mating to the values of quantities not expressible in whole

numbers. For example, in his Table of Chords, Ptolemy says

that the chord subtending an angle of 120° at the centre is

(TfirifidTO)!^} py ve' Ky" or 103'' 55' 23"; this is equivalent

(since the radius of the circle is 60 T/j-rJuara) to saying that

73 = 1 -I-
^ + ^^., + ^^v, and this works out to 1-7320509...,^ ^60 60^ 60-^'

which is correct to the seventh decimal place, and exceeds

the true value by 0-00000003 only.
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Practical calculation.

(a) The abacus.

In practical calculation it was open to the Greeks to secure

the advantages of a position-value system by using the

abacus. The essence of the abacus was the arrangement of

it in columns which might be vertical or horizontal, but were

generally vertical, and pretty certainly so in Greece and

Egypt; the columns were marked off by lines or in some

other way and allocated to the successive denominations of

the numerical system in use, i.e., in the case of the decimal

system, the units, tens, hundreds, thousands, mj^riads, and so

on. The number of units of each denomination was shown in

each column by means of pebbles, pegs, or the like. When,

in the process of addition or multiplication, the number of

pebbles collected in one column becomes sufficient to make
one or more units of the next higher denomination, the num-

ber of pebbles representing the complete number of the higher

units is withdrawn from the column in question and the

proper number of the higher units added to the next higher

column. Similarly, in subtraction, when a number of units of

one denomination has to be subtracted and there are not

enough pebbles in the particular column to subtract from, one

pebble from the next higher column is withdrawn and actually

or mentally resolved into the number of the lower units

equivalent in value ; the latter number of additional pebbles

increases the number already in the column to a number from

which the number to be subtracted can actually be withdrawn.

The details of the columns of the Greek abacus have unfor-

tunately to be inferred from the corresponding details of the

Roman abacus, for the only abaci which have been preserved

and can with certainty be identified as such are Roman.
There were two kinds; in one of these the marks were

buttons or knobs which could be moved up and down in each

column, but could not be taken out of it, while in the other

kind they were pebbles which could also be moved from one

column to another. Each column was in two parts, a shorter

portion at the top containing one button only, which itself

represented half the number of units necessary to make up

one of the next higher units, and a longer portion below
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containing one less than half -the same number. This arrange-
ment of the columns in two parts enabled the total number of

buttons to be economized. The columns represented, so far as

integral numbers were concerned, units, tens, hundreds, thou-
sands, &c., and in these cases the one button in the top
portion of each column represented five units, and there were
four buttons in the lower portion representing four units.

But after the columns representing integers came columns
representing fractions ; the first contained buttons i-epresent-

ing unciae, of which there were 12 to the unit, i.e. fractions

of ]^th, and in this case the one button in the top portion

represented 6 unciae or i^ths, while there were 5 buttons in

the lower portion (instead of 4), the buttons in the column
thus representing in all 1 1 unciae or 1 2ths. After this column
there were (in one specimen) three other shorter ones along-

side the lower poi-tions only of the columns for integers, the

first representing fractions of ^^th (one button), the second

fractions of -^--g^h (one button), and the third fractions of 7^2 '^'i

(two buttons, which of course together made up ^^gth).

The mediaeval writer of the so-called geometry of Boetius

desbribes another method of indicating in the various columns

the number of units of each denomination.^ According to him
' abacus ' was a later name for what was previously called

mensa Pythagorea, in honour of the Master who had taught

its use. The method was to put in the columns, not the neces-

sary number of pebbles or buttons, but the corresponding

numeral, which might be written in sand spread over the

surface (in the same way as Greek geometers are said to have

drawn geometrical figures in sand strewn on boards similarly

called a^a^ or afidKLov). The figures put in the columns were

called apices. The first variety of numerals mentioned by the

writer are rough forms of the Indian figures (a fact which

proves the late date of the composition) ; but other forms were

(1) the first letters of the alphabet (which presumably mean

the Greek alphabetic numerals) or (2) the ordinary Roman

figures.

We should expect the arrangement of the Greek abacus to

correspond to the Roman, but the actual evidence regarding its

form and the extent to which it was used is so scanty that.

• Boetius, De Inst. Ar., ed. Friedlein, pp. 396 sq.
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we may well doubt whether any great use was made of it at

all. But the use of pebbles to reckon with is attested by

several writers. In Aristophanes (Wasps, 656-64) Bdelycleon

tells his father to do an easy sum ' not with pebbles but with

fingers \ as much as to say, ' There is no need to use pebbles

for this sum
;
you can do it on your fingers.' ' The income

of the state', he says, 'is 2000 talents; the yearly payment

to the 6000 dicasts is only 150 talents.' ' Why ', answers the

old man, ' we don't sret a tenth of the revenue.' The calcula-

tion in this case amounted to multiplying 150 by 10 to show

that the product is less than 2000. But more to the purpose

are the following allusions. Herodotus says that, in reckoning

with pebbles, as in writing, the Greeks move their hand from

left to right, the Egyptians from right to left ^ ; this indicates

that the columns were vertical, facing the reckoner. Diogenes

Laertius attributes to Solon a statement that those who had

influence with tyrants were like the pebbles on a reckoning-

board, because they sometimes stood for more and sometimes

for less.^ A character in a fourth-century comedy asks for an

abacus and pebbles to do his accounts.' But most definite of

all is a remark of Polybius that ' These men are really like

the pebbles on reckoning-boards. For the latter, according

to the pleasure of the reckoner, have the value, now of a

XaX/coOy (|th of an obol or ^gth of a drachma), and the next

moment of a talent.' * The passages of Diogenes Laertius and

Polybius both indicate that the pebbles were not fixed in the

columns, but could be transferred from one to another, and

the latter passage has some significance in relation to the

Salaminian table presently to be mentioned, because the talent

and the x"-^'^"^^ ^i"® actually the extreme denominations on

one side of the table.

Two relics other than the Salaminian table may throw

some light on the subject. First, the so-called Darius-vase

found at Canosa (Canusium), south-west of Barletta, represents

a collector of tribute of distressful countenance with a table in

front of him having pebbles, or (as some maintain) coins, upon

it and, on the right-hand edge, beginning on the side farthest

away and written in the direction towards him, the letters

' Herodotus, ii. c. 36. ^ -^^^^ j^ j_ ^q_
• Alexis in Athenaeus, 117 c. Polybius, v. '26. 13.
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M tH I>PO<T, while in his left hand he holds a sort of book in

which, presumably, he has to enter the receipts. Now M, 1'

(= X), H, and > are of course the initial letters of the words
for 10000, 1000, 100, and 10 respectively. * Here therefore we
have a purely decimal system, without the halfway numbers
represented by P (= irevre, 5) in combination with the other

initial letters which we find in the Attic ' sj^stem. The sign

P after > seems to be wrongly written for P, the older sign

for a drachma, O stands for the obol, < for the f-obol, and T
(TerapTrjiiopLou) for the ^r-oboL^ Except that the fractions of

the unit (here the drachma) are different from the fractions

of the Roman unit, this scheme corresponds to the Roman,
and so far might represent the abacus. Indeed, the decimal

arrangement corresponds better to the abacus than does the

Salaminian table with its intermediate ' Herodianic ' signs for

500, 50, and 5 drachmas. Prof. David Eugene Smith is, how-

ever, clear that any one can see from a critical examination of

the piece that what is represented is an ordinary money-

changer or tax-receiver with coins on a table such as one

might see anywhere' in the East to-day, and that the table has

no resemblance to an abacus.^ On the other hand, it is to be

observed that the open book held by the tax-receiver in his

left hand has TAAN on one page and TA'iH on the other,

which would seem to indicate that he was entering totals in

talents and must therefore presumably have been adding coins

or pebbles on the table before him.

There is a second existing monument of the same sort,

namely a so-called a^Kcofia (or arrangement of measures)

discovered about forty years ago *
; it is a stone tablet with

fluid measures and has, on the right-hand side, the numerals

XPHPAPhTIC. The signs are the 'Herodianic', and they

include* those for 500, 50, and 5 drachmas ; h is the sign for

a drachma, T evidently stands for some number of obols

making a fraction of the drachma, i.e. the rpLw^oXov or 3

obols, I for an obol, and C for a J-obol.

The famous Salaminian table was discovered by Rangabd,

who gave a drawing and description of it immediately after-

' Keil in Hermes, 29, 1894, pp. 262-3.
^ Bihliotheca Matheinatica, ixj, p. 193. •

^ Duniont in Revue archeologique, xxvi (1873), p. 43.

1523 E
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wards (1846).i The table, now broken into two unequal parts,

is in the Epigraphical Museum at Athens. The facts with

regard to it are stated, and a photograph of it is satisfactorily

produced, by Wilhelm Kubitschek.^ A representation of it is

also given by Nagl ^ based on Rangabd's description, and the

sketch of it here appended follows Nagl's drawing. The size

and material of the table (according to Rangabd's measure-

ments it is 1-5 metres long and 0-75 metre broad) show that

it was no ordinary abacus ; it may
have been a fixture intended for

quasi-public use, such as a banker's

or money-changer's table, or again

it may have been a scoring-table

for some kind of game like tric-

trac or backgammon. Opinion has

from the first been divided between

the two views ; it has even been

suggested that the table was in-

tended for both purposes. But there

can be no doubt that it was used

for some kind of calculation and,

if it was not actually an abacus, it

may at least serve to give an idea

of what the abacus was like. The

diificulties connected with' its in-

terpretation are easily seen. The

series of letters' on the three sides are the same except

that two of them go no higher than X (1000 drachmae),

but the third has P (5000 drachmae), and T (the talent or

6000 drachmae) in addition ; \- is the sign for a drachma,

I for an obol (fth of the drachma), C for ^-obol, T for ;|-obol

{TeTapTrjjxopLov, Boeckh's suggestion), not J-obol (TpLTrj/iopiov,

Vincent), and X for i-obol (xaXKovs). It seems to he

agreed that the four spaces provided between the five shorter

lines were intended for the fractions of the drachma ; the first

space would require 5 pebbles (one less than the 6 obols

making up a drachma), the others one each. The longer

XP'HPAri-ICTX
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lines would provide the spaces for the drachmae and higher
denominations. On the assumption that the cross line indi-

cates the Roman method of having one pebble above it to

represent 5, and four below it representing units, it is clear

that, including denominations up to the talent (6000 drachmae),

only five columns are necessary, namely one for the talent or

6000 drachmae, and four for 1000, 100, 10 drachmae, and 1

drachma respectively. But there are actually ten spaces pro-

vided by the eleven lines. On the theory of the game-board,

five of the ten on one side (right or left) are supposed to

belong to each of two players placed facing each other on the

two longer sides of the table (but, if in playing they had to

use the shorter columns for the fractions, it is not clear how
they would make them sulRce) ; the ci'oss on the middle of the

middle line might in that case serve to mark the separation

between the lines belonging to the two players, or perhaps all

the crosses may have the one object of helping the eye to dis-

tinguish all the columns from one another. On the assump-

tion that the table is an abacus, a possible explanation of the

eleven lines is to suppose that they really supply_^w columns

only, the odd lines marking the divisions between the columns,

and the even lines, one in the middle of each column,

marking where the pebbles should be placed in rows ; in this

case, if the crosses are intended to mark divisions between the

four pebbles representing units and the,one pebble represent-

ing 5 in each column, the crosses are only required in the last

three columns (for 100, 10, and 1), because, the highest de-

nomination being 6000 drachmae, there was no need for a

division of the 1000-column, which only required five unit-

pebbles altogether. Nagl, a thorough-going supporter of the

abacus-theory to the exclusion of the other, goes further and

shows how the Salaminian table could have been used for the

special purpose of carrying out a long multiplication ;
but this

development seems far-fetched, and there is no evidence of

such a use.

The Greeks in fact had little need of the abacus for calcu-

lations. With their alphabetic numerals they couldjwork out

their additions, subtractions, multiplications, and divisions

without the help of any marked columns, in a form little'Jess

convenient than ours : examples of long multiplications, which

K 2
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include addition as the last step in each case, ai'e found in

Eutocius's commentary on Archimedes's Measurement of

a Circle. We will take the four arithmetical operations

separately.

(/3) Addition and Subtraction.

There is no doubt that, in writing down numbers for the

purpose of these operations, the Greeks would keep the several

powers of 10 separate in a manner practically corresponding

to our system of numerals, the hundreds, thousands, &c., being

written in separate vertical rows. The following would be

a typical example of a sum in addition

:

^a V K S = 1424

p y 103

M^/So-Tra 12281

M A 30030

M^ycoX?7 43838

and the mental part of the work would be the same for the

Greek as for us.

Similarly a subtraction would be represented as follows

:

fl

M^yxX^ = 93636
a

M^yu 6 23409

i

M <TK^ 70227

(y) Jfulti'plication.

(i) The Egyptian method.

For carrying out multiplications two things were required.

The first was a multiplication table. This the Greeks are

certain to have had from very early times. The Egyptians,
indeed, seem never to have had such a table. We know from
the Papyrus Rhind that in order to multiply by any number
the Egyptians began by successive doubling, thus obtaining

twice, four times, eight times, sixteen times the multiplicand,

and so on
; they then added such sums of this series of multi-

ples (including once the multiplicand) as were required. Thus,
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to multiply by 13, they did not take 10 times and 3 times
the multiplicand respectively and add them, but they i'ound

1 3 times the multiplicand by adding once and 4 times and 8

times it, which elements they had obtained by the doubling-

process; similarly they would find 25 times any number by
adding once and 8 times and 1 6 times the number.^ Division

was performed by the Egyptians in an even more rudimen-
tary fashion, namely by a tentative back-multiplication begin-

ning with the same doubling process. But, as we have seen

(p. 14), the scholiast to the Gharmides says that the bra'hches

of XoyLo-TLKrj include the ' so-called Greek and Egyptian

methods in multiplications and divisions'.

(ii) The Greek method.

The Egyptian method being what we have just described, it

seems clear that the Greek method, which was different,

depended on the direct use of a multiplication table. A frag-

ment of such a multiplication table is preserved on a two-

leaved wax tablet in the British Museum (Add. MS. 34186).

' I have been told that there is a method in use to-day (some say in

Russia, but I have not been able to verify this), which is certainly attractive

and looks original, but which will immediately be seen to amount siinply

to an elegant practical method of cari-ying out the Egyptian procedure.

Write out side by side in successive lines, so as to form two columns,

(1) the multiplier and multiplicand, (2) half the multiplier (or the

nearest integer below it if the multiplier is odd) and twice the multi-

plicand, (3) half (or the nearest integer below the half) of the number
in the first column of the preceding row and twice the number in the

second column of the preceding row, and so on, until we have 1 in

the first column. Then strike out all numbers in the second column
which are opposite even numbers in the first column, and add all the

numbers left in the second column. The sum will be the required

product. Suppose e.g. that 157 is to be multiplied by 88. The rowsi

and columns then are :

83 157

41 314
20 -628-

10 «6e-
5 2512
2 5024
1 10048

13031 = 83x157

The explanation is, of course, that, where we take half the preceding

number in the first column less one, v^e omit once the figure in the right-

hand column, so that it must be left in that column to be added in at

the end; and where we take the exact half of an even number, we
omit nothing in the right-hand column, hut the new line is the exact

equivalent of the preceding one, which can therefore be struck out.
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It is believed to date from the second century A. D., and it

probably came from Alexandria or the vicinity. But the

form of the characters and the mingling of capitals and small

letters both allow of an earlier date; e.g. there is in the

Museum a Greek papyrus assigned to the third century B.C.

in which the numerals are very similar to those on the tablet.^

The second requirement is connected with the fact that the

Greeks began their multiplications by taking the product of

the highest constituents first, i.e. they proceeded as we should

if we wei-e to begin our long multiplications from the left

instead of the right. The only difficulty would be to settle

the denomination of the products of two high powers of ten.

With such numbers as the Greeks usually had to multiply

there would be no trouble ; but if, say, the factors were un-

usually large numbers, e.g. millions multiplied by millions or

billions, care would be required, and even some rule for

settling the denomination, or determining the particular

power or powers of 10 which the product would contain.

This exceptional necessity was dealt with in the two special

treatises, by Archimedes and Apollonius respectively, already

mentioned. The former, the Sand-reckoner, proves that, if

there be a series of numbers, 1, 10, 10^ 10^.. 10™... 10"...,

then, if 10'", 10" be any two terms of the series, their product

10'"
. 10" will be a term in the same series and will be as many

terms distant from 10** as the term 10'" is distant from 1;

also it will be distant from 1 by a number of terms less by

one than the sum of the numbers of terms by which 1
0"* and

1 0" respectively are distant from 1 . This is easily seen to be

equivalent to the fact that, 10'" being the (m+l)th term

beginning with 1, and 10" the {n+\)ih term beginning

with 1, the product of the two terms is the (m + ')i+l)th

term beginning with 1, and is 10'"+".

(iii) Apollonius's continued multiplications.

The system of Apollonius deserves a short description.^ Its

object is to give a handy method of finding the continued

product of any number of factors, each of which is represented

by a single letter in the Greek numeral notation. It does not

^ David Eugene Smith in Bihliotheca Mathematica, ixj, pp. 193-5.
'' Our authority here is the Synagoge of Pappus, Book ii, pp. 2-28, Hultsch,
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therefore show how to multiply two large numbers each of

which contains a number of digits (in our notation), that is,

a certain number of units, a certain number of tens, a certain

number of hundreds, &e. ; it is confined to the multiplication

of any number of factors each of which is one or other of the

following : (a) a number of units as 1, 2, 3, ... 9, (b) a number
of even tens as 10, 20, 30, ... 90, (c) a number of even hundreds

as 100, 200, 300, ... 900. It does not deal with factors above

hundreds, e.g. 1000 or 4000; this is because the Greek
numeral alphabet only went up to 900, the notation begin-

ning again after that with ^a, ,13, ... for 1000, 2000, &c. The
essence of the method is the separate multiplication (1) of the

bases, TrvOjxeves, of the several factors, (2) of the powers of ten

contained in the factors, that is, what we represent by the

ciphers in each factor. Given a multiple of ten, say 30, 3 is

the TTvOfMriv or base, being the same number of units as the

number contains tens ; similarly in a multiple of 100, say 800,

8 is the base. In multiplying three numbers such as 2, 30,

800, therefore, Apollonius first multiplies the bases, 2, 3, and 8,

then finds separate^ the product of the ten and the hundred,

and lastly multiplies the two products. The final product has

to be expressed as a certain? number of units less than a

myriad, then a certain number of myriads, a certain number

of 'double myriads' (myriads squared), 'triple myriads'

(myriads cubed), &c., in other words in the form

where Jf is a myriad or 10* and A^, A-^... respectively repre-

sent some number not exceeding 9999.

No special directions are given for carrying out the multi-

plication ;of the bases (digits), or for the multiplication of

their product into the product of the tens, hundreds, &c.,

when separately found (directions for the latter multiplica-

tion may have been contained in propositions missing from

the mutilated fragment in Pappus). But the method of deal-

ing with the tens and hundreds (the ciphers in our notation)

is made the subject of a considerable number of separate

propositions. Thus in two propositions the factors are all of

one sort (tens or hundreds), in another we have factors of two

sorts (a number of factors containing units only multiplied
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by a number of multiples of ten, each less than 100, or by

multiples of 100, each less than 1000), and so on. In the final

proposition (25), with which the introductory lemmas close,

the factors are of all three kinds, some containing units only,

others being multiples of 10 (less than 100) and a third set

being multiples of 100 (less than 1000 in each case). As

Pappus frequently says, the proof is easy 'in numbers';

Apollonius himself seems to have proved the propositions by

means of lines or a diagram in some form. The method is the

equivalent of taking the indices of all the separate powers of

ten included in the factors (in which process ten =10' counts

as 1; and 100 = 10^ as 2), adding the indices together, and then

dividing the sum by 4 to obtain the power of the myriad

(10000) which the product contains. If the whole number in

the quotient is n, the product contains (10000)" or the

M-myriad in Apollonius's notation. There will in most cases

be a remainder left after division by 4, namely 3, 2, or 1 : the

remainder then represents (in our notation) 3, 2, or 1 more

ciphers, that is, the product is 1000, 100, or 10 times the

w-myriad, or the 10000", as the ease may be.

We cannot do better than illustrate by the main problem

which Apollonius sets himself, namely that of multiplying

together all the numbers represented by the separate letters

in the hexameter

:

'ApTe/jLLSos KXeiTf Kparos 'i^oy(ov kvvea Kovpai.

The number of letters, and therefore of factors, is 38, of which

10 are multiples of 100 less than 1000, namely p, t, cr, r, p, t,

(T, X, y, P (=100, 300, 200, 300, 100, 300, 200, 600, 400, 100),

1 7 are multiples of 10 less than 100, namely fi, l, o, k, A, i, k, o, ^,

0, o, V, V, V, K, o, L ( = 40, 10, 70, 20, 30, 10, 20, 70, 60, 70, 70, 50,

50, 50, 20, 70, 10), and 11 are numbers of units not exceeding

9, namely a, e, S, e, e, a, e, e, e, a, a(= l, 5, 4, 5, 5, 1, 5, 5, 5, 1, 1).

The sum of the indices of powers of ten contained in the

factors is therefore 10.2 + 17.1=37. This, when divided by

4, gives 9 with 1 as remainder. Hence the product of all the

tens and hundreds, excluding the bases in each, is 10 . 10000°.

We have now, as the second part of the operation, to mul-

tiply the numbers containing units only by the basea of all the

other factors, i.e. (beginning with the bases, first of the hun-

dreds, then of the tens) to multiply together the numbers

:
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1, 3, 2, 3, 1, 3, 2, 6, 4, 1,

4, 1, 7, 2, 3, 1, 2, 7, 6, 7, 7, 5, 5, 5, 2, 7, 1,

'^i*:^ 1, 5, 4, 5, 5, 1, 5, 5, 5, 1, 1.

The product is at once given in the text as 1 9 ' quadruple
myriads ', 6036 ' triple myriads ', and 8480 ' double myriads ', or

19. 10000* + 6036. 10000^ + 8480. 100002.

(The detailed multiplication line by line, which is of course

perfectly easy, is bracketed by Hultsch as interpolated.)

Lastly, says Pappus, this product multiplied by the other

(the product of the tens and hundreds without the bases),

namely 10 . 10000^ as above, gives

196. 1000013 + 368. 10000^^ + 4800. 10000".

(iv) Examples of ordinary multiplications.

I shall now illustrate, by examples taken from Eutocius, the

Greek method of performing long multipHcations. It will be

seen that, as in the case of addition and subtraction, the

working is essentially the same as ours. The multiplicand is

written first, and below it is placed the multipher preceded by
eTTL (= ' by ' or ' into '). Then the term containing the highest

power of 10 in the multiplier is taken and multiplied into all

the terms in the multiplicand, one after the other, first into that

containing the highest power of 10, then into that containing

the nest highest power of 1 0, and so on in descending order
;

after which the term containing the next highest power of 10

in the multiplier is multiplied into all the terms of the multi-

plicand in the same order ; and so on. The same procedure

is followed where either or both of the numbers to be multi-

plied contain fractions. Two examples from Eutocius will

make the whole operation cleai'.

1) ^aTva
kirl ^aTva
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(2) ^yiyVS^ 3013ii[= 3013|]
kirl ^yiyl'S' X 301 3Ĵi^

^ Y

MM^^^a0^/f^' 9000000 30000 9000 1500 750

Hp\e0'l' 30000 100 30 5 2A

^exeal'l-'S' 9000 30 9 li AA
^acpeal-'S'r]' 1500 5 Ij A- A

,/.^^U'U'.5'7?W9' 750 2A lA i ^i„

dfjLov Mfix'^^ '^' together 9082689^6.

The following is one among many instances in which Heron

works out a multiplication of two numbers involving fractions.

He has to multiplj^ 4|f by 7ff, which he effects as follows

{Geom. 12. 68):

4.7 = 28,

4. e2 ^4 8
^ • 64 — 64 '

3 3 7 231 •

64 • ' — F4
33 e2 2046 _1_ 3X _|_ 6 2^ _1_ .

64'64 64 '64 64 "'"¥4 • 64 '

the result is therefore

Oa510r62 1 0Q4_7 62162 164~64-64 — ^o-T' 64^64^64
. qe;62i62 1— ^O g'4 +"64 •¥4-

The multiplication of 37° 4' 55" (in the sexagesimal system)

by itself is performed by Theon of Alexandria in his com-

mentary on Ptolemy's Syntaxis in an exactly similar manner.

(S) Division.

The operation of division depends on those of multiplication

and subtraction, and was performed by the Greeks, 'mutatis

mutandis, in the same way as we perform it to-day. Suppose,

for example, that the process in the first of the above multi-

plications had to be reversed and M^eo-a (1825201) had to be

divided by ^arva (1351). The terms involving the successive

powers of 10 would be mentally kept separate, as in addition

and subtraction, and the fu-st question would be, how many
times does one thousand go into one million, allowing for the

fact that the one thousand has 351 behind it, while the one

million has 825 thousands behind it. The answer is one

thousand or ,a, and this multiplied by the divisor ^arva gives

M^a which, subtracted from M^ecra, leaves M/cra. This
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remainder (= 474201) has now to be divided by ^arva (1351),

and it would be seen that the latter would go into the i'oimer

T (300) times, but not u (400) times. Multiplying ^arva by r,

we obtain M^er (405300), which, when subtracted from M/o-a

(474201), leaves M^rj'^a (68901). This has again to be divided

by ^aTfa and goes u (50) times ; multiplying ^arfa by f, we

have M/^j/ (67550), which, subtracted from M^r]~^a (68901),

leaves ^arva (1351). The last quotient is therefore a (1), and
the whole quotient is ^arfa (1351).

An actual case of long division where both dividend and
divisor contain sexagesimal fractions is described by Theon.

The problem is to divi<le 1515 20' 15" by 25 12' 10", and

Theon's account of the process amounts to the following

:

Divisor-. Dividend
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pjr/3

Theon's and that of dividing M^eaa hy arva as above is tliat

Theon makes three subtractions for one term of the quotient,

whereas the remainder was arrived at in the other case after

one subtraction. The result is that, though Theon's method

is quite clear, it is longer, and moreover makes it less easy to

foresee what will be the proper figure to try in the quotient,

so that more time would probably be lost in making un-

successful trials.

(e) Extraction of the square root.

We are now in a position to see how the problem of extract-

ing the square root of a number would be attacked. First, as

in the case of division, the given whole number would be

separated into terms containing respectively such and such

a number of units and of the separate powers of 10. Thus

there would be so many units, so many tens, so many hun-

dreds, &c., and it would have to be borne in mind that the

squares of numbers from 1 to 9 lie between 1 and 99, the

squares of numbers from 10 to 90 between 100 and 9900, and

so on. Then the first term of the square root would be some

number of tens or hundreds or thousands, and so on, and

would have to be found in much the same way as the first

term of a quotient in a long division, by ti'ial if necessary.

If A is the number the square root of which is required, while

a represents the first term or denomination of the square root,

and X the next term or denomination to be found, it would be

necessary to use the identity {a + xY — a'^ + 2ax + x'^ and to

find X so that 2ax + x^ might be somewhat less than the

remainder A — a^, i.e. we have to divide A — a" by 2t/, allowing

for the fact that not only must 2 ax (where x is the quotient)

but also {2a + x)x be less than A —a-- Thus, by trial, the

highest possible value of x satisfying the condition would be

easily found. If that value were^&, the further quantity

2 ah + b'-^ would have to be subtracted from the first remainder

A — a^, and from the second remainder thus left a third term

or denomination of the square root would have to be found in

like manner ; and so on. That this was the actual procedure

followed is clear from a simple ease given by Theon of Alex-

andria in his commentary on the Syntaxis. Here the square

root of 144 is in question, and it is obtained by means of
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Eucl. II. 4. The highest possible denomination (i.e. power
of 10) in the square root is 10 ;

10- subtracted from 144 leaves

44, and this must contain, not only twice the product of 10

and the next term of the square root, but also the square of

the next term itself. Now twice 1.10 itself produces 20, and
the division of 44 by 20 suggests 2 as the next term of the

square root ; this turns out to be the exact figure required, since

2.20 + 2^ = 44.

The same procedure is illustrated by Theon's explanation

of Ptolemy's method of extracting square roots according to

the sexagesimal system of fractions. The problem is to find

approximately the square root of 4500 fioipai or degrees, and

67

G
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less than ^^^ or
^-

° , which is at the same time greater than
2.67 67

4. On trial it turns out that 4 will satisfy the conditions of

A 2

•the problem, namely that ^67 + --) must be less than 4500,

so that a remainder will be left by means of which y can be

found.

Now this remainder is 11 '-^ (^) ' and this is

equal to 11.602-2.67.4.60-16
^^

7424
_

Thus we must suppose that 2 (e 7 +—) g|^ approximates to

—
-^ , or that 8048^/ is approximately equal to 7424.60.

Therefore y is approximately equal to 55.

/ 4\55 /55 \2

We have then to subtract 2 ( 67 +— )—j + ^^^-g ) > or

442640 3025 „ ,, , 7424 , n -,

r-—

I

-r ' from the remainder — -z- above round.
60'^ 60* 60^

,, ,. ^ 442640 „ 7424 . 2800 46 40
_

The subtraction of—^^ from -.^- gives -^.y or^ +—,

,

but Theon does not go further and subtract the remaining

3025 55
-~-^-

; he merely remarks that the square of —^ approximates
«

to—2 + T-jy As a matter of fact, if we deduct the
^

from

~—— . so as to obtain the correct remainder, it is found
60='

'

, ,
164975

to be
60*

Theon' s plan does not work conveniently, so far as the

determination of the first fractional term (the first-sixtieths)

is concerned, unless the integral term in the square root is

large relatively to—-; if this is not the case, the term l-^) is
60 \60''

not comparatively negligible, and the tentative ascertainment

of X is more difficult. Take the case of Vs, the value of which,

43 55 23
in Ptolemy's Table of Chords, is equal to 1 H 1 -. H

—

'-^

^ > H 60 60^ 60^
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If we first found the unit 1 and then tried to find the next
term by trial, it would probably involve a troublesome amount
of trials. An alternative method in such a case was to

multiply the number by 60^, thus reducing it to second-

sixtieths, and then, taking the square root, to ascertain the

number of first-sixtieths in it. Now 3.60'''= 10800, and, as
103^= 10609, the first element in the square root of 3 is

found in this way to be --- (= 1 +^). That this was the

method in such cases is indicated by the fact that, in the Table

of Chords, each chord is expressed as a certain number of

first-sixtieths, followed by the second-sixtieths, &c., Vs being

, 103 55 23 „, ^, . ..,.,,,
expressed as -—- -f-

—
-^

-|- —- . The same thing is indicated by

the scholiast to EucL, Book X, who begins the operation of

finding the square root of 31 10' 36" by reducing this to

second-sixtieths; the number of second-sixtieths is 112236,

which gives, as the number of first-sixtieths in the square

335
root, 335, while = 5 35'. The second-sixtieths in the

square root can then be found in the same way as in Theon's

example. Or^ as the scholiast says, we can obtain the square

root as far as the second-sixtieths by reducing the original

number to fourth-sixtieths, and so on. This would no doubt

be the way in which the approximate value 2 49' 42" 20"' 10""

given by the scholiast for -/s was obtained, and similarly

with other approximations of his, such as -/2 = 1 24' 51" and

7(27) = 5 11' 46" 50'" (the 50'" should be 10'").

(() Extraction of the cube root

Our method of extracting the cube root of a number depends

upon the formula (a + xf = a" + 3 a'^x + 3 ax"^ + x\ just as the

extraction of the square root depends on the formula

(a+x)"^ = a^ + 2ax + x^- As we have seen, the Greek method

of extracting the square root was to use the latter (Euclidean)

formula just as we do ; but in no extant Greek writer do we

find any description of the operation of extracting the cube

root. It is possible that the Greeks had not much occasion

for extracting cube roots, or that a table of cubes would

suffice for most of their purposes. But that they had some
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method is clear from a passage of Heron, where he gives 4

—

as an approximation to ^(100), and shows liow he obtains it.'

Heron merely gives the working dogmatically, in concrete

numbers, without explaining its theoretical basis, and we
cannot be quite certain as to the precise formula underlying

the operation. The best suggestion which has been made on

the subject will be given in its proper place, the chapter

on Heron.
' Heron, iletricu, iii. c. 20.
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PYTHAGOREAN ARITHMETIC

There is very little early evidence regarding Pythagoras's

own achievements, and what there is does not touch his mathe-
matics. The earliest philosophers and historians who refer

to him would not be interested in this part of his work.

Heraclitus speaks of his wide knowledge, but with disparage-

ment :
' much learning does not teach wisdom ; otherwise

it would have taught Hesiod and Pythagoras, and again

Xenophanes and Hecataeus '} Herodotus alludes to Pytha-

goras and the Pythagoreans several times ; he calls Pythagoras
' the most able philosopher among the Greeks ' {'EWiji/cov ov

TW daQivea-TOLTa) (rocfiLa-Trj IIv6ay6pr]).'^ In Empedocles he had

an enthusiastic admirer :
' But there was among them a man

of prodigious knowledge who acquired the profoundest wealth

of understanding and was the greatest master of skilled arts

of every kind ; for, whenever he willed with his whole heart,

he could with ease discern each and every truth in his ten

—

nay, twenty—men's lives.'

"

Pythagoras himself left no written exposition of his

doctrines, nor did any of his immediate successors, not even

Hippasus, about whom the different stories ran (1) that he

was expelled from the school because he published doctrines

of Pythagoras, and (2) that he was drowned at sea for

revealing the construction of the dodecahedron in the sphere

and claiming it as his own, or (as others have it) for making

known the discovery of the irrational or incommensurable.

Nor is the absence of any written record of Pythagorean

' Diog. L. ix. 1 (Fr. 40 in Vorsokratiker, i^, jd. 86. 1-3).

^ Herodotus, iv. 95.
» Diog. L. viii. 54 and Porph. V. Pyth. 30 (Fr. 129 in Vors. i\ p. 272.

15-20).
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doctrines down to the time of Philolaus to be attributed

to a pledge of secrecy binding the school ; at all events, it

did not apply to their mathematics or their physics ; the

supposed secrecy may even have been invented to explain

the absence of documents. The fact appears to be that oral

communication was the tradition of the school, while their

doctrine would in the main be too abstruse to be understood

by the generality of people outside.

In these circumstances it is difficult to disentangle the

portions of the Pythagorean philosophy which can safely

be attributed to the founder of the school. Aristotle evi-

dently felt this difficulty ; it is clear that he knew nothing

for certain of any ethical or physical doctrines going back

to Pythagoras himself ; and when he speaks of the Pytha-

gorean sjrstein, he always refers it to ' the Pythagoreans
',

sometimes even to ' the so-called Pythagoreans'.

The earliest direct testimony to the eminence of Pythagoras

in mathematical studies seems to be that of Aristotle, who in

his separate book On the Pythagoreans, now lost, wrote that

' Pythagoras, the son of Mnesarchus, first worked at mathe-
matics and arithmetic,and afterwards, at one time, condescended

to the wonder-working practised by Pherecydes.'

'

In the Metaphysics he speaks in similar terms of the

Pythagoreans

:

' In the time of these philosophers (Leucippus and
Democritus) and before them the so-called Pythagoreans
applied themselves to the study of mathematics, and were
the first to advance that science ; insomuch that, having been
brought up in it, they thought that its principles must be

the principles of all existing things.' ^

It is certain that the Theory of Numbers originated in

the school of Pythagoras; and, with regard to Pythagoras

himself, we are told by Aristoxenus that he ' seems to have

attached supreme importance to the study of arithmetic,

which he advanced and took out of the region of commercial

utility '.3

' Apollonius, Hist, mirabil. 6 (Vors. i', p. 29. 5).
2 Arist. Metaph. A. 5, 985 b 23.
3 Stobaeus, Eel. i. proem. 6 {Vors. i\ p. 346. 12).
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Numbers and the universe.

We know thatThales (about 624-547 B.C.) and Anaximander

(born probably in 611/10 B.C.) occupied themselves with

astronomical phenomena, and, even before their time, the

principal constellations had been distinguished. Pythagoras

(about 572-497 B.C. or a little later) seems to have been

the first Greek to discover that the planets have an inde-

pendent movement, of their own from west to east, i.e. in

a direction contrary to the daily rotation of the fixed stars
;

or he may have learnt what he knew of the planets from the

Babylonians. Now any one who was in the habit of intently

studying the heavens would naturally observe that each

constellation has two characteristics, the number of the stars

which compose it and the geometrical figure which they

form. -Here, as a recent writer has remarked,^ we find, if not

the origin, a striking illustration of the Pythagorean doctrine.

And, just as the constellations have a number characteristic

of them respectively, so all known objects have a number
;

as the formula of Philolaus states, 'all things which can

be known have number; for it is not possible that without

number anything can either be conceived or known '?

This formula, however, does not yet express all the content

of the Pythagorean doctrine. Not only do all things possess

numbers ; but, in addition, all things are numbers ;
' these

thinkers ', says Aristotle, ' seem to consider that number is

the principle both as matter for things and as constituting

their attributes and permanent states'.^ True, Aristotle

seems to regard the theory as originally based on the analogy

between the properties of things and of numbers.

' They thought they found in numbers, more than in fire,

earth, or water, many resemblances to things which are and

become ; thus such and such an attribute of numbers is jus-

tice, another is soul and mind, another is opportunity, and so

on ; and again they saw in numbers the attributes and ratios

of the musical scales. Since, then, all other things seemed

in their whole nature to be assimilated to numbers, while

numbers seemed to be the first things in the whole of nature,

1 L Brunschvico-, Les itapeif de la philosophie mathimatique, 1912, p. 33.

2 Stob. Ed. i. 21, 7" (Vors. i^ p. 310. 8-10).

^ Aristotle, Metaph. A. 5, 986 a 16.

V 2



68 PYTHAGOREAN ARITHMETIC

they supposed the elements of numbers to be the elements

of all things, and the whole heaven to be a musical scale and
a number.' ^

This passage, with its assertion of ' resemblances ' and
' assimilation ', suggests numbers as affections, states, or rela-

tions rather than as substances, and the same is implied b}'

the remark that existing things exist by virtue of their

imitation of numbers.^ But again we are told that the

numbers are not separable from the things, but that existing

things, even perceptible substances, are made up of numbers
;

that the substance of all things is number, that things are

numbers, tliat numbers are made up from the unit, and that the

whole heaven is numbers.^ Still more definite is the statement

that the Pythagoreans ' construct the whole heaven out of

numbers, but not of monadic numbers, since they suppose the

units to have magnitude ', and that, ' as we have said before,

the P^'thagoreans assume the numbers to have magnitude'.*

Aristotle points out certain obvious difficulties. On the one

hand the Pythagoreans speak of 'this number of which the

heaven is composed
'

; on the other hand they speak of ' attri-

butes of numbers ' and of numbers as ' the caitses of the thinp-s

which exist and take place in the heaven both from the begin-

ning and now '. Again, according to them, abstractions and
immaterial things are also numbers, and they place them in

different regions ; for example, in one region thej^ place

opinion and oppoi'tunity, and in another, a little higher up or

lower down, such things as injustice, sifting, or mixing.

Is it this same 'number in the heaven' which we must
assume each of these things to be, or a number other than

this number ?
^

May we not infer from these scattered remarks of Aristotle

about the Pythagorean doctrine that 'the number in the

heaven ' is the number of the visible stars, made up of

units which are material points? And may this not be

the origin of the theory that all things are numbers, a

theory which of course would be confirmed when the further

' Metaph. A. 5, 985 b 27-986 a 2. ' 76, A. 5, 987 b 11.
• lb. N. 3, 1090 a 22-23

;
M. 7, 1080 b 17 ; A. 5, 987 a 19, 987 b 27,

986 a 20.

* n. M. 7, 1080 b 18, 82. ^ Ih. A. 8, 990 a 18-29.
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capital discovery was made that musical harmonies depend
on numerical ratios, the octave representing the ratio 2 : 1

in length of string, the fifth 3 : 2 and the fourth 4:3?
The use by the Pythagoreans of visible points to represent

the units of a number of a particular form is illustrated by
the remark of Aristotle that

' Eurytus settled what is the. number of what object (e.g.

this is the number of a man, that of a horse) and imitated
the shapes of living things by pebbles after the ynanner of
those who bring numbers into the forms of triangle or
square '}

They treated the unit, which is a point without position

(aTiyfifj aderos), as a point, and a point as a unit having

position ijj.ova.'i Oecnv exovcra}.^

Definitions of the unit and of number.

Aristotle observes that the One is reasonably regarded as

not being itself a number, because a measure is not the things

measured, but the measure or the One is the beginning (or

principle) of number.^ This doctrine may be of Pythagorean
origin ; Nicomaehus has it ^

; Euclid implies it when he says

that a unit is that by virtue of which each of existing things

is called one, while a number is 'the multitude made up of

units''; and the statement was generally accepted. According

to lamblichus,** Thymaridas (an ancient Pythagorean, probably

not later than Plato's time) defined a unit as ' limiting quan-

tity ' {nepaifovaa ttoo-ottjs) or, as we might say, 'limit of few-

ness ', while some Pythagoreans called it ' the confine between

number and parts ', i. e. that which separates multiples

and submultiples. Chrysippus (third century B.C.) called it

'multitude one' {nXfjOos eV), a definition objected to by
lamblichus as a contradiction in terms, but important as an

attempt to bring 1 into the conception of number.

The first definition of number is attributed to Thales, who
defined it as a collection of units (fiovdSaiv ava-rrj/xa), ' follow-

' Metaph. N. 5, 1092 b 10.

' lb. M. 8, 1084 b 2,5 ; De an. i. 4, 409 a 6 ; Pioclui3 on Euol. I, p. 95. 21.

^ Metaph. N. 1, 1088 a 6.

* Nicora. Introd. arithm. ii. 6. 3, 7. 3. = Eucl. VII, Dels. 1, 2.

° Iambi, in Nicom.,ar. inlrod., p. 11. 2-10.
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ing the Egyptian view '} The Pj^thagoreans ' made number

out of one'^; some of them called it ' a progression of multi-

tude beginning from a unit and a regression ending in it '.'

(Stobaeus credits Moderatus, a Neo-Pythagorean of the time

of Nero, with this definition.*) Eudoxus defined number as

a ' determinate multitude ' (nXfjOo^ wpiaiiivov).^ Nicoma-

chus has yet another definition, ' a flow of quantity made up

of units '
" {irocroTrjTo^ X'^A'" ^'^ novdSaiv o-vyKeifievov). Aris-

totle gives a number of definitions equivalent to one or other

of those just mentioned, ' limited multitude ','' ' multitude (or

' combination ') of units ',^ ' multitude of indivisibles ',^
' several

ones' (eVa TrXeta)),^" ' multitude measurable by one ',^^ 'multi-

tude measured ', and ' multitude of measures ' ^^ (the measure

being the unit).

Classification of numbers.

The distinction between odd (nepia-ao?) and even {dpnos)

doubtless goes back to Pythagoras. A Philolaus fragment

says that ' number is of two special kinds, odd and even, with

a third, even-odd, arising from a mixture of the two ; and of

each kind there are many forms '.^^ According to Nicomachus,

the Pytliagorean definitions of odd and even were these

:

' An even number is that which admits of being divided, by
one and the same operation, into the greatest and the least

parts, greatest in size but least in number (i. e. into tv:o halves)

. . ., while an odd number is that which cannot be so divided
liut is only divisible into two unequal parts.'

'''

Nicomachus gives another ancient definition to the efliect

that

' an even number is that which can be divided both into two
equal parts and into two unequal parts (except the funda-
mental dyad which can only be divided into two equal parts),

but, however it is divided, must have its two parts of the same
]dnd without part in the other kind (i. e. the two parts are

' Iambi, in Nicom. ar. introd., p. 10. 8-10.
2 Arist. Metaph. A. 5, 986 a 20. ^ Theon of Smyrna, p. 18. 3-5.
' Stob. Ed. i. pr. 8. '' Iambi, op. cit., p. 10. 17.
'' Nicom. i. 7. 1. ' Metaph. A. 13, 1020 a 13.
» lb. I. 1, 1053 a 30 ; Z. 13, 1039 a 12.
" lb. M. 9, 1085 b 22. '» Phys. iii. 7, 207 b 7.
" Metajih. I. 6, 1057 a 3. i^ lb. N. 1, 1088 a 5.
" Stob. Ed. i. 21. 7= (Vors. i^ p. 310. 11-14). » Nicom. i. 7. 3.
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both odd or both even); while an odd number is that which,
however divided, must in any case fall into two unequal parts,

and those parts always belonging to the two different kinds
respectively (i.e. one being odd and one even).' ^

In the latter definition we have a trace of the original

conception of 2 (the dyad) as being, not a number at all, but
the principle or beginning of the even, just as one was not a

number but the principle or beginning of number ; the defini-

tion implies that 2 was not originally regarded as an even

number, the qualification made by Nicomachus with reference

to the dyad being evidently a later addition to the original

definition (Plato already speaks of two as even).^

With regard to the term ' odd-even ', it is to be noted that

according to Aristotle, the Pythagoreans held that ' the One
arises from both kinds (the odd and the even), for it is both

even and odd '.^ The explanation of this strange view might

apparently be that the unit, being the principle of all number,

even as weU as odd, cannot itself be odd and must therefore

be called even-odd. There is, however, another explanation,

attributed byTheon of Smyrna to Aristotle, to the effect that the

unit when added to an even number makes an odd number, but

when added to an odd number makes an even number : which

could not be the case if it did not partake of both species

;

Theon also mentions Archytas as being in agreement with this

view.* But, inasmuch as the fragment of Philolaus speaks of

' many forms ' of the species odd and even, and ' a third

'

(even-odd) obtained from a combination of them, it seems

more natural to take ' even-odd ' as there meaning, not the

unit, but the product of an odd and an even number, while, if

' even ' in the same passage excludes such a number, ' even

'

would appear to be confined to powers of 2, or 2".

We do not know how far the Pythagoreans advanced

towards the later elaborate classification of the varieties of

odd and even numbers. But they presumably had not got

beyond the point of view of Plato and Euclid. In Plato we

have the terms 'even-times even' (dpria dpTiaKis), 'odd-

times odd' {nepiTTO. TT-epLTTaKLs:), 'odd-times even' (dpria

1 Nicom. i. 7. 4. ^ Plato, Parmenides, 143 D.

3 Arist. Metajih. A. .5, 986 a 19.
"

* Theon of Smyrna, p. 22. 5-10.
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TTepiTTaKLs;) and 'even-times odd' {irepiTTa dpriccKis), which

are evidently used in the simple sense of the products of even

and even, odd and odd, odd and even, and even and odd

factors respectively.^ Euclid's classification does not go much
beyond this; he does not attempt to make the four defini-

tions mutually exclusive.^ An ' odd-times odd •" number is of

course any odd number which is not prime ; but ' even-times

even '
(' a number measured by an even number according to

an even number ') does not exclude ' even-times odd '
(' a

number measured by an even number according to an odd

number'); e.g. 24, which is 6 times 4, or 4 times 6, is also

8 times 3. Euclid did not apparently distinguish, any more

than Plato, between ' even-times odd ' and ' odd-times even

'

(the definition of the latter in the texts of Euclid was pro-

bably interpolated). The Neo-Pythagoreans improved the

classification thus. With them the ' even-times even ' number
is that which has its halves even, the halves of the halves

even, and so on till unity is reached '
^

; in short, it is a number
of the form 2". The ' even-odd ' number {dpTionepiTTOi in one

word) is such a number as, when once halved, leaves as quo-

tient an odd number,* i.e. a number of the form 2(2m-f-l).

The ' odd-even ' number {TrepLaadprios) is a number such that

it can be halved twice or more times successively, but the

quotient left when it can no longer be halved is an odd num-
ber not unity,* i.e. it is a number of the form 2""'"i (27?i+l).

The ' odd-times odd ' number is not defined as such by
Nicomachus and lamblichus, but Theon of Smyrna quotes

a curious use of the term ; he says that it was one of the

names applied to prime numbers (excluding of course 2), for

these have two odd factors, namely 1 and the number itself."

Prime or incomposite numbers (rrpwros Kal da-vudiTos) and
secondary or composite numbers {Sevrepos Kal avvOiTo^) are

distinguished in a fragment of Speusippus based upon works
of Philolaus.' We are told * that Thymaridas called a prime
number rectilinear {(vdvypaixfiiKos), the ground being that it

can only be set out in one dimension " (since the only measure

' Plato, Parmenides, 143 e. - See Eucl. VII. Defs. 8-10.
' Nioom. i. 8. 4. * lb. i. 9. 1. '^ lb. i. 10. 1.
" Theon of Smyrna, p. 2.3. 14-23.
' Theol. Ar. (Ast), p. 62 {Vors. i^ p. 304. 5).
» Iambi, ill Nicom., p. 27. 4. "> Cf. Arist. Metaph. A. 13, 1020 b 3, 4.
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of it, excluding the number itself, is 1); Theon of Smyrna
gives euthymetric and linear as alternative terms/ and the
latter (ypafifiiKos) also occurs in the fragment of Speusippus.
Strictly speaking, the prime number should have been called
that which is rectilinear or linear only. As we have seen,.

2 was not originally regarded as a prime number, or even as
a number at all. But Aristotle speaks of the dyad as ' the
only even number which is prime,' ^ showing that this diver-
gence from early Pythagorean doctrine took place before
Euclid's time. Euclid defined a prime number as ' that which
is measured by a unit alone ',^ a composite number as ' that
which is measured by some number ',* while he adds defini-

tions of numbers ' prime to one another ' (' those which are

measured by a unit alone as a common measure ') and of

numbers ' composite to one another ' (' those which are mea-
sured by some number as a common measure ').^ Euclid then,

as well as Aristotle, includes 2 among prime numbers. Theon
of Smyrna says that even numbers are not measured by the

unit alone, except 2, which therefore is odd-like without being

prime." The Neo-Pythagoreans, Nicomachus and lamblichus,

not only exclude 2 from prime numbers, but define composite

numbers, numbers prime to one another, and numbers com-
posite to one another as excluding all even numbers ; they

make all these categories subdivisions of oddJ Their object

is to divide odd into three classes parallel to the three subdivi-

sions of even, namely even-even = 2", even-odd = 2 (2m -I- 1)

and the quasi-intermediate odd-even = 2""*"^ (2m -I- 1) ; accord-

ingly they divide odd numbers into (a) the prime and

incomposite, which, are Euclid's primes excluding 2, (6) the

secondary and composite, the factors of which must all be not

only odd but prime numbers, (c) those which are ' secondary and

composite in themselves but prime and incomposite to another

number,' e.g. 9 and 25, which are both secondary and com-

posite but have no common measure except 1. The incon-

venience of the restriction in (h) is obvious, and there is the

• Theon of Smyrna, p. 23. 12.

^ Arist. Topics, G. 2, 157 a 39.

' Eucl. VII. Def. 11. - lb. Def. 13.

lb. Defs. 12, 14.
" Theon of Smyrna, p. 24. 7.

' Nicom. i, cc. 11-13 ; Iambi, in Nicom., pp. 26-8.
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further objection that (b) and (c) overlap, in fact (b) includes

the whole of (c).

' Perfect ' and ' Friendly ' numbers.

There is no trace in the fragments of Philolaus, in Plato or

Aristotle, or anj'where before Euclid, of the perfect number

(rsAetoy) in the well-known sense of Euclid's definition

(VII. Def. 22), a number, namely, which is ' equal to (the

sum of) its own parts' (i.e. all its factors including 1),

e.g. 6=1+2 + 3; 28 = 1+2 + 4 + 7 + 14;-^

496= 1+2 + 4 + 8 + 16 + 31 + 62 + 124 + 248.

The law of the formation of these numbers is proved in

Eucl. IX. 36, which is to the effect that, if the sum of any

number of terms of the series 1 , 2, 2^, 2=* 2"-i
(= SJ is prime,

then >S'„ .
2"~i

is a ' perfect ' number. Theon of Smyrna ^ and

Nicomachus ^ both define a ' perfect ' number and explain the

law of its formation ; they further distinguish from it two

other kinds of numbers, (1) over-perfect {vnepTtXrj^ or vTrepre-

Xeios), so called because the sum of all its aliquot parts is

greater than the number itself, e.g. 12, which is less than

1 + 2 + 3 + 4 + 6, (2) defective (eWnrrjs), so called because the

sum of all its aliquot parts is less than the number itself,

e. g. 8, which is greater than 1+2 + 4. Of perfect numbers

Nicomachus knew four (namely 6, 28, 496, 8128) but no more.

He says they are formed in ' ordered ' fashion, there being one

among the units (i.e. less than 10), one among the tens (less

than 100), one among the hundreds (less than 1000), and one

among the thousands (less than a myriad) ; he adds that they

terminate alternately in 6 or 8. They do all terminate in 6 or

8 (as we can easily prove by means of the formula (2"— 1) 2""^),

but not altei'nately, for the fifth and sixth perfect numbers

both end in 6, and the seventh and eighth both end in 8.

lamblichus adds a tentative suggestion that there may (ei

Tv-)(oi) in like manner be one perfect number among the first

myriads (less than 10000^), one among the second myriads

(less than 10000^), and so on ud infinitum.^ This is incorrect,

for the next perfect numbers are as follows :

*

' Theon of Smyrna, p. 45. ' Nicom. i. 16, 1-4.
' Iambi, in Nicom., p. 33. 20-23.
* The fifth pei'fect number may have been known to lamblichus.

to
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fifth, 2^2 (2"_i) = 33 550 336

sixth, 21" (2^'— 1) = 8 589 869 056

seventh, 2" (2'^— 1) = 137 438 691 328

eighth, 230 (231-1) = 2 305 843 008 139 952 128

ninth, 2°o(2°i-l) = 2 658 455 991' 569 831 744 654 692

615 953 842 176

tenth, 2S8 (28»— 1).

With these ' perfect ' numbers should be compared the so-

called ' friendly numbers '. Two numbers are ' friendly ' when
each is the sum of all the aliquot parts of the other, e.g. 284 and
220 (for 284 = 1 + 2 + 4 + 5 + 10 + 11+ 20 + 22 + 44 + 55 + 110,

while 220 = 1 + 2 +4 + 71 + 142). lambhchus attributes the

discovery of such numbers to Pythagoras himself, who, being

asked ' what is a friend ?
' said ' Alter ego ', and on this analogy

applied the term ' friendly ' to two numbers the aliquot parts

of either of which make up the other.^

While for Euclid, Theon of Smyrna, and the Neo-Pytlia-

goreans the ' perfect ' number was the kind of number above

described, we are told that the Pythagoreans made 10 the

perfect number. Aristotle says that this was because they

found within it such things as the void, proportion, oddness,

and so on.^ The reason is explained more in detail by Theon

of Smyrna^ and in the fragment of Speusippus. 10 is the

sum of the numbers 1, 2, 3, 4 forming the rerpaKTVi (' their

greatest oath ', alternatively called the ' principle of health ' *).

These numbers include the ratios corresponding to the musical

intervals discovered by Pythagoras, namely 4 : 3 (the fourth),

though he does not give it ; it was, however, known, with all its factors,

in the fifteenth century, as appears from a tract written in German
which was discovered by Curtze (Cod. lat. Monac. 14908). The iirst

eight 'perfect' numbers were calculated by Jean Prestet (d. 1670);

Fermat (1601-65) had stated, and Euler proved, that 2^'-l is prime.

The ninth perfect number was found by P. SeelhofF, Zeitschr. f. Math. ti.

Phyaik, 1886, pp. 174 sq.) and verified by E. Lucas [Mathhis, vii, 1887,

jip. 44-6). The tenth was found by R. E. Powers (Bull. Amer. Math.

Soc, 1912, p. 162).
1 Iambi, in Nicom., p. 35. 1-7. The subject of 'friendly numbers

was taken up by Euler, who discovered no less than sixty-one pairs of

such numbers. Descartes and van Schooten had previously found three

pairs but no more.
' Arist. Metaph. M. 8, 1084 a 32-4.
3 Theon of Smyrna, p. 93. 17-94. 9 (VorsoJa atikei; r, pp. BOB-4).

Lucian, De lapsu in salutando, 5.
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3 : 2 (the fifth), and 2 : 1 (the octave). Speusippus observes

further that 10 contains in it the 'linear', 'plane' and 'solid'

varieties of number ; for 1 is a point, 2 is a Hne,^ 3 a triangle,

and 4 a pyramid.^

Figured numbers.

This brings us once more to the theory of figured numbers,

which seems to go back to Pythagoras himself. A point or

dot is used to represent 1 ; two dots placed apart represent

, 2, and at the same time define the straight line joining the

two dots ; three dots, representing 3, mark out the first

rectilinear plane figure, a triangle ; four dots, one of which is

outside the plane containing the other three, represent 4 and

also define the first rectilineal solid figure. It seems clear

that the oldest Pythagoreans were acquainted with the forma-

tion of triangular and square numbers by means of pebbles or

dots^; and we judge from the account of Speusippus's book,

On the Pythagorean Numbers, which was based on works of

Philolaus, that the latter dealt with linear numbers, polygonal

numbers, and plane and solid numbers of all sorts, as well as

with the five regular solid figures.* The varieties of plane

numbers (triangular, square, oblong, pentagonal, hexagonal,

and so on), solid numbers (cube, pyramidal, &c.) are all dis-

cussed, with the methods of their formation, by Nicomachus ^

and Theon of Smyrna."

{a) Triangular numbers.

To begin with triangular numbers. '"It was probably

Pythagoras who discovered that the sum of any number of

successive terms of the series of natural numbers 1, 2, 3 . . .

beginning from 1 makes a triangular number. This is obvious

enough from the following arrangements of rows of points

;

Thus l-|-2-|-3-f-...-|-% = i-ii (^n+l) is a triangular number

' Cf. Arist. MetapJi. Z. 10, 1036 b 12. « Theol. Ar. (Ast), p. 62. 17-22.
< Cf. Arist. Metaph. N. 5, 1092 b 12. • Theol. Ar. (Ast), p. 61.
<" Nicom. i. 7-11, 18-16, 17. " Theon of Smyrna, pp. 26-42.
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of side n. The particular triangle which has 4 for its side is

mentiojied in a story of Pythagoras by Lucian. Pythagoras
told some one to count. He said 1, 2, 3, 4, whereon Pytha-
goras interrupted, ' Do you see ? What you take for 4 is 10,
a perfect triangle and our oath '> This connects the know-
ledge of triangular numbers with true Pythagorean ideas.

(/?) Square numbers and gnomons.

We come now to squai^e numbers.^ It is easy to see that, if

we have a number of dots forming and filling

up a square as in the accompanying figure repre-

senting 16, the square of 4, the next higher
square, the square of 5, can be formed by adding
a row of dots round two sides of the original

square, as shown; the number of these dots is

2 . 4 -M, or 9. This process of forming successive squares can
be applied throughout, beginning from the first square
number 1 . The successive additions are shown in the annexed
figure between the successive pairs of straight

lines forming right angles ; and the succes-

sive numbers added to the 1 are
_J. .
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(y) History of the term ' gnomon '.

It will be noticed that the gnomons shown in the above

figure correspond in shape to the geometrical gnomons with

which Euclid, Book II, has made us familiar. The history of

the word ' gnomon ' is interesting. (1) It was originally an

astronomical instrument for the measuring of time, and con-

sisted of an upright stick which cast shadows on a plane or

hemispherical surface. This instrument is said to have been

introduced into Greece by Anaximander ^ and to have come

from Babylon.^ Following on this application of the word
' gnomon ' (a ' marker ' or ' pointer ', a means of reading off and

knowing something), we find Oenopides calling a perpendicular

let fall on a straight line from an external point a straight line

drawn ' gnomon-iuise ' (kuto. yvaifiova.).^ Next (2) we find the

term used of an instrument for drawing right angles, which

took the form shown in the annexed figure. This seems to

be the meaning in Theognis 805, where it is said

tliat the envoy sent to consult the oracle at Delphi

should be ' straighter than the ropvos (an instru-

I

ment with a stretched string for drawing a circle),

the (TTadfir) (a plumb-line), and the gnomon'.
It was natural that, owing to its shape, the gnomon should

then be used to describe (3) the figure which remained of

a square when a smaller square was cut out of it (or the figure

which, as Aristotle says, when added to a square, preserves

the shape and makes up a larger square). The term is used

in a fragment of Philolaus where he says that ' number makes
all things knowable and mutually agreeing in the way charac-

teristic of the gnomon'.* Presumably, ^s Boeckh says, the

connexion l^etween the gnomon and the square to which it is

added was regarded as symbolical of union and agreement,
and Philolaus used the idea to explain the knowledge of

things, making the knowing embrace the knoiun as the

gnomon does the square.'^ (4) In Euclid the geometrical

meaning of the word is further extended (II. Def. 2) to cover

' Suidas, s.v. 2 Herodotus, ii. 109.
^ Proclus on Eucl. I, p. 283. 9.

' Boeckh, Philnlaos des Puthagoreers Lehren, p. 141 : ib., v. 144 • Vors. i',

p. 313. 15.
'i ' yf , ,

= CI Scholium No. 11 to Book II in Euclid, ed. Heib., vol. v, p. 225.
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the figure similarly related to any parallelogram, instead of

a square ; it is defined as made up of ' any
one whatever of the parallelograms about
the diameter (diagonal) with the two com-
plements '. Later still (5) Heron of Alex-

andria defines a gnomon in general as that

which, when added to anything, number or figure, makes the

whole similar to that to which it is added.^

(S) Gnomons of the polygonal numbers.

Theon of Smyrna uses the term in this general sense with

reference to numbers :
' All the successive numbers which [by

being successively added] produce triangles or squares or

polygons are called gnomons.' ^ From the accompanying

figures showing successive pentagonal and hexagonal numbers

it will be seen that the outside rows or gnomons to be succes-

sively added after 1 (which is the first pentagon, hexagon, &c.)

are in the case of the pentagon 4, 7, 10 , . . or the terms of an

arithmetical progression beginning from 1 with common differ-

ence 3, and in the case of the hexagon 5, 9, 13 .... or the

terms of an -arithmetical progression beginning from 1 with

common diff'erence 4. In general the successive gnomonic

numbers for any polygonal number, say of « sides, have

(n — 2) for their common difference.^

(e) Right-angled triangles with sides in rational numhers.

To return to Pythagoras. Whether he learnt the fact from

Egypt or not, Pythagoras was certainly aware that, while

32 -1- 42 = 52, any triangle with its sides in the ratio of the

' Heron, Def. 58 (Heron, vol. iv, Heib., p. 225).

^ Theon of Smyrna, p. 87. 11-13 76., p. 34. 13-15.
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numbers 3, 4, 5 is right angled. This fact could not but add

strength to his conviction that all things were numbers, for it

established a connexion between numbers and the angles of

geometrical figures. It would also inevitably lead to an

attempt to find other square numbers besides 5^ which are

the sum of two squares, or, in other words, to find other sets

of three integral numbers which can be made the sides of

right-angled triangles ; and herein we have the beginning of

the indeterminate analysis which reached so high a stage of

development in Diophantus. In view of the fact that the

sum of any number of successive terms of the series of odd

numbers 1, 3, 5, 7 . . . beginning from 1 is a square, it was
only necessary to pick out of this series the odd numbers

which are themselves squares ; for if we take one of these,

say 9, the addition of this square to the square which is the sum
of all the preceding odd numbers makes the square number
which is the sum of the odd numbers up to the number (9) that

we have taken. But it would be natural to seek a formula

which should enable all the three numbers of a set to be imme-
diately written down, and such a formula is actually attributed

to Pythagoras.^ This formula amounts to the statement that,

if m be any odd number,

™' + (^^-) =(—2-^) •

Pythagoras would presumably arrive at this method of forma-
tion in the following way. Observing that the gnomon put
.round n"^ is 2n+l, he would only have to make 2n+l a
square.

If we suppose that 2n+l = m^,

we obtain n = f (m'"— 1),

and therefore n+1 = ^ (m^ -1-1).

It follows that '

' Proclus on Eucl. I, p. 487. 7-21.
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Another formula, devised for the same purpose, is attributed

to Plato,^ namely

(2m)2-|-(m2-l)2 = (m2+l)2.

We could obtain this formula from that of Pythagoras by
doubling the sides of each square in the latter ; but it would

be incomplete if so obtained, for in Pythagoras's formula m is

necessarily odd, whereas in Plato's it need not be. As Pytha-

goras's formula was most probably obtained from the gnomons

of dots, it is tempting to suppose that Plato's was similarly

evolved. Consider the square with n dots in its

side in relation to the next smaller square {n—lf
and the next larger (71 -1-1)^. Then n^ exceeds

(n—iy by the gnomon 2 )i— 1, but falls short of

(w-H)^ by the gnomon 2n + l. Therefore the

square (-n.-1-l)^ exceeds the square (n—l)'^ by

the sum of the two gnomons 2n—l and 2?i-|-l, which

is 4«.

That is, in + {)i- 1/^ = {n + l)^

and, substituting -ni^ for ii in order to make in a, square, wo

obtain the Platonic formula

{2mf + im^-lf = (77i2-|-l)2.

The formulae of Pythagoras and Plato supplement each

other. Euchd's solution (X, Lemma following Prop. 28) is

more general, amounting to the following.

If AB he Si straight line bisected at C and produced to D.

then (Eucl. II. 6)

AD.DB + CB^^CD^

which we may write thus :

uv = c^ — V,

where tt = c + 6, v = c-b,

and consequently

c = l{u + v), b=^{u-v).

In order that uv may be a square, says Euclid, u and v

must, if they are not actually squares, be ' similar plane num-

bers '', and further they must be either both odd or both even

1 Proclus on Eucl. I, pp.428. 21-429. 8.
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in order that b (and c also) may be a whole number. ' Similar

plane ' numbers are of course numbers which are the product

of two factors proportional in pairs, as tnp. nj) and Ttiq. nq, or

mnp^ and mivf- Provided, then, that these numbers are both

even or both odd.

,j^2^2^j2g,2 +
^ 2 ^ ~ \ 2 ''

is the solution, which includes both tlie Pythagorean and the

Platonic formulae.

(^) Oblong numbers,

Pythagoras, or the earliest Pythagoreans, having discovered

that, by adding any number of successive terms (beginning

from 1) of the series 1 + 2 + 3+ ... + n = ^n (n + l), we obtain

triangular numbers, and that by adding the successive odd

numbers 1 + 3 + 5 + ... +(2 7i— 1) = n^ we obtain squares, it

cannot be doubted that in like manner they summed the

series of even numbers 2 + 4 + 6 + . .. + 2 n, = 11(71+1) and

discovered accordingly that the sum of any number of succes-

sive terms of the series beginning with 2 was an ' oblong

'

number (eVepoyUT^/o/y), with^ 'sides' or factors differing by 1.

They would also see that the oblong number is double of

a triangular number. These facts would be brought out by
taking two dots representing 2 and then placing round them,

gnomon-wise and successively, the even numbers 4, 6, &c.,

thus :

t

The successive oblong numbers are

2.3 = 6, 3.4 = 12, 4.5 = 20..., n(n + l)...,

and it is clear that no two of these numbers are similar, for

the ratio n:(n+l) is different for all different values of n.

We may have here an explanation of the Pythagorean identi-

fication of ' odd ' with ' limit ' or ' limited ' and of ' even ' with
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' unlimited
'
^ (cf. the Pythagorean scheme of ten pairs of

opposites, where odd, limit and square in one set are opposed
to even, unlimited and oblong respectively in the other). ^ For,

while the adding of the successive odd numbers as gnomons
round 1 gives only one form, the square, the addition of the

successive even numbers to 2 gives a succession of ' oblong '

numbers all dissimilar in form, that is to say, an infinity of

forms. This seems to be indicated in the passage of Aristotle's

Physics where, as an illustration of the view that the even
is unlimited, he says that, where gnomons are put round 1,

the resulting figures are in one case always different in

species, while in the other they always preserve one form ^

;

the one form is of course the square formed by adding the

odd numbers as gnomons round 1 ; the words Kal ^wph
(' and in the separate case ', as we may perhaps translate)

imperfectly describe the second case, since in that case

even numbers are put round 2, not 1, but the meaning
seems clear.* It is to be noted that the word 6Te/)o//?j/c7;y

(' oblong ') is in Theon of Smyrna and Nicomachus limited to

numbers which are the product of two factors differing by
unity, while they apply the term TrpofiTJKrjs ('prolate', as it

were) to numbers which are the product of factors differing

by two or more (Theon makes TrpofirJKijs include irepofirJKTjs).

In Plato and Aristotle irepojx-qKrjs has the wider sense of any

non-square number with two unequal factors.

It is obvious that any ' oblong ' number n {n + 1) is the

sum of two equal triangular numbers. Scarcely less obvious

is the theorem of Theon that any square number is made up

of two triangular numbers ^
; in this case, as is seen from the

' Arist. Metaph. A. 5, 986 a 17.

2 lb. A. 5, 986 a 23-26.
^ Arist. Phys. iii. 4, 203 a 10-15.
* Cf. Plut. (?) Stob. Ed. i. pr. 10, p. 22. 16 Waohsmuth.
= Theon of Smyrna, p. 41. 3-8.

Q 2
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figure, the sides of the triangles differ by unity, and of course

..../. \n{fh-\)-V\'rh{n^\) — V?.

. . ./ . Another theorem connecting triangular num-
• •/• • bers and squares, namely that 8 times any

Jf [ [
triangular number + 1 makes a square, may

easily go back to the early Pythagoreans. It is

quoted by Plutarch ^ and used by Diophantus,^ and is equi-

valent to the formula

8.|7i(?i+l) + l = 47i(ri,+ l) + l = (2)1+1)1

It may easily have been proved by means of a figure

made up of dots in the usual way. Two

. , equal triangles make up an oblong figure

• • of the form ri,('n,+ 1), as above. Therefore

we have to prove that four equal figures

^
of this form with one more dot make up

. . (2)1+1)^- The annexed figure representing

• • 7^ shows how it can be divided into four

' oblong ' figures 3 . 4 leaving 1 over.

In addition to Speusippus, Philippus of Opus (fourth

century), the editor of Plato's Lcnus and author of the Epi-

iiomis, is said to have written a work on polygonal numbers.'*

Hypsicles, who wrote about 170 B.C., is twice mentioned in

Diophantus's Polygonal Numbers as the author of a ' defini-

tion ' of a polygonal number.

The theory of proportion and means.

The ' summary ' of Proclus (as to which see the beginning

of Chapter IV) states (if Friedlein's reading is right) that

Pythagoras discovered ' the theory of irrationals {ttjv t5>v

dXoycov irpayixaTeLav) and the construction of the cosmic

figures' (the five regular solids).* We are here concerned

with the first part of this statement in so far as the reading

aXoycov (' irrationals ') is disputed. Fabricius seems to have

been the first to record the variant avaXoyaiv, which is also

noted by E. F. August ' ; Mullach adopted this reading from

1 Plutarch, Plat. Quaest. v. 2. 4, 1003 F. ' Dioph. IV. 38.
' Bioyput^oi, Vitarum sciiptores Giaeci iniiiores, ed, Westermann, p. 446.
' Prochis on Eucl. I, p. 65. 19.

" In his edition of the Greek text of Euclid (1824-9), vol. i, p. 290.
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Fabricius. avakoywv is not the correct form of the word, but
the meaning would be ' proportions ' or ' proportionals ', and
the true reading may be either roof dvaXoymv ('proportions'),

or, more probably, tS,v dva \6yov ('proportionals'); Diels

reads tmv dvd \6yov, and it would seem that there is now
general agreement that aXoymv is wrong, and that the theory
which Proclus meant to attribute to Pythagoras is the theory
oi 2^0-portion or 'proportionals, not of in-ationals.

(a) Arithmetic, geometric, and harmonic means.

It is true that we have no positive evidence of the use by
Pythagoras of proportions in geometry, although he must
have been conversant with similar figures, which imply some
theory of proportion. But he discovered the dependence of

musical intervals on numerical ratios, and the theory of means
was developed very early in his school with reference to

the theory of music and arithmetic. We are told that in

Pythagorass time there were three means, the arithmetic,

the geometric, and the subcontrary, and that the name of the

third (' subcontrary ') was changed by Archytas and Hippasus

to 'harmonic'.^ A fragment of Archytas's work On Music

actually defines the three ; we have the arithm,etic mean
when, of three terms, the first exceeds the second by the

same amount as the second exceeds the third ; the geometric

mean when, of the three terms, the first is to the second as

the second is to the third ; the ' subcontrary, which we call

harm,onic ', when the three terms are such that ' by whatever

part of itself the first exceeds the second, the second exceeds

the third hy the same part of the third '.^ That is, if a, b, c

are in harmonic progression, and a = b + > we must have

6 = c + 5 whence in fact
n

a a-b 1111
' = I ' or T = T
c b— c c b Uj

Nicomachus too says that the name ' harmonic mean ' was

adopted in accordance with the view of Philolaus about the

' geometrical harmony ', a name applied to the cube because

it has 12 edges, 8 angles, and 6 faces, and 8 is the mean

' Iambi, in Nicom., p. 100. 19-24.
^ Porph. in Ptol. Harm., p. 267 [Vors. i^ p. 334. 17 sq.).
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between 12 and 6 according to the theory of harmonics (/cara

TrjV apfiovLKrjv)}

lambliehus,^ after Nicomachus,^ mentions a special ' most

perfect proportion ' consisting of four terms and called

'musical', which, according to tradition, was discovered by

the Babylonians and was first introduced into Greece by

Pythagoras. It was used, he says, by many Pythagoreans,

e. g. (among others) Aristaeus of Croton, Timaeus of Locri,

Philolaus and Archytas of Tarentum, and finally by Plato

in the Timaeus, where we are told that the double and triple

intervals were filled up bj- two means, one of which exceeds

and is exceeded by the same part of the extremes (the

harmonic mean), and the other exceeds and is exceeded by

the same numerical magnitude (the arithmetic mean).'' The

proportion is

a + h 2ab ,

a : =
J : o,

2 a + b

an example being 12:9 = 8:6.

(/S) Seven other means distinguished.

The theory of means was further developed in the school

by the gradual addition of seven others to the first three,

making ten in all. The accounts of the discovery of the

fourth, fifth, and sixth are not quite consistent. In one place

lamblichus says they were added by Eudoxus ® ; in other

places he says they were in use by the successors of Plato

down to Eratosthenes, but that Archytas and Hippasus made
a beginning with their discovery," or that they were part of

the Archytas and Hippasus tradition.' The remaining four

means (the seventh to the tenth) are said to have been added

by two later Pythagoreans, Myonides and Euphranor.* From
a remark of Porphyry it would appear that one of the first

seven means was discovered by Sinius of Posidonia, but

that the jealousy of other Pythagoreans would have I'obbed

him of the credit.' The ten means are described by

' Nicom. ii. 26. 2. '^ Iambi, in Kicom., p. 118. 19sq.
» Nioom. ii. 29. • Plato, Timaeus, 36 A.
* Iambi, ill Nicom., p. 101. 1-5. ^ Ih., p. 116 1-4
' Ih., p. 113, 16-18. » lb., IX 116. 4-6.
^ Porphyry, 77/, Pyih. 3 ; Vors. i', p. 343. 12-15 and note.



THE SEVERAL MEANS DISTINGUISHED 87

Nicomachus ^ and Pappus ^ ; their accounts only differ as

regards one of the ten. If a>b>c, the formulae in the third

column of the following table show the vai'ious means.

Jo. in

Iicom.
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Nos. 4, 5, 6 of the above means give equations of the second

degree, and he concludes that the geometrical and even the

arithmetical solution of such equations was known to the dis-

coverer of these means, say about the time of Plato^; Hippo-

crates of Chios, in fact, assumed the geometrical solution of.

a mixed quadratic equation in his quadrature of lunes.

Pappus has an interesting series of propositions with

regard to eight out of the ten means defined by him.^ He
observes that if a, /3, y be three terms in geometrical pro-

gression, we can form from these terms three other terms

a, b, c, being linear functions of a, /3, y which satisfy respec-

tively eight of the above ten relations ; that is to say, he

gives a solution of eight problems in indeterminate analysis

of the second decree. The solutions are as follows

:

No. in

Nicom.
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No. in

Nicom.
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numbers in VIII. 11, 12, and for similar plane and solid num-

bers in VIII. 18, 19. Nicomachus quotes the substance of

Plato's remark as a ' Platonic theorem ', adding in explanation

the equivalent of Eucl. VIII. 11,
12.i

(5) A theorem of Archytas.

Another interesting theorem relative to geometric means

evidently goes back to the Pythagoreans. If we have two

numbers in the ratio known as kniiiopio^, or suiJeriMrticularis,

i.e. the ratio of n+\ to n, there can be no number which is

a mean proportional between them. The theorem is Prop. 3 of

Euclid's Sectio Canonis,^ and Boetius has preserved a proof

of it by Archytas, which is substantially identical with that of

Euclid.3 The proof will be given later (pp. 215-1 6). So far as

this chapter is concerned, the importance of the proposition lies

in the fact that it implies the existence, at least as early

as the date of Archytas (about *430-365 B.C.), of an Elements

of Arithnietic in the form which we call Euclidean ; and no

doubt text-books of the sort existed even before Archytas,

which probably Archytas himself and others after him im-

proved and developed in their turn.

The 'irrational'.

We mentioned above the dictum of Proclus (if the reading

dXoycov is right) that Pythagoras discovered the theory, or

study, of irrationals. This subject was regarded by the

Greeks as belonging to geometry rather than arithmetic.

The irrationals in Euclid, Book X, are straight lines or areas,

and Proclus mentions as special topics in geometry matters

relating (l) to positions (for numbers have no position), (2) to

contacts (for tangency is between continuous things), and (3)

to irrational straight lines (for where there is division ad

infinitum, there also is the irrational).* I shall therefore

postpone to Chapter V on the Pythagorean geometry the

question of the date of the discovery of the theory of irra-

tionals. But it is certain that the incommensurability of the

» Nicom. ii. 24. 6, 7.

^ Musici Scriptores Graeci, ed. Jan, pp. 148-66; Euclid, vol. viii, ed.

Heiberg and Menge, p. 162.
' Boetius, De Inst. Miisica, iii. 11 (pp. 285-6, ed. Friedlein) ; see B'tblio-

tlieca Mathematica, vij, 1905/6, p. 227.
* Proclus on Eucl. I, p. 60. 12-16.
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diagonal of a square with its side, that is, the ' irrationality

'

of a/2, was discovered in the school of Pythagoras, and it is

more appropriate to deal with this particular case here, both
because the traditional proof of the fact depends on the
elementary theory of numbers, and because the Pythagoreans
invented a method of obtaining an infinite series of arith-

metical ratios approaching more and more closely to the value
of 72.

The actual method by which the Pythagoreans proved the
fact that -/2 is incommensurable with 1 was doubtless that

indicated by Aristotle, a reductio ad absurdum showing that,

if the diagonal of a square is commensurable with its side, it

will follow that the same number is both odd and even.^ This
is evidently the proof interpolated in the texts of Euclid as

X. 117, which is in substance as follows :

Suppose AC, the diagonal of a square, to be commensur-
able with AB, its side ; let a : /3 be their ratio expressed in

the smallest possible numbers.

Then (X> /3, and therefore a is necessarily > 1

.

Now AC^ : AB- = a^ : fi^

;

and, since AC^ = 2 AB'^, a^ = 2 /S^-

Hence a^, and therefore a, is even.

Since a : /? is in its lowest terms, it follows that /3 must
be odd.

Let a = 2 y ; therefore 4 y- = 2 I3\ or 2 y^ = /S^, so that /S^,

and therefore j8, is even.

But /3 was also odd : which is impossible.

Therefore the diagonal AC cannot be commensurable with

the side AB.

Algebi'aic equations.

(a) ' Side- and ' diameter- ' nwmbers, giving successive

a'p'pToximations to /2.

The Pythagorean method of finding any number of succes-

sive approximations to the value of V2 amounts to finding

all the integral solutions of the indeterminate equations

2x^-2/^ = +1,

the solutions being successive pairs of what were called side-

' Arist. Anal. pr. i. 23, 41 a 26-7.
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and diameter- (diagonal-) numbers respectively. The law of

formation of these numbers is explained by Theon of Smyrna,

and is as follows.^ The unit, being the beginning of all things,

must be potentially both a side and a diameter. Consequently

we begin with two units, the one being the first side, which we
will call ftj, the other being the first diameter, which we will

call c/j.

The second side and diameter (a^, d^) are formed from the

first, the third side and diameter {a^, d^) from the i-x'cond, and

so on, as follows

:

a^ = «! + cZj , c?2 = 2 ffj + cZj

,

a^ — a^ + d.^, d^=2a2 + d^,

*B+i = a« + '^n> d„+j = 2 «„ + d„.

Since a^ = d^ — 1, it follows that

ttj = 1 + 1 = 2, f/g = 2 . 1 + 1 = 3,

a^ = 2 + 3= 5, (^3=2.2 + 3= 7,

a^=5-|-7=12, ^4 = 2. 5 + 7 =17,
and so on.

Theon states, with reference to these numbers, the general

proposition that

cZ„2=2a„=+l,

and he observes (1) that the signs alternate as successive d's

and a's are taken, d^^~2a^' being equal to -\,d^-2a^
equal to +1, d^^-2a^^ equal to -1, and so on, while (2) the

sum of the squares of all the d's, will be double of the squares

oi all the a's. [If the number of successive terms in each-

series is finite, it is of course necessary that the numbei- should
be even.]

The properties stated depend on the truth of the following
identity

{2x + yf-2{x + yf = 2x'^-y^;

for, if X, y be numbers which satisfy one of the two equations

2:c^-y^=±l,

the formula (if true) gives us two higher numbers, x + y and
2x + y, which satisfy the other of the two equations.
Not only is the identity true, but we know from Proclus

' Theon of Smyrna, pp. 48, 44.
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how it was proved.^ Observing that 'it is proved by him
(Euclid) graphically (ypa/i/tt/cwy) in the Second Book of the

Elements', Froclus adds the enunciation of Eucl. II. 10.

This proposition proves that, if ^B is bisected at G and pro-

duced to D, then

41)2 -^ i)jS2 = 2 ^C2 + 2 Ci)^

and, ii AG = GB = x and BD = y, this gives

(2x + yf + y- ^2x^ + 2[x + yf,
or {2x->ryf-2{x-^yf = 2x'^-y'^,

which is the formula required.

We can of course prove the property of consecutive side-

and diameter- numbers algebraically thus

:

^: - 2 a„2 = (2 a„_i + c^„_i)2- 2 (a,„_j + d^^^''

= 4- {d^_^—2 a„_^''), in like manner
;

and so on.

In the famous passage of the Republic (546 c) dealing with

the geometrical number Plato distinguishes between the
' irrational diameter of 5

', i.e. the diagonal of a square having

5 for its side, or -/(SO), and what he calls the 'rational

diameter' of 5. The square of the 'rational diameter' is less

by 1 than the square of the ' irrational diameter ', and i§ there-

fore 49, so that the 'rational diameter' is 7; that is, Plato

refers to the fact that 2 .
6^— 7^ = 1, and he has in mind the

particular pair of side- and diameter- numbers, 5 and 7, which

must therefore have been known before his time. As the proof

of the property of these numbers in general is found, as Proclus

says, in the geometrical theorem of Eucl. II. 10, it is a fair

inference that that theorem is Pythagorean, and was prob-

ably invented for the special purpose.

' Proclus, Comm. on Rep. of Plato, ed. Ki-oll, vol. ii, 1901, cc. 23 and

27, pp. 24, 25, and 27-9.
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(j8) The evdvdrjfia {'bloom') of Thymaridas.

Thymaridas of Paros, an ancient Pythagorean already

mentioned (p. 69), was the author of a rule for solving a

certain set of n simultaneous simple equations connecting n
unknown quantities. The rule was evidently well known, for

it was called by the special name of kirdvOr^iia, the ' flower ' or

' bloom ' of Thymaridas.^ (The term kndvO-qixa is not, how-

ever, confined to the particular proposition now in question

;

lamblichus speaks of enauOrj/jiaTa of the Irdrodticiio arith-

7netica, 'arithmetical knavOrjiiara' and eTrav6rj/j.aTa of par-

ticular numbers.) The rule is stated in general terms and no

symbols are used, but the content is pure algebra. The known
or determined quantities (mpicr/j.ei'oi') are distinguished from

the undetermined or unknown {dopiarov), the term for the

latter being the very word used by Diophantus in the expres-

sion nXfjOos fiovdSonv dopicrTov, ' an undefined or undetermined

number of units', by which he describes his dpiOfiSs or un-

known quantity (= x). The rule is very obscurely worded-

but it states in effect that, if we have the following n equa-

tions connecting n unknown quantities x, x-^, x^ . . . x„_j,

namely
X "T X-^ -r ^2 I • • • "r ^jj_j '—- S,

X -f- X-i ^^ (X-i
,

X -|~ Xi) — (Xo

the .solution is given by

('ff,+a2 4-...-|-a„_i)-s

«,—

2

lamblichus, our informant on this subject, goes on to show
that other types of equations can be reduced to this, so that

the rule does not ' leave us in ,the lurch ' in those cases either.^

,He gives as an instance the indeterminate problem represented

by the following three linear equations between four unknown
quantities

:

x-\-y = a{z-\-'ii),

x + z — b{u + y),

x +u= c{y + z).

1 Iambi, in Nicom., p. 62. 18 sq. ^
jj_^ p_ gg_ jg_
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From these equations we obtain

x + y + z + u = {a+\){z + u) = (6+1) {u + y) = {c+l) {y + z).

If now X, y, z, u are all to be integers, x + y + z + u must
contain a-hl,b+l,c + l as factors. If L be the least common
multiple of a + 1, 5 + 1, c + 1, we can put x + y + z + u= L, and
we obtain from the above equations in pairs

x + y =
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which give

x + y+z + u = -{z + u)^~{u + y) =^-(y + z).
5 , 7

, , 9

2

Therefore

5 7 9
x + y + z + u = -{x + y) =-{x + z) = -{x + u).

In this case we take L, the least common multiple of 5, 7, 9,

or 315, and put

x + y + z-^u — L = 315,

x + y = ~L= 189,
5

4
x + z = ~L = 180,

7

5
X + u= -L = 175,

544-315 229
whence x = = —r- •

In order that x may be integral, we have to take 2L, or 630,

instead of L, or 315, and the solution is a; = 229, y — 149,

z = 131, u= 121.

(y) Area of rectangles in relation to perimeter.

Sluse,^ in letters to Huygens dated Oct. 4, 1657, and Oct. 25,

1658, alludes to a property of the numbers 16 and 18 of

which he had read somewhere in Plutarch that it was known

to the Pythagoreans, namely that each of these numbers

represents the perimeter as well as the area of a rectangle

;

for 4 . 4 = 2 . 4 + 2 . 4 and 3.6 = 2.3 + 2.6. I have not found the

passage of Plutarch, but the property of 1 6 is mentioned in the

Theologumena Arithmetices, where it is said that 1 6 is the only

square the area of which is equal to its perimeter, the peri-

meter of smaller squares being greater, and that of all larger

squares being less, 'than the area.^ We do not know whether

the Pythagoreans proved that 1 6 and 1 8 were the only num-

bers having the property in question ; but it is likely enough

that they did, for the proof amounts to finding the integral

' (Eiirres completes cle C. Hut/gens, pp. 64, 260.
' 'ITieoL Ar., pp. 10, 23 (Ast).
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solutions oi xy = 2 (x + y). This is easy, for the equation is

equivalent to {x-2) {y-2) = 4, and we have only to equate

x— 2 and y—2 to the respective factors of 4. Since 4 is only

divisible into integral factors in two ways, as 2 . 2 or as 1 . 4,

we get, as the only possible solutions for x, y, (4, 4) or (3, 6).

Systematic treatises on arithmetic (theory of

numbers).

It will be convenient to include in this chapter some
account of the arithmetic of the later Pythagoreans, begin-

ning with NicOMACHUS. If any systematic treatises on
arithmetic were ever written between Euclid (Books VII-IX)
and Nicomachus, none have survived. Nicomachus, of

Gerasa, probably the Gerasa in Judaea east of the river

Jordan, flourished about 100 A.D., for, on the one hand, in

a work of his entitled the Enchiridion Harvionices there is

an allusion to Thrasyllus, who arranged the Platonic dialogues,

wrote on music, and was the astrologer-friend of Tiberius ; on

the other hand, the Introductio Arithmetica of Nicomachus

was translated into Latin by Apuleius of Madaura under the

Antonines. Besides the 'ApLOjiriTLKT) eiaayaiyr], Nicomachus

is said to have written another treatise on the theology or the

mystic properties of numbers, called QioXoyov^iva dpiQii-q-

TiKTJs, in two Books. The curious farrago which has come

down to us under that title and which was edited by Ast ^ is,

however, certainly not by Nicomachus ; for among the authors

from whom it gives extracts is Anatolius, Bishop of Laodicaea

(a.D. 270); but it contains quotations from Nicomachus which

appear to come from the genuine work. It is possible that

Nicomachus also wrote an Introduction to Geometry, since in

one place he says, with regard to certain solid numbers, that

they have been specially treated 'in the geometrical intro-

duction, being more appropriate to the theory of magnitude '^;

but this geometrical introduction may not necessarily have

been a work of his own.

It is a very far cry from Euclid to Nicomachus. In the

^ Theologumena ariihmeticae. Accedit Nicomachi Geraseni Jnstitutio

arithmetica, ed. Ast, Leipzig, 1817.
'^ Nicom. Arithm. ii. 6. 1.

15JS H
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Introdudio aritlimetica we find the form of exposition

entirely changed. Numbers are represented in EucHd by

straight lines with letters attached, a system which has the

advantage that, as in algebraical notation, we can work with

numbers in general without the necessity of giving them

specific values; in Nicomachus numbers are no longer de-

noted by straight lines, so that, when diff'erent undetermined

numbers have to be distinguished, this has to be done by

circumlocution, which makes the propositions cumbrous and

hard to follow, and it is necessary, after each proposition

has been stated, to illustrate it by examples in concrete

numbers. Further, there are no longer any proofs in the

proper sense of the word ; when a general proposition has been

enunciated, Nicomachus regards it as sufiicient to show that

it is true in particular instances ; sometimes we are left to

infer the general proposition by induction from particular

cases which are alone given. Occasionally the author makes

a quite absurd remark through failure to distinguish between

the general and the particular case, as when, after he has

defined the mean which is ' subcontrary to the harmonic ' as

being determined by the relation j = -, where a>h>c,

and has given 6, 5, 3 as an illustration, he goes on to observe

that it is a property peculiar to this mean that the product of

the greatest and middle terms is double of the product of the

middle and least,^ simply because this happens to be true in

the particular case ! Probably Nicomachus, who was not

really a mathematician, intended his Introduction to be, not

a scientific treatise, but a popular treatment of the subject

calculated to awaken in the beginner an interest in the theory

of numbers by making him acquainted with , the most note-

worthy results obtained up to date ; for proofs of most of his

propositions he could refer to Euclid and doubtless to other

treatises now lost. The style of the book confirms this hypo-

thesis ; it is rhetorical and highly coloured ; the properties of

numbers are made to appear marvellous and even miraculous

;

the most obvious relations between them are stated in turgid

language very tiresome to read. It was the mystic rather

than the mathematical side of the theory of numbers that

' Nicom. ii. 28. 3.
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interested Nicomachus. If the verbiage is eliminated, the
mathematical content can be stated in quite a small com-
pass. Little or nothing in the book is original, and, except
for certain definitions and refinements of classification, the

essence of it evidently goes back to the early Pythagoreans.
Its success is difficult to explain except on the hypothesis that

it was at first read by philosophers rather than mathemati-
cians (Pappus evidently despised it), and afterwards became
generally popular at a time when there were no mathemati-
cians left, but only philosophers who incidentally took an
interest in mathematics. But a success it undoubtedly was

;

this is proved by the number of versions or commentaries

which appeared in ancient times. Besides the Latin transla-

tion by Apuleius of Madaura (born about a.d. 125), of which
no trace remains, there was the version of Boetius (born about

480, died 524 A. D.); and the commentators include lamblichus

(fourth century), Heronas,^ Asclepius of Tralles (sixth century),

Joannes Philoponus, Proclus.^ The commentary of lamblichus

has been published,^ as also that of Philoponus,* while that of

Asclepius is said to be extant in MSS. When (the pseudo-)

Lucian in his Philoimtris (c. 1 2) makes Critias say to Triephon
' you calculate like Nicomachus ', we have an indication that

the book was well known, although the remark may be less a

compliment than a laugh at Pythagorean subtleties.^

Book I of the Introductio, after a philosophical prelude

(cc. 1-6), consists principally of definitions and laws of forma-

tion. Numbers, odd and even, are first dealt with (c. 7); then

comes the subdivision of even into three kinds (1) evenly-even,

of the form 2", (2) even-odd, of the form 2{2n+ 1), and (3)

odd-even, of the form 2"*+^ (2 n+ 1), the last-named occupying

a sort of intermediate position in that it partakes of the

character of both the others. The odd is next divided into

three kinds : (1) 'prime and incomposite ', (2) ' secondary and

1 V. Eutoc. in Archim. (ed. Heib. iii, p. 120. 22). ^ v. Suidas.

' The latest edition is Pistelli's (Teubner, 1894).

« Ed. Hocbe, Heft 1, Leipzig, 1864, Heft 2, Berlin, 1867.

^ Triephon tells Critias to swear by the Trinity ('One (proceeding) from

Three and Three from One '), and Critias replies, ' You would have me
learu to calculate, for your oath is mere arithmetic and you calculate

like Nicomachus of Gerasa. I do not know what you mean by your

"One-Three and Three-One"; I suppose you don't mean the rfrpaKTut

of Pythagoras or the oydods or the rpiaxas ?
'

H 2
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composite ', a product of prime factors (excluding 2, which is

even and not regarded as prime), and (3) ' that which is in itself

secondary and composite but in relation to another is prime and

incomposite ', e.g. 9 in relation to 25, which again is a sort of

intermediate class between the two others (cc. 11-13); the

defects of this classification have already been noted (pp. 73-4).

In c. 13 we have these different classes of odd numbers ex-

hibited in a description of Eratosthenes's ' sieve ' {koctklvov), an

-appropriately named device for finding prime numbers. The
method is this. We set out the series of odd numbers beajin-

ning from 3. /

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31,

Now 3 is a prime number, but multiples of 3 are not ; these

multiples, 9, 15... are got by passing over two numbers at

a time beginning from 3 ; we therefore strike out these num-

bers as not being prime. Similarly 5 is a prime number, but

by passing over four numbers at a time, beginning from 5, we
get multiples of 5, namely 15, 25 ... ; we accordingly strike

out all these multiples of 5. In general, if n be a prime num-

ber, its multiples appearing in the series are found by passing

over n—l terms at a time, beginning from n ; and we can

strike out all these multiples. When we have gone far enough

with this process, the numbers which are still left will be

primes. Clearly, however, in order to make sure that the

odd number 2 to + 1 in the series is prime, we should have to

try all the prime divisors between 3 and V{2n+l); it is

obvious, therefore, that this primitive empirical method would

be hopeless as a practical means of obtaining prime numbers

of any considerable size.

The same c. 13 contains the rule for finding whether two

given numbers are prime to one another ; it is the method of

Eucl. VII. 1, equivalent to our rule for finding the greatest

common measure, but Nicomachus expresses the whole thing

in words, making no use of any straight lines or symbols to

represent the numbers. If there is a common measure greater

than unity, the process gives it ; if there is none, i. e. if 1 is

left as the last remainder, the numbers are prime to one

another.

The next chapters (cc. 14-16) are on over-perfect {vTrepT€Xi]s),
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deficient (eXXLirijs), and perfect {riXeLos) numbers respectively.

The definitions, the law of formation of perfect numbers,

and Nicomachus's observations thereon have been given above

(p. 74).

Next comes (cc. 17-23) the elaborate classification of

numerical ratios greater than unity, with their counterparts

which are less than unity. There are five categories of each,

and under each category there is (a) the general name, (b) the

particular names corresponding to the particular numbers
taken.

The enumeration is tedious, but, for purposes of reference,

is given in the following table :

—

EATIOS GEEATEE THAK UNITY
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RATIOS GREATER THAN UNITY
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RATIOS GREATER THAN UNITY

Where the more general form

i. + —;— , instead oi 1 H z-,m+n m+1
has to be expressed, Nicoma-
chus uses terms following the

third plan of formation above,

e.g.

If- =: Tp«re7rt7reyU,7rros

1y = T£rpaKicr€<^ej88ojU.os

1^ = TTCVTaKicreTrevaTOS

and so on, although he might
have used the second and called

these ratios eTrtTptVe/xTrTos, &c.

4. (a) General

TroWaTrXaateirifjiopio^

(multiplex superparticularis)

This contains a certain mul-

tiple plus a certain submultiple

(instead of 1 plus a submultiple)

and is therefore of the form

m + - (instead of the 1 + - of

the £7rt/Ao'/)tos) or
mn + 1

(b) Particular

(duplex sesquialter)

2j = StTrAacrteTTtTpiTos

(duplex sesquitertius)

3j =: TptTrAao-ieTrtVe/iTTTOs

(triplex sesquiquintus)

&c.

5. (a) General

TroX.XaTrXacTK'n-ijjieprji

(multiplex superpartiens).

This is related to eTri/xep?;;

[(3) above] in the same way as

7roAA.a7rA.ao-i67nyu.dpio? to eTrt/Aopios

;

that is to say, it is of the form

m
p-i : - or

m + n

{p + l)m + n

m + n

RATIOS LESS THAN UNITY

4. (a) General

i7ro7roAAa7rAao-tE7rt/xopios

(submultiplex superparticularis)

of the form r •

mn +

1

The corresponding particular

names do not seem to occur in

Nicomachus, but Boetius has

them, e. g. subduplex sesquialter,

subduplex sesquiquartus.

5. (a) General

VTroTroXX.aTr\aaicTniJ.eprji

(submultiplex superpartiens),

a fraction of the form

m+n
{p+l)m+n
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RATIOS QREATEE THAN UNITY RATIOS LESS THAN UNITY

(b) Particular

These names are only given

for cases where w = 1 ; thej'

follow the first form of the

names for particular ciri/AepcTs,

e.g.

2|- ^ 8i7rA.ao-ie7rt8tyuep7js

(duplex superbipartiens)

&c.

Corresponding names not

found in Nicomachus ; but

Boetius has suhduplex super-

Mpartiens, &c.

In c. 23 Nicomachus shows how these various ratios can be

got from one another by means of a certain rule. Suppose

that.

a, b, c

are three numbers such that a:b = b:c = one of the ratios

described ; we form the three numbers

a, a + b, a + 2b + c

and also the three numbers

c, c + b, c + 2b + a

Two illustrations may be given, li a = b = c = 1, repeated

application of the first formula gives (1, 2, 4), then (1, 3, 9),

then (1, 4, 16), and so on, showing the successive multiples.

Applying the second formula to (1, 2, 4), we get (4, 6, 9) where

the ratio is f ; similarly from (1, 3, 9) we get (9, 12, 16) where

the ratio is f , and so on ; that is, from the TroXXairXdo-Loi we
get the enifxopioi. Again from (9, 6, 4), where the ratio is

of the latter kind, we get by the first formula (9, 15, 25),

giving the ratio 1|, an eTnfiipTJs, and by the second formula

(4, 10, 25), giving the ratio 2i, a vroWanXacrLtTTLfMopios. And
so on.

Book II begins with two chapters showing how, by a con-

verse process, three terms in continued proportion with any
one of the above forms as common ratio can be reduced to

three equal terms. If

a, b, c
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are the original terms, a being the smallest, we take three
terms of the form

a, h~a, {c-a-2(6-a)} = c + a-26,
then apply the same rule to these three, and so on.

In ec. 3-4 it is pointed out that, if

1, r, 7'^..., r". ..

be a geometrical progression, and if

Pn = ''""^ + *'".

an knijiopLOi ratio,
then ^ = ':±1

and similarly, if
p'n = Pn-i + Pn>

Pn 'r '

and so on.

If we set out in rows numbers formed in this way, .

r^ + 2r+l, ')^ + 2r^ + r... ,.n + 2 r""^ + r"-^

r^ + 3r2+ 3?'+ 1... ?-« + 3r""i + 3r""^ + r"-

2

the vertical rows are successive numbers in the ratio r/(r+ 1),

while diagonally we have the geometrical series 1, ?'+l,

(r + l)2, (r+l)3....

Next follows the theory of polygonal numbers. It is pre-

faced by an explanation of the quasi-geometrical way of

representing numbers by means of dots or as. Any number

from 2 onwards can be represented as a line ; the ^j^cme num-

bers begin with 3, which is the first number that can be

represented in the form of a triangle ; after triangles follow

squares, pentagons, hexagons, &c. (c. 7). Triangles (c. 8) arise

by adding any number of successive terms, beginning with 1,

of the series of natural numbers

1, 2, 3, ... 71, ....

+ 1,



106 PYTHAGUKEAJS AKXTEnmerrro

The gnomons of triangles are therefore the successive natural

numbers. Squares (c. 9) are obtained by adding any number

of successive terms of the series of odd numbers, beginning

with 1, or

1, 3, 5, ... 2n-l,....

Tlie gnomons of squares ai'e the successive odd numbers.

Similarly the gnomons of pentagonal numbers (c. 10) are the

numbers forming an arithmetical progression with 3 as com-

mon difference, or

1,4, 7,... l + {n~l)3,...;

and generally (c. 11) the gnomons of polygonal numbers of a

sides are

1, l + (a-2), l + 2(a-2),... l+(r-l)(a-2),...

and the «-gonal number with side n is

l + l + (a-2) + l + 2(a-2) + ... + l+(w-l)(a-2)
= n + ^n (n- 1) (a— 2)

The general formula is not given by Nicomachus, who con-

tents himself with writing down a certain number of poly-

gonal numbers of each species up to heptagons.

After mentioning (c. 12) that any square is the sum of two

successive triangular numbers, i.e.

n^ = ^{n-l)n + ^n{n+ 1),

and that an a-gonal number of side n is the sum of an

(a— l)-gonal number of side n plus a triangular number of

side n—l,i.e.

n + ^n{n—l) (a— 2) = n + ^n{n- l){a-S)+^n{n-l),

he passes (c. 1 3) to the first solid number, the pyramid. The

base of the pyramid may be a triangular, a square, or any

polygonal number. If the base has the side n, the pyramid is

formed by similar and similarly situated polygons placed

successively upon it, each of which has 1 less in its side than

that which precedes it ; it ends of course in a unit at the top,

the unit being ' potentially ' any polygonal number. Nico-

machus mentions the first triangular pyramids as being 1, 4,

10, 20, 35, 56, 84, and (c. 14) explains the formation of the

series of pyramids with square bases, but he gives no general
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formula or summation. An a-gonal number with n in its

side being

it follows that the pyramid with that polygonal number for
base is

l+2 + 3 + ...+ii + |(a-2) {1.2 + 2.3 + ...+(7i-l)n}

_ n(n + l) a-2 {n— l)n{n+l)~
2 2 3

A pyramid is KoXovpos, truiicated, when the unit is cut off

the top, StKoXovpos, twice-truncated, when the unit and the
next layer is cut off, rpiKoXovpos, thrice-truncated, when three
layers are cut off, and so on (c. 14).

Other solid numbers are then classified (cc. 15-17): cubes,

which are the product of three equal numbers; scalene num-
bers, which are the product of three numbers all unequal,

and which are alternatively called iveclges (a-cprjvia-Koi), stakes

{cr(f)t}Ki(TKoi), or altars {^co/xia-KOL). The latter three names are

in reality inappropriate to mere products of three unequal
factors, since the figure which could properly be called by
these names should taper, i. e. should have the plane face at

the top less than the base. We shall find when we come to

the chapter on Heron's mensuration that true (geometrical)

^mjjLia-KOL and (r<f)r]vi<TKoi have there to be measured in which
the top rectangular face is in fact smaller than the rectangular

base parallel to it. lamblichus too indicates the true nature

of /SoD/iia-KOL and (KprjvicrKOL when he says that they have not

only their dimensions but also their faces and angles unequal,

and that, while the nXivOi? or Sokl^ corresponds to the paral-

lelogram, the a-cprjfLa-Kos corresponds to the trapezium.^ The
use, therefore, of the terms in question as alternatives to scalene.

appears to be due to a misapprehension. Other varieties of

solid numbers are 'parcdlele'pijpeds, in which there are faces

which are eTepo/xrJKeis (oblong) or of the form n{n+l), so

that two factors differ by unity ; beams (SoKiSes) or columns

{a-TrjXiSes, lamblichus) of the form m^ {m-\-n); tiles {irXiydiSes)

of the form m^(m— «). Cubes, the last digit (the units) of

which are the same as the last digit in the side, are spherical

' Iambi, in Nicom., p. 93. 18, 94. 1-3.
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(crcpixipiKOL) or recurring {anoKaTaa-TaTiKoi) ;
these sides and

cubes end in 1, 5, or 6, and, as the squares end in the same

digits, the squares are called circular [kvkXlkol).

Oblong numbers {eTepofirjKeis) are, as we have seen, of the

form m(7Ji+l); 'p''''^^'^^^ numbers (npoixrJKei^) of the form

m (vi + n) where n>'\. (c. 1 8). Some simple relations between

oblong numbers, squares, and triangular numbers are given

(cc. 19-20). If h„ represents the oblong number n {n + 1), and

t„ the triangular number ^n{n+l) of side n, we have, for

example,

A„/ft2 = (n + \)/n, .A„ - «2 = n, %yA„_i =n/[n-\),

nyh^= hj{n + \)\ n^ + {n + \f + 2A„ = {2n + If,

n^ +n= ,^n I,

all of which formulae are easily verified.

Sum of series of cube numbers.

C. 20 ends with an interesting statement about cubes. If,

says Nicomachus, we set out the series of odd numbers

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, ...

the first (1) is a cube, the sum of the next ttvo (3 + 5) is a

cube, the sum of the next three (7 + 9 + 11) is a cube, and so on.

We can prove this law by assuming that n^ is equal to the

sum of n odd numbers beginning with 2a:;+l and ending

with 2a;+ 211—1. The sum is (2x+n)n; since therefore

(2 X + n) n = n^,

X = ^{n^-n),

and the formula is

in''—n+l) + {ii--n + 3) + ...+{n^ + n-l) = n^.

By putting successively % = 1, 2, 3 ... r, &c., in this formula

and adding the results we find that

13 + 23 + 33+... +r3= i+(3 + 5)+(7 + 9 + ll)+... + (... r^ + r-1).

The jiumber of terms in this series of odd numbers is clearly

1+2 + 3 + .. .+r or |r(r+l).
Therefore 1'^ + 2^ + 3^ + . . . + 1- = i r (r- + 1) (i + r^ + r - 1)
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Nicomachus does not give this formula, but it was known
to the Roman agrimensores, and it would be strange if

Nicomachus was not aware of it. It may have been dis-

covered by the same mathematician who found out the

proposition actually stated by Nicomachus, which probably

belongs to a much earlier time. For the Greeks were from
the time of the early Pythagoreans accustomed to summing
the series of odd numbers by placing 3, 5, 7, &c., successively

as gnomons round 1 ; they knew that the result, whatever

the number of gnomons, was always a square, and that, if the

number of gnomons added to 1 is (say) r, the sum (including

the 1) is (r+1)^. Hence, when it was once discovered that

the first cube after 1, i.e. 2^, is 3 + 5, the second, or 3^, is

7 + 9 + 11, the third, or 4^ is 13 + 15 + 17 + 19, and so on, they

were in a position to sum the series 1^ + 2^ + 3*+ ... +r';

for it was only necessary to find out how many terms of the

series 1 + 3 + 5 + . . . this sum of cubes includes. The number

of terms being clearly 1 + 2 + 3 + . . . + r, the number of

gnomons (including the 1 itself) is ^r(r + l); hence the sum

of them all (including the 1), which is equal to

13 + 23 + 33+... +r3,

is {|r(r + l)}-- Fortunately we possess apiece of evidence

which makes it highly probable that the Greeks actually

dealt with the problem in this way. Alkarkhi, the Arabian

algebraist of the tenth-eleventh century, wrote an algebra

under the title Al-Fakhn. It would seem that there were at

the time two schools in Arabia which were opposed to one

another in that one favoured Greek, and the other Indian,

methods. Alkarkhi was one of those who followed Greek

models almost exclusively, and he has a proof of the theorem

now in question by means of a figure with gnomons drawn

in it, furnishing an excellent example of the geometrical

algebra which is so distinctively Greek.

Let ABhe the side of a square AC; let

AB = l + 2 + ...+n= ^n{n+l),

and suppose BB' = n, B'B" =n-l, B" B'" =n-2, and so on.

Draw the squares on AB', AB"... forming the gnomons

shown in the figure.
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B

8'

B"

B'"

0" D'

Then the gnomon

BG'D^BB' .BG+DD'.G'B'
= BB'(BG + G'D').

Now BG = ^n{n+l),

G'D'^ l+2 + 3 + ... + (w-l) = ^n{n-l), BB'=n;

therefore (gnomon BG'B) = n .n- = n^.

Similarly (gnomon B'G"D') — (ii — 1)^, and so on.

Therefore 1^ + 2^ + ... +7i^ = the sum of the gnomons round

the small square at A which has 1 for its side flus that small

square ; that is,

l3 + 23 + 33 + ... + n,3= square AG = (l-n, (w+ l)}^.

It is easy to see that the first gnomon about the small

square at J. is 3 + 5 = 2^, the next gnomon is 7 + 9 + 11 = 3',

and so on.

The demonstration therefore hangs together with the

theorem stated by Nicomachus. Two alternatives are possible.

Alkarkhi may have devised the proof himself in the Greek

manner, following the hint supplied by Nicomaehus's theorem.

Or he may have found the whole proof set out in some

Greek treatise now lost and reproduced it. Whichever alter-

native is the true one, we can hardly doubt the Greek origin

of the summation of the series of cubes.

Nicomachus passes to the theory of arithmetical proportion

and the various means (cc. 21-9), a description of which has

already been given (p. 87 above). There are a few more

propositions to be mentioned under this head. If a— 6 = 6— c,

so that a, b, c are in arithmetical progression, then (c. 23. 6)

V- ~ac = {a-lf = {h-cf,
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a fact which, according to Nicomaehus, was not generally

known. Boetius^ mentions this proposition which, if we
take a + d, a, a— d as the three terms in arithmetical pro-

gression, may be written a^ = (a + d) (a—d) + d^. This is

presumably the origin of the regiila Nicomachi quoted by

one Ocreatus (? O'Creat), the author of a tract, Prologus in

Helceph, written in the twelfth or thirteenth century^

(' Helceph ' or ' Helcep ' is evidently equivalent to Algo-

risvius; may it perhaps be meant for the Al-Kdfl of

Alkarkhi?). The object of the regula is to find the square

of a number containing a single digit, li d= IQ — a, or

a + d— 10, the rule is represented by the formula

a^= \(i{a-d) + d^,

so that the calculation of a^ is made to depend on that of dJ^

which is easier to evaluate if d<a.
Again (c. 24. 3, 4), if a, h, c be three terms in descending

geometrical progression, r being the common ratio (a/b or b/c),

then
a— b _ a _b •

b— c
~

b ~ c

and {a-b) = ir-l)b, (b-c) = {r-l)c,

{a-b)-{b-c) = {T-\){b~c).

It follows that

b = a— b{r—\) = c + c (r— 1).

This is the property of three terms in geometrical pro-

gression which corresponds to the property of three terms

a, &, c of a harmonical progression

a c
b = a = c + -)

n li

from which we derive

n = (a + c) / {a—c).

If a, b, c are in descending order, Nicomaehus observes

^c 25) that ^^ < = > - according as a, b, c are in arith-

metical, geometrical, or harmonical progression.

' Boetius, Inst. Ar.M. c. 43.

2 See Abh. zw Oesch. d. Math. 3, 1880, p. 134.
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.The ' Platonic theorem ' (c. 24. 6) about the number of

possible means (geometric) between two square numbers and

between two cube numbers respectively has already been

mentioned (pp. 89, 90), as also the 'most perfect proportion'

(p. 86).

Theon of Smyrna was the author of a book purporting

to be a manual of mathematical subjects such as a student

would require to enable him to understand Plato. A fuller

account of this work will be given later ; at present we are

only concerned with the arithmetical portion. This gives the

elementary theory of numbers on much the same lines as

we find it in Nicomachus, though less systematically. We
can here pass over the things which are common to Theon

and Nicomachus and confine ourselves to what is peculiar to

the former. The important things are two. One is the

theory of side- and diameter-numbers invented by the Pytha-

goreans for the purpose of finding the successive integral

solutions of the equations 2x'^—y^=+l; as to this see

pp. 91-3 above. The other is an explanation of the limited

number of forms which square numbers may have.^ If m^ is

a square number, says Theon, either m^ or m^— 1 is divisible

by 3, and again either m^ or vi"^—! is divisible by 4 : which

is equivalent to saying that a square number cannot be of

any of the following forms, 3n + 2, ^n + 2, in + 3. Again, he

says, for any square number m^, one of the following alterna-

tives must hold

:

(1) —-— , -Y both integral (e.g. on^ — ^)j

772,^ 1 977,2

(2) —-— , — both integral (e.g. m^ — 9)3

oil Tfh^

(3) —, —- both integral (e.g. ni^ = 36)»

ffti^ . \ 77i,2 1

(4) —z
—

' "T— both integral (e.g. 771^ = 25) •

' Theon of Smyrna, p. 35. 17-36. 2.
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lamblichus states the same facts in a slightly different form.^

The truth of these statements can be seen in the following

way.'' Since any number m must have one of the following

forms

Qk, 6/c+l, 6fc + 2, 'e/c + S,

any square m^ must have one or other of the forms

seP, 36/c2+12/(;+l, 36P + 247c + 4, 36P + 36/i; + 9.

For squares of the first type — and — are both integral,

"Tl")/ — 1 7)7, — 1

for those of the second type —-— >
—--— are both integral,

771/ — X Qlv

for those of the third type — -— and -— are both integral,

rt^-i 2 ^"L 1

and for those of the fourth type —• and are both

integral ; which agrees with Theon's statement. Again, if

the four forms of squares be divided by 3 or 4, the remainder

is always either or 1 ; so that, as Theon says, no square can

be of the form 3n+2, 4ii + 2, or 4w+3. We can hardly

doubt that these discoveries were also Pythagorean.

Iamblichus, born at Chalcis in Coele-Syria, was a pupil of

Anatolius and Porphyry, and belongs to the first half of the

fourth century A. D. He wrote nine Books on the Pythagorean

Sect, the titles of which were as follows : I. On the Life of

Pythagoras ; II. Exhortation to philosophy (npoTpewTiKos

inl (piXoa-o(f>tav) ; HI. On mathematical science in general

;

IV. On Nicomachus's Introductio Arithmetica ; V. On arith-

metical science in physics; VI. On arithmetical science in

ethics ; VII. On arithmetical science in theology ; VIII. On

the Pythagorean geometry; IX. On the Pythagorean music.

The first four of these books survive and are accessible in

modem editions ; the other five are lost, though extracts

from VII. are doubtless contained in the Theologumena

arithmetices. Book IV. on Nicomachus's Introductio is that

which concerns us here ; and the few things requiring notice

are the following. The first is the view of a square number

^ Iambi, in Nicom., p. 90. 6-11.

2 Cf. Loria, Le scienze esatte nelV antica Orecia, p. 834.

1623 I
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as a race-course {Siav\o<!) ^ formed of successive numb ers

from 1 (as dart, vanXrj^) up to n, the side of the square,

which is the turning-point {Kafj.vTT]p), and then back again

through (n—l), {n — 2), &c., to 1 (the goal, vvacra), thus:

1-1-2 + 3 + 4... (''^-l) +

1 + 2 + 3 + 4. ..(w-2) + (7i-l)+ .

This is of course equivalent to the proposition that w^ is the

sum of the two triangular numbers ^n{n + \) and ^(n—\)n
with sides n and n—\ respectively. Similarly lambliehus

points out ^ that the oblong number

n{n-l) = (1 + 2 + 3+ ...+n) + (n-2 + n-3 + ... + 3 + 2).

He observes that it was on this principle that, after 10,

which was called the unit of the second course (SiVTepai-

SovfievT) fMovdsi), the Pythagoreans regarded 100 = 10.10 as

the unit of the third course {TpLcoSov/xei^ri ixovds), 1000 = 10'

as the unit of the fourth course (TeTpooSov/ieft] /xovas), and

so on,^ since

1 +2 + 3 + ... + 10 + 9 + 8 + . ..+2 + 1 = 10. 10,

10 + 20 + 30 + ... + 100 + 90 + 80+ ... + 20 + 10 = 10^

100 + 200 + 300 + ... + 1000 + 900 + ... + 200 +100 = 10*,

and so on. lambliehus sees herein the special virtue of 10 :

but of course the same formulae would hold in any scale

of notation as well as the decimal.

In connexion with this Pythagorean decimal terminology

lambliehus gives a proposition of the greatest interest.*

Suppose we have any three consecutive numbers the greatest

of which is divisible by 3. Take the sum of the three

numbers ; this will consist of a certain number of units,

a certain number of tens, a certain number of hundreds, and
so on. Now take the units in the said sum as they are, then

as many units as there are tens in the sum, as manjr units as

there are hundreds, and so on, and add all the units so

obtained together (i.e. add the digits of the sum expressed

in our decimal notation). Apply the same procedure to the

' Iambi, in Nicom., p. 75. 25-77. 4. ^ jj,^ ^^ ^7. 4-80 9
'^ J&

, pp. 88. 15-90. 2. " lb., pp. 103. 10-104. 13.
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result, and so on. Then, says lamblichus, the final result

will he the nwmher 6. E.g. take the numbers 10, 11, 12; the

sum is 33. Add the digits, and the result is 6. Take

994, 995, 996 : the sum is 2985 ; the sum of the digits is 24
;

and the sum of the digits of 24 is again 6. The truth of the

general proposition is seen in this way.^

Let N = n.Q + lOn^^+l O'^n., + ...

be a number written in the decimal notation. Let S(J^)

represent the sum of its digits, *S'(-^ (iV) the sum of the digits

of S{A^) and so on.

Now iV-*S(iV") = 9 {n., + ni\+nin^+ ...},

whence iV" = Si^f) (mod. 9).

Similarly S{]:f} = S^-^^ (mod. 9).

Let /SC'-') (iT) = (SfCOiV (mod. 9)

be the last possible relation of this kind ; S^^'^N will be a

number N' ^ 9.

Adding the congruences, we obtain

i\^ = iV' (mod. 9), while N' ^ 9.

Now, if we have three consecutive numbers the greatest

of which is divisible by 3, we can put for their sum

X = {3p + 1) + (3p + 2) + (3 jj + 3) = 923 + 6,

and the above congruence becomes

9 jj + 6 = iV (mod. 9),

so that iV = 6 (mod. 9) ;

and, since A^' < 9, N' can only be equal to 6.

This addition of the digits of a number expressed in our

notation has an important parallel in a passage of the

Refutation of all Heresies by saint Hippolytus,^ where there

is a description of a method of foretelling future events

called the ' Pythagorean calculus '. Those, he says, who

claim to predict events by means of calculations with numbers,

letters and names use the principle of the 23yth')nen or base,

^ Loria, o/j. cit,, pp. 841-2.
^ Hippolytus, Befut. iv, c. 14.

I 2
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that is, what we call a digit of a number expressed in our

decimal notation ; for the Greeks, in the case of any number

above 9, the pythme^i was the same number of units as the

alphabetical numeral contains tens, hundreds, thousands, &c.

Thus the pythnen of 700 (r/r in Greek) is 7 (() ;
that of

^^ (6000) is ^ (6), and so on. The method then proceeded

to find the pythmen of a certain name, say 'Aya/j.i/J.vaiv.

Taking the pythmenes of all the letters and adding them,

we have

1 + 3 + 1+4 + 5 + 4 + 5 + 8 + 5 = 36.

Take the pythmenes of 36, namely 3 and 6, and their sum is

9. The pythmen of 'Aya/iifxvcov is therefore 9. Next take

the name "EKTcop; the pyythmenes are 5, 2, 3, 8, 1, the sum of

which is 1 9 ; the ^jythmenes of 1 9 are ,1,9; the sum of 1 and

9 is 10, the pythmen of which is 1. The 2yythmen of "Ektcop

is therefore 1. 'It is easier', says Hippolytus, 'to proceed

thus. Finding the pyt'h')nenes of the letters, we obtain, in the

case of "EKTCop, 1 9 as their sum. Divide this by 9 and note

the remainder : thus, if I divide 19 by 9, the remainder is 1,

for nine times 2 is 18, and 1 is left, which will accordingly

be the pytlvmen of the name "EKrap.' Again, take the name

ndrpoKXos. The sum of the piythmenes is

8 + 1 + 3 + 1 + 7 + 2 + 3 + 7 + 2 = 34:

and 3 + 4 = 7, so that 7 is the jjythmen of UdrpoKXas.
' Those then who calculate by the rule of nine take one-ninth

of the sum of the pythmenes and then determine the sum of

the ^^yythmenes in the remainder. Those on the other hand

who follow the " rule of seven " divide by 7. Thus the sum
of the pythmenes in UaTpoKXos was found to be 34. This,

divided by 7, gives 4, and since 7 times 4 is 28, the remainder

is 6. . .
.' ' It is necessary to observe that, if the division

gives an integral quotient (without remainder), . . . the

pythmen is the number 9 itself ' (that is, if the rule of niTie is

followed). And so on.

Two things emerge from this fragment. (1) The use of the

pythmen was not appearing for the first time when Apollonius

framed his system for expressing and multipljang large

numbers ; it originated much earlier, with the Pythagoreans.
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(2) The method of calculating the pythmen is like the opera-

tion of ' casting out nines ' in the proof which goes by that

name, where we take the sum of the digits of a number and
divide by 9 to get the remainder. The method of verification

by ' casting out nines ' came to us from the Arabs, who may,

as Avicenna and Maximus Planudes tell us, have got it from

the Indians ; but the above evidence shows that, at all events,

the elements from which it was built up lay ready to hand

in the Pythagorean arithmetic.



IV

THE EARLIEST GREEK GEOMETRY. THALES

The ' Summary ' of Proclus.

We shall often, in the course of this history, have occasion

to quote from the so-called ' Sunamary ' of Proclus, which has

already been cited in the preceding chapter. Occupying a

few pages (65-70) of Proclus's Commentary on Euclid, Book I,

it reviews, in the briefest possible outline, the course of Greek

geometry from the earliest times to Euclid, with special refer-

ence to the evolution of the Elements. At one time it was

often called the ' Eudemian summary ', on the assumption

that it was an extract from the great History of Geometi-y in

four Books by Eudemus, the pupil of Aristotle. But a perusal

of the summarj' itself is sufficient to show that it cannot

have been written by Eudemus ; the most that can be said is

that, down to a certain sentence, it was probably based, more
or less directly, upon data appearing in Eudemus's History.

At the sentence in question there is a break in the narrative,

as follows

:

' Those who have compiled histories bring the development
of this science up to this point. Not much younger than
these is Euclid, who put together the Elements, collecting

many of the theorems of Eudoxus, perfecting many others by
Theaetetus, and bringing to irrefragable demonstration the
propositions which had only been somewhat loosely proved by
his predecessors.'

Since Euclid was later than Eudemus, it is impossible that

Eudemus can have written this ; while the description ' those

who have compiled histories', and who by implication were

a little older than Euclid, suits Eudemus excellently. Yet the

style of the summary after the break does not show any
such change from that of the earlier portion as to suggest
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different authorship. The author of the earlier portion fre-

quently refers to the question of the origin of the Elements of

Geometry in a way in which no one would be likely to write

who was not later than Euclid ; and it seems to be the same
hand which, in the second portion, connects the Elements of

Euclid with the work of Eudoxus and Theaetetus. Indeed
the author, whoever he was, seems to have compiled the sum-
mary with one main object in view, namely, to trace the origin

and growth of the Elements of Geometry; consequently he

omits to refer to certain famous discoveries in geometry such

as the solutions of the problem of the duplication of the cube,

doubtless because they did not belong to the Elements. In

two cases he alludes . to such discoveries, as it were in paren-

thesis, in order to recall to the mind of the reader a current

association of the name of a particular geometer with a par-

ticular discovery. Thus he mentions Hippocrates of Chios as

a famous geometer for the particular reason that he was the

first to write Elements, and he adds to his name, for the pur-

pose of identification, ' the discoverer of the quadrature of the

lune '. Similarly, when he says of Pythagoras ' (he it was)

who ' (oy Sfj . . .)
' discovered the theory of irrationals [or

" proportions "] and the construction of the cosmic figures
',

he seems to be alluding, entirely on his own account, to a

popular tradition to that eflect. If the summary is the work
of one author, who was it ? Tannery answers that it was

Geminus ; but this seems highly improbable, for the extracts

from Geminus's work which we possess suggest that the

subjects therein discussed were of a different kind ; they seem

rather to have been general questions relating to the philoso-

phy and content of mathematics, and even Tannery admits

that historical details could only have come incidentally into

the work.

Could the author have been Proclus himself ? This again

seems, on the whole, improbable. In favour of the authorship

of Proclus are the facts (1) that the question of the origin of

the Elements is kept prominent and (2) that there is no men-

tion of Democritus, whom Eudemus would not have ignored,

while a follower of Plato such as Proclus might have done

him this injustice, following the example of Plato himself, -vyho

was an opponent of Democritus, never once mentions him, aud
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is said to have wished to burn all his writings. On the other

hand (1) the style of the summary is not such as to point

to Proclus as the author; (2) if he wrote it, it is hardly

conceivable that he would have passed over in silence the dis-

covery of the analytical method, ' the finest ', as he says else-

where, of the traditional methods in geometry, ' which Plato is

said to have communicated to Laodamas'. Nor (3) is it

easy to suppose that Proclus would have spoken in the

detached way that the author does of Euclid whose Elements

was the subject of his whole commentary :
' Not much younger

than these is Euchd, who compiled the Elements . . .
'. ' This

man lived in the time of the first Ptolemy . .
.'. On the whole,

therefore, it would seem probable that the body of the sum-

mary was taken by Proclus from a compendium made by some

writer later than Eudemus, though the earlier portion was

based, directly or indirectly, upon notices in Eudemus's History.

But the prelude with which the summary is introduced may
well have been written, or at all events expanded, by Proclus

himself, for it is in his manner to bring in ' the inspired

Aristotle' (6 SaL/xovLos 'ApinTOTeX-qs)—as he calls him here and

elsewhere—and the transition to the story of the Egyptian

origin of geometry may also be his

:

' Since, then, we have to consider the beginnings of the arts

and sciences with reference to the particular cycle [of the

series postulated by Aristotle] through which the universe is

at present passing, we say that, according to most accounts,

geometry was first discovered in Egypt, having had its origin

in the measurement of areas. For this was a necessity for the

Egyptians owing to the rising of the Nile which efl'aced the

proper boundaries of everybody's lands.'

The next sentences also may well be due to Proclus

:

' And it is in no way surprising that the discovery of this as

well as the other sciences had its beginning in practical needs,

seeing that everything that is in the course of becoming pro-
gresses from the imperfect to the perfect. Thus the transition

from sensation to reasoning and from reasoning to under-
standing is only natural.'

These sentences look like reflections by Proclus, and the

transition to the summary proper follows, in the words :

'Accordingly, just as exact arithmetic began among the
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Phoenicians owing to its use in commerce and contracts, so
geometry was discovered in Egypt for the reason aforesaid.'

Tradition as to the origin of geometry.
Many Greek writers besides Proclus give a similar account

of the origin of geometry. Herodotus says that Sesostris

(Ramses II, circa 1300 B.C.) distributed the land among all the

'^gyptiS'iis in equal rectangular plots, on which he levied an
annual tax ; when therefore the river swept away a portion

of a plot and the owner applied for a corresponding reduction

in the tax, surveyors had to be sent down to certify what the

reduction in the area had been. ' This, in my opinion {BokUi

fj-oi)', he continues, 'was the origin of geometry, which then
passed into Greece.' ^ The same story, a Uttle amplified, is

repeated by other writers, HerOn of Alexandria,^ Diodorus
Siculus,^ and Strabo.* True, all these statements (even if that

,

in Proclus was taken directly from Eudemus's History of
Geometry) may all be founded on the passage of Herodotus,

and Herodotus may have stated as his own inference what he

was told in Egypt ; for Diodorus gives it as an Egyptian
tradition that geometry and astronomy were the discoveries

of Egypt, and, says that the Egyptian priests claimed Solon,

Pythagoras, Plato, Democritus, Oenopides of Chios, and
Eudoxus as their pupils. But the Egyptian claim to the

discoveries was never disputed by the Greeks. In Plato's

Phaedrus Socrates is made to say that he had heard that the

Egyptian god Theuth was the first to invent arithmetic, the

science of calculation, geometry, and astronomy .' Similarly

Aristotle says that the mathematical arts first took shape in

Egypt, though he gives as the reason, not the practical need

which arose for a scientific method of measuring land, but the

fact that in Egypt there was a leisured class, the priests, who
could spare time for such things.^ Democritus boasted that no

one of his time had excelled him ' in making lines into figm-es

and proving their properties, not even the so-called Harpe-

donaptae in Egypt '.' This word, compounded of two Greek

words, apireSovT) and airnLv, means ' rope-stretchers ' or ' rope-

1 Herodotus ii. 109. ' Heron, Geom. c. 2, p. 176, Heib.
« Diod. Sic. i. 69, 81. * Strabo xvii. c. 3.

= Plato, Phaedrus 274 c. ° Arist. Metaph. A. 1, 981 b 23.
' Clem. Strom, i. 15. 69 {Vorsokratiker, ii», p. 123. 5-7).
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fasteners'; and, while it is clear from the passage that the

persons referred to were clever geometers, the word reveals a

characteristic modus operandi. The Egyptians were ex-

tremely careful about the orientation of their temples, and

the use of ropes and pegs for marking out the limits,

e.g. corners, of the sacred precincts is portrayed in all

pictures of the laying of foundation stones of temples.^ The
operation of ' rope-stretching ' is mentioned in an inscription on

leather in the Berlin Museum as having been in use as early

as Amenemhat I (say 2300 B.C.).^ Now it was the practice

of ancient Indian and probably also of Chinese geometers

to make, for instance, a right angle by stretching a rope

divided into three lengths in the ratio of the sides of a right-

angled triangle in rational numbers, e.g. 3, 4, 5, in such a way
that the three portions formed a triangle, when of course a right

angle would be formed at the point where the two smaller

sides meet. There seems to be no doubt that the Egyptians

knew that the triangle (3, 4, 5), the sides of which are so

related that the square on the greatest side is equal to the

sum of the squares on the other two, is right-angled ; if this

is so, they were acquainted with at least one case of the

famous proposition of Pythagoras.

Egyptian geometry, i. e. mensuration.

We might suppose, from Aristotle's remark about the

Egyptian priests being the first to cultivate mathematics

because they had leisure, that their geometry would have

advanced beyond the purely practical stage to something

more like a theory or science of geometry. But the docu-

ments which have survived do not give any ground for this

supposition ; the art of geometry in the hands of the priests

never seems to have advanced beyond mere routine. The
most important available source of information about Egyptian

mathematics is the Papyrus Rhind, written probably about

1700 B.C. but copied from an original of the time of King
Amenemhat III (Twelfth Dynasty), say 2200 B.C. The geo-

metry in this ' guide for calculation, a means of ascertaining

everything, of elucidating all obscurities, all mysteries, all

' Brugsch, Steininschrift unci Bihelwort, 2ncl ed., p. 86.
^ Diimichen, Denderatenipel, p. 33.
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difficulties
', as it calls itself, is rough meibsuration. The

following are the cases dealt with which concern us here.

(1) There is the rectangle, the area of which is of course

obtained by multiplying together the numbers representing

the sides. (2) The measure of a triangle is given as the pro-

duct of half the base into the side. And here there is a ditier-

ence of opinion as to the kind of triangle measured. Eisenlohr

and Cantor, taking the diagram to represent an isosceles tri-

angle rather inaccurately drawn, have to assume error on
the part of the writer in making the area ^ah instead of

^aV(b'^— ^a'^) where a is the base and h the 'side', an error

which of course becomes less serious as a becomes smaller

relatively to h (in the case taken a = 4, ?> = 10, and the area

as given according to the rule, i.e. 20, is not greatly different

from the true value 19-5959). But other authorities take the

triangle to be right-angled and h to be the side perpendicular

to the base, their argument being that the triangle as drawn
is not a worse representation of a right-angled triangle than

other triangles purporting to be right-angled which are found

in other manuscripts, and indeed is a better representation of

a right-angled triangle than it is of an isosceles triangle, while

the number representing the side is shown in the iigure along-

side one only of the sides, namely that adjacent to the angle

which the more nearly represents a right angle. The advan-

tage of this interpretation is that the rule is then correct

instead of being more inaccurate than one would expect from

a people who had expert land surveyors to measure land for

the purpose of assessing it to tax. The same doubt arises

with reference to (3) the formula for the area of a trapezium,

namely |(« -f- c) x 6, where a, c are the base and the opposite

parallel side respectively, while h is the ' side ', i.e. one of the

non-parallel sides. In this case the figure seems to have been

intended to be isosceles, whereas the formula is only accurate

if b, one of the non-parallel sides, is at right angles to the base,

in which case of course the side opposite to b is not^ at right

angles to the base. As the parallel sides (6, 4) in the case

taken are short relatively to the ' side ' (20), the angles at the

base are not far short of being right angles, and it is possible

that one of them, adjacent to the particular side which is

marked 20, was intended to be right. The hypothesis that
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the triangles and trapezia are isosceles, and that the formulae

are therefore crude and inaccurate, was thought to be con-

firmed by the evidence of inscriptions on the Temple of Horus

at Edfu. This temple was planned out in 237 B.C.; the in-

scriptions which refer to the assignment of plots of ground to

the priests belong to the reign of Ptolemy XI, Alexander I

(107-88 B.C.). From so much of these inscriptions as were

published by Lepsius^ we gather that ^(a + c) .^(b + d) was a

formula for the area of a quadrilateral the sides of which in

order are «, b, c, d. Some of the quadrilateral figures are

evidently trapezia with the non-parallel sides equal ; others are

not, although they are commonly not far from being rectangles

or isosceles trapezia. Examples are ' 16 to 15 and 4 to 3|- make
58i' (i.e.i(16 + 15)xi(4 + 3|) = 58|); ' 9i to 10| and 24i | to

22i i make 236^
'

; '22 to 23 and 4 to 4 make 90
', and so on.

Triangles are not made the subject of a separate formula, but

are regarded as cases of quadrilaterals in which the length of

one side is zero. Thus the triangle 5, 17, 17 is described as a

figure with sides ' to 5 and 17 to 17
', the area being accord-

ingly 1(0 + 5) . -1(1 7 -h 1 7) or 42i
; is expressed by hieroglyphs

meaning the word Nen. It is remarkable enough that the use

of a formula so inaccurate should have lasted till 200 years or

so after Euclid had lived and taught in Egypt ; there is also

a case of its use in the Liber Gee^Mnicus formerly attributed to

Heron,^ the quadrilateral having two opposite sides parallel

and the pairs of opposite sides being (32, 30) and (18, 16). But
it is right to add that, in the rest of the Edfu inscriptions

published later by Brugsch, there are cases where the inaccu-

rate formula is not used, and it is suggested that what is being

attempted in these cases is an approximation to the square

root of a non-square number."

We come now (4) to the mensuration of circles as found
in the Papyrus Rhind. If d is the diameter, the area is

given as {(1-1)^}^ or ffd^ ^^ ^j^g ^g ^j^g corresponding
figure to ^ird"^, it follows that the value of ts is taken as

-¥T- = (-¥-)^ or 3-16, very nearly. A somewhat different

value for tt has been inferred from measurements of certain

' ' Ueber eine hieroglyphische Inschrift am Tempel von Edfu ' (Ahh.
der Berliner Akad., 1855, pp. 69-114).

^ Heron, ed. Hultsch, p. 212. 15-20 (Heron, Geom. c. 6. 2, Heib.).
^ M. Simon, Gesch. d. Math, im Altertum, p. 48.
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heaps of grain or oi' spaces which they fill. Unfortunately
the shape of these spaces or heaps cannot be determined with
certainty. The word in the Papyrus Rhind is shaa; it is

evident that it ordinarily means a rectangular parallelepiped,

but it can also be applied to a figure with a circular base,

e.g. a cylinder, or a figure resembling a thimble, i.e. with
a rounded top. There is a measurement of a mass of corn
apparently of the latter sort in one of the Kahun papyri.^

The figure shows a circle with 1365i as the content of the

heap written within it, and with 12 and 8 written above and
to the left of the circle respectively. The calculation is done
in this way. 12 is taken and ^ of it added; this gives 16;
16 is squared, which gives 256, and finally 256 is multiplied

by I of 8, which gives 1365A. If for the original figures

12 and 8 we write A and k respective^, the formula used for

the content is {%hf.%k. Griffith took 12 to be the height

of the figure and 8 to be the diameter of the base. But
according to another interpretation,^ 12 is simply f of 8, and
the figure to be measured is a hemisphere with diameter

8 ells. If this is so, the formula makes the content of a

hemisphere of diameter k to be (f .f /c) ^.|A; or f/<;^. Com-
paring this with the true volume of the hemisphere, f . ^-ir/c^

or Yz'^'^'^^
= 134.041 cubic ells, we see that the result 1365-|

obtained by the formula must be expressed in ^-Qths of a cubic

ell: consequently for -^^t: the formula substitutes -5%, so that

the formula gives 3-2 in place of -n, a value diff'erent from the

3-16 of Ahmes. Borchardt suggests that the formula for the

measurement of a hemisphere was got by repeated practical

measurements of heaps of corn built up as nearly as possible

in that form, in which case the inaccuracy in the figure for tt

is not surprising. With this problem from the Kahun papyri

must be compared No. 43 from the Papyrus Rhind. A curious

feature in the measurements of stores or heaps of corn in

the Papyrus Rhind is the fact, not as yet satisfactorily ex-

plained, that the area of the base (square or circular) is first

found and is then regularly multiplied, not into the ' height

'

itself, but into f times the height. But in No. 43 the calcula-

tion is diff'erent and more parallel to the case in the Kahun

papyrus. The problenj is to find the content of a space round

' Griffith, Kahun Paptjri, Pt. I, Plate 8. ' Simon, /. c.
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in form ' 9 in height and 6 in breadth '. The word qa, here

translated ' height ', is apparently used in other documents

for ' length ' or ' greatest dimension ', and must in this case

mean the diameter of the base, while the ' breadth ' is the

height in our sense. If we denote the diameter of the circular

base by k, and the height by h, the formula used in this

problem for finding the volume is (f -fA')^.!^. Here it is

not f A, but f A., which is taken as the last factor of the

product. Eisenlohr suggests that the analogy of the formula

for a hemisphere, nr'^.^r, may have operated to make the

calculator take | of the height, although the height is not

in the particular case the same as the radius of the base, but

different. But there remains the difficulty that (f)^ or -^^^-

times the area of the circle of diameter k is taken instead

of the area itself. As to this Eisenlohr can only suggest that

the circle of diameter k -which was accessible for measurement
was not the real or mean circular section, and that allowance

had to be made for this, or that the base was not a circle of

diameter k but an ellipse with ^^- k and k as major and minor

axes. But such explanations can hardly be applied to the

factor (1)^ in the Kahun case if the latter is really the case

of a hemispherical space as suggested. Whatever the true

explanation may be, it is clear that these rules of measure-

ment must have been empirical and that there was little or

no geometry about them.

Much more important geometrically are certain calculations

with reference to the proportions of pyramids (Nos. 66-9 of

the Papyrus Rhind) and a monu-

^IK ment (No. 60). In the case

^- /̂U V °^ *'^® pyramid two lines in the

°\ "
/ / r " V° figure are distinguished, (1)

V " -/ / I / \\ ukha-thebt, which is evidently

\/_2Aj--' \a some line in the base, and

V / / E - ^
^ \, (2) pir-em-us or per-em-us

\/' ^
"\ C^^ig^t')' a word from which

^ ~ ^_ the name Trvpa/iis may have

been derived.'^ The object of

^ Another view is that the words TTvpaiiic and nvpaftovs, meaning a kind
of cake made from roasted wheat and honey, are derived from nvpot,
' wheat ', and are thus of purely Greek origin.
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the problems is to find a certain relation called se-qet,

literally ' that which makes the nature ', i. e. that which
determines the proportions of the pyramid. The relation

, \ukha-theht ^ ,, . ,, ^ ,
se-qet — -. . In the case or the monument we have

piremus
two other names for lines in the figure, (1) senti, ' foundation ',

or base, (2) qay en heru, 'vertical length', or height; the

same term se-qet is used for the relation —-—'—, or
qay en heru,

the same inverted. Eisenlohr and Cantor took the lines

(1) and (2) in the case of the pyramid to be different from

the lines (1) and (2) called by different names in the monument.
Suppose ABCD to be the square base of a pyramid, E its

centre, H the vertex, and i^the middle point of the side AD
of the base. According to Eisenlohr and Cantor the iikha-

thebt is the diagonal, say AC, of the base, and the pir-em-us

is the edge, as AH. On this assumption the se-qet

= , „ = cos HAE.
« AH

In the case of the monument they took the senti to be the

side of the base, as AB, the qay en heru to be the height of

the pyramid EH, and the se-qet to be the ratio of EH to

^AB or of EH to EF, i.e. the tangent of the angle HFE
which is the slope of the faces of the pyramid. According

to Eisenlohr and Cantor, therefore, the one term se-qet was

used in two different senses, namely, in Nos. 56—9 for cos HAE
and in No. 60 for tan HFE. , Borchardt has, however, proved

that the se-qet in all the cases has one meaning, and represents

the cotangent of the slope of the faces of the pyramid,

i. e. cot HFE or the ratio of FE to EH. There is no difficulty

in the use of the different words ukha-thebt and senti to

express the same thing, namely, the side of the base, and

of the different words per-em-us and qay en heru in the same

sense of ' height
'

; such synonyms are common in Egypt, and,

moreover, the word mer used of the pyramids is different

from the word an for the monument. Again, it is clear that,

while the slope, the angle HFE., is what the builder would

want to know, the cosine of the angle HAE, formed by the

edge with the plane of the base, would be of no direct use
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to him. But, lastly, the se-qet in No. 56 is ff and, if se-qet

is taken in the sense of coi HFE, this gives for the angle

HFE the value of 54° 14' 16", which is precisely, to the

seconds, the slope of the lower half of the southern stone

pyramid of Dakshur; in Nos. 57-9 the se-qet, f, is the co-

tangent of an angle of 53° 7' 48", which again is exactly the

slope of the second pyramid of Gizeh as measured by Flinders

Petrie ; and the se-qet in No. 60, which is ^, is the cotangent

of an angle of 75° 57' 50", corresponding exactly to the slope

of the Mastaba-tombs of the Ancient Empire and of the

sides of the Medum pyramid.^

These measurements of se-qet indicate at all events a rule-

of-thumb use of geometrical proportion, and connect themselves

naturallyenough with the story of Thales's method of measuring

the heights of pyramids.

The beginnings of Greek geometry.

At the beginning of the summary of Proclus we are told

that Thales (624-547 B. C.)

'first went to Egypt and thence introduced this study
(geometry) into Greece. He discovered many propositions
himself, and instructed his successors in the principles under-
lying many others, his method of attack being in some cases

more general (i.e. more theoretical or scientific), in others
more empirical {alaO-qvLKcoTipov, more in the nature of simple
inspection or observation).' ^

With Thales, therefore, geometry first becomes a deductive

science depending on general propositions; this agrees with

what Plutarch says of him as one of the Seven Wise Men

:

'he was apparently the only one of these whose wisdom
stepped, in speculation, beyond the limits of practical utility

:

the rest acquired the reputation of wisdom in politics.' ^

(Not that Thales was inferior to the others in political

wisdom. Two stories illustrate the contrary. He tried to

save Ionia by urging the separate states to form a federation

1 Flinders Petrie, Pyramids and Temples of Gizeh, p. 162
2 Proclus on Eucl. I, p. 65. 7-11.
' Plutarch, Solofi, c. 3.
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with a capital at Teos, that being the most central place in
Ionia. And when Croesus sent envoys to Miletus to propose
an alliance, Thales dissuaded his fellow-citizens from accepting
the proposal, with the result that, when Cyrus conquered, the
city was saved.)

(a) Measurement of height of pyramid.

The accounts of Thales's method of measuring the heights
of pyramids vary. The earliest and simplest version is that
of Hieronymus, a pupil of Aristotle, quoted by Diogenes
Laertius

:

' Hieronymus says that he even succeeded in measuring the
pyramids by observation of the length of their shadow at
the moment when our shadows are equal to our own height.' ^

Pliny says that

' Thales discovered how to obtain the height of pyramids
and all other similar objects, namely, by measuring the
shadow of the object at the time when a body and its shadow
are equal in length.' ^

Plutarch embellishes the story by making Niloxenus say *

to Thales

:

' Among other feats of yours, he (Amasis) was particularly

pleased with your measurement of the pyramid, when, without
trouble or the assistance of any instrument, you merely set

up a stick at the extremity of the shadow cast by the
pyramid and, having thus made two triangles by the impact
of the sun's rays, you showed that the pyramid has to the

stick the same ratio which the shadow has to the shadow.' ^

The first of these versions is evidently the original one and,

as the procedure assumed in it is more elementary than the

more general method indicated by Plutarch, the first version

seems to be the more probable. Thales could not have failed

to observe that, at the time when the shadow of a particular

object is equal to its height, the same relation holds for all

other objects casting a shadow ; this he would probably

infer by induction, after making actual measurements in a

1 Diog. L. i. 27. " N. H. xxxvi. 12 (17).
' Plut. Conv. sept. sap. 2, p. 147 a.

1533 K
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considerable number of cases at a time when he found the

length of the shadow of one object to be equal to its height.

But, even if Thales used the more general method indicated

by Plutarch, that method does not, any more than the Egyptian

se-qet calculations, imply any general theory of similar tri-

angles or proportions ; the solution is itself a se-qet calculation,

just like that in No. 57 of Ahmes's handbook. In the latter

problem the base and the se-qet are given, and we have to

find the height. So in Thales's problem we get a certain

se-qet by dividing the measured length of the shadow of the

stick by the length of the stick itself ; we then only require

to know the distance between the point of the shadow corre-

sponding to the apex of the pyramid and the centre of the

base of the pyramid in order to determine the height; the

only difficulty would be to measure or estimate the distance

from the apex of the shadow to the centre of the base.

(/?) Geometrical theorems uMributed to Thales.

The following are the general theorems in elementary

geometry attributed to Thales.

(1) He is said to have been the first to demonstrate that

a circle is bisected by its diameter.^

(2) Tradition credited him with the first statement of the

theorem (Eucl. I. 5) that the angles at the base of any

isosceles triangle are equal, although he used the more archaic

term ' similar ' instead of ' equal '.^

(3) The proposition (Eucl. I. 15) that, if two straight lines

cut one another, the vertical and opposite angles are equal

was discovered, though not scientifically proved, by Thales.

Eudemus is quoted as the authority for this.^

(4) Eudemus in his History of Geometry referred to Thales

the theorem of Eucl. I. 26 that, if two triangles have two
angles and one side respectively equal, the triangles are equal

in all respects.

' For he (Eudemus) says that the method by which Thales
showed how to find the distances of ships from the shore
necessarily involves the use of this theorem.' *

^ Proclus on Eucl. I, p. 157. 10. ^
j^_^ pp 350. 20-251. 2.

' lb., p. 299. 1-5. 1 lb., p. 352. 14-18.
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(5) ' Pamphile says that Thales, who learnt geometry from
the Egyptians, was the first to describe on a circle a triangle

(which shall be) right-angled (Karaypdyp-ai kvkXov to rpiya>vov

6p6oya)viov), and that he sacrificed an ox (on the strength of

the discovery). Others, however, including ApoUodorus the

calculator, say that it was Pythagoras.' ^

The natural interpretation of Pauiphile's words is to suppose

that she attributed to Thales the discovery that the angle

in a semicircle is a right anwle.

Taking these propositions in order, we may observe that,

when Thales is said tg have ' demonstrated ' (dnoSii^ai) that

a circle is bisected by its diameter, whereas he only ' stated

'

the theorem about the isosceles triangle and ' discovered ',

without scientifically proving, the equality of vertically

opposite angles, the word ' demonstrated ' must not be taken

too literally. Even Euclid did not ' demonstrate ' that a circle

is bisected by its diameter, but merely stated the fact in

I. Def. 17, Thales therefore probably

observed rather than proved the property

;

and it may, as Cantor says, have been

suggested by the appearance of certain

figures of circles divided into a number

of equal sectors by 2, 4, or 6 diameters

such as are found on Egyptian monu-

ments or represented on vessels brought

by Asiatic tributary kings in the time of the eighteenth

dynasty.^

It has been suggested that the use of the word ' similar ' to

describe the equal angles of an isosceles triangle indicates that

Thales did not yet conceive of an angle as a magnitude, but

as a figure having a certain shape, a view which would agree

closely with the idea of the Egyptian ae-qet, 'that which

makes the nature', in the sense of determining a similar or

the same inclination in the faces of pyramids.

With regard to (4), the theorem of Eucl. I. 26, it will be

observed that Eudemus only inferred that this theorem was

known to Thales from the fact that it is necessary to Thales's

determination of the distance of a ship from the shore.

Unfortunately the method used can only be conjectured.

' Diog. L. i. 24, 25. ^ Cantor, Gesch. d. Math, i', pp. 109, 140.

K 2
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The most usual supposition is that Thales, observing the ship

from the top of a tower on the sea-shore, used the practical

equivalent of the proportionality of the sides of two similar

right-angled triangles, one small and one large. Suppose B
to be the base of the tower, C the ship. It was only necessary

for a man standing at the top of the

tower to have an instrument with

two legs forming a right angle, to

place it with one leg DA vertical and

in a straight line with B, and the

other leg DE in the direction of the

ship, to take any point A on DA,
and then to mark on DE the point E

where the line of sight from ^ to C cuts the leg DE. Then
AD (= I, say) and DE {= m, say) can be actually measured,

as also the height BD (= h, say) from D to the foot of the

tower, and, by similar triangles.

BC= (h + l).
I

The objection to this solution is that it does not depend

directly on Eucl. I. 26, as Eudemus impKes. Tannery ^ there-

fore favours the hypothesis of a solution on the lines followed

by the Roman agrimensor Marcus Junius Nipsus in his

fiiiminis varatio.—To find the distance from
A to an inaccessible point B. Measure from A,
along a straight line at right angles to AB,
a distance AC, and bisect it at D. From G, on
the side oi AC remote from B, draw CE at

right angles to AC, and let E be the point on
it which is in a straight line with B and D.

Then clearly, by Eucl. I. 26, GE is equal to

AB; and CE can be measured, so that AB
is known.

This hypothesis is open to a different objec-

tion, namely that, as a rule, it would be
difficult, in the supposed case, to get a sufficient amount of

free and level space for the construction and measurements.
I have elsewhere 2 suggested a still simpler method free

' Tannery, La g^omitrie grecque, pp. 90-1.
^ TJie ThiHeen Books of Euclid's Elements, vol. i, p. 305.
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from this objection, and depending equally directly on Eucl.
I- 26. If the observer was placed on the top of a tower, he
had only to use a rough instrument made of a straight stick
and a cross-piece fastened to it so as to be capable of turning
about the fastening (say a nail) so that it could form any
angle with the stick and would remain where it was put.
Then the natural thing would be to fix the stick upright (by
means of a plumb-line) and direct the cross-piece towards the
ship. Next, leaving the cross-piece at the angle so, found,
he would turn the stick round, while keeping it vertical, until
the cross-piece pointed to some visible object on the shore,
which would be mentally noted; after this it would only
be necessary to measure the distance of the object from the
foot of the tower, which distance would, by Eucl. I. 26, be
equal to the distance of the ship. It appears that this precise
method is found in so many practical geometries of the first

century of printing that it must be assumed to have long
been a common expedient. There is a story that one of

Napoleon's engineers won the Imperial favour by quickly

measuring, in precisely this way, the width of a stream that

blocked the progress of the army.'

There is even more difficulty about the dictum of Pamphile
implying that Thales first discovered the fact that the angle

in a semicircle is a right angle. Pamphile lived in the reign

of Nero (a. d. 54-68), and is therefore a late authority. The
date of Apollodorus the 'calculator' or arithmetician is not

known, but he is given as only one of several authorities who
attributed the proposition to Pythagoras. Again, the story

of the sacrifice of an ox by Thales on the occasion of his

discovery is suspiciously like that told in the distich of

Apollodorus ' when Pythagoras discovered that famous pro-

position, on the strength of which he offered a splendid

sacrifice of oxen '. But, in quoting the distich of Apollodorus,

Plutarch expresses doubt whether the discovery so celebrated

was that of the theorem of the square of the hypotenuse or

the solution of the problem of ' application of areas ' ^ ; there

is nothing about the discovery of the fact of the angle in

a semicircle being a right angle. It may therefore be that

' David Eugene Smith, The Teaching of Geometi-y, pp. 172-3.
^ Plutarch, Non posse siiamter vivi secundum Ejjicuruiii, c. 11, p. 1094 b.
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Dioo-enes Laertius was mistaken in bringing Apollodorus into

the story now in question at all ; the mere mention of the

sacrifice in Pamphile's account would naturally recall Apollo-

dorus's lines about Pythagoras, and Diogenes may have

forgotten that they referred to a different proposition.

But, even if the story of Pamphile is accepted, there are

difficulties of substance. As Allman pointed out, if Thales

knew that the angle in a semicircle

is a right angle, he was in a position

at once to infer that the sum of the

angles of any rigid-angled triangle is

equal to two right angles. For suppose

that BG is the diameter of the semi-

circle, the centre, and A a point on

the semicircle ; we are then supposed

to know that the angle BAG is a right angle. Joining OA,
we form two isosceles triangles OAB, OAG: and Thales

knows that the base angles in each of these triangles are

equal. Consequently the sum of the angles OAB, OAG is

equal to the sum of the angles OBA, OCA. The former sum
is known to be a right angle ; therefore the second sum is

also a right angle, and the three angles of the triangle ABC
are together equal to twice the said sum, i. e^ to two right

angles.

Next it would easily be seen that any triangle can be

divided into two right-angled triangles bj- drawing a perpen-

dicular AD from a vertex A to the

opposite side BC. Then the three

angles of each of the right-angled

triangles ABD, ADG are together equal

to two right angles. By adding together

the three angles of both triangles we
find that the sum of the three angles of the triangle ABC
together with the angles ABB, ABC is equal to four right
angles; and, the sum of the latter two angles being two
right angles, it follows that the sum of the remaining ano-les,

the angles at J, B, G, is equal to two right angles. And ABC
is any triangle.

Now Euclid in III. 31 proves that the angle in,^a semicircle
is a right angle by means of the general theorem of I. 32
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that the sum of the angles of any triangle is equal to two
right angles; but if Thales was aware of the truth of the

latter general proposition and proved the proposition about
the semicircle in this way, by means of it, how did Eudemus
come to credit the Pythagoreans, not only with the general
proof, but with the discovery, of the theorem that the angles
of any triangle are together equal to two right angles 1

^

Cantor, who supposes that Thales proved his proposition

after the manner of Euclid III. 31, i.e. by means of the general

theorem of I. 32, suggests that Thales arrived at the truth of

the latter, not by a general proof like that attributed by
Eudemus to the Pythagoreans, but by an argument following

the steps indicated hy Geminus. Geminus says that

'the ancients investigated the theorem of the two right
angles in each individual species of triangle, first in the equi-
lateral, then in the isosceles, and afterwards in the scalene
triangle, but later geometers demonstrated the general theorem
that in any triangle the three interior angles are equal to two
right angles '.^

The ' later geometers ' being the Pythagoreans, it is assumed

that the ' ancients ' may be Thales and his contemporaries.

As regards the equilateral triangle, the fact might be suggested

by the observation that six such triangles arranged round one

point as common vertex would fill up the space round that

point ; whence it follows that each angle is one-sixth of four

right angles, and three such angles make up two right angles.

Again, suppose that in either an equilateral or an isosceles

triangle the vertical angle is bisected by a straight line meet-

ing the base, and that the rectangle of which the bisector and

one half of the base are adjacent sides is completed ; the

rectangle is double of the half of the original triangle, and the

angles of the half-triangle are together equal to half the sum

1 Proclus on Eucl. I, p. 379. 2-5.

^ See Eutocius, Comm. on Conies of Apollonius (vol. ii, p. 170, Heib.).
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of the angles of the rectangle, i.e. are equal to two right

angles ; and it immediately follows that the sum of the angles

of the original equilateral or isosceles triangle is equal to two

right angles. The same thing is easily proved of any triangle

by dividing it into two right-angled

triangles and completing the rectangles

which are their doubles respectively, as

in the figure. But the fact that a proof

on these lines is just as easy inthe case

of the general triangle as it is for the

equilateral and isosceles triangles throwe doubt on the whole

procedure ; and we are led to question whether there is any

foundation for Geminus's account at all. Aristotle has a re-

mark that

'even if one should prove, with reference to each (sort of)

triangle, the equilateral, scalene, and isosceles, separately, that

each has its angles equal to two right angles, either by one
proof or by different proofs, he does not yet know that the

triangle, i.e. the triangle in general, has its angles equal to

two right angles, except in a sophistical sense, even though
there exists no triangle other than triangles of the kinds
mentioned. For he knows it not qua triangle, nor of every

triangle, except in a numerical sense ; he does not know it

notionally of every triangle, even though there be actually no
triangle which he does not know '}

It may well be that Geminus was misled into taking for

a historical fact what Aristotle gives only as a hypothetical

illustration, and that the exact stages by which the proposi-

tion was first proved were not those indicated by Geminus.

Could Thales have arrived at his proposition about the

semicircle without assuming, or even knowing, that the sum
of the angles of any triangle is equal to two right angles ? It

seems possible, and in the following way.
Many propositions were doubtless first

discovered by drawing all sortsof figures

and lines inthem,andobservinga^parew^

relations of equality, &c., between parts.

It would, for example, be vei'y natural

to draw a rectangle, a figure with iour right angles (which, it

' Arist. Anal. Post. i. 5, 74 a 25 sq.
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would be found, could be drawn in practice), and to put in the
two diagonals. The equality of the oppoisite sides would
doubtless, in the first beginnings of geometry, be assumed as
obvious, or verified by measurement. If then it was asmmed
that a rectangle is a figure with all its angles right angles and
each side equal to its opposite, it \^ould be easy to deduce
certain consequences. Take first the two triangles ADC, BCD.
Since by hypothesis AD = BC and CD is common, the two
triangles have the sides AD, DC respectively equal to the sides

BC, CD, and the included angles, being right angles, are equal

;

therefore the triangles ADC, BCD are equal in all respects
(cf. Eucl. I. 4), and accordingly the angles ^CD (i.e. OGD) and
BDC (i.e. ODG) are equal, whence (by the converse of Eucl. I. 5,

known to Thales) OD = OC. Similarly by means of the
equality of AB, CD we prove the equality of OB, OG. Conse-
quently OB, OC, OD (and OA) are all equal. It follows that
a circle with centre and radius OA passes through B, C, D
also

; since AO, OC are in a straight line, AC is a diameter of

the circle, and the angle ABC, by hypothesis a right angle, is

an ' angle in a semicircle '. It would then appear that, given
any right angle as ABC standing on 4C as base, it was only

necessary to bisect AC at 0, and would then be the centre of

a semicircle on J.C as diameter and passing through B. The
construction indicated would be the construction of a circle

about the right-angled triangle ABC, which seems to corre-

spond well enough to Pamphile's phrase- about ' describing on

(i. e. in) a circle a triangle (which shall be) right angled '.

(y) Thales as astronomer.

Thales was also the first Greek astronomer. Every one

knows the story of his falling into a well when star-gazing,

and being rallied by 'a clever and pretty maidservant from

Thrace ' for being so eager to know what goes on in the

heavens that he could not see what was straight in front

of him, nay, at his very feet. But he was not merely a star-

gazer. There is good evidence that he predicted a solar eclipse

which took place on May 28, 585 B.C. We can conjecture

the basis of this prediction. The Babylonians, as the result

of observations continued through centuries, had discovered

the period of 223 lunations after which eclipses recur; and
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this period was doubtless known to Thales, either directly or

through the Egyptians as intermediaries. Thales, however,

cannot have known the cause of eclipses ; he could not have

given the true explanation of lunar eclipses (as the Doxo-

graphi say he did) because he held that the earth is a circular

disc floating on the water like a log ; and, if he had correctly

accounted for solar eclipses, it is impossible that all the

succeeding Ionian philosophers should, one after another, have

put forward the fanciful explanations which we filnd recorded.

Thales's other achievements in astronomy can be very

shortly stated. Eudemus attributed to him the discovery of

'the fact that the period of the sun with reference to the

solstices is not always the same'^; the vague phrase seems

to mean that he discovered the inequality of the length of

the four astronomical seasons, that is, the four parts of the

'tropical' year as divided by the solstices and equinoxes.

Eudemus presumablj^ referred to the written works by ThalBS

On the Solstice and On the Equinoxes mentioned by Diogenes

Laertius.^ He knew of the division of the year into 365 days,

which he probably learnt from Egypt.

Thales observed of the Hyades that there wei'e two of

them, one north and the other south. He used the Little

Bear as a means of finding the pole, and advised the Greeks

to sail by the Little Bear, as the Phoenicians did, in preference

to their own practice of sailing by the Great Bear. This

instruction was probably noted in the handbook under the

title of Nautical Astronomy, attributed by some to Thales

and by others to Phocus of Samos.

It became the habit of the Doxographi to assign to Thales,

in common with other astronomers in each case, a number
of discoveries not made till later. The following is the list,

with the names of the astronomers to whom the respective

discoveries may with most certainty be attributed: (1) the

fact that the moon takes its light from the sun (Anaxagoras

and possibly Parmenides)
; (2) the sphericity of the earth

(Pythagoras)
; (3) the division of the heavenly sphere into

five zones (Pythagoras and Parmenides) ; C4) the obliquity

of the ecliptic (Genopides of Chios); (5) the estimate of the

1 See Theon of Smyrna, p. 198. 17. = Diog. L. i. 23.
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sun's diameter as l/720th part of the sun's circle (Aristarchus

of Samos).

From Tliales to Pythagoras.

We are completely in the dark as to the progress of geometry
between the times of Thales and Pythagoras. Anaximandkr
(born about 611/10 b. C.) put forward some daring and original

hypotheses in astronomy. According to him the earth is

a short cylinder with two bases (on one of which we live) and
of depth equal to one-third of the diameter of either base.

It is suspended freely in the middle of the universe without

support, being kept there in equilibrium by virtue of its

equidistance from the extremities and from the other heavenly

bodies all round. The sun, moon, and stars are enclosed in

opaque rings of compressed air concentric with the earth and
filled with fire : what we see is the fire shinins: through vents

(like gas-jets, as it were). The sun's ring is 27 or 28 times, the

moon's ring 19 times, as large as the earth, i.e. the sun's

and moon's distances are estimated in terms (as we may
suppose) of the radius of the circular face of the earth ; the

fixed stars and the planets are nearer to the earth than

the sun and moon. This is the first speculation on record

about sizes and distances. Anaximander is also said to have

introduced the gnomon (or sun-dial with a vertical needle)

into Greece and to have shown on it the solstices, the times,

the seasons, and the equinox ^ (according to Herodotus ^ the

Greeks learnt the use of the gnomon from the Babylonians).

He is also credited, like Thales before him, with having

constructed a sphere to represent the heavens.' But Anaxi-

mander has yet another claim to undying fame. He was the

first who ventured to draw a map of the inhabited earth.

The Egyptians had drawn maps before, but only of particular

districts; Anaximander boldly planned out the whole world

with ' the circumference of the earth and sea '.* This work
involved of course an attempt to estimate the dimensions of

the earth, though we have no information as to his results.

It is clear, therefore, that Anaximander was something of

1 Euseb. Praep. Evany, x. 14. 11 [Vors. i^ p. 14. 28).

2 Hdt. ii. 109. '' Diog. L. ii. 2.

" Diog. L. I. c.
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a mathematician; but whether he contributed anything to

geometry as such is uncertain. True, Huiilas says that he

' introduced the gnomon and generally set forth a ske'tch

or outline of geometry ' (oXcos y(a>fj.eTpLas inroTinrcdaLv 'iSei^ev)
;

but it may be that ' geometry ' is here used in its literal sense

of earth-measurement, and that the reference is only to the

famous map.

' Next to Thales, Ameristus, a brother of the poet Stesichorus,

is mentioned as having engaged in the study of geometry

;

and from what Hippias of Elis says it appears that he acquired
a reputation for geometry.' ^

Stesichorus the poet lived about 630-550 B.C. The brother

thei-efore would probably be nearly contemporary with Thales.

We know nothing of him except from the passage of Proclus,

and even his name is uncertain. In Friedlein's edition of

Proclus it is given as Mamercus, after a later hand in cod.

Monac. 427 ; Suidas has it as Mamertinus {s.v. Stesichorus)

;

Heiberg in his edition of Heron's Definitions writes Mamertius,

noting Mapfxerios as the reading of Cod. Paris. Gr. 2385.

Proclus on Eucl. I, p. 65. 11-15.
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PYTHAGOREAN GEOMETRY

The special sei'viifc rendered by Pythagokas to geometry is

thus described in the Proclus summary :

' After these (Thales and Amerlstus or Mamercus) Pythagoras
transformed the study of geometry into a liberal education,
examining the principles of the science from the beginning
and probing the theorems in an immaterial and intellectual

manner: he it was who discovered the theory of irrationals'

(or ' proportions ')
' and the construction of the cosmic figures '.^

These supposed discoveries will claim our attention pre-

sently; the rest of the description agrees with another

passage about the Pythagoreans :

' Herein ', says Proclus, ' I emulate the Pythagoreans who
even had a conventional phrase to express what I mean,
"a figure and a platform, not a figure and sixpence", by
which they implied that the geometry which is deserving of

study is that which, at each new theorem, sets up a platform to

ascend by, and lifts the soul on high instead of allowing it

to go down among sensible objects and so become subser-

vient to the common needs of this mortal life '.^

In like manner we are told that ' Pythagoras used defini-

tions on account of the mathematical nature of the subject V^

which again implies that he took the first steps towards the

systematization of geometry as a subject in itself.

A comparatively early authority, Callimachus (about 250 B.C.),

is quoted by Diodorus as having said that Pythagoras dis-

covered some geometrical problems himself and was the first

to introduce others from Egypt into Greece.* Diodorus gives

what appear to be five verses of Callimachus minus a few words

;

1 Proclus on Eacl. I, p. 65. 15-21. " lb., p. 84. 15-22.
' ^Favorinus in Diog. L. viii. 25.

* Diodorus x. 6. 4 {Vors. i\ p. 346. 2.3).
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a longer fragment including the same passage is now available

(though the text is still deficient) in the Oxyrhynchus Papyri.^

The story is that one Bathycles, an Arcadian, bequeathed a

cup to lie given to the best of the Seven Wise Men. The cup

first went to Thales, and then, after going the round of the

others, was given to him a second time. We are told that

Bathycles's son brought the cup to Thales, and that (presum-

ably on the occasion of the first presentation)

' by a happy chance he found . . the old man scraping the

ground and drawing the figure discovered by the Phrygian
Euphorbus (= Pythagoras), who was the first of men to draw
even scalene triangles and a circle . . , and who prescribed

abstinence from animal food '.

Notwithstanding the anachronism, the ' figure discovered by

Euphorbus ' is presumably the famous proposition about the

squares on the sides of a right-angled triangle. In Diodorus's

quotation the words after ' scalene triangles ' are kvkXov eyrra-

/nJKr]{iTrTafj.r]K€' Hunt), which seems unintelligible unless the

' seven-lengthed circle ' can be taken as meaning the ' lengths of

seven circles ' (in the sense of the seven independent orbits

of the sun, moon, and planets) or the circle (the zodiac) com-
prehending them all.^

But it is time to pass on to the propositions in geometry
which are definitely attributed to the Pythagoreans.

' Oxyrhynchus Papyri, Pt. vii, p. 33 (Hunt).
^ The papyrus has an accent over the e and to the right of the

accent, above the uncertain tt, the appearance of a X in dark ink,

thus KaiKvKKov(TT , a reading vfhioh is not yet satisfactorily explained.
Diels {VorsoJcratilcer, i', p. 7) considers that the accent over the e is fatal
to the reading fWa^irJKii, and conjectures xal kvkXov eX{iKa) tc^Si'Snff

vr]<TTfifiv instead of Hunt's Kn'i kukKov €Tr\Taiu)K€' , r}ie vrjaTfiiiiv] and
Diodorus's Km kvkXov iTrrnfiTjKn Si'Sn^f pijuT-f ueij/. But kvkXov tXiKa, ' twisted
(or curved) circle', is very indefinite. It may have been suggested to
Diels by Hermesianax's lines (Athenaeus xiii. 599 a) attributing to
Pythagoras the ' refinements of the geometry of spirals ' {eXUmv Ko^\|^a

yfafieTpiris).
^
One naturally thinks of Plato's dictum (Thnaeus 39 a, b)

about the circles of the sun, moon, and planets being twisted into spirals
by the combination of their own motion with that of the daily rotation

;

but this can hardly be the meaning here. A more satisfactory sense
would be secured if we could imagine the circle to be the circle described
about the 'scalene' (right-angled) triangle, i.e. if we could take the
reference to be to the discovery of the fact that the angle in a se/ni-
circle is a right angle, a discovery which, as we have seen, was alterna-
tively ascribed to Thales and Pythagoras.
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Discoveries attributed to the Pythagoreans.

(a) Equality of the sum of tfie three angles of a triangle

to tivo right angles.

We have seen that Thales, if he really discovered that the

angle in a semicircle is a right angle, was in a position, first,

to show that in any right-angled triangle the sum of the three

angles is equal to two right angles, and then, bj^ drawing the

perpendicular from a ^•ertex of any triangle to the opposite

side and so dividing the triangle into two right-angled

triangles, to prove that the sum of the three angles of any

triangle whatever is equal to two right angles. If this method

of passing from the particular case of a right-angled triangle to

that of any triangle did not occur to Thales, it is at any rate

hardly likely to have escaped Pythagoras. But all that we know
for certain is that Eudemus referred to the Pythagoreans

the discovery of the general theorem that in any triangle

the sum of the interior angles is equal to two right angles.^

Eudemus goes on to tell us how they proved it. The method

differs slightly from that of Euclid, but depends, equally with

Euclid's proof, on the properties of parallels ; it can therefore

only have been evolved at a time when those properties were

already known.

Let ABC be any triangle ; through A draw DE parallel

to BG.

Then, sincer BC\ DE are parallel, the

alternate angles DAB, ABG are equal.

Similarly the alternate angles EAG,

AGB are equal.

Therefore the sum of the angles ABG,

AGB is equal to the sum of the angles DAB, EAG.

Add to each sum the angle BAG; therefore the sum of the

three angles ABC, AGB, BAG, i.e. the three angles of the

triangle, is equal to the sum of the angles DAB, BAG, GAE,

i.e. to two right angles.

We need not hesitate to credit the Pythagoreans with the

more general propositions about the angles of any polygon,

1 Proclus on Eucl. I, p. 397. 2.
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namely (1) that, if n be the number of the sides or angles, the

interior angles of the polygon are together equal to 2w—

4

right angles, and (2) that the exterior angles of the polygon

(being the supplements of the interior angles respectively)

are together equal to four right angles. The propositions are

interdependent, Bnd Aristotle twice quotes the latter. '^ The
Pythagoreans also discovered that the only three regular

polygons the angles of which, if placed together round a com-

mon point as vertex, just fill up the space (four right angles)

round the point are the equilateral triangle, the square, and

the regular hexagon.

(/?) The 'Theorem of Pythagoras' (= Eucl. I. 47).

Though this is the proposition universally associated by
tradition with the name of Pythagoras, no really trustworthy

evidence exists that it was actually discovered by him. The
comparatively late writers who attribute it to him add the

story that he sacrificed an ox to celebrate his discovery.

Plutarch^ (born about a.d. 46), Athenaeus ^ (about a.d. 200),

and Diogenes Laertius* (A.D. 200 or later) all quote the verses

of Apollodorus the 'calculator' already referred to (p. 133).

But Apollodorus speaks of the ' famous theorem ', or perhaps
' figure ''

(ypdfifia), the discovery of which was the occa-

sion of the sacrifice, without saying what the theorem was.

Apollodorus is otherwise unknown ; he may have been earlier

than Cicero, for Cicero^ tells the story in the same form

without specifying what geometrical discovery was meant,

and merely adds that he does not believe in the sacrifice,

because the Pythagorean ritual forbade sacrifices in which
blood was shed. Vitruvius^ (first century B.C.) connects the

sacrifice with the discovery of the property of the particular

triangle 3, 4, 5. Plutarch, in quoting Apollodorus, questions

whether the theorem about the square of the hypotenuse was
meant, or the problem of the application of an area, while in

another place "^ he says that the occasion of the sacrifice was

1 An. Post. i. 24, 85 b 38 ; ib. ii. 17, 99 a 19.
' Plutarch, Non posse snaviter viri secundum Epicnnim, c. 11, p. 1094 b.

^
Athenaeus x. 418 r. * Diog. L. viii. 12, i. 25.

'' Cicero, De not. dear. iii. 36, 88.
° Vitruvius, De architecture, ix. pref.
' Plutarch, Quaest. conviv. viii. 2, 4, p. 720 a.
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the solution of the problem, ' given two figures, to ajyply

a third which shall be equal to the one and similar to

the other', and he adds that this problem is unquestionably

finer than the theorem about the square on the hjqDotenuse.

But Athenaeus and Porphyry^ (a.d. 233-304) connect the

sacrifice with the latter proposition ; so does Diogenes Laertius

in one place. We come lastly to Proclus, who is very cautious,

mentioning the story but declining to commit himself to

the view that it was Pythagoras or even any single person

who made the discovery

:

' If we listen to those who wish to recount ancient history,

we may find some of them referring this theorem to Pytha-
goras, and saying that he sacrificed an ox in honour of his

discovery. But for my part, while I admire those luho first

observed the truth of this theorem, I marvel more at the

writer of the Elements, not only because he made it fast by a

most lucid demonstration, but because he compelled assent to

the still more general theorem by the irrefutable arguments of

science in the sixth book.'

It is possible that all these authorities may have built upon

the verses of Apollodorus ; but it is remarkable that, although

in the verses themselves the particular theorem is not speci-

fied, there is practical unanimity in attributing to Pythagoras

the theorem of Eucl. I. 47. Even in Plutarch's observations

expressing doubt about the particular occasion of the sacrifice

there is nothing to suggest that he had any hesitation in

accepting as discoveries of Pythagoras both the theorem of the

square on the hypotenuse and the problem of the application

of an area. Like Hankel,^ therefore, I would not go so far as

to deny to Pythagoras the credit of the discovery of our pro-

position ; nay, I like to believe that tradition is right, and that

it was really his.

True, the discovery is also claimed for India.^ The work

relied on is the A^Jastambn-ISulba-Sutru, the date of which is

put at least as early as the fifth or fourth century B.C., while

it is remarked that the matter of it must have been much

1 Porphyry, Vit. Pyth. 36.

^ Hankel, Zur Geschichte der Math, in AUeHhum imd Mittelalter, p. 97.

' Burk in the ZeHschnft der morgenlilnd. Gesellschaft, Iv, 1901,

pp. 543-91 ; Ivi, 1902, pp. 327-91.
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older than the book itself ; thus one of the constructions for

right angles, using cords of lengths 15, 36, 39 (= 5, 12, 13), was

known at the time of the Tdittiriyu Samhitd and the Sata-

'patha Brdhmaiia, still older works belonging to the eighth

century B. c. at latest. A feature of the A'pastamba-Sulha-

Sutra is the construction of right angles in this way by means

of cords of lengths equal to the three sides of certain rational

right-angled triangles (or, as Apastamba calls them, rational

rectangles, i. e. those in which the diagonals as well as the

sides are rational). The rational right-angled triangles actually

used are (3, 4, 5), (5, 12, 13), (8, 15, 17), (12, 35, 37). There is

a proposition stating the theorem of Eucl. I. 47 as a fact in

general terms, but without proof, and there are rules based

upon it for constructing a square equal to (l) the sum of two

given squares and (2) the difference of two squares. But

certain considerations suggest doubts as to whether the

proposition had been established by any proof applicable to

all cases. Thus Apastamba mentions onlj^ seven rational

right-angled ti'iangles, really reducible to the above-mentioned

four (one other, 7, 24, 25, appears, it is true, in the Baudha-

yana S. S., supposed to be older than Apastamba) ; he had no

general rule such as that attributed to Pythagoras for forming

any number of rational right-angled triangles; he refers to

his seven in the words ' so many recognizable constructions

are there ', implying that he knew of no other such triangles.

On the other hand, the truth of the theorem was recognized in

the case of the isosceles right-angled triangle ; there is even

a construction for V2, or the length of the diagonal of a square

with side unity, which is constructed as (l-\ 1

|•^ V 3 3.4 3.4.34/

of the side, and is then used with the side for the purpose of

drawing the square on the side : the length taken is of course

an approximation to \^2 derived from the consideration that

2.12'^ = 288 = 17^ — 1 ; but the author does not say anything

which suggests any knowledge on his part that the approxi-

mate value is not exact. Having drawn by means of the

approximate value of the diagonal an inaccurate square, he

proceeds to use it to construct a square with area equal to

three times the original square, or, in other words, to con-

struct Vs, wliich is therefore only approximately found.
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Thus the theorem is enunciated and used as if it were of

general application ; there is, however, no sign of any general

proof
;
there is nothing in fact to show that the assumption of

its universal truth was founded on anything better than an
imperfect induction from a certain number of cases, discovered

empirically, of triangles with sides in the ratios of whole
numbers in which the property (1) that the square on the

longest side is equal to the sum of the squares on the other
two was found to be. always accompanied by the property

(2) that the latter two sides include a right angle. But, even
if the Indians had actually attained to a scientific proof of

the general theorem, there is no evidence or probability that

the Greeks obtained it from India ; the subject was doubtless

developed quite independently in the two countries.

The next question is, hoM^ was the theorem proved by
Pythagoras or the Pythagoreans'? Vitruvius says that

Pythagoras first discovered the triangle (3, 4, 5), and doubtless

the theorem was first suggested by the discovery that this

triangle is right-angled; but this discovery probably came
to Greece from Egypt. Then a very simple construction

would show that the theorem is true of an isosceles ricfht-

angled triangle. Two possible lines are suggested on which
the general proof may have been developed. One is that of

decomposing square and rectangular areas into squares, rect-

angles and triangles, and piecing them together again after

the manner of Eucl., Book II ; the isosceles right-angled

triangle gives the most obvious case of this method. The

other line is one depending upon proportions ; and we have

good reason for supposing that Pythagoras developed a theory

of proportion. That theory was applicable to commensurable

magnitudes only ; but this would not be any obstacle to the

use of the method so long as the existence of the incom-

mensurable or irrational remained undiscovered. From
Proclus's remark that, while he admired those who first

noticed the truth of the theorem, he admired Euclid still

more for his most clear proof of it and for the irrefutable

demonstration of the extension of the theorem in Book VI,

it is natural to conclude that Euclid's proof in I. 47 was new,

though this is not quite certain. Now VI. 31 could be proved

at once by using I. 47 along with VI. 22; but Euclid proves

L 2
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it independently of I. 47 by means of proportions. This

seems to suggest that he proved I. 47 by the methods of

Book I instead of by proportions in order to get the proposi-

tion into Book I instead of Book VI,, to which it must have

been relegated if the proof by proportions had been used.

If, on the other hand, Pythagoras had proved it by means

of the methods of Books I and II, it would hardly have been

necessary for Euclid to devise a new proof of I. 47. Hence

it would appear most probable that Pythagoras would prove

the proposition by means of his (imperfect) theory of pro-

portions. The proof may have taken one of three different

shapes.

(1) If ABC is a triangle right-

angled at A, and AD is perpen-

dicular to BG, the triangles DBA,
BAG are both similar to the tri-

angle ABG.
It follows from the theorems of

Eucl. VI. 4 and 17 that

BA-' = BD.BG,
AG^^GD.BG,

whence, by addition, BA'^ + AG^ = BG\
It will be observed that this proof is in substance identical

with that of Eucl. I. 47, the difference being that the latter

uses the relations between parallelograms and triangles on

the same base and between the same parallels instead of

proportions. The probability is that it was this particular

proof by proportions which suggested to Euclid the method

of I. 47 ; but the transformation of the proof depending on

proportions into one based on Book L only (which was abso-

lutely required under Euclid's arrangement of the Elements)

was a stroke of genius.

(2) It would be observed that, in the similar triangles

DBA, DAG, ABG, the corresponding sides opposite to the

right angle in each case are BA, AG, BG.

The triangles therefore are in the duplicate ratios of these

sides, and so are the squares on the latter.

But of the triangles two, namely DBA, DAG, make up the

third, ABG.
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The same must therefore be the case with the squares, or

(3) The method of VI. 31 might have been followed

exactly, with squares taking the place of any similar recti-

lineal figures. Since the triangles DBA, ABG are similar,

BD:AB= AB: BC,

or BD, AB, BC are three proportionals, whence

AB"^ : BC' = BD'^ -.AB^^ BD: BC.

Similarly, A C^ : BG^ = CD : BC.

Therefore (BA^ + AG^) : BG^ = {BD + DC) : BC. [V. 24]

= 1.

If, on the other hand, the proposition was originally proved

by the methods of Euclid, Books I, II alone (which, as I have

said, seems the less probable supposition), the suggestion of

^ 'c

a /
/

t

I

I

I

I

Bretschneider and Hankel seems to be the best. According

to this we are to suppose, first, a figure like that of Eucl.

II. 4, representing a larger square, of side (a + &), divided

into two smaller squares of sides a, h respectively, and

two complements, being two equal rectangles with a, h as

sides.

Then, dividing each complementary rectangle into two

equal triangles, we dispose the four triangles round another

square of side a + & in the manner shown in the second figure.

Deducting the four triangles from the original square in

each case we get, in the first figure, two squares a'' and 6^

and, in the second figure, one square on c, the diagonal of the

rectangle {a, h) or the hypotenuse of the right-angled triangle

in which a, h are the sides about the right angle. It follows

that a" + b'' = (?
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(y) A2:>plication of areas and geometrical algebra.

We have seen that, in connexion with the story of the

sacrifice of an ox, Plutarch attributes to Pythagoras himself

the discovery of the problem of the application of an area

or, as he says in another place, the problem ' Given two

figures, to " apply " a third figure which shall be equal to the

one, and similar to the other (of the given figures).' The

latter problem (= Eucl. VI. 25) is, strictly speaking, not so

much a case of applying an area as of constructing a figure,

because the base is not given in length; but it depends

directly upon the simplest case of ' application of areas ',

namely the problem, solved in Eucl. I. 44, 45, of applying

to a given straight line as base a parallelogram containing

a given angle and equal in area to a given triangle or

rectilineal figure. The method of application of areas is

fundamental in Greek geometry and requires detailed notice.

We shall see that in its general form it is equivalent to the

geometrical solution of a mixed quadratic equation, and it is

therefore an essential part of what has been appropriately

called geometrical algebra.

It is certain that the theory of application of areas

originated with the Pythagoreans, if not with Pythagoras

himself. We have this on the authority of Eudemus, quoted

in the following passage of Proelus

:

' These things, says Eudemus, are ancient, being discoveries

of the Muse of the Pythagoreans, I mean the application of
areas (napa^oXfj tS>v ^uipiuiv), their exceeding (virepjSoXri) and
their falling short (eXXeiyjns). It was from the Pythagoreans
that later geometers [i. e. Apollonius of Perga] took the

names, which' they then transferred to the so-called conic

lines (curves), calling one of these a parabola (application),

another a hyperbola (exceeding), and the third an ellipse

(falling short), whereas those god-like men of old saw the

things signified by these names in the construction, in a plane,

of areas upon a given finite straight line. For, when you
have a straight line set out, and lay the given area exactly
alongside the whole of the straight line, they say that you
apiply the said area ; when, however, you make the length of

the area greater than the straight line, it is said to exceed,

and, when you make it less, in which case after the area has

been drawn there is some part of the straight line extending
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beyond it, it is said to fall short. Euclid, too, in the sixth

book speaks in this way both of exceeding and falUng short

;

but in this place (I. 44) he needed the a'p'pUcatioii simply, as

be sought to apply to a given straight line an area equal
to a given triangle, in order that we might have in our
power, not only the construction {a-varaat^) of a parallelogram
3qual to a given triangle, but also the application of it to

% limited straight line.' "

The general form of the problem involving application

with exceeding ov falling short is the following :

' To apply to a given straight line a rectangle (or, more
generally, a parallelogram) equal to a given rectilineal figure,

and (1) exceeding or (2) fcdling short by a square figure (or,

in the more general case, by a parallelogram similar to a given
parallelogram).'

The most general form, shown by the words in brackets,

is found in Eucl. VI. 28, 29, which are equivalent to the

a'eometrical solution of the quadratic equations

ax-i— tc' = — 3— c in

ind VI. 27 gives the condition of possibility of a solution

when the sign is negative and the parallelogram falls short.

This general case of course requires the use of proportions;

but the simpler case where the area applied is a rectangle,

ind the form of the portion which overlaps or falls short

is a square, can be solved by means of Book II only. The

proposition 11. 1 1 is the geometrical solution of the particular

j[uadratic equation a (a— x) = x^

3r x^ + ax — a'-.

The propositions II. 5 and 6 are in the form of theorems.

Taking, e.g., the figure of the former proposition, and sup-

posing AB — a, BD = X, we have

ax— x^ = rectangle AH
= gnomon NOP.

[f, then, the area of the gnomon is given (= 6^ say, for any

irea can be transformed into the equivalent square by means

)f the problems of Eucl. I. 45 and II. 14), the solution of the

jquation „^_^2 ^ ^2

1 Proclus on Eucl. I, pp. 419. 15-420. 12.
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would be, in the language of application of areas, ' To a given

straight line (a) to apply a rectangle which shall be equal

to a given square (b-) and shall fall short by a square figure.'

A
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application of areas. The whole of Book II, with the latter

section of Book I from Prop. 42 onwards, may be said to deal

with the transformation of areas into equivalent areas of

different shape or composition by means of 'application'

and the use of the theorem of I. 47. Eucl. II. 9 and 10 are

special cases which are very useful in geometry generally, but
were also employed by the Pythagoreans for the specific purpose
of proving the property of ' side- ' and ' diameter- ' numbers,
the object of which was clearly to develop a series of closer

and closer approximations to the value of -/2 (see p. 93 ante).

The geometrical algebra, therefore, as we find it in Euclid,

Books I and II, was Pythagorean. It was of course confined

to problems not involving expressions above the second degree.

Subject to this, it was an effective substitute for modern
algebra. The product of two linear factors was a rect-

angle, and Book II of Euclid made it possible to multiply
two factors with any number of linear terms in each ; the

compression of the result into a single product (rectangle)

followed by means of the a2J2dication-theorem (Eucl. I. 44).

That theorem itself corresponds to dividing the product of

any two linear factors by a third linear expression. To trans-

form any area into a square, we have only to turn the area

into a rectangle (as in Eucl. I. 45), and then find a square

equal to that rectangle by the method of Eucl. II. 14; the

latter problem then is equivalent to the extraction of the square

root. And we have seen that the theorems of Eucl. II. 5, 6

enable mixed quadratic equations of certain types to be solved

so far as their roots are real. In cases where a quadratic

equation has one or both roots negative, the Greeks would

transform it into one having a positive root or roots (by the

equivalent of substituting — x for x) ; thus, where one root is

positive and one negative, they would solve the problem in

two parts by taking two cases.

The other great engine of the Greek geometrical algebra,

namely the method of proportions, was not in its full extent

available to the Pythagoreans because their theory of pro-

portion was only applicable to commensurable magnitudes

(Eudoxus was the first to establish the general theory, applic-

able to commensurables and incommensurables alike, which

we find in Eucl. V, VI). Yet it cannot be doubted that they
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used the method quite freely before the discovery of the irra-

tional showed them that they were building on an insecure

and inadequate foundation.

(S) The irrational.

To return to the sentence about Pythagoras in the summary
of Proelus already quoted more than once (pp. 84, 90, 141).

Even if the reading aXoycoy were right and Proelus really

meant to attribute to Pythagoras the discovery of 'the theory,

or study, of irrationals ', it would be necessary to consider the

authority for this statement, and how far it is supported by

other e\ddence. We note that it occurs in a relative sentence

OS 8rj . .
.

, which has the appearance of being inserted in paren-

thesis by the compiler of the summary rather than copied from

his original source ; and the shortened form of the first part

of the same summary published in the Variae collectio aes of

Hultsch's Heron, and now included by Heiberg in Heron's

Definitions,^ contains no such parenthesis. Other authorities

attribute the discovery of the theory of the irrational not to

Pythagoras but to the Pythagoreans. A scholium to Euclid,

Book X, says that

' the Pythagoreans were the first to address themselves to the
investigation of commensurability, having discovered it as the
result of their observation of numbers ; for, while the unit is

a common measure of all numbers, they were unable to find

a common measure of all magnitudes, . . . because all magni-
tudes are divisible ad infinitum, and never leave a magnitude
which is too small to admit of further division, but that
remainder is equally divisible ad infinitum,'

and so on. The scholiast adds the legend that

' the first of the Pythagoreans who made public the investiga-

tion of these matters perished in a shipwreck '.^

Another commentary on Eucl. X discovered by Woepcke in

an Arabic translation and believed, with good reason, to be

part of the commentary of Pappus, says that the theory of

irrational magnitudes ' had its origin in the school of Pytha-

goras '. Again, it is impossible that Pythagoras himself should

have discovered a ' theory ' or ' study ' of irrationals in any

' Heron, vol. iv, ed. Heib., p. 108.
'' Euclid, ed. Heib., vol. v, pp. 415, 417.
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proper sense. We are told in the Theaetetua ^ that Theodoras
of Cyrene (a pupil of Protagoras and the teacher of Plato)

proved the irrationality of Vz, Vs, &c., up to 7X7, and this

must have been at a date not much, if anything, earlier than
400 B. c.

; while it was Theaetetus who, inspired by Theodorus's
investigation of these particular 'roots' (or surds), was the
first to generalize the theory, seeking terms to cover all such
incommensurables

; this is confirmed by the continuation of

the passage from Pappus's commentary, which says that the
theory was

'considerably developed by Theaetetus the Athenian, who
gave proof, in this part of mathematics as in others, of ability
which has been justly admired ... As for the exact dis-

tinctions of the above-named magnitudes and the rigorous
demonstrations of the propositions to which this theory gives
rise, I believe that they were chiefly established by this

mathematician '.

It follows from all this that, if Pythagoras discovered any-

thing about irrationals, it was not any ' theory ' of irrationals

but, at the most, some particular case of incommensurability.

Now the passage which states that Theodorus proved that

V 3, Vo, &c. are incommensurable says nothing of -/2. The
I'eason is, no doubt, that the incommensurability of -v/2 had

been proved earlier, and everything points to the probability

that this was the first case to be discovered. But, if Pytha-

goras discovered even this, it is diflicult to see how the theory

that number is the essence of all existing things, or that all

things are made of number, could have held its ground for

any length of time. The evidence suggests the conclusion

that geometry developed itself for some time on the basis of

the numerical theory of proportion which was inapplicable to

any but commensurable magnitudes, and that it received an

unexpected blow later by reason of the discovery of the irra-

tional. The inconvenience of this state of things, which

involved the restriction or abandonment of the use of propor-

tions as a method pending the discovery of the generalized

theory by Eudoxus, may account for the idea of the existence

of the irrational having been kept secret, and of punishment

having overtaken the first person who divulged it.

' Plato, Theaetetus, 147 D sq.
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If then it was not Pythagoras but some Pythagorean who

discovered the irrationality of •v/2, at what date are we to

suppose the discovery to have been made 1 A recent writer ^

on the subject holds that it was the later Pythagoreans who

made the discovery, not much before 410 B.C. It is impos-

sible, he argues, that fifty or a hundred years would elapse

between the discovery of the irrationality of Vi and the like

discovery by Theodorus (about 410 or 400 B.C.) about the other

surds -/S, -/s, &c. It is difficult to meet this argument

except by the supposition that, in the interval, the thoughts

of geometers had been taken up by other famous problems,

such as the quadrature of the circle and the duplication of the

cube (itself equivalent to finding ^2). Another argument is

based on the passage in the Laivs where the Athenian stranger

speaks of the shameful ignorance of the generality of Greeks,

who are not aware that it is not all geometrical magnitudes

that are commensurable with one another ; the speaker adds

that it was only ' late ' {6\jfi ttots) that he himself learnt the

truth.^ Even if we knew for certain whether ' late ' means
' late in the day ' or ' late in life ', the expression would not

help much towards determining the date of the first discovery

of the irrationality of V2 ; for the language of the passage is

that of rhetorical exaggeration (Plato speaks of men who are

unacquainted with the existence of the irrational as more

comparable to swine than to human beings). Moreover, the

irrational appears in the ReinMic as something well known,

and precisely with reference to \/2 ; for the expressions 'the

rational diameter of (the square the side of which is) 5

'

[= the approximation -/(49) or 7] and the 'irrational

(dpprjTos) diameter of 5 ' [= \/(50)] are used without any word
of explanation.^

Further, we have a well-authenticated title of a work by
Democritus (born 470 or 460 B.C.), nepl aXoycov ypamxaiv Kal

vaarSiv a/?, ' two books on irrational lines and solids ' {vaa-rov

is irXrjpe^, 'full', as opposed to Kevov. 'void', and Democritus

called his 'first bodies' vaard). Of the contents of this work
we are not informed ; the recent writer already mentioned

' H. Vogt in Bibliotheca mathematica, Xj, 1910, pp. 97-155 (of. ix,,

p. 190 sq.).

^ Plato, Laws, 819d-820c. => Plato, Republic, vii. 546 d.
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suggests that aXoyos does not here mean irrational or incom-
mensurable at all, but that the book was an attempt to con-
nect the atomic theory with continuous magnitudes (lines)

through ' indivisible lines ' (cf. the Aristotelian treatise On
indivisible lines), and that Democritus meant to say that,

since any two lines are alike made up of an infinite number
of the (indivisible) elements, they cannot be said to have any
expressible ratio to one another, that is, he would regard them
as 'having no ratio'! It is, however, impossible to suppose
that a mathematician of the calibre of Democritus could have
denied that any two lines can have a ratio to one another

;

moreover, on this view, since no two straight lines would have
a ratio to one another, dXoyoi ypayniai would not be a class of

lines, but all lines, and the title would lose all point. But
indeed, as we shall see, it is also on other grounds inconceiv-

able that Democritus should have been an upholder of ' indi-

visible lines ' at all. I do not attach any importance to the

further argument used in support of the interpretation in

question, namely that akoyo's in the sense of ' irrational ' is

not found in any other writer before Aristotle, and that

Plato uses the words dpprjros and dav'/ifieTpos only. The
latter statement is not even strictly true, for Plato does in

fact use the word dXoyoL specifically of ypa/xfiai in the passage

of the Republic where he speaks of youths not being dXoyoi

axj-mp ypajjLfiat, ' irrational like lines '} Poor as the joke is,

it proves that dXoyoi ypaixfiai was a recognized technical

term, and the remark looks like a sly reference to the very

treatise of Democritus of which we are speaking. I think

there is no reason to doubt that the book was on ' irrationals

'

in the technical sense. We know from other sources that

Democritus was already on the track of infinitesimals in

geometry; and nothing is more likely than that he would

write on the kindred subject of irrationals.

I see therefore no reason to doubt that the irrationality

of •/2 was discovered by some Pythagorean at a date appre-

ciably earlier than that of Democritus ; and indeed the simple

proof of it indicated by Aristotle and set out in the propo-

sition interpolated at the end of Euclid's Book X seems

appropriate to an early stage in the development of geometry.

' Plato, Republic, 534 D.



158 PYTHAGOREAN GEOMETRY

(e) The jive regular solids.

The same parenthetical sentence in Proclus which attributes

to Pythagoras the discovery of the theory of irrationals

(or proportions) also states that he discovered the 'putting

together {avaTacns) of the cosmic figures' (the five regular

solids). As usual, there has been controversy as to the sense

in which this phrase is to be taken, and as to the possibility

of Pythagoras having done what is attributed to him, in any

sense of the words. I do not attach importance to the

argument that, whereas Plato, presumably ' Pythagorizing
',

assigns the first four solids to the four elements, earth, fire,

air, and water, Empedocles and not Pythagoras was the

first to declare these four elements to be the material princi-

ples from which the universe was evolved ; nor do I think

it follows that, because the elements are four, only the first

four solids had been discovered at the time when the four

elements came to be recognized, and that the dodecahedron

must therefore have been discovered later. I see no reason

why all five should not have been discovered by the early

Pytliagoreans before any question of identifying them with

the elements arose. The fragment of Philolaus, indeed, says

that

' there are five bodies in the sphere, the fire, water, earth,

and air in the sphere, and the vessel of the sphere itself

making the fifth V
but as this is only to be understood of the elements in the

sphere of the universe, not of the solid figures, in accordance

with Diels's translation, it would appear that Plato in the

Timaeus'^ is the earliest authority for the allocation, and

it may very well be due to Plato himself (were not the solids

called the ' Platonic figures ' ?), although put into the mouth

of a Pythagorean. At the same time, the fact that the

TimMeus is fundamentally Pythagorean may have induced

Aetius's authority (probably Theophrastus) to conclude too

1 Stobaeus, Eel. I, proem. 3 (p. 18. 5 Wachsmuth) ; Diels, Vors. i',

p. 314. The Greek of the last phrase is Kn\ 6 ras <T(pnlpas oXkos, Tiffiirmv,

but nkKiis is scarcely an appropriate word, and von Wilamowitz {Platon.

vol. ii, 1919, pp. 91-2) proposes o ras a-4>aipni 6\*.o!, taking oXkos (which
implies 'winding') as volumen. We might then translate by 'the spherical

envelope

'

^ Tiinavi(.v, 53c-55c.
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hastily that ' here, too, Plato Pythagorizes ', and to say dog-
matically on the faith of this that

' Pythagoras, seeing that there are five solid figures, which
are also called the mathematical figures, says that the earth
arose from the cube, fire from the pyramid, air from the
octahedron, water from the icosahedron, and the sphere of
the universe from the dodecahedron.' '•

It may, I think, be conceded that Pythagoras or the early

Pythagoreans would hardly be able to ' construct ' the five

regular solids in the sense of a complete theoretical construc-

tion such as we find in Eucl. XIII ; and it is possible that

Theaetetus was the first t« give these constructions, whether
iypa-^e in Suidas's notice means that ' he was the first to

construct' or 'to write U'pon the five solids so called'. But
there is no reason why the Pythagoreans should not have
'put together' the five figures in the manner in which Plato

puts them together in the Timaeus, namely, by bringing

a certain number of angles of equilateral triangtes, squares,

or pentagons severally together at one point so as to make
a solid angle, and then completing all the solid angles in that

way. That the early Pythagoreans should have discovered

the five regular solids in this elementary way agrees well

with what we know of their having put angles of cei'tain

regular figures round a point and shown that only three

kinds of such angles would fill up the space in one plane

round the point.^ How elementary the construction still was

in Plato's hands may be inferred from the fact that he argues

that only three of the elements are transformable into one

another because only three of the solids are made from

equilateral triangles ; these triangles, when present in sufti-

cient numbers in given regular solids, can be separated again

and redistributed so as to form regular solids of a different

number of faces, as if the solids were really hollow shells

bounded by the triangular faces as planes or laminae (Aris-

totle criticizes this in JDe caelo, iii. 1) ! We may indeed treat

Plato'.s elementary method as an indication that this was

actually the method employed by the earliest Pythagoreans.

1 AiJt. ii. 6. 5 (Vors. i^ p. 306. 3-7).
' Proolus on Eucl. I, pp. 304. 11-30.5. 3.



160 PYTHAGOREAN GEOMETRY

Putting together squares three by three, forming eight

solid angles, and equilateral triangles three by three, four by
four, or five by five, forming four, six, or twelve solid angles

respectively, we readily form a cube, a tetrahedron, an octa-

hedron, or an icosahedron, but the fifth regular solid, the

dodecahedron, requires a new element, the regular pentagon.

True, if we form the angle of an icosahedron by putting

together five equilateral triangles, the bases of those triangles

when put together form a regular pentagon ; but Pythagoras

or the Pythagoreans would require a theoretical construction.

What is the evidence that the early Pythagoreans could have

constructed and did construct pentagons ? That they did

construct them seems established by the story of Hippasus,

' who was a Pythagore'an but, owing to his being the first

to publish and Write down the (construction of the) sphere
with (e/f, from) the twelve pentagons, perished by shipwreck
for his impiety, but received credit for the discovery, whereas
it really belonged to HIM {(Keivov tov dvSpo^), for it is thus
that they refer to Pythagoras, and they do not call him by
his name,' ^

The connexion of Hippasus's name with the subject can

hardly be an invention, and the story probably points to

a positive achievement by him, while of course the Pytha-
goreans' jealousy for the Master accounts for the reflection

upon Hippasus and the moral. Besides, there is evidence for

the very early existence of dodecahedra in actual fact. In
1885 there was discovered on Monte Lofia (Colli Euganei,
near Padua) a regular dodecahedron of Etruscan origin, which
is held to date from the first half of the first millennium B. c.^

Again, it appears that there are extant no less than twenty-six
objects of dodecahedral form which are of Celtic origin.^ It

may therefore be that Pythagoras or the Pythagoreans had
seen dodecahedra of this kind, and that their merit was to

have treated them as mathematical objects and brought
them into their theoretical geometry. Could they then have

^ Iambi. Vit. Pyth. 88, de c. math, scient. c. 25, p. 77. 18-24.
^ F. Lindemann, 'Zur Geschichte cler Polyeder und der Zahlzeichen

'

[Sttzungsber. derK. Bay. Akad. der Wiss. xxvi. 1897, pp. 625-768).
^ L. Hugo in Comptes rendus of the Paris Acad, of Sciences, Ixiii 1873,

pp. 420-1 ; Ixvii, 1875, pp. 433, 472 ; Ixxxi, 1879, p. 882.
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constructed the regular pentagon ? The answer must, I think,
be yes. If ABODE be a regular pentagon, and AG, AD, GE
be joined, it is easy to prove, from the (Pythagorean) proposi-
tions about the sum of the internal angles of a polygon and

the sum of the angles of a triangle, that each of the angles

BAG, DAE, EGD is fths of a right angle, whence, in the

triangle AGD, the angle GAD is fths of a right angle, and
each of the base angles AGD, ADG is -fths of a right angle

or double of the vertical angle GAD ; and from these facts

it easily follows that, if GE and AD meet in F, GDF is an
isosceles triangle equiangular, and therefore similar, to AGD,
and also that AF— FG = GD. Now, since the triangles

AGD, GDF are similar,

AG:GD = GD:DF,
or AD:AF= AF:FD;

that is, if AD is given, the length of AF, or GD, is found by
dividing AD at i^in ' extreme and mean ratio' by Eucl. II. 11.

This last problem is a particular case of the problem of

' application of area,s ', and therefore was obviously within

the power of the Pythagoreans. This method of constructing

a pentagon is, of course, that taught in Eucl. IV. 10, 11. If

further evidence is wanted of the interest of the early Pytha-

goreans in the regular pentagon, it is furnished by the fact,

attested by Lucian and the scholiast to the Clouds of Aristo-

phanes, that the 'triple interwoven triangle, the pentagon',

i. e. the star-pentagon, wa»s used by the Pythagoreans as a

symbol of recognition between the members of the same school,

and was called by them Health.^ Now it will be seen from the

separate diagram of the star-pentagon above that it actually

1 Lucian, Pro lapsxi in salut. § 5 (vol. i, pp. 447-8, Jaoobitz) ; schol. on
Clouds 609.

152S M
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shows the equal sides of the five isosceles triangles of the type

referred to and also the points at which they are divided in

extreme and mean ratio. (I should perhaps add that the

pentagram is said to be found on the vase of Aristonophus

found at Caere and supposed to belong to the seventh

century B.C., while the finds at Mycenae include ornaments of

pentagonal form.)

It would be easy to conclude that the dodecahedron is in-

scribable in a sphere, and to find the centre of it, without

constructing both in the elaborate manner of EucL. XIII/17

and working out the relation between an edge of the dodeca-

hedron and the radius of the sphere, as is there done: an

investigation probably due to Theaetetus. It is right to

mention here the remark in scholium No. 1 to Eucl. XIII

that the book is about

'the five so-called Platonic figures, which, however, do not
belong to Plato, three of the five being due to the Pytha-
goreans, namely the cube, the pyramid, and the dodeca-

hedron, while the octahedron and icosahedron are due to

Theaetetus '}

This statement (taken probably from Geminus) may per-

haps rest on the fact that Theaetetus was the first to write

at any length about the two last-mentioned solids, as he was
probably the first to construct all five theoretically and in-

vestigate fully their relations to one another and the circum-

scribing spheres.

(0 Pythagorean astronoviy.

Pythagoras and the Pythagoreans occupy an important place

in the history of astronomy. (1 ) Pythagoras was one of the first

to maintain that the universe and the earth are spherical

in form. It is uncertain what led Pythagoras to conclude

that the earth is a sphere. One suggestion is that he inferred

it from the roundness of the shadow cast by the earth in

eclipses of the' moon. But it is certain that Anaxagoras was
the first to suggest this, the true, explanation of eclipses.

The most likely supposition is that Pythagoras's ground was
purely mathematical, or mathematico-aesthetical ; that is, he

' Heiberg's Euclid, vol. v, p. 654.
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attributed spherical shape to the earth (as to the universe)

for the simple reason that the sphere is the most beautiful

of solid figures. For the same reason Pythagoras would
surely hold that the sun, the moon, and the other heavenly

bodies are also spherical in shape. (2) Pythagoras is credited

with having observed the identity of the Morning and the

Evening Stars. (3) It is probable that he was the first to

state the view (attributed to Alcmaeon and ' some of the

mathematicians') that the planets as well as the sun and
moon have a motion of their own from west to east opposite

to and independent of the daily rotation of the sphere of the

fixed stars from east to west.^ Hermesianax, one of the older

generation of Alexandrine poets (about 300 B.C.), is quoted as

saying

:

' What inspiration laid forceful hold on Pythagoras when
he discovered the subtle geometry of (the heavenly) spirals

and compressed in a small sphere the whole of the circle which
the aether embraces.' ^

This would seem to imply the construction of a sphere

on which were represented the circles described by the sun,

moon and planets together with the daily revolution of the

heavenly sphere ; but of course Hermesianax is not altogether

a trustworthy authority.

It is improbable that Pythagoras himself was responsible

for the astronomical system known as the Pythagorean, in

which the earth was deposed from its place at rest in the

centre of the universe, and became a ' planet ', like the sun,

the moon and the other planets, revolving about the central

fire. For Pythagoras the earth was still at the centre, while

about it there moved (a) the sphere of the fixed stars revolv-

ing daily from east to west, the axis of rotation being a

straight line through the centre of the earth, (6) the sun,

moon and planets moving in independent circular orbits in

a sense opposite to that of the daily rotation, i. e. from west

to east.

The later Pythagorean system is attributed by Aetius

(probably on the authority of Theophrastus) to Philolaus, and

1 Aet. ii. 16. 2, 3 {Vors. i', p. 132. 15).
" See Athenaeus, xiii. 599 a,

M 2
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may be described thus. The universe is spherical in shape

and finite in size. Outside it is infinite void which enables

the universe to breathe, as it were. At the centre is the

central fire, the Hearth of the Universe, called by various

names, the Tower or Watch-tower of Zeus, the Throne of

Zeus, the House of Zeus, the Mother, of the Gods, the Altar,

Bond and Measure of Nature. In this central fire is located

the governing principle, the force which directs the movement
and activity of the universe. In the universe there revolve

in circles about the central fire the following bodies. Nearest

to the central fire revolves the counter-earth, which always

accompanies the earth, the orbit of the earth coming next to

that of the counter-earth; next to the earth, reckoning in

order from the centre outwards, comes the moon, next to the

moon the sun, next to the sun the five planets, and last of

all, outside the orbits of the five planets, the sphere of the

fixed stars. The counter-earth, which accompanies the earth

and revolves in a smaller orbit, is not seen by us because

the hemisphere of the earth on which we live is turned away
from the counter-earth (the analogy of the moon which
always turns one side towards us may have suggested this)

;

this involves, incidentally, a rotation of the earth about its

axis completed in the same time as it takes the earth to

complete a, revolution about the central fire. As the latter

revolution of the earth was held to produce day and night,

it is a natural inference that the earth was supposed to

complete one revolution round the central fire in a day and
a night, or in.twenty-four hours. This motion on the part of

the earth with our hemisphere always turned outwards would
of course, be equivalent, as an explanation of phenomena,
to a rotation of the earth about a fixed axis, but for the
parallax consequent on the earth describing a circle in space
with radius greater than its own radius ; this parallax, if we
may trust Aristotle,'^ the Pythagoreans boldly asserted to be
negligible. The superfluous thing in this system is the
introduction of the counter-earth. Aristotle says in one
place that its object was to bring up the number of the
moving bodies to ten, the perfect number according to

' Arist. De caelo, ii. 13, 293 b 25-30.
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the Pythagoreans ^ ; but he hints at the truer explanation in

another passage where he says that eclipses of the moon
were considered to be due sometimes to the interposition

of the earth, sometimes to the interposition of the counter-
earth (to say nothing of other bodies of the same sort

assumed by 'some' in order to explain why there appear
to be more lunar eclipses than solar) ^ ; we may therefore
take it that the counter-earth was invented for the purpose
of explaining ecUpses of the moon and their frequency.

Recapitulation.

The astronomical systems of Pythagoras and the Pytha-
goreans illustrate the purely mathematical character of their

physical speculations ; the heavenly bodies are all spheres,

the most perfect of solid figures, and they move in circles

;

there is no question raised of forces causing the respective

movements
; astronomy is pure mathematics, it is geometry,

combined with arithmetic and harmony. The capital dis-

covery by Pythagoras of the dependence of musical intervals

on numerical proportions led, with his successors, to the

doctrine of the 'harmony of the spheres'. As the ratio

2 : 1 between the lengths of strings of the same substance

and at the same tension corresponds to the octave, the

ratio 3 : 2 to the fifth, and the ratio 4 : 3 to the fourth, it

was held that bodies moving in space produce sounds, that

those which move more quickly give a higher note than those

which move more slowly, while those move most quickly which
move at the greatest distance ; the sounds therefore pro-

duced by the heavenly bodies, depending on their distances

(i.e. the size of their orbits), combine to produce a harmony;
' the whole heaven is number and harmony '?

We have seen too how, with the Pythagoreans, the theory

of numbers, or ' arithmetic ', goes hand in hand with geometry

;

numbers are represented by dots or lines forming geometrical

figures ; the species of numbers often take their names from

their geometrical analogues, awhile their properties are proved

by geometry. The Pythagorean mathematics, therefore, is all

one science, and their science is all mathematics.

' Arist. Metaph. A. 5, 986 a 8-12.
2 Arist. De caelo, ii. 13, 293 b 21-5. ' Arist. Metaph. A. 5, 986 a 2.
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It is this identification of mathematics (and of geometry

in particular) with science in geijeral, and their pursuit of it

for its own sake, which led to the extraordinary advance of

the subject in the Pythagorean school. It was the great merit

of Pythagoras himself (apart from any particular geometrical

or arithmetical theorems which he discovered) that he was the

first to take this view of mathematics ; it is characteristic of

him that, as we are told, ' geometry was called by Pythagoras

inquiry or science ' (eKaXetro Se 17 yeoo/jLeTpLa Trpoy Ilvdayopov

laTopia)} Not only did he make geometry a liberal educa-

tion ; he was the first to attempt to explore it down to its

first principles ; as part of the scientific basis which he sought

to lay down he ' used definitions '. A point was, according to

the Pythagoreans, a ' unit having position ' ^ ; and, if their

method of regarding a line, a surface, a solid, and an angle

does not amount to a definition, it at least shows that they

had reached a clear idea of the differentiae, as when they said

that 1. was a point, 2 a line, 3 a triangle, and 4 a pyramid.

A surface they called xpoid, ' colour
'

; this was their way of

describing the superficial appearance, the idea being, as

Aristotle says, that the colour is either in the limiting surface

(nkpai) or is the nepas,^ so that the meaning intended to be

conveyed is precisely that intended by Euclid's definition

(XI. Def. 2) that ' the limit of a solid is a surface '. An angle

they called yXcoxi^, a ' point ' (as of an arrow) made by a line

broken or bent back at one point.*

The positive achievements of the Pythagorean school in

geometry, and the immense advance made by them, will be

seen from the following summary.
1. They were acquainted with the properties of parallel

lines, which they used for the purpose of establishing by
a general proof the proposition that the sum of the three

angles- of any triangle is equal to two right angles. This
latter proposition they again used to establish the well-known
theorems about the sums of the exterior and interior angles,

respectively, of any polygon.

2. They originated the subject of equivalent areas, the

transformation of an area of one form into another of different

^ Iambi. Vit. Pijth. 89. 2 Proolus on Eucl. I, p. 95. 21.
' Arist. De sensu, 3, 439 a 81. * Hevon, Def. 15.
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form and, in particular, the whole method of cqjplioation of
areas, constituting a geometrical algebra, whereby they effected

the equivalent of the algebraical processes of addition, sub-

traction, multiplication, division, squaring, extraction of the

square root, and finally the complete solution of the mixed
quadratic equation x^±px±q — 0, m far as its foots are real..

Expressed in terms of Euclid, this means the whole content of

Book I. 35-48 and Book II. The method of application of
areas is one of the most fundamental in the whole of later

Greek geometry ; it takes its place by the side of the powerful

method of pi-oportions ; moreover, it is the starting point of

ApoUonius's theory of conies, and the three fundamental

terms, parabole, ellipsis, and hyperbole used to describe the

three separate problems in 'application' were actually em-
ployed by Apollonius to denote the three conies, names
which, of course, are those which we use to-day. Nor was
the use of the geometrical algebra for solving numerical

problems unknown to the Pythagoreans ; this is proved by

the fact that the theorems of Eucl. II. 9, 10 were invented

for the purpose of finding successive integral solutions of the

indeterminate equations

2x^-y^= +1.

3. They had a theory of proportion pretty fully developed.

We know nothing of the form in which it was expounded;

all we know is that it took no account of incommensurable

magnitudes. Hence we conclude that it was a numerical

theory, a theory on the same lines as that contained in

Book VII of Euclid's Elements.

They were aware of the properties of similar figures.

This is clear from the fact that they must be assumed

to have solved the problem, which was, according to

Plutarch, attributed to Pythagoras himself, of describing a

figure which shall be similar to one given figure and equal in

area to another given figure. This implies a knowledge of

the proposition that similar figures (triangles or polygons) are

to one another in the duplicate ratio of corresponding sides

(Eucl. VI. 19, 20). As the problem is solved in Eucl. VI. 25,

we assume that, subject to the qualification that theil-

theorems about similarity, &c., were only established of figures
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in which corresponding elements are eonmiensurable, they had

theorems corresponding to a great part of EucL, Book VI.

Again, they knew how to cut a straight line in extreme and

mean ratio (Eucl. VI. 30); this problem was presumably

solved by the method used in Eucl. II. 11, rather than by that

-of Eucl. VI. 30, which depends on the solution of a problem

in the application of areas more general than the methods of

Book II enable us to solve, the problem namely of Eucl.

VI. 29.

4. They had discovered, or were aware of the existence of,

the five regular solids. These they may have constructed

empirically by putting together squares, equilateral triangles,

and pentagons. This implies that they could construct a

regular pentagon and, as this construction depends upon the

construction of an isosceles triangle in which each of the base

angles is double of the vertical angle, and this again on the

cutting of a line in extreme and mean ratio, we may fairly

assume that this was the way in which the construction of

the regular pentagon was actually evolved. It would follow

that the solution of problems by analysis was already prac-

tised by the Pythagoreans, notwithstanding that the discovery

of the analytical method is attributed by Proclus to Plato.

As the particular construction is practically given in Eucl. IV.

10, 11, we may assume that the content of Eucl. IV was also

partly Pythagorean.

5. They discovered the existence of the irrational in the

sense that they proved the incommensurability of the diagonal

of a square with reference to its side ; in other words, they

proved the irrationality of ^2. As a proof of this is referred

to by Aristotle in terms which correspond to the method
used in a proposition interpolated in Euclid, Book X, we
may conclude that this proof is ancient, and therefore that it

was probably the proof used by the discoverers of the proposi-

tion. The method is to prove that, if the diagonal of a square

is commensurable with the side, then the same number must
be both odd and even ; here then vtq probably have an early

Pythagorean use of the method of reductio ad ahsvurdnon.

Not only did the Pythagoreans . discover the irrationality

of -72
; they showed, as we have seen, how to approximate

as closely as we please to its numerical value.
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After the discovery of this one case of irrationality, it

would be obvious that propositions theretofore proved by
means of the numerical theory of proportion, which was
inapplicable to incommensurable magnitudes, were only par-

tially proved. Accordingly, pending the discovery of a theory

of proportion applicable to incommensurable as well as com-

mensurable magnitudes, there would be an inducement to

substitute, where possible, for proofs employing the theory of

proportions other proofs independent of that theory. This

substitution is carried rather far in Euclid, Books I-IV ; it

does not follow that the Pythagoreans remodelled their proofs

to the same extent as Euclid felt bound to do.



VI

PROGRESS IN THE ELEMENTS DOWN TO
PLATO'S TIME

In tracing the further progress in the Elements which took

place down to the time of Plato, we do not get much assistance

from the summary of Proclus. The passage in which he

states the succession of geometers from Pythagoras to Plato

and his contemporaries runs as follows

:

'After him [Pythagoras] Anaxagoras of Clazomenae dealt

with many questions in geometry, and so did Oenopides of

Chios, who was a little younger than Anaxagoras; Plato

himself alludes, in the Rivals, to both of them as having
acquired a reputation for mathematics. After them came
Hippocrates of Chios, the discoverer of the quadrature of

the lune, and Theoddrus of Cyrene, both of whom became
distinguished geometers; Hippocrates indeed was the first

of whom it is recorded that he actually compiled Elements.

Plato, who came next to them, caused mathematics in general

and geometry in particular to make a very great advance,

owing to his own 'zeal for these studies; for every one knows
that he even filled his writings with mathematical discourses

and strove on every occasion to arouse enthusiasm for mathe-
matics in those who took up philosophy. At this time too

lived Leodamas of Thasos, Archytas of Taras, and Theaetetus
of Athens, by whom the number of theorems was increased

and a further advance was made towards a more scientific

grouping of them.' ^

It will be seen that we have here little more than a list of

names of persons who advanced, or were distinguished in,

geometry. There is no mention of specific discoveries made
by particular geometers, except that the work of Hippocrates

on the squaring of certain lunes is incidentally alluded to,

rather as a means of identifying Hippocrates than as a de-

tail relevant to the subject in hand. It would appear that

1 Proclus on Eucl. I, p. 65. 21-66. 18.
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the whole sumnlary was directed to the one object of trac-

ing progress in the Elements, particularly with reference

to improvements of method in the direction of greater

generality and more scientific order and treatment; henoe
only those writers are here mentioned who conti'ibuted to this

development. Hippocrates pomes into the list, not because
of his lunes, but because he was a distinguished geometer
and was the first to write Elements. Hippias of Elis, on the

other hand, though he belongs to the period covered by the
extract, is omitted, presumably because his great discovery,

that of the curve known as the quadratrix, does not belong
to elementary geometry; Hippias is, however, mentioned in

two other places by Proelus in connexion with the quadratrix,^

and once more as authority for the geometrical achievements
of Ameristus (or Mamercus or Mamertius).^ Less justice is

done to Democritus, who is neither mentioned here nor else-

where in the commentary; the omission here of the name
of Democritus is one of the arguments for the view that

this part' of the summary is not quoted from the History

of Geometry by Eudemus (who would not have been likely to

omit so accomplished a mathematician as Democritus), but

is the work either of an intermediary or of Proelus himself,

based indeed upon data from Eudemus's history, but limited to

particulars relevant to the object of the commentary, that

is to say, {he elucidation of Euclid and the story of the growth
of the Elements.

There are, it is true, elsewhere in Proclus's commentary
a very few cases in which particular propositions in Euclid,

Book I, are attributed to individual geometers, e.g. those

which Thales is said to have discovered. Two propositions

presently to be mentioned are in like manner put to the

account of Oenopides; but except for these details about

Oenopides we have to look elsewhere for. evidence of the

growth of the Elements in the period now under notice.

Fortunately we possess a document of capital importance,

from this point of view, in the fragment of Eudemus on

Hippocrates's quadrature of lunes preserved in Simplicius's

commentary on the Physics of Aristotle. ^^ This fragment will

> Proelus on Eucl. I, p. 272. 7, p. 356. 11. " lb., p, 65. 14.

' Simpl. in Arist. Phys. pp. 54-69 Diels.
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be described below. Meantime we will take the names men-

tioned by Proclus in their order.

Anaxagoras (about 500-428 b.c.) was born at Clazomenae

in the neighbourhood of Smyrna. He neglected his posses-

sions, which were considerable, in order to devote himself

to science. Some one once asked him what was the object

of being born, to which he replied, ' The investigation of sun,

moon and heaven.' He was apparently the first philosopher

to take up his abode at Athens, where he enjoyed the friend-

ship of Pericles. When Pericles became unpopular shortly

before the outbreak of the Peloponnesian War, he was attacked

through his friends, and Anaxagoras was accused of impiety

for holding that the sun was a red-hot stone and the moon

earth. According to one account he was fined five talents

and banished; another account says that he was kept in

prison and that it was intended to put him to death, but

that Pericles obtained his release; he went and lived at

Lampsacus till his death.

Little or nothing is known of Anaxagoras's achievements

in mathematics proper, though it is credible enough that

he was a good mathematician. But in astronomy he made

one epoch-making discovery, besides putting forward some

remarkably original theories about the evolution of the

universe. We owe to him the first clear recognition of the

fact that the moon does not shine by its own light but

receives its light from the sun; this discovery enabled him

to give the true explanation of lunar and solar eclipses,

though as regards the former (perhaps in order to explain

their greater frequency) he erroneously supposed that there

were other opaque and invisible bodies ' below the moon

'

which, as well as the earth, sometimes by their interposition

caused eclipses of the moon. A word should be added about

his cosmology on account of the fruitful ideas which it con-

tained. According to him the formation of the world began

with a vortex set up, in a portion of the mixed mass in which

'all things were together', by Mind (uovs). This rotatory

movement began in the centre and then gradually spread,

taking in wider and wider circles. The first effect was to

separate two great masses, one consisting of the rai-e, hot,

light, dry, called the 'aether', the other of the opposite
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categories and called 'air'. The aether took the outer, the
air the inner. place. From the air were next separated clouds,
water, earth and stones. The dense, the moist, the dark and
cold, and all the heaviest things, collected in the centre as the
result of the circular motion, and it was from these elements
when consolidated that the earth was formed ; but after this,

in consequence of the violence of the whirling motion, the
surrounding fiery aether tore stones away from the earth and
kindled them into stars. Taking this in conjunction Avith

the remark that stones 'rush outwards more than water',
we see that Anaxagoras conceived the idea of a centrifugal
force as well as that of concentration brought about by the
motion of the vortex, and that he assumed a series of pro-

jections or ' whirlings-off ' of precisely the same kind as the
theory of Kant and Laplace assumed for the formation of

the solar system. At the same time he held that one of the

heavenly bodies might break away and fall (this may account
for the story that he prophesied the fall of the meteoric stone

at Aegospotami in 468/7 B.C.), a centripetal tendency being
here recognized.

In mathematics we are told that Anaxagoras 'while in

prison wrote (or drew, (ypacpe) the squaring of the circle '.^

But we have no means of judging what this amounted to.

Rudio translates 'eypa<f)€ as ' zeiehnete ',
' drew ', observing that

he probably knew the Egyptian rule for squaring, and simply

drew on the sand a square as nearly as he could equal to the

area of a circle.^ It is clear to me that this cannot be right,

but that the word means ' wrote upon ' in the sense that he
tried to work out theoretically the problem in question. For
the same word occurs (in the passive) in the extract from

Eudemus about Hippocrates :
' The squarings of the lunes . . .

were first written (or proved) by Hippocrates and were found

to be correctly expounded',^ where the context shows that

kypd(f)rj<Tav cannot merely mean ' were drawn '. Besides,

TeTpaycoi'Lcrfios, squaring, is a process or operation, and you
cannot, properly speaking, ' draw ' a process, though you can
' describe ' it or prove its correctness.

1 Plutarch, Se exil. 17, 607 r.
' '^ Rudio, Der Bericht des SimpUchis ubef die Qiiadraturen des Antiphon
und Hippokrates, 1907, p. 92, 93.

2 Simpl. in Phijs., p. 61. 1-3 Diels ; Rudio, op. cit, pp. 46. 22-48. 4.
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Vitruvius tells us that one Agatharchus was the first to paint

stage-scenes at Athens, at 'the time when Aeschylus was

having his tragedies performed, and that he left a treatise on

the subject which was afterwards a guide to Democritus and

Anaxagoras, who discussed the same problem, namely that of

painting objects on a plane surface in such a way as to make

some of the things depicted appear to be in the background

while others appeared to stand out in the foreground, so that

you seemed, e.g., to have real buildings before you ; in other

words, Anaxagoras and Democritus both wrote treatises on

perspective.^

There is not much to be gathered from the passage in

the Rivals to which Proclus refers. Socrates, on entering the

school of Dionysius, finds two lads disputing a certain point,

something about Anaxagoras or Oenopides, he was not certain

which ; but they appeared to be drawing circles, and to be

imitating certain inclinations by placing their hands at an

angle.^ Now this description suggests that what the lads

were trying to represent was the circles of the equator and

the zodiac or ecliptic ; and we know that in fact Eudemus

in his History of Astronomy attributed to Oenopides the dis-

covery of ' the cincture of the zodiac circle ',^ which must mean

the discovery of the obliquity of the ecliptic. It would prob-

ably be unsafe to conclude that Anaxagoras was also credited

with the same discovery, but it certainly seems to be suggested

that Anaxagoras had to some extent touched the mathematics

of astronomy.

Oenopides of Chios was primarily an astronomer. This

is shown not only by the reference of Eudemus just cited, but

by a remark of Proclus in connexion with one of two proposi-

tions in elementary geometry attributed to him.* Eudemus
is quoted as saying that he not only discovered the obliquity

of the ecliptic, but also the period of a Great Year. Accord-

ing to Diodorus the Egyptian priests claimed that it was from

them that Oenopides learned that the sun move's in an inclined

orbit and in a sense opposite to the motion of the fixed stars.

It does not appear that Oenopides made any meaaurement of

' Vitruvius, De architectura, vii. praef. 11.
•^ Plato, Erastae 132 A, B. ' Theon of Smyrna, p. 198. 14.
' Proclus on Eucl. I, p. 283. 7-8.
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the obliquity of the ecHptic. The duration of the Great Year
he is said to have put at 59 years, while he made the length

of the year itself to be 365|| days. His Great Year clearly

had reference to the sun and moon only ; he merely sought to

find the least integral number of complete years which would
contain an exact number of lunar months. Starting, probably,

with 365 days as the length of a year and 29^ days as the

length of a lunar month, approximate values known before

his time, he would see that twice 29|, or 59, years would con-

tain twice 365, or 730, lunar months. He may then, from his

knowledge of the calendar, have obtained 21,557 as the num-
ber of days in 730 months, for 21,557 when dividedby 59 gives

365-II as the number of days in the year.

Of Oenopides's geometry we have no details, except that

Proclus attributes to him two propositions in Eucl. Bk. I. Of
I. 12 (' to draw a perpendicular to a given straight line from
a point outside it ') Proclus says

:

'This problem was first investigated by Oenopides, who
thought it useful for astronomy. He, however, calls the per-

pendicular in the archaic manner (a straight line drawn)
gnomon-wise {Kara yvdofiova), because the gnomon is also at

right angles to the horizon.' ^

On I. 23 (' on a given straight line and at a given point on

it to construct a rectilineal angle equal to a given rectilineal

angle ') Proclus remarks that this problem is ' rather the dis-

covery of Oenopides, as Eudemus says '.^ It is clear that the

geometrical reputation of Oenopides could not have rested on

the mere solution of such simple problems as these. Nor, of

course, could he have been the first to draw a perpendicular in

practice ; the point may be that he was the first to solve the

problem by means of the ruler and compasses only, whereas

presumably, in earlier days, perpendiculars would be drawn
by means of a set square or a right-angled triangle originally

constructed, say, with sides proportional to 3, 4, 5. Similarly

Oenopides may have been the first to give the theoretical,

rather than the practical, construction for the problem of I. 23

which we find in Euclid. It may therefore be that Oenopides's

significance lay in improvements of method from the point of

view of theory ; he may, for example, have been the first to

' Proclus on Eucl. I, p. 288. 7-8. ' Proclus on Eucl 'I, p. 333. 5.
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lay down the restriction o£ the means permissible in construc-

tions to the ruler and compasses which became a canon of

Greek geometry for all ' plane ' constructions, i.e. for all

problems involving the equivalent of the solution of algebraical

equations of degree not higher than the second.

Democeitus, as mathematician, may be said to have at last

come into his own. In the Method of Archimedes, happily

discovered in 1906, we are told that Democritus was the first

to state the important propositions that the volume of a cone

is one third of that of a cylinder having the same base and

equal height, and that the volume of a pyramid is one third of

that of a prism having the same base and equal height ; that is

to say, Democritus enunciated these propositions some fifty

years or more before they were first scientifically proved by

Eudoxus.

Democritus came from Abdera, and, according to his own
account, was young when Anaxagoras was old. Apollodorus

placed his birth in 01. 80 (= 460-457 B.C.), while according

to Thrasyllus he was born in 01. 77. 3 (= 470/69 B.C.), being

one year older than Socrates. He lived to a great age, 90

according to Diodorus, 104, 108, 109 according to other

authorities. He was indeed, as Thrasyllus called him,

Trei-ra^Xoy in philosophy^ ; there was no subject to which he

did not notably contribute, from mathematics and physics on

the one hand to ethics and poetics- on the other ; he even went

by the name of ' Wisdom ' {'So<pia)} Plato, of course, ignores

him throughout his dialogues, and is said to have wished to

burn all his works; Aristotle, on the other hand, pays

handsome tribute to his genius, observing, e.g., that on the

subject of change and growth no one save Democritus had

observed anything except superficially; whereas Democritus

seemed to have thought of everything.^ He could say

of himself (the fragment is, it is true, considered by Diels

to be spurious, while Gomperz held it to be genuine), ' Of

all my contemporaries I have covered the most ground in

my travels, making the most exhaustive inquiries the while
;

I have seen the most climates and countries and listened to

' Diog. L. ix. 37 {Vors. i\\ p. 11. 24-30).
•" Clem. Strom, vi. 82 {Vor.-<. ii», p. 16. 28).
' Arist. De yen. et coiT. i. 2, 315 a 35.
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the greatest number of learned men '} His travels lasted for

five years, and he is said to have visited Egypt, Persia and
Babylon, where he consorted with the priests and magi ; some
say that he went to India and Aethiopia also. Well might
he undertake the compilation of a geographical survey of

the earth as, after Anaximander, Hecataeus of Miletus and
Damastes of Sigeum had done. In his lifetime his fame was
far from world-wide :

' I came to Athens ', he says, ' and no
one knew me.' ^

A long lift of his writings is preserved in Diogenes Laertius,

the authority being Thrasyllus. In astronomy he wrote,

among other works, a book On the Planets, and another On
the Great Year or Astronomy including a jjara^xgma^ (or

calendar). Democritus made the ordei: of the heavenly bodies,

reckoning outwards from the earth, the following: Moon,
Venus, Sun, the other planets, the fixed stars. Lucretius * has

preserved an interesting explanation which he gave of the

reason why the sun takes a year to describe the full circle of

the zodiac, while the moon corripletes its circle in a month.

The nearer any body is to the earth (and therefore the farther

from the sphere of the fixed stars) the less swiftly can it be

carried round by the revolution of the heaven. Now the

moon is nearer than the sun, and the sun than the signs of

the zodiac ; therefore the nioon seems to get round faster than

the sun because, while the sun, being lower and therefore

slower than the signs, is. left behind by them, the moon,

being still lower and therefore slower still, is still more left

behind. Democritus's Great Year is described by Censorinus

'

as 82 (LXXXII) years including 28 intercalary months, the

latter number being the same as that included by Callippus in

his cycle of 76 years; it is therefore probable that LXXXII
is an incorrect reading for LXXVII (77).

As regards his mathematics we have first the statement in
o

1 Clement, Strom, i. 15, 69 (Vors. n\ p. 128. 3).

2 Diog. L. ix. 36 (Vors. iiS p. 11. 22).

' The ixirapegma was a posted record, a kind of almanac, giving, for

a series of years, the movements of the sun, the dates of the phases of

the moon, the risings and settings of certain stars, besides eVio-^juacn'ai

or weather indications ; many details from Democritus's parapegma

are preserved in the Calendar at the end of Geminus's Isagoge and in

Ptolemy.
* Lucretius, v. 621 sqq. ° De die natali, 18. 8.
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the continuation of the fragment of doubtful authenticity

already quoted that

' in the putting together of lines, with the necessary proof, no
one has yet surpassed me, not even the so-called hurpeclon-

aptae (rope-stretchers) of Egypt '.

This does not tell us much, except that it indicates that

the ' rope-stretchers ', whose original function was land-

measuring or practical geometry, had by Democritus's time

advanced some way in theore"tical geometry (a fact which the

surviving documents, such as the book of Ahmes, with their

merely practical rules, would not have enabled us to infer).

However, there is no reasonable doubt that in geometry

Democritus was fully abreast of the knowledge of his day;

this is fully confirmed by the titles of treatises by him and
from other sources. The titles of the works classed as mathe-

matical are (besides the astronomical works above mentioned)

:

1. On a difference of opinion {yvS/irjs: v. I. yuco/xouos, gno-

mon), or on the contact of a circle and a sphere ;

2. On Geometry

;

3. GeometricoruTn (i I, II)

;

4. Numbers;
5. On irrational lines and solids {yaarraiv, atoms ?);

6. 'EKTrerda-fiaTa.

As regards the first of these works I think that the

attempts to extract a sense out of Cobet's reading yvwfiovo^

(on a difference of a gnomon) have failed, and that yvrnfi-q^

(Diels) is better. But ' On a difference of opinion ' seems
scarcely determinative enough, if this was really an alternative

title to the book. We know that there were controversies in

ancient times about the nature of the ' angle of contact ' (the

'angle' formed, at the point of contact, between an arc of

a circle and the tangent to it, which angle was called by the
special name hornlike, KeparoeiSri^), and the 'angle' comple-
mentary to it (the ' angle of a semicircle ')} The question was
whether the ' hornlike angle ' was a magnitude comparable
with the rectilineal angle, i.e. whether by being multiplied

a sufiicient number of times it could be made to exceed a

' Proclus on Eucl. I, pp. 121. 24-122. 6.
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given rectilineal angle. Euclid proved (in III. 16) that the
' angle of contact ' is less than any rectilineal angle, thereby
setting the question at rest. This is the only reference in
Euclid to this angle and the ' angle of a semicircle', although
he defines the ' angle of a segment ' in III, Def. 7, and has
statements about the angles o/ segments in III. 31. But we
know from a passage of Aristotle that before his time ' angles
of segments ' came into geometrical text-books as elements in
figures which could be used in the proofs of propositions >

;

thus e.g. the equality of the two angles of a segment
(assumed as known) was used to prove the theorem of
Eucl. I. 5. Euclid abandoned the use of all such angles in
proofs, and the references to them above mentioned are only
survivals. The controversies doubtless arose long before his
time, and such a question as the nature of the contact of
a circle with its tangent would probably have a fascination
for Democritus, who, as we shall see, broached other questions
involving infinitesimals. As, therefore, the questions of the
nature of the contact of a circle with its tahgent and of the
character of the ' hornlike ' angle are obviously connected,
I prefer to read ywvir]^ {' of an angle ') instead of yvd/x-qi ; this

would give the perfectly comprehensible title, ' On a difference

in an angle, or on the contact of a circle and a sphere'. We
know from Aristotle that Protagoras, who wrote a book on
mathematics, mpl Ta>v fiaOr^fiaTaiv, used against the geometers
the argument that no such straight lines and circles as

they assume exist in nature, and that (e. g.) a material' circle

does not in actual fact touch a ruler at one point only 2; and
it seems probable that Democritus's work was directed against

this sort of attack on geometry.

We know nothing of the contents of Democritus's book

On Geometry or of his Geometrica. One or other of these

works may possibly have contained the famous dilemma about

sections of a cone parallel to the base and very close together,

which Plutarch gives on the authority of Chrysippus.^

' If, said Democritus, 'a cone werp cut by a plane parallel

to the base [by which is clearly meant a plane indefinitely

' Arist. Anal Pr. i. 24, 41 b 13-22.
^ Arist. Metaph. B. 2, 998 a 2.

' Plutarch, De comm. not. adv. Stoicos, xxxix. 3.

n2
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near to the base], what must we think of the surfaces forming

the sections ? Are they equal or unequal ? For, if they are

unequal, they will make the cone irregular as having many
indentations, like steps, and unevennesses ; but, if they are

equal, the sections will be equal, and the cone will appear to

have the property of the cylinder and to be made up of equal,

not unequal, circles, which is very absurd.'

The phrase 'onade %hp of equal . . . circles' shows that

Democritus already had the idea of a solid being the sum of

an infinite number of parallel planes, or indefinitely thin

laminae, indefinitely near together : a most important an-

ticipation of the same thought which led to such fruitful

results in Archimedes. This idea may be at the root of the

argument by which Democritus satisfied himself of the truth

of the two propositions attributed to him by Archimedes,

namely that a cone is one third part of the cylinder, and

a pyramid one third of the prism, which has the same base

and equal height. For it seems probable that Democritus

would notice that, if two pyramids having the same height

and equal . triangular bases are respectively cut by planes

parallel to the base and dividing the heights in the same

ratio, the corresponding sections of the two pyramids are

equal, whence he would infer that the pyramids are equal as

being the sum of the same infinite number of equal plane

sections or indefinitely thin laminae. (This would be a par-

ticular anticipation of Cavalieri's proposition that the areal or

solid content of two figures is equal if two sections of them

taken at the same height, whatever the height may be, always

give equal straight lines or equal surfaces respectively.) And
Democritus would of course see that the three pyramids into

which a prism on the same base and of equal height with the

original pyramid is divided (as in Eucl. XII. 7) satisfy this

test of equality, so that the pyramid would be one third part

of the prism. The extension to a pyramid with a polygonal

base would be easy. And Democritus may have stated the

proposition for the cone (of course without an absolute proof)

as a natural inference from the result of increasing indefinitely

the number of sides in a regular polygon forming the base of

a pyramid.

Tannery notes the interesting fact that. the order in the list
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of Democritus's works of the ti-eatises ii Geovietry, Geometrica.

Numbers, and On irrational lines and solids corresponds to

the order of the separate sections of Euchd's Elements, Books
I-VI (plane geometry), Books VII-IX (on numbers), and
Book X (on irrationals). With regard to the work On irra-

tional lines and solids it is to be observed that, inasmuch as

his investigation of the cone had brought Delnocritus con-

sciously face to face with infinitesimals, there is nothing

surprising in his having written on irrationals; on the con-

trary, the subject is one in which he would be likely to take

special interest. It is useless to speculate on what the treatise

actually contained ; but of one thing we may be sure, namely
that the dXoyoi ypafifiai, 'irrational lines', were not drofioi

ypajifiai, 'indivisible lines '.^ Democritus was too good a

mathematician to have anything to do with such a theory.

We do not know what answer he gave to his puzzle about the

cone ; but his statement of the dilemma shows that he was
fully alive to the difficulties connected with the conception of

the continuous as illustrated by the particular case, and he

cannot have solved it, in a sense analogous to his physical

theory of atoms, by assuming indivisible lines, for this would
have involved the inference that the consecutive parallel

sections of the cone are uixequal, in which case the surface

would (as he said) be discontinuous, forming steps, as it were.

Besides, we are told by Simphcius that, according to Demo-
critus himself, his atoms were, in a mathematical sense

divisible further and in fact ad infinitum,^ while the scholia

to Aristotle's De caelo implicitly deny to Democritus any
theory of indivisible lines :

' of those who have maintained

the existence of indivisibles, some, as for example Leucippus

and Democritus, believe in indivisible bodies, others, like

Xenocrates, in indivisible hues '."

With reference to the 'E/c7rera(r//ara it is to be noted that

this word is explained in Ptolemy's Geogra]phy as the projec-

tion of the armillary sphere upon a plane.* This work and

that On irrational lines would hardly belong to elementary

geometry.

1 On this cf. 0. Apelt, Beitrage zur Geachichte der griechischen Philo-

sophie, 1891, p. 265 sq.
2 Simpl. in Phys., p. 83. 5. » Scholia in Arist., p. 469 b 14, Brandis.

* Ptolemy, Geogr. vii. 7.
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HiPPiAS OF Elis, the famous sophist already mentioned (pp. 2,

23-4), was nearly contemporary with Socrates and Prodicus,

and was probably born about 460 B.C. Chronologically, there-

fore, his place would be here, but the only particular discovery

attributed to him is that of the curve afterwards known as

the quadratrix, and the qvadratrix does not come within the

scope of the Elements. It was used first for trisecting any
rectihneal, angle or, more genex'ally, for dividing it in any
ratio whatever, and secondly for squaring the circle, or rather

for finding the length of any arc of a circle ; and these prob-

lems are not what the Greeks called ' plane ' problems, i. e.

they cannot be solved by means of the ruler and compasses.

It is true that some have denied that the Hippias who
invented the quadratrix can have been Hippias of Elis

;

Blass ^ and Apelt ^ were of this opinion, Apelt arguing that at

the time of Hippias geometry had not got far beyond the

theorem of Pythagoras. To show how wide of the mark this

last statement is we have only to think of the achievements

of Democritus. We know,' too, that Hippias the sophist

specialized in mathematics, and I agree with Cantor and

Tannery that there is no reason to doubt that it was he who
discovered the quadratrix. This curve will be best described

when we come to deal with the problem of squaring the circle

(Chapter VII) ; here we need only remark that it implies the

proposition that thelengths of arcs in a circle are proportional

to the angles subtended by them at the centre (Eucl. VI. 33).

The most important name from the point of view of this

chapter is Hippocrates of Chios. He is indeed the first

person of whom it is recorded that he compiled a book of

Elements. This is lost, but Simplicius has preserved in his

commentary on the Physics of Aristotle a fragment from

Eudemus's History of Geometry giving an account of Hippo-

crates's quadratures of certain ' lunules ' or lunes.^ This is one

of the most precious sources for the liistory of Greek geometry

before Euclid ; and, as the methods, with one slight apparent

exception, are those of the straight line and circle, we can

form a good idea of the progress which had been made in the

Elements up to Hippocrates's time.

' Pleckeisen's Jahrbuch, cv, p. 28.
° Beitrage zur Gesch. d. gr. Philosophic, p. 379.
' Simpl. in Phijs., pp. 60. 22-68. 32, Diels.
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It would appear that Hippocrates was in Athens during
a considerable portion of the second half o& the fifth century,
perhaps from 450 to 4^0 B.C. We have quoted the story that
what brought him there was a suit to recover a large sum
which he had lost, in the course of his trading operations,

' through falling in with pirates ; he is said to have remained
in Athens on this account a long time, during which he con-
sorted with the philosophers and reached such a degree of
proficiency in geometry that he tried to discover a method of
squaring the circle.^ This is of course an allusion to the
quadratures of lunes.

Another important discovery is attributed to Hipppcraites.

He was the first to observe that the problem of doubling the
cube is reducible to that of finding two mean proportionals in

continued proportion between two straight hnes.^ The effect

of this was, as Proclus says, that thenceforward people

addressed themselves (exclusively) to the equivalent problem
of finding two mean proportionals between two straight lines.*

(a) Hippocrates s qiuidrature of lunes.

I will now give the details of the extract from Eudemus on
the subject of Hippocrates's quadrature of lunes, which (as

I have indicated) I place in this chaptet because it belongs

to elementary ' plane ' geometry. Simplicius says he will

quote Eudemus ' word for word ' (Kara Xe^if) except for a few
additions taken from Euclid's Elevients, which he will insert

for clearness' sake, and which are indeed necessitated by the

summary (memorandum-like) style of Eudemus, whose form

of statement is condensed, ' in accordance with ancient prac-

tice'. We have therefore in the first place to distinguish

between what is textually quoted from Eudemus and what

Simplicius has added. To Bretschneider * belongs the credit of

having called attention to the importance of the passage of

Simplicius to the historian of mathematics ; Allman ° was the

first to attempt the task of distinguishing between the actual

> Philop. in Phys., p. 31. 3, Vitelli.
'^ Pseudo-Eratosthenes to King Ptolemy in Eutoc. on Archimedes (vol.

iii, p. 88, Heib.).
» Proclus on Eucl. I, p. 213. 5.

• * Bretschneider, Die Geometric und die Geometer vor Eiildides, 1870,

pp. 100-21.
^ Hermathena, iv, pp. 180-228; Greek Geometry from Thales to Euclid,

pp. 64-75.
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extracts from Eudemus and Simplicius's amplifications ; then

came the critical • text of Simplicius's commentary on the

Physics edited by Diels (1882), Avho, with the help of Usener,

separated out, and marked by spacing, the portions which they

regarded as Eudemus's own. Tannery,^ who had contributed

to the preface of Diels some critical observations, edited

(in 1883), with a translation and notes, what he judged to be

Eudemian (omitting the rest). Heiberg^ reviewed the whole

question in 1884; and finally Rudio,^ after giving in the

Blhliotheca Mathematica of 1902 a translation of the whole

passage of Simplicius with elaborate notes, which again he

followed up by other articles in the same journal and elsewhere

in 1903 and 1905, has edited the Greek text, with a transla-

tion, introduction, notes, and appendices, and summed up the

whole controversy.

The occasion of the whole disquisition in Simplicius's com-

mentary is a remark by Aristotle that there is no obligation

on the part of the exponent of a particular subject to refute

a fallacy connected witli it unless the author of the fallacy

has based his argument on the admitted principles . lying at

the root of the subject in question. ' Thus ', he says, ' it is for

the geometer to refute the (supposed) quadrature of a circle by
means of segments [Tfi-'qixaTCDv), but it is not the business of the

geometer to refute the argument of Antiphon.'* Alexander

took the remark to refer to Hippocrates's attempted quadra-

ture by means of lunes (although in that case rurjfia is used

by Aristotle, not in the technical sense of a segoneiit, but with

the non-technical meaning of any portion cut out of a figure).

This, probable enough in itself (for in another place Aristotle

uses the same word T/xfJua to denote a sector of a circle '), is

made practically certain by two other allusions in Aristotle,

one to a proof that a circle together with certain lunes is

equal to a rectilineal figure,* and the other to ' the (fallacy) of

Hippocrates or the quadrature by means of the lunes 'J The

' Tannery, Memoires scientifiques, vol. i, 1912, pp. 339-70, esp. pp.
347-66.

2 Philologus, 43, pp. 336-44.
' Rudio, Der Bericht des Simplicius iiber die Quadraturen des Antiphon

und Hipi)okrates (Teubner, 1907).
" Arist. Phys. i. 2, 185 a 14-17. ^ Arist Ds caelo, ii. 8, 290 a 4.
« Anal. Pr. ii. 25, 69 a 32. ' Soph. El. 11, 171 b 15.
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two expressions separated by ' or ' may no doubt refer not to

one but to two different fallacies. But if ' the quadrature by

means of lunes ' is different from Hippocrates's quadratures of

lunes, it must apparently be some quadrature like the second

quoted by Alexander (not by Eudemus), and the fallacy attri-

buted to Hippocrates must be the quadrature of a certain lune

2jIus a circle (which in itself contains no fallacy at all). It seems

more likely that the two expressions refer to one thing, and that

this is the argument of Hippocrates's tract taken as a whole.

The ^passage of Alexander which Simplicius reproduces

before passing to the extract from Eudemus contains two

simple cases of quadrature, of a lune, and of lunes plus a semi-

circle respectively, with an erroneous inference from these

cases that a circle is thereby squared. It is evident that this

account does not represent Hippocrates's own argument, for he

would not have been capable of committing so obvious an

error ; Alexander must have drawn his information, not from

Eudemus, but from some other source. Simplicius recognizes

this, for, after giving the alternative account extracted from

Eudemus, he says that we must trust Eudemus's account rather

than the other, since Eudemus was 'nearer the times' (of

Hippocrates). <

The two quadratures given by Alexander are as follows.

1. Suppose that AB is the diameter of a circle, B its centre,

and AC, GB sides of a square

inscribed in it.
^'

On AC as diameter describe

the semicircle AEC. Join CD.

Now, since

AB^= 2AG\
A D B

and circles (and therefore semi-

circles) are to one another as the squares on their diameters,

(semicircle ACB) = 2 (semicircle AEC).

But (semicircle ACB) — 2 (quadrant A DC)
;

therefore (semicircleAEG)= (quadrant ADC).

If now we subtract the common part, the segment AFC,

we have (lune AEGF) = A ADC,

and the lune is ' squared '.
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2. Next take three consecutive sides GE, EF, FD of a regular

hexagon inscribed in a circle of diameter GD. Also take AB
equal to the radius of the circle and therefore equal to each of

the sides. •

On AB, GE, EF, FD as diameters describe semicircles (in

the last three cases outwards with reference to the circle).

Then, since

CD^ = 4^52 = AF' + GE^ + EF'' + FB-,

and circles are to one another as the squares on their

diameters,

semicircle CEFD) = 4 (semicircle ALB)

= (sum of semicircles ALB, GGE, EEF, FED).

H

Subtracting from each side the sum of the small segments

on GE, EF, FD, we have

(trapezium GEFD) = (sum of three lunes) + (semicircle ALB).

The author goes on to say that, subtracting the rectilineal

figure equal to the three lunes (' for a rectilineal figure was

proved equal to a lune'), we get a rectilineal figure equal

to the semicircle ALB, 'and so the circle will have been

squared '.

This conclusion is obviously false, and, as Alexander says,

the fallacy is in taking what was proved only of the lune on

the side of the inscribed square, namely that it can be squared,

to be true of the lunes on the sides of an inscribed regular

hexagon. It is impossible that Hippocrates (one of the ablest

of geometers) could have made such a blunder. We turn there-

fore to Eudemus's account, which has every appearance of

beginning at the beginning of Hippocrates's work and pro-

ceeding in his order.
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It is. important from the point of view of this chapter to

preserve the phraseology of Eudemus, which throws light

on the question how far the technical terms of Euclidean

geometry were already used hy Eudemus (if not by Hippo-

crates) in their technical sense. I shall therefore translate

literally so much as can safely be attributed to Eudemiis

himself, except in purely geometrical work, where I shall use

modern symbols.

' The quadratures of lunes, which were considered to belong
to an uncommon class of propositions on account of the

close relation (of lunes) to the circle, were first investigated

by Hippocrates, and his exposition was thought to be in

correct form ^ ; we will therefore deal with them at length

and describe them. He started with, and laid down as the

first of the theorems useful for his purpose, the proposition

that similar segments of circles have the same ratio to one
another as the squares on their bases have [lit. as their bases

in square, Svvdnei]. And this he proved by first showing
that the squares on the diameters have the same ratio as the

circles. [For, as the circles are to one another, so also are

similar segments of them. For similar segments are those

which are the same part of the circles respectively, as foi;

instance a semicircle is similar to a semicircle,, and a third

part of a circle to a third part [here, Rudio argues, the word
segments, r/iijfiaTa, would seem to be used in the sense of

sectors]. It is for this reason also (Sib kol) that similar

segments contain equal angles [here ' segments ' are certainly

segments in the usual sense]. The angles of all semicircles

are right, those of segments greater than a semicircle are less

than right angles and are less in proportion as the segments

are greater than semicircles, while those of segments less than

a semicircle are greater than right angles and are greater in

proportion as tte segments are less than semicircles.'
j

I have put the last sentences of this quotation in dotted

brackets because it is matter of controversy whether they

belong to the original extract from Eudemus or were added by

Simplicius.

I think I shall bring out the issues arising out of this

passage into the clearest relief if I take as my starting-point

the interpretation of it by Rudio, the editor of the latest

1 Kara Tponov (' werfchvolle Abhandlung ', Heib.).
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edition of the whole extract. Whereas Diels, Usener, Tannery,

and Heiber^r had all seen in the sentences ' For, as the circles

are to one another . . . less than semicircles' an addition by

Simplicius, like the phrase just preceding (not quoted above),

' a proposition which Euclid placed second in his twelfth book

with the enunciation " Circles are to one another as the squares

on their diameters
"

', Rudio maintains that the sentences are

wholly Eudemian, because ' For, as the circles are to one

another, so are the similar segments ' is obviously connected

with the proposition that similar segments are as the squares

on their bases a few lines back. Assuming, then, that the

sentences are Eudemian, Rudio bases his next argument on

the sentence defining similar segments, ' For similar segments

are those which are the same part of the circles : thus a semi-

circle is similar to a semicircle, and a third part (of one circle)

to a third part (of another circle) '. He argues that a ' segment

'

in the proper sense which is one third, one fourth, &c., of the

circle is not a conception likely to have been introduced into

Hippocrates's discussion, because it cannot be visuaHzed by

actual construction, and so would not have conveyed any clear

idea. On the other hand, if we divide the four rieht ansles

about the centre of a circle into 3, 4, or n equal parts by
means of 3, 4, or n radii, we have an obvious division of the

circle into equal parts Avhich would occur- to any one ; that is,

any one would understand the expression one third or one

fourth part of a circle if the parts were sectors and not

segments. (The use of the word Tnfjfj.a in the sense of sector

is not impossible in itself at a date when mathematical
terminology was not finally fixed; indeed it means 'sector'

in one passage of Aristotle.^) Hence Rudio will have it that

'similar segments' in the second and third places in our passage

are ' similar sectors '. But the ' similar segments ' in the funda-

mental proposition of Hippocrates enunciated just before are

certainly segments in the proper sense ; so are those in the

next sentence which says that similar segments contain equal

angles. There is, therefore, the very great difiiculty that,

under Rudio's interpretation, the word r/i-qnara used in

successive sentences means, first segments, then sectors, and
then segments again. However, assuming this to be so, Rudio

*
' Arist. De caelo, ii. 8, 290 a 4.
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is able to make the argument hang together, in the following-

way. The next sentence says, ' For this reason also (Stb koI)

similar segments contain equal angles
'

; therefore this must be

inferred from the fact that similar sectors are the same part

of the respective circles. The intermediate steps are not given

in the text; but, since the similar sectors are the same part

of the circles, they contain equal angles, and it follows that the

angles in the segments which form part of the sectors are

equal, since they are the supplements of the halves of the

angles of the sectors respectively (this inference presupposes

that Hippocrates knew the theorems of Eucl. III. 20-22, which
is indeed clear from other passages in the Eudemus extract).

Assuming this to be the line of argument, Rudio infers that in

Hippocrates's time similar segments were not defined as in

Euclid (namely as segments containing equal angles) but were

regarded as the segments belonging to ' similar sectors ', which
would thus be the prior conception. Similar sectors would
be sectors having their angles equal. The sequence of ideas,

then, leading up to Hippocrates's proposition would be this.

Circles are to one another as the squares on their diameters or

radii. Similar sectors, having their angles equal, are to one

another as the whole circles to which they belong. (Euclid has

not this proposition, but it is included in Theon's addition to

VI. 33, and would be known long before Euclid's time.)

Hence similar sectors are as the squares on the radii. But

so are the triangles formed by joining the extremities of the

bounding radii in each sector. Therefore (cf. Eucl. V. 19)

the diiferences between the sectors and the corresponding

triangles respectively, i.e. the corresponding segments, are in

the same ratio as (1) the similar sectors, or (2) the similar

triangles, and therefore are as the squares on the radii.

We could no doubt accept this version subject to three ifs,

(1) if the passage is Eudemian, (2) if we could suppose

TixriiiaTa to be used in different senses in consecutive senteneeg

without a word of explanation, (3) if the omission of the step

between the definition of similar ' segments ' and the inference

that the angles in similar segments are equal could be put

down to Eudemus's ' sumniary ' style. The second of these

ifs is the crucial one ; and, after full reflection, I feel bound

to agree with the great scholars who have held that thih
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hypothesis is impossible; indeed the canons of literary criti-

cism seem to exclude it altogether. If this is so, the whole

of Rudio's elaborate structure falls to the ground.

We can now consider the whole question ah initio. First,

are the sentences in . question the words of Eudemus or of

Simplicius ? On the one hand, I think the whole paragraph

would be much more like the ' summary ' manner of Eudemus
if it stopped at 'have the same ratio as the circles', i.e. if the

sentences were not there at all. Taken together, they are

long and yet obscurely argued, while the last sentence is

really otiose, and, I should have said, quite unworthy of

Eudemus. On the other hand, I do not see that Simplicius

had any sufficient motive for interpolating such an explana-

tion : he might have added the words ' for, as the circles are

to one another, so also are similar segments of them ', but

there was no need for him to define similar segments ; he

must have been familiar enough with the term and its

meaning to take it for granted that his readers would know
them too. I think, therefore, that the sentences, down to ' the

same part of the circles respectively' at any rate, may be

from Eudemus. In these sentences, then, can ' segments ' mean
segments in the proper sense (and not sectors) after all ?

The argument that it cannot rests on the assumption that the

Greeks of Hippocrates's day would not bfe likely to speak of

a segment which was one third of the whole circle if they

did not see their way to visualize it by actual construction.

But, though the idea would be of no use to us, it does not

follow that their point of view would be the same as ours.

On the contrary, I agree with Zeuthen that Hippocrates may
well have said, of segments of circles which are in the same
ratio as the circles, that they are ' the same part ' of the circles

respectively, for this is (in an incomplete form, it is true) the

language of the definition of proportion in the only theory of

proportion (the numerical) then known (cf. Eucl. VII. Def. 20,

' Numbers are proportional when the first is the same multiple,

or the same part, or the same parts, of the second that the

third is of the fourth', i.e. the two equal ratios are of one

1 n%
of the following forms m, - or — where mi, n are integers)

;

the illustrations, namely the semicircles and the segments
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which are one third of the circles respectively, are from this

point of view quite harmless.

Only the transition to the view of similar segments as

segments 'containing equal angles' remains to be explained.

And here we are in the dark, because we do not know how, for

instance, Hippocrates would have drawn a segment in one

given circle which should be 'the same part' of that circle

that a given segment of another given circle is of that circle.

,

(If e.g. he had used the proportionality of the parts into which

the bases of the two similar segments divide the diameters,

of the circles which bisect them perpendicularly, he could,

by means of the sectors to which the segments belong, have

proved that the segments, like the sectors, are in the ratio

of the circles, just as Rudio supposes him to have done ; and

the equality of the angles in the segments would have followed

as in Rudio's proof.)

As it is, I cannot feel certain that the sentence 8io kuI ktX.

' this is the reason why similar segments contain equal angles

'

is not an addition by Simplicius. Although Hippocrates was

fully aware of the fact, he need not have stated it in this

place, and Simplicius may have inserted the sentence in order

to bring Hippocrates's view of similar segments into relation

with Euclid's definition. The sentence which follows about
' angles of ' semicircles and ' angles of ' segments, greater or

less than semicircles, is out of place, to say the least, and can

hardly come from Eudemus.

We resume Eudemus's account.

' After proving this, he proceeded to show in what way it

was possible to square a lune the outer circumference of which

is that of a semicircle. This he eflected by circumscribing

a semicircle about an isosceles right-angled triangle and
(circumscribing) about the base [= describing on the base]

a segment of a circle similar to those cut off by the sides.'

[This is the problem of Eucl. III. 33,

and involves the knowledge that similar

segments contain equal angles.]

'Then, since the segment about the

base is equal to the sum of those about

the sides, it follows that, when the part

of the triangle above the segment about the base is added

to both alike, the lune will be equal to the triangle.
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' Therefore the lune, having been proved equal to the triangle,

can be squared.
' In this way, assuming that the outer circumference of

the lune is that of a semicircle, Hippocrates easily squared

the lune.
' Next after this he assumes (an outer circumference) greater

than a semicircle (obtained) by constructing a trapezium in

which three sides are equal to one another, while one, the

greater of the parallel sides, is such that the square on it is

triple of the square on each one of the other sides, and then

comprehending the trapezium in a circle and circumscribing

about (= describing on) its greatest side a segment similar

to those cut off from the circle by
the three equal sides.'

[Simplicius here inserts an easy

proof that a circle can be circum-

scribed about the trapezium.^]

' That the said segment [bounded
by the outer circumference BAGD
in the figure] is greater than a
semicircle is clear, if a diagonal
be drawn in the trapezium.

' For this diagonal [say .56'],

subtending two sides \pA, AG'\ of

the trapezium, is such that the
square on it is greater than double
the square on one of the remain-
ing sides.'

[This follows from the fact that, AC being parallel to

BD but less than it, BA and DC will meet, if produced, in

a point F. Then, in the isosceles triangle FAG, the angle
FAG is less than a right angle, so that the angle BAG is

obtuse.]

' Therefore the square on [51)1 the greatest side qf the trape-
zium [= •iCD'^ by hypothesis] is less than the sum of the
squares on the diagonal [^BG'\ and that one of the other sides

' Heiberg {Philologtts, 43, p. 340) thinks that the words Km on iiev
!repc\r]<p8^(r(Tai KVKka to Tpnni^Lov fifi^as [ovtojs] Si;^;oTo/xi)(rn9 ras tov rpnTrffiov
yavicis ('Now, that the trapezium can be comprehended in a circle you
can prove by bisecting the angles of the trapezium ') moy (without ovras—
F omits it) be Eudemus's own . For oti fiiv . . . forms a natural contrast
to oTi^ Se fiuCop ... in the next paragraph. Also cf. p. 65. 9 Diels, Tovrav
ovv ovras e'xiwTaiv to TpmreC^ov (j)rifu ((f)'

ov EKBH nepi.\^\fr(Tai kvkXos.
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[GD^ which is subtended^ by the said (greatest) side [jBjD]

together with the diagonal [BO] ' [i.e. BD^ < BC^ + CD^].

'Therefore the angle standing on the greater side of the

trapezium [Z BCD] is acute.
^ Therefore the segment in which the said angle is is greater

than a semicircle. And this (segment) is the outer circum-

ference of the lune.'

[Simplicius observes that Eudemus has omitted the actual

squaring of the lune, presumably as being obvious. We have

only to supply the following.

Since BB^ = 3 BA\

(segment on BD) = 3 (segment on BA)

= (sum of segments on BA, AC, CD).

Add to each side the area between BA, AC, CD, and the

circumference of the segment on BD, and we have

(trapezium J.5Z)C)= (lune bounded by the two circumferences).]

'A case too where the outer circumference is less than

a semicircle was solved by Hippocrates,^ who gave the follow-

ing preliminary construction.
' Let there be a circle with diameter AB, and let its centre

be K.
,

. ,^
'Let CD bisect BK at right angles; and let the straight

line EF be so placed between CD and the circumference that %t

verges towards B [i.e. will, if produced, pass through 5], xvhile

its length is also such that the square on it is l^ times the square

on (one of) the radii.

' Observe the curious use of viroTiivfiv, stretch under, subtend. The

third side of a triangle is said to be 'subtended' by the other two

together.
_ , ,, •

i

2 Literally ' If (the outer circumference) were less than a semicircle,

Hippocrates solved (KaT«TK€ija<T(v, constructed) this (case).'

1523
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'Let EG he drawn parallel to AB, and let {straight lines)

he drawn joining K to E and F.
' Let the straight line \KF^ joined to F and produced meet

EG in G, and again let {straight lines) he drawn joining

B to F, G.
' It is then manifest that BF jjroduced will j^fiss through

[" fall on "] E [for by hypothesis EF verges towards B], and
BG will be equal to EK.'

[Simplicius proves this at length. The proof is easy. The

triangles FKC, FBG are equal in all respects [Eucl. I. 4].

Therefore, EG being parallel to KB, the triangles EDF, GDF
are equal in all respects [Eucl.' I. 15, 29, 26], Hence the

trapezium is isosceles, and BG = EK.

' This being so, I say that the trapezium EKBG can he

com^prehended in a circle.'

[Let the segment EKBG circumscribe it.]

Next let a segment of a circle be circumscribed about the

triangle EFG also

;

then manifestly each of the segments [on] EF, FG will be
similar to each of the segments [on] EK, KB, BG.'

[This is because all the segments contain equal angles,

namely an angle equal to the supplement of EGK.'\

' This being so, the lune so formed, of which EKBG is the

outer circumference, will be equal to the rectilineal figure made
up of the three triangles BFG, BFK, EKF.

.

' For the segments cut off from the rectilineal figure, on the
inner side of the lune, by the straight lines EF, FG. are
(together) equal to the segments outside the rectilineal figure

cut ofi' by the straight lines EK, KB, BG, since each of the
inner segments is 1-| times each of the outer, because, by
hypothesis, Ep2 (_ pQ,^ = ^EK^
[i.e. 2EF^=3EK^

= EK'' + KB^ + BG^l
'If then

(lune) = (the three segmts.) + {(rect. fig.) — (the two segmts.)},

the trapezium including the two segments but not the three,
while the (sum of the) two segments is equal to the (sum
of the) three, it follows that

(lune) = (rectilineal figure).
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'The fact that this lune (is one which) has its outer circum-
ference less than a semicircle he proves by means of the fact
that the angle [EKG] in the outer segment is obtuse.

' And the fact that the angle UKG is obtuse he proves as
follows.'

[This proof is supposed to have been given by Eudemus in

Hippocrates's own words, but unfortunately the text is con-
fused. The argument seems to have been substantially as

follows.

By hy2MtJiesis,
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line [EF'\ of length such that the square on it is 1^ times the

square on AK between the circwmference of the semicircle and

CD ill such a way that it ivill verge [veveiv) towards B ' [i.e. if

produced, will pass through B\ This is a problem of a type

which the Greeks called vevcrei^, inclinationes or vergings.

Theoretically it may be regarded as the problem of finding

a length {x) such that, if F be so taken on CD that BF — x,

-Bi^ produced will intercept between CD and the circumference

of the semicircle a length EF equal to \/| . AK.
If we suppose it done, we have

EB.BF=AB.BC = AK-]

or x{x-\- -/§ . a) = a^ (where AK = a).

That is, the problem is equivalent to the solution of the

quadratic equation

X'' + -/f . ax = a^.

This again is the problem of ' applying to a straight Hne

of length -/f . a a rectangle exceeding by a square figure and

equal in area to a^ ', and would theoretically be solved by the

Pythagorean method based on the theorem of Eucl. II. 6.

Undoubtedly Hippocrates could have solved the problem by
this theoretical method ; but he may, on this occasion, have

used the purely mechanical method of marking on a ruler

or straight edge a length equal to -v/f. AK, and then moving
it till the points marked lay on the circumference and on CD
respectively, while the straight edge also passed through B.

This method is perhaps indicated by the fact that he first

places EF (without producing it to B) and afterwards

joins BF.

We come now to the last of Hippocrates's quadratures.

Eudemus proceeds
:]

'Thus Hippocrates squared every ^ (sort of) lune, seeing
that 1 (he squared) not only (1) the lune which has for its outer

' Tannery brackets 7ra^T<. and eiirep Kai. Heiberg thinks (I.e. p. 343)
the wording is that of Simplioius reproducing the content of Eudemus.
The wording of the sentence is important with reference to the questions
(1) What was the paralogism with which Aristotle actually charged
Hippocrates ? and (2) What, if any, was the justification for the charge ?
Now the four quadratures as given by Eudemus are clever, and contain in
themselves no fallacy at all. The supposed fallacy, then, can only have
consisted in an assumption on the part of Hippocrates that, because he
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circumference the arc of a semicircle, but also (2) the lune
in which the outer circumference is greater, and (3) the lune in
which it is less, than a semicircle.

' But he also squared the sum of a lune and a circle in the
following manner.

' Let there be two circles abotU K us centre, such that the
square on the diameter of the outer is 6 times the square on
that of the inner.

'Let a (regular) hexagon ABCDEF he inscribed in the
inner circle, and let KA, KB, KG he joined from the centre
and produced as far as the circumference of the outer circle.

Let GH, HI, GI he joined:
[Then clearly GH, HI are sides of a hexagon inscribed in

the outer circle.]

'About GI [i.e. on (?/] let a segment be circumscribed
similar to the segm^ent cut off by GH.

'Then Gr=3GH\
for GI^ + [side of outer hexagon)^ = (diam. of outer circle)^

= iGH^
[The original states this in words without the help of the

letters of the figure.]

'Also GH^ = 6AB\

had squared one particular lune of eacli of three types, namely those
which have for their outer circumferences respectively (1) a semicircle,

(2) an arc greater than a semicircle, (3) an arc less than a semicircle, he
had squared all possible lunes, and therefore also the lune included in his

last quadrature, the squaring of which (had it been possible) would
actually have enabled him to square the circle. The question is, did
Hippocrates so delude himself? Heiberg thinks that, in the then
state of logic, he may have done so. But it seems impossible to believe

this of so good a mathematician ; moreover, if Hippocrates had really

thought that he had squared the circle, it is inconceivable that he
would not have said so in express terms at the end of his fourth
quadrature.

Another recent view is that of Bjornbo (in Pauly-Wissowa, Real-Ency-
clopiidie, xvi, pp. 1787—99), who holds that Hippocrates realized periectly

the limits of what he had been able to do and knew that ho had not

squared the circle, but that he deliberately used language'which, without
being actually untrue, was calculated to mislead any one who read him
into the belief that he had really solved the problem. This, too, seems
incredible ; for surely Hippocrates must have known that the first expert

who read his tract would detect the fallacy at once, and that he was
risking his reputation as a mathematician for no purpose. 1 prefer to

think that he was merely trying to put what he had discovered in the

most favourable light ; but it must be admitted that the effect of his

language was only to bring upon himself a charge which he might easily

have avoided.
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' Therefore

segment on ff/[= 2(segmt. on Gi?) + 6 (segmt. on AB)\

= (segmts. on GH, HI) + {all aegmts. in
inner circle).

[' Add to each side the area bounded by GH, HI and the

arc 6r/;]

therefore (A GHI) = {lune GHI) + {all segmts. in inner circle).

Adding to both sides the hexagon in the inner circle, we have

(A GHI) + (inner hexagon) = (lune GHI) + (inner circle).

' Since, then, the sum of the two rectilineal figures can be

squared, so can the sum of the circle and the lune in question.'

Simplicius adds the following observations

:

' Now, so far as Hippocrates is concerned, we must allow

that Eudemus was in a better position to know the facts, since

he was nearer the times, being a pupil of Aristotle. But, as

regards the " squaring of the circle by means of segments

"

which Aristotle reflected on as containing a fallacy, there are

three possibilities, (1) that it indicates the squaring by means
of lunes (Alexander was quite right in expressing the doubt
implied liy his words, "if it is the same as the squaring by
means of lunes"), (2) that it refers, not to the proofs of

Hippocrates, but some others, one of which Alexander actually

reproduced, or (3) that it is intended to reflect on the squaring
by Hippocrates of the circle plus the lune, which Hippocrates
did in fact prove " by means of segments ", namely the three

(in the greater circle) and those in the lesser circle. . . . On
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this third hypothesis the fallacy would lie in the fact that
the sum of the circle and the lune is squared, and not the

circle alone.'

If, however, the reference of Aristotle was really to Hip-

pocrates's last quadrature alone, Hippocrates was obviously

misjudged ; there is no fallacy in it, nor is Hippocrates likely

to have deceived himself as to what his proof actually

amounted to.

In the above reproduction of the extract from Eudemus
I have marked by italics the passages where the writer follows

the ancient fashion of describing points, lines, angles, &c., with

reference to the letters in the figure : the ancient practice was

to write to (nj/ieTov e(p' & (or k<p' ov) K, the (point) on which (is)

the letter K, instead of the shorter form to K a-qfieiov , the

point K, used by Euclid and later geometers; 17 ecf) 27
-4 -B

{ev6eTa), the straight line on which (are the letters AB, for

17 AB (evOeTa), the straight line AB; to Tplycovov to k(j)' ov

EZH, the triangle on which (are the letters) EFG, instead of

TO EZH Tpiywvov, the triangle EFG ; and so on. Some have

assumed that, where the longer archaic form, instead of the

shorter Euclidean, is used, Eudemus must be quoting Hippocrates

verbatim ; but this is not a safe criterion, because, e.g., Aristotle

himself uses both forms of expression, and there are, on the

other hand, some relics of the archaic form even in Archimedes.

Trigonometry enables us readily to find all the types of

Hippocratean lunes that can

be squared by means of the

straight line and circle. Let

AC'B be the external circum-

ference, ABB the internal cir-

cumference of such a lune,

r, r' the radii, and 0, 0' the

centres of the two arcs, 6, d'

the halves of the angles sub-

tended by the arcs at the centres

respectively.

Now (area of lune)

= (diflference of segments AC'B, ADB)

= (sector 04C5-A^05)-(sector O'ADB-AAO'B)

=^r''6- r'2 6' + ^ {r'"- sin 2&- r"-
sin 2 Q).
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We also have

rsinO ^iAB = r' sin 6' (1)

In order that the lune may be squareable, we must have, m
the first place, r^O = r'^^'.

Suppose that 6 = m6', and it follows that

r' — Vini . r.

Aceordmgly the area becomes

|r^(msin 2^' — sin 2mQ')
;

and it remains only to solve the equation (1) above, which

becomes sinm^'= -/m.sin^'.

This reduces to a quadratic equation only when m has one

of the values 2, 3, |, 5, |.

The solutions of Hippocrates correspond to the first three

values of in. But the lune is squareable by ' plane ' methods

in the other two cases also. Clausen (1840) gave the last four

cases of the problem as new^ (it was not then known that

Hippocrates had solved more than the first) ; but, according

to M. Simon 2, all five cases were given much earlier in

a dissertation by Martin Johan Wallenius of Abo (Abveae,

1766). As early as 1687 Tschirnhausen noted the existence

of an infinite number of squareable portions of the first of

Hippoerates's lunes. Vieta ^ discussed the case in which tn = 4,

which of course leads to a cubic equation.

(;8) Reduction of the proble'vn of doubling the cube to

the finding of two mean proportionals.

We have already alluded to Hippoerates's discovery of the

reduction of the problem of duplicating the cube to that of

finding two mean proportionals in continued proportion. That

is, he discovered that, if

a:x — x:y = y.h,

then a^ -.x^ = a:b. This shows that he could work with

compound ratios, although for him the theory of proportion

must still have been the incomplete, numerical, theory

developed by the Pythagoreans. It has been suggested that

' Crelle, xxi, 1840, pp. 375-6.
* Geschichte der Math, im, Altertum, p. 174.
" Vieta, Varionim de rebus mathematicis responsorum lib. viii, 1593.
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the idea of the reduction of the problem of duplication may
have occurred to him through analogy. The problem of

doubling a square is included in that of finding one mean
proportional between two lines; he might therefore have
thought of what would be the effect of finding two mean
proportionals. Alternativeljr he may have got the idea from
the theory of numbers. Phito in the Timaeus has the pro-

positions that between two square numbers there is one mean,

proportional number, but that two cube numbers are connected,

not by one, but by two mean numbers in continued proportion.^

These are the theorems of Eucl. VIII. 11, 12, the latter of

which is thus enunciated :
' Between two cube numbers' there

are two mean proportional numbers, and the cube has to the

cube the ratio triplicate of that which the side has to the side.'

If this proposition was really Pythagorean, as seems prob-

able enough, Hippocrates had only to give the geometrical

adaptation of it.

(y) The Elements as known to HipiMcrates.

We can now take stock of the advances made in the

Elements up to the time when Hippocrates compiled a work
under that title. We have seen that the Pythagorean geometry

already contained the substance of Euclid's Books I and II,

part of Book IV, and theorems corresponding to a great part

of Book VI ; but there is no evidence that the Pythagoreans

paid much attention to the geometry of the circle as we find

it, e.g., in Eucl., Book HI. But, by the time of Hippocrates,

the main propositions of Book III were also known and used,

as we see from Eudemus's account of the quadratures of

lunes. Thus it is assumed that ' similar ' segments contain

equal angles, and, as Hippocrates assumes that two segments

of circles are similar when the obvious thing about the figure

is that the angles at the circumferences which are the supple-

ments of the angles in the segments are one and the same,

we may clearly infer, as above stated, that Hippocrates knew
the theorems of Eucl. III. 20-2. Further, he assumes the

construction on a given straight line of a segment similar to

another given segment (cf. Eucl. III. 33). The theorems of

Eucl. III. 26-9 would obviously be known to Hippocrates

' Plato, Timaeus, 32 a, b.
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as was that of III. 31 (that the angle in a semicircle is

a right angle, and that, according as a segment is less or

greater than a semicircle, the angle in it is obtuse or acute).

He assumes the solution of the problem of circumscribing

a circle about a triangle (Eucl. IV. 5), and the theorem that

the side of a regular hexagon inscribed in a circle is equal

to the radius (Eucl. IV. 15).

But the most remarkable fact of all is that, according to

Eudemus, Hippocrates actually proved the theorem of Eucl..

XII. 2, that circles are to one another as the squares on their

dia-meters, afterwards using this proposition to prove that

similar segments are to one another as the squares on their

bases. Euclid of course proves XII. 2 by the method of

exhaustion, the invention of which is attributed to Eudoxus

on the ground of notices in Archimedes.' This method

depends on the use of a certain lemma known as the Axiom
of Archimedes, or, alternatively, a lemma similar to it. The

lemma used by Euclid is his proposition X. 1, which is closely

related to Archimedes's lemma in that the latter is practically

used in the proof of it. Unfortunately we have no infor-

mation as to the nature of Hippocrates's proof ; if, however,

it amounted to a genuine proof, as Eudemus seems to imply,

it is difficult to see how it could have been effected other-

wise than by some anticipation in essence of the method of

exhaustion.

Theodorus of Cyeene, who is mentioned by Proclus along

with Hippocrates as a celebrated geometer and is claimed by
lamlilichus as a Pythagorean,^ is only known to us from

Plato's Theaetetus. He is said to have been Plato's teacher

in mathematics,^ and it is likely enough that Plato, while on

his way to or from Egypt, spent some time with Theodorus at

Gyrene,* though, as we gather from the Theaetetus, Theodorus

had also been in Athens in the time of Socrates. We learn

from the same dialogue that he was a pupil of Protagoras, and

was distinguished not only in geometry but in astronomy,

arithmetic, music, and all educational subjects.® The one notice

' Prefaces to On the Sphere iind Cylinder, i, and Quadrature of the

Parabola.
^ Iambi. Vit. Pi/th. c. 36. ^ Diog. L. ii. 10.3.

" Cf. Diog. L. iii. 6.
' Plato, Theaetetus, 161 b, 162 a ; ib. 145 a, c, d.
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which we have of a particular achievement of his suggests that

it was he who first carried the theory of irrationals beyond
the first step, namely the discovery by the Pythagoreans
of the irrationality of V2. According to the Theaetetus}

Theodorus

'was proving 2 to us a certain thing about square roots
(SwdfiiLs:), I mean (the square roots, i.e. sides) of three square
feet and of five square feet, namely that these roots are not
commensurable in length with the foot-length, and he went on
in this way, taking all the separate cases up to the root of
1 7 square feet, at which point, for some reason, he stopped '.

That is, he proved the irrationality of -/s, -/S ... up to

\/l7. It does not appear, however, that he had reached any
definition of a surd in general or proved any general proposi-

tion about all surds, for Theaetetus goes on to say

:

'The idea occurred to the two of us (Theaetetus and the
younger Socrates), seeing that these square roots appeared

^ Theaetetus, 147 d sq.

Tlepl dvvd^eoii/ tl tj^J-'lv GeoSojpo? o5f c-ypa(^€, rrjs re rpliTobos irepi Ka\

TrevTenodos; lairocpaivtov] on firjKeL ov (TVfifierpOL rfj nohtata. Certain writers
(H. Vogt in particular) persist in taking 'iypacfj^ in this sentence to mean
drew or constructed. The idea is that Theodorus's exposition must have
included two things, first the construction of straight lines representing

-v/8, v'5 ... (of course by means of the Pythagorean theorem, Eucl. I. 47),
in order to show that these straight lines exist, and secondly the proof
that each of them is incommensurable with 1 ; therefore, it is argued,
eypiKJie must indicate the construction and anocpaivav the proof. But in

the first place it is impossible that eypa(f>( n. mpi, 'he wrote something
about ' (roots), should mean ' constructed each of the roots '. Moreover, if

aTTocpaivav is bracketed (as it is by Burnet), the supposed contrast between
i'ypa<j>e and a-Ko4}aivu>v disappears, and eypacpe must mean ' proved ', in

accordance with the natural meaning of eypacpi n, because there is

nothing else to govern Sti p.rjKet, ktX. ('that they are not commensurable
in length . . .'), which phrase is of course a closer description of n. There
are plenty of instances of ypdcfxiv in the sense of ' prove '. Aristotle says

(Topics, e. 3, 158 b 29) 'It would appear that in mathematics too some
things are diiBcult to prove (oi pa&ias ypa(pfa-dai) owing to the want of

a definition, e. g. that a straight line parallel to the side and cutting a plane
figure (parallelogi'am) divides the straight line (side) and the area simi-

larly '. Cf Archimedes, On the Sphere and Cylinder, i\, Pref., ' It happens
that most of them are proved {ypd(peadai) by means of the theorems . .

.

'

;

' Such of the theorems and problems as are proved (ypdipeTai) by means of

these theorems I have proved (or written out, ypd\ffai) and send you
in this book '

; Quadrature of a Parabola, Pref, ' I have proved (iypacfiov)

that every cone is one third of the cylinder with the same base and equal

height by assuming a lemma similar to that aforesaid.'

I do not deny that Theodorus constructed his ' roots ' ; I have no doubt

that he did ; but this is not what eypa(pe n. means.
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to be unlimited in multitude, to try to arrive at one collective

term by which we could designate all these roots . We
divided number in general into two classes. The number
which can be expressed as equal multiplied by equal (i'a-ov

la-aKti) we likened to a square in form, and we called it

square and equilateral {laoTrXevpov) . . The intermediate

number, such as three, five, and any number which cannot

be expressed as equal multiplied by equal, but is either less

times more or more times less, so that it is always contained

by a greater and a less side, we likened to an oblong figure

{jrpofirJKeL (T\r]iJ.aTL) and called an oblong number. . . Such
straight lines then as square the equilateral and plane number
we defined as length (fifjKos), and such as square the oblong

(we called) square roots (Swd/xeLs) as not being commensurable
with the others in length but only in the plane areas to which
their squares are equal. And there is another distinction of

the same sort with regard to solids.'

Plato gives no hint as to how Theodoras proved the proposi-

tions attributed to him, namely that -/s, -/s ... ^17 are

all incommensurable with 1 ; there is therefore a wide field

open for speculation, and several conjectures have been put

forward.

(1) Hultsch, in a paper on Archimedes's approximations to

square roots, suggested that Theodorus took the line of seeking

successive approximations. Just as f , the first approximation

to -/2, was obtained by putting 2 = ff , Theodorus might

have started from 3 = ff , and found J or l-|i as a first

approximation, and then, seeing that 1^^ > -/3>lf, might

(by successive trials, probably) have found that

1 _i 1 _i JL i_ ~^ ./q -^ 1 jl 1. _i i_ i'2 8 16 3 2 'S^ -^ ^"^^^2 8 16 32 128'

But the method of finding closer and closer approximations,

although it might afibrd a presumption that the true value

cannot be exactly expressed in fractions, wotdd leave Theodorus

as far as ever from proving that -/s is incommensurable.

(2) There is no mention of -v/2 in our passage, and Theodorus

probably omitted this case because the incommensurability

of /2 and the traditional method of proving it were already

known. The traditional proof was, as we have seen, a reduciio

ad absurdum showing that, if v/2 is commensurable with 1,

it will follow that the same number is both even and odd,

i.e. both divisible and not divisible by 2. The same method
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of proof can be adapted to the cases of V's, V5, &c., if 3, 6 ...

are substituted for 2 in the proof; e.g. we can prove that,

if a/ 3 is commensurable with 1, then the same number will
be both divisible and not divisible by 3. One suggestion,
therefore, is that Theodoras may have applied this method
to all the cases from -/s to Vl?. We can put the proof
quite generally thus. Suppose that iV" is a non-square number
such as 3, 5 ..., and, if possible, let -/iV = m/n, where m, n
are integers prime to one another.

Therefore 7n^ = N .n^;

therefore wi^ jg divisible by N, so that m also is a multiple
of K

Let m = fi.jSf, (1)

and consequently n^ = N. fi^.

Then in the same way we can prove that n is a, multiple

of N.

Let n — p .JSf . . . ... (2)

It follows from (1) and (2) that 7n/n — [i/v, where fi < m
and V < n; therefore m/n is not in its lowest terms, which
is contrary to the hypothesis.

The objection to this conjecture as to the nature of

Theodorus's proof is that it is so easy an adaptation of the

traditional proof regarding V2 that it wouH hardly be

important enough to mention as a new discovery. Also it

would be quite unnecessary to repeat the proof for every

case up to V 1 7 ; for it would be clear, long before •/ 1 7 was
reached, that it is generally applicable. The latter objection

seems to me to have force. The former objection may or may
not ; for I do not feel sure that Plato is necessarily attributing

any important new discovery to Theodoras. The object of

the whole context is to show that a definition by mere

enumeration is no definition; e.g. it is no definition of kni-

a-Trjfir] to enumerate particular kma-Tfjixai (as shoemaking,

carpentering, and the like) ; this is to put the cart before the

horse, the general definition of k-ma-Trinr] being logically prior.

Hence it was probably Theaetetus's generalization of the

procedure of Theodorus which impressed Plato as lieing

original and important rather than Theodorus's proofs them-

selves.
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(3) The third hypothesis is that of Zeuthen.^ He starts

with the assumptions (a) that the method of proof used by

Theodorus must have been original enough to call for special

notice from Plato, and (b) that it must have been of such

a kind that the application of it to each surd required to be

set out separately in consequence of the variations in the

numbers entering into the proofs. Neither of these con-

ditions is satisfied by the hypothesis of a mere adaptation to

-/3, -/ 5 ... of the traditional proof with regard to V2.

Zeuthen therefore suggests another hypothesis as satisfying

both conditions, namely that Theodorus used the criterion

furnished by the process of finding the greatest common
measure as stated in the theorem of Eucl. X. 2. ' If, when
the lesser of two unequal magnitudes is continually subtracted

in turn from the greater [this includes the subtraction

from any term of the highest multiple of another that it

contains], that which is left never measures the one before

it, the magnitudes will be incommensurable ' ; that is, if two
magnitudes are such that the process of finding their G. C. M.
never comes to an end, the two magnitudes are incommensur-

able. True, the proposition Eucl. X. 2 depends on the famous
X. 1 (Given two unequal magnitudes, if from the greater

there be subtracted more than the half (or the half), from the

remainder more than the half (or the half), and so on, there

will be left, ultimately, some magnitude less than the lesser

of the original magnitudes), which is based on the famous
postulate of Eudoxus (= Eucl. V, Def. 4), and therefore belongs

to a later date. Zeuthen gets over this objection by pointing

out that the necessity of X. 1 for a rigorous demonstration

of X. 2 may not have been noticed at the time; Theodorus
may have proceeded by intuition, or he may even have
postulated the truth proved in X. 1.

TJie most obvious case in which incommensurability can be

proved by using the process of finding the greatest common
measure is that of the two segments of a straight line divided

in extreme and mean ratio. For, if AB is divided in this way
at C, we have only to mark off along CA (the greater segment)

^ ' Zeuthen, ' Sur la constitution des livres arithmetiques des Ellements
d'Euclide et leur rapport a la question de I'irrationalite ' in Oversigt orer
det kgl. Danske videnskahernes Selskahs Forhandlinger, 1915, pp. 422 sq.
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a length CD equal to CB (the lesser segment), and GA is then

divided at D in extreme and mean ratio, CD being the

greater segment. (Eucl. XIII. 5 is the equivalent of this

A D E c B
I 1 1 1

1

proposition.) Similarly, DG is so divided if we set off DE
along it equal to DA ; and so on. This is precisely the

process of finding the greatest common measure of AG, GB,

the quotient being always unity ; and the process never comes

to an end. Therefore AG, GB are incommensurable. What
is proved in this case is the irrationality of K-ZS — l). This

of course shows incidentally that -/S is incommensurable

with 1. It has been suggested, in view of the easiness of the

above proof, that the irrational may first have been discovered

with reference to the segments of a straight line cut in extreme

and mean ratio, rather than with reference to the diagonal

of a square in relation to its side. But this seems, on the

whole, improbable.

Theodorus would, of course, give a geometrical form to the

process of finding the G. C. M., after he had represented in

a figure the particular surd which he was investigating.

Zeuthen illustrates by two cases, \''S and \/ 3.

We will take the former, which is the easier. The process

of finding the G. C. M. (if any) oi V 5 and 1 is as follows

:

1) v'5(2
2

v^5-2)l (4
4(v/5-2)

(v/5-2)2

[The explanation of the second division is this

:

1 =(v^5-2)(v'5 + 2) = 4(^/5-2) + {^5-2}'.]

Since, then, the ratio of the last term (\/5 — 2)^ to the pre-

ceding one, -/5 — 2, is the same as the ratio of -/S— 2 to 1,

the process will never end.

Zeuthen has a geometrical proof which is not difiicult ; but

I think the following proof is neater and easier.

Let ABG be a triangle right-angled at B, such that AB = 1,

BG = 2, and therefore AG = Vs.
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Cut oflf CD from GA equal to GB, and draw DE at right

angles to GA. Then BE = EB.

Now AD — •/ 5 — 2, and by similar triangles

DE= 2AD= 2(-v/5-2).

Cut oft" from EA the portion EF equal to

ED, and draw FG at right angles to AE.

Then AF= AB-BF = AB-2DE
= l-4(-/5-2)

= (v/5-2)2.

Therefore ABC, ADE, AFG are diminishing

similar triangles such that

AB:AD:AF= 1 : (v'5-2):(-/5-2)-,

and so on.

Also AB > FB, i.e. 2DE or 4 AD.

Therefore the side of each triangle in the series is less than

i of the corresponding side of the preceding triangle.

In the case of -s/S the process of finding the G. C. M. of

-v/S and 1 gives

1 ) ^/3 (1

A P

Vz-\) 1

-/z
(1

I(a/3-1) ) v^S-l (2
(V3-l)2

1)2 tothe ratio of ^(-/S

of 1 to (V'3-1).

This case is more difficult

because we

i(V3-l)»

(-/3 — 1)^ being the same as that

to show in geometrical form

have to make one more

division before recurrence takes place.

The cases -v/lO and V\7 are exactly

similar to that of V5.

The irrationality of ^2 can, of course,

be proved by the same method. If ABGD
is a square, we mark ofi^ along the diagonal

AG & length AE equal to AB and draw
EF at right angles to AG. The same

thing is then done with the triangle CEF
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as with the triangle ABC, and so on. This could not have

escaped Theodoras if his proof in the eases of V'3, V5...

took the form suggested by Zeuthen ; but he was presumably-

content to accept the traditional proof with regard to V2.

The conjecture of Zeuthen is very ingenious, but, as he

admits, it necessarily remains a hypothesis.

Theaetetus^ (about 415-369 b. c.) made important contribu-

tions to the body of the Elements. These related to two
subjects in particular, (a) the theory of irrationals, and (b) the

five regular solids.

That Theaetetus actually succeeded in generalizing the

theory of irrationals on the lines indicated in the second part

of the passage from Plato's dialogue is confirmed by other

evidence. The commentary on Eucl. X, which has survived

in Arabic and is attributed* to Pappus, says (in the passage

partly quoted above, p. 155) that the theory of irrationals

'had its origin in the school of Pythagoras. It was con-

siderably developed by Theaetetus the Athenian, who gave
proof in this part of mathematics, as in others, of ability

which has been justly admired. ... As for the exact dis-

tinctions of the above-named magnitudes and the rigorous

demonstrations of the propositions to which this theory gives

rise, I believe that they were chiefly established hy this

mathematician. For Theaetetus had distinguished square

roots ^ commensurable in length from those which are incom-

mensurable, and had divided the well-known species of

irrational lines after the different means, assigning the inedial

to geometry, the binomial to arithmetic, and the apotome to

harmony, as is stated by Eudemus the Peripatetic' ^

^ On Theaetetus the reader may consult a recent dissertation, De Theae-

teto Atheniensi mathematico, by Eva Sachs (Berlin, 1914).
'' ' Square roots '. The word in Woepcke's translation is ' puissances ',

which indicates that the oi-iginal word was 8vmfi.as. This word is always

ambiguous ; it might mean ' squares ', but I have translated it ' square

roots ' because the Siva/j-is of Theaetetus's definition is undoubtedly the

square root of a non-square number, a surd. The distinction in that case

would appear to be between ' square roots ' commensurable in length and

square roots commensurable in square only ; thus ^/S and v'12 are

commensurable in length, while -v/3 and ,/! are commensurable in

square only. I do not see how Swaneis could here mean squares ; for

' squares commensurable in length ' is not an intelligible phrase, and it

does not seem legitimate to expand it into ' squares (on straight lines)

commensurable in length ',

' For an explanation of this see The Thirteen Boohs of Euclid's Elements,

vol. iii, p. 4.

152S P
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The irrationals called by the names here italicized ar(

described in Eucl. X. 21, 36 and 73 respectively.

Again, a scholiast^ on Eucl. X. 9 (containing the genera

theorem that squares which have not to one another the ratic

of a square number to a square number have their sides

incommensurable in length) definitely attributes the discovery

of this theorem to Theaetetus. But, in accordance with the

traditional practice in Greek geometry, it was necessary to

prove the existence of such incommensurable ratios, and this

is done in the porism to Eucl. X. 6 by a geometrical con-

struction ; the porism first states that, given a straight line a

and any two numbers m,, n, we can find a straight line x such

that a:x = m-.n; next it is shown that, if y be taken a mean
proportional between a and x, then

a'^-.y'^ = a: x = 7n:n;

if, therefore, the ratio m : n is not a ratio of a square to

a square, we have constructed an irrational straight line

a >/{n/m) and therefore shown that such a straight line

exists.

The proof of Eucl. X. 9 formally depends on VIII. 1 1 alone

(to the effect that between two square numbers there is one
mean proportional number, and the square has to the square
the duplicate ratio of that which the side has to the side)

•

and VIII. 11 again depends on VII. 17 and 18 (to the effect

that ah:ac = h: c, and a:b = ac:bc, propositions which are
not identical). But Zeuthen points out that these propositions
are an inseparable part of a whole theory established in

Book VII and the early part of Book VIII, and that the
real demonstration of X. 9 is rather contained in propositions
of these Books which give a rigorous proof of the necessary
and sufiicient conditions for the rationality of the square
roots of numerical fractions and integral numbers, notably
VII. 27 and the propositions leading up to it, as well as
VIII. 2.; He therefore suggests that the theory estabhshed
in the early part of Book VII was not due to the Pytha-
goreans, but was an innovation made by Theaetetus with the
direct object of laying down a scientific basis for his theory
of irrationals, and that this, rather than the mere formulation

' X, No. 62 (Heiberg's Euclid, vol. v, p. 450).
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of the theorem of Eucl. X. 9, was the achievement which Plato

intended to hold up to admiration.

This conjecture is of great interest, but it is, so far as

I know, without any positive confirmation. On the other

hand, there are circumstances which suggest doubts. For

example, Zeuthen himself admits that Hippocrates, who re-

duced the duplication of the cube to the finding of two mean
proportionals, must have had a proposition corresponding to

the very proposition VIII. 11 on which X. 9 formally depends.

Secondly, in the extract from Simplicius about the squaring

of lunes by Hippocrates, we have seen that the proportionality

of similar segments of circles to the circles of which they form

part is explained by the statement that ' similar segments are

those which are the same part of the circles
'

; and if we may
take this to be a quotation by Eudemus from Hippocrates's

own argument, the inference is that Hippocrates had a defini-

tion of numerical proportion which" was at all events near

to that of Eucl. VII, Def. 20. Thirdly, there is the proof

(presently to be given) by Archytas of the proposition that

there can be no number which is a (geometric) mean between

two consecutive integral numbers, in which proof it will

be seen that several propositions of Eucl., Book VII, are

pre-supposed ; but Archytas lived (say) 430-365 B.C., and

Theaetetus was some years younger. I am not, therefore,

prepared to give up the view, which has hitherto found

general acceptance, that the Pythagoreans already had a

theory of proportion of a numerical kind on the lines, though

not necessarily or even probably with anything like the

fullness and elaboration, of Eucl., Book VII.

While Pappus, in the commentary quoted, says that Theae-

tetus distinguished the well-known species of irrationals, and

in particular the medial, the binomial, and the apotome, he

proceeds thus

:

' As for Euclid, he set himself to give rigorous rules, which

he established, relative to commensurability and incommen-

surability "in general; he made precise the definitions and

distinctions between rational and irrational magnitudes, he

set out a great number of orders of irrational magnitudes,

and finally he made clear their whole extent.'

As Euclid proves that tliere are thirteen irrational straight

p2
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lines in all, we may perhaps assume that the subdivision of

the three species of irrationals distinguished by Theaetetus

into thirteen was due to Euclid himself, while the last words

of the quotation seem to refer to Eucl. X. 115, where it is

proved that from the inedial straight line an unlimited number

of other irrationals can be dei'ived which are all different from

it and from one another.

It will be remembered that, at the end of the passage of the

Theaetetus containing the definition of ' square roots ' or surds,

Theaetetus says that ' there is a similar distinction in the case

of solids '. We know nothing of any further development

of a theory of irrationals arising from solids ; but Theaetetus

doubtless had in mind a distinction related to VIII. 12 (the

theorem that between two cube numbers there are two mean
proportional numbers) in the same way as the definition of

a ' square root ' or surd is related to VIII. 1 1 ; that is to say,

he referred to the incommensurable cube root of a non-cube

number which is the product of three factors.

Besides laying the foundation of the theory of irrationals

as we find it in Eucl., Book X, Theaetetus contributed no less

substantially to another portion of the Elements, namely
Book XIII, which is devoted (after twelve introductory

propositions) to constructing the five regular solids, circum-

scribing spheres about them, and finding the relation between
the dimensions of the respective solids and the circumscribing

spheres. We have already mentioned (pp. 159, 162) the tradi-

tions that Theaetetus was the first to ' construct' or 'write upon'

the five l-egular solids,^ and that his name was specially

associated with the octahedron and the icosahedron.^ There
can be little doubt that Theaetetus's ' construction ' of, or

treatise upon, the regular solids gave the theoretical con-

structions much as we find them in Euclid.

Of the mathematicians of Plato's time, two others are

mentioned with Theaetetus as having increased the number
of theorems in geometry and made a further advance towards
a scientific grouping of them, Leodamas of Thasos and
Archytas of Takas. With regard to the former we are

' Suidas, s. v. StaiVijTos-.

' Schol. 1 to Eucl. XIII (Euclid, ed. Heiberg, vol. v, p. 654).
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told that Plato ' explained {eiar-qyrjaaTo) to Leodamas of Thasos
the method of inquiry by analysis ' ^ ; Proclus's account is

fuller, stating that the finest method for discovering lemmas
in geometry is that ' which by means of analysis carries the

thing sought up to an acknowledged principle, a method
which Plato, as they say, communicated to Leodamas, and
by which the latter too is said to have discovered many
things in geometry '.^ Nothing more than this is known of

Leodamas, but the passages are noteworthy as having given

rise to the idea that Plato invented the method of mathe-

matical analysis, an idea which, as we shall see later on, seems

nevertheless to be based on a misapprehension.

Archytas of Taeas, a Pythagorean, the friend of Plato,

flourished in the first half of the fourth century, say 400 to

365 B.C. Plato made his acquaintance when staying in Magna
Graecia, and he is said, by means of a letter, to have saved

Plato from death at the hands of Dionysius. Statesman and
philosopher, he was famed for every sort of accomplishment.

He was general of the forces of his city-state for seven years,

though ordinarily the law forbade any one to hold the post

for more than a year ; and he was never beaten. He is

said to have been the first to write a systematic treatise on

mechanics based on mathematical principles.'* Vitruvius men-

tions that, like Archimedes, Ctesibius, Nymphodorus, and

Philo of Byzantium, Archytas wrote on machines * ; two
mechanical devices in particular are attributed to him, one

a mechanical dove made of wood which would fly,° the

other a irattle which, according to Aristotle, was found useful

to ' give to children to occupy them, and so prevent them

from breaking things about the house (for the young are

incapable of keeping still) '.^

We have already seen Archytas distinguishing the four

mathematical sciences, geometry, arithmetic, sphaeric (or

astronomy), and music, comparing the art of calculation with

geometry in respect of its relative eflBciency and conclusive-

ness, and defining the three means in music, the arithmetic,

1 Diog. L. iii. 24. ' Proclus on Eucl. I, p. 211. 19-23.

2 Diog. L. viii. 79-83.,
• Vitruvius, De architectura, Praef. vii. 14.

^ Gellius, X. 12. 8, after Favorinus {Vors. i^ p. 325. 21-9).
^ Aristotle, Politics, E (e). 6, 1340 b 26.
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the geometric, and the harmonic (a name substituted by

Archj^tas and Hippasus for the older name 'sub-contrary').

From his mention of sphaerlc in connexion with his state-

ment that ' the mathematicians have given us clear knowledge

about the speed of the heavenly bodies and their risings and

settings' we gather that in Archytas's time astronomy was

already treated mathematically, the properties of the sphere

being studied so far as necessary to explain the movements

in the celestial sphere. He discussed too the question whether

the universe is unlimited in extent, using the following-

argument.

' If I were at the outside, say at the heaven of the fixed

stars, could I stretch my hand or ray stick outwards or not 1

To suppose that I could not is absurd ; and if I can stretch

it out, that which is outside must be either body or space (it

makes no difference which it is, as we shall see). We may
then in the same way get to the outside of that again, and

so on, asking on arrival at each new limit the same question

;

and if there is always a new place to which the stick may be

held out, this clearly involves extension without limit. If

now what so extends is body, the proposition is proved ; but

even if it is space, then, since space is that in which body
is or can be, and in the case of eternal things we must treat

that which potentially is as being, it follows equally that there

must be body and space (extending) without limit.' ^

In geometry, while Archytas doubtless increased the number
of theorems (as Proclus says), only one fragment of his has

survived, namely the solution of the problem of finding two

mean proportionals (equivalent to the duplication of the cube)

by a remarkable theoretical construction in three dimensions.

As this, however, belongs to higher geometry and not to the

Elements, the description of it will come more appropriately

in another place (pp. 246-9).

In music he gave the numerical ratios representing the

intervals of the tetrachord on three scales, the anharmonic,

the chromatic, and the diatonic.^ He held that sound is due

to impact, and that higher tones cori-espond to quicker motion

communicated to the air, and lower tones to slower motion.^

^ Simplicius in Phys., p. 467. 26. ^ Ptol. harm. i. 13, p. 31 Wall.
= Porph. in Ptol. harm., p. 236 (Vors. i', p. 232-3); Theon of Smyrna,

p. 61. 11-17.
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Of the fragments of Archytas handed down to us the most

interesting from the point of view of this chapter is a proof

of the proposition that there can be no number which is

a (geometric) mean between two numbers in the ratio known
as eTTLfiopios or superparticularis, that is, (n+\):n. This

proof is preserved by Boetius ^, and the noteworthy fact about

it is that it is substantially identical with the proof of the

same theorem in Prop. 3 of Euclid's tract on the Sectio

canonis.'^ I will quote Archytas's proof in full, in order to

show the slight difl'erences from the Euclidean form and
notation.

Let A, B be the given ' superparticularis proportio ' (ini-

jxopiov SidcTTrjfia in Euclid). [Archytas writes the smaller

number first (instead of second, as Euclid does) ; we are then

to suppose that A, B are integral numbers in the ratio of

n to {n+ 1).
I

Take C, DE the smallest numbers which are in the ratio

of A to B. [Here DE means B + E; in this respect the

notation differs from that of Euclid, who, as usual, takes

a straight line BF divided into two parts at G, the parts

BG, GF corresponding to the B and E respectively in

Archytas's proof. The step of finding G, DE the smallest

numbers in the same ratio as that of Jl to i? presupposes

Eucl. VII. 33 applied to two numbers.]

Then BE exceeds C by an aliquot part of itself and of C

[cf. the definition of emfiSpios dpi6fi6s in Nicomachus, i. 19. l].

Let B be the excess [i.e. we suppose E equal to C].

I say that B is not a number, but a unit.

For, if D is a number and an ahquot part of BE, it measures

BE ; therefore it measures E, that is, G.

Thus B measures both C and BE: which is impossible,

since the smallest numbers which are in the same ratio as

any numbers are prime to one another. [This presupposes

Eucl. VII. 22.J

Therefore D is a unit ; that is, BE exceeds C by a unit.

Hence no number can be found which is a mean between

the two numbers C, BE [for there is no integer intervening].

' Boetius, De inst. mus. iii. 11, pp. 285-6 Fiiedlein.

2 Musici sa-iptores Qraeci, ed. Jan, p. 14; Heiberg and Menge's Euclid,

vol. viii, p. 162.



216 THE ELEMENTS DOWN TO PLATO'S TIME

Therefore neither can any number be a mean between the

original numbers A, B, which are in the same ratio as G, BE
[cf. the more general proposition, Eucl. VIII. 8 ; the particular

inference is a consequence of Eucl. VII. 20, to the effect that

the least numbers of those which have the same ratio with

them measure the latter the same number of times, the greater

the greater and the less the less].

Since this proof cites as known several propositions corre-

sponding to propositions in Euclid, Book VII, it affords a strong

presumption that there already existed, at least as early as

the time of Archytas, a treatise of some sort on the Elements

of Arithmetic in a form similar to the Euclidean, and con-

taining many of the propositions afterwards embodied by

Euclid in his arithmetical books.

Summary.

We are now in a position to form an idea of the scope of

the Elements at the stage which thej^ had reached in Plato's

time. The substance of Eucl. I-IV was practically complete.

Book V was of course missing, because the theory of proportion

elaborated in that book was the creation of Eudoxus. The
Pythagoreans had a theory of proportion applicable to com-

mensurable magnitudes only ; this was probably a numerical

theory on lines similar to those of Eucl., Book VII. But the

theorems of Eucl., Book VI, in general, albeit insufficiently

established in so far as they depended on the numerical theory

of proportion, were known and used by the Pythagoreans.

We have seen reason to suppose that there existed Elements

of Arithmetic partly (at all events) on the lines of Eucl.,

Book VII, while some propositions of Book VIII (e.g. Props.

11 and 12) were also common property. The Pythagoreans,

too, conceived the idea of perfect numbers (numbers equal to

the sum of all their divisors) if they had not actually shown

(as Euclid does in IX. 36) how they are evolved. There can

also be little doubt that many of the properties of plane and

solid numbers and of similar numbers of both classes proved in

Euclid, Books VIII and IX, were known before Plato's time.

We come next to Book X, and it is plain that the foundation

of the whole had been well and truly laid by Theaetetus, and
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the main varieties of irrationals distinguished, though their

classification was not carried so far as in Euclid.

The substance of Book XI. 1-19 must already have been in-

cluded in the Elements (e.g. Eucl. XI. 1 9 is assumed in Archytas's

construction for the two mean proportionals), and the whole
theory of the section of Book XI in question would be required

for Theaetetus's work on the five regular solids: XI. 21 must
have been known to the Pythagoreans : while there is nothing
in the latter portion of the book about parallelepipedal solids

which (subject to the want of a rigorous theory of proportion)

was not within the powers of those who were familiar with
the theory of plane and solid numbers.

Book XII employs throughout the method of exhaustion,

the orthodox form of which is attributed to Eudoxus, who
grounded it upon a lemma known as Archimedes's Axiom or

its equivalent (Eucl. X. 1 ). Yet even XII. 2, to the effect that

circles are to one another as the square of their diameters, had
already been anticipated by Hippocrates of Chios, while

Democritus had discovered the truth of the theorems of

XII. 7, For., about the volume of a pyramid, and XII. 10,

about the volume of a cone.

As in the case of Book X, it would appear that Euclid was
indebted to Theaetetus for much of the substance of Book XIII,

the latter part of which (Props. 12-18) is devoted to the

construction of the five regular solids, and the inscribing of

them in spheres.

There is therefore probably little in the whole compass of

the Eletnents of Euclid, except the new theory of proportion due

to Eudoxus and its consequences, which was not in substance

included in the recognized content of geometry and arithmetic

by Plato's time, although the form and arrangement of the

subject-matter and the methods employed in particular cases

were different from what we find in Euclid.



VII

SPECIAL PROBLEMS

Simultaneously with the gradual evolution of the Elements,

the Greeks were occupying themselves with problems in

higher geometry; three problems in particular, the squaring

of the circle, the doubhng of the cube, and the trisection of

any given angle, were rallying-points for mathematicians

during three centuries at least, and the whole course of Greek

geometry was profoundly influenced by the character of the

specialized investigations which had their origin in the attempts

to solve these problems. In illustration we need only refer

to the subject of conic sections which began with the use

made of two of the curves for the finding of two mean pro-

portionals.

The Greeks classified problems according to the means by
which they were solved. The ancients, says Pappus, divided

them into three classes, which they called 'plane, solid, and

linear respectively. Problems were plane if they could be

solved by means of the straight line and circle only, solid

if they could be solved by means of one or more conic sections,

and lineaj- if their solution required the use of other curves

still more complicated and difficult to construct, such as spirals,

quadratrices, cochloids (conchoids) and cissoids, or again the

various curves included in the class of ' loci on surfaces ' (tottol

vpoi kirKpaveiais), as they were called.^ Thei'e was a corre-

sponding distinction between loci : plane loci are straight

lines or circles; solid loci are, according to the most strict

classification, conies only, which arise from the sections of

certain solids, namely cones ; while linear loci include all

' Pappus, iii, pp. 54-6, iv, pp. 270-2.
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higher curves.^ Another classification of loci divides them
into loci on lines {tottol npbs ypafinah) and loci on surfaces

(tottoi Trpos enKpaveiais).^ The former term is found in

Proclus, and" seems to be used in the sense both of loci which
are lines (including of course curves) and of loci which are

spaces bounded by lines; e.g. Proclus speaks of 'the whole
space between the parallels' in Eucl. I. 35 as being the locus

of the (equal) parallelograms 'on the same base and in the

same parallels'.^ Similarly loci on surfaces in Proclus may
be loci which are surfaces; but Pappus, who gives lemmas
to the two books of Euclid under that title, seems to imply
that they were curves drawn on surfaces, e.g. the cylindrical

helix.*

It is evident that the Greek geometers came very early

to the conclusion that the three problems in question were not

plane, but required for their solution either higher curves

than circles or constructions more mechanical in character

than the mere use of the ruler and compasses in the sense of

Euclid's Postulates 1-3. It was probably about 420 B.C. that

Hippias of Elis invented the curve known as the quadratrix

for the purpose of trisecting any angle, and it was in the first

half of the fourth century that Archytas used for the dupli-

cation of the cube a solid construction involving the revolution

of plane figures in space, one of which made a tore or anchor-

ring with internal diameter nil. There are very few records

of illusoiy attempts to do the impossible in these cases. It is

practically only in the case of the squaring of the circle that

we read of abortive efforts made by ' plane ' methods, and none

of these (with the possible exception of Bryson's, if the

accounts of his argument are correct) involved any real

fallacy. On the other band, the bold pi'onouncement of

Antiphon the Sophist that by inscribing in a circle a series

of regular polygons each of which has twice as many sides

as the preceding one, we shall use up or exhaust the area of

the circle, though • it was in advance of his time and was

condemned as a fallacy on the technical ground that a straight

line cannot coincide with an arc of a circle however short

its length, contained an idea destined to be fruitful in the

> Cf. Pappus, vii, p. 662, 10-15. ^ Proclus on Euol. I, p. 894. 19.

3 lb., p. 395. 5. Pappus, iv, p. 258 sq.
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hands of later and abler geometers, since it gives si method

of approximating, with any desired degree of accuracy, to the

area of a circle, and lies at the root of the method of exhaustion

as established by Eudoxus. As regards Hippocrates's quadra-

ture of lunes, we must, notwithstanding the criticism of

Aristotle charging him with a paralogism, decline to believe

that he was under any illusion as to the limits of what his

method could accomplish, or thought that he had actually

squared the circle.

The squaring of the circle.

There is presumably no problem which has exercised such

a fascination throughout the ages as that of rectifjdng or

squaring the circle ; and it is a curious fact that its attraction

has been no less (perhaps even greater) for the non-mathe-

matician than for the mathematician. It was naturally the

kind of problem which the Greeks, of all people, would take

up with zest the moment that its difficulty was realized. The

first name connected with the problem is Anaxagoras, who
is said to have occupied himself with it when in prison.^

The Pythagoreans claimed that it was solved in their school,

' as is clear from the demonstrations of Sextus the Pythagorean,

who got his method of demonstration from early tradition ' ^

;

but Sextus, or rather Sextius, lived in the reign of Augustus

or Tiberius, and, for the usual reasons, no value can be

attached to the statement.

The first serious attempts to solve the problem belong to

the second half of the fifth century B.C. A passage of

Aristophanes's Birds is quoted as evidence of the popularity

of the problem at the time (414 B.C.) of its first representation.

Aristophanes introduces Meton, the astronomer and discoverer

of the Metonic cycle of 1 9 years, who brings with him a ruler

and compasses, and makes a certain construction ' in order that

your circle may become square '.^ This is a play upon words,

because what Meton really does is to divide a circle into four

quadrants by two diameters at right angles to one another

;

the idea is of streets radiating from the agora in the centre

1 Plutarch, De exil. 17, p. 607 F.
^ Iambi, ap. Simpl. in Categ., p. 192, 16-19 K., 64 b 11 Brandis.
' Aristophanes, Birds 1005.
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of a town ; the word reTpdymvos then really means ' with four

(right) angles ' (at the centre), and not ' square ', but the word
conveys a laughing allusion to the problem of squaring all

the same.

We have already given an account of Hippocrates's quadra-

tures of lunes. These formed a sort of prolusio, and clearly

did not purport to be a solution of the problem ; Hippocrates

was aware that ' plane ' methods woiild not solve it, but, as

a matter of interest, he wished to show that, if circles could

not be squared by these methods, they could be employed

to find the area of some figures bounded by ares of circles,

namely certain lunes, and even of the sum of a certain circle

and a certain lune.

Antiphon of Athens, the Sophist and a contemporary of

Socrates, is the next person to claim attention. We owe
to Aristotle and his commentators our knowledge of Anti-

phon's method. Aristotle observes that a geometer is only

concerned to refute any fallacious arguments that may be

propounded in his subject if they are based upon the admitted

principles of geometry ; if they are not so based, he is not

concerned to refute them

:

' thus it is the geometer's business to refute the quadrature by
means of segments, but it is not his business to refute that

of Antiphon '}

As we have seen, the quadrature ' by means of segments ' is

probably Hippocrates's quad-

rature of lunes. Antiphon'

s

method is indicated by Themis-

tius^ and Simplieius.^ Suppose

there is any regular polygon

inscribed in a circle, e.g. a square

or an equilateral triangle. (Ac-

cording to Themistius, Antiphon

beganwithan equilateraltriangle,

and this seems to be the authentic

version; Simplicius says he in-

scribed some one of the regular polygons which can be inscribed

1 Arist. Fht/s. i. 2, 185 a 14-17.
'' Them, iii Pliys., p. 4. 2 sq.. Schenkl.
' Simp], in Pliys., p. 54. 20-55. 24, Diels.
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in a circle, ' suppose, if it so happen, that the inscribed polygon

is a square '.) On each side of the inscribed triangle or square

as base describe an isosceles triangle with its vertex on the

arc of the smaller segment of the circle subtended by the side.

This gives a regular inscribed polygon with double the number
of sides. Repeat the construction with the new polygon, and

we have an inscribed polygon with four times as many sides as

the original polygon had. Continuing the process,

'Antiphon thought that in this way the area (of the circle)

would be used up, and we should some time have a polygon
inscribed in the circle the sides of which would, owing to their

smallness, coincide with the circumference of the circle. And,
as we can make a square equal to any polygon . . . we shall

be in a position to make a square equal to a circle.'

Simplicius tells us that, while according to Alexander the

geometrical principle hereby infringed is the truth that a circle .

touches a straight line in one point (only), Eudemus more
correctly said it was the principle that magnitudes are divisible

without limit ; for, if the area of the circle is divisible without

limit, the process described by Antiphon will never result in

using up the whole area, or in making the sides of the polygon

take the position of the actual circumference of the circle.

But the objection to Antiphon's statement is really no more than

verbal ; Euclid uses exactly the same construction in XII. 2,

only he expresses the conclusion in a different way, saying

that, if the process be continued far enough, the small seg-

ments left over will be together less than any assigned area.

Antiphon in effect said the same thing, which again we express

by saying that the circle is the limit of such an inscribed

polygon when the number of its sides is indefinitely increased.

Antiphon therefore deserves an honourable place in the historj'-

of geometry as having originated the idea of exhausting an
area by means of inscribed regular polygons with an ever

increasing number of sides, an idea upon which, as we said,

Eudoxus founded his epoch-making method of exhaustion.

The practical value of Antiphon's construction is illustrated

by Archimedes's treatise on the Measurement of a Circle,

where, by constructing inscribed and circumscribed regular

polygons with 96 sides, Archimedes proves that 3i > tt > ^^,
the lower limit, tt > .3if , being obtained 'by calculating the
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perimeter of the inscribed polygon of 96 sides, which is

constructed in Antiphon's manner from an inscribed equilateral

triangle. The same construction starting from a square was
likewise the basis of Vieta's expression for 2/77-, namely

2 TT TT TT
- = COS -

. cos -
. cos ...

TT 4 8 16

Bryson, who came a generation later than Antiphon, being

a pupil of Socrates or of Euclid of Megara, was the author

of another attempted quadrature which is criticized by
Aristotle as ' sophistic ' and ' eristic ' on the ground that it

was based on principles not special to geometry but applicable

equally to other subjects.^ The commentators give accounts

of Bryson's argument which are substantially the same, except

that Alexander speaks of squares inscribed and circumscribed

to a circle^, while Themistius and Philoponus speak of any
polygons.^ According to Alexander, Bryson inscribed a square

in a circle and circumscribed another about it, while he also

took a square intermediate between them (Alexander does not
' say how constructed) ; then he argued that, as the intermediate

square is less than the outer and greater than the inner, while

the circle is also less than the outer square and greater than

the inner, and as things which are greater and less than the

same things respectively are equal, it follows that the circle is

equal to the intermediate square : upon which Alexander

remarks that not only is the thing assumed applicable to

other things besides geometrical magnitudes, e.g. to numbers,

times, depths of colour, degrees of heat or cold, &c., but it

is also false because (for instance) 8 and 9 are both less than

1 and greater than 7 and yet they are not equal. As regards

the intermediate square (or polygon), some have assumed that

it was the arithmetic mean betweeja the inscribed and circum-

scribed figures, and others that it was the geometric mean.

Both assumptions seem to be due to misunderstanding *
;
for

' Arist. An. Post. i. 9, 75 b 40.

2 Alexander on So-ph. El, p. 90. 10-21, Wallies, 306 b 24 sq., Brandis.

' Them, on An. Post., p. 19. 11-20, Walliee, 211 b 19, Brandis; Philop.

on An. Post., p. 111. 20-114. 17 W., 211 b 80, Brandis.
* Psellus (llth cent, a.d.) says, 'there are different opinions as to the
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the ancient commentators do not attribute to Bryson any such

statement, and indeed, to judge by their discussions of different

interpretations, it would seem that tradition was by no means

clear as to what Bryson actually did say. But it seems

important to note that Theniistius states (1) that Bryson

declared the circle to be greater than all inscribed, and less

than all circumscribed, polygons, while he also says (2) that

the assumed axiom is trthe, though not peculiar to geometry.

This suggests a possible explanation of what otherwise seems

to be an absurd argument. Bryson may have multiplied the

number of the sides of both the inscribed and circumscribed

regular polygons as Antiphon did with inscribed polygons;

he may then have argued that, if we continue this process

long enough, we shall have an inscribed and a circumscribed

polygon differing so little in area that, if we can describe

a polygon intermediate between them in area, the circle, which

is also intermediate in area between the inscribed and circum-

scribed polygons, must be equal to the intermediate polygon.^

If this is the right explanation, Bryson's name by no means

deserves to be banished from histories of Greek mathematics

;

on the contrary, in so far as he suggested the necessity of

considering circumscribed as well as inscribed polygons, he

went a step further than Antiphon; and the importance of

the idea is attested by the fact that, in the regular method

of exhaustion as practised by Archimedes, use is made of both

inscribed and circumscribed figures, and this compression, as it

were, of a circumscribed and an inscribed figure into one so

that they ultimately coincide with one another, and with the

proper method of finding the area of a circle, hut that which has found
the most favour is to take the geometric mean between the inscribed and
circumscribed squares'. I am not aware that he quotes Bryson as the
authority for this method, and it gives the inaccurate value tt = ^8 or
2-8284272 Isaac Argyrus (14th cent.) adds to his account of Bryson
the following sentence :

' For the circumscribed square seems to exceed
the circle by the same amount as the inscribed square is exceeded by the
circle.'

' It is true that, accoi'ding to Philoponus, Proclus had before him an
explanation of this kind, but rejected it on the ground that it would
mean that the circle must actually he the intermediate polygon and not
only be equal to it, in which case 'Bryson's contention would be tanta-
mount to Antiphon's, whereas according to Aristotle it was based on
a quite different principle. But it is sufficient that the circle should
be taken to be equal to any polygon that can be drawn intermediate
between the two ultimate polygons, and this gets over Proclus's difficulty.
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curvilinear figure to be measured, is particularly characteristic

of Archimedes.

We come now to the real rectifications or quadratures of

circles effected by means of higher curves, the construction

of which is more ' mechanical ' than that of the circle. Some
of these curves were applied to solve more than one of the

three classical problems, and it is not always easy to determine

for which purpose they were originally destined by their

inventors, because the accounts of the different authorities

do not quite agree. lamblichus, speaking of the quadrature

of the circle, said that

' Archimedes effected it by means of the spiral-shaped curve,

Nicomedes by means of the curve known by the special name
quadratrix {TiTpaycovt^ovcra), ApoUonius by means of a certain

curve which he himself calls " sister of the cochloid " but

which is the same as Nicomedes's curve, and finally Carpus
by means of a certain curve which he simply calls (the curve

arising) "from a double motion".'^

Pappus says that

' for the squaring of the circle Dinostratus, Nicomedes and
certain other and later geometers used a certain curve which

took its name from its property ; for those geometers called it

quadratrix.' ^

Lastly, Proclus, speaking of the trisection of any angle,

says that

' Nicomedes trisected any rectilineal angle by means of the

conchoidal curves, the construction, order and properties of

which he handed down, being himself the discoverer of their

peculiar character. Others have done the same thing by

means of the quadratrices of Hippias and Nicomedes. . . .

Others again, starting from the spirals of Archimedes, divided

any given rectilineal angle in any given ratio.'

"

All these passages refer to the qiiaxlratrix invented by

Hippias of Elis. The first two seem to imply that it was not

used by Hippias himself for squaring the circle, but that it

was Dinostratus (a brother of Menaechmus) and other later

geometers who first applied it to that purpose; lamblichus

and Pappus do not even mention the name of Hippias. We
might conclude that Hippias originally intended his curve to

1 Iambi, ap. Simpl. m Categ., p. 192. 19-24 K., 64 b 13-18 Br.

" Pappus, iv, pp. 250. 33-252. 3. ' Proclus on Eucl. I, p. 272. 1-12.

1523 Q
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be used for trisecting an angle. But this becomes more doubt-

ful when the passages of Proclus are considered. Pappus's

authority seems to be Sporus, who was only slightly older

than Pappus himself (towards the end of the third century a.d.),

and who was the author of a compilation called K-qpia con-

taining, among other things, mathematical extracts on the

quadrature of the circle and the duplication of the cube.

Proclus's authority, on the other hand, is doubtless Geminus,

who was much earlier (first century B.C.) Now not only

does the above passage of Proclus make it possible that the

name quadrairix may have been used by Hippias himself,

but in another place Proclus (i.e. Geminus) says that different

mathematicians have explained the properties of particular

kinds of curves

:

' thus Apollonius shows in the case of each of the conic curves
what is its property, and similarly Nicomedes with the
conchoids, Hippicis ivith the quadratrices, and Perseus with
the spirie curves.' ^

This suggests that Geminus had before him a regular treatise

by Hippias on the properties of the quadratrix (which may
have disappeared by the time of Sporus), and that Nicomedes
did not write any such general work on that curve ; and,

if this is so, it seems not impossible that Hippias himself

discovered that it would serve to rectify, and therefore to

square, the circle.

(a) The Quadndrix of Hip)pian. '

The method of constructing the curve is described by

c Pappus.2 Suppose that ABCD is

a square, and BED a quadrant of a
circle with centre A.

Suppose (1) that a radius of the
circle moves uniformly about A from
the position AB to the position AD,
and (2) that in the same time the

^ line BC moves uniformly, always
» ^^ ° parallel to itself and with its ex-

tremity B moving along BA, from the position BG to the
position AD.

' Proclus on Eucl. I, p. 356. 6-12. » Pappus, iv, pp. 252 sq.

B
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Then, in their ultimate positions, the moving straight Une
and the moving radius will both coincide with AD ; and at

any previous instant during the motion the moving line and
the moving radius will by their intersection determine a point,

as F or L.

The locus of these points is the quadratrix.

The property of the curve is that

IBAD:Z.EAD = (arc BED) : (arc ED) = AB : FH.

In other words, if is the angle FAD made by any radius

vector AF with AD, p the length of AF, and a the length

of the side of the square,

p sin (p (p

a -Itt

Now clearly, when the curve is once constructed, it enables

us not only to trisect the angle EAD but also to divide it in

any given ratio.

For let FH be divided at F' in the given ratio. Draw F'L
parallel to AD to meet the curve in L : join AL, and produce

it to meet the circle in iV^.

Then the angles EAN, NAD are in the ratio of FF' to F'H,

as is easily proved.

Thus the quadi-atrix lends itself quite readily to the division

of any angle in a given ratio.

The application of the quadratrix to the rectification of the

circle is a more difficult matter, because it requires us to

know the position of G, the point where the quadratrix

intersects AD. This difficulty was fully appreciated in ancient

times, as we shall see.

Meantime, assuming that the quadratrix intersects AD
in G, we have to prove the proposition which gives the length

of the arc of the quadrant BED and therefore of the circum-

ference of the circle. This proposition is to the effect that

(arc of quadrant BED) : AB =^ AB: AG.

This is proved by reductio ad absurdum.

If the former ratio is not equal to AB:AG, it must be

equal to AB.AK, where AK is either (1) greater or (2) less

than A G.

(1) Let AK he greater than AG; and with A as centre

Q 3
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and AK as radius, draw the quadrant KFL cutting the quad-

ratrix in F and AB in L.

Join AF, and produce it to meet the circumference BED
in E; draw i^if perpendicular to AD.

Now, by hypothesis,

(arc BED) :AB = AB: AK
= (arc BED) : (arc LFK) ;

therefore AB = (arc LFK).

But, by the property of the quadra-

trix,

AB:FH= (arc BED) : (arc ED)

= (&vcLFK):{eiVcFK);

and it was proved that AB = (s^rc LFK)
;

therefore FH = (arc FK)

:

which is absurd. Therefore AK is not greater than AG.

(2) Let AKhe less than AG.
With centre A and radius AK draw the quadrant KML.
Draw KF at right angles to ^D meeting the quadratrix

in* F\ join AF, and let it meet the

quadrants in M, E respectively.

Then, as before, we prove that

AB=^ {a,TcLMK).

And, by the property of the quad-

ratrix,

Therefore, since

AB : FK = (arc BED) : (arc DE)

= (arc LMK) : (arc MK).

AB = (arc LAIK),

FK = (arc KiM)

:

Therefore AK is not less than AG.which is absurd.

Since then AK is neither less nor greater than AG, it is

equal to it, and

(arc BED) :AB^AB:AG.
[The above proof is presumably due to Dinostratus (if not

to Hippias himself), and, as Dinostratus was a brother of
Menaechmus, a pupil of Eudoxus, and therefore probably
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flourished about 350 B.C., that 'is to say, some time before
Euclid, it is worth while to note certain propositions which
are assumed as known. These are, in addition to the theorem
of Eucl. VI. ."3, the following: (1) the circumferences of

circles are as their respective radii; (2) any arc of a circle

is greater than the chord subtending it; (3) any arc of a
circle less than a quadrant is less than the portion of the

tangent at one extremity of the arc cut off by the radius

passing through the other extremity. (2) and (3) are of

course equivalent to the facts that, if a be the circular measure
of an angle less than a right angle, sin a < a < tan a.]

Even now we have only rectified the circle. To square it

we have to use the proposition (1) in Archimedes's Measure-
ment of a Circle, to the effect that the area of a circle is equal

to that of a right-angled triangle in which the perpendicular

is equal to the radius, and the base to the circumference,

of the circle. This proposition is proved by the method of

exhaustion and may have been known to Dinostratus, who
was later than Eudoxus, if not to Hippias.

The criticisms of Sporus,^ in which Pappus concurs, are

worth quoting

:

(1) 'The very thing for which the construction is thought
to serve is actually assumed in the hypothesis. For how is it

possible, with two points starting from B, to make one of

them move along a straight line to A and the other along
a circumference to D in an equal time, unless you first know
the ratio of the straight line AB to the circumference BED ?

In fact this ratio must also be that of the speeds of motion.

For, if you employ speeds not definitely adjusted (to this

ratio), how can you make the motions end at the same
moment, unless this should sometime happen by pure chance 1

Is not the thing thus shown to be absurd 1

(2) 'Again, the extremity of the curve which they employ
for squaring the circle, I mean the point in which the curve

cuts the straight line AD, is not found at all. For if, in the

figure, the straight lines CB, BA are made to end their motion
together, they will then coincide with AD itself and will not

cut one another any more. In fact they cease to intersect

before they coincide with AD, and yet it was the intersection

of these lines which was supposed to give the extremity of the

1 Pappus, iv, pp. 252. 26-254. 22.
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curve, where it met the straight line AD. Unless indeed any

one should assert that the curve is conceived to be produced

further, in the same way as we suppose straight lines to be

produced, as far as AD. But this does not follow from the

assumptions made; the point G can only be found by first

assuming (as known) the ratio of the circumference to the

straight line.'

The second of these objections is undoubtedly sound. The

point Cr can in fact only be found by applying the method

of exhaustion in the orthodox Greek manner; e.g. we may
first bisect the angle of the quadrant, then the half towards

AD, then the half of that and so on, drawing each time

from the points F in which the bisectors cut the quadratrix

perpendiculars FH on AD and describing circles with AF
as radius cutting AD in. K. Then, if we continue this process

long enough, HK will get smaller and smaller and, as 6 lies

between H and K, we can approximate to the position of G as

nearly as we please. But this process is the equivalent of

approximating to n, which is the very object of the whole

construction.

As regards objection (1) Hultsch has argued that it is not

valid because, with our modern facilities for making instru-

ments of precision, there is no difficulty in making the two

uniform motions take the same time. Thus an accurate clock

will show the minute hand describing an exact quadrant in

a definite time, and it is quite practicable now to contrive a

uniform rectilinear motion taking exactly the same time.

I suspect, however, that the rectilinear motion would be the

result of converting some one or more circular motions into

rectilinear motions ; if so, they would involve the use of an

approximate value of rr, in which case the solution would depend

on the assumption of the very thing to be found. I am inclined,

therefore, to think that both Sporus's objections are valid.

(/3) The Spiral of Arelilmedes.

We are assured that Archimedes actually used the spiral

for squaring the circle. He does in fact show how to rectify

a circle by means of a polar subtangent to the spiral. The
spiral is thus generated : suppose that a straight fine with

one extremity fixed starts from a fixed position (the initial
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line) and revolves uniformly about the fixed extremity, while
a point also moves uniformly along the moving straight line

starting from the fixed extremity (the origin) at the com-
mencement of the straight line's motion ; the curve described

is a spiral.

The polar equation of the curve is obviously p = a6.

Suppose that the tangent at any point P of the spiral is

met at T by a straight line drawn from 0, the origin or pole,

perpendicular to the radius vector OF ; then OT is the polar

subtangent.

Now in the book On Spirals Archimedes proves generally

the equivalent of the fact that, if p be the radius vector to

the point P,

OT = p^/a.

If P is on the nih turn of the spiral, the moving straight

line will have moved through an angle 2(n — 1)77 + 6, say.

Hence p — a{2(n—l)Tr + 6\,

and 0T=^ p^/a = p{2{n-l)Tr + e}.

Archimedes's way of expressing this is to say (Prop. 20)

that, if p be the circumference of the circle with radius

OP (= p), and if this circle cut the initial line in the point K,

OT — (n—l}p + arcKP measured ' forward ' from K to P.

If P is the end of the nth turn, this reduces to

OT = n (circumf. of circle with radius OP),

and, if P is the end of the first turn in particular,

OT — (circumf. of circle with radius OP). (Prop. 19.)

The spiral can thus be used for the rectification of any

circle. And the quadrature follows directly from Measure-

inent of a Circle, Prop. 1.

(y) Solutions by A'pollonius and Carpus.

lamblichus says that ApoUonius himself called the curve by

means of which he squared the circle ' sister of the cochloid '.

What this curve was is uncertain. As the passage goes on to

say that it was really ' the same as the (curve) of Nicomedes
',

and the quadratrix has just been mentioned as the curve used
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by Nicomedes, some have supposed the ' sister of the cochloid
'

(or conchoid) to be the quadratrix, but this seems highly im-

probable. There is, however, another possibilitj'. Apollonius

is known to have written a regular treatise on the C'ochlias,

which was the cylindrical helix.^ It is conceivable that he

might call the coclilias the 'sister of the cochloid' on the

ground of the similarity of the names, if not of the curves.

And, as a matter of fact, the drawing of a tangent to the

helix enables the circular section of the cylinder to be squared.

For, if a plane be drawn at right angles to the axis of.the

cylinder through the initial position of the moving radius

which describes the helix, and if we project on this plane

the portion of the tangent at any point of the helix intercepted

between the point and the plane, the projection is equal to

an arc of the circular section of the cylinder subtended by an

angle at the centre equal to the angle through which the

plane through the axis and the moving radius has turned

from its original position. And this squaring by means of

what we may call the ' subtangent ' is sufficiently parallel to

the use by Archimedes of the polar subtangent to the spiral

for the same purpose to make the hypothesis attractive.

Nothing whatever is known of Carpus's curve ' of double

motion '. Tannery thought it was the cycloid ; but there is no

evidence for this.

(5) A'pproximations to the value of rr.

As we have seen, Archimedes, by inscribing and cir-

cumscribing regular polygons of 96 sides, and calculating

their perimeters respectively, obtained the approximation

3f>7r>3^f- (Measurement of a Circle, Prop. 3). But we
now learn '^ that, in a work on Flinthides and Cylinders, he

made a nearer approximation still. Unfortunately the figures

as they stand in the Greek text are incorrect, the lower limit

being given as the ratio of /i^acooe to fi ^vfia, or 211875 : 67441

(= 3-141635), and the higher limit as the ratio of ^ ^cotttj to

H^^Tva or 197888:62351 (= 3-17377), so that the lower limit

1 Pappus, viii, p. 1110. 20; Proclus on Eucl. I, p. 105. 5.
2 Heron, Metricu, i. 26, p. 66. 13-17.
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as given is greater t'han the true value, and the higher Hmit is

greater than the earlier upper limit 3i
. Slight corrections by

Ka Ka l9 10

Tannery {jx^aaioP for ji^acooe and fi^emir^ for n^^amrj) give

b^ter figures, namely

195882 211872

"eisS^l ^ '^ > ~674aT

or 3.1416016 > TT > 3-1415904....

Another suggestion ^ is to correct u (vfia into fi^^fJ-S and

HX'^vrj into /xecoTrr], giving

195888 211875

62351 ^ ^ ^ 67444

or 3-141697... > TT >3-141495....

If either suggestion represents the true reading, the mean
between the two limits gives the same remarkably close

approximation 3-141596.

Ptolemy ^ gives a value for the ratio of the circumference

of a circle to its diameter expressed thus in sexagesimal

fractions, y rj X, i.e. 3+— + —^ or 3-1416. He observes

that this is almost exactly the mean between the Archimedean
limits 31 and 3if . It is, however, more exact than this mean,

and Ptolemy no doubt obtained his value independently. He
had the basis of the calculation ready to hand in his Table

of Chords. This Table gives the lengths of the chords of

a circle subtended by arcs of ^°, 1°, 1|°, and so on by half

degrees. The chords are expressed in terms of 120th parts

of the length of the diameter. If one such part be denoted

by l*", the chord subtended by an arc of 1° is given by the

Table in terms of this unit and sexagesimal fractions of it

thus, l''2'50". Since an angle of 1" at the centre subtends

a side of the regular polygon of 360 sides inscribed in the

circle, the perimeter of this polygon is 360 times 1^ 2' 50"

or, since 1^ = 1 /120th of the diameter, the perimeter of the

polygon expressed in terms of the diameter is 3 times 1 2' 50",

that is 3 8' 30", which is Ptolemy's figure for n.

^ J. L. Heiben in yordisk Tidsshrift for Filologi, 3" Ser. xx. Faec. 1-2.

' Ptolemy, Syntaxis, vi. 7, p. 513. 1-5, Heib.
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There is evidence of a still closer calculation than Ptolemy's

due to some Greek whose name we do not know. The Indian

mathematician Aryabhatta (born A.D. 476) says in his Lessons

in Calculation

:

'To 100 add 4; multiply the sum by 8; add 02000 more

and thus (we have), for a diameter of 2 myriads, the approxi-

mate length of the circumference of the circle '

;

that is, he gives |§§o-| or 3-1416 as the value of tt. But the

way in which he expresses it points indubitably to a Greek

source, ' for the Greeks alone of all peoples made the myriad

the unit of the second order ' (Rodet).

This brings us to the notice at the end of Eutocius's com-

mentary on the Measurement of a Circle of Archimedes, which

records ^ that other mathematicians made similar approxima-

tions, though it does not give their results.

'It is to be observed that Apollonius of Perga solved the

same problem in his 'I2kvt6klov (" means of quick delivery "),

using other numbers and making the approximation closer

[than that of Archimedes]. While Apollonius's figures seem
to be more accurate, they do not serve the purpose wliich

Archimedes had in view ; for, as we said, his object in this

book was to find an approximate figure suitable for use in

daily life. Hence we cannot regard as appropriate the censure
of Sporus of Nicaea, who seems to charge Archimedes with
having failed to determine with accuracy (the length of) the
straight line which is equal to the circumference of the circle,

to judge by the passage in his Keria where Sporus observes
that his own teacher, meaning Philon of Gadara, reduced (the

matter) to more exact numerical expression than Archimedes
did, I mean in his i and if ; in fact people seem, one after the
other, to have failed to appreciate Archimedes's object. They
have also used multiplications and divisions of myriads, a
method not easy to follow for any one who has not gone
through a course of Magnus's Logistica.'

It is possible that, as Apollonius used myriads, • second

myriads', 'third myriads', &c., as orders of integral numbers,

he may have worked with the fractions , . &c.

;

10000 10000^

' Archimedes, ed. Heib., vol. iii, pp. 258-9.
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in any case Magnus (apparently later than Sporus, and therefore
perhaps belonging to the fourth or fifth century A. D.) would
seem to have written an exposition of such a method, which,
as Eutocius indicates, must have been very much more
troublesome than the method of sexagesimal fractions used
by Ptolemy.

The Trisection of any Angle.

This problem presumably arose from attempts to continue

the construction of regular polygons after that of the pentagon
had been discovered. The trisection of an angle would be

necessary in order to construct a regular polygon the sides

of which are nine, or any multiple of nine, in number.
A regular polygon of seven sides, on the other hand, would
no doubt be constructed with the help of the first discovered

method of dividing any angle in a given ratio, i.e. by means
of the quadratrix. This method covered the case of trisection,

but other more practicable ways of effecting this particular

construction were in due time evolved.

We are told that the ancients attempted, and failed, to

solve the problem by 'plane' methods, i.e. by means of the

straight line and circle ; they failed because the problem is

not ' plane ' but ' solid '. Moreover, they were not yet familiar

with conic sections, and so were at a loss ; afterwards,

however, they succeeded in trisecting an angle by means of

conic sections, a method to which they were led by the

reduction of the problem to another, of the kind known as

vevaeis (incliruitiones, or vergings)}

(a) Reduction to a certain pevcris, solved by conies.

The reduction is arrived at by the following analysis. It is

only necessary to deal with the case where the given angle to

be trisected is acute, since a right angle can be trisected

by drawing an equilateral triangle.

Let ABC be the given angle, and let AC be drawn perpen-

dicular to BC. Complete the parallelogram AOBF, and

produce the side FA to E.

1 Pappus, iv, p. 272. 7-14.
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Suppose E to he such a point that, if BE he joined meeting

AC in D, the intercept BE between AG and AE is equal

to 2AB.

Bisect DE at G, and join A G.

Then BG = GE = AG = AB.

Therefore lABG=^lAGB=2lAEG

= 2 Z BBC, since FE, BC are parallel.

Hence IDBG=^AABC,

and the angle ABC is trisected by BE.

Thus the problem is reduced to drawing BE from B to cut

AG tt'iid AE in such a way that the intercept BE = 2^15.

In the phraseology of the problems called pevareis the

problem is to insert a straight line EB of given length

2AB between AE and AC in such a way that EB verges

towards B.

Pappus shows how to solve this problem in a more general

form. Given a parallelogram ABGB (which need not be

rectangular, as Pappus makes it), to draw AEF to meet CB
and BG produced in points E and F such that EF has a given

lengiji.

Suppose the problem solved, EF being of the given length.

Complete the parallelogram

EDGF.
Then, EF being given in length,

BG is given in length.

Therefore G lies on a circle with
centre B and radius equal to the

given length.

Again, by the help of Eucl. I. 43 relating to the complements
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of the parallelograms about the diagonal of the complete

parallelogram, we see that '

BG.CD = BF.ED
= BF. FO.

Consequently G lies on a hyperbola with BF, BA as

asymptotes and passing through D.

Thus, in order to effect the construction, we have only to

draw this hyperbola as well as the circle with centre D and

radius equal to the given length. Their intersection gives the

point G, and E, -fare then determined by drawing tri'' parallel

to DC to meet BC produced in F and joining AF.

(/3) The veva-Ls equivalent to a cubic equation.

It is easily seen that the solution of the ceCo-ty is equivalent

to the solution of a cubic equation. For in the first figure on

p. 236, if FA be the axis of x, FB the axis of y, FA - a,

FB = h, the solution of the problem by means of conies as

Pappus gives it is the equivalent of finding a certain point

as the intersection of the conies '

xy = ab,

{x-af-¥{y-bf = 4:{a'' + ¥').

The second equation gives

{x + a){x-Za) = {y + b){3b-y).

From the first equation it is easily seen that

(x + a):iy + b)^a:y,

and that {x-3a)y = a{b-3y)

;

therefore, eliminating x, we have

a^(b-3y) = y^Sb-y),

or y^-3by^-3a^y + a^b = 0.

Now suppose that Z.ABC = 6, so that tan 6 = b/a;

and suppose that t = tan DBC,

so that y = at.

We have then

aH^-3baH''-3aH + a^b = 0,
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or af-3bt^-3at + b = 0,

whence b(l~3t^) = a{3t- f"),

,
. h 3t-t^

or tan = - = -—-— =

a 1 — 3r

so that, by the well-known ti'igonometrieal formula,

t = tan J 6
;

that is, BD trisects the angle ABC.

(y) TJte Conchoids of Nicomedes.

Nicomedes invented a curve for the specific purpose of

solving such uevcreis as the above. His date can be fixed with

sufficient accuracy by the facts (1) that he seems to have

criticized unfavourably' Eratosthenes's solution of the problem

of the two mean proportionals or the duplication of the cube,

and (2) that Apollonius called a certain curve the ' sister of

the cochloid ', evidently out of compliment to Nicomedes.

Nicomedes must therefore have been about intermediate

between Eratosthenes (a little younger than Archimedes, and

therefore born about 280 B.C.) and Apollonius (born probably

about 264 B.C.).

The cui've is called by Pappus the cochloid (/coxAoei^ijy

ypa/j-firi), and this was evidentlj^ the original name for it

;

later, e.g. by Proclus, it was called the conchoid (KoyxoeiSrj^

ypa/ifii]). There were varieties of the cochloidal curves

;

Pappus speaks of the ' first ',
' second ',

' third ' and ' fourth ',

observing that the ' first ' was used for trisecting an angle and
duplicating the cube, while the others were useful for other

investigations.! It is the 'first' which concerns us here.

Nicomedes constructed it by means of a mechanical device

which may be described thus.'^ ^5 is a ruler with a slot

in it parallel to its length, FE a second ruler fixed at right

angles to the first, with a peg C fixed in it. A third ruler

PC pointed at P has a slot in it parallel to its length which
fits the peg C. D is a fixed peg on PC in a straight line

with the slot, and B can move freely along the slot in AB.
If then the ruler PC moves so that the peg D describes the

• Pappus, iv, p. 244. 18-20. « lb., pp. 242-4.
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length of the slot in J. i? on each side of F, the extremity P of

the ruler describes the curve which is called a conchoid or

cochloid. Nicomedes called the straight line AB the ruler

(Kavav), the fixed point G the j'iole {noXos), and the constant

length PD the distance {Sida-Trnia).

The fundamental property of the curve, which in polar

coordinates would now be denoted by the equation

r ^ a+h sec 6,

is that, if any radius vector be drawn from C to the curve, as

GP, the length intercepted on the radius vector between the

curve and the straight line AB is constant. Thus any veOcns

in which one of the two given lines (between which the

straight line of given length is to be placed) is a straight line

can be solved by means of the intersection of the other line

with a certain conchoid having as its pole the fixed point

to which the inserted straight line must verge (veveiv). Pappus

tells us that in practice the conchoid was not always actually

drawn but that ' some ', for greater convenience, moved a ruler

about the fixed point until by trial the intercept was found to

be equal to the given length.^

In the figure above (p. 236) showing the reduction of the

trisection of an angle to a vevai? the conchoid to be used

would have B for its 2Mle, AG for the ' ruler ' or base, a length

equal to 2AB for its distance; and E would be found as the

intersection of the conchoid with FA produced.

Proclus says that Nicomedes gave the construction, the

order, and the properties of the conchoidal lines ^ ; but nothing

1 Pappus, iv, p. 246. 15. "^ Proclus on Euol. I, p. 272. 3-7.
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of his treatise has come down to us except the construction

of the ' first ' conchoid, its fundamental property, and the fact

that the curve has the ruler or base as an asymptote in

each direction. The distinction, however, drawn by Pappus

between the ' first ',
' second ', ' third ' and ' fourth ' conchoids

may well have been taken from the original treatise, directly

or indirectly. We are not told the nature of the conchoids

other than the ' first ', but it is probable that they were three

other curves produced by varying the conditions in the figure.

Let a be the distance or fixed intercept between the curve and

the base, h the distance of the pole from the base. Then

clearly, if along each radius vector drawn through the pole

we measure a backwards from the base towards the pole,

we get a conchoidal figure on the side of the base towards

the pole. This curve takes three forms according as a is

greater than, equal to, or less than h. Each of them has

the base for asymptote, but in the first of the three cases

the curve has a loop as shown in the figure, in the second

case it has a cusp at the pole, in the third it has no double

point. The most probable hypothesis seems to be that the

other three cochloidal curves mentioned by Pappus are these

three varieties.

{8) Another reduction to a vivais {Archimedes).

A proposition leading to the reduction of the trisection

of an angle to another reCo-ty is included in the collection of

Lemmas {Liber Assumptorum) which has come to us under

.
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the name of Archimedes through the Arabic. Though the
Lemmas cannot have been written by Archimedes in their
present form, because his name is quoted in them more than
once, it is probable that some of them are of Archimedean
origin, and especially is this the case with Prop. 8, since the
feva-is suggested by it is of very much the same kind as those
the solution of which is assumed in the treatise O71 Spirals,
Props. 5-8. The proposition is as follows.

If AB be any chord of a circle with centre 0, and AB be
produced to C so that BC is

equal to the radius, and if GO
meet the circle in Z), E, then the

arc AE will be equal to three

times the arc BD.
Draw the chord EF parallel

to AB, and join OB, OF.
Since BO = BC,

Z BOO = Z BGO.

Now IC0F=2 10EF,

= 21 BGO, by parallels,

= 2 Z BOG.

Therefore Z BOF = 3 Z BOD,

and (arc BF) = (arc AE) = 3 (arc BD).

By means of this proposition we can reduce the trisection of

the arc AE to a j/ei/o-iy. For, in order to find an arc which is

one-third of the arc AE, we have only to draw through A
a straight line ABG meeting the circle again in B and EO
produced in C, and such that BG is equal to the radius of the

circle.

(e) Direct solutions by means of conies.

Pappus gives two solutions of the trisection problem in

which conies are applied directly without any preliminary

reduction of the problem to a vevais.^

1. The analysis leading to the first method is as follows.

Let AG be a straight line, and B a point without it such

that, if BA, BG be "joined, the angle BOA is double of the

angle BAG.
' Pappus, iv, pp. 282-4,

ms B
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BD perpendicular to AG, and cut off DE along BA
equal to DC. Join BE.

Then, since BE — BG,

L BEG = BGE.

But IBEG=IBAE + IEBA,
and, by hypothesis,

IBGA = 2 1BAE.

Therefore Z BAE + L EBA = 2 Z BAE;

therefore Z BAE = Z ABE,

or ^A" = BE.

Divide 4C at (? so that AG = 2GG, or P<? = §^6'.

Also let FE be made equal to EB, so that Ci) = \GF.

It follows that GB = i(Z[(7- Ci?') = \AF.

Now Br)'>-=.BE--EB-'

= BE''~EF'^.

BA.AF=AE--EF^
^ BE^-EF\

BB^ ^BA.AF
= 3 AD . BG, from above,

BD^:AB.BG= 3:1

= 3AG':AG\

Hence B lies on a hyperbola with AG as transverse axis

and with conjugate axis equal to -/s .AG. *

Now suppose we are required

to trisect an arc AB oi a, circle

with centre 0.

Draw the chord AB, divide it

at G so that AG = 2 GB, and

construct the hyperbola which

has AG for transverse axis and

a straight line equal to Vs . AG for conjugate axis.

Let the hyperbola meet the circular arc in P. Join PA,
PO, PB.

Also

Therefore

so that

(Eucl. II. 6)



SOLUTIONS BY MEANS OF CONICS 243

Then, by the above proposition,

IPBA = 2 1PAB.
Therefore their doubles are equal,

or IP0A = 2 1P0B,
and OP accordingly trisects the arc APB and the angle AOB.

2. 'Some', says Pappus, set out another solution not in-

volving recourse to a vevcns, as follows.

Let MPS be an arc of a circle which it is required to

trisect.

Suppose it done, and let the arc SP be one-third of the

arc SPR.
Join RP, SP.

Then the angle RSP is equal

to twice the angle SRP.
Let SE bisect the angle RSP, " x n "s

meeting RP in E, and draw EX, PN perpendicular to RS.

Then Z ERS = Z ESR, so that RE = ES.

Therefore RX — XS, and X is given.

Again RS : ;S'P = RE : EP = RX : XX;

therefore RS : RX = SP : NX.

But RS=2RX;
therefore SP=2XX.

It follows that P lies on a hyperbola with S as focus and XE
as directrix, and with eccentricity 2.

Hence, in order to trisect the arc, we have only to bisect RS
at X, draw XE at right angles to RS, and then draw a hyper-

bola with S as focus, XE as directrix, and 2 as the eccentricity.

The hyperbola is the same as that used in the first solution.

The passage of Pappus from which this solution is taken is

remarkable as being one of three passages in Greek mathe-

matical works still extant (two being in Pappus and one in

a fragment of Anthemius on burning mirrors) which refer to

the focus-and-directrix property of conies. The second passage

in Pappus comes under the heading of Lemmas to the Surface-

Loci of Euclid.^ Pappus there gives a complete proof of the

1 Pappus, vii, pp. 1004-1114.

E 2
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theorem that, ifthe distance of a point frortx a fixed jioint is

in a given ratio to its distaiice fro'ni a fiaxd line, the locus of

the point is a conic section which is an ellipse, a parabola,

or a hyperbola according as the given ratio is less than, equal

to, or greater than, unity. The importance of these passages

lies in the fact that the Lemma was required for the

understanding of Euchd's treatise. We can hardly avoid

the conclusion that the property was used by Euclid in his

Surface-Loci, but was assumed as well known. It was, there-

fore, probably taken from some treatise current in Euclid's

time, perhaps from Aristaeus's work on Solid Loci.

The Duplication of the Cube, or the problem

of the two mean proportionals.

(a) History of the piroblem.

In his. commentary on Archimedes, On the Sphere and
Cylinder, II. 1, Eutocius has preserved for us a precious

collection of solutions of this famous problem.^ One of the

solutions is that of Eratosthenes, a younger contemporary of

Archimedes, and it is introduced by what purports to be

a letter from Eratosthenes to Ptolemy. This was Ptolemy

Euergetes, who at the beginning of his reign (245 B.C.) per-

suaded Eratosthenes to come from Athens to Alexandria to be

tutor to his son (Philopator). The supposed letter gives the

tradition regarding the origin of the problem and the history of

its solution up to the time of Eratosthenes. Then, after some
remarks on its usefulness for practical purposes, the author

describes the construction by which Eratosthenes himself solved

it, giving the proof of it at some length and adding directions

for making the instrument by which the construction could

be effected in practice. Next he says that the mechanical

contrivance represented by Eratosthenes was, ' in the votive

monument ', actually of bronze, and was fastened on with lead

close under the (rT€<pdvr] of the pillar. There was, further,

on the pillar the proof in a condensed form, with one figure,

and, at the end, an epigram. The supposed letter of Eratos-

thenes is a forgery, but the author rendered a real service

' Archimedes, ed. Heib., vol. iii, pp. 54. 26-106. 24.
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by actually quoting the proof and the epigram, Avliicli are the

genuine work of Eratosthenes.

Our document begins with the story that an ancient tragic

poet had represented Minos as putting up a tomb to Glaucus

but being dissatisfied with its being only 100 feet each way;
Minos was then represented as saying that it must be made
double the size, by increasing each of the dimensions in that

ratio. Naturally the poet ' was thought to have made a mis-

take '. Von Wilamowitz has shown that the verses which
Minos is made to say cannot have been from any play by
Aeschylus, Sophocles, or Euripides. They are the work of

some obscure poet, and the ignorance of mathematics shown
by him is the only reason why they became notorious and so

survived. The letter goes on to say that

'Geometers took up the question and sought to find out
how one could double a given solid while keeping the same
shape ; the problem took the name of " the duplication of the

cube " because they started from a cube and sought to double
it. For a long time all their efibrts were vain ; then Hippo-
crates of Chios discovered for the first time that, if we can
devise a way of finding two mean proportionals in continued
proportion between two straight lines the greater of which
is double of the less, the cube will be doubled; that is, one
puzzle {dTToprj/ia} was turned by him into another not less

difficult. After a time, so goes the story, certain Delians, who
were commanded by the oracle to double a certain altar, fell

into the same quandary as before.'

At this point the versions of the story diverge somewhat.

The pseudo-Eratosthenes continues as follows :

' They therefore sent over to beg the geometers who were
with Plato in the Academy to find them the solution. The
latter applying themselves diligently to the problem of finding

two mean proportionals between two given straight lines,

Archytas of Taras is said to have found them by means of

a half cylinder, and Eudoxus by means of the so-called curved

lines ; but, as it turned out, all their solutions were theoretical,

and no one of them was able to give a practical construction

for ordinary use, save to a certain small extent Menaechmus,
and that with difiiculty.'

Fortunately we have Eratosthenes's own version in a quota-

tion by Theon of Smyrna

:

' Eratosthenes in his work entitled Plaionicus relates that.
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when the god proclaimed to the Delians by the oracle that, if

they would get rid of a plague, they should construct an altar

double of the existing one, their craftsmen fell into great

perplexity in their efforts to discover how a solid could be made
double of a (similar) solid ; they therefore went to ask Plato

about it, and he replied that the oracle meant, not that the god

wanted an altar of double the size, but that he wished, in

setting them the task, to shame the Greeks for their neglect

of mathematics and their contempt for geometry.' ^

Eratosthenes's version may well be true ; and there is no

doubt that the question was studied in the Academy, solutions

being attributed to Eudoxus, Menaechmus, and even (though

erroneously) to Plato himself. The description by the pseudo-

Eratosthenes of the three solutions by Archytas, Eudoxus and

Menaechmus is little more than a paraphrase of the lines about

them in the genuine epigram of Eratosthenes,

' Do not seek to do the difficult business of the cylinders of

Archytas, or to cut the cones in the triads of Menaechmus, or

to draw such a curved form of lines as is described by the

god-fearing Eudoxus.'

The ditferent versions are reflected in Plutarch, who in one

place gives Plato's answer to the Delians in almost the same

words as Eratosthenes,^ and in another place tells us that

Plato referred the Delians to Eudoxus and Helicon of Cyzicus

for a solution of the problem.^

After Hippocrates had discovered that the duplication of

the cube was equivalent to finding two mean proportionals in

continued proportion between two given straight lines, the

problem seems to have been attacked in the latter form

exclusively. The various solutions will now be reproduced

in chronological order.

(/3) Archytas.

The solution of Archytas is the most remarkable of all,

especially when his date is considered (first half of fourth cen-

tury B. c), because it is not a construction in a plane but a bold

1 Theon of Smyrna, p. 2. 3-12.
'' Plutarch, De E apud Delphos, c. 6, 386 e.

^ De geiiio Socratis, c. 7, 579 c, u.



ARCHYTAS 247

construction in three dimensions, determining a certain point
as the intersection of three surfaces of revolution, (1) a right
cone, (2) a cylinder, (3) a tore or anchor-ring with inner
diameter nil. The intersection of the two latter surfaces
gives (says Archytas) a certain curve (which is in fact a curve

of double curvature), and the point required is found as the

point in which the cone meets this curve.

Suppose that AC, AB are the two straight lines between
which two mean proportionals are to be found, and let ^C be

made the diameter of a circle and AB a, chord in it.

Draw a semicircle with AG &b diameter, but in a plane at

right angles to the plane of the circle ABG, and imagine this

semicircle to revolve about a straight line through A per-

pendicular to the plane of ABC (thus describing half a tore

with inner diameter nil).

Next draw a right half-cylinder on the semicircle ABG as

base ; this will cut the surface of the half-iore in a certain

curve.

Lastly let CD, the tangent to the circle ABC at the point C,

meet AB produced in D; and suppose the triangle ADC to

revolve about AC as axis. This will generate the surface

of a right circular cone ; the point B will describe a semicircle

BQE at right angles to the plane of ABG and having its

diameter BE at right angles to AG; and the surface of the

cone will meet in some point P the curve which is the inter-

section of the half-cylinder and the half-fore.
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Let APC" be the corresponding position of the revolving

semicircle, and let AG' meet the circumference ABC in M.

Drawing F3I perpendicular to the plane of ABC, we see

that it must meet the circumference of the circle ABC because

P is on the cylinder which stands on ABC as base.

Let AP meet the circumference of the semicircle BQE in Q,

and let AC meet its diameter in iV". Join PC, QM, QX.

Then, since both semicircles are perpendicular to the plane

ABC, so is their line of intersection QN [Eucl. XI. 19].

Therefore QN is perpendicular to BE.

Therefore QN^ = BIf . NE = AN. JVM, [Eucl. III. 35]

so that the angle AQM is a right angle.

But the angle APC is also right

;

therefore MQ is parallel to CP.
It follows, by similar triangles, that

CA:AP= AP:AM= AM:AQ;

that is, AC -.AP^AP: AM = AM: AB,

and AB, AM, AP, AC are in continued proportion, so that

A3I, AP are the two mean proportionals required.

In the language of analytical geometry, if AC is the axis

of X, a line through A perpendicular to AC in the plane of

ABC the axis of y, and a line through A parallel to PM the

axis of c, then P is determined as the intersection of the

surfaces

(1) x^ + y^ + z- = ~x^, (the cone)

(2) x^ + y^ = ax, (the cylinder)

(3) a;2 + 2/2 + 02 = ^4 7(2:2 + y^}, (the tore)

where AC — a, AB = h.

From the first two equations we obtain

X + 2/2 + S2=(a;2 + 2/2^-2/ ^2^

and from this and (3) we have

a ^ V'(a;2 + 2/2 + 22) _ V(x^ + yi)

Vix^ + y^' + z^) ^/(a;2 + 1/2) "
i,

or AC:AP = AP:AM= AM:AB:
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Compounding the ratios, we have

AG : AB = {AM : ABf

;

therefore the cube of side A3I is to the cube of side AB as AG
is to AB.

In the particular case where AG = 2AB, AM^ = 2AB^,
and the cube is doubled.

(y) Eudoxus.

Eutocius had evidently seen some document purporting to

give Eudoxus's solution, but it is clear that it must have

been an erroneous version. The epigram of Eratosthenes

says that Eudoxus solved the problem by means of lines

of a 'curved or bent form' (Ka^TrvXov elSos iv ypanfials).

According to Eutocius, while Eudoxus said in his preface

that he had discovered a solution by means of ' curved lines ',

yet, when he came to the proof, he made no use of such

lines, and further he committed an obvious error in that he

treated a certain discrete proportion as if it were continuous.^

It may be that, while Eudoxus made use of what was really

a curvilinear locus, he did not actually draw the whole curve

but only indicated a point or two upon it sufficient for his

purpose. This may explain the first part of Eutocius's remark,

but in any case we cannot believe the second part ; Eudoxus

was too accomplished a mathematician to make any confusion

between a discrete and a continuous proportion. Presumably

the mistake which Eutocius found was made by some one

who wrongly transcribed the original ; but it cannot be too

much regretted, because it caused Eutocius to omit the solution

altogether from his account.

Tannery ^ made an ingenious suggestion to the effect that

Eudoxus's construction was really adapted from that of

Archytas by what is practically projection on the plane

of the circle ABG in Archytas's construction. It is not difficult

to represent the projection on that plane of the curve of

intersection between the cone and the tore, and, when this

curve is drawn in the plane ABG, its intersection with the

circle ABG itself gives the point M in Archytas's figure.

' Archimedes, ed. Heib., vol. iii, p. 56. 4-8.
^ Tannery, Memoires sci^ntifques, vol. i, pp. 53-61.
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The projection on the plane ABC of the intersection between

the cone and the tore is seen, by means of their equations

(1) and (3) above, to be

x^ = — Vix^ + y-),
a

or, in polar coordinates referred to A as origin and ^C as axis,

62

P = a cos^ 6

'

It is easy to find any number of points on the curve. Take

the circle ABG, and let AC the diameter and AB a chord

B M,

be the two given straight lines between which two mean
proportionals have to be found.

With the above notation

AC = a, AB = b;

and, if BFhe drawn perpendicular to AC,

AB'' = AF.AC,

or AF=b^/a.

Take any point G on BF and join AG.

Then, if Z GAF =6, AG = AF sec 6.

With A as centre and J. (7 as radius draw a circle meeting
AC in H, and draw HL at right angles to AC, meeting AG
produced in L.
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Then AL = AHsecO = AOsece = AFsec^e.

7,2

That is, if p = AL, p = — sec^^,

and Z is a point on the curve.

Similarly any number of other points on the curve may be
found. If the curve meets the circle ABC in M, the length
^^ is the same as that of AM in the figure of Archytas's
solution.

And J.71f is the first of the two mean proportionals between
AB and AC. The second (= ^P in the figure of Archytas's
solution) is easily found from the relation AM^ = AB . AP,
and the problem is solved.

It must be admitted that Tannery's suggestion as to

Eudoxus's method is attractive ; but of course it is only a con-
jecture. To my mind the objection to it is that it is too close

an adaptation of Archytas's ideas. Eudoxus was, it is true,

a pupil of Archytas, and there is a good deal of similarity
of character between Archytas's construction of the curve of

double curvature and Eudoxus's construction of the spherical

lemniscate by means of revolving concentric spheres; but
Eudoxus was, I think, too original a mathematician to con-

tent himself with a mere adaptation of Archytas's method
of solution.

(S) Menaechmus.

Two solutions by Menaechmus of the problem of finding

two mean proportionals are described by Eutocius ; both find

a certain point as the intersection between two conies, in

the one case two parabolas, in the other a parabola and

a rectangular hyperbola. The solutions are referred to in

Eratosthenes's epigram :
' do not ', says Eratosthenes, ' cut the

cone in the triads of Menaechmus.' From the solutions

coupled with this remark it is inferred that Menaechmus
was the discoverer of the conic sections.

Menaechmus, brother of Dinostratus, who used the quadra-

trix to square the circle, was a pupil of Eudoxus and flourished

about the middle of the fourth century B. C. The most attrac-

tive form of the story about the geometer and the king who
wanted a short cut to geometry is told of Menaechmus and
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Alexander :
' king,' said Menaechmus, ' for travelling over

the country there are royal roads and roads for common

citizens, but in geometry there is one road for all.' ^ A similar

story is indeed told of Euclid and Ptolemy ; but there would

be a temptation to transfer such a story at a later date to

the more famous mathematician. Menaechmus was evidently

a considerable mathematician ; he is associated by Proclus with

Amyclas of Heraclea, a friend of Plato, and with Dinostratus

as having ' made the whole of geometry more perfect '.^

Beyond, however, the fact that the discovery of the conic

sections is attributed to him, we have very few notices relating

to his work. He is mentioned along with Aristotle and

Callippus as a supporter of the theory of concentric spheres

invented by Eudoxus, but as postulating a larger number of

spheres." We gather from Proclus that he wrote on the

technology of mathematics; he discussed for instance the

difference between the broader meaning of the word element

(in which any proposition leading to another may be said

to be an element of it) and the stricter meaning of something

simple and fundamental standing to consequences drawn from

it in the relation of a principle, which is capable of being

universally applied and enters into the proof of all manner

of propositions.* Again, he did not agree in the distinction

between theorems and problems, but would have it that they

were all problems, though directed to two different objects ^

;

he also discussed the important question of the convertibility

of theorems and the conditions necessary to it.''

If X, y are two mean proportionals between straight

lines a, b,

that is, if a:x = x:y = y: b,

then clearly x'^ = ay, y"^ — bx, and xy = ab.

It is easy for us to recognize here the Cartesian equations

of two parabolas referred to a diameter and the tangent at its

extremity, and of a hyperbola referred to its asymptotes.

But Menaechmus appears to have had not only to recognize,

' Stobaeus, Edogae, ii. 31, 115 (vol. ii, p. 228. 30, Wachsmuth).
^ Proclus on Eucl. I, p. 67. 9.

^ Theon of Smyrna, pp 201. 22-202. 2.

* Proclus on Eucl. I, pp. 72. 23-78. 14. ^ lb., p. 78. 8-13
« lb., p. 2.54. 4-5.
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but to discover, the existence of curves having the properties

corresponding to the Cartesian equations. He discovered

them in plane sections of right circular cones, and it would

doubtless be the properties of the ^jrwicijja^ ordinates in

relation to the abscissae on the axes which he would arrive

at first. Though only the parabola and the hyperbola are

^vanted for the particular problem, he would certainly not

fail to find the ellipse and its property as well. But in the

ease of the hyperbola he needed the property of the curve

with reference to the asymptotes, represented by the equation

xy = ah; he must therefore have discovered the existence of

the asymptotes, and must have proved the property, at all

events for the rectangular hyperbola. The original method

of discovery of the conies will occupy us later. In the mean-

time it is obvious that the use of any two of the curves

x^ = ay, 2/^ = hx, xy — ah gives the solution of our problem,

and it was in fact the intersection of the second and third

which Menaechmus used in his first solution, while for his

second solution he used the first two. Eutocius gives the

analysis and synthesis of each solution in full. I shall repro-

duce them as shortly as possible, only suppressing the use of

four separate lines representing the two given straight lines

and the two required means in the figure of the first solution.

- First solution.

Suppose that J.0, 0-B are two given straight lines of which

AO > OB, and let them form a right angle at 0.

Suppose the problem solved, and let the two mean propor-

tionals be OM measured along BO produced and ON measured

along AO produced. Complete the rectangle OMPN.

Then, since AO :0M = OM:ON = ON:OB,

we have (1) OB .OM = ON^ = PM\

so that P lies on a parabola which has for vertex, If for

axis, and OB for latus rectum

;

and (2) AO.OB = OM.ON=PN.PM,

so that P lies on a hyperbola with as centre and OM, OiV" as

asymptotes.
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Accordingly, to find the point P, we have to construct

(1) a parabola with as vertex, OM as axis, and latus rectum

equal to OB,

(2) a hyperbola with asymptotes OM, OX and such that

the rectangle contained by straight lines PM, PX drawn

from any point P on the curve parallel to one asymptote and

meeting the other is equal to the rectangle AO . OB.

The intersection of the parabola and hyperbola gives the

point P which solves the problem, for

AO:PN = PN PM = PM: OB.

Second solution.

Supposing the problem solved, as in the tirst case, we have,

since AO -.OM = OM -.ON = ON:OB,

(1) the relation OB . OM = OX- = PM-\

y
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so that P lies on a parabola which has for vertex, OM for

axis, and OB for latus rectum,

(2) the similar relation AO.ON = OM'^ = PN^,
so that P lies on a parabola which has for vertex, ON for

axis, and OA for lahis rectuTn.

In order therefore to find P, we have only to construct the

two parabolas with OM, ON for axes and OB, OA for latera

recta respectively
; the intersection of the two parabolas gives

a point P such that

AO:PN^ PN:PM = PM : OB,

and the problem is solved.

(We shall see later on that Menaechmus did not use the

names 23a'rabola and hyperbola to describe the curves, those

names being due to Apollonius.)

(e) TAe solution attributed to Plato.

This is the first in Eutocius's arrangement of the various

solutions reproduced by him. But there is almost conclusive

reason for thinking that it is wrongly attributed to Plato.

No one but Eutocius mentions it, and there is no reference to

it in Eratosthenes's epigram, whereas, if a solution by Plato

had then been known, it could hardly fail to have been

mentioned along with those of Archytas, Menaechmus, and

Eudoxus. Again, Plutarch says that Plato told the Delians

that the problem of the two mean proportionals was no easy

one, but that Eudoxus or Helicon of Cyzicus would solve it

for them ; he did not apparently propose to attack it himself.

And, lastly, the solution attributed to him is mechanical,

whereas we are twice told that Plato objected to mechanical

solutions as destroying the good of geometry.^ Attempts

have been made to reconcile the contrary traditions. It is

argued that, while Plato objected to mechanical solutions on

principle, he wished to show how easy it was to discover

such solutions and put forward that attributed to him as an

illustration of the fact. I prefer to treat the silence of

Eratosthenes as conclusive on the point, and to suppose that

the solution was invented in the Academy by some one con-

temporary with or later than Menaechmus.

' Plutarch, Qiiaest. Conviv. 8. 2. 1, p. 718 e, f ; Vita MarcelU, c. 14. 5.
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For, if we look at the figure of Menaechmus's second solu-

tion, we shall see that the given straight lines and the two

means between them are shown in cyclic order (clockwise)

as straight lines radiating from and separated by right

angles. This is exactly the arrangement of the lines in

' Plato's ' solution. Hence it seems probable that some one

who had Menaechmus's second solution before him wished

to show how the same representation of the four straight

lines could be got by a mechanical construction as an alterna-

tive to the use of conies.

Drawing the two given straight lines with the means, that

is to say, OA, OM, ON, OB, in cyclic clockwise order, as in

Menaechmus's second solution, we have

AO:OM= OM: ON = ON: OB,

and it is clear that, if AM, MN, NB are joined, the angles

AMN, MNB are both right angles. The problem then is,

given OA, OB at right angles to one another, to contrive the

rest of the figure so that the angles at M, N are right.

The instrument used is somewhat like that which a shoe-
maker uses to measure the length of the foot. FGH is a rigid

right angle made, say, of wood. KL is a strut which, fastened,
say, to a stick KF which slides along GF, can move while
remaining always parallel to GH or at right angles to GF.
Now place the rigid right angle FGH so that the leg GE

passes through B, and turn it until the angle G lies on ilO
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produced. Then slide, the movable strut KL, which remains

always parallel to GH, until its edge (towai-ds Gli) passes

through A. If now the inner angular point between the

strut KL and the leg FG does not lie on BO produced,

the machine has to be turned again and the strut moved
until the said point does lie on BO produced, as M, care being

taken that during the whole of the motion the inner edges

of KL and HG pass through A, B respectively and the inner

angular point at G moves along AO produced.

That it is possible for the machine to take up the desired

position is clear from the figure of Menaechmus, in which

MO, NO are the means between AO and BO and the angles

AMN, MNB are right angles, although to get it into the

required position is perhaps not quite easy.

The matter may be looked at analytically thus. Let us

take any other position of the machine in which the strut and

the leg GH pass through A, B respectively, while G lies on AO
produced, but P, the angular point between the strut KL and

the leg FG, does not lie on OM produced. Take ON, OM as

the axes of x, y respectively. Draw PR perpendicular to OG,

and produce GP to meet OM produced in >S'.

Let AO = a, BO = b, OG = r.
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Then AR.RG= PR\
.

or (c4 + a;)(r-a;) = j/^. (1)

Also, by similar triangles,

PR:RG = 80:0G

= OG:OB;

y ''

(2)or = T- ^ J

r— x

a? + 1/^ + ax
r = ~

From the equation (1) we obtain

a + x

and, by multiplying (1) and (2), we have

by (a + x) — i-y",

whence, substituting the value ol: r, we obtain, as the locus of

P, a curve of the third degree,

b{a + x)^ — y{ijj'- + y^ + ax).

The intersection {M) of this curve with the axis of y gives

OM^ = ci?h.

As a theoretical solution, therefore, 'Plato's' solution is

more difficult than that of Menaechmus.

(^) Eratosthenes.

This is also a mechanical solution effected by means of

three plane figures (equal right-angled triangles or rectangles)

which can move parallel to one another and to their original

positions between two parallel rulers forming a sort of frame

and fitted with grooves so arranged that the figures can

move over one another. Pappus's account makes the figures

triangles,^ Eutocius has parallelograms with diagonals drawn

;

triangles seem preferable. I shall use the lettering of Eutocius

for the second figure so far as it goes, but I shall use triangles

instead of rectangles.

' Pappus, iii, pp. .56-8.
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Suppose the frame bounded by the parallels AX, EY. The

.X

initial position of the triangles is that shown in the first figure,

where the triangles ai-e AMF, MNG, NQH.
In the second figure the straight lines AE, DII which are

m' m n'

parallel to one another are those between which two mean
proportionals have to be found.

In the second figure the triangles (except AMF, which

remains fixed) are moved parallel to their original positions

towards AMF so that they overlap (as AMF, M'NO, N'QH),
NQH taking the position N'QH in which QH passes through D,

and MNG a position M'NG such that the points B, C where

MF, M'G and NG,'N'H respectively intersect are in a straight

line with A, D.

Let AD, EH meet in K.

Then EK:KF=AK:KB
= FK:KG,

and EK iKF^ AE: BF, while FK : KG = BF:CG;

therefore AE:BF=BF: GG.

Similarly BF : (JG = GG : DH,

so that AE, BF, GG, DH are in continued proportion, and

BF, GG are the required mean proportionals.

This is substantially the short proof given in Eratosthenes's

s 2
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inscription on the column; the construction was left to be

inferred from the single figure which corresponded to the

second above.

The epigram added by Eratosthenes was as follows

:

' If, good friend, thou mindest to obtain from a small (cube)

a cube double of it, and duly to change any solid figure into

another, this is in thy power ; thou canst find the measure of

a fold, a pit, or the broad basin of a hollow well, by this

method, tliat is, if thou (thus) catch between two rulers (two)

means with their extreme ends converging.-' Do not thou seek
to do the difiicult business of Archytas's cylinders, or to cut the

cone in the triads of Menaechmus, or to compass such a curved
form of^'lines as is described by the god-fearing Eudoxus.
Nay thou couldst, on these tablets, easily find a myriad of

means, beginning from a small base. Happy art thou,

Ptolemy, in that, as a father the equal of his son in youthful
vigour, thou hast thyself given him all that is dear to Muses
and Kings, and may he in the future,^ Zeus, god of heaven,
also receive the sceptre at thy hands. Thus may it be, and
let any one who sees this offering say " This is the gift of

Eratosthenes of Cyrene ".'

(rj) Nicoiiiedcs.

The solution by Nicomedes was contained in his book on
conchoids, and, according to Eutocius, he was inordinately

proud of it, claiming for it much superiority over the method
of Eratosthenes, which he derided as being impracticable as

well as ungeometrical.

Nicomedes reduced the problem to a vivais which he solved

by means of the conchoid. Both Pappus and Eutocius explain

the method (the former twice over ^) with little variation.

Let AB, BG be the two straight lines between which two
means are to be found. Complete the parallelogram ABGL.

Bisect AB, BG in D and E.

Join LD, and produce it to meet GB produced in G.

Draw EF at right angles to BG and of such length that
GF = AD.

Join GF, and draw GH parallel to it.

' Lit. 'converging with their extreme ends' {repfiaaiv uKpois avvSpo-

^ Reading with v. Wilamowitz o S" is varepav.
5 Pappus, iii, pp. 58. 23-62. 13; iv, pp. 246. 20-250. 25.



NICOMEDES 261

Then from the point F draw FIIK cutting GH and EC
produced in H and K in such a way that the intercept

HK = CF= AD.
(This is done by means of a conchoid constructed with F as

pole, CH as ' ruler ', and ' distance ' equal to AD or OF. This

conchoid meets EC produced in a point K. We then join FK
and, by the property of the conchoid, HK — the ' distance '.)

Join KL, and produce it to meet BA produced in M.

Then shall CK, MA be the required mean proportionals.

For, since BG is bisected at E and produced to K,

BK.KC+CE^ = EK'.

Add .S'l'Ho each;

therefore BK . KC + CF^ = KF\

Now, by parallels, MA : AB = ML : LK
= BG:GK.

But AB = 2 AD, and BG ^ ^GC;

therefore MA : AD = GG : GK
= FH: HK,

and, com'ponendo, MD : DA = FK : HK.

But, by construction, DA = HK
;

therefore MD = FK, and MD^ = FK'^.

(1)
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Now MD'^ = BM . MA + DA^

while, by (1), FK ^ = BK . KC+ GF^
;

therefore BM . MA + DA'' = BK . KG+ CF'-

But DA = GF; therefore BM . MA = BK.KC.

Therefore GK : MA = BM : BK
= LG:GK;

while, at the same time, BM: BK = MA : AL.

Therefore LG : GK = GK -.MA = MA: A L,

or AB : GK = GK :MA = MA : BG.

(6) Apollonius, Heran, Pinion of Byzaiitiwm.

I give these solutions together because they really amount

to the same tiling.^

Let AB, AG, placed at right angles, lie the two given straight

lines. Complete the rectangle ABDG, and let E be the point

at which the diagonals bisect one another.

Then a circle with centre E and radius EB will circumscribe

the rectangle ABDG.
Now (Apollonius) draw with centre E a circle cutting

AB, AG produced in F, G but such that F, D, G are in one

straight line.

Or (Heron) place a ruler so that its edge passes through D,

' Heron's solution is given in his Mechanics (i. 11) and Belopoeica, and is

reproduced by Pappus (iii, pp. 62-4) as well as by Eutocius (loo. cit.).
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and move it about D until the edge intersects AB, AC pro-

duced in points {F, (?) which are equidistant from E.

Or (Philon) place a ruler so that it passes through D and
turn it round D until it cuts AB, AG produced and the circle

about ABDG in points F, G, H such that the intercepts FD,
HG ax'e equal.

Clearly all three constructions gi\'e the same points F, G.

For in Philon's construction, since FD — HG, the perpendicular

from E on DH, which Viisects DH, must also bisect FG, so

that EF = EG.
We have first to prove that AF.FB = AG. GO.

(a) With Apollonius's and Heron's constructions we have, if

K be the middle point of AB,

AF.FB + Bir- = FK\
Add KE'^ to both sides

;

therefore AF.FB + BE'' = EF'\

Similarly AG.GC+ CE- = EG '--

But BE = CE, and EF=EG;
therefore AF.FB = AG.OC.

(6) With Philon's construction, since GH = FD,

HF.FD = DG.GH.

But, since the circle BDHO passes through A,

HF. FD = AF. FB, and DG.GH =^ AG.GC;

therefore AF.FB = AG.GC.

Therefore FA:AG = CG : FB.

But, by similar triangles,

FA : AG = DC: CG, and also =:FB:BD;

therefore DC : CG = CG :FB = FB: BD,

or AB : CG = CG:FB = FB: AC.

The connexion between this solution and that of Menaech-

mus can be seen thus. We saw that, if a:x = x:y = y.b,

a;2 = ay, y^ = hr, xy = ah,

which equations represent, in Cartesian coordinates, two

parabolas and a hyperbola. Menaechmus in effect solved -the
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problem of the two mean proportionals by means of the points

of intersection of any two of these conies.

But, if we add the first two equations, we have

x' + y'^— bx— ay = 0,

which is a circle passing through the points common to the

two parabolas x^ = ay, y"^ = hx.

Therefore we can equally obtain a solution by means of

the intersections of the circle x^ + y'^-hx-ay =^ and the

rectangular hyperbola xy = ab.

This is in effect what Philon does, for, if AF, AG are the

coordinate axes, the circle x'^ + y^— bx—ay=0 is the circle

BDHC, and xy = ab is the rectangular hyperbola with

AF, AG as asymptotes and passing through D, which

hyperbola intersects the circle again in H, a point such

that FD = HG.

(i) Biocles and the cissoid.

We gather from allusions to the cissoid in Proclus's com-

mentary on Eucl. I that the curve which Geminus called by

that name was none other than the curve invented by Diodes

and used by him for doubling the cube or finding two mean
proportionals. Hence Diodes must have preceded Geminus

(fl. 70 B.C.). Again, we conclude from the two fragments

preserved by Eutocius of a work by him, nepl irvpeLcov, On
burning-mirrors, that he was later than Archimedes and

Apollonius. He may therefore have flourished towards the

end of the second century or at the beginning of the first

century B.C. Of the two fragments given by Eutocius one

contains a solution by means of conies of the problem of

dividing a sphere by a plane in such a way that the volumes

of the resulting segments shall be in a given ratio— a problem

equivalent to the solution of a certain cubic equation—while

the other gives the solution of the problem of the two mean
proportionals by means of the cissoid.

Suppose that AB, DC are diameters of a circle at right

angles to one another. Let E, F be points on the quadrants

BB, BG respectively such that the arcs BE, BF are equal.

Draw EG, FH perpendicular to BG. Join CE, apd let P be

the point in which GE, FH intersect.
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The cissoid is the locus of all* the points P corresponding to

different positions of E on the quadrant BD and of F at an
equal distance from B on the quadrant BC.

If P is any point found by the above construction, it is

G
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Suppose now tliat the cissoid has been drawn as shown by

the dotted line in the figure, and that we are required to find

two mean proportionals between two straight lines a, h.

Take the point K on OB such that DO :0K = a:b.

Join DK, and produce it to meet the cissoid in Q.

Through Q draw the ordinate LM perpendicular to DC.

Then, by the property of the cissoid, Lit MC are the two

mean proportionals between DM, MQ. And

DM:MQ = DO:OK = a:h.

In order, then, to obtain the two mean proportionals between

a and h, we have only to take straight lines which bear respec-

tively the same ratio to DM, LM, MC, MQ as a bears to DM.
The extremes are then .a, b, and the two mean proportionals

are found.

(k) Sj'xirus and Papinis.

The solutions of Sporus and Pappus are really the same as

that of Diodes, the only difference being that, instead of using

the cissoid, they use a ruler which they turn about a certain

point until certain intercepts which it cuts off between two

pairs of lines are equal.

In order to show the identity of the solutions, I shall draw

Sporus's figure . with the same lettering as above for corre-

sponding points, and I shall add dotted lines to show the

additional auxiliary lines used by Pappus. '^ (Compared with

my figure, Sporus's is the other way up, and so is Pappus's,

where it occui-s in his own Synagoge, though not in Eutocius.)

Sporus was known to Pappus, as we have gathered from

Pappus's reference to his criticisms on the quaclratrix, and
it is not unlikely that Sporus was either Pappus's master or

a fellow-student of his. But when pappus gives (though in

better form, if we may judge by Eutocius's reproduction of

Sporus) the .same solution as that of Sporus, and calls it

a solution KaO' rjuds, he clearly means ' according to my
method ', not ' our method ', and it appears therefore that he

claimed the credit of it for himself.

Sporus makes DO, OK (at right angles to one another) the

actual given straight lines; Pappus, like Diodes, only takes

> Pappus, iii, pp. 64-8 ; viii, pp. 1070-2.
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them in the same proportion as the given wtraight lines.

Otherwise the construction is the same.

A circle heing drawn with centre and radius DO, we join

DK and produce it to meet the circle in I.

Now conceive a ruler to pass through C and to be turned
about C until it cuts DI, OB and the circumference of the

/
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Join RO, and produce it to meet the circle at S. Join

DS, SO.

Then, since RO = OS and RT = TQ, SQ is parallel to AB
and meets 00 in M.

Now

DM : MO = SM^ : MO^ = OM^ : MQ^ (since iROS is right).

Multiply by the ratio OM : MQ ;

therefore (DM : MO) . {OM : MQ) = {03P : ilfQ^) . {OM :
MQ)

or DM:MQ = GM^:MQ\

But DM:MQ = DO:OK,

and OM:MQ = 00:OT.

Therefore DO : OAT = CO^ : OT^ = DO^ : DTK

Therefore OT is the first of the two mean proportionals to

DO, OK ; the second is found by taking a third proportional

to DO, OT.

And a cube has been increased in any given ratio.

(X) Approximation to a solution by ])lane nnethods only.

There remains the procedure described by Pappus and

criticized hy him at length at the beginning of Book III of

his Oollection} It was suggested by some one ' who was

thought to be a great geometer ', but whose name is not given.

Pappus maintains that the author did not understand what

he was about, 'for he claimed that he was in possession of

a method of finding two mean proportionals between two

straight lines by means of plane considerations only
'

; he

gave his construction to Pappus to examine and pronounce

upon, while Hierius the philosopher and other friends of his

supported his request for Pappus's opinion. The construction

is as follows.

Let the given straight lines be AB, AD placed at right

angles to one another, AB being the greater.

Draw BO parallel to AD and equal to AB. Join OD meeting

BA produced in E. Produce BO to L, and draw EU through

E parallel to BL. Along OL cut off lengths OF, FG, GK, KL,

' Pappus, iii, pp. 30-48.
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each of which is equal to BG. Draw GG', FF', GG', KK', LL'
parallel to BA.
On LU, KK' take LM, KR equal to BA, and bisect LM

in N.

Take P, Q on LL' such that L'L, L'N, L'P, L'Q are in con-

A

X'

Y'

C' F' g'

\d
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Let LU =BE=a, AB = b, L'N = a (for there is no

necessity to take N at the middle point of LM).

Then



VIII

ZENO OF ELBA

We have already seen how the consideration of the subject

of infinitesimals was forced upon the Greek mathematicians so

soon as they came to close grips with the problem of the

quadrature of the circle. Antiphon the Sophist was the first

to indicate the correct road upon which the solution was to

be found, though he expressed his idea in a crude form which

was bound to provoke immediate and strong criticism from

logical minds. Antiphon had inscribed a series of successive

regular polygons in a circle, .each of which had double as

many sides as the preceding, and he asserted that, by con-

tinuing this process, we should at length exhaust the circle

:

'he thought that in this way the area of the circle would

sometime be used up and a polygon would be inscribed in the

circle the sides of which on account of their smallness would

coincide with the circumference.' ^ Aristotle roundly said that

this was a fallacy which it was not even necessary for a

geometer to trouble to refute, since an expert in any science

is not called upon to refute all fallacies, but only those which

are false deductions from the admitted principles of the

science ; if the fallacy is based on anything which is in con-

tradiction to any of those principles, it may at once be ignored.^

Evidently therefore, in Aristotle's view, Antiphon's argument

violated some ' geometrical principle ', whether this was the

truth that a straight line, however short, can never coincide

with an arc of a circle, or the principle assumed by geometers

that geometrical magnitudes can be divided ad infinitum.

But Aristotle is only a representative of the criticisms

directed against the ideas implied in Antiphon's argument;

those ideas had already, as early as the time of Antiphon

' Simpl. ill Arist. Phys., p. 55. 6 Diels.

2 Ariat. Phys. i. 2, 185 a 14^17.
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himself (a contemporary of Socrates), been subjected to a

destructive criticism expressed with unsurpassable piquancy

and force. No wonder that the subsequent course of Greek

geometry was profoundly affected by the arguments of Zeno

on motion. Aristotle indeed called them 'fallacies', without

being able to refute them. The mathematicians, however, knew

better, and, realizing that Zeno's arguments were fatal to

infinitesimals, they saw that they could only avoid the diffi-

culties connected with them by once for all banishing the idea

of the infinite, even the potentially infinite, altogether from

their science ; thenceforth, therefore, they made no use of

magnitudes increasing or diminishing ad infinitum, but con-

tented themselves with finite magnitudes that can be made as

great or as small as we j^lease.^ If they used infinitesimals

at all, it was only as a tentative means of discovering proposi-

tions ; they proved them afterwards by rigorous geometrical

methods. An illustration of this is furnished by the Method of

Archimedes. In that treatise Archimedes finds (a) the areas

of curves, and (b) the volumes of solids, by treating them

respectively as the sums of an infinite number (a) of parallel

lines, i.e. infinitely narrow strips, and (6) of parallel plajies,

i. e. infinitely thin laminae ; but he plainly declares that this

method is only useful for discovering results and does not

furnish a proof of them, but that to establish them scientific-

ally a geometrical proof by the method of exhaustion, with

its double reductio ad absurdam, is still necessary.

Notwithstanding that the criticisms of Zeno had so impor-

tant an influence upon the lines of development of Greek

geometry, it does not appear that Zeno himself was really

a mathematician or even a physicist. Plato mentions a work
of his (to. tov ZTJi/ccfos ypd/i/xaTa, or to cTvyypafjLp.a) in terms

which imply that it was his only known work.^ Simplicius

too knows only one work of his, and this the same as that

mentioned by Plato ^ ; when Suidas mentions four, a Commen-
tary on or Exposition of Em,pedocles, Controversies, Against

the philosophers and On Nature, it may be that the last three

titles are only diflferent designations for the one work, while

the book on Empedocles may have been wrongly attributed

1 Cf. Arist. Phys. iii. 7, 207 b 31. ^ Plato, Pannenides, 127 c sq.
= Simpl. in Phys., pp. 139. 5, 140. 27 Diels.
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to Zeno.i Plato puts into the mouth oi: Zeno himself an
explanation of the character and object of his book.^ It was
a youthful effort, and it was stolen by some one, so that the

author had no opportunity of considering whether to publish

it or not. Its object was to defend the system of Parmenides

by attacking the common conceptions of things. Parmenides

held that only the One exists; whereupon common sense

pointed out that many contradictions and absurdities will

follow if this be admitted. Zeno replied that, if the popular

view that Many exist be accepted, still more absurd results

will follow. The work was divided into several parts (Aoyot

according to Plato) and each of these again into sections

('hypotheses' in Plato, 'contentions', kTn-)(^iLprjiiaTa, in Sim-

plicius) : each of the latter (which according to Proclus

numbered forty in alP) seems to have taken one of the

assumptions made on the ordinary view of life and to have

shown that it leads to an absurdity. It is doubtless on

account of this systematic use of indirect proof by the reductio

ad ahsurdum of particular hypotheses that Zeno is said to

have been called by Aristotle the discoverer of Dialectic*;

Plato, too, says of him that he understood how to make one

and the same thing appear like and unlike, one and many, at

rest and in motion.®

Zeno's arguments about motion.

It does not appear that the full significance and value of

Zeno's paradoxes have ever been realized until these latter

days. The most modern view of them shall be expressed in

the writer's own words

:

' In this capricious world notlring is more capricious than

posthumous fame. One of the most notable victims of pos-

terity's lack of judgement is the Eleatic Zeno. Having

invented four arguments all immeasurably subtle and pro-

found, the grossness of subsequent philosophers pronounced

him to be a mere ingenious juggler, and his arguments to be

1 Zeller, i=, p. 587 note.
" Plato, Parmenides 128 c-E.
^ Proclus in Farm., p. 694. 23seq.
' Diog. L. viii. 57, ix. 25 ; Sext. Emp. Malh. vii. 6.

= Plato, Phaedriis 261 D.

1623 T
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one and all sophisms. After two thousand years of continual

refutation, these sophisms were reinstated, and made the

foundation of a mathematical renaissance, by a German
professor who probably never dreamed of any connexion

between himself and Zeno. Weierstrass, by strictly banishing

all infinitesimals, has at last shown that we live in an
unchanging world, and that the arrow, at every moment of its

flight, is truly at rest. The only point where Zeno probably

erred was in inferring (if he did infer) that, because there

is no change, the world must be in the same state at one time

as at another. This consequence by no means follows, and in

this point the German professor is more constructive than the

ingenious Greek. Weierstrass, being able to embody his

opinions in mathematics, where familiarity with truth elimi-

nates the vulgar prejudices of common sense, has been able to

give to his propositions the respectable air of platitudes ; and
if the result is less delightful to the lover of reason than Zeno's

bold defiance, it is at any rate more calculated to appease the

mass of academic mankind.' ^

Thus, while in the past the arguments of Zeno have been

treated with more or less disrespect as mere sophisms, we have

now come to the other extreme. It appears to be implied that

Zeno anticipated Weierstrass. This, I think, a calmer judge-

ment must pronounce to be incredible. If the arguments of

Zeno are found to be 'immeasurably subtle and profound'

because they contain ideas which Weierstrass used to create

a great mathematical theory, it does not follow that for Zeno

they meant at all the same thing as for Weierstrass. On the

contrary, it is probable that Zeno happened upon these ideas

without realizing any of the significance which Weierstrass

was destined to give them ; nor shall we give Zeno any less

credit on this account.

It is time to come to the arguments themselves. It is the

four arguments on the subject of motion which are most

important from the point of view of the mathematician ; but

they have points of contact with the arguments which Zeno

used to prove the non-existence of Many, in refutation of

those who attacked Parmenides's doctrine of the One. Accord-

ing to Simplicius, he showed that, if Many exist, they must

' Bertrand Russell, The Frindples of Mathematics, vol. i, 1903, pp.
347,348.

, ,
,
If
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be both great and small, so great on the one hand as to be
infinite in size and so small on the other as to have no size.^

To prove the latter of these contentions, Zeno relied on the

infinite divisibility of bodies as evident ; assuming this, he
easily proved that division will continually give smaller and
smaller parts, there will be no limit to the diminution, and, if

there is a final element, it must be absolutely nothing. Conse-

quently to add any number of these m^-elements to anything
will not increase its size, nor will the subtraction of them
diminish it ; and of course to add them to one another, even

in infinite number, will give nothing as the total. (The

second horn of the dilemma, not apparently stated by Zeno

in this form, would be tliis. A critic might argue that infinite

division would only lead to parts having some size, so that the

last element would itself have some size ; to this the answer

would be that, as there would, by hypothesis, be an infinite

number of such parts, the original magnitude which was
divided would be infinite in size.) The connexion between

the arguments against the Many and those against motion

lies in the fact that the former rest on the assumption of

the divisibility of matter acl infinittim, and that this is the

hypothesis assumed in the first two arguments against motion.

We shall see that, while the first two arguments proceed on

this hypothesis, the last two appear to proceed on the opposite

hypothesis that space and time are not infinitely divisible, but

that they are composed of indivisible elements ; so that the

four arguments form a complete dilemma.

The four arguments against motion shall be stated in the

words of Aristotle.

I. The Dichotomy.

'There is no motion because that which is moved must

arrive at the middle (of its course) before it arrives at the

end.' ^ (And of course it must traverse the half of the half

before it reaches the middle, and so on ud infinitum.)

II. The Achilles.

'This asserts that the slower when running will never be

1 Simpl. in Phys., p. 139. 5, Diels.

2 Aristotle, Phys. vi. 9, 239 b 11.

T 3
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overtaken by the quicker; for that which is pursuing must

first reach the point from which that which is fleeing started,

so that the slower must necessarily always be some distance

ahead.' ^

III. The Arrow.

' If, says Zeno, everything is either at rest or moving when
it occupies a space equal (to itself), while the object moved is

always in the instant (eVxi 8' dit to (pipojievov ev ri2 vvv, in

the nmv), the moving arrow is unmoved.' ^

I agree in Brochard's interpretation of this passage,^ from

which Zeller * would banish fj KLvelrai, ' or is moved '. The

argument is this. It is strictly impossible that the arrow can

move in the instant, supposed indivisible, for, if it changed its

position, the instant would be at once divided. Now the

moving object is, in the instant, either at rest or in motion

;

but, as it is not in motion, it is at rest, and as, by hypothesis,

time is composed of nothing but instants, the moving object is

always at rest. This interpretation has the advantage of

agreeing with that of Simplicius,'' which seems preferable

to that of Themistius ^ on which Zeller relies.

IV. The Stadium. I translate the first two sentences of

Aristotle's account ''

:

' The fourth is the argument concerning the two rows of

bodies each composed of an equal number of bodies of equal

size, M'hich pass one another on a race-course as they proceed

with equal velocity in opposite directions, one row starting

from the end of the course and the other from the middle.

This, he thinks, involves the conclusion that half a given time
is equal to its double. The fallacy of the reasoning lies in

the assumption that an equal magnitude occupies an equal

time in passing with equal velocity a magnitude that is in

motion and a magnitude that is at rest, an assumption which
is false.'

Then follows a description of the process by means of

1 Aristotle, Phys. \'i. 9, 239 b 14. « 76. 239 b 5-7.

^ V. Broohard, Etudes de Philosophie aiicienne et de Philosovhie modeme,
Paris 1912, p. 6.

* Zeller, i", p. 599. =^ Simpl. in Phys., pp. 1011-12, Dials.
- Them, (ad he, p. 392 Sp., p. 199 Soh.)
' Phys. vi, 9, 239 b 33-240 a 18.
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letters A, B, C the exact interpretation of which is a matter
of some doubt

' ; the essence of it, however, is clear. The first

diagram below shows the original positions of the rows of

ialAi

Ba
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lengths which are indeterminate. In the first and third there

is only one moving object, and it is shown that it cannot even

begin to move. The second and fourth, comparing the motions

of two objects, make the absurdity of- the hypothesis even

more palpable, so to speak, for they prove that the movement,

even if it has once begun, cannot continue, and that relative

motion is no less impossible than absolute motion. The first

two establish the impossibility of movement by the nature of

space, supposed continuous, without any implication that time

is otherwise than continuous in the same way as space ; in the

last two it is the nature of time (considered as made up of

indivisible elements or instants) which serves to prove the

impossibility of movement, and without any implication that

space is not likewise made up of indivisible elements or points.

The second argument is only another form of the first, and

the fourth rests on the same principle as the third. Lastly, the

first pair proceed on the hypothesis that continuous magni-

tudes are divisible ad infinitum ; the second pair give the

other horn of the dilemma, being directed against the assump-

tion that continuous magnitudes are made up of indivisible

elements, an assumption which would scarcely suggest itself

to the imagination until the difficulties connected with the

other were fully realized. Thus the logical order of the argu-

ments corresponds exactly to the historical order in which

Aristotle has handed them down and which was certainly the

order adopted by Zeno.

Whether or not the paradoxes had for Zeno the profound

meaning now claimed for them, it is clear that they have

been very generally misunderstood, with the result that the

criticisms directed against them have been wide of the mark.

Aristotle, it is true, saw that the first two arguments, the

Dichotomy and the Achillea, come to the same thing, the latter

differing from the former only in the fact that the ratio of

each space traversed by Achilles to the preceding space is not

that of 1 : 2 but a ratio of 1 : n, where n may be any number,

however large ; but, he saj^s, both proofs rest on the fact that

a certain moving object ' cannot reach the end of the course if

the magnitude is divided in a certain way'.^ But another

passage shows that he mistook the character of the argument

• Arist. Phys. vi. 9, 239 b 18-24.



ZENO'S ARGUMENTS ABOUT MOTION 279

in the D'lchotomy. He observes that time is divisible in

exactly the same way as a length ; if therefore a length is

infinitely divisible, so is the corresponding time; he adds
' this is why (Sio) Zeno's argument falsely assuiiies that it is

not possible to traverse or touch each of an infinite number of

points in a finite time V thereby implying that Zeno did not
regard time as divisible ad infinituvi like space. Similarly,

when Leibniz declares that a space divisible ad infinitum
is traversed in a time divisible ad infinitum,, he, like Aristotle,

is entii-ely beside the question. Zeno was perfectly aware that,

in respect of divisibility, time and space have the same
property, and that they are alike, always, and concomitantly,

divisible ad infinitwm. The cLuestion is how, in the one as

in the other, this series of divisions, by definition inexhaustible,

can be exhausted ; and it must be exhausted if motion is to

be possible. It is not an answer to say that the two series

are exhausted simultaneously.

The usual mode of refutation given by mathematicians

from Descartes to Tannery, correct in a sense, has an analogous

defect. To show that the sum of the infinite series 1 + -I + ^ + . .

.

is equal to 2, or to calculate (in the Achilles) the exact moment
when Achilles will overtake the tortoise, is to answer the

question when ? whereas the question actually asked is how 1

On the hypothesis of divisibility ad infinitum you will, in the

Dichotomy, never reach the limit, and, in the Achilles, the

distance separating Achilles from the tortoise, though it con-

tinually decreases, will never vanish. And if you introduce

the limit, or, with a numerical calculation, the discontinuous,

Zeno is quite aware that his arguments are no longer valid.

We are then in presence of another hypothesis as to the com-

position of the continuum ; and this hypothesis is dealt with

in the third and fourth arguments.^

It appears then that the first and second arguments, in their

full significance, were not really met before G. Cantor formu-

lated his new theory of continuity and infinity. On this I

can only refer to Chapters xlii and xliii of Mr. Bertrand

Russell's Princi'ples of Mathematics, vol. i. Zeno's argument

in the Dichotomy is that, whatever motion we assume to have

taken place, this presupposes another motion ; this in turn

1 Ih. vi. 2, 233 a 16-23. ' Bvochaid, loc. cit., p. 9.
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another, and so on ad infinitum. Hence there is an endless

regress in the mere idea of any assigned motion. Zeno's

argument has then to be met by proving that the 'infinite

regress ' in this ease is ' harmless '.

As regards the Achilles, Mr. G. H. Hardy remarks that ' the

kernel of it lies in the perfectly valid proof vs^hich it affords

that the tortoise passes through as many points as Achilles,

a view which embodies an accepted doctrine of modern mathe-

matics '.'

The.argument in the Arroiv i_s.based on the assumptionjthat

timels^ade up, of indivisihle elements or instants. Aristotle

meets it by denyijng^thg assumption. ' For time is not made

up of indivisible instants {no%vs), any more than any other

magnitude is made up of indivisible elements.' ' (Zeno's result)

follows through assuming that time is made up of (indivisible)

instants [notvs) ; if this is not admitted, his conclusion does

not follow.'^ On the other hand, the modern view is that

Zeno's contention is true: 'If (said Zeno) 'everything is at

rest or in motion when it occupies a space equal to itself, and

if what moves is always in the instant, it follows that the

moving arrow is unmoved.' Mr. Russell ' holds that this is

' a very plain statement of an elementary fact
'

;

' it is a very important and very widely applicable platitude,

namely " Every possible value of a variable is a constant ".

If a; be a variable which can take all values from to 1,

all the values it can take are definite numbers such as -| or -|

,

which are all absolute constants . . . Though a variable is

always connected with some class; it is not the class, nor
a particular member of the class, nor yet the whole class, but
any member of the class.' The usual x in algebra ' denotes
the disjunction formed by the various memlaers' . . . 'The
values of x are then the terms of the disjunction ; and each
of these is a constant. This simple logical fact seems to

constitute the essence of Zeno's contention that the arrow
is always at rest.' ' But Zeno's argument contains an element
which is specially applicable to continua. In the case of
motion it denies that there is such a thing as a state of motion.
In the general case of a continuous variable, it may be taken
as denying actual infinitesimals. For infinitesimals are an

' Encyclopaedia Britannica, art. Zeno.
2 Arist. Phys. vi. 9, 239 b 8, 31.
" Ilussell, Principles of Mathematics, i, pp. 350, 351.
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attempt to extend to the values of a variable the variability

which belongs to it alone. When once it is firmly realized

that all the values of a variable are constants, it becomes easy
to see, by taking any two such values, that their difference is

always finite, and hence that there are no infinitesimal differ-

ences. If X be a variable which may take all real values

from to 1 , then, taking any two of these values, we see that

their difference is finite, although a; is a continuous variable.

It is true the difference might have been less than the one we
chose ; but if it had been, it would still have been finite. The
lower limit to possible differences is zero, but all possible

differences are finite ; and in this there is no shadow of

contradiction. This static theory of the variable is due to the

mathematicians, and its absence in Zeno's day led him to

suppose that continuous change was impossible without a state

of change, which involves infinitesimals and the contradiction

of a body's being where it is not.'

In his later chapter on Motion Mr. Russell concludes as

follows :

^

' It is to be observed that, in consequence of the denial

of the infinitesimal and in consequence of the allied purely

technical view of the derivative of a function, we must
entirely reject the notion of a state of -motion. Motion consists

merely in the occupation of different places at different times,

subject to continuity as explained in Part V. There is no
transition from place to place, no consecutive moment or

consecutive position, no such thing as velocity except in the

sense of a real number which is the limit of a certain set

of quotients. The rejection of velocity and acceleration as

physical facts (i. e. as properties belonging at each instant to

a moving point, and not merely real numbers expressing limits

of certain ratios) involves, as we shall see, some difficulties

in the statement of the laws of motion; but the reform

introduced by Weierstrass in the infinitesimal calculus has

rendered this rejection imperative.'

We come lastly to the fourth argument (the Stadium).

Aristotle's representation of it is obscure through its extreme

brevity of expression, and the matter is further perplexed by

an uncertainty of reading. But the meaning intended to be

conveyed is fairly clear. The eight A's, B's and C"s being

' 0}}. cit., p. 473.
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, that
initially in the position shown in Figure 1, suppose, e.^

,

the B's move to the right and the O's to the left with equal

I
A. a,|a,|aJa,|a,|a,|a,

Be
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instant, the absolute indivisible element of time ; this is Zeno's

hypothesis. But, in order that B^, C\ may have taken up
their new positions, there must have been a moment at which
they crossed or B^ was vertically over (7j. Yet the motion
has, by hypothesis, taken place in an indivisible instant.

Therefore, either they have not crossed (in which case there

is no movement), or in the particular indivisible instant two
positions have been occupied by the two moving objects, that

is to say, the instant is no longer indivisible. And, if the

instant is divided into two equal parts, this, on the hypothesis

of indivisibles, is equivalent to saying that an instant is double

of itself.

Two remarks may be added. Though the first two argu-

ments are directed against those who assert the divisibility ad
infinitum of magnitudes and times, there is no sufficient

justification for Tannery's contention that they were specially

dii'ected against a view, assumed by him to be Pythagorean,

that bodies, surfaces and lines are made up of mathematical

points. There is indeed no evidence that the Pythagoreans

held this view at all ; it does not follow from their definition

of a point as a 'unit having position' (fioyas deatv 'iypvaa)
;

and, as we have seen, Aristotle says that the Pythagoreans

maintained that units and numbers have magnitude.^

It would appear that, after more than 2,300 years, con-

troversy on Zeno's arguments is yet by no means at an end.

But the subject cannot here be pursued further.^

• Arist. Metaph. M. 6, 1080 b 19, 32.
^ It is a pleasure to be able to refer the reader to a most valuable and

eompreliensive series of papers by Professor Florian Cajori, under the

title 'The History of Zeno's arguments on Motion', published in the

American Mathematical Monthly of 1915, and also available in a reprint.

This work carries the history of the various views and criticisms of

Zeno's arguments down to 1914. I may also refer to the portions of

Bertrand Russell's work, Our Knowledge of the External World as a Field

for Scientific Method in Philosophy, 1914, which deal with Zeno, and to

Philip E. B. Jourdain's article, ' The Flying Arrow ; an Anachronism ', in

Mind, .January 1916, pp. 42-55.



IX

PLATO

It is in tiie Seventh Book of the MejnMic that we find

the most general statement of the attitude of Plato towards

mathematics. Plato regarded mathematics in its four branches,

arithmetic, geometrj-, stereometry and astronomy, as the first

essential in the training of philosophers and of those who
should rule his ideal State ;

' let no one destitute of geometry

enter my doors', said the inscription over the door of his

school. There could be no better evidence of the supreme

importance which he attached to the mathematical sciences.

What Plato emphasizes throughout when speaking of mathe-
matics is its value for the training of the mind ; its practical

utility is of no account in comparison. Thus arithmetic must
be pursued for the sake of knowledge, not for any practical

ends such as its use in trade ^ ; the real science of arithmetic

has nothing to do with actions, its object is knowledge.^
A very little geometry and arithmetical calculation suffices

for the commander of an army; it is the higher and more
advanced portions which tend to lift the mind on high and
to enable it ultimately to see the final aim of philosophy,

the idea of the Good ^ ; the value of the two sciences consists

in the fact that they draw the soul towards truth and create

the philosophic attitude of mind, lifting on high the things
which our ordinary habit would keep down.*
The extent to which Plato insisted on the purely theoretical

character of the mathematical sciences is illustrated by his

peculiar views about the two subjects which the ordinary
person would regard as having, at least, an important practical

side, namely astronomy and music. According to Plato, true
astronomy is not concerned with the movements of the visible

' Bep. vii. 525 o, d. 2 Politicus 258 d.
' Hep. 526 D, E. < II. 527 b.
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heavenly bodies. The arrangement of the stars in the heaven

and their apparent movements are indeed wonderful and

beautiful, but the observation of and the accounting for them
falls far short of true astronomy. Before we can attain to

this we must get beyond mere observational astronomy, ' we
must leave the heavens alone '. The true science of astronomy

is in fact a kind of ideal kinematics, dealing with the laws

of motion of true stars in a sort of mathematical heaven of

which the visible heaven is an imperfect expression in time

and space. The visible heavenly bodies and their apparent

motions we are to regard merely as illustrations, comparable

to the diagrams which the geometer draws to illustrate the

true straight lines, circles, &c., about which his science reasons

;

they are to be used as ' problems ' only, with the object of

ultimately getting rid of the apparent irregularities and

arriving at ' the true motions with which essential speed

and essential slowness move in relation to one another in the

true numbers and the true forms, and carry their contents

with them ' (to use Burnet's translation of to. kvovTo)}

'Numbers' in this passage correspond to the periods of the

apparent motions ; the ' true forms ' are the true orbits con-

trasted with the apparent. It is right to add that according

to one view (that of Burnet) Plato means, not that true

astronomy deals with an 'ideal heaven' different from the

apparent, but that it deals with the true motions of the visible

bodies as distinct from their apparent motions. This would

no doubt agree with Plato's attitude in the Lmvs, and at the

time when he set to his pupils as a problem for solution

the question by what combinations of uniform circular revolu-

tions the apparent movements of the heavenly bodies can be

accounted for. But, except on the assumption that an ideal

heaven is meant, it is difficult to see what Plato can mean

by the contrast which he draws between the visible broideries

of heaven (the visible stars and their arrangement), which

are indeed beautiful, and the true broideries which they

only imitate and which are infinitely more beautiful and

marvellous.

This was not a view of astronomy that would appeal to

the ordinary person. Plato himself admits the difficulty.

' Rep. vii. 529 c-530 C.
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When Socrates's interlocutor speaks of the use of astronomy

for distinguishing months and seasons, for agriculture and

navigation, and even for military purposes, Socrates rallies

him on his anxiety that his curriculum should not consist

of subjects which the mass of people would regard as useless

:

' it is by no means an easy thing, nay it is difficult, to believe

that in studying these subjects a certain organ in the mind
of every one is purified and rekindled which is destroyed and

blinded by other pursuits, an organ which is more worthy

of preservation than ten thousand eyes ; for by it alone is

truth discerned.' ^

As with asti'onomy, so with harmonics.^ The true science of

harmonics differs from that science as commonly understood.

Even the Pythagoreans, who discovered the correspondence

of certain intervals to certain numerical ratios, still made
their theory take too much account of audible sounds. The
true science of harmonics should be altogether independent

of observation and experiment. Plato agreed with the Pytha-

goreans as to the nature of sound. Sound is due to concussion of

air, and when there is rapid motion in the air the tone is high-

pitched, when the motion is slow the tone is low ; when the

speeds are in certain arithmetical proportions, consonances or

harmonies result. But audible movements produced, say, by
different lengths of sti-ings are only useful as illustrations;

they are imperfect representations of those mathematical
movements which produce mathematical consonances, and
it is these true consonances which the true apiiovLKOi should
study.

We get on to easier ground when Plato discusses geometry.
The importance of geometry lies, not in its practical use, but
in the fact that it is a study of objects eternal and unchange-
able, and tends to lift the soul towards truth. The essence
of geometry is therefore directly opposed even to the language
which, for want of better terras, geometers are obliged to use

;

thus they speak of ' squaring ',
' applying (a rectangle)

',

' adding \ &c., as if the object were to do something, whereas
the true purpose of geometry is knowledge.^ Geometry is

concerned, not with material things, but with mathematical

' Sep- 527 D, E. 2 ih. 531 a-c.
' Ih. vii. 526 D-527 b.
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points, lines, triangles, squares, &c., as objects of pure thought.
If we use a diagram in geometry, it is only as an illustration

;

the triangle which we draw is an imperfect representation
of the real triangle of which we think. Constructions, then,

or the processes of squaring, adding, and so on, are not of the
essence of geometry, but are actually antagonistic to it. With
these views before us, we can without hesitation accept as
well founded the story of Plutarch that Plato blamed Eudoxus,
Archytas and Menaechmus for trying to reduce the dupli-

cation of the cube to mechanical constructions by means of

instruments, on the ground that 'the good of geometry is

thereby lost and destroyed, as it is brought back to things
of sense instead of being directed upward and grasping at

eternal and incorporeal images '. ^ It follows almost inevitably

that we must reject the tradition attributing to Plato himself

the elegant mechanical solution of the problem of the two
mean proportionals which we have given in the chapter on
Special Problems (pp. 256-7). Indeed, as we said, it is certain

on other grounds that the so-called Platonic solution was later

than that of Eratosthenes; otherwise Eratosthenes would
hardly have failed to mention it in his epigram, along

with the solutions by Archytas and Menaechmus. Tannery,

indeed, regards Plutarch's story as an invention based on
nothing more than the general character of Plato's philosophy,

since it took no account of the real nature of the solutions

of Archytas and Menaechmus; these solutions are in fact

purely theoretical and would have been difficult or impossible

to carry out in practice, and there is no reason to doubt that

the solution by Eudoxus was of a simikr kind.^ This is true,

but it is evident that it was the practical difficulty quite as

much as the theoretical elegance of the constructions which

impressed the Greeks. Thus the author of the letter, wrongly

attributed to Eratosthenes, which gives the history of the

problem, says that the earlier solvei's had all solved the

problem in a theoretical manner but had not been able to

reduce their solutions to practice, except to a certain small

extent Menaechmus, and that with difficulty ; and the epigram

of Eratosthenes himself says, ' do not attempt the impracticable

' Plutarch, Quaest. Conviv. viii. 2. 1, p. 718 f.

^ Tannery, La geomitrie grecque, pp. 79, 80
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business of the cylinders of Archyfcas or the cutting of the

cone in the three curves of Menaechmus '. It would therefore

be quite possible for Plato to regai'd Archytas and Menaechmus

as having given constructions that were ultra-mechanical, since

they were more mechanical than the ordinary constructions by

means of the straight line and circle; and even the latter, which

alone are required for the processes of ' squaring ',
' applying

(a rectangle) ' and ' adding ', are according to Plato no part of

theoretic geometry. This banning even of simple constructions

from true geometry seems, incidentally, to make it impossible

to accept the conjecture of Hankel that we owe to Plato the

limitation, so important in its effect on the later development

of geometry, of the instruments allowable in constructions to

the ruler and compasses.^ Indeed, there are signs that the

limitation began before Plato's time (e. g. this may be the

explanation of the two constructions attributed to Oenopides),

although no doubt Plato's, influence would help to keep the

restriction in force; for other instruments, and the use of

curves of higher order than circles in constructions, were
expressly barred in any case where the ruler and compasses
could be made to serve (cf. Pappus's animadversion on a solu-

tion of a ' plane ' problem by means of conies in Apollonius's

Conies, Book V).

Contributions to the philosophy of mathematics.

We find in Plato's dialogues what appears to be the first

serious attempt at a philosophy of mathematics. Aristotle

says that between sensible objects and the ideas Plato placed
'things mathematical' (to. fiadr]fj.aTLKd}, wliich differed from
sensibles in being eternal and unmoved, but differed again
from tiie ideas in that there can be many mathematical
objects of the same kind, while the idea is one only ; e. g. the
idea of triangle is one, but there may be any number of
mathematical triangles as of visible triangles, namely the
perfect triangles of which the visible triangles are imper-
fect copies. A passage in one of the Letters (No. 7, to the'
friends of Dion) is interesting in this connexion.^ Speaking
of a circle by way of example, Plato says there is (1) some-

» Hankel, op. cit., p. 156. ^ Plato, Letters, 342 b, c, 343 A, B.
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thing called a circle and known by that name ; next there

is (2) its definition as that in which the distances from its

extremities in all directions to the centre are always equal,

for this may be said to be the definition of that to which the

names ' round ' and ' circle ' are applied ; again (3) we have

the circle which is drawn or turned : this circle is perishable

and perishes; not so, however, with (4) avTov 6 kvkXos, the

essential circle, or the idea of circle : it is by reference to

this that the other circles exist, and it is different from each

of thein. The same distinction applies to anything else, e. g.

the straight, colour, the good, the beautiful, or any natural

or artificial object, fire, water, &c. Dealing separately with

the four things above distinguished, Plato observes that there

is nothing essential in (1) the name : it is merely conventional

;

there is nothing to prevent our assigning the name ' straight

'

to what we now call ' round ' and vice versa ; nor is there any

real definiteness about (2) the definition, seeing that it too

is made up of parts of speech, nouns and verbs. The circle

(3), the particular circle drawn or turned, is not free from

admixture of other things : it is even full of what is opposite

to the true nature of a circle, for it will anywhere touch

a straight line', the meaning of which is presumably that we
cannot in practice draw a circle and a tangent with only one

point common (although a mathematical circle and a mathe-

matical straight line touching it meet in one point only). It

will be observed that in the above classification there is no

place given to the many particular mathematical circles which

correspond to those which we draw, and are intermediate

between these imperfect circles and the idea of circle which

is one only.

(a) The hypotheses of mathematics.

The hypotheses of mathematics are discussed by Plato in

the Re]mblic.

' I think you know that those who occupy themselves with

geometries and calculations and the like take for granted the

odd and the even, figures, three kinds of angles, and other

things cognate to these in each subject ; assuming these things

as known, they take them as hypotheses and thenceforward

they do not feel called upon to give any explanation with
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regard to them either to themselves or any one else, but treat

them as manifest to every one ; basing themselves on these

hypotheses, they proceed at once to go through the rest of

the argument till they arrive, with general assent, at the

particular conclusion to which their inquiry was directed.

Further you know that they make use of visible figures and
argue about them, but in doing so they are not thinking of

these figures but of the things which they represent; thus

it is the absolute square and the absolute diameter which is

the object of their argument, not the diameter which they

draw ; and similarly, in other cases, the things which they
actually model or draw, and which may also have their images
in shadows or in water, are themselves in turn used as

images, the object of the inquirer being to see their abso-

lute counterparts which cannot be seen otherwise than by
thought.'

'

(j8) The huo intellectual onethods.

Plato distinguishes two processes : both begin from hypo-

theses. The one method cannot get above these hypotheses,

but, treating them as if they were first principles, builds upon
them and, with the aid of diagrams or images, arrives at

conclusions : this is the method of geometry and mathematics

in general. The other method treats the hypotheses as being

really hypotheses and nothing more, but uses them as stepping-

stones for mounting higher and higher until the principle

of all things is reached, a principle about which there is

nothing hypothetical ; when this is reached, it is possible to

descend again, by steps each connected with the preceding

step, to the conclusion, a process which has no need of any
sensible images but deals in ideals only and ends in them ^

;

this method, which rises above and puts an end to hypotheses,

and reaches the first principle in this way, is the dialectical

method. For want of this, geometry and the other sciences

which in some sort lay hold of truth are comparable to one
dreaming about truth, nor can they have a waking siglit of

it so long as they treat their hypotheses as immovable
truths, and are unable to give any account or explanation
of them.^

' Republic, vi. 510 c-E.- « lb. vi. 510 E 511 a-c
" Ih. vii. 533 B"E.
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With the above quotations we should read a passage of

Proclus.

' Nevertheless certain methods have been handed down. The
finest is the method which by means of analysis carries

the thing sought up to an acknowledged principle ; a method
which Plato, as they say, communicated to Leodamas, and by
which the latter too is said to have discovered many things
in geometry. The second is the method of division, which
divides into its parts the genus proposed for consideration,

and gives a starting-point for the demonstration by means of

the elimination of the other elements in the construction

of what is proposed, which method also Plato extolled as

being of assistance to all sciences.' ^

The first part of this passage, with a like dictum in Diogenes

Laertius that Plato ' explained to Leodamas of Thasos the

method of inquiry by analysis ',^ lias commonly been under-

stood as attributing to Plato the invention of the method

of mathematical analysis. But, analysis being according to

the ancient view nothing more than a series of successive

reductions of a theorem or problem till it is finally reduced

to a theorem or problem already known, it is difficult to

see in what Plato's supposed discovery could have consisted

;

for analysis in this sense must have been frequently used

in earlier investigations. Not only did Hippocrates of Chios

reduce the problem of duplicating the cube to that of finding

two mean proportionals, but it is clear that the method of

analysis in the sense of reduction must have been in use by

the Pythagoreans. On the other hand, Proclus's language

suggests that what he had in mind was the philosophical

method described in the passage of the Republic, which of

course does not refer to mathematical analysis at all ; it may
therefore well be that the idea that Plato discovered the

method of analysis is due to a misapprehension. But analysis

and synthesis following each other are related in the same

way as the upward and downward progressions in the dialec-

tician's intellectual method. It has been suggested, therefore,

that Plato's achievement was to observe the importance

from the point of view of logical rigour, of the confirma-

tory synthesis following analysis. The method of division

1 Proclus, Comm. on Eucl. I, pp. 211. 18-212. 1.

2 Diog. L. iii. 24, p. 74, Cobet.

U 2
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mentioned by Proclus is the method of successive bipartitions

of genera into species such as we find in the Sophist and

the Politlcus, and has little to say to geometry; but the

mention of it side by side with analysis itself suggests that

Proclus confused the latter with the philosophical method

referred to.

(y) Definitions.

Among the fundamentals of mathematics Plato paid a good

deal of attention to definitions. In some cases his definitions

connect themselves with Pythagorean tradition ; in others he

seems to have struck out a new line for himself. The division

of numbers into odd and even is one of the most common of

his illustrations; number, he says, is divided equally, i.e.

there are as many odd numbers as even, and this is the true

division of number; to divide number (e.g.) into myriads and

what are not myriads is not a proper division.^ An even

number is defined as a number divisible into two equal parts ^;

in another place it is explained as that which is not scalene

but isosceles ^
: a curious and apparently unique application

of these terms to number, and in any case a defective state-

ment unless the term ' scalene ' is restricted to the case in which

one part of the number is odd and the other even ; for of

course an even number can be divided into two unequal odd

numbers or two unequal even numbers (except 2 in the first

case and 2 and 4 in the second). The further distinction

between even-times-even, odd-times-even, even-times-odd and
odd-times-odd occurs in Plato *

: but, as thrice two is called

odd^times-even and twice three is even-times-odd, the number
in both cases being the same, it is clear that, like Euclid,

Plato regarded even-times-odd and odd-times-even as con-

vertible terms, and did not restrict their meaning in the way
that Nicomachus and the neo-Pythagoreans did.

Coming to geometry we find an interesting view of the

term ' figure '. What is it, asks Socrates, that is true of the

round, the straight, and the other things that you call figures,

and is the same for all? As a suggestion for a definition

of ' figure ', Socrates says, ' let us regard as figure that which
alone of existing things is associated with colour'. Meno

Politicus, 262 D, E.
' 2 Laws, 895 b.

' Euthyphro, 12 D. * Parmenides, 143 E-144 A.
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aaks what is to be done if the interlocutor says he docs not
know what colour is; what alternative definition is there?

Socrates replies that it will be admitted that in geometry-

there are such things as what we call a surface or a solid,

and so on ; from these examples we may learn what we mean
by figure; figure is that in which a solid ends, or figure is

the limit (or extremity, Tre'pay) of a solid.' Apart from
' figure ' as form or shape, e. g. the round or straight, this

passage makes ' figure ' practically equivalent to surface, and
we are reminded of the Pythagorean term for surface, xpo'".
colour or skin, which Aristotle similarly explains as xpSijia,

colour, something inseparable from nepa?, extremity." In

Euclid of course opos, limit or boundary, is defined as the

extremity (rrepas) of a thing, while ' figure ' is that which is

contained by one or more boundaries.

There is reason to believe, though we are not specifically

told, that the definition of a line as ' breadthless length

'

originated in the Platonic School, and Plato himself gives

a definition of a straight line as ' that of which the middle

covers the ends '
^ (i. e. to an eye placed at either end and

looking along the straight line) ; this seems to me to be the

origin of the Euclidean definition ' a line which lies evenly

with the points on it ', which, I think, can only be an attempt

to express the sense of Plato's definition in terms to which

a geometer could not take exception as travelling outside the

subject-matter of geometry, i. e. in terms excluding any appeal

to vision. A point had been defined by the Pythagoreans as

a 'monad having position' ; Plato apparently objected to this

definition and substituted no other ; for, according to Aristotle,

he regarded the genus of points as being a 'geometrical

fiction ', calling a point the beginning of a line, and often using

the term ' indivisible lines ' in the same sense.* Aristotle

points out that even indivisible lines must have extremities,

and therefore they do not help, while the definition of a point

as ' the extremity of a line ' is unscientific.°

The ' round ' {cttpoyyvXov) or the circle is of course defined

as ' that in which the furthest points {to. 'ia-)(^aTa) in all

' Mem, 75 a-76 a. ^ Ariat. De sensu, 439 a 31^ &c.
^ Pm-menides, 137 E. •" Arist. Metaph. A. 9, 992 a 20.

= Arist. Topics, vi. 4, 141 b 21.
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directions are at the same distance from the middle (centre) '.^

The 'sphere' is similarly defined as 'that which has the

distances from its centre to its terminations or ends in every

direction equal ', or simply as that which is ' equal (equidistant)

from the centre in all directions '?

The Parmenides contains certain phrases corresponding to

what we find in Euclid's preliminary matter. Thus Plato

speaks of something which is ' a part ' but not ' parts ' of the

One,'* reminding us of Euclid's distinction between a fraction

which is ' a part ', i. e. an aliquot part or submultiple, and one

which is 'parts', i.e. some number more than one of such

parts, e. g. |. If equals be added to unequals, the sums ditFer

by the same amount as the original unequals did :
* an axiom

in a rather more complete form than that subsequently inter-

polated in Euclid.

Summary of the mathematics in Plato.

The actual arithmetical and geometrical propositions referred

to or presupposed in Plato's writings are not such as to suggest

that he was in advance of his time in mathematics ; his

knowledge does not appear to have been more than up to

date. In the following paragraphs I have attempted to give

a summary, as complete as possible, of the mathematics con-

tained in the dialogues.

A proposition in proportion is quoted in the Parmenides,^

namely that, if a > b, then [a + c) : {b + c) < a : b.

In the Laws a certain number, 5,040, is selected as a most

convenient number of citizens to form a state ; its advantages

are that it is the product of 12, 21 and 20, that a twelfth

part of it is again divisible by 12, and that it has as many as

59 different divisors in all, including all the natural numbers
from 1 to 12 with the exception of 11, while it is nearly

divisible by 11 (5038 being a multiple of 11).^

(a) Regidar and semi-regular solids.

The ' so-called Platonic figures ', by which are meant the

five regular solids, are of course not Plato's discovery, for they
had been partly investigated by the Pythagoreans, and very

' Pannemdes, 137 e. * Timaeus, 33 B, 34 B.
' Parmenides, 153 D. * Ih. 154 b.
^ lb. 154 D. 8 L,i,vs, 537 e-538 a.
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fully by Theaetetus ; they were evidently only called Platonic

because oi; the use made of them in the Timaeus, where the

particles of the four elements are given the shapes of the first

four of the solids, the pyramid or tetrahedron being appro-

priated to fire, the octahedron to air, the icosahedron to water,

and the cube to earth, while the Creator used the fifth solid,

the dodecahedron, for the universe itself.^

According to Heron, however, Archimedes, who discovered

thirteen semi-regular solids inscribable in a sphere, said that

' Plato also knew one of them, the figure with fourteen faces,

of which there are two sorts, one made up of eight triangles

and six squares, of earth and air, and already known to some
of the ancients, the other again made up of eight square's and
six triangles, which seems to be more difliicult.'

^

The first of these is easily obtained ; if we take each square

face of a cube and make in it a smaller square by joining

the middle points of each pair of consecutive sides, we get six

squares (one in each face) ; taking the three out of the twenty-

four sides of these squares which are about any one angular

point of the cube, we have an equilateral triangle ; there are

eight of these equilateral triangles, and if we cut aS from the

corners of the cube the pyramids on these triangles as bases,

we have a semi-regular polyhedron

inscribable in a sphere and having

as faces eight equilateral triangles

and six squares. The description of

the second semi-regular figure with

fourteen faces is wrong: there are

only two more such figures, (1) the

figure obtained by cutting off" from

the corners of the cube smaller

pyramids on equilateral triangular bases such that regular

octagons, and not squares, are left in the six square faces,

the figure, that is, contained by eight triangles and six

octagons, and (2) the figure obtained by cutting off from the

corners of an octahedron equal pyramids with square bases

such as . to leave eight regular hexagons in the eight faces,

that is, the figure contained by six squares and eight hexagons.

' Timaeus, 55 D-56 B, 55 o.

^ Heron, Definitions, 104, p. 66, Heib.
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(/3) The construction of the regular solids.

Plato, of course, constructs the regular solids by simply

putting together the plane faces. These faces are, he observes,

made up of triangles ; and all triangles are decomposable into

two right-angled ti'iangles. Right-angled triangles are either

(1) isosceles or (2) not isosceles, having the two acute angles

unequal. Of the latter class, which is unlimited in number,

one triangle is the most beautiful, that in wliich the square on

the perpendicular is triple of the. square on the base (i. e. the

triangle which is the half of an equilateral triangle obtained

by drawing a perpendicular from a vertex on the opposite

side). (Plato is here Pythagorizing.^) One of the regular

solids, the cube, has its faces (squares) made up of the first

kind of right-angled triangle, the isosceles, four of

them being put together to form the square ; three
' others with equilateral triangles for faces, the tetra-

hedron, octahedron and icosahedron, depend upon
the other species of right-angled triangle only,

each face being made up of six (not two) of those right-angled
triangles, as shown in the figure ; the fifth solid, the dodeca-

hedron, with twelve regnlar pentagons for

faces, is merely alluded to, not described, in
the passage before us, and Plato is aware that
its faces cannot be constructed out of the two
elementary right-angled triangles on which the

four other solids depend. That an attempt was made to divide
the pentagon into a number of triangular elements is clear

from three passages, two in Plutarch ^

and one in Alcinous." Plutarch says
that each of the twelve faces of a
dodecahedron is made up of thirty
elementary scalene triangles which are
difierent from the elementary triangle
of the solids witli triangular faces.
Alcinous speaks of the 360 elements
which are produced when, each pen-

tagon 18 divided into five isosceles triangles and each of the
' Cf. Speusippus in Tlieol. Ar., p. 61, Ast

Alcinous, De Doctnna Platonis, c. 11.
*^OA.
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latter into six scalene triangles. If we draw lines in a pen-

tagon as shown in the accompanying figure, we obtain such

a set of triangles in a way which also shows the Pythagorean

pentagram (cf. p. 161, above).

(y) Geometric 'means between two square iiwrnhers

or two cubes.

In the Timaeus Plato, speaking of numbers ' whether solid

or square ' with a (geometric) mean or means between them,

observes that between planes one mean sutEces, but to connect

two solids two means are necessary.' By planes and solids

Plato probably meant square and cube members respectively,

so that the theorems quotedare probably those of Eucl. VIII.

11, 12, to the eflfect that between two square numbers there is

one mean proportional number, and between two cube numbers

two mean proportional numbers. Nicomachus quotes these

very propositions as constituting ' a certain Platonic theorem '.^

Here, too, it may be that the theorem is called ' Platonic ' for

the sole reason that it is quoted by Plato in the Timaeus;

it may well be older, for the idea of two mean proportionals

between two straight lines had already appeared in Hippo-

crates's reduction of the problem of doubling' the cube. Plato's

allusion does not appear to be to the duplication of the cube

in this passage any more than in the expression kv^cov av^rj,

' cubic increase ', in the Repihblic? which appears to be nothing

but the addition of the third dimension to a square, making

a cube (cf. Tpirr] av^-r}, 'third increase',* meaning a cube

number as compared with SvvajiL^, a square number, terms

which are applied, e.g. to the numbers 729 and 81 respec-

tively).

{8) The two geometrical passages in the Meno.

We come now to the two geometrical passages in the Meno.

In the first
''' Socrates is trying to show that teaching is only

reawaking in the mind of the learner the memory of some-

thing. He illustrates by putting to the slave a carefully

prepared series of questions, each requiring little more than

' Timaeus, 31 c-32 B. ' Nicom. ii. 24. 6.

= Bepuhlic, 528 e. • lb. 587 D.

= Meno, 82 b-85 e.



298 PLATO

-:. F

' yes ' or ' no ' for an answer, but leadini;- up to the geometrical

construction of '/2. Starting with a straight line AB 2 feet

long, Socrates describes a square ABGD upon it and easily

shows that the area is 4 square feet. Producing the sides

AB, AD to G, K so that BG, DK are equal to AB, AD, and

completing the figure, we have a square of side 4 feet, and this

square is equal to four times the original square and therefore

has an area of 16 square feet. N(jw, says Socrates, a square

8 feet in area must have its side

greater than 2 and less than 4 feet.

The slave suggests that it is 3 feet

in length. By taking N the

middle point of DK (so that AN
is 3 feet) and completing the square

on AN, Socrates easily shows that

the square on AN is not 8 but 9

square feet in area. If L, M be

the middle points of GH, HK and
GL, CM be joined, we have four

squares in the figure, one of which is ABGD, while each of the
others is equal to it. If now.we draw the diagonals BL, LM,
MD, DB of the four squares, each diagonal bisects its square,
and the four make a square BLMD, the area of which is half
that of the square AGHK, and is therefore 8 square feet;
BL is a side of this square. Socrates concludes with the
words

:

'The Sophists call this straight line {BD) the diameter
(diagonal); this being its name, it follows that the square
which IS double (of the original square) has to be described on
the diameter.'

The other geometrical passage in the Meno is much more
difficult,! and it has gathered round it a literature almost
comparable in extent to the volumes that have been written
to explain the Geometrical Number of the Repuhllc. C Blass
writing in 1861, knew thirty difierent interpretations; and
since then many more have appeared. Of recent years
Benecke's interpretation ^ seems to have enjoyed the most

' Meno, 86 e-87 c.

ivl^n'fElff lfl?f*^' ^'f'^'-/'r
aeometrische Hypothesis in Platan'sMenon (JLlbmg, 1867j. See also below, pp. 302-8.



TWO GEOMETRICAL PASSAGES IN THE MENO 299

acceptance ; nevertlieless, I think that it is not the right one,

but that the essentials of the correct interpretation were given
by S. H. Butcher 1 (who, liowever, seems to have been com-
pletely anticipated by E. F. August, the editor of Euclid, in

1829). It is necessary to begin with a literal translation of

the passage. Socrates is explaining a procedure ' by waj'

of hypothesis ', a procedure which, he observes, is illustrated

by the practice of geometers

' when they are asked, for example, as regards a given area,

whether it is possible for this area to be inscribed in the form
of a triangle in a given circle. The answer might be, " I do
not yet know whether this area is such as can be so inscribed,

but I think I can suggest a hypothesis which will be useful for

the purpose ; I mean the following. If the given area is such
as, when one has applied it (as a rectangle) to the given
straight line in the circle {rrjv SoOeiaav avrov ypan/irjp, the

given straight line in it, cannot, I think, mean anything
but the diameter of the circle*], it is deficient by a figure

(rectangle) similar to the very figure which is applied, then
one alternative seems to me to result, while again another

results if it is impossible for what I said to be done with it.

Accordingly, by using a hypothesis, I am ready to tell you what
results with regard to the inscribing of the figure in the circle,

namely, whether the problem is possible or impossible."
'

Let AEB be a circle on ^jB as diameter, and let At! be the

tangent at A. Take E any point on the circle and draw

ED perpendicular to AB. Complete the rectangles AGED,
EDBF.
Then it is clear that the rectangle GEDA is ' applied ' to

the diameter AB, and also that.it ' falls short ' by a figure, the

rectangle EDBF, similar to the ' applied ' rectangle, for

AD:DE = ED:DB.

Also, if ED be produced to meet the circle again in G,

AEG is an isosceles triangle bisected by the diameter AB,

and therefore equal in area to the rectangle AGED.
If then the latter rectangle, ' applied ' to AB in the manner

' Journal ofPhilology, vol. xvii, pp. 219-25 ; cf. E. S. Thompson's edition

of the Meno.
' The obvious 'line' of a circle is its diameter, just as, in the first

geometrical passage about the squares, the ypafi/j.^, the ' line ', of a square

is its side.
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described, is equal to the given area, that area is inscribed in

the form of a triangle in the given circle.^

In order, therefore, to inscribe in the circle an isosceles

triangle equal to the given area (X), we have to find a point E
on. the circle such that, if ED be drawn perpendicular to AB,

the rectangle AD . DE is equal to the given area A' (' applying

'

to AB a rectangle equal to X and falling short by a figure

similar to the 'applied' figure is only another way of ex-

pressing it). Evidently E lies on the rectangular hyperbola

' Butcher, after giving the essentials of the interpretation of the

passage quite correctly, finds a difficulty. ' If, he says, ' the condition'

(as interpreted by him) ' holds good, the given ^^mpiov can be inscribed in

a circle. But the converse proposition is not true. The x<"pio'' can still

be inscribed, as required, even if the condition laid down is not fulfilled;

the true and necessary condition being that the given area is not greater
than that of the equilateral triangle, i. e. the maximum triangle, which
can be inscribed in the given circle.' The difficulty arises in this way.
Assuming (quite fairly) that the given area is given in the form of a rect-

angle (for any given rectilineal figure can be transformed into a rectangle
of equal area). Butcher seems to suppose that it is identically the given
rectangle that is applied to AB. But this is not necessary. The termi-
nology of mathematics was not quite fixed in Plato's time, and he allows
himself some latitude of expression, ao that we need not be surprised to

find him using the phrase ' to apply the area (;^mpio>/) to a given straight
line ' as short for ' to apply to a given straight line a rectangle equal (but not
similar) to the given area ' (cf. Pappus vi, p. 544. 8-10 /xij Trav rb Sodh
TTapa rqv boBtiaav napa^d'hXea-dai f'XXf ittoh tctpayava, ' that it is not every
given (area) that can be applied (in the form of a rectangle) falling short
by a square figure'). If we interpret the expression in this way, the
converse is true ; if we cannot apply, in the way described, a rectangle
equal to the given rectangle, it is because the given rectangle is greater
than the equilateral, i.e. the maximum, triangle that can be inscribed in
the circle, and the problem is therefore impossible of solution. (It was
not till long after the above was written that my attention was drawn to
the article on the same subject in the Journal of Philology, xxviii, 1903,
pp. 222-40, by Professor Cook Wilson. I am gi-atified to find that my
interpretation of the passage agrees with his.)
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the equation of which referred to AB, AG as axes of x, y is

xy = h"^, where 6^ is equal to the given area. For a real

solution it is necessary that V^ should be not greater than the

equilateral triangle inscribed in the circle, i. e. not greater than

3 a/3 . a2/4, where a is the radius of the circle. If 6^ is equal

to this area, there is only one solution (the hyperbola in that

case touching the circle) ; if b'^ is less than this area, there are

two solutions corresponding to two points E, E' in which the

hyperbola cuts the circle. \i AD — x, we have OB — x— a,

DE — •/{2ax— x'^), and the problem is the equivalent of

solving the equation

X V{2ax— x^) = V,

or x'^{2ax— x'^) = ¥.

This is an equation of the fourth degree which can be solved

by means , of conies, but not by means of the straight line

and circle. The solution is given by the points of intersec-

tion of the hyperbola xy = b- and the circle y^ = 2ax— x'^ or

x'^ + y^ = 2 ax. In this respect therefore the problem is like

that of finding the two mean proportionals, which was likewise

solved, though not till later, by means of conies (Menaechmus).

I am tempted to believe that we have here an allusion to

another actual problem, requiring more than the straight

Kne and circle for its solution,

which had exercised the minds

of geometers by the time of

Plato, the problem, namely, of

inscribing in a circle a triangle

equal to a given area, a problem

which was still awaiting a

solution, although it had been

reduced to the problem of

applying a rectangle satisfying the condition described by

Plato, just as the duplication of the cube had been reduced

to the problem of finding two mean proportionals. Our

problem can, like the latter problem, easily be solved by the

' mechanical ' use of a ruler. Suppose that the given rectangle

is placed so that the side AB lies along the diameter AB of

the circle. Let E be the angle of the rectangle ABEC opposite

to A. Place a ruler so that it passes through E and turn
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it about E until it passes through a point P of the circle such

that, if EP meets AB and AC produced in T, R, PT shall be

equal to ER. Then, since RE=PT, AD= 3IT, where Jf is

the foot of the ordinate PM.
Therefore DT =^ AM, and

A3I : AD = DT : MT
= ED:PM,

whence PM . MA =ED.DA,
and APM is the half of the required (isosceles) triangle.

Benecke criticizes at length the similar interpretation of the

passage given by E. F. August. So far, however, as his objec-

tions relate to the translation of particular words in the

Greek text, they are, in my opinion, not well founded.^ For

the rest, Benecke holds that, in view of the difficulty of the

problem which emerges, Plato is unlikely to have introduced

it in such an abrupt and casual way into the conversation

between Socrates and Meno, But the problem is only one

of the same nature as that of the finding of two mean
proportionals which was already a famous problem, and, as

regards the form of the allusion, it is to be noted that Plato

was fond of dark hints in things mathematical.

If the above interpretation is too difficult (which I, for one,

do not admit), Benecke's is certainly too easy. He connects

his interpretation of the passage with the earlier passage

about the square of side 2 feet ; according to him the problem
is, can an isosceles right-angled tri-

.^ - - f angle equal to the said square be
N. ', inscribed in the given circle? This

V is of course only possible if the

1
radius of the circle is 2 feet in length.

1 If AB, DE be two diameters at right

/ angles, the inscribed triangle is ADE;
y^ the square ACDO formed by the radii

AO, OD and the tangents at Z>, A
is then the 'applied' rectangle, and

the rectangle by which it falls short is also a square and equal

1 The main point of Benecke's criticisms under this head has reference
to Toioira ;i(Mpio) oioi/ in the phrase iXXdnctv toioutm X'^P^V oIov av avTo to
TTapaT-Tafiimv'ji. He will have it that roiovra ofoi/ cannot mean ' similar to',
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to the other square. If this were the correct interpretation,

Plato is using much too general language about the applied

rectangle and that by which it is deficient; it would be
extraordinary that he should express the condition in this

elaborate way when he need only have said that the radius

of the circle must be equal to the side of the square and
therefore 2 feet in length. The explanation seems to me
incredible. The criterion sought by Socrates is evidently

intended to be a real Sioptaixo^, or determination of the

conditions or limits of the possibility of a solution of the pro-

blem whether in its original form or in the form to which
it is reduced; but it is no real Sioptafjios to say what is

equivalent to saying that the problem is possible of solution

if the circle is of a particular size, but impossible if the circle

is greater or less than that size.

The passage incidentally shows that the idea of a formal

SiopLo-fioi defining the limits of possibility of solution was
familiar even before Plato's time, and therefore that Proclus

must be in error when he says that Leon, the pupil of

Neoclides, ' invented SLopio-fioi (determining) when the problem

which is the subject of investigation is possible and when
impossible ',^ although Leon may have been the first to intro-

duce the term or to recognize formally the essential part

played by SiopicrpLoi in geometry.

(e) Plato and the doubling of the cube.

The story of Plato's relation to the problem of doubling

the cube has already been told (pp. 245-6, 255). Although the

solution attributed to him is not his, it may have been with

this problem in view that he complained that the study of

solid geometry had been unduly neglected up to his time.^

and he maintains that, if Plato had meant it in this sense, he should
have added that the ' defect ', although ' similar ', is not similarly situated.

I see no force in this argument in view of the want of fixity in mathe-
matical terminology in Plato's time, and of his own habit of varying his

phrases for literary effect. Benecke makes the words mean ' of the same
kind \ e. g. a square with a square or a rectangle with a rectangle. But
this would have no point unless the figures are squares, which begs the

whole question.
1 Proclus on Eucl. I, p. 66. 20-2.
' Republic, vii. 528 A-c.
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({) Solution of x^ + y^ = z^ in Mitegers.

We have already seen (p. 81) that Plato is credited with

a rule (complementary to the similar rule attributed to Pytha-

goras) for finding a whole series of square numbers the sum
of which is also a square ; the formula is

(2ny + {n''-lf = {n^+lf.

(rj) Incommensurables.

On the subject of incommensurables or irrationals we have

first the passage of the Theaetetiis recordin that Theodorus

proved the incommensurability of Vs, \^5 ... -J XT, after

which Theaetetus generalized the theory of such ' roots '.

This passage has already been fully discussed (pp. 203-9).

The subject of incommensurables comes up again in the Laws,

where Plato inveighs against the ignorance prevailing among
the Greeks of his time of the fact that lengths, breadths and

depths may be incommensurable as well as commensurable
with one another, and appears to imply that he himself had
not learnt the fact till late (a/coucray d\|/-e Trore), so that he

was ashamed for himself as well as for his countrymen in

general.^ But the irrationals known to Plato included more
than mere ' surds ' or the sides of non-squares ; in one place

he says that, just as an even number may be the sum of

either two odd or two even numbers, the sum of two irra-

tionals may be either rational or irrational.^ An obvious
illustration of the former case is afibrded by a rational straight

line divided 'in extreme and mean ratio'. Euclid (XIII. 6)

proves that each of the segments is a particular kind of

irrational straight line called by him in Book X an aiMtome
;

and to suppose that the irrationality of the two segments was
already known to Plato is natural enough if we are correct in

supposing that ' the theorems which ' (in the words of Proclus)
' Plato originated regarding iAe section ' ^ were theorems about
what came to be called the 'golden section', namely the
division of a straight line in extreme and mean ratio as in

Eucl. II. 11 and VI. 30. The appearance of the latter problem
in Book II, the content of which is probably all Pythagorean,
suggests that the incommensurability of the segments with

1 Laws, 819 D-820 c. 2 Hijipias Maior, 303 B, c
' Proclus on Eucl. I, p. 67. 6.
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the whole line was discovered before Plato's time, if not as
early as the irrationality of ^2.

(0) The Geometrical Number.

This is not the place to discuss at length the famous passage
about the Geometrical Number in the Rejmblic.^ Nor is its

mathematical content of importance; the whole thing is

mystic rather than mathematical, and is expressed in
rhapsodical language, veiling by fanciful phraseology a few
simple mathematical conceptions. The numbers mentioned
are supposed to be two. Hultsch and Adam arrive at the
same two numbers, though by different routes. The first

of these numbers is 216, which according to Adam is the sum
of three cubes 3=+ 4^ + 53; 23,3^ is the form in which
Hultsch obtains it.^

^ Republic, Yiii. 54:6 B-D. The number of interpretations of this passage
is legion. For an exhaustive discussion of the language as well as for
one of the best interpretations that has been put forward, see Dr. Adam's
edition of the Bepuhlic, vol. ii, pp. 204-8, 264-312.

The Greek is eV to npayra a\j^q(T€LS dwd^ei/al re Km 8vpaaT€v6fi€vai. rpeie
anoaTaaeLSj rerrapas fie opovs Xa^ovo'aL opoiovvTcov re Koi dpofiotovvTcov kol
av^ovTcav Km. (pdivovrav, navra npocrrfyopa Koi prjra irpos akXrjka aTr€(j)T]vav,

which Adam translates by 'the first number in which root and
square increases, comprehending three distances and four limits, of
elements that make like and unlike and wax and wane, render all

things conversable and rational with one another '. ai^rjcreis are
clearly multiplications, bvvajxfvai re koX bvvacrrevopevai are explained in
this way. A straight line is said Sivaadm (' to be capable of ') an area,
e. g. a rectangle, when the square on it is equal to the rectangle ; hence
bwafxivT) should mean a side of a square. SvvncrTevoiJ.(vq represents a sort
of passive of dma/xevij, meaning that of which the hwafiivrj is ' capable '

;

hence Adam takes it here to be the square of which the bwapivrj is the
side, and the whole expression to mean the product of a square and its

side, i. e. simply the cube of the side. The cubes 3^ 4', 5' are supposed
to be meant because the words in the description of the second number
'of which the ratio in its lowest terms 4:3 when joined to 5' clearly
refer to the right-angled triangle 3, 4, 5, and because at least three
authors, Plutarch {De Is. et Os. 373 F), Proclus (on lucl. 1, p. 428. 1) and
Aristides Quintilianus (De mus., p. 152 Meibom. = p. 90 Jahn) say that
Plato used the Pythagorean or 'cosmic' triangle in

his Number. The ' three distances ' are regarded
as ' dimensions ', and the ' three distances and
four limits ' are held to confirm the interpretation
' cube ', because a solid (parallelepiped) was said to

have 'three dimensions and four limits' (Theol. Ar.,

p. 16 Ast, and Iambi, in Nicom., p. 93. 10), the limits

being bounding points as A, B, C, D in the accom- "

panying figure. ' Making like and unlike ' is sup-

posed to refer to the square and oblong forms in which the second

A
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The second number is described thus

:

' The ratio 4 : 3 in its lowest terms (' the base ', TrvOfi-qv, of

the ratio eTr/Vpiroy) joined or wedded to 5 yields two harmonies

when thrice increased {rpls av^rjO^is), the one equal an equal

number of times, so many times 1 00, the other of equal length

one way, but oblong, consisting on the one hand of 100 squares

of rational diameters of 5 diminished by one each or, if of

number is stated.

Another view of the whole passage has recently appeared (A. G. Laird,
Plata's Geometrical Number and the comment ofPfOclus, Madisou, Wiscon-
sin, 1918). Like all other solutions, it is open to criticism in some
details, but it is attractive in so far as it makes greater use of Proclus
(in Plntonis remp., vol. ii, p. 36 seq. KroU) and especially of the passage
(p. 40) in which he illustrates the formation of the ' harmonies ' by means
of geometrical figures. According to Mr. Laird there are not two separ-
ate numbers, and the description from which Hultsch and Adam derive
the number 216 is not a description of a number but a statement of a
general method of formation of ' harmonies ', which is then applied to
the triangle 3, 4, 5 as a particular case, in order to produce the one
Geometrical Number. The basis of the whole thing is the use of figures
like that of Eucl. VI. 8 (a right-angled triangle divided by a perpendicular
from the right angle on the opposite side into two right-angled triangles
similar to one another and to the original triangle). Let ABC be a
right-angled triangle in which the sides CB, BA containing the right

angle are rational numbers a, h respectively.
Draw AF at right angles to AC meeting CB
produced in F. Then the figure AFC is that of
Eucl. VI. 8, and of course AB^ = CB.BF.
Complete the rectangle ABFL, and produce
FL, CA to meet at K. Then, by similar tri-

angles, CB, BA, FB (= AL) and KL are four
straight lines in continued proportion, and their
lengths are a, h, V^ja, Vja^ respectively. Mul-
tiplying throughout by a' in order to get rid of
fractions, we may take the lengths to be a',
a^h, aV, Y respectively. Now, on Mr. Laird's
view, av^rjden Sm/d|ifrai are squares, as AB'^, and
av^^crcLt dvvaa-revofjLfmi rectangles, as FB, BC, to
it'hich the squares are equal. ' Making like and

"?, ®^2 ''^f
''

x*°
^^^ f'l"''^ ^^<=^°''' °^ «"' *' and the unequal factors ofa% ab'; the terms a\ a\ ab\ V are four te>-ms (Spot) of a continued

proportion with three intervals {moijTaa€i.s), and of course are all ' con-
versable and rational with one another '. (Incidentally, out of such
terms we can even obtain the number 216, for if we put n = 2, & = 3, wehave 8, 12, 18, 27 and the product of the extremes 8 . 27 = the productof the means 12 18 = 216). Applying the method to the triangle 3 4,

5

(as Proclus does) we have the terms 27, 36, 48, 64, and the first threenumbers multiphed respectively by 100, give the elements of tliP
Geometrical Number 3600^= 27o"o .4W 'o^n this UrpretSion ^n.|^^«c simply means raised to the third dimension or ' made solid ' (as
Aristotle says PoUUcs em. 12 1316a 8) the factors being of couL3

.
3 3 - 27, 3 . 3 . 4 = 36, and 3 . 4 . 4 = 48 ; and ' the ratio 4 : 3 ioined

the'trt'/et T,!"
'^'^'" '''' ''''''"'' '^^ "^ ^^ "^ ^' 4- 5, but sCply -
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irrational diameters, by two, and on the other hand of 100
cubes of 3.'

The ratio 4 : 3 must be taken in the sense of ' the numbers
4 and 3 ', and Adam takes 'joined witli 5 ' to mean that 4, 3

and 5 are multiplied together, making 60 ; 60 ' thrice increased

'

he interprets as ' 60 thrice multiplied by 60 ', that is to say,

60x60x60x60 or 3600^; 'so many times 100' must then
be the 'equal' side of this, or 36 times 100;' this 3600^ or
12960000, is one of the 'harmonies'. The other is the same
number expressed as the product of two unequal factors, an
'oblong' number; the first factor is 100 times a number
which can be described either as 1 less than the square of the
' rational diameter of 5 ', or as 2 less than the square of

the ' irrational diameter ' of 5, where the irrational diameter
of 5 is the diameter of a square of side 5, i. e. \/50, and the

rational diameter is the nearest whole number to this, namely
7, so that the number which is multiplied by 100 is 49 — 1, or

50 — 2, i.e. 48, and the first factor is therefore 4800; the

second factor is 100 cubes of 3, or 2700; and of course

4800 X 2700 = 36002 or 12960000. Hultsch obtains the side,

3600, of the first ' harmony ' in another way ; he takes 4 anS 3

joined to 5 to be the sum of 4, 3 and 5, i. e. 1 2, and rph av^rjdei?,

' thrice increased ', to mean that the 1 2 is ' multiplied by three '^

making 36 ; 'so many times 100 ' is then 36 times 100, or 3600.

But the main interest of the passage from the historical

' Adam maintains that rpls al^rjdeis cannot mean ' multiplied by 3 '. He
observes (p. 278, note) that the Greek for ' multiplied by 3

', if we
use aii^avco, would be rpidSi ai^rjSds, this being the construction used by
Nicomachus (ii. 15. 2 cva 6 6 rp'is y a>v ttoXiv rpiaSi «V nXXo Siaa-rqpa

av^7)drj Koi yevtfrai A xf) and in TheoL At: (p. 39, Ast e^dSi av^rjdfis). Never-
theless I think that rp'is ai^ridds would not be an unnatural expression for

a mathematician to use for ' multiplied by 3 ', let alone Plato in a passage
like this. It is to be noted that jroXAarrXntridfoo and TToWanXdaios are

likewise commonly used with the dative of the multiplier; yet iVaxis

noXXfiTrXdo-ior is the regular expression for ' equimultiisle '. And ni^ava is

actually found with Toa-avraKts : see Pappus ii, p. 28. 15, 22, where roa-av-

TaKts av^Tjo-opev means ' we have to multiply by such a power ' of 10000 or

of 10 (although it is true that the chapter in which the expression occurs
may be a late addition to Pappus's original text). On the whole, I prefer

Hultsch's interpretation to Adam's. Tp\s nv^ridek can hardly mean that

60 is raised to the fouiih power, 60' ; and if it did, ' so many times 100
',

immediately following the expression for 3600', would be pointless and
awkward. On the other hand, ' so many times 100 ' following the ex-

pression for 36 would naturally indicate 3600.

X 2
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point of view lies in the terms ' rational ' and ' irrational

diameter of 5
'. A fair approximation to ^2 was obtained

by selecting a square number such that, if 2 be multiplied by

it, the product is nearly a square ; 25 is such a square number,

since 25 times 2, or 50, only differs by 1 from 7^; conse-

quently f is an approximation to '/2. It may have been

arrived at in the tentative way here indicated ; we cannot

doubt that it was current in Plato's time ; nay, we know that

the general solution of the equations

a;2-2^2 = + 1

by means of successive ' side- ' and ' diameter- ' numbers was

Pythagorean, and Plato was therefore, here as in so many
other places, ' Pythagorizing '.

The diameter is again mentioned in the 'Politicus, where

Plato speaks of ' the diameter which is in square (Svvdufi)

two feet', meaning the diagonal of the square with side

1 foot, and again of the diameter of the square on this

diameter, i. e. the diagonal of a square 2 square feet in area,

in other words, the side of a square 4 square feet in area,

or a straight line 2 feet in length.'

Enough has been said to show that Plato was abreast of

the mathematics of his day, and we can understand the

remark of Proclus on the influence which he exerted upon
students and workers in that field

:

' he caused mathematics in general and geometry in particular
to make a very great advance by reason of his enthusiasm
for them, which of course is obvious from the way in which
he filled his books \Yith mathematical illustrations and every-
where tries to kindle admiration for these subjects in those
who make a pursuit of philosophy.'

^

Mathematical ' arts '.

Besides the purely theoretical subjects, Plato recognizes the

practical or applied mathematical ' arts
'

; along with arith-

metic, he mentions the art of measurement (for purposes of

trade or craftsmanship) and that of weighing »
; in the former

connexion he speaks of the instruments of the craftsman,
the circle-drawer (ropvo?), the compasses (SLa^rJTT]?), the rule

' Politicus, 266 b. 2 ppociug ^^ j;ucl. T, p. 66 8-14
'' Philehus, 55 e-56 e.
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{(TTd6/irj) and 'a certain elaborate irpoa-aymyLov' (? approxi-

mator). The art of weighing, he says,^ ' is concerned with
the lieavier and lighter weight ', as ' logistic ' deals with odd
and even in their relation to one another, and geometry with
magnitudes greater and less or equal; in the Protagoras he

speaks of the man skilled in weighing

' who puts together first tlie pleasant, and second the painful
things, and adjusts the near and the far on the balance ' ^

;

the principle of'the lever was therefore known to Plato, who
was doubtless acquainted with the work of Archytas, the

reputed founder of the science of mechanics.^

(a) . Optics.

In the physical portion of the Timaeus Plato gives his

explanation of the working of the sense organs. The account

of the process of vision and the relation of vision to the

light of day is interesting,* and at the end of it is a reference

to the properties of mirrors, which is perhaps the first indica-

tion of a science of optics. When, says Plato, we see a thing

in a mirror, the fire belonging to the face copibines about the

bright surface of the mirror with the fire in the visual current

;

the right portion of the face appears as the left in the image

seen, and vice versa, because it is the mutually opposite parts

of the visual current and of the object seen which come into

contact, contrary to the usual mode of impact. (That is, if you
imagine your reflection in the mirror to be another person

looking at you, his left eye is the image of your right, and the

left side of his left eye is the image of the right side of your

right.) But, on the other hand, the right side really becomes

the right side and the left the left when the light in com-

bination with that with which it combines is transferred from

one side to the other; this happens when the smooth part

of the mirror is higher at the sides than in the middle (i. e. the

mirror is a hollow cylindrical mirror held with its axis

vertical), and so diverts the right portion of the visual current

to the left and vice versa. And if you turn the mirror so that

its axis is horizontal, everything appears upside down.

' Charmides, 166 b. ^ Protagoras, 356 B.

^ Diog. L. viii. 83. " Timaeus, 45 B-46 c.
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(y3) 3Iusic.

In music Plato had the advantage of the researches of

Archytas and the Pythagorean school into the numerical

relations of tones. In the Tiniaeus we find an elaborate

filling up of intervals by the interposition of arithmetic and

. harmonic means ^ ; Plato is also clear that higher and lower

pitch are due to the more or less rapid motion of the air.^

In like manner the dififerent notes in the 'harmony of the

spheres
',
poetically turned into Sirens sitting^ on each of the

eight whorls of the Spindle and each uttering a single sound,

a single musical note, correspond to the difierent speeds of

the eight circles, that of the fixed stars and those of the sun,

the moon, and the five planets respectively/'

(y) Astronomy.

This brings us to Plato's astronomy. His views are stated

in their most complete and final form in the Timaeus, though

account has to be taken of other dialogues, the Fhaedo, the

Republic, and the Laws. He based himself upon the early

Pythagorean system (that of Pythagoras, as distinct from

that of his successors, who wex'e the first to abandon the

geocentric system and made the earth, with the sun, the

moon and the other planets, revolve in circles about the ' cen-

tral fire
') ;

while of course he would take account of the

results of the more and more exact observations made up
to his own time. According to Plato, the universe has the

most perfect of all shapes, that of a sphere. In the centre

of this sphere rests the earth, immovable and kept there by
the equilibrium of symmetry as it were ('for a thing in

equilibrium in the middle of any uniform substance will not

have cause to incline more or less in any direction
'

''). The
axis of the sphere of the universe passes through the centre of

the earth, which is also spherical, and the sphere revolves
uniformly about the axis in the direction from east to west.

The fixed stars are therefore carried round in small circles

of the sphere. The sun, the moon and the five planets are
also carried round in the motion of the outer sphere, but they
have independent circular movements of their own in addition.

' Timaeus, 35 c-36 b. ^ /6 67 b
" Repullic, 617 B. 1 Phaedo, 109 A.
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These latter movements take place in a plane which cuts

at an angle the equator of the heavenly sphere ; the several

orbits are parts of what Plato calls the ' circle of the Other
',

as distinguished from the ' circle of the Same ', which is the

daily revolution of the heavenly sphere as a whole and which,

carrying the circle of the Other and the seven movements
therein along with it, has the mastery over them. The result

of the combination of the two movements in the case of any
one planet is to twist its actual path in space into a spiral ^

;

the spiral is of course included between two planes parallel to

that of the equator at a distance equal to the maximum
deviation of the planet in its course from the equator on

either side. The speeds with which the sun, the moon and

the five planets describe their own orbits (independently

of the daily rotation) are in the following order ; the moon is

the quickest; the sun is the next quickest and Venus and

Mercury travel in conipanj- with it, each of the three taking

about a year to describe its orbit ; the next in speed is Mars,

the next Jupiter, and the last and slowest is Saturn ; the

speeds are of course angular speeds, not linear. The order

of distances from the earth is, beginning with the nearest,

as follows : moon, sun, Venus, Mercury, Mars, Jupiter, Saturn.

In the Republic all these heavenly bodies describe their own
orbits in a sense opposite to that of the daily rotation, i. e. in

the direction from west to east ; this is what we should

expect; but in the Ti'maeus we are distinctly told, in one

place, that the seven circles move ' in opposite senses to one

another',^ and, in another place, that Venus and Mercury

have 'the contrary tendency' to the sun.^ This peculiar

phrase has not been satisfactorily interpreted. The two state-

ments taken together in their literal sense appear to imply

that Plato actually regarded Venus and Mercury as describing

their orbits the contrary way to the sun, incredible as this

may appear (for on this hypothesis the angles of divergence

between the two planets and the sun would be capable of any

value up to 180°, whereas observation shows that they are

never far from the sun). Proclus and others refer to attempts

to explain the passages by means of the theory of epicycles

;

Chalcidius in particular indicates that the sun's motion on its

1 Timaeus, 38 E-39 B. " lb. 36 d. ' lb. 38 d.
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epicycle (which is from east to west) is in the contrary sense

to the motion of Venus and Mercury on their epicycles

respectively (which is from west to east) ^ ; and this would

be a satisfactory explanation if Plato could be supposed to

have been acquainted with the theory of epicycles. But the

probabilities are entirely against the latter supposition. All,

therefore, that can be said seems to be this. Heraclides of

Pontus, Plato's famous pupil, is known on clear evidence to

have discovered that Venus and Mercury revolve rouiid the

sun like satellites. He may have come to the same conclusion

about the superior planets, but this is not certain ; and in any

case he must have made the discovery with reference to

Mercury and Venus first. Heraclides's discovery meant that

Venus and Mercury, while accompanying the sun in its annual

motion, described what are really epicycles about it. Now
discoveries of this sort aie not made without some preliminary

seeking, and it may have been some vague inkling of the

truth that prompted the remark of Plato, whatever the precise

meaning of the words.

The differences between the angular speeds of the planets

account for the overtakings of one planet by another, and

the combination of their independent motions with that of the

daily rotation causes one planet to a'pl^ar to be overtaking

another when it is really being overtaken by it and vice

versa.^ The sun, moon and planets are instruments for

measuring time.^ Even the earth is an instrument for making
night and day by virtue of its not rotating about its axis,

while the rotation of the fixed stars carrj'ing the sun with
it is completed once in twenty-four hours ; a month has passed
when the moon after completing her own orbit overtakes the
sun (the 'month' being therefore the synodic month), and
a year when the sun has completed its own circle. According
to Plato the time of revolution of the other planets (except
Venus and Mercury, which have the same speed as the sun)
had not been exactly calculated ; nevertheless the Perfect
Year is completed ' when the relative speeds of all the eight

revolutions [the seven independent revolutions and the daily
rotation] accomplish their course together and reach their

' Chalcidius on Timaeus, cc. 81, 109, 112. '' Timaeus 39 a
= lb. 41 E, 42 D.

'
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starting-point '} There was apparently a tradition that the

Great Year of Plato was 36000 years : this corresponds to

the minimum estimate of the precession of the equinoxes

quoted by Ptolemy from Hipparchus's treatise on the length

of the year, namely at least one-hundredth of a degree in

a year, or 1° in 100 years,^ that is to say, 360° in 36000 years.

The period is connected by Adam with the Geometrical Num-
ber 12960000 because this number of days, at the rate of 360

days in the year, makes 36000 years. The coincidence may,

it is true, have struck Ptolemy and made him describe the

Great Year arrived at on the basis of 1° per 100 years

as the ' Platonic ' year ; but there is nothing to show that

Plato himself calculated a Great Year with reference to pre-

cession : on the contrary, precession was first discovered by

Hipparchus.

As regards the distances of the sun, moon and planets

Plato has nothing more definite than that the seven circles

are ' in the proportion of the double intervals, three of each '
^

:

the reference is to the Pythagorean rerpa/cTi/y represented in

the annexed figure, the numbers after 1 being

on the one side successive powers of 2, and on

the other side successive powers of 3. This

gives 1, 2, 3, 4, 8, 9, 27 in ascending order.

What precise estimate of relative distances

Plato based upon these figures is uncertain.

It is generally supposed (1) that the radii of the successive

orbits are in the ratio of the numbers; but (2) Chalcidius

considered that 2, 3, 4 ... are the successive difi'erences

between these radii,* so that the radii themselves are in

the ratios of 1, 1-1-2 = 3, 1 -f 2 -H 3 = 6, &c. ; and again (3),

according to Macrobius,^ the Platonists held that the successive

radii are as 1, 1 . 2 = 2, 1.2.3 = 6, 6 . 4 = 24, 24 . 9 = 216,

216.8 = 1728 and 1728 . 27 — 46656. In any case the

figures have no basis in observation.

We have said that Plato made the earth occupy the centre

of the universe and gave it no movement of any kind. Other

' Timaeus, 89 B-B.
2 Ptolemy, Syntaxis, vii. 2, vol. ii, p. 15. 9-17, Heib.
» Timaeus, 36 d. * Chalcidius on Timaeus, c. 96, p. 167, Wrobel
' Macrobius, In somn. Scip. ii. 3. 14.
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views, however, have been attributed to Plato by later writers.

In the Timacus Plato had used of the earth the expression

which has usually been translated 'our nurse, globed (/AAo-

IJiivrjv) round the axis stretched from pole to pole through

the universe '} It is well known that Aristotle refers to the

passage in these terms

:

' Some say that the earth, actually lying at the centre {koi

Kiijxevqv km rod Kifrpov), is yet wound and inioves (iXXecrOai

Kal KiyiitrOai) about the axis stretched through the universe

from pole to pole.'^

This naturally implies that Aristotle attributed to Plato

the view that the earth rotates about its axis. Such a view

is, however, entirely inconsistent with the whole system

described in the Tlmaeus (and also in the Laivs, which Plato

did not live to finish), where it is the sphere of the fixed

stars which by its revolution about the earth in 24 hours

makes night and day ; moreover, there is no reason to doubt

the evidence that it was Heraelides of Pontus who was the

first to affirm the rotation of the earth about its own axis

in 24 hours. The natural inference seems to be that Aristotle

either misunderstood or misrepresented Plato, the ambiguity

of the word tWofievrjv being the contributing cause or the

pretext as the case may be. There are, however, those who
maintain that Aristotle must have known what Plato meant

and was incapable of misrepresenting him on a subject like

this. Among these is Professor Burnet,^ who, being satisfied

that Aristotle understood iX\one.vr)v to mean motion of some
sort, and on the strength of a new reading which he has

adopted from two MSS. of the first class, has essayed a new
interpretation of Plato's phrase. The new reading differs

from the former texts in having the article ttjv after

iXXo/j.ei'iju, which makes the phrase run thus, y^j/ Se rpocpof

IjlIv Tj/xeripay, LX\ofj.€wr]v Se rr^v nepl tov Slo. nayrbs iroXov

Tirajxevov. Burnet, holding that we can only supply with
Tr]v some word like oSov, understands nepLoSov or jrepicpopdy,

and translates ' earth our nurse going to and fro on its path
round the axis which stretches right through the universe'.

' Timaeus, 40 B.

* Arist. De caelo, ii. 13, 293 b 20; cf. ii. 14, 296 a 25.
^ Greek Philosophy, Part I, Tliales to Plato, pp. 347-8.
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In confirmation oi' this Burnet cites the ' unimpeachable
testimony ' of Theophrastus, who said that

' Plato in his old age repented of having given the earth
the central place in the universe, to which it had no right ' ^

;

and he concludes that, according to Plato in the Timaeus,

the earth is not the centre of the universe. But the sentences

in which Aristotle paraphrases the IWojiivrjv in the Timaeus
by the words iWeaOat km. Kiveiadai both make it clear that

the persons who held the view in question also declared

that the earth lies or is placed at the centre (Kfifiifrjy enl

Tov KiVTpov), or ' placed the earth at the centre ' {km tov /ifo-ov

6evTes). Burnet's explanation is therefore in contradiction to

part of Aristotle's statement, if not to the rest; so that he

does not appear to have brought the question much nearer

to a solution. Perhaps some one will suggest that the rotation

or oscillation about the axis of the universe is small, so small

as to be fairly consistent with the statement that the earth

remains at the centre. Better, I think, admit that, on our

present information, the puzzle is insoluble.

The dictum of Theophrastus that Plato in his old age

repented of having placed the earth, in the centre is incon-

sistent with the theory of the Timaeus, as we have said.

Boeckh explained it as a misapprehension. There appear

to have been among Plato's immediate successors some who
altered Plato's system in a Pythagorean sense and who may
be alluded to in another passage of the De caelo^; Boeckh

suggested, therefore, that the views of these Pythagorizing

Platonists may have been put down to Plato himself. But

the tendency now seems to be to accept the testimony of

Theophrastus literally. Heiberg does so, and so does Burnet,

who thinks it probable that Theophrastus heard the statement

which he attributes to Plato from Plato himself. But I would

point out that, if the Timaeus, as Burnet contends, contained

Plato's explicit recantation of his former view that the earth

was at the centre, there was no need to supplement it by an

oral communication to Theophrastus. In any case the question

has no particular importance in comparison with the develop-

ments which have next to be described.

' Plutarch, Quaest. Plat. 8. 1, 1006 ; cf. Life ofNiiimi, c. 11.

^ Arist. De caelo, ii. 13, 293 a 27-b 1.
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FROM PLATO TO EUCLID

Whateyer original work Plato himself did in mathematics

(and it may not have been much), there is no doubt that his

enthusiasm for the subject in all branches and the pre-eminent

place which he gave it in his system had enormous influence

upon its development in his lifetime and the period following.

In astronomy we are told that Plato set it as a problem to

all earnest students to find ' what are the uniform and ordered

movements by the assumption of which the apparent move-

ments of the planets can be accounted for
'

; our authority for

this is Sosigenes, who had it from Eudemus.^ One answer

to this, representing an advance second to none in the history

of astronomy, was given by Heraclides of Pontus, one of

Plato's pupils {circa 388-310 B.C.); the other, which was
by Eudoxus and on purely mathematical lines, constitutes

one of the most remarkable achievements in pure geometry

that the whole of the history of mathematics can show.

Both were philosophers of extraordinary range. Heraclides

wrote works of the -highest class both in matter and style:

the catalogue of them covers subjects ethical, grammatical,
musical and poetical, rhetorical, historical ; and there were
geometrical and dialectical treatises as well. Similarly

Eudoxus, celebrated as philosopher, geometer, astronomer,
geographer, physician and legislator, commanded and enriched
almost the whole field of learning.

Heraclides of Pontus : astronomical discoveries.

Heraclides held that the apparent daily revolution of the
heavenly bodies round the earth was accounted for, not by

' Simpl. on De caelo, ii. 12 (292 h 10), p. 488. 20-34, Heib.
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the circular motion of the stars round the earth, but by the

rotation of the earth about its own axis ; several passages

attest this, e. g.

' Heraclides of Pontus supposed that the earth is in the
centre and rotates (lit. ' moves in a circle ') while the heaven
is at rest, and he thought by this supposition to save the
phenomena.'

'

True, Heraclides may not have been alone in holding this

view, for we are told that Ecphantus of Syracuse, a Pytha-

gorean, also asserted that ' the earth, being in the centre

of the universe, moves about its own centre in an eastward

direction ' ^ ; when Cicero ^ says the same thing of Hicetas, also

of Syracuse, this is probably due to a confusion. But there

is no doubt of the originality of the other capital discovery

made by Heraclides, namely that Venus and Mercury revolve,

like satellites, round the sun as centre. If, as Schiaparelli

argued, Heraclides also came to the same conclusion about

Mars, Jupiter and Saturn, he anticipated the hypothesis of

Tycho Brahe (or rather improved on it), but the evidence is

insufficient to establish this, and I think the probabilities are

against it; there is some reason for thinking that it was
Apollonius of Perga who thus completed what Heraclides had

begun and put forward the full Tychonic hypothesis.* But

there is nothing to detract from the merit of Heraclides in

having pointed the way to it.

Eudoxus's theory of concentric spheres is even more re-

markable as a mathematical achievement ; it is worthy of the

man who invented the great theory of proportion set out

in Euclid, Book V, and the powerful 'method of exhaustion

which not only enabled the areas of circles and the volumes

of pyramids, cones, spheres, &c., to be obtained, but is at the

root of all Archimedes's further developments in the mensura-

tion of plane and solid figures. But, before we come to

Eudoxus, there are certain other names to be mentioned.

1 Simpl. on De caelo, p. 519. 9-11, Heib. ; cf. pp. 441. 31-445. 5, pp. 541.

27-542. 2 ; Proclus in Tim. 281 e.
"^ Hippolytus, Refut. i. 15 {Tors. P, p. 340. 31), cf. Aetius, iii. 13. 3

{Vors. i^ p. 341. 8-10).
' Cic. Acad. Pi: ii. 39, 123.

* Aristarchus of Samos, the ancient Copernicus, ch. xviii.
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Theory of numbers (Speusippus, Xenocrates).

To begin with arithmetic or the theory of numbers. Speu-

sippus, nephew o£ Plato, who succeeded him as head of the

school, is said to have made a particular study of Pythagorean

doctrines, especially of the works of Philolaus, ^and to have

written a small treatise On the Pythagorean Numbers of

which a fragment, mentioned above (pp. 72, 75, 76) is pre-

served in the Theologumena Arithmetices} To judge by the

fragment, the work was not one of importance. The arith-

metic in it was evidently of the geometrical type (polygonal

numbers, for example, being represented by dots making up

the particular figures). The portion of the book dealing with

' the five figures (the regular solids) which are assigned to the

cosmic elements, their particularity and their community

with one another ', can hardly have gone beyond the putting

together of the figures by faces, as we find it in the Timaeus.

To Plato's distinction of the fundamental triangles, the equi-

lateral, the isosceles right-angled, and the half of an equilateral

triangle cut oflF by a perpendicular from a vertex on the

opposite side, he adds a distinction (' passablement futile',

as is the whole fragment in Tannery's opinion) o^ four

pyramids (1) the regular pyramid, with an equilateral triangle

for base and all the edges equal, (2) the pyramid on a square

base, and (evidently) having its four edges terminating at the

corners of the base equal, (3) the pyramid which is the half of

the preceding one obtained by drawing a plane through the

vertex so as to cut the base perpendicularly in a diagonal

of the base, (4) a pyramid constructed on the half of an

equilateral triangle as base; the object was, by calling these

pyramids a monad, a dyad, a triad and a tetrad respectively,

to make up the number 10, the special properties and virtues

of which as set forth by the Pythagoreans were the subject of

the second half of the work. Proclus quotes a few opinions

of Speusippus
;

e. g., in the matter of theorems and problems,
he differed from Menaechmus, since he regarded both alike

as being more properly theorems, while Menaechmus would
call both alike jJroblems.^

' Theol. Ai:, Ast, p. 61.
' Proclus on Eucl. I, pp. 77. 16 ; 78. 14.
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Xenoceates of Chalcedon (396-314 B.C.), who succeeded

Speusippus as head of the school, having been elected by
a majority of only a few votes over Heraclides, is also said

to have written a book it, Xumhers and a Theory of Nuinhers,

besides books on geometry.^ These books have not survived,

but we learn that Xenocrates upheld the Platonic tradition in

requiring of those who would enter the school a knowledge of

music, geometry and astronomy ; to one who was not pro-

ficient in these things he said ' Go thy way, for thou hast not

the means of getting a grip of philosophy'. Plutarch says

that he put at 1,002,000,000,000 the number of syllables which

could be formed out of the letters of the alphabet.^ If the

story is true, it represents the first attempt on record to solve

a difficult problem in permutations and combinations. Xeno-

crates was a supporter of ' indivisible lines '(and magnitudes)

by which he thought to get over the paradoxical arguments

of Zeno.^

The Elements. Proclus's summary {continued).

In geometry we have more names mentioned in the sum-

mary of Proclus.*

' Younger than Leodamas were Neoclides and his pupil Leon,

who added many things to what was known before their

time, so that Leon was actually able to make a collection

of the elements more carefully designed in respect both of

the number of propositions proved and of their utility, besides

which he invented diorismi (the object of which is to deter-

mine) when the problem under investigation is possible of

solution and when impossible.'

Of Neoclides and Leon we know nothing more than what

is here stated; but the definite recognition of the Siopia-fios,

that is, of the necessity of finding, as a preliminary to the

solution of a problem, the conditions for the possibility of

a solution, represents an advance in the philosophy and

technology of mathematics. Not that the thing itself had

not been met with before: there is, as we have seen, a

1 Diog. L. iv. 13, 14.

^ Plutarch, Qtiaest. Conviv. viii. 9. 13, 733 a.

' Simpl. in Phys., p. 138. 3, &c.
* Proclus on Eucl. I, p. 66. 18-67. 1.
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Siopia-fios indicated in the famous geometrical passage of the

Meno'^; no doubt, too, the geometrical solution by the Pytha-

goreans of the quadratic equation would incidentally make

clear to them the limits of possibility corresponding to the

Sioptafios in the solution of the most general form of quad-

ratic in Eucl. VI. 27-9, where, in the case of the 'deficient'

parallelogram (Prop. 28), the enunciation states that ' the

given rectilineal figure must not be greater than the parallelo-

gram described on half of the straight line and similar to the

defect '. Again, the condition of the possibility of constructing

a triangle out of three given straight lines (Eucl. I. 22),

namely that any two of them must be together greater than

the third, must have been perfectly familiar long before Leon

or Plato.

Proclus continues :

^

' Eudoxus of Cnidos, a little younger than Leon, who had
been associated with the school of Plato, was the first to

increase the number of the so-called general theorems ; he

also added three other proportions to the three already known,
and multiplied the theorems which originated with Plato

about the section, applying to them the method of analysis.

Amyclas [more correctly Amyntas] of Heraclea, one of the

friends of Plato, Menaechmus, a pupil of Eudoxus who had
also studied with Plato, and Dinostratus, his brother, made
the whole of geometry still more perfect. Theudius of

Magnesia had the reputation of excelling in mathematics as

well as in the other branches of philosophy ; for he put
together the elements admirably and made many partial (or

limited) theorems more general. Again, Athenaeus of Cyzicus,
who lived about the same time, became famous in other
branches of mathematics and most of all in geometry. These
men consorted together in the Academy and conducted their

investigations in common. Hermotimus of Colophon carried
further the investigations already opened up by Eudoxus and
Theaetetus, discovered many propositions of the Elements
and compiled some portion of the theory of Loci. Philippus
of Medma, who was a pupil of Plato and took up mathematics
at his instance, not only carried out his investigations in
accordance with Plato's instructions but also set himself to
do whatever in his view contributed to the philosophy of
Plato.'

' Plato, ^^eno, 87 a. ^ Produs on Eucl. I., p. 67. 2-68. 4.
*
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It will be well to dispose of the smaller names in this

list before taking up Eudoxus, the principal subject of

this chapter. The name of Amyclas should apparently be

Amyntas,^ although Diogenes Laertius mentions Amyclos of

Heraclea in Pontus as a pupil of Plato ^ and has elsewhere an

improbable story of one Amyclas, a Pythagorean, who with

Clinias is supposed to have dissuaded Plato from burning the

works of Dernocritus in view of the fact that there were

many other copies in circulation.^ Nothing more is known
of Amyntas, Theudius, Athenaeus and Hermotimus than what
is stated in the above passage of Proclus. It is probable,

however, that the propositions, &c., in elementary geometry

which are quoted by Aristotle were taken from the Elements

of Theudius, which would no doubt be the text-book of the

time just preceding Euclid. Of Menaechmus and Dinostratus

we have already learnt that the former discovered conic

sections, and used them for finding two mean proportionals,

and that the latter applied the quadratrix to the squaring

of the circle. Philippus of Medma (vulg. Mende) is doubtless

the same person as Philippus of Opus, who is said to have

revised and published the Laws of Plato which had been left

unfinished, and to have been the author of the Einnomis.

He wrote upon astronomy chiefly; the astronomy in the

Epinomis follows that of the Laws and the Timaeus ;
but

Suidas records the titles of other works by him as follows

:

On the distance of the sun and moon, On the ecli'pse of the

moon, On the size of the sun, the moon and the earth, On
the planets. A passage of Aetius * and another of Plutarch ^

alluding to his p/roofs about the shape of the moon may

indicate that Philippus was the fii-st to establish the complete

theory of the phases of the moon. In mathematics, accord-

ing to the same notice by Suidas, he wrote Arithmetica,

Means, On polygonal numbers, Cyclica, Optics, Enoptrica

(On mirrors) ; but nothing is known of the contents of these

works.

' See Ind. Hercul., ed. B cheler, Ind. Schol. Gryphisw., 1869/70, col.

6 in.

' Diog. L. iii. 46. ' lb. ix. 40.

* Box. Gr., p. 360.
• " Non posse suaviter vivi secundum Epicurum, c. 11, 1093 E.

1623 Y
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According to Apollodorus, EuDOXUS flourished in 01. 103 =
368-365 B. C, from which we infer that he was born about 408

B. C, and (since he lived 53 years) died about 355 B. C. In his

23rd year he went to Athens with the physician Theomedon,

and there for two months he attended lectures on philosophy

and oratory, and in particular the lectures of Plato; so poor

was he that he took up his abode at the Piraeus and trudged

to Athens and back on foot each day. It would appear that

his journey to Italy and Sicily to study geometry with

Archytas, and medicine with Philistion, must have been

earlier than the first visit to Athens, for from Athens he

returned to Gnidos, after which he went to Egypt with

a letter of introduction to King Nectanebus, given him by

Agesilaus; the date of this journey was probably 381-380 B.C.

or a little later, and he stayed in Egypt sixteen months.

After that he went to Cyzicus, where he collected round him

a large school which he took with him to Athens in 368 B.C.

or a little later. There is apparently no foundation for the

story mentioned by Diogenes Laertius that he took up a hostile

attitude to Plato,'^ nor on the other side for the statements

that he went with Plato to Egypt and spent thirteen years

in the company of the Egyptian priests, or that he visited

Plato when Plato was with the younger Dionysius on his

third visit to Sicily in 361 B. c. Returning later to his native

place, Eudoxus was by a popular vote entrusted with legisla-

tive office.

When in Egypt Eudoxus assimilated the astronomical

knowledge of the priests of Heliopolis and himself made
observations. The observatory between Heliopolis and Cerce-

sura used by him was still pointed out in Augustus's time

;

he also had one built at Gnidos, and from there he observed
the star Canopus which was not then visible in higher
latitudes. It was doubtless to record the observations thus
made that he wrote the two books attributed to him by
Hipparchus, the Mirror and the Phaenomena ^

; it seems, how-
ever, unlikely that there could have been two independent
works dealing with the same subject, and the latter, from which

1 Diog. L. viii. 87.

' Hipparchus, in Arati et Eudoxi phaenomena commentani. i. 2. 2 n. 8.
15-20 Manitius.

^
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the poem of Aratus was drawn, so far as verses 19-732 are

concerned, may have been a revision of the former work and
even, perhaps, posthumous.

But it is the theoretical side of Eudoxus's astronomy rather

than the observational that has importance for us; and,

indeed, no more ingenious and attractive hypothesis than
that of Eudoxus's system of concentric spheres has ever been
put forward to account for the apparent motions of the sun,

moon and planets. It was the first attempt at a purely

mathematical theory of astronomy, and, with the great and
immortal contributions which he made to geometry, puts him
in the very first rank of mathematicians of all time. He
was a man of science if there ever was one. No occult or

superstitious lore appealed to him ; Cicero says that Eudoxus,
' in astrologia iudicio doctissimorum hominum facile princeps

',

expressed the opinion and left it on record that no sort of

credence should be given to the Chaldaeans in their predic-

tions and their foretelling of the life of individuals from the

day of their birth. ^ Nor would he indulge in vain physical

speculations on things which were inaccessible to observation

and experience in his time ; thus, instead of guessing at

the nature of the sun, he said that he would gladly be

burnt up like Phaethon if at that price he could get to the

sun and so ascertain its form, size, and nature.^ Another

story (this time presumably apocryphal) is to the effect

that he grew old at the top of a very high mountain in

the attempt to discover the movements of the stars and the

heavens.^

In our account of his work we will begin with the sentence

about him in Proclus's summary. First, he is said to have

increased 'the number of the so-called general theorems'.

'So-called general theorems' is an odd phrase; it occurred to

me whether this could mean theorems which were true of

everything falling under the conception of magnitude, as are

the definitions and theorems forming part of Eudoxus's own

theory of proportion, which applies to numbers, geometrical

magnitudes of all sorts, times, &c. A number of propositions

1 Cic, Be div. ii. 42.
'^ Plutarch, Non posse suavitervivi secundum Epicurum, c. 11, 1094 b.

' Petronius Arbiter, Saiijricon, 88.

Y 2
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at the beginning of Euclid's Book X similarly refer to magni-

tudes in general, and the proposition X., 1 or its equivalent

was actually used by Eudoxus in his method of exhaustion,

as it is by Euclid in his application of the same method to the

theorem (among others) of XII. 2 that circles are to one

another as the squares on their diameters.

The three ' proportions ' or means added to the three pre-

viously known (the arithmetic, geometric and harmonic) have

already been mentioned (p. 86), and, as they are alterna-

tively attributed to others, they need not detain us here.

Thirdly, we are told that Eudoxus ' extended ' or ' increased

the number of the (propositions) about the section (to, mpl

Tr}v To/j-rju) which originated with Plato, applying to them

the method of analysis'. What is the sectionl The sugges-

tion which has been received with most favour is that of

Bretschneider,! who pointed out that up to Plato's time there

was only one ' section ' that had any real significance in

geometry, namely the section of a straight line in extreme

and mean ratio which is obtained in Eucl. II. 1 1 and is used

again in Eucl. IV. 10-14 for the construction of a pentagon.

These theorems were, as we have seen, pretty certainly Pytha-

gorean, like the whole of the substance of Euclid, Book 11.

Plato may therefore, says Bretschneider, have directed atten-

tion afresh to this subject and investigated the metrical rela-

tions between the segments of a straight line so cut, while

Eudoxus may have continued the investigation where Plato

left off. Now the passage of Proclus says that, in extending

the theorems about ' the section ', Eudoxus applied the method

of analysis; and we actually find in Eucl. XIII. 1-5 five

propositions about straight lines cut in extreme and mean
ratio followed, in the MSS., by definitions of analysis and

synthesis, and alternative proofs of the same propositions

in the form of analysis followed by synthesis. Here, then,

Bretschneider thought he had found a fragment of some actual

work by Eudoxus corresponding to Proclus's description.

But it is certain that the definitions and the alternative proofs

were interpolated by some scholiast, and, judging by the

figures (which are merely straight lines) and by comparison

1 Bretschneider, Die Geometrie und'die Geometer vor Eukleides, pp.
167-9.

"
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with the remarks on analysis and synthesis quoted from

Heron by An-Nairizi at the beginning oi' his commentary on

Eucl. Book II, it seems most likely that the interpolated defini-

tions and proofs were taken from Heron. Bretsehneider's

argument based on Eucl. XIII. 1-5 accordingly breaks down,

and all that can be said further is that, if Eudoxus investi-

gated the relation between the segments of the straight line,

he would find in it a case of incommensurability which would

further enforce the necessity for a theory of proportion which

should be applicable to incommensurable as well as to com-

mensurable magnitudes. Proclus actually observes that

' theorems about sections like those in Euclid's Second Book
are common to both [arithmetic and geometry] except that in

which the straight line is cut in extreme and mean ratio'

^

(cf. Eucl. XIII. 6 for the actual proof of the irrationality

in this case). Opinion, however, has not even in recent years

been unanimous in favour of Bretsehneider's interpretation

;

Tannery ^ in particular preferred the old view, which pre-

vailed before Bretschneider, that ' section ' meant section of

solids, e.g. l)y planes, a line of investigation which would

naturally precede the discovery of conies ; he pointed out that

the use of the singular, rJ)r rojiriv, which might no doubt

be taken as ' section ' in the abstract, is no real objection, that

there is no other passage which speaks of a certain section

par excellence, and that Proclus in the words just quoted

expresses himself quite differently, speaking of '.sections' of

which the particular section in extreme and mean ratio is

only one. Presumably the question will never be more defi-

nitely settled unless by the discovery of new documents.

(a) Theory of 2y>'oportion.

The anonymous author of a scholium to Euclid's Book V,

who is perhaps Proclus, tells us that ' some say ' that this

Book, containing the general theory of proportion which is

equally applicable to geometry, arithmetic, music and all

mathematical science, ' is the discovery of Eudoxus, the teacher

of Plato '.^ There is no reason to doubt the truth of this

1 Proclus on Eucl. I, p. 60. 16-19.
^ Tannery, La geomUrie grecgue, p. 76.

« Euclid, ed. Heib., vol. v, p. 280.
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statement. The new theory appears to have been already-

familiar to Aristotle. Moreover, the fundamental principles

show clear points of contact with those used in the method

of exiiaustion, also due to Eudoxus. I refer to the definition

(Eucl. V, Def. 4) of magnitudes having a ratio to one another,

which are said to be ' such as are capable, when (sufficiently)

multiplied, of exceeding one another'; compare with this

Archimedes's 'lemma' by means of which he says that the

theorems about the volume of a pyramid and about circles

being to one another as the squares on their diameters were

proved, namely that ' of unequal lines, unequal surfaces, or

unequal solids, the greater exceeds the less by such a

magnitude as is capable, if added (continually) to itself, of

exceeding any magnitude of those which are comparable to

one another ', i. e. of magnitudes of the same kind as the

original magnitudes.

The essence of the new theory was that it was applicable

to incommensurable as well as commensurable quantities

;

and its importance cannot be overrated, for it enabled

geometry to go forward again, after it had received the blow

which paralysed it for the time. This was the discovery of

the irrational, at a time when geometry still depended on the

Pythagorean theory of proportion, that is, the numerical

theory which was of course applicable only to eommensurables.

The discovery of incommensurables must have caused what
Tannery described as ' un veritable seandale logique ' in

geometry, inasmuch as it made inconclusive all the proofs

which had depended on the old theory of proportion. One
effect would naturally be to make geometers avoid the use

of proportions as much as possible; they would have to use

other methods wherever they could. Euclid's Books I-IV no
doubt largely represent the result of the consequent remodel-

ling of fundamental propositions; and the ingenuity of the

substitutes devised is nowhere better illustrated than in I. 44,

45, where the equality of the complements about the diagonal
of a parallelogram is used (instead of the construction, as

in Book VI, of a fourth pi'oportional) for the purpose of

applying to a given straighj; line a parallelogram in a given
angle and equal to a given triangle or rectilineal area.

The greatness of the new theory itself needs no further
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argument when it is remembered that the definition of equal
ratios in Eucl. V, Def. 5 corresponds exactly to the modern
theory of irrationals due to Dedekind, and that it is word for
word the same as Weierstrass's definition of equal numbers.

(^) The method of exhaustion.

In the preface to Book I of his treatise On the Sphere and
Cylinder Archimedes attributes to Eudoxus the proof of the
theorems that the volume of a pyramid is one-third of
the volume of the prism which has the same base and equal
height, and that the volume of a cone is one-third of the
cylinder with the same base and height. In the Method he
says that these facts were discovered, though not proved
(i.e. in Archimedes's sense of the word), by Democritus,
who accordingly deserved a great part of the credit for the
theorems, but that Eudoxus was the first to supply the

scientific proof. In the preface to the Quadrature of the Para-
bola Archimedes gives further details. He says that for the

proof of the theorem that the area of a segment of a parabola

cut off by a cliord is frds of the triangle on the same base and
of equal height with the segment he himself used the ' lemma

'

quoted above (now known as the Axiom of Archimedes), and
he goes on

:

' The earlier geometers have also used this lemma ; for it is

by the use of this lemma that they have proved the proposi-

tions (1) that circles are to one another in the duplicate ratio

of their diameters, (2) that spheres are to one another in the
triplicate ratio of their diameters, and further (3) that every
pyramid is one third part of the prism which has the same
base with the pyramid and equal height ; also (4) that every
cone is one third part of the cylinder having the same base

with the cone and equal height they proved by assuming
a certain lemma similar to that aforesaid.'

As, according to the other passage, it was Eudoxus who
first proved the last two of these theorems, it is a safe

inference that he used for this purpose the ' lemma ' in ques-

tion or its equivalent. But was he the first to use the lemma ?

This has been questioned on the ground that one of the

theorems mentioned as having Ijeen proved by ' the earlier

geometers ' in this way is the theorem that circles are to one
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another as the squares on their diameters, which proposition,

as we are told on the authority of Eudemus, was proved

(Sd^ai) by Hippocrates of Chios. This suggested to Hankel

that the lemma in question must have been formulated by

Hippocrates and used in his proof.^ But seeing that, accord-

ing to Archimedes, ' the earlier geometers ' proved by means

of the same lemrna both Hippocrates's proposition, (1) above,

and the theorem (3) about the volume of a pyramid, while

the first proof of the latter was certainly given by Eudoxus,

it is simplest to suppose that it was Eudoxus who first formu-

lated the ' lemma ' and used it to prove both propositions, and

that Hippocrates's 'proof did not amount to a rigorous

demonstration such as would have satisfied Eudoxus or

Archimedes. Hippocrates may, for instance, have proceeded

v^on the lines of Antiphon's ' quadrature ', gradually exhausting

the circles and taking the limit, without clinching the proof

by the formal rediictio ad ahsurdiim, used in the method of

exhaustion as practised later. Without therefore detracting

from the merit of Hippocrates, whose argument may have

contained the germ of the method of exhaustion, we do not

seem to have' any sufficient reason to doubt that it was
Eudoxus who established this method as part of the regular

machinery of geometry.

The ' lemma ' itself, we may observe, is not found in Euclid

in precisely the form that Archimedes gives it, though it

is equivalent to Eucl. V, Def. 4 (Magnitudes are said to have
a ratio to one another which are capable, when multiplied,

of exceeding one another). When Euclid comes to prove the

propositions about the content of circles, pyramids and cones

.

(XII. 2, 4-7 Por., and 10), he does not use the actual lemma of

Archimedes, but another which forms Prop. 1 of Book X, to

the effect that, if there are two unequal magnitudes and from
the greater there be subtracted more than its half (or the
half itself), from the remainder more than its half (or the half),

and if this be done continually, there will be left some magni-
tude which will be less than the lesser of the given magnitudes.
This last lemma is frequently used by Archimedes himself
(notably in the second proof of the proposilion about the area

' Hankel, Zur Geschichte der Mathematik in Alterthum und Mittelalter,
p. 122.
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of a parabolic segment), and it may be the ' lemma similar

to the aforesaid ' which he says was used in the case of the

cone. But the existence of the two lemmas constitutes no
real difficulty, because Archimedes's lemma (under the form
of Eucl. V, Def. 4) is in effect used by Euclid to prove X. 1.

We are not told whether Eudoxus proved the theorem that

spheres are to one another in the triplicate ratio of their

diameters. As the proof of this in Eucl. XTI. 16-18 is likewise

based on X. 1 (which is used in XII. 16), it is probable enough
that this proposition, mentioned along with the others by
Archimedes, was also first proved by Eudoxus.

Eudoxus, as we have seen, is said to have solved the problem

of the two mean proportionals by means of ' curved lines '.

This solution has been dealt with above (pp. 249-51).

We pass on to the

(y) Theory of concentric spheres.

This was the first attempt to account by purely geometrical

hypotheses for the apparent irregularities of the motions of

the planets ; it included similar explanations of the apparently

simpler movements of the sun and moon. The ancient

evidence of the details of the system of concentric spheres

(which Eudoxus set out in a book entitled On speeds, Tlepl

raxcov, now lost) is contained in two passages. The first is in

Aristotle's Metapihysics, where a short notice is given of the

numbers and relative positions of the spheres postulated by

Eudoxus for the sun, moon and planets respectively, the

additions which Callippus thought it necessary to make to

the numbers of those spheres, and lastly the modification

of the system which Aristotle himself considers necessary

'if the phenomena are to be produced by all the spheres

acting in combination '.^ A more elaborate and detailed

account of the system is contained in Simplicius's commentary

on the De caelo of Aristotle ^ ; Simplicius quotes largely from

Sosigenes the Peripatetic (second century a. d.), observing that

Sosigenes drew from Eudemus, who dealt with the subject

in the second book of his History of Astronomy. Ideler was

'Aristotle, Metaph. A. 8. 1073 b 17-1074 a 14.

2 Simpl. on De caelo, p. 488. 18-24, pp. 493. 4-506. 18 Heib.
; p. 498

a 45-b 3, pp. 498 b 27-503 a 33.
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the lirst to appreciate the elegance of the theory and to

attempt to explain its working (1828, 1830) ; E. F. Apelt, too,

gave a fairly full exposition of it in a paper of 1849. But it

was reserved for Schiaparelli to work out a complete restora-

tion of the theory and to investigate in detail the extent

to which it could be made to account for the phenomena
;
his

paper has become a classic,^ and all accounts must necessarily

follow his.

I shall here only describe the system so far as to show its

mathematical interest. I have given fuller details elsewhere.^

Eudoxus adopted the view which prevailed from the earliest

times to the time of Kepler, that circular motion was sufficient

to account for the movements of all the heavenly bodies.

With Eudoxus this circular motion took the form of the

revolution of different spheres, each of which moves about

a diameter as axis. All the spheres were concentric, the

common centre being the centre of the earth ; hence the name
of ' homocentric ' spheres used in later times to describe the

system. The spheres were of different sizes, one inside the

other. Each planet was fixed at a point in the equator of

the sphere which carried it, the sphere revolving at uniform

speed about the diameter joining the corresponding poles

;

that is, the planet revolved uniformly in a great circle of the

sphere perpendicular to the axis of rotation. But one such

circular motion was not enough ; in order to explain the

changes in the apparent speed of the planets' motion, their

stations and retrogradations, Eudoxus had to assume a number
of such circular motions working on each planet and producing

by their combination that single apparently irregular motion

which observation shows us. He accordingly held that the

poles of the sphere carrying the planet are not fixed, but

themselves move on a greater sphere concentric with the

carrying sphere and moving about two different poles with

uniform speed. The poles of the second sphere were simi-

larly placed on a third sphere concentric with and larger

than the first and second, and moving about separate poles

' Schiaparelli, Le sfere omocentriche di Eudosso, di Callippo e di Aristotele,

Milano 1875; Germ, trans, by W. Horn in Abh. ziir Gesch. d. Math., i.

Heft, 1877, pp. 101-98.
^ Aristarchus of Samos, the ancient Copernicus, pp. 193-224.
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of its own with a speed peculiar to itself. For the planets

yet a fourth sphere was required, similarly related to the

others ; for the sun and moon Eudoxus found that, by a

suitable choice of the positions of the poles and of speeds

of rotation, he could make three spheres suffice. Aristotle

and Simplicius describe the spheres in the reverse order, the

sphere carrying the planet being the last; this makes the

description easier, because we begin with the sphere represent-

ing the daily rotaton of the heavens. The spheres which

move each planet Eudoxus made quite separate from those

which move the others ; but one sphere sufficed to produce

the daily rotation of the heavens. The hypothesis was purely

mathematical; Eudoxus did not trouble himself about the

material of the spheres or their mechanical connexion.

The moon has a motion produced by three spheres; the

first or outermost moves in the same sense as the fixed stars

from east to west in 24 hours ; the second moves about an

axis perpendicular to the plane of the zodiac circle or the

ecliptic, and in the sense of the daily rotation, i. e. from

east to west; the third again moves about an axis inclined

to the axis of the second at an angle equal to the highest

latitude attained by. the moon, and from west to east;

the moon is fixed on the equator of this third sphere. The

speed of the revolution of the second sphere was very slow

(a revolution was completed in a period of 223 lunations);

the third sphere produced the revolution of the moon from

west to east in the draconitic or nodal month (of 27 days,

5 hours, 5 minutes, 36 seconds) round a circle inclined to

the ecliptic at an angle equal to the greatest latitude of the

moon.i The moon described the latter circle, while the

circle itself was carried round by the second sphere in

a retrograde sense along the ecliptic in a period of 223

lunations; and both the inner spheres were bodily carried

round by the first sphere in 24 hours in the sense of the daily

rotation. The three spheres thus produced the motion of the

moon in an orbit inclined to the ecliptic, and the retrogression

of the nodes, completed in a period of about 18^ years.

' Simplicius (and presumably Aristotle also) confused the motions of

the second and third spheres. The above account represents what

Eudoxus evidently intended.
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The system of three spheres for the sun was similar, except

that the orbit was less inclined to the ecliptic than that of the

moon, and the second sphere moved from west to east instead

of from east to west, so that the nodes moved slowly forward

in the direct order of the signs instead of backward.

But the case to which the greatest mathematical interest

attaches is that of the planets, the motion of which is pro-

duced by sets of four spheres for each. Of each set the first

and outermost produced the daily rotation in 24 hours ; the

second, the motion round the zodiac in periods which in the

case of superior planets are equal to the sidereal periods of

revolution, and for Mercury and Venus (on a geocentric

system) one year. The third sphere had its poles fixed at two

opposite points on the zodiac circle, the poles being carried

round in the motion of the second sphere; the revolution

of the third sphere about its poles was again uniform and

was completed in the synodic period of the planet or the time

which elapsed between two successive oppositions or conjunc-

tions with the sun. The poles of the third sphere were the

same for Mercury and Venus but different for all the other

planets. On the surface of the third sphere the poles of the

fourth sphere were fixed, the axis of the latter being inclined

to that of the former at an angle which was constant for each

planet but different for the different planets. The rotation of

the fourth sphere about its axis took place in the same time

as the rotation of the third about its axis but in the opposite

sense. On the equator of the fourth sphere the planet was
fixed. Consider now the actual path of a planet subject to

the rotations of the third and fourth spheres only, leaving out

of account for the moment the first two spheres the motion of

which produces the daily rotation and the motion along the

zodiac respectively. The problem is the following. A sphere

rotates uniformly about the fixed diameter AB. P, P' are

two opposite poles on this sphere, and a second sphere con-

centric with the first rotates uniformly about the diameter

PP' in the same time as the former sphere rotates about AB,
but in the opposite direction, if is a point on the second

sphere equidistant from P, P', i.e. a point on the equator

of the second sphere. Required to find the path of the

point M. This is not diflacult nowadays for any one familiar
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with spherical trigonometry and analytical geometry ; but
Schiaparelli showed, by means of a series of seven propositions

or problems involving only elementary geometry, that it was
well within the powers of such a geometer as Eudoxus. The
path of 31 in space turns out in fact to be a curve like

a lemniscate or figure-of-eight described on the surface of a
sphere, namely the fixed sphere about AB &s diameter. This

' spherical lemniscate ' is roughly shown in the second figure

above. The curve is actually the intersection of the sphere

with a certain cylinder touching it internally at the double

point 0, namely a cylinder with diameter equal to AS the

sagitta (shown in the other figure) of the diameter of the

sm^iU circle on which P revolves. But the curve is also

the intersection of either the sphere o?- the cylinder with

a certain cone with vertex 0, axis parallel to the axis of the

cylinder (i. e. touching the circle AOB at 0) and vertical angle

equal to the ' inclination ' (the angle AO'F in the first figure).

That this represents the actual result obtained by Eudoxus

himself is conclusively proved by the facts that Eudoxus

called the curve described by the planet about the zodiac

circle the hippopede or horse-fetter, and that the same term

hippopede is used by Proclus to describe the plane curve of

similar shape formed by a plane section of an anchor-ring or

tore touching the tore internally and parallel to its axis.^

So far account has only been taken of the motion due to

the combination of the rotations of the third and fourth

1 Proclus on Eucl. I, p. 112. 5.
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spheres. But A, B, the poles of the third sphere, are carried

round the zodiac or ecliptic by the motion of the second

sphere in a time equal to the ' zodiacal ' period of the planet.

Now the axis of symmetry of the ' spherical lemniscate ' (the

arc of the great circle bisecting it longitudinally) always lies

on the ecliptic. We may therefore substitute for the third

and fourth spheres the ' lemniscate ' moving bodily round

the ecliptic. The combination of the two motions (that of the

' lemniscate ' and that of the planet on it) gives the motion of

the planet through the constellations. The motion of the

planet round the curve is an oscillatory motion, now forward in

acceleration of the motion round the ecliptic due to the motion

of the second sphere, now backward in retardation of the same

motion ; the period of the oscillation is the period of the syno-

dic revolution, and the acceleration and retardation occupy

half the period respectively. When the retardation in the

sense of longitude due to the backward oscillation is greater

than the speed of the forward motion of the lemniscate itself,

the planet will for a time have a retrograde motion, at the

beginning and end of which it will appear stationary for a little

while, when the two opposite motions balance each other.

It will be admitted that to produce the reti'Ogradations

in this theoretical way by superimposed axial rotations of

spheres was a remarkable stroke of genius. It was no slight

geometrical achievement, for those days, to demonstrate the

effect of the hypotheses; but this is nothing in comparison

with the speculative power which enabled the man to invent

the hypothesis which would produce the effect. It was, of

course, a much greater achievement than that of Eudoxus's
teacher Archytas in finding the two mean proportionals by
means of the intersection of three surfaces in space, a tore

with internal diameter nil, a cylinder and a cone ; the problem
solved by Eudoxus was much more difficult, and yet there

is the curious resemblance between the two solutions that

Eudoxus's MpiDopede is actually the section of a sphere with
a cylinder touching it internally and also with a certain

cone; the two cases together show the freedom with which
master and pupil were accustomed to work with fio-ures in

three dimensions, and in particular with surfaces of revolution,

their intersections, &c.
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Callippus (about 370-300 B.C.) tried to make the system of

concentric spheres suit the phenomena more exactly by adding
other spheres; he left the number of the spheres at four in

the case of Jupiter and Saturn, but added one each to the

other planets and two each in the case of the sun and moon
(making five in all). This would substitute for the hippopede
a still more complicated elongated figure, and the matter is

not one to be followed out here. Aristotle modified the system
in a mechanical sense by introducing between each planet

and the one below it reacting spheres one less in number than
those acting on the former planet, and with motions equal

and opposite to each of them, except the outermost, respec-

tively
; by neutralizing the motions of all except the outermost

sphere acting on any planet he wished to enable that outer-

most to be the outermost acting on the planet below, so that

the spheres became one connected system, each being in actual

contact with the one below and acting on it, whereas with
Eudoxus and Callippus the spheres acting on each planet

formed a separate set independent of the others. Aristotle's

modification was not an improvement, and has no mathe-

matical interest.

The works of Aristotle are of the greatest importance to

the history of mathematics and particularly of the Elements.

His date (384-322/1) comes just before that of Euclid, so

that from the difierences between his statement of things

corresponding to what we find in Euclid and Euclid's own we
can draw a fair inference as to the innovations which were

due to Euclid himself. Aristotle was no doubt a competent

mathematician, though he does not seem to have specialized

in mathematics, and fortunately for us he was fond of mathe-

matical illustrations. His allusions to particular definitions,

propositions, &c., in geometry are in such a form as to suggest

that his pupils must have had at hand some text-book where

they could find the things he mentions. The particular text-

book then in use would presumably be that which was the

immediate predecessor of Euclid's, namely the Elements of

Theudius; for Theudius is the latest of pre-Euclidean

geometers whom the summary of Proelus mentions as a com-

piler of Elements.^

' Proelus on Euol. I, p. 67. 12-16.
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The mathematics in Aristotle comes under the

following heads.

(a) First 'pri'nciples.

On no part of the subject does Aristotle throw more light

than on the first principles as then accepted. The most

important passages dealing with this subject are in the

Postenor Analytka} While he speaks generally of 'demon-

strative sciences', his illustrations are mainly mathematical,

doubtless because they were readiest to his hand. He gives

the clearest distinctions between axioms (which are common
to all sciences), definitions, hypotheses and postulates (which

are different for different sciences since they relate to the

subject-matter of the particular science). If we exclude from

Euclid's axioms (1) the assumption that two straight lines

cannot enclose a space, which is interpolated, and (2) the

so-called ' Parallel-Axiom ' which is the 5th Postulate, Aris-

totle's explanation of these terms fits the classification of

Euclid quite well. Aristotle calls the axioms by various

terms, ' common (things) ', ' common axioms ', 'common opinions
',

and this seems to be the origin of ' common notions ' {kolvoI

evvoiai), the term by which they are described in the text

of Euclid ; the particular axiom which Aristotle is most fond

of quoting is No. 3, stating that, if equals be subtracted from

equals, the remainders are equal. Aristotle does not give any

instance of a geometrical postulate. From this we may fairly

make the important inference that Euclid's Postulates are all

his own, the momentous Postulate 5 as well as Nos. 1, 2, 3

relating to constructions of lines and circles, and No. 4 that

all right angles are equal. These postulates as well as those

which Archimedes lajs down at the beginning of his book

On Plane Equilibriums (e.g. that 'equal weights balance at

equal lengths, but equal weights at unequal lengths do not

balance but incline in the direction of the weight which is

at the greater length ') correspond exactly enough to Aristotle's

idea of a postulate. This is something which, e.g., the

geometer assumes (for reasons known to himself) without

demonstration (though properly a subject for demonstration)

1 Anal. Post. i. 6. 74 b 5, i. 10. 76 a 81-77 a 4.
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and without any assent on the part of the learner, or even

against his opinion rather than otherwise. As regards defini-

tions, Aristotle is clear that they do not assert existence or

non-existence ; they only require to be understood. Tlie only

exception he makes is in the case of the unit or monad and

magnitude, the existence of which has to be assumed, while

the existence of everything else has to be proved ; the things

actually necessary to be assumed in geometry are points and

lines only ; everything constructed out of them, e.g. triangles,

squares, tangents, and their properties, e.g. incommensura-

bility, has to be proved to exist. This again agrees sub-

stantially with Euclid's procedure. Actual construction is

with him the proof of existence. If triangles other than the

equilateral triangle constructed in I. 1 are assumed in I. 4-21,

it is only provisionally, pending the construction of a triangle

out of three straight lines in I. 22 ; the drawing and producing

of straight lines and the describing of circles is postulated

(Postulates 1-3). Another interesting statement on the

philosophical side of geometry has reference to the geometer's

hypotheses. It is untrue, says Aristotle, to assert that a

geometer's hypotheses are false because he assumes that a line

which he has drawn is a foot long when it is not, or straight

when it is not straight. The geometer bases no conclusion on

the particular line being that which he has assumed it to be

;

he argues about what it represents, the figure itself being

a mere illustration.^

Coming now to the first definitions of Euclid, Book I, we

find that Aristotle has the equivalents of Defs. 1-3 and 5, 6.

But for a straight line he gives Plato's definition only:

whence we may fairly conclude that Euclid's definition

was his own, as also was his definition of a plane which

he adapted from that of a straight line. Some terms seem

to have been defined in Aristotle's time which Euclid leaves

undefined, e. g. KeK\da6ai, ' to be inflected ', uevew, to ' verge '.^

Aristotle seems to have known Eudoxus's new theory of pro-

portion, and he uses to a considerable extent the usual

• Arist. Anal. Post. i. 10. 76 b 89-77 a 2 ; cf. Anal. Prior, i. 41 . 49 b 34 sq.

;

Metaph. N. 2. 1089 a 20-5.

2 Anal. Post. i. 10. 76 b 9.
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terminology of proportions; he defines similar figures as

Euclid does.

(/3) Indications of proofs differing from Euclid's.

Coming to theorems, we find in Aristotle indications of

•proofs differing entirely from those of Euclid. The most

remarkable case is that of the theorem of I. 5. For the

purpose of illustrating the statement that in any syllogism

one of the propositions must be affirmative and universal

he gives a proof of the proposition as follows.^

' For let A, B be drawn [i. e. joined] to the centre.

'If then we assumed (1) that the angle AG [i.e. A + C]

is equal to the angle BD [i.e. B + B] without asserting

generally that the angles of semicircles are equcd, and again

(2) that the angle C is equal to the

angle D without making the further

assumption that the two angles of all

segments are equal, and if we then

inferred, lastly, that since the whole

angles are equal, and equal angles are

subtracted from them, the angles which
remain, namely E, F, are equal, without

assuming generally that, if equals be

subtracted from equals, the remainders are equal, we should

commit a petitio principii.'

There are obvious peculiarities of notation in this extract

;

the angles are indicated by single letters, and sums of two

angles by two letters in juxtaposition (cf. BE for B + E in

the proof cited from Archytas above, p. 215). The angles

A, B are the angles at ^, i? of the isosceles triangle OAB, the

same angles as are afterwards spoken of as E, F. But the

difTerences of substance between this and Euclid's proof are

much more striking. First, it is clear that ' mixed ' angles

(' angles ' foi'med by straight lines with circular arcs) played

a much larger part in earlier text-books than they do in

Euclid, where indeed they only appear once or twice as a

survival. Secondly, it is remarkable that the equality of

the two ' angles ' of a semicircle and of the two ' angles ' of any

segment is assumed as a means of proving a proposition so

1 Anal. Prior, i. 24. 41 b 13-22.
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elementary as I. 5, although one would say that the assump-

tions ax'e no more obvious than the proposition to be proved

;

indeed some kind of proof, e. g. by superposition, would

doubtless be considered necessary to justify the assumptions.

It is a natural inference that Euclid's proof of I. 5 was his

own, and it would appear that his innovations as regards

order of propositions and methods of proof began at the very

threshold of the subject.

There are two passages ^ in Aristotle bearing on the theory

of parallels which seem to show that the theorems of E«cl.

I. 27, 28 are pre-Euclidean ; but another passage^ appears to

indicate that there was some vicious circle in the theory of

parallels then current, for Aristotle alludes to a petitio prin-

cipii committed by ' those who think that they draw parallels

'

(or ' establish the theory of parallels ', ras napaXXrjXovi

ypa.<pnv), and, as I have tried to show elsewhere,"* a note of

Philoponus makes it possible that Aristotle is criticizing a

direction-ih.&OYy of parallels such as has been adopted so

often in modern text-books. It would seem, therefore, to have

been Euclid who first got rid of the petitio principii in earlier

text-books by formulating the famous Postulate 5 and basing

I. 29 upon it.

A difference of method is again indicated in regard to the

theorem of Eucl. III. 3 1 that the angle in a semicircle is right.

Two passages of Aristotle taken together* show that before

Euclid the proposition was proved by means of the radius

drawn to the middle point of the

arc of the semicircle. Joining the

extremity of this radius to the ex-

tremities of the diameter respec-

tively, we have two isosceles right-

angled triangles, and the two angles,

one in each triangle, which are at the middle point of the arc,

being both of them halves of right angles, make the angle in

the semicircle at that point a right angle. The proof of the

theorem must have been completed by means of the theorem

' Anal. Post. i. 5. 74 a 13-16 ; Anal. Prior, ii. 17. 66 a 11-15.

' Anal. Prior, ii. 16. 65 a 4.

' See The Thirteen Books of Euclid's Elements, vol. i, pp. 191-2 (of.

pp. 308-9).
* Anal. Post. ii. 11. 94 a 28 ; Metaph. 6. 9. 1051 a 26.

Z 2
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of III. 2 1 that angles in the same segment are equal, a proposi-

tion which Euclid's more general proof does not need to use.

These instances are sufficient to show that Euclid was far

from taking four complete Books out of an earlier text-book

without change ; his changes began at the very beginning,

and there are probably few, if any, groups of propositions in

which he did not introduce some impiovements of arrange-

ment or method.

It is unnecessary to go into further detail regarding

Euclidean theorems found in Aristotle except to note the

interesting fact that Aristotle already has the principle of

the method of exhaustion used by Eudoxus :
' If I continually

add to a finite magnitude, I shall exceed every assigned

•(' defined ', mpuT/j.evov) magnitude, and similarly, if I subtract,

I shall fall short (of any assigned magnitude).'

'

(y) Propositions not found in Euclid.

Some propositions found in Aristotle but not in Euclid

should be mentioned. (1) The exterior angles of any polygon

are together equal to four right angles^; although omitted

in Euclid and supplied by Proclus, this is evidently a Pytha-

gorean proposition. (2) The locus of a point such that its

distances from two given points are in a given ratio (not

being a ratio of equality) is a circle ^ ; this is a proposition

quoted by Eutocius from Apollonius's Plane Loci, but the

proof given by Aristotle differs very little from that of

Apollonius as reproduced by Eutocius, which shows that the

proposition was fully known and a standard proof of it was in

existence before Euclid's time. (3) Of all closed lines starting

from a point, returning to it again, and including a given

area, the circumference of a circle is the shortest *
; this shows

that the study of isoperimetry (comparison of the perimeters

of different figures having the same area) began long before

the date of Zenodorus's treatise quoted by Pappus and Theon
of Alexandria. (4) Only two solids can fill up space, namely
the pyramid and the cube ""

; this is the complement of the
Pythagorean statement that the only three figures which can

1 Arist. Phiis. viii. 10. 266 b 2.

^ Anal. Post. i. 24. 85 b 38 ; ii. 17. 99 a 19.
' Mdeorologica, iii. 5. 376 a 3 sq. * De caelo, ii. 4. 287 a 27.
5 Ih. iii. 8. 306 b 7.



ARISTOTLE 341

by being put together fill up space in a plane are the equi-

lateral triangle, the square and the regular hexagon.

(5) Curves and solids knoivn to Aristotle.

There is little beyond elementary plane geometry in Aris-

totle. He has the distinction between straight and ' curved

'

lines {Ka/j.TrvXai ypafj.jxai), but the only curve mentioned

specifically, besides circles, seems to be the spiral ^ ; this

term may have no more than the vague sense which it has

in the expression ' the spirals . of the heaven ' ^ ; if it really

means the cylindrical helix, Aristotle does not seem to have

realized its property, for he includes it among things which

are not such that ' any part will coincide with any other

part ', whereas ApoUonius later proved that the cylindrical

helix has precisely this property.

In solid geometry he distinguishes clearly the three dimen-

sions belonging to ' body ', and, in addition to parallelepipedal

solids, such as cubes, he is familiar with spheres, cones and

cylinders. A sphere he defines as the figure which has all its

radii (' lines'from the centre ') equal,^ from which we may infer

that Euclid's definition of it as the solid generated by the revo-

lution of a semicircle about its diameter is his own (Eucl. XI,

Def. 14). Referring to a cone, he says* 'the straight lines

thrown out from K in the form of a cone make GK as a sort

of axis (Sa-nep d^ova)', showing that the use of the word
' axis ' was not yet quite technical ; of conic sections he does

not seem to have had any knowledge, although he must have

been contemporary with Menaechmus. When he alludes to

' two cubes being a cube ' he is not speaking, as one might

suppose, of the duplication of the cube, for he is saying that

no science is concerned to prove anything outside its own

subject-matter ; thus geom-etry is not required to prove ' that

two cubes are a cube'*^; hence the sense of this expression

must be not geometrical but arithmetical, meaning that the

product of two cube numbers is also a cube number. In the

Aristotelian Problems there is a question which, although not

mathematical in intention, is perhaps the first suggestion of

I Phys. V. 4. 228 b 24. ' Metaph. B. 2. 998 a 5

3 Phys. ii. 4. 287 a 19. * Meteoroloyica, in. 5. .ilb b ^1.

'' Anal. Post. i. 7. 75 b 12.
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a certain class of investigation. If a book in the form of a

cylindrical roll is cut by a plane and then unrolled, why is it

that the cut edge appears as a straight line if the section

is parallel to the base (i. e. is a right section), but as a crooked

line if the section is obliquely inclined (to the axis).i The

Problems are not by Aristotle; but, whether this one goes

back to Aristotle or not, it is unlikely that he would think of

investigating the form of the curve mathematically.

(e) The continuous and the infinite.

Much light was thrown by Aristotle on certain general

conceptions entering into mathematics such as the ' continuous

'

and the 'infinite'. The continuous, he held, could not be

made up of indivisible parts; the continuous is that in which

the boundary or limit between two consecutive parts, where

they touch, is one and the same, and which, as the name

itself implies, is /cepi together, which is not possible if the

extremities are two and not one.- The ' infinite ' or ' un-

limited ' only exists potentially, not in actuality. The infinite

is so in virtue of its endlessly changing into something else,

like day or the Oljmipic games, and is manifested in difierent

forms, e.g. in time, in Man, and in the division of magnitudes.

For, in general, the infinite consists in something new being

continually taken, that something being itself always finite

but always different. There is this distinction between the

forms above mentioned that, whereas in the case of magnitudes

what is once taken remains, in the case of time and Man it

passes or is destroyed, but the succession is unbroken. The
case of addition is in a sense the same as that of division

;

in the finite magnitude the former takes place in the converse

way to the latter ; for, as we see the finite magnitude divided

ad infinitwm, so we shall find that addition gives a sum
tending to a definite limit. Thus, in the case of a finite

magnitude, ypu may take a definite fraction of it and add to

it continually in the same ratio ; if now the successive added
terms do not include one and the same magnitude, whatever

it is [i. e. if the successive terms diminish in geometrical

progression], you will not come to the end of the finite

magnitude, but, if the ratio is increased so that each terra

' Prohl. xvi. 6. 914 a 25. ^ Phijs. v. 3. 227 a 11 ; vii. 1. 231 a 24.
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«does include one and the same magnitude, whatever it is, you
will come to the end of the finite magnitude, for every finite

magnitude is exhausted by continually taking from it any

definite fraction whatever. In no other sense does the infinite

exist but only in the sense just mentioned, that is, potentially

and by way of diminution.^ And in this sense you may have

potentially infinite addition, the process being, as we say, in

a manner the same as with division ad injinitwm ; for in the

case of addition you will always be able to find something

outside the total for the time being, but the total will never

exceed every definite (or assigned) magnitude in the way that,

in the direction of division, the result will pass every definite

magnitude, that is, by becoming smaller than it. The infinite

therefore cannot exist, even potentially, in the sense of exceed-

ing every finite magnitude as the result of successive addition.

It follows that the correct view of the infinite is the opposite

of that commonly held; it is not that which has nothing

outside it, but that which always' has something outside it.^

Aristotle is aware that it is essentially of physical magnitudes

that he is speaking: it is, he says, perhaps a more general

inquiry that would be necessary to determine whether the

infinite is possible in mathematics and in the domain of

thought and of things which have no magnitude.^

' But ', he says, ' my argument does not anyhow rob

mathematicians of their study, although it denies the existence

of the infinite in the sense of actual existence as something

increased to such an extent that it cannot be gone through

{d8if^LTr]Tov) ; for, as it is, they do not even need the infinite

or use it, but only require that the finite (straight line) shall

be as long as they please. . . . Hence it will make no difierence

to them for the purpose of demonstration.' *

The above disquisition about the infinite should, I think,

be interesting to mathematicians for the distinct expression

of Aristotle's view that the existence of an infinite series the

terms of which are magnitudes is impossible unless it is

convergent and (with reference to Riemann's developments)

that it does not matter to geometry if the straight line is not

'nfiaite in length provided that it is as long as we please.

' Phys. iii. 6. 206 a 15-b 13. ' lb. iii. 6. 206 b 16-207 a 1.

' lb. iii. 5. 204 a 34. * lb. iii. 7. 207 b 27.
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Aristotle's denial of even the potential existence of a sum

of magnitudes which shall exceed every definite magnitude

was, as he himself implies, inconsistent with the lemma or

assumption used by Eudoxus in his method of exhaustion.

We can, therefore, well understand why, a century later,

Archimedes felt it necessary to justify his own use of the

lemma

:

' the earlier geometers too have used this lemma : for it is by
its help that they have proved that circles have to one another

the duplicate ratio of their diameters, that spheres have to

one another the triplicate ratio of their diameters, and so on.

And, in the result, each of the said theorems has been accepted

no less than those proved without the aid of this lemma.' ^

{() Mechanics.

An account of the mathematics in Aristotle would be incom-

plete without a reference to his ideas in mechanics, where he

laid down principles which, even though partly erroneous,

held their ground till the time of Benedetti (1530-90) and

Galilei (1564-1642). The Mechanica included in the Aris-

totelian writings is not indeed Aristotle's own work, but it is

veiy close in date, as we may conclude from its terminology
;

this shows more general agreement with the terminology of

Euclid than is found in Aristotle's own writings, but certain

divergences from Euclid's terms are common to the latter and

to the Mechanica ; the conclusion from which is that the

Mechaniccc was written before Euclid had made the termino-

logy of mathematics more uniform and convenient, or, in the

alternative, that it was composed after Euclid's time by persons

who, though they had partly assimilated Euclid's terminology,

were close enough to Aristotle's date to be still influenced

by his usage. But the Aristotelian origin of many of the

ideas in the Mechanica is proved by their occurrence in

Aristotle's genuine writings. Take, for example, the principle

of the lever. In the Mechanica we are told that,

' as the weight moved is to the moving weight, so is the
length (or distance) to the length inversely. In fact the mov-
ing weight will more easily move (the system) the farther it

is away from the fulcrum. The reason is that aforesaid,

' Archimedes, Quadrature of a Parabola, Preface.
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namely that the line which is farther from the centre describes

the greater circle, so that, if the power applied is the same,
that which moves (the system) will change its position the
more, the farther it is away from the fulcrum.' ^

The idea then is that the greater power exerted by the

weight at the greater distance corresponds to its greater

velocity. Compare with this the passage in the Be caelo

where Aristotle is speaking of the speeds of the circles of

the stars

:

' it is not at all strange, nay it is inevitable, that the speeds of

circles should be in the proportion of their sizes.' ^
. . .

' Since

in two concentric circles the segment (sector) of the outer cut

off between two radii common to both circles is greater than

that cut off" on the inner, it is reasonable that the greater circle

should be carried round in the same time.' ^

Compare again the passage of the Mechanica

:

' what happens with the balance is reduced to (the case of the)

circle, the case of the lever to that of the balance, and
practically everything concerning mechanical movements to

the case of the lever. Further it is the fact that, given

a radius of a circle, no two points of it move at the same
speed (as the radius itself revolves), but the point more distant

from the centre always moves more quickly, and this is the

reason of many remarkable facts about the movements of

circles which will appear in the sequel.' *

The axiom which is regarded as containing the germ of the

principle of virtual velocities is enunciated, in slightly different

forms, in the Be caelo and the Physics :

' A smaller and lighter weight will be given more movement
if the force acting on it is the same. . . . The speed of the

lesser body will be to that of the greater as the greater body

is to the lesser.' *

'If J. be the movent, B the thing moved, C the length

through which it is moved, B the time taken, then

A will move ^B over the distance 2 C in the time B,

and A „_ iB „
^ „ C „ „ IB;

thus proportion is maintained.'

"

' Mechanica, 3. 850 b 1.
'^ De caelo, ii. 8. 289 b 15.

s /6 290 a 2. * Mechanica, 848 all.
5 De caelo, ill. 2. 301 b 4, 1

L

" Phtjs. vii. 5. 249 b 30-250 a 4.
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Again, says Aristotle,

A will move B over the distance |C' in the time ^D,

and 1^ „ 1 5 a distance G „ „ D;^
and so on.

Lastly, we have in the Mechanica the parallelogram of

velocities

:

' When a body is moved in a certain ratio (i. e. has two linear

movements in a constant ratio to one another), the body must
move in a straight line, and this straight line is the diameter

of the figure (parallelogram) formed from the straight lines

which have the given ratio.'
^

The author goes on to say ^ that, if the ratio of the two

movements does not remain the same from one instant to the

next, the motion will not be in a straight line but in a curve.

He instances a circle in a vertical plane with a point moving

along it downwards from the topmost point; the point has

two simultaneous movements ; one is in a vertical line, the

other displaces this vertical line parallel to itself away from

the position in which it passes through the centre till it

reaches the position of a tangent to the circle ; if during this

time the ratio of the two movements were constant, say one of

equality, the point would not move along the circumference

at all but along the diagonal of a rectangle.

The parallelogram of forces is easily deduced from the

parallelogram of velocities combined with Aristotle's axiom

that the force which moves a given weight is directed along

the line of the weight's motion and is proportional to the

distance described by the weight in a given time.

Nor should we omit to mention the Aristotelian tract On
indivisible lines. We have seen (p. 293) that, according to

Aristotle, Plato objected to the genus ' point ' as a geometrical

fiction, calling a point the beginning of a line, and often

positing 'indivisible lines' in the same sense.* The idea of

indivisible lines appears to have been only vaguely conceived

by Plato, but it took shape in his school, and with Xenocrates

' Fhys. vii. 5. 250 a 4-7. ^ Mechanica, 2. 848 b 10.
= lb. 848 b 26 aq. • Metaph. A. 9. 992 a 20.
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became a definite doctrine. There is plenty of evidence for
this ^

; Proclus, for instance, tells us of ' a discourse or argu-
ment by Xenocrates introducing indivisible lines '.^ The tract

On indivisible lines was no doubt intended as a counterblast
to Xenocrates. It can hardly have been written by Aristotle

himself; it contains, for instance, some expressions without
parallel in Aristotle. But it is certainly the work of some
one belonging to the school ; and we can imagine that, having
on some occasion to mention ' indivisible lines ', Aristotle may
well have set to some pupil, as an exercise, the task of refuting

Xenocrates. According to Simplicius and Philoponus, the

tract was attributed by some to Theophrastus ^ ; and this

seems the most likely, supposition, especially as Diogenes
Laertius mentions, in a list of works by Theophrastus, ' On
indivisible lines, one Book '. The text is in many places

corrupt, so that it is often difficult or impossible to restore the

argument. In reading the book we feel that the writer is

for the most part chopping logic rather than contributing

seriously to the philosophy of mathematics. The interest

of the work to the historian of mathematics is of the slightest.

It does indeed cite the equivalent of certain definitions and

propositions in Euclid, especially Book X (on irrationals), and

in particular it mentions the irrationals called ' binomial ' or

' apotome ', though, as far as irrationals are concerned, the

writer may have drawn on Theaetetus rather than Euclid-

The mathematical phraseology is in many places similar to

that of Euclid, but the writer shows a tendency to hark back

to older and less fixed terminology such as is usual in

Aristotle. The tract begins with a section stating the argu-

ments for indivisible lines, which we may take to represent

Xenocrates's own arguments. The next section purports to

refute these arguments one by one, after which other con-

siderations are urged against indivisible lines. It is sought to

show that the hypothesis of indivisible lines is not reconcilable

with the principles assumed, or the conclusions proved, in

mathematics; next, it is argued that, if a line is made up

of indivisible lines (whether an odd or even number of such

lines), or if the indivisible line has any point in it, or points

' Cf. Zeller, ii. V, p. 1017. ^ Proclus on Eucl. I, p. 279. 5.

2 See Zeller, ii. 2^ p. 90, note.
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terminating it, the indivisible line must be divisible ; and,

lastly, various arguments are put forward to show that a line

can no more be made up of points thfin of indivisible lines,

with more about the relation of points to lines, &c.^

Sphaeric.

AuTOLYCDS of Pitane was the teacher of Arcesilaus (about

315-241/40 B.C.), also of Pitane, the founder of the so-called

Middle Academy. He may be taken to have flourished about

310 B.C. or a little earlier, so that he was an elder con-

temporary of Euclid. We hear of him in connexion with

Eudoxus's theory of concentric spheres, to which he adhered.

The great difficulty in the way of this theory was early seen,

namely the impossibility of reconciling the assumption of the

invariability of the distance of each planet with the observed

differences in the brightness, especially of Mars and Venus,

at different times, and the apparent differences in the relative

sizes of the sun and moon. We are told that no one before

Autolycus had even attempted to deal with this difficulty

' by means of hypotheses ', i. e. (presumably) in a theoretical

manner, and even he was not successful, as clearly appeared

from his controversy with Aristotherus ^ (who was the teacher

of Aratus) ; this implies that Autolycus's argument was in

a written treatise.

Two works by Autolycus have come down to us. They
both deal with the geometry of the sphere in its application

to astronomy. The definite place which they held among
Greek astronomical text-books is attested by the fact that, as

we gather from Pappus, one of them, the treatise On the

•moving Sphere, was included in the list of works forming

the ' Little Astronomy ', as it was called afterwards, to distin-

guish it from the 'Great Collection' (fieydXri awTa^Ls) of

Ptolemy ; and we may doubtless assume that the other work
On Risings ami Settings was similarly included.

' A revised text of the work is included in Aristotle, De plantis, edited
by 0. Apelt, who also gave a Grerman translation of it in Beitnlge siir

Geschichte der griechischen Philosophie (1891), pp. 271-86. A translation
by H. H. Joachim has since appeared (1908) in the series of Oxford
Translations of Aristotle's works.

^ Simplicius on De caelo, p. 504. 22-5 Heib.
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Both works have been well edited by Hultsch with Latin

translation.^ They are of great interest for several reasons.

First, Autolycus is the earliest Greek mathematician from

whom original treatises have come down to us entire, the next

being Euclid, Aristarchus and Archimedes. That he wrote

earlier than Euclid is clear from the fact that Euclid, in his

similar work, the Phaenomena, makes use of propositions

appearing in Autolycus, though, as usual in such cases, giving

no indication of their source. The form of Autolycus's proposi-

tions is exactly the same as that with which we are familiar

in Euclid ; we have first the enunciation of the proposition in

general terms, then the particular enunciation with reference

to a figure with letters marking the various points in it, then

the demonstration, and lastly, in some cases but not in all, the

conclusion in terms similar to those of the enunciation. This

shows that Greek geometrical propositions had already taken

the form which we recognize as classical, and that Euclid did

not invent this form or introduce any material changes.

A lost text-book on Sphaeric.

More important still is the fact that Autolycus, as well as

Euclid, makes use of a number of propositions relating to the

sphere without giving any proof of them or quoting any

authority. This indicates that there was already in existence

in his time a text-book of the elementary geometry of the

sphere, the propositions of which were generally known to

mathematicians. As many of these propositions are proved

in the Sphaerica of Theodosius, a work compiled two or three

centuries later,we may assume that the lost text-book proceeded

on much the same lines as that of Theodosius, with much the

same order of propositions. Like Theodosius's Sphaerica

it treated of the stationary sphere, its sections (great and

small circles) and their properties. The geometry of the

sphere at rest is of course prior to the consideration of the

sphere in motion, i. e. the sphere rotating about its axis, which

is the subject of Autolycus's works. Who was the author of

the lost pre-Euclidean text-book it is impossible to say;

' Autolyci De sphaera quae movetur liber, De oiiibus et occasihus lihri duo

edidit F. Hultsch (Teubner 1885).
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Tannery thought that we could hardly help attributing it to

Eudoxus. The suggestion is natural, seeing that Eudoxus
showed, in his theory of concentric spheres, an extraordinary

mastery of the geometry of the sphere ; on the other hand,

as Loria observes, it is, speaking generally, dangerous to

assume that a work of an unknown author appearing in

a certain country at a certain time must have been written

by a particular man of science simply because he is the only

man of the time of whom we can certainly say that he was
capable of wi-iting it.^ The works of Autolycus also serve to

confirm the pre-Euclidean origin of a number of propositions

in the Elements. Hultseh ^ examined this question in detail

in a paper of 1886. There are (1) the propositions pre-

supposed in one or other of Autolycus's theorems. We have
also to take account of (2) the propositions which would be

required to establish the propositions in sphaeric assumed by
Autolycus as known. The best clue to the propositions under

(2) is the actual course of the proofs of the corresponding

propositions in the Sjjhaerica of Theodosius; for Theodosius

was only a compiler, and we may with great probability

assume that, where Theodosius uses propositions from Euclid's

Elements, propositions corresponding to them were used to

prove the analogous propositions in the fourth-century

Sphaeric. The propositions which, following this criterion,

we may suppose to have been directly used for this purpose
are, roughly, those represented by Eucl. I. 4, 8, 17, 19, 26, 29,

47; in. 1-3, 7, 10, 16 Cor., 26, 28, 29; IV. 6; XL 3,4, 10,11,

12, 14, 16, 19, and the interpolated 38. It is, naturally, the
subject-matter of Books L HI, and XI that is drawn upon,
but, of course, the propositions mentioned by no means
exhaust the number of pre-Euchdean propositions even in

those Books. When, however, Hultseh increased the list of
propositions by adding the whole chain of propositions (in-

cluding Postulate 5) leading up to them in Euclid's arrange-
ment, he took an unsafe course, because it is clear that many
of Euclid's proofs were on different lines from those used
by his predecessors.

^ Loria, Le scienze esatte nelV antica Grecia, 1914, p. 496-7.
2 Berkhte der Kgl. Sfichs. Gesellschaft der Wissenschaften zu Leivzia

Phil.-hist. Classe, 1886, pp. 128-55.
^'
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The work On the moving Spher6 assumes abstractly a

sphere moving about the axis stretching from pole to pole,

and different series of circular sections, the first series being

great circles passing through the poles, the second small

circles (as well as the equator) which are sections of the

sphere by planes at right angles to the axis and are called

the 'parallel circles', while the third kind are great circles

inclined obliquely to the axis of the sphere; the motion of

points (Jn these circles is then considered in relation to the

section by a fixed plane through the centre of the sphere.

It is easy to recognize in the oblique great circle in the sphere

the ecliptic or zodiac circle, and in the section made by the

fixed plane the horizon, which is described as the circle

in the sphere 'which defines {opi^wv) the visible and the

invisible portions of the sphere'. To give an idea of the

content of the work, I will quote a few enunciations from

Autolycus and along with two of them, for the sake of

comparison with Euclid, the corresponding enunciations from

the Phaenomena.

Autolycus.

1. If a sphere revolve uni-

formly about its own axis, all

the points on the surface of the

sphere which are not on the

axis will describe parallel

circles which have the same
poles as the sphere and are

also at right angles to the axis.

Euclid.

7. If the circle in the sphere

defining the visible and the

invisible portions of the sphere

be obliquely inclined to the

axis, the circles which are at

right angles to the axis and cut

the defining circle [horizon]

always make both their risings

and settings at the same points

of the defining circle [horizon]

and further will also be simi-

larly inclined to that circle.

3. The circles which are at

right angles to the axis and
cut the horizon make both
their risings and settings at

the same points of the horizon.
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7. That the circle of the

zodiac rises and sets over the

whole extent of the horizon

between the tropics is mani-

fest, forasmuch as it touches

circles greater than those

which the horizon touches.

Autolycus. Euclid.

9. If in a sphere a great

circle which is obliquely in-

clined to the axis define the

visible and the invisible por-

tions of the sphere, then, of

the points which rise at the

same time, those towards the

visible pole set later and, of

those which set at the same
time, those towards the visible

pole rise earlier.

11. If in a sphere a great

circle which is obliquely in-

clined to the axis define the

visible and the invisible por-

tions of the sphere, and any
other oblique great circle

touch greater (parallel) circles

tlian those which the defin-

ing circle (horizon) touches,

the said other oblique circle

makes its risings and settings

over the whole extent of the

circumference (arc) of the de-

fining circle included between
the parallel circles which it

touches.

It will be noticed that Autolycus's propositions are more

abstract in so far as the ' other oblique circle ' in Autolycus

is any other oblique circle, whereas in Euclid it definitely

becomes the zodiac circle. In Euclid ' the great circle defining

the visible and the invisible portions of the sphere ' is already

shortened into the technical term ' horizon ' {opi^mv), which is

defined as if for the first time :
' Let the name horizon be

given to the plane through us (as observers) passing through

the universe and separating ofi" the hemisphere which is visible

above the earth.'

The book On Risings and Settings is of astronomical interest

only, and belongs to the region of Phaenomena as understood

by Eudoxus and Aratus, that is, observational astronomy.

It begins with definitions distinguishing between ' true ' and
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' apparent ' morning- and evening-risings and settings of fixed

stars. The ' true ' morning-rising (setting) is when the star

rises (sets) at the moment of the sun's rising ; the ' true

'

morning-rising (setting) is, therefore invisible to us, and so is

the ' true ' evening-rising (setting) which takes place at the

moment when the sun is setting. The 'apparent' morning-

rising (setting) takes place when the star is first seen rising

(setting) before the sun rises, and the ' apparent ' evening-

rising (setting) when the star is last seen rising (setting) after

the sun has set. The following are the enunciations of a few

of the propositions in the treatise.

I. 1. In the case of each of the fixed stars the apparent

morning-risings and settings are later than the true, and

the apparent evening-risings and settings are earlier than

the true.

I. 2. Each of the fixed stars is seen rising each night from

the (time of its) apparent morning-rising to the time of its

apparent evening-rising but at no other period, and the time

during which the star is seen rising is less than half a year.

I. 5. In the case of those of the fixed stars which are on the

zodiac circle, the interval from the time of their apparent

evening-rising to the time of their apparent evening-setting is

half a year, in the case of those north of the zodiac circle

more than half a year, and in the case of those south of the

zodiac circle less than half a year.

II. 1. The twelfth part of the zodiac circle in which the

sun is, is neither seen rising nor setting, but is hidden ; and

similarly the twelfth part which is opposite to it is neither

seen setting nor rising but is visible above the earth the whole

of the nights.

II. 4. Of the fixed stars those which are cut off by the

zodiac circle in the northerly or the southerly direction will

reach their evening-setting at an interval of five months from

their morning-rising.

II. 9. Of the stars which are carried on the same (parallel-)

circle those which are cut off by the zodiac circle in the

northerly direction will be hidden a shorter time than those

on the southern side of the zodiac.

A a
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EUCLID

Date and traditions.

We have very few particulars of the lives of the great

mathematicians of Greece. Even Euclid is no exception.

Practically all that is known about him is contained in a few

sentences of Proclus's summary :

' Not mucli younger than these (sc. Hermotimus of Colophon
and Philippus of Mende or Medma) is Euclid, who put to-

gether the Elements, collecting many of Eudoxus's theorems,

perfecting many, of Theaetetus's, and also bringing to irre-

fragable demonstration the things which were only somewhat
loosely proved by his predecessors. This man lived in the

time of the first Ptolemy. For Archimedes, who came
immediately after the first (Ptolemy), makes mention of

Euclid ; and further they say that Ptolemy once asked him if

there was in geometry any shorter way than that of the

Elements, and he replied that there was no royal road to

geometry. He is then younger than the pupils of Plato, but
older than Eratosthenes and Archimedes, the latter having
been contemporaries, as Eratosthenes somewhere says.' ^

This passage shows that even Proclus had no direct know-
ledge of Euclid's, birthplace, or of the dates of his birth and
death ; he can only infer generally at what period he fiourished.

All that is certain is that Euclid was later than the first

pupils of Plato and earlier than Archimedes. As Plato died

in 347 B.C. and Archimedes lived from 28 7 to 212 B.C., Euclid

must have flourished about 300 B.C., a date which agrees well

with the statement that he lived under the first Ptolemy, who
reigned from 306 to 283 B.C.

1 Proclus on Eucl. I, p. 68. 6-20.
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" More particulars are, it is true, furnished by Arabian

authors. We are told that

' Euclid, son of Naucrates, and grandson of Zenarchus [the

Fihrist has ' son of Naucrates, the son of Berenice (?) '], called

the author of geometry, a philosopher of somewhat ancient

date, a Greek by nationality, domiciled at Damascus, born at

Tyre, most learned in the science of geometry, published

a most excellent and most useful work entitled the foundation

or elements of geometry, a subject in which no more general

treatise existed before among the Greeks : nay, there was no
one even of later date who did not walk in his footsteps and
frankly profess his doctrine. Hence also Greek, Roman,
and Arabian geometers not a few;, who undertook the task of

illustrating this work, published commentaries, scholia, and
notes upon it, and made an abridgement of the work itself.

For this reason the Greek philosophers used to post up on the

doors of their schools the well-known notice, " Let no one

come to our school, who has not first learnt the elements

of Euclid".'!

This shows the usual tendency of the Arabs to romance.

They were in the habit of recording the names of grand-

fathers, while the Greeks were not ; Damascus and Tyre were

no doubt brought in to gratify the desire which the Arabians

always showed to connect famous Greeks in some way or other

with the east (thus they described Pythagoras as a pupil of the

wise Salomo, and Hipparchus as ' the Chaldaean '). We recog-

nize the inscription over the doors of the schools of the Greek

philosophers as a variation of Plato's firiSeh dyeaiJLeTprjTos

elaiTco; the philosopher has become Greek philosophers in

general, the school their schools, while geometry has become

the Elements of Euclid. The Arabs even explained that the

name of Euclid, which they pronounced variously as Uclides or

Icludes, was compounded of Ucli, a key, and Dis, a measure, or,

as some say, geometry, so that Uclides is equivalent to the

key of geomett'y !

In the Middle Ages most translators and editors spoke of

Euclid as Euclid of Megara, confusing our Euclid with Euclid

the philosopher, and the contemporary of Plato,who lived about

400 B.C. The first trace of the confusion appears in Valerius

' Casiri, Bihliotheca Arabico-Hispana Escurialensis, i, p. 339 (Casiri's

source is the Ta'rikh al-Hukama of al-Qifti (d. 1248).

A a 2
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Maximus (in the time of Tiberius) who says ^ that Plato,

on being appealed to for a solution of the problem of doubling

the cube, sent the inquirers to ' Euclid the geometer '. The

mistake was seen by one Constantinus Lascaris (d. about

1493), and the first translator to point it out clearly was

Commandinus (in his translation of Euclid published in 1572).

Euclid may have been a Platonist, as Proclus says, though

this is not certain. In any case, he probably received his

mathematical training in Athens from the pupils of Plato;

most of the geometers who could have taught him were of

that school. But he himself taught and founded a school

at Alexandria, as we learn from Pappus's statement that

Apollonius ' spent a very long time with the pupils of Euclid

at Alexandria'.^ Here again come in our picturesque

Arabians,^ who made out that the Elements were originally

written by a man whose name was Apollonius, a carpenter,

who wrote the work in fi.fteen books or sections (this idea

seems to be based on some misunderstanding of Hypsicles's

preface to the so-called Book XIV of Euclid), and that, as

some of the work was lost in course of time and the rest

disarranged, one of the kings at Alexandria who desired to

study geometry and to master this treatise in particular first

questioned about it certain learned men who visited him, and
then sent for Euclid, who was at that time famous as a

geometer, and asked him to revise and complete the work
and reduce it to order, upon which Euclid rewrote the work
in thirteen books, thereafter known by his name.

On the character of Euclid Pappus has a remark which,

however, was probably influenced by his obvious aniiQUs

against Apollonius, whose preface to the Conies seemed to him
to give too little credit to Euclid for his earlier work in the same
subject. Pappus contrasts Euclid's attitude to his predecessors.

Euclid, he says, was no such boaster or controversialist : thus

he regarded Aristaeus as deserving credit for the discoveries

he had made in conies, and made no attempt to anticipate

him or to construct afresh the same system, such was his

scrupulous fairness and his exemplary kindliness to all who
' viii. 12, ext. 1. •' Pappus, vii, p. 678. 10-12.
^ The authorities are al-Kincli, De instituto libri Euclidis and a commen-

tary by Qatlizade on the Ashkal at-ta'sis of Ashraf Shamsaddin as-Samar-
qandi (quoted by Casiri and Hajl Khalfa).
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could advance mathematical science to however small an

extent.^ Although, as I have indicated, Pappus's motive was
rather to represent ApoUonius in a relatively unfavourable

light than to state a historical fact about Euclid, the state-

ment accords well with what we should gather from Euclid's

own works. These show no sign of any claim to be original

;

in the Elements, for instance, although it is clear that he

made great changes, altering the arrangement of whole Books,

redistributing propositions between them, and inventing new
proofs where the new order made the earlier proofs inappli-

cable, it is safe to say that he made no more alterations than

his own acumen and the latest special investigations (such as

Eudoxus's theory of pi'oportion) showed to be imperative in

order to make the exposition of the whole subject more

scientific than the earlier efforts of writers of elements. His

respect for tradition is seen in his retention of some things

which were out of date and useless, e. g. certain definitions

never afterwards used, the solitary references to the angle

of a semicircle or the angle of a segment, and the like ; he

wrote no sort of preface to his work (would that he had
!)

such as those in which Archimedes and ApoUonius introduced

their treatises and distinguished what they claimed as new in

them from what was already known : he plunges at once into

his subject, ' A point is that which has no part

'

!

And what a teacher he must have been ! One story enables

us to picture him in that capacity. According to Stobaeus,

'some one who had begun to read geometry with Euclid,

when he had learnt the first theorem, asked Euclid, "what
shall I get by learning these things 1 " Euclid called his sla.ve

and said, " Give him threepence, since he must make gain out

of what he learns ".' '^

Ancient commentaries, criticisms, and references.

Euclid has, of course, always been known almost exclusively

as the author of the Elements. From Archimedes onwards

the Greeks commonly spoke of him as 6 aTOLxaaiT-qi, the

writer of the Elements, instead of using his name. This

wonderful book, with all its imperfections, which indeed are

slight enough when account is taken of the date at which

1 Pappus, vii, pp. 676. 25-678. 6.
'' Stobaeus, Floril. iv. p. 205.
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it appeared, is and will doubtless remain the greatest mathe-

matical text-book of all time. Scarcely any other book

except the Bible can have circulated more widely the world

over, or been more edited and studied. Even in Greek times

the most accomplished mathematicians occupied themselves

with it; Heron, Pappus, Porphyry, Proclus and Simplicius

wrote commentaries ; Theon of Alexandria re-edited it, alter-

ing the language here and there, mostly with a view to

greater clearness and consistency, and interpolating inter-

mediate steps, alternative proofs, separate ' cases ',
porisms

(corollaries) and lemmas (the most important addition being

the second part of VI. 33 relating to sectors). Even the great

Apollonius was moved by Euclid's work to discuss the first

principles of geometry ; his treatise on the subject was in

fact a criticism of Euclid, and none too successful at that

;

some alternative definitions given by him have point, but his

alternative solutions of some of the easy problems in Book I

do not constitute any improvement, and his attempt to prove

the axioms (if one may judge by the case quoted by Proclus,

that of Axiom 1) was thoroughly misconceived.

Apart from systematic commentaries on the whole work or

substantial parts of it, there were already in ancient times

discussions and controversies on special subjects dealt with by
Euclid, and particularly his theory of parallels. The fifth

Postulate was a great stumbling-block. We know from
Aristotle that up to his time the theory of parallels had not

been put on a scientific basis ^
: there was apparently some

'petitio principii lurking in it. It seems therefore clear that

Euclid was the first to apply the bold remedy of laying down
the indispensable principle of the theory in the form of an

indemonstrable Postulate. But geometers were not satisfied

with -this solution. Posidonius and Geminus tried to get

over the difficulty by substituting an equidistance theory of

parallels. Ptolemy actually tried to prove Euclid's postulate,

as also did Proclus, and (according to Simplicius) one Diodorus,

as well as ' Aganis
' ; the attempt of Ptolemy is given by

Proclus along with his own, while that of 'Aganis' is repro-

duced from Simplicius by the Arabian commentator an-

Nairizi.

' Anal. Prior, ii. 16. 65 a 4,
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Other very early criticisms there were, directed against the
very first steps in EucHd's work. Thus Zeno of Sidon, an
Epicurean, attacked the proposition I. 1 on the ground that it

is not conclusive unless it be first assumed that neither two
straight lines nor two circumferences can have a common
segment ; and this was so far regarded as a serious criticism

that Posidonius wrote a whole book to controvert Zeno.^

Again, there is the criticism of the Epicureans that I. 20,

proving that any two sides in a triangle are together greater

than the third, is evident even to an ass and requires no
proof. I mention these isolated criticisms to show that the

Elements, although the}' superseded all other Elements and
never in ancient times had any rival, were not even at the

first accepted without question.

The first Latin author to mention Euclid is Cicero; but
it is not likely that the Elements had then been translated

into Latin. Theoretical geometry did not appeal to the

Romans, who only cared for so much of it as was useful for

measurements and calculations. Philosophers studied Euclid,

'but probably in the original Greek ; Martianus CapelJa speaks

of the effect of the mention of the pi'oposition ' how to con-

struct an equilateral triangle on a given straight line ' among
a company of philosophers, who, recognizing the first pro-

position of the Elements, straightway break out into encomiums
on Euclid.^ Beyond a fragment in a Verona palimpsest of

a free rendering or rearrangement of some propositions from

Books XII and XIII dating apparently from the fourth century,

we have no trace of any Latin version before Boetius (born

about A. D. 480), to whom Magnus Aurelius Cassiodorus and

Theodoric attribute a translation of Euclid. The so-called

geometry of Boetius which has come down to us is by no

means a translation of Euclid ; but even the redaction of this

in two Books which was edited by Friedlejn is not genuine,

having apparently been put together in the eleventh century

from various sources; it contains the definitions of Book I,

the Postulates (five in number), the Axioms (three only), then

some definitions from Eucl. II, III, IV, followed by the

enunciations only (without proofs) of Eucl. I, ten propositions

> Proclus on Eucl. I, p. 200. 2. ^ Mart. Capella, vi. 724.
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of Book II, and a few of Books III and IV, and lastly a

passage indicating that the editor will now give something of

his own, which turns out to be a literal translation of the

proofs of Eucl. I. 1-3. This proves that the Pseudo-Boetius

had a Latin translation of Euclid from which he extracted

these proofs; moreover, the text of the definitions from

Book I shows traces of perfectly correct readings which are

not found even in the Greek manuscripts of the tenth century,

but which appear in Proclus and other ancient sources.

Frao-ments of such a Latin translation are also found in

the Gromatici veteres.^

The text of the Elements.

• All our Greek texts of the Elements up to a century ago

depended upon manuscripts containing Theon's recension of the

work ; these manuscripts purport, in their titles, to be either

' from the edition of Theon ' (e/c rfji @ea>voi eKSoa-fcoi) or

'from the lectures of Theon' (dwb crvyovcnmv rov Oicovos).

Sir Henry Savile in his Praelectiones had drawn attention

to the passage in Theon's Commentary on Ptolemy ^ quoting

the second part of VI. 33 about sectors as having been proved

by himself in his edition of the Elements; but it was not

till Peyrard discovered in the Vatican the great MS.

gr. 190, containing neither the words from the titles of the

other manuscripts quoted above nor the addition to VI. 33,

that scholars could get back from Theon's text to what thus

represents, on the face of it, a more ancient edition than

Theon's. It is also clear that the copyist of P (as the manu-

script is called after Peyrard), or rather of its archetype,'

had before him the two recensions and systematically gave

the preference to the earlier one ; for at XIII. 6 in P the first

hand has a marginal note, ' This theorem is not given in most

copies of the neiv edition, but is found in those of the old'.

The editio princeps (Basel, 1533) edited by Simon Grynaeus

was based on two manuscripts (Venetus Marcianus 301 and
Paris, gr. 2343) of the sixteenth century, which are among
the worst. The Basel edition was again the foundation

of the text of Gregory (Oxford, 1703), who only consulted the

» Ed. Lachmann, pp. .377 sqq. ^ I, p. 201, ed. Halma.
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manuscripts bequeathed by Savile to the University in

places where the Basel text differed from the Latin version
of Commandinus which he followed in the main. It was
a pity that even Peyrard in his edition (1814-18) only
corrected the Basel text by means of P, instead of rejecting

it altogether and starting afresh ; but he adopted many of the

readings of P and gave a conspectus of them in an appendix.
E. F. August's edition (1826-9) followed P more closely, and
he consulted the Viennese MS. gr. 103 also; but it was
left for Heiberg to bring out a new and definitive Greek text

(1883-8) based on P and the best of the Theonine manuscripts,

and taking account of external sources such as Heron and
Proclus. Except in a few passages, Proclus's manuscript does

not seem to have been of the best, but authors earlier than
Theon, e.g. Heron, generally agree with our best manuscripts.

Heiberg concludes that the Elements were most spoiled by
interpolations about the third century, since Sextus Empiricus
had a correct text, while lamblicus had an interpolated one.

The differences between the inferior Theonine manuscripts

and the best sources are perhaps best illustrated by the arrange-

ment of postulates and axioms in Book I. Our ordinary

editions based on Simson have three postulates and twelve

axioms. Of these twelve axioms the eleventh (stating that

all right angles are equal) is, in the genuine text, the fourth

Postulate, and the twelfth Axiom (the Parallel-Postulate) is

the fifth Postulate ; the Postulates were thus originally five

in number. Of the ten remaining Axioms or Common
Notions Heron only recognized the first three, and Proclus

only these and two others (that things which coincide are

equal, and that the whole is greater than the part); it is fairly

certain, therefore, that the rest are interpolated, including the

assumption that two straight lines cannot enclose a space

(Euclid himself regarded this last fact as involved in Postu-

late 1, which implies that a straight line joining one point

to another is unique).

Latin and Arabic translations.

The first Latin translations which we possess in a complete

form were made not from the Greek but from the Arabic.

It was as early as the eighth century that the Elements found
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their way to Arabia. The Caliph al-Mansur (754-75), as the

result of a mission to the Byzantine Emperor, obtained a copy

of Euclid among other Greek books, and the Caliph al-Ma'mun

(813-33) similarly obtained manuscripts of Euclid, among

others, from the Byzantines. Al-Hajjaj b. Yilsuf b. Matar made

two versions of the Elements, the first in the reign of Hariin

ar-Rashid (786-809), the second for al-Ma'mun ; six Books of

the second of these versions survive in a Leyden manuscript

(Cod. Leidensis 399. 1) which is being edited along with

an-Nairizi's commentary by Besthorn and Heiberg ^ ; this

edition was abridged, with corrections and explanations, but

without change of substance, from the earlier version, which

appears to be lost. The work was next translated by Abii

Ya'qiib Ishaq b. Hunainb. Ishaq al-'Ibadi (died 910), evidently

direct from the Greek ; this translation seems itself to have

perished, but we have it as revised by Thabit b. Qurra (died

901) in two manuscripts (No. 279 of the year 1238 and No. 280

written in 1260-1) in the Bodleian Library ; Books I-XIII in

these manuscripts are in the Ishaq-Thabit version, while the

non-Euclidean Books XIV, XV are in the translation of Qusta

b. Luqa al-Ba'labakki (died about 912). Ishaq's version seems

to be a model of good translation ; the technical terms are

simply and consistently rendered, the definitions and enun-

ciations differ only in isolated eases from the Greek, and the

translator's object seems to have been only to get rid of

difficulties and unevennesses in the Greek text while at the

same time giving a faithful reproduction of it. The third

Arabic version still accessible to us is that of Nasiraddin

at-Tusi (born in 1201 at Tiis in Khurasan); this, however,

is not a translation of Euclid but a rewritten version based

upon the older Arabic translations. On the whole, it appears

probable that the Arabic tradition (in spite of its omission

of lemmas and porisms, and, except in a very few cases, of

the interpolated alternative proofs) is not to be preferred

to that of the Greek manuscripts, but must be regarded as

inferior in authority.

The known Latin translations begin with that of Athelhard,

an Englishman, of Bath ; the date of it is about 1120. That

• Parts I, i.l893, I, ii. 1897, 11, i. 1900, II, ii. 1905, III, i. 1910 (Copen-
hagen).
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it^ was made from the Arabic is clear from the occurrence
of Arabic words in it; but Athelhard must also have had
before him a translation of (at least) the enunciations of
Euclid based ultimately upon the Greek text, a translation
going back to the old Latin version which was the common
source of the passage in the Gromatici and ' Boetius '. But
it would appear that even before Athelhard's time some sort

of translation, or at least fragments of one, were available
even in England if one may judge by the Old English verses

:

' The clerk Euclide on this wyse hit fonde
Thys craft of gemetry yn Egypte londe
Yn Egypte he tawghte hyt ful wyde,
In dyvers londe on every syde.
Mony erys afterwarde y understonde
Yer that the craft com ynto thys londe.

Thys craft com into England, as y yow say,
Yn tyme of good Kyng Adelstone's day',

which would put the introduction of Euclid into England
as far back as A. D. 924—40.

Next, Gherard of Cremona (1114-87) is said to have
translated the '15 Books of Euclid' from the Arabic as he
undoubtedly translated an-Nairizi's commentary on Books
I—X ; this translation of the Elements was till recently

supposed to have been lost, but in 1904 A. A. Bjdrnbo dis-

covered in manuscripts at Paris, Boulogne-sur-Mer and Bruges
the whole, and at Rome Books X-XV, of a translation which
he gives good ground for identifying with Gherard's. This

translation has certain Greek words such as roTubus, romboides,

where Athelhard keeps the Arabic terms ; it was thus clearly

independent of Athelhard's, though Gherard appears to have

had before him, in addition, an old translation of Euclid from

the Greek which Athelhard also used. Gherard's translation

is much clearer than Athelhard's; it is neither abbreviated

nor ' edited ' in the same way as Athelhard's, but it is a word
for word translation of an Arabic manuscript containing a

revised and critical edition of Thabit's version.

A third translation from the Arabic was that of Johannes

Campanus, which came some 150 years after that of Athelhard.

That Campanus's translation was not independent of Athel-

hard's is proved by the fact that, in all manuscripts and
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editions, the definitions, postulates and axioms, and the 364

enunciations are word for word identical in Athelhard and

Campanus. The exact relation between the two seems even

yet not to have been sufficiently elucidated. Campanus may

have used Athelhard's translation and only developed the

proofs by means of another redaction of the Arabian Euclid.

Campanus's translation is the clearer and more complete,

following the Greek text more closely but still at some

distance ; the arrangement of the two is different ; in Athel-

hard the proofs regularly precede the enunciations, while

Campanus follows the usual order. How far the differences

in the proofs and the additions in each are due to the

translators themselves or go back to Arabic originals is a

moot question; but it seems most probable that Campanus

stood to Athelhard somewhat in the relation of a commen-

tator, altering and improving his translation by means of

other Arabic originals.

The first printed editions.

Campanus's translation had the luck to be the first to be

put into print. It was published at Venice by Erhard Ratdolt

in 1482. This beautiful and very rare book was not only

the first printed edition of Euclid, but also the first printed

mathematical book of any importance. It has margins of

2^ inches and in them are placed the figures of the proposi-

tions. Ratdolt says in his dedication that, at that time,

although books by ancient and modern authors were being

printed every day in Venice, little or nothing mathematical

had appeared ; this fact he puts down to the difficulty involved

by the figures, which no one had up to that time succeeded in

printing ; he adds that after much labour he had discovered

a method by which figures could be produced as easily as

letters. Experts do not seem even yet to be agreed as to the

actual way in which the figures were made, whether they

were woodcuts or whether they were made by putting together

lines and circular arcs as letters are put together to make
words. How eagerly the opportunity of spreading geometrical

knowledge was seized upon is proved by the number of

editions which followed in the next few years. Even the
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year 1482 saw two forms of the book, though they only differ

in the first sheet. Another edition came out at Ulm in 1486,

and another at Vicenza in 1491.

In 1501 G. Valla gave in his encyclopaedic work Be ex-

petendis et fugiendis rebus a number of propositions with

proofs and scholia translated from a Greek manuscript which
was once in his possession; but Bartolomeo Zamberti (Zam-
bertus) was the first to bring out a translation from the

Greek text of the whole of the Elements, which appeared

at Venice in 1505. The most important Latin translation

is, however, that of Commandinus (1509-75), who not only

followed the Greek text more closely than his predecessors,

but added to his translation some ancient scholia as well

as good notes of his own ; this translation, which appeared

in 1572, was the foundation of most translations up to the

time of Peyrard, including that of Simson, and therefore of

all those editions, numerous in England, which gave Euclid

• chiefly after the text of Dr. Simson '.

The study of Euclid in the Middle Ages.

A word or two about the general position of geometry in

education during the Middle Ages will not be out of place in

a book for English readers, in view of the unique place which

Euclid has till recently held as a text-book in this country.

From the seventh to the tenth century the study of geometry

languished :
' We find in the whole literature of that time

hardly the slightest sign that any one had gone farther

in this department of the Quadrivium than the definitions

of a triangle, a square, a circle, or of a pyramid or cone, as

Martianus Capella and Isidorus (Hispalensis, died as Bishop

of Seville in 636) left them.' ^ (Isidorus had disposed of the

four subjects of Arithmetic, Geometry, Music and Astronomy

in four pages of his encyclopaedic work Origines or Ety-

mologiae). In the tenth century appeared a 'reparator

studiorum ' in the person of the great Gerbert, who was born

at Aurillac, in Auvergne, in the first half of the tenth century,

and after a very varied life ultimately (in 999) became Pope

Sylvester II; he died in 1003. About 967 he went on

' Hankel, op. cit., pp. 311-12.
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a journey to Spain, where he studied mathematics. In 97d he

went to Rome with Bishop Hatto of Vich (in the province of

Barcelona), and was there introduced by Pope John XIII

to the German king Otto I. To Otto, who wished to find

him a post as a teacher, he could say that ' he knew enough of

mathematics for this, but wished to improve his knowledge

of logic'. With Otto's consent he went to Reims, where he

became Scholasticus or teacher at the Cathedral School,

remaining there for about ten yeai-s, 972 to 982. As the result

of a mathematico-philosophic argument in public at Ravenna

in 980, he was appointed by Otto II to the famous monastery

at Bobbio in Lombardy, which, fortunately for him, was rich

in valuable manuscripts of all sorts. Here he found the

famous ' Codex Arcerianus ' containing fragments of the

works of the Gromatici, Frontinus, Hyginus, Balbus, Nipsus,

Epaphroditus and Vitruvius Rufus. Although these frag-

ments are not in themselves of great merit, there are things

in them which show that the authors drew upon Heron of

Alexandria, and Gerbert made the most of them. They
formed the basis of his own ' Geometry ', which may have

been written between the years 981 and 983. In writing this

book Gerbert evidently had before him Boetius's Arithmetic,

and in the course of it he mentions Pythagoras, Plato's

Timaeus, with Chalcidius's commentary thereon, and Eratos-

thenes. The geometry in the book is mostly practical; the

theoretical part is confined to necessary preliminary matter,

definitions, &c.,and a few proofs ; the fact that the sum of the

angles of a triangle is equal to two right angles is proved in

Euclid's manner. A great part is taken up with the solution

of triangles, and with heights and distances. The Archimedean
value of n {^^-) is used in stating the area of a circle; the

surface of a sphere is given as |^ Z)'. The plan of the book
is quite different from that of Euclid, showing that Gerbert
could neither have had Euclid's Elements before him, nor,

probably, Boetius's Gevmetry, if that work in its genuine
form was a version of Euclid. When in a letter written

probably from Bobbio in 983 to Adalbero, Archbishop of

Reims, he speaks of his expectation of finding ' eight volumes
of Boetius on astronomy, also the most famous of figures

(presumably propositions) in geometry and other things not
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less admirable ', it is not clear that he actually found these

things, and it is still less certain that the geometrical matter

referred to was Boetius's Geometry.

From Gerbert's time, again, no further progress was made
until translations from the Arabic began with Athelhard and
the rest. Gherard of Cremona (die! 1187), who translated

the EleTnents and an-Nairizi's commentary thereon, is credited

with a whole series of translations from the Arabic of Greek
authors ; they included the Data of Euclid, the Sphaenca of

Theodosius, the Sphaerica of Menelaus, the Syntaxis of Ptolemy
;

besides which he translated Arabian geometrical works such

as the Liber trlum fratrum, and also the algebra of Muhammad
b. Musa. One of the first results of the interest thus aroused

in Greek and Arabian mathematics was seen in the very

remarkable works of Leonardo of Pisa (Fibonacci). Leonardo

first published in 1202, and then brought out later (1228) an

improved edition of, his Liber abaci in which he gave the

whole of arithmetic and algebra as known to the Arabs, but

in a free and independent style of his own ; in like manner in

his Practica geometriae of 1220 he collected (1) all that the

Elements of Euclid and Archimedes's books on the Measure-

m,ent of a Circle and On the Sp)here and Cylinder had taught

him about the measurement of plane figures bounded by
straight lines, solid figures bounded by planes, the circle and

the sphere respectively, (2) divisions of figures in difierent

proportions, wherein he based himself on Euclid's book On the

divisions offigures, but carried the subject further, (3) some
trigonometry, which he got from Ptolemy and Arabic sources

(he uses the terms sinus rectus and sinus versus) ; in the

treatment of these varied subjects he shawed the same mastery

and, in places, distinct originality. We should have expected

a great general advance in the next centuries after such a

beginning, but, as Hankel says, when we look at the work of

Luca Paciuolo nearly three centuries later, we find that the

talent which Leonardo had left to the Latin world had lain

hidden in a napkin and earned no interest. As regards the

place of geometry in education during this period we have

the evidence of Roger Bacon (1214-94), though he, it

is true, seems to have taken an exaggerated view of the

incompetence of the mathematicians and teachers of his
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time; the philosophers of his day, he says, despised geo-

metry, languages, &c., declaring that they were useless;

people in general, not finding utility in any science such as

geometry, at once recoiled, unless they were boys forced to

it by the rod, from the idea of studying it, so that they

would hardly learn as much as three or four propositions;

the fifth proposition of Euclid was called Elefuga or fuga

fniserorum}

As regards Euclid at the Universities, it may be noted that

the study of geometry seems to have been neglected at the

University of Paris. At the reformation of the University in

1336 it was only provided that no one should take a Licentiate

who had not attended lectures on some mathematical books

;

the same requirement reappears in 1452 and 1600. From the

preface to a commentary on Euclid which appeared in 1536

we learn that a candidate for the degree of M.A. had to take

a solemn oath that he had attended lectures on the first six

Books ; but it is doubtful whether for the examinations more

than Book I was necessary, seeing that the proposition I. 47

was known as Magister matheseos. At the University of

Prague (founded in 1348) mathematics were more regarded.

Candidates for the Baccalaureate had to attend lectures on

the Tractatus de Sphaera materiali, a treatise on the funda-

mental ideas of spherical astronomy, mathematical geography
and the ordinary astronomical phenomena, but without the

help of mathematical propositions, written by Johannes de

Sacrobosco (i.e. of Holywood, in Yorkshire) in 1250, a book
which was read at all Universities for four centuries and
many times commented upon ; for the Master's degree lectures

on the first six Books of Euclid were compulsory. Euclid

was lectured upon at the Universities of Vienna (founded 1365),

Heidelberg (1386), Cologne (1388) ; at Heidelberg an oath was
required from the candidate for the Licentiate corresponding

to M.A. that he had attended lectures on some whole books and
not merely parts of several books (not necessarily, it appears,

of Euclid) ; at Vienna, the first five Books of Euclid were
required ; at Cologne, no mathematics were required for the

Baccalaureate, but the candidate for M.A. must have attended

' Roger Bacon, Opus Teiihim, co. iv, vi.
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lectures on the Sphaera miondi, planetary theory, three Books
of Euclid, optics and arithmetic. At Leipzig (founded 1409),

as at Vienna and Prague, there were lectures on Euclid for

some time at all events, though Hankel says that he found no
mention of Euclid in a list of lectures given in the consecutive

years 1437-8, and Eegiomontanus, when he went to Leipzig,

found no fellow-students in geometry. At Oxford, in the

middle of the fifteenth century, the first two Books of Euclid

were read, and doubtless the Cambridge course was similar.

The first English editions.

After the issue of the first printed editions of Euclid,

beginning with the translation of Campano, published by
Ratdolt, and of the editio 'priticeps of the Greek text (1533),

the study of Euclid received a great impetus, as is shown
by the number of separate editions and commentaries which

appeared in the sixteenth century. The first complete English

translation by Sir Henry Billingsley (1570) was a monumental

work of 928 pages of folio size, with a preface by John Dee,

and notes extracted from all the most important commentaries

from Proclus down to Dee himself, a magnificent tribute to

the immortal Euclid. About the same time Sir Henry Savile

began to give unpaid lectures on the Greek geometers ; those

on Euclid do not indeed extend beyond I. 8, but they are

valuable because they deal with the difiiculties connected with

the preliminary matter, the definitions, &c., and the tacit

assumptions contained in the first propositions. But it was

in the period from about 1660 to 1730, during which Wallis

and Halley were Professors at Oxford, and Barrow and

Newton at Cambridge, that the study of Greek mathematics

was at its height in England. As regards Euclid in particular

Barrow's influence was doubtless very great. His Latin

version {Eihclidis Elementorum Librl XV breviter demon-

strati) came out in 1655, and there were several more editions

of the same published up to 1732; his first English edition

appeared in 1660, and was followed by others in 1705, 1722,

1732, 1751. This brings us to Simson's edition, first published

both in Latin and English in 1756. It is presumably from

this time onwards that Euclid acquired the unique status as

1623 B b
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a text-book which it maintained' till recently. I cannot help

thinking that it was Barrow's influence which contributed

most powerfully to this. We are told that Newton, when
he first bought a Euclid in 1662 or 1663, thought it ' a trifling

book ', as the propositions seemed to him obvious ; after-

wards, however, on Barrow's advice, he studied the Elements

carefully and derived, as he himself stated, much benefit

therefrom.

Technical terms connected with the classical form

of a proposition.

As the classical form of a proposition in geometry is that

which we find in Euclid, though it did not originate with
him, it is desirable, before we proceed to an analysis of the

Elements, to give some account of the technical terms u§ed by
the Greeks in connexion with such propositions and their

proofs. We will take first the terms employed to describe the

formal divisions of a proposition.

(a) Terms for the formal divisions of a proposition.

In its completest form a proposition contained six parts,

(1) the irpoTaa-is, or enunciation in general terms, (2) the
(KOea-is, or setting-out, which states the particular data, e. g.

a given straight line AB, two given triangles ABC, DEF, and
the like, generally shown in a figure and constituting that
upon which the proposition is to operate, (3) the Siopiafio^,

definition or specification, which means the restatement of
what it is required to do or to prove in terms of the particular
data, the object being to fix our ideas, (4) the Karaa-Kev^, the
construction or machinery used, which includes any additions
to the original figure by way of construction that are necessary
to enable the proof to proceed, (5) the dwoSei^is, or the proof
itself, and (6) the o-vfnrepacrfia, or conclusion, which reverts to
the enunciation, and states what has been proved or done •

the conclusion can, of course, be stated in as general terms
as the enunciation,- since it does not depend on the particular
figure drawn

;
that figure is only an illustration, a type of the

class of figure, and it is legitimate therefore, in stating
the conclusion, to pass from the particular to the general.
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In particular cases some of these formal divisions may be
absent, but three are always found, the eniinciation, proof
and conclusion. Thus in many propositions no construction

is needed, the given figure itself sufficing for the proof

;

again, in IV. 10 (to construct an isosceles triangle v\rith each

of the base angles double of the vertical angle) we may, in

a sense, say with Proclus ^ that there is neither setting-out nor

definition, for there is nothing given in the enunciation, and
we set out, not a given straight line, but any straight line AB,
while the proposition does not state (what might be said by
way of definition) that the required triangle is to have AB for

one of its equal sides.

(j8) The Siopicrfios or statement of conditions of possibility.

Sometimes to the statement of a problem there has to be

added a SiopLa/jios in the more important and familiar sense of

a criterion of the conditions of possibility or, in its most

complete form, a criterion as to ' whether what is sought

is impossible or possible and how far it is practicable and in

how many ways'.^ Both kinds of Siopia/xos begin with the

words Set Srj, which should be translated, in the case of the

definition, ' thus it is required (to prove or do so and so) ' and,

in the case of the criterion of possibility, ' thus it is necessary

that . .
.' (not ' but it is necessary . . .'). Cf. I. 22, ' Out of

three straight lines which are equal to three given straight

lines to construct a triangle : thus it is necessary that two

of the straight lines taken together in any manner should be

greater than the remaining straight line '.

(y) Analysis, synthesis, reduction, reductio ad absurdum.

The Elements is a synthetic treatise in that it goes directly

forward the whole way, always proceeding from the known

to the unknown, from the simple and particular to the more

complex and general ; hence analysis, which reduces the

unknown or the more complex to the known, has no place

in the exposition, though it would play an important part in

the discovery of the proofs. A full account of the Greek

analysis and synthesis will come more conveniently elsewhere.

1 Proclus on Eucl. I, p. 203. 23 sq. ^ lb., p. 202. 3.

B b2
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In the meantime we may observe that, where a proposition

is worked out by analysis followed by synthesis, the analysis

comes between the definition and the construction of the

proposition ; and it should not be forgotten that reductio ad

absurdum, (called in Greek tj els to dSvyarov dirayayi^

,

'reduction to the impossible', or 17 Sia tov dSwdrov Sii^is

or dnoSei^i?, 'proof ^jer impossihiW), a method of proof

common in Euclid as elsewhere, is a variety of analysis.

For analysis begins with reduction {dwaycoyri) of the original

proposition, which we hypothetically assume to be ^true, to

something simpler which we can recognize as being either

true or false ; the case where it leads to a conclusion known
to be false is the reductio ad absurdum.

(S) Case, objection, 2)orism, lemma.

Other terms connected with propositions are the following.

A proposition may have several cases according to the different

arrangements of points, lines, &c., in the figure that may
result from variations in the positions of the elements given

;

the word for case is nrSxris. The practice of the great

geometers was, as a rule, to give only one case, leaving the

others for commentators or pupils to supply for themselves.

But they were fully alive to the existence of such other

cases ; sometimes, if we may believe Proclus, they would even

give a proposition solely with a view to its use for the purpose

of proving a case of a later proposition which is actually

omitted. Thus, according to Proclus,^ the second part of I. 5

(about the angles beyond the base) was intended to enable

the reader to meet an objection (eva-Taa-is) that might be

raised to I. 7 as given by Euclid on the ground that it was
incomplete, since it took no account of what was given by
Proclus himself, and is now generally given in our text-books,

as the second case.

What we call a corollai-y was for the Greeks a porism
(iropia-fia), i. e. something provided or ready-made, by which
was meant some result incidentally revealed in the course
of the demonstration of the main proposition under discussion,

a sort of incidental gain' arising out of the demonstration,

' Proclus on Eucl. I, pp. 248. 8-11
; 263. 4-8.
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as Proclus says.^ The name porism was also applied to a

special kind of substantive proposition, as in Euclid's separate

work in three Books entitled Porisms (see below, pp. 431-8).

The word lemma {Xfjujia) simply means something assumed.

Archimedes uses it of what is now known as the Axiom of

Archimedes, the principle assumed by Eudoxus and others in

the method of exhaustion ; but it is more commonly used

of a subsidiary proposition requiring proof, which, however,

it is convenient to assume in the place where it is wanted

in order that the argument may not be interrupted or unduly

lengthened. Such a lemma might be proved in advance, but

the proof was often postponed till the end, the assumption

being marked as something to be afterwards proved by some

such words as coy i^fjs SeixOrjareTui., ' as will be proved in due

course '.

Analysis of the Elements.

Book I of the Elevients necessarily begins with the essential

preliminary matter classified under the headings Definitions

(opoi), Postulates (aiTrjf^aTa) and Common Notions {koivoi

ivvoiai). In calling the axioms Gomtnon Notions Euclid

followed the lead of Aristotle, who uses as alternatives for

' axioms ' the terms ' common (things) ',
' common opinions '.

Many of the Definitions are open to criticism on one gTOund

or another. Two of them at least seem to be original, namely,

the definitions of a straight line (4) and of a plane surface (7)

;

unsatisfactory as these are, they seem to be capable of a

simple explanation. The definition of a straight line is

apparently an attempt to express, without any appeal to

sight, the sense of Plato's definition ' that of which the middle

covers the ends ' (sc. to an eye placed at one end and looking

along it) ; and the definition of a plane surface is an adaptation

of the same definition. But most of the definitions were

probably adopted from earlier text-books ; some appear to be

inserted merely out of respect for tradition, e.g. the defini-

tions of oblong, rhombus, rhomboid, which are never used

in the Elements. The definitions of various figures assume

the existence of the thing defined, e. g. the square, and the

' lb., p. 212. 16.
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different kinds of triangle under their twofold classification

(a) with reference to their sides (equilateral, isosceles and

scalene), and (b) with reference to their angles (right-angled,

obtuse-angled and acute-angled) ; such definitions are pro-

visional pending the proof of existence by means of actual con-

struction. A parallelogram is not defined; its existence is

first proved in I. 33, and in the next proposition it is called a
' parallelogrammic area ', meaning an area contained by parallel

lines, in preparation for the use of the simple word ' parallelo-

gram' from I. 35 onwards. The definition of a diameter

of a circle (17) includes a theorem ; for Euclid adds that ' such

a straight line also bisects the circle', which is one of the

theorems attributed to Thales ; but this addition was really

necessary in view of the next definition (18), for, without

this explanation, Euclid would not have been justified in

describing a semt-circle as a portion of a circle cut off by
a diameter.

More important by far are the five Postulates, for 'it is in

them that Euclid lays down the real principles of Euclidean

geometry ; and nothing shows more clearly his determination

to reduce his original assumptions to the very minimum.
The first three Postulates are commonly regarded as the

postulates of construction, since they assert the possibility

(1) of drawing the straight line joining two points, (2) of

producing a straight line in either direction, and (3) of describ-

ing a circle with a given centre and ' distance '. But they

imply much more than this. In Postulates 1 and 3 Euclid

postulates the existence of straight lines and circles, and
implicitly answers the objections of those who might say that,

as a matter of fact, the straight lines and circles which we
can draw are not mathematical straight lines and circles

;

Euclid may be supposed to assert that we can nevertheless

assume our straight lines and circles to be such for the purpose
of our proofs, since they are only illustrations enabling us to

imagine the real things which they imperfectly represent.

But, again. Postulates 1 and 2 further imply that the straight

line drawn in the first case and the produced portion of the

straight line in the second case are unique ; in other words,

Postulate 1 implies that two straight lines cannot enclose a

space, and so renders unnecessary the ' axiom ' to that effect
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interpolated in Proposition 4, while Postulate 2 similarly im-

plies the theorem that two straight lines cannot have a

common segment, which Simson gave as a corollary to I. 11.

At first sight the Postulates 4 (that all right angles are

equal) and 5 (the Parallel-Postulate) might seem to be of

an altogether different character, since they are rather of the

nature of theorems unproved. But Postulate 5 is easily seen

to be connected with constructions, because so many con-

structions depend on the existence and use of points in which
straight lines intersect ; it is therefore absolutely necessary to

lay down some criterion by which we can judge whether two
straight lines in a figure will or will hot meet if produced.

Postulate 5 serves this purpose as well as that of providing

a basis for the theory of parallel lines. Strictly speaking,

Euclid ought to have gone further and given criteria for

judging whether other pairs of lines, e.g. a straight line and

a circle, or two circles, in a particular figure will or will- not

intersect one another. But this would have necessitated a

considerable series of propositions, which it would have been

difficult to frame at so early a stage, and Euclid preferred

to assume such intersections provisionally in certain cases,

e.g. in I. 1.

Postulate 4 is often classed as a theorem. But it had in any

case to be placed before Postulate 5 for the simple reason that

Postulate 5 would be no criterion at all unless right angles

were determinate magnitudes ; Postulate 4 then declares them

to be such. But this is not all. If Postulate 4 were to be

proved as a theorem, it could only be proved by applying one

pair of ' adjacent ' right angles to another pair. This method

would not be valid unless on the assumption of the invaria-

bility offigures, which would therefore have to be asserted as

an antecedent postulate. Euclid preferred to assert as a

postulate, directly, the fact that all right angles are equal

;

hence his postulate may be taken as equivalent to the prin-

ciple of the invariability offigures, or, what is the same thing,

the homogeneity of space.

For reasons which I have given above (pp. 339, 358), I think

that the great Postulate 5 is due to Euclid himself; and it

seems probable that Postulate 4 is also his, if not Postulates

1-3 as well.
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Of the Common Notions there is good reason to believe

that only five (at the most) are genuine, the first three and

two others, namely ' Things which coincide when applied to

one another are equal to one another ' (4), and ' The whole

is greater than the part' (5). The objection to (4) is that

it is incontestably geometrical, and therefore, on^Aristotle's

principles, should not be classed as an ' axiom '
; it is a more

or less sufficient definition of geometrical equality, but not

a real axiom. Euclid evidently disliked the method of super-

position for proving equality, no doubt because it assumes the

possibility of motion without deformation. But he could not

dispense with it altogether. Thus in I. 4 he practically had

to choose between using the method and assuming the whole

proposition as a postulate. But he does not there quote

Comynon Notion 4 ; he says ' the base BG will coincide with

the base EF and will be equal to it '. Similarly in I. 6 he

does not quote Common Notion 5, but says ' the triangle

DEC will be equal to the triangle AGB, the less to the greater,

which is absurd'. It seems probable, therefore, that even

these two Common Notions, though apparently recognized

by Proclus, were generalizations from particular inferences

found in Euclid and were inserted after his time.

The propositions of Book I fall into three distinct groups.

The first group consists of Propositions 1-26, dealing mainly

with triangles (without the use of parallels) but also with

perpendiculars (11, 12), two intersecting straight lines (15),

and one straight line standing on another but not cutting it,

and making 'adjacent' or supplementary angles (13, 14).

Proposition 1 gives the construction of an equilateral triangle

on a given straight line as base ; this is placed here not so

much on its own account as because it is at once required for

constructions (in 2, 9, 10, 11). The construction in 2 is a

direct continuation of the mininmm constructions assumed

in Postulates 1-3, and enables us (as the Postulates do not) to

transfer a given length of straight line from one place to

another ; it leads in 3 to the operation so often required of

cutting off from one given straight line a length equal to

another. 9 and 1 are the problems of bisecting a given angle

and a given straight line respectively, and 11 shows how
to erect a perpendicular to a given straight line from a given
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point on it. Construction as a means of proving existence is

in evidence in the Booli, not only in 1 (the equilateral triangle)

but in 11, 12 (perpendiculars erected and let fall), and in

22 (construction of a triangle in the general case where the

lengths of the sides are given) ; 23 constructs, by means of 22,

an angle equal to a given rectilineal angle. The propositions

about triangles include the congruence-theorems (4, 8, 26)

—

omitting the 'ambiguous case' which is only taken into

account in the analogous proposition (7) of Book VI—and the

theorems (allied to 4) about two triangles in which two sides

of the one are respectively equal to two sides of the other, but

of the included angles (24) or of the bases (25) one is greater

than the other, and it is proved that the triangle in which the

included angle is greater has the greater base and vice versa.

Proposition 7, used to prove Proposition 8, is also important as

being the Book I equivalent of III. 10 (that two circles cannot

intersect in more points than two). Then we have theorems

about single triangles in 5, 6 (isosceles triangles have the

angles opposite to the equal sides equal—Thales's theorem

—

and the converse), the important propositions 16 (the exterior

angle of a triangle is greater than either of the interior and

opposite angles) and its derivative 17 (any two angles of

a triangle are together less than tw@ right angles), 18, 19

(greater angle subtended by greater side and vice versa),

20 (any two sides together greater than the third). This last

furnishes the necessary StopKr/ios, or criterion of possibility, of

the problem in 22 of constructing a triangle out of three

straight hnes of given length, which problem had therefore

to come after and not before 20. 21 (proving that the two

sides of a triangle other than the base are together greater,

but include a lesser angle, than the two sides of any other

triangle on the same base but with vertex within the original

triangle) is useful for the proof of the proposition (not stated

in Euclid) that of all straight lines drawn from an external

point to a given straight line the perpendicular is the

shortest, and the nearer to the perpendicular is less than the

more remote.

The second group (27-32) includes the theory of parallels

(27-31, ending with the construction through a given point

of a parallel to a given straight line) ; and then, in 32, Euclid
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proves that the sum of the three angles of a triangle is equal

to two right angles by means of a parallel to one side drawn

from the opposite verteK (cf. the slightly different Pytha-

gorean proof, p. 143).

The third group of propositions (33-48) deals generally

with parallelograms, triangles and squares with reference to

their areas. S3, 34 amount to the proof of the existence and

the property of a parallelogram, and then we are introduced

to a new conception, that of equivalent figures, or figures

equal in area though not equal in the sense of congruent

:

parallelograms on the same base or on equal bases and between

the same parallels are equal in area (35, 36); the same is true

of triangles (37, 38), and a parallelogram on the same (or an

equal) base with a triangle and between the same parallels is

double of the triangle (41). 39 and the interpolated 40 are

partial converses of 37 and 38. The theorem 41 enables us

' to construct in a given rectilineal angle a parallelogram

equal to a given triangle' (42). Propositions 44, 45 are of

the greatest importance, being the first cases of the Pytha-

gorean method of ' application of areas ', ' to apply to a given

straight line, in a given rectilineal angle, a parallelogram

equal to a given triangle (or rectilineal figure) '. The con-

struction in 44 is remarkably ingenious, being based on that

of 42 combined with the proposition (43) proving that the

' complements of the parallelograms about the diameter ' in any

parallelogram are equal. We are thus enabled to transform

a parallelogram of any shape into another with the same

angle and of equal area but with one side of any given length,

say a i(^nit length ; this is the geometrical equivalent of the

algebraic operation of dividing the product of two quantities

by a third. Proposition 46 constructs a square on any given

straight line as side, and is followed by the great Pythagorean

theorem of the square on the hypotenuse of a right-angled

triangle (47) and its converse (48). The remarkably clever

proof of 47 by means of the well-known 'windmill' figure

and the application to it of I. 41 combined with I. 4 seems to

be due to Euclid himself ; it is really equivalent to a proof by
the methods of Book VI (Propositions 8, 17), and Euclid's

achievement was that of avoiding the use of proportions and
making the proof dependent upon Book I only.
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I make no apology for having dealt at some length with

Book I and, in particular, with the preliminary matter, in

view of the unique position and authority of the Elements

as an exposition of the fundamental principles of Greek

geometry, and the necessity for the historian of mathematics

of a clear understanding of their nature and full import.

It will now be possible to deal more summarily with the

other Books.

Book II is a continuation of the third section of Book I,

relating to the transformation of areas, but is specialized in

that it deals, not with parallelograms in general, but with

rectangles and squares, and makes great use of the figure

called the gnomon. The rectangle is introduced (Def. 1) as

a ' rectangular parallelogram ', which is said to be ' contained

by the two straight lines containing the right angle '. The

gnomon is defined (Def. 2) with reference to any parallelo-

gram, but the only gnomon actually used is naturally that

which belongs to a square. The whole Book constitutes an

essential part of the geometinoal algebra which really, in

Greek geometry, took the place of our algebra. The first ten

propositions give the equivalent of the following algebraical

identities.

1. a{b + c + d+ ...) = ab + ac + ad + ...,

2. {a + b)a + {a + b)b = {a + by,

3. (a + b)a = ab+a'^,

4. {a + by = a^ + b^ + 2ab,

5. ab+{^{a + b)-b]^= {k{a + b)}\

or (a-l-/3)(a-/3) + y32.= o<^

6. {2a + b)h + a^=ia + bf,

or (a + ^)(/3-a) + a' = /3^

7. {a + bf + a^ = 2{a + b)a + b^

or a2 + i82=2a)3 + (a-/8)^

8. 4{a + b)a + b''= {{a + b) + a}^,

or 4a/S + (a-/S)2 = (o<+/3f,
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9. a^ + h^ = 2[{i{a + b)}^+ {^ia + b)-b}^l

or {oc + l3f + {a-Pf=2{oi"-+ fi%

10. {2a + by + b'' = 2{a^ + {a + bf},

or (a + ^f + (|8 - a)2 = 2 (a^ + /J^).

As we have seen (pp. 151-3), Propositions 5 and 6 enable us

to solve the quadratic equations

(1) ax-x^ = b^ or
^^^^,J,

o 7o -y— ic = a)
and (2) ax + x^ = b^ or "^ ,„>•

^ ' xy = b^)

The procedure is geometrwal throughout; the areas in all

the Propositions 1-8 are actually shown in the figures.

Propositions 9 and 10 were really intended to solve a problem

in numbers, that of finding any number of successive pairs

of integral numbers (' side- ' and ' diameter- ' numbers) satisfy-

ing the equations

2x^-y- = +1

(see p. 93, above).

Of the remaining propositions, II. 11 and II. 14 give the

geometrical equivalent of solving the quadratic equations

x^ + ax = a^

and x'^ = ab,

while the intervening propositions 12 and 13 prove, for any
triangle with sides a, b, c, the equivalent of the formula

a'^ = b^ + c^— 2bc cos J..

It is worth noting that, while I. 47 and its converse con-

clude Book I as if that Book was designed to lead up to the

great proposition of Pj^thagoras, the last propositions but one
of Book II give the generalization of the same proposition

with any triangle substituted for a right-angled triangle.

The subject of Book III is the geometry of the circle,

including the relations between circles cutting or touching
each other. It begins with some definitions, which are
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generally of the same sort as those of Book I. Definition 1,

stating that equal circles are those which have their diameters
or their radii equal, might alternatively be regarded a9 a
postulate or a theorem ; if stated as a theorem, it could only
be proved by superposition and the congruence-axiom. It is

curious that the Greeks had no single word for radius, which
was with them ' the (straight line) from the centre ', 77 e< rov

Kivrpov. A tangent to a circle is defined (Def. 2) as a straight

line which meets the circle but, if produced, does not cut it

;

this is provisional pending the proof in III. 16 that such lines

exist. The definitions (4, 5) of straight lines (in a circle),

i. e. chords, equally distant or more or less distant from the

centre (the test being the length of the perpendicular from
the centre on the chord) might have referred, more generally,

to the distance of any straight line from any point. The
definition (7) of the 'angle of & segment' (the 'mixed' angle

made by the circumference with the base at either end) is

a survival from earlier text-books (cf. Props. 16, 31). The
definitions of the ' angle in a segment ' (8) and of ' similar

segments' (11) assume (provisionally pending III. 21) that the

angle in a segment is one and the same at whatever point of

the circumference it is formed. A sector {to/kvs, explained by
a scholiast as (tkvtotoiilko^ ro/ievs, a shoemaker's knife) is

defined (10), but there is nothing about ' similar sectors ' and

no statement that similar segments belong to similar sectors.

Of the propositions of Book III we may distinguish certain

groups. Central properties account for four propositions,

namely 1 (to find the centre of a circle), 3 (any straight line

through the centre which bisects any chord not passing

through the centre cuts it at right angles, and vice versa),

4 (two chords not passing through the centre cannot bisect

one another) and 9 (the centre is the only point from which

more than two equal straight lines can be drawn to the

circumference). Besides 3, which shows that any diameter

bisects the whole series of chords at right angles to it, three

other propositions throw light on the form of the circum-

ference of a circle, 2 (showing that it is everywhere concave

towards the centre), 7 and 8 (dealing with the varying lengths

of straight lines drawn from any point, internal or external,

to the concave or convex circumference, as the case may be,
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and proving that they are of maximum or minimum length

when they pass through the centre, and that they diminish or

increase as they diverge more and more from the maximum
or minimum straight lines on either side, while the lengths of

any two which are equally inclined to them, one on each side,

are equal).

Two circles which cut or touch one another are dealt with

in 5, 6 (the two circles cannot have the same centre), 10, 13

(they cannot cut in more points than two, or touch at more

points than one), 11 and the interpolated 12 (when they touch,

the line of centres passes through the point of contact).

14, 15 deal with chords (which are equal if equally distant

from the centre and vice versa, while chords more distant

from the centre are less, and chords less distant greater, and

vice versa).

16-19 are concerned with tangent properties including the

drawing of a tangent (17); it is in 16 that we have the

survival of the ' angle o/a semicircle ', which is proved greater

than any acute rectilineal angle, while the 'remaining' angle

(the ' angle
' , afterwards called KepaToeiSrjs, or ' hornlike

',

between the curve and the tangent at the point of contact)

is less than any rectilineal angle. These ' mixed ' angles,

occurring in 16 and 31, appear no more in serious Greek
geometry, though controversy about their nature went on
in the works of commentators down to Clavius, Peletarius

(Pel^tier), Vieta, Galilei' and Wallis.

We now come to propositions about segments. 20 proves

that the angle at the centre is double of the angle at the

circumference, and 21 that the angles in the same segment are

all equal, which leads to the property of the quadrilateral

in a circle (22). After propositions (23, 24) on 'similar

segments ', it is proved that in equal circles equal arcs subtend
and are subtended by equal angles at the centre or circum-
ference, and equal arcs subtend and are subtended by equal

chords (26-9). 30 is the problem of bisecting a given arc,

and 31 proves that the angle in a segment is right, acute or

obtuse according as the segment is a semicircle, greater than
a semicircle or less than a semicircle. 32 proves that the

angle made by a tangent with a chord through the point
of contact is equal to the angle in the alternate segment;
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33, 34 are problems of constructing or cutting off a segment
containing a given angle, and 25 constructs the complete circle

when a segment of it is given.

The Book ends with three important propositions. Given
a circle and any point 0, internal (35) or external (36), then,

if any straight line through meets the circle in P, Q, the

rectangle FO . OQ is constant and, in the case where is

an external point, is equal to the square on the tangent from
to the circle. Proposition 37 is the converse of 36.

Book IV, consisting entirely of problems, again deals with
circles, but in relation to rectilineal figures inscribed or circum-

scribed to them. After definitions of these terms, Euclid

shows, in the preliminary Proposition 1, how to fit into a circle

a chord of given length, being less than the diameter. The
remaining problems are problems of inscribing or circum-

scribing rectilineal figures. The case of the triangle comes
first, and we learn how to inscribe in or circumscribe about

a circle a triangle equiangular with a given triangle (2, 3) and

to inscribe a circle in or circumscribe a circle about a given

triangle (4, 5). 6-9 are the same problems for a square, 1 1-

14 for a regular pentagon, and 15 (with porism) for a regular

hexagon. The porism to 15 also states that the side of the

inscribed regular hexagon is manifestly equal to the radius

of the circle. 16 shows how to inscribe in a circle a regular

polygon with fifteen angles, a problem suggested by astronomy,

since the obhquity of the ecliptic was taken to be about 24°,

or one-fifteenth of 360°. IV. 10 is the important proposition,

required for the construction of a regular pentagon, 'to

construct an isosceles triangle such that each of the base

angles is double of the vertical angle ', which is effected by

dividing one of the equal sides in extreme and mean ratio

(II. 11) and fitting into the circle with this side as radius

a chord equal to the greater segment ; the proof of the con-

struction depends on III. 32 and 37.

We are not surprised to learn from a scholiast that the

whole Book is ' the discovery of the Pythagoreans '} The

same scholium says that 'it is proved in this Book that

the perimeter of a circle is not triple of its diameter, as many

1 Euclid, ed. Heib., vol. v, pp. 272-3.
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suppose, but greater than that (the reference is clearly to

IV. 15 For.), and likewise that neither is the circle three-

fourths of the triangle circumscribed about it '. Were these

fallacies perhaps exposed in the lost Pseudaria of Euclid ?

Book V is devoted to the new theory of proportion,

applicable to incommensurable as well as commensurable

magnitudes, and to magnitudes of every kind (straight lines,

areas, volumes, numbers, times, &c.), which was due to

Eudoxus. Greek mathematics can boast no finer discovery

than this theory, which first put on a sound footing so much
of geometry as depended on the use of proportions. How far

Eudoxus himself worked out his theory in detail is unknown

;

the scholiast who attributes the discovery of it to him says

that ' it is recognized by all ' that Book V is, as regards its

arrangement and sequence in the Elements, due to Euclid

himself.^ The ordering of the propositions and the develop-

ment of the proofs are indeed masterly and worthy of Euclid

;

as Barrow said, ' There is nothing in the whole body of the

elements of a more subtile invention, nothing more solidly

established, and more accurately handled, than the doctrine of

proportionals'. It is a pity that, notwithstanding the pre-

eminent place which Euclid has occupied in English mathe-

matical teaching, Book V itself is little known in detail ; if it

were, there would, I think, be less tendency to seek for

substitutes ; indeed, after reading some of the substitutes,

it is with relief that one turns to the original. For this

reason, I shall make my account of Book V somewhat full,

with the object of indicating not only the whole content but

also the course of the proofs.

Of the Definitions the following are those which need

separate mention. The definition (3) of ratio as 'a sort of

relation (noia a-)(ecns) in respect of size (nrjXLKorrjs) between
two magnitudes of the same kind' is as vague and of as

little practical use as that of a straight line ; it was probably

inserted for completeness' sake, and in order merely to aid the

conception of a ratio. Definition 4 (' Magnitudes are said to

have a ratio to one another which are capable, when multi-

plied, of exceeding one another ') is important not only because

1 Euclid, ed. Heib., vol. v, p. 282.
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it shows that the magnitudes must be of the same kind,

but because, while it includes incommensurable as well as

commensurable magnitudes, it excludes the relation of a finite

magnitude to a magnitude of the same kind which is either

infinitely great or infinitely small ; it is also practically equiva-

lent to the principle which underlies the method of exhaustion

now known as the Axiom of Archimedes. Most important

of all is the fundamental definition (5) of magnitudes which
are in the same ratio :

' Magnitudes are said to be in the same
ratio, the first to the second and the third to the fourth, when,
if any equimultiples whatever be taken of the first and third,

and any equimultiples whatever of the second and fourth, the

former equimultiples alike exceed, are alike equal to, or alike

fall short of, the latter equimultiples taken in corresponding

order.' Perhaps the greatest tribute to this marvellous defini-

tion is its adoption by Weierstrass as a definition of equal

numbers. For a most attractive explanation of its exact

significance and its absolute sufficiency the reader should turn

to De Morgan's articles on Ratio and Proportion in the Penny
Cyclopaedia.^ The definition (7) of greater ratio is an adden-

dum to Definition 5 :
' When, of the equimultiples, the multiple

of the first exceeds the multiple of the second, but the

multiple of the third does not exceed the multiple of the

fourth, then the first is said to have a greater ratio to

the second than the third has to the fourth
'

; this (possibly

for brevity's sake) states only one criterion, the other possible

criterion being that, while the multiple of the first is equal

to that of the second, the multiple of the third is less than

that of the fourth. A proportion may consist of three or

four terms (Defs. 8,9,10); ' corresponding ' or ' homologous

'

terms are antecedents in relation to antecedents and conse-

quents in relation to consequents (11). Euclid proceeds to

define the various transformations of ratios. Alternatiotu

{kvaXKd^, alternando) means taking the alternate terms in

the proportion a:h = c:d,\.e. transforming it into a:c = b:d

(12). Inversion {dvdiraXiv, inversely) means turning the ratio

a:h into h:a (13). Composition of a ratio, awOea-is Xoyov

(componendo is in Greek a-vvOevTi, 'to one who has compounded

1 Vol. xix (1841). I have largely reproduced the articles in The

Thirteen Books of Euclid's Elements, vol. ii, pp. 116-24.

ISM C C
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or added ', i. e. if one compounds or adds) is the turning or

a:b into {a + b):b (14). Separation, Siaipfats (SieXovTi =
separando) turns a:h into {a— h):h (15). Conversion, dva-

arpocpr] (dvaa-TpeyjrayTi = convertendo) turns a:b into a:a~b

(16). Lastly, ex aequali (sc. distantia), 8l i'a-ov, and ex aequali

in disturbed proportion (eu reTapay/xevrj duaXoyia) are defined

(17, 18). If a:b = A:B, b:c = B :€'... k:l = K : L, then

the inference ex aequali is that a:l = A:L (proved in V. 22).

If again a:b = B:G and b:c = A:B, the inference ex aequali

in disturbed p)ro2Mrtion is a:c = A:C (proved in V. 23).

In reproducing the content of the Book I shall express

magnitudes in general (which Euclid represents by straight

lines) by the letters a, b, c... and I shall use the letters

m, n, p) ... to express integral numbers : thus ma, mb are

equimultiples of a, b.

The first six propositions are simple theorems in concrete

arithmetic, and they are practically all proved by separating

into their units the multiples used.

(1. ma + mb + m,c + ... = ivi (a + ?> + c + . . .).

1 5. ma —mb = m{a — b).

5 is proved by means of 1. As a matter of fact, Euclid

assumes the construction of a straight line equal to l/mth of

ma — mh. This is an anticipation of VI. 9, but can be avoided
;

for we can draw a straight line equal to m{a— b)\ then,

by 1, m{a— b)+mb = m.a, or m.a—'nib = m{a — b).

(2. 7n,a + na+pa+ ... = {m,+ n +p+ ...)a.

(6. ma—na={m— n)a.

Euclid actually expresses 2 and 6 by saying that mxi + iia is

the same multiple of a that mb + nb is of b. By separation

of m, n into units he in fact shows (in 2) that

ma + na = {m + n) a, and 'tnb + nb = (tji + n) b.

6 is proved by means of 2, as 5 by means of 1.

3. If m ,na, m.nb are equimultiples of na, nb, which are

themselves equimultiples of a, b, then m . na, m . nb are also

equimultiples of a, b.

By separating m, n into their units Euclid practically proves

that m . na = mn . a and m.nb = mn . b.



(,:c = b:c]
_ A ; and conversely.

; and conversely.
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4. If a:h = c:cl, then yna : nb — mc : nd.

Take any equimultiples p . ma, p . mc of ma, mc, and any
equimultiples q.nb, q.nd of nb, nd. Then, by 3, these equi-

multiples are also equimultiples of a, c and b, d respectively,

so that by Def . 5, since a :b = c:d,

p . ma > = < q.nb according &s p.mc > = < q. nd,

whence, again by Def. 5, since p, q are any integers,

via : nb = mc : nd.

7, 9. If a = b, then a:c = b:c)

and c:

8, 10. If a > b, then a:c > b:c'

and c:b >c:a

7 is proved by means of Def. 5. Take Tna, mh equi-

multiples of a, b, and nc a multiple of c. Then, since a = b,

m,a > =^ < nc according as mb > = < 71c,

and 7i,c > = < ma according as nc > — < mb,

whence the results follow.

8 is divided into two cases according to which of the two
magnitudes a— b, 6 is the less. Take m such that

m{a—b) > c or mb > c

in the two cases respectively. Next let nc be the first

multiple of c which is greater than m6 or m,{a— b) respec-

tively, so that

m6 ^ ,

nc > , , > (n—\)c.
or m, (a— b)

Then, (i) since in{a— b) > c, we have, by addition, ma > nc.

(ii) since m6 > c, we have similarly ma > nc.

In either case m,b < nc, since in case (ii) m (a— b) > rnb.

Thus in either case, by the definition (7) of greater ratio,

a:c > b:c,

and c -.b > c:a.

The converses 9, 10 are proved from 7, 8 by rednctio ad
absurdum.

c c 2
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11

.

If aT"S = c:d,

and c:cl — e:f,

then a:b — e :f.

Proved by taking any equimultiples of a, c, e and any othei'

equimultiples of b, d,f, and using Def. 5.

12. If a:h — c:d = e:/= ...

then a:b = (a + c + e+ ...):{b + d+f+ ...).

Proved by means of V. 1 and Def. 5, after taking equi-

multiples of a, c, e ... and other equimultiples of b, d,f—
13. If a:b — c:d,

and c:d > e:f,

then a:b > e:f.

Equimultiples mc, me of c, e are taken and equimultiples

lul, nf of d, f such that, while mc > nd, me is not greater

than nf (Def. 7). Then the same equimultiples mxi, mc of

a, c and the same equimultiples nb, nd of b, d are taken, and

Defs. 5 and 7 are used in succession.

14. If a:b — c:d, then, according as « > = < c, 6 > = < d.

The first case only is proved ; the others are dismissed with
' Similarly '.

If a > c, u:b > c: h. (8)

But a:b := c: d, whence (13) c:d > c:b, an^ therefore (10)

b >d.

15. a:b = ma -.mb.

Dividing the multiples into their units, we have in equal

ratios a:b; the result follows by 12.

Propositions 16-19 prove certain cases of the transformation

of proportions in the sense of Defs. 12-16. The case of

inverting the ratios is omitted, probably as being obvious.

For, if a:b = c: d, the application of Def. 6 proves simul-

taneously that b:a= d:c.

16. If a:b = c:d,

then, alternando, a:c = b:d.

Since a:b = ma : tub, and c:d = nc: nd, (15)
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we have Tna : mb = nc : iid, (1 1)

whence (14), according as ma > = < ac, mb > = < ad;

therefore (Def . 5) a : c = b : d.

17. If a:b = c:d,

then, separando, {a— b):b = (c — d): d.

Take riia, mb, 'inc, md equimultiples of all four magnitudes,

and lib, nd- other equimultiples of b, d. It follows (2) that

(m + n) b, {m+ ii)d are also equimultiples of b, d.

Therefore, since a:b = c:d,

ma > =z <(m + n) b according as inc > = <(m, + n) d. (Def. 5)

Subtracting m6 from both sides of the former relation and

md from both sides of the latter, we have (5)

m{a~b) > = < nb according as m(c— cZ) > = < nd.

Therefore (Def. 5) a— b:b = c — d:d.

(I have here abbreviated Euclid a little, without altering the

substance.)

18. If a:b = c:d,

then, componendo, (a + b):b = (c + d) : d.

Proved by rediixtio ad absurdum. Euclid assumes that

a + b:b = {c+d):(d±x), if that is possible. (This implies

that to any three given magnitudes, two of which at least

are of the same kind, there exists a fourth proportional, an

assumption which is not strictly legitimate until the fact has

been proved by construction.)

Therefore, separando (17), a:b = {c + x):{d±x),

whence (11), {c + x): {d±x) = c ul, which relations are im-

possible, by 14.

19. If a:b = c:d,

then (a-c):{h-d) = a:b.

Alternately (16),

a:c — b:d, whence {a-c):c = {b—d):d (17).

Alternately again, {a-c):{b-d) = c:d (16);

whence (11) ^a-c):{b-d) = a:b.
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The transformation converte^iulo is only yiven in an inter-

polated Porism to 19. But it is easily obtained by using 17

(separando) combined with alternando (16). Euclid himself

jjroves it in X. 14 by using successivelj' separarido (17), inver-

sion and ex aequali (22).

The composition of ratios ex aequali and ex aequali in

disturbed pro'portion is dealt with in 22, 23, each of which
depends on a preliminary proposition.

20. If a:h = d:e,

and h:c — e:f,

then, ex aequali, according as a > = < f, d > = < f.

For, according as « > = < c, a -.b > = < c:h (7, 8),

and therefore, by means of the above relations and 13, 11,

d:e > = <f:e,

and therefore again (9, 10)

d > = < /.

21. If a:b =e:f,

and b:c = d:e,

then, -ex aequali in disturbed 23roportion,

according as a > = < c, d > = < f.

For, according as a > = < c, a:b > = < c:b (7, 8),

or e:f > — < e:d (13,/!]),

and therefore i^ > = < / (9, 10).

22. If a:b =d:e,

and b:c = e :/,

then, ex aequali, a:c = d :f.

Take equimultiples ma, md
; nb, ,ie

;
^jc, ^j/, and it follows

that Tua : nb = md : ne,
(4)and nb:2x = ne:pf ]

'

Therefore (20), according as tkxi > = < ^JC, md > — < pf,

whence (Def . 5) a : c = d :/.
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23. If • a:b = e:f,

then, ex aequali in disturbed proportion, a:c = d:f.

Equimultiples ma, mb, ond and nc, ne, nf are taken, and
it is proved, by means of 11, 15, 16, that

ma : m,b = ne : nf,

and nih : nc = md : ne,

whence (21) ma > = < uc according as md > — < uf.

and (Def. 5) a:c = d:

24. If a:c = d:

and also b:c = e:

then (a + b):c = (d + e) :/.

Invert the second proportion to c:b = f:e, and compound
the first proportion with this (22)

;

therefore ' u:b = d:e.

Corriponendo, {a + b}:b — (d+e): e, which compounded (22)

with the second proportion gives (a + b):c = {d + e) :f.

25. If a:b = c:d, and of the four terms « is the greatest

(so that d is also the least), a + d > b + c.

Since a : b = c : d,

a— (:.:b— d — a:b; (19)

and, since a > b, {a— c)> (b— d). (16, 14)

Add c + cZ to each

;

therefore a + d > b + c.

Such slight defects as are found in the text of this great

Book as it has reached us, like other slight imperfections of

form in the Elements, point to the probability that the work
never received its final touches from Euclid's hand ; but they

can all be corrected without much difficulty, as Simson showed

in his excellent edition.

Book VI contains the application to plane geometry of the

general theory of proportion established in Book V. It begins

with definitions of ' similar rectilineal figures ' and of what is
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meant by cutting a straight line ' in extreme and mean ratio '.

The first and last propositions are analogous; 1 proves that

triangles and parallelograms of the same height are to one

another as their bases, and 33 that in equal circles angles

at the centre or circumference are as the arcs on which they

stand; both use the method of equimultiples and apply

V, Def. 5 as the test of proportion. Equally fundamental

are 2 (that two sides of a triangle cut by any parallel to

the third side are divided proportionally, and the converse),

and 3 (that the internal bisector of an angle of a triangle cuts

the opposite side into parts which have the same ratio as the

sides containing the angle, and the converse) ; 2 depends

directly on 1 and 3 on 2. Then come the alternative con-

ditions for the similarity of two triangles : equality of all the

angles respectiveljr (4), proportionality of pairs of sides in

order (5), equality of one angle in each with proportionality

of sides containing the equal angles (6), and the 'ambiguous

case ' (7), in which one angle is equal to one angle and the

sides about other angles are proportional. After the important

proposition (8) that the perpendicular from the right angle

in a right-angled triangle to the opposite side divides the

triangle into two triangles similar to the original triangle and

to one another, we pass to the proportional division of

straight lines (9, 10) and the problems of finding a third

proportional to two straight lines (11), a fourth proportional

to three (12), and a mean proportional to two straight lines

(13, the Book VI version of II. 14). In 14, 15 Euclid proves

the reciprocal proportionality of the sides about the equal

angles in parallelogTams or triangles of equal area which have
one angle equal to one angle and the converse ; by placing the

equal angles vertically opposite to one another so that the sides

about them lie along two straight lines, and completing the

figure, Euclid is able to apply VI. 1. From 14 are directly

deduced 16, 17 (that, if four or three straight lines be propor-

tionals, the rectangle contained by the extremes is equal to

the rectangle contained by the two means or the square on the

one mean, and the converse). 18-22 deal with similar recti-

lineal figures ; 19 (with Porism) and 20 are specially important,

proving that similar triangles, and similar polygons generally,

are to one another in the duplicate ratio of corresponding
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sides, and that, if three straight lines are proportional, then,

as the first is to the thii'd, so is the figure described on the first

to the similar figure similarly described on the second. The
fundamental case of the two similar triangles is prettily pro\'ed

thus. The triangles being ABG, DEF, in which B, E are equal

angles and BG, EF corresponding sides, find a third propor-

tional to BC, EF and measure it off" along BG as BG
;
join AG.

Then the triangles ABG, DEF ha,ye their sides about the equal

angles B, E reciprocally proportional and are therefore equal

(VI. 15); the rest follows from VI. 1 and the definition of

duplicate ratio (V, Def. 9).

Proposition 23 (equiangular parallelograms have to one

another the ratio compounded of the ratios of their sides) is

important in itself, and also because it introduces us to the

practical use of the method of compounding, i.e. multiplying,

ratios which is of such extraordinarily wide application in

Greek geometry. Euclid has never defined ' compound ratio

'

or the ' compounding ' of ratios ; but the meaning of the terms
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Therefore, ex uequall (V. 22),

{ABCD):{CEFG) = K:M.

The important Proposition 26 (to construct a rectilineal figure

similar to one, and equal to another, given rectilineal figure) is

one of the famous problems alternatively associated with the

story of Pythagoras's sacrifice ^ ; it is doubtless Pythagorean.

The given figure (P, say) to which the required figure is to be

similar is transformed (I. 44) into a p3,rallelogram on the same

base BC. Then the other figure {Q, say) to which the required

figure is to be equal is (I. 45) transformed into a parallelo-

gram on the base OF (in a straight line with EG) and of equal

.

height with the other parallelogram. Then (P) : (Q) = BG:CF
(1). It is then only necessary to take a straight line GH
a mean proportional between BG and GF, and to describe on

GH as base a rectilineal figure similar to P which has BG as

base (VI. 18). The proof of the correctness of the construction

follows from VI. 19 Por.

In 27, 28, 29 we reach the final problems in the Pythagorean

application of areas, which are the geometrical equivalent of

the algebraical solution of the most general form of quadratic

equation where that equation has a real and positive root.

Detailed notice of these propositions is necessary because of

their exceptional historic importance, which arises from the

fact that the method of these propositions was constantly used

K N

by the Greeks in the solution of problems. They constitute,

for example, the foundation of Book X of the Elements and of

' Plutarch, Non posse stiaviter vivi secmuhiin Epicunim, c. 11.
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the whole treatment of conic sections by Apollonius. The
problems themselves are enunciated in 28, 29 : 'To a given

straight line to apply a parallelogram equal to a given recti-

lineal figure and deficient (or exceeding) by a parallelogrammic

figure similar to a given parallelogram
'

; and 27 supplies tlae

SLopiafios, or determination of the condition of possibility,

which is necessary in the case of deficiency (28) :
' The given

rectilineal figure must (in that case) not be greater than the

parallelogram described on the half of the straight line and
similar to the defect.' We will take the problem of 28 for

examination.

We are already familiar with the notion of applying a

parallelogram to a straight line AB s,o that it falls short or

exceeds by a certain other parallelogram. Suppose that B is

the given parallelogram to which the defect in this case has to

be similar. Bisect AB in E, and on the half EB describe the

parallelogram GEBF similar and similarly situated to D.

Draw the diagonal GB and complete the parallelogram

HABF. Now, if we draw through any point T on HA a

straight line TR parallel to AB meeting the diagonal GB in

Q, and then draw PQS parallel to TA, the parallelogram TASQ
is a parallelogram applied to AB but falling short by a

parallelogram similar and similarly situated to D, since the

deficient parallelogram is QSBR which is similar to EF (24).

(In the same way, if T had been on HA 'produced and TR had

met GB 'produced in R, we should have had a parallelogram

applied to AB but exceeding by a parallelogram similar and

similarly situated to D.)

Now consider the parallelogram AQ falling short by 8R
similar and similarly situated to D. Since {AO) = [ER), and

(OS) = (QF), it follows that the parallelogram AQ is equal to

the gnomon TJWV, and the problem is therefore that of

constructing the gnomon UWV such that its area is equal to

that of the given rectilineal figure C. The gnomon obviously

cannot be greater than the parallelogram EF, and hence the

given rectilineal figure C must not be greater than that

parallelogram. This is the SiopLo-fios proved in 27.

Since the gnomon is equal to C, it follows that the parallelo-

gram GOQP which with it makes up the parallelogram EF is

equal to the difference between (EF) and C. Therefore, in



396 EUCLID

order to construct the required gnomon, we have only to draw

in the angle FGE the parallelogram GOQP equal to (EF) — C

and similar and similarly situated to D. This is what Euclid

in fact does ; he constructs the parallelogram LKNM equal to

{EF) — and similar and similarly situated to D (by means of

25), and then draws GOQP equal to it. The problem is thus

solved, TASQ being the required parallelogram.

To show the correspondence to the solution of a quadratic

equation, let AB = a, QS = x, and let b:c be the ratio of the

sides of I) ; therefore SB = -x. Then, if m is a certain con-
c

stant (in fact the sine of an angle of one of the parallelograms),

(AQ) — m (ax — -x''-), so that the equation solved is

miax— -33^
j = G.

The algebraical solution is a; = -r • - + \t\T'. )? •

"
h 2 - \/ Vj\b 4 m'S

Euclid gives only one solution (that corresponding to the

iiegiitire sign), but he was of course aware that there are two,

and how lie could exhibit the second in the figure.

For a real solution we must have not greater than

m
j

• — , which is the area of EF. This corresponds to Pro-

position 27.

We observe that what Euclid in fact does is to find the

parallelogram GOQP which is of given shape (namely such

that its area m . GO .OQ = m. GO- -) and is equal to (EF) — C
;

c

that is, he finds GO such that GO^ ^Ut-- - —) I" other
b\b 4 on/

words, he finds the straight line equal to /\j('t )[ ;

and X is thus known, since x = GE — GO =-•- — GO.
b 2

Euclid's procedure, therefore, corresponds closely to the alge-

braic solution.

The solution of 29 is exactly similar, mutatis mutandis.
A solution is always possible, so that no Stopicr/xos is required.
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VI. 31 gives the extension of the Pythagorean proposition

I. 47 showing that for squares in the latter proposition we
may substitute similar plane figures of any shape whatever.

30 uses 29 to divide a straight line in extreme and mean
ratio (the same problem as II. 11).

Except in the respect that it is based on the new theory of

proportion, Book VI does not appear to contain any matter
that was not known before Euclid's time. Nor is the generali-

zation of I. 47 in VI. 31, for which Proclus professes such

admiration, original on Euclid's part, for, as we have already

seen (p. 191), Hippocrates of Chios assumes its truth for semi-

circles described on the three sides of a right-angled triangle.

We pass to the arithmetical Books, \ll, VIII, IX. Book VII
begins with a set of definitions applicable in all the three

Books. They include definitions of a unit, a number, and the

following varieties of numbers, even, odd, even-times-even, even-

times-odd, odd-times-odd, prime, p>rime to one another, coni-

j)osite, composite to one another, plane, solid, square, cube,

similar plane a.nd solid numbers, and a perfect number,
definitions of terms applicable in the numerical theory of pro-

portion, namely a jMrt (= a submultiple or aliquot part),

parts {— a proper fraction), multiply, and finally the defini-

tion of (four) proportional numbers, which states that ' num-
bers are proportional when the first is the same multiple, the

same part, or the same parts, of the second that the third is of

the fourth ', i.e. numbers a, b, c, d are proportional if, when
'i7? 'J77

C6 = — b, c = — d, where m, n are any integers (although the

definition does not in terms cover the case where m > n).

The propositions of Book VII fall into four main groups.

1-3 give the method of finding the greatest common mea-

sure of two or three unequal numbers in essentially the same
form in which it appears in our text-books. Proposition 1

giving the test for two numbers being prime to one another,

namely that no remainder measures the preceding quotient

till 1 is reached. The second group, 4-19, sets out the

numerical theory of proportion. 4-10 are preliminary, deal-

ing with numbers which are ' a part ' or ' parts ' of other num-
bers, and numbers which are the same ' part ' or ' parts ' of

other numbers, just as the preliminary propositions of Book V
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deal with multiples and equimultiples. 11-14 are transforma-

tions of proportions corresponding to similar transformations

{separando, alternately, &c.) in Book V. The following are

the results, expressed with the aid of letters which here repre-

sent integral numbers exclusively.

If a:h =^ c:d {a > c. h > d), then

{a-c):{'b-d) = a:h. (11)

If a:a' = h:h' = c:c' ..., then each of the ratios is equal to

{a + h + c-¥...):{a' + h' + c' +...). (12)

If a:b = c:d, then a:c — h:d. (13)

If a:b — d:e and b:c = e:f, then, ex aequali,

a:c = d:f. (14)

If 1 : m = a : ma (expressed by saying that the third

number measures the fourth the same number of times that

the unit measures the second), then alternately

1 :a = miTna. (15)

The last result is used to prove that ah = ba\ in other

words, that the order of multiplication is indifferent (16), and

this is followed by the propositions that b:c = ab:ac (17)

and that a:b = ac:bc (18), which are again used to prove

the important proposition (19) that, if a:b=c:d, then

ad = be, a theorem which corresponds to VI. 16 for straight

lines.

Zeuthen observes that, while it was necessary to use the

numerical definition of • proportion to carry the numerical

theory up to this point. Proposition 1 9 establishes the necessary

point of contact between the two theories, since it is now
shown that the definition of proportion in V, Def. 5, has,

when applied to numbers, the same import as that in VII,

Def. 20, and we can henceforth without hesitation borrow any
of the propositions established in Book V.^

Propositions 20, 21 about 'the least numbers of those which
have the same ratio with them ' prove that, if 7n, n are such

numbers and a, b any other numbers in the same ratio, m
' Zeuthen, ' Sur la constitution des livies arithraetiques des ^filements

d'Euclide ' {Oversigt over det Tcgl. Danske Videnskahernes Selskahs Forhand-
linger, 1910, pp. 412, 413).
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measures a the same number of times that n measures b, and
that numbers prime to one another are the least of those which
have the same ratio with them. These propositions lead up to

Propositions 22-32 about numbers prime to one another, prime
numbers, and composite numbers. This group includes funda-

mental theorems such as the following. If two numbers be

prime to any number, their product will be prime to the same
(24). If. two numbers be prime to one another, so will their

squares, their cubes, and so on generally (27). If two numbers
be prime to one another, their sum will be prime to each

of them; and, if the sum be prime to either, the original

numbers will be prime to one another (28). Any prime number
is prime to any number which it does not measure (29). If two
numbers are multiplied, and any prime number measures the

product, it will measure one of the original numbers (30).

Any composite number is measured by some prime number

(31). Any number either is prime or is measured by some

prime number (32).

Propositions 33 to the end (39) are directed to the problem

of finding the least common multiple of two or three numbers

;

33 is preliminary, using the G. C. M. for the purpose of solving

the problem, ' Given as many numbers as we please, to find the

least of those which have the same ratio with them.'

It seems clear that in Book VII Euclid was following

earlier models, while no doubt making improvements in the

exposition. This is, as we have seen (pp. 215-16), partly con-

firmed by the fact that in the proof by Archytas of the

proposition that 'no number can be a mean between two

consecutive numbers ' propositions are presupposed correspond-

ing to VII. 20, 22, 33.

Book VIII deals largely with series of numbers ' in con-

tinued proportion ', i. e. in geometrical progression (Propositions

1-3, 6-7, 13). If the series in G. P. be

a", a»-i6, a"-262, ... a26"-^ ab'^-'', 6",

Propositions 1-3 deal with the case where the terms are the

smallest that are in the ratio a : b, in- which case a", 6" are

prime to one another. 6-7 prove that, if a" does not measure

a'^-'^b, no term measures any other, but if a" measures i",

it measures a"" ^6. Connected with theseare Propositions 14-17
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proving that, according as a^ does or does not measure o
,

a does or does not measure h and vice versa; and similarly,

according as a^ does or does not measure ¥, a does or does not

measure h and vice versa. 13 proves that, if a, 6, c ... are in

G. P., so are a^, b'^, c^ ... and a^, b^, c^ ... respectively.

Proposition 4 is the problem, Given as many ratios as we

please, a:b, c:d... to find a series p, q, r, ... in the least

possible terms such that p : g = a : &, q:r — c:cl,— This is

done by finding the L. C. M., first of b, c, and then of other

pairs of numbers as required. The proposition gives the

means of compounding two or more ratios between numbers

in the same way that ratios between pairs of straight lines

are compounded in VI. 23 ; the corresponding proposition to

VI. 23 then follows (5), namely, that plane numbers have

to one another the ratio compounded of the ratios of their

sides.

Propositions 8-10 deal with the interpolation of geometric

means between numbers. If a : 6 = e :/, and there are )i,

geometric means between a and b, there are n geometric

means between e and/ also (8). If a", a"~^ b ... a 6"^^, 6" is a

G. P. of it + 1 terms, so that there are {n — 1) means between

a", b", there are the same number of geometric means between

1 and a" and between 1 and fo" respectively (9); and con-

versely, if 1, o, a^ ... a" and 1, b, b^ ... 6" are terms in G. P.,

there are the same number {n — 1) of means between a", 6" (10).

In particular, there is one mean proportional number between

square numbers (11) and between similar plane numbers (18),

and conversely, if there is one mean between two numbers, the

numbers are similar plane numbers (20) ; there are two means

between cube numbers (12) and between similar solid numbers

(19), and conversely, if there are two means between two num-
bers, the numbers are similar solid numbers (21). So far as

squares and cubes are concerned, these propositions are stated by
Plato in the Timaeus, and Nicomachus, doubtless for this reason,

calls them ' Platonic '. Connected with them are the proposi-

tions that similar plane numbers have the same ratio as a square

has to a square (26), and similar solid numbers have the same
ratio as a cube has to a cube (27). A few other subsidiary

propositions need no particular mention.

Book IX begins with seven simple propositions such as that
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the product of two similar plane numbers is a square (1) and,
if the product of two numbers is a square number, the num-
bers are similar plane numbers (2) ; if a cube multiplies itself

or another cube, the product is a cube (3, 4); if a^^ is a
cube, B is a cube (5) ; if A^ is a cube, J. is a cube (6). Then
follow six propositions (8-13) about a series of terms in geo-
metrical progression beginning with 1. If 1, a, 6, c ... /c are

n terms in geometrical progression, then (9), if a is a square
(or a cube), all the other terms h, c, ... k are squares (or

cubes) ; if a is not a square, then the only squares in the series

are the term after a, i. e. b, and all alternate terms after b ; if

a is not a cube, the only cubes in the series are the fourth

term (c), the seventh, tenth, &c., terms, being terms separated

by two throughout ; the seventh, thirteenth, &c., terms (leaving

out five in each case) will be both square and cube (8, 10).

These propositions are followed by the interesting theorem

that, if 1, ttj, CTg •••
'^ji ••• 3-^6 terms in geometrical progression,

and if a^, a„ are any two terms where r<n, a.^ measures «„,

and a„ = aj..a„_^ (11 and For.) ; this is, of course, equivalent

to the formula a™+" = a."*, a". Next it is proved that, if the

last term k in a series l,a,b,c ... k in geometrical progression

is measured by any primes, a is measured by the same (12)

;

and, if a is prime, k will not be measured by any numbers

except those which have a place in the series (13). Proposi-

tion 14 is the equivalent of the important theorem that a

nwmber can only be resolved into prime factors in one way.

Propositions follow to the effect that, if 'a, b be prime to one

another, there can be no integral third proportional to them

(16) and, if a,b,c ...k be in G. P. and a,k are prime to one

another, then there is no integral fourth proportional to a, b, k

(17). The conditions for the possibility of an integral third

proportional to two numbers and of an integral fourth propor-

tional to three are then investigated (18, 19). Proposition 20

is the important proposition that the number ofprim,e nuTnbers

is infinite, and the proof is the same as that usually given in

our algebraical text-books. After a number of easy proposi-

tions about odd, even, ' even-times-odd ', ' even-times-even

'

numbers respectively (Propositions 21-34), we have two im-

portant propositions which conclude the Book. Proposition 3 5

gives the summation of a G. P. of n terms, and a very elegant

1B23 D d
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solution it is. Suppose that a^, a^, a^, ... a„+-^ are n+1 terms

in G. P. ; Euclid proceeds thus

:

We have
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of Pappus goes on to speak of the share of Euclid in the

investigation

:

' As for Euclid, he set himself to give rigorolis rules, which he
established, relative to commensurability and incommensura-
bility in general ; he made precise the definitions and the
distinctions between rational and irrational magnitudes, he set

out a great number of orders of irrational magnitudes, and
finally he made clear their whole extent.'

As usual, Euclid begins with definitions. ' Commensurable

'

magnitudes can be measured by one and the same measure

;

'incommensurable* magnitudes cannot have any common
measure (l). Straight lines are ' commensurable in square

'

when the squares on them can be measured by the same area,

but ' incommensurable in square ' when the squares on them
have no common measure (2). Given an assigned straight

line, which we agree to call ' rational ', any straight line which

is commensurable with it either in length or in square only is

also called rational ; but any straight line which is incommen-

surable with it (i.e. not commensurable with it either in length

or in square) is 'irrational' (3). The square on the assigned

straight line is ' rational ', and any area commensurable with

it is ' rational ', but any area incommensurable with it is

'irrational', as also is the side of the square equal to that

area (4). As regards straight lines, then, Euclid here takes

a wider view of 'rational' than we have met before. If a

straight line p is assumed as rational, not only is — p also

' rational ' where m, n are integers and m/ft in its lowest terms

is not square, but any straight line is rational which is either

commensurable in length or commensurable in square only

111!/

with p; that is, /

—

p is rational according to Euclid. In

thifr case of squares, p^ is of course rational, and so is— p^
;
but

p^ is not rational, and of course the side of the latter
n

square * /— p is irrational, as are all straight lines commen-

surable neither in length nor in square with p,Q.g. /«+ -/6

or (V/>;± VX) .p.

Dd 2
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The Book begins with the famous proposition, on which the

' method of exhaustion ' as used in Book XII depends, to the

effect that, if from any magnitude there be subtracted more

than its half (or its half simply), from the remainder more than

its half (or its half), and so on continually, there will at length

remain a magnitude less than any assigned magnitude of the

same kind. Proposition 2 uses the process for finding the

G. C. M. of two magnitudes as a test of their commensurability

or incommensurability: they are incommensurable if the process

never comes to an end, i.e. if no remainder ever measures the

preceding divisor; and Propositions 3, 4 apply to commen-
surable magnitudes the method of finding the G. C. M. of two
or three numbers as employed in VII. 2, 3. Propositions 5

to 8 show that two magnitudes are commensurable or incom-

mensurable according as they have or have not to one another

the ratio of one number to another, and lead up to the funda-

mental proposition (9) of Theaetetus already quoted, namely
that the sides of squares are commensurable or incommen-
surable in length according as the squares have or have not to

one another the ratio of a square number to a square number,

and conversely. Propositions 11-16 are easy inferences as to

the commensurability or incommensurability of magnitudes

from the known relations of others connected with them;
e. g. Proposition 1 4 proves that, if a:b = C:d, then, according

as \/(a^— 6^) is commensurable or incommensurable with a.

^((?—d?) is commensurable or incommensurable with c.

Following on this. Propositions 17, 18 prove that the roots of

the quadratic equation aic— a;^ = 6^/4 are commensurable or

incommensui-able with a according as -/(a^ — 6^) is commen-
surable or incommensurable with a. Propositions 19-21 deal

with rational and irrational rectangles, the former being

contained by straight lines commensurable in length, whereas
rectangles contained by straight lines commensurable in square

only are irrational. The side of a square equal to a rectangle

of the latter kind is called medial ; this is the first in Euclid's

classification of irrationals. As the sides of the rectangle may
be expressed as p, pVk, where p is a rational straight line,

the medial is k^p. Propositions 23-8 relate to medial straighf

lines and rectangles ; two medial straight lines may be eithei

commensurable in length or commensurable in square only
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thus k'-p and Xh^p are commensurable in length, while k^p
and V X . k^p are commensurable in square only : the rectangles

formed by such pairs are in general medial, as Xk^p"^ and
V X . k^p"^ ; but if -/x = hWk in the second case, the rectangle

(k'kp^) is rational (Propositions 24, 25). Pi-oposition 26 proves
that the difference between two medial areas cannot be

rational ; as any two medial areas can be expressed in the

form vk . p^, VX . p^, this is equivalent to proving, as we do in

algebra, that ( V/c— VX) cannot be equal to k'. Finally,

Propositions 2 7, 28 find medial straight lines commensurable

in square only (1) which contain a rational rectangle, viz. kip,

kip, and (2) which contain a medial rectangle, viz. kip,Xip/ki. It

should be observed that, as p may take either of the forms a
or VA, a medial straight line may take the alternative forms

V{a VB) or V{AB), and the pairs of medial straight lines just

mentioned may take respectively the forms

(1) V{aVB), li^—) or V{AB),

and (2) V{a^B). /(^) or V{AB),

I shall henceforth omit reference to these obvious alternative

forms. Next follow two lemmas the object of which is to find

(1) two square numbers the sum of which is a square, Euclid's

solution being

mnp'' . miiiq^ + (
— —

) = ( ^ ) '

where m/ij/, miig^ are either both odd or both even, and

(2) two square numbers the sum of which is not square,

Euclid's solution being

iTi'p . mq'^, t 1 j
•

Propositions 29-35 are problems the object of which is to find

(a) two rational straight lines commensurable in square only,

(6) two medial straight lines commensurable in square only,

(c) two straight lines incommensurable in square, such that

the difference or sum of their squares and the rectangle
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contained by them respectively have certain characteristics.

The solutions are

(a) X, y rational and commensurable in square only.

Prop. 29 : p, pV{'^—k'^) ['/{x'^—y^} commensurable with x].

„ 30: p,p/V{l+k^) [-/(a;^— 2/^) incommensurable with a

(6) X, y medial and commensurable in square only.

Prop. 31: p(l—k^)i, /)(1— P)* [a;^/ rational, '•/{x^— y^) commei

surable with a;]

;

p/(l+A;^)s p/(l+P)* \xy rational, V(x^— y'^) incon

mensurable with a;].

„ 32 : pXi, /)Xi'/(l — i^) [a;i/ medial, -/(a:^ — 2/^^) commensu:

able with a;]

;

joXi, p\^/V{\+k'^) \xy medial, -/(a;^— ^/^^ incommei

surable with a;].

(c) a;, 2/ incommensurable in square.

[(a;^+2/'-^) rational, xy medial

" ^*= vT2(frPJT-^''^(^+'^^)-*-'^^'

[x^+y"^ medial, a;^/ rational

V( v^(i+*')r ^^2^^ ^{i+k^}S

[x^ + y^ and xy both medial and

incommensurable with one another

With Proposition 36 begins Euclid's exposition of the several
compound irrationals, twelve in number. Those which only
differ in the sign separating the two component parts can be

-^: /i'
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taken together. The twelve compound irrationals, with their

names, are as follows

:

(^i) jBinomial, p+ Vk.p (Prop. 36)

(^2) [Apotome, p^ Vk.p (Prop. 73)

(£1) (First bimedial
]

,"~ ,

iTi\ \v 4. ^ !. ,. -
A;ip + fc*p (Props. 37, 74)

(-Dg) I iirst apotome oi a medial) i- ^ f ^ i ' /

(Cj)
f
Second bimedial

) ,, \ip ^
r, o . „ '<^*P +^ (Props. 38, 75)
(Cj) (ibecond apotome or a medial

J

'^
Jb*

(A)jMajorW /A +^W^ ^1---'-^

(Props. 39, 76)

Side of a rational plus

a medial area
V(^l+Ic^ + k)

(E^)
-j That which ' produces '

^
p

with a rational area I ± V2(l+k^)
^(^^ +'''^^~^)

[ a medial whole / (Props. 40 77)

(Fj) /Side of the sum of twoA pA* / / k \

medial areas
|
V2\/ \ y^T+lc^^

{F,J "^ That which ' produces '
- p\i 1. k \

with a medial area ± :/2 v/v ~ ^1 +yfcv

, a medial whole / ,„ ., __,
(Props. 41, 78).

As regards the above twelve compound irrationals, it is

to be noted that

A-^, A^ are the positive roots of the equation

x^-2{l+k)p\x^ + {l-kfp* = 0;

i?j, B^ are the positive roots of the equation

x"- 2 Vk (1 + k) pKx^ + k (1 -/c)2p' = ;

C'j , Cg are the positive roots of the equation

\2

a;*-2^7^p2.a;^+ —;— p* = 0;
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Z)j, D^ are the positive roots of the equation

E^, E^ are the positive roots of the equation

5> /c2

i^'j, J^2 ^''^ the positive roots of the equation

c*-2yx.xV + Xf^pj2p' = 0.

Propositions 42-7 prove that each of the above straight lines,

made up of the sttm of two terms, is divisible into its terms

in only one way. In particular, Proposition 42 proves the

equivalent of the well-known theorem in algebra that,

if a + Vh = x+ Vy, then a = x, b = y;

and if • Va + -/& = Vx + Vy,

then a = X, b = y (or a= y, b = x).

Propositions 79-84 prove corresponding facts in regard to

the corresponding irrationals with the negative sign between

the terms: in particular Proposition 79 shows that,

if a— Vb = X— Vy, then a = x, b = y;

and if Va— Vb — V.c— -Jy, then a = x, b = y.

The next sections of the Book deal with binomials and
apotomes classified according to the relation of their terms to

another given rational straight line. There are six kinds,

which are first defined and then constructed, as follows

:

(tx,) { First binomial ) ,

(«,) 1 First apotome }
^^P±^pA^~^^); (Props. 48. 85)

(;8j) fSecond binomial] kp

m ISecond apotome} Vi^^) ±^'P-' (P^'OP^- 49, 86)

(Vi)

(72)

Third binomial

Third apotome
mVh . p±'m.Vk .pV{\ ~\^)

;

(Props. 50, 87)
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Fourth binomial ki

Fourth apotome

(ei) [ Fifth binomial

/^P±:7(|^);(Props.51,88)

• kpV{\+\)±kp; (Props. 52, 89)

Vk.p+VX.p. (Prop. 53, 90)

Fifth apotome

(^i) (
Sixth binomial

(^2) 1 Sixth apotome

Here again it is to be observed that these binomials and

apotomes are the greater and lesser roots respectively of

certain quadratic equations,

«!, 0(2 being the roots of cc^— 2A;p .aj + X'^^Pp^ = 0,

Vi, 72 >' >. X' — irnVk. px + X'^ni'^kp'^ = Q,

81,82 „ „ x^—2kp.x+——k^p^ = 0,
1 +A

€1,62 „ „ x^--2kp^/{l+X).x + X]c'p^ = 0,

Ci> Ci » -. a3^-2v//<;.pa; + (/c-A)p2=0.

The next sets of propositions (54-65 and 91-102) prove the

connexion between the first set of irrationals {A^, J.2 ... i^, , -^2)

and the second set (aj, (Xg.-. ^1, ^2) respectively. It is shown

e.g., in Proposition 54, that the side of a square equal to the

rectangle contained by p and the first binomial cKj is a binomial

of the type A-^, and the same thing is proved in Proposition 91

for the first apotome. In fact

y{/)(A;p + fcpymr^)}=py{|/c(l+X)} +p/{|/c(l-A)}.

Similarly -/(p/Sj), V(p^^ are irrationals of the type B^, B^

respectively, and so on.

Conversely, the square on A^or A^,^ applied as a rectangle

to a rational straight line (o-, say), has for its breadth a binomial

or apotome of the types a.^, (x,^ respectively (60, 97).
2

In fact (p + Vk
. pf/<r = ^{{l+k)±2 Vk]

,

and B-^, B^ are similarly related to irrationals of the type

/3, , jSj, and so on.
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Propositions 66-70 and Propositions 103-7 prove that

straight lines commensurable in length with jl^, A^... F^, F^

respectively are irrationals of the same type and order.

Propositions 71, 72, 108-10 show that the irrationals

-4j, ^2 Fj, F^ arise severally as the sides of squares equal

to the sum or difference of a rational and a medial area, or the

sum or difference of two medial areas incommensurable with

one another. Thus Icp'^ + -/A . p" is the sum or difference of a

rational and a medial area, Vk. p^± '/X
.

p'^ is the sum or

difference of two medial areas incommensurable with one

another provided that Vk and -/X are incommensurable, and

the propositions prove that

V{kp^ + a/X . p-) and V( Vk.p^±VX. p^)

take one or other of the forms A-^, A^... F^, F^ according to

the different possible relations between k, X and the sign

separating the two terms, but no othei* forms.

Finally, it is proved at the end of Proposition 72, in Proposi-

tion 111 and the explanation following it that the thirteen

irrational straight lines, the medial and the twelve other

irrationals A-^, A,^... F^^,F^, are all different from one another.

E.g. (Proposition 111) a binomial straight line cannot also be

an apotome ; in other words, Vx + Vy cannot be equal to

Vx' — Vy', and x + Vy cannot be equal to x'— Vy'. We
prove the latter proposition by squaring, and Euclid's proce-

dure corresponds exactly to this. Propositions 112-14 prove

that, if a rectangle equal to the square on a rational straight

line be applied to a binomial, the other side containing it is an

apotome of the same order, with terms commensurable with

those of the binomial and in the same ratio, and vice versa

;

also that a binomial and apotome of the same order and with

terms commensurable respectively contain a rational rectangle.

Here we have the equivalent of rationalizing the denominators

of the fractions -y-. ^ or . by multiplying the

numerator and denominator by VAT VB or a+ VB respec-

tively. Euclid in fact proves that

<T- /{p -f- Vk .p} = Xp- Vk . Xp {k < 1),

and his method enables us to see that X = cr'^ /(p^ — kp^).

Proposition 115 proves that from a medial straight line an
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infinite number of othei- irrational straight lines arise each

of which is different from the preceding, h^p being medial,

we take another rational straight line a and find the mean
proportional -/{k^pa)-, this is a new irrational. Take the

mean between this and a', and so on.

I have described the contents of Book X at length because

it is probably not well known to mathematicians, while it is

geometrically very remarkable and very finished. As regards

its object Zeuthen has a remark which, I think, mu.st come

very near the truth. ' Since such roots of equations of the

second degree as are incommensurable with the given magni-

tudes cannot be expressed by means of the latter and of num-
bers, it is conceivable that the Greeks, in exact investigations,

introduced no approximate values, but worked on with the

magnitudes they had found, which were represented by

straight lines obtained by the construction corresponding to

the solution of the equation. That is exactly the same thing

which happens when we do not evaluate roots but content

ourselves with expressing them by radical signs and other

algebraical symbols. But, inasmuch as one straight line looks

like another, the Greeks did not get the same clear view of

what they denoted (i. e. by simple inspection) as our system

of symbols assures to us. For this reason then it was neces-

sary to undertake a classification of the irrational magnitudes

which had been arrived at by successive solutions of equations

of the second degree.' That is, Book X formed a repository

of results to which could be referred problems depending on

the solution of certain types of equations, quadratic and

biquadratic but reducible to quadratics, namely the equations

x^ ±2 fix . p ±v . p^ = Q,

and a;* + 2//a;2.p2±.'.p*= 0,

where p is a rational straight hne and ji, v are coefficients.

According to the values of ii, v in relation to one another and

their character (/t, but not v, may contain a surd such as

Vm, or \/(m/«)) the two positive roots of the first equations are

the binomial and apotome respectively of- some one of the

orders ' first ',
' second ', . . .

' sixth ', while the two positive

roots of the latter equation are of some one of the other forms

of irrationals {A^, A^), (B„ B,) ... (F„ F^).
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Euclid himself, in Book XIII, makes considerable use of the

second part of Book X dealing with a'potomes ; he regards a

straight line as sufficiently defined in character if he can say

that it is, e.g., an a'potorme (XIII. 17), & first apotome (XIII. 6),

a minor straight line (XIII. 11). So does Pappus.^

Our description of Books XI-XIII can be shorter. They

deal with geometry in three dimensions. The definitions,

belonging to all three Books, come at the beginning of Book XI.

They include those of a straight line, or a plane, at right angles

to a plane, the inclination of a plane to a plane (dihedral angle),

parallel planes, equal and similar solid figures, solid angle,

pyramid, prism, sphere, cone, cylinder and parts of them, cube,

octahedron, icosahedron and dodecahedron. Only the definij

tion of the sphere needs special mention. Whereas it had

previously been defined as the figure which has all points of

its surface equidistant from its centre, Euclid, with an eye to

his use of it in Book XIII to ' comprehend ' the regular solids

in a sphere, defines it as the figure comprehended by the i-evo-

lution of a semicii'cle about its diameter.

The propositions of Book XI are in their order fairly

parallel to those of Books I and VI on plane geometry. First

we have propositions that a straight line is wholly in a plane

if a portion of it is in the plane (1), and that two intersecting

straight lines, and a triangle, are in one plane (2). Two
intersecting planes cut in a straight line (3). Straight lines

perpendicular to planes are next dealt with (4-6, 8, 11-14^,

then parallel straight lines not all in the same plane (9, 10, 15),

parallel planes (14, 16), planes at right angles to one another

(18, 19), solid angles contained by three angles (20, 22, 23, 26)

or by more angles (21). Thl rest of the Book deals mainly
with parallelepipedal solids. It is only necessary to mention
the more important propositions. Parallelepipedal solids on the

same base or equal bases and between the same parallel planes

(i.e. having the same height) are equal (29-31). Parallele-

pipedal solids of the same height are to one another as their

bases (32). Similar parallelepipedal solids are in the tripli-

cate ratio of corresponding sides (33). In equal parallele-

pipedal solids the bases are reciprocally proportional to their

heights and conversely (34). If four straight lines be propor-
' Cf. Pappus, iv, pp. 178, 182.
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tional, so are parallelepipedal solids similar and similarly
described upon them, and conversely (37). A few other
propositions are only inserted because they are required as

lemmas in later books, e.g. tlftit, if a cube is bisected by two
planes each of which is parallel to a pair of opposite faces, the
common section of the two planes and the diameter of the
cube bisect one another (38).

The main feature of Book XII is the application of the
method of exhaustion, which is used to prove successively that
circles are to one another as the squares on their diameters
(Propositions 1,2), that pyramids of the same height and with
triangular bases are to one another as the bases (3-.5), that

any cone is, in content, one third part of the cylinder which
has the same base with it and equal height (10), that cones

and cylinders of the same height are to one another as their

bases (11), that similar cones and cylinders are to one another

in the triplicate ratio of the diameters of their bases (12), and
finally that spheres are to one another in the triplicate ratio

of their respective diameters (16-18). Propositions 1, 3-4 and
16-17 are of course preliminary to the main propositions 2, 5

and 18 respectively. Proposition 5 is extended to pyramids
with polygonal bases in Proposition 6. Proposition 7 proves

that any prism with triangular bases is divided into three

pyramids with triangular bases and equal in content, whence
any pyramid with triangular base (and therefore also any
pyramid with polygonal base) is equal to one third part of

the prism having the same base and equal height. The rest

of the Book consists of propositions about pyramids, cones,

and cylinders similar to those in Book XI about parallele-

pipeds and in Book VI about parallelograms : similar pyra-

mids with triangular bases, and therefore also similar pyramids

with polygonal bases, are in the triplicate ratio of correspond-

ing sides (8) ; in equal pyramids, cones and cylinders the bases

are reciprocally proportional to the heights, and conversely

(9, 15)!

The method of exhaustion, as applied in Euclid, rests upon
X. 1 as lemma, and no doubt it will be desirable to insert here

an example of its use. An interesting case is that relating to

the pyramid. Pyramids with triangular bases and of the same
height, says Euclid, are to one another as their bases (Prop. 5).
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It is first proved (Proposition 3) that, given any pyramid, as

ABGD, on the base BCD, if we bisect the six edges at the

points E, F, G, H, K, L, and draw the straight lines shown in

the figure, we divide the pyramid ABGD into two equal

prisms and two equal pyramids AFGE, FBHK similar to the

original pyramid (the equality of the prisms is proved in

XI. 39), and that the sum of the two prisms is greater than

half the original pyramid. Proposition 4 proves that, if each

of two given pyramids of the same height be so divided, and

if the small pyramids in each are similarly divided, then the

smaller pyramids left over from that division are similarly

divided, and so on to any extent, the sums of all the pairs of

prisms in the two given pyramids respectively will be to one

another as the respective bases. Let the two pyramids and

their volumes be denoted by P, P' respectively, and their bases

by B, B' respectively. Then, if B:B' is not equal to P : P', it

must be equal to P : IT, where W is some volume either less or

greater than P'.

I. Suppose W < P'.

By X. 1 we can divide P' and the successive pyramids in

it into prisms and pyramids until the sum of the small

pyramids left over in it is less that P' — W, so that

P' > (prisms in P') > W.

Suppose this done, and P divided similarly.

Then (XII. 4)

(sum of prisms in P) : (sum of prisms in P') — B : B'

= P:W,hy hypothesis.

But P > (sum of prisms in P)

:

therefore W > (sum of prisms in P').
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But W is also less than the sum of the prisms in P' : which
is impossible.

Therefore W is not less than P'.

II. Suppose W > P'.

We have, inversely,

E:B=W:P
= P' V, where V is some solid less than P.

But this can be proved impossible, exactly as in Part I.

Therefore W is neither greater nor less than P', so that

-B:5'=P:P'.

We shall see, when we come to Archimedes, that he extended
this method of exhaustion. Instead of merely taking the one
approximation, from underneath as it were, by constructing
successive figures within the figure to be measured and so

exhausting it, he combines with this an approximation from
outside. He takes sets both of inscribed and circumscribed

figures, approaching from both sides the figure to be measured,
and, as it were, com2'>resses them into one, so that they coincide

as nearly as we please with one another and with the curvi-

linear figure itself. The two parts of the proof are accordingly

separate in Archimedes, and the second is not merely a reduction

to the first.

The object of Book XIII is to construct, and to ' comprehend
in a sphere', each of the five regular solids, the pyramid
(Prop. 13), the octahedron (Prop. 14), the cube (Prop. 15),

the icosahedron (Prop. 1 6) and the dodecahedron (Prop. 1 7)

;

' comprehending in a sphere ' means the construction of the

circumscribing sphere, which involves the determination of

the relation of a ' side ' (i. e. edge) of the solid to the radius

of the sphere ; in the case of the first three solids the relation

is actually determined, while in the case of the icosahedron

the side of the figure is shown to be the irrational straight

line called ' minor ', and in the case of the dodecahedron an

'apotome'. The propositions at the beginning of the Book
are preliminary. Propositions 1-6 are theorems about straight

lines cut in extreme and mean ratio, Propositions 7, 8 relate

to pentagons, and Proposition 8 proves that, if, in a regular

pentagon, two diagonals (straight lines joining angular points
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next but one to each other) are drawn intersecting at a point,

each of them is divided at the point in extreme and mean

ratio, the greater segment being equal to the side of the pen-

tagon. Propositions 9 and 1 relate to the sides of a pentagon,

a decagon and a hexagon all inscribed in the same circle,

and are preliminary to proving (in Prop. 11) that the side of

the inscribed pentagon is, in relation to the diameter of the

circle, regarded as rational, the irrational straight line called

' minor '". If p, d, It be the sides of the regular pentagon,

decagon, and hexagon inscribed in the same circle, Proposition 9

proves that h + d\& cut in extreme and mean ratio, h being the

greater segment ; this is equivalent to saying that (r + d) d=r^,

where r is the radius of the circle, or, in other words, that

d = ^r(-</5—l). Proposition 10 proves that 'p^^h^ + d"^ or

r^ + <i", whence we obtain p — |r\/(10— 2 \/5). Expressed as

a ' minor ' irrational straight line, which Proposition 1 1 shows

it to be, p = ^rV{5 + 2 V5) - ^r V(5 - 2 a/s).

The constructions for the several solids, which have to be

inscribed in a given sphere, may be briefly indicated, thus :

1. The regular pyramid or tetrahedron.

Given D, the diameter of the sphere which is to circum-

scribe the tetrahedron, Euclid draws a circle with radius r

such that 7'2 = ,|Z) . |D, or r = -|-/2.D, inscribes an equi-

lateral triangle in the circle, and then erects from the centre

of it a straight line perpendicular to its plane and of length

fD. The lines joining the extremity of the perpendicular to

the angular points of the equilateral triangle determine the

tetrahedron. Each of the upstanding edges {x, say) is such

that x^ — r'^ + %D'^ = 3r^ and it has been proved (in XIII. 12)

that the square on the side of the triangle inscribed in the

circle is also Zr^- Therefore the edge a of the tetrahedron

= v'3.r = §a/6.D.

2. The octahedron.

If D be the diameter of the circumscribing sphere, a square

is inscribed in a circle of diameter D, and from its centre

straight lines are drawn in both directions perpendicular tc

its plane and of length equal to the radius of the circle or hall

the diagonal of the square. Each of the edges which stand up
from the square = V 2 . ^D, which is equal to the side of the
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square. Each of the edges a of the octahedron is therefore

equal to ^2 . ^D.

3. The cube.

D being the diameter of the circumscribing sphere, draw
a square with side a such that 0^=0. |D, and describe a cube
on this square as base. The edge a. = ^ v^3 . D.

4. The icosahedron.

Given D, the diameter of the sphere, construct a circle with
radius r such that r^ — D . |Z). Inscribe in it a regular

decagon. Draw from its angular points straight lines perpen-

dicular to the plane of the circle and equal in length to its

radius r; this determines the angular points of a regular

decagon inscribed in an equal parallel circle. By joining

alternate angular points of one of the decagons, describe a

regular pentagon in the circle circumscribing it, and then do

the same in the other circle but so that the angular points are

not opposite those of the other pentagon. Join the angular

points of one pentagon to the nearest angular points of the

other ; this gives ten triangles. Then, if p be the side of each

pentagon, d the side of each decagon, the upstanding sides

of the triangles (= a;, say) are given by x^=d^ + r^=p^
(Prop. 10); therefore the ten triangles are equilateral. We
have lastly to find the common vertices of the five equilateral

triangles standing on the pentagons and completing the icosa-

hedron. If C, C be the centres of the parallel circles, GC is

produced in both directions to Z, .^ respectively so that

GX = C'Z = d (the side of the decagon). Then again the

upstanding edges connecting to X, Z the angular points of the

two pentagons respectively {— x, say) are given by

^2 _ ,,2 ^ (p _ ^f._

Hence each of the edges

a = |j = f/V(10-2v/5) = ^^ 7(10-2 v/5)

= ^\DV{10{&-V5)].

It is finally shown that the sphere described on XZ as

diameter circumscribes the icosahedron, and

XZ= r + 2d = r + r (7.5-1) = r. V5 = D.

E e
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5. The dodecahedron.

We start with the cube inscribed in the given sphere witl

diameter D. We then draw pentagons which have the edge,

of the cube as diagonals in the manner shown in the figure

If H, N, M, be the middle points of the sides of the faci

BF, and H, G, L, K the middle points of the sides of th(

face BD, join NO, GK which are then parallel to BG, anc

draw MH, HL bisecting them at right angles at P, Q.

Divide PN, PO, QH in extreme and mean ratio at R, S, I

and let PR, PS, QT be the greater segments. Draw RU, PX
SV &i right angles to the plane BF, and TW at right angles t(

/
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Lastly, "it is proved that the same sphere of diameter D
which circumscribes the cube also circumscribes the dodeca-
hedron. For example, if Z is the centre of the sphere,

ZU^ = ZX-' + ZC^2 ^ ^rg^ ^ p^2 ^ 3p^2_ (XIII. 4)

while ZB^ = 3 ZF^ = 3 PN\

If a be the edge of the dodecahedron, c the edge of the cube,

4

_ 2/3 ^5-1
~ ~3^ '

4

Book XIII ends with Proposition 18, which arranges the
edges of the five regular solids inscribed in one and the same
sphere in order of magnitude, while an addendum proves that

no other regular solid figures except the five exist. ,

The so-caHed Books XIV, XV.

This is no doubt the place to speak of the continuations

of Book XIII which used to be known as Books XIV, XV of

the Elements, though they are not by Euclid. The former
is the work of Hypsicles, who probably lived in the second

half of the second century B.C., and who is otherwise known
as the reputed author of an astronomical tract jii/ac^opiKos

(De ascensionihus) still extant (the earliest extant Greek book
in which the division of the circle into 360 degrees appears),

besides other works, which have not survived, on the harmony
of the spheres and on polygonal numbers. The preface to

' Book XIV ' is interesting historically. It appears from
it that ApoUonius wrote a tract on the comparison of the

dodecahedron and icosahedron inscribed in one and the same

sphere, i.e. on the ratio between them, and that there were two

editions of this work, the first of which was in some way
incorrect, while the second gave a correct proof of the pro-

position that, as the surface of the dodecahedron is to

the surface of the icosahedron, so is the solid content of the

Ee 3
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dodecahedron to that of the icosahedron, ' because the pe

pendicular from the centre of the sphere to the pentagon i

the dodecahedron and to the triangle of the icosahedron is tl

same '. Hypsicles says also that Aristaeus, in a work entitle

Comparison of the five figures, proved that 'the same cire

circumscribes both the pentagon of the dodecahedron and tl

triangle of the icosahedron inscribed in the same sphere

whether this Aristaeus is the same as the Aristaeus of tl

Solid Loci, the elder contemporary of Euclid, we do nc

know. The proposition of Aristaeus is proved by Hypsicl(

as Proposition 2 of his book. The following is a summar
of the results obtained by Hypsicles. In a lemma at the en

he proves that, if two straight lines be cut in extreme an

mean ratio, the segments of both are in one and the sarc

ratio; the ratio is in fact 2:('/5 — 1). If then any straigl

line AB be divided at C in extreme and mean ratio, AC bein

the greater segment, Hypsicles proves that, if we have a cub

a dodecahedron and an icosahedron all inscribed in the sam

sphere, then :

(Prop. 7) (side of cube) : (side of icosahedron)

= ViAB-^ + AC): ViAB-' + BC^);

(Prop. 6) (surface of dodecahedron) : (surface of icosahedron)

= (side of cube) : (side of icosahedron]

(Prop. 8) (content of dodecahedron) : (content of icosahedron)

= (surface of dodecahedron) : (surface of icosahedron)

and consequently

(content of dodecahedron) : (content of icosahedron)

= V{AB^ + AC'-):V(AB^ + BG^

The second of the two supplementary Books (' Book XV ') i

also concerned with the regular solids, but is much inferior t

the first. The exposition leaves much to be desired, bein

in some places obscure, in others actually inaccurate. Th
Book is in three parts unequal in length. The first ^ show
how to inscribe certain of the regular solids in certain other

' Heibei-g's Euclid, vol. v, pp. 40-8.
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(a) a tetrahedron in a cube, (b) an octahedron in a tetrahedron,
(c) an octahedron in a cube, (d) a cube in an octahedron,
(e) a dodecahedron in an icosahedron. The second portion ^

explauis how to calculate the number of edges and the number
of solid angles in the five solids respectively. The third
portion ^ shows how to determine the dihedral angles between
the faces meeting in any edge of any one of the solids. The
method is to construct an isosceles triangle with vertical angle
equal to the said angle ; from the middle point of any edge
two perpendiculars are drawn to it, one in each of the two
faces intersecting in that edge ; these perpendiculars (forming
the dihedral angle) are used to determine the two equal sides

of an isosceles triangle, and the base of the triangle is easily

found from the known properties of the particular solid. The
rules for drawing the respective isosceles triangles are first

given all together in general terms ; and the special interest

of the passage consists in the fact that the rules are attributed

to ' Isidorus our great teacher '. This Isidorus is doubtless

Isidorus of Miletus, the architect of the church of Saint Sophia
at Constantinople (about a.D. 532). Hence the third portion

of the Book at all events was written Ijy a pupil of Isidorus

in the sixth century.

The Data.

Coming now to the other works of Euclid, we will begin

with those which have actually survived. Most closely con-

nected with the Elewients as dealing with plane geometry, the

subject-matter of Books I-VI, is the Data, which is accessible

in the Heiberg-Menge edition of the Greek text, and also

in the translation annexed by Simson to his edition of the

Elements (although this translation is based on an inferior

text). The book was regarded as important enough to be

included in the Treasury of Analysis (tottos dvaXvo/xifos) as

known to Pappus, and Pappus gives a description of it ; the

description shows that there were differences between Pappus's

text and ours, for, though Propositions 1-62 correspond to the

description, as also do Propositions 87-94 relating to circles

it the end of the book, the intervening propositions do not

' Heiberg's Euclid, vol. v, pp. 48-50. ^ Ih., pp. 50-66.
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exactly agree, the differences, however, affecting the distribi

tion and numbering of the propositions rather than the

substance. The book begins with definitions of the senS'

in which things are said to be given. Things such as area

straight lines, angles and ratios are said to be ' given :

magnitude when we can make others equal to them.' (Dei

1-2). Rectilineal figures are 'given in species' when the

angles are severally given as well as the ratios of the sides

one another (Def. 3). Points, lines and angles are 'give

in position '

' when they always occupy the same place '
: a n(

very illuminating definition (4). A circle is given in positic

and in magnitude when the centi-e is given in position ai

the radius in mxignitude (6) ; and so on. The object of tl

proposition called a Datum is to prove that, if in a given figu:

certain parts or relations are given, other parts or relations a:

also given, in one or other of these senses.

It is clear that a systematic collection of Data such i

Euclid's would very much facilitate and shorten the pi'ocedu:

in analysis ; this no doubt accounts for its inclusion in tl

Treasury of Analysis. It is to be observed that this form (

proposition does not actually determine the thing or relatic

which is shown to be given, but merely proves that it can 1

determined when once the facts stated in the hypothes

are known ; if the proposition stated that a certain thing

so and so, e.g. that a certain straight line in the figure is '

a certain length, it would be a theorem ; if it directed us

find the thing instead of proving that it is 'given', it wou
be a problem ; hence many propositions of the form of tl

Data could alternatively be stated in the form of theorems

problems.

We should naturally expect much of the subject-matter

the Elements to appear again in the Data under the diftere:

aspect proper to that book ; and this proves to be the cas

We have alreadj;- mentioned the connexion of Eucl. II. 5,

with the solution of the mixed quadratic equations ax + a;^ = i

The solution of these equations is equivalent to the solution

the simultaneous equations

332/ = i'^ )

'

y±x
xy :

and Euclid shows how to solve these equations in Propositio
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84, 85 of the Data, which state that 'If two straight lines

contain a given area in a given angle, and if the difference

(sum) of them be given, then shall each of them be given.'

The proofs depend directly upon those of Propositions 58, 59,

'If a given area be applied to a given straight line, falling

short (exceeding) by a figure given in species, the breadths

of the deficiency (excess) are given.' All the 'areas' are

parallelograms

.

We will give the proof of Proposition 59 (the case of
' excess '). Let the given area AB
be applied to AG, exceeding by the

figure GB given in species. I say

that each of the sides HG, CE is

given.

Bisect DE in F, and construct

on EF the figure FG similar and

similarly situated to GB (VI. 18).

Therefore FG, GB are about the same diagonal (VI. 26).

Complete the figure.

Then FG, being similar to GB, is given in species, and,

since FE is given, FG is given in magnitude (Prop. 52).

But AB is given ; therefore AB + FG, that is to say, KL, is

given in magnitude. But it is also given in species, being

similar to GB; therefore the sides of KL are given (Prop. 55).

Therefore KH is given, and, since KG = EF is also given,

the difierence GH is given. And GH has a given ratio to HB
;

therefore HB is also given (Prop. 2).

Eucl. III. 35, 36 about the ' power' of a point with reference

to a circle have their equivalent in Data 91, 92 to the effect

that, given a circle and a point in the same plane, the rectangle

contained by the intercepts between this point and the points

in which respectively the circumference is cut by any straight

line passing through the point and meeting the circle is

also given.

A few more enunciations may be quoted. Proposition 8

(compound ratio) : Magnitudes which have given ratios to the

same magnitude have a given ratio to one another also.

Propositions 45, 46 (similar triangles) : If a triangle have one

angle given, and the ratio of the sum of the sides containing

that angle, or another angle, to the third side (in each case) be
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given, the triangle is given in species. Proposition 52 : If a

(rectilineal) figure given in species be described on a straight

line given in magnitude, the figure is given in magnitude.

Proposition 66 : If a triangle have one angle given, the rect-

angle contained by the sides including the angle has to the

(area of the) triangle a given ratio. Proposition 80 : If a

triangle have one angle given, and if the rectangle contained

by the sides including the given angle have to the square on

the third side a given ratio, the triangle is given in species.

Proposition 93 is interesting: If in a circle given in magni-

tude a straight line be drawn cutting off" a segment containing

a given angle, and if this angle be bisected (by a straight line

cutting the base of the segment and the circumference beyond
it), the sum of the sides including the given angle will have a

given ratio to the chord bisecting the angle, and the rectangle

contained by the sum of the said sides and the portion of the

bisector cut ofl^ (outside the segment) towards the circum-

ference will also be given.

Euclid's proof is as follows. In the cii-cle ABC let the

chord BC cut off" a segment containing a given angle BAC,
and let the angle be bisected by ^.E" meeting BC in D.

Join BE. Then, since the circle is given in magnitude, and
BC cuts off a segment containing a given

angle, BC is given (Pi-op. 87).

Similarly BE is given ; therefore the

ratio BC:BE is given. (It is easy to

see that the ratio BC:BE is equal to

2 cos i 4.)

Now, since the angle BAC is bisected,

'' BA:AC = BD:DC.

It follows that {BA +AC): (BD + DC) = AC: DC.

But the triangles ABE, ADC are similar;

therefore AE : BE = AG : DC

= {BA + AC) : BC, from above.

Therefore {BA + AC) : AE = BC : BE, which is a given
ratio.
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Again, since the triangles ADO, BDE are similar,

BE:ED = AC:GD={BA + AG): BC.

Therefore {BA +AC).ED = BC. BE, whieli is given.

On divisions (of figures).

The only other work of Euclid in pure geometry which has
survived (but not in Greek) is the book On divisions {of

figures), nepl Siaipea-ecou ^l^Xlov. It is mentioned by Proclus,

who gives some hints as to its content
' ; he speaks of the

business of the author being divisions of figures, circles or

rectilineal figures, and remarks that the parts may be like

in definition or notion, or unlike ; thus to divide a triangle

into triangles is to divide it into like figures, whereas to

divide it into a triangle and a quadrilateral is to divide it into

unlike figures. These hints enable us to check to some extent

the genuineness of the books dealing with divisions of figures

which have come down through the Arabic. It was John Dee
who first brought to light a treatise De divisionihus by one

Muhammad Bagdadinus (died 1141) and handed over a copy
of it (in Latin) to Commandinus in 1563 ; it was published by
the latter in Dee's name and his own in 1570. Dee appears

not to have translated the book from the Arabic himself, but

to have made a copy for Commandinus from a manuscript of

a Latin translation which he himself possessed at one time but

which M'as apparently stolen and probably destroyed some
twenty years after the copy was made. The copy does not

seem to have been made from the Cotton MS. which passed to

the British Museum after it had been almost destroyed by
a fire in 1731.^ The Latin translation may have been that

made by Gherard of Cremona (1114-87), since in the list of

his numerous translations a ' liber divisionum ' occurs. But

the Arabic original cannot have been a direct translation from

Euclid, and probably was not even a direct adaptation of it,

since it contains mistakes and unmathematical expressions

;

moreover, as it does not contain the propositions about the

' Proclus on Eucl. I, p. 144. 22-6.
^ The question is fully discussed by R. C. Archibald, Euclid's Book on

Divisions of Figures with a restoration based on Woepcke's text and on the

Fractica Geometriae of Leonardo Fisaiio (Cambridge 1915).
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division of a circle alluded to by Proclus, it can scarcely have

contained more than a fragment of Euclid's original work.

But Woepcke found in a manuscript at Paris a treatise in

Arabic on the division of figures, which he translated and

published in 1851. It is expressly attributed to Euclid in the

manuscript and corresponds to the indications of the content

given by Proclus. Here we find divisions of different recti-

linear figures into figures of the^ same kind, e.g. of triangles

into triangles or trapezia into trapezia, and also divisions into

' unlike ' figures, e. g. that of a triangle by a straight Kne parallel

to the base. The missing propositions about the division of

a circle are also here :
' to divide into two equal parts a given

figure bounded by an arc of a circle and two straight lines

including a given angle '

(28), and ' to draw in a given circle

two parallel straight lines cutting off a certain fraction from

the circle ' (29). Unfortunately the proofs are given of only

four propositions out of 36, namely Propositions 19, 20, 28, 29,

the Arabic translator having found the rest too easy and

omitted them. But the genuineness of the treatise edited by

Woepcke is attested by the facts that the four proofs which

remain are elegant and depend on propositions in the

Mements, and that there is a lemma with a true Greek ring,

' to apply to a straight line a rectangle equal to the rectangle

contained by AB, AG and deficient by a square' (1 8). Moreover,

the treatise is no fragment, but ends with the words, ' end of

the treatise ', and is (but for the missing proofs) a well-ordered

and compact whole. Hence we may safely conclude that

Woepcke's tract represents not only Euclid's work but the

whole of it. The portion of the Pradica geometriae of

Leonardo of Pisa which deals with the division of figures

seems to be a restoration and extension of Euclid's work
;

Leonardo must presumably have come across a version of it

from the Arabic.

The type of problem which Euclid's treatise was designed

to solve may be stated in general terms as that of dividing a

given figure by one or more straight lines into parts having

prescribed ratios to one another or to other given areas. The
figures divided are the triangle, the parallelogram, the trape-

zium, the quadrilateral, a figure bounded by an arc of a circle

and two straight lines, and the circle. The figures are divided
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into two equal parts, or two parts in a given ratio ; or again,

a given fraction of the figure is to be cut off, or the figure is

to be divided into several parts in given ratios. The dividing-

straight lines may be transversals drawn through a point

situated at a vertex of the figure, or a point on any side, on one

of two parallel sides, in the interior of the figure, outside the

figure, and so on ; or again, they may be merely parallel lines,

or lines parallel to a base. The treatise also includes auxiliary

propositions, (1) ' to apply to a given straight line a rectangle

equal to a given- area and deficient by a square ', the proposi-

tion already mentioned, which is equivalent to the algebraical

solution of the equation ax— x^ = h^ and depends on Eucl. II. 5

(cf. p. 152 above)
; (2) propositions in proportion involving

unequal instead of equal ratios

:

If a . fZ > or < 6 . c, then a:b> or < c:d respectively.

li a-.b > c:d, then {a + b):b > (c + d): d.

li a:b < c:d, then (a— b): b < (c — d): d.

By way of illustration I will set out shortly three proposi-

tions from the Woepcke text.

(1) Propositions 19, 20 (slightly generalized): To cut off'

a certain fraction (rii/n) from a given triangle by a straight

line drawn through a given point within the triangle (Euclid

gives two cases corresponding to m/n = | and m/n = -|).

The construction will be best understood if we work out

the analysis of the problem (not given by Euchd).

Suppose that ABC is the given ' triangle, I) the given
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internal point; and suppose the problem solved, i.e. GH

drawn through D in such a way that A GBH — — • A AisC.

Therefore GB . BH = '^. AB .BG. (This is assumed by

Euclid.)

Now suppose that the unknown quantity is GB = x, say.

Draw DE parallel to BC; then DE, EB are given.

Now BH:DE= GB:GE ^ x: (x-BE),

^^ = x-lBE'

therefore GB.BH^x'. ^^

therefore
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figure bounded by an arc of a circle and by two straight lines

which form a given angle.

Let ABEG be the given figure, D the middle point of BG,
and DE perpendicular to BG. Join AD.
Then the broken line ADE clearly divides the figure into

two equal parts. Join AE, and draw
BF parallel to it meeting BA in F.

Join FE.

The triangles AFE, ADE are then

equal, being in the same parallels.

Add to each the area AEG. ^

Therefore the area AFEG is equal to the area ADEG, and
therefore to half the area of the given figure.

(3) Proposition 29 : To draw in a given circle two parallel

chords cutting ofi" a certain fraction {m/n) of the circle.

(The fraction iin/n must be

such that we can, by plane

methods, draw a chord cutting off'

vv/n of the circumference of

the cii'cle ; Euclid takes the case

where ni/n = -j.)

Suppose that the arc ADB is

'm/n of the circumference of the

circle. Join A,B io the centre 0.

Draw OG parallel io AB and join

AG,BG. From D, the middle point

of the arc AB, draw the chord DE parallel to BG. Then shall

BG, DE cut off m/n of the area of the circle.

Since AB, OG are parallel,

AAOB = AAGB.

Add to each the segment ADB ;

therefore

(sector ADBO) = figure bounded by AG, CB and arc ADB

= (segmt. ABG) - (segmt. BFG).

Since BG, DE are parallel, (arc DB) = (arc GE)
;
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therefore

(arc ABC) = (arc DOE), and (segmt. ABC) = (segmt. DOE)

;

therefore (sector ADBO), or — (circle ABC)

= (segmt. DC^) -(segmt. BFC).

That is BC, DE cut off an area equal to — (circle ABC).

Lost geometrical works.

(a) The Pseudaria.

The other purely geometrical works of Euclid are lost so far

as is known at present. One of these again belongs to the

domain of elementary geometry. This is the Pseudaria, or

' Book of Fallacies ', as it is called by Proclus, which is clearly

the same work as the ' Pseudographemata ' of Euclid men-

tioned by a commentator on Aristotle in terms which agree

with Proclus's description.^ Proclus says of Euclid that,

' Inasmuch as many things, while appearing to rest on truth

and to follow from scientific principles, really tend to lead one
astray from the principles and deceive the more superficial

minds, he has handed down methods for the discriminative

understanding of these things as well, by the use of which
methods we shall be able to give beginners in this study
practice in the discovery of paralogisms, and to avoid being
ourselves misled. The treatise by which he puts this machinery
in our hands he entitled (the book) of- Pseudaria, enumerating
in order their various kinds, exercising our intelligence in each
case by theorems of all sorts, setting the true side by side

with the false, and combining the refutation of error with
practical illustration. This book then is by way of cathartic
and exercise, while the Elernents contain the irrefragable and
complete guide to the actual scientific investigation of the
subjects of geometry.' ^

The connexion of the book with the Elements and the refer-

ence to its usefulness for beginners show that it did not go
beyond the limits of elementary geometry.

> Michael Ephesius, Conini. on Arist. Soph. El., fol. 25^, p. 76. 23 Wallies.
' Proclus on Eucl. I, p. 70. 1-18. Cf. a scholium to Plato's Theaetetus

191 B, which Bays that the fallacies did not arise through any importation
of sense-perception into the domain of non-sensibles.
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We now come to the lost works belonging to higher
geometry. The most important was evidently

(;8) The Porisms.

Our only source of information about the nature and con-

tents of the Poris'ms is Pappus. In his general preface about
the books composing the Treasury of Analysis Pappus writes

as follows 1 (I put in square brackets the words bracketed by
Hultsch).

' After the Tangencies (of Apollonius) come, in three Books,
the Porisms of Euclid, a collection [in the view of many] most
ingeniously devised for the analysis of the more weighty
problems, [and] although nature presents an unlimited num-
ber of such porisms, [they have added nothing to what was
originally written by Euclid, except that some before my time
have shown their want of taste by adding to a few (of the
propositions) second proofs, each (proposition) admitting of

a definite number of demonstrations, as we have shown, and
Euclid having given one for each, namely that which is the
most lucid. These porisms embody a theory subtle, natural,

necessary, and of considerable generality, which is fascinating

to those who can see and produce results].
' Now all the varieties of porisms belong, neither to theorems

nor problems, but to a species occupying a sort of intermediate

position [so that their enunciations can be formed like those of

either theorems or problems], the result being that, of the great

number of geometers, some regarded them as of the class of

theorems, and others of problems, looking only to the form of

the proposition. But that the ancients knew better the differ-

ence between these three things is clear from the definitions.

For they said that a theorem is that which is proposed with a

view to the demonstration of the very thing proposed, a pro-

blem that which is thrown out with a view to the construction

of the very thing proposed, and a porism that which is pro-

posed with a view to the producing of the very thing proposed.

[But this definition of the porism was changed by the more
recent writers who could not produce everything, but used

these elements and proved only the fact that that which is

sought really exists, but did not produce it, and were accord-

ingly confuted by the definition and the whole doctrine. They
based their definition on an incidental characteristic, thus :

A porism is that which falls short of a locus-theorem in

' Pappus, vii, pp. 648-60.
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respect of its hypothesis. Of this kind of porisms loci are

a species, and they abound in the Treasury of Analysis ; but

this species has been collected, named, and handed down
separately from the porisms, because it is more widely diffused

than the other species] . . But it has further become charac:

teristic of porisms that, owing to their complication, the enun-

ciations are put in a contracted form, much being by usage

left to be understood ; so that many geometers understand

them only in a partial way and are ignorant of the more
essential features of their content.

' [Now to comprehend a number of propositions in one

enunciation is by no means easy in these porisms, because

Euclid himself has not in fact given many of each species, but

chosen, for examples, one or a few out of a great multitude.

But at the beginning of the first book he has given some pro-

positions, to the number of ten, of one species, namely that

more fi'uitful species consisting of loci.] Consequently, finding

that these admitted of being comprehended in our enunciation,

we have set it out thus :

If, in a system of four straight lines which cut one

another two and two, three points on one straight line

1 le given, while the rest except one lie on different straight

lines given in position, the remaining point also will lie

on a straight line given in position.

' This has only been enunciated of four sti-aight lines, of

wliich not more than two pass through the same point, but it

is not known (to most people) that it is true of any assigned

number of straight lines if enunciated thus :

If any number of straight lines cut one another, not
more than two (passing) through the same point, and all

the points (of intersection situated) on one of them be
given, and if each of those which are on another (of

them) lie on a straight line given in position

—

or still more generally thus

:

if any number of straight lines cut one another, not more
than two (passing) through the same point, and all the
points (of intersection situated) on one of them be given,

while of the other points of intersection in multitude
equal to a triangular number a number corresponding
to the side of this triangular number lie respectively On
straight lines given in position, provided that of these

latter points no three are at the angular points of a
triangle (so. having for sides three of the given straight
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lines)— each of the remaining points will lie on a straight

line given in position.

^

' It is probable that the writer of the Elements was not
unaware of this, but that he only set out the principle ; and
he seems, in the case of all the porisms, to have laid down the

principles and the seed only [of many important things],

the kinds of which should be distinguished according to the

differences, not of their hypotheses, but of the results and
the things sought. [All the hypotheses are different from one

another because they are entirely special, but each of the

results and things sought, being one and the same, follow from
many different hypotheses.]

Wc must then in the ffrst book distinguish the following

kinds of things sought

:

' At' the beginning of the book is this proposition ;

I. If from two given points straight lines he draicn

meeting on a straight line given in 2)osition, and one cut

off from, a straight line given in position {a segment

measured) to a given point on it, the other will also cut

off from, another (straight line a segment) having to thr

first a given ratio.

' Following on this (we have to prove)

II. that such and such a point lies on a straight line

given in position

;

III. that the ratio of sueli and such a pair of straight

lines is given '

:

&c. &c. (up to XXIX).

'The three books of the porisms. contain 38 lemmas: of the

theorems themselves there are 171.'

Pappus further gives lemmas to the Porism.s.''

With Pappus's account of Porisms must be compared the

papi^ages of Proclus on the same .subject. Proclus distinguishes

1 Loria (Le scieme esatte nelVantica Grecin, pp. 256-7) gives the mean-

ing of this as follows, pointing out that Simson first discovered it
:
'If

a complete n-lateral be deformed so that its sides respectively turn about

n points on a straight line, and («-l) of its |« (n-1) vertices move on

as many straight lines, the other |(»-1) («-2) of its vertices likewise

move on as many straight lines : but it is necessary that it should be

impossible to form with the (n - 1) vertices any triangle having for sides

the sides of the polygon.' „ ,., , „ •, kt i

^ Pappus, vii, pp. 866-918 ; Euclid, ed. Heiberg-Menge, vol. viii,

pp. 243-74.'

,r,« F f
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the two senses of the word nopiaixa. The first is that or

a corollary, where something appears as an incidental result

of a proposition, obtained without trouble or special seeking,

a sort of bonus which the investigation has presented us

with.i The other sense is that of Euclid's Porisms. In

this sense

' porism is the name given to things which are sought, but

need some finding and are neither pure bringing into existence

nor simple theoretic argument. For (to prove) that the angles

at the base of isosceles triangles are equal is matter of theoretic

argument, and it is with reference to things existing that such

knowledge is (obtained). But to bisect an angle, to construct

a triangle, to cut off, or to place—all these things demand the

making of something ; and to find the centre of a given circle,

or to find the greatest common measure of two given commen-
surable magnitudes, or the like, is in some sort intermediate

between theorems and problems. For in these cases there is

no bringing into existence of the things sought, but finding

of them ; nor is the procedure purely theoretic. For it is

necessary to bring what is sought into view and exhibit it

to the eye. Such are the porisms which Euclid wrote and
arranged in three books of Porisms.' ^

Proclus's definition thus agrees well enough with the first,

the ' older ', definition of Pappus. A porism occupies a place

between a theorem and a problem; it deals with something

already existing, as a theorem does, but has io find it (e.g. the

centre of a circle), and, as a certain operation is therefore

necessary, it partakes to that extent of the nature of a problem,

which requires us to construct or produce something not

previously existing. Tims, besides III. 1 and X. 3, 4 of the

Meonents mentioned by Proclus, the following propositions are

real porisms: III. 25, VI. 11-13, VII. 33, 34, 36, 39, VIII. 2, 4,

X. 10, XIII. 18. Similarly, in Archimedes's On the Sphere and'
Cylinder, I. 2-6 might be called porisms.

The enunciation given by Pappus as comprehending ten of

Euclid's propositions vaay not reproduce the/orm of Euclid's

enunciations; but, comparing the result to be proved, that

certain points lie on straight lines given in position, with the
class indicated by II above, where the question is of such and
.such a point lying on a straight line given in position, and

Prochis on Eucl. I, pp. 212. 14 ; 301. 22, "-

lb., p. 301. 25 ,sq.
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with other classes, e. g. (V) that such and such a line is given
in position, (VI) that such and such a line verges to a given point,

(XXVII) that there exists a given point such that straight
lines drawn from it to such and such (circles) will contain
a triangle given in species, we may conclude that a usual form
of a porism was ' to prove that it is possible to find a point
with such and such a property ' or ' a straight line on which
lie all the points satisfying given conditions ', and so on.

The above exhausts all the positive information which we
have about the nature of a porism and the contents of Euclid's

I'orisms. It is obscure and leaves great scope for speculation

and controversy
; naturally, therefore, the problem of restoring

the ForIsms has had a great fascination for distinguished

mathematicians ever since the revival of learning. But it has

proved beyond them all. Some contributions to a solution have,

it is true, been made, mainly by Simson and Chasles. The first

claim to have restored the Porisms seems to be that of Albert

Girard (about 1590-1633), who spoke (1626) of an early pub-

lication of his results, which, however, never saw the light.

The great Fermat (1601-65) gave his idea of a 'porism',

illustrating it by five examples which are very interesting in

themselves ' ; but he did not succeed in connecting them with

the description of Euchd's Poris7nt< by Pappus, and, though he

expressed a hope of being able to produce a complete restoration

of the latter, his hope was not realized. It was left for Robert

Simson (1687-1768) to make the first decisive step towards the

solution of the problem.^ He succeeded in explaining the mean-

ing of the actual porisms enunciated in such general terms by

Pappus. In his tract on Porisms he proves the first porism

given by Pappus in its ten different cases, which, according to

Pappus, Euclid distinguished (these propositions are of the

class connected with loci); after this he gives a number of

other propositions from Pappus, some auxiliary proposi-

tions, and some 29 ' porisms ', some of which are meant to

illustrate the classes I, VI, XV, XXVII-XXIX distin-

guished by Pappus. Simson was -able to evolve a definition

of a porism which is perhaps more easily understood in

Chasles's translation :
' Le porisme est une proposition dans

1 (Euvres de Fennat, ed. Tannery and Henry, I, p. 76-84.

^ Roberta Simson Ope>-a quaedam leliqua, 1776, pp. 31.5-594.

Ff 2
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laqnclle on demando de demonti-er (ju'une chose on plusieiirs

Glioses sont donnees, qui, amsi que Tune quelconque d'une

infinite d'autres clioses non donnt^es, mais dont chaeune est

avee des choses donnees dans une meme relation, ont une

propridtd commune, d^crite dans la proposition.' We need

not follow Simson's English or Scottish successors, Lawson

(1777), Playfair (1794), W. Wallace (1798), Lord Brougham

(1798), in their fui'ther speculations, nor the controversies

between the Frenchmen, A. J. H. Vincent and P. Breton (de

Champ), nor the hitter's claim to priority as against Chasles

;

the work of Chasles himself {Les trois livres des Porismeti

d'Eudide retcdAis . . . Paris, 1860) alone needs to be men-

tioned. Chasles adopted the definition of a porism given by

Simson, but showed how it could be expressed in a different

form. ' Porisms are incomplete theorems which express

certain relations existing between things variable in accord-

ance with a common law, relations which are indicated in

the enunciation of the porism, but which need to be completed

by determining the magnitude or position of certain things

which are the consequences of the hj^potheses and which

would be determined in the enunciation of a theorem properly

so called or a complete theorem.' Chasles succeeded in eluci-

dating the connexion between a porism and a locus as de-

scribed by Pappus, though he gave an inexact translation of

the actual words of Pappus :
' Ce qui constitue le j^orisme est

re qui manque a I'hyiMthese d'un theorcme local (en d'autres

termes, le porisme est infdrieur, par I'hypothese, au thdoreme

local ; c'est a dire que quand quelques parties d'une propcsi-

tion locale n'ont pas dans I'^nonce la determination qui leur

est propre, cette proposition cesse d'etre regard^e comme un
thi^or^me et devient un porisme)

'
; here the words italicized

are not quite what Pappus said, viz. that 'a porism is that

which falls short of a locus-theorem in respect of its hypo-

thesis ', but the explanation in brackets is correct enough if

we substitute ' in respect of ' for ' par ' (' by '). The work of

Chasles is historically important because it was in the course

of his researches on this subject that he was led to the idea of

anharmonic ratios; and he was probably right in thinking
that the Porisms were propositions belonging to the modern
theory of transversals and to projective geometry. But, as a
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restoration of Euclid's work, Chasles's Porisms cannot be re-
garded as satisfactory. One consideration alone is, to my
mmd, conclusive on this point. Cliasles made ' porisms ' out
of Pappus's various lemmas to Euclid's porisms and com-
paratively easy deductions from those lemmas. Now wo
have experience of Pappus's lemmas to books which still

survive, e.g. the Conks of ApoUonius; and, to judge by these
instances, his lemmas stood in a most ancillary relation to
the propositions to which they relate, and do not in the
least compare with them in difficulty and importance. Hence
it IS all but impossible to believe that the lemmas to the
porisms were themselves porisms such as were Euclid's own
porisms

; on the contrary, the analogy of Pappus's other sets
of lemmas makes it all but necessary to regard the lemmas in
question as merely supplying proofs of simple propositions

assumed by Euclid without proof in the course of the demon-
stration of the actual porisms. This being so, it appears that
the problem of the complete restoration of Euclid's three

Books still awaits a solution, or rather that it will never be

solved unless in the event of discovery of fresh documents.
At ihe same time the lemmas of Pappus to the Porisms

are by no means insignificant propositions in themselves,

and, if the usual relation of lemmas to substantive proposi-

tions holds, it follows that the Porisms was a distinctly

advanced work, perhaps the most important that Euclid ever

wrote
; its loss is therefore much to be deplored. Zeuthen

has an interesting remark a propos of tlie proposition which
Pappus quotes as the first proposition of Book I, ' If from two
given points straight lines be drawn meeting on a straight

hne given in position, and one of them cut off' from a straight

line given in position (a segment measured) towards a given

point on it, the other will also cut off from another (straight

line a segment) bearing to the first a given ratio.' This pro-

position is also true if there be substituted for the first given

straight line a conic regarded as the 'locus with respect to

four Hues ', and the proposition so extended can be used for

completing Apollonius's exposition of that locus. Zeuthen

suggests, on this ground, that the Porisms were in part by-

products of the theory of conies and in part auxiliary means

for the study of conies, and that Euclid called them by the



438 EUCLID

same name as that applied to corollaries because they were

corollaries with respect to conies.^ This, however, is a pure

conjecture.

(y) The Conks.

Pappus says of this lost work :
' The four books of Euclid's

Conies were completed by Apollonius, who added four more

and gave us eight books of Conies.'^ It is probable that

Euclid's work was already lost by Pappus's time, for he goes

on to speak of ' Aristaeus who wrote the still extant five books

of Solid Loci crwexfj tois kcoulkoTs, connected with, or supple-

mentary to, the conies'.^ This latter work seems to have

been a treatise on conies regarded as loci ; for ' solid loci ' was

a term appropriated to conies, as distinct from ' plane loci
',

which were straight lines and circles. In another passage

Pappus (or an interpolator) speaks of the ' conies ' of Aristaeus

the ' elder ',* evidently referring to the same book. Euclid no

doubt wrote on the general theory of conies, as Apollonius did,

but only covered the ground of Apollonius's first tbr§e books,

since Apollonius says that no one before him had touched the

subject of Book IV (which, however, is not important). As in

the case of the Elements, Euclid would naturally collect and

rearrange, in a systematic exposition, all that had been dis-

covered up to date in the theory of conies. That Euclid's

treatise covered most of the essentials up to the last part of

Apollonius's Book III seems clear from the fact that Apol-

lonius only claims originality for some propositions connected

with the 'three- and four-line locus', observing that Euclid

had not completely worked out the synthesis of the said locus,

which, indeed, was not possible without the propositions

referred to. Pappus (or an interpolator) ' excuses Euclid on

the ground that he made no claim to go beyond the discoveries

of Aristaeus, but only wrote so much about the locus as was
possible with the aid of Aristaeus's conies. We may conclude

that Aristaeus's book preceded Euclid's, and that it was, at

least in point of originality, more important. When Archi-

medes refers to propositions in conies as having been proved

' Zeuthen, Die LeJirevoii den Kegelschnltten im Altertum, 1886, pp. 168,
173-4.

^ Pappus, vii, p. 672. 18. ' Cf. Pappus, vii, p. 636. 23.
' Ih. vii, p. 672. 12. lb. vii, pp. 676. 25-67& 6.
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in the ' elements of conies ', he clearly refers to these two
treatises, and the other propositions to which he refers as well
known and not needing proof were doubtless taken from the
same sources. Euclid still used the old names for the conic

sections (sections of a right-angled, acute-angled, and obtuse-
angled cone respectively), but he was aware that an ellipse

could be obtained by cutting (through) a cone in any manner
by a plane not parallel to the base, and also by cutting a
cylinder ; this is clear from a sentence in his Phaenumena to

the effect that, ' If a cone or a cylinder be cut by a plane not

parallel to the base, this section is a section of an acute-angled

cone, which is like a shield {Ovpeos}.'

(<5) The Sarfuve-Lvct (tottoi npos knLcfyaviLa).

Like the Data and the Porisms, this treatise in two Books
is mentioned by Pappus as belonging to the Treasury of

AaalysU. What is meant by surface-loci, literally ' loci on a

surface' is not entirely clear, but wu are able to form a con-

jecture on the subject bj' means of remarks in Proclus and

Pappus. The former says (1) that a locus is ' a position of a

line or of a surface which has (throughout it) one and the

same property',^ and (2) that 'of locus-theorems some are

constructed on lines and others on surfaces ' ^ ; the effect of

these statements together seems to be that ' loci on lines ' are

loci which are lines, and ' loci on surfaces ' loci which are

surfaces. On the other hand, the possibility does not seem to

be excluded that loci on surfaces may be loci traced on sur-

faces ; for Pappus says in one place that the equivalent of the

quadratrix can be got geometi-ically ' by means of loci on

surfaces as follows'^ and then proceeds to use a spiral de-

scribed on a cylinder (the cylindrical helix)^ and it is consis-

tent with this that in another passage * (bracketed, however, by

Hultsch) 'linear' loci are said to be exhibited {S^LKvvvTai) or

realized from loci on surfaces, for the quadratrix is a ' linear
'

locus, i.e. a locus of an order higher than a plane locus

(a straight line or circle) and a ' solid ' locus (a conic). How-
ever this may be, Euclid's Surface-Loci probably included

' Proclus on Eucl. I, p. 394. 17. ^ lb., p. 394. 19.

' Pappus, iv, p. 258. 20-25. * lb. vii. 662. 9.
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such loci as were cones, cylinders and spheres. The two

lemmas given by Pappus lend some colour to this view. The

first of these ' and the figure attached to it are unsatisfactory

as they stand, but Tannery indicated a possible restoration.^

If this is right, it suggests that one of the loci contained all

the points on the elliptical parallel sections of a cylinder, and

was therefore an oblique circular cylinder. Other assump-

tions with regard to the conditions to which the lines in the

figure may be subject would suggest that other loci dealt with

were cones regarded as containing all points on particular

parallel elliptical sections of the cones. In the second lemma
Pappus states and gives a complete proof of the focus-and-

directrix property of a conic, viz. that the locus of a point

the distance vftvhich from a given point is in a given ratio

to its distance from a fixed straight line is a conic section,

which is an ellipse, a parabola or a hyperbola according as the

given ratio is less than, equcd to, or greater than unitg? Two
conjectures are possible as to the application of this theorem in

Euclid's Surface-Loci, (a) It may have been used to j^rove that

the locus of a point the distance of which from a given straight

line is in a given ratio to its distance from a given plane

is a certain cone. Or (&) it may have been used to prove

tlaat the locus of a point the distance of which from a given

point is in a given ratio to its distance from a given plane is

the surface formed by the re^'olution of a conic about its major

or conjugate axis.^

We come now to Euclid's works under the head of

Applied matlieniatics.

(a) The Phaenomena.

The book on sphaeric- intended for use in astronomy and
entitled Phaenomena has already been noticed (pp. 349, 351-2).

It is extant in Greek and was included in Gregory's edition of

Euclid. The text of Gregory, however, represents the later

of two recensions which difler considerably (especially in

Propositions 9 to 16). The best manuscript of this later

recension (b) is the famous \Vat. gr. 204 of the tenth century

^ ^
Pappus, vii, p. 1004. 17 ; Euclid, ed. Heiberg-Menge, vol. viii, p. 274.

- Tannery in Bulletin des sciences maihemcttiqties, 2° serie. VI, p. 149.
' Pappus, vii, pp. 1004. 23-1014; Euclid, vol. viii, pp. 275-81.
' For further details, see The Worhs of Archimedes, pp. Ixii-Lxv.
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while the best manuscript of the older and better version (a)

is the Viennese MS.Vind. gr. XXXI. 13 of the tM^elfth century.
A new text edited by Menge and taking account of both
recensions is now available in the last volume of the Heiberg-
Menge edition of Euclid.^

(P) Optica and Catoptricd.

The Optics, a treatise included by Pappus in the collection of

works known as the Little Astronomy, survives in two foi-ms.

One is the recension of Theon translated by Zambertus in

1505; the Greek text was first edited by Johannes Pena
(de la Pene) in 1557, and this form of the treatise was alone

included in the editions up to Gregory's. But Heiberg dis-

covered the earlier form in two manuscripts, one at Vienna
(Vind. gr. XXXI. 1 3) and one at Florence (Laurent. XXVIII. 3),

and both recensions are contained in vol. vii of the Heiberg-

Menge text of Euclid (Teubner, 1895). There is no reason to

doubt that the earlier recension is Euclid's own work ; the

style is much more hke that of the Elements, and the proofs of

the propositions are more complete and clear. The later recen-

sion is further differentiated by a preface of some length, which

is said by a scholiast to be taken from the commentary or

elucidation by Theon. It would appear that the text of this

recension is Theon's, and that the preface was a reproduction

hy a pupil of what was explained by Theon in lectures. It

cannot have been written much, if anything, later than Theon's

time, for it is quoted by Nemesius about A.D. 400. Only the

earlier and genuine version need concern us here. It is

a kind of elementary treatise on perspective, and it may have

been intended to forearm students of astronomy against

paradoxical theories such as those of the Epicureans, who
maintained that the heavenly bodies are of the size that they

look. It begins in the orthodox fashion with Definitions, the

first of which embodies the same idea of the process of vision

as we find in Plato, namely that it is due to rays proceeding

from our eyes and impinging upon the object, instead of

the other way about: 'the straight lines (rays) which issue-

from the eye traverse the distances (or dimensions) of great

^ Eudidis Phae.nomena et scripta Musica edidit Henricus Menge.

Fragmenta eoUegit et disposuit J. L. Heiberg, Teubntr, 1916.
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magnitudes
'

; Def . 2 :
' The tigure contained by the visual rays

is a cone which has its vertex in the eye, and its base at the

extremities of the objects seen
'

; Def . 3 :
' And those things

are seen on which the visual rays impinge, while those are

not seen on which they do not
'

; Def. 4 :
' Things seen under

a greater angle appear greater, and those under a lesser angle

less, while things seen under equal angles appear equal
'

;

Def. 7 :
' Things seen under more angles appear more distinctly.'

Euclid assumed that the visual rays are not ' continuous
',

i.e. not absolutely close together, but are separated by a

certain distance, and hence he concluded, in Proposition 1,

that we can never really see the whole of any object, though

we seem to do so. Apart, however, from such inferences as

these from false hypotheses, thei'e is much in the treatise that

is sound. Euclid has the essential truth that the rays are

straight; and it makes no difference geometrically whether

they proceed from the eye or the object. Then, after pro-

positions explaining the differences in the apparent size of an

object according to its position relatively to the eye, he proves

that the apparent sizes of two equal and parallel objects are

not proportional to their distances from the eye (Prop. 8) ; in

this proposition he proves the equivalent of the fact that, if a,

j3 are two angles and a < /8 < -I
tt, then

tan a a

tan /3
'^

/3'

the equivalent of wliich, as well as of the corresponding

formula with sines, is assumed without proof by Aristarchus

a little later. From Proposition 6 can easily be deduced the

fundamental proposition in perspective that parallel lines

(regarded as equidistant throughout) appear to meet. There

are four simple propositions in heights and distances, e.g. to

find the height of an object (1) when the sun is shining

(Prop. 18), (2) when it is not (Prop. 19) : similar triangles are, ,

of course, used and the horizontal mirror appears in the second

case in the orthodox manner, with the assumption that the

angles of incidence and reflection of a ray are equal, 'as

is explained in the Catoptrica (or theory of mirrors) '. Pro-

positions 23-7 prove that, if an eye sees a sphere, it sees

less than half of the sphere, and the contour of what is seen
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appears to be a circle; if the eye approaches nearer to

the sphere the portion seen becomes less, though it appears
greater ; if we see the sphere with two eyes, we see a hemi-
sphere, or more than a hemisphere, or less than a hemispliere

according as the distance between the eyes is equal to, greater

tlian, or less than the diameter of the sphere; these pro-

positions are comparable with Aristarchus's Proposition 2

stating that, if a spliere be illuminated by a larger sphere,

the illuminated portion of the former will be greater

than a hemisphere. Similar propositions with regard to the

cylinder and cone follow (Props. 28-33). Next Euclid con-

siders the conditions for the apparent equality of different

diameters of a circle as seen from an eye occupying various

positions outside the plane of the circle (Props. 34-7) ; he

shows that all diameters will appear equal, or the circle will

really look like a circle, if the line joining the eye to the

centre is perpendicular to the plane of the circle, or, not being

perpendicular to that plane, is equal to the length of the

radius, but this will not otherwise be the case (35), so that (36)

a chariot wheel will sometimes appear circular, sometimes

awry, according to the position of the eye. Propositions

3 7 and 38 prove, the one that there is a locus such that, if the

eye remains at one point of it, while a straight line moves so

that its extremities always lie on it, the line will always

appear of the same length in whatever position it is placed

(not being one in which either of the extremities coincides

with, or the extremities are on opposite sides of, the point

at which the eye is placed), the locus being, of course, a circle

in which the straight line is placed as a chord, when it

necessarily subtends the same angle at the circumference or at

the centre, and therefore at the eye, if placed at a point of the
,

circumference or at the centre ; the other proves the same thing

for the case where the line is fixed with its extremities on the

locus, while the eye moves upon it. The same idea underlies

several other propositions, e.g. Proposition 45, which proves

that a common point can be found from which unequal

magnitudes will appear equal. The unequal magnitudes are

straight lines BC, CD so placed that BCD is a straight line.

A segment greater than a semicircle is described on BG, and

a similar segment on CD. The segments will then intersect
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at F, and the angles subtended by BG and CD at -F .are

equal. The rest of the treatise is of the same character, and

it need not be further described.

The Gatoptrica published by Heiberg in the same volume is

not by Euclid, but is a compilation made at a much later date,

possibly by Theon of Alexandria, from ancient works on the

subject and mainly no doubt from those of Archimedes and

Heron. Theon ^ himself quotes a Gatoptrica by Archimedes,

and Olympiodorus ^ quotes Archimedes as having proved the

fact which appears as an axiom in the Gatoptrica now in

question, namely that, if an object be placed just out of sight

at the bottom of a vessel, it will become visible over the edge

when water is poured in. It is not even certain that Euclid

wrote Gatoptrica at all, since, if the treatise was Theou's,

Proclus may have assigned it to Euclid through iiiadvertence.

(y) Music.

Proclus attributes to Euclid a work on the Elements of

Music {at Kara fiovaiKrjv <TTOL\ii(i>(Tiis)" ',
SO does Marinus.*

As a matter of fact, two musical treatises attributed to Euclid

are still extant, the Sectio Ganonis {KaraTofifj Kavovos) and the

Iniroductio harmonica (Elaraymyr) apfjiovLKri). The latter,

however, is certainly not liy Euclid, but by Cleonides, a pupil

of Aristoxenus. The question remains, in what relation does

the iiiectio Ganoids stand to tlie 'Elements' mentioned by
Proclus and Marinus ? The l^ectio gives the Pythagorean

theory of music, but is altogether too partial and slight to

deserve the title ' Elements of Music '. Jan, the editor of the

Masici Graeci, thought that the iSectio was a sort of summary
account extracted from the ' Elements ' by Euclid himself,

which hardly seems likely; he maintained that it is the

genuine work of Euclid on the grounds (1) that the style and
diction and the form of the propositions agi'ee well with what
we find in Euclid's Elements, and (2) that Porphyry in his

commentary on Ptolemy's Harmonica thrice quotes Euclid as

the author of a Sectio Ganonis.'^ The latest editor, Menge,

' Theon, Conim. on Ptolemy's Sijntaxis, i, p. 10.
- Comment, on Arist. Meteorolog. ii, p. 94, Ideler, p. 211. 18 Busse.
' Proclus on Kucl. I, p. 69. 3.
' Marinus, Coiniii. on the Data (Euclid, vol. vi, p. 254. 19).
^ See Wallis, Opera matUematica, vol. iii, 1699, pp. 267, 269, 272.
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points out tliat the extract given bj^ Porphyi-y sIionvs some

differences from our text and contains some things quite

unworthy of Euclid ; hence he is inclined to think that the

work as we have it is not actually by Euclid, but was ex-

tracted by some other author of less ability from tlie genuine
' Elements of Music ' by Euclid.

(S) Works on mechanics attributed to Euclid.

The Arabian list of Euclid's works further includes among
tliose held to be genuine ' the book of the Heavj' and Light '.

This is apparently' tlie tract De Levi et poaderoso included by
Hervagius in the Basel Latin translation of 1537 and by

Gregory in his edition. That it comes from the Greek is

made clear by the lettering of the figures ; and this is con-

firmed by the fact that another, ver}^ slightly different, version

exists at Dresden (Cod. Dresdensis Db. 86), which is evidently'

a version of an Arabic translation from the Greek, since the

lettering of the figures follows the order characteristic of sucli

Arabic translations, a, b, g, d, e, z, 1t, t. The tract consists of

nine definitions or axioms and five propositions. Among the

definitions are these : Bodies are equal, different, or greater in

size according as they occupy equal, different, or greater spaces

(1-3). Bodies are equEil in power or in virtue which move

over equal distances in the same medium of air or water in

equal times (4), while the poiuer or virtue is greater if the

motion takes less time, and less if it takes more (6). Bodies

are of the same hind if, being equal in size, they are also equal

in p>ower when the medium is the same ; they are different in

kind when, being equal in size, they are not equal in power or

virtue (7, 8). Of bodies different in kind, that has more jMiver

which is more dense (soUdivs) (9). With these hypotheses, the

author attempts to prove (Props. 1, 3, 5) that, of bodies whicli

traverse unequal spaces in equal times, that which traverses

the greater space has the greater ^JOice?- and that, of bodies of

the same kind, the power is proportional to the size, and con-

verselJ^ if the poiuer is proportional to the size, the bodies are

of the same kind. We recognize in the potentia or virtufi

the same thing as the Swa/in and la-xvs of Aristotle.^ The

' Aristotle, Physia, 7.. h.
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property assigned by the author to bodies of the same kioid is

quite different from what we attribute to bodies of the same

specific gravity; he purports to prove that bodies of the

same kind have poiuer proportional to their size, and the effect

of this, combined with the definitions, is that they move at

speeds proportional to their volumes. Thus the tract is the

most precise statement that we possess of the principle of

Aristotle's dynamics, a principle which persisted until Bene-

detti (1530-90) and Gahlei (1564-1642) proved its falsity.

There are yet other fragments on mechanics associated with

the name of Euclid. One is a tract translated by Woepcke
from the Arabic in 1851 under the title 'Le livre d'Euchde

sur la balance ', a work which, although spoiled by some com-

mentator, seems to go back to a Greek original and to have

been an attempt to establish a theory of the lever, not from a

general principle of dynamics like that of Aristotle, but from

a few simple axioms such as the experience of daily life might

suggest. The original work may have been earlier than

Archimedes and may have been written by a contemporary of

Euclid. A third fragment, unearthed by Duhem from manu-

scripts in the Bibliotheque Nationale in Paris, contains four

propositions purporting to be 'liber Euelidis de ponderibus

secundum terminorum circumferentiam '. The first of the

propositions, connecting the law of the lexer with the size of

the circles described by its ends, recalls the similar demon-

stration in the Aristotelian Mechanica ; the others attempt to

give a theory of the balance, taking account of the weight of

the lever itself, and assuming that a portion of it (regarded as

cylindrical) may be supposed to be detached and replaced by
an equal weight suspended from its middle point. The three

fragments supplement each other in a curious way, and it is a

question whether thej^ belonged to one treatise or were due to

different authors. In any case there seems to be no indepen-

dent evidence that Euclid was the author of any of the

fragments, or that he wrote on mechanics at all.'^

' For further details about these mechanical fragments see P. Duheui.
Les origines de la statiqne, 1905, esp. vol. i, pp. 61-97.





PDINTKD IN ENGLAND

AT THE OXFORD UNIVERSITY PRESS














