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AR ISTARCHUS OF SAMOS

H ISTOR I ANS ofmathematics have, as a rule, given too little
attention to A ristarchus of Samos . The reason is no doubt
that he was an astronomer , and therefore it might be supposed
that his work would have no sufficient interest for the mathe
matician . The Greeks knew better ; they called him A r istar

chus ‘ the mathematician ’

, to distinguish him from the host
of other A r istar chuses ; he is also included by Vitruvius
among the few great men who possessed an equally profound
knowledge of all branches of science , geometry

,
astronomy

,

music , 860 .

‘Men of this type ar e rare , men such as were , in times past
,

A ristarchus of Samos , Philolaus and A rchytas of Tarentum
,

A pollonius of Perga ,
Eratosthenes ofCyrene , A rchimedes and

Scop

'

inas of Syracuse, who left to posterity many mechanical
and gpomonic appliances which they invented and explained
on mathematical (lit . numerical ’) principles .

’ 1

That A ristarchus was a very capable geometer is proved by
his extant work 0 -11 the si z es and d istances ofthe Sun and

Moon which will be noticed later in this chapter : in the

mechanical l ine he is credited with the discovery of an im

proved sun - dial
, the so- called a xoidm, which had ,

not a
,
plane ,

but a concave hemispherical surface
,
with

'

a pointer erected
vertically in the middle throwing shadows and so enabling
the direction and the height ofthe sun to be read offbysmeans

of lines marked on the surface of the hemisphere . H e also
wrote on vision ,

light and colours . H is views on the latter
subjects were no doubt largely influenced by his master, Strato
ofLampsacus ; thus Strato held that colours were emanations
from bodies

,
material molecules , as it were , which imparted to

the interven ing air the same colour as that possessed by the
body

,
while A ristarchus said that colours ar e

‘

shapes or forms

Vitruvius
,
De ar chitectu r a ,

i . l . 1 6 .

B



2 AR ISTARCHUS OF SAMOS

stamping the air with impressions like themselves , as itwere
’

,

that colours in darkness have no colouring and that ‘ light
is the colour impinging on a substratum
Two facts enable us tofix A ristarchus’s date approximately .

In B. C . he made an observation of the summer
solstice ; and a book of his , presently to be mentioned, was

published before the date ofA rchimedes ’s P sammit‘

es or Sand

r eckoner
,
a work written before 2 1 6 B . C . A r istarchus , there

fore, probably lived ci1 1ca 3 1 0 —2 3 0 B .C . , that is , he was older
than A rchimedes by about 2 5 years .

To A ristarchus belongs the high honour of having been 1

the first to formulate the Copernican hypothesis
,
which was

then abandoned again until it was revived by Copernicus
himself. His claim to the title of the ancient Copern icus is

still, in my opinion , quite unshaken ,
notwithstand ing the ih

genious and elaborate arguments brought forward by Schia
par elli to prove that it was H er aclides of Pontus who first
conceived the heliocentric idea. H er aclides is (along with one
Ecphantus , a Pythagorean)credited with having been the first
to hold that the earth revolves about its own axis every 2 4
hours

,
and he was the first to discover that Mercury and Venus

revolve, like satellites , about the sun . But though this proves
that H er aclides came near , if he did not actually reach , the

hypothes is ofTycho Brahe, according to wh ich the earth was

in the centre and the rest of the system, the sun w ith the
planets revolving round it , revolved round the earth

,
it does

not suggest that he moved the earth away from the centre .

The contrary is indeed stated by Aetius , who says that H era
clides and Ecphantus make the earth move , not in the sense of
tr anslation , but by way of turning on an axle

,
like a wheel

,

from west to east , about its own centre None of the

champions ofH er aclides have been able to meet this pos itive
statement. Butwe have conclusive evidence in favour ofthe
claim of A ristarchus ; indeed, ancient testimony is unanimous
on the point . Not only does Plutarch tell us that C leanthes
held that A ristarchus ought to be indicted for theimpiety of
putting the H earth ofthe Universe in motion 2

; we have the
best possible testimony in the precise statement of a great

1 A
'

et. iii . 1 3. 3 , I
’

or s . is, p. 341 . 8 .

2 Plutarch , Defacie in or be lunae, c . 6
, pp. 922 F—923 A .



AR ISTARCHUS OF SAMOS

contemporary, A rchimedes . In the Sand - r eckoner A rchi
medes has this passage.

You [K ing Gelon] ar e aware that universe is the name

given by most astronomers to the sphere the centre ofwhich
is the centre of the earth , while its radius is equal to the
straight line between the centre of the sun and the centre of
the earth . This is the common account , as you have heard
from astronomers . But A ristarchus brought out a book con

s isting of cer tain hypotheses, wherein it appears , as a couse
quence of the assumptions made , that the universe is many
times greater than the universe j ust mentioned . H is hypo
theses ar e that thefixed star s and the sun r emain unmoved ,

thatthe ear th r evolves about the sun in the cir cumfer ence ofa

ci r cle, the sun lying in the middle ofthe or bit, and that the
sphere ofthe fixed stars , situated about the same centre as the

sun
,
is so great that the circle in which he supposes the earth

to revolve bears such a proportion to the distance ofthe fixed
stars as the centre ofthe sphere bears to its surface .

’

(The last statement is a variation of a traditional phrase , for
which there ar e many parallels (cf. A ristarchus

’

s Hypothesis 2
that the earth is in the relation of a point and centre to the
sphere in which the moon and is a method of saying
that the universe is infinitely great in relation notmerely to
the si z e of the sun but even to the orbit of the earth in its

revolution about it; the assumptionwas necessary to A ris
barchus in order that he might not have to take account of
parallax .)
Plutarch

,
in the passage referred to above, also makes it

clear that A ristarchus followed H er aclides in attributing to

the earth the dai ly rotation about its axis . The bold hypo
thesis of A ristarchus found few adherents . Seleucus , of

Seleucia on the Tigris
,
is the only convinced supporter of it of

whom we hear, and it was speedily abandoned altogether ,
mainly owing to the great authority ofH ipparchus . Norfdo
we find any trace of the heliocentric hypothesis in A ris
tarchus

’

s extant work On the siz es and distances i-of the

Sun and Moon . This is presumably because that work was
written before the hypothesis was formulated in the book
referred to by A rchimedes . The geometry of the treatise
is

,
however , unaffected by the difference between the hypo

theses .
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Ar chimedes also says that it was A ristarchus who dis
covered that the apparent angular diameter ofthe sun is about
1/7 20th part ofthe z odiac circle , that is to say, half a degree.

We do notknow how he arrived at this pretty accurate figure
but

, as he is credited with the invention ofthe match), he may
have used this instrument for the purpose. But here again
the discovery must apparently have been later than the trea
tise On si z es and distances , for the value of the subtended
angle is there assumed to be 2

°

(Hypothesis How A ris
tar chus came to assume a value so excessive is uncer tain . A s

the mathematics ofhis treatise is not dependent on the actual
value taken, 2

°
may have been assumed merely by way of

illustration ; or it may have been a guess at the apparent
diameter made before he had thought of attempting tomea
sure it. A ristarchus assumed that the angular diameters of
the sun and moon at the centre ofthe earth ar e equal .
The method of the treatise depends on the just observation,

which is A ristarchus ’s third ‘ hypothesis that when themoon
appears to us halved , the greatcircle which divides the dark
and the bright portions ofthe moon is in the direction of our

eye
’

the effect ofthis (s ince the moon receives its light from
the sun), is that at the time of the dichotomy the centres of
the sun,

moon and earth form a triangle right - angled at the

centre of the moon . Two other assumptions were necessary
first , an estimate ofthe siz e of the angle ofthe latter triangle
at the centre ofthe earth at the moment of dichotomy : this
A ristarchus assumed (Hypothesis 4)to be

‘ less than a quad
rant by one- thirtieth ofa quadrant i . e . again an inaccu

rate estimate, the true value being 8 9
°

secondly , an esti
mate of the breadth of the earth’s shadow where the moon
traverses it : this he assumed to be the breadth of two

moons
’

(Hypothesi s
The inaccuracy ofthe assumptions does not, however, detract

from themathematical interest ofthe succeeding investigation.

Here we find the logical sequence ofpropos itions and the abeo
lute rigour ofdemonstration characteristic ofGreek geometry ;
the only remaining drawback would be the practical difficulty
of determining the exact moment when the moon ‘

appears to
us halved ’

. The form and style of the book ar e.

thoroughly
classical, as befits the period between Euclid and A rchimedes
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the Greek is even remarkably attractive. The content from
the mathematical point of V iew is no less interesting, for we
have here the first specimen extant of pure geometry used
with a tr igonometr ical object, in which respect it is a sortof
forerunner ofA rchimedes ’s Measu r ementofa Cir cle. A r istar

chus does not actually evaluate the trigonometrical ratios
on which the ratios of the siz es and distances to be obtained
depend ; he finds limits between which they lie,and that by
means of certain propositions which he assumes without proof,
and which therefore must have been generally known to

mathematicians of his day . These propos itions ar e the equi
valents ofthe statements that ,

(1) if or is what we call the ci1 cular measure of an angl
and or is less than then the ratio sin decr eases, and the

ratio tan incr eases, as or increases from 0 to
2
7 7 3

(2) if B be the circular measure of another angle less than
i 7 r , and or >B,

then

or tan or

11 B tan 6
'

A ristarchus of course deals , notwith actual circular measures ,
sines and tangents , but w ith angles (expressed not in degrees
but as fractions of right angles), arcs of circles and their
chords . Par ticular results obtained “ by A ristarchus ar e the

equivalent of the following :

sin 3
°

7
1
1

0
1

1 [Prop 7 ]

sin 1
°

g
i

g , [Prop 1 1 ]

l cos l
°

g% , [Prop 1 2]

1 > cos
2 1

°

as. [Prop 1 3 ]

The book consists ofeighteen propositions . Beginning with
six hypotheses to the effect already indicated, A ristarchus
declares that he is now in a position to prove

(I) that the distance ofthe sun from the earth 1 8 greater than
eighteen times , but less than twenty times , the distance ofthe
moon from the earth ,

(2) that the diameter of the sun has the same ratio as afore
said to the diameter ofthe moon ;
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AR ISTARCHUS OF SAMOS 7

BH : HA sin HA s in HEA ]
AH AB z AHBA ,

whence AHAB
3
1
; AHBA ,

and (taking the doubles) AHA K 3
1

3 AHBK

But AHBK AEBO 75
1
5 R (where R is a right angle);

therefore AHAK 3 5
1

3
-

5 R .

But ‘
a magnitude (ar cEX) seen under such an angle is

imperceptible to our eye

therefore, a for tioml, the arcs OE , DF ar e severally imper
ceptible to our eye. Q. E. D.

A n easy deduction from the same figure is Prop. 1 2 , which
shows that the ratio of CD, the diameter of the ‘ dividing
circle ’

,
to EF, the diameter ofthe moon,

is 1 but g% .

We have AEBC
’

ABA C

therefore (ar e EC) 5
1

5 (ar e EG),

and accordingly (ar c CG) (ar c GE ) 8 9 590 .

Doubling the arcs, we have

(ar c 0GB) (ar cEGE)

But CD :EF (ar c CGD) (ar c EGE)

[equivalent to sin a sin 3 a/B,
where A CBD 2 a ,

and 2 B w] ;
therefore CD :EF cos 8 9 : 90 ,

while obviously

Prop . 1 1 finds limits to the ratio EF: BA (the ratio of the
diameter of the moon to the distance of its centre from
the centre ofthe earth); the ratio is but 1 3 0 .
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The first part follows from the relation found in Prop . 4 ,

namely BC zBA

EF 2 BC.

The second part requires the
_

use of the circle drawn with
centre A and radius A C. This circle is that on wh ich the
ends ofthe diameter ofthe dividing circle move as the moon

moves in a circle about the earth . If r is the radius A O
of this circle,

a chord in it equal to r subtends at the centre
A an angle of % R or and the ar c CD subtends at A

an angle of 2
°

But (ar e subtended by CD) (ar c subtended by r )
i

< CD : r ,

CD z r
’

that is, CD zo'A

And
,
by similar triangles,

0L : C’A CB z BA
,
or CD z CA 2 CB z BA FE zBA .

Therefore FE : BA 1 : 3 0 .

The proposition which is of the greatest interest on the

whole is Prop . 7
, to the effect that the d istance of the sun

fr om the ear th is gr eater than 1 8 times
,
but less than 2 0

times , the distance of the moon fr om the ear th. This result
represents a great improvement on all previous attempts to
estimate the relative distances . The first speculation on the

subject was that of Anaximander (cir ca 6 1 1 — 5 45 B . who

seems to have made the distances of the sun and moon from
the earth to be in the ratio Eudoxus

, according to

A rchimedes , made the diameter of the sun 9 times that of
the moon ,

and Phidias
,
A rchimedes’s father, 1 2 times ; and

,

assuming that the angular diameters of the two bodies ar e

equal , the ratio oftheir distances would be the same.

A ristarchus ’s proof is shortly as follows . A is the centre of
the sun,

B that of the earth , and C that of themoon at the

moment ofdichotomy, so that the angle A OB is right’. A BEF
is a square, and A E is a quadrant of the sun’

s circular orbit .
Join BF,

and bisect the angle EBE by BG, so that

A GBE or 2 25 .
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I . Now
,
by Hypothesis 4 , AA BO

SO that Z E BE : ABAO :

therefore AGBE AHBE 51; : 3
1—
6 R

1 5 : 2
,

GE : HE [= tan GBE z tan HBE ]

1 5 : 2 .

The ratio which has to be proved is A B : BC or

FGz tGE z
z Ft BE z

‘

z

(this is the approx imation to 2 mentioned
known tothe Pythagoreans).
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Therefore FE zEG or

Compounding this with (1)above, we have

FE zEH > or

II . To prove BA 2 0 BC.

Let EH meet the circle AB in D,
and draw DK parallel

to EB . C ircumscribe a circle about the triangle BK D,
and

let the chord BL be equal to the radius (r )ofthe circle .

ABDK ADBE 3
1
5 13,

so that ar c BK 5
1

5 (circumference of circle).

Thus (ar cBK ) (ar c BL)

1 1 0 .

And (ar e BK ): (ar c BL) -BK : r

[this is equ ivalent to a B sin or sin B,
where or B fir ] ,

r 1 0 BK ,

BD 2 0 BK .

BD zBK

AB 2 0 B0 .

The remain ing results obtained in the treatise can be

visualiz ed by means of
,
the three figures annexed, which have

reference to the positions of the sun (centre A), the earth
(centre B)and the moon (centre C)

'

dur ing an eclipse . Fig . 1

shows the middle position ofthe moon relatively to the earth ’

s

shadow wh ich is bounded by the cone comprehending the sun

and the earth . ON is the ar c w ith centre B along which
move the extremities ofthe diameter ofthe dividing circle in
themoon . Fig. 3 shows the same position ofthe moon in the

middle of the shadow
,
but on a larger scale. Fig. 2 shows

the moon at the momentwhen it has just entered the shadow ;
and

,
as the breadth ofthe earth’s shadow is that oftwo moons

(Hypothesis the moon in the position shown touches BN at

Nand BL at L, where L is the middle point of the ar e ON.

It should be added that
,
in Fig. 1 , UV is the diameter ofthe

circle in which the sun is touched by the double cone with B
as vertex , which comprehends both the sun and the moon ,
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while Y; 3 ar e the points in which the perpendicular through
A

, the centre ofthe sun
,
to BA meets

results obtained

Prop. 1 3 .

UN i‘ (d iam . ofmoon) 2 : L
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0N : (diar-n. of sun) 1 : 9

2 2 2 2 5 .

sun) (diam . of

60 : 1 9 .

It is Worth while to show how these results ar e pr oved .

Prop. 1 3 ,

(1) In Fig . 2 it is clear that

The triangles LON , CLN being similar ,

therefore

8 9 : 45 . (by Prop.
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Hence

8 92

therefore ON z LP 7 92 1 : 4 0 5 0
0

8 8 says A ristarchus.

[If
"

z %§t be developed as a continued fr action, we easily

obtain 1 +
1

1

+ 5 1

1

7 g, which i s in fact2
(2) ON 2 (diam. ofmoon).

But (diam. ofmoon) ofsun), (Prop. 7 )

therefore ON 3 (diam. of sun).
'

Again ON : (diam. ofmoon) from above,

and (diam . ofmoon) (diam. of sun) 1 : 2 0 ; (Prop. 7 )

therefore, ea: aequali ,
ON : (diam . ofsun) 8 8 9 00

2 2 2 2

'

s ;

(3) S ince the same cone comprehends the sun and the moon ,

the triangle BUV (Fig. 1) and the triangle BLN (Fig . 2)ar e

similar
,
and

LN zLP UV : (diam . of

WU : UA

HA z AS

UA : A Y

LN z LP (Prop . 1 2)

afor tior i , UA : A Y

(d iam . ofsun) YZ .

But ON : (diam . of sun) (Prop . 1 3)

therefore, ea aequali ,

ON z YZ 8 9 x 2 2 : 9 0 x 22 5

9 7 9 1 0 1 2 5 .
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A B B0 2 0 1

therefore
,
ea; aeqaali ,

A B z BR 1 3 50 0 6 7 4

6 7 50 3 3 7
,

whence, by inversion and componendo,

R A A B 7 0 8 7 6 7 50 .

1 5

1 0 1 2 5 z 9 7 9 ; (Prop . 1 3)
therefor e ,

conver tendo
,

XA : A R 1 0 1 2 5 : 9 1 4 6 .

From this and (l)we have , emaeqnali ,

XA : A B > 1 0 1 2 5 7 0 8 7 9 1 4 6 x 6 7 5 0

7 1 7 5 5 8 7 5 6 1 7 3 5 5 0 0

afor tior i.

[It is
'

difiicultnotto see in 4 3 3 7 the expression 1

which suggests that was obtained by developing
ratioas a continued fraction ]
There fore , conver tendo,

XA :XB 4 3 6 ,

whence (diam . of sun) (diam. ofearth) 4 3 6 . Q. E.



A RCH IMEDES

TH E siege and capture ofSyracuse by Marcellus during the
second Punic war furnished the occasion for the appearance of
A rchimedes as a personage in h istory ; it is w ith this b istori
cal event that most of the detailed stories of him ar e con

nected ; and the fact that he was killed in the sack ofthe city
in 2 1 2 B . C .

,
when he is supposed to have been 7 5 years of age ,

enables us to fix his date at about 2 8 7 — 2 1 2 B . C . H e was the

son of Phidias , the astronomer , and was on intimate terms

with
,
if not related to,

K ing H ieron and his son Gelon . It
appears from a passage of Diodor us that he spent some time

in Egypt
,
which visit was the occasion ofhis discovery of the

so- called A rchimedean screw as a means of pumping water.

1

It may be inferred that he stud ied at A lexandria with the
successors of Euclid . It was probably atA lexandria that he
made the acquaintance ofConon of Samos (for whom he had

the highest regard both as a mathematician and a friend)and
ofEratosthenes ofCyrene . To the former he was in the habit
of commun icating his discourses before their publication ;
while it was toEratosthenes that he sent The Method , .

with an

introductory letter which is of the highest interest , as wel l as
(if we may judge by its heading)the famous Cattle - Problem.

Tr aditions .

It is natural that history or legend should say more of his
mechanical inventions than of his mathematical achievements ,
which would appeal

'

less to the average m ind . H is machines
were used with great effect against the Romans in the s iege
ofSyracuse . Thus he contrived (so we ar e told) catapults so

ingeniously constructed as to be equally serviceable at long or
Diodor us , v. 8 7 . 3 .
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short range, machines for discharging“

showers of missiles
through holes made in the walls , and others consisting of

long movable poles projecting beyond the walls which either
dropped heavy - Weights on the enemy ’

s ships, or grappled
their prows by means of an iron hand or a beak like that of
a crane, then lifted them into the air and let them fall again.

1

Marcellus is said to have derided his own engineers with the
words , ‘ Shall we not make an end of fighting against this
geometrical Briareus who uses our ships like cups to ladle
water from the sea, drives off our sambuca ignominiously
with cudgel—blows , and by the multitude of missiles that he
hurls at u s all at once outdoes the hundred - handed giants of

but all to no purpose, for the Romans were in
such abject terror that

,

‘ if they did but see a piece of rope
or wood projecting above the wall , they would cry “ there it
is declaring that A rchimedes was setting some engine in
motion against them , and would turn their backs and r un

away These things
,
however

,
were merely the diversions

of geometry at play and A rchimedes himself attached no

importance to them. A ccording to Plutarch ,

though these inventions had obtained for him the renown of

more than human sagacity ,
he yetwould not even deign to

leave beh ind him any written work on such subj ects , but ,
regarding as ignoble and sordid the business ofmechanics and
every sort ofar twhich is directed to use and profit , he placed
his whole ambition in those speculations the beauty and

subtlety of which is untainted by any adm ixture of the com

mon needs of life.

’ 4

(a) A str onomy.

A rch imedes did indeed write one mechanical book , On

Spher e
- making,

whi ch is lost ; this described the construction
of a sphere to imitate the motions of the sun ,

moon and

planets .

5 C icero saw this contrivance and gives a description
of it ; he says that it represented the periods of the moon

and the apparent motion of the sun with such accuracy that
it would even (over a short period) show the eclipses of the
sun and moon .

6 A s Pappus speaks of ‘ those who understand
1 Polybius , H ist. viii. 7 , 8 ; Livy xxiv. 84 ; Plutarch, Mar cellus , cc. 15— 1 7 .

2 I b.
, c. 1 7 .

3 I b. , c. 14 .

4 I b. , c. 1 7 .

5 Carpus in Pappus , viii, p. 1026 . 9 ; Proclus on Eucl . I , p. 41 . 1 6 .

S Cicero, De r ep. i . 2 1 , 22 , T7 7 30 . i . 63 , De nat. dear . 1 1 . 88 .

0
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the making of spheres and produce a model ofthe heavens by
means of the circular motion of water is possible that
A rchimedes’s sphere was moved by water . In any case A rchi
medes was much occupied with astronomy. Livy calls him
‘
unicus spectator caeli sider umque H ipparchus says , ‘From
these observations it is clear that the differences in the years
ar e altogether small , but , as to the solstices, I almost think
that A rchimedes and I have both erred to the extent of a

quarter ofa day both in the observation and in the deduction
therefrom Archimedes then had evidently considered the
length of the year. Macrobius says he discovered the dis
tances of the planets ,3 and he himself describes in his Sand
r eckoner the apparatus by which he measured the apparent
angular diameter ofthe sun .

(B) Mechanics .

A rchimedes wrote, as we shall see
,
on theoretical mechanics ,

and it was by theory that he solved the problem To move a

given weight by a given for ce, for it was in reliance ‘
on the

irresistible cogency of his proof ’ that he declared to H ieron
that any given weight could be moved by any given. force
(however small), and boasted that, ‘ if he were given a place to
stand on, he could move the earth ’

(7 7 0?B6), Kai K it/ (3 Tau ya
’

v,

as he said in his Doric dialect). The story
,
told by Plutarch

,

is that, ‘when H ieron was struck with amaz ement and asked
A rchimedes to reduce the problem to practice and to give an

illustration of some great weight moved by a small force, he
fixed upon a ship of burden w ith three masts from the king’s
arsenal which had only been drawn upwith great labour by
many men, and loading her with many passengers and a full
freight, himself the while sitting far off

,
with no great effort

butonly holding the end ofacompound pulley (froAfio-waar os‘)
quietly in his hand and pulling at it

, he drew the ship along
smoothly and safely as if she were moving through the sea.

’ 4

The story that A rchimedes set the Roman ships on fir e by
an arrangement of bur ning- glasses or concave mirrors is not

found in any authority earlier than Lucian ; but it is quite
1 Livy xxiv. 34. 2 .

2 Ptolemy , Syntax is, III . 1 , vol. 1, p. 1 94. 23 .

3 Macrobius, In Somn. Scz
'

p . ii. 3 ; cf. the fiour es in H '

1

p. 66 . 52 sq.
, ed . Duncker.

‘PPO ytus, R efua

Plutarch, Marcellus , c. 14 .
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likely that he discovered some form of burning -m irror , e . g. a

paraboloid of revolution , which would reflect to one point all
rays falling on its concave surface in “

a direction parallel to
its axis .

A rchimedes ’s own View of the relative importance of his

many discoveries is well shown by his request to his friends
and relatives that they should place upon his tomb a r epr esen

tation of a cylinder circumscribing a sphere ,
with an inscr ip

tion giving the ratio which the cylinder bears to the Sphere ;
from which we may infer that he regarded the discovery of
this ratio as his greatest achievement. C icero,

when quaestor
in S icily , found the tomb in a neglected state and repaired it1 ;
but it has now disappeared, and no one knows where he was

buried .

A rchimedes ’s entire preoccupation by his abstract studies is
illustrated by a number of stories . We ar e told that he would
forget all about his food and such necessities of life, and would
be drawing geometrical figures in the ashes ofthe fir e or , when
anointing himself, in the oil on his bod-

y .

2 Of the same sort
is the tale that , when he discovered in a bath the solution of

the question referred tohim by H ieron , as towhether a certain
crown supposed to have been made ofgold did not in fact cen
tain a certain proportion of silver , he r an naked through the
street to his home shouting eb

’

pmca , ez
'

J
’

pmca .

3 H e was killed
in the sack of Syracuse by a Roman soldier . The story is
told in various forms ; the most p icturesque is that found in
Tz etz es , which represents him as saying to a Roman soldier
who found him intent on some diagrams which he had drawn
in the dust and came too close, ‘ Stand away

,
fellow ,

from my
diagram whereat the man was so enraged that he killed
him.

4

Summary of main achievements .

In geometry A rchimedes ’s work consists in the main of

original investigations into the quadrature of curvilinear
plane figures and the quadrature and cubature of curved
surfaces . These investigations , beginning where Euclid’s
Book XI I left off, actually (in the words of Chasles) ‘ gave

1 Cicero, Tusc. v . 64 sq .

2 Plutarch , Mar cellus
,
c. 1 7 .

3 Vitruvius , De ar chitect/um , ix. 1 . 9
,
10 .

4 Tz etz es , Chiliad . ii. 35. 1 35.
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birth to the. calculus ofthe infinite conceived and brought to
perfection successively by K epler , Cavalieri , Fermat , Leibniz
and Newton ’

. H e performed in fact what is equivalent to
integr ation in finding the area of a parabolic segment , and of
a spiral

, the surface and volume of a sphere and a segment of
a sphere, and the volumes of any segments of the solids of

revolution of the second degree. In arithmetic he calculated
approximations to the value of 7 7 , in the course ofwhich cal

culation he shows that he could approximate to the value of
square roots of large or small non - square numbers ; he further
invented a system of arithmetical terminology by which he
could express in language any number up to that which we

should write down with 1 followed by million m illion
ciphers . In mechan ics he notonly worked out the principles of
the subject but advanced sofar as tofind the centre ofgravity
ofa segment ofa parabola ,

a sem icircle , a cone , a hem isphere ,

a segment of a sphere, a right segment of“

a paraboloid and

a spheroid ofrevolution . His mechanics , as we shall see, has

become more important in relation to his geometry s ince the
discovery ofthe treatise called TheMethod which was formerly
supposed to be lost. Lastly ,

he invented the whole science of
hydrostatics , which again he carried so far as to give a most
complete investigation ofthe positions of rest and stability of
a right segment of a paraboloid of revolution floating in a

fluid w ith its base either upwards or downwards , but so that
the base is either wholly above or wholly below the surface of
the fluid . This represents a sum of mathematical achieve
ment unsurpassed by any one man in the world ’

s history.

Char acter of tr eatises .

The treatises ar e , without exception , monuments ofmathe
matical exposition ; the gradual revelation of the plan of

attack ,
the masterly ordering of the propositions , the stern

elimination of everything not immediately relevant to the

purpose, the finish of the whole
,
ar e so impressive in their

perfection as to create a feeling akin to awe in the mind of
the reader. A s Plutarch said , ‘ It is not possible to find in
geometry more difficult and troublesome questions or proofs
setout in simpler and clearer propositions There is atthe

1 Plutarch, Mar cellus , c. 1 7 .
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same time a certain mystery veiling the way in which he
arrived at his results . For it is clear that they were not

d iscover ed by the steps which lead up to them in the finished
treatises . If the geometrical treatises stood alone , A rchi
medes might seem

,
as Wallis said

,

‘

as it were of set purpose
to have covered up the traces ofhis investigation ,

as if he had
grudged posterity the secret of his method of inquiry ,

while
he wished to extort from them assent to his results ’

. And

indeed (again in the words ofWallis) ‘
not only A rchimedes

but nearly all the ancients so hid from posterity their method
ofAnalys is (though it is clear that they had one) that more
modern mathematicians found it easier to invent a new

Analysis than to seek out the old
’

. A partial exception is

now furn ished by The Method of A rch imedes
,
so happily dis

covered by H eiberg. In this book A rchimedes tells us how

he discovered certain theorems in quadrature and cubature
,

namely by the use of mechanics , weighing elements
-

of a

figure against elements ofanother s impler figure the mensura~
tion of whi ch was already known . A t the same time he is

careful to in sist on the difference between (1) the means
which may be sufficient to suggest the truth of theorems ,
although not furnish ing scientific proofs of them

,
and (2) the

rigorous demonstrations of them by orthodox geometr ical
methods which must follow before they can be finally accepted
as established :

‘ certain things ’

,
he says

,

‘fir st became clear to me by a

mechanical method ,
although they had to be demonstrated by

geometry afterwards because their investigation by the said
method did not furn ish an actual demonstration . But it is
of course eas ier

,
when we have previously acquired

,
by the

method
, some knowledge of the questions , to supply the proof

than it is to find it without any previous knowledge .

’ ‘This
he adds

,

‘ is a reason why,
in the case of the theorems that

the volumes of a cone and a pyramid ar e one - third of the

volumes of the cylinder and prism respectively having the

same base and equal height , the proofs ofwhich Eudoxus was
the first to discover , no small share of the credit should be
given to Democritus who was the first to state the fact .

though without proof. ’

Finally
,
he says that the very first theorem which he found

out by means of mechanics was that of the separate treatise
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Qurra the
"book is attributed to A rchimedes

, the propositions
cannot be his in their present form

, since his name is several
times mentioned in them ; but it is quite likely that some
of them ar e of A rchimedean origin

, notably those about the
geometrical figures called o

’

la Aos (
‘
shoemaker’s knife ’

) and
o

-

ciAwov (probably ‘
salt - cellar respectively and Prop . 8 bear

ing on the trisection ofan angle.

There is also the Cattle- P r oblem in epigrammatic form,

which purports by its heading to have been communicated by
A rchimedes to the mathematicians at A lexandria in a letter
to Eratosthenes . Whether the epigrammatic form is due to

A rchimedes h imself or not
,
there is no sufficient reason for

doubting the poss ibility that the substance of it was set as a

problem by A rchimedes .

Tr aces of lost wor ks .

Ofworks whi ch ar e lost we have the following traces.

1 . Investigations relating to polyhedr a ar e referred to by
Pappus who,

after alluding to the five regular polyhedra,

describes thirteen others discovered by A rchimedes which ar e

semi - regular, being contained by polygons equilateral and

equiangular but not all similar .

1

2 . There was a book of arithmetical content dedicated to
Zeuxippus . We learn from A rchimedes himself that it dealt
W ith the naming ofnumber s (Ka r ovoyagtg 7 6311 ClpLG/HBV)

2
and

expounded the system ,
which we find in the Sand - r eckoner ,

of

expressing numbers higher than those which could be written
in the ordinary Greek notation , numbers in fact (as we have
said) up to the enormous figure represented by 1 followed by

million million ciphers .

3 . One or more works on mechanics ar e alluded to contain
ing propositions not included in the extant treatise On P lane
Egu ilibr ivflns . Pappus mentions a work On Balances or Lever s

(wept{ vyé
’

w) in which it was proved (as it alsowas in Philon
’

s

and H eron ’

s Mechanics) that ‘ greater circles overpower lesser
circles when they revolve about the same centre H eron ,

too
,

speaks of writings of A rchimedes ‘which bear the title of

1 Pappus, v, pp. 352—8 .

2 Ar ch imedes , vol . ii, pp. 2 1 6 . 1 8 ,
236 . 1 7 - 22 ; of. p. 220 . 4 .

3 Pappus, viii, p. 1068 .
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works on the lever Simplicius refers topr oblems on the

centr e of gr avity, K eu
'

r poBapucoZ, such as the many elegant
problems solved by A rchimedes and others , the object ofwhich
is to show how to find the centre ofgravity, that is, the point
in a body such that if the body is hung up from it , the body
will remain at rest in any position .

2 This recalls the assump

tion in the Quadr atu r eofthe P ar abola (6)that , if a body hangs
at rest from a point

,
the centre ofgravity ofthe body and the

point ofsuspension ar e in the same vertical line . Pappus has
a similar remark with reference to a point of suppor t, adding
that the centre of gravity is determined as the intersection of

two straight lines in the body,
through two points of support ,

which straight lines ar e vertical when the body is in equilibrium
so supported. Pappus alsogives the characteristic ofthe centre
of gravity mentioned by Simplicius

,
observing that this is

the most fundamental principle of the theory of the centre of
gravity, the elementary propositions of wh ich ar e found in
A rchimedes’s On Equ ilibr iums (m p2 iooppon

‘

tdiv)and H eron ’

s

Mechanics . A rchimedes himself cites propositions which must
have been proved elsewhere ,

e . g . that the centre of gravity
ofa cone divides the axis in the ratio 3 1

, the longer segment
being that adjacent to the vertex 3

; he also says that ‘ it is
proved in the Equilibr iums that the centre ofgravity ofany
segment ofa right - angled conoid (i . e . paraboloid of revolution)
div ides the axis in such a way that the portion towards the
vertex is double of the remainder .

‘1 It is poss ible that there
was originally a larger work by A rchimedes On Equ ilibr iums

ofwhich the surviving books On P lane Equ i libr iums formed
Only a part ; in that case 7repi fvyrBV and KGVTpoBapt i may
only be alternative titles . Finally ,

H eron says that A rchi
medes laid down a certain procedure in a book bearing the
title Book on Supports
4 . Theon of A lexandria quotes a proposition from a work

ofA rchimedes called Catoptr ica (properties ofmirrors)to the
effect that things thrown into water look larger and still
larger the farther they sink .

6 Olympiodor us , too, mentions
1 Heron,

Mechanics , 1. 32.

2 Simpl . on Arist. De caelo, ii , p. 508 a 30 , Brand is ; p. 543 . 24 ,
.Heib.

11 Method , Lemma 10 .

‘1 On Floating Bodies , ii . 2 .

5 Heron, Mechanics
,
1. 25 .

6 Theon on Ptolemy’

s Syntaxis , i , p. 29 , Halma.
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that A rchimedes proved the phenomenon of refraction ‘ by
means ofthe ring placed in the vessel (ofwater) A scholiast
to the Pseudo- Euclid’s Catoptr ica quotes a proof, which he

attributes toA rchimedes , of the equality of the angles of

incidence and ofreflection in a mirror .

The text of A r chimedes .

H eron , Pappus and Theon all cite works of A rchimedes
which no longer survive

,
a fact which shows that such works

were still extant at A lexandria as late as the third and fourth
centuries A .D. But it is evident that attention came to be

concentrated on twoworks only,
the Measu r ementofa Cir cle

and On the Spher e and Cylinder . Eutociu s (fl. about A . D. 5 0 0)
only wrote commentaries on these works and on the P lane

.
Equ ilibr iums , and he does not seem even to have been
acquainted with the Quadr atu r e of the P arabola or the work
On Spir als , although these have survived. Isidorus ofMiletus
revised the commentaries of Eutocius on the Measu r ement

ofa Cir cle and the two Books On the Spher e and Cylinder ,

and it would seem to have been in the school of Is idorus
that these treatises were turned from their original Doric
into the ordinary language ,

w ith alterations designed tomake
them more intelligible to elementary pupils . But neither in
Is idorus ’s time nor earlier was there any collected edition
of A rchimedes ’s works , so that those which were less read
tended to disappear.

In the ninth century Leon , who restored the Un iversity
of Constantinople ,

collected together all the works that he
could find at Constantinople ,

and had the manuscript written

(the archetype, H eiberg
’

s A ) which ,
through its derivatives ,

was
,
up to the discovery ofthe Constantinople manuscript (C)

containing The Method ,
the only source for the Greek text .

Leon
’

s manuscript came, in the twelfth cen tury ,
to the

Norman Court at Palermo, and thence passed to the House
of Hohenstaufen . Then

,
with all the library of Manfred ,

it

was given to the Pope by Charles of Anjou after the battle
of Benevento in It was in the Papal Library in the

years 1 2 6 9 and 1 3 1 1 , but , some time after 1 3 6 8 , passed into
1 Olympiodor us on Arist. Meteor ologica, ii, p. 94 , Ideler ; p.

Busse.
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private hands . In 1 49 1 it belonged to Georgius Valla ,
wbc

translated from it the portions published in his posthumous
work De escpetendis etfugiendis r ebu s and intended tc
publish the whole of A rchimedes with Eutocius ’s commen

taries . On Valla’

s death in 1 5 0 0 it was bought by A lbertus
Pius, Prince ofCarpi , passing in 1 5 3 0 tohis nephew ,

Rodolphus
Pius , in whose possess ion it remained ti ll 1 5 44 . At some

time between 1 5 44 and 1 5 6 4 it disappeared, leaving nc

trace .

The greater part of A was translated into Latin in 1 2 6 5

by William ofMoerbeke at the Papal Court atV iterbo. This
translation

,
in William ’

s own hand
,
exists at Rome (Cod

Ottobon . lat. 1 8 5 0
,
H eiber g

’

s B), and is one of our prime

sources , for , although the trans lation was hastily done and

the translator sometimes misunderstood the Greek ,
he followed

its wording so closely that his version is , for purposes 0 1

collation , as good as a Greek manuscript . William used also
for his translation ,

another manuscript from the same library
which contained works not included in A . This manuscript
was a collection of works on mechan ics and optics ; Williarr
translated from it the two Books On Floating Bodies , and 11
also contained the P lane Equ ilibr iums and the Quadr atun
of the Par abola , for which books William used both manu
scripts .

The four most important extant Greek manuscripts (excep1
C , the Constantinople manuscript di scovered in 1 9 0 6) wer <
Copied from A . The earliest is E, the Venice manuscr ipi

(Marcianus which was written between the years 1 44£
and 1 4 7 2 . The next is D

,
the Florence manuscript (Laurent

XXVIII . which was copied in 1 49 1 for Angelo Poli z iano
permission having been obtained with Some difficulty in con

sequence ofthe jealousy with which Valla guarded histreasure
The other two ar e G (Paris . 2 3 6 0) copied from A after it ha<
passed to A lbertus Pius

, and H (Paris . 2 3 6 1 ) copied in 1 5 4 4
.

by Christopherus Auver us for Georges d ’

A rmag nac, Bisho]
of Rodez . These four manuscripts , with the translation 0

William of Moerbeke (B), enable the readings of A to b «

inferred.

A Latin translation was made at the instance of Pop
Nicholas V about the year 1 4 5 0 by Jacobus C1 emonensi<
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It was made from A
,
wh ich was ther ef0 1 e accessible to Pope

Nicholas though it does not seem to have belonged to him.

R egiomontanus made a copy of this translation about 1 4 6 8

and revised it with the help of E (the Venice manuscript of
the .Greek text)and a copy of the same translation belonging
to Cardinal Bessarion , as well as another old copy ’ which
seems to have been B.

The ed itio pr inceps was published at Basel (apud H er va

gium) by Thomas GechauffVenator ius in 1 5 44 . The Greek
text was based on a Nurnberg MS . (Nor imberg. Cent . V ,

app. 1 2) which was copied in the sixteenth century from A

but with interpolations derived from B ; the Latin tr ansla
tion was R egiomontanus

’

s revision of Jacobus Cr emonensis
(Nor imb. Cent . V ,

A trans lation by F. Commandinus published at Venice in
1 5 5 8 contained the Measu r ement ofa Cir cle, On Spir als , the

Quad r atu r e of the Par abola , On Conoids and Spher oid s, and

the Sand - r eclconer . This translation was basedion the Basel
edition , but Commandinus also consulted E and other Greek
manuscripts .

Torelli ’s edition (Oxford, 1 7 9 2) also followed the editio

pr inceps in the main
,
but Torelli also collated E. The book

was brought out after Torelli ’s death by A bram Robertson ,

who also collated five more manuscripts, including D
, G

and H . The collation
,
however , was not well done , and the

edition was not properly corrected when m the press .

The second edi tion of H eiber g
’

s text of all the works of
A rchimedes with Eutocius’s commentaries, Latin translation,

apparatus criticus , &c.
,
is now available (1 9 1 0— 1 5) and ,

of

course , supersedes the fir st edition (1 8 8 0—1) and all others .

It naturally includes The Method , the fragment ofthe Stoma

chion , and so much of the Greek text of the two Books On
Floating Bodies as could be restored from the newly dis
covered Constantinople manu scr ipt.

I

Contents of T he M ethod.

Our description of the extant works of A rchimedes
may suitably begin with The Method (the full title is On

1 The Works ofA r chimedes , ed ited in modern notation by the present
writer in 18 97 , was based on Heiberg ’

s first edition, and the Supplement
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Mechanical Theor ems , Method (communicated)toEr atosthenes)
Premising certain propositions in mechanics mostly taker
from the P lane Equ ilibr iums , and a lemma which forms

Prop . 1 ofOn Conoid s and Spher oids , Archimedes obtains by
his mechanical method the following results . The area ofany
segment of a section of a right - angled cone (parabola) is s oi
the triangle with the same base and height (Prop . The

right cylinder c ircumscribing a sphere or a spheroid of r evolu
tion and with ax is equal to the diameter or axis of revolution
of the sphere or spheroid is 1 17 times the sphere or spheroid
respectively (Props . 2

,
Props. 4

,
7
,
8 , 1 1 find the volume of

any segment cut off
,
by a plane at right angles to the axis .

from any r ight - angled conoid (paraboloid of revolution)
sphere

, spheroid
,
and obtuse - angled conoid (hyperboloid) in

terms ofthe cone which has the same base as the segment and
equal height . In Props . 5 ,

6
,
9
,
1 0 A rchimedes uses his method

to find the centre of gravity of a segment ofa paraboloid of
revolution

,
a sphere, and a spheroid respectively . Props .

1 2— 1 5 and Prop . 1 6 ar e concerned with the cubature of two
special solid figures . (1) Suppose a prism w ith a square base
to have a cylinder inscribed in it

,
the circular bases of the

cylinder being circles inscribed in the squares which ar e

the bases of the prism , and suppose a plane drawn through
one side ofone base ofthe prism and through that diameter of
the circle in the opposite base which is parallel to the said
side . This plane cuts off a solid bounded by two planes and

by part of the curved surface ofthe cylinder (3. solid shaped
like a hoof cut off by a plane); and Props . 1 2—1 5 prove that
its volume is one - sixth ofthe volume ofthe prism . (2) Sup
pose a cylinder inscribed in a

'

cube , so that the circular bases
of the cylinder ar e circles inscribed in two opposite faces of
the cube, and suppose another cylinder similarly inscr ibed
w ith reference to two other opposite faces. The two cylinders
enclose a certain solid which is actually made up of e ight
‘ hoofs ’ like that of Prop . 1 2 . R e p. 1 6 proves that the
volume of this solid is two- thirds of that ofthe cube. A rchi
medes observes in his preface that a remarkable fact about

(19 1 2) conta ining The Method , on the original ed ition of Heiberg (in
H ermes , xlii , 1907 ) with the translation by Zeuthen (B ibliotheca Mathe
matica , viis.
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these solids respectively is that each of them is equal to a

solid enclosed by planes , whereas the volume of curvilinear
solids (spheres , spheroids , &c.) is generally only express ible in
terms of other curvilinear solids (cones and cylinders). In

accordance with his dictum that the results obtained by the
mechanical method ar e merely indicated, but not actually
proved , un less confirmed by the rigorous methods of pure
geometry, A rchimedes proved the facts about the two last
named solids by the orthodox method of exhaustion as

regularly used by him in his other geometrical treatises ; the
proofs , par tly lost, were given in Props . 1 5 and 1 6 .

We will first illustrate the method by giving the argument
ofProp. 1 aboutthe area ofa parabolic segment .
LetA BC be the segment , BD its diameter , CF the tangent

at C. Let P be any point on the segment, and let AK E,

OPNllI be dr awn parallel to BD. Join CB and produce it to
meet MO in N and FA in K ,

and letK H be made equal to
K C.

Now ,
by a proposition proved in a lemma (cf . Quad r atur e

ofthe Par abola ,
Prop. 5)

MO z OP CA : AO

CK : KN

HK : KN .

A lso, by the property of the parabola, EB BD,
so that

It follows that, if HC be regarded as the bar of a balance,
a line TG equal to PO and placed with its middle point atH
balances, about K ,

the straight line MO placed where it is ,
i . e. with its middle point atN.

Similarly with all lines , as MO,
P 0 ,

in the triangle CFA
and the segment CBA respectively.

And there ar e the same number of these lines . Therefore
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fi K A z AQ

necessary prove that

proper ty ofthe el lipse,

therefore

whence

ar eas of

circles W i th MM’

,
PP

’

, QQ r espectively as; diameters , and these
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circles ar e sections made by the plane though N at rig:
angles toA A ’

in the cylinder , the spheroid and the cone AB
respectively .

Therefore
,
i f HA A ’

be a lever, and the sections of tl

spheroid and cone be both placed with their centres ofgr avii
atH , these sections

p
laced at H balance, about A , the secti(

cylinder where it is .

Treating all the corresponding sections of the segment 4

the spheroid , the cone and the cylinder in the same wa

we find that the cylinder with axis A G, where it is , balance
about A

, the cone A EF and the segment ADC together , whe
both ar e placed w ith their centres of gravity at H ; an

if W be the centre ofgravity of the cylinder
,

the midd
point ofA G,

H A ' A W (cylinder , axis A G) (cone A EF+ segmt. ADC).

If we call V the volume ofthe cone A EF, and S that of
segment ofthe spheroid , we have

A A
’Z

.

(cylinder) (V+ S) 3 V.

A G2
. (V + S ),

while

Therefore A A
’

: —AG 3 V

3 A A
’

hw ence S V<2 A G
Again , let V

’

be the volume ofthe cone ADC .

Then V : V
’
: EG2 zDG2

BB
’2

A A
’T
A GH

ZDGQ

DG2 z A G . GA
’

BB

Therefore V : V
’

A G2 zA G . GA
’

AG z GA
’

.
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It follows that S V
’

which is the result stated by A rchimedes in Prop . 8 .

The result is the same for the segment of a sphere . The

proof, of course slightly simpler, is given in Prop . 7 .

In the particular case where the segment is half the sphere
or spheroid, the relation becomes

S 2 V
’

, (Props . 2 , 3)
and it follows that the volume ofthe whole sphere or spheroid
is 4 V

’

, where V
’

is the volume of the cone ABB’

; i. e. the

volume of the sphere or spheroid is two- thirds of that ofthe
circumscribing cylinder.
In order now to fin d the centre of gravity ofthe segment

of a spheroid , we must have the segment acting wher e it is,
not atH .

Therefore formula (1) above will not serve. Butwe found

that

whence MN 2
(NP

2 NQ
2

) (NP
2 NQ

2
)1NQ

2
;

therefore HA : AN (NP
2
+NQ2) : NQ

2
.

(This is separately proved by A rchimedes for the sphere
in Prop .

From this we derive, as usual, that the cone AEF and the

segment ADC both acting wher e they ar e balance a volume

equal to the cone A EF placed with its centre ofgravity atH .

Now the centre of gravity of the cone AEF is on the line
A G at a distance %A G from A . LetX be the required centre
of gravity of the segment . Then ,

taking moments about A ,

we have

V (AA
’

- A G) S . A K

1)AX, from above .

A G SAA
’

‘

GA
’
2 A G

grief - A G

A
’

G

snA
'
J
r A

'

G
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Therefore AX z A G (A A
’
— %A G) (gA .A

’ — A G)

(4A A
’ — 4AG);

whence AXzXG (4 AA
’
— 3 A G): (2 AA

’
- AG)

which is the result obtained by A rchimedes in Prop . 9 for the

sphere and in Prop. 1 0 for the spheroid .

In the case of the hemi—spheroid or hemisphere the who
AX XG becomes 5 3

,
a resul t obtained for the hemisphere in

Prop. 6 .

The cases of the paraboloid of revolution (Props . 4 , 5)and

the hyperboloid ofrevolution (Prop. 1 1)follow the same course,
and it is unnecessary to reproduce them .

For the cases ofthe two solids dealt with atthe end of the

treatise the reader must be referred to the propositions them
selves . Incidentally ,

in Prop . 1 3
,
A rchimedes finds the centre

of gravity of the half of a cylinder cut by a plane through
the axis

,
or

,
in other words , the centre ofgravity of a semi

circle.

We will now take the other treatises in the order in which
they appear in the editions .

On the Spher e and Cylinder , I , I I .

The main results obtained in Book I ar e shortly stated in
a prefatory letter to Dositheus . A rchimedes tells us that
they ar e new ,

and that he is now publishing them for the

first time, in order that mathematicians may be able to ex

amine the proofs and judge of their value. The results ar e

(1) that the surface of a sphere is four times that of a great
circle of the sphere , (2) that the surface of any segment of a
sphere is equal to a circle the radius ofwhich is equal to the
straight line dr awn from the vertex of the segment to a point
on the circumference of the base, (3) that the volume of a

cylinder circumscribing a sphere and with height equal to the
diameter of the sphere is of the volume of the sphere

,

(4) that the surface of the circumscribing cylinder including
its bases is alsogofthe surface of the sphere. It is worthy
of note that , while the first and third of these propositions
appear in the book in this order (Props . 3 3 and 34 r espec
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tively), this was not the order of their discovery ; for A rchi
medes tells us in TheMethod that

from the theorem that a sphere is four times as great as the
cone with a great circle of the sphere as base and with height
equal to the radius of the sphere I conceived the notion that
the surface of any sphere is four times as great as a great
circle in it for , j udging from the fact that any circle is equal
to a triangle with base equal to the circumference and height
equal to the radius of the circle , I apprehended that

,
in like

manner , any sphere is equal to a cone with base equal to the
surface ofthe sphere and height equal to the radius ’

.

Book I begins with definitions (of ‘ concave in the same

direction ’

as applied to curves or broken lines and surfaces , of
a

‘

solid sector ’

and a solid rhombus ’

) followed by five

A ssumptions all of importance . Of all lines which have the

same extr emi ties the str aight line is the least, and , if there ar e

two curved or bent lines in a plane having the same extr emi

ties and concave in the same direction, but one is wholly
included by

, or partly included by and partly common w ith ,
’

the other, then that which is included is the lesser ofthe two.

Similarly with plane surfaces and surfaces concave in the

same direction. Lastly,
A ssumption 5 is the famous ‘ A xiom

ofAr chimedes ’

,
which however was , according to A rchimedes

himself, used by earlier geometers (Eudoxus in particular), to
the effect that Of unequal magnitudes the gr eater exceed s

the less by su ch a magnitu de as
,
when added to itself, can be

ma de to exceed any assigned magnitude of the same kind

the axiom is of course practically equivalent to Eucl. V , Def. 4 ,

and is closely connected with the theorem ofEuol. X. 1 .

A s, in applying the method of exhaustion,
A rchimedes u

both circumscribed and inscribed figures with a View to com

pr essing them into coalescence with the curvilinear figure to
be measured , he has to begin with propositions showing that ,
given two unequal magnitudes , then , however near the ratio
of the greater to the less is to 1

, it is possible to find two
straight lines such that the greater is . to the less in a still less
ratio and to circumscribe and inscribe similar polygons to
a circle or sector such that the perimeter or the area of the

circumscribed polygon is
' to that of the inner in a ratio less

than the given ratio (Props . 2 also, j ust as Euclid proves
D 2
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that, if we continually double the number ofthe sides of the
regular polygon inscribed in a circle, segmentswill ultimately be
left which ar e together less than any assigned area , A rch imedes

has to supplement this (Prop . 6)by proving that, if we increase
the number of the sides of a cir cumscr ibed regular polygon
sufficiently,we can make the excess ofthe area ofthe polygon
over that of the circle less than any given area. A rchimedes
then addresses himself tothe problems offinding the su rfaceof
any right cone or cylinder , problems finally solved in Props . 1 3

(the cylinder)and 1 4 (the cone). Circumscribing and inscr ib

ing regular polygons to the bases of the cone and cylinder, he
erects pyramids and prisms respectively on the polygons as

bases and circumscribed or inscribed to the cone and cylinder
respectively . In Props . 7 and 8 he finds the surface of the

pyramids inscribed and circumscribed to the cone
,
and in

Props . 9 and 1 0 he proves that the surfaces of the inscribed
and circumscribed pyramids respectively (excluding the base)
ar e less and greater than the surface of the cone (excluding
the base). Props . 1 1 and 1 2 prove the same thing of the

prisms inscribed and circumscribed tothe cylinder, and finally
Props . 1 3 and 1 4 prove, by the method ofexhaustion ,

that the
surface ofthe cone or cylinder (excluding the bases) is equal
to the circle the radius of which is a mean proportional
between the side (i.e. generator)ofthe cone or cylinder and
the radius or diameter of the base (i.e. is equal to 1r r s in the

case of the cone and 2 17 r s in the case of the cylinder, where
r is the radius ofthe base and s a generator). A s A rchimedes
here applies the method of exhaustion for the first time, we
will illustrate by the case ofthe cone (Prop.

LetA be the base of the cone, 0 a straight line equal to its

radius , D a line equal to a generator of the cone, E a mean

proportional to C,
D

,
and B a circle with radius equal toE .
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If S is the surface ofthe cone, we have to prove that S : B .

For
, if S is not equal to B ,

it must be either greater or less .

1 . Suppose B S .

Circumscribe a regular polygon about B , and inscribe a similar
polygon in it, such that the former has tothe latter a ratio less
than S : B (Prop . Describe about A a s imilar polygon and

set up from it a pyramid circumscribing the cone.

Then (polygon about A ) (polygon about B)
C 2 E 2

C : D

(polygon about A ): (surface ofpyramid).
Therefore (surface ofpyramid) (polygonabout B).
But (polygon about B) (polygon in B) S : B ;

therefore (surface ofpyramid) (polygon in B) S : B .

But this is impossible
,
since (surface ofpyramid) S ,

wh ile
(polygon in B) B ;

therefore B is not less than S.

II . Suppose B S.

Circumscribe and inscribe similar regular polygons to B

such that the former has tothe latter a ratio B S . Inscribe
in A a similar polygon

,
and erect on A the inscribed pyramid .

Then (polygon in A ) (polygon in B) O2 : E 2

C D

(polygon in A ) (surface ofpyramid).

(The latter inference is clear, because the ratio of C :D is

greater than the ratio ofthe perpendiculars from the centre of
A and from the vertex of the pyramid respectively on any

side of the polygon in A ; in other
.words , if B a

sin a sinB.)

Therefore (surface ofpyram id) (polygon in B).

But (polygon about B): (polygon in B) B S ,

whence (afor tior i)

(polygon about B): (surface ofpyramid) B : S
,

which is impossible, for (polygon about B) B
, while (surface

ofpyramid) S .
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whence, add ing antecedents and consequents, we have

(Fig . 1) (BB
’

+ CC
’

+ EE
’

) AA
'

‘

A
’
B zBA

, (Prop 2 1)

(Fig. 2) : AM A
’

B z BA . (Prop . 2 2)
When we make the polygon revolve about AA ’

, the surface
ofthe inscribed figure so obtained is made up of the surfaces
of cones and frusta of cones ; Prop . 1 4 has proved that the
surface ofthe cone ABB’

is what we should write 1 7 AB BF,

and Prop . 1 6 has proved that the surface of the frustum
BCC

’
B

’

is 7 7 BC (BF CG). It follows that, since AB
BC the surface ofthe inscribed solid is

7 r . AB

that is , 7 7 A B (BB
’

+ CC
’

+ EE
’

) (Fig. (Prop. 2 4)

7 7 AB (BB
’

+ CC
’

(Fig. 2) (Pr op. 3 5)

H ence , from above , the surface of the inscribed solid is

or and is therefore less than
AA

’2
(Prop . 2 5)or 1r . A

’

A AM
,
that is , AP 2

(Prop.

Similar propositions with regard to surfaces formed by the
revolution about A A ’

of regular circumscribed solids prove
that their surfaces ar e greater than 7 7 .AA

’ Z
and 7 7

'

.A P 2

respectively (Props. 2 8— 3 0 and Props . 3 9 The case ofthe
segment is more complicated because the circumscribed poly
gon with its sides .parallel to AB ,

BC DP circumscr ibes
the sector P OP ’

. Consequently, if the segment is less than a

semicircle, as CA C ’

, the base of the circumscribed polygon
(cc

’

) is on the s ide ofCC’ towards A
,
and therefore the circum

scribed polygon leaves over a smal l strip ofthe inscribed. This
complication is dealt with in Props . 39—40 . Hav ing then
arrived at circumscribed and inscribed figures with surfaces
greater and less than 1r . AA

’2
and 7 r . AP 2 respectively , and

having proved (Props . 3 2, 4 1) that the surfaces ofthe circum
scribed and inscr ibed figures ar e toone another in the duplicate
ratio of their sides , A rchimedes proceeds to prove formally, by
the method ofexhaustion,

that the surfaces ofthe sphere and

segment ar e equal to these circles respectively (Props . 3 3 and

1r . A A
’ 2 is of course equal to four times the great circle

of the sphere. The segment is
,
for convenience , taken to be
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less than a hemisphere, and Prop. 4 3 proves that the same

formula applies also to a segment greater than a hemisphere .

A s regards the volumes different considerations involving
‘
solid rhombi ’ come in . For convenience A rchimedes takes ,
in the case of the whole sphere, an inscribed polygon of 4 n

sides (Fig. It is easily seen that the solid figure formed
by its revolution is made up ofthe following : first , the solid
rhombus formed by the revolution ofthe quadrilateral A BOB’

(the volume of this is shown to be equal to the cone with base
equal to the surface of the cone A BB ’

and height equal top,

the perpendi cular from O on AB ,
Prop . secondly, the

extinguisher - shaped figure formed by the revolution of the

triangle BOC about AA ’

(this figure is equal to the difference
between two solid rhombi formed by the revolution ofTBOB

’

and TCCC
’ respectively about AA ’

,
where T is the point of

intersection of CB , C
’

B
’ produced with A ’

A produced, and

this difference is proved to be equal to a cone with base equal
to the surface ofthe frustum ofa cone described by BC in its
revolution and height equal to p the perpendicular from O on

BC
,
Prop . and so on ; finally , the figure formed by the

revolution of the triangle COD about AA ’

is the difference
between a cone and a solid rhombus , which is proved equal

'

to

a cone with base equal to the surface ofthe frustum ofa cone
described by CD in its revolution and height p (Prop .

Consequently ,
by addition

,
the volume of the whole solid of

revolution is equal to the cone with base equal to its whole
surface and height p (Prop . But the whole ofthe surface
ofthe solid is less than 4 7 r r

2
, and p r ; therefore the volume

of the inscribed solid is less than four times the cone with
base 7 r r

2
and height r (Prop .

It is then proved in a similar way that the revolution of

the similar circumscribed polygon of 4n sides gives a solid
the volume ofwh ich is gr eater than four times the same cone
(Props . 2 8— 3 1 Lastly ,

the volumes ofthe circumscribed
and inscribed figures ar e toone another in the triplicate ratioof
their sides (Prop . 3 2) and A rchimedes is now in a position to
apply the method of exhaustion to prove that the volume of
the sphere is 4 times the cone with base 7 r r

2
and height r

(Prop .

Dealing with the segment ofa sphere, A rchimedes takes
,
for
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convenience
,
a segment less than a hemisphere and

,
by the

same chain ofargument (Props . 3 8
,
40 Corr . ,

4 1 and proves
(Prop . 44) that the volume ofthe sector ofthe sphere bounded
by the surface of the segment is equal to a cone with base
equal to the surface of the segment and height equal to the
radius

,
1. e . the cone w ith base 1 7

“ AP 2
and height r (Fig.

It is noteworthy that the proportions obtained in Props . 2 1
,

2 2 (see p . 3 9 above)can be expressed in trigonometrical form .

If 4n is the number of the sides of the polygon inscribed in
the circle, and 2 n the number of the sides of the polygon
“inscr ibed in the segment , and if the angle A OP is denoted
by a

,
the trigonometrical equ ivalents of the propor tions ar e

respectively

+ sin (2 n 1)

2 a a

(2) 2 {e1n g + s1n + s1n (n — 1) + sm a

n n n

1 ctcos a)c
2 n

Thus the two proportions give in effect a summation of the

series
sin 0 + sin 2 6 + + sm (n

both generally where n 6 is equal to any angle a less than 7 7

and in the particular case where n is even and 0 7 7 n .

Props . 2 4 and 3 5 prove that the areas of the circles equal to
the surfaces of the solids of revolution described by the

polygons inscr ibed in the sphere and segment ar e the above
17

series multiplied by 4 7 7 7 2 sin
R

and 1r r
2 2 sin respectively

2
1r

2
a

and ar e therefore 4 1r r cos
47 1

and 7 r r 2 cos
555, (

1 — cos a)

respectively . A rchimedes ’s results for the surfaces of the

sphere and segment
,
4 7 e and 2 7 r r

2

(1 —cos a), ar e the

limiting values of these expressions when n is indefinitely
a

mor eased and when therefore cos and cos ~ become

unity. And the two series multiplied by 4 7 r r
2
sin
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7 r r
2 2 sin respectively ar e (when n is indefinitely increased)

precisely what we should represent by the integrals

4 7 7 r
2

. sin Od d, or 4 7 r r
2
,

2 sin Od d, or 2 7 r r
2
(1 - cos a).

Book 1 1 contains six problems and thre e theorems . Ofthe

theorems Prop . 2 completes the investigation ofthe volume of

any segment of a sphere, Prop . 44 of Book I having only
brought u s to the volume of the corresponding sector . If
A BB

'

be a segment of a sphei e cut off by a plane at right
angles to A A ’

, we learnt 1 11 I . 4 4 that the volume ofthe sector

OBAB
’
is equal to the cone with base equal to the surface

ofthe segment and height equal to the radius , i. e . 411 . A BZ
r ,

where r is the radius . The volume ofthe segment is therefore

% 1r .AB 2 . r

A rch imedes wishes to express this as a cone with base the
same as that ofthe segment . Let AM , the height ofthe seg
ment h.

A B2 z BM 2 A
’

A : A
'

M : 2 r : (2 r — h).

7 r (A B
2

. r — BM 2 OM) : 7 7
'

. B1l1 2

That is , the segment is equal to the cone with the same
base as .that of the segment and height h (3 r — h).
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This is expressed by A rchimedes thus . If HM is the height
ofthe requ ired cone,

HM : AM (OA
'

A
’

M) : A
’M

, (1 )

and s imilarly the cone equal to the segment A ’

BB
’

has the

height H ’

M
, where

H
’

M : A
’M (0A AM) AM. (2)

H is proof is , of course, not in the above form but purely
geometrical .
This proposition leads to the most important proposition in

the Book ,
Prop . 4

, which solves the problem To cu ta given

spher e by a plane i n such a way that the volumes of the

segments ar e toone another in a given r atio.

Cubic equation a r ising out of I I . 4 .

If m z n be the given ratio of the cones which ar e equal to
the segments and the heights ofwhich ar e h

,
h
’

,
we have

ha: 2
3 :

. . v
and , if we eliminate h’ by means of the r elation h+ h’ 2 r

we easily obtain the follow ing cubic equation in h
,

h3 3 h2 r r
3

m + n

A rchimedes in effect reduces the problem to this equation ,

which
,
however

,
he treats as a particular case of the more

general pr oblemcor r esponding to the equation

c
2
z (2 r - h)

2
,

where b is a given length and c
2
any given area,

x
2

(a — x) b0 2
,
where a: 2 r — h and 3 r

A rchimedes obtains his cubic equation with one unknown
by means of a geometrical elimination of H ,

H
’ from the

equation HM
m

. H
’M

,
where HM,

E
’

M have the values
n

determined by the proportions (1)and (2)above after which
the one variable point M remaining corresponds to the one

unknown of the cubic equation . His method is
,
first to find
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values for each ofthe ratios A ’

H
’
H

’M and H
’
H A

’
H

’ which
ar e alike independent of H , H

’

and then ,
second ly,

to equate
the ratio compounded of these two to the known value of
ratio

(01)We have
,
from

0 A : (0 A + AM).

(B) From 1) and separ a ndo,

A H z AM

OA : AM .

Equating the values of the ratio A ’

M : AM given by

we have OA
’

: AH A
’
H

’

OA

OH
’
: OH ,

whence EH
’

OH
’

OA OA
’

)

so that HH
’

A
’
H

’

OH
’2 A

’
H

’2
.

But
, by AM : A

’

M
,

and
,
componendo, OH

’

: A
’
H

’

AA
’
: A

’

M .

By substitution in

AA
’Z A

’M 2

Compounding with we obtain

HH
’

E
’

M (A A
"2 A

’

M 2
) (OA 0 A

[The algebraical equivalent of this is

m n

n (2 r — h)
2

which reduces to

h3 3 h2 r O
, as above ]

A rchimedes expresses the result (8) more simply by pro
ducing CA to D so that OA AD

, and then div iding AD at
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E so that or We have
then 0A AD and 0A + AM MD

,
so that (8) reduces to

AD zDE (AD zMD),

AID z DE

Now , says A rchimedes , D is given , s ince AD OA . A lso,

AD
,
: DE being a given ratio, DE is given. H ence the pr o

blem reduces itself to that of dividing A ’
D into two parts at

M such that

MD : (a givenlength) (a given area) : A
’
M 2

That is , the generaliz ed equation is ofthe form

(a— cc) bc2
,
as above.

(1) A rchimedes
’

s own solution of the cubic.

A rchimedes adds that, ‘ if the problem is propounded in this
general form, it requires a diopwpég [i. e. it is necessary to
investigate the limits ofposs ibili ty] , but if the conditions ar e

added whi ch exist in the present case [i. e. in the actual
problem of Prop. it does not require a dtopwpés

‘

(in other
word s

,
a solution is always possible). He then promises to

give at the end an analysis and synthesis of both problems
[i. e . the atopla

‘

flég and the problem itself] . The promised
solutions do not appear in the treatise as we have it

,
but

Eutocius gives solutions taken from an old book which he
managed to discover after laborious search , and which, since it
was partly wr itten in A r chimedes ’s favourite Doric

,
he with

fair reason assumed to contain the missing addendum by
A rchimedes .

In the A rchimedean fragment preserved by Eutocius the
above equation, x

2
(a a) bc2, is solved by means ofthe inter

section ofa parabola and a rectangular hyperbola, the equations
ofwhi ch may be written thus

c
2

Ey
, (a— w)y ab.

The dtopwpés
‘ takes the form of investigating the maximum

possible value of {132 (a — ao), and it is proved that this maximum
value for a real solution is that corresponding to the value
a: ga. This is established by showing that, if bc2 7 7 a

3
,
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(iii) Solution of the original problem of II . 4 by _

Diocl

Diocles proceeded in a different manner , satisfying , by
a geometrical construction,

not the derivative cubic equation ,

but the three simultaneous relations which hold in A r chi
medes

’

s proposition ,
namely

HA : h

H
’

A
’
: h

’

with the slight generaliz ation that substitutes for r in

these equations another length a .

problem is , given a s traight line , a ratio m z n ,
and

another straight line AK a), to divide A A
’
at a point M

and at the same time to find two points H ,
H

’
on A A

’

produced such that the above relations (with a in place
of r ) hold .

The analysis leading to the construction is very ingenious .

Place AK a)at right angles to AA
’

,
and draw A ’

K
’
equal

and parallel to it .
Suppose the problem solved, and the points M , H ,

H
’
all

found .

Join KM ,
produce it , and complete the rectangle K GEK

’
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Draw QMN through M parallel to AK . Produce K
’M to

meetK G produced in F.

By s imilar triangles ,

FA z AM = or FA : h a z h
’

,

whence FA A H (to, suppose).

Similarly
:

A
'
E A

’
H (lc

’

,
suppose).

Again ,
by similar triangles ,

(FA AM) (A
’
K

’ A
’M) AM : A

’M

(AK + AM): (EA
’
A

’M),

(M k) (a + h)

Now ,
by hypothesis ,

m : n (k+ h)

(k+ h)

(a h)(a + h
’

) (h
’

+ h
’ 2

[by

Measure AR
,
A

’
R

’

on A A’ produced both ways equal to a.

Draw R P ,
R

’

P
’
atright angles to R R

’
as shown in the figure.

Measure along MN the length MV equal to MA ’

or h
’

, and

draw PP ’ through V,
A

’
tomeetR P ,

R
’
P

’

QV= P
’
V : w/ 2

P V=

whence P V . P
’
V 2 (a h)(a h

’

)

and ,
from (2)above ,

Zm zn 2 (a + h) (h
’

h
’

)
2

P V . P
’V : QV2

. (3)

Therefore Qis on an
“

ellipse in which PP ’
is a diameter

,
and

QV is an ordinate to it.
Again , D GQNK is equal toD AA ’

K
’
K whence

GQ.QN = a 2 r a , (4)

and therefore Q is on the rectangular hyperbola with KF
,

K K as asymptotes and passing through A ’
.
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How this ingenious analysis was suggested it is not possible
to say . It is the equivalent of reducing the four unknowns
h, h

’

, h, lc
’

to two, by putting h r + ac
,
h
’

r — az and Ic
’

y,

and then reducing the given relations to two equations in 90, y,

which ar e coordinates ofa point in r elation to Caz , Oy as axes ,

where O is th e middle point of A A ’

,
and 0 56 lies along OA ’

,

while Oy is perpendicular to it .
Our original relations (p . 4 7 )give

r — cc ah r + zc
and

r + a$ h
’

n h
’

We have atonce , from the first two equations ,

r + x

whence (r a)y a (r at),

(90 + r )(y+ a) z r a ,

which is the rectangular hyperbola (4)above.

whence we obtain a cubic equation in ac,

— x) Z(r
which gives

a

n
or

r — cc

r a:

whence y
+

and the equation becomes

(y r —a;)
2
(r + a)

2

which is the ellipse (3)above .
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To return to A rchimedes . Book II ofour treatise contains
further problems : To find a sphere equal to a given cone or
cylinder (Prop. solved by reduction to the finding of two

mean proportionals ; to cut a sphere by a plane into two
segments having their surfaces in a given ratio (Prop .

which is easy (by means of I . 42 , given two segments of
spheres

,
to find a third segment of a sphere similar to one

ofthe given segments and having its sur face equal to that of
the other (Prop . 6) the same problem wi th volume substituted

"

for surface (Prop. which is again reduced to the finding
of two mean proportionals ; from a given sphere to cut off
a segment having a given ratio to the cone with the same

base and equal height (Prop . The Book concludes with
two interesting theorems . If a sphere be cut by a plane into
two segments , the greater of which has its surface equal to S
and its volume equal to V, while S ’

, V
’
ar e the surface and

volume of the lesser , then V : V S 2 : S
’2 but S i r S

’i“

(Prop. and , of all segments of spheres which have their
surfaces equal , the hemisphere is the greatest in volume
(Prop.

Measur ement of a Cir cle.

The book on the Measu r ementof a Cir cle consists of three
propositions only , and is not in its original form , having lost
(as the treatise On the Spher e and Cylind er also has)pr ac
tically all trace of the Doric dialect in which A rchimedes
wrote ; it may be only a fragment of a lar ger treatise. The

three propositions which survive prove (I) that the area of

a circle is equal to that of a r ight
~angled triangle in which

the per pendicular is equal to the radius , and the base to the
circumference

,
of the circle , (2) that the area of a circle is to

the square on its diameter as 1 1 to 1 4 (the text of this pr o
position is

,
however, unsatisfactory,

and it cannot have been
placed by Archimedes before Prop. 3

, on which it depends),
(3) that the r atio of the cir cumfer ence of any cir cle to its
diameter (i . c . 1r) is 3% but Prop. 1 i s proved by
the method of exhaustion in A rchimedes’s usual form : he

approximates to the area of the circle in both di rections
(a)by inscribing successive regular polygons with a number of
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sides continually doubled
,
beginning from a square, (b) by

circumscribing a s imilar set of regular polygons beginning
from a square, it being shown that

,
if the number of the

sides of these polygons be continually doubled , more than half
of the portion of the polygon outside the circle will be taken
away each time, so that we shall ultimately arrive at a circum
scribed polygon greater than the circle by a space less than
any assigned area.

Prop . 3 , containing the arithmetical approximation to 7 7 , is

the most interesting . The method '

amounts to calculating
approximately the perimeter of two regular polygons of 9 6

sides , one of which is el r cumscr ibed , and the other inscribed ,
to the circle ; and the calculation starts from a greater and

a lesser limit to the value of s/ 3 , which A rchimedes assumes
without remark as known

,
namely

How did A rchimedes arrive at these particular approx i

mations ? No puz z le has exercised more fascination upon
writers interested in the history ofmathematics . De Lagny ,

Mollweide , Buz engeiger , H auber , Zeuthen ,
P. Tannery ,

H eiler
mann , H ultsch

,
H unr ath , Wertheim,

Bobynin : these ar e the

names of some of the authors of different conjectures . The

simplest supposition is certainly that ofH unr ath and Hultsch ,

who suggested that the formula used was

> a +

where a
2 is the nearest square number above or below a

2
+ b,

as the case may be . The use of the first part ofthis formula
by H eron , who made a number of such approximations , is
proved by a passage in his Metr ica 1

, where a rule equivalent
to this is applied to x/ 7 2 0 ; the second part of the formula is
used by the A rabian Alkarkhi (eleventh century)who drew
from Greek sources , and one approximation in H eron may be

'

obtained in this way .

2 Another suggestion (that ofTannery

1 Heron, Metr ica, i . 8 .

2 Ster eom.
ii
, p. 1 84. 1 9 , Hultsch ; p. 1 54. 19 , Heib. J54 = 7 1 = 7 1 53

instead of7 151 .
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and Zeuthen) is that the successive solutions in integers of

the equations

may
have been found in a s imilar way to those of

,

the

equations 56
2

+ 1 given by Theon of Smyrna after
the Pythagoreans . The rest ofthe suggestions amount for the
most part to the use of the method of continued fractions
more or less disguised .

Applying the above formula,
we easily find

2 3, x/ 3 2

Z, w/ 3 g.

Next , clearing of fractions , we consider 5 approxi

mation to x/ 3 3 2 or x/ 2 7 , and we have

5 + T
Z

5
3 7 3 5 + T

2—
f ,

whence

Clearing of fractions again
,
and taking 2 6 an appr ox i

—
g
l

e
2 6

which reduces to
1 3

_

s
_
1

_

2 6 5

7 8 0
x/ 3 1

—
5 3 .

A rchimedes first takes the case ofthe circumscribed polygon .

Let CA be the tangent atA to a circular ar c with centre 0 .

Make the angle A OG equal to one - third of a right angle .

Bisect the angle A GO by OD, the angle A OD by OE
, the

angle A CE by OF, and the angle AOF by OG. Produce GA
to AH ,

making A H equal to A G. The angle GOH is then
equal to the angle FOA which is

7
1

3 th of a right angle
, so

that GH is the s ide of a circumscribed regular polygon with
96 sides .

OA : A C [= V 3 : l ]
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And
, since bisects the angle COA

CO : OA CD z DA
,

so that (0 0 + OA ) OA CA DA
,

(CO+ OA ) CA 0 A : A D.

H ence 0 14 AD 5 7 1 1 5 3
,

0 112 AD2

(0 14
2
+ AD2

) : AD
2

3 49 4 5 0 : 2 3 4 0 9 .

Therefor e
,
says A rchimedes

,

0 1) s 5 9 15 1 5 3 .

Next
,
just as we have found the limit of OD z AD

from CC CA and the limit of OA A C, we find the limits
of OA : AE and OE : AE from the limits of OD zDA and

OA : AD
,
and so on . This gives ultimately the limit of

OA AG.

Dealing with the inscribed polygon A rchimedes gets a

similar series ofapproximations . A BC being a semicircle
, the

angle BAC is made equal toone - third ofa right angle . Then ,

ifthe angle BA C is bisected by AD,
the angle BAD by A E

,

the angle BAE by AF,
and the angle BAF by A G, the

straight line BG is the side of an inscribed polygon w ith
96 side‘

s .
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The series ofvalues found by A rchimedes ar e shown in the
following table :

a b n a b c

6 5 3 0 6 0 1 3 5 1 1 5 6 0 7 8 0

7 1 1 5 3 1 2 9 1 1 7 8 0

5 9 1g some9,
1 5 3 see4ge 7 8 0

> l i 7 ze 1 8 2 3 2 40

1 8 3 85
1
T

(2 3 3g)2 1 5 3 2 1]
2 3 3 94

and , bearing in mind that in the first case the final ratio
a
4
c is the ratio OA A G 2 CA GH ,

and in the second case
the final ratio b

4
c is the ratio A B BG, while GH in the first

figure and BG in the second ar e the s ides ofregular polygons
of 9 6 s ides circumscribed and inscribed respectively, we have
finally

> 7 T >

A rchimedes simply infers from this that

34 > 7 r

6 6 7 %
A s a matter of fact 3

46 7 3;
and

1 ' 1
It is also to be observed that 343 3 +

7 1 0
, and it may

have been arrived at by a method equivalent to developing
6 3 3 6

the fraction
2 0 1

1
ln the form ofa contlnued fr actmn .

4

It should be noted that , in the text as we have it, the values
of b

l ,
b
2 ,
b
3 ,
b
4
ar e simply stated in their final form without

the intermediate step containing the radical except in the fir st

1' H ere the ratios ofa to c ar e inthe first instance reduced to lowe
terms .

sscifg
1 0 0 7

1 0 0 9 -3
20 1 6% 6 6

2 0 1 7 2
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case ofall, where we ar e told that OD2 : AD2 34945 0 2 340 9

and then that OD DA 5 9 1—17 : 1 5 3 . At the points marked
and Tin the table A rchimedes simplifies the ratio a

z
: e and

a
s
: 0 before calculating b2 , b3 respectively , by multiplying each

term in the first case by {
1
5 and in the second case by 2

1
13

He gives no explanation of the exact figure taken as the

approximation to the square root in each case, or of the

method by which he obtained it. We may , however , be sure
that the method amounted to the use of the formula (a _

-

1_- b)
2

a
2 2 ah 112

,
much as our method ofextracting the square

root also depends upon it.
We have already seen (vol. i , p . 2 3 2) that , according to

Heron,
A rchimedes made a still closer approximation to the

value of 7 1 .

On Conoids and Spheroids.

The main problems attacked in this treatise ar e, in A rchi
medes

’

s manner
,
stated in his preface addressed toDositheus ,

which also sets out the premisses with regard to the solid
figures in question . These premisses cons ist ofdefinitions and
obvious inferences from them . The figures ar e (1) the r ight
angled conoid (paraboloid ofrevolution), (2) the obtuse- angled

conoid (hyperboloid of revolution), and (3) the spher oi ds

(a) the oblong,
described by the revolution ofan ellipse about

its ‘ greater diameter ’

(major axis), (b) the flat, described by
the revolution of an ellipse about its ‘ lesser diameter ’

(minor
axis). Other definitions ar e those ofthe ver tex and ax is ofthe

figures or segments thereof, the vertex of a segment being
the point of contact ofthe tangent plane to the solid which
is parallel to the base of the segment . The centr e is only.

recogniz ed in the case of the spheroid : what corresponds to
the centre in the case of the hyperboloid is the vertex of.

the enveloping cone (described by the revolution of what
A rchimedes calls the ‘

nearest lines to the section of the

obtuse - angled cone ’

, i.e. the asymptotes of the hyperbola),
and the line between this point and the vertex of the hyper
boloid or segment is called, not the axis or diameter, but (the
line)

‘
adjacent to the axis ’

. The axis of the segment is in
the case ofthe paraboloid the l ine through the vertex of the

segment parallel to the axis of the paraboloid, in the case
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of the hyperboloid the portion within the solid of the line
joining the vertex of the enveloping cone to the vertex of

the segment and produced , and in the case ofthe spheroids the
line join ing the points of contact of the two tangent planes
parallel to the base of the segment . Definitions ar e added of
a segment ofa cone ’

(the figure cut offtowards the vertex by
an elliptical

, not circular , section of the cone) and a
‘ frustum

ofa cylinder ’

(cut offby two parallel elliptical sections).
Props . 1 to 1 8 with a Lemma atthe beginn ing ar e preliminary

to the main subject ofthe treatise . The Lemma and Props . 1 , 2

ar e general propositions needed afterwards . They include
propositions in summation ,

2 n . na 2 {a + 2 a + — 1 )a }

(Lemma)
(this is clear from S

7 ,
n (n 1)a);

(n 1) + na)

(Lemma to Prop . 2)
'

whence (Cor .)

n (na)
2

(n - 1 a)
2

}

lastly ,
Prop . 2 gives lim its for the sum of n terms of the

series d x + x
2
,
a 2 x a 3 x (3 x)

2
,

in the form of

inequalities ofratios
,
thus :
— 1

- a + -§ nx)

Prop . 3 proves that , if QQ
’
be a chord of a parabola bisected

at V by the diameter P V,
then

,
if P V be of constant length ,

the areas of the triangle PQQ
’

and of the segment PQQ
’

ar e

also constant , whatever be the direction ofQQ
’

; to prove it
Archimedes assumes a proposition proved in the comics and

by nomeanseasy, namely that, if QD be perpendicular to P l
and if p, pa be the parameters corresponding to the ordinates
parallel toQQ

’

and the principal ordinates respectively , then

QV
2
zQD

2 =p zpa .

Props . 4— 6 deal with the area of an ellipse , wh ich is , in the
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first of the three propositions , proved to be to the area of

the auxiliary circle as the minor axis to the major ; equilateral
polygons of4 n s ides ar e inscribed in the circle and compared
with corresponding polygonsinscr ibed

'

in the ellipse, which ar e
determined by the intersections with the ellipse ofthe double
ordinates passing through the angular points ofthe polygons
inscribed in the circle

,
and the method of exhaustion is then

applied in the usual way. Props . 7 , 8 show how ,
given an ellipse

with centre C and a straight line CO in a plane perpendicular to
that ofthe ellipse and passing through an axis of it, (1 ) in the
case where 0 0 is perpendicular to that axis , (2) in the case
where it is not

,

-we can find an (in general oblique) circular
cone with vertex 0 such that the given ellipse is a section ofit ,
or , in other words , how we can find the circular sections ofthe
cone with vertex 0 which passes through the circumference of
the ellipse ; similarly Prop . 9 shows how to find the circular
sections ofa cylinder with CO as axis and with surface passing
through the circumference of an ellipse with centre C, where
CO is in the plane through an axis ofthe ellipse and per pen

dicu lar to its plane,
but is not itself perpendicular to that

axis . Props . 1 1 — 1 8 give s imple properties ofthe conoids and
spheroids , easily derivable from the properties ofthe respective
conics ; they explain the nature and relation of the sections
made by planes cutting the solids respectively in d ifferent ways
(planes through the axis , parallel tothe axis , through the centre
or the vertex ofthe enveloping cone ,

perpendicular to the axis ,
or cutting it obliquely

,
respectively), w ith especial reference to

the elliptical sections of each solid , the similarity of parallel
elliptical sections, &0 . Then w ith Prop . 1 9 the real business
ofthe treatise begins , namely the investigation of the volume

of segments (right or obl ique) of the two conoids and the

spheroids respectively.

The method is , in all cases
,
to circumscribe and inscribe to

the segment solid figures made up of cylinders or ffrusta of

cylinders ’

, which can be made to differ as little as we please
from one another, so that the circumscribed and inscribed
figures ar e, as it were, compressed together and into coincidence
with the segment which is intermediate between them .

In each d iagram the plane of the paper is a plane through
the axis ofthe conoid or spheroid at right angles to the plane
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of th e section which is the base of the segment
,
and which

1 8 a c1 r cle or an el lipse according as the said base is or is n ot
at right angles to the plane of the paper cuts the
base in a diameter of the circle or an axis ellipse
the case may be .

nature of the inscribed and circumscribed figures will
be seen from the above figures show ing segments of a para
boloid

,
a hyperboloid and a spheroid r espectively , cut off
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by planes obliquely inclined
“
to the axis . The base of the

segment is an ellipse in which BB’ is an axis , and its plane is
at right angles tothe plane ofthe paper , which passes through
the axis ofthe solid and cuts it in a parabola, a hyperbola,

or

an ellipse respectively. The axis of the segment is cut into a

number of equal parts in each case, and planes ar e drawn
through each point of section parallel to the base, cutting the
solid in ellipses, s imilar to the base, in wh ich PP

’

,QQ
’

,
&c. ,

ar e

axes . Describing frusta ofcylinders with axis AD and passing
through these elliptical sections respectively, -we draw the

circumscribed and inscribed solids consisting of these frusta .

It is evident that, beginning from A , the first inscribed frustum
is equal to the first circumscribed frustum, the second to the
second , and so on, but there is one more circumscribed frustum
than inscribed, and the difference between the circumscribed
and inscribed solids is equal to the lastfr u stum ofwhich BB’

is the base, and ND is the axis . Since ND can be made as

small as we please, the difference between the circumscribed
and inscribed solids can be made less than any assigned solid
whatever . Hence we have the requ irements for applying the
method ofexhaustion .

Consider now separately the cases of the paraboloid , the
hyperboloid and the spheroid .

I . The par aboloid (Props . 2 0

The frustum the base ofwhich is the ellipse in which PP ’

is

an axis is proportional to PP ’2
or PN 2

,
i . e. proportional to

A N . Suppose that the axis AD c)is divided into n equal
parts . A rchimedes compares each frustum in the inscribed
and circumscribed figure with the frustum ofthe whole cylinder
BF cut offby the same planes . Thus

(first frustum in BF) (first frustum in inscribed figure)
BD2 PN 2

A D : AN

Similarly

(second frustum in BF) (second in inscribed figure)

and so on. The last frustum in the cylinder BF has none to
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correspond to it in the inscribed figure
, and we should write

the ratio as (BD z ero).
A rchimedes concludes , by means of a lemma in proportions

forming Prop . 1 , that

(frustum BF) (inscribed figure)

(BD+HN + (TN + SM + +XO)
n
2 lc (16 + 2 lC+ 3 16 + + n

where XC 16
, so that BD nk.

In like manner
,
he concludes that

(frustum BF) (circumscribed figure)
n
z k (lc+ 2 h+ 3 k+ + uh).

But
, by the Lemma preceding Prop . 1

,

16 + 2 /c+ 3 76 + + n — 1 h en
2 lc 16 + 2 16 + 3 16 + + nh,

whence

(frustum BF) (insor . fig .) 2 (frustum BF) (cir cumscr .

This indi cates the desired result , which is then confirmed by
the method ofexhaustion ,

namely that

(frustum BF) 2 (segment ofparaboloid),
or , if V be the volume ofthe ‘

segment ofa cone ’

, with vertex
A and base the same as that ofthe segment

,

(volume of segment) - V

A rchimedes
,
it will be seen, proves in effect that

,
if k be

indefinitely diminished, and n indefinitely increased, while n/c
remains equal to c, then

limit of16

that is
,
in our notation ,

Prop. 2 3 proves that the volume is constant for a given
length ofaxis AD,

whether the segment is cut off by a plane
perpendicular or not perpendi cular to the axis , and Prop . 24

shows that the volumes oftwo segments ar e as the squares on
their axes .
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so that

718
7 1

ah (h+ 2 h+ + nh)+ h + 0 00
2
}

The limit of this latter express ion is what we should wr ite

(ax + x
2

)dx b2

and A rchimedes ’s procedure is the equivalent ofthis integration .

III . In the case of the spher oid (Props . 2 9
,
30) we take

a segment less than half the spheroid.

A s in the case ofthe hyperboloid,

(frustum in BF) (frustum on baseQQ’)
BD2 QM

2

AD . A
’
D AM .

-A
’

M ;

but, in order to reduce the summation to the same as that in
Prop . 2 , A rchimedes expresses AM . A

’

M in a different form
equivalent to the following.

Let AD b) be d ivided into n equal parts of length h,
and suppose that AA ’

a , CD so.

Then AD A
’
D %a

2

AM . A
’

M (so+ r h)
2

(DM r h)

AD A
’

D { c

cb+ b2 { 6 r h+

Thus in this case we have

(frustum BF) (inscribed figure)
E n

{o . r h (r h
2

(frustum BF) (circumscribed figure)
n (cb b2) [n (cb b2) E

l
n ' 1
{c r h

And , since 6 nh, we have , by means ofProp . 2
,

n (cb 62) : [n (cb b2) E
l

n
{ c r h

(c+ b) {c+ b (%c+

n (eb b2) [n (cb b2)— 2 {c r h
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The conclusion , Confirmed as usual by the method of ex

haustion,
is that

(frustumBF) (segment ofspheroid) (c b) : {c b $ 0 %b)}

(c b) (so éb),

whence (volume of segment) (volume ofcone ABB
’

)

(30 + 2 b) (0 + b)

(3 CA — AD) (2 0A - AD), since 0A 715 0 b.

A s a particular case (Props . 2 7
, half the spheroid is

double of the corresponding cone .

Props . 3 1 , 3 2 , concluding the treatise, deduce the similar
formula for the volume ofthe greater segment, namely,

in our

figure,

(greater segmt.) (cone or segmtofconewith same base and axis)

On Spir als .

The treatise On Spir als begins w ith a preface addressed to
Dositheus in which A rchimedes mentions the death ofConon
as a grievous loss to mathematics , and then summariz es the
main results of the treatises On the Spher e and Cylind er and

On Conoids and Spher oid s, observing that the last two pro
positions of Book II of the former treatise took the place
of two which , as originally enunciated to Dositheus

,
were

wrong; lastly ,

“

he states the main results of the treatise
On Spir als, premising the defin ition of a spiral which is as

follows
‘ If a straight line one extremity of which remains fixed be
made to revolve at a uniform rate in a plane until it returns
to the position from whi ch it started, and if, atthe same time
as the straight line is revolving , a point move at a uniform
rate along the straight line starting from the fixed extremity

,

the pointwill describe a spi ral in the plane .

’

A s usual , we have a series of propositions preliminary to
the main subject , firsttwo propositions aboutuniform motion,
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then two s imple geometrical propositions , followed by pro

positions (5 —9)which ar e all ofone type. Prop . 5 states that
,

given a circle with centre 0 ,
a tangent to it atA ,

and c, the

FIG. 1 .

circumference of any circle whatever , it is possible to draw
a straight line OFF meeting the circle in P and the tangent
in F such that

FP : UP < (a1
‘

c AP ) c.

A rchimedes takes D a straight line greater than 0
,
draws

OH parallel to the tangent at A and then says ‘

let PH be

placed equal to D ver ging (vefiovaa) towards A This is the
usual phraseology of the type of problem known as r eams

Where a straight line ofgiven length has to be placed between
two lines or curves in such a pos ition that, if produced , it
passes through a given point (this is the meaning ofver ging).
Each ofthe propos itions 5—9 depends on a uefim s

‘ of this kind ,

FI G. 2 .

which A rchimedes assumes as possible ’ without showing how
it is effected . Except in the case of Prop . 5

,
the theoretical

solution cannot be effected by means of the straight line and

circle ; it depends in general on the solution of an equation
of the fourth degr ee , which can be solved by means of the



6 6 ARCH IMEDES

points of intersection of a certain rectangular hyperbola
and a certain parabola. It is quite possible , however, that
such problems were in practice often solved by a mechanical
method , namely by placing a ruler , by trial , in the pos ition of

the required line : for it is only necessary to place the ruler
so that it passes through the given point and then turn it
round that point as a pivot till the intercept becomes of the

given length . In Props . 6 — 9 we have a circle with centre 0
,

a chord AB less than the diameter in it, OM the perpendicular
from O on A B

, BT the tangent at B , OT the straight line
through 0 parallel to AB ; D : E is any ratio less or greater ,
as the case may be, than the ratio BM : MO. Props . 6 , 7

(Fig . 2) show that it is possible to draw a straight line OFP

FI G . 3 .

meeting A B in F and the circle in P such that FP PB=D E

(OP meeting AB in the case where D E BM : MO, and
meeting AB produced when D E BM MO). In Props . 8 , 9

(Fig . 3) it is proved that it is possible to draw a straight line
OEP meeting A B in F, the circle in P and the tangent.atB in
G, such that FP BG=D : E (OP meeting AB itself in the case
where D E BM : MO, and meeting A B produced in the

case where D : E B11] : MO).
We w i ll illustrate by the constructions in Props . 7

,
8
,

as it is these propositions which ar e actually cited later .

Prop . 7 . If D E is any ratio BM : MO
,
it is required (Fig. 2)

to draw OP ’

F
’

meeting the circle in P ’

and A B produced in
F ’

so that
D z E .

Draw OT parallel to AB ,
and letthe tangent to the circle at

B meet OT in T.
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Then D : E BM : MO,
by hypothes is ,

OB BT
, by similar triangles .

Take a straight line P ’

H
’

(less than BT) such that D E

OB z P
’
H

’

,
and place P

’

H
’ between the cir cle and OT

verging towards B
’

(construction assumed).

F
’

P
’

: P
’

B OP
’

: P
’

H
’

0B P
'

H
’

Prop . 8 . If D E is any given ratio BM : MO,
it is required

to draw OEP O meeting A B in F
, the circle P the

tangent atB to the circle in G so that

OT is parallel to A B and meets the tangent atB in
BZVI 111 0 OB BT, by similar triangles ,

whence D E OB : BT.

Produce TB to 0 ,
making BO ofsuch length that

so that BO BT.

Describe a circle through the three points 0 ,
T

, O and letOB

produced meet this circle in K .

‘Then
,
since BO BT, and OK is perpendicular to CT

,
it is

pessib-le to place QG [between the circle TK Oand B0 ] equal to
BK and verging towards O (construction assumed).
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LetOGO meetthe original circle in P and AB

OFPG is the straight line required.

For

But OF : OG BT : GT, by parallels ,
whence OF . GT OG . BT.

Therefore GG GT : OF . GT OG BK OG

whence CG OF : BK BT

BO : OB

BO : OP .

Pappus objects toA rchimedes’s use ofthe uefim g assumed
Prop . 8

,
9 in these words

‘ it seems to be a grave error into wh ich geometers fall
whenever any one discovers the solution of a plane problem
by means of conics or linear (higher) curves , or generally
solves it by means ofa foreign kind, as is the case e.g. (1 )with
the problem in the fifth Book of the Conics of A pollonius
relating to the parabola , and (2) when A rchimedes assumes in

his work on the spiral a 1 4 00 19 ofa
"‘
solid ” character with

reference to a circle ; for it is possible without calling in the
aid ofanything solid to find the proof ofthe theorem given by
A rchimedes , that is , to prove that the circumference of the

c ircle arrived at in the first revolution is equal to the straight
line drawn atright angles tothe initial line tomeetthe tangent
to the spiral (i. e . the

There is , however , this excuse for A rchimedes , that he only
assumes that the problem can be solved and does not assume
the actual solution . Pappus 1 himself gives a solutlon of the

particular uefiatg by means of cohics . Apollonius wrote two
Books of venou s, and it is quite possible that by A rchimedes ’s
time theremay already have been a collection of such problems

to which tacit reference Was permissible.

Prop. 1 0 repeats the resultofthe Lemma to Prop . 2 of On

1 Pappus, iv, pp. 298—302 .
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Conoids and Spher oids involving the summation ofthe series
1 2 + 2 2 + 3

2
n
2

. Prop 1 1 proves another proposition in

summation
,
namely that

(n

(na)
2
: — a)

2
}

(n + (na)

The same proposition is also true if the terms of the series
ar e a

2
, (a + 2 b)

2
(a + n 1 b)

2
, and it is assumed in

the more general form in Props . 2 5 , 2 6 .

A rchimedes now introduces his Definitions , of the spir al

itself, the or igin , the initial line, the fir st distance the

radius vector at the end ofone revolution), the second distance
the equal length added to the radius vector d uring the

second complete revolution), and soon ; thefir star ea (the area
bounded by the spiral described in the first revolution and

the first the second ar ea (that bounded by the spiral
described in the second revolution and the ‘

second distance
and so on ; thefir stcir cle (the circle with the first distance ’

as radius), the second cir cle (the circle with radius equal to the
sum of the ‘fir st

’

and ‘
second distances ’

, or twice the first
distance), and so on .

Props . 1 2 , 1 4 ,
1 5 give the fundamental property of the

spiral connecting the length ofthe radius vector w ith the angle
through whi ch the initial line has revolved from its original
pos ition ,

and corresponding tothe equation in polar coordinates
r z a 0. A s A rchimedes does not speak of angles greater
than 7 T

,
or 2 7 r , he has , in the case of points on any turn after

the fir st , to u se multiples of the circumference
of a circle as well as arcs of it . H e uses the
‘fir st circle ’

for this purpose. Thus , if P , Q
ar e two points on the first turn ,

0 p OQ (ar cA K P
’

) (ar c

if P
, Q ar e points on the nth turn of the

spiral
,
and c is the circumference of the first circle ,

OP z OQ { (n { (n — 1 )c+ ar cAKQ

Prop. 1 3 proves that , if a straight line touches the spiral, it
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LetOFmeet the spiral in Q
’

.

Then we have, alter nand o, since P 0 QO,

FQ QO PQ OU

(ar cPQ) (ar cASP), by hypothesis and afor tior i.

Componendo, F0 Q0 (ar cA SQ) (ar cASP)

OQ
'

: OP .

But QO OP ; therefore F0 OQ
’ which is impossible.

Therefore OT is not greater than the ar c A SP .

1 1 . Next suppose, if poss ible, that OT ar cASP .

Measure 0 V along OT such that OV is greater than OTbut
less than the ar cA SP .

Then the ratio P O OV is less than the ratio PO OT
,
i.e.

than the ratio of éP S to the perpendicular from O on PS ;

therefore itis poss ible (Prop . 8)to draw a straight line OF’R G

meeting PS, the circle PSA ,
and the tangent to the circle atP

in F’

,
R

, G respectively, and such that

F’
R z GP z PO z OV.
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LetOF
’
Gmeet the spiral in R ’

.

Then
, since P 0 R 0 , we have , alter nando,

F’
R : R O= GP z OV

(ar cPR ) (ar cA SP), afor tior i ,

whence F’

O BO (ar c A SR ) (ar cA SP)

OR
’
: OP ,

so that F’

O OR
’

; which is impossible .

Therefore OT 1 8 not less than the ar c A SP . And it was
proved notgreater than the same ar c. Therefore

OT z (ar e ASP).

A s particular cases (separately proved by A rchimedes), if
P be the extremity of the first turn and 0

1
the circumference

ofthe first circle , the subtangent c
l ; if P be the extremity

of the second turn and c
2
the circumference of the ‘

second
circle ’

,
the subtangent 2 0

2 ; and generally , if on be the

circumference of the nth circle (the circle w ith the radius
vector to the extremity of the nth turn as rad ius), the sub

tangent to the tangent atthe extremity ofthe nth turn no
n

.

If P is a point on the nth turn,
not the extremity,

and the

circle w ith O as centre and OP as radius cuts the initial line
in K

,
while p is the circumference of the circle, the sub

tangent to the tangent at P (n 1)p + arc K P (measured
‘ forward
The remainder of the book (Props . 2 1 — 8) is devoted to

finding the areas of portions of the s piral and its several
turns cut off by the in itial line or any two radii vectores .

We w ill illustrate by the general case (Prop . Take
OB

,
0 0 ,

two bounding radii vectores
,
including an ar c BO

ofthe spiral . With centre 0 and radius 0 0 describe a circle .

Divide the angle BOO’ into any number of equal parts by
radi i of th is circle. The spiral meets these radii in points
P

, Q Y
,
Z such that the radi i vectores OB , OP ,

OQ OZ
, OO

1 On the whole course of Archimedes’s proof of the property ofthe
subtangent , see note in the Append ix .



ON SPIRALS 7 3

ar e in arithmetical progression . Draw arcs of circles with
radii OB , OP ,

OQ as shown ; this produces a figure circum
scribed to the spiral and consisting ofthe sum of smal l sectors
of circles , and an inscribed figure of the same kind . A s the

first sector in the circumscribed figure is equal to the second
sector in the inscribed

,
it is easily seen that the areas of the

circumscribed and inscribed figures differ by the d ifference
between the sectors 0 3 0 and OBp

’

; therefore, by increasing
number divisions of the angle BOO, we can make the

difference between the areas of the circumscribed and in

scribed figures as smal l as we please ; we have, therefore, the
elements necessary for the application of the method of

exhaustion .

If there ar e n radii OB ,
0 0 , there ar e (n 1)parts of

the angle BOO. Since the angles of all the small sectors ar e
equal , the sectors ar e as the square on their radii .

Thus (whole sector Ob’O) (circumscribed figure)

—
(n OQ

2
+

and (whole sector Ob
’
O) (inscribed figure)

(n



7 4 ARCH IMEDES

And OB, OP , OQ, OZ , 0 0 is an arithmetical progression
ofn terms ; therefore (cf. Prop . 1 1

(”n

0 0 2 : {OG .
— OR)

2
}

(n

Compress ing the circumscribed and inscribed figures together
in the usual way , A rchimedes proves by exhaustion that

(sector Ob
’
G) (area ofspiral OBO)

0 0 2 : {OG . OE)
2
} .

If OB b
,
0 0 c

,

“

and (c b) (n 1)h, A rch imedes’s
result is the equivalentofsaying that , when h diminishes and
n increases indefin itely

,
while c— b remains constant ,

limit of — z h)
2
}

(c— b) — b)
2
}

fi r
s — r );

that i s
,
with our notation

,

J
a
z dx % (c

3

b

In particular , the area included by the first turn and the

in itial line is bounded by the radi i vectores O and 2 1r d ;

the area ,
therefore, is to the circle w ith radius 2 1r a as % (2 1r a)

2

to (2 7 r a)
z
,
that is to say ,

it is of the circle or

This is separately pr oved in Prop. 2 4 by means of Prop. 1 0

and Corr . 1 , 2 .

The area ofthe ring added while the radius vector describes
the second turn is thearea bounded by the radii vectores 2 7 r d
and 4 1m ,

and is to the circle with radius 4‘1r a in the ratio
of — r

1)
2
} to r

2 where r 2 1r a and r
2

4 7 r a ;

the ratio is ? 1 2 (Prop.

If R
I
be the area of the first turn ofthe spiral bounded by

the initial line
,
R
2
the area of the ring added by the second '

complete turn ,
R
3
that of the ring added by the third turn

,

and so on ,
then (Prop . 2 7 )

1
1.,
n R

4
= 3 R R

5
= 4R — 1)R 2

.

A lso R 0
= 6 R , .
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Lastly, if E be the portion of the sector b’OO bounded by
b
’

B
, the ar c b

’

z G ofthe circle and the ar c BO ofthe spiral
,
and

F the portion cut off between the ar c BO of the spiral , the
radius 0 0 and the ar c intercepted between OB and 0 0 of

the circle with centre 0 and radius OB ,
it I s proved that

E : {OB + —OO’ OB)} (Prop .

On Plane Equilibr iums
,
I
,
I I .

In this treatise we have the fundamental principles of

mechanics established by the methods of geometry in its

strictest sense. There were doubtless earlier treatises on

mechanics
,
but it may be assumed that none of them had

been worked out with such geometrical rigour. A rchimedes
begins with seven Postulates including the following prin
ciples . Equal weights at equal distances balance ; if unequal
weights operate at equal distances

,
the larger weighs down

the smaller . If when equal weights ar e in equilibrium some

thing be added to
,
or subtracted fr om,

one ofthem
,
equilibrium

is notmaintained but the weight which is increased or is not
dimin ished prevails . When equal and similar plane figures
coincide if applied to one another , their centres of gr avity
s imilarly coincide ; and in figures which ar e unequal but
s imilar the centres of gravity will be ‘

similarly s ituated ’

.

In any figur e the contour ofwhich is concave in one and the

same direction the centre ofgravity must be within the figure .

Simple propos itions (1— 5) follow ,
deduced by r eductio ad

absu r ditm ; these lead to the fundamental theorem
,
proved

first for commensurable and then by r eductio ad absu r dum

for incommensurable magnitudes
,
that Two magnitudes ,

whether commensu r able or incommensu r able, balance atdis

tances r ecipr ocally pr opor tional to the magnitu des (Props .

6
,

Prop. 8 shows how to find the centre of gravity of

a part of a magnitude when the centres of gravity of the

other part and ofthe whole magnitude ar e given . A rchimedes
then addresses himself to the main problems ofBook I

,
namely

to
“

find the centres of gravity of (1) a parallelogram (Props.

9 , (2) a triangle (Props . 1 3
,

and (3) a parallel
trapez ium (Prop. and here we have an illustration ofthe

extraordinary r igour which he requires in his geometrical
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oroofs . We do notfind him here assuming, as in The Method ,

Lhat
,
if all the lines that can be drawn in a figure parallel to

[and including)one side have their middle points in a straight
.ine

, the centre ofgravity must lie somewhere on that straight
line ; he is not content to regard the figure as made up of an

infinity of such parallel lines ; pure geometry realiz es that
the parallelogram is made up of elementary parallelograms ,
indefinitely narrow if you please , but still parallelograms , and

the triangle of elementary tr apez ia,
not straight lines , so

that to assume directly that the centre of gravity lies on the
straight line bisecting the parallelograms would really be

a petitio pr incipii . A ccordingly the result , no doubt dis
covered in the informal way,

is clinched by a proof by r eductio
ad absu r dum in each case. In the case ofthe parallelogram
ABC'D (Prop . if the centre ofgravity is noton the straight
line EF bisecting two opposite s ides

,
let it be at H . Draw

EX parallel to AD. Then it is possible by bisecting AE , ED,

then bisecting the halves , and so on, ultimately to reach
a length less than K H . Let this be done, and through the

points of division ofAD dr aw parallels to AB or DC making
a number ofequal and similar parallelograms as in the figure .

The centre of gravity of each of these parallelograms is
similarly s ituated with regard to it . Hence we have a number
of equal magnitudes with their centres of gravity at equal
d istances along a straight line. Therefore the centre of

gravity ofthewhole is on the line joining the centres ofgravity
ofthe two middle parallelograms (Prop . 5

, Cor . But this
is impossible

,
because H is outside these parallelogr ams .

Therefore the centre ofgravity cannot but lie on EF.

Sim ilarly the centre of gravity lies on the straight line
bisecting the other opposite sides AB

, OD ; therefore it lies at
the intersection of this line w ith EF

,
i. e. at the point of

intersection ofthe diagonals .
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The proof in the case ofthe tr iangle is similar (Prop .

Let AD be the median through A . The centre of gravity
must lie on AD.

For
, if not, let it be at H

, and draw HI parallel to BC .

Then , i f we bisect DC, then bisect the halves , and so on
,

we shall arrive ata length DE less than I H . Divide BC into
lengths equal to DE , draw parallels toDA through the points
ofdivision, and complete the small parallelograms as shown in
the figure.

The centres ofgravity ofthe whole parallelograms SN , TP ,

FQlie on AD (Prop . 9) therefore the centre ofgravity ofthe

figure formed by them all lies on AD ; let it be 0 . Jom OH ,

and produce it tomeet in V the parallel through C to AD.

Now it is easy to see that, if n be the number ofparts into
whi ch DC,

A C ar e divided respectively
,

(sum of small A s A IIIR
,
MLS A RN

,
NUP : (A ABC)

n AN 2 A C 2

whence

(sum of small A s) (sum ofparallelograms) l (n

Therefore the centre ofgravity ofthe figure made up ofall
the small triangles is at a point X on OH produced such that

XE : (n — 1)OH .

But VH z HO CE zED or (n l): 1 ; therefore XH > VH .

It follows that the centre of gravity of all the small
triangles taken together lies at X notwithstanding that all

the triangles lie on one s ide of the parallel to AD drawn
through X which is imposs ible .
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This is merely preliminary . Then begins the real argument ,
the course ofwhich is characteristic and deserves to be setout.

A rchimedes uses a series of figures inscribed to the segment ,
as he says

,

‘ in the recogni z ed manner ’ The rule
is as follows . Inscribe in the segment the triangle ABB’ with
the same base and height ; the vertex A is then the point
of contact of the tangent parallel to BB’

. Do the same with
the remain ing segments cut off by AB ,

A B
’

,
then with the

segments remaining
, and so on . If is such

a figure
,
the diameters through Q, Q

’

,
P , P

’

,
R

,
R

’ bisect the
straight lines A B

, AB
’

,
AQ, AQ

’

, QB, Q
’
B

’ respectively , and

BB
’
is divided by the diameters into parts which ar e all

equal . It is easy to prove also that P P ’

, QQ
’

,
R R

’

ar e all

parallel to BB’

, and that AL : LM :MN : NO 7
, the

same relation holding if the number of sides of the polygon
is increased ; i. e . the segments of A O ar e always in the ratio
of the success ive odd numbers (Lemmas to Prop . The

centre of gravity ofthe inscribed figure lies
,

on A O (Prop .

If there be two parabolic segments , and two figures inscribed
in them ‘ in the recogn iz ed manner with an equa l number of

s ides , the centres of gravity divide the respective axes in the

same proportion ,
for the ratio depends on the same ratio ofodd

numbers 1 3 5 7 (Prop . The centre ofgravity ofthe
parabolic segment itself lies on the diameter A O (this is proved
in Prop . 4 by r edu ctio ad absu r dum in exactly the same way

as for the triangle in I . It is next proved (Prop . 5) that
the centre ofgravity ofthe segment is nearer to the vertex A
than the centre ofgravity ofthe inscribed figure is ; but that
it is poss ible to inscribe in the segment in the recogniz ed
manner a figure such that the distance between the centres of
gravity ofthe segment and ofthe inscribed figure is

'

less than
any assigned length ,

for we have only to increase the number
of sides sufficiently (Prop . Incidentally , it is observed in
Prop . 4 that , if in any segment the triangle with the same

base and equal height is inscribed , the tri angle is greater than
half the segment

,
whence it follows that , each time we increase

the number of sides in the inscribed figure, we take away
more than half ofthe segments remaining over ; and in Prop . 5

that corresponding segments on opposite sides ofthe axis , e. g.

QRB , Q
’

R
’
B

’ have their axes equal and therefore ar e equal in
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area. Lastly (Prop . if there be two parabolic segments ,
their centres of gravity divide their diameters in the same

ratio (A rchimedes enunciates this of similar segments only ,

but it is true ofany two segments and is required ofany two
segments in Prop . Prop . 8 now finds the centre ofgravity
of any segment by us ing the last proposition . It is the
geometri cal equivalent ofthe solution of a simple equation in
the ratio (m, say) of A G to A O,

where G is the centre of

gravity ofthe segment.
S ince the segment g(A the sum of the two seg

ments AQB, AQ
’
B
’

3
1
, (A

Further
,
ifQD, Q

’

D
’

ar e the diameters of these segments,
QD,Q

’

D
’

ar e equal , and , since the centres
ofgravity H ,

H
’
of the segments divide

QD, Q
’

D
’ proportionally, EH

’
is parallel

to QQ
'

,
and the centre of gravity of the

two segments together is atK , the point
where HH ’

meets A O.

Now A O 4A V (Lemma 3 to Prop.

and QD éAO— A V : A V. But

H divides QD in the same ratio as G

divides A O (Prop. therefore

Taking moments about A ofthe segment
,
the triangle ABB’

and the sum of the small segments , we have (dividing out by
A V and A ABB

’

)

4

1 5m = 9 ,

and m

That is , AG= %A O,
or AG z GO

The final proposition (1 0)finds the centre of gravity of the
por tion ofa parabola cut offbetween two parallel chords PP ’

,

BB
’

. If PP ’
is the shorter of the chords and the diameter

bisecting PP ’

, BB
’
meets them in N

, 0 respectively, A rchi
medes proves that, if N0 be d ivided intofive equal parts of
which LM is the middle one (L being nearer toN than M is)3
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the centre ofgravity Gofthe portion ofthe parabola between
PP

’
and BB

’ divides LM in such a way that
LG z GM = B0 2 . (2 PN + BO) : PN

2
.

The geometrical proof is somewhat diflicult, and uses a very
remarkable Lemma which forms Prop. 9 . If a , b, c, d , as, y ar e

straight lines satisfying the conditions

2 “g(a b c d),

2 a + 4b+ 6 c+ 3 d

'

then must w+ y %a.

The proof is entirely geometrical
,
but amounts of course to

the elimination of three quantities b, c, ( l from the above four
equations .

The Sand - r eckone r (Psammites or A renar ius).

I have already described in a previous chapter the remark
able system, explained in thi s treatise and in a lost work ,
Mpxa z

’

,
P r inciples, addressed to Zeuxippus , for expressing very

large numbers whi ch were beyond the range of the ordinary
Greek arithmetical notation . A rchimedes showed that his
system would enable any number to be expressed up to that

vwhi ch in ou r notation would require million million
ciphers and then proceeded to prove that this system more
than sufficed to express the number ofgrains of sand which
it would take tofill the u r

’

i iver se
,
on a reasonable View (as it

seemed to him)of the siz e to be attributed to the universe .

Interesting as the book is for the course of the argument by
which A rchimedes establishes this, it is , in addition, a docu
ment of the first importance his torically. It is here that we
learn that A ristarchus put forward the Copernican theory of
the universe, with the sun in the centre and the planets
including the earth revolving round it, and that A ristarchus
further discovered the angular diameter ofthe sun to be fi ath

ofthe circle
_

ofthe z odiac or half a degree. S ince A rchimedes ,
in order to calculate a safe figure (not too small)for the s iz e

G
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of the universe, has to make certain assumptions as to the

s iz es and distances of the sun and moon and their relation
to the siz e of the universe , he takes the Opportunity of

quoting earlier views . Some have tried, he says , to prove
that the perimeter of the earth is about stades ; in
order to be quite safe he w ill take it to be about ten times
this

, or stades , and not greater. The diameter of
the earth, like most ear lier

'

astronomers , he takes to be

greater than that of the moon but less than that of the sun.

Eudoxus , he says , declared the diameter ofthe sun to be nine
times that of the moon ,

Phidias , his own father, twelve times
,

wh ile A ristarchus tried to prove that it is greater than 1 8 but

less than 2 0 times the diameter ofthe moon ; he will again be
on the safe side and take it to be 3 0 times , but notmore. The

position is rather more difficult as regards the ratio of the

distance ofthe sun to the s iz e ofthe un iverse. H ere he seiz es
upon a dictum of A ristarchus that the sphere of the fixed
stars is so great thatthe circle in which he supposes the earth
to revolve (round the sun)

‘ bears such a proportion to the

distance ofthe fixed stars as the centre ofthe sphere bears to
its surface If this is taken in a strictly mathematical sense ,

it means that the sphere of the fixed stars is infinite in s iz e ,
which would not suit A rchimedes’s purpose ; to get another
meaning out of it he presses the point that A r istarchus ’s
words cannot be taken quite literally because the centre, being
without magnitude

,
cannot be in any ratio to any other mag

nitude hence he suggests that a reasonable interpretation of
the statement would be to suppose that, if we conceive a

sphere with radius equal to the distance between the centre
ofthe sun and the centre ofthe earth , then

(diam. ofearth): (diam. of said sphere)

(diam. ofsaid sphere) (diam. ofsphere offixed stars).

This is , of course , an arbitrary interpretation ; A ristarchus
presumably meant no such thing, but merely that the siz e of
the earth is negligible in comparison with that of the sphere
of the fixed stars . However, the solution of A rchimedes’s
problem demands some assumption ofthe kind , and ,

in making
this assumption , he was no doubt aware that he was taking
a liberty with Aristarchus for the sake of giving his hypo
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A rchimedes has , lastly ,
to compare the diameter Of the sun

with the circumference of the circle described by its centre .

A ristarchus had made the apparent diameter ofthe sun
7 gath

of the said circumference ; A rchimedes will prove that the
said circumference cannot contain as many as sun’

s

diameters , or that the diameter of the sun is greater than the
side of a regular chiliagon inscribed in the circle . First he
made an experiment of his own to determine the apparent
diameter ofthe sun . With a small cyl inder or disc in a plane
at right angles to a long straight stick and moveable along it

,

he observed the sun at the moment when it cleared the

horiz on in rising , moving the disc till it j ust covered and just
failed to cover the sun as he looked along the straight stick .

H e thus found the angular diameter to lie between Téz R and

§ %5 R ,
whe1 e R is a right angle. But as, under his assump

tions , the s iz e ofthe earth I s not negligible in comparison with
the sun ’

s circle, he had to allow for parallax and find limit s
for the angle subtended by the sun at the centre ofthe earth .

This he does by a geometrical argument very much in the

manner ofA ristarchus .

Let the circles with centres O, C represent sections ofthe sun

and earth respectively ,
E the position ofthe observer observing

G 2
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the sun when it has just cleared the horiz on . Draw from E

two tangents EP
,
EQ to the circle With centre 0 ,

and from
C letCF

,
CG be drawn touching the same circle . With centre

C and radius CO describe a circle : this will represent the path
ofthe centre Ofthe sun round the earth . Let this circle meet

the tangents from C in A
,
B

,
and join AB meeting CO in M .

A rchimedes ’s Observation has shown that

R > A FEQ > 5 55 B ;

and he proceeds to prove that A B is less than the s ide Of a

1 egular polygon of 6 5 6 s ides inscribed in the ci1 ele A OB
,

but greater than the side of an inscribed regular polygon of

sides , in other words , that

R AFOG R .

The first relation is Obvious
,
for , since CO E0

,

1 PEQ A FCG.

Next , the perimeter Of any polygon inscribed in the circle
A OB 1 s less than 4

7
4— 0 0 (i . e . times the diameter),

Therefore A B —

5
CO or

1 1 55 CO,

and
,
a for tior i, A B 5 55 C0 .

Now
,
the triangles CAM , COF being equal in all respects,

AM OF
,
so that A B 2OF : (diameter of sun) OH OK ,

s ince - the diameter Ofthe sun is greater than that ofthe earth '

therefore OH + OK <
1 5 5 CO,

and HK
5 5

9
.5 CO

And CO OF, while HK EQ, so that EQ
We can now compare the angles OCF

,
OEQ;

T
9 9

6 5

A OOF tan

4 OEQ tan OEQ

>
EQ

>
CF

5
9
5
9

5 , afor tior i .

Doubling the angles , we have
AFCG

1

9

0

9

5
. A PEQ

5 5
9

5
9

5 5 R , since APEQ 2 5 ,
-

5 R
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H ence AB is greater than the side of a regular polygon of

8 1 2 sides , and a for tior i greater than the s ide Of a regular
polygon of s ides

,
inscribed in the circle A OB .

The perimeter of the chiliagon
,
as of any regular polygon

with more s ides than six , inscribed in the circle A OB is greater
than 3 times the diameter of the sun’

s orbit, but is less than
times the diameter ofthe sun , and a for tior i less than
times the diameter ofthe earth ;

therefore (diameter of sun
’

s orbit) (diam . ofearth)
stades .

But (diam . ofearth) (diam . of sun ’

s orbit)
(diam . of sun ’

s orbit) : (diam . ofuniverse);
therefore the un iverse, or the sphere ofthe fixed stars , is less
than times the sphere in which the sun ’

s orbit is a

great circle .

Ar ch imedes takes a quantity of sand not greater than
a poppy - seed and assumes that it contains notmore than
grains ; the diameter of a poppy- seed he takes to be not less
than 5

1

5 th of a finger
- breadth thus a sphere Of diameter

1 finger
~br eadth is not greater than poppy - seeds and

therefore contains not more than grains of sand
un its of second or der units offir st or der ’

)
and a for tior i not more than 1

,ooo,ooo,ooo 1 0 units of

second or d er ofnumbers Gradually increasing the diameter
ofthe sphere by multiplying it each time by 1 0 0 (making the
sphere times larger each time) and substituting for

finger
- breadths a stadium finger

- breadths),
he finds the number of grains of sand in a sphere ofdiameter

stadia to be less than units of seventh

or der ofnumbers or 1 0 5
1
, and the number in a sphere

times this s iz e to be less than units Ofthe eighth
or der ofnumbers ’

or 1 0 6
3
.

The Quad ratur e of the Par abola.

In the preface, addressed to Dositheus after the death of

Conon ,
A rchimedes claims originality for the solution of the

problem offinding the area ofa segment ofa parabola cut Off
by any chord, which he says he first discovered by means Of

mechanics and then confirmed by means of geometry , using
the lemma that , if there ar e two unequal areas (or magnitudes
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curve in R
1 ,
R
2 ,

Join QR I ,
and produce it tomeet OE in

F
, QE 2

meeting O
1
E
1
in F

1 ,
and so on .

A rchimedes has proved in a series of propos itions
(6 - 1 3) that , if a trapez ium such as O

1
E
1
E
2
O
2
is suspended

from H
1
H
2 ,
and an area P suspended at A balances O

1
E
1
E
2
0
2

so suspended , it will take a greater area than P suspended at

A to balance the same trapez ium suspended from H
2
and

a less area than P to balance the same trapez ium suspended
from H

1
. A similar proposition holds w ith regard toa triangle

such as E
n
H

nQsuspended where it is and suspended atQand

H
n
respectively .

Suppose (Props . 1 4
,
1 5) the triangle QgE suspended where

it is from OQ,
and suppose that the trapez ium E 0

1 ,
suspended

W here it is , is balanced by an area If suspended at A
,
the

trapez ium E
1 0 2 , suspended where it is , is balanced by I

;

suspended at A
,
and so on

, and finally the triangle E
n
O
nQ,

suspended wher e it is
,
is balanced by P

,, + 1
suspended at A ;

then R P
2 R, +1 atA balances the whole triangle , so that

l A EQQ,

since the whole triangle may be regarded as suspended from
the point on OQvertically above its centre ofgravity.

Now A O OH
1 Q0 OH

1

(29 390 1
E
1
O
1
z O

1
R
1 ,
by Prop . 5

,

(trapez iumE0 1) (trapez iumF0 1),
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that is , it takes the trapez ium FO1 suspended atA to balance
the trapez ium EO

1
suspended at H

1
. And P1 balances E0 1

where it is .

Therefore (F0 1) P
1

.

S imilarly (F1 0 2) P
Z ,

and so on .

Again A O OH
1

E
1
0
1
: O

1
R
1

(trapez ium E1
O
2) (trapez ium R 1

O
2),

that is , (R 1
0
2) at A w ill balance (E 1

0
2) suspended at H

1 ,

while P
2
at A balances (E 1O2) suspended where it is ,

whence P
2

R
1
0
2

.

Therefore (F1 O2) R, (R 1
0
2),

(E2 0 3) 1
5

R
2
0 and so on ;

andfinally
,

A E
,,
O
nQ

By addition ,

(R 1
0
2) + (A R n

0
n

-Q) P
2 + I é +

therefore
,
a for tior i ,

13
1 +P2 +

That is to say , we have an inscribed figure consisting of

trapez ia and a triangle which is less , and a circumscribed
figure composed in the same way which is greater, than

i. e. 5A EqQ.

It is therefore inferred, and proved by the method of ex

haustion
,
that the segment itself is equ al to 5A EqQ(Prop .

In order to enable the method to be appl ied , it has on ly
to be proved that , by increasing the number of parts in Qq
sufficiently, the difference between the circumscribed and

inscribed figures can be made as small as we please. This
can be seen thus . We have first to show that all the parts , as
gF,

into which qE is divided ar e equal .

We have E
1 0 1 : O1 R l QO z OH

l
or O

’
R
l

n + 1
. E

1
O
1 ,
whence also O

2
S
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E
2
0
2
: 0

2
R
2 Q0 OH

“ (n + 2
,

2

It follows that O
2
S SR and so on .

Consequently O1 R 1 ,
O
2
R
2 , 0 3R 3

ar e divided into 3

equal parts respectively by the lines from Qmeeting qE .

It follows that the difference between the circumscribed and
inscribed figures is equal to the triangle FgQ, which can be

made as small as we please by increasing the number of

divisions in Qq, i. e. in qE .

S ince the area Ofthe segment is equal to 5A EgQ, and it is
easily proved (Prop . 1 7 ) that A EgQ 4 (triangle w ith same

base and equal height with segment), it follows that the area
ofthe segment 4 times the latter triangle.

2 2

It is easy to see that this solution is essentially the same as

that given in TheMethod (see pp . 2 9— 3 0
,
above), on ly in a more

orthodox form (geometrically speaking). For there A rch i
medes took the sum Ofall the str aight lines , as O1 R 1 ,

O
Z
R
2

as making up the segment notwithstanding that there ar e an

infinite number of them and straight lines have no breadth .

H ere he takes inscribed and circumscribed trapez ia propor
tional to the straight lines and having finite breadth

,
and then

compresses the figures together into the segment itself by
increas ing indefin itely the number of trapez ia in each figure ,
i. e . diminish ing their breadth indefinitely .

The pr ocedu r e is equivalent to an integration
,
thus :

If X denote the area ofthe triangle FgQ, we have , if n be
the number ofparts in Qq,

(circumscribed figure)
sum ofA sQqF, QR 1

F
1 , QR 2

F
2 ,

sum OfA s QqF, Q0 1R 1 , QOZS ,

(n (n — z r
7 1
2

n
2X2

).
l

n
aXz

'

Similarly ,
we find that

(inscribed figure) X {X
2
+
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the triangle .PQg is half of the parallelogram and therefore
more than half the segment. And so on (Prop.

We now have to sum n terms of the above geometrical
series . A rchimedes enunciates the problem in the form

,
Given

a series ofareas A
,
B,
C

,
D Z

,
ofwhich A is the greatest, and

each is equal to four times the next in order, then (Prop . 2 3)

Z : 3A .

The algebraical equivalentof this i s ofcourse
1 _

1 n

1 + +<i r s (4 )
" 1

F

“

;
To find the area Of the segment

,
A rchimedes

,
instead of

taking the limit
,
as we should

,
uses the method of, r eductioad

absu r dum.

Suppose K 5 A PQg.

(1) If possible ,
let the area of the segmentbe greater than K .

We then inscribe a figure ‘
in the recogn i z ed manner ’

such
that the segment exceeds it by an area less than the excess of
the segment over K . Therefore the inscribed figure must be
greater than K ,

which is impossible since

A + B + C+ 5A ,

where A A PQq (Prop.

2) If possible, letthe area ofthe segment be less than K .

If then APQq A ,
B 5A ,

C : 5B , and so on, until we
arrive at an area X less than the excess OfK over the area of
the segment, we have

A + B + C + +X+ 5X = 5A K .

Thus K exceeds A B 0 + X by an area less thanX,

and exceeds the segment by an area greater than X.

It follows that A + B 0 + +X (the segment) which
is impossible (Prop.

Therefore the area ofthe segment, being neither greater nor
less than K ,

is equal to K or 5APQq.

On Floating Bodies , I , I I .

In Book I of this treatise A rchimedes lays down the funda
mental principles of the science of hydrostatics . These ar e
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deduced from Postulates which ar e only two in number . The

first which begins Book I is this :

‘ let it be assumed that a fluid is of such a nature that , of the
parts of it which lie evenly and ar e continuous , that whi ch i s

pressed the less is driven along by that which is pressed the
more ; and each of its parts is pressed by the fluid whi ch

.

1 S

perpendicularly above it except when the fluid is shut up in

anything and pressed by someth ing else

the second, placed after Prop . 7
,
says

‘ let it be assumed that , of bodies which ar e borne upwards in
a fluid

, each is borne upwards along the perpendi cular dr awn
through its centre ofgravity

Prop . 1 is a preliminary propos ition about a sphere , and

then A rchimedes plunges in medi as r es with the theorem

(Prop . 2) that ‘ the su rface ofanyflu id at r est is a spher e the

centr e ofwhich is the same as that ofthe ear th
’

, and in the

whole ofBook I the surface of the fluid is always shown in

the diagrams as spherical. The method of proof is similar to
what we should expect in a modern elementary textbook, the
main propositions established being the following. A solid
which

,
siz e for Si z e

,
is of equal weight w ith a flu id w ill , if let

down into the fluid
,
sink till it is just covered but not lower

(Prop . a solid lighter than a fluid will
,
if let down into it ,

be only partly immersed
,
in fact just so far that the weight

of the solid is equal to the weight Of the fluid displaced
(Props . 4

,
and

, if it is forcibly immersed ,
it will be driven

upwards by a force equal to the difl'

er ence beween its weight
and the weight Ofthe fluid d isplaced (Prop .

The important proposition follows (Prop . 7 ) that a solid
heavier than a fluid w ill , ifplaced in it, sink to the bottom of

the fluid
,
and the solid will , when weighed in the fluid

,
be

lighter than its true weight by the weight of the fluid
displaced .

The pr oblem of the Cr own .

This proposition gives a method Of solving the famous
problem the discovery ofwhich in his bath sent A rchimedes
home naked crying ev

’

pryxa , ez
'

ia a
,
namely the problem of
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determin ing the proportions of gold and silver in a certain
crown .

LetW be the weight ofthe crown , 71 11
and 20

2
the weights of

the gold and silver in it respectively , so that W w
1 + w,

.

(1) Take a weightWof pure gold and weigh it in the fluid .

The apparent loss ofweight is then equal tothe weight ofthe
fluid displaced this is ascertained by weighing . Let it be F

1
.

It follows that the weight ofthe fluid displaced by a weight

iv
1
ofgold i s

r
i

g—t F .

(2) Take a weight W of silver
,
and pei form the same

operation . Let the weight of the fluid displaced be F .

Then the weight of the fluid displaced by a weight u)
2
o

z

f

s ilver is
w

-

2
.F

W

(3) Lastly weigh the crown itself in the fluid
, and let F be

loss Ofweight or the weight ofthe fluid displaced .

We have then F
1

F
2

F
,W

that is , 1 0
1
F
1 +

fw
z
F : (w1

fw
z)F,

whence M
l

F
2

I?
1 0
2

F‘ 1’
1

A ccording to the author ofthe poem de pond er ibu s etmen

su r is (written probably about A .D . 5 0 0)A rchimedes actually
used a method of this kind . We first take , says our authority ,

two equal weights of gold and silver respectively and weigh
them against each other when both ar e immersed in water ;
this gives the relation between their weights in ' water

, and

therefore between their losses of weight in waterf Nextwe
take the mixture of gold and silver and an equal weight of
silver, and weigh them against each other in water in the

same way .

Nevertheless I do not think it probable that this was the
way in which the solution ofthe problem was discover ed . A s

we ar e told that A rchimedes discovered it in his bath , and
that he noticed that , if the bath was full when he entered it ,
somuch water overflowed as was displaced by his body, he is
more likely to have odiscover ed the solution by the alternative
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principal parameter ofthe generating parabola,
is a veritable

tou r de for ce which must be read in full to be appreciated.

Prop . 1 is preliminary , to the effect that
,
if a solid lighter than

a fluid be at rest in it , the weight of the solid will be to that
of the same volume of the fluid as the immersed portion of

the sol id is to the whole. The results Of the propositions
about the segment of a paraboloid may be thus summariz ed .

Let h be the axis or height of the segment , p the principal
parameter Of the generating parabola, s the ratio of the

specific gravity of the solid to that of the fluid (8 always <
The segment is supposed to be always placed so that its base
is either entirely above, or entirely below ,

the surface of the
fluid ,

and what A rchimedes proves in each case is that
,
if

the segment is so placed with its axis inclined to the vertical
at any angle , itwill not rest there but will return to the

position of stability.

I . If h is notgreater than 535, the position of stability is with
the axis vertical , whether the curved surface is downwards or
upwards (Props . 2

,

II . If h is greater than 5p,
then

,
in order that the pos ition of

stability may be with the axis vertical , 3 must be not less
than (h— 1

7
3

,
if the curved surface is downwards , and not

greater than h2 (h— 5p)
2
} /h

2 if the curved surface is
upwards (Props . 4 ,

III . If h> %p,
but h/5p 1 5 4

,
the segment , if placed w ith

one point of the base touching the surface, will never remain
there whether the curved surface be downwards or upwards
(Props . 6 , (The segment will move in the direction of

bringing the axis nearer to the vertical pos ition.)

IV . If but and if s is less than
(h— 5 )

2

/h
2 in the case where the curved surface is down

wards , but greater than {hz (h— 5 )
2
}/h

2 in the case where
the curved surface is upwards , then the position ofstability is
one in which the axis is not vertical but inclined tothe surface
Ofthe fluid ata certain angle (Props . 8 , (The angle is drawn
in an auxiliary figure. The construction for it in Prop . 8 is

equivalent to the solution ofthe following equation in 6
,

p cot2 6 - lfi)— %Z9 ;
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where h is the axis ofthe segment ofthe paraboloid cutoffby
the surface ofthe fluid .)
V . Prop . 1 0 investigates the positions of stability in the cases
where h/5p the base is entirely above the surface, and
s has values lying between five pairs of ratios respectively.

Only in the case where s is not less than (h is the

positiqn ofstability that in which the ax is is ver tical .
BAB

1
is a section of the paraboloid through the axis AM .

C is a point on AM such that A C : z CM,
K is a pointon CA

such that AM . CK 1 5 : 4 . CO is measured along CA such
that CO 5p, and B I s a point on AM such that MR : 5’

Z
OO.

A
2
is the point in which the perpendicular to AM from K

meets AB, and A 3
is the middle point ofAB . BA

2
E
2 ,
BA

3
M

ar e parabolic segments on A ..M2 ,
A
3
11!
3 (parallel toAM )as axes

and s imilar to the original segment . (The parabola BA 2B2
is proved to pass through 0 by us ing the above relation
AM : OK and applying Prop. 4 of the Quad r atu r e of
the Par abola .) The perpendicular to AM from O meets the
parabola BA

2
B2 in two points P

2 , Q2 , and straight lines
through these points parallel to AM meet the other para
bolas in P

1 , Q1 and P
3 , Q3 respectively. P

1
T and Q1 U ar e

tangents to the original parabola meeting the ax is MA pro,

duced in T, U. Then

(i) if s is not less than AR z
z AM2

or (h there is
stable equilibrium when AM is vertical ;
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(ii) if s < AR 2 AM 2 but >Q1Q32 AM 2
, the solid will not rest

with its base touching the surface of the fluid in .One point
only, but in a position with the base entirely outof the fluid
and the axis making with the surface an angle greater
than U

(iiia) if s Q1Q3
2
: AM 2

,
there is stable equilibrium with one

point of the base touching the surface and AM inclined to it
at an angle equal to U ;

(iiib) if s P
1
P
3

2 AM Z
,
there is stable equilibrium with one

point Of the base touching the surface and with AM inclined
to it at an angle equal to T

(iv) if s >P 1
P
3

2 AM 2 but Q1Q3
2 AM 2

,
there will be stable

equilibrium in a pos ition in which the base is more submerged

(v) if s < P
1
P
3

2
: AM 2

,
there will be stable equil ibrium w ith

the base entirely out of the fluid and with the axis AM
inclined to the surface at an angle less than T.

It remains to mention the traditions regarding other in
vestigations by A rchimedes

'which have reached us in Greek
or through the A rabic .

(a) The Cattle- P r oblem .

This is a difficult problem in indeterminate analysis . It is
required to find the number of bulls and cows of each of four
colours , or to find 8 unknown quantities . The first part of
the problem connects the unknowns by seven simple equations
and the second part adds two more conditions to which the
unknowns must be subject. If W

,
to be the numbers ofwhite

bulls and cows respectively and (X,
ac), (Y, y), (Z ,

2 ) represent
the numbers of the other three colours , we have first the
following equations :

IFr 1
_ L 1
)12K

’

- t I
7

X = fz + s l z + K

Z Y,

y (5 + -W+w)
H
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angular , but not similar , polygons ; those discovered by
A rchimedes were 1 3 in number. If we for convenience
designate a polyhedron contained by m regular polygons
ofor sides, n regular polygons of 3 sides , &c. , by (m5 ,

the thir teen A rchimedean polyhedra, which we will denote by
P
1 ,
P
2

P
1 3 ,

ar e as follows

Figure with 8 faces : P
1 5 (4

Figures with 1 4 faces : P

Figures with 2 6 faces : P
5

Figures with 3 2 faces : P
7 5 (2 0 P

8 5 (1 2

Figure with 3 8 faces : P
1 1, E (3 2 3 ,

Figures with 6 2 faces : P
1 1
—Z 3 0

P
1 2 5 (3 0 4 ,

2 0
6 ,
1 2

Figure with 9 2 faces : P
1 3 E (SO

K epler 1 showed how these figures can be Obtained. A

method ofobtaining some of them is indicated in a fragment
Of a scholium to the Vatican MS . of Pappus . If a solid
angle ofone of the regular solids be cut Offsymmetrically by
a plane

,
i . e . in such a way that the plane cuts off the same

length from each of the edges meeting at the angle, the
section is a regular polygon which is a triangle, squar e or

pentagon according as the solid angle is formed ofthree, four ,
or five plane angles . If certain equal portions be so cut off
from all the solid angles respectively , they will leave regular
polygons inscr ibed in the faces of the solid ; this happens
(A)when the cutting planes bisect the sides of the faces and
so leave in each face a polygon ofthe same kind , and (B)when
the cutting planes cut Offa smaller portion from each angle in
such a way that a regular polygon is left in each face which
has double the number of sides (as when we make, say ,

an

octagon outof a square by cutting offthe necessary portions ,

1 Kepler, H armom
’

ce mund i in Oper a v
, pp. 123—6 .

H 2
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symmetrically ,
from the corners). We have seen that, accor d

ing to H eron ,
two of the semi - regular solids had already been

discovered by Plato,
and this would doubtless be his method .

The methods (A ) and (B) applied to the five regular solids
give the follow ing out of the 1 3 semi - regular sol ids . We\

obtain (1) from the tetrahedron , PI by cutting off angles
so as to leave hexagons in the faces (2) from the cube, P2 by
leaving squares , and P

4
by leaving octagons , in the faces ;

(3) from the octahedron ,
P
2
by leaving triangles , and P3 by

leaving hexagons , in the faces ; (4) from the icosahedron
,

P
7
by leaving triangles , and P8 by leav ing hexagons , in the

faces ; (5) from the dodecahedron ,
P
7

'

by leaving pentagons ,
and P

9
by leaving decagons in the faces .

Of the remaining six , four ar e obtained by cutting off all

the edges symmetrically and equally by planes parallel to the
edges , and then cutting Off angles . Take first the cube .

(1) Cutoff from each four parallel edges portions which leave
an octagon as the section of the figure perpendicular to the
edges ; then cut Off equ ilateral triangles from the corners
(see Fig . this gives P

5
containing 8 equilateral triangles

and 1 8 squares . (P5 is also obtained by bisectin g all the

edges of
, P, and cutting off corners .) (2) Cut off

l

from the

edges of the cube a smaller portion so as to leave in each
face a square such that the octagon described in it has its
side equal to the breadth Of the section in which each edge is
cut; then cutoff hexagons from each angle (see Fig. 2) th is

FI G . 1 . FI G. 2 .

gives 6 .octagons in the faces
,
1 2 squares under the edges and

8 hexagons at the corners ; that is , we have 136 . An exactly



ON SEMI - REGULAR POLYHEDR A 1 0 1

similar procedure with the icosahedron and dodecahedron
produces R1

and P
1 2 (see Figs . 3 , 4 for the case Of the icosa

hedr on).

FI G . 3 . FI G. 4 .

The two remain ing solids P
1 0 ,
P
1 3
cannot be so simply pro

duced . They ar e represented in Figs . 5
, 6 , which I have

FI G . 5 . FI G. 6 .

taken from K epler. R0
is the snub cube in which each

solid angle is formed by the angles of four equilateral triangles
and one square ; R3 is the snu b dodecahedr on , each solid
angle of which is formed by the angles of four equilateral
triangles and one r egu lar pentagon .

We ar e indebted to A rabian tradition for

(y) The Liber A ssumptor um .

Of the theorems contained in this collection many ar e

so elegant as to afford a presumption that they may really
be due to A rchimedes . In thr ee of them the figure appears
which was called a’a Aog, a shoemaker’s knife, consisting of
three semicircles with a common diameter as shown in the

annexed figure. If N be the point at which the diameters
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Lastly, we may mention the elegant theorem about the
area of the Salinon (presumably ‘

salt - cellar ’) in Prop . 1 4 .

A CE is a semicircle on A B as diameter
, AD, EB ar e equal

lengths measured from A and B on A B. Semicircles ar e

drawn with AD,
EB as diameters on the side towards C

,
and

a semicircle with DE as diameter is drawn on the other side of
A B . CF is the perpendicular to AB through 0 , the centre
of the semicircles A OB,

DFE . Then is the area bounded by
all the semicircles (the Salinon) equal to the circle on CF

as diameter.
The A rabians, through whom the Book of Lemmas has

reached us, attributed to A rch imedes other works (1) on the
Circle, (2) on the H eptagon in a Circle, (3) on Circles touch
ing one another, 4) on Parallel Lines, (5)on Triangles, (6)on
the properties of right - angled triangles, (7 ) a book ofData,

(8) De clepsydr is : statements which we ar e not in a position
to check. But the author ofa book on the finding of chords
in a circle

,

1 Abfi
’

l
'

Raihan Muh. al - Bir i
‘

mi , quotes some alterna
tive proofs as coming from the fir st of these works.

(8) Formu la for ar ea of tr iangle.

More important, however, is the mention in this same work
of A rchimedes as the discoverer oftwo propositions hither to
attributed to H eron ,

the first being the problem of finding
the perpendiculars ofa triangle when the sides ar e given ,

and

the second the famous formula for the area of a triangle in
terms ofthe sides ,

x/ { s (s — a)(s— b)(s

See Bibliotheca mathematica, xis , pp. 1 1—7 8.
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Long as the present chapter is , it is nevertheless the most
appropriate place for ERATOSTHE-NES ofCyrene. It was tohim
that A rchimedes dedicated TheMethod ,

and the Cattle- P r oblem

purports , by its heading, to have been sent through him to

the mathematicians of A lexandria . It is evident from the

preface to The Method that A rch imedes thought - highly ofhis
mathematical ability . H e was , indeed , recogniz ed by his con
temporaries as a man of great distinction in all branches of
knowledge, though in each subject he just fell short of the
h ighest place. On the latter ground he was called Beta, and

another nickname applied to him,
P entathlos, has the same

implication,
representing as it does an all- round athlete who

was not the first runner or wrestler but took the second priz e
in these contests as well as in others . H e was very little
younger than A rchimedes ; the date ofhis birth was probably
2 8 4 or thereabouts . H e was a pupil of the philosopher
A riston of Chios‘

,
the grammarian Lysanias of Cyrene , and

the poet Callimachus he is said also to have been a pupil of
Zeno the Stoic, and he may have come under the influence of
A rcesilaus at A thens , where he spent a cons iderable time.

Invited, when about 40 years of age , by Ptolemy Euergetes
to be tutor to his son (Philopator ), he became librarian at

A lexandria ; his obligation to Ptolemy he recogniz ed by the
column which he erected with a graceful epigram inscribed on
it. This is the epigram,

with which we ar e already acquainted
(vol. i, p . relating to the solutions, discovered up to date,
ofthe problem ofthe duplication of the cube, and commend
ing his own method by means ofan appliance called peaéhaflov,
itself represented in bronz e on the column .

Eratosthenes wrote a book with the title and ,

whether it was a sort of commentary on the Timaeu s
'

of

Plato
,
or a dialogue in which the principal part was played by

Plato, it evidently dealt with the fundamental notions of

mathematics in connexion with Plato’s philosophy. It was
naturally one of the important sources ofTheon of Smyrna’

s

work on the mathematical matters which it was necessary for
the student of Plato to know ; and Theon cites the work
twice by name. It seems to have begun with the famous
problem ofDelos, telling the story quoted by Theon how the
god required, as a means of stopping a plague, that the altar
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there , which was cubical in form , should be doubled in siz e.

The book evidently contained a disquisition on pr opor ti
'

on

a quotation by Theon on this subject shows that
Eratosthenes incidentally dealt with the fundamental defini
tions of geometry and arithmetic. The principles of music
were discussed in the same work .

We have already described Eratosthenes’s solution of the

problem ofDelos
,
and his contribution tothe theory ofarith

metic by means of his sieve for finding successive
prime numbers.

H e wrote also an independent work On.means . This was in
two Books , and was important enough to be mentioned by
Pappus along with works by Euclid

,
A ristaeus and Apol

lonius as forming part of the Tr easu r y of Analysis
‘
; this

proves that it was a systematic geometrical treatise. Another
passage of Pappus speaks of certain loci which Eratosthenes
called ‘ loci with reference tomeans (7 61 mmobs yeaémm sfi;
these were presumably discussed in the treatise in question.

What kind of loci these were is quite uncertain ; Pappus (if it
is not an interpolator who speaks)merely says that these loci
belong to the aforesaid classes of loci ’, but as the classes ar e
numerous (including plane solid ’

,

‘ linear ‘ loci on surfaces
we ar e none the wiser . Tannery conjectured that they

were loci of points such that their distances from three fixed
straight lines furnished a médiété i . e . loci (straight lines
and con ics)which we should represent in trilinear coordinates
by such equations as 2 y m+ e, y

2=wz , 2 5132 .

w(a: — y) z (y— z ), a:(a: — y) y(y— z ), the first three equations
representing the arithmetic , geometric and harmonic means ,

while the last two represent the ‘
subcontraries ’

to the

harmonic and geometric means respectively. Zeuthen has

a different conjecture.

3 H e points out that, if QQ
’

be the

polar ofa given point C with reference to a conic, and CPOP
’

be drawn through 0 meeting QQ
’
in O and the conic in P , P

’

,

then CO is the harmonic mean to CP , CP
’

; the locus ofO for
all transversals CPP ’

is then the straight line
'

QQ
’
. If A , G

ar e points on PP ’
such that CA is the arithmetic, and CG the

Pappus , vii, p. 636 . 24.

2

3 Zeuthen ,
Die Lehr e von den K egelschnitten im A lter tum, 1 886 , pp.

320, 32 1 .
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or, or 1 / 5oth of four right angles . Now the distance from S
to A was known by measurement to be stades ; it
followed that the circumference of the earth was

stades . Th is is the figure given by Cleomedes , butTheon of

Smyrna and Strabo both give it as stades . The

reason of the discrepancy is not known ; it is possible that
Eratosthenes corrected to for some reason ,

perhaps in order to get a figure divisible by 6 0 and , inci
dentally ,

a round number (7 0 0)of stades for one degree. If
Pliny is right in saying that E ratosthenes made 40 stades
equal to,

the Egyptian axoivos
‘

,
then

, taking the oxofuos
' at

R oyal cubits of 0 5 2 5 metres
,
we get 3 0 0 such cubits ,

or 1 5 7 5 metres , i. s . 5 1 6 - 7 3 feet, as the length of the stade.

On this bas is stades works out to miles , and
the diameter of the earth to about miles

,
only 5 0 miles

shorter than the true polar diameter, a surpris ingly close
approximation , however much it owes to happy accidents
in the calculation .

We learn from H eron ’

s Dioptr a that the measurement of
the ear th by Eratosthenes was given in a separate work On
the Measu r ementofthe Ear th. A ccording toGalen 1 this work
dealt generally with astronomical or mathematical geography,

treating of ‘the siz e of the equator
,
the distance ofthe tropic

and polar circles
,
the extent of the polar z one

, the s iz e and

distance of the sun and moon , total
'

and partial eclipses of

these heavenly bodies , changes in the length of the day
according to the different latitudes and seasons

’

. Several
details ar e preserved elsewhere of results obtained by
Eratosthenes , wh ich were doubtless contained in this work .

H e is supposed to have estimated the distance between the
tropic circles or twice the obliquity ofthe ecliptic at 1 1 / 8 3 r ds
of a complete circle or 4 7

°
4 2

’ but from Ptolemy ’

s

language on this subject it is not clear that this estimate was
not Ptolemy’

s own . What Ptolemy says is that he himself
found the distance between the tropic circles to lie always
between 4 7

°
4 0

’

and 4 7
° ‘ from which we obtain about

(oxedév) the same ratio as that of Eratosthenes, which
H ipparchus also used. For the distance between the tropics
becomes (or is found to be, yf Ta l.) very nearly 1 1 parts

Galen ,
Instit. Logica ,

12 (p. 26 Kalbfleisch).
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out of 8 3 contained in the whole meridian circle The

mean of Ptolemy ’

s estimates , 4 7 ° 42 ’ is Of course nearly
1 1/8 3 r ds of It is consistent with Ptolemy

’

s language
to suppose that Eratosthenes adhered to the value of the

obliquity Of the ecliptic discovered before Euclid’s time
,

namely and H ipparchus does , in his extant Commentar y

on the Phaenomena of A r atu s and Eu doxu s, say that the
summer tropic is very nearly 24 ° north ofthe equator
The Dowogr aphi state that Eratosthenes estimated the

distance of the moon from the earth at stades and

the distance of the sun from the earth at stades

(the versions OfStobaeus and Joannes Lydus admit
as an alternative for the latter figure , but this Obv iously
cannot be right). Macrobius 2 says that Eratosthenes made
the

‘measure ’

of the sun to be 2 7 times that of the earth .

It is not certain whether measure means
‘
solid content ’

or

‘ diameter in this case ; the other figures on record make the
former more probable

,
in which case the diameter of the sun

would be three times that of the earth . Macrobius also tells
us that Eratosthenes ’s estimates of the di stances of the sun

and moon were Obtained by means of lunar eclipses .

Another Observation by Eratosthenes , namely that at Syene
(which is under the summer tropic) and throughout a circle
round it with a radius Of 3 0 0 stades the upright gnomon
throws no shadow at noon, was afterwards made use Of by
Posidonius in his calculation ofthe siz e Ofthe sun . A ssum ing
that the circle in which the sun apparently moves round the
earth is times the si z e ofa circular section ofthe earth
through its centre

,
and combining with this hypothesis the

datum just mentioned
,
Posidonius arrived at stades

as the diameter ofthe sun .

Eratosthenes wrote a poem called H ermes containing a good
deal of descriptive astronomy ; only fragments of this have
survived. The work Cataster ismi (litei ally ‘ placings among
the stars ’

)which i s extant can hardly be genuine in the form
in which it has reached us ; it goes back,

however
,
to a genuine

work by Eratosthenes which apparently bore the same name ;
alternatively it is alluded to as K ar dAoyoz or by the general

1 Ptolemy, Syntaxis, i . 12 , .pp 67 . 22 68 . 6 .

2 Macrobius, I n Somn . Seip . i. 20 . 9 .
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word Aa r pouopt
’

a (Suidas), which latter word is perhaps a mis
take for Aa r poflea ia corresponding to the title Aa r pofiem

’

a t

{ 918i found in the manuscripts . The work as we have it
contains the story ,

mythological and descriptive , of the con

stellations , &c. , under forty - four heads ; there is little or

nothing belonging to astronomy proper .

Eratosthenes is also famous as the first to attempta scientific
chronology beginning from the siege Of Troy ; this was the
subject of his Xpovoypa¢fat, with which must be connected
the separate in several books . Clement of

A lexandria gives a short r ésumé of the main results of the
former work , and both works were largely used by Apollo
dorus . Another lost work was on the Octaeteris (or eight
years ’ period), which is twice mentioned ,

by Geminus and

A chilles ; from the latter we learn that Eratosthenes r e

garded the work on the same subject attributed to Eudoxus
as not genuine . H is Geogr aphica in three books is mainly
known to us through Suidas ’s criticism of it . I t began with
a history of geography down to his own time ; Eratosthenes
then proceeded tomathematical geography, the spherical form
of the earth

,
the negligibility in comparison w ith this of the

unevennesses caused by mountains and valleys , the changes of
features due to floods , earthquakes and the like. It would
appear from Theon of Smyrna’

s allus ions that Eratosthenes
estimated the height of the highest mountain to be 1 0 stades
or about 1 / 8 0 0 0th partofthe diameter ofthe earth .
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Observation that an ellipse can be obtained from a cylinder
as wel l as a cone is actually made by Euclid in his P haeno
mena :

‘ if ’

, says Euclid, ‘
a cone or a cylinder be cut by

a plane not parallel to the base, the resulting section is a

section of an acute - angled cone which is similar to a v eés

A fter this would doubtless follow the question
what sort of curves

'

they ar e which ar e prod uced if we
cut a cone by a plane which does not cut through the

cone completely
, but i s either par allel or not parallel to

a generator of the cone, whether these curves have the

same property with the ellipse and with one another, and ,
ifn ot, what exactly ar e their fundamental properties r espec
tively .

A s it is
,
however , we ar e only told how the firstwriters on

conics Obtained them in actual practice. We learn on the

author ity ofGeminus 1 that the ancients defined a cone as the

surface descr ibed by the revolution of a right - angled triangle
about one of the s ides containing the right angle , and that
they knew no cones other than right cones . Of these they
distinguished three kinds ; according as the vertical angle of
the cone was less than, equal to, or

’

.
-greater than a right angle ,

they called the cone acute - angled, right - angled, or obtuse
angled, and from each of these kinds of cone they produced
one and only one of the three sections

,
the section being

always made perpendicular to one of the generating lines of
the cone ; the curves were , on this basis, called section of an

acute - angled cone ’

an ellipse), section of a right - angled
cone ’

a parabola), and section of an obtuse- angled cone
a hyperbola) respectively . These names were still used

by Euclid and A rchimedes.

Menaechmus
’

s pr obable procedu r e.

Menaechmus
’

s constructions for his curves would pr esum
ably be the s implest and the most direct thatwould show the

desired properties , and for the parabola nothing could be
simpler than a section ofa right- angled cone by a plane atright
angles to one of its generators . Let OBC (Fig. 1) represent

1 Eutocius, Comm. on Comes ofApollonius.
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a section through the axis 0L Of a right - angled cone,
and

conceive a see
-tion through AG (perpendicular

right angles ofthe paper .

any point perpendicular to
A G letBC be drawn through N perpendicular to the axis of
the cone. Then P is on the circu lar section Ofthe cone about
BC as diametei .

Draw AD parallel to BC, and DE,
CG pai allel to 0L meet

ing A L produced in F, G. Then AD
,
AF both bisected

If now PN y,
AN as;

ButB
,
A

,
ar e concyclic , so that

AN . AF

AN . 2AL.

Therefore y
2 AN . 2 A L

2 A L at,

and 2 AL is the parameter ’

Ofthe principal ordinates y.

In the case ofthe hyperbola Menaechmus had toObtain
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particular hyperbola which we call rectangular or equilateral ,
and also

.

to Obtain its property with reference to its asymp
totes , a considerable advance on what was necessary in the
case ofthe parabola . Twomethods ofObtaining the particular
hyperbola were possible, namely (1 ) to Obtain the hyperbola
arising from the section ofany obtuse- angled cone by a plane
at right angles to a generator , arid then to show how a

rectangular hyperbola can be obtained as a particular case
by finding the vertical angle which the cone must have to
give a rectangular hyperbola when cut in the particular way,

or (2)to obtain the rectangular hyperbola direct by cutting
another kind of cone by a section not neces sarily perpen

dicular to a generator .

(1 ) Taking the first method
,
we draw (Fig . 2)a cone with its

vertical angle BOC obtuse . Imagine
'

a section perpendi cular
to the plane of the paper and passing through A G which
perpendicular to OB . LetGA produced meet CO produced in
A

’

, and complete the same construction as in Of

parabola .

In this case we have
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For , let the right - angled cone HOK
plane through A ’

AN parallel
tothe ax is OM and cutting the
s ides ofthe axial triangle H 0K
in A

’

, A ,
N respectively . Let

P be the point 0 11 the curve
for wh ich PN is the principal
ordinate. Draw 0 C parallel
to HK . We have at once

FI G. 3 .

CN z — CA z
, s ince MK OM

,
and MN OC

This is the property of the rectangular hyperbola having A ’

A

as axis . To obtain a particular rectangular hyperbola w ith
axis of given length we have only to choose the cutting plane
so that the intercept A ’

A may have the given length .

But Menaechmus had to prove the asymptote- property Of

his rectangular hyperbola . A s he can hardly be supposed to
have got as far as Apollonius in inves tigating the relations of
the hyperbola to its asymptotes , it is probably safe to assume

that he Obtained the particular property in the simplest way ,

i . e . directly from the property the curve in relation to

its axes .

FI G . 4.

If (Fig. 4)CR ,
CR

’
be the asymptotes (which ar e therefore
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at right angles)and A
’
A the axis of a rectangular hyperbola ,

P any point on the curve , PN the principal ordinate , draw
PK , PK

" perpendicular to the asymptotes respectively . Let

PN produced meet the asymptotes in R ,
R

’

Now,
by the axial property ,

CA Z CN z — PN 2

RN 2 ~ PN 2

R P PR
’

2 PK P K
’

,
s ince APR K is half a right angle

therefore PK PK
’

Wor ks by A r istaeus and Euclid .

If Menaechmu s was really the discoverer of the three conic
sections at a date which we must put at about 3 6 0 or 3 5 0
the subject must have been developed very rapidly ,

for by the
end Of the century there were two considerable works on

con ics in existence
,
works which , as we learn

‘from Pappus ,
were considered worthy of a place , alongside the Conies of

Apollonius , in the Tr easu r y of A nalysis . Euclid flourished
about 3 0 0 B . C . , or perhaps 1 0 or 2 0 years earlier ; but his
Conics in four books was preceded by a work of A ristaeus
which was sti ll extant in the time ofPappus , who describes it
as

‘five books ofSolid Loci connected (Or continuous , ovvexfi)
with the conics Speaking ofthe relation of Euclid ’

s Conics

in four books to this work , Pappus says (if the passage is
genuine) that Euclid gave credit to A ristaeus for his dis
cover ies in conics and did not attempt to anticipate him or

wish to construct anew the same system . In particular,
Euclid

,
when dealing with what Apollonius calls the three

and four- line c us
,

‘wrote so much about the locus as was

possible by means ofthe conics OfA ristaeus , without claiming
completeness for his demonstrations We gather from these
remarks that Euclid ’s Conics was a compilation and rearrange
ment of the geometry of the conics so far as known in his

1 Pappus , vii, p. 6 7 8 . 4 .
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time, whereas the work ofA ristaeus was more specializ ed and

more original.

‘

Solid loci
’

and ‘
solid pr oblems

’

.

‘ Solid loci ’ ar e of course Simply conics , but the use of the

title ‘

Solid loci ’ instead of ‘ conics ’

seems to indicate that
the work was in the main devoted to conics regarded as loc i .
A s we have seen

,
solid loci ’ which ar e conics ar e distinguished

from ‘ plane loci ’
,
on the one hand

,
which ar e straight lines

and circles , and from ‘ linear loci ’ on the other , which ar e

curves higher than conics . There is some doubt as to the

real reason why the term ‘

solid loci ’ was applied to the conic
sections . We ar e told that ‘ plane ’ loci ar e so called because
they ar e generated in a plane (but so ar e some of the higher
curves , such as the guad r atr ia: and the spiral ofA rchimedes),
and that ‘

solid loci ’ derived their name from the fact that
they arise as sections of solid figures (but so do some higher
curves , e .g. the spiric curves which ar e sections of the afl eipa

or tor e). But some light is thrown on the subject by the corre
sponding distinction which Pappus draws between

‘ plane ’

,

‘

solid and ‘ linear ’

pr oblems .

‘ Those problems ’

, he says ,

‘ which can be solved by means

of a straight line and a circumference of a circle may pr o

perly be called pla ne ; for the lines by means ofwhich such
problems ar e solved have their origin in a plane. Those,
however , which ar e solved by using for their discovery one or
more Of the sections of the cone have been called solid ; for

their construction requires the use of surfaces of.solid figures ,
namely those of cones . There remains a third kind of pro
blem ,

that which is called linear ; for other lines (curves)
besides those mentioned ar e assumed for the construction , the

origin ofwhich is more complicated and less natural , as they
ar e generated from more irregu lar surfaces and intricate
movements .

’ 1

The true significance of the word ‘ plane ’

as appl ied to

problems is evidently ,
not that straight lines and circles have

their origin in a plane, but that the problems in question can

be solved by the ordinary plane methods of transformation Of

1 Pappus, iv, p. 2 7 0 . 5— 1 7 .
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the same way the point will lie on a conic section given in
pos1 tion .

The reason why Apollon ius referred in this connexion to

Euclid and notto A ristaeus was probably that it was Eucl id ’s
work that was on the same lines as his own .

A very large proportion ofthe standard properties ofconics
admit of being stated in the form of locus - theorems ; if a

certain property holds with regard to a certain point , then
that point lies on a conic se

'ction . But it may be assumed
that A r istaeus ’s work was not merely a collection of the

ordinary propos itions transformed in this way ; it would deal
with new locus—theorems not implied in the fundamental
definitions and properties of the conics , such as those just
mentioned, the theorems of the three and four - line locus .

Butone (to u s)ordinary property , the focus - directrix property
,

was , as it seems tome, in all probability included .

Focus -dir ectr ix proper ty known to Euclid .

It is remarkable that the directrix does not appear at all in
Apollonius

’

s great treatise on conics . The focal properties of
the central conics ar e given by Apollonius , but the foci ar e
obtained in a different way ,

without any reference to the

directrix ; the focus of the parabola does not appear at all .

We may perhaps conclude that neither did Euclid’s Conics
contain the focus—directrix property ; for , according to Pappus ,
A pollon ius based his first four books on Euclid’s four books ,
while fil ling them out and adding to them . Yet Pappus gives
the proposition as a lemma to Euclid’s Su rface- Loci , from
which we cannot but infer that it was assumed in that
treatise without proof. If

,
then

,
Euclid did not take it from

his own Sonics, what more likely than that it was contained
in A r istaeus

’

s Solid Loci?

Pappus ’s enunciation ofthe theorem is to the effect that the
locus ofa point such that its distance from a given point is in
a given ratio to its distance from a fixed straight line is a conic
section

,
and is an ellipse

,
a parabola

,
or

’

a hyperbola according
as the given ratio is less than ,

equal to, or greater than un ity .

1 Pappus , vii, p. 6 7 8 . 15 - 24 .
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P r ooffr om Pappu s .

The proof in the case where the given ratio is different from
unity is shortly as follows .

Let S be the fixed point, SX the perpendicular from S on

the fixed line. Let P be any point on the locus and PN

perpendicular to SX, so that SP is to NX in the given

ratio (6)
thus 6

2

Take K on such that

then, if K ’
be another point on SN ,

produced if necessary ,

such that NK NK
'

,

SN 2
zNK 2

PN 2
(NX

2 NI0 )

1°s XX . XX’

.

The pos itions of N , K , K
’ change with the position of P .

If A ,
A

’

be the points on wh ich N falls when K
, K

’ coincide
with X respectively

, We have

SA : AX SN zNK z e z l SN :NK
’=

Therefore SX- zSA SK : SN = (I

whence (SX — SN)



FOCUS - DIRECTR IX PROPERTY

S imilarly itcan be shown that

(l ~e)z e

By multiplication , XX X AN . A
’
N (1 ~e

2
)z e

z
;

and it follows from above, ea: aequali, that

( l

which is the property ofa central conic .

When 6 1
, A and A

’

lie on the same side of X
,
While

N lies on A A ’

, and the conic is an ellipse ; when 6 1
,
A and

A
’
lie on opposite sides ofX,

while N lies on A ’

A produced,
and the coni c is a hyperbola.

The case where e l and the curve is a parabola i s easy
and need notbe 1 ep1 0 duced here.

The treatise would doubtless contain other loci of types
s imilar to that which

, as Pappus says, was used for .the

trisection of an angle : I refer to the proposition alr eady
quoted (vol. i , p . 2 43) that , if A , B ar e the base angles of

a triangle with vertex P , and AB 2 AA , the locus of P

is a hyperbola with eccentricity 2 .

P ropositions included in Euclid
’

s Conics.

That Euclid’s Conics covered much of the same ground as

the first three Books of A pollonius is clear fromthe language
of Apollonius himself. Confirmation is forthcoming in the

quotations by A rchimedes of propositions (1 ) proved in

the elements of conics ’

,
or (2) assumed without remark as

already known . The former class include the fundamental
ordinate properties ofthe conics in the following forms :

(1) for the ellipse,
PN 2 B0 2 z A 0 2 ;

(2) for the hyperbola,

Ps AN . A
’
N = A

'
N

'

;

(3) for the parabola,
PN 2

pa
AN ;

the principal tangent properties ofthe parabola

the property that, if there are two tangents drawn from one

point to any conic section whatever , and two intersecting
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In the case of the hyperbola A rchimedes does not give
any expression for the constant ratios PN 2

zAN . A
’N and

QV
'Z
zP V . P

’
V respectively,

whence we conclude that he had
no conception ofdiameters or radii ofa hyperbola notmeeting
the curve .

2 . The straight line drawn from the centre of an ellipse, or
the point of intersection of the asymptotes of a hyperbola,

through the point of contact ofany tangent , bisects all chords
parallel tothe tangent .
3 . In the ellipse the tangents atthe extremities ofeither oftwo
conjugate diameters ar e both parallel to the other diameter.
4 . If in a hyperbola the tangent at P meets the transverse
axis in T, and PN is the principal ordinate, AN AT. (It
is not easy to see how this could be proved except by means
of the general property that, if PP

’

be any diameter of

a hyperbola , QV the ordinate to it from Q, and QT the tangent
at Q meeting P ’

P in T,
then TP TP

’

P V : P
’

V.)
5 . If a cone, right or oblique, be cut by a plane meeting all

the generators, the section is either a circle or an ellipse.

6 . If a line between the asymptotes meets a hyperbola and

is bisected at the point of concourse, it will touch the

hyperbola .

7 . If a}
,
y ar e straight lines drawn,

in fixed directions r espec

tively ,
from a point on a hyperbola to meet the asymptotes ,

the rectangle my is constant .

8 . If PN be the principal ordinate ofP ,
a point on an ellipse,

and if NP be produced to meet the aux iliary circle in p,
the

ratiopN PN is constant .

9 . The criter ia of similarity of conics and segments of

conics ar e assumed in practically the same form as Apollonius
gives them.

The P ar abola .

1 . The fundamental properties appear in the alternative forms

AN z AN
’

,
or PN 2 =pa . AN,

Qs Q
’

V
’2 P V zPV’

,
or QV

2
p . P V.

A rchimedes applies the term par ameter (awap
’

b
‘

wSift/aw ai t

at0217 6 fond s) to the parameter ofthe principal ordinates
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only ; p is simply the line towhich the rectangle equal to QV
2

and ofwidth equal to P V is applied .

2 . Parallel chords ar e bisected by one straight line parallel to
the axis , which passes through the point of contact of the
tangent parallel to the chords .

3 . If the tangent atQmeet the diameter P V in
'

T,
and QV be

the ordinate to the diameter, P V P T.

By the aid of this proposition a tangent to the parabola can

be drawn (a) at a point on it , (6) parallel to a given chord.

4 . Another proposition assumed is equ ivalent to the property
ofthe subnormal , NS pa .

5 . IfQQ
’

be a chord of a parabola perpendicular to the axis
and meeting the axis in M ,

while QVq another chord parallel
to the tangent at P meets the diameter through P in V,

and

R HK is the principal ordinate of any point R on the curve
meeting P V in H and the axis in K

, then P V zPH or

MK K A ‘ for this is proved ’

(0 mFloating Bod ies , II .

Where it was proved we do not know ; the proof is not

altogether easy .

1

6 . A ll parabolas ar e similar .

A s we have seen
,
A rchimedes had to specializ e in the

parabola for the purpose of his treatises on the Qu ad r atu r e

of the P ar abola
,
Sonoids and Spher oids, Floati ng Bodies

,

Book I I
,
and P lane Equ ilibr iums , Book II ; consequently he

had to prove for himself a number ofspecial propositions , which
have already been given in their proper places. A few others
ar e assumed without proof , doubtless as being easy deduction s
from the propositions which he does prove. They refermainly
to similar parabolic, segments so placed that their bases ar e in

one straight line and have one common extremity .

1 . If any three sim ilar and similarly s ituated parabolic
segments BQ BQ BQ3 lying along the same straight line
as bases (BQ1 BQ2 BQ3), and if E be any point on the

tangent at B to one of the segments , and E 0 a straight line
through E parallel to the axis of one of the segments and

meeting the segments in R R R
1
respectively and BQ3

in 0
,
then

R
3
R
2
1 R

2
R
1 (QzQa i Q2)

See Apollonius ofPerga , ed . Heath , p. liv.
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2 . If two s imilar parabolic segments with bases BQl , BQZ be
placed as in the last proposition, and if BR I

R
2
be any straight

line through B meeting the segments in R
I ,
R
2
respectively

,

BQ, so, BR
,
BR

Z
.

These propositions ar e easily deduced from the theorem
proved m the Quad r atu r e ofthe Par abola , that , if through E ,

a point on the tangent at B , a straight line ER O be drawn
parallel to the axis and meeting the curve in R and any chord
BQthrough B in 0 ,

then

3 . On the strength of these propositions A rchimedes assumes
the solution ofthe problem of placing

,
between two parabolic

segments s imilar to one another and placed as in the above
propositions , a straight line ofa given length and in a direction
parallel to the diameters of either parabola .

Euclid and A rchimedes no doubt adhered to the old method
of regarding the three conics as arising from sections of three
kinds of right circular cones (right - angled, obtuse- angled and

acute - angled)by planes drawn in each case at right angles to
a generator of the cone. Yet neither Euclid nor A rchimedes
was unaware that the ‘

section of an acute - angled cone ’

, or

ellipse, could be otherwise produced . Euclid actually says in
his Phaenomena that ‘ if a cone or cylinder (presumably right)
be cut by a plane not parallel tothe base

,
the resulting section

is a section of an acute- angled cone which is similar to
a dupeég (sh ield) A rchimedes knew that the non - circular
sections even of an oblique circular cone made by planes
cutting all the generators ar e ellipses ; for he shows us how ,

given an ellipse
,
to draw a cone (in general oblique)ofwhich

it is a section and which has its vertex outside the plane
of the ellipse on any straight line through the centre of the
ellipse in a plane at right angles to the ellipse and passing
through one of its axes , whether the straight line is itself
perpendicular or not per pendicular to the plane ofthe ellipse ;
drawing a cone in this case of course means finding the circular
sections of the surface generated by a straight line always
passing through the given vertex and all the several points of
the given ellipse. The method of proof would equally serve
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The edition of Eutocius suffered interpolations which were
probably made in the ninth century when

,
under the auspices

ofLeon ,mathematical studies were revived atConstantinople ;
for it was at that date that the uncial manuscripts were
written, from which our best manuscripts

, V Cod . Vat. gr .

2 06 of the twelfth to thirteenth century)for the Sonics, and
W Cod . Vat. gr. 2 0 4 of the tenth century) for Eutocius,
were copied.

Only the first four Books survive in Greek ; the eighth
Book is altogether lost , but the three Books V—VI I exist in
A rabic. It was Ahmad and al—H asan, two sons ofMuh. b.

Musa b. Shakir, who first contemplated trans lating the Sonics
into Arabic. They were at first deterred by the bad state of
their manuscr ipts ; but afterwards Ahmad obtained in Syria
a copy of Eutocius

’

s edition of Books I - IV and had them
translated by H ilal b.

- Abi H ilal al - B ims i (died 8 8 3

Books V—VI I were translated
,
also for Ahmad, by Thabit

b . Qurra ( 8 2 6— 90 1) from another manuscript . Nasir addin
’

s

recension ofthis translation ofthe seven Books, made in 1 248 ,

is represented by two copies in the Bodleian
,
one of the year

1 3 0 1 (No. 943)and the other of 1 6 2 6 containing Books V—VI I
only (No.

A Latin translation of Books I—IV was published by
Johannes Baptista Memus at Venice in 1 5 3 7 ; but the first
important edition was the translation by Commandinus

(Bologna,
which included the lemmas of Pappus and

the commentar y of Eutocius, and was the first attempt to
make the book intelligible by means of explanatory notes .

For the Greek text Commandinus used Cod . Marcianus 5 1 8
and perhaps alsoVat. gr . 2 0 5 , both ofwhich were copies ofV ,

but notV itself.
The first published version of Books V—VI I was a Latin

translation by Abraham Echellensis and Giacomo A lfonso
Borelli (Florence, 1 6 6 1)ofa reproduction ofthe Books wr itten
in 98 3 by Abu ’

l Fath al- Isfahani .
The editio pr inceps of the Greek text is the monumental

work of Halley (Oxford, The original intention was
that Gregory should edit the four Books extant in Greek, with
Eutocius

’

s commentary and a Latin translation,
and that

Halley should translate Books V—VII from the A rabic into
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Latin . Gregory,
however

,
died while the work was proceeding ,

and Halley then undertook responsibility for the whole . The

Greek manuscripts used were two, one belonging to Savile
and the other lent by D. Baynard their whereabouts cannot
apparently now be traced ,

but they were both copies ofParis .

gr . 2 3 5 6 ,
which was copied in the sixteenth century from Paris .

gr . 2 3 5 7 ofthe sixteenth century,
itself a copy ofV . For the

three Books in A rabic Halley used the Bodleian MS . 8 8 5 , but
also consulted (a) a compendium ofthe three Books by ‘

Abdel
melik al - Shiraz i (twelfth century), also in the Bodleian
(b)Bor elli

’

s edition,
and (c)Bodl.

’

9 43 above mentioned, bymeans

ofwhich he revised and corrected his translation when com

pleted . Halley’

s edition is still , so far as I know ,
the only

available source for Books V— V I I
,
except for the beginning of

Book V (up to Prop . 7 )which was edited by L. Nix (Leipz ig ,

1 8 8 9)
The Greek text of Books I — IV is now available , with the

commentaries of Eutocius , the fragments of Apollonius , &c.
,

in the definitive edition ofHeiberg (Teubner , 1 8 9 1

A pollonius
’

s own account of the Sonics .

A general accountofthe contents of the great work which ,

according to Geminus , earned for him the title ofthe ‘ great
geometer ’ cannot be better given . than in the words of the

writer himself . The prefaces to the several Books contain
interesting historical details , and ,

like the prefaces of A rchi
medes , state quite plainly and simply in what way the

treatise differs from those of his predecessors, and how much
in it is claimed as original . The strictures of Pappus (or
more probably his interpolator), who accuses him of being a

braggart and unfair towards his predecessors , ar e evidently
unfounded . The prefaces ar e quoted by v . Wilamowitz
Moellendorff as specimens of adm irable Greek , showing how
perfect the style of the great mathematicians could be

when they were free from the trammels of mathematical
terminology .

Book I . General Preface.

Apollonius to Eudemus , greeting .

If you ar e in good health and things ar e in other respects
a s you wish , it is well ; with me too things ar e moderately
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well. During the time I spent with you at Pergamum
I observed your eagerness to become acquainted with my
work in con ics ; I am therefore sending you the first book ,

which I have corrected
,
and I will forward the remaining

books when I have finished them to my satisfaction . I dare
say you have not forgotten my telling you that I undertook
the investigation of this subject at the r equest of Naucrates
the geometer, at the time when he came to A lexandria and

stayed with me
,
and , when I had worked it out in eight

books , I gave them to him at once
,
too hurriedly ,

because he
was on the. point of sailing ; they had therefore not been
thoroughly revised, indeed I had put down everything just as
it occurred to me, postponing revision till the end . A ccord
ingly I now publish , as opportunities serve from time to time ,
instalments ofthe work as they ar e corrected . In the mean
time it has happened that some other persons also, among
those whom I have met

,
have got the first and second books

before they were corrected ; do not be surprised therefore if
you come across them in a different shape.

Now of the eight books the first four form an elementary
introduction . The first contains the modes of producing the
three sections and the opposite branches (of the hyperbola),
and the fundamental properties subsisting in them , worked
outmore fully and generally than in

_

the writings of others .

The second book contains the properties of the diameters and
the axes of the sections as well as the asymptotes , with other
things generally and necessarily used for determining limits
of poss ibility and what I mean by diameters
and axes respectively you will learn from this book . The

third book contains many remarkable theorems useful for
the syntheses of solid loci and for dior ismi the most and

prettiest ofthese theorems ar e new ,
and it was their discovery

which made me aware that Euclid did not work out the

synthes is of the locus with respect to three and four lines , but
only a chance portion of it , and that not successfully ; for it
was not possible for the said synthesis tobe completed without
the aid of the additional theorems discovered by me. The

fourth book shows in how many ways the sections of cones
can meet one another and the circumference of a circle ; it
contains other things in addition , none of which have been
discussed by earlier writers , namely the uestions in how

many points a section ofa cone or a circum
'

erence ofa circle
can meet [a double- branch hyperbola , or two double- branch
hyperbolas can meet one another].
The rest of the books ar e more by way of surplusage

(wepwvmaon xa
’

r r epa) one of them deals somewhat fully with
1528-2 K
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d ior ismi . Nicoteles indeed , on account of his controversy
with Conon, will not have it that any use can be made ofthe
discoveries of Conon for the purpose of dior ismi ; he is ,
however , mistaken in this opinion

,
for , even if it is possible ,

without using them at all
,
to arrive at results in regard to

limits of possibility , yet they at all events afford a readier
means ofobserving some things , e.g. that several or so many
solutions ar e poss ible, or again that no solution is possible ;
and such foreknowledge secures a satisfactory basis for ih
vestigations , while the theorems in question ar e again useful
for the analyses of d ior ismi . And ,

even apart from such
usefulness , they will be found worthy of acceptance for the
sake of the demonstrations themselves , just as we accept
many other things in mathematics for this reason and for
no other .

The prefaces to Books V—VI I now to be given ar e r epr d

duced for Book V from the translation of L. Nix and for

Books VI , VI I from that ofH alley .

Preface to Book V .

Apollonius to A ttalus , greeting.

In this fifth book I have laid down propositions relating to
maximum and min imum straight lines . You must know
that my predecessors and contemporaries have only super
ficially touched upon the investigation of the shortest lines ,
and have only proved what straight lines touch the sections
and . conversely, what properties they have in virtue ofwhich
they ar e tangents . For my part, 1 have proved these pro
per ties in the first book (without however making any use ,

in

the proofs
, of the doctrine of the shortest lines), inasmuch as

I w ished to place them in close connexion with that part
ofthe subj ect in which I treat ofthe production ofthe three
conic sections , in order to show at the same time that in each
ofthe three sections countless properties and necessary results
appear, as they do with reference to the original (transverse)
diameter . The propositions in which I discuss the shortest
lines I have separated into classes , and I have dealt with each
individual case by careful demonstration ; I have also con

nected the investigation of them with the investigation of

the greatest lines above mentioned
,
because I considered that

those who cultivate thi s science need them for obtaining
a knowledge of the analysis , and determination of limits of

poss ibility
, of problems as well as for their synthesis : in

addition to which , the subject is one
‘

of those wh ich seem

worthy of study for their own sake. Farewell .
K 2
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Preface toBook VI .

Apollonius to A ttalus , greeting.

I send you the s ixth book of the conics , wh 1ch embraces
propositions about conic sections and segments of coni cs equal
and unequal , similar and dissimilar , besides some other matters
leftout by those who have preceded me . In parti cular , you
will find in this book how , in a given right cone , a sect1on can

‘

be outwhich is equal to a given section ,
and how a right cone

can be described similar to a given cone but such as to contain
a given conic section. A nd these matters in truth I have
treated somewhat more fully and clearly than those whowrote
before my time on these subjects . Farewell .

Preface to Book VI I .

A pollonius to A ttalus , greeting .

'

I send to you with this letter the seventh book on conic
sections . In it ar e contained a large number ofnew proposi
tions concerning d iameters of sections and the figures described
upon them and all these propositions have their uses in many
kinds of problems , especially in the determination of the

limits of their possibility . Several examples of these occur
in the determinate conic problems solved and demonstrated
by me in the eighth book ,

which is by way of an appendix ,

and which I w ill make a point of sending to you as soon

as possible. Farewell .

Extent of claim to or iginality.

We gather from these prefaces a very good idea of the

plan followed by Apollonius in the arrangement of the sub

ject and of the extent to which he claims originality. The

first four Books form, as he says , an elementary introduction ,

by which he means an exposition of the elements of conics ,
that is , the definitions and the fundamental propositions
which ar e of the most general use and application ; the term
‘

elements ’

is in fact used with reference to conics in exactly
the same sense as Euclid uses it to describe his great work .

The remain ing Books beginning w ith Book V ar e devoted to
e specializ ed investigation of particular parts of the sub

ject. It is only for a very small portion of the contentofthe

treatise that Apollon ius claims originality ; in the first three
Books the claim is confined to certain propositions bearing on
the ‘ locus w ith respect to three or four lines ’

; and in the

fourth Book (on the number of points at which two conics
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may intersect, touch , or both) the part which is claimed
as new is the extension to the intersections of the parabola,

ellipse, and circle with the double - branch hyperbola, and of

two double - branch hyperbolas with one another , of the in
vestigations which had theretofore only taken account of the
single - branch hyperbola. Even in Book V , the most remark
able ofall, A pollonius does notsay that normals as the shor test
lines had not been considered before, but only that they had
been superficially touched upon

,
doubtless in connexion with

propositions dealing with the tangent properties . H e explains
that he found it convenient to treat of the tangent properties ,
without any reference to normals

,
in the first Book in order

to connect them -with the chord properties. It is clear, there
fore, that in treating normals as maxima and minima , and by
themselves , without any reference to tangents , as he does in
Book V

,
he was making an innovation ; and , in view of the

extent to which the theor y ofnormals as max ima and m inima
is developed by him (in 7 7 propositions), there is nowonder
that he should devote a whole Book to the subject. A part
from the developments in Books III , IV ,

V
,
just mentioned ,

and the numerous new propos itions in Book VI I w ith the

problems thereon which formed the lost Book VIII , Apollonius
only claims to have treated the whole subject more fully and

generally than his predecessors .

Gr eat gener ality of tr eatmentfr om the beginning.

So far from being a braggart and taking undue credit to
himself for the improvements whi ch he made .upon his prede
cessor s , A pollonius is , if anything ,

too modest in his descr ip
tion of his personal contributions to the theory of conic
sections . For the ‘more fully and generally ’

of his first
preface scarcely conveys an idea of the extreme general ity
with which the whole subject is worked out. This character
istic generali ty appears atthe very outset.

A nalysis of the Sonics.

Book I .

A pollonius
-

begins by describing a double oblique circular
cone in the most general way . Given a circle and any point
outside the plane ofthe circle and in general not lying on the
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the centre of the circular base . A fter proving that all

sections parallel to the base ar e also - circles
,
and that there

is another set of circular sections subcontrary to these, he
proceeds to consider sections of the cone drawn in any
manner . Taking any triangle through the axis (the base of
the triangle being consequently a diameter ofthe circle which
is the base of the cone), he is careful to make his section cut
the base in a straight line perpendicular to the particular
diameter which is the base of the axial triangle. (There is
no loss of generality in this , for , if any section is taken,
wif

’

thout reference to any axial triangle
,
we have only to

select the particular ax ial triangle the base of which is that
diameter of the circular base which is
at right angles to the straight l ine in
which the section ofthe cone cuts the
base .) LetA BS be any axial triangle ,
and let any section whatever cut the
base in a straight line DE at right
angles to BS ; if then P ill be the in

ter section of the cutting plane and the

axial triangle
,
and if QQ

’

be any chord
in the section parallel toDE ,

Apollon ius
proves that QQ

’

is bisected by PM . In

other words , PM is a d iameter of the section . Apollon ius is
careful to explain that ,
‘ if the cone is a right cone , the straight line in the base (DE)
w ill be at right angles to the common section

.
(PM ) of the

cutting plane and the triangle through the ax 1s , but , 1f the
cone is scalene, it w ill not in general be at rightangles to PM ,

butwill be at rightangles to it only when the plane through
the axis (i. e . the axial triangle) is at right angles to the base
ofthe cone (I .

That is to say ,
A pollonius works out the properties of the

comics in the most general way with reference to a diameter
which is not one of the principal diameters or axes , but in
general has its ordinates obliquely inclined to it. The axes do
not appear in his expos ition till much later, after it has been
shown that each conic has the same property

_with reference
to any diameter as it has with reference to the original
diameter arising outofthe construction the axes then appear
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as particular cases of the new d iameter Of refer ence. The

three sections , the parabola,
hyperbola, and ellipse ar e made

manner

line DE in the plane of the

ofthe axial triangle ,
war

to BS produced. The diameter PM is in the case of the
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parabola parallel to A C in the case ofthe hyperbola itmeets
the other half ofthe double cone in P ’

and in the case ofthe
ellipse meets the cone itself again in P

’

. We draw ,

cases the hyperbola and ellipse
,
AF parallel to

tomeet BS or BC produced in E.

A pollonius expresses the properties of the three curves by
means of“

a certain straight line P L drawn at right angles
to PM in the plane ofthe section .

In the case ofthe parabola, PL is taken such that

PL z PA BS z zBA . A S ;

and in the case ofthe h‘yperbola and ellipse such that

PL z PP BF . FS : A E2
.

In the latter two cases we join P ’

L, and then draw VR

parallel to PL tomeet P ’
L

,
produced if necessary ,

in R .

If HK be drawn through V parallel to BC and meeting
AB

,
A S in H , K respectively, HK is the diameter ofthe circular

section ofthe cone made by a plane parallel to the base .

Therefore QV
2 H V . VK .

Then (1)for the parabola we have, by parallels and similar
triangles ,

H V : P V = BS : CA ,

VK z PA BC z BA .
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PL is called the latu s r ectum (6p0 1
’

a) or the par ameter of
the or d inates (wap

’

hr dfiuavr a i atKa r a -

yépevat Ter aype
’

vws) in
each case. In the case ofthe central conics , the diameter PP ’

is the tr ansver se (17 7 rAayt
’

a) or tr ansver se diameter ; while ,
even more commonly,

A pollonius speaks of the diameter and

the corresponding parameter together, calling the latter the
latu s r ectum or er ect side (6p0ia wAevpci) and the former
the tr ansver se side of thefigu r e (6 780 9)on , or applied to, the

diameter .

Fundamental pr oper ties equ ivalent to Car tesian equations .

If p is the parameter , and d the corresponding diameter
,

the properties ofthe curves ar e the equivalent ofthe Cartes ian
equations , referred to the diameter and the tangent at its

extremity as axes (in general oblique),
2

px (the parabola),

y
2

2 pm gx
2
(the hyperbola and ellipse respectively).

Thus A pollonius expresses the fundamental property of the

central conics , like that of the parabola ,
as an equation

between areas , whereas in A rch imedes it appears as a

proportion

g
2
(a
2
i x

2

) b
‘

f
z a

2

which , however, is equivalen t to the Cartesian equation
referred to axes w ith the centre as origin . The latter pr o
perty with reference to the original diameter is separately
proved in I . 2 1 , to the effect that QV 2 varies as P V . P

’

V
, as

is really evident from the fact that QV2 P V . P
’

V PL PP
’

,

seeing that PL PP
’

is constant for any fixed diameter PP ’

.

A pollonius has a - separate proposition (I . 1 4) to preve that
the opposite branches of a hyperbola have the same diameter
and equal later a r ecta corresponding thereto. A s he was the

first to treat the double - branch hyperbola fully ,
he generally

discusses the hyper bola (i. s . the s ingle branch) along w ith
the ellipse, and the opposites, as he calls the double - branch
hyperbola

, separately . The properties of the s ingle - branch
hyperbola ar e

,
where possible, included in one enunciation

with those ofthe ellipse and circle, the enunciation beginning,
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If in a hyperbola
,
an ellipse

,
or the circumference ofa circle

sometimes , however , the double - branch hyperbola and the

ellipse come in one propos ition ,
e.g. in I . 3 0 :

‘ If in an ellipse
or the opposites (i . e . the double hyperbola)a straight line be
drawn through the centre meeting the curve on both sides of
the centre, it will be bisected at the centre .

’

The property of
conjugate diameters in an ellipse is proved in relation to

the original diameter of reference and its conjugate in I . 1 5 ,

where . it is shown that, if DD’
is the diameter conjugate to

PP
’

(i . e. the diameter drawn ordinate - wise to just as

PP
’ bisects all chords parallel toDD’

,
soDD

’ bisects all chords
parallel to PP ’

; also, if DL
’
be drawn at right angles to DD’

and such that DL’

. DD
’

PP
’2
(or DL

’
is a third proportional

to DD
"

,
then the ellipse has the same property in rela

tion to DD’
as diameter and DL

’

as parameter that it has in
relation toPP ’

as diameter and PL as the corresponding para
meter. Incidentally it appears that PL PP

’

DD
’ 2

,
or PL is

a third proportional toPP ’

, DD
’

,
as indeed is obv ious from the

property ofthe curve QV2 P V . P V
’
: PL PP

’
DD

’2 PP
’2

.

The next proposition , I . 1 6 , introduces the secondar y diameter

ofthe double - branch hyperbola (i. e. the diameter conj ugate to
the transverse diameter of reference), wh ich does notmeet the
curve ; this diameter is defined as that straight line drawn
through the centre parallel to the ordinates of the transverse
diameter which is bisected at the centre and is of length equal
to the mean proportional between the ‘

s ides of the figure ’

,

i. e . the transverse diameter PP ’
and the corresponding para

meter PL. The centr e
s
is defined as the middle point of the

diameter ofreference , and it is proved that all other diameters
ar e. bisected at it (I .

Props . 1 7 — 1 9 , 2 2
— 9

, 3 1
— 4 0 ar e propos itions leading up to

and containing the tangent properties . On l ines exactly like
those of Eucl. III . 1 6 for the circle ,

A pollonius proves that
,
if

a straight line is drawn through the vertex (i. e . the extremity
of the diameter of reference) parallel to the ordinates to the
diameter , it will fall outside the conic, and no other straight
line can fall between ‘

the said straight line and the con ic ;
therefore the said straight line touches the conic (I . 1 7

,

Props. I . 3 3 , 3 5 contain the property of the tangent at any
point on the parabola, and Props. 1 . 3 4

,
3 6 the property of



THE SONI SS ,
BOOK I 14 1

the tangent at any point of a central conic , in relation
to the original diameter of reference ; if Q is the point of
contact , QV the ordinate to the diameter through P

, and

if QT, the tangent at Q,
meets the diameter produced in T

,

then (1)for the parabola P V PT
,
and (2) for the central

conic VP
’

. The method of proof is to take a

point T on the diameter produced satisfying the respective
relations , and to prove that , if TQ be joined and produced

,

any point on TQon either side ofQ is outside the curve : the
form of proof is by r eductio ad absu r dum, and in each
case it is again proved that no other straight line can fall
between TQ and the curve . The fundamental property
TP : TP

’

P V : VP
’

for the central conic is then used to
prove that SV . ST SP 2

and Qs S V . VT = p : PP
’

(or
SD2

: CP Z

) and the corresponding properties with reference to
the diameter DD’ conjugate to PP ’

and v, t, the points where
DD

’

is met by the ordinate to it from Q and by the tangent
atQrespectively (Props . I . 3 7

Tr ansition to new diameter and tangent at its extr emity.

An important section of the Book follows (I . 4 1 con

sisting ofpropositions leading up to what amounts to a trans
formation of coordinates from the original diameter and the

tangent at its extremity to any diameter and the tangent at
its extremity ; what A pollonius proves is of course that, if
any other diameter be taken , the ordinate - property of the

con ic with reference to that diameter is ofthe same form as it

is with reference to the original diameter . It is evident that
this is vital to the exposition . The propositions leading up to
the result in I . 5 0 ar e not usually given in our text - books of
geometrical conics , but ar e useful and interesting .

Suppose that the tangent atany pointQmeets the diameter
of reference P V in T, and that the tangent at P meets

'

the

diameter through Q in E . Let R be any third point on

the curve ; let the ordinate RW to P V meet the diameter
through Qin F,

and letR U parallel to the tangent atQmeet
P V in U. Then

(1) in the parabola,
the triangle R UW= th

‘

e parallelogram
EW, and
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(2) in the hyperbola or ellipse , A RUW the difference
between the triangles SEWand CPE .

(1) In the parabola A R UWz AQTV RW2
:QV

2

PWzP V

D EWz D EV.

But, since TV 2 P V,
AQTV : D EV '

therefore A R UW D EW.

(2) The proof of the proposition with reference to the

central conic depends on a Lemma
,
proved in I . 4 1 , to the effect

that
,
if PX, VY be similar parallelograms on SP , SV as bases ,

and if VZ be an equiangular parallelogram on QV as base and

such that , if the ratio ofSP to the other side ofPX is m , the

ratio ofQV to the other s ide of VZ is m p PP
’

,
then VZ is

equal to the difference between VY and PX. The proof ofthe
Lemma by A pollonius is difficult, but the truth of it can be
eas ily seen thus .

By the property ofthe curve , QVZ
: CV2 SFZ

p 2PP
'

;

PP
’

p

Now D PX p SP 2 m , where ,
u is a constant depending

on the angle ofthe parallelogram .

therefore

Similarly
I

and D VZ : QV
z
/m .

It follows that D VY~ D PX D VZ .

Taking now the triangles CEW, SPE and R UW in the

ellipse or hyperbola, we see that SEW, SPE ar e similar, and
R UW has one angle (atW) equal or supplementary to the

angles atP and V in the other two triangles, while we have

QV" : CV . VT =s P
’

,

Whence QV : VT (s P
’

)

and , by parallels,

RW: WU (s P
’

) (SP zPE).
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Therefore R UW, SPE , SEWar e the halves ofparallelograms

related as in the lemma ;

therefore A RUW : A CFW~ A SPE .

The same property with reference to the diameter secondar y
to CP V is proved in I . 45 .

It is interesting tonote the exact significance .ofthe property
thus proved for the central conic. The pr opositiomWt h is

the foundation of Apollonius
’

s method of transformation of

coordinates , amounts to thi s . If CP ,
SQ ar e fixed semi

diameters and R a variable pointjthc area ofthe quadrilateral
SER U is constant for all positions ofR on the conic. Suppose
now that SP

, SQar e taken as axes ofx and y respectively.

If we draw RX parallel to SQtomeet SP and R Y parallel to
SP to meet SQ, the proposition asserts that (subject to the
proper convention as to sign)

A R YE+ D SXR Y+ A RXU

But since RX, R Y, R E, R U ar e in fixed directions ,

A R YF varies as R Y2
or x

2
,
D SXR Y as RX R Y or xy,

and A RXU as RX2
or y .

H ence, if x, y ar e the coordinates ofR ,

m u tter/+ 7 31
2 A ,

which is the Cartesian equation of the conic referred to the
centre as origin and any two diameters as axes .

The properties so obtained ar e next used to prove that,
if UR meets the curve again in R ’

and the diameter through
Qin M , then R R ’

is bisected atM. (I. 46
Taking (1) the case ofthe parabola, we have,

A R UW D EW,

A R
’

UW’
: D EW’

.

By subtraction, (RWW
’
R

’

D E
’W

,

whence AR EM A R
’

E
’M

,

and , since the triangles ar e similar , RM R
’
M .

The same result is easily obtained for the central conic .
It follows that EQproduced in the case of the parabola ,
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or SQ in the case of the central conic
,
bisects all chords as

R R
’ parallel to the tangent at Q. Consequently EQand SQ

ar e d iameter s of the respective conics .

In order to refer the conic to the new diameter and the

corresponding ordinates , we have on ly to determine the par a
meter ofthese ordinates and to show that the property ofthe

con ic with reference to the new parameter and diameter is in
the same form as that originally found .

The propos itions I . 49
,
5 0 do this , and show that the new

parameter is in all the cases p
’

,
where (if 0 is the point of

intersection ofthe tangents at P and Q)

(1) In the case of the parabola, we have TP P V EQ,

whence AEOQ A POT.

A dd to each the figure POQE
’W’

;

therefore QTW
’
E

’
D EW’

A R
’
UW’

,

whence
,
subtracting MUW’

E
’ from both , we have

A R
’

ME
’

D QU.

Therefore R
’
M ME

’

2QT QM.

But R
’
M ME

’

OQ QE p
’
: 2QT, by hypothesis ;

therefore R
’

M 2
: R

’

M ME
’

p
’

QM : 2QT . QM .

And R
’

M ME
’

2QT QM ,
from above

therefore

which is the desired property.

1

The p
roposition that, in the case ofthe parabola, if p be the para

meter ofthe ord inates to the diameter throughQ,
then (see the first figure

. 142ou p
0Q: QE = p : 2QT

has an interesting application for it enables us toprove the proposition,

assumed without proof by Archimedes (butnot casy to prove otherwme),that, if in a parabola the d iameter through P bi sects the chord 90 1 11 V
,

and QD is drawn perpend icular to P V, then

QV
2
QD

2
p p

L
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It follows that

QM (QH +MN) QM (QT+MU) R
’

M 2 E
’

M ME ’

but, from above
, QM (QT+MU R

’

M ME ’

;

therefore R
’

M 2
QM (QH MN)

which is the des ired property.

In the case of the hyperbola , the same property is true for
the opposite branch .

These important propositions show that the ordinate property
ofthe three conics is of the same form whatever diameter is
taken as the d iameter of reference . It is therefore a matter
of indifference to, which particular diameter and ordinates the
conic is referred . This is stated by A pollonius in a summary
which follows I . 5 0 .

Fir st appear ance ofpr incipal axes .

The axes appear for the first time in the propositions next
following (I . 52 where A pollonius shows how to construct
each of the comics

, given in each case (1)a diameter, (2)the
length ofthe corresponding parameter

,
and 3)the inclination

of the ordinates -to the diameter . In each case A pollonius
first assumes the angle between the ordinates and the diameter
to be a r ight angle ; then he reduces the case where the angle
is oblique to the case where it is right by his method of trans
formation of coordinates ; i. e . from the given diameter and

parameter hefinds the axis ofthe conic and the length ofthe
corresponding parameter, and he then constructs the conic as
in the first case where the ordinates ar e at right angles to the
diameter. H ere then we have a case ofthe proof ofexistence
by means of constr uction . The conic is in each case con

structed by finding the cone of which the given conic is a

section . The problem offinding the axis of a parabola and

the centre and the axes ofacentral conic when the conic (and
notmerely the Zelements , as here) is given comes later (in II .

44 where it is also proved (II . 48) that no central conic
can have more than two axes
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It has been my object, by means of the above detailed
account of Book I, to show not merely what results ar e

obtained by A pollonius
,
but the way in which he went to

work ; and itwill have been realiz ed how entirely scientific
and general the method is . When the foundation is thus laid ,
and the fundamental properties established , A pollonius is able
to develop the rest of the subj ect on lines more similar to
those followed in our text - books . My description ofthe rest
of the work can therefore for the most part be confined to a

summary of the contents .

Book II begins with a section devoted to the properties of
the asymptotes . They ar e constructed in II . 1 in this way.

Beginning
,
as usual , with any diameter of reference and the

corresponding parameter and inclination of ordinates , Apol
lonius draws atP the vertex (the extremity of the diameter)
a tangent tothe hyperbola and sets offalong it lengths PL,

PL
’

on either s ide of P such that p PP
’

where p is the parameter . H e then proves that CL,
CL

’

pro

duced will notmeet the curve in any finite point and ar e there
fore asymptotes . II . 2 proves further that no straight line
through S within the angle between the asymptotes can itself
be an asymptote . II . 3 proves that the intercept made by the
asymptotes on the tangent atany point P is bisected atP , and

that the square on each half of the intercept is equal to one
fourth of the ‘ figure corresponding to the diameter through
P (i. e . one- fourth of the rectangle contained by the erect ’

side , the latu s r ectum or parameter corresponding to the

diameter , and the diameter itself); this property is used as a

means of drawing a hyperbola when the asymptotes and one

point on the curve ar e given (II . II . 5 — 7 ar e propositions
about a tangent atthe extremity of a diameter being parallel
to the chords bisected by it . Apollonius returns to the

asymptotes in II . 8 , and II . 8— 1 4 give the other ordinary
properties w ith reference to the asymptotes (II . 9 is a con

verse of II . the equality of the intercepts between the

asymptotes and the curve ofany chord (II . the equality of
the rectangle contained by the distances between either point
in which the chord meets the curve and the points of inter
section with the asymptotes to the square on the parallel
semi - diameter (II . the latter property with reference to
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the por tions of the asymptotes which include between them
a branch ofthe conjugate hyperbola (II. the constancy of
the rectangle contained by the straight lines drawn from any

point of the curve in fixed directions tomeet the asymptotes
(equivalent to the Cartesian equation with reference to the
asymptotes , xy const .) (II . and the fact that the cur ve
and the asymptotes proceed to infinity and approach con

tinually nearer to one another, so thatthe distance separating
them can bemade smaller than any given length (II . II . 1 5

proves that the two opposite branches ofa hyperbola have the
same asymptotes and II . 1 6 proves for the chord connecting
points on twobranches the property ofII . 8 . II . 1 7 shows that
conj ugate “

opposites ’

(two conjugate double- branch hyper
bolas) have the same asymptotes . Propositions follow about
conjugate hyperbolas ; any tangent to the conjugate hyper
bola will meet both branches of the original h yperbola
and will be bisected at the point of contact (II . if Qbe
any point on a hyperbola,

and SE parallel to the tangent
at Q meets the conjugate hyperbola in E

, the tangent at

E will be parallel to CQ and SQ, CE will be conjugate
diameters (II . While the tangents atQ,

E will meet on one

of the asymptotes (II . if a chord Qq in one branch of

a hyperbola meet the asymptotes in R ,
r and the conjugate

hyperbola in Q
’

, q
’

, then Q
’

Q. Qq
’

2 SB Z

(II . Of the

rest ofthe propositions in this part ofthe Book the following
may be mentioned : if TQ, TQ

’

ar e two tangents to a conic
and V is the middle point of QQ

’

,
TV is a diameter (II . 2 9 ,

3 0 , if tQ, tQ
’

be tangents to opposite branches ofa hyper
bola, R R

’

the chord through t parallel to QQ
’

,
v the middle

point of QQ
’

,
then vR , vR

’

ar e tangents to the hyperbola

(II . in a conic, or a circle, or in conjugate hyperbolas , if
two chords notpassing through the centre intersect, they donot
bisect each other (II . 2 6 , 4 1 , 1 1 . 44 - 7 show how to find

a diameter of a conic and the centre of a central conic, the
axis ofa parabola and the axes ofa central conic . The Book
concludes with problems of drawing tangents to conics in
certain ways , through any point on or outside the curve

(II . making with the axis an angle equal toa given acute
angle (II. making a given angle with the diameter through
the pointofcontact (II . 5 1 , 5 3) II . 5 2 contains a for
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Adding the quadrilateral CE ’

H T
, we have

A H
’
E

’

Q

and similarly

By subtraction E
’

H
’

HE H
’

TU
’
R

’
— HTUR :

A dding H ’
I R H to each side, we have

E
’
I R E I UU

’

R
’

.

If each ofthese quadrilaterals is subtracted from I J,

EJR
’

E
’

JU
’
UR .

The corresponding results ar e proved in III . 5
,
1 1

,
1 2 , 1 4

for the case where the ordinates through R R ’

ar e drawn to
a secondar y diameter , and in III . 1 5 for the case where P , Q
ar e on the original hyperbola and R

,
R

’

on the conj ugate
hyperbola.

The importance of these propos itions lies in the fact that
they ar e immediately used to prove the well - known theorems
about the rectangles contained by the segments of intersecting
chords and the harmonic properties of the pole and polar.
The former question is dealt with in III . 1 6 — 2 3

,
which give

a great variety of particular cases . We will give the proof
of one case ,

to the effect that
,
if OP

,
OQ be two tangents

to any con ic and R r , R
’

r
’

be any two chords parallel to
them respectively and intersecting in J

,
an internal or external

point
,

R J . Jr : R
’

J . Jr
’

OP 2 OQ
2

We have

RJ . Jr = RW2 ~JW2
,
and RW2

: JW2 A R UW: A JU
’W;

therefore

RJ . Jr : RW2 = (RW2 ~JW2

) : RW
2 JU

’
UR A R UW.

RW2
: OP 2 = A R UW : A OPT ;

therefore, ex aequali , RJ Jr OP 2 JU
’
UR A OPT.



THE comes ,
BOOK 1 11 1 53

S imilarly R
’M ’ 2 JM ’ z A R

’F’M ’
A JEM

’

,

whence R
’
J . Jr E

’

M
’ 2 FJR

’F’
:

But R
'
M

’2 oe
2 A R

’

F
’M’

A OQE ;

therefore , ex aequali , R
’

J . Jr
’

:oez FJR
’
F

’
A OQE .

It follows, s ince EJR ’

E
’

JU
’
UR

,
and A OPT A OQE ,

RJ . Jr : OP 2 R
’
J . Jr

’
: OQ

2
,

Jr
’

OP 2 OQ2.

If we had taken chords R r R
’
r
l

’ parallel respectively to
OQ, OP and intersecting in I , an internal or external point ,
we should have in like manner

R I . I r l : R
’

I . I r
l

’
OQ2 OP

2
.

A s a particular case, if PP ’
be a diameter, and R r ,

R
’

r
’
be

chords parallel respectively to the tangent at P and the

diameter PP ’
and intersecting in I , then (as is separately

proved)

The cor responding results ar e proved in the cases where certain
ofthe points lie on the conjugate hyperbola.

The six following propositions about the segments of inter
secting chords (III . 24— 9) refer to two chords in conjugate
hyperbolas or in an ellipse drawn parallel respectively to two
conjugate diameters PP ’

, DD
’

,
and the results in modern form

ar e perhaps worth quoting. If R r ,
R

’
r
’
be two chords so

drawn and intersecting in 0 , then

(a) in the conj ugate hyperbolas

R 0 . 0 r R
’
0 . 0 r

’

(R 0
2 Or 2) (R

’
O2 Or

’2
) CP 2 CD2

(b) in the ellipse

R 0 2 Or 2 R
’

O2 Or
’2

CP 2 00 2
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To prove (1) we have

R
’
I 2 z I R 2=H :

’

Q
2
QE

2= A H
’
E

’

Q: A HEQ: HTUR

(III . 2 , 3 ,

A lso R
’
T2 : TE2 = R

’
U

’2
: UR 2 A R UW,

and E
’

T2 : TR 2 = 1 's N 7 2 A TI -I
’W’

A THW,

so that R ’
T2 : TR 2 A TH

’W’
A THW~A R UW

R
’

I 2 I R 2
,
from above.

To prove (2)we have

R V2
: VR

’2 R U2
: R

’

U
’2 A R UW:

and also

HQ
2
:QH

’2 A HEQz AH
’
E

’

Q

so that

R V2
: VR

’2 HTUR A R
’
U

’W’

A THW: A TH
’W’

TW
'Z
z TW

R 0 2 : OR
’2

.

Props . III . 3 0—6 deal separately with the particular cases
in whi ch (a)the transversal is parallel to an asymptote ofthe
hyperbola or (b)the chord of contact is parallel to an asymp
tote, i. e. where one ofthe tangents is an asymptote, which is
the tangent at infini ty.

Nextwe have propositions about intercepts made by two
tangents on a third : If the tangents at three points of a

parabola form a triangle, all three tangents will be cut by the
points of contact in the same proportion (III . if the tan
gents at the extremities ofa diameter PP ’

of a central conic
ar e cut in r , r

’ by any other tangent, P r P
’
r
’

SB2 (III . 42)
if the tangents atP , Qto a hyperbola meet the asymptotes in

Where a. quadrilateral, as H TUR in the figure, 18 a cross quadri
lateral, the area is of course the d ifference between the two triangles
which it forms, as H TW~R UW
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L
, L

’

and M ,
M

’ respectively, then L’M, LM
’
ar e both parallel

to PQ(III .
The first ofthese propositions asserts that, if the tangents at

three points P , Q, R ofa parabola form a triangle pqr , then

P r z r q e Qp qp :pR .

From this property it is easy to deduce the Cartesian
equation of a parabola referred to two fixed tangents as

coordinate axes . Taking qR , qP as fixed coordinate axes, we

find the locus of Q thus. Let x, y be the coordinates of Q.

Then ,
if qp x

l , qr y1 , qR h, qP to
,
we have

x 7
'

_

Q y]
"

y k ‘

b’l

m
l
— w Qp y 311

From these equations we derive

x
l

2 hx, y1
2 Icy ;

x x

also
,
s1nce — 1 we have l

x 27
1 l h

By substituting for x
l , y1 the values x/ (ky)

obtain

The focal pr oper t1 es of central conics ar e proved in

III . 45—5 2 without any reference to the directrix ; there is
no mention of the focus of a parabola . The foci ar e called
‘

the points arising out of the application ’

(r d e
’

x rfis r apa

Bohfis ywépeva engefa), the meaning being that S , S
’
ar e taken

on the axis AA ’
such that A S . SA

’

%pa . A A
’

or SE2 , that is, in the phraseology of application of areas ,
a rectangle is applied to A A ’

as base equal to one- fourth
part of the ‘ figure ’

,
and in the case of the hyperbola ex

ceeding, but in the case of the ellipse falling short, by a

square figure. The foci being thus found , it is proved that ,
if the tangents A r , A

’
r
’

atthe extremities ofthe ax is ar e met

by the tangent atany point P in r
,
r
’ respectively, r r ’ subtends

a right angle atS
,
S

’

, and the angles r r ’S , A
’

r
’

S
’
ar e equal , a s

also ar e the angles r ’r S ’

,
A r S (III . 4 5 , It is next shown

that , if 0 be the intersection of r S
’

, r
’

S ,
then OP is per pen

dicular to the tangent atP (III . These propositions ar e
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used to prove that the focal distances ofP make equal angles
with the tangent at P (III . In III . 49— 5 2 follow the

other ordinary properties , that , if SY be perpendicular to
the tangent at P

, the locus of Y is the circle on A A
’
as

diameter, that the lines from S drawn parallel to the focal
distances tomeet the tangent atP ar e equal to SA , and that
the sum or difference of the focal distances of any point is
equal to A A ’

.

The last propositions of Book III ar e of use with reference
to the locus with respect to three or four lines . They ar e as

follows .

1 . If PP ’

be a diameter of a central conic, and if PQ,
P

’

Q
drawn to any other point Qofthe conic meet the tangents at

P
’

, P in R
’

,
R respectively

,
then PR P

’
R

’ z 4 CD2
(III .

2 If TQ,
TQ

’
be two tangents to a conic, V the middle point

OfQQ
’

,
P the point of contact ofthe tangent parallel to QQ

’

and R any other point on the conic , let Qr parallel to TQ
meet Q

’

R in r
, and Q

’
r
’ parallel to TQmeet QR in r

’ then

Qr Qr :QQ
’2

(P V
2 P T?) (TQ TQ

’
:QV

Z
). (1 1 1 . 5 4 ,

3 . If the tangents ar e tangents to opposite branches of a

hyperbola and meet in t
,
and if R ,

r
,
r
’
ar e taken as before ,

while tq is half the chord through t parallel toQQ
’

,
then

Qr Q
’

r
’

:QQ tQ tQ
'

: tq
2

. (III .

The second of these propositions leads atonce to the three
line locus , and from thi s we easily obtain the Cartesian
equation to a conic with reference to two fixed tangents as

axes , where the lengths of the tangents ar e h, k, viz .

Book I V is on the whole dull , and need not be noticed at

length . Props . 1 — 2 3 prove the converse ofthe propositions in
Book III about the harmonic properties of the pole and polar
for a large number of particular cases . One of the proposi
tions (IV . 9) gives a method of drawing two tangents to
a conic from an external point T. Draw any two straight
lines through T cutting the conic in Q, Q

’
and in R , R

’

r espec
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most remarkable of the extant Books . It deals with normals
to conics regarded as maximum and minimum straight lines
drawn from particular points to the curve . Included in it ar e
a series of propositions which , though worked out by the

purest geometrical methods , actually lead immediately to the
determination ofthe evolute ofeach of the three conics that
is to say , the Cartesian equations to the evolutes can be eas ily
deduced from the results obtained by A pollonius . There can
be no doubt that the Book is almostwholly original , and it is
a veritable geometrical tou r defor ce.

A pollonius in this Book considers various points and classes
ofpoints with reference tothe maximum or minimum straight
lines which it is possible to draw from them to the conics ,
i . e. as the feet of normals to the curve. H e begins naturally
with points on the axis

,
and he takes first the point E where

AE measured along the axis from the vertex A is p, p being
the principal parameter . The first three propositions prove
generally and for certain particular cases that, if in an ellipse
or a hyperbola AM be drawn at right angles toA A ’

and equal
to p, and if CM meet the or dinate PN of any point P ofthe

curve in H , then PN 2 2 (quadrilateral MANH); this is a

lemma used in the proofs of later propositions , V . 5 , 6 , &c.

Next , in V . 4
,
5
,
6 , he proves that , if AE then AE is the

minimfwm straight line from E to the curve, and if P be any

other point on it, PE increases as P moves farther away from
A on either side he proves in fact that , if PN be the ordinate
from P ,

(1 ) in the case ofthe parabola PE 2 AE 2
+AN

2
,

2) in the case ofthe hyperbola or ellipse

A A
’

i p

AA
’

where of course p and therefore (AA
’

+p) A A
’

is equivalent to whatwe call e2 , the square ofthe eccentricity .

It is also proved that EA ’
is the maximum straight line from

E to the curve . It is next proved’ that , if 0 be any point on
the axis between A and E , OA is the minimum straight line
from O to the curve and ,

if P is any other point on the curve,
OP increases as P moves farther from A (V .

PE 2 AE2 + AN 2
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Next Apollonius takes points G on the axis at a distan ce
from A greater than and he proves that the minimum

straight line from G to the curve (i.e. the normal) is GP
where P is such a point that

(l ) in the case ofthe parabola NG

(2 ) in the case ofthe central conic NG SN p tfifl
'

;

and
,
if P ’

is any other point on the conic , P
’

G increases as P
’

moves away from P on either side ; this is proved by show
ing that

(1) for the parabola P
’
G2 PG2 +NN

’2
;

for the central conic P ’

G2 PG2 NN 2

A s these propositions contain the fundamental properties of
the subnormals , it is worth while to reproduce Apollonius

’

s

proofs .

(1) In the parabola, if G be any point on the axis
.

such that
A G p,

measure GN towards A equal to p. Let PN be

the ordinate through N , P
’

any other point on the curve .

Then shall PG be the minimum line from G to the curve, &c.
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We have

and

according tothe position ofN
’
.

Therefore P
’

G2 ZNS AN +NG2 NN

PN 2
+NG2+NN

’2

and the proposition is proved.

(2 ) In the case of the central conic , take G. on the axis such
that A G %p, and measure GN towards A such that

Draw the ordinate PN through N
,
and also the ordinate P ’

N
’

from any other pointP
’
.

We have first
,
to prove the lemma (V . 1

,
2
, 3)that , if AM be

drawn perpendicular to AA
’
and equal to p,

and if SM,

produc‘ed if necessary, meet PN in H
,
then

PN 2 2 (quadrilateral MANH

This is easy ,
for , if AL 2 AM ) be the parameter, and A ’

L

meet PN in R , then ,
by the property ofthe curve ,

2 (quadrilateral MANH

Let SH ,
produced if necessary,

meet P
’
N

’

in H
’ From H

draw HI perpendicular to P ’

H
’

.

Now , since,
by hypothesis , NG ON p : A A

’

A lli : A C

HN :NS .

NH NG,
whence also H ’

N
’

N
’
G.

Therefore NG2 2 A HNG,
N

’
G2 2 A H

’

N
’

G.

PN 2 2 (MANH );

therefore PG2 NG2 PN 2 2 (AMHG).
M
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if P ’

be any other point on it , P
’

g diminishes as P
’
moves

farther from P on either side to B or B
’

,
and

2
_

2

P9
2 4 , 2

M
CA 0 3

If O be any point on Pg produced beyond the minor axis , PO
is the maximum straight line from O to the same part ofthe
ellipse for which Pg is a maximum

, i. e . the semi - ellipse BPB’

,

&c. (V . 2 0

In V . 2 3 it is proved that
,
if g is on the minor axis

,
and gP

a maximum straight line to the curve
,
and if Pg meets AA ’

in G, then SP is the minimum straight line from S to the

curve ; this is proved by s imilar triangles . Only one normal
can be drawn from any one point on a conic (V . The

normal at any point P of a conic , whether regarded as a

minimum straight line from G on the major axis or (in the

case ofthe ellipse)as a maximum straight line from g on the

minor axis , is perpend icular to the tangent at P (V . 2 7 — 3 0 )
ih

'

general (1) if 0 be any point within a conic, and OP be

a maximum or a m inimum straight line fromO to the conic ,
the straight line through P perpendicular to PO touches the
conic , and 2) i f 0

’
be any point on OP produced outside the

conic, O’

P is the min imum straight line from O
’

to the conic,
&c. (V . 3 1

Number of normals fr om a point.

We now come to propos itions about two or more normals
meeting at a point . If the normal at P meet the axis of

a parabola or the axis A A ’

ofa hyperbola or ellipse in G, the

angle P SA increases as P or S moves farther away from A ,

but in the case of the hyperbola the angle will always be less
than the complement ofhalf the angle between the asymptotes .

Two normals at points on the same side ofA A ’ will meet on
the opposite side of that axis ; and two normals at points on

the same quadrant of an ellipse as A B will meet at a point
within the angle A SB

’

(V . 3 5 In a parabola or an

ellipse any normal P C will meet the curve again ; in the

hyperbola
, (1) if A A

’
be not greater than p,

no normal can
meet the curve at a second point on the same branch

, but

M 2
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(2) if A A
’

p,
some normals will meet the same branch again

and others not (V. 4 1

If P
1
S
1 ,
P
2
S
2
be normals atpoints on one s ide ofthe axis of

a conic meeting in O, and if O be joined to any other point P
on the conic (it being further supposed in the case of the

ellipse that all three lines SP
l ,
OP

2 ,
OP cut the same half of

the axis), then

(1) OP cannot be a normal . to the curve ;

(2) if OP meet the axis in K , and PG be the normal atP , A G

is less or greater than A K according as P does or does not lie
between P

I
and P

2
.

From this proposition it is proved that (1) three normals at
points on one quadrant ofan ellipse cannot meet at one point ,
and (2) four normals at points on one semi - ellipse bounded by
the major axis cannot meet at one point (V . 44

In any conic , if M be any point on the axis such that AM
is not greater than %p,

and if O be any point on the double
ordinate through M ,

then no straight line drawn to any point
on the curve on the other s ide ofthe axis from O and meeting
the axis between A and M can be a normal (V . 49 ,

P r opositions lead ing immediately to the drtermination

of the evolute of a conic.

These great propos itions ar e V . 5 1
,
5 2 , to the following

effect :

If AM measured along the axis be greater than p (but in
the case ofthe ellipse less than A S), and ifMO be drawn per
pendicular to the axis , then a certain length (y, say)can be
assigned such that

(a) if OM >y, no normal can be drawn through 0 which cuts
the axis ; but, if OP be any straight line drawn to the curve
cutting the axis in K

, NK NS , where PN is the ordinate
and P S the normal atP ;

(b) if OM y, only one normal can be so drawn through O,

and , if OP be any other straight line drawn to the curve and

cutting the axis in K
,
NK NG, as before

(c) if OM y, two normals can be so drawn through O
,
and

,
if

OP be any other straight line drawn to the curve
,
NK is
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greater or less than NG according as OP is or is not inter
mediate between the two normals (V . 5 1 ,

The proofs ar e of course long and complicated. The length
y is determined in this way :

(1) In the case of the parabola ,
measure MH towards the

vertex equal to&p, and divide A H atN
1
so that HN

l
2N

1
A .

The length y is then taken such that

y z p
l
N
l

N
l
fl zflM ,

where P
I
N
1
is the ordinate passing through N

1

(2) In the case of the hyperbola and ellipse, we have
ANI > -

p, so that SA : AM A A
’

p therefore, if H be taken
on AM such that SH H IlI A A

’

p,
H will fall between A

and M .

Take twomean proportionals SN
1 ,
SI between SA and CH ,

and let P
I
N
1
be the ordinate through N

1
.

The length y is then taken such that

y : P
I
IV
1 (SM : MH) (H IV1 N lS).

In the case (b), where OM y, 0 is the point of intersection
of consecutive normals , i . e. O is the centre of curvature atthe

point P ; and , by considering the coordinates ofOwith reference
to two coordinate axes

,
we can derive the Cartesian equations

ofthe evolutes . E. g. (l ) in the case of the parabola let the
coordinate axes be the axis and the tangent at the vertex .

Then AM z : x, OM y. Letp 4 a ; then

HM : 2 a
,
N
I
H : % (x — 2 a), and AN

l
z é—(x é- Za).

y
2
: P

1
N
1

2 N
I
H Z

: EM 2
, by hypothesis ,

y
2
z 4a . AN

1
N
1
H 2

: 4a2 ;

therefore ay
2 AN

I
N
1
H 2

,

4
(x— 2 a)

3
,

2 7 ay
2 4(x — 2 a)

3
.

(2) In the case ofthe hyperbola or ellipse we naturally take
CA , CB as axes of x and y. The work is here rather more
complicated

,
but there is no difficulty in obtaining, as the

locus ofO
,
the curve

(t 0)i (by)g (a
2

i b
’

)2
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tively with the conics give the points atwhich the normals
passing thr ough 0 ar e normals .

Pappus criticiz es the use of the rectangular hyperbola in
the case of the parabola as an unnecessary resort to a solid

locus ’

; the meaning evidently is
'

that the same points of

intersection can be got by means of a certain circle taking
the place ofthe rectangular hyperbola. We can,

in fact , from
the equation (1) above combined with y2 px, obtain the

circle

(w
2
+ y

2
) -p)w— %yly 0~

The Book concludes with other propositions about maxima

and minima. In particular V . compare the lengths of
tangents TQ,

TQ
’

,
where Q is nearer to the axis than Q

’

.

V . 7 2 , 7 4 compare the lengths of“

two normals from a point
0 from which only two can be drawn and the lengths ofother
straight lines from O to the cu r ve ; V . 7 5—7 compare the
lengths of thr ee normals to an ellipse drawn from a point
0 below the major axis, in relation to the lengths of other
straight lines from O to the curve .

Book VI is ofmuch less interest. The first part (VI . 1 - 2 7 )
relates to equal (1. e. congruent)or similar conics and segments
ofconics ; it is naturally preceded by some definitions includ
ing those of ‘

equal ’ and
‘
s1milar

’

as applied to conics and

segments ofconics. Coni cs ar e sa id to be similar if, the same
number of ordinates being drawn to the axis at proportional
distances fr om the vertices , all the ordinates ar e respectively
proportional to the cor responding abscissae. The definition of

similar segments is the same with diameter substituted for
axis, and with the additional condition that the angles
between the base and diameter in each ar e equal . Two

parabolas ar e equal if the ordinates to a diameter in each ar e

inclined to the respective diameters at equal angles and the

corresponding parameters ar e equal ; two ellipses or hyper
bolas ar e equal if the ordinates to a diameter in each ar e

equally inclined to the respective diameters and the diameters
as well as the corr esponding parameters ar e equal (VI . 1 .

Hyperbolas or ellipses ar e similar when the figure on a

diameter of one is similar (instead of equal)to the
‘ figure on

a diameter of the other, and the ordinates to the diameters in
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each make equal angles with them ; all parabolas ar e s imilar
(VI . 1 1

,
No conic of one of the three kinds (para

bolas
,
hyperbolas or ellipses)can be equal or similar to a conic

of either of the other two kinds (VI . 3 , 1 4 , Let QPQ
’

,

gpg
’

be two segments of s imilar conics in which QQ
’

, qq
’

ar e

the bases and P V, pv ar e the diameters bisecting them then,

if PT
, ptbe the tangents atP , p and meet the axes atT,

t at

equal angles , and if P V P T pv pt, the segments ar e similar
and similarly situated

,
and conversely (VI . 1 7 , If two

ordinates be drawn tothe axes oftwo parabolas , or the major or
conjugate axes of two similar central con ics , as PN ,

P
’

N
’

and

pn , p
’

n
’ respectively, such that the ratios AN : an and AN

’

: an
’

ar e each equal to the ratio of the respective later a r ecta , the

segments PP ’

, pp
’ will be s imilar ; alsoPP

’ will not be similar
to any segment in the other conic cut off by two ordinates
other than pn , p

’

n
’

, and conversely (VI . 2 1
,

If any cone
be cut by two paral lel planes making hyperbolic or elliptic
sections , the sections will be sim ilar but not equal (VI . 2 6 ,

The remainder of the Book consists of problems of con

struction ; we ar e shown how in a given right cone to find
a parabolic

,
hyperbolic or elliptic section equal to a given

parabola , hyperbola or ellipse ,
subject in the case of the

hyperbola to a certain Stapl e
-labs: or condition of possibility

(VI . 2 8 also how to find a right cone s imilar to a given
cone and containing a given parabola,

hyperbola or ellipse as

a section of it
,
subject again in the case of the hyperbola to

a certain (VI . 3 1 These problems recall the
somewhat s imilar problems in I . 5 1— 9 .

Book VI I begins with three propositions giving expressions
for A P 2 AN 2

+ PN 2

)in the same form as those for PN 2 in

the statement of the ordinary property . In the parabola A H
is measured along the axis produced (i. e. in the opposite dirce
tion to AN)and of length equal to the latu s r ectum , and it is
proved that , for any point P ,

AP 2 AN . NH (VI I . In

the case of the central conics A A ’
is div ided atH

,
internally

for the hyperbola and externally for the ellipse (A H being the
segment adjacent to A ) so that AH : A

’

H p A A
’

,
where p

is the parameter corresponding toA A ’

, or p BB
’ 2 A A

’

, and

it is proved that
AP 2

: AN . NH AA
’

: A
’
H .
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The same is true if A A ’
is the minor axis of an ellipse and p

the corresponding parameter (VI I . 2
,

If A A ’

be divided at H
’

as well as H (internally for the
hyperbola and externally for the ellipse)so that H is adjacent
to A and H

’

to A
’

, and if A ’

H z A H A A
’
:p,

the lines AH ,
A

’

H
’

(corresponding to
’

p in the proportion)ar e
called by Apollonius homologu es , and he makes considerable

use of the auxiliary points H ,
H

’

in later propos itions from
VI I . 6 onwards . Meantime he proves two more propositions,
which

,
like VI I . 1 — 3 , ar e by way of lemmas . First

,
if SD be

the semi - diameter parallel to the tangent at P to a central
conic, and if the tangent meet the axis A A ’

in T, then

(VI I .

Draw A E ,
TE atr ight angles to SA tomeet SP , and letAE

meet PT in 0 . Then
,
if p

’

be the parameter ofthe ordinates
to SP , we have

ép
’
1 PT -

z OP PE (1

— PT : PE
,

p . PF .

—
_ PT2 .

Therefore P T2 CD2 —1
2

-

p
’

. PE : p
’

. SP
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MH
’
: A A

’
: AH

’

(VI I . 2 , 3)

A A
’
: A

’

H

A
’
H

,

so that , alternately,

A
’
H

12 12 2 0 11 2 MH’
:MH

,
as above

,

whence PP
’
: DD

’ MH
’

: «4 l

and MH
’2
: {MH

’

i

(1)above follows from thi s relation and (or) ex aequali

(2) follows from (oz) and (y) ex aequ ali , and (3) from (a)

We now obtain immediately the important proposition that
PP

’2
+ DD

’2 is constant , whatever he the position ofP on an

ellipse or hyperbola (the upper sign referring to the ellipse),
and is equal to A A ’2

i BB
’2

(VI I . 1 2 , 1 3 , 2 9 ,

For A A
’2
z BB

’2 A A
’
:p A

’

H : AH

by construction

therefore A A
’2
: A A

’Z BB
’2 A

’
H : HH

’

;

also, from (or)above,

A A
’2
: PP

’2 A
’
H : ME

’

;

and , by means of (B),

PP
’2 MH ’

:MH +ME

Ex aequali , from the last two relations , we have

A
’
H zHH

’

from above,

whence P P
’2

1: DD
’2 AA

’2

i BB
’2

.
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A number of other ratios ar e expressed in terms of the

straight lines terminating at A , A
’

,
H ,
H

’

,
M,
M’

as follows

(VI I . 1 4

In the ellipse AA
’2 PP

’2 DD
’2 A

’
H : ZOM ,

and in the hyperbola or ellipse (if p be the parameter of the
ordinates to PP ’

)

A A
’2
15
2 A

’
H .MH ’

:M11 2
,

A A
’Z

(p p)
2 A

’

H . ME
’

(MH i ME
’

)
2
,

A A
’Q
z PP

’
. p A

’

H zMH ,

and A
’

H

A pollonius is now in a position ,
by means of all these

relations
,
resting on the use of the auxiliary points H ,

H
’

, M ,

to compare different functions of any conjugate diameters
w ith the same functions of the axes , and to show how the

former vary (by way of increase or diminution) as P moves
away from A . The following is a list of the functions com
pared

,
where for brevity I shall use a , b to represent AA

’

,
BB

’

;

a
’

,
b
’

to represent PP ’

, DD
’

; and p , p
’
to represent the para

meters ofthe ordinates to A A ’

,
PP

’ respectively.

In a hyperbola,
according as a or b, a

’
or b

’

, and the

ratio a
’

: b
’ decreases or increases as P moves from A on

either side ; also,
if a b, a

’

b
’

(VI I . 2 1 in an ellipse
a
a
; b a

’
: b

’

,
and the latter ratio dimin ishes as P moves from

A to B (VI I .

In a hyperbola or ellipse a + b< a
’

+ b
’

,
and a

’
+ b

’
in the

hyperbola increases continually as P mov'

es farther from A ,

but in the ellipse increases till a’ , b’ take the position of the

equal conjugate diameters when it is a maximum (VI I .

2 5
,

In a hyperbola in which a , b ar e unequal , or in an ellipse,
and a

’
~b

’ diminishes as P moves away from A
,

in the hyperbola continually ,
and in the ellipse till a’ , b’ ar e

the equal conjugate diameters (VI I .

ab a
’
b
’

, and a
’
b
’ increases as P moves away from A

,
in the

hyperbola continually, and in the ellipse till a’, b’ coincide w ith
the equal conjugate diameters (VI I .

VI I . 3 1 is the important propos ition that
,
if PP ’

,
DD

’

ar e
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conj ugate diameters in an ellipse or conjugate hyperbolas
,
and

if the tangents at their extremities form the parallelogram
LL

’

MM ’

, then

the parallelogram LE’

MM ’ rect . AA ’

. BB
’

.

The proof is interesting . Let the tangents atP , D r espec
t1vely meet the major or transverse axis in T, T

’

Now (by VI I . 4) PT2
: SD2 NT z SN ;

therefore 2 A SPT : 2 A T
’

DS NT : SN.

But 2 A CPT PT : SD
,

SP : DT
'

, by s imilar triangles ,

(CL) 2 A T
’
DS .

That is, (CL) is a mean proportional between 2 A SPT and

2 A T
'

DC.

Therefore, since (NT SN) is a.mean proportional between
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A s we have said, Book VIII is lost . The nature of its

contents can only be conjectured from Apollonius
’

s own

remark that it contained determinate coni c problems for

which Book V I I was useful
,
particularly in determining

limits of possibility. Unfortunately ,
the lemmas of Pappus

do not enable u s to form any clearer idea. But it is probable
enough that the Book contained a number ofproblems having
for their object“ the finding of conjugate diameters in a given
conic such that certain functions of their lengths have given
values . It was on this assumption that H alley attempted
a restoration ofthe Book .

If it be thought that the above account of the Sonics is
disproportionately long for a work of this kind , it must be
remembered that the treatise is a great classic which deserves
to be more known than it is . What militates against its
being read in its original form is the great extent of the
exposition (it contains 3 8 7 separate propositions), due partly
to the Greek habit of proving particular cases of a general
proposition separately from the proposition itself, but more to
the cumbrousness ofthe enunciations of complicated propos i
tions in general terms (without the help of letters to denote
particular points) and to the elaborateness of the Euclidean
form, to whi ch A pollonius adheres throughout .

Other works by Apollonius .

Pappus mentions and gives a short indi cation of the con

tents ofsix other works ofA pollonius which formed part ofthe
Tr easu r y ofA nalysis . l Three of these should be mentioned
in close connexion with the Sonics .

(a) On the Cutti ng- of of a R atio (Ab
-

you dvro
—
r opri),

two Books.

This work alone of the six mentioned has survived, and

that only in the Ar abic ; it was published in a Latin trans
lation by Edmund Halley in 1 7 0 6 . I t deals with the general
problem, Given two str aight lines, par allel to one another or

inter secting, and a fixed pointon each line, to d r aw thr ough

1 Pappus , vii, pp. 640—8 , 660— 7 2 .
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a given pointa str aight linewhich shall cutof segmentsfr om

each line (measu r ed fr om the fixed points) bear ing a given

r atio to one another .

’

Thus , letA , B be fixed‘ points on the

two given straight lines A S , BK , and let 0 be the given
point . It is required to draw through 0 a straight line
cutting the given straight lines in points M ,

N respectively

such that AM is toBN in a given ratio. The two Books of
the treatise discussed the various possible cases of this pr o
blem which arise according to the relative positions of the

given straight lines and points , and also the necessary condi
tions and limits of possibility in cases where a solution is not
always possible. The first Book begins by suppos ing the

given lines to be parallel , and discusses the different cases
which arise ; A pollonius then passes to the cases in which the
straight lines intersect, but one of the given points , A or B , is

at the intersection of the two lines . Book II proceeds to the
general case shown in the above figure

, and first proves that
the general case can be reduced to the case in Book I where
one ofthe given points , A or B

,
is at the intersection ofthe

two lines. The reduction is easy. For join OB meeting AS
in B

’

,
and draw B’

N
’ parallel toBN tomeet OM’

in N
’

. Then
the ratio B'

N
’
BN

, being equal to the ratio OB’

: OB
,
is con

stant. S ince, therefore, EN : AM is a given ratio, the ratio
B

’
N

’

AM is also given.

Apollonius proceeds in all cases by the orthodox method of
analys is and synthesis . Suppose the problem solved and

OMN drawn through 0 in such a way that B
’
N

’
: AM is a

given ratio A, say.
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Draw OS parallel to BN or B
’

N
’

to meet AM in S . Take
D on AM such that OS z AD A

AM : AD B
’

N
’

: OS

B
’M SM

AID A D B
’
S S ill ,

SM MD AD B
’

S
,
a given rectangle .

H ence the problem is reduced to one of applying to CD a

r ectangle (SM . MD) equal to a given r ectangle (A D . B
’

S) but

falling shor t by a squar efigur e. In the case as drawn , what
ever be the value ofA, the solution is always possible because
the given rectangle AD SB

’
is always less than SA AD,

and

therefore always less than i SD2
one of the pos itions of

M falls between A and D because CM MD< SA A D.

The proposition III . 4 1 of the Son ics about the intercepts
made on two tangents to a parabola by a third tangent
(pp . 1 5 5 — 6 above) suggests an obvious application of our pr o

blem. We had
,
with the notation of that proposition ,

P r : r q rQ: Qp q pR .

Suppose that the two tangents qP , qR ar e given as fixed
tangents with their points of contact P ,

R . Then we can

draw another tangent if we can draw a straight line
intersecting qP , qR in such a way that P r z r qq s or

Pq : qr qR :pR ,
i . e. qr :pR q qR (a constant ratio);

i. e. we have to draw a straight line such that the intercept by
it on qP measured from q has a given ratio to the intercept
by it on qR measured from R . This is a particular case of
our problem to which , as a matter of fact, Apollonius devotes
special attention. In the annexed figure the letters have the

same meaning as before, and N ’M has to be drawn through O
such that B’

N
’
: AM A. In this case there ar e limits to

N
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Further , if,
we put for A the ratio between the lengths ofthe

two fixed tangents , then if it, be those lengths ,

k g

h h+ a — 2~/hx

which can eas ily be reduced to

ta:

(13)
the equation ofthe parabola referred to the two fixed tangents
as axes .

(B) On the cutti ng
- offof an ar ea (xcopt

’

ov a
’

mar o
l
mi),

two Books .

Thi s work , also in two Books , dealt with a s imilar problem,

with the difference that the intercepts on the given straight
lines measured from the given points ar e required

,
not to

have a given ratio, but to contain a given rectangle . H alley
included an attempted restoration of this work in his edition
ofthe De sectione r at'ionis.

The general case can here again be reduced to the more
special one in whi ch one of the fixed points is at the inter
section of the two given straight lines . Using the same

figure as before, but with D taking the position shown by
in the figure, we take that point such that

0 0 AD the gi ven rectangle.

We have then to draw ON ’

M through 0 such that

OO . AD,

B
'

N
’

0 0 AD z AM .

But
,
by parallels , B

’

N
’

0 0 B
’
M OM

therefore

so that B
’

M MD A D B
’

O.

H ence, as before, the problem is reduced to an application
of a rectangle in the wel l - known manner . The complete

,

N 2
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treatment ofthis problem in all its particular cases with their
dzopumoi

’ could present no difficulty to Apollonius .

If the two straight lines ar e parallel , the solution of the

problem gives a means of drawing any number of tangents
to an el lipse when two parallel tangents , their points of con

tact, and the length of the parallel semi - diameter ar e given

(see Conics , III . In the case of the hyperbola (III . 4 3)
the intercepts made by any tangent on the asymptotes contain
a constant rectangle. A ccordingly the drawing of tangents
depends upon the particular case ofour problem in which both
fixed points ar e the intersection ofthe two fixed lines.

(y) On deterni fi nate section Tomi), twoBooks .

The general problem here is , Given four points A , B ,
O

,
D on

a straight line, to determine another point P on the same

straight line such that the ratio A P . OP : BP . DP has a

given value. It is clear from Pappus ’s account 1 ofthe contents
of this work , and from his extensive collection of lemmas to

the different propositions in it , that the question was very
exhaustively discussed . To determine P by means of the

equation

where A , B, C, D, A ar e given ,
is in itself an easy matter s ince

the
'

problem can at once be put into the form of a quadratic
equation , and the Greeks would have no difficulty in reducing
it to the usual application ofar eas . If, however (as we may
fairly suppose), it was intended for application in .further
investigations , the complete discussion of it would naturally
include not only the finding of a solution,

but also the deter
mination ofthe limits ofposs ibility and the number ofpossible
solutions for different positions of the point- pairs A , O and

B,
D

,
for the cases in whi ch the points in either pair coincide,

or inw hich one of the points is infini tely distant, and so on.

This agrees with what we find in Pappus , whomakes it clear
that, though we do not meet with any express mention of

ser ies of point - pairs determined by the equation for different
values ofA, yetthe treatise contained what amounts to a com

1 Pappus , vii, pp. 642—4.
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plete Theory of I nvol'ation . Pappus says that the separate
cases were dealt with in which the given ratio was that

,

of

either (1) the square of one abscissa measured from the

required point or (2) the rectangle contained by two such
abscissae to any one of the following : (1)the square of one

abscissa, (2) the rectangle contained by one abscissa and

another separate line of given length independent of the

pos ition of the required point
, (3)the rectangle contained by

'

two abscissae . We learn also thatmaxima and minima were
investigated . From the lemmas , too,

we may draw other
conclusions , e . g .

(1) that , in the case where A 1
, or AP . CP BP . DP

,

A pollonius used the relation BP DP A B BC : AD DC,

(2) that Apollonius probably obtained a double point E ofthe

involution determined by the point - pairs A
,
C and B , D by

means ofthe relation

AB . BC : AD DC BE z
zDE 2

.

A poss ible application ofthe problem was the determination
ofthe points of intersection of the given straight line w ith a

conic determined as a four - line locus , smce A
“

,
B , C, D ar e in

fact the points of intersection of the given straight line with
the four lines to which the locus has reference .

8 On Contacts or Tan, encies e
’

7 r a at two Books .9

Pappus again comprehends in one enunciation the varieties
of problems dealt with in the treatise, which we may repro
duce as follows : Given thr ee things, each of which may be

either a point, a str aight line or a cir cle, to d r aw a cir cle

which shall pass thr ough each ofthe given points (sofar as it

is points that ar e given) and touch the str aight lines or

ci r cles .

1 The possibilities as regard s the differen t data ar e

ten. We may have any one of the following : (1) three
points, (2)three straight lines

, (3) two points and a straight
line, (4) two straight lines and a point, (5) two points and

a circle, (6)two circles and a point , (7 )two straight lines and

1 Pappus , vn , p. 644, 25
—8 .
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solved, i . e. suppose DA , EA drawn to the circle cutting it in
points B , C such that BC produced passes through E.

Draw BG parallel to DF; join CC

and produce ittomeet DE in H .

Then

ABA C ABGC

ACH F

supplement ofLCHD

therefore A , D, H , C lie on a circle, and

o H K 5

Now AE . EC is given, being equal to the square on the

tangent from E to the circle ; and DE is given ; therefore HE
is given , and therefore the point H .

But F is also given ; therefore the problem is reduced to
drawing HC, FC to meet the circle in such a way that , if
HC,

FC produced meet the circle again in G, B, the straight
line BC is parallel to HF : a problem which Pappus has
previously solved .

1

Suppose thi s done, and draw BK the tangent atB meeting
HF in X. Then

AK BC LBGC, in the alternate segment,
ACHF.

A lso the angle CFK is common to the two tr iangles KBF,

CHF therefore the tr iangles ar e s imilar, and

Now BF . EC is given,
and so is HF ;

therefore EX is given,
and therefore K is given .

The synthesis is as follows . Take a point H on DE such
that DE . EH is equal to the square on the tangent from E to

the cir cle.

Next take K on HFsuch that HF . EX the square on the
tangent from Ftothe circle.

Draw the tangent to the circle from K , and let B be the

point of contact . Join BF meeting the circle m C
,
and join

Pappus, vi 1 , pp. 830- 2.
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H C meeting the circle again in G. It is then easy to prove
that BG is parallel toDE.

Now join EC,
and produce it tomeet the circle again at A

join AB.

We have only toprove that A B, BD ar e in one straight lme .

S ince DE . EH AE . EC,
the points A ,

D,
H ,

C ar e con

cyclic .

Now the angle which the supplement

is equal to the therefore to the

angle
Therefore the angle BA C is equal to the supplement of

angle DHC, so that the angle BA C is equal to the angle DA Cs
and A B

,
BD ar e in a straight line.

The problem of A pollonius is now easy . We will take the
case in which the required circle touches all the three given
circles externally as shown in the figure . Letthe radii ofthe
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given circles be a , b, c and their centres A , B , C. LetD, E ,
F

be the external centres ofs imilitude so that BD DC=b c, &c.

Suppose the problem solved , and let P , Q, R be the points
of contact . Let PQ produced meet the circles with centres
A , B again in If, L. Then, by the proposition (1 )above, the
segments K GP , OHL ar e both similar to the segment P YQ;
therefore they ar e similar to one another. It follows that I ’Q
produced beyond L passes through F. Similarly QR , PR

produced pass respectively through I) , E .

Let PE , QD meet the circle with centre C again in M
,
N .

Then, the segments PQR , RNM being similar
,
the angles

PQR ,
R NM ar e equal , and therefore MN is parallel to PO.

Produce NM tomeet EF in V.

Then
therefore the point V is given .

“

A ccordingly the problem reduces itself to this : Given three
points V

,
E

, D in a straight line
,
it is required to draw DR ,

ER

toa point B on the circle with centre C so that
,
if DR , ER meet

the circle again in N
,
M , NM produced shall pass through V.

This is the problem ofPappus just solved.

Thus R is found
, and DR ,

ER produced meet the circles
with centres B and A in the other required points Q, P
respectively.

(6 ) P lane loci , two Books .

Pappus gives a pretty full account of the contents of this
work

,
whi ch has sufficed to enable restorations of it to

be made by th ree distinguished geometers , Fermat , van

Schooten , and (most completely) by Robert Simson . Pappus
prefaces his account by a class ification of loci on two

different plans . Under the fir st classification loci ar e ofthree
kinds : (1 ) é¢6 KTLKO[ , holding—i n or fixed ; in th is case the
locus of a point is’

a point , of a line a line, and of a Solid
a solid

, where presumably the line or solid can only move on
itself so that it does not change its position : (2) di ago
ducof, passing

- along : this is the ordinary sense of a locus,
where the locus of a point is a line

,
and of a line a solid :

(3) duaa r pogbmoc
’

, moving backwar ds andforwar ds, as it were,
in which sense a plane may be the locus ofa point and a solid
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other extremity will also lie on a straight line given in
pos1tion.

’

(That is , ct a or y b in Cartes ian coordinates represents a

straight line.)

6 .

‘ If from any point straight lines be drawn tomeet at given
gles two straight lines either parallel or intersecting, and if

the straight lines so d r awn have a given ratio to one another
or if the sum ofone of them and a line towhich the other has
a given ratio be given (in l ength), then the point will lie on a

straight line given in pos it-ion .

’

(This includes the equivalent of saying that, if cc; y be the

coordinates of the point
, each of the equations cc my,

ar+my 0 represents a straight line .)

7 .

‘ If any number of straight lines be given in position, and

straight lines be drawn from a point tomeet them at given
angles , and if the straight lines so drawn be such that the
rectangle contained by one of them and a given straight line‘

added to the rectangle contained by another of them and

(another) given straight line is equal to the rectangle con

tained by a third and a (third)given straight line, and s imi
lar ly with the others , the point will lie on a straight line given
in position .

’

(H ere we have trilinear or multilinear coordinates propor
tional to the distances of the variable point from each of the
three or more fixed lines . When there ar e three fixed lines ,
the statement is that am+ by 02 represents a straight line .

The precise meaning of the words ‘
and similarly with the

the others ’

or
‘

of the others —K a2 7 03V Acuréw ch oices
— is

uncertain ; the words seem to imply that , when there were
more than three rectangles acc, by, cz two of them were
taken to be equal to the sum of all the others but it is quite
possible that Pappus meant that anylinear equation between
these rectangles represented a straight line . Precisely how
far Apollonius went in generality we ar e not in a position to
judge.)
The last enunciation (8) of Pappus referring to Book I

states that
,

If from any point (two)straight lines be drawn tomeet (two)
parallel straight lines given in position at given angles , and
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cut offfrom the parallels straight lines measured from gl ven
points on them such that (a) they have a g1 ven ratio or

(6) they contain a given rectangle or (c)the sum or d1ffer ence
offigures of given species described on

_

them r espeetl vely i s

equal to a given area,
the point will he on a str alght hne

given in position .

’ 1

The contents of Book II ar e equally interesting . Some of

the enunciations shall for brevity be given by means of letters
instead of in general terms . If from two given points A ,

B

two straight lines be ‘ inflected (KAaoc cw)to a point P , then
if AP 2 BP 2 is given, ‘

the locus ofP is a straight line '

(2) if A P , BP ar e in a given ratio,
the locus is a straight line

or a circle [this is the proposition quoted by Eutociu s in his
commentary on the Conics , but already known to A ristotle]

‘

(4) if AP 2 is ‘ greater by a given area than in a given ratio
to BP

‘

Z
,
i . e. if AP 2

a
2
+ on BP

Q
,
the locus is a circle given in

position . A n interesting proposition is (5)
’that , If from any

number ofgiven points whatever straight lines be inflected to
one point , and the figures (given in species) described on all of

them be together equal to a given area, the point will lie on
a circumference (circle) given in position ’

; that is to say , if
a given area (where a , ,8 , y

ar e constants), the locus ofP is a circle. (3) states that, if
AN be a fixed straight l ine and A a fixed point on it , and if
A P be any straight line drawn to a point P such that , if PN
is perpendicular to AN

,
AP 2

a AN or a BN, where a is a

given
'

length and B is another fixed point on AN , then the

locus ofP is a circle given in position ; this is equivalent
to the fact that

,
ifA be the origin

,
AN the axis of a

'

, and

o; AN , y PN be the coordinates ofP ,
the locus 912 y

2
ax

or a (a=— b) is a circle. (6) is somewhat obscurely
enunciated : ‘ If from two given points straight lines be in
flected (to a point), and from the point (ofconcourse)a straight
line be drawn parallel to a straight line given in position and

cutting off from another straight line given in position an

intercept measured from a given point on it
, and if the sum of

figures (given in species)described
_

on the two inflected lines
be equal to the rectangle contained by a given straight line
and the intercept

,
the point at which the straight lines ar e

Pappus , vii , p. 666 . 7 — 1 3 .
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inflected lies on a circle given in position.

’

The meaning
seems to be this : Given two fixed points A , B , a length a

,

a straight lineOX with a point 0 fixed upon it
, and a dirce

tion represented , say, by any straight line OZ through 0 ,
then ,

if AP ,
BP be drawn to P , and PM parallel to OZ meets OX

inM
,
the locus ofP will be a circle given in position if

where a , B ar e constants . The last two loci ar e again
obscurely expressed, but the sense is this : (7 ) If PQbe any
chord ofa circle pass ing through a fixed internal point 0 ,

“

and

R be an external poin t on PO produced such that either
(a) OR

2 PR . RQor (b) OR
2
+P O OQ= PE . RQ, the locus

ofR is a straight line given in pos ition . 8) is the reciprocal
of this : Given the fixed point 0 , the straight line which is
the locus of R , and also the r elation (a) or (b), the locus of

P
, Q is a circle.

(Ver gings or I nclinations), two Books .

A s we have seen,
the problem in a vefia i s is to place

between two straight lines , a straight line and a curve, or
two curves, a straight line of given length m such a way
that it ver ges towards a fixed point , i . e. it will

,
if pro

duced , pass through a fix ed point . Pappus observes that,
when we come to particular cases

,
the problem will be

‘ plane ’

, solid ’

or
‘ linear ’

, according to the nature of the

particular hypotheses ; but a selection had been made from
the class which could be solved by plane methods, i .e. by
means ofthe straight line and circle

,
the object being to give

those which were more generally useful in geometry. The

following were the cases thus selected and proved .

1

1 . Given (a) a semicircle and a straight line at right angles
tothe base, or (b) two semicircles with their bases in a straight
line

,
to insert a straight line of given length verging to an

angle ofthe semicircle [or ofone ofthe semicircles] .

II . Given a rhombus with one side produced, to insert
a straight line ofgiven length in the external angle so that it
verges to the opposite angle.

1 Pappus, vii, pp. 6 7 0—2.
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Therefore the triangles BEK , KEC, which have the angle
BEK common, ar e similar , and

A CBK A CKE A CHE (from above).

AHCE AA CB ABCK .

Therefore in the triangles CBK , CHE two angles ar e

respectively equal , so that A CEH A CK B also.

But since A CKE A CHE (from above), K , C,
E

,
H ar e

concyclic .

H ence A CEH A CK H (two right angles)
therefore, s ince A CEH A CK B

,

A CK B A CK H (two right angles),
and BK H is a straight line .

I t is certain , from the nature of this lemma, that Apollonius
made his construction by drawing the circle shown in the

figure.

H e would no doubt arrive at it by analysis somewhat as
follows .

Suppose the problem solved
,
and HK inserted as r e

quired k).
Bisect HK in N , and draw NE at right angles to K H

meeting BC produced in E . Draw KM perpendicular to BC
,

and produce it to meet A C in L . Then
,
by the property of

the rhombus, LM MK
,
and

,
since KN : NH also

,
MN is

parallel to LH .

Now
,
since the angles at M

,
N ar e right

, M, K ,
N ,

E ar e

concyclic .

Therefore A CEK AMNK A CHK , so that C,
K

,
H

,
E

ar e concyclic .
Therefore ABCD supplement ofK CE AEHK AEK H

,

and the triangles EK H , DCB ar e similar .

Lastly,
AEBK z AEK H — ACEK r - AEHK

therefore the triangles EBK ,
EK C ar e similar, and

BE : EK EK zEC,

BE . EC EK 2
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But, by similar t1 iangles EK H DfB

EK : K H = DC z CB
,

and , since the ratio DC : CB
,
as well as K H , is given,

EK

is given .

The construction then is as follows .

If h be the given length , take a straight line p such that

p z lc z AB z BC ;

apply to BC a rectangle BE . EC equal top2 and exceeding by
a square ; then w ith E as centre and radius equal top describe a
circle cutting A C produced in H and CD in K . HK is then
equal to It and

,
by Pappus ’s lemma

,
verges towards B .

Pappus adds an interesting solution of the same problem
with reference to a square instead ofa rhombus ; the solution
is by one H eraclitus and depends on a lemma which Pappus
also gives .

1

We hear ofyetother lost works by Apollonius .

(77) A Compar ison ofthe dodecahed r on with the icosahedr on .

This is mentioned by Hypsicles in the preface to the so- called
Book XI V of Euclid . Like the Conics, it appeared in two
editions , the second ofwhich contained the proposition that ,
if there be a dodecahedron and an icosahedron inscribed in
one and the same sphere , the surfaces of the solids ar e in the
same ratio as their volumes ; this was established by showing
that the perpendiculars from the centre of the sphere to

a pentagonal face of the dodecahedron and to a triangular
face ofthe icosahedron ar e equal .
(0) Marinus on Eucl id

’

s Data speaks ofa Gener al Tr eatise
(Ka06o in which Apollonius used the word
assigned (r e-

r ay/révov)as a comprehensive term to describe the
datum in general . It would appear that this work must
have dealt with the fundamental principles of mathematics ,
definitions , axioms

,
&c. , and that to it must be refe1 red the

various remarks on such subj ects attributed to Apollonius by
P1 oclus, the elucidation of the notion of a line

,
the definition

Pappus, vii, pp. 7 80—4.
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ofplane and solid angles ,and his attempts toprove the axioms

it must also have included the three definitions (1 3 — 1 5) in
Euclid’s Data which , according to a scholium

,
were due to

A pollonius and must therefore have been interpolated (they
ar e definitions of Ka

‘

r n
‘

ypévn, cimyype
'

w] , and the elliptical
phrase 7rapa 660 m, which means

‘ parallel to a straight line
given in Probably the same work also contained
Apolloniu s

’

s alternative constructions for the problems of

Eucl. I . 1 0
,
1 1 and 2 3 given by Proclus . Pappus speaks

of a mention by A pollonius ‘ before his own elements ’

of the

class of locus called e
’

qfiexn xég, and itmay be that the treatise
now in question is referred to rather than the P lane Loci

itself .

(1) The work On the Cooklias was on the cylindrical helix .

It included the theoretical generation of the curve on the

surface of the cylinder, and the proof that the curve is

homoeome
f
l i c or uniform

,
i. e. such that any part will fit upon

or coincide with any other.

(K) A
'

work on Unorder ed I r r ationals is mentioned by
‘

Proclus
,
and a scholium on Eucl. X. l extracted from Pappus ’s

commentary remarks that ‘ Euclid did not deal w ith all

rationals and irrationals , but only with the simplest kinds by
the combination of which an infinite number of irrationals
ar e formed

,
of which latter A pollonius also gave

'

some
’

.

To a like effect is a passage of the fragment of Pappus’s
commen tary on Eucl . X discovered in an A rabic translation
by Woepcke :

‘ it was Apollonius who, besides the or der ed
irrational magn itudes

,
showed the existence ofthe unor der ed ,

and by accur ate methods set forth a great number of them ’
.

The hints given by the author ofthe commentary seem to imply
that Apollonius

’

s extensions of the theory of irrationals took
two directions , (1) generaliz ing the medial straight line of

Euclid, on the basis that , between two lines commensurable in
square (only), we may take not only one sole medial line but
three or four

,
and so on ad infinitum , since we can take,

between any two given straight lines , as many lines as

we please in continued proportion , (2) forming compound
irrationals by the addition and subtraction ofmore than two

terms ofthe sort composing the bi nomials, apotomes, &c.

0
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A str onomy.

We ar e told by Ptolemaeus Chennus 1 that Apollonius was
famed for his astronomy, and was called 6 (Epsilon)because
the form ofthat letter is associated with that of the moon, to

which his accurate researches principally related . H ippolytus
says he made the distance of the moon’

s circle from the sur

face of the earth to be 5 0 0 myriads of stades.

11 This figure
can hardly be right , for , the diameter of the earth being,

according to Eratosthenes ’s evaluation, about eightmyriads of
stades , this would make the distance of the moon from the

earth about 1 2 5 times

.

the earth’s radius . This is an unlikely
figure, seeing

' that A ristarchus had given limits for the ratios
between the distance of the moon and its diameter, and

between the diameters of the moon and the earth, which lead
to about 1 9 as the ratio of the moon’

s distance to the earth’s
radius . Tannery suggests that perhaps H ippolytus made a

mistake in copying from his source and took the figure of

stades to be the length of the radius instead of the
d iameter ofthemoon

’

s orbit .
Butwe have better evidence of the achievements ofApol

lonius in astronomy . In Ptolemy’

s Sy
-ntaccis 3 he appears as

an authority upon the hypotheses of epicycles and eccentrics
designed to account for the apparent motions of the planets .

The propositions of A pollonius quoted by Ptolemy contain
exact statements of the alternative hypotheses , and from this
fact it was at one time concluded that A pollonius invented
the two hypotheses . This

,
however, is not the case . The

hypothes is of epicycles was already involved, though with
restricted application,

in the theory of Heraclides of Pontus
that the two inferior planets , Mercury and Venus , revolve in
circles like satellites round the sun,

while the sun itself
revolves in a circle round the earth ; that is, the two planets
describe epicycles about the material sun as moving centre .

In order to explain the motions of the superior planets by
means ofepicycles itwas necessary to conceive ofan epicycle
about a point as moving centre which is not a material but
a mathematical point . It was some time before this extension
of the theory of epicycles took. place

,
and in the meantime

1
apud Photi

‘

um, Cod . cxc, p. 151 b 1 8
,
ed . Bekker.

2 H ippo] . R efut. iv. 8 , p. 66, ed . Duncker.

3 Ptolemy, Syntaxis , xii. 1 .

0 2
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another hypothesis , that ofeccent1 1cs was invented to account
for themovements ofthe supei ior planets only . We ar e at this
stage when we come to A pollon ius . His enunciations show
that he understood the theory ofepicycles ln all its generality,

but he states specifically that the theory ofeccentr ics can on ly
be applied to the three planets which can be at any distance
from the sun. The reason why he says that the eccentric
hypothesis will not serve for the inferior planets is that, in
order to make it serve, we should have to suppose the circle
described by the centre of the eccentric circle to be greater
than the eccentric circle itself. (Even this generaliz ation was

made later
,
ator before the time of H ipparchus.) A pollonius

fu rther says in his enunciation about the eccentric that ‘
the

centre of the eccentric circle moves about the centre of the
z odiac in the direct order of the s igns and ata speed equal to

that ofthe sun ,
while the star moves on the eccentric about

its centre in the inverse order ofthe signs and at a speed
equal to the anomaly ’

. It is clear from this that the theory
ofeccentrics was invented for the specific purpose of explain
ing the movements of Mars , Jupiter , and Saturn about the
sun and for that purpose alone . This explanation

,
combined

with the use
'

of epicycles about the sun as centre to account
for the motions of Venus and Mercury

, amounted to
.

the

system ofTycho Brahe that system was therefore anticipated
by some one inte1mediate in date between H er aclides and

A pollonius and p1 obably nearer to the latte1 , or it may
have been Apollonius himself who took this impo1 tant step .

If it was, then Apollon ius , com ing after A ristarchus of

Samos , would be exactly the Tycho Brahe ofthe Copernicus
of antiquity . The actual propositions quoted by Ptolemy as

proved by Apollonius among others show mathematically at

what points , under each of the two hypotheses
,
the apparent

forward motion changes into apparent retrogradation and

vice versa, or the planet appears to be stationar y.



THE SUCCESSOR S OF THE GREAT GEOMETER S

WITH A rch imedes and Apollonius Greek geometry reached
its culminating point . There remained details to be filled
in

, and no doubt in a work such as
,
for instance , the Conics

geometers of the requisite calibre could have found proposi
tions containing ,

the germ of theories which were capable of

independent development . But, speaking generally, the
, fur

ther progress of geometry on general lines was practically
barred by the restrictions of method and form which were
inseparable from the classical Greek geometry . True, it was
open to geometers to discover and investigate curves of a

higher order than conics
, such as spirals , conchoids , and the

like . But the Greeks could not get very far even on these
lines in the absence ofsome system ofcoordinates and without
freer means of manipulation such as ar e afforded by modern
algebra

,
in contrast to the geometrical algebra,

which could
only deal with equations connecting lines , areas , and volumes ,

but involving no higher dimensions than three, except in so

far as the use of proportions allowed a very partial exemp
tion from this limitation . The theoretical methods available
enabled quadratic

,
cubic and bi- quadratic equations or their

equivalents to be solved. Butall the solutions were geometr i
cal ; in other words , quantities could only be represented by
lines, areas and volumes , or ratios between them . There was
nothing corresponding to operations with general algebraical
quantities irrespective ofwhat they represented. There were
no symbols for such quantities . In particular , the irrational
was discovered in the form of incommensurable lines ; hence
irrationals came to be represented by straight lines as they
ar e in Euclid

,
Book X, and the Greeks had no other way of

representing them . It followed that a product of two irra~
tionals could only be represented by a r ectangle, and so on .

Even when Diophantus came to use a symbol for an unknown
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tator s , and especially by Pappus and Eutocius . Some of

these are very interesting, and it is evident from the

extracts from the works of such writers as Diocles and

Dionysodor us that , for some time after A rchimedes and

A pollonius , mathematicians had a thorough grasp of the

contents of the works of the great geometers , and were able
to use the principles and methods laid down therein with
ease and skill .
Two geometers properly belonging to this chapter have

already been dealt with . The fir st is N I COMEDES, the inventor
of the conchoid, who was about intermediate in date between
Eratosthenes and Apollonius . The conchoid has already been
described above (vol . 1, pp . 2 3 8 It gave a general method
ofsolving any vefio-Lg where one of the lines which cut offan
intercept ofgiven length on the line verging to a given point
is a straight l ine ; and it was used both for the finding oftwo
mean proportionals and for the trisection of any angle, these
problems being alike reducible to a veila ts‘ of this kind. How

far N 1 comedes discussed the properties of the curve in itself
is uncertain ; we only know from Pappus that he proved two
properties , (1) that the so- called ‘ ruler ’

in the instrument for
constructing the cur ve is an asymptote , (2) that any straight
line drawn in the space between the ‘ ruler ’

or asymptote and

the conchoid must , if produced ,
be cut by the conchoid .

1 The

equation of the curve referred to polar coordinates is , as we
have seen , r a + b sec 0 . A ccording to Eutocius , Nicomedcs
prided himself inordinately on his discovery of this curve,
contrasting it with Eratosthenes ’s mechanism for finding any

number ofmean proportionals , to whi ch he objected formally
and at length on the ground that it was impracticable and

entirely outside the spirit of geometry .

Nicomedcs is associated by Pappus with Dinostr atus , the
brother of Menaechmus , and others as having applied to the
squaring of the circle the curve invented by H ippias and

known as the qu ad r atr iac,
3 which was originally intended for

the purpose of trisecting any angle. These facts ar e all that
we know ofNicomedes

’

s achievements .

1 Pappus , iv, p. 244 . 21 8 .

2 Eutoc. on Archimedes , On the Spher e and Cyl zndez , A 1 chimedes,
vol. iii, p. 98 .

3 Pappus, l v, pp. 250 . 33—252 . 4 . Cf. vol. 1, p. 225 sq.



200 SUCCESSOR S OF THE GREAT GEOMETER S

The Second name is that of DIOCLES . We have already
(vol. i , pp . 26 4— 6) seen him as the discoverer of the curve
known as the cissoid ,

which he used to solve the problem
of the two mean proportionals , and also (pp . 4 7 — 9 above)
as the author of a method of solving the equivalent of

a certain cubic equation by means of the intersection
of an ellipse and a hyperbola . We ar e indebted for our

information on both these subj ects to Eutocius ,
1 who tells

us that the fragments which he quotes came from Diocles
’

s

work 7 r €pi n vpeiaw, On bu r ning
—mir r or s . The connexion of

the two things with the subj ect of this treatise is not obvious ,
and we may perhaps infer that it was a work of considerable
scope . What exactly were the forms of the burning - mirrors
discussed in the treatise it is not poss ible to say ,

but it is

probably safe to assume that among them were concave
mirrors in the forms (1) of a sphere , (2)of a paraboloid, and
(3)of the surface described by the revolution of an ellipse
about its major axis . The author ofthe Fragmentam mathe~

matioum Bobiense says that A pollonius in his book On the

bu r n ing
- mir r or discussed the case of the concave spherical

mirror , showing about what point ign ition would take place ;
and it is certain that Apollonius was aware that an ellipse has
the property of reflecting all rays through one focus to the
other focus . Nor is it l ikely that the correspond ing property
of a parabola w ith reference to rays parallel to the axis was
unknown to Apollonius. Diocles therefore, writing a century
or more later than Apollonius , could hardly have failed tp
deal with all three cases . True

,
Anthemius (died about

A . D. 5 3 4) in his fragment on burning- mirrors says that the
ancients , while mentioning the usual burning- mirrors and

saying that such figures ar e conic sections
,
omitted to specify

which conic sections , and how produced , and gave no geo

metrical proofs of their properties . But if the properties
were commonly known and quoted, it is obvious that they
must have been proved by the ancients , and the explanation
ofAnthemius

’

s remark is presumably that the original works
in which they were proved (e .g. those of Apollonius and

Diocles)were already lost when he wrote. There appears to
be no trace of Diocles

’

s work left either in Greek or A rabic,
1 Eutocius, loc. cit. , p. 66. 8 sq. , p. 1 60 . 3 sq.
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unless we have - a fragment from it in the Fr agmentam

mathematicumBobiense. ButMoslemw1 iter s regardedDiocles
as the discoverer ofthe parabolic burning -mirror ; ‘the ancients

’

,

says al S ingari (Sachawi , made mirrors of plane
surfaces . Some made them concave (i . e. spherical) until
Diocles (Diuklis) showed and proved that, if the surface of
these mirrors has its cu1 vatu r e 1 11 the form ofa parabola,

they
then have the greatest power and burn most st1 0 .ngly There
is a work on this subject composed by I bn al Haitham. This
w0 1 k survives in A rabic and in Latin translations , and is

reproduced by Heiberg and Wiedemann
1
; it does not, how

ever, mention the nameofDiocles , but only those of Archi
medes and Anthemius. Ibn al—Haitham says that famous
men like A rchimedes and Anthemius had used mirrors made
up of a number of spherical rings ; afterwards , he adds , they
cons idered the form of cur ves which would reflect rays to one
point, and found that the concave surface of a paraboloid of
revolution has this property. It is curious to find Ibn al

Haitham saying that the ancients had not setout the proofs
sufficiently, nor the method by which they discovered them,

words which almost exactly recall those ofAnthemius himself.
Nevertheless the whole course of Ibn al- Haitham

’

s proofs is
on the Greek model, Apollonius being actually quoted by name
in the proof of the main property of the parabola requi red,
namely that the tangent at any point of the curve makes
equal angles with the focal distance of the point and the

straight line drawn through it parallel to the axis. A proof
of the property actually survives in the Greek Fr agmentam

mathematicum Bobiense, which evidently came from some

treatise on the parabolic burning- mirror ; but I bn al - Haitham
does not seem to have had even this fragment at his disposal ,
since his proof takes a different course, distinguishing three
different cases , reducing the property by analysis to the

known property AN : A T,
and then working out the syn

thesis . The proof in the Fr agmentam is worth giving. It IS
substantially as follows , beginning with the preliminary lemma

that, if PT, the tangent at any point P ,
meets the axis atT,

and if AS be measured along. the axis from the vertex A

equal to %AL,
where AL is the parameter, then SP ST.

1 B ibliotheca mathematica, x, , 1910 , pp. 201—37 .
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above shown, be proved to bring about ignition at the point
indicated .

’

H eiberg held that the style of this fragment is Byz antine
and that it is probably by Anthemius . Cantor conjectured
that here we might, after all

,
have an extract from Diocles

’

s

work. H eiberg
’

s supposition seems tome untenable because
of the author’s use 1) of the ancient terms section of

a right - angled cone for parabola and diameter for axis
(to say nothing of the us e of the parameter, ofwhich there is
no word in the genuine fragment of Anthemius), and (2) of
the mixed ‘

angles of contact ’

. Nor does it seem likely that
even Diocles, living a century after Apollonius , would have
spoken of the ‘

section of a right - angled cone ’ instead of a

parabola , or used the ‘mixed angle ofwhich there is only the
merest survival in Euclid. The assumption of the equality
of the two angles made by the curve with the tangent on
both s ides of the point of contact reminds us of A ristotle’s
assumption of the equality of the angles ‘

of a segment ’

of

a

i

cir cle as prior to the truth proved in Eucl. I . 5 . I am

inclined , therefore, to date the fragment much earlier even
than Diocles. Zeuthen suggested that the property of the]
paraboloidal mirror may have been discovered by A rchimedes,
who, according to a Greek tradi tion, wrote Catoptri ca . This ,
however , does not receive any confirmation in Ibn al- H aitham
or in Anthemius, and we can only say that the fragment at

least goes back to an original which was probably not later
than A pollonius .

PER SEUS is only known , from allusions to him in Proclus,1

as the discoverer and investigator ofthe spir ic sections. They
ar e classed by Proclus among curves obtained by cutting
solids , and in this respect they ar e associated with the conic
sections. We may safely infer that they were discovered
after the conic sections , and only after the theory of conics
had been considerably developed. This was already the case
in Euclid’s time, and it is probable , therefore, that Perseus was
not earlier than Euclid. On the other hand, by that time
the investigation ofconics had brought the exponents of the
subj ect such fame that it would be natural for mathematicians
to see whether there was not an opportunity for winning a

1 Proclus on Eucl . I , pp. 1 1 1 . 23—1 12 . 8 , 356. 12. Of. vol. i, p. 226 .
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like renown as discoverers of other curves to be obtained by
cutting well- known solid figures other than the cone and

cylinder . A particular case of one such solid figure , the
on eipa ,

had already been employed by A rchytas , and the more
general form of it would not unnaturally be thought of as

likely togive sections worthy of investigation . S ince Geminus
is Proclus’s autho1 1ty ,

Perseusmay have lived atany date from
Euclid’s time to (say) 7 5 B . C but the most probable supposi
tion seems to be that he came before A pollonius and near to
Euclid in date.

The spir e in one of its forms is what we call a tor e, or an

anchor- ring . It is generated by the revolution of a circle
about a straight line in its plane in such a way that the plane
ofthe circle always passes through the axis of revolution . It
takes three forms according as the axis of revolution is

(a) altogether outside the circle, when the spire is open

(Stexfig), (b) a tangent to the circle, when the surface is con
tinuous or (c)a chord ofthe circle, when it is inter
laced or cr oss ing

- itself an

alternative name for the surface was KpL
’

Kos
‘

,
a r ing. Perseus

celebrated his discovery in an epigram to the effect that
‘ Perseus on his discovery of three lines (curves) upon five

sections gave thanks to the gods therefor ’

.

1 There is some

doubt about the meaning of ‘ three lines upon five sections ’

(Tpeis ypa/rpas e
’

n i néur e Topa i
’

s). We gather from Pr oclus
’

s

account of three sections distinguished by Perseus that the
plane ofsection was always parallel to the axis of revolution
or perpendicular to the plane which cuts the tore symmetr i

cally like the division in a split - ring . It is difficult to inter
pret the phrase if it means three curves made by five different
sections . Proclus indeed implies that the three curves were
sections of the three kinds of tore respectively (the open,

the

closed , and the interlaced), but th is is evidently a slip .

Tannery interprets the phrase as meaning ‘ three curves in
addition tofive sections Of these the five sections belong
to the open tore, in which the distance (0)ofthe centre ofthe
generating circle from the axis of revolution is greater than
the radius (a)of the generating circle . If d be the perpen

1 Proclus on Eucl. I , p. 1 1 2 . 2 .

2 SeeTannery, Mémoir es scientifiqnes , I I , pp. 24—8.
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dicular distance ofthe plane of section from the axis of rota
tion ,

we can distinguish the following cases

(1) c H ere the curve is an oval .

(2) d 0 : transition from case (1)to the next case.

(3) c d >c— a . The curve is now a closed curve narrowest
in the middle .

(4) d c— a . In this case the curve is the hippopede

(horse—fetter), a curve in the shape of the figure of 8 . The

lemniscate of Bernoulli is a particular case of this curve
,
that

namely in which c 2 a .

(5) c In th is case the section consists of two
ovals symmetrical with one another.

The three curves specified by Proclus ar e those correspond
ing to (3)and
When the tore is ‘ continuous ’

or closed
, 0 a

,
and we have

sections corresponding to (2) and (3)only ; (4) reduces to
two circles touching one another .

ButTannery finds in the third
,
the interlaced, form oftore

three new sections corresponding to (1 ) (2) each with an

oval in the middle. Th is would make three curves in addi
tion to the five sections , or eight curves in all. We cannot be
certain that this is the true explanation ofthe phrase in

'

the
epigram ; but it seems to be the best suggestion that has
been made .

A ccording to Proclus , Perseus worked out the property of
his curves , as Nicomedcs did that of the conchoid , H ippias
that of the quadr atr ice, and Apollonius those of the three
conic sections . That is , Perseus must have given , in some

form,
the equivalent of the Cartesian equation by which we

can represent the different curves in question . If we refer the
tore to three axes ofcoordinates at right angles toone another
with the centre ofthe tore as origin

,
the axis ofy being taken

to be the axis of revolution,
and those of z ,

as being perpen
dicular to it in the plane bisecting the tore (making it a split
ring), the equation ofthe tore is

— a
2 2
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themselves , so that,w hile they got a reputation for greater
honesty, they in fact took more than their share of the

produce.

1 Several remarks by ancient authors show the

prevalence of the same misconception . Thucyclides estimates
the siz e of Sicily according to the time required for circum
navigating it.

2 About 1 3 0 Polybius observed that there
were people who could not understand that camps ofthe same

periphery might have different capacities .

3 Quintilian has a

similar remark , and Cantor thinks he may have had in his
mind the calculations of Pliny, who compares the siz e of

'

different parts of the earth by -

adding their lengths to their
breadths .

‘1

ZENODORUS wrote
, at some date between (say) 20 0 and

A .D. 90
, a treatise n epi ioope

'

r pmv o On isometr ic

figu r es. A number of propos itions from it ar e preserved in
the commentary of Theon of A lexandria on Book I of

Ptolemy’

s Syntazcis ; and they ar e reproduced in Latin in the
third volume of Hultsch’

s edition ofPappus, for the purpose
of comparison with Pappus ’s own expos ition of the same

propositions atthe beginning ofhis Book V , where he appears
to have followed Zenodor us pretty closely while making some

changes in detail .5 From the closeness with which the style
of Zenodor us follows that of Euclid and A 1 chimedes we may
j udge that his date was not much later than that ofA 1 chi
medes, whom he mentions as the author of the p1 oposition
(Measu 1 ementofa Cir cle, Prop. 1) that the area ofa circle 1 s

half that of the rectangle contained by the perimeter of the
circle and its radius . The impor tant propositions proved by
Zenodor us and Pappus include the following : (1) Of all

r egular polygons of equal per imeter , that is the gr eatest in

ar ea which has themostangles . (2) A cir cle is gr eater than

any r egular polygon ofequal contou r . (3) Ofall polygons of
the same number ofsides and equal per imeter the equilater al

and equiangu lar polygon is the gr eatest in ar ea. Pappus
added the further proposition that Ofall segments ofa cir cle

having the same cir cumfer ence the semicir cle is the gr eatest in

1 Proclus on Eucl. I , p. 403. 5 sq.

2 Thuc. vi: 1 .
3 Polybius , ix. 2 1 .

4 Pliny, H ist. nat. vi. 208 .

5 Pappus, v, p. 308 sq.
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ar ea . Zenodor us
’

s treatise was not confined to propositions
about plane figures , but gave also the theorem that Of all

solidfigu r es the su rfaces ofwhich ar e equal, the spher e is the

gr eatest in solid content.

We will briefly indicate Zenodor us ’s method of proof. To

begin w ith (1) letA BC,
DEF be equilateral and equiangular

polygons of
'

the same perimeter , DEF having more angles
than ABC. Let G,

H be the centres of the circumscribing
circles

, GK , HL the perpendiculars from G,
H to the sides

A B , DE , so tha t K ,
L bisect those sides .

S ince the perimeters ar e equal
,
A B DE

,
and A K DL.

Make KM equal toDL and join GM .

Since A B is the same fraction of the perimeter that the
angle A GB is offour right angles , and DE is the same fraction
of the same perimeter that the angle DHE is of four right
angles , it follows that

AB zDE : AA GB z ADHE ,

that is
,

AK : MK : A A GK ADHL.

But AK zMK > AA GK z A IlIGK

(this is easily proved in a lemma following by the usual
method ofdrawing an ar c ofa circle with G as centre and GM

as radius cutting GA and CK produced . The proposition is of
course equivalent to tan or tan 6 or/B, where %n or B).

Therefore AMGK ADHL,

and consequently A GMK AHDL.

Make the angle NMK equal to the angle HDL, so that MN
meets K G produced in N .
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The triangles NMK , HDL ar e now equal in all respects , and
NK is equal to HL, so that GK HL.

But the area of the polygon ABC is half the rectangle
contained by GK and the perimeter , while the area of the

polygon DEF is half the rectangle contained by HL and

the same perimeter . Therefore the area ofthe polygon DEF
is the greater.

(2) The proof that a circle is greater
'

than any ‘

r egular

polygon with the same perimeter is deduced immediately from
A rchimedes ’s propos ition that the area of a circle is equal
to the right - angled triangle with perpend icular side equal to
the radius and base equal to the perimeter of the circle ;
Zenodor u s inserts a proof in ecctenso of A rchimedes ’s pr o
position ,

with preliminary lemma. The perpendicular froth
the centre of the circle circumscribing the polygon is easily
proved to be less than the radius of the given circle with
perimeter equal to that ofthe polygon whence the proposition
follows .

(3) The proof of this proposition depends on some pr e

liminary lemmas . The fir st proves that , if there be two

triangles on the same base and w ith the
same perimeter, one being isosceles and
the other scalene, the isosceles triangle
has the greater area . (Given the scalene
triangle BBC on the base BC,

itis easy to
draw on BC as base the isosceles triangle
having the same per imeter . We have
only to take BH equal to DC),
bisect BC at E ,

and erect atE the per

pendicular AE such that AE 2 EH 2 BE Z
.)

Produce BA to F so that BA AF,
and join AD, DF.

Then BD+DF BF, i. e . BA + AO,
i . e. BD +DC , by hypo

thesis ; therefore DE DC,
whence in the triangles FAD,

CAD the angleFAD the angle CAD.

Therefore AFAD AFA C

ABCA .

Make the angle FA G equal to the angle BOA or ABC,
so

that AG is parallel to BC ; let BD produced meet A G in G,

and join GC.

1 523 . 2
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Now
, by hypothesis , DB BA GB BF ;

therefore DB BA HB BF HF.

By an easy lemma, since the triangles DE ABC ar e similar ,

(DB BA ) (DL AK )
2

(BI; BK )
2

(DL AK )
2 LK 2

.

Therefore (DL A K )
2 LK 2 HF2

whence DL A K GL FK
,

and it follows that AF GD.

But BK BL therefore AF . BK GD BL.

H ence the ‘ hollow - angled (figu r e)
’

(K OtAoycbwov) ABFC is

greater than the hollow - angled (figure)GEDB .

A dding A DEB A BFC to each
,
we have

A DEB + A ABC A GEB + A FBO.

The above is the only case taken by Zenodor us . The proof
still holds if EB BC

, so that BK BL. But it fails in the
case in whi ch EB BC and the vertex G ofthe triangle EB
belonging to the non - similar pair is still above D and not

below it (as F is below A in the preceding case). Thi s was

no doubt the reason why Pappus gave a proof intended to
apply to all the cases w ithout distinction . This proof is the
same as the above proof by Zenodor us up to the point where
it is proved that

BL + A K GL +FK ,

but there diverges . Unfortunately the text is bad ,
and gives

no sufficient indication ofthe course ofthe proof ; but it would
seem that Pappus used the relations

DL GL : A DEB z A GEB ,

A K 2
zDL2 : A ABC : A DEB ,

combined of course with the fact that GB + BF DB + BA ,

in order to prove the proposition that,

according as DL+ AK or GL+FK ,

A DEB + A ABC or A GEB + A FBC.

P 2
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The proof of his proposition ,
whatever it was , Pappus

indicates that he will give later ; but in the text as we have 1t

the promise is not fulfilled .

Then follows the proof that the maximum polygon ofgiven
perimeter is both equilateral and

equiangular .

(1) It is equ ilateral .
For ,

if not
,
let two

’

sides
’
of the

maximum polygon ,
as A B ,

BC
,
be

unequal . Join A C
,
and on A C as

base draw the isosceles triangle AFC
such that AF FC AB + BC. The

area of the triangle AFC is then
'

greater than the area of the triangle ABC,
and the area of

the whole polygon has been increased by the constr uc

tion : wh ich is impossible,
as by hypothes is the area is a

maximum.

Similarly it can be proved that no other side is unequal
to any other .

(2) It is also equiangular.

For
,
if possible, let the maximum polygon A BCDE (which

we have proved to be equilateral)
have the angle at B greater than
the angle atD. ThenBA C,DEC ar e

non - similar isosceles triangles . On

A C
,
(
‘

E as bases describe the two
isosceles triangles FAC,GEOsimilar
toone another which have the sum
of their perimeters equal to the

sum of the perimeters of BAC,

DEC. Then the sum of the areas ofthe two similar isosceles
triangles is greater than the sum of the areas ofthe triangles
BA C,

DEC ; the area of the polygon is therefore increased,
which is contrary to the hypothesis .

H ence no two angles ofthe polygon can be unequal .
The max imum polygon ofgiven perimeter is therefore both

equilateral and equiangular .

Dealing with the sphere in relation to other solids having
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their surfaces equal to that ofthe sphere, Zenodor us confined
himself to proving (1) that the sphere is greater if the other
solid with surface equal to that ofthe sphere is a solid formed
by the revolution of a regular polygon about a diameter
bisecting . it as in A rchimedes, On the Spher e and Cylinder ,

Book I , and (2 ) that the sphere is greater than any of

the regular solids having its surface equal to that of the
sphere .

Pappus ’s treatment of the subject is more complete in that
he proves that the sphere is greater than the cone or cylinder
the surface ofwhich is equal to that ofthe sphere, and further
that of the five regular solids which have the same surface
that which has more faces is the greater.

1

HYPSICLES (second half of second century B . C .) has already
been mentioned (vol. i , pp. 4 1 9— 2 0)as the

'

author of the con

tinuation ofthe E lements known as Book XI V . H e is quoted
by Diophantus as having given a definition of a polygonal
number as follows :

1

If there ar e as many numbers as we please beginning from
1 and increas ing by the same common difl'

er ence ,
then ,

when
the common difference is 1

,
the sum of all the numbers is

a triangular number ; when 2
, a square ; when 3 , a pentagonal

number [and so on] . And the number of angles is called
after the number which exceeds

_

tl1 e common difference by 2 ,
and the side after the number of terms including l .

’

This defini tion amounts to saying that the nth a - gonal num
ber

'

(1 counting as the first)is $ 1. { 2 (n 1) (a If, as is
probable

,
Hypsicles wrote a treatise on polygonal numbers , it

has not survived . On the other hand
,
the Aua¢opm6s

~(A scen

siones)known by his name has survived in Greek as well as in
A rabic, and has been edited with translation .

2 True, the
treatise (if it really be by Hypsicles , and not a clumsy effort
by a beginner working from an original by Hypsicles)
does no credit to its author ; but it is in some respects
interesting, and in particular because it is the first Greek

1 Pappus , v, Props . 1 9, 38—56 .

2 Manitius , Des Hyps ikles Schr ift A naphor tkos , Dresden, Lehmannsche

Buchdruckerei, 1888 .
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natural to divide each of the s ixth parts into either 1 0 or 6 0
parts ; the former divis ion would account for the attested
divis ion ofthe day into 6 0 hours , while the latter division on
the sexages imal system would give the 3 6 0 time- degrees (each
of 4 minutes) making up the day of 24 hours . The purely
arithmetical explanation is defective in that the series of
numbers for which the Babylonians had special names is not
6 0 , 3 6 0 , 3 6 0 0 but 6 0 (Soss), 600 (Ner ), and 3 6 0 0 or 6 0 2 (Sar).
On the whole, after all that has been said

,
I know of no

better suggestion than that ofTannery .

1 It is certain that
both the division of the ecliptic into 3 6 0 degrees and that of
the yvxdfiuepov into 3 6 0 time- degrees were adopted by the
Greeks from Babylon . Now the earliest division of the

ecliptic was into 1 2 parts , the signs , and the question is , how
were the signs subdivided? Tannery

’

observes that, accord
ing to the cuneiform inscriptions , as well as the testimony of
Greek authors

,
the sign ’

was divided into parts one ofwhich
(dar gatu)was double ofthe other the former being
1 soth

,
the other. (called stadium by Manilius) 1/6 0th ,

ofthe

Sign ; the former division would give 3 6 0 parts, the latter 7 20
parts for the whole circle. The latter division was more
natural, in View ofthe long- established system ofsexagesimal
fractions ; it also had the advantage of corresponding toler
ably closely tothe apparent diameter ofthe sun in comparison
with the circumference of the sun’

s apparent circle . But
, on

the other hand
, the double fraction ,

the 1/3oth ,
was contained

in the circle ofthe z odiac approximately the same number of
times as there ar e days in the year, and consequently corre
sponded nearly to the distance described by the sun along the
z odiac in one day. Itwould seem that this advantage was
sufficient to turn the scale in favour of dividing each s ign of
the z odiac into 3 0 parts , giving 3 6 0 parts for the whole
circle. While the Chaldaeans thus divided the ecliptic into
3 6 0 parts , it does notappear that they applied the same divi
sion to the equator or any other circle. They measured angles
in general by ells

,
an ell representing so that the complete

circle contained 1 8 0
,
not 3 6 0 , parts , which they called ells .

The explanation may perhaps be that the Chaldaeans divided
1 Tannery , ‘ La coudée astronomique et les anciennes divisions du
cercle (Me

’

moir es scientifiques, ii, pp. 256
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the diameter ofthe circle into 6 0 ells in accordance with their
usual sexagesimal division,

and then came to divide the cir
cumfer ence into 1 8 0 such ells on the ground that the circum
ference is roughly three times the diameter . The measure
ment in ells and dactyli (of which there were 24 to the ell)
survives in H ipparchus (On the P haenomena ofEudorcus and

A r atus), and some measurements in terms of the same units
ar e given by Ptolemy. It was H ipparchus who first divided
the circle in general into 3 6 0 parts or degrees, and the

introduction of this division coincides with his invention of

trigonometry.

The contents of Hypsicles
’

s tract need not detain us long.

The problemis : If we know the ratiowhich the length ofthe
longest day bears to the length of the shortest day at any

given place, tofind how many time - degrees it takes any given
sign to rise ; and , after this has been found, the author finds
what length of time it takes any given degree in any sign to
rise, i.e . the interval between the ris ing ofone degree- point on
the ecliptic and that of the next following . It is explained
that the longestday is the time during which one half ofthe
z odiac (Cancer, Leo, Virgo, Libra , Scorpio,
and the shortest day the time during which the other half
(Capricornus, Aquarius , Pisces , A ries , Taurus , Gemini) rises .

Now at A lexandria the longest day is to the shortest as 7

to 5 ; the longest therefore contains 2 1 0
‘ time- degrees ’

,
the

shortest 1 5 0 . The two quadrants Cancer—V irgo and Libra
Sagittarius take the same

‘ time to rise
,
namely 1 0 5 time

degrees, and the two quadrants Capricornus—Pisces and A r ies
Gemini each take the same time, namely 7 5 time- degrees.
It is further assumed that the times taken by V irgo, Leo,
Cancer , Gemini , Taurus , A ries ar e in descending arithmetical
progression, while the times taken by Libra, Scorpio, Sagit
tar ins , Capricornus , Aquarius , Pisces continue the same de

scending arithmetical series . The following lemmas ar e used
and proved

I . If a
, ,

a
2

a
n , an“ , a

n+ 2
a
, ”
is a descending ar ithmeti

cal progr ess1on of Zn terms with 8 a
l
— a

2
a
2
— a

3

as common difference,

a
, + a + a, + a2n) 7 1

2 8
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II . If a
] , a, is a descending arithmetical pr o

gr ession of 2 n 1 terms with 8. as common difference and a
n

1 8 the middle term,
then

a
l + a

g+ (2 1i

III . If a
l ,

a
2 . 1s a descending arithmetical

progression of 2 n terms , then

n (a l - l- az u)

”(an 66
11 +

Now let A
,
B

,
C be the descending series the sum ofwhich

is 1 0 5 , and D,
E

, Fthe next three terms in the same series
the sum of which is 7 5

,
the common difference being 8 ; we

then have
,
by (I),

A + B + C 9 8, or 3 0 9 8,

and 8

Next , by (II), A + B + C : 3B , or 3 B : 1 0 5
,
and B : 3 5

'

therefore A ,B , C,
D

,
E , F are equal to 3 5

,
2 8 3
1
,
2 5

,

2 1 5
2

; time- degrees respectively
,
which the author of the tract

expresses in time - degrees and minutes as 3 8 t 3 5t
,
3 1 ’

2 8 ‘ 2 1 ‘ We have now to carry through the same

procedure for each degree in each sign . If the difference
between the times taken to rise by one s ign and the next
is 3 1 what is the difference for each ofthe 3 0 degrees in
the s ign 2 We have here 3 0 terms followed by 3 0 other terms

of the same descending arithmetical progression , and the

formula (I) gives (3O)
2d , where d is the common

d iffer ence ; therefore d 9
— 35 x 3

1
. O‘0

’

1 3
”

Lastly ,

take the sign corresponding to 2 1 t This is the sum of

a descending arithmetical progression of 3 0 terms a
, ,

a
2

a

with common difference Therefore , by (III),
2 1 2 whence a

l + a
so

: I t 2 6
’

4 0 Now ,

s ince there ar e 3 0 terms a
, ,
a
2

a we have

sgd 0t 6
’
2 6 . 40

It follows that a 0‘ and a
,

0t 46
’

3 3 2 0
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generates the tore, and c the distance of its centre from the

axis ofrevolution,

(volume of tore): 1r 02 . (l % 1r d
2
%cd ,

that is , (volume oftore) % 7 r
2
cd 2

,

which is of course the product of the area of the generating
circle and the length ofthe path of its centre ofgravity . The

form in which the result is stated
,
namely that the tore is to

the cylinder with height d and radius 0 as the generating
circle of the tore is to half the parallelogram cd

,
indicates

quite clearly that Dionysodor us proved his result by the same

procedure as that employed by A rchimedes in the Method and

in the book On Conoids a nd Spher oids , and indeed the proof
on A rchimedean lines is not difficult .

Before passing to the mathematicians who ar e identified
with the discovery and development of trigonometry

,
it w ill

be conven ient, I think , to dispose oftwomore mathematicians
belonging to the last century B . C .

, although this involves
a slight departure from chronological order I mean Posidonius
and Geminus .

POSIDONI US , a Stoic
,
the teacher of C icero, is known as

Posidonius of A pamea (where he was born) or of Rhodes
(where he taught); his date may be taken as approximately
1 3 5 — 5 1 B . C . In pure mathematics he is mainly quoted as the

author of certain definitions , or for views on technical terms
,

e .g. theorem and ‘ problem ’

,
and subj ects belonging to ele

mentary geometry . More important were his contributions
to mathematical geography and astronomy . H e gave his

great work on geography the title On the Ocean , using the
word which had always had such a fascination for the Greeks
its contents ar e known to us through the copious quotations
from it in Strabo it dealt with physical as well as mathe
matical geography ,

the z ones , the tides
'

and their connexion
with the moon ,

ethnography and all sorts ofobservations made
during extensive travels . H is astronomical book bore the
title Meteor ologica or 7 r ep2 ,

uer ecépaw, and
, while Geminus

wrote a commentary on or exposition of this work , we may

assign to it a number of views quoted from Pos idonius
.

in
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Cleomedes
’

s work De motto ctr cu lar i corpor um caelesttum .

Posidonius also wrote a separate tract on the siz e ofthe sun .

The two things which ar e sufficiently important to deserve
mention here ar e (1) Pos idonius

’

s measurement ofthe circum
ference of the earth , (2) his hypothesis as to the distance and

siz e ofthe sun .

(1) H e estimated the circumference of the earth in this
way . H e assumed (according to Cleomedes 1) that, whereas
the star Canopus , invisible in Greece, was just seen tograz e the
horiz on at R hodes , rising and setting again immediately , the

meridian altitude ofthe same star atA lexandria was
‘

a fourth
part of a sign ,

that is , one forty - eighth part of the z odiac
circle ’

and he observed that the distance between
the two places (supposed to lie on the same meridian) ‘ was

considered to be stades ’

. The circumference of the

earth was thus made outto be stades . Unfortunately
the estimate of the difference of latitude , 7 g , was very far
from correct , the true difference being 5 7

1
,

o
on ly ; moreover

the estimate of stades for the distance was incorrect ,
being only the maximum estimate put

'

upon it by mariners .

while some put it at 4 0 0 0 and Eratosthenes , by observations
of the shadows of gnomons

,
found it to be stades only .

Strabo, on the other hand, says that Posidonius favoured ‘

the

latest of the measurements which gave the smallest dimen a

sions to the earth
,
namely about stades ’

.

2 ~This is
evidently 4 8 times so that Posidonius combined Erato
sthenes

’

s figure of stades with the incorrect estimate
of 7 for the difference of latitude, although Eratosthenes
presumably obtained the figure of 5 0 stades from his own

estimate or ofthe circumference ofthe earth
combined w ith an estimate ofthe difference of latitude which
was about and therefore near the truth .

(2 ) Cleomedes 3 tells us that Posidonius supposed the circle
in which the sun apparently moves round the earth to be

times the si z e ofa circular section ofthe earth through
its centre

,
and that with this assumption he combined the

1 Cleomedes , De motu cir cular i
,
i . 10

, pp. 92 —4 .

2 Strabo, ii . 0 . 95 .

3 Cleomedes , 0p . ce
’

t. ii. 1 , pp. 144—6 , p. 98 . 1 - 5 .
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statement of Eratosthenes (based apparently upon hearsay)
that at Syene, which is under the summer tropic , and

throughout a circle round it of '

3 00
'

stades in diameter, the
upright gnomon throws no shadow at noon . It follows from
this that the diameter of the sun occupies a portion of the

sun ’

s circle stades in length ; in other words , the
diameter ofthe sun is stades . The assumption that
the sun ’

s circle is times as large as a great circle ofthe
earth was presumably taken from A rchimedes

,
whohad proved

in the Sand - r ec/coner that the diameter of the sun ’

s orbit is
less than times that of the earth ; Pos idonius in fact
took the maximum value to be the true value ; but his esti
mate ofthe sun ’

s si z e is far nearer the truth than the estimates
ofA ristarchus , H ipparchus , and Ptolemy . Expressed in terms
of the mean diameter of the earth , the estimates of these
astronomers give for the diameter of the sun the figures
1 2 1

1

5 , and 5% respectively ; Posidonius
’

s estimate gives the

true figure being 1 0 8 -9 .

In elementary geometry Posidonius is credited by Proclus
with certa in defin itions . H e defined ‘ figure ’

as
‘ confining

limit (n épa g (r ifyxkefou)1 and parallels as those lines which
,

being in one plane
,
neither converge nor diverge, buthave all

the perpendiculars equal which ar e drawn from the points of
one line to the other (Both these definitions ar e included
in the Definitions of H eron .) H e also distinguished seven
species of quadrilaterals , and had views on the distinction
between theor em and pr oblem . A nother indication of his

interest in the fundamentals of elementary geometry is the
fact 3 that he wrote a separate work in refutation of the

Epicurean Z eno ofSidon,

'who had objected to the very begin
nings ofthe Elements on the ground that they contained un

proved assumptions . Thus said Zeno,
even Eucl. I . 1 requires it

to be admitted that ‘ two straight lines cannot have a common
segment ’

; and
,
as regards the ‘ proof ’

of this fact deduced
from the bisection ofa circle by its diameter, he would object
that it has to be assumed that two arcs of circles cannot have
a common part. Zeno argued generally that

,
even if we

admitthe fundamental principles ofgeometry ,
the deductions

1 Proclus on Eucl . I , p. 143 . 8 .

2 I h. , p. 1 7 6 . 6—10 .

3 I b.
, pp. 199 . 14—200 . 3 .



https://www.forgottenbooks.com/join


GEMINUS 223

An upper limit for his date is furnished by the fact that he
wrote a commentary on or exposition of Posidonius ’s work
wepi per eépwu ; on the other hand

, A lexander Aphrodisiensis
(about A .D. 2 1 0)quotes an important passage from an

‘

epitome
’

of this e
’

gfiynm s
‘ by Geminus . The view most generally

accepted is that he was a Stoic philosopher , born probably
in the is land of Rhodes , and a pupil of Posidonius

,
and that

he wrote about 7 3—6 7 B . C .

Of Geminus ’s works that which has most interest for us

is a comprehensive work on mathematics . Proclus , though
he makes great use of it, does not mention its title, unless
indeed , in the passage where, after quoting from Geminus
a classification of lines which never meet , he says ‘ these
remarks I have selected from the (pLhOKaAt

’

a of Geminus
’

,

l

the word gbthoxaht
’

a is a title or an alternative title. Pappus ,
however, quotes a work of Geminus ‘

on the classification of

the mathematics ’

1r ep2 Tfig 7 6 V padnpri r mr/ r affle s),
While Eutocius quotes from ‘ the sixth book ofthe doctrine of
the mathematics '

GKTCP
‘

r fiS
‘

7 63V
l
uadnyaf

‘

r aw dempt
'

ag).
The former title corresponds well enough to the long extract
on the division of the mathematical sciences into arithmetic

,

geometry,
mechanics , astronomy

,
optics , geodesy, canonic

(musical harmony) and logistic wh ich Proclus gives in his

fir st prologue, and also to the fragments contained “

in the

A nonymi var iac colleetiones published by H ultsch in his

edition of H eron ; but it does not suit most of the other
passages borrowed by Proclus . The correct title was most
probably that given by Eutocius , The Doctr ine, or Theor y,

of the
'

Mathematics ; and Pappus probably refers to one

particular section of the work ,
say the first Book . If the

s ixth Book treated of conics , as we may conclude from
Eutocius

’

s reference, there must have been more Books
"

to

follow ° for Proclus has preserved us details about higher
curves , which must have come later . If again Geminus
fin ished his work and wrote with the same fullness about the
other branches of mathematics as he did about geometry

,

there must have been a considerable number of Books
altogether . It seems to have been designed to give a com

plete view of the whole science ofmathematics , and in fact
1 Proclus on Eucl . I , p. 1 7 7 . 24.
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to have been a sort of encyclopaedia of the subject. The

quotations of Proclus from Geminus’s work do not stand
alone ; we have other collections of extracts

,
some more and

some less extensive ,
and showing varieties of tradition accord

ing to the channel through which they came down . The

scholia to Euclid’s Elements, Book I , contain a considerable
part ofthe commentary on the Definitions ofBook I , and ar e

valuable in that they give Geminus pure and simple , whereas
Proclus includes extracts from other authors . Extracts from
Geminus of considerable length ar e included in the Arabic
commentary by an - Nair iz i (about A .D. 9 0 0) who got them
through the mediumof Greek commentaries on Euclid ,

especially that of Simplicius . It does not appear to be

doubted any longer that ‘ Aganis
’

in an - Nair i z i is really
Geminus ; this is inferred from the close agreement between
an - Nair iz i

’

s quotations from ‘

Aganis
’

and the correspond
ing passages in Proclus ; the difficulty caused by the fact
that Simpli cius calls Aganis

‘

socius noster ’

is met by the

suggestion that the particular word SOCi n s i s either the
result of the double translation from the Greek or means

nothing more
,
in the mouth of S implicius

,
than ‘ colleague ’

in the sense of a worker in the same field
,
or

,

‘

authority ’

.

A few extracts again ar e included in the A nonymi var iae

collectiones in H ultsch
’

s H er on . Nos . 5— 1 4 give definitions of
geometry

,
logistic

,
geodesy and their subject -matter , remarks

on bodies as continuous magnitudes
,
the three dimens ions as

principles of geometry
,
the purpose of geometry

, and lastly
on optics

,
with its subdivisions

,
optics proper, Catoptr ica and

oxnvoypaqfimfi, scene- painting (a sort ofperspective), w ith some
fundamental principles of optics , e.g . that all light travels
along straight lines (which ar e broken in the cases of reflection
and refraction), and the divis ion between optics and natural
philosophy (the theory of light), it being the province ofthe
latter to investigate (what is a matter of indifference to optics)
whether 1) visual rays issue from the eye , (2) images proceed
from the object and impinge on the eye , or (3)the intervening
air is aligned or compacted with the beam - like breath or

emanation from the eye .

Nos . 8 0 —6 again in the same collection give the Peripatetic
explanation of the name mathematics

,
adding that the term
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was applied by the early Pythagoreans more particularly
to geometry and arithmetic , sciences which deal with the pure ,
the eternal and the unchangeable

,
but was extended by later

writers to cover what we call mixed ’

or applied mathematics ,
which , though theoretical , has to do with sensible objects , e .g .

astronomy and optics . Other extracts from Geminus ar e found
in extant manuscripts in connexion with Damianus ’s tr eatise
on optics (published by R . Scho'ne, Berlin , The defini

tions of logistic and geometry also appear
,
but with decided

differences , in the scholia to Plato’

s Charmides 1 6 5 E . Lastly
,

isolated extracts appear in Eutocius , (1 )a remark reproduced
in the commentary on A rchimedes ’s Plane q ail-z

'

br iums to

the effect that A rchimedes in that work gave the name of

postulates to what ar e r eally
'

axioms , (2) the statement that
before Apollonius

’

s time the conics were produced by cutting
different cones (right - angled

,
acute- angled , and obtuse- angled)

by sections perpendicular in each case to a generator .1
The object of Geminus ’s work was evidently the examina

tion of the first principles , the logical building up ofmathe
maties on the basis of those admitted principles, and the

defence of the whole structure against the criticisms of

the enemies of the science, the Epicureans and Scep‘tics , some

of whom questioned the unproved principles , and others the
logical validity of the deductions from them. Thus in

geometry Geminus dealt first with the principles or hypotheses
(aipxac

’

,
fmode

’

aecg) and then with the logical deductions , the
theorems and problems (7 02 pent aipxcis). The distinction
is between the things which must be taken for granted but
ar e incapable of proof and the things wh ich must not be

assumed but ar e matter for demonstration . The principles
consisting of definitions , postulates , and axioms , Geminus
subj ected them several ly to a critical examination from this
point ofview

,
distinguishing carefully between postulates and

axioms , and discussing the legi timacy or otherwise of those
formulated by Euclid in each class . In his notes on the defini
tions Geminus treated them historically, giving the variou s
alternative definitions which had been suggested for each
fundamental concept such as

‘ line surface ‘ figure
‘
angle ’

, &c. ,
and frequently adding instructive classifications

1 Eutocius , Comm. on Apollonius
'

s Conz
'

cs , ad im
’

t.

Q
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A ttempt to pr ove the Pa r allel- Postu late.

Geminus devoted much attention to the distinction between
postulates and axioms

, giving the views of earlier philoso
pher s and mathematicians (A ristotle, A rchimedes , Euclid ,
Apollonius , the Stoics)on the subject as well as his own . It
was important in view of the attacks of the Epicureans and

Sceptics on mathematics , for (as Geminus says) it is as futile
to attempt to prove the indemonstrable (as Apollonius did
when he tried to prove the axioms)as it is incorrect to assume

what really requires proof, ‘
as Euclid did in the fourth postu

late [that all right angles ar e equal] and in the fifth postulate
[the parallel - postulate]
The fifth postulate was the special stumbling- block .

Geminus observed that the converse is actually proved by
Euclid in I . 1 7 ; also that it is conclusively proved that an

angle equal to a right angle is not necessarily itself a right
angle (e .g. the angle between the circumferences oftwo semi
circles on two equal straight lines with a common extremity
and at right angles toone another) we cannot therefore admit
that the converses ar e incapable ofdemonstration .

2 And

‘we have learned from the very pioneers ofthis science not to
have regard to mere plaus ible imaginings when it is a ques
tion of the reasonings to be included in our geometrical
doctrine. A s A ristotle says , it is as justifiable to ask seien
tific proofs from a rhetorician as to accept mere plausibilities
from a geometer . So in this case (that of the parallel
postulate)the factthat, when the right angles ar e lessened , the
straight lines converge is true and necessary ; but the state
ment that , since they converge more and more as they ar e

produced, they will sometime meet is plausible but not neces
sary ,

in the absence of some argument showing that this is
true in the case ofstraight lines . For the fact that some lines
exist which approach indefinitely but yet remain non - secant

although it seems improbable and paradoxical ,
is nevertheless true and fully ascertained w ith reference to
other species of lines [the hyperbola and its asymptote and

the conchoid and its asymptote, as Geminus says elsewhere] .
May not then the same thing be possible in the case of

1 Proclus on Eucl . I , pp. 1 7 8—82 . 4 ; 183 . 14—184. 1 0 .

2 I b. , pp. 1 83 . 26— 1 84. 5
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straight lines which happens in the case of the lines referred
to? Indeed , until the statement in the postulate is clinched
by proof , the facts shown in the case ofthe other lines may
direct ou r imagination the opposite way . And

, though the

controversial arguments against the meeting of the straight
lines should contain much that is surprising,

is there not all

the more reason why we should expel from our body of

doctrine this merely plausible and unreasoned (hypothesis)?
It is clear from this that we must seek a proof ofthe present
theorem

,
and that it is alien to ~ the special character of

postulates .

’ 1

Much of this might have been written by a modern
geometer. Geminus ’s attempted remedy was to substitute
a definition of parallels like that of Posidonius , bas ed on the
notion of equ idistance. A n - Nair iz i gives the definition as

follows : ‘ Parallel straight lines ar e straight lines situated in
the same plane and such that the distance between them, if
they ar e produced without limit in both directions at the same

time
,
is everywhere the same

’

, to which Geminus adds the
statement that the said distance is the shortest straight line
that can be drawn between them . Starting from this ,
Geminus proved to his own satisfaction the propositions of
Euclid regarding parallels and finally the parallel—postdlate.

H e first gave the propositions (1 )that the distance between
the two lines as defined is perpendicular to both ,

and (2) that,
if a straight line is perpendicular to each of two straight lines
and meets both

,
the two straight lines ar e parallel , and the

‘ distance ’

is the intercept on the perpendicular (proved by
r eductio ad absu r d i tm). Next come (3) Euclid

’

s propositions
I . 2 7

,
2 8 that

,
if two lines ar e parallel , the alternate angles

made by any transversal ar e equal , &c. (eas ily proved by
drawing the two equal ‘ distances ’ through the points of

intersection with the transversal), and (4)Eucl . I . 2 9
,
the con

verse ofI . 2 8 , which is proved by r eductio ad absu r dum,
by

means of (2 ) and Geminus still needs Eucl . I . 3 0 , 3 1

(about parallels) and I . 3 3
, _
3 4 (the first two propositions

relating to parallelograms)for his final proof of the postulate,
which is to the following effect.
LetAB , CD be two straight lines met by the straight line

1 Proclus on Eucl . I , pp. 192 . 5—1 93. 3 .
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EE
, and let the interior angles BEE,

EED be together less
than two right angles .

Take any point H on ED and draw HK parallel to AB
meeting EE in K . Then , if we bisect EE atL

,
LE at 111

and so on
,
we shall at last have a length

,
as EN

,
less

than EX. Draw EG,
NOB parallel to Produce EO toQ,

and let EQ be the same multiple of E0 that EE is of

then shall AB , CD meet in Q.

Let S be the middle point ofEQand R the middle point of
ES . Draw through R

, S , Q respectively the straight lines
R P G, STU, QV parallel to EE. Join MR , LS and produce
them to T, V. Produce EG to U.

Then ,
in the triangles EON ,

R OP , two angles ar e equal
respectively ,

the vertically oppos ite angles EON
,
ROP and

the alternate angles NEO,
PR O ; and E0 OR ; therefore

A nd EN,
P G in the parallelogram ENP G ar e equal ; there

fore R C ZEN EM (whence MR is parallel toEG or AB).

S imilarly we prove that SU 2 EM EL, and LS is

parallel to EC or A B .

Lastly
,
by the tr iangles ELS , QVS ,

in which the s ides ES ,

SQar e equal and two angles ar e respectively equal , QV EL.

Therefore QV LE .

S ince then EL, QV ar e equal and parallel, so ar e EQ, LV ,

and (says Geminus) it follows thatAB passes through Q.
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and make equal angles with it , the straight lines ar e equal .1
A s A pollonius wrote “

on the cylindrical helix and proved the
fact of its uniformity

,
we may fairly assume that Geminus

was here drawing upon A pollonius .

Enough has been said to show how invaluable a source of
information Geminus ’s work furnished to Proclus and all

writers on the history ofmathematics who had access to it .
In astronomy We know thatGeminus wrote an e

’

gfiynms of

Pos idonius ’s work,
the Meteor ologica or wepi ,ue

-

r ea
’

ipaw. This
is the source of the famous extract made from Geminus by
A lexander Aphr odisiensis , and reproduced by Simplicius in
his commentary on the Physics ofA ristotle,2 on which Schia
par elli relied in his attempt to show that it was H er aclides of

Pontus , notA ristarchus of Samos , who first put forward the
heliocentr ic hypothesis . The extract is on the distinction
between physical and astronomical inquiry as applied to the
heavens . It is the bus iness of the physicist to consider the
substance of the heaven and stars , their force and quality ,

their coming into being and decay
,
and he is in a pos ition to

prove the facts about their siz e, shape, and arrangement ;
astronomy , on the

“

other hand
,
ignores the physical side,

proving the arrangement ofthe heavenly bodies by cons idera
tions based on the view that the heaven is a real K60 /1 0 5‘ , and ,

when it tells us ofthe shapes , s iz es and distances ofthe earth ,

sun and moon , ofeclipses and conjunctions , and ofthe quality
and extent of the movements of the heavenly bodies

,
it is

connected with the mathematical investigation of quantity,
siz e, form, or shape, and uses arithmetic and geometry to

prove its conclusions . A stronomy deals , notwith causes, but
with facts ; hence it often proceeds by hypotheses , stating
certain expedients by which the phenomena may be saved .

For example , why do the sun, the moon and the planets
appear to move irregularly ? To explain the observed facts
we may assume

,
for instance, that the orbits ar e eccentric

circles or that the stars describe epicycles on a carrying
circle ; and then we have to go far ther and examine other
ways in which it is possible for the phenomena to be brought
about. ‘ H ence we actuallyfinal a cer tain per son [H er aclides

1 Proclus on Eucl. I , pp. 1 12 . 22 - 1 13 . 3, p. 251 . 3—1 1 .

2 Simpl . in Phys , pp. 29 1—2 , ed . Diels .
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of Pontus] coming forwar d and saying that, even on the

assumption that the ear th moves in a . cer tain way, while

the sun is in a cer tain way at r est, the appa r ent ir r egu lar ity
with r efer ence to the su n may be saved .

’

Philological con

siderations as well as the other notices which we possess
about H er aclides make it practically certain that ‘H eraclides

of Pontus ’

is an interpolation and that Geminus said my

simply,

‘

a certain person ’

,
without any name , though he

doubtless meant A ristarchus ofSamos .

1

Simplicius says that A lexander quoted this extract from
the epitome of the égfiymm by Geminus . A s the original
work was apparently made the subj ect ofan abridgement

,
we

gather that it must have been of considerable scope . It is
a question whether 52 75q means

‘ comm'

entary ’

or
‘

ex

position ’

; I am inclined to think that the latter interpretation
is the correct one, and that Geminus reproduced Pos idonius

’

s

work in its entirety w ith elucidations and comments ; this
seems tome tobe suggested by the words added by Simpl icius
immediately after the extract ‘ this is the account given by
Geminus , or Posidoniu s in Geminu s , ofthe difference between
physics and astronomy ’

,
which seems to imply that Geminus

in our passage reproduced Posidonius textually.

‘ I ntr oduction to the Phaenomena
’

attr ibuted to Geminu s .

There remains the treatise,
purporting to be by Geminus ,

which has come downto us under the title Teytvov et
’

caywyv
‘

y

GL
’

S
‘

TaQaLVO/LGVa .

2 What , if any ,
is the relation of this work

to the exposition of Posidonius ’s Meteor ologica or the epitome
of it just mentioned ? One View is that the original I sagoge
of Geminus and the égfiq s

‘ of Posidonius were one and the

same work , though the I sagoge as we have it is not by
Geminus , but by an unknown compiler . The objections to
this ar e

, first , that it does not contain the extract given by
S implicius , which would have come in usefully at the begin
ning of an Introduction to A stronomy, nor the other extract
given by A lexander from Geminus and relating to the rainbow
which seems likewise to have come from the égfiq

‘
;

1 Cf. A r istar chus ofSamos , pp. 27 5—83 .

2 Edited by Manitius (Teubner ,
3 Alex. Aphr . on Aristotle’s Meteorologica, iii . 4, 9 (ldeler . ii, p. 128 ;

p. 1 52 . 10
,
Hayduck).
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secondly, that it does not anywhere mention the name of

Pos idonius (not, perhaps , an insuperable obj ection); and ,

thirdly , that there ar e views expressed in it which ar e not

those held by Posidonius but contrary to them. Again , the

writer knows how to give a sound judgement as between
divergent v iews, writes in good style on the whole, and can

hardly have been“

the mere compiler of extr acts from Posi
donius which the View in question assumes him to be. It
seems in any case safer to assume that the I sagoge and the

égfiynm were separate works . Atthe same time, the I sagoge,

as we
' have it, contains errors which we cannot attribute to

Geminus . The choice, therefore, seems to lie between two

alternatives : either the book is by Geminus in themain , but
has in the course of centuries suffered deterioration by inter
polations , mistakes ofcopyists , and so on,

or it is a compilation
ofextracts froman original I sagoge by Geminus with foreign
and inferior elements introduced either by the compiler him
self or by other prentice hands . The result is a tolerable ele

mentary treatise suitable for teaching purposes and containing
the most important doctrines ofGreek astronomy represented
from the standpoint of H ipparchus. Chapter 1 treats ofthe
z odiac

,
the solar year, the irregularity of the sun’

s motion,

which is explained by the eccentric position ofthe sun’

s orbit
relatively to the z odiac, the order and the periods ofrevolution
of the planets and the moon. In 23 we ar e told that all
the fixed stars'

do not lie on one spherical surface, but some

ar e farther away than others— a doctrine due to the Stoics .

Chapter 2
,
again,

treats of the twelve signs of the z odiac,
chapter 3 of the constellations , chapter 4 of the axis of

the universe and the poles , chapter 5 of the circles on the

sphere (the equator and the parallel circles, arctic, summer
tropical , winter- tropical, antarctic, the colure- circles , the z odiac
or ecliptic, the horiz on , the merid ian, and the Milky Way),
chapter 6 ofDay and Night, their relative lengths in different
latitudes , their lengthening and shortening, chapter 7 of

the times which the twelve s igns take to r ise. Chapter 8
is a clear, interesting and valuable chapter on the calendar,
the length of months and years and the various cycles , the
octae' teris , the 1 6 - years and 1 6 0 - years cycles, the 1 9 - years
cycle of Euctemon (and Meton), and the cycle of Callippus
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TH E description of the handbook on the elements of
astronomy entitled the I ntr oduction to the Phaenomena and

attributed to Geminus might properly have been reserved
for this chapter . It was however, convenient to deal w ith
Geminus in close connex ion with Posidonius ; for Geminus
wrote an exposition ofPos idonius ’s Meteor ologica related to the
original work in such a way that Simplicius , in quoting a long
passage from an epitome of this work ,

could attribute the
passage to either Geminus or ‘ Posidonius in Geminus and it
is evident that, in other subjects too, Geminus drew from,

and

was influenced by
,
Posidonius .

The small work De motu cir cu lar i corpor um caelestium by
CLEOMEDES (K heopfidovs KvKAucfiGewpt

’

a) in two Books is the
production ofa much less competent person , but is much more
largely based on Posidonius . Th is is proved by several refer
ences to Pos idonius by name, but it is specially true of the
very long first chapter of Book II (nearly half of the Book)
which seems for the most part to be copied bodily from
Posidonius , in accordance with the author’s remark at the

end of Book I that , in giving the refutation ofthe Epicurean
assertion that the sun is j ust as large as it looks

,
namely one

foot in diameter , he will give somuch as suffices for such an

introduction of the particular arguments used by ‘ certain
authors who have written whole treatises on this one topic
(1. e . the siz e of the sun), among whom is Posidonius ’

. The

interest of the book then lies mainly in what is quoted from
Posidonius ; its mathematical interest is almost nil.
The date of Cleomedes is not certainly ascertained, but, as

he mentions no author later than Posidonius , it is permissible
to suppose, with B ultsch , that he wrote about the middle of
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the first century B . C . As he seems to know nothing of the

works of Ptolemy, he can hardly, in any case, have lived
later than the beginning ofthe second century A . D.

Book I begins with a chapter the object of which is to
prove that the universe, wh ich has the shape of a sphere,

is limited and surrounded by void extending without limit in
all directions, and to refute objections to this View. Then
follow chapters on the five parallel circles in the heaven and

the z ones , habitable and uninhabitable (chap . 2) on the

motion of the fixed stars and the independent (wpoatpe-

r acat
’

)
movements of the planets including the sun and moon

(chap. on the z odiac and the effect of the sun ’

s motion in
it (chap . on the inclination of the axis ofthe universe and

its effects on the lengths ofdays and nights at different places
(chap . on the inequality in the rate of increase in the

lengths of the days and nights according to the time of year,
the different lengths of the seasons due to the motion of the

sun in an eccentric circle, the difference between“

a day
- and

night and an exact revolution of the un iverse owing to the
separate motion ofthe sun (chap. 6) on the habitable regions
of the globe including Britain and the ‘ island ofThule said
to have been vis ited by Pytheas

,
Where ,

when the sun is in

Cancer and visible , the day is amonth long ; and soon (chap .

Chap . 8 purports to prove that the universe is a sphere by
proving first that the earth is a sphere, and then that the air

about it, and the ether about that, must necessarily make up
larger spheres . The earth is proved to be a sphere by the
method of exclusion ; it is assumed that the only possibilities
ar e that it is (a) flat and plane, or (b) hollow and deep, .0 r

(0) square, or (d) pyramidal, or (e) spherical , and, the first four
hypotheses being successively disposed of

,
only the fifth

remains . Chap. 9 maintains that the earth is in the centre of
the universe ; chap . 1 0

, on the siz e of the earth , contains the
interesting reproduction of the details ofthe measurements of
the earth by Posidonius and Eratosthenes respectively which
have been given above in their proper places (p . 2 2 0 , pp . 1 0 6—7 )
chap . 1 1 argues that the earth is in the relation ofa point to

,

i . e. is negligible in Si z e ln comparison w ith
,
the universe or

even the sun’

s circle, but not the moon’

s circle (cf. p. 3 above).
Book “II , chap. 1 , is evidently the pi ece de r esistance, con
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sisting ofan elaborate refutation ofEpicurus and his followers ,
who held that the sun is just as large as it looks , and further
asserted (according to Cleomedes) that the stars ar e lit up as

they rise and extinguished as they set. The chapter seems to

be almost wholly taken from Posidonius ; it ends with some

pages ofmerely vulgar abuse
,
comparing Epicurus with Ther

sites , with more of the same sort . The value ofthe chapter
lies . in certain historical traditions mentioned in it

,
and in the

account of Posidonius’s speculation as to the siz e and distance
of the sun , which does , as a matter offact

,
give results much

nearer the truth than those obtained .by A ristarchus , H ippar
chus , and Ptolemy . Cleomedes observes (1 ) that by means of

water—clocks it is found that the apparent diameter ofthe sun

is 1 7 5oth of the sun’

s circle, and that this method of

measuring it is said to have been first invented by the

Egyptians ; (2) that H ipparchus is said to have found that
the sun i s times the si z e ofthe earth ,

though , as regards
this , we have the better auth0 1 ity of Ad 1 astus (in Theon of

Smyrna) and of Chalcidius , according to whom H ipparchus
made the sun nearly times the siz e of the eai th (both
figures refer ofcourse tothe solid content). We have already
described Posidonius ’s method of arriving at the siz e and

distance ofthe sun (pp . 2 2 0 A fter he has given this, Cleo
medes

,
apparently deserting his guide , adds a calculation of

his own relating to the siz es and distances of the moon and

the sun wh ich shows how little he was capable ofany scien

tific inquiry .

1 Chap . 2 purports to prove that the sun is

1 He says (pp. 146 . 1 7 — 148 . 27 )that in an eclipse the breadth of the

earth ’

s shadow is stated to be two moon—breadths ; hence, he says , it
seems cred ible (menuéu)that the earth is twice the siz e ofthe moon (this
practically assumes that the breadth of the earth’

s shadow is equal to
the d iameter of the earth , or that the cone of the earth’

s shadow is

a Since then the cir cumfe1 ence of the earth , according to
E1 atosthenes , is 2 50 ,000 stades, and its diameter therefore more than
80 ,000

’

(he evidently takes 7 r the diamete1 of the moon will be
stades . Now, the moon

’

s circle being 7 50 times the moon ’

s

d iameter, the rad ius of the moon’

s circle , i . e. the d istance of the moon
from the earth, will be %th of this (i. e. 7 1

“ 3) or 125 moon - diameters ;
the1 efor e the moon

’

s d istance is stades (which is much too

great). Again ,
since the moon traverses its orbit 13 times tothe sun

”

s

once, he assumes thatthe sun’

s orbit 1 s 1 3 times as lai ge as the moon
'

s
,

and consequently that the diamete1 of the sun is 1 3 times that of the
moon, or stades and its distance 1 3 times or

stades
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edited by E. H iller (Teubner , 1 8 7 8)and finally ,
with a French

translation, by J. Dupuis (Paris ,
Theon

’

s date is approximately fixed by two considerations .

H e is clearly the person whom Theon of A lexandria called
‘
the old Theon ’

, r c
‘

w waha tbu Oéawa ,

‘
and there is no reason

to doubt that he is the ‘The0n the mathematician ’

(6 poten
pa r txés

‘)who is credited by Ptolemy with four observations
of the planet-s Mercury and Venus made in A .D. 1 2 7 , 1 2 9 , 1 3 0

and The latest writers whom Theon himself mentions
ar e Thr asyllus, who lived in the reign of Tiberius , and

A drastus the Peripatetic
,
who belongs to the middle of the

second century A .D. Theon
’

s work itself is a curious medley
,

valuable, not intrinsically
,
but for the numerous historical

notices which it contains . The title, which claims that the
book contains things useful for the study of Plato,

must not
be taken too seriously. It was no doubt an elementary
intr oduction or vade- mecum for students of philosophy , but
there is little in it which has special reference to the mathe
matical questions raised in Plato. The connexion consists
mostly in the long proem quoting the views of Plato on the
paramount importance of mathematics in the training of

the philosopher, and the mutual relation of thefive different
branches, arithmetic, geometry, stereometry, astronomy and

music. The want of care shown by Theon in the quotations
from particular dialogues ofPlato prepares us for the patch
work character ofthe whole book .

In the first chapter he prom ises to give the mathematical
theorems most necessary for the student of Plato to know ,

in arithmetic
,
music, and geometry, with its application to

s tereometry and astronomy.

3 Butthe promise is by nomeans
kept as regards geometry and stereometry : indeed, in a

later passage Theon seems to excuse himself from including
theoretical geometry in his plan , on the ground that all those
whoar e likely to read his work or the writings ofPlatomay

be assumed to have gone through an elementary course of

theoretical geometry .

4 But he writes at length on figured

Theon of Alexandria, Comm. on Ptolemy
’

s Syntaxv
’

s, Basel ed ition ,

pp. 390 , 395 , 396 .

2 Ptolemy, Syntaxis , ix. 9 , x . 1 , 2 .

3 Theon ofSmyrna, ed . H iller
, p. 1 . 10—1 7 .

Ih. , p. 1 6 . 1 7 —20.
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numbers , plane and solid, which ar e of course analogous to
the corresponding geometrical figures

,
and he may have con

sider ed that he was in th is Way sufficiently fulfilling his

promise with regard to geometry and stereometry . Certain
geometrical definitions , of point , line, straight line , the three
dimensions

,
rectilinear plane and solid figures , especially

parallelograms and parallelepipedal figures includ ing cubes ,
plinthi des (square bricks) and dam

’

é
‘

es (beams), and scalene

figures w ith sides unequal every way Boni to
-

Kat in the

classification of solid numbers), ar e dragged in later (chaps .

5 3 - 5 ofthe section on mus ic)1 in the middle of the discussion
of proportions and means ; if this passage is not an inter
polation ,

it confirms the supposition that Theon in cluded in
his work only this limited amount of geometry and stereo
metry .

Section I is on A rithmetic in the same sense as Nicomachus
’

s

I ntr oduction . At the beginning Theon observes that arith
metic will be followed by music . Of music in its three
aspects , music in instruments (e

’

u o
’

pydvoz s), music in numbers ,
i. e . musical intervals expressed in numbers or pure theoretical
music

,
and the music or harmony in

'

the un iverse , the first
kind (instrumental music)is not exactly essential , but the other
twomust be discussed immediately after arithmetic .

2 The con

tents ofthe arithmetical section have been sufficiently indicated
in the chapter on Pythagorean arithmetic (vol . i, pp . 1 12 — 1 3)
it deals with the classification of numbers

,
odd , even

,
and

their subdivisions , prime numbers , composite numbers with
equal or unequal factors , plane numbers subdivided into
square

, oblong,
triangular and polygonal numbers , with their

respective ‘ gnomons ’

and their properties as the sum of

successive terms of arithmetical progressions beginn ing with
1 as the first term,

circular and spherical numbers , solid num
bers with three factors , pyram idal numbers and truncated
pyramidal numbers , perfect numbers with their correlatives ,
the over - perfect and the deficient ; th is is practically what
we find in Nicomachus . But the special value of Theon

’

s

exposition l ies in the fact that it contains an account ofthe
famous side and ‘ diameter numbers ofthe Pythagoreans .

3

1 Theon of'Smyr na, ed . H iller, pp. 1 1 14 3 .

2 I b. , pp. 1 6 . 24—1 7 . 1 1 .

3 I h. , pp. 42 . 10— 45 . 9 . Cf. vol . i, pp.

'

9 1 —3 .
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In the Section on Music Theon says he will first speak of

the two kinds ofmusic , the audible or instrumental
,
and the

intelligible or theoretical subsisting in numbers
,
after which

he promises to deal lastly with ratio as predicable ofmathe
matical entities in general and the ratio constituting the

harmony in the universe , ‘
not scrupling to setoutonce again

the things discovered by our predecessors , ju st as we have
given the things handed down in former times by the Pytha
gor eans , with a view tomaking them better known

,
without

ourselves claiming to have discovered any of them Then
follows a discussion of audible music

, the intervals which
give harmonies

,
&c.

, including substantial quotations from
Thr asyllus and A drastus, and references to views of A ris
toxenus , H ippasus , A rchytas , Eudoxus and Plato. With
chap . 1 7 (p . 7 2) begins the account of the ‘ harmony in

numbers ’

, which turns into a general discussion of ratios ,
proportions and means , with more quotations from Plato

,

Eratosthenes and Thr asyllus , followed by Thr asyllus
’

s divisio

canonis
,
chaps . 3 5 , 3 6 (pp . 8 7 A fter a promise to apply

the latter division to the
'

sphe’re of the universe
,
Theon

purports to return to the subj ect of proportion and means .

This , however , does not occur till chap . 50 (p. the

intervening chapters being taken up with a d iscussion of

the dad s and r e
'

r paK
-

r és‘ (with eleven applications of the

latter) and the mystic or curious properties of the numbers
from 2 to 1 0 ; here we have a part of the theologumena of

arithmetic . The discussion of proportions and the different
kinds of means after Eratosthenes and Adrastus is again
interrupted by the insertion of the geometrical defin itions
already referred to (chaps . 5 3 — 5

,
pp. 1 1 1 after which

Theon resumes the question of means for more precise ’

treatment.
The Section on A stronomy begins on p. 1 20 of H iller’s

edition . H ere again Theon is mainly dependent upon
A drastus , from whom he makes long quotations. Thus

,
on

the sphericity of the earth ,
he says that for the neces

sary conspectus of the arguments it will be sufficient to
refer to the grounds stated summarily by A drastus . In

xplaining (p . 1 24) that the unevennesses in the surface of

1 Theon ofSmyrna, ed . H iller, pp. 46. 20—4 7 . 14.

R



https://www.forgottenbooks.com/join


THEON OF SMYRNA 243

to the seven heavenly bodies and the sphere ofthe fixed stars .

The whole of this passage (chaps . 1 5 to 1 6
,
pp . 1 3 8—4 7 ) is no

doubt intended as the promised account of the ‘ harmony in
the universe ’

, although at the very end of the work Theon
implies that this has still to be explained on the basis of

Thr asyllus
’

s exposition combined with what he has already
given himself .

'

The next chapters deal with the forward movements, the
stationary points, and the retrogradations, as they respectively
appear to us , ofthe five planets , and the saving ofthe pheno
mena

’ by the alternative hypotheses of eccentric circles and

epicycles (chaps . 1 7 — 3 0
,
pp . 1 4 7 These hypotheses ar e

explained , and the identity of the motion produced by the
two is shown by A drastus in the case ofthe sun (chaps . 2 6

,
2 7 ,

pp . 1 6 6 The proof is introduced with the interesting
remark that ‘ H ipparchus says it is worthy of investigation
by mathematicians why , on two hypotheses so different from
one another , that of eccentric circles and that of concentric
circles with epicycles

,
the same results appear to follow ’

. It
is not to be supposed that the proof of the identity could be
other than easy to a mathematician like H ipparchus ; the
remark perhaps merely suggests that the two hypotheses were
discovered quite independently ,

and it was not till later that
the effect was discovered to be the same

,
when of course the

fact would seem tobe curious and a mathematical proof would
immediately be sought . Another passage says that
H ipparchus preferred the hypothesis of the epicycle, as being
his own . If this means that H ipparchus claimed to have
discovered the epicycle- hypothesis , it must be a misappr ehen

sion ; for Apollonius already understood the theory of epi

cycles in all its general ity . A ccording toTheon , the epicycle
l1ypothesis is more

‘
according to nature ’

; but it was pr esum
ably preferred because it was applicable to all the planets ,
whereas the eccentric - hypothesis , when originally suggested ,
applied only to the three superior planets ; in order to make
it apply to the inferior planets it is necessary to suppose the
circle described by the centre of the eccentric to be greater
than the eccentric circle itself, which extension of the hypo
thesis

,
though known to H ipparchus

, does not seem to have
occurred to Apollonius.
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We next have (chap. 3 1
,
p . 1 7 8) an allusionto the systems

of Eudoxus, Callippus and A ristotle , and a description
(p. 1 8 0 sq.) of a system in which the ‘ carrying ’

spheres
(called ‘ hollow have between them ‘

solid spheres which by
their own motion will roll (dueAr

’

govo
-

L)the carrying spheres in
the opposite direction ,

being in contact with them ’

. These
‘
solid ’

spheres (which carry the planet fixed at a point on
their surface) act in practically the same way as epicycles .

In connexion with this description Theon (i. e . A drastus)
speaks (chap. 3 3 , pp . 1 8 6 — 7 )of two alternative hypotheses in
which, by comparison with Chalcidius , 1 we recogniz e (after
eliminating epicycles erroneously imported into both systems)
the hypotheses of Plato . and H er aclides respectively . It is
this passage which enables us to conclude for certain that
H er aclides made Venus and Mercury revolve in circles about
the sun

,
like satellites , while the sun in its turn revolves in

a circle about the earth as centre. Theon (p. 1 8 7 )gives the
maximum arcs separating Mercury and Venus respectively
from the sun as 2 0

°
and these figures being the same as

those given by Cleomedes .

The last chapters (chaps . quoted from A drastus, deal
with conjunctions , transits , occultations and eclipses . The

book concludes with a cons iderable extract from Der cyllides,
a Platonist with Pythagorean leaning s , whowrote (before the
time of Tiberius and perhaps even before Varro) a book on
Plato’s philosophy. It is here (p . 1 9 8 . 1 4) that we have the
passage sooften quoted from Eudemus :

‘ Eudemus relates in his A stronomy that it was Oenopides
whofirst discovered the girdling ofthe z odiac and the r evolu
tion (or cycle)of the Great Year, that Thales was the first to
discover the eclipse of the sun and the fact that the sun’

s

period with respect to the solstices is not always the same,
that Anaximander discovered that the earth is (suspended)on
high and lies (substituting K eZ-r a z for the reading ofthe manu
scripts , xwl ac, moves) about the centre of the universe, and
that Anaximenes said that the moon has its light from the
sun and (explained) how its eclipses come about ’ (Anaxi
menes is here apparently a mistake for Anaxagoras).

pp

i

.Sgfi
a

i
l

g
idius, Comm. on Timaeus

,
c . 1 10. Cf. A r istar chus of Samos,



XVII

TR IGONOMETRY H IPPARCHUS ,
MENELAUS ,

PTOLEMY

WE have seen that Sphaer ic, the geometry of the sphere,
was very early studied, because it was requ ired so soon as

astronomy became mathematical ; with the Pythagoreans the
word Sphaer ic, applied toone ofthe subjects ofthe quadrivium ,

actually meant astronomy. The subject was so far advanced
before Euclid’s time that there was in existence a regu lar
textbook contain ing the principal propositions about great
and small circles on the sphere

,
from which both Autolycus

and Euclid quoted the propositions as generally known .

These propositions , with others of purely astronomical in
ter est

,
were collected afterwards in a work entitled Sphaer ica ,

in thr ee Books , by TnEonosws .

Suidas has a notice , 8 . v. O eodc
’

mog, which evidently con

fuses the author of the Sphaer ica w ith another Theodosius ,
a Sceptic philosopher , since it calls him ‘Theodosius , a philoso
pher and attributes to him,

besides the mathematical works ,
‘ Sceptic chapters ’

and a commentary 0 11 the chapters of

Theudas . Now the commentator on Theudas must have
belonged

,
at the earliest , to the second half of the second

century A .D. ,
whereas our Theodosius was earlier than Mene

laus (fl about A . D . who quotes him by name . The next
notice by Suidas is of yet another Theodosius , a poet , who
came from Tripolis . H ence it was atone time supposed that
our Theodosius was of Tripolis . ButV itruvius 1 mentions a

Theodosius who invented a sundial ‘ for any climate ’

; and

Strabo, in speak ing of certain Bithynians distingu ished in
their particular sciences, refers to ‘ H ipparchus , Theodosius
and his sons , mathematicians 2

. We conclude that our Theo

De ar chitectur a ix. 9 .

2 Strabo, xii. 4 , 9, p. 566 .
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(Books XI I and XIII) Euclid included no general properties
of the sphere except the theorem proved in XI I . 1 6— 1 8 , that
the volumes oftwo spheres ar e in the triplicate ratio of their
diameters ; apart from this , the sphere is only introduced in
the propositions about the regular solids, where it is proved
that they ar e severally inscribable in a sphere, and it was doubt
less with a v iew to his proofs ofthis property in each case that
he gave a new definition ofa sphere as the figure described by
the revolution of a semicircle about its diameter, instead of
the more usual definition (after the manner of the definition
of a circle)as the locus of all points (in space instead of in
a plane)which ar e equidistant from a fixed point (the centre).
No doubt the exclusion of the geometry of the sphere from
the Elements was due to the fact that it was regarded as

belonging to astronomy rather than pure geometry .

Theodosius defines the sphere as
‘
a solid figure contained

by one surface such that all the straight lines falling upon it
from one point among those lying within the figure ar e equal
to one another ’

,
whi ch is exactly Euclid ’s definition ofa circle

with "
solid ’ inserted before ‘ figure and ‘

surface substituted
for ‘ line The early part of the work is then generally
developed on the lines of Euclid’s Book III on the circle.

Any plane section of a sphere is a circle (Prop. The

straight line from the centre of the sphere to the centre of
a circular section is perpendicular to the plane of that section
(1 , Por . 2 cf . 7 , 2 3) thus a plane section serves for finding
the centre of the sphere just as a chord does for finding that
of a circle (Prop . The propositions about tangent planes

(3 — 5)and the relation between the siz es of circular sections
and their distances from the centre (5 , 6 ) correspond to

Euclid III . 1 6 — 1 9 and 1 5 ; as the small circle corresponds to
any chord , the great circle (

‘ greatest circle ’

in Greek) corre
sponds to the diameter . The poles of a circular section
correspond to the extremities of the diameter bisecting
a chord of a circle at right angles (Props . 8 Great.
circles bisecting one another (Props . 1 1— 1 2) correspond to

chords which bisect one another (diameters), and great circles
bisecting small circles at right angles and passing through
their poles (Props . 1 3— 1 5) correspond to diameters bisecting
chords at right angles . The distance of any point of a great
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circle from its pole is equal to the sideof a square inscribed
in the great circle and conversely (Props . 1 6 , Next come
certain problems Tofind a straight line equal tothe diameter
ofany circular section or of the sphere itself (Props. 1 8 ,

to draw the gr eat circle through any two given points on

the surface (Prop. to find the pole of any given cir cu

lar section (Prop . Prop . 2 2 applies Eucl. III . 3 to the

sphere .

Book I I begins with a definition of circles on a sphere
which touch one another ; th is happens when the common
section of the planes (of the circles) touches both circles
Another series of propositions follows , corresponding again
to propositions in Euel . , Book III , for the circle . Parallel
circular sections have the same poles , and conversely (Props .

1 , Props . relate to circles on the sphere touching
one another and therefore having their poles on a great
circle which also passes through the point of contact (cf.
Eucl. III . 1 1 , [ 1 2 ] about circles touch ing one another). If
a great circle touches a small circle , it also touches another
small circle equal and parallel to it (Props . 6 , and if a

great circle be obliquely inclined to another circular section ,

it touches each of two equal circles parallel to that section
(Prop. If two circles on a sphere cut one another, the
great circle drawn through their poles bisects the intercepted
segments ofthe circles (Prop . If there ar e any number of
parallel circles on a sphere, and any number of great circles
drawn through their poles , the arcs of the parallel circles
intercepted between any two of the great circles ar e similar,
and the arcs ofthe great circles intercepted between any two

ofthe parallel circles ar e equal (Prop.

The last proposition forms a sort oftransition tothe por tion
of the treatise —2 3

. and Book III)which contains pro
positions ofpurely astronomical interest

,
though expressed as

propositions in pure geometry without any specific reference
to the various circles in the heavenly sphere . The proposi
tions ar e long and compl icated , and it would neither be easy
nor worth while to attempt an enumeration . They deal with
circles or parts of circles (arcs intercepted on one circle by
series ofother circles and the like). We have no difficulty in
recogniz ing particular circles which come into many proposi
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tions . A particular small circle is the circle which is the
limitof the stars which do not set, as seen by an observer at
a particular place on the earth’s surface ; the pole of this
circle is the pole in the heaven . A great circle which touches
this circle and is obliquely inclined to the ‘ parallel circles ’

is the

circle of the hori z on ; the parallel circles of course represent
the apparent motion ofthe fixed stars in the diurnal rotation ,

and have the pole of the heaven as pole . A second great
circle obliquely inclined to the parallel circles is of course the
circle of the z odiac or ecliptic. The greatest of the ‘ parallel
circles ’

is naturally the equator. A ll that need be said ofthe
various propositions (except two which will be mentioned
separately) is that the sort of result proved is like that of
Props . 1 2 and 1 3 of Euclid’s Phaenomena to the effect that in
the half of the z odiac circle beginning with Cancer (or Capri
cornus) equal arcs set (or rise) in unequal times ; those which
ar e nearer the tropic circle take a longer time, those further
from it a shorter ; those whi ch take the shortest time ar e

those adjacent to the equinoctial points ; those which ar e equi
distant from the equator rise and set in equal times . In like
manner Theodosius (III . 8) in effect takes equal and con

tiguous arcs of the ecliptic all on one side of the equator ,
draws through their extremities great circles touching the

circumpolar ‘ parallel ’ circle
,
and proves that “

the correspond
ing arcs of the equator intercepted between the latter great
circles ar e unequal and that , of the said arcs

,
that correspond

ing to the ar c of the ecliptic which is nearer the tropic circle
is the greater. The successive great circles touching the

circumpolar circle ar e of course successive positions of the

hori z on as the earth revolves about its axis , that is to say ,

the same length ofar e on the ecliptic takes a longer or shorter
time to rise according as it is nearer to or farther from the

tropic , in other words, farther from or nearer to the equinoctial
points .

It is , however, obvious that investigations of this kind ,
which only prove that certain arcs ar e greater than others ,
and do notgive the actual numerical ratios between them,

ar e

useless for any practical purpose such as that of telling the

hour of the night by the stars
,
which was one of the funda

mental problems in Greek astronomy ; and in order to find
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Now
, the triangle NLO being right - angled atL ,

NO NL.

Measure NT along NO equal toNL
,
and join TB’

.

Then in the triangles B ’

NT
,
B

’

NL two sides B’

N
,
NT ar e

equal to two s ides B’

N , NL,
and the included angles (both

being right) ar e equal ; therefore the triangles ar e equal in all

respects , and ANLB
’
: ANTB

’

.

2 R : 2 p= oc
e c

'
x

ON zNL

tan NTB
’

: tan NOB
’

]
ANTB

’

: ANOB
’

ANLB
’

: LNOB
'

4 0 0 3 } ANOB’

(ar cBC) (ar cB
’

C

If a ’

, b
’

, c
’

ar e the sides ofthe spherical triangle A B’

C
’

,
this

result is equivalent (s ince the angle COB subtended by the ar c
CB is equal to A )to

1 : sin b
’
: tan A : tan a

'

a a
’

,

where a BC
,
the s ide oppos ite A in the triangle ABC .

The proof is based on the fact (proved in Euclid
’

s Optics

and assumed as known by A ristarchus of Samos and A rchi
medes) that , if or, ,8 ar e angles such that é '

rr or B,

tan a/tamB a/B.

While , therefore, Theodosius proves the equivalent of the
formula,

applicable in the solution of a spherical triangle
right - angled at C, that tan a sin htan A ,

he is unable, for
want of trigonometry

,
to find the actual value of a a

’

,
and

can only find a limitfor it . H e is exactly in the same position
as A ristarchus , who can only approximate to the values ofthe
trigonometrical ratios which he needs , e .g . sin cos sin

by bringing them within upper and lower limits with the aid

ofthe inequalities

where % rr oz B.
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We may contrast with this proposition of Theodos ius the
corresponding proposition in Menelaus ’s Sphaer ica (III . 1 5)
dealing with the more general case in which C ’

1nstead of

being the tropical point on the ecliptic , is , like B any point
between the tropical point and D. If R , p have the same

meaning as above and r
2
ar e the radii ofthe parallel circles

through B’

and the new C
’

, Menelaus proves that

which , of course , with the aid of Tables , gives the means

offinding the actual values ofa or a
’ when the other elements

ar e given .

The proposition III . 1 2 ofTheodosius proves a result sim ilar
to that of III . 1 1 for the case where the great circles A B’

B
,

A C
’

C, instead of being great circles through the poles , ar e

great circles touching the circle of the always - vis ible stars ’

,

i. e . different positions ofthe hori z on , and the points C ’

,
B

’

ar e

any points on the ar c ofthe oblique circle between the tropical
and the equinoctial points ; in this case , w ith the same notation

,

4B 2 p (ar e BC) (ar c
It is evident that Theodos ius was simply a laborious com

piler, and that there was practically nothing original in his
work. It has been proved

,
by means of propositions quoted

ver batim or assumed as known by A utolycus in hi s Moving
Spher e and by Euclid in his Phaenomena ,

that the following
propositions in Theodosius ar e pr e

- Euclidean , I . 1 , 6 a, 7 , 8 ,
1 1

,

1 2
,
1 3 , 1 5 ,

2 0 ; II . 1
,
2 ,
3
, 5 , 8 , 9 , 1 0 a, 1 3 ,

1 5 , 1 7 , 1 8 , 1 9 ,
2 0

,
2 2 ;

III . 1 b ,
2
, 3 , 7 , 8 , those shown in thick type being quoted

word for word .

The beginnings of tr igonometry .

But this i s not all. In Menelaus ’s Sphaer ica ,
III . 1 5 , there

is a reference to the proposition (I II . 1 1 )ofTheodos ius proved
above, and in Gher ar d of Cremona’

s translation from the

A rabic
,
as well as in H alley ’

s translation from the H ebrew
ofJacob b . Machir , there is an addition to the effect that this
proposition was used by Apollonius in a book the title of

which is given in the two translations in the alternative
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forms liber
'

aggr egativus and liber de pr incipns univer sa
libus ’

. Each of these expressions may well mean the work
of A pollonius which Marinus refers to as the General
Treatise ’

Kadékov Wpayyar efa). There is no apparent
reason to doubt that the remark in question was really
contained in Menelaus ’s original work ; and , even if it 1s an

A rabian interpolation, it is not l ikely to have been made
without some definite authority. If then Apollonius was the
discoverer ofthe proposition , the fact affords some ground for
thinking that the beginnings of trigonometry go as far back

,

at least, as A pollonius . Tannery 1 indeed suggested that not

only A pollonius but A rchimedes before him may have com

piled a table of chords ’

,
or at least shown the way to such

a compilation,
A rchimedes in the work ofwhich we possess

only a fragment in the Measu r ementofa Ci r cle, and A pollon ius
in the a

’

mvr émov, where he gave an approximation tothe value
of 11 closer than that obtained by A rchimedes ; Tannery
compares the Indian Table of S ines in the Surya- Siddhanta ,

where the angles go by 2 4ths ofa right angle (1 24th : 3
°

2 2 4ths : 7
°

as possibly showing Greek influence .

This is, however , in the region of conjecture ; the first person
tomake systematic use of trigonometry is

,
so far as we know ,

H ipparchus .

H IPPARCHUS, the greatest astronomer of antiquity , was

born at Nicaea in Bithynia . The period of his activity is
indicated by references in Ptolemy to observations made by
him the limits ofwhich ar e from 1 6 1 B .C .

,
to 1 2 6 B. C . Ptolemy

further says that from H ippar chus
’

s time to the beginning of
the reign ofAntoninus Pius 1 3 8)was 2 6 5 years.

2 The

best and most important observations made by H ipparchus
were made at Rhodes, though an observation of the vernal
equinox atA lexandria on March 2 4 , 1 46 B . c., recorded by him
may have been his own. His main contributions to theoretical
and practical astronomy can here only be indicated in the
briefest manner.

1 Tannery, R echer ches sar l’hist. de l ’astr onomie ancz
'

emze, p. 64.

2 Ptolemy, Syntax z
'

s, vii. 2 (vol . ii, p.
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that the lengths of the mean synodic
,
the s idereal , the

anomalistic and the draconitic month obtained by H ipparchus
agree exactly with Babylonian cuneiform

’
tables of date not

later than H ipparchus
,
and it is clear that H ipparchus was

in full possession of all the results established by Babylon ian
astronomy .

Impr oved estimates of si z es and distances of sun

and mean .

4 . H ipparchus improved on A ristarchus ’s calculations of the
si z es and distances of the sun and moon ,

determining the

apparent diameters more exactly and noting the changes in
them he made the mean disyance ofthe sun 1 ,2 4 5D,

themean

distance of the moon 3 32D, the diameters of the sun and

moon 1 2§ D and D respectively ,
where D is the mean

diameter of the earth .

Epicycles and eccentr ics.

5 . H ipparchus , in investigating the motions ofthe sun
,
moon

and planets
,
proceeded on the alternative hypotheses of epi

cycles and eccentr lcs ; he did not invent these hypotheses ,
whi ch were already fully understood and discussed by
A pollonius . Wh ile the motions of the sun and moon could
with difficulty be accounted for by the s imple epicycle and

eccentric hypotheses , H ipparchus found that for the planets it
was necessary to combine the two, i. e. to superadd epicycles to
motion in eccentric circles .

Catalogu e of star s.

6 . H e compiled a catalogue of fixed stars including 8 5 0 or

more such stars ; apparently he was the first to state their
pos itions in terms of coordinates in relation to the ecliptic
(latitude and longitude), and his table distinguished th

apparent s iz es of the stars . H is work was continued by
Ptolemy, who produced a catalogue of stars which ,

owing to an error in his solar tables affecting all his longi
tudes , has by many erroneously been supposed to be a mere
reproduction of H ippar chus

’

s catalogue . That Ptolemy took
many observations himself seems certain .

1

1 See two papers by Dr . J. L. E. Dreyer in the lMonthly Notices of the
Royal A stronomical Society, 1 91 7 , pp. 528—39 , and 1 918 , pp. 343—9 .
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Improved I nstr uments.

0

7 . H e made great improvements in the instruments used for
observations . Among those which he used were an improved
dioptra, a meridian- instrument ’ designed for observations in
the meridian only , and a universal instrument (dcr poAdBou
6
'

pyauov) for more general use. H e also made a globe on

which he showed the positions ofthe fixed stars as determined
by him ; it appears that he showed a larger number of stars
on his globe than in his cataiogue .

Geogr aphy.

In geography H ipparchus wrote a criticism ofEratosthenes
,

in great part unfair . H e checked Eratosthenes ’s data by
means ofa sort oftriangulation; he insisted on the necessity
of applying astronomy to geography, of fixing the position of
places by latitude and longitude, and ofdetermining longitudes
by observations of lunar eclipses .

Outside the domain ofastronomy and geography ,
H ipparchus

wrote a book On things bor ne down by their weight from
which Simplicius (on A ristotle

’

s De caelo, p. 2 6 4 sq.) quotes
two propositions. It is possible, however, that even in this
work H ipparchus may have applied his doctrine to the case of
the heavenly bodies .

In puremathematics he is said to have considered a problem
in permutations and combinations , the problem of finding the
number of different possible combinations of 1 0 axioms or
assumptions, which he made to be (v. l.

or according as the axioms were affirmed or denied 1
it seems impossible tomake anything of these figures. When
the Eihr ist attributes to him works ‘On the ar t of algebra

,

known by the title ofthe Rules and On the division ofnum
bers we have no confirmation : Suter suspects some confusion,

in view of the fact that the article immediately following in
the Eihr ist is on Diophantus, who also ‘wrote on the ar t of

algebra ’

1 011 7
P

lut
a

rch
, Quaest. Convio. viii. 9 . 3, 7 32 F, De Stoicor um r epugn. 29.

D.
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Fir st systematic use of Tr igonometry.

We come now to what is the most important from the

point ofview of this work ,
Hippar chus

’

s share in the develop
ment of trigonometry. Even if he did not invent it

,

H ipparchus is the first person of whose systematic use of

trigonometry we have documentary evidence. (1) Theon
of A lexandria says on the Syntaais of Ptolemy, a propos of
Ptolemy’

s Table of Chords in a circle (equivalent to sines),
that H ipparchus , too, wrote a treatise in twelve books on

straight lines (i. e . chords) in a circle, while another in six

books was written by Menelaus .

1 In the Syntaacis I . 1 0

Ptolemy gives the necessary explanations as to the notation
used in his Table . The circumference ofthe circle is divided
into

’

3 6 0 parts or degrees ; the diameter is also divided into
1 2 0 parts , and one ofsuch parts is the unit of length in terms
of which the length of each chord is expressed ; each part,
whether of the circumference or diameter, is divided into 6 0

parts , each of these again into 6 0
,
and so on

,
according to the

system of sexagesimal fractions . Ptolemy then sets , out the

minimum number of propositions in plane geometry upon
which the calculation of the chords in the Table is based (as

e
’

x 1 63V ‘

ypappé
’

w pedodtkfis aah -

(Bu ovar daews). The pro

positions ar e famous
,
and it cannot be doubted that H ippar

chus used“

a set of propos itions of the same kind
,
though his

exposition probably r an tomuch greater length .

"

A s Ptolemy
defin itely set himself to give the necessary propositions in the
shortest form possible

,
it will be better to give them under

Ptolemy rather than here . (2) Pappus , in speaking ofEuclid’s
propos itions aboutthe inequality ofthe times which equal arcs
ofthe z odiac take to ri se

,
observes that ‘ H ipparchus in his book

On the r is ing ofthe twelve signs ofthe z odiac shows by means

ofnumer ical calcu lations (8K lipid/1 61V) that equal arcs of the
semicircle beginning with Cancer which set in times having
a certain relation to one another do not everywhere show the

same relation between the times in which they rise and so

on . We have seen that Euclid , A utolycus , and even Theo
dosius could only prove thatthe said times ar e gr eater or less

1 Theon , Comm. on Syntaxis , p: 1 10 , ed . Halma.

2 Pappus, vi, p. 600 . 9— 1 3 .

0

S
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in his Commentar y, he used the formulae ofspherical tr igonoa
metry to get his results . In the particular case where it is
required to find the time in which a star of northern
declination describes, in the latitude of Rhodes, the portion of

its ar e above the horiz on ,
H ipparchus must have used the

equivalent of the formula in the solution of a right - angled
spherical triangle , tan b cos A tan c, where C is the right
angle. Whether, like Ptolemy

,
H ipparchus obtained the

formulae
,
such as this one , which he used from different

applications of the one general theorem (Menelaus ’s theorem)
it is not poss ible to say . There was of course no difficulty
in calculating the tangent or other trigonometrical function
of an angle if only a table of sines was given ; for H ippar
chus and Ptolemy were both aware of the fact expressed by
sin2 or + cos

2
cc 1 or , as they would have written it ,

(cr d . 2 0 0
2
+ {cr d . (1 8 0

°

2 a)}
2

4 r
2
,

where (er d . 2 01)means the chord subtending an ar e 2 04, and r

is the radius , ofthe circle ofreference.

Table of Chor ds .

We have no details of Hippar chus
’

s Table of Chords suffi

cient to enable us to compare it with Ptolemy’

s , which goes
by half - degrees , beginning with angles of g ,

and so

on . ButH eron 1 in his Metr ica says that ‘ it is proved in the

books about chords in a circle ’ that , if a9 and a
l l
ar e the sides

ofa regular enneagon (9 - s ided figure)and hendecagon (1 l - sided
figure) inscribed in a circle of diameter d ,

then (1) a9 1 d
,

(2) a
l l

z
2

‘

7

g d very nearly,
which means that sin 2 0

°
was

taken as equal to (Ptolemy
’

s table makes it
1 3 1 1 62 1

2 0 so that the first approx1mat1on i s and
6 0 6 0 6 0

2

sin r
l

r
1 8 0

°
or sin 1 6

°
2 1

’
4 9 was made equal to 0 2 8 (this cor

responds tothe chord subtending an angle of3 2° 43 ’ nearly
half - way between 3 2%

o
and and the mean between the two

5 4 5 5

)
l

O

1

0

1 6chords subtendmg the latte1 angles g1ves 6 0 ( 6 0 6 0 2

the required sine, while —9
6 as s, which only differs

1 Heron, Metrica,
i . 22, 24, pp. 58 . 1 9 and 62 . 1 7 .

s 2
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by $ 5 from agg. or 7
7
-

57 , H eron’

s figure). There is little doubt
that it is to Hippar chus

’

s work that H eron refers , though the
author is notmentioned .

While for our knowledge of H ippar chus
’

s trigonometry we

have to rely for the most part upon what we can infer from
Ptolemy, we fortunately possess an original source of infor
mation about Greek trigonometry in its highest development
in the Sphaer ica ofMenelaus .

The date of MENELAUS of A lexandria is roughly indi
cated by the fact that Ptolemy quotes an observation of

his made in the first year of Trajan ’

s reign (A .D. H e

was therefore a contemporary of Plutarch , who in fact
represents him as being present at the dialogue De facie in
or be lunae, where (chap . 1 7 )Lucius apologiz es toMenelaus ‘

the

mathematician ’

for questioning the fundamental proposition
in optics that the angles

‘

b fincidence and reflection ar e equal .
He wrote a variety of treatises other than the Sphaer ica .

We have seen that Theon mentions his work on Chor d s in a

Cir cle in six Books . Pappus says that he wrote a treatise
(flpaypa

—
r ei

’

a) on the setting (or perhaps only rising) of

different arcs of the z odiac .

1 Proclus quotes an alternative
proof by him of Eucl. I . 2 5

,
which is d irect instead of by

r eductio ad absu r dum ,

2
and he would seem to have avoided

the latter kind ofproof throughout . Again
,
Pappus , speaking

of the many complicated curves ‘ d iscovered by Demetrius of
A lexandria (in his “ Linear considerations ”

) and by Philon

of Tyana as the result of interweaving plectoids and other
surfaces of all kinds says that one curve in particular was
investigated by Menelaus and called by him ‘ paradoxical ’

(wapddogogfi; the nature of this curve can only be conj ectured
(see below).
ButA rabian tradition refers to other works by Menelaus

,

(1) Elements ofGeometr y, edited by Thabit b . Qurra , in three
Books , (2) a Book on triangles

,
and (3) a work the title of

wh ich . is translated by Wenrich de cog
-nitione qu antitatis

discr etac corpor um permixtor um. Light is thrown on this
last title by one al -Chaz ini who (about A .D . 1 1 2 1) wrote a

1 Pappus , vi, pp. 600—2 .

2 Proclus on Eucl. I , pp. 345 . 14—346 . 1 1 .
3 Pappus, iv, p. 2 7 0 . 25 .
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treatise about the hydrostatic balance
,
i. e. about the deter

mination of the specific gravity of homogeneous or mixed
bodies , in the course ofwhich he mentions A rchimedes and

Menelaus (among others)as authorities on the subj ect ; hence
the treatise (3) must have been a book on hydrostatics dis
cuss ing such problems as that of the crown solved by A rchi
medes . The alternative proof of Eucl. I . 2 5 quoted by
Proclus mighthave come either from the Elements ofGeometr y
or the Book on triangles

'

With regard to the geometry, the
liber tr ium fratrum (written by three sons ofMesab . Shakir
in the ninth century) says that it contained a solution of the

duplication of the cube, which is none other than that of'

A rchytas. The solution of A rchytas having employed the
intersection of a tore and a cylinder (with a cone as well),
there would, on the assumption that Menelaus reproduced the
solution, be a certain appropriateness in the suggestion of

Tannery 1 that the curve which Menelaus called the wapddogog
‘

ypapl
ufiwas in reality the

'

cur ve of double curvature, known
by the name ofV iviani , which is the intersection of a sphere
with a cylinder touching it internally and having for its
diameter the radius of the sphere. This curve is a particular
case ofEudoxus’s hippoped e, and it has the property that the
portion left outside the curve ofthe surface ofthe hemisphere
on which it lies is equal to the square on the diameter ofthe
sphere ; the fact of the said area being squar eable would
justify the application of the word napddogos to the curve ,
and the quadrature itself would not probably be beyond the
powers of the Greek mathematicians, as witness Pappus ’s
determination of the area cut off between a complete turn of

a certain spiral on a sphere and the great circle touching it at
the origin.

2

The Sphaer ica of Menelaus .

This treatise in “ three Books is fortunately preserved in
the A rabic

,
and although -the extant versions differ con

sider ably in form , the substance is beyond doubt genuine ;
the original translator was apparently Ishaq b. Hunain

(died A . D. There have been two editions , (1) a Latin

1 Tannery, Mémoir es scienti/iques, ii, p. 1 7 .

2 Pappus, iv, pp. 264—8 .
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already appropr iated for the plane triangle. We should gather
from this , as well as from the restriction of the definitions to
the spherical tr iangle and its par ts , that the discussion ofthe

spherical triangle as such was probably new ; and if the pr e
face in the A rabicversion addressed to a pr ince and beginning
with the words, ‘ 0 prince ! I have discovered an excellent
method ofproof . i s genuine

,
we have confirmatory evidence

in the writer’s own claim.

Menelaus’s object, so far as Book I is concerned , seems to
have been to give the main propositions about spherical
triangles cor responding to Euclid’s propositions about plane
tr iangles . At the same time he does not restr ict himself to
Euclid’s methods of proof even where they could be adapted
to the case of the sphere ; he avoids the form of proof

_

by
r eductio ad absu r dum, but, subject to this, he prefers the
easiest proofs . In some respects his treatment is more com
plete than Euclid’s treatment of the analogous plane cases.

In the congruence- theorems , for example, we have 1 . 4a

corresponding to Bucl. I . 4 , I . 4b to Eucl . I . 8 , I . 1 4
, 1 6 to

Eucl. I . 2 6 a,
h ; but Menelaus includes (1 . 1 3)what we know

as the ‘
ambiguous case ’

, which is enunciated on the lines of
Eucl. VI . 7 . I . 1 2 is a particular case of I . 1 6 . Menelaus
includes also the further case which has no analogue in plane
tr iangles , that in which the three angles of one triangle ar e

severally equal to the three angles of the other H e

makes, moreover, no distinction between the congruent and

the symmetrical , regarding both as covered by congruent . I. 1
is a problem , to construct a spherical angle equal to a given
spherical angle, introduced only as a lemma because required
in later propositions. I . 2

,
3 ar e the propositions about

isosceles triangles corresponding toEucl. I . 5 , 6 Eucl . I . 1 8 , 1 9

(greater s ide opposite gr eater angle and v ice versa) have their
analogues in I . 7 , 9 , and Eucl. I . 24

,
2 5 (two sides respectively

equal and included angle, or third side, in one tr iangle greater
than included angle, or third side, in the other) in I . 8 . I . 5

(two sides ofa triangle together greater than the third) corr e
sponds toEucl . I . 20 . There is yeta further group ofproposi
tions compar ing par ts ofspherical triangles, I . 6 , 1 8 , 1 9 , where
I

. 6 (corr esponding to Eucl. I . 2 1) is deduced from I . 5
, j ust as

the first partofEucl. I . 2 1 is deduced from Eucl. I . 2 0 .
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Eucl. I . 1 6 , 3 2 ar e not true of spherical triangles , and

Menelaus has therefore the corresponding but different pr o7
positions .

I. 1 0 proves that, with the usual notation a, b, c,

A , B , C, for the sides and opposite angles of a spherical
triangle, the exterior angle at O’, or 1 8 0

°— 0 ,
or >A

according as c+ a or and vice versa. The proof
of this and the next proposition shall be given as specimens .

In the triangle A BC suppose that c-+ a or let

D be the pole opposite to A .

Then
, according as c+ a or BC or BD

(s ince AD

and therefore AD or LBO’D (= 1 8 0
°— C),

(s ince [ D LA ) 1 8 0
°— C < or >A .

Menelaus takes the converse for granted.

A s a consequence of this , I . 1 1 proves thatA B G> 1 8 0
°

.

Take the same
“ triangle ABC

,
with the pole D opposite

to A , and from B draw the great circle BE such that
[ DBE ABDE.

Then OE EB CD so that
,
by the preceding

proposition, the exterior angle A OB to the triangle BO'E is

greater than LUBE ,

i . e. C AOBE .

Add A or D LEBD)to the unequals ;

therefore C A ACBD,

whence A +B + C > LCBD+ B or

A fter two lemmas I. we have some propositions intro
ducing M , N, P the middle points ofa , b, c respectively. I . 2 3

proves, e.g. , that the ar cMN of a great cir cle>% c, and I . 2 0

that AM or >§ a according as A or The

last group of propositions , 2 6—3 5 , relate to the figure formed
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by the triangle ABC with great circles drawn through B to

meet A O (between A and C) in D,
E respectively

,
and the

case where D and E coincide, and they prove different results
arising from different relations between a and c com

bined with the equality ofAD and E0 (or DC), of the angles
ABD and EBO’ (or DBC), or of a + o and EB + BE (or ZED)
respectively, according as a c or

0

Book II has practically no interest for us . The object of it
is to establish certain propos itions , of astronomical interest
on ly, which ar e nothing more than generaliz ations or exten
sions of propositions in

,
Theodos ius’s Sphaer ica ,

Book III .

Thus Theodosius III . 5
,
6 , 9 ar e included in Menelaus II . 1 0 ,

Theodos ius III . 7 — 8 in Menelaus II . 1 2 , while Menelaus II . 1 1

is an extension of Theodosius III . 1 3 . The proofs ar e quite
difi

'

er ent from those of Theodosius , which ar e generally very
long—winded .

Book III . Trigonometry .

It will have been noticed that, while Book I ofMenelaus
gives the geometry of the spherical triangle

,
neither Book I

nor Book I I contains any trigonometry. This is reserved for
Book I I I . A s I shall throughout express the various results
obtained in terms of the trigonometr ical ratios, sine, cosine ,
tangent , it is necessary to explain once for all that the Greeks
did not use this terminology, but , instead of sines , they used
the chords subtended by arcs of a

circle . In the accompanying figure
let the ar c AD of a

'

circle subtend an

angle a at the centre 0 . Draw AM

perpendicular to OD, and produce it A

to meet the circle again in A ’

. Then
sin or AM/A O, and AM is éAA

’

or half the chord subtended by an

angle 2 a at the centre , which may

shortly be denoted by 2 a).
Since Ptolemy expresses the chords as so many 1 2 0th parts of
the diameter of the circle, while AM A O AA

’

/ 2A 0 ,
it

follows that sin or and &(cr d . 2 a) ar e equivalent. Cos or is

of course sin (9 0
° — o<) and is therefore equivalent to é cr d .

(1 8 0
° — 2 a).
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For
, if AM,

BN ar e perpendicular to 0 0 , we have , as before ,

(er d . (er d . 2 BC’)

sin A G : sin BG.

Now let the arcs of great circles ADB , AEC be cut by the
arcs ofgreat circles DEG,

BEE which themselves meet in E.

Let G be the centre of the sphere and join GB , GE, GE ,
AD.

Then the straight lines AD
, GB , being in one plane

,
ar e

either parallel or not parallel . If they ar e not parallel
,
they

will meet either in the direction ofD B or ofA G.

Let AD, GB meet in T.

Draw the straight lines A K G, DLOmeeting GE , GE in K , L

respectively .

Then
‘

K
, L, T must lie on a straight line, namely the straight

line which is the section of the planes determined the

by the triangle

Thus we have two straight lines A G,
cut by

straight lines CD,
TK which themselves intersect in L.

Therefore, by Menelaus ’s proposition in plane geometry ,

CK CL DT

K A LD TA

1 So Ptolemy . In other words, since the straight lines GB ,
GE

,

which ar e in one plane, respectively intersect the straight lines AD,
A C

,

CD which ar e also in one plane, the points ofintersection T,
K , L ar e in

both planes , and therefore lie
‘

on the straight, line in which the planes
intersect.
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But
, by the propositions proved above ,
GK sin CE CL sin GE

(1
DT sin DB

KA sin EA
’

LD Wu
an

TA sin BA
’

therefore , by substitution ,
we have

sin GE sin GE sin DB

sin EA sin FD sin BA

Menelaus apparently also gave the proof for the cases in
which AD

, GB meet towards A , G,
and in which AD, GB ar e

parallel respectively
,
and also proved that in like manner

,
in

the above figure,
sin CA sin CD sin EB

sin AE sinDE sin BE

(the triangle cut by the transversal being here CEE instead of
ADC). Ptolemy 1 gives the proof ofthe above case only

,
and

dismisses the last -mentioned result with a similarly ’

.

(B) Deductionsfr om Menelau s
’

s Theor em .

III . 2 proves , by means of I . 1 4 , 1 0 and III . 1
,
that

,
if ABC

,

A
’

B
’
C
’

be two spherical triangles in which A A
’

,
and C, C

’

ar e either equal or supplementary , sin c/sin a sin c
’

sin a.
’

and conversely. The particular case in which 0 , C
’

ar e right
angles gives what was afterwards known as the regula
quattuor quantitatum and was fundamental in'

A rabian
trigonometry .

2 A similar '

association attaches to the result of
III . 3 , which is the so- called ‘ tangent ’

or
‘
shadow - rule ofthe

A rabs . If A BC,
A

’

B
’

C
’
be triangles right - angled atA

,
A

’

, and

C, C
’
ar e equal and both either or and if P

, P
’

be

the poles ofAG, A
’

C
’

, then
sin A B sin A

’
B

’

sin BP

sin A C sin A
’

O
”
sin B

’

P
’

Apply the triangles so that 0 ’ falls on C , G
’

B
’

on CB as CE,

and C
’
A

’

on CA as CD ; then the result follows directly from
III . 1 . Since sin BP cos A B

, and sin B
’

P
’

cos A
’

B
’

the

result becomes

sin GA tan A B

which is the ‘ tangent—rule ’

ofthe A rabs .

3

1 Ptolemy, Syntaxv
'

s
, i . 1 3, vol . i, p. 7 6 .

2 See Braunmiihl, Gesek. der Tr ig. i, pp. 1 7
, 47 , 58—60, 127 —9.

3 Cf. Br aunmiihl , op . cit. i, pp. 1 7 — 18
, 58 , 67 - 9, &c.
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It follows at once (Prop . 4) that , if AM, A
’M

'

ar e great
circles drawn perpendicular to the .bases BC,

B
’
C
’
of two

spherical triangles ABC,
A

’

B
’

C
’
m which B : B

’

, C : C
’

,

sin BM sinMC tan AM

sin E
’

M
’

sinM tan A
’M ’)

III . 5 proves that
,
if there ar e two spherical triangles ABC ,

(since both ar e equal to

A
'
B

’

C
’
r ight—angled at A , A

’
and such that C while b

and b
'

ar e less than

sin (a + b) sin (a
'

+ b
’

)
sin (a—b) sin (a

’

from which we may deduce 1 the formula

sin (a + b) 1 + cos C

sin (a - b) l — cos C
’

which is equ ivalent to tan b tan 0. cos 0 .

(y) A nharmonic pr oper ty offour gr eatcir cles thr ough
one point.

But more important than the above result is the fact that
the proof assumes as know-1 1 the amber
monic property of four great circles
drawn from a point on a sphere in rela
tion toany great circle intersecting them
all, viz . that, if ABCD, A

’
B

’

C
’

D
’

be two A
'

transversals ,

sin AD sin BC s in A
’

D
’

sin B
’
C

’

sin DC sin A B sin D
’

C
’
sin A

’
B

’

Braunmiihl, 0p . cit. i , p. 1 8 ; Bjornbo, p. 96 .
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III . 9 and III . 1 0 show
,
for a spherical triangle, that (1)the

great circles bisecting the three angles , (2) the great circles
through the angular points meeting the opposite sides at

right angles meet in a point .
The remaining propositions

,
III . 1 1— 1 5

,
return to the same

sort of astronomical problem as those dealtwith in Euclid ’

s

P haenomena ,
Theodosius’s Sphaer ica. and Book II of Mene

laus
’

s own work . Props . 1 1— 1 4 amount to theorems in

spherical trigonometry such as the following.

Given arcs 01
1 ,
0
5 , 013 , oz4 , B1 , (32 , [33 , 6 4 , such that

and also a
1 >Bl , a2 >B a

3
> 5 3 , or4 > ,

8

If sin or
,
: sin a

z
sin 6X

3
sin a4= s inB, sinB2 sinBa sin/3

3 1 _ Bz
“
4 Bis—B4

Sin 6 1) Sin
1
8
2)

sin (or1 ,
3
1) sin (Ola— 3 2)

3 1 ,

- Ba

53 — 5 4

SID (d 1
— a

2)

(6 _ B4)

6 1 — 6 2
B 6 .

three series of three arcs such

u l > u
z
> a

3 , B, > 5 2 >B

and sin (orl —
‘

y 1) sin (a z yz ) : sin (013
—
7 3)

(5 1 _

7 1): sin (B2
_

7 2)3 Sin

sin 7 1 sin 7 2 sin 7 3
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a
2 > 6 2 > 2 y2 ,

(2) If B1 < a
1 < y i o fiz < a

z < 7 w 3 3 < a
3
< 7 3 i

6 1 — 6

III . 1 5 , the last propos ition , is in four parts . The first part
is the proposition cor responding to Theodosius III . 1 1 above
alluded to. Let BA BC be two quadrants of great c ircles
(in which we easily recogni z e the equator and the ecliptic),
P the pole ofthe former, PA , ,

PA
3
quadrants ofgreat circles

meeting the other quad rants in A 1 ,
A
3 and Cl , C3 respectively.

Let R be the radius of the sphere, r ,
‘

r
, ,
r
3
the radi i of the

‘parallel circles ’

(with pole P) through 0
3
respectively.

sin A ,
A
3Then shall

sin 0
1
0
3

the triangles P 0 0
3 ,
B

'

A
,
o
,
the angles

and the angles atC3 equal therefore (III . 2)

sin P C sin BA

sin P 0 3 sin BC
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But, by III . 1 applied to the triangle BO
,
A
1
cut by the

transversal PO
3
A

sin A
1
A
3

sin C
l
C
3

sin PA
1

sin BA
3 sin BC

3
sin P C

l

sin A
1
A
3

sin PA
l

sin BA
3

sin P A
1

sin P C

sin 0
,
0
,

sin PC
,

sin 3 0
, sin PO

,
sin Po

,

’

from above ,

Part 2 of the proposition proves that
,
if PC

Q
A
2
be drawn

such that sin?PO
Z

sin PA
2
sin PC

, or r
2
2 R r (where r

2
is

the radius of the parallel circle through BC
z
— BA

2
is a

max imum, while Parts 3 ,
4 discuss the limits to the value of

the ratio between the arcs A
1
A
3
and 0n .

Nothing is known ofthe life of CLAUDIUS PTOLEMY except
that he was of A lexandria

,
made observations between the

years A . D . 1 2 5 and 1 4 1 or perhaps 1 5 1 , and therefore pr esum
ably wrote his great work about the middle of the reign of

A ntoninus Pius (A .D . 1 3 8 A tradition handed down by
the Byz antine scholar Theodorus Meliteniota (about 1 36 1 )
states that he was born

,
not at A lexandria,

but at Ptolemais
A rabian traditions , going back probably to

H unain b . Ishaq , say that he lived to the age of 7 8 , and give
a number of personal details to which toomuch weight must
not be attached .

The M aenpan m
‘

y oflur agts‘ (A r ab . A lmagest).

Ptolemy’

s great work , the definitive achievement ofGreek
astronomy,

bore the title M aCn/taT l KfiS
‘ Z vvr dgecos BiBAi

’

a t
‘

y ,

the Mathematical Collection in thirteen Books . By the time

ofthe commentators who distinguished the lesser treatises on
astronomy forming an introduction to Ptolemy ’

s work as

,
uucpos aa r poyopoépeyos (7 67 7 the ‘Little Astronomy ’

,
the

book came to be called the ‘Great Collection ’

, li q
/aim; 0 15V

r agi s
‘
. Later still the A rabs . combining the article A l with

T
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(died is extant in part, as well as the version by Nasir ad

din at- Tfisi (1 2 0 1
.The first edition to be published was the Latin translation
made by Gher ard of Cremona from the Arabic, which was
finished in 1 1 7 5 but was not publishedtill 1 5 1 5 , when it was
brought out, without the author’s name, by Peter Liechten
stein atVenice. A translation from the Greek had been made
about 1 1 6 0 by an unknown writer for a certain H enricus
A r istippus, A rchdeacon ofCatania

,
who, having been sent by

William I , K ing of Sicily, on a mission to the Byz antine
Emperor Manuel I . Comnenus in 1 1 58

,
brought back with

him a Greek manuscript of the Syntaxis as a present ; this
translation , however , exists only in manuscripts in the Vatican
and at Florence. The first Latin translation from the Greek
to be published was thatmade by Georgius ofTrebiz ond for

Pope N icolas V in 1 45 1 ; this was revised and published by
Lu cas Gauricus atVenice in 1 5 28 . The editiopr irweps ofthe

Greek textwas brought out by Grynaeus at Base] in 1 5 3 8 .

The next complete edition was that of Halma published
1 8 1 3— 1 6

,
which is now rare . A ll the more welcome, there

fore, is the definitive Greek text of the astronomical works
of Ptolemy edited by H eiberg (1 8 9 9 to which is now

added , sofar as the Syntaxis is concerned , a most valuable
supplementin the German translation (with notes)by Manitius
(Teubner , 1 9 1 2—1

Summary of Contents .

The Syntaxis is most valuable for the reason that it con
tains very full particulars of observations and investigations
by H ipparchus , as well as ofthe earlier observations recorded
by him, e.g. that of a lunar eclipse in 7 2 1 B . C. Ptolemy
based himself very largely upon H ipparchus , e.g. in the

preparation of a Table of Chords (equivalent to s ines), the
theory of eccentrics and epicycles , &c. ; and it is questionable
Whether he himself contributed anything ofgreat value except
a definite theory of the motion of the five planets, for which
H ipparchus had only collected material in the shape ofobser
vations made by his pr edecessors and himself. A very short
indication ofthe subjects ofthe different Books is all that can

r 2
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be given here. Book I : Indispensable preliminaries to the
study

'

oi
'

the Ptolemaic system
,
general explanations of

the different motions of the heavenly bodies in relation to

the earth as centre, propositions required for the preparation
of Tables of Chords , the Table itself, some propositions in
spherical geometry leading to trigonometrical calculations of
the relations of arcs of the equator, ecliptic, horiz on and

meridian,
a

‘Table of Obliquity ’

,
for calculating declinations

for each degree - point on the ecliptic
,
and finally a method of

finding the right ascensions for arcs of the ecliptic equal to
one- third of a sign or

'

Book II : The same subject con
tinned , i. e. problems on the sphere , with special reference to
the d ifferences between various latitudes , the length of the

longest day at any degree of latitude , and the like . Book III
On the length of the year and the motion ofthe sun on the

eccentric and epicycle hypotheses . Book IV : The length ofthe
months and the theory of the moon . Book V : The construe
tion of the astrolabe

,
and the theory of the moon continued,

the diameters of the sun , the moon and the earth ’

s shadow,

the distance of the sun and the dimensions ofthe sun
,
moon

and earth . Book VI : Conjunctions and oppos itions of sun

and moon , solar and lunar eclipses and their periods . Books
VI I and VIII ar e about the fixed stars and the precess ion of

the equinoxes , and Books IX—XIII ar e devoted to the move
ments ofthe planets .

Tr igonometry in Ptolemy.

What interests the historian ofmathematics is the trigono
metry in Ptolemy . It is evident that no partof the trigono
metry, or ofthe matter preliminary to it

,
in Ptolemy was new.

What he did was to abstract from earlier treatises , and to

condense into the smallest possible space , the min imum of

propositions necessary to establish the methods and formulae
used. Thus at the beginning of the preliminar ies to the

Table ofChords in Book I he says

We will first show how we can establish a systematic and

speedy method ofobtaining the lengths ofthe chords based on
the uniform use of the smallest poss ible number of proposi
tions , sothatwe may notonly have the lengths of the chords
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setout corr ectly, but may be in possession ofa ready proof of
our method of obtaining them based on geometrical con

siderations .

H e explains that he will use the division (1)ofthe circle into
3 6 0 equal parts or degrees and (2) of the diameter into 1 20
equal parts, and will express fractions of these parts on the

sexagesima l system. Then come the geometrical propositions ,
as follows .

a

(a) Lemma for finding sin 1 8
°
and sin

To find the side of a pentagon and decagon inscribed in
a circle or , in other words , the chords subtending arcs of 7 2°
and 3 6

° respectively.

LetAB be the diameter of a circle
, 0 the centre , CC the

radius perpendicular to A B .

Bisect GB atD
,
join DC, and measure

DE along DA equal toDC. Join EC.

Then shall OE be the s ide of the in

scribed regular decagon, and EC the side
ofthe inscribed regular pentagon .

For , s ince 0B is bisected atD
,

BE . E0 + CD2 DE 2

DC2 DOZ 0 0 2 .

Therefore BE . E0 CC 2 0B2 ,

and BE is divided in extreme and mean ratio.

But (Euel .XIII . 9)the s ides ofthe regular hexagon and the

regular decagon inscribed in a circle when placed in a straight
line w ith one another form a straight line divided in extreme
and mean ratio atthe point ofdivision .

Therefore, B0 being the s ide ofthe hexagon,
E0 is the s1de

ofthe decagon .

A lso (by Euel . XII I . 1 0)

(s ide ofpentagon)2 (side ofhexagon)2 + (side ofdecagon)
2

0 0 2 + OE 2 ECZ ;

therefore EC is the s ide of the regular pentagon inscribed
in the circle.

1 Ptolemy, Syntaxis, i. 1 0 , pp. 31 9
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The proposition giving the required formula depends upon
a l emma

, which is the famous ‘Ptolemy’

s theorem

.

Given a quadrilateral A BCD inscribed in a circle , the
d 1agonals being A C, BD, to prove that

A C . BD

The proof is well known. Draw BE so that the angle A BE
is equal to the angle DBC, and let BE

meet A C in E .

Then the triangles A BE
, DBC ar e

equiangular
, and therefore

A B z AE z s po,

(1)

A gain ,
to each of the equal angles

ABE
,
DBC add the angle EBD ;

then the angle A BD is equal to the angle and the

triangles ABD, EBC ar e equiangular ;

therefore BC : CE BD DA
,

AD . BC CE . BD.

By adding (1) and we obtain

AB . DC + AD . BC A C .

Now letA B,
A C be two arcs terminating atA , the extremity

ofthe diameter AD ofa circle, and let
A C a) be greater than AB B
Suppose that (er d . A C) and (cr d . AB)

ar e given : it is required to find

(er d . BC).

Join BD,
CD.

Then
,
by the above theorem,

Now A B ,
A C ar e given ; therefore BD cr d . (1 8 0

° — A B)

and CD cr d . (1 8 0
° — A O) ar e known . And AD is known .

H ence the remaining chord BC (cr d . BC) is known.
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The equation in fact gives the formula,

{ r d a s s . a s. (n .n a
— (er d . { er d . (1 8 0

°— un,

which is, ofcourse, equivalent to

sin (6 sin 0 cos (1)— cos 0 sin q) , where or

By means of this formula Ptolemy obtained

er d . 1 2
°

cr d . (7 2
°

1 2 ? 3 2
’
3 6

(8) Equivalent of sinz éd s (1 — cos

But
,
in order to get the chords of smaller angles still, we

wanta formula for finding the chord of half an ar c when the
chord of the arc is given . This is the subject of Ptolemy’

s

next proposition .

LetBC be an ar c of a circle w ith diameter A C, and letthe

ar c BC be bisected atD. Given (cr d . BC), it is required to
find (er d . DC).

Draw DE perpendicular to A C
,

and join AB , AD,
BD, DC. Measure

AE along A C equal to AB, and join

Then shall EC be equal to EE, or

EC shall be half the difference be
tween AC and AB .

For the triangles ABD,
AED ar e

equal in all respects , s ince two sides
ofthe one ar e equal to two sides ofthe other and the included
angles BAD, EAD,

standing on equal arcs , ar e equal .

Therefore ED BD DC
,

and the right - angled triangles DEE, DCE ar e equal in all

respects
,
whence EF EC, or CE % (A C— AB).

Now A C . CE CD2
,

whence (crd . CD)
2 1 A C (A C — AB)

&(cr d .

This is , ofcourse, equivalent to the formula

sin2 &6 — cos
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By successively applying this formula , Ptolemy obtained
(er d . (cr d . and finally (cr d . I? 1 2’ 3 4

’
1 5

”
and

(cr d . OP 4 7
’

But we want a table going by half
degrees , and hence twomore things ar e necessary ; we have to
get a value for (cr d . lying between (cr d . and (er d .

and we have to obtain an addition formula enabling us when
(cr d . or) is given to find { cr d . (01 + and so on .

(e) Equ ivalent of cos (6 cos 6 cos - sin 6 sin

To find the addition formula. Suppose AD is the diameter
of a circle

,
and AB

,
BC two arcs . Given (cr d . AB) and

(cr d . BC), to find (cr d . A C). Draw the diameter BOE, and

join CE , CD, DE ,
BD.

Now , (er d . A B) being known ,

(cr d . BD) is known , and therefore
also (er d . DE), which is equal to

(cr d . AB); and , (cr d . BC) being A

known
, (er d . CE) is known .

And , by Ptolemy’

s theorem ,

BD . CE

The diameter BE and all the chords in this equation except
CD being given , we can find CD or cr d . (1 8 0

°
— A C). We have

in fact

(cr d . { er d (1 8 0
°
— A O)}

{ cr d . (1 8 0
°

AB)} { cr d . (1 8 0
° BC)} (cr d . BC);

thus er d . (1 8 0
° — A C) and therefor e (cr d . A C) is known.

If AB 2 6
,
BC 2 95, the result is equivalent to

cos (6 cos 6 cos — sin 6 sin gb.

(5)Method of interpolation based on formu la

sin a /sin 6 a/B (wher e é
-
zr >a >B).

Lastly we have tofind (cr d . having given (cr d . I?)and

(er d .

Ptolemy uses an ingenious method ofinterpolation based on
a propos ition already assumed as known by A ristarchus .

If AB ,
BC be unequal chords in a circle, BC being the
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(17) Table of Chor ds.

From this Ptolemy deduces that is very nearly
OP 3 1

’

and by the aid of
_

the above propositions he is in
a pos ition to complete his Table ofChords for arcs subtending
angles increasing from to 1 8 0

° by steps of i
f

; in other
“

L

ords , a Table of Sines for angles from 7
1
6 to 9 0

° by steps
0

(6) Fu r ther u se ofpr opor tional incr ease.

Ptolemy carries further the principle of proportional in
crease as a method of finding approx imately the chords of
arcs containing an odd number ofminutes between 0 ' and
Opposite each chord in the Table he enters in a third column
3
1
5 th of the excess of that chord over the one before, i . e. the

chord ofthe ar c containing 3 0 ’ less than the chord in question.

For example (cr d . is stated in the second column of the

Table as 2 1’ 3 7
’

The excess of(cr d. over (er d . in the

Table is 0 11 3 1 ’ 2 4 5
1

5 th of this is 0 11 1
’
2
” which is

therefore the amount entered in the third column oppos ite
(er d . 2g). A ccordingly, if we want (er d . 2

°
we take

(cr d . or 2 1? and add 2 5 times 0 10 48 or We

take (cr d . 235)or 2 1) 3 7
’

4
”
and subtract 5 times 0 7 ' 1 ' 2 ”

Ptolemy adds that if, by using the approximation for 1 ° and

y , we gradually accumulate an error , we can check the calcu
lation by comparing the chord with that ofother related arcs ,
e.g . the double, or the supplement (the difference between the
ar c and the semicircle).
Some particular results obtained fr om the Table may be

mentioned. Since (cr d . 1 1’ 2
’

the whole circumference
3 6 0 (1 1

’ 2
’

nearly, and , the length of the diameter
being the value of 7 1 is 3 (l -

6 )
—
o,

which is the value used later by Ptolemy and is equivalent to
3 Again,

2 sin 6 0
°
and , 2 (er d . being

equal to 2 (1 0 3 11 5 5
'

we have (1 0 3

4 3 5 5
+
2 3

+
6 0 6 0 2 so3

1 - 7 3 20 5 09 ,

which is correct to 6 places ofdecimals . Speaking generally ,
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the sines obtained from Ptolemy’

s Table ar e correct to 5

places .

(L) P lane tr igonometr y in ej ect u sed .

There ar e other cases in Ptolemy in which plane trigono
metry is in effect used , e .g. in the determination of the

eccentricity of the sun ’

s orbit .

1 Suppose that A CBD is

the eccentric circle w ith centre 0 ,

and A B,
CD ar e chords at right

angles through E , the centre of the

earth. To find CE. The ar e BC

is known a
,
say)as also the ar c

CA B). If BE be the chord
parallel to CD

,
and CG the chord

parallel to AB
,
and if N , P be the

m iddle points of the arcs BE
,
GC,

Ptolemy finds (1) the ar c BE

a +B then the chord BE,

cr d . (a +B then the half of it
, (2) the ar c GC

z ar e (a +B.
— 2B) or ar e (oi — B), then the chord and

lastly half of it . H e then adds the squares on the half
chords , i. e . he obtains

0 171 2 H erd . (a +B

that is , OE z

/r
2

(or + 3)+ Sin (01 — 3)

H e proceeds to obtain the angle OEC from its s ine OR /OE ,

which he expresses as a chord of double the angle in the

circle on OE as diameter in relation to that diameter .

Spher ical tr igonometry : formulae in solution of

spher ical tr iangles .

In spherical trigonometry, as already stated, Ptolemy
obtains everything that he wants by using the one funda
mental proposition known as

‘Menelaus ’s theorem ’

applied
to the sphere (Menelaus III . of which he gives a proof
following that given by Menelaus of the first case taken in
his proposition . Where Ptolemy has occasion for other pro
positions of Menelaus’s Sphaer ica , e .g. III . 2 and 3

,
he does

1 Ptolemy, Syntax e
'

s , iii. 4, vol. i, pp. 234— 7 .
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notquote those propositions , as he might have done, but proves
them afresh by means of Menelaus ’s theorem.

1 The appli

cation of the theorem in other cases gives in effect the
following different formulae belonging to the solution of

a spherical triangle ABC right - angled at C, viz .

sin a sin 0 sin A ,

tan a sin btan A ,

cos c cos a cos b,

tan b tan 0 cos A .

One illustration of Ptolemy’

s procedure will be sufficient.2

Let HAH
’

be the horiz on , PEZH the meridian circle, EE ’

the equator
,
ZZ

’

the ecliptic
,
E an

equinoctial point . Let EE
’

, ZZ
’

cut the hor iz on in A
,
B . Let P be

the pole, and let the great circle
through P ,

B cut the equator at C. H

Now let it be required to find the

time which the ar cEB ofthe ecliptic
takes to rise ; this time w ill be
measured by the ar e EA of the

equator . (Ptolemy has previously found the length of the

arcs BC, the declination,
and EC ,

the
'

r ight ascension , of B ,

I . 1 4 ,
By Menelaus ’s theorem applied to the arcs AE ’

,
E

’

P cut by
the arcs AH ’

,
PC which also intersectone another in B

cr d . 2PH
’

cr d . 2 PB cr d . 2 CA

cr d . 2H
’

E
’

er d . 2 BC cr d . 2 AE

sin PH
’

. sin PB sin CA

sin H
'

E
’

sin BC sin AE
’

Now sin PH
’=cos H

’
E

’

,
sin PB=cos BC, and sin AE

’

1 ;

therefore cotH
’
E

’
: cotBC sin CA ,

in other words , in the triangle A BC r ight- angled at C,

cotA cota sin b,

tan a sin btan A .

1 Syntaxis , vol. i, p. 1 69 and pp. 126—7 respectively.

11 I b. , vol . i, pp. 12 1 - 2 .
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and arcs of the heavenly sphere by means of or thogonal

pr ojection upon three planes mutually at right angles, the
meridian , the horiz on , and the

‘ prime vertical ’. The definite
problem attacked is that ofshowing the position ofthe sun at

any given time of the day , and the use of the method and

of the instruments descr ibed in the book by Ptolemy was
connected with the construction of sundials , as we learn from
V itruvius .

1 There was another deaths/ma besides that of

Ptolemy ; the author of it was Diodor us ofA lexandria, a con

temporary ofCaesar and Cicero Diodor us , famed among the
makers of gnomons , tell me the time !

’

says the Anthology
and Pappus wrote a commentary upon it in which , as he tells
us ,

s he used the conchoid in order to trisect an angle
,
a problem

evidently required in the Analemma in order to divide any

ar e of a circle into six equal parts (hours). The word
d r eamt/ta ev idently means ‘ taking up ’

in the

sense of ‘making a graphic representation of something, in
this case the representation on a plane ofparts ofthe heavenly
sphere . Only a few fragments remain of the Greek text of
the A nalemma ofPtolemy ; these ar e contained in a palimpsest
(Ambros . Gr . L. 99 sup. , now 49 1) attributed to the seventh
century but probably earlier . Besides this , we have a trans
lation by William of Moerbeke from an A rabic version .

This Latin translation was edited with a valuable commentary
by the indefatigable Commandinus (Rome, but it is
now available in William ofMoer beke

’

s own words , Heiberg
having edited it from Cod . Vaticanus Ottobon . lat. 1 8 5 0 ofthe

thirteenth century (written in William ’

s own hand), and ih

cluded it w ith the Greek fragments (so far as they exist) in
parallel columns in vol. ii ofPtolemy’s works (Teubner ,
The figure is referred to three fixed planes (1)the meridian ,

(2) the horiz on , (3) the pr ime vertical ; these planes ar e the

planes of the three circles APZB ,
AOB, ZQC respectively

shown in the diagram below . Three other great circles ar e

used , one of which , the equator with pole P ,
is fixed ; the

other two ar e movable and were called by special names ;
the first is the circle represented by any position ofthe circle
ofthe hor iz on as it revolves round COC ’

as diameter (CSM in

1 Vitruvius , De ar chitect. ix. 4 .

2 Auth. Palat. xiv. 139.

3 Pappus, iv, p. 246 . 1 .
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the diagram is one position of it
,
coinciding with the equator),

and it was called éK -

rfi/iopos K 15KA0 9 (
‘ the circle in six parts ’

)
because the

'

highest point of it above the horiz on corresponds
to the lapse of six hours ; the second

,
called the hou r —cir cle

,
is

the circle represented by any pos ition ,
as BSQA , ofthe circle

ofthe horiz on as it revolves round BA as axis .

The problem is , as above stated
,
to find the position of the

sun at a given hour of the day . In order to illustrate
the method , it is sufficient, with A . v . Br aunmiihl,

1 to take the
s implest case where the sun is on the equator , i. e. at one of

the equinoctial points , so that the hectemor on circle coincides
with the equator .

LetS be the position ofthe sun,
lying on the equator MSC

,

P the pole , MZA the meridian, BCA the horiz on ,
BSQA the

hou r - cir cle, and let the vertical great circle ZSV be drawn
through S ,

and the vertical gr eat
'

cir cle ZQC through Z the

z enith and C the east - point.
We ar e given the ar c SC : 9 0

°
— t, where t is the hour

angle, and the ar c MB 90
°
—
gt, where <1) is the elevation of

the pole ; and we have tofind the arcs SV (the sun ’

s altitude),

VC, the
‘
ascensional difference ’

, SQ and QC. Ptolemy
,
in

fact, practically determines the position of S in terms of

certain spherical coordinates .

Draw the perpend iculars , SE to the plane ofthe meridian,

SH to that of the horiz on , and SE to the plane ofthe prime

1 Braunmuhl
,
Gesek. der Tr igonometw

‘

e, 1, pp. 1 2 , 1 3 .
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vertical ; and draw FG perpendicular to BA , and ET to OZ .

Join HG, and we have EG SH , GH ES ET.

We now represent SE in a separate figure (for clearness
’

sake, as Ptolemy uses only one figure), where B
’

Z
’

A
’ corre

sponds to EZA ,
P

’

to P and C
'

M ’
to GM. Set off the arc

P
'

S
’
equal to CS 90

° — t), and draw S
’
E

’ perpendicular
to C

’

M ’

. Then S '

M SM
,
and S

’

E
’
: SE ; it is as if in the

original figure we had turned the quadrant MSC round M0
til l it coincided with the meridian circle.

In the two figures draw IFK ,
I
’

E
’X parallel toBA ,

B
’
A

’

,

and LEG, L
’
E

’

G
’ parallel to OZ

,
O

’

Z
'

.

Then (1) ar e Z ] : ar e ZS z ar e (90
°— SV), because if we

turn the quadrant ZSV about Z 0 till it coincides with the

meridian , S falls on I , and V on B. It follows that the
required ar e S V z ar e B

’

I
’

in the second figure.

(2) To find the ar c VC,
set off C

’X (in the second figure)
along G’

E
’
equal to ES or E

’

S
’

,
and draw C

’X through to
meet the circle in X’

. Then ar c Z
’X’=ar c VC ; for it is as if

we had turned the quadrant BVC about BO till it coincided
w ith the meridian,

when (since G
’X ES : GH ) H would

coincide with X and V with X
’

. Therefore EV is also equal
to B

’X’
.

3) To find QC or ZQ, setoffalong T
’

E
’

in the second figure

T
'

Y equal to E ’
S

’

, and draw C
’
V through to Y’

on the circle.

Then ar c B
’

Y
’
: ar c QC ; for it is as if we turned the prime

vertical ZQC about Z 0 till it coincided with the meridian,

when (since TE ) E would fall on Y, the radius

OEQon O
’

YY
’
and Q on Y

’

.

(4) Lastly, ar c BS =
'

ar c BL z ar e B
’

L
’

, because S , L ar e

U
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or tan VC tan SC cos SCV in the right—angled spherical
triangle SVC.

Thirdly
,

S
’

E
’

S
’

E
’

O
'

E
’

t v
anQZ tan Z 1

O
I

E
I

tan QZ sin BZ

tan SM sin Bill

III . 3
, applied to the right - angled spherical triangles ZBQ,

MBS with the angle B common .

Zeuthen points out that later in the same treatise Ptolemy
finds the ar c 2 a described above the horiz on by a star of

given declination by a procedure equivalent to the formula

that is which is Menelaus, Sphaer ica ,

cos or tan 6
"
tan gt,

and this is the same formula which
, as we have seen,

H ipparchus must in effect have used in his Commentar y on

the Phaenomena ofEudoxu s and A r atu s.

Lastly,
with regard to the calculations ofthe height h and

the az imuth a) in the general case where the sun’

s declination
is Zeuthen has shown that they may be expressed by the
formulae

sin h (cos 8
’

cos t sin 8
’
tan 41)cos 95,

cos 8
’

sin t
tan co 3

(cos 8
’

cos t sin 8
’

tan gt)sin 96

cos 8
’

sin t

sin 8
’

cos p cos 8
’

cos tsin 95

The statement therefore of
'

A . v . Br aunmuhl 1 that the
Indians were the first to utiliz e the method of projection
contained in the Analemma for actual trigonometrical calcu
lations with the help of the Table ofChords or Sines requires
modification in so far as the Greeks at all events showed the
way to such use ofthe figure. Whether the practical applica
tion of the method of the A nalemma for what is equivalent
to the solution of spherical triangles goes back as far as

H ipparchus is not certain ; but it .is quite likely that it does ,

1 Braunmuhl, i, pp . 1 3, 14 ,
- 41 .

U 2
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seeing that vDiodor us wrote his Analemma in the next cen
tury. The other alternative source for Hippar chus

’

s spherical
trigonometry is the Menelaus - theorem applied to the sphere,
on which alone Ptolemy,

as we have seen, relies in his

Syntaxis. In any case the Table of Chords or S ines was in
full use in H ippar chus

’

s works , for it is presupposed by either
method.

The P lanisphaer ium.

With the A nalemma of Ptolemy is associated another
work of somewhat s imilar content , the P lanisphaer ium

This again “

has only survived in a Latin translation from an

Arabic version made by one Maslama b. Ahmad al-Majr iti , of
Cordova (born probably atMadrid, died 1 0 0 7/8) the tr ansla

tion is now found to be, not by Rudolph
‘

of Bruges, but by
‘H ermannus Secundus ’

, whose pupil R udolph was ; it was
first published at Basel in 1 5 3 6

, and again edi ted, with com

mentary ,
by Commandinus (Venice, It has been

r e- edited from the manuscripts by H eiberg in vol . ii . of his
text of Ptolemy. The book is an explanatign of the system
of projection known as ster eogr aphic, by which points on the
heavenly sphere ar e represented on the plane of the equator
by projection from one point

,
a pole ; Ptolemy naturally takes

the south pole as centre of projection , as it is the northern
hemisphere which he is concerned to represent on a plane.

Ptolemy is aware that the projections of all circles on the

sphere (great circles— other than those through the poles
which project into straight lines— and small circles either
parallel 0 11 not parallel to the equator) ar e likewise circles .

It is curious , however, that he does not give any general
proof of the fact, but is content to prove it of particular
circles, such as the ecliptic, the horiz on , &c. This is remark
able, because it is easy to show that , if a cone be described
with the pole as vertex and pass ing thr ough any circle on the
sphere, i.e. a circular cone, in general oblique, with that circle
as base, the section of the cone by the plane of the equator
satisfies the criter ion found for the ‘

subcontr 1

a1 y sections ’ by
Apollonius at the beginning of his Conics

,
and i s therefore a

circle. The fact that themethod ofste1 eographicprojection 1s

so easily connected with the property of subcont1 a1y sections
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ofoblique circular cones has led to the conjecture that Apollo
niuswas the discoverer ofthe method. ButPtolemymakes no
mention ofApollonius , and all that we know is that Synesius
of Cyrene (a pupil of Hypatia, and born about A . D. 3 6 5 - 3 7 0)
attributes the discovery of the method and its application to

H ipparchus ; it is curious that he does notmention Ptolemy ’

s

treatise on the subject
,
but speaks of himself alone as having

perfected the theory . While Ptolemy is fully aware that
circles on the sphere become circles in the proj ection, he says
nothing about the other characteristic of this method of pro

jection , namely that the angles on the sphere ar e represented
by equal angles on the projection .

We must content ourselves with the shortest allusion to

other works of Ptolemy. There ar e, in the first place, other
minor astronomical works as follows :
(1) Towers dnhaud w da'

r épwu of which only Book II sur

vives , (2)
‘

Tnofie
’

a a g T61V nAauw/i éymu in two Books , the first
ofwhich is extant in Greek, the second in A rabic only , (3) the

inscription in Canobus , (4) H poxet
’

paw Ka i/6m m diar acr ts Ka i

xq rpoqiopi
’

a . A ll these ar e included in H eiberg
’

s edition
,

vol. ii .

The Optics.

Ptolemy wrote an Optics in five Books , which was trans
lated from an A rabic version into Latin in the twelfth
century by a certain A dmiral Eugenius Siculus 1 ; Book I ,
however, and the end of Book V ar e wanting. Books I , II
were physical, and dealt with generalities ; in Book III
Ptolemy takes up the theory ofmirrors, Book I V deals with
concave and composite mirrors, and Book V w ith refraction.

The theoretical portion would suggest that the author was
not very proficient in geometry . Many questions ar e solved
incorrectly owing to the assumption of a principle which is
clearly false, namely that ‘ the image ofa point on a mirror is
atthe point of concurrence oftwo lines , one ofwhi ch is drawn
from the luminous point to the centre of curvature of the

mir ror, while the other is the line from the eye to the point

1 See G Govi , L
'

ottica di Claudio Tolomeo di Eugenio Amnu
‘

r aglio de
f

Sict
'

lia, Torino, 1 884 ; and particulars in G. Loria. Le science esaue

nell
’

antica G-i
'

ecia, pp. 5 7 0, 57 1 .
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but the translation into Latin (now included in the Teubner

edition of H eron , ii , 1 9 0 0 , pp . 3 1 6 which was made by
William of Moerbeke in 1 2 6 9 , was evidently made from the

Greek and not from the A rabic
, as is shown by Graecisms in

the translation .

A mechanical Work H epi p
‘

omsu.

There ar e allusions in Simplicius 1 and elsewhere to a book
by Ptolemy of mechanical content

, weptp
'

omfw, on balancings
or turnings of the scale, m which Ptolemy maintained as

against A ristotle that air or water in their own ‘ place ’

have noweight , and , when they ar e in their own place either
remain at rest or rotate simply, the tendency to go up or to
fall down being due to the desire of things which ar e not in

their own places tomove 'to them . Ptolemy went so far as to
maintain that a bottle full of air was not only not heavier
than the same bottle empty (as A ristotle held), but actually
lighter when inflated than when empty . The same work is
apparently meant by the ‘ book on the elements ’

mentioned
by Simplicius .

2 Suidas attributes to Ptolemy three Books of
Mechan ica .

Simplicius 3 also mentions a s1ngle book , wept di atomic
-

ems,
‘ On d imension

’

, i. e . dimensions, in which Ptolemy tried to
show that the possible number of dimens ions is limited to
three .

A ttempt to prove the Paral lel-Postulate .

Nor should we omit to notice Ptolemy ’

s attempt to prove
the Parallel - Postulate. Ptolemy devoted a tract to this
subject , and Proclus 4 has given us the es sentials ofthe argu
ment used. Ptol'emy gives , first , a proof of Eucl. I . 2 8

, and

then an attempted proof of I . 29 , from which he deduces
Postulate 5 .

1 Simplicius on Arist. De caelo, p. 7 10 . 14, Heib . (Ptolemy , ed . Heib. ,

vol . ii , p.

2 I b. , p. 20 . 1 0 sq .

3 I b. , p. 9 . 2 1 sq. , (Ptolemy, ed . Heib vol . ii, p.

4 Proclus on Eucl . I , pp. 362 . 14 sq. ,
365 . 7 —36 7 . 2 7 (Ptolemy, ed . Heib . ,

vol. ii, pp. 266
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I . To prove I . 2 8 , Ptolemy takes two straight lines AB , CD,

and a transversal EEGH . We have to prove that , if the sum

of the angles BEG,
EGD is equal to two right angles , the

straight lines AB,
CD ar e parallel , i. e . non - secant .

Since AEG is the supplement of BEG,
and EGC ofEGD, it

follows that the sum ofthe angles A EG,
EGC is also equal to

two right angles .

Now suppose, if possible, that EB , GD,
making the sum of

the angles BEG,
EGD equal to two right angles , meet at K

then similarly EA , GC making the sum of the angles AEG,

EGC equal to two right angles must alsomeet , say atL .

[Ptolemy would have done better to point out that not

only ar e the two sums equal but the angles themselves ar e

equal in pairs, i. e. AEG to EGD and EGC toBEG,
and we can

therefore take the triangle K EG and apply it toEGon the other
s ide so

,

thatthe s ides EK , GK may lie along CC, EA r espec

tively ,
in which case GC,

EA w ill meet at the point where
K falls ]
Consequently the straight lines LABK , LCDK enclose a

space : which is impossible.

It follows that AB ,
CD cannot meet in either direction ;

they ar e therefore parallel .

II. To prove I . 2 9 , Ptolemy takes two parallel lines A B ,

CD and the transversal EG, and argues thus . It is required
to prove that AAEG A CGE two rightangles.

For , if the sum is not equal to two right angles , it must be
either (1)greater or (2) less .

(1) If it is greater, the sum of the angles on the other side,
BEG,

EGD,
wh ich ar e the supplements of the first pair of

angles, must be less than two right angles .

ButA E
,
CG ar e no more parallel than EB , GD, so that, if

EGmakes onepair ofangles AEG, EGC together gr eater tha n
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two r ightangles, itmust also make the other pair BEG,
EGD

together gr eater than two r ightangles .

But the latter pair of angles were proved less than two

right angles : which is impossible .

Therefore the sum of the angles AEG,
EGC cannot be

gr eater than two right angles .

(2) S imilarly we can show that the sum of the two angles
AEG, EGC cannot be less than two right angles .

Therefore AA EG A CGE two right angles.

[The fallacy here lies in the inference which I have marked
by italics . When Ptolemy says that AE,

CG ar e no more
paral lel than EB , GD,

he is in effect assuming that thr ough
a ny onepointonly onepar allel can bed r awn toa given str aight

li ne
,
which is an equivalent for the very Postulate he is

endeavouring toprove. The alternative Postulate is known
as P layfair’s axiom but it is of ancient origin , since it is
distinctly enunciated in Proclus ’s note on Eucl. I .

III . Post. 5 is
'

now deduced , thus .

Suppose that the straight lines making with a transversal
angles the sum ofwhich is less than two right angles do not
meeton the side on which those angles ar e.

Then, a for tior
'

i , they will not meet on the other s ide on

which ar e the angles the sum of which is gr eater than two

right angles . [This is enforced by a supplementary propos i
tion showing . that, if the lines met on that s ide, Eucl. I . 1 6

would be contradicted ]
H ence the straight lines cannot meet in either direction

they ar e therefore par allel.
But in that case the angles made with the transversal ar e

equal to two right angles : which contradicts the assumption.

Therefore the straight l ines will meet .
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above quoted ; the title, however, in itself need not imply
more than that Heron’

s work was a new edition of a similar
work byCtesibius ,and the KmmBz

’

ovmayeven have been added
by some well - read editor who knew both works and des ired to
indicate that the greater part ofthe contents ofH eron’

s work
was due to Ctesibius . One manuscript has ”Hpawog Maegan
8p€a>s

1 Be n
-

od
’

xci, which corresponds to the titles ofthe other
works ofHeron and is therefore more likely to be genuine.

The d iscovery ofthe Greek text ofthe Metr ica by R . S chone
in 1 8 9 6 made it possible to fix with certainty an upper limit .
In that work there ar e a number of allusions to A rchimedes ,
three references to the xmpi

’

ov dnor opr
'

, of Apollonius , and
two to ‘

the (books)about straight lines (chords) in a circle ’

(dédemr a i dée
’

v r ots 1r ep2Ta, éu xfixhcp Now, although
the first beginnings of trigonometry may go back as far as

A pollon ius , we know of no work giving an actual Table of
Chords earlier than that of Hi pparchus . We get, therefore ,
at once the date 1 5 0 B . C . or thereabouts as the terminu s post

qu e
'm. A terminu s ante quem is furnished by the date ofthe

composition ofPappus ’s Collection ; for Pappus alludes to, and
draws upon

, the works ofH eron . A s Pappus was writing in
the reign ofDiocletian (A .D . 2 8 4 it follows that H eron
could not be much later than , say, A .D. 2 50 . In speaking of
the solutions by the old geometers ’

(oi nahaioi yewpér pat)of

the problem offinding the twomean proportionals , Pappus may

seem at fir st sight to include H eron along with Eratosthenes ,
Nicomedcs and Philon in that designation, and it has been
argued, on this basis, that H eron lived long before Pappus .

But a close examination of the passage 1 shows that this is
by no means necessary. The relevant words ar e as follows

The ancient geometers were not able to solve the problem
of the two straight lines [the problem offinding two mean
proportionals to them] by ordinary geometr ical methods

,
s ince

the problem is by nature “
solid ”

. but by attacking it with
mechan ical means they managed

,
in a wonder ful way ,

to

reduce the question to a practical and convenient constr uction,

as may be seen in the Mesolabon of Eratosthenes and in the

mechanics ofPhilon and H eron Nicomedcs also solved it
by means ofthe cochloid curve, with which he also trisected
an angle .

’

1 Pappus , iii , pp. 54—6 .
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Pappus goes on to say that he will give four solutions , one
ofwhich is his own ; the first, second , and third he describes
as those of Eratosthenes , Nicomedcs and H eron. But in the

earlier sentence he mentions Philon along with H eron
,
and we

know from Eutocius that H eron’

s solution is practically the
same as Philon

’

s . H ence we may conclude that by the third
solution Pappus really meant Philon

’

s
,
and that he only men

tioned H eron ’

s Mechanics because it was a convenient place in
which to find the same solution.

Another argument has been based on the fact that the

extracts from Heron ’

s Mechanics given at the end ofPappus ’s
Book VIII , as we have it , ar e introduced by the author with
a complaint that the copies of H eron ’

s works in which he
found them were in many respects corrupt, having lost both
beginning and end .

1 But the extracts appear to have been
added , not by P appus , but by some later writer

, and the

argument accordingly falls to the ground .

The limits ofdate being
’

then , say ,
1 5 0 B . C . to A . D. 2 50 , our

only course is to try to define , as well as possible, the relation
in time between H eron and the other mathematicians who
come , roughly , within the same limits . This method has led
one of the most recent wr iters on the subject (Tittel 2) to
place H eron not much later than 1 0 0 B .o. ,

while . another} 1
relying almost entirely on a comparison between passages in
Ptolemy and H eron,

arrives at the very different conclusion
that H eron was later than Ptolemy and belonged in fact to
the second century A . D .

In view of the difference between these results , it will be
convenient to summariz e the evidence relied on to establish
the earlier date, and to consider how far it is or is not con

elusive against the later . We begin with the relation of

H eron to Philon . Philon is supposed to come not more than
a generation later than Ctesibius , because it would appear that
machines for throwing projectiles constr ucted by Ctesibius
and Philon respectively were both available at one time for
inspection by experts on the subject “; it is inferred that

1 Pappus , VI 1 1 , p. 1 1 16 . 4— 7 .

2 Ar t. Heron von A lexandreia ’

in Pauly-Wissowa’s R eal- Encycloped ic
der class . A lter tumswissenschcg

‘t, vol. 8 . l , 1 912 .

3 I . Ham1ner ~Jensen in H ermes
,
vol . 48 , 191 3 , pp. 224—35.

‘1 Philen, Mech . Syut. iv, pp. 68 . 1 , 7 2 . 36 .
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Philon
’

s date cannot be later than the end of the second
century B .C . (If Ctesibius flourished before 24 7 B . C . the argu
ment would apparently suggest rather the beginning than the
end ofthe second century .) Next , H eron is supposed to have
been a younger contemporary of Philen , the grounds being
the following. (1) H eron mentions a stationary - automaton
representation by Philon of the Nauplius - story ,

1
and this is

identified by Tittel with a representation ofthe same story by
some contemporary ofH eron ’

s (0 5m 6
’

find s Buta careful
perusal of the whole passage seems to me rather to suggest
that the latter representation was not Philon

’

s , and that
Philen was included by H eron among the ‘

ancient ’

auto
maton—makers , and notamonghis contemporaries .

3 Another
argument adduced to show that Philen was contemporary

1 Heron , A ntam , pp. 404. 1 1— 408 . 9. I b. , p. 412 . 1 3 .

The relevant remarks of Heron ar e as follows . (1) He says that he
has found no arrangements of ‘

stationary automata ’
better or more

instructi ve than those described by Philon of Byz antium (p. 404 .

A s an instance he mentions Philom’

e setting of the Nauplius - story, in
wh ich he found everything good except two things (a) the mechanism
for the appearance ofAthene, which was too difficult and

(b) the absence of an incident promised by Philon in his description ,

namely the falling of a thunderbolt on Ajax with a sound of thunder
accompanying it (pp. 404 . 1 5—408 . This latter incident Heron could
not find anywhere in Philen , though he had consulted a great number
of copies of his work . He continues (p. 408 . 9—1 3)that we ar e not to
suppose that he is running down Philon or charging him with notbeingcapable ofcarrying outwhat he promised . On the contrary , the emission
was probably due to a slip ofmemory ,

for it is easy enough to make
stage- thunder (he proceeds to show how to do it). But the rest of
Philon

’

s arrangements seemed to him satisfactory , and this , he says, is

why he has not ignored Philom’e work : for I think thatmy readers will
get the most benefit if they ar e shown ,

first What has been well said by
the ancients and then ,

separately from this what the ancients overlooked
or what in their work needed improvement (pp. 408 . 22—410 . (2)The
next chapter (pp. 41 0 . 7 —41 2 . 2)explains generally the sort ofthing the

automaton-

pictur e has to show,
and Heron says hewill give one example

which he regard s as the best. Then after drawing a contrast between
the simpler picturesmade by ‘the ancients which involved three different
movements only , and the contemporary (oi KaO’ snag) representations of
interesting stories by means ofmore numerous and varied movements
(p. 412 . 3 he proceeds to describe a setting of

.

the Nauplius - story.

This is the representation which Tittel identifies w1th Phi lon ’

s . But it
is tobe observed that the description includes that ofthe episode of the
thunderbolt striking Ajax (c. 30 , pp. 448 . 1—452 . 7 )which Heron expressly
says that Philen omitted . Further, the mechanism for the appearance
of Athene descr ibed in

'

c. 29 is clearly not Philon
’

s
‘more difficult ’

arrangement, but the simpler device described (pp.

.

404. 18 - 408 . 5) as

possible and preferable to Philon’

s (cf. Heron , vol. 1 , ed . Schmidt, pp.

lxviii- lxix).
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machines used by the two for the same purpose frequently
differ in details ; e . g. in Vitruvius ’s hodometer a pebble drops
into a box at the end of each R oman mile

,

1 while in H eron ’

s

the distance completed is marked by a pointer .

2 It is indeed
pointed out that the water - organ ofH eron is in many respects
more primitive than that of V itruvius ; but, as the instru

ments ar e altogether different
,
this can scarcely be said to

prove anything.

On the other hand there ar e points of contact between
certain propos itions of Heron and of the Roman agr imen

sor es . Columella
,
about A . D. 6 2 , .gave certain measurements of

plane figures which agree with the formulae used by H eron ,

notably those for the equilateral triangle, the regular hexagon
(in this case not only the formula butthe actual figures agree
with H eron ’

s)and the segment of a circle which is less than
a semicircle, the formula in the last case being

(8 7 0h 1
1
7:

where s is the chord and h the height of the segment. H ere
there might seem to be dependence, one way or the other ;
but the poss ibility is not excluded that the two writers may

merely have drawn from a common source ; for H eron,
in

giving the formula for the area of the segment of a circle,
states that it was the formula used by ‘ the more accurate
investigators ’

(ofaiKptBe
'

O
'

Tepov

We have , lastly ,
to consider the relation between Ptolemy

and Heron . If H eron lived about 1 0 0 B . C . ,
he was 2 0 0 years

earlier than Ptolemy (A .D. 1 0 0 The argument used to
prove that Ptolemy came some time after Heron is based on
a passage ofProclus where Ptolemy is said to have remarked
on the untrustworthiness of the method in vogue among the
‘more ancient ’ writers ofmeasuring the apparent diameter of
the sun by means of water- clocks .

4 H ipparchus , says Pro
clus , used his dioptra for the purpose, and Ptolemy followed
him. Proclus proceeds

‘Let us then set out here not only the observations of

the ancients but also the construction of the dioptra of

1 Vitruvius , x . 14 .

2 Heron , Dv
’

oyotra, c. 34 .

3 Heron ,
Metr ica , i . 3 1 , p. 7 4 . 2 1 .

Proclus , Hypotypos is , pp. 120 . 9— 1 5 , 124 . 7 —26 .
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H ipparchus . And first we will show how we can measure an

interval of time by means of the regular efflux of water,
a pl ocedur e which was explained by H eron the mechanician
in his treatise on water clocks .

’

Theon ofA lexandria has a passage to a similar effect .

1 H e

first says that the most ancient mathematicians contrived
a vessel which would letwater flow out un iformly through a

small aperture at the bottom,
and then adds atthe end , almost

in the same words as Proclus uses , that H eron showed how
this is managed in the first book of his work on water
clocks . Theon

’

s account is from Pappus ’s Commentary on

the Syntam
’

s, and this i s also Proclus ’s source ,
as is shown by

the fact that Proclus gives a drawing of the water clock
which appears to have been lost in Theon ’

s transcription from
Pappus , but which Pappus must have reproduced from the

work of H eron Tittel infers that H eron must have ranked
as one of the ‘more ancient ’ writers as compared with
Ptolemy. But this again does not seem to be a necessary
inference . No doubt H eron ’

s work was a convenient place to
refer to for a description of a water - clock , but it does not

necessarily follow that Ptolemy was referring to H eron ’

s

clock rather than some earlier form ofthe same instrument .
An entirely different

,

conclusion from that of Tittel is
reached in the article Ptolemaios and H eron already alluded
to.

2 The arguments ar e shortly these. (1 ) Ptolemy says in
his Geogr aphy (0 . 3 ) that his predecessors had only been able
to measure the distance between two places (as an ar c of a .

great circle on the earth ’

s circumference) in the case where
the two places ar e on the same meridian . H e claims that he
himself invented a way of doing this even in the case Where
the two places ar e neither on the same meridian nor on the

same parallel circle
,
provided that the heights of the pole at

the two places respectively
,
and the angle between the great

circle passing through both and the meridian circle through
one of the places, ar e known . N

’

ow H eron in his Diopt
'r a,

deals with the problem of measuring the distance between
two places by means of the dioptra

, and takes as an exa

1 Theon , Comm. on the Syntax zs , Basel , 1 538 , pp. 26 1 sq. (quoted in
P ioclus

,
H ypolypos is , ed . Manitius

, pp. 309
2 HammerJensen

,
0p. cit.
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the distance between Rome and A lexandria.

1 Unfortunately
the text is in places corrupt and deficient , so that the method
cannot be reconstructed in detail. But it involved the obser
vation of. the same lunar eclipse at Rome and A lexandria
respectively and the drawing of the aamlemma for Rome .

That is to say,
the mathematical method which Ptolemy

claims to have invented is spoken of by Heron as a thing
generally known to experts and

'

not more remarkable than
other technical matters dealt with in thesame book . Couse
quently H eron must have been later than Ptolemy. (It is
right to add thatsome hold that the chapter ofthe Dz

'

optr a.

in question is not germane to the subject of the treatise, and
was probably notwritten by H eron but interpolated by some

later editor ; if this is so, the argument based upon it falls to
the ground .) (2) The dioptra described in H eron’

s work is a
fine and accurate instrument , very mu ch better than anything
Ptolemy had at his disposal . If Ptolemy had beenaware of
its existence, it is highly unlikely that he would have taken
the trouble to make his separate and imperfect parallactic
instrument, since it could easily have been grafted on to

H eron ’

s dioptra. Not only ,
therefore, must H eron have been

later than Ptolemy but, seeing that the technique of instr u

ment - making had made such strides in the interval , he must
have been considerably later . (3) In his work 1r ep2 p

'

ovrci
’

w 2

Ptolemy,
as we have seen,

disputed the view ofAristotle that
air

,

has weight even when sur rounded by air . A ristotle
satisfied himself exper imentally that a vessel full of air is

heavier than the same vessel empty ; Ptolemy. also by ex

per iment, convinced himself that the former is actually the

lighter . Ptolemy then extended his argument towater, and
held thatwater with water round it has no weight , and that
the diver , however deep he dives , does not feel the weight of
the water above him. Heron asserts that water has no

appreciable weight and has no appreciable power of come

press ing the air in a vessel inverted and forced down into
the water . In confirmation of this he cites the case of the

diver, who is not prevented from breathing when far below

Heron, Dioptr a, c. 35 (vol . iii, pp.

2 Simplicius on De caelo, p. 7 10 . 14 , H eib. (Ptolemy, vol. 1 1 , p.

3 Heron ,
Pneumatica, i . Pref. (vol. i , p. 22. 14

X
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CONTROVERSIES AS TO HERON
’

S DATE 30 7

H eron was known as 6 HAegavdpetfis
’

(e.g. by Pappus)or
6

,
unxawxés (mechanicus), to distinguish him from other

persons of the same name ; Proclus and Damianus use the

latter title, while Pappus also speaks of of wept r éu
"

Hpawa

pnxawxoc
’

.

Char acter of works .

H eron was an almost encyclopaedic writer on mathematical
and phys ical subjects . Practical utility rather than theor eti
cal completeness was the obj ect aimed at; his environment in
Egyptno doubt accounts largely for this . His Metr ica begins
with the old legend of the traditional origin of geometry in
Egypt, and in the Dioptr a we find one of the very problems
which geometry was intended to solve, namely that of r e

establishing boundaries of lands when the flooding of the

Nile had destroyed the land -marks : ‘When the boundaries
of an area have become obliterated to such an extent that
only two or three marks remain

,
in addition to a plan of the

area, to supply afresh the remaining marks .

’ 1 H eron makes
little or no claim to originality ; he often quotes authorities

,

but, in accordance with Greek practice, he more frequently
omits to do so, evidently without any idea ofmisleading any

one ; only when he has made what is in his opinion any
slight improvement on the methods ofhis predecessors does
he trouble to mention the fact, a habit which clearly indi
cates that

, except in these cases , he is simply giving the best
tr aditional methods in the form which seemed to him easiest
of comprehension and application . The Metr ica seems to be

richest in definite references to the discoveries of prede
cessor s ; the names mentioned ar e Archimedes, Dionysodor us ,
Eudoxus , Plato ; in the Dioptr a Eratosthenes

'

is quoted, and
in the introduction to the Catoptr ica Plato and A ristotle ar e

mentioned.

The practical utility ofH eron’

s manuals being so great, it
was natural that they should have great vogue , and equally
natural that the most popular of them at any rate should be
r e—edited, altered and added to by later writers ; this was
inevitable with books which, like the Elements of Euclid,
were in regular use in Greek , Byz antine, Roman,

and Arabian
Heron, Dioptr a, c. 25 , p. 268 . 1 7 —19.

X



308 HERON OF ALEXANDR IA

education for centuries . The geometrical or mensurational
books in particular gave scope for expansion by multiplication
of examples, so that it is difficult to disentangle the genuine
Heron from the rest ofthe collections which have come down

v

to us under his name. Hultsch
’

s considered cri terion i s as

follows : ‘The H eron texts wh ich have come down to our

time ar e authentic in so far as they bear the author’s name

and have kept the original des ign and form ofH eron’

s works,
but ar e unauthentic in so far as , being constantly in use for

practical purposes , they were repeatedly r e- edited and , in the

course . of r e- editing, were rewritten with a view to the

particular needs of the time.

’

List of Tr eatises .

Such ofthe works ofH eron as have survived have reached
us in very different ways . Those which have come down in
the Greek ar e :

I. The Metr ica,
first discovered in 1 8 9 6 in a manuscript

of the eleventh (or twelfth) century at Constantinople by
R . Schone and edited by his son , H . Schone (Her onis Oper a,

iii ,
Teubner ,

II . On the Dioptr a , ed ited in an Italian version by Venturi
in 1 8 1 4 ; the Greek text was first brought out by A . J . H .

VincentI in 1 8 5 8 , and the critical edition ofit by H . Schone is
included in the Teubner vol . iii j ust mentioned .

III . The Pneumatica ,
in two Books

, which appeared first in
a Latin translation by Commandinus , published after his
death in 1 5 7 5 ; the Greek text was first edited by Thevenot
in Veter um mathematicomum oper a Gr aece et Latine ed ita

(Paris , and is now avai lable in H er on-is Oper a ,
i (Teub

ner , by W. Schmidt.
IV . On the ar t of constr u cting automata (fiépi aur a/tar o

wocnr txfig), or The automaton - theatr e, first edited in an Italian
translation by B. Baldi in 1 5 8 9 the Greek text was included
in Thevenot’s Vet. math , and now forms part of Her onis
Opera, vol. i , by W. Schmidt .
V. Belopoeica (on the construction ofengines ofwar ), edited

Notices etextr aits des manuscr its de la B ibliothéque impém
’

ale, xix, pt. 2,
pp. 157 - 33 7 .
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by B . Baldi (Augsburg , Thevenot (Vet. math ), K ochly
and Rustow (1 8 5 3) and by Wescher (Polior cétique ates Gr ecs,
1 8 6 7

, the first critical edition).
VI . The Cheir obalistr a xerpoBaAM

’

m-

pa s Kar aok evn
Ka t a vpyer pc

’

a edited by V . Prou , Notices etextr aits, xxvi . 2
(Paris ,
VI I . The geometrical works , Definitiones , Geometr ia , Geo

daesia , Ster eometr ica I and II , Mensu r ae, Liber Geeponicu s,
edited by Hultsch with Var iae collectiones (Her on is A lexan
d r ini geometr icor um et ster eometr icor um r eliqu iae,
This edition will now be replaced by that of H eiberg in the
Teubner collection (vols . iv , v), which contains much addi
tional matter from the Constantinople manuscript referred to,
but omits the Liber Geeponicu s (except a few extracts)and the
Geodaesia (which contains only a few extracts from the

Geometr y ofH eron).
On ly fragments survive of the Greek text of the Mechanics

in three Books , which, however , is extant in the Arabic (now
edited, w ith German translation ,

in H er onis Oper a ,
vol. ii ,

by L. Nix and W. Schmidt, Teubner ,
A smaller separate mechanical treatise, the B apovhk és

‘

,
is

quoted by Pappus .

1 The object of it was ‘ to move a given
weight by means of a given force ’

, and the machine consisted
ofan arrangement of interacting toothed wheels with different
diameters .

At the end ofthe Dioptr a is a description ofa hodometer for

measuring distances traversed by a wheeled vehicle, a kind of
taxameter, likewise made of a combination of toothed wheels .

A work on Water - clocks (m p?odpt
’

mu cbpocr xovr et
’

cou) is men

tioned in the P neu/matica as having contained four Books ,
and is also alluded to by Pappus .

2 Fragments ar e preserved
in Proclus (Hypotyposis, chap . 4)and in Pappus

’

s commentary
on Book V ofPtolemy ’

s Syntaxis reproduced by Theon.

Of H eron ’

s Commentar y on E uclid
’

s Elements Only very
meagre fragments survive in Greek (Proclus), but a large
number of extracts ar e fortunately preserved in the A rabic
commentary of an - Nairiai , edited 1) in the Latin vers ion of

Gher ar d of Cremona by Curtz e (Teubner , and (2) by
1 Pappus, viii , p. 1060 . 5 .

2 I b. , p. 1026 . 1 .
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Of this class ar e the different cases of I . 3 5 . 3 6 , I I I . 7
,
8

(where the chords to be compared ar e drawn on different s ides
ofthe diamete1 instead ofon the same side), I ll . 1 2 (which is
not Euclid’s at all but H eron ’

s own ,
adding the case of

external to that of internal contact in III . VI . 1 9 (where
the triangle in which an additional line is drawn is taken to
be the smaller of the two), VI I . 1 9 (where the particular case
is given of thr ee numbers in continued proportion instead of
four proportionals).

(3) A lternative proofs .

It appears to be H eron who first introduced the easy but
uninstructive semi - algebraical method of proving the propos i
tions II . 2— 1 0 which is now so popular. On this method the
propositions ar e proved ‘without figures ’

as consequences of

II . 1 corresponding to the algebraical formula

H eron explains that it is not poss ible to prove II . 1 without
draw ing a number of lines (i . e. without actually drawing the
rectangles), but that the following propos itions up to II . 1 0

can be proved by merely drawing one line. H e distinguishes
two varieties of the method , one by d issolutio, the other by
compositio, by which he seems to mean splitting

- up of rect
angles and squares and combination of them into others .

But in his proofs he sometimes combines the two varieties .

A lternative proofs ar e given (a) of some propositions of

Book III
,
namely III . 2 5 (placed after III . 3 0 and starting

from the ar e instead of the chord), III . 1 0 (proved by means

of III . III . 1 3 (a proof preceded by a lemma to the effect
that a straight line cannot meet a circle in more than two

points).
A class of alternative proof is (b)that which is intended to

meet a particular objection (ey e-

r am s)which had been or might
be raised to Euclid’s constructions . Thus in certain cases
H eron avoids pr oducing a certain straight line , where Euclid
produces it, the obj ect being tomeet the objection ofone who

should deny our right to assume that there is any space

available. Of th is class ar e his proofs of l . 1 1 , 2 0 and his

note on I . 1 6 . S imilarly in I . 4 8 he supposes the right - angled
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triangle which is constructed to be constructed on the same

side ofthe common side as the given triangle is .

A third class (0)is that which avoids r eductioad absur dum
,

e.g. a direct proof of I . 1 9 (for which he requires and gives
a preliminary lemma)and ofI . 2 5 .

(4) H eron supplies certain conver ses of Euclid ’

s propositions
e.g. of II . 1 2

,
1 3 and VIII . 2 7 .

(5) A few additions to
,
and extensions of, Euclid

’

s propositions
ar e also found . Some ar e unimportant , e . g . the construction
of isosceles and scalene triangles in a note on I . 1 and the

construction of two tangents in III . 1 7 . The most important
extension is that of III . 2 0 to the case where the angle at the

circumference is greater than a right angle
,
which gives an

easy way ofproving the theorem of III . 2 2 . Interesting also
ar e the . notes on I . 3 7 (on I . 2 4 in Pr oclus l, where H eron
proves that two triangles with two sides of the one equal
to two s ides ofthe other and with the included angles supple

mentar y ar e equal in area,
and compares the areas where the

sum of the included angles (one being supposed greater than
the other) is less or greater than two rightangles , and on I . 4 7 ,

where there is a proof (depending on preliminary lemmas)of
the fact that, in the figure of Euclid ’s proposition (see next
page), the straight lines AL,

BG,
CE meet in a point. This

last proof is worth g1 v1ng. First come the ‘

lemmas .

(1) If in a triangle A BC a straight line DE be drawn
parallel to the base BC cutting the sides A B

, A C or those
sides produced in D

,
E

,
and if F be the

middle point of BC, then the straight line
AF (produced if necessary)will also bisect
DE . (HK is drawn through A parallel to
DE

,
and HDL

, K EM through D,
E parallel

to AF meeting the base in L
,
M r espec

B L F M C
tively . Then the triangles ABE

, AFC

between the same parallels ar e equal . So ar e the triangles
DBF

, EFC. Therefore the differences , the triangles ADE ,

A EF
,
ar e equal and so therefore ar e the parallelograms HF

,

KF. Therefore LF FM
, or DC CE .)

(2 ) is the converse
-

of Eucl. I . 43 . If a parallelogram is
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cut into four others ADGE, DE,
FGCB, CE, so that DF, CE

ar e equal , the common vertex G will lie on the diagonal AB.

Heron produces AG tomeet CF in H , and then proves that
AHE is a straight line;”

S ince DE, CE ar e equal, so me

the triangles DGF, ECG. A dding
the triangle GCF,

we have the
triangles ECF, DCF equal, and

DE , CF ar e parallel .
But (by I . 34 , the tri

angles A K E
, GKD ar e congruent ,

so that EX=KD ; and by lemma (1) it follows thatCH : HF.

Now
,
in the triangles FHB ,

CHG,
two sides (BF,

FH and

GC
,
CH ) and the included angles ar e equal ; therefore the

triangles ar e congruent, and the angles BHF, GEG ar e equal .
Add to each the angle GHF, and

ABHF+ AFHG A CH G A GHF two right angles .

To prove his substantive propos ition H eron draws AKL
perpendicular to BC, and joins EC meeting AK in M . Then
we have only to prove that BMG is a straight line.

Complete the
‘ parallelogram FAHO, and draw the diagonals

OA ,
EH meeting in Y. Through M draw PQ, SR parallel“

respectively toBA ,
A C.
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‘ concave ’

and ‘
convex

’

, lune, garland (these last two ar e

composite ofhomogeneous parts)and awe (wéAexvs), bounded by
four circular arcs , two concave and two convex , Defs . 2 7 —3 8 .

R ectilineal figures follow ,
the various kinds of triangles and

of quadrilaterals, the gnomon in a parallelogram,
and the

gnomon in the more gener al sense of the figur e which added
to a given figure makes the whole into a similar figure,
polygons , the parts of figures (s ide, diagonal, height of a

tri angle), perpendicular, parallels , the three figures which will
fill up the space round a point, Defs. 3 9 - 7 3 . Solid figures ar e
next classified according to the surfaces bounding them, and

lines on surfaces ar e d ivided into (1) simple and circular ,
(2) mixed, like the conic and spiric curves, Defs. 7 4 , 7 5 . The

sphere is then defined, with its parts, and stated to be

the figure which
, ofall figures having the same surface, is the

greatest in content , Defs . 7 6 — 8 2 . Next the cone, its different
species and its parts ar e taken up, with the distinction
between the three conics , the section of the acute- angled cone
(
‘ by some also called ellipse

’

) and the sections of the right
angled and obtuse- angled cones (also called par abola and

hyper bola), Defs . 8 3—9 4 ; the cylinder, a section in general ,
the spir e or tor e in its three varieties, open, continuous (or
j ust closed) and ‘ crossing - itself ’

,
which respectively have

sections possessing special properties , ‘
square rings ’ which

ar e cutoutof cylinders (i . e. presumably rings the cross - section
ofwhich through the centre is two squares), and various other
figures out out of spheres or mixed surfaces , Defs . 9 5— 7 ;

rectilineal solid figures , pyram ids , the five regular solids , the
semi- regular solids of A rchimedes two of which (each with
fourteen faces) were known to Plato, Defs . 98—1 0 4 ; prisms
of different kinds, parallelepipeds, with the special varieties ,
the cube ,

the beam, dokos‘ (length longer than breadth and

depth , which may
'

be equal), the br ick, wh i z/ 61
’

s (length less
than breadth and depth), the or Bw/l fG KOS with
length ,

breadth and depthunequal , Defs . 1 0 5 - 1 4 .

Lastly come definitions of relations , equality of lines , sur
faces , and solids respectively,

s imilarity of figures , ‘ reciprocal
figures ’

,
Defs . 1 1 5 — 1 8 ; indefinite increase in magnitude,

parts (which must be homogeneous with the wholes , so that
e.
g

. the horn - like angle is not a part or submultiple ofa right
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or any angle), multiples , Defs . 1 1 9— 2 1 proportion in magni
tudes

,
what magnitudes can have a ratio to one another ,

magnitudes in the same ratio or magnitudes in proportion,

definition of greater ratio, Defs . 1 2 2 - 5 ; transformation
.

of

ratios (componendo, separ anclo, conver tendo, alter nando, i n

ver tendo and ex aequali), Defs . 1 26 — 7 ; commensurable and

incommensurable magnitudes and straight lines , Defs . 1 2 8 ,

1 2 9 . There follow “

two tables ofmeasures , Defs . 1 3 0— 2 .

The Definitions ar e very valuable from the point ofview of

the historian ofmathematics , for they give the different alter
native definitions of the fundamental conceptions ; thus we
find the A rchimedean ‘ definition ’

of a straight line, other
definitions which we know from Proclus to be due to A pol
lonius

, others from Pos idonius , and so on . No doubt
_

the

collection may have been recast by some editor or editors
after H eron’

s time
,
but it seems

,
at least in substance , to go

back to H eron or earlier still . So far as it contains or iginal
definitions ofPosidonius

,
it cannot have been compiled earlier

than the first century but its content seems to belong in
the main to the period before the Christian er a . H eiberg
adds to his edition ofthe Definitions extracts from H eron ’

s

Geometry
,
postulates and ax ioms from Euclid, extracts from

Geminus on the class ification of mathematics
,
the principles

of geometry , &c.

, extracts from Proclus or some early collee
tion of scholia on Euclid

, and extracts from A natolius and

Theon ofSmyrna, wh ich followed the actual definitions in the
manuscripts .

_

These various additions were apparently collected
by some Byz antine editor, perhaps ofthe eleventh century .

Meii sur ation .

The Metr ica , Geometr ica , Ster eometr ica , Geoclaesia ,

Mensu r ae.

We now come to the mensuration of H eron . Of the

different works under this head the Metr ica is the most

important from our pointofview because it seems, more than
any of the others, to have preserved its original form . It is

also more fundamental in that it gives the theoretical basis of
the formulae used ,

and is not a mere application of rules to
particular examples . I t is also more akin to theory in that it



MENSURATION 3 1 7

does not use concrete measures , but simple numbers or units
which may then in particular cases be taken to be feet, cubits ,
or any other unit of measurement . Up to 1 8 9 6 , when a

manuscript of it was discovered by -R . Schone at Constanti
nople , it was only known by an allusionto it in Eutocius

(on A rchimedes
’

s Measu r ement of a Cir cle), who states that
the way to obtain an approximation to the square - root of
a non - square number is shown by H eron in his Metr ica , as

well as by Pappus , Theon , and others who had commented on
the Syntaazis of Ptolemy .

1 Tannery 2 had already in 1 8 94

discovered a fragment ofH eron ’

s Metr ica giving the particular
rule in a Par is manuscript of the thirteenth century contain
ing Prolegomena to the Syntaais compiled presumably from
the commentaries of Pappus and Theon . Another interesting
difference between the Metr ica and the other works is that in
the former the Greek way of writing fractions (which is ou r
method) largely preponderates , the Egyptian form (which
expresses a fraction as the sum of diminishing submultiples)
being used comparatively rarely

,
whereas the reverse is the

case in the other works .

In view of the greater authority of the Metr ica
,
we shal l

take it as the basis of our account of the mensuration
,
while

keeping the other works in view . It is desirable at the

outset to compare broadly the contents of the various collee
tions . Book I of the Metr ica contains the mensuration of

squares , rectangles and triangles (chaps . 1 parallel - trapez ia
,

rhombi , rhomboids and quadrilaterals with one angle right
(1 0 regular polygons from the equilateral triangle to the
regular dodecagon (1 7 a ring between two concentric
circles segments ofcircles (2 7 an ellipse a para
bolic segment the surfaces of a cylinder an isosceles
cone a sphere (3 8) and a segment of a sphere
Book II gives the mensuration of certain solids , the solid
content of a cone (chap . a cylinder rectilinear solid
figures , a parallelepiped , a prism , a py ramid and a frustum

,

&c. (3 a frustum of a cone (9 , a sphere and a segment
of a sphere (1 1 , a spir e or tor e the section of a

cylinder measured in A rchimedes’s Method and the solid
1 Arch imedes, vol . iii , p. 232 . 1 3—1 7 .

2 Tannery , Mémoir es scientifigues , ii, 1912 , pp. 447 —54 .
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H eiberg puts side by s ide with corresponding sections of the
Geometr ica in parallel columns ; others he inserts in suitable
places ; sections 7 8 . 7 9 contain two important problems in
indeterminate analysis Geom . 2 4 , 1

— 2
,

H eiberg
adds , from the Constantinople manuscript containing the

Metr ica , eleven more sections (chap. 24
,
3 — 1 3) containing

indeterminate problems , and other sections (chap . 2 4
,
1 4—3 0 and

3 7 — 5 1 )giving the mensuration ,
mainly

, offigures inscribed in or
circumscribed to others , e. g. squares or circles in triangles ,
circles in squares, circles about triangles , and lastly of circles
and segments ofcircles .

The Ster eometr ica I has at the beginning the title E la a
yarya i 7 51V or epeoyer povy e

’

vcou H pan/ 0 9 but , like the Geometr ica ,

seems to have been edited by Patr icius . Chaps . 1— 40 give the
mensuration of the geometrical solid figures , the sphere, the
cone

, the frustum of a cone, the obelisk with circular base ,
the cylinder, the ‘ pillar ’

,
the cube , the o-cpnw

’

c xog (also called
o'VU the

,
u et

'

ovpov pyramids , and frusta .

Some portions of this section of the book go back to H eron ;
thus in the measurement of the sphere chap . 1 Metr ica

II . 1 1
, and both h ere and elsewhere the ordinary form of

fractions appears . Chaps . 4 1 — 54 measure the contents ofcer
tain buildings or other constructions, e. g . a theatre ,

an amph i
theatre , a swimming - bath , a well, a ship

,
a wine - butt

,
and

the like.

The second collection,
Ster eometr ica II , appears to be of

Byz antine origin and contains similar matter toSter eometr ica I ,
parts ofwhich ar e here repeated. Chap . 3 1 (2 7 , H eib.)gives
the problem of Thales ,

to find the height of a pillar or a tree
by the measurement of shadows ; the last sections measure
various pyramids , a pr ism , a Ben/ dam s (little altar).
The Geodaesia is not an independent work, but only con

tains extracts from the Geometr y ; thus chaps . 1— 1 6 Geom .

5— 3 1
,
B ultsch 2— 1 2

,
3 2 , chaps . 1 7 —1 9 give the

methods offinding , in any scalene triangle the s ides ofwhich
ar e given, the segments ofthe base made by the perpendicular
from the vertex , and of finding the area direct by the well
known ‘ formula ofH eron i. e . we have here the equivalent of
Metr ica I . 5 — 8 .

Lastly ,
the

,
uer pfiaew,

or Mensu r ae, was attributed toHeron
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in an A rchimedes manuscript of the ninth century , but can
not in its present form be due to H eron although portions of
it have points ofcontactw ith the genuine works. Sects . 2 2?

measure all sorts of objects, e . g. stones of different shapes ,
apillar, a tower, a theatre , a ship ,

a vault
,
a hippodrome but

sects . 2 8—3 5 measure geometrical figures , a circle and segments
ofa circle (cf. Metrica I), and sects . 3 6 — 4 8 on spheres, segments
of spheres , pyramids , cones and frusta ar e closely connected
with Ster eom. I and Metr ica II sects . 4 9—5 9 ,

giving the men

su r ation of receptacles and plane figu res of various shapes ,
seem to have a different origin . We can now take up the

Contents of the Metr ica .

Book I . Measurement of Areas .

The preface records the tradition that the first geometry
arose out of the practical necessity of measuring and dis

tributing land (whence the name ‘ geometry after which
extens ion to three dimensions became necessary in order to
measure solid bodies . H eron then mentions Eudoxus and

A rchimedes as pioneers in the discovery of d ifficult measure
ments

,
Eudoxus having been the first to prove that a Cylinder

is three times the cone on the same base and of equal height ,
and that circles ar e to one another as the squares on their
diameters, while A rchimedes first proved that the surface of
a sphere is equal to fou r '

times the area of a great circle in it ,
and the volume two- thirds ofthe cylinder circumscribing it.

(or) A r e a of scalene tr iangle.

A fter the easy cases of the rectangle, the right - angled
triangle and the isosceles tr iangle,

H eron gives twomethods
of finding the area of a scalene triangle (acute- angled or

obtuse- angled)when the lengths ofthe three sides ar e given .

The fii stmethod is based on Eucl. II . 1 2 and 1 3 . If a
,
b, c

be the sides of the triangle opposite to the angles A ,
B, C

respectively, Hei on observes (chap . 4) that any angle
,
e.g. C ,

is

acute, right 0 1 obtuse according as c
Z
< or a

2 112 , and this
is the criterion determining wh ich of the two propositions is
applicable. The method is directed to determining , first the
segments intowhich any side is divided by the perpendicular



AREA OF . SCA LENE TR IANGLE 3 2 1

from the opposite vertex
,
and thence the length of the per

pendicular itself. We have
,
in the cases ofthe triangle acute

angled at C and the triangle obtuse- angled at C respectively ,

CD : )~ c
2
} /2 a ,

whence ADZ 62 CD2

) is found , so that we know the area
% a A D).

In the cases given in Metr ica I . 5
,
6 the sides ar e (1 4 , 1 5 , 1 3)

and (1 1 , 1 3 , 2 0) respectively , and AD is found to be rational
But ofcourse both CD (or BD) and ADmay be surds ,

in which case H eron gi ves approximate values . Cf. Geom.

5 3 , 5 4
,
H ultsch (1 5 ,

1 — 4
,

where we have a triangle
in which a 8

, b 4
,
c 6 , so that a

‘

+ bZ — c
2

_ 44 and

CD 21
1
4 . Thus AD1 = 1 6 (21 : 1 6 — 7 -

2
-

1

1 5

1
1

1 6 , and AD a 23 1- approximately , whence
the area : 4 x 1 1 2 . H eron then observes that we get

a nearer. result still if we multiply ADZ by (4a)2 before
extracting the square met, for the area is then x/ (1 6 x 84g1

1

73

or which i s very nearly 1 1
2

1

1 4 2

1

1
or 1 14

So in Metr ica I . 9
,
where the triangle i s 1 0 , (1 0 being

the base), H eron finds the perpend icular to be 6 3 , but he

obtains the area as BO2), or while observing
that we can ,

of cou i se, take the approximati‘on to x/ 6 3 or

7 1 17 5 ,
and multiply it by half 1 0 , obtaining 3 9 2

1

8 1
1

5 as

the area.

P r oof of the formu la A / { s (s — a)(s — b)(s

The second method is that known as the ‘ formula of

H eron ’

, namely, in our notation ,
A s/ { s (s — a)(s — b)(s

The proof of the formula is given in Metr ica I . 8 and also in
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Draw OL at rightangles to OC cutting BC in K , and BL at

r ight angles to BC meeting OL in L. Join CL.

Then ,
s ince each of the angles COL

,
CBL is right

,
COBL is

a quadrilateral in a circle.

Therefore A COB A CLB 2 R .

But A COB + A A OF ZR
, because A O,

B0 , C0 bisect the
angles round O, and the angles COB, A OF ar e together equal
to the angles A OC,

BOF
,
while the sum of all four angles

is equal to 4B .

Consequently A A OF ACLB .

Therefore the right - angled triangles AOF, CLB ar e s imilar ;

therefore BC BL AF FO

EH OD,

and , alternately, CB EH BL OD

BK KD ;

whence , componendo, CH : HB BD DK .

It follows that

CH 2
z CH . HB = BD . DC : CD . DK

BD DC : ODZ
,
since the angle COK is right .

Therefore (A ABC)
2 CH 2 OD2

(from above)
CH . HB . BD . DC

s (s — a)(s — b)(s — c).

(6 ) Method ofappr oximating to the squ ar e r ootof
a non - squar e number .

It is apropos of the tr iangle 7
,
8 , 9 that H eron gives the

important statement of his method of approximating to the
value of a surd

,
which before the discovery of the passage

of the Metrica had been a subject of unlimited conjecture
as bearing on the question how A rchimedes obtained his

approximations to s/ 3 .

In this case 3 = 1 2
,
s — a 5

,
s— b 4

,
s— c 3

, so that

A 5 4 3) W7 2 0).
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‘ Since ’

, says H eron
,

1 ‘
7 2 0 has not its s ide rational , we can

obtain its side within a very small difference as follows . S ince
the next succeeding square number is 7 2 9

,
which has 2 7 for

its side
,
divide 7 2 0 by 2 7 . This gives 2 6 3

2
. A dd 2 7 to this .

making 5 33 ,
and take half of th is or 2 6% g. The side of

.

7 2 0

will therefore be very nearly 2 61 -1 . In fact, if we multip1y
26 71; 1

1

; by itself, the product is 7 2 0 315 ,
so that the difference (in

the square) is 3 1?
‘ If we des ire tomake the difference still smaller than 3

1

5 ,
we

shall take 7 2 03
1

6
instead of 7 2 9 [or rather we should take

2 61 1, instead of and by proceeding in the same way we

shall find that the resulting difference is much less than 3
1

5 3

In other words , if we have a non - square number A ,
and a

2

is the nearest square number to it , so that A a
2 b, then we

have
, as the first approximation to x/A .

(a +
for a second approximation we take

and so on .

2

1 Metr ica , i . 8 . pp. 1 8 . 22—20 . 5 .

2 The method indicated by Heron was known to Bar laam and Nicolas
Rhabdas in the fourteenth century . The equivalent of it was used by
Luca Paciuolo (fifteenth—sixteenth century ), and itwas known tothe other
Italian algebraists of the sixteenth century . Thus Luca Paciuolo gave
2 1

, 5
1

6 and 2
13 1

1
3 as successive approximations to JG. H e obtained
2 — 6

the first as 2 + the second as 21
2 21

and the third as

K
a
l
b
"

2 g
0

The formula of H eron was again put forward ,
in modern times , by

Buz engeiger as a means of accounting for the Archimedean appr oximation to J3 , apparently without knowing its previous history . Bertrand
also stated it in a treatise on arithmetic The method , too, by
which Oppe rmann and Alexeieff sought to account for Arch imedes’s
approximations is in reality the same . The latter method depend s on

the formula

The above rule gives I‘
S
I‘J
I

+ 1
1 1 2a .

r
o

l
e

more) ff;
Alexeieff separated A into two factors d o, 110 , and pointed out that if, say .

a
, ,/A b

, .

2 A
—

+ b0 0
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Substituting in (1)the value a
2 b for A

, we obtain

A .

2 a

H eron does not seemtohave used this formula with a nega

tive s ign , unless in Ster eom . I . 3 3 (3 4 , Hultsch), where 1/(6 3)
and again,

if ad o a b

2A
1

a
1 + b1

and so on.

Now suppose that, in Heron'

s formulae, we put a X0 , A /a
or
, X

, ,
A , 01, x l , and soon. We then have

A A 2X°
wo= i .

/ £1) _
1 r

X1
X1

X
°+ xa

that is ,
’

X, , x , are, respectively, the arithmetic and harmonic means
between X0 ,

mo X2 , x , ar e the arithmetic and harmonic means between
X, x ] , and so on, exactly as in A lexeieff

’

s formulae.

Letus now try to apply the method toArchimedes’s case, J3 , and we
shall see to what extent it serves to give what we want. Suppose
we begin with 3 1 . We then have

or

and from this we derive successively
l > / 3 1

.

2
,
1Et > 1

g
'

t2 , 18331 V3 >fi -312

But
,
if we start from 1 , obtained by the formula a+

va

b

+ 1
b),

we obtain the following approximations by '

excess,

m+n wa s ) as .

The second process then gives one of Archimedes’s results, 1
7
31
5
5
0
1
, but

neither of the two processes gives the other, 111 -23
1

, directly. The latter

can , however, be obtained by using the formula that, if then
a ma C

b mb+ nd d

97 168
e rr 1 6For we can obtain r te from and 9

—
7
3 thus

56 + 97 153
, 0 1 from

ll
1

6

0

1

6

2

0

353”and SO on. Or again 1
.

1 88 1 7 + 97 18914 135 1
L .7 . .9be obtained from 1 3344 and

—1 thus .

1 08 64+ 56 10920 7 80

gr, and .1 thus

The ad vantage ofthe method is that, as compared with that of con
tinned fractions , it is a very rapid way of arriving at a. close approxi

mation. Gunther has shown that the (m+ 1)th approximation obtained
by He

ron ’

s formula is the 21 ’1th obtained by continued fractions . Die

quad
ratischen I r rationalitaten der A lten und deren Entwickelungs

methoden '

in A bhandli myen z ur Ges ch . (1 . Math. iv. 1 88 2 , pp. 83
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now 11 4 7
1
5 %g 2

1

, (1
2

so that the approximation used by
H eron for s/ 3 is here For the side 1 0

,
the method gives

the same result as above, for g 1 0 0 4 35 .

The regular pentagon is next taken (chap . H eron
premises the following lemma.

LetA BC be a right - angled triangle
,
with the angle A equal

to E‘
s
- R . Produce A C to 0 so that 0 0 A O

If now A O is divided in extreme and

mean ratio
,
AB is equal to the greater

segment . (For produce A B tp D so that
AD A O, and join BO,

DO. Then
, since

A DO is isosceles and the angle atA : %R ,

A ADO [ AOD 1
5,
—R

,
and ,

from the

equality of the triangles A BC
,
OBO

,

[ A OB ABA O 3
5
13. It follows that

the triangle ADO is the isosceles triangle ofEucl. IV . 1 0
, and

AD is divided in extreme and mean ratio in B.) Therefore,
says H eron, (BA + A C

’

)
2 5 A 0 2 . [This is Eucl . XIII .

Now , s ince A BOO’ éR , if BO’ be produced to E so that
CE BC

,
BE subtends at 0 an angle equal to “

5 B , and there
fore BE is the side of a regular pentagon inscribed in the

circle with O as centre and OB as radius . (This circle also
passes through D

,
and BB is the s ide of a regular decagon in

the same circle.) If now B0 A B r , 0 0 : p , BE : a
,

we have from above
, (r p

2 5 10
2
, whence, s ince 5 is

approximately we obtain approximately r and

&a gp , so that p 3a : H ence &pa § a
2
,
and the area

of the pentagon ga
'

z
. H eron adds that , if we take a closer

approximation to x/ 5 than we shall obtain the area still
more exactly . In the Geometr y

1 “

the formula is given as

The regular hexagon (chap . 1 9) is s imply 6 times the

equilateral triangle w ith the same s ide. If A be the area
of the equilateral triangle with side a

,
H eron has proved

that A 2 { g o/f
L
(Aletr iea I . hence (hexagon)2 z

z
z a

“
. If,

e .g. a 1 0
, (hexagon)2 6 7 50 0

,
and (hexagon) 2 5 9 nearly .

In the Geometr y
2 the formula is given as Jg

S
- a

"
,
while ‘

another
book ’

is quoted as giving -

i
l

g )a
z
; it is added that the

latter formula, obtained from the area ofthe triangle, (31, T
1

3 )Ct
2
,

represents the more accurate procedure , and is fully setout by
1 Ge

’

om. 102 (2 1 , 14,
2 I b. 102 (2 1 , 1 6 , 1 7 ,
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H eron. A s a matter of fact , however, 6 £ 5 ) 1
3
1
exactly,

and only the Metr ica gives the more accurate calculation .

The regular heptagon.

H eron assumes (chap . 2 0) that , if a be the side and r the

radius of the circumscribing circle, a : gr ,
be ing appr oxi

mately equal to the perpendicular from the centre of the

circle tothe side of the regular hexagon inscribed in it (for g
is the approximate value of x/ 3). This theorem is quoted by
Jor danus Nemor ar ius (d . 1 2 3 7 ) as an

‘ Indian rule ’

; he pr o

bably obtained it from A bu’l Wafa (9 40 The Metr ica

shows that it is of Greek origin ,
and ,

if A rchimedes really
wrote a book on the heptagon in a circle, it may be due to

him . If then go is the perpendicular from the centre of the
circle on the side (a) ofthe inscribed heptagon, r (éa) 8/3%
or 1 6 7 whence 1i3

2

/(
1
a)

2
and

mately) 1 4 1 / 7 or Consequently the area of the

heptagon 7 . 2 pa _ 7 g a
l

{15a

The regular octagon, decagon and dodecagon .

In these cases (chaps . 2 1
,
2 3

,
2 5)H eron finds p by drawing

the perpendicular 0 0 from O, _
the centre of the

circumscribed circle, on a side AB
,
and then making

the angle OAD equal to the angle A OD.

For the octagon ,

A ABO R and p :

or
1

2
a .

2

2
approximately .

For the decagon
,

[ ADC éR , and AD DC 5 4 nearly (see preceding

hence AD : A O 5 : 3
,
and p %a (2 2

For the dodecagon ,

AADC
'
: - R

,
and p %a (2 s/ 3)

approximately .

A ccordingly A
S

- a
z
,
A A fi

g
s where a is

the side in each case.

The regular en neagon and hendecagon .

In these cases (chaps . 2 2
,
2 4) the Table of Chords (1 e
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pr esumably H ipparchus ’s Table)1s appealed to. If AB be the
s ide (a)ofan enneagon or hendecagon inscribed in a circle

,
A C

the diameter through A , we ar e told that the Table ofChords
gives 7 and as

b

the respective approximate values of the
ratio AB A C The angles subtended at the centre 0 by the
side A B ar e 40

°
and 3 2

7
8 °

r espec

tively, and Ptolemy’

s Table gives
,

as the chords subtended by angles of
40

°

and 3 3
°

r espectively, 4 1 1
1 2

’
3 3

”

and 3 42) 4
’

5 5
”

(expressed in l 2oth

parts of the diameter); H eron ‘

s

figures correspond to 4011 and 3 3 17

3 6
’ respectively. For the en neagon

A C 2 9A B2
, whence BC2 8 AB 2

or approximately 3§ 7
3 AB2

,
and

BC : 1
6
7
a ; therefore (area of

enneagon)= 7 . A ABC= § —1 a
2 F0 1

the heo
z

i decagon A C 2 _ _
- A BZ and BC 2 §

7
7

7
§ AB2

, so that
BC : - a

, and area ofhendecagon 1
7

1
. A A BC : §

7
§ a2 .

An ancient formu la for the ratio between the side of any
regular polygon and the diameter ofthe circumscribing circle
is preserved in Geepon. 1 4 7 sq. Pseudo- Dioph . 2 3

namely d
n

Now the ratio na
n/tin tends to 7 1

'

as the

number (n)of s ides increases , and the formula indicates a time
when 7 r was generally taken as

-3 .

e) The Cir cle.

Coming to the circle (Mag
ical I . 2 6) H eron uses A rchi

medes
’

s value for 7 r , namely 2
-

7

2
,
making the cir cumfer ence of

a cir 4

7
cle - r and the area 7 5d” wher e r i s the r adius and d the

diameter . It is here that he gives the more exact limits
for 7 7 which he says that A rchimedes found in his work On
P linthides and Cylinder s , but which ar e not convenient for
calculations . The limits . as we have seen, ar e given in the

text as 27 1 -

1

7
8

-

7
3

7
1

< 7 T
1
7
9

7
7

7
3
7
8

7
11

, and -with Tannery ’

s alteration to
2 1 1 3 7 2 7 1 < 1 -

7
91
2
5
7
8

5

3
7
2
ar e quite satisfactory .l

1 See vol. 1, pp. 232—3 .
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The first of these formulae is applied to a segment greater
than a semicircle

,
the second to a segment less than a semi

circle.

In the Metr ica the area of a segment greater than a semi
circle is obtained by subtracting the area oi the complementary
segment from the area ofthe circle .

From the Geometr ica 1 we find that the circumference ofthe
segment less than a senricir cle was taken tobe x/ (b

2 4 11 2) Ht

or alternatively s/(b
z 4h2) (L

2 4 112) b}
i

f

(77) Ellipse, par abolic segment, su rface ofcylinder ,
r ight

cone, spher e and segmentofspher e.

A fter the area ofan ellipse (Metr ica I . 34)and ofa parabolic
segment (chap . H eron gives the surface of a cylinder
(chap . 3 6 )and a right cone (chap . in both cases he unrolls
the surface on a plane so that the surface becomes that of a

parallelogram in the one
_

case and a sector of a circle in the

other . For the surface ofa sphere (chap . 3 8)and a segmentof
it (chap . 3 9)he s imply uses A rchimedes ’s results .

Book I ends w ith a h int how to measure irregular figures ,
plane or not. If the figure is plane and bounded by an

irregular curve,
neighbouring points ar e taken onthe curve

such that, if they ar e joined in order , the contour of the

polygon so formed is not much different from the curve
itself, and the polygon is then measured by dividing it into
triangles . If the surface of an irregular solid figure is to be
found , you wrap round it pieces of very thin paper or cloth ,

enough to cover it , and you then spread out the paper or
cloth and measure that.

B ook II . Measurement of volumes .

The preface to Book II is interesting as showing how

vague the traditions about A rch imedes had already become .

A fter the measurement of surfaces , rectilinear or not, it is
proper to proceed to the solid bodies , the surfaces ofwhich we
have already measured in the preceding book , surfaces plane
and spher ical , conical and cylindrical , and irregular surfaces
as well . The methods of dealing with these solids ar e, in

1 Cf. Geom. ,
94

,
95 (19. 2 , 4 , 97 . 4 (20 . 7 ,
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view of their surprising
“character, referred to A rchimedes by

certain writers who give the traditional account of their
origin. Butwhether they belong to A rchimedes or another,
it is necessaryto give a sketch of these methods as well.’

The Book begins with generalities about figures all the

sections of which parallel to the base ar e equal to the base
and similarly situated, while the centres of

_

the sections ar e on
a straight line through the centre of the base, which may be

either obliquely inclined or perpendicular tothe base whether
the said straight line (‘the axis is

,
or is not perpendicular to

the base, the volume is equal to the product ofthe area ofthe
base and the perpend icu lar height of the top of the figure
from the base. The term height is thenceforward restricted
to the length ofthe perpendicular from the top of the figure
on the base.

(a) Cone, cylinder , par allelepiped (pr ism), pyr amid , and

fr u stum .

II . 1— 7 deal with a cone, a cylinder, a ‘ parallelepiped ’

(the

base of which is not restricted to the parallelogram but is in
the illustration given a regular hexagon, so that the figure is
more properly a prism with polygonal bases), a triangular
prism, a pyramid with base of any form, a frustum of a

triangular pyramid ; the figures ar e in general oblique.

(B) Wedge- shaped solid (Bana
'

oxos
‘ or a

'

q vlaKos).

II . 8 is a .case which is perhaps worth giving. It is that of
a rectilineal solid, the base ofwhich is a rectangle ABCD and

has opposite to it another rectangle EFGH , the sides ofwhich
ar e respectively parallel but not necessarily proportional to
those ofABCD. Take AK equal to EF, and BL equal to BC .

Bisect BK , CL in V, W, and draw K RP U, VQOM parallel to
AD

, and LQRN, WOFT parallel to AB . Join FK
, GR , LG,

GU,
HN.

Then the solid is divided into (1) the parallelepiped with
A R , EG as opposite faces , (2)the prism with KL as base and
FG as the opposite edge, (3) the prism with NU as base and

GH as opposite edge, and (4)the pyramid with RLCU as base
and G as vertex . Let h be the ‘ height ’ of the figure. Now
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the parallelepiped (1) is on A R as base and has height h the

prism 2)is equal to a parallelepiped on KQas base and with
height h ; the prism (3) is equal to a parallelepiped with NP
as base and height h ; and final ly the pyramid (4) is equal to
a parallelepiped ofheight h and one- third ofR C as base.

Therefore the whole solid is equal to one parallelepiped
with height h and base equal to (AR +KQ+NP +R 0 + 7 130 )
or A O éR O.

Now
, ifAB = a ,

BC : b, EF : 0 , FG= d ,

A V AT + d), RQ % (Ct— C), RP % (b— d).

Therefore volume ofsolid
— c)(b— d)} h.

The solid in question is evidently the true Bah ia-

x0 9 (
‘ little

altar for the formula is used to calculate the content of
a Bahamas in Ster eom . II . 40 (6 8 , H eib.) It is also, I think ,

the Joint/ {away (
‘ little a measurement of which is

given in Ster eom. I . 2 6 (2 5 , H eib .) It is true that the second
term of

_

the first factor 7
1

7 (a - c)(b— d) is there neglected
,

perhaps because in the case taken (a 7 , b 6 , c 5
, d 4)

this term is smal l compared with the other A

particular agbqw
’

axog, in which either c a or d b, was

called avg the second term in the factor of the content
van ishes inthis case, and , if e .g. c a

,
the content is 7 (b d)ah.

Another Bmpt
'

axos
‘ is measured in Ster eom. I . 3 5 (3 4 ,

where the solid is inaccurately called ‘

a pyramid oblong
(G
’

Tepopfixm)and tr uncated or half-perfect
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describing circle and the length of the path of its centre.

For
,
he says

,
s ince 1 4 is a radius (bf the path of the centre),

2 8 is its diameter and 8 8 its circumference .

‘ If then the tore
be straightened out and made into a cylinder, it will have 8 8
for its length , and the diameter of the base ofthe cylinder is
1 2 ; so that the solid content of the cylinder is

,
as we have

seen ,
9 9 5 6 7

’

8 8 1 44 1.

(e) The two special solids of A r chimedes-"s ‘Method
’

.

Chaps . 1 4 , 1 5 give the measurement of the two remarkable
solids of A rchimedes ’s Method ,

following Archimedes’s results .

(f) Thefive r egu la r solid s .

In chaps . 1 6 — 1 8 Heron measures the content of the five
regular solids after the cube . H e has of course in each case
to find the perpendicular from the centre of the circumscr ib

ing sphere on any face . Let p be this perpendicular, a the
edge ofthe solid , r the radius ofthe circle circumscribing any

face . Then 1)for the tetr ahedr on

a
2 3 r 2

, p
2

a § a
2

.

(2) In the case of the octahed r on , which is the sum of two

equal pyramids on a square base , the content is one- third
of that base multiplied by the diagonal of the figure ,

x/ Z CL or 7 / 2 . a
3
; in the case taken a = 7

,
and

H eron takes 1 0 as an approx imation to x/ (2 7 2) or x/ 9 8 , the

result being a} . or 1 6 3 7 . (3 ) I n the case of the icosa

hed r on H eron merely says that

p a 9 3 1 2 7 (the real value ofthe ratio is M )6

(4) In the case of the dodecahed r on ,
H eron says that

p z a (the true value is 7 1 0
and , if / 5 is

put equal to H eron’

s ratio is readily obtained).

Book II ends with an allusion to the method attributed to
A rchimedes for measuring the contents of irregular bodies by
immersing them in water and measuring the amountoffluid
displaced .
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Book III . Divis ions of figures .

This book has much in common with Euclid ’

s book On divi
sions (offigu r es), the problem being to divide various figures

,

plane or solid ,
by a straight line or plane into parts having

a given ratio. In III . 1 3 a triangle 1 s d ivided into two par ts
in a given ratioby a s traight line (1) passing through a ver tex ,

(2) parallel to a side , (3) through any point on a s ide
III . 4 is worth description :

‘Given a triangle ABC,
to cut

out of it a triangle DEF (where D,
E

,
F ar e points on the

sides respectively) given in magnitude and such that the
triangles AEF

,
BED

,
CED may be equal in area .

’

H eron
assumes that

,
if D

,
E

,
F divide the sides so that

AF z FB = BD zDC = CE z EA
,

the latter three triangles ar e equal in area.

H e then has to find the value of

each of the three ratios which will
result in the triangle DEF having a

grven area.

Join AD.

Since BD z CD CE z EA

BC z CD CA : AE
,

and A ABC : A ADC : A ADC : A ADE .

A lso A A BC : A ABD A ADC : A EDC.

But (s ince the area of the tr iangle DEF 1 s given) A EDC 1 s

given , as well as A ABO. Ther efore A A BD x A ADC 1 s given .

Therefore , if AH be perpend icular to BC
,

AH z
. BD . DC 1 s given ;

therefore BD . DC 1 s given , and , since BC i s given
,
D is given

position (we have to apply to BC a rectangle equal to
BD . DC and falling short by a square).
A s an example H eron takes AB 1 3

,
BC 1 4

,
CA 1 5

ADEF 2 4 . A ABO is then 8 4
,
and AH : 1 2 .

Thus A EDC 20 , and AH 2
. BD . DC 4 . 8 4 . 2 0 6 7 2 0 ;

therefore BD DC or 4 6 7 (the text omits the g).
Therefore, says H eron ,

BD 8 approximately . For 8 we
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should apparently have 8 7 ,
since DC is immediately stated to

be 5 7 (not That is , in solving the equation

x
2 — 1 4cc+ 4 6 3 O

,

which gives cc: 7 x/ (2 H eron apparently substituted 2 7 or
7 for 2 7 , thereby obtaining 1 7 as an approximation to the

surd .

(The lemma assumed in thrs proposition is easily proved .

Letm n be the ratio AF : FB BD DC CE : EA .

Then A F : mc/(m n), FB no (m n), CE mb (m n),

EA nb/(m n), &c.

H ence

A AFE /A ABC
’

A BDF/A A BC
’
: A CDE/A A BC .

and the triangles AFE
,
BDE, CDE ar e equal .

Pappus 1 has the proposition that the triangles ABC, DEF

have the same centre of gravity .)
H eron next shows how to divide a parallel - trapez ium into

two parts in a given ratio by a straight line (1) through the
point of intersection of the non - parallel sides , (2) through a

given point on one of the parallel sides , (3) parallel to the

parallel sides , (4) through a point on one of the non - parallel
s ides (III . 5 III . 9 shows how to divide the area of a

circle into parts which have a given ratio by means of an

inner circle w ith the same centre. For the problems begin
n ing with III . 1 0 H eron says that numerical calculation alone
no longer suffices , but geometrical methods must be applied .

Three problems ar e reduced to problems solved by A pollonius
in his treatise On cutting of an ar ea . The first of these is
III . 1 0

, to cut off from the angle of a triangle a given
proportion of the triangle by a straight line through a point
on the opposite side produced . III . 1 1

,
1 2

,
1 3 show how

to cut any quadrilateral into parts in a given ratio by a

straight -line through a point (1)on a side (a) dividing the
s ide in the given ratio, (b)not so dividing it , (2)noton any

s ide , (a) in the case where the quadrilateral is a trapez ium,

i . e . has two s ides parallel , (b) in the case where it is not; the
last case (b) is

' reduced like III . 1 0)to the
‘

cutting- ofl
'

of an

1 Pappus , viii, pp. 1034 - 8 . Cf. pp. 430—2 post.

1 5 2 3 -2 70
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two opposite sides which the required straight line cuts ar e

(a) parallel or (b) not parallel. In the first case (a) the
problem reduces to drawing a straight line through E inter
secting the parallel s ides in points F, G such that BF AG

is equal to a given length . In the second case (b) where
BC, AD ar e not parallel H eron supposes them to meet in H .

The angle atH is then given , and the area A BH . It is then
a question of cutting off from a triangle with vertex H a

triangle HFG ofgiven area by a straight line drawn from E
,

which is again a problem in Apollonius
’

s Cutting- of of an

ar ea . The auxiliary problem in case (a) is eas ily solved in
III . 1 6 . Measure AH equal to the given length. Join BH
and bisect it at M . Then EM meets BC, AD in points such
that BF A G : the given length . For , by congruent triangles ,
BF GH .

The Same problems ar e solved for the case ofany polygon
in III . 1 4 , 1 5 . A sphere is then divided (III . 1 7 ) into segments
such that their surfaces ar e in a given ratio, by means of

A rchimedes , On the Spher e and Cylinder , II . 3
, just as , in

III . 2 3 , Prop . 4 of the same Book is used to divide a sphere
into segments having their volumes in a given ratio.

III . 1 8 is interesting because it recalls an ingenious pro
position in Euclid’s book On Divisions . H eron ’

s problem is

To divide a given circle into thr ee equal par ts by twostraight
z 2
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lines ’

,
and be observes that, ‘

as the problem is clearly not

rational , we shall , for practical convenience,
make the division,

as exactly as possible, in the follow
ing way .

’

AB is the side of an

equilateral triangle inscribed in the
circle. Let CD be the parallel
diameter, 0 the centre ofthe circle,
and join A O,

BO,
AD,

DB . Then
shall the segment ABD be very
nearly one - third ofthe circle . For

,

since A B is the s ide of an equi
lateral triangle ih the circle , the

sector OA EB is one - third of the

circle . And the triangle A OB forming part of the sector
is equal to the triangle ADB ; therefore the segment AEB
plu s the triangle A BD is equal to one - third of the circle ,
and the segment A BD only differs from this by the small
segment on“

BD as base, which may be neglected . Euclid ’s
proposition is to cut offone - third (or any fraction) of a circle
between two parallel chords (see vol . 1, pp . 42 9

III . 1 9 finds a point D with in any triangle A BC such that
the triangles DBC

,
DCA

,
DA B ar e all equal ; and then H eron

passes to the division ofsolid figures .

The solid figures divided in a given ratio (besides the

sphere) ar e the pyramid with base
a

of any form (I I I .

the cone (III . 2 1 ) and the frustum of a cone (III . the

cutting planes being parallel to the base in each case. These
problems involve the extraction of the cube root ofa number
which is in general not an exact cube, and the point of

interest is H eron’

s method of approximating to the cube root
in such a case. Take the case of the cone, and suppose that
the portion to be cut offatthe top is tothe rest ofthe cone as

m ton. We have to find the ratio in which the height or the
edge is cut by the plane parallel to the base which cuts
the cone in the given ratio. The volume of a cone being
7 7 r c

2h, where c is the radius of the base and h the height,
we have to find the height of the cone the volume of which

m
7 r c

2h, and , as the height h’ is to the radius 0
’
of

m + n

its base as h is to c
,
we have simply to find h

’ where
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h
’3

/h
3 m Or

,
if we take the edges e, e

’ instead
of the heights, e

’2
/e

3 m In the case taken by
H eron m : n : 4 : 1

,
and e : 5 . Consequently e

’3
_

4 1 0 0 .

Ther efore, says H eron,
e
’

47
9— approximately , and in III . 2 0

he shows how this 1 s ar r ived
l

at.

Appr oximation to the.cube r ootofa non—cube number .

‘ Take the nearest cube numbers to 1 0 0 both above and

below ; these ar e 1 2 5 and 6 4 .

Then 1 2 5 1 0 0 2 5
,

and 1 0 0 6 4 3 6 .

Multiply 5 into 3 6 ; this gives 1 8 0 . Add 1 0 0
, making 2 8 0

(Divide 1 8 0 by this gives 7
9

7 . Add this to the side of

the smaller cube : this gives 4 7 97 . T his rs as nearly as possible
the cube root (

“ cubic s ide ”

)of 1 0 0 units .

’

We have to conjectur e H eron ’

s formula from this example.

Generally, if d
a A (a + suppose that A a

3 = d and

(a + l )
3 A d

2
. The best suggestion that has been made

is Wertheim s
,
namely that H eron’

s formula for the appr oxi

mate cube root was a +
(a + 1

5 multiplied

in to the 3 6 might indeed have been the square root of 2 5 or

x/d
z ,
and the 1 0 0 added to the 1 8 0 in the denominator ofthe

fraction might have been the original number 1 0 0 (A) and not

or ad
z ,
butWertheim ’

s conjecture is the more satisfactory
because it can be evolved out of quite elementar y considera
tions . This i s shown by G. Enestr

'

om as follows .

2 Using the
same notation ,

Enestr
'

om further supposes that a is the exact
value of x

/

A and that (m— a)
“ — d a + 1 — oc)

3 = 8
7

.

Thus
8
1
=w3 — a

2
,
and 3 aa (se— a): a

3 — d
l
z d

l
— 8

1
.

Sim ilarly f rom 8
2 (a + 1 — tc) we derive

— cc) (a + - ao
3 d

2
— 8

7
.

Therefore
(57
7
— 8

7
— a; ) — (tc— a)}

Clr
- 6

1
3 aw(a

' — a) a (at— a)

a + 1

a (a
' — a)

1 Z eitschr . f. Math . u . Physilc, xliv, 1 899, hist. - litt. Abt. , pp. 1 —3.

2 Bibliotheca Mathematica, viiis , 1907
- 8 , pp. 4124 3 .
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S ince (DG) (FB) m n ,

(DB) (DG) (m+ n):m .

7 r h (a
2

aa
’

a
’2
),

md (DG)
m+ n

Let y be the height (CM) of

Then DH z A H : CK Ir
’

A ,

r h : 7 (a — a
’

) (a + h) 7 a ,

rhence to is known .

Cone CDE 1 r a a
'

,

cone CEG: (CDE) (DB),
m + n

cone CA B : (CDE) (DB),

Now
, says H eron ,

(CA B) (CDE )

[H e might have said s imply

(CDE) : (CFG) x
3
y

This gives y or CM,

h ence Lil'l is known .

Now AD2 AH 2
+DH 2

{em— avia n

1 that AD is known .

DETherefore

DOWD .

(DB) (DG) 5 4 .

(DB) 5 6 9 8 ,

(DG) 455 8 7 .

and x : 48

(cone CDE) 4 1 5 8 ,

(cone CFG): 4 1 5 8

(cone CA B) : 4 1 5 8 5 6 9 8

whence y 46 approximate]

Therefore LM y
— x 1 (

A D?

— 1 5 6 7 ,

AD : 1 2 1

Therefore DE 7 7 1 27

l 5
0
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Quad r atic equations solved in Her on .

We have already met w ith one such equation (in Metr ica

III . namely 23
2 —g 0

,
the result only (a 8 7 )

being given. There ar e others in the Geometr ica where the
process of solution is shown .

(1) Geometr ica 2 4 , 3
‘Given a square such that the

sum ofits area and perimeter is 8 9 6 feet : to separate the area
from the perimeter ’

: i . e . 4 93 8 9 6 . H eron takes half of
4 and adds its square , completing the square on the left side .

(2) Geometr ica 2 1
,

“

9 and 2 4 ,
4 6 (H eib.)give one and the same

equation , Geom. 2 4 ,
4 7 another like it . ‘Given the sum of

the diameter, perimeter and area of a circle, to find each
of thein .

’

The two equations ar e

7 7 d
2
+ 3

7
2

: 2 1 2
,

and 7 7 d
2
+ 27

3 : 6 7 7 .

Our usual method is to begin by dividing by ”

7 7 throughout ,
so as to leave d 2 as the first term . Heron ’

s is tomu ltiply by
such a number as w ill leave a square as the first term . In this
case he multiplies by 1 5 4 , giving 1 1 2 d 2 + 5 8 1 1 d 2 1 2 1 5 4

or 6 7 7 1 5 4 as the case may be . Completing the square ,
he obtains (1 1 d + 3 2 6 4 8 8 4 1 or 1 0 3 9 5 8 4 1 . Thus
1 1 d + 2 9 or that is , 1 8 3 or 1 06 .

Thus 1 1 d : 1 5 4 or 7 7 ,
and d 1 4 or 7 , as the case may be.

Indeterminate problems in the Geometr ica .

Some very interesting indeterminate problems a r e now

included by Heiberg in the Geometr ica .

1 Two of them (chap .

2 4
,
1 — 2)were included in the Geé

’

ponicu s in H ultsch
’

s edition
(sections 7 8 , the rest ar e new ,

having been found in ' the
Constantinople manuscript from which Schone edited the

Metr ica . A s , however , these problems , to whatever period
they belong , ar e more akin to algebra than to mensuration ,

they will be more properly described in a later chapter 0 11

A lgebra.

1 He-

ronis A lexand r ini oper a , vol. iv, 414 . 28 sq .
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The Dioptr a (nepi dtévr r pas).

This treatise begins with a careful description of the

d ioptr a , an instrument which served with the ancients for
the same purpose as a theodolite with us (chaps . 1 The

problems with which the treatise goes on to deal ar e

(a) problems of ‘ heights and distances ’

, (b) engineering pr o
blems , (0) problems of mensuration , to which is added
(chap . 3 4) a description of a

‘ hodometer ’

,
or taxameter

,
con

sisting of an arrangement of toothed wheels and endless
screws on the same axes working on the teeth of the next
W heels respectively . The book ends with the problem
(chap .

‘With a given force to move a given weight by
means of interacting toothed wheels ’

,
which really belongs

to mechanics , and was apparently added , like some other
problems (e .g . 3 1 ,

‘tomeasur e the outflow of, i . e . the volume
of water issuing from, a in order tomake the book
more comprehens ive. The essential problems dealt with ar e

such as the following . To determine the difference of level
between two given points to draw a straight line connect
ing two points the one ofwhich is not visible from the other

tomeasure the least breadth ofa river the distance of
two inaccessible points the height ofan inaccessible point

to determ ine the difference between the
‘
heights of two

inacces sible points and the pos ition ofthe straight line joining
them the depth ofa ditch to bore a tunnel through
a mountain going straight from one mouth to the other to

s ink a shaft through a mountain perpendicularly to a canal
flowing underneath given a subterranean canal of any
form , to find on the ground above a point from which a

vertical shaft must be sunk in order to reach a given point
on the canal (for the purpose e.g . ofremoving an obstruction)

to construct a harbour on the model of a given segment
ofa circle , given the ends to constructa vault so that it
may have a spherical surface modelled on a given segment

The mensuration problems include the

t

following : to

measure an irregular area , which is done by inscribing a

rectilineal figure and then drawing perpendiculars to the

s ides at intervals tomeet the contour (2 or by drawing one
straight line across the area and erecting perpendiculars from
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the first chapter or chapters ofthe real Mechanics which had
been lost. The treatise would doubtless be

g
in with generalities

introductory to mechanics such as we find in the (much
interpolated) beginning ofPappus , Book VIII . It must then
apparently have dealt with the properties ofcircles , cylinders ,
and spheres with "reference to their importance in mechanics
for in Book II . 2 1 H eron says that the circle is of all figures
the most movable and most easily moved, the same thing
applying also to the cylinder and sphere, and he adds in
support of this a reference to a proof in the preceding Book
This reference may be to I . 2 1

,
but at the end of that chapter

he says that ‘ cylinders, even when heavy ,
if placed on the

ground so that they touch it in one line only
,
ar e eas ily

moved , and the same is true of spheres also, a matter which
we have alr eady d iscu ssed

’

; the discussion may have come
earlier in the Book ,

in a chapter now lost.
The treatise, beginning with chap . 2 after the passage

interpolated from the B apovhxég, is curiously disconnected .

Chaps . 2— 7 discuss the motion of circles or wheels
,
equal or

unequal, moving on different axes (e. g. interacting toothed
wheels), or fixed on the same axis, much after the fashion of

the A ristotelian Mechanical pr oblems .

A r istotle
’

s Wheel.

In particular (chap . 7 )H eron attempts to explain the puz z le
ofthe ‘Wheel ofA ristotle whi ch remained a puz z le up to qu ite
modern times

,
and gave ri se to the proverb, ‘ rotam A r istotelis

magis tor quer e, quomagis tor quer etur ‘The question is says
the A ristotelian problem 2 4

,

‘why does the greater circle roll an
equal distance with the lesser circle when they ar e placed about
the same centr e, whereas , when they roll separately ,

as the

si z e of one is to the siz e of the other, so ar e the straight lines
traversed by them toone another LetA C,

BD be quadrants
of circles with centre 0 bounded by the same radi i , and draw
tangents AE ,

BF atA and B . In the first case suppose the
circle BD to roll along BF till D takes the position H ; then
the radius ODC will be at right angles to A E , and C will be
at G, a point such that A G is equal to BH . In the second

1 See Van Capelle , A ri stotelis quaestiones mechanicae
,
1 8 12 , p. 263 sq .

2 Arist. Mechanica ,
855 a 28 .
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case suppose the circle A C to roll along AE till ODC takes
the position O

’

FE ; then D will be at F where A E BF.

And similarly if a whole revolution is performed and OBA is

again perpendicular to AE . Contrary ,
therefore , tothe prin

ciple that the greater circle moves quicker than the smaller on
the same axis , it would appear that the movement of the

smaller in this case is as quick as that of the greater , s ince
BH A G and BF A E . H eron ’

s explanation is that , e.g.

in the case where the larger circle rolls on AE , the lesser
circle maintains the same speed as the greater because it has
two motions ; for if we regard the smaller circle as merely
fastened tothe larger

,
and not rolling at all

,
its centre 0 wil l

move to O’ traversing a distance 0 0 '

equal to AE and BF;
hence the greater circle will take the lesser with it over an

equal distance, the rolling of the lesser circle having no effect
upon this .

The par allelogr am of
”

velocities .

H eron next proves the parallelogram ofvelocities (chap .

he takes the case of a rectangle, but the proof is applicable
generally .

Suppose when

The way it is put is this . A

point moves with un iform velocity
along a straight line AB

,
from A

to B
, whi le at the same time AB

movesw ith uniform velocity always
parallel to itself with its extremity
A describing the straight line A C.

point arrives at B
, the straight line
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reaches the position CD. Let EF be any intermediate
position of AB

,
and G the position at the same instant

of the moving point on it . Then clearly AE
therefore AE

_

: EG A C : EF A C z CD
,
and it follows that

G lies on the diagonal AD,
which is therefore the actual path

ofthe moving point .
Chaps . 9 contain a digression on the construction of

plane and solid figures similar to given figures but greater or
less in a given ratio. H eron observes that the case of plane
figures involves the finding of a mean proportional between
two straight lines, and the case of solid figures the finding of
two mean proportionals ; in chap . 1 1 he gives his solution of

the latter problem ,
which is preserved“

in Pappus and Eutocius
as well , and has already been given above (vol. i , pp . 2 6 2

The end of chap . 1 9 contains
,
quite inconsequently , the con

str uction of a toothed wheel to move on an endless screw ,

after which chap . 2 0 makes a fresh start with some observa
tions “

on weights in equilibrium on a horiz ontal plane but
tending to fall when the plane is inclined , and on the ready
mobility of objects of cylindrical form which touch the plane
in one line only .

Motion on an inclined plane.

When a weight is hanging freely by a rope over a pulley ,

no force applied to the other end of the rope less than the

weight itself will keep it up , but , if the weight is placed on an

inclined plane, and both the plane and the portion of the

weight in contact with it ar e smooth ,
the case is different .

Suppose , e.g. ,
that a weight in the form of a cylinder is placed

on an inclined plane so that the line in which they touch is
horiz ontal ; then the force required to be applied to a rope
parallel to the line of greatest slope in the plane in order to
keep the weight in equilibrium is less than the weight . For

the vertical plane passing through the line of contact between

the cylinder and the plane divides the cylinder into two

unequal parts , that on the downward side of the plane being
the greater , so that the cylinder will tend to roll down ; but
the force required to support the cylinder is the ‘

equivalent
’

,

not of the weight of the whole cylinder, but of the difference
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Supports ’

. A s
,
however , the principles ar e the same Whether

the body is supported or hung up
,
it does not follow that

this was a different work from that known as nepi (v-

yc
’

iw.

Chaps . 3 2—3
,
which ar e on the principles of the lever or of

weighing, end [ with an explanation amounting to the fact
that ‘ greater circles overpower smaller when their movement
is about the same centre ’

, a proposition which Pappus says
that A rchimedes proved in his work nepi In chap . 3 2 ,

too, H eron gives as his authority a proof given by A rchimedes
in the same work . With I . 3 3 may be compared II . 7 ,

where H eron returns to the same subject of the greater and
lesser circles moving about the same centre and states the
fact that weights reciprocally proportional to their radi i ar e
in equilibrium when suspended from opposite ends of the

horiz ontal d iameters
,
observing that A rchimedes proved the

proposition in hi s work ‘ On the equali z ation of inclination ’

(presumably

Book “ II . The five mechanical powers .

H eron deals with the wheel and axle, the lever . the pulley ,

the wedge and the screw ,
and with combinations of these

powers. The description ofthe powers comes first, chaps . 1—6
,

and then , after II . 7
, the proposition above referred to, and the

theory of the several powers based upon it (chaps . 8

A pplications to specific cases follow . Thus it is shown how
to move a weight of 1 0 0 0 talents by means of a force of

5 talents , first by the system of wheels des cribed in the

B apovhxos , next by a system of pulleys , and thirdly by a

combination of levers (chaps . 2 1 It is possible to combine
the different powers (other than the wedge) to produce the
same result (chap. The wedge and Screw ar e discussed
with reference to their angles (chaps . 3 0 and chap . 3 2 refers
to the effect of fr iction .

Mechanics in daily life ; quer ies an d answer s .

A fter a prefatory chapter a number of queries resem
bling the A ristotelian problems ar e stated and answered

(chap . e .g.

‘Why do waggons with two wheels carry
a weight more easily than those with four ‘Why

1 Pappus, viii , p. 1068. 20 - 3 .
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do great weights fall to the ground in a shorter time than
lighter ones l

’

,

‘Why does a stick break sooner when one

puts one
’

s knee against it in the middle ? Why do people
u se pincers rather than the hand to draw a

‘Why
is it easy to move weights which ar e and

Why is it the more difficult to move such weights the farther
the hand is away from them ,

right up tothe point ofsuspens ion
or a point near it "

4 Why ar e great ships turned by a rudder
although it is so small l

’

,

‘Why do arrows penetrate armour
or metal plates but fail to penetrate cloth spread out?’

P r oblems on the centr e of gr avity,
rtf-c.

II . 3 5 ,
3 6

,
3 7 show how to find the centre of gravity of

a triangle, a quadrilateral and a pentagon respectively . Then ,

assuming that a triangle ofuniform thickness is supported by
a prop at each angle, H eron finds what weight is suppor ted
by each prop , (a) when the props support the triangle only ,

(b) when they support the triangle plus a given weight placed
at any point on it (chaps . 3 8

,
Lastly , if known weights

ar e put on the triangle at each angle
,
he finds the centre of

gravity ofthe system (chap . 40) the problem is then extended
to the case ofany polygon (chap .

Book III deals with the practical construction of engines
for all sorts of purposes , machines employing pulleys w ith
one

,
two, or more supports for lifting weights , oil- presses , &c.

The Catoptr ica .

This work need notdetain us long . Several ofthe theoretical
propos itions which it contains ar e the same as propos itions
in the so- called Catoptr ica of Euclid , which ,

as we have
seen ,

was in all probability the work ofTheon of A lexandria
and therefore much later in date . In addition to theoretical
propositions , it contains problems the purpose of wh ich is to
construct mirrors or combinations of mirrors of such shape
as will reflect objects in a particular way , e .g. to make the

right side appear as the right in the picture (instead of the

reverse), to enable a person to see his back or to appear in
the mirror head downwards , with face distorted ,

with three
eyes or two noses , and so forth . Concave and convex
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cylindrical mirrors play a part in these arrangements . The

whole theory of course ultimately depends on the main pr o
positions 4 and 5 that the angles of incidence and reflection
ar e equal whether the mirror is plane or circular.

H er on
’

s pr oofofequality ofangles ofincidence and r eflection .

Let AB be a plane mirror, C the eye, D the object seen .

The argument rests on the fact that nature ‘ does nothing in
vain ’

. Thus light travels in a straight line, that is, by the
quickest road . Therefore, even
when the r ay is a line broken F

ata point
“by reflection

,
it must

mark the shortest broken line
ofthe kind connecting the eye
and the object. Now, says
H eron, I maintain that the
shortest of the broken lines
(broken at the mirror) which
connect C and D is the line, as
CAD, _

the par ts ofwhich make equal angles with the mirror.
Join DA and produce it to meet in F the perpendicular from
C to AB . Let B be any point on the mirror other than A ,

and join FB , BD.

Now AEAF ABAD

A CAE
,
by hypothes is .

Therefore the triangles A EF, AEC,
having two angles equal

and AE common,
ar e equal in all respects .

Therefore CA AF
, and CA AD DF

S ince FE EC, and BE is perpendicular to FC, BF BC.

Therefore CB BD FB BD

FD,

i. e. CA + A O.

The proposition was of course known to A rchimedes . We

gather from a scholium to the Pseudo- Euclidean Catoptr ica

that he proved it in a different way,
namely by r eductio ad

absu r dum,
thus : Denote the angles CAE , DA B by or, B r e

spectively . Then, or is or B. Suppose or B. Then
,

A a
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WE have seen that the Golden Age of Greek geometry
ended with the time ofA pollonius ofPerga. Butthe influence
ofEuclid, A rchimedes and A pollonius continued, and for some
time there was a succession ofquite competentmathematicians
who, although notoriginating anything of capital importance,
kept up the tradition . Besides those who were known for
particular investigations , e .g. ofnew curves or surfaces , there
were such men as Geminus who, it cannot be doubted , were
thoroughly fam iliar with the great classics . Geminus , as we
have seen ,

wrote a comprehensive work ofalmost encyclopaedic
character on the classification and content of mathematics ,
including the h istory of the development of each subject .

But the beginning of the Christian er a sees quite a different
state of things . Except in sphaer ic and astronomy (Menelaus
and Ptolemy), production was limited to elementary text
books of decidedly feeble quality . In the meantime it would
seem that the study of higher geometry languished or was

completely in abeyance, until Pappus arose to revive interest
in the subject . From the way in which he thinks it necessary
to d escribe the contents of the classical works belonging to
the Tr easu r y of A nalysis , for example ,

one would suppose
that by his time many of them were, if not lost , completely
forgotten , and that the great task which he set himself was
the r e - establishment of geometry on its former high plane of

achievement . Presumably such interest as he was able to
arouse soon flickered out, but for us his work has an in

estimable value as constituting , after the works of the great
mathematicians which have actually survived, the most im
portant ofall our sources .
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Date of Pappus .

Pappus l ived at the end of the third century A .D . The

authority for this date is a marginal note in a Leyden manu
script of chronologi cal tables by Theon OfA lexandria , where ,
opposite to the name of Diocletian ,

a scholium says , ‘ In his

time Pappus wrote ’

. Diocletian reigned from 2 8 4 to 3 0 5
,

and this must therefore be the period of Pappus ’s literary
activity . It is true that Suidas makes him a contemporary
of Theon of A lexandria , adding that they both lived under
Theodosius I (3 7 9 But Suidas was evidently not well
acquainted with the works of Pappus ; though he mentions
a description of the earth by him and a commentary on four
Books ofPtolemy’

s Syntaxis , he has no word about hi s greatest
work ,

the Synagoge. A s Theon also wrote a commentary on
Ptolemy and incorporated a great deal of the commentary of

Pappus , it is probable that Suidas had Theon ’

s commentary
before him and from the association ofthe two names wrongly
inferred that they were contemporaries .

Works (commentar ies) other than the Collection.

Besides the Synagoge, which is the main subject of this
chapter , Pappus wrote several commentaries , now lost except for
fragments which have survived in Greek or A rabic . One was

a commentary on the Elements ofEuclid . This must pr esum
ably have been pretty complete

,
for , while Proclus (on Eucl. I)

quotes certain things from Pappus which may be assumed to
have come in the notes on Book I

,
fragments of his oommen

tary on Book X actually survive in the A rabic (see above
,

vol. 1, pp . 1 5 4— 5
, and again Eutocius in his note on A rchi

medes , On the Spher e and Cylinder ,
I . 1 3

, says that Pappus
explained in his commentary on the E lements how to inscribe
in a circle a polygon similar to a polygon inscribed in another
circle , which problem would no doubt be solved by Pappus

,
as

it is by a scholiast
,
in a note on XI I . 1 . Some ofthe references

by Proclus deserve passing mention . 1 ) Pappus said that
the converse of Post . 4 (equality of all right angles) is not

true , i . e . it is not true that all angles equal to a right angle ar e

themselves right , since the ‘

angle ’ between the conterminous
arcs of two semicircles which ar e equal and have their
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diameters at right angles and terminating at one point is
equal to, but is not, a right angle .

1
(2) Pappus said that ,

in addition to the genuine axioms ofEuclid, there were others
on record about unequals added to

equals and equals added to unequals .

Others given by Pappus ar e (says
Proclus) involved by the definitions ,
e .g. that all parts of the plane and of

the straight line coincide with one

another ’

,
that ‘

a point divides a line,
a line a surface, and a surface a solid ’

,
and that ‘ the infinite

is (obtained) in magnitudes both by addition and diminution ’

.

2

(3) Pappus gave a pretty proof of Eucl . I . 5 , which modern
editors have spoiled when introducing it into text - books . If
A B , A C ar e the equal sides in an isosceles triangle, Pappus
compares the triangles A BC and A CB (i . e. as if he were com

paring the triangle A BC seen from the front with the same

triangle seen from the back), and shows that they satisfy the
condi tions of I . 4 , so that they ar e equal in all respects, whence
the result follows .

2

Marinus at the end of his commentary on Euclid’s Data
refers to a commentary by Pappus on that book .

Pappus ’s commentary on Ptolemy’

s Syntawis has already
been mentioned (p . it seems to have extended to six

Books , if not to the whole of Ptolemy’

s work . The Fihr ist

says that he also wrote a commentary on Ptolemy’

s P lan -i

sphaer ium ,
wh ich was translated into A rabic by Thabit b.

Qurra. Pappus h imself alludes to his own commentary on

the A nalemma ofDiodor us , in the course ofwhich he used the
conchoid . ofNicomedcs for the purpose oftrisecting an angle.

We come now to Pappus’s great work .

The Synagoge or Collection.

(a) Char acter of the wor k ; wide r ange.

Obviously written w ith the object of reviving the classical
Greek geometry ,

it covers practically the whole field. It is ,

1 Proclus on Eucl. I , pp. 1 89— 90 .

2 I b. , pp. 197 . 6—1 98 . 15 .

3 I b. , pp. 249. 20—250 . 1 2.
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siz es and distances ofthe sun and moon), A utolycus (On the
moving spher e), Carpus ofAntioch (who is quoted as having
said that A rchimedes wrote only one mechan ical book ,

that
on sphere-making, since he held the mechanical appliances
which made him famous to be nevertheless unworthy of

written description : Carpus himself , who was known as

mechanicu s , applied geometry to other arts of this practical
kind), Charmandr us (who added three simple and obvious loci
to those which formed the beginning of the P lane Loci of

A pollon ius), Conon of Samos , the friend of A rchimedes (cited
as the propounder of a theorem about the spiral in a plane
which A rchimedes proved : this would, however, seem to be

a mistake, as A rchimedes says at the beginning ofhis treatise
that he sent certain theorems , without proofs, to Conon , who

would certainly have proved them had he lived), Demetrius of
A lexandria (mentioned as the author ofa work called Linear
considerations ’

, ypayy rka i e
’

m cr
-

r aicr ets , i . e. cons iderations on

curves , as to which nothing more is known), Dinostr atus ,
the brother ofMenaechmus (cited ,

with Nicomedcs , as having
used the

w
cur ve of H ippias , to which they gave the name of

quad r atr ia
'

, r er paymul§ovaa , for the squaring of the circle),
Diodor us (mentioned as the author of an A nalemma), Erato
sthenes (whose mea n-finder ,

an appliance for finding two or

any number of geometric means , is described , and who is

further mentioned as the author of two Books ‘On means
’

and of a work entitled ‘ Loci with reference to

Erycinus (from whose P ar adozca ar e quoted various problems

seeming at first sight to be inconsistent with Eucl. I . 2 1
,
it

being shown that straight lines can be drawn from two points
on the base ofa triangle to a point within the triangle whiph
ar e together greater than the other two sides , provided that. the
points in the base may he points other than the extremities),
Euclid, Geminus the mathematician (from whom is cited a

remark on A rchimedes contained in his book On the classifica

tion ofthe mathematical sciences see above, p . H eraclitus

(from whom Pappus quotes an elegant solution of a veficr tg

with reference to a square), H ermodor us (Pappus
’

s son, to

whom he dedicated Books VI I , VIII of his Collection), H eron
ofA lexandria (whose mechanical works ar e extensively quoted
from), H ier ius the philosopher (a contemporary of Pappus ,
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who is mentioned as having asked Pappus’s opinion on the

attempted solution by ‘plane ’

methods ofthe problem ofthe two

means , which actually gives a method of approximating to
a solution 1), H ipparchus (quoted as practically adopting three
of the hypotheses of A ristarchus of Samos), Megethion (to

whom Pappus dedicated Book V of his Collection), Menelaus
ofA lexandria (quoted as the author ofSphaer ica and ashaving
applied the name n apcidogos to a certa in curve), Nicomachus
(on three means additional to the fir st three), Nicomedes ,
Pandrosion (to whom Book III of the Collection is dedicated),
Pericles (editor of Euclid

’

s Data), Philon of Byz antium (men
tioned along with H eron), Philon ofTyana (mentioned as the

discoverer ofcertain complicated curves derived from the inter
weaving ofplectoid and other surfaces), Plato (with reference
to the five regular solids), Ptolemy ,

Theodosius (author of the
Sphaer ica and On Days and Nights).

(y) Tr anslations and edit-ions.

The first published edition of the Collection was the Latin
translation by Commandinus (Ven ice 1 5 8 9

,
but dated at the

end ‘Pisaur i apud H ier onyrnunr Concor diam reissued
with only the title- page changed ‘ Pisaur r Up to

1 8 7 6 portions only of the Greek text had appeared, namely
Books VI I , VIII in Greek and German

,
by C . J . Gerhardt,

chaps . 3 3—1 0 5 of Book V , by Eisennrarm
,
Paris 1 8 24 , chaps .

45—5 2 of Book IV in I osephi Tor elli Ver onensis Geometr ica ,

1 7 6 9 , the remains of Book II , by John Wallis (in Oper a

mathematica , I I I , Oxford in addition, the restorers
of works of Euclid and A pollonius from the indi cations
furnished by Pappus give extracts from the Greek text
relating to the particular works Breton le Champ on Euclid ’s
Por isms, Halley in his edition of the Conics of A pollonius
(1 7 1 0)and in his translation from the A rabic and restoration
respectively ofthe De sectione r ationis and De sectione spatii
ofApollonius (l Camerer on Apollonius

’

s Tactioncs

Simson and Hor sley in their restorations ofApollonius
’

s P lane

Loci and Inclinationes published in the years 1 7 49 and 1 7 7 0
respectively . In the years 1 8 7 6 — 8 appeared the only corn

1 See vol . 1, pp. 2684 7 0 .
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plete G reek text , with apparatus , Latin translation , com

mentary,
appendices and indices , by Friedrich Hultsch ; this

great edition is one of the first monuments of the revived
study of the history of Greek mathematics in the last half
ofthe n ineteenth century

, and has properly formed the model
for other definitive editions of the Greek text of the other
Class ical Greek mathematicians , e .g. the editions of Euclid ,

A rchimedes , A pollonius , &c.
,
by Heiberg and others . The

Greek index in this edition ofPappus deserves special mention
because it largely serves as a dictionary of mathematical
terms used not only in Pappus but by the Greek mathe
maticians generally .

(6) Summar y of contents .

At the beginning of the work , Book I and the first 1 3 pr o
positions (out of 2 6 ) of Book II ar e missing . The first 1 3
propositions of Book II evidently , like the rest of the Book ,

dealt with Apollonius
’

s method of working with very large
numbers expressed in success ive powers of the myriad ,

1 0 0 0 0 .

This system has already been described (vol . i , pp . 40 , 5 4

The work ofA pollon ius seems to have contained 2 6 proposi
tions (2 5 leading up to, and the 2 6th containing , the final
continued multiplication).

Book III consists of four sections . Section (1 ) is a sort of
history of the problem offinding twomean pr opor tionals , in

continued pr opor tion , between two given str aight li nes .

It begins with some general remarks about the distinction
between theorems and problems . Pappus observes that

,

whereas the ancients called them all alike by one name
,
some

regarding them all as problems and others as theorems
,
a clear

distinction was drawn by those who favoured more exact
ter minology . A ccording to the latter a problem is that in
which it is proposed to do or constr uct something , a theorem
that in

'

which
,
given certain hypotheses , we investigate that

which follows from and is necessarily implied by them .

Therefore he whopropounds a theorem,
nomatter how he has

become aware ofthe fact which is a neces sary consequence of
the premisses , must state, as the object of inquiry, the right
result and no other . On the other hand , he who propounds
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Section The theor y ofmeans .

Next follows a section (pp . 6 9—1 0 5) on the theory of the

different kinds of means . The discussion takes its origin
from the statement of the ‘

second problem ’

,
which was that

of ‘

exhibiting the three means
’

(i. e . the arithmetic, geometric
and harmonic) ‘ in a semicircle ’

. Pappus first gives a con

struction by which another geometer (em s TLS
‘

) claimed to
have solved this problem, but he does not seem to have under
stood it, and returns to the same problem later (pp. 8 0

In the meantime he begins with the definitions of the

three means and then shows how , given any two of three
terms

’

a
,
b, c in arithmetical , geometrical or harmonical pr o

gr ession , the third can be found . The definition ofthe mean

(b)of three terms a
,
b, c in harmonic progression being that

-

it

satisfies the relation a c: d — b b— c, Pappus gives alternative
defin itions for the arithmetic and geometric means in corre
sponding form, namelyfor the arithmetic rrrean a a a b b c

and for the geometric a b : a — b b— c.

The construction for the harmonic mean is perhaps worth
giv ing . Let AB ,

BG be two given straight lines . AtA draw
DA E perpendicular to A B , and make DA ,

AE equal . Join
DB ,

BE . From Gdraw GFatright
angles to A B meeting DB in F. 0

Join EFmeeting A B in C . Then
BC is the required harmoni c mean.

For
“

AB zBG z DA zFG

— EA ~:FG

: A C z CG

(A B — BC) (BC— BC).

S imilarly ,
by means of a like figure, we can find BG when

A B
,
BC ar e given , and A B when BC , BG ar e given (in

the latter case the perpendicular DE is drawn through G

instead of A ).

Then follows a proposition that , if the three means and the

several extremes ar e represented in one setof lines , there must
be five of them at least , and , after a set offive such lines have
been found in the smallest possible integers , Pappus passes to
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the problem ofrepresenting the three means with the respective
extremes by sin: lines drawn in a semicircle.

Given a semicircle on the diameter A C, and B any point on
the diameter

,
draw BD at right angles to A C. Letthe tangent

at D meet A C produced in G, and measure DH along the

tangent equal toDG. Join HB meeting the radius OD in K .

LetBFbeperpendicular to OD.

Then, Exactly as above, it is shown that OK is a harmonic
mean between OF and OD. A lso BD is the geometric mean

between AB,
BC

, while OC OD) is the arithmetic mean

between AB,
BC.

Therefore the six lines DO CC), OK , OF,
AB, BC,

BD

supply the three means with the respective extremes.

ButPappus seems tohave failed to observe that the ‘ certain
other geonreter whohas the same figure excluding the dotted
lines , supplied the same in five lines . For he said that DE
is ‘

a harmonic mean It is in fact the harmonic mean

between AB, BC, as is easily seen thus .

S ince OBB is a right - angled triangle , and BF perpendicular
to OD,

DF : BD BD Do,

DE . 0 0
'

m e A B Bo.

But DO 7 (A B BC) ;

therefore DE . (AB BC) 2 AB BC.

Therefore A B . (DF BC) BC . (AB — DE),

that is, AB BC (A B — DE) (DE BC),

and DE is the harmonic mean between AB
,
BC.

Consequently the jive lines D0 (: DF
, AB

exhibit all the three means with the extremes.
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Pappus does not seem to have seen this , for he observes
that the geometer in question , though saying that DE is

a harmonic mean, does not say how it is a harmonic mean
or between what straight lines .

In the next chapters (pp . 8 4— 1 0 4)Pappus ,
following Nico

machus and others
,
defines seven more means , three of which

were ancient and the last four more modern, and shows how
we can form all ten means as linear functions ofor

, B,

‘

y ,
where

or
, B, y ar e in geometrical progression . The exposition has

already been described (vol . i , pp . 8 6

Section The Par adoxes
’

ofEr ycinus .

The third section of Book III (pp . 1 0 4— 3 0) contains a series
ofpropositions , all of the same sort

,
wh ich ar e curious rather

than geometrically important . They appear to have been
taken direct from a collection ofP ar adoxes by one Erycinus .

1

The first set of these propositions (Props . 2 8 — 34)ar e connected
with Eucl. I . 2 1

,
which says that , if from the extremities

ofthe base of any triangle two straight lines be drawn meeting
at any point w ithin the triangle , the straight lines ar e together
less than the two sides of the triangle other than the base

,

but contain a greater angle. It is pointed out that, if the
straight lines ar e allowed to be drawn from points in the base
other than the extremities , their sum may be greater than the
other twos ides ofthe triangle .

The first case taken is that ofa right - angled triangle ABC
right - angled atB . Draw AD to any point D on BC. Measure
on is DE equal to A B , bisect A E
in F

,
and join FC . Then shall

DE+ FC be BA + A O.

For EF+FC=AF+FO>A C.

Add DE and AB respectively,

and we have

DE +FC BA + A O.

More elaborate propositions ar e next proved , such as the

fol lowing .

1 . In any triangle, except an equilateral triangle or an isosceles

Pappus , iii, p. 1 06 . 5—9.
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Now EA + A O EF+F0

EG+ GC and GC, afor tior i.

Produce CC to K so that GK EA + A C,
and with G as

centre and GK as radius describe a circle. This circle will
meet HC and HG, because GH EB BD or DA +A C and

GK
, afor tior i. o

Then

To obtain two straight lines H G’

, G
’

L such that HG’
G

’

L

BA A C, we have only to choose G’

so that HG’

, G
'

L

enclose the straight lines HG, GL completely .

Next suppose that , given a triangle A BC in which BC BA

A C
, we ar e requ ired to draw from two points on BC to

an internal point two straight lines greater r espectively than
BA

,
A C.

With B as centre and BA as radius describe the ar c AEF.

Take any point E on it, and any point D on BE produced
but within the tr iangle . Join DC, and produce it to G so

that DG A C. Then with D as centre and DG as radius
describe a circle . This w ill meet both BC and BD because
BA A C

,
and a for tior i DB DC .

Then , if L be any point on BH ,
it is clear that BD,

DL

ar e two straight lines satisfying the conditions .

A point L"

on BH can be found such that DL’

is equal

to AB by marking offDN on DB equal to AB and drawing
with D as centre and DN as radius a circle meeting BH
in L

’
. A lso,

if DH be joined ,
DH A C.

Propositions follow (3 54 3) having a similar relation to the
Postulate in A rchimedes , On the Spher e and Cylinder , I ,
about conterminous broken lines one ofwhich wholly encloses
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the other
,
i. e . it is shown that broken lines , cons isting of

several straight lines , can be drawn with two points on the

base of a triangle or parallelogram as extremities , and of

greater total length than the remaining two sides of the

triangle or three sides ofthe parallelogram.

Props . 40 — 2 show that triangles or parallelograms can be

constructed with sides respectively greater than those ofa given
triangle or parallelogram but having a less area .

Section The inscr ibing of thefive r egu lar solids

in a spher e.

The fourth section of Book III (pp . 1 3 2— 6 2) solves the
problems of inscribing each of the five regular solids in a

given sphere . A fter some prelim inary lemmas (Props . 4 3

Pappus attacks the substantive problems (Props .

— 8) using
the method of analysis followed by synthesis in the case of

each solid .

(a) In order to inscribe a regular pyramid or tetrahedron in
the sphere

,
he finds two circular sections equal and parallel

to one another , each of which contains one of two opposite
edges as its diameter . If (l be the diame ter ofthe sphere

,
the

parallel circular sections have cl’ as diameter , where ( l2 ga
’ z

.

(b) In the case of the cube Pappus again finds two parallel
circular sections w ith diameter cl' such that d 2=gcl

’2
; a square

inscribed in one of these circles is one face of the cube and

the square with sides parallel to those of
‘

the first square
inscribed in the second circle is the opposite face .

(0) In the case ofthe octahedron the same two parallel circular
sections w ith d iameter cl

'

such that cl2 gd
’ z

ar e used ; an

equilateral triangle inscribed in one circle is one face
,
and the

oppos ite face is an equilateral triangle inscribed in the other
circle but placed in exactly the opposite way .

(d) In the case of the icosahedron Pappus finds four parallel
circular sections each passing through three ofthe vertices of
the icosahedron ; two of these ar e small circles circumscribing
two Opposite triangular faces respectively , and the other two
circles ar e between these two circles, parallel to them, and

equal to one another . The pairs of circles ar e determined in
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this way. If ol be the diameter of the sphere , set out two

straight lines as
, 3) such thatcl

,
a,
y ar e in the ratio ofthe sides

of the r egular pentagon , hexagon and decagon respectively
described in one and the same circle. The smaller pair of
circles have r as radius where r

2
fiy

z
,
and the larger pair

have 9
"
as radius where r

’2
éx

z

(e) In the case of the dodecahedron the same four parallel
circular sections ar e drawn as in the case of the icosahedron .

Inscribed pentagons set the opposite way ar e inscribed in the
two smaller circles ; these pentagons form opposite faces.

R egular pentagons inscribed in the larger circles with vertices
atthe proper points (and again setthe opposite way)determine
ten more vertices ofthe inscribed dodecahedron .

The constructions ar e quite different from those in Euclid
XIII . 1 3 , 1 5 , 1 4 , 1 6 ,

1 7 respectively ,
where the problem is fir st

to construct the particular regular solid and then to ‘
com

prehend it in a sphere ’

,
ige . to determine the circumscribing

sphere in each case. I have set out Pappus’s propositions in
detail elsewhere .l

Book IV .

At the beginning of Book IV the title and preface ar e

missing, and the fir st section of the Book begins immediately
with an enunciation . The first section (pp . 1 7 6 - 20 8)contains
Propositions 1 — 1 2 which, with the exception of Props . 8—1 0

,

seem to be isolated propositions given for their own sakes and
not connected by any general plan .

Section Extension of the theor em of Pythagor as

The first proposition is ofgreat interest , being the generaliz a
tion ofEucl. I . 4 7 , as Pappus h imself calls it , which is by this
time pretty widely known tomathematicians . The enunciation
is as follows .

‘ If A BC be a triangle and on AB , A C any parallelogr ams
whatever . be described , as A BDE ,

A CFG,
and if DE ,

FG

produced meet in H and HA be joined , then the parallelo
grams ABDE,

ACFG ar e together equal to the parallelogram
1 Vide notes to Euclid 's propositions in The Thir teen Books of

-

Euclz
'

d
’
s

E lements , pp. 47 3 , 480 , 4 7 7 , 489
—91

,
501 —3 .

B b
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we may say thatthe algebraic sum ofthe three parallelograms

is equal to z ero.

Though Pappus only takes one case, as was the Greek habit ,
I see no reason to doubt that he was aware of the results
in the other possible cases .

Props . 2
, 3 ar e noteworthy in that they use the method and

phraseology of Eucl. X
,
proving that a certain line in one

figure is the irrational called minor (see Eucl. X. and

a certain line in another figure is ‘ the excess by which the
binomial exceeds the str aight line which pr oduces with a

r ational ar ea a med ial whole
’

(Eucl. X. The propositions
4— 7 and 1 1 — 1 2 ar e quite interesting as geometrical exercises ,
but their hear ing is notobvious : Props . 4 and 1 2 ar e remark
able in that they ar e cases of analysis followed by synthesis
applied to the proof of theor ems . Props . 8 — 1 0 belong to the
subjectoftangencies, being the sortofpropositions that would
come as particular cases in a book such as that ofApollonius
On Contacts ; Prop. 8 shows that, if there ar e two equal
circles and a given point outside both , the diameter of the
circle pass ing thr ough the point and touching both circles
is ‘ given ’

; the proof is in many places obscure and assumes
lemmas of the same kind as those given later a propos of

Apollonius
’

s treatise ; Prop. 1 0 purports to show how
,
given

three unequal circles touching one another two and two, to

find the diameter of the circle including them and touching
all thr ee .

Section On cir cles in scr ibed in the a
’

a Aog

shoemaker
’

s knife

The next section (pp . 20 8 directed towards the demon
str ation of a theorem about the relative s iz es of success ive
circles inscribed in the c

’

z
’

a Aos‘ (shoemaker
’

s knife), is ex

tr emely interesting and clever, and I wish that I had space
to reproduce it completely . The o

’

ia Aog, which we have
alr eady met with in A rchimedes’s ‘Book of Lemmas

’

, is

formed thus . BC is the diameter of a semicircle BGC and

BC is divided into two parts (in general unequal) at D ;

semicircles ar e described on BD,
DC as diameters on the same

s ide of BC as BGC is ; the figure included between the three
semicircles is the c

’l

a Aos‘ .



3 7 2 PA PPUS OF ALEXANDR IA

There is , says Pappus , on record an ancient proposition to
the following efi

’

ect. Let successive circles be inscribed in the
c
’

z
’

a Aor touching the semicircles and one another as shown
in the.

figure on p . 3 7 6 ,
their centres being A

,
P

,
O Then , if

pl , 792 , p3 be the perpendiculars from the‘centr es A , _

P
, O

on BC and d
1 ,
d
2 ,
d
a

the diameters of the corresponding
circles,

P1 d
l ’ P 2 2 d

2 > P3 3 d
a

H e begins by some lemmas
,
the course of which I shall

reproduce as shortly as I can .

I . If (Fig . 1) two circles with centres A ,
C of which the

former is the greater touch externally atB , and another circle
with centre G touches the two circles at K

,
L respectively ,

then KL produced cuts the circle BL again in D and meets
A C produced in a point E such that A B z BC z AE : EC.

This is easily proved , because the circular segments DL, LK

ar e similar , and CD is parallel to AG. Therefore

AB z BC z AK z CD z AE z EC.

A lso K E . EL = EB2

For AE : EC = AB z BC = A B z CF= (AE

FIG 1 .

But AE EC K E : ED ; therefore BE EF.

Therefore K E . EL EL ED BE 2 BE . EF.

And EL ED BE EF; therefore KE EL EBZ.
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II Let (Fig. 2) BC, BD,
being in one straight line, be the

diameters oftwo semicircles BGC, BED, and let any circle as
FGH touch both semicii cles, A being the centre ofthe circle .

Let M be the foot of the perpendicular fi om A on BC, r the

radius of the circle FGH . There ar e two cases according
as BD lies

‘
along BC or B lies between D and C ; i. e. in the

first case the two semicircles ar e the outer and one ofthe inner
semicircles of the a’q Aos‘ , while in the second case they ar e

the two inner semicircles ; in the latter case the circle FGH
may either include the two semicircles or be entirely external
to them . Now , says Pappus , it is to be proved that

in case '

(1) BM : r (BC +BD) (BC— BD),

and in case (2) BM : r (BC BD)

FI G . 2 .

We will confine ourselves to the first case, represented in
the figure (Fig .

Draw through A the diameter HF parallel to BC. Then ,

s ince the circles BGC, HGF touch at G, and BC, HF ar e

parallel diameters , GHB , GFC ar e both straight lines .

LetE be the point of contact ofthe circles FGH and BED ;

then , s imilarly,
BEF, HED ar e straight lines .

LetHK , FL be drawn perpendicular to BC.

By the similar triangles BGC, BKH we have

BC z BG z BH z BK , or CB . BK = GB . BH ;

and by the similar triangles BLF, BED

BF z BL BD zBE , or DB . BL FB . BE .



https://www.forgottenbooks.com/join


THE COLLECTI ON. BOOK IV 3 7 5

Therefore (Lemma I), i f the two circles touch the semi
circle BED in R , E respectively, FRE is a straight line and

But EF FR FB2 ; therefore EH FB.

If now EH meets PN in O and MA produced in S , we have,
by similar triangles, FH FB PH : P 0 AH : A S ,

whence
PH PO and SA AH , so that O, S ar e the intersections
ofPN , AM with the respective circles .

Join BP , and produce it tomeet [VA in K .

Now

A H : PH , from above,

A S PO.

BM : BN -BK BP

K S P 0 .

A S , and K A d , the diameter

MK z K S = PN z PO,

PN : &d
’

,

PN : d
’

.
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IV. We now come to the subs tantive theorem .

LetFGH be the circle touching all three semicircles (Fig.

We have then, as in Lemma II ,

and for the same reason (regarding FGH touching
semicircles EGC, DUC)

From first relation we have
BC : BD BL BK ,

FI G . 4 .

whence DC : BD : KL BK , and inversely BD DC : BK KL,

while, from the Second relation , BC : CD CK CL,

whence

BK LC K L?

Butwe saw in Lemma II (b) that BK LC

Therefore

For the second circle Lemma III gives us

(29 1 + d 1) d 1 Pz i d z »

whence, since p1 d
l , p2 2 d

2
.

Fer the thir d circle

(P2 d
c) : d z 2 : 293 3 013 ;

w
And so on ad infinitwm.
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The same proposition holds when the successive circles ,
instead ofbeing placed between the large and one ofthe small
semicircles, come down between the two small semicircles .

Pappus next deals with special cases (1) where the two

smaller semicircles become straight lines perpendicular to the
diameter of the other semicircle at its extremities , (2) where
we replace one of the smaller semicircles by a straight line
through D at right angles to BC, and lastly (3) _

where instead
of the semicircle DUC we simply have the straight line DC
and make the

'

first circle touch it and the two other semi
circles .

Pappus ’s propositions of course include as particular cases
the par tial propositions ofthe same kind included in the ‘ Book
ofLemmas

’

attributed to Archimedes (Props . 5 , cf. p. 1 0 2

Sections (3)and Method s ofsquar ing the cir cle, and of
tr isecti ng (or dividing in any r atio)any given angle.

The last sections of Book IV (pp. 2 34- 30 2) are mainly
devoted to the solutions of the problems (1) of squaring or

rectifying the circle and (2) of trisecting any given angle
or dividing it intotwoparts in any ratio. To this end Pappus
gives a short account of certain curves which were used for
the purpose.

(a) The A r chimed ean spir al.

H e begins with the spiral of A rchimedes, proving some

of the fundamental proper ties . H is method of finding the
area included (1 ) between the first turn and the initial line,
2) between any radius vector on the first turn and the curve,
is worth giving because it differs from -the method of A rchi
medes . It is the area ofthe whole first turn whi ch Pappus
works out in detail. We will take the area up to the radius
vector 0B , say.

With centre 0 and radius OB draw the circle A ’

BCD.

Let BC be a certain fraction , say 1 nth , ofthe ar c ECUA
’

,

and CD the same fraction, OC, OD meeting the spiral in F, E
respectively. Let K S , SV be the same fraction of a straight
line K R , the s ide ofa square K NLR . Draw ST, VWparallel
to KN meeting the diagonal K L ofthe squar e

'

in U, Q r espec

tively ,
and draw MU,

PQparallel to KR .
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We have a similar propor tion connecting a figure circum
scribed to the spiral and a figure circumscribed to the cone.

By increasing n the inscribed and circumscribed figu1 es can
be compressed together, and by the usual method ofexhaustion
we have ultimately

(sector OA ’
DB) (areaofspiral) (cyl . KN , NL) (coneKN , N17 )

3 l
,

or (area ofspiral cut offby OB) (sector OA
’
DB).

The ratio ofthe sector OA ’
DB to the complete circle is that

ofthe angle which the radius vector sdescr ibes in passing from
the position 0A to the position OB to four right angles, that
is, by the property ofthe spiral , r a ,

where r OB, a 0A .

Therefore (area ofspiral cut offby OB) I
}

;
S imilarly the area of the Spiral cutoffby any other radius

vector r ’ T
1r r

a

Therefore (as Pappus proves in his next proposition) the
first area is to the second as r 3 to r

’3

Cons idering the areas cut off by the radi i vectores at the

points where the revolving line has passed through angles
ofi n , 7 r , 5” and 2 11 respectively, we see that the areas ar e in
the ratio of (g,)

3
, 1 or 1

,
8
, so that the areas of

the spiral included in the four quad 1 ants ar e in the ratio
of l , 7 , 1 9 , 3 7 (Prop.

The conchoid ofNicomedcs .

The conchoid ofNicomedcs is nex t described (chaps . 2 6

and it is shown (chaps . 2 8 , 2 9)how it can be used tofind two
geometric means between two straight lines, and consequently
tofind a cube having a given ratio to a given cube (see vol. i,
pp . 2 6 0—2 and pp . 2 3 8—40 , where I have also mentioned
Pappus ’s remark that the conchoid which he describes is the
fir st conchoid, while there also exist a second , a thir d and a

fou r th which ar e ofuse for other theorems).

(y) The quad r atr ix.

The quad r atr ix is taken next (chaps . 3 0 with Spor us
’

s

criticism questioning the construction as involving a petitio
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pr incipi i . Its use for squaring the circle is attributed to

Dinostr atus and Nicomedes. The whole substance of th1s

subsection is given above (vol. i , pp . 2 2 6

Two constr uctionsfor the quad r atr ia; by means of

su rface- loci

In the next chapters (chaps . 3 3
,
34 , Props . 2 8 ,

2 9) Pappus
gives two alternative ways of producing the quad r atr ix

‘ by
means of surface - loci ’ for which he claims the men t that
they ar e geometrical rather than ‘ too mechanical

’

as the

traditional method (ofH ippias)was .

(1) The fir st method uses a cylindrical helix thus .

Let ABC be a quadrant of a circle with centre B ,
and

letBD be any radius . Suppose
that EF,

drawn from a point E
on the radius BD perpendicular
to BC,

is (for all such radii) in
a given ratio to the ar c DC.

I say
’

, says Pappus , ‘ that the
locus ofE is a certain curve.

’

Suppose a right cylinder
erected from the quadrant and

C a cylindrical helix CGH drawn
upon its surface . Let DH be

the generator of this cylinder through D,
meeting the helix

in H . Draw BL
,
E] at right angles to the plane of the

quadrant , and draw H I L parallel to BD.

Now , by the property of the helix , EI (= DH ) is to the
ar c CD in a given ratio. A lso EF : (ar c CD) a given ratio.

Therefore the ratio EF EI is given . A nd since EF, EI ar e

gi ven in pos ition , FI is given in position . But FI is per pen

dicular toBC. Therefore FI is in a plane given in position ,

and so therefore is I .

But I is also on “

a certain surface described by the line LH .

which moves always parallel to the plane A BC,
with one

extremity L on BL and the other extremity H 0 11 the helix .

Therefore I lies on the intersection of this surface with the
plane through FI .
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H ence I lies on a certain curve . Therefore E
,
its projection

on the plane A BC, also lies on a curve .

In the particular case where the given ratio of EF to the
ar c CD is equal to the ratio of BA to the ar c CA

,
the locus of

E is a qu ad r atr ix.

[The surface described by the straight line LH is a plectoid .

The shape of it is perhaps best realiz ed as a continuou s spir al
staircase

,
i. e . a spiral staircase with infinitely small steps .

The qu ad r atr ix is thus produced as the orthogonal projection
of the curve in which the plectoid is intersected by a plane
through BC inclined atagiven angle to the plane ABC . It is
not difficult to verify the result analytical ly ]
(2) The second method uses a right cylinder the base ofwhich
is an A rchimedean spiral .
LetA BC be a quadrant of a circle, as before, and EF, per

pendicular at F to BC , a straight
line of such length that EF is

to the ar c DC as A B is to the

ar c ADC.

Let a point on A B move uni

formly from A to B while, in the
same time, AB itself revolves
uniformly about B from the position BA to the position BC.

The point thus describes the spiral A GB . If the spiral cuts
BD in G,

BA BG (ar c ADC) (ar c DC),

BG (ar c DC) BA (ar cADC).

Therefore BG EF.

Draw GK atright angles to the plane A BC and equal to BG.

Then GK ,
and therefore K ,

lies on a right cylinder with the
spiral as base.

ButBK also lies on a conical surface with vertex B such that
its generators all make an angle of 1

4 1r with the plane ABC.

Consequently K lies on the intersection of two surfaces ,
and therefore on a curve.

Through K draw LK I parallel to BD, and letBL, E] be at

right angles to the plane ABC.

Then LK I , moving always par allel to the plane ABC, with
one extr emity on BL and passing through K on a certain
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a certain ratio shown in the second figure where ABC is
a quadrant of a circle equal to a great circle in the sphere,
namely the ratio ofthe segment ABC tothe sector DABO.

Draw the tangent CF to the quadrant at C. With C as

centre and radius CA draw the circle AEFmeeting CF in F.

Then the sector CAF is equal to -the sector ADC (since
CA 2 2 AD2, while A A OF AADC).
It is required, therefore, to prove that, if S be the area cut

offby the spiral as above descr ibed ,

S : (surface ofhemisphere) (segmt. ABC) (sector CAF).

Let K L be a (small) fraction , say 1 nth, of the circum
ference ofthe circle KLM and letHPL be the quadrant ofthe
gr eat circle through H , L meeting the spiral in P . Then

,
by

the property ofthe spiral,

(ar c HP) (ar cHL) z : (ar e KL) (cir cumf. ofKLM)

l : n .

Let the small circle NPQ passing through P be described
about the pole H .

Next let FE be the same fraction,
1 nth, of the ar c FA

that K L is ofthe circumference ofthe circle KLM, and join EC
meeting the ar c ABC in B . With C as centre and CB as

radius descr ibe the ar c BGmeeting CF in G.

Then the ar c CB is the same fraction, 1 nth, of the arc

CBA that the ar c FE is of FA (for it is easily seen that
AFCE 1 ABDC, while AFCA 1 4 CDA). Therefore, since

(ar c CBA ) (arc HPL), (ar c CB) (ar c HP), and chord CB
chord HP .
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Now (sector HPN on sphere) (sector HK L on sphere)

(chord HP)2 (chord HL)
2

(a consequence ofA rchimedes , On Spher e and Cylinder , I .

HP 2 HL2 CB2 CA 2

Therefore

(sector HPN) (sector HK L) (sector CBG) (sector CEF).

S imilarly
,
if the ar c LL

’

be taken equal to the ar c K L and

the great circle through H , L
’ cuts the spiral in P ’

,
and a small

circle described about H and through P ’
meets the ar c HPL

in p ; and if likewise the ar c BB
’

is made equal to the ar c BC,

and CB
’
is produced to meet AF in E while again a circular

ar c with C as centre and CB
’
as radius meets CE in b,

(sector HP
’

p on sphere) (sector HLL
’

on sphere)

(sector CB
’

b) (sector CE
’
E ).

And so on .

Ultimately then we shall get a figure cons isting of sectors
on the sphere circumscribed about the area S ofthe spiral and
a figure cons isting ofsectors of circles circumscribed about the
segment CBA ; and in like manner we shall have inscribed
figures in each case sim ilarly made up .

The method ofexhaustion will then give

S : (surface ofhemisphere) (segmt. ABC) (sector CA F)

(segmt. ABC) (sector DA C).

[We may , as an illustration
,
give the analytical equivalent

ofthis proposition . If p, a) be the spherical coord inates of P
with reference to H as pole and the ar c HNK as polar axis ,
the equation ofPappus ’s curve is obviously a) 4p.

If now the radius ofthe sphere is taken as unity
, we have as

the element ofarea

dA d a) (1 — COS p) 4 dp (1 — cOS p).

Therefore A 4dp (1 — cos p) 2 7r — 4 .
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Therefore

A 2 7 r 4

(surface ofhemisphere) 2 7 r

l
4

(segment ABC )
(sector DABO)

The second partofthe last section ofBook IV (chaps . 3 6— 4 1 ,

pp.
~ 2 7 0— 3 0 2) is mainly concerned with the problem of tri

secting any given angle or dividing it into parts in any given
ratio. Pappus begins w ith another account ofthe distinction
between plane, solid and linear problems (cf . Book III , chaps .

2 0— 2) according as they require for their solution the

straight line "

and circle only
, (2) conics or their equivalent ,

3) higher curves still
,

‘which have a more complicated and

fo
_

rced (or unnatural) origin
,
being produced from more

irregu lar surfaces “

and involved motions . Such ar e the Curves
which ar e d iscovered in the so- called ‘

loci
‘

on su rfaces , as

well as others more complicated still and many in number
discovered by Demetrius of A lexandria in his Linear con

sider ations and be hilon of Tyana by means of the inter
lacing ofplectoids and other surfaces ofall sorts, all ofwhich
curves possess many remarkable properties peculiar to them.

Some of these curves have been thought bv the more recent
writers tobe worthy ofconsiderable discussion ; one of them is

that which also received from Menelaus the name of the

par adoxical curve . Others of the same class ar e spirals ,
quadratrices, cochloids and cissoids .

’

H e adds the often - quoted
reflection on the error committed by geometers when they
solve a problem by means of an

‘ inappropriate class ’

(of

curve or its equivalent), illustrating this by the use in

A pollonius , Book V , ofa rectangular hyperbola for finding the
feet of normals to a par abola pass ing through one point
(where a circle would serve the purpose), and by the assump
tion by A rchimedes of a solid VEOO'

l S
‘ in his book On Spir als

(see above , pp . 6 5

Tr isection (or division in any r atio) of any angle.

The method oftrisecting any angle based on a certain VGOO'

tS
‘

is next described , with the solution of the uefiaw itself by
was 2 C C
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length (consistent with a real solution). The problem is best
exhibited by means ofanalytical geometry.

If BD a , DC 6, AD 0 (so that DE ab/c), we have

to find the point R on BC such that AR produced solves the
problem by making PR equal to lo, say .

LetDR x. Then, since BR . R C PR . R A , we have

(a— x)(b+ x)

An obv ious expedient is to put y for s/ (c
2 when

we have
(a <1)

and y
2

c
2
+ 93

2
. (2)

These equations represent a parabola and a hyperbola
respectively, and Pappus does in fact solve the problem by
means ofthe intersection of a parabola and a hyperbola ; one
of his preliminary lemmas is , however, again a little more
general. In the above figure y is represented by RQ.

The first lemma of Pappus (Prop. 42 , p. 2 98) states that, i f
fr om a given point A any straight line be drawn meeting
a straight line "

BC given in pos ition in R , and if RQbe drawn
at right angles to BC and of length bearing a given ratio
to AR , the locus ofQ is a hyper bola .

For draw AD perpendicular to BC and produce it to A ’

so that
0

QR zRA A
’
D zDA the given ratio.

C c 2
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Measure DA along DA equal toDA
’

.

Then
,
if QN be perpendicular to AD,

(AR
2 AD?) (QR

2 A
’DZ
)

that is, Qs A
’

N A N

and the locus of Q is a hyperbola .

The equation ofthe hyperbola is clearly

$
2

l‘

where ,.t is a constant . In the particular case taken by
A rchimedes QR R A

,
or

,
u l

, and the hyperbola becomes

the rectangular hyperbola (2)above .

The second lemma (Prop . 43
,
p . 3 0 0) proves that , if BC is

given in length, and Q is such a point that , when QR is drawn
perpendicular to BC, BR . R C k .QR ,

where la is a given
length , the locus ofQ is a par abola .

Let 0 be the middle point of BC, and let OK be drawn
right angles to BC and of length such that

LetQN
’

be drawn perpendicular to OK .

Then QN
’ 2 OR Z

OCZ— BR . R C

lo (K O QR ), by hypothesis,

Therefore the locus ofQ is a parabola.

The equation ofthe parabola referred to DB
, DE as axes of

x and y is obviously
2

— b)— x }
2 = z. —

y}.
which easily reduces to

(a — x) (b+ x) Icy, as above
In A rchimedes ’s particular case k ab/c.

To solve the problem then we have only to draw the para
bola and hyperbola in question

,
and their intersection then

gives Q, whence R , and therefore A RP , is determined .
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Book "V. Preface on the Sagacity of Bees .

It is characteristic ofthe great Greek mathematicians that ,
whenev‘

er they were free from the restraintof the technical
language ofmathematics , as when for instance they had occa
s ion to wr ite a pr eface, they were able towrite in language of
the highest literar y quality, comparable with that of the

philosophers
,
histor ians , and poets . We have only to recall

the introductions to A rchimedes’s
' treatises and the prefaces

to the different Books ofApollonius
’

s Conics. H eron
,
though

severely pr actical, is no exception when he has any general
explanation, historical or other, to give. We have now to

note a like case in Pappus , namely the preface to Book V of

the Collection. The editor , Hultsch ,
draws attention to the

elegance and pur ity of the language and the careful writing ;
the latter is illustrated by the studied avoidance of hiatus .l
The subject is one which a wr iter of taste and imagination
would naturally find attractive, namely the practical intelli
gence shown by bees in selecting the hexagonal form for the
cells in the honeycomb. Pappus does not disappoint us ; the
passage is as attractive as the subject, and deserves to be

reproduced.

It is of cour se to men that God has given the best and

most perfect notion ofwisdom in general and ofmathematical
science in par ticular, but a partial share in these things he
allotted to some ofthe unreasoning animals as well. Tomen,

as being endowed with r eason,
he vouchsafed that they should

do everything in the light of reason and demonstration, but to
the other animals, whi le denying them reason,

he granted
that each of them should

,
by virtue of a certain natural

instinct , obtain just so much as is needful to support life.

This instinct may be observed to ex ist in very many other
species of living “creatures , butmost ofall in bees . In the first
place their orderliness and their submission to the queens who
r ule in their state ar e truly admirable, butmuchmore admirable
still is their emulation,

the cleanliness they observe in the

gather ing ofhoney, and the forethought and housewifely care
they devote to its custody. Presumably because they know
themselves to be entrusted with the task of bringing from
the gods to the accomplished por tion of mankind a share of

1 Pappus , vol. iii, p. 1233.



https://www.forgottenbooks.com/join


THE COLLECTI ON . BOOK V 3 9 1

the same cir cumfer ence the semicir cle is the gr eatest,
"

with some
preliminary lemmas which deserve notice (chaps . 1 5 ,

(1) A BC is a triangle right - angled at B . With C as centre
and radius CA describe the ar c

AD cutting CB produced in D.

To prove that (R denoting a right
angle)

(sector CAD) (area A BD)
> R : ABCA .

Draw AF at right angles toCA meeting CD produced in F,

and draw EH perpendicular to AF. With A as centre and

AB as radius describe the ar c GBE .

Now (area EBE) (area EBH ) (area EBF) (sector ABE),

and
, componendo, A FBH (EBH ) A A BF : (ABE ).

But (by an easy lemma which has justpreceded)

whence A ABF : (ABD) A A BF : (ABE

and (ABE) (A BD).

Therefore (ABE ): (A BG) (A BD) : (A BG)

(ABD) A ABO, afor tior i .

Therefore ABA F : ABAC (ABD) A ABO,

whence , inversely,
A A BC : (A BD) A BA C : ABAF.

and , componendo, (sector ACD) (ABD) R : ABCA .

[If or be the circular measure ofABOA , this gives (if A C=b)

s1n a cos oz . b”)

2 a : (2 a — s in 2 a) 7 r : 2 a ;

that is , - sin 0) where O 6 1r .]

(2) A BC is again a triangle right - angled atB . With C as

centre and CA as radius draw a circle AD meeting BC pr o
duced in D. To prove that

(sector CAD) (area ABD) R : LA CD.



3 92 PAPPUS OF ALEXANDR IA

Draw AE at right angles to A C. With A as centre and

A C as radius describe the circle FCE meeting AB produced
in F and AE in E .

Then,
since AA CD ACAE , (sector A CD) (sector A CE).

Therefore (A CD) A ABO (A CE ): AABO

(ACE) (A CE afor tior i ,

AEA C : A CA B .

Inversely ,

A ABC : (A CD) A CA B : AEAC,

and , componendo

(AB zD) (A CD) AEA B : AEA C.

Inversely, (ACD) (ABD) AEA C AEA B

R : AA CD .

now to the application of these lemmas to the

propos ition comparing the area of a semicircle w ith that of
other segments ofequal circumference (chaps . 1 7

A semicir cle is the gr eatestofall segments ofcir cles which
have the same cir cumfer ence.

Let ABC be a semicircle with centre G, and DEF another
segment ofa circle such that the circumference DEF is equal

to the circumference ABC. I say that the area of ABC is

greater than the area ofDEF.

LetH be the centre ofthe circle DEF. Draw EHK
, BG at

right angles to DE,
A C respectively . Join DH , and draw

LHM parallel to DF.
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LH :AG z : (ar eLE) (ar cAB)

(ar cLE) (ar cDE)

(sector LHE): (sector DHE).

A lso LH ”
: AGZ (sector LHE ) (sector AGB).

Therefore the sector LHE is to the sector A GB in the

ratio duplicate of that which the sector LHE has to the

sector DHE .

Therefore

(sector LHE ) (sector DHE ) (sector DHE ) (sector AGB).

Now (1) in the case of the segment less than a semicircle
and (2) in the case ofthe segment greater than a semicircle

(sector EDH ) (EDK ) R ADHE ,

by the lemmas (1)and (2)respectively.

That is ,

(sector EDH ) (EDK ) ALHE : ADHE

(sector LHE) : (sector DHE)

(sector EDH ) (sector A GB),
from above.

Therefore the half segmen t EDK is less than the half
semicircle AGB , whence the semicircle ABC is greater than
the segment DEF.

We have already described the content of Zenodor us
’

s

treatise (pp . 2 0 7 — 1 3 , above) to which , so far as plane figures
ar e concerned , Pappus added nothing except the above pro
position relating to segments of circles .

Section Compar ison of volumes of solids having their

su rfaces equal. Case of the spher e.

The portion of Book V dealing with solid fig ures begins

(p . 3 5 0 . 20) with the statement that the philosophers who
considered that the creator gave the universe the form ofa

sphere because that was the most beautiful of all shapes also
asserted that the sphere is the greatest of all solid figures
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of the sphere, Pappus quotes A rchimedes , On the Spher e and

Cylinder , but thinks proper to add a series of propositions
(chaps . 2 0—4 3 , pp . 3 6 2—4 1 0)onmuch the same lines as those of
A rchimedes and leading to the same results as A rchimedes
obtains for the surface ofa segment ofa sphere and ofthe whole
sphere (Prop . and for the volume of a sphere (Prop .

Prop . 3 6 (chap . 4 2) shows how to divide a sphere into two
segments such that their surfaces ar e in a given ratio and

Prop . 3 7 (chap . 43) proves that the volume as well
'

as the

surface of the cylinder circumscribing a sphere is lé times

that ofthe sphere itself.
Among the lemmatic propos itions in this section of the

Book Props . 2 1 , 2 2 may be mentioned . Prop. 2 1 proves that
,

if C, E be two points on the tangent at H to a semicircle such
that CH HE , and if CD,

EFbe drawn perpendicular to the
diameter A B , then (CD EF)CE AB DF ; Prop . 2 2 proves
a like result where C , E ar e points on the semicircle, CD, EF

ar e as before perpendicular to
'

A B
, and EH is the chord of

the circle subtending the ar ewhich with CE makes up a semi
circle ; in this case (CD+EF)CE : EH . DE. Both results
ar e easily seen to be the equivalent of the trigonometrical
formula

sin —
y) 2 sin x cos y,

or
,
if certain different angles be taken as x, y,

sin x sin y t 1
cosy— cos x

CO 7 “

Section (5) Ofr egu lar solids with su rfaces equ al, that is

gr eater which has mor efaces.

R eturning to the main problem ofthe Book ,
Pappus shows

that , of the five regular solid figures assumed to have their
surfaces equal , that is greater which has the more faces , so
that the pyramid, the cube , the octahedron ,

the dodecahedron
and the i cosahedron of equal surface ar e, as regards solid
content, in ascending order of magnitude (Props . 3 8

Pappus indicates (p . 4 1 0 . 2 7 )that
‘
some of the ancients ’

had

worked out the proofs of these propos itions by the analytical
method ; for himself, he will g ive a method of his own by
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synthetical deduction ,
for which he claims that it is clearer

and shorter . We have first propositions (with aux iliary
lemmas) about the perpendiculars from the centre of the

circumscribing sphere to a face of (a) the octahedron , (b) the
icosahedron (Props . 3 9 , then the proposition that, if a

dodecahedron and an icosahedr on be
' inscribed in the same

sphere, the same small circle in the sphere circumscribes both
the pentagon of the dodecahedr on and the triangle of the

icosahedron (Prop . this last is the proposition proved by
Hypsicles in the so- called Book XIV ofEuclid ’

,
Prop . 2 , and

Pappus gives twomethods ofproof, the second ofwhich (chap .

5 6) corresponds to that of Hypsicles . Prop . 4 9 proves that
twelve ofthe regular pentagons inscribed ina circle ar e together
greater than twenty of the equilateral triangles inscribed in
the same circle . The final propositions proving that the cube
is greater than the pyramid with the same surface, the octa
hed r on greater than the cube

,
and so on , ar e Props . 5 2— 6

(chaps . 6 0 Of Pappus ’s auxil iary propositions
,
Prop . 4 1

is practically contained in Hypsicles
’

s Prop . 1
, and Prop . 44

in Hypsicles
’

s last lemma ; but otherwise the exposition is

different .

Book VI .

On the
'

contents of Book VI we can be brief . It is mainly
astronomical , dealing with the treatises included in the so

called Little A str onomy, that is, the smaller astronomical
treatises which were studied as an introduction to the great
Syntaxis of Ptolemy . The preface says that many of those
who taught the Tr easu ry ofA str onomy, through a careless
understanding ofthe propositions , added some things as being
necessary and omitted others as unnecessary. Pappus mentions
at this point an incorrect addition to Theodos ius

, Sphaer ica ,

III . 6
,
an omission from Euclid’s Phaenomena, Prop . 2

, an

inaccurate representation ofTheodosius , On Days and N ights ,
Prop . 4

, and the omission later of certain other things as

being unnecessary . His object is to put these mistakes
right . A llusions ar e also found in the Book to Menelaus’s
Sphaer ica , e.g. the statement (p . 4 7 6 . 1 6) that Menelaus in
his Sphaer ica called a spherical triangle r pt

'

nAevpou, thr ee- side.
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The Sphaer ica of Theodosius is dealt with at some length
(chaps . 1 - 2 6

, Props. 1 and so ar e the theorems of

Autolycus On the moving Spher e (chaps . 2 7 Theodosius
On Days and Nights (chaps . 3 0 - 6

, Props. 29 A ristarchus
On the si z es and distances ofthe Sun and Moon .(chaps. 3 7 —40

,

including a proposition, Prop . 3 9 with two lemmas
,
which is

corrupt at the end and is not really proved), Euclid
’

s Optics

(chaps. 4 1 — 5 2 , Props. 4 2 and Euclid’s Phaenomena (chaps .

5 3—6 0 , Props . 5 5

P r oblem ar ising out ofEu clid
’

s Optics
There is little in the Book ofgeneral mathematical interest

except the following propositions which occur in the section on
Euclid’s Optics .

Two propositions ar e fundamental in solid geometry ,

namely :

(a) If from a point A above a plane AB be drawn per peni
dicular to the plane, and if from B a straight line BD be

drawn perpendicular to any straight line EF in
“

the plane,
then will AD also be per pendicular toEF (Prop .

(b) If from a point A above a plane AB be drawn to the plane
but not at r ight angles to it , and AM be drawn perpendicular
to the plane (i.e . if BM be the orthogonal projection ofBA on

the plane), the angle ABM is the leas t ofall the angles which
AB makes with any straight lines through B,

as BP , in the

plane ; the angle A BP increases as BP moves away from BM

on either side '

and , given any straight line BP making
a certain angle with BA , only one other straight line in the
plane will make the same angle with BA ,

namely a straight
line BP ’

on the other side ofBM making the same angle with
it that BP does (Prop.

These ar e the first ofa ser ies of lemmas leading up to the
main problem, the investigation of the apparent form of

a circle as seen from a point outside its plane . In Prop. 5 0

Euclid , Optics, 3 4) Pappus proves the fact that all the

diameters of the circle will appear “

equal if the straight line
dr awn from the point representing the :

eye to the centre of
the circle is either (a)at right angles to the plane ofthe circle
or (b), if not at right angles to the plane ofthe circle, is equal
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The testofapparentequality is ofcourse that the two straight
l ines should subtend equal angles at F.

The main points in the proof ar e these. The plane through
CF

, CK is perpendicular to the planes BEE , PEM and LFR ;
hence CF is perpendicular to BE , QF to PM and HF to LR ,

whence BC and CE subtend equal angles atF : so do LH , HR ,

and PQ, QM .

S ince FC bisects the angle AFD, and AC : CD A K : KD

(by the polar property), A CFK is a right angle. And CF is

the intersection of two planes at right angles, namely AFK
and BEE

,
in the former of which FK lies ; therefore KF is

perpendicular to the plane BEE
,
and therefore to EN . S ince

therefore (by the polar property) LN : NP LK K P
,
it

follows that the angle LEP is bisected by FN hence LN ,
NP

ar e apparently equal .

Again LC z CM = LN zNP LFzFP LF zFM .

Therefore the angles LFC, CFM ar e equal , and LC, CM

ar e apparently equal .
Lastly FP ; therefore

the isosceles triangles FLB ,
FPM ar e equiangular there

fore the angles PEM
,
LFR

,
and consequently PFQ, LFH , ar e

equal . H ence LP
,
RM will appear to be parallel to AD.

We have, based on this proposition,
an easy method of

solving Pappus ’s final problem (Prop .

‘ Given a circle
A BDE and any point within it , to find outside the plane of

the circle a point from which the circle will have the appear
ance ofan ellipse with centre C.

’

We have only to produce the diameter AD through C to the
pole K of the chord BE perpendicular to AD and then

,
in

the plane through AK perpendicular tothe plane ofthe circle
,

to describe a semicircle on OK as diameter . Any point F on
this semicircle satisfies the condition .

Book VI I . On the ‘ Tr easu r y of A na lysis
’

.

Book VI I is of much greater importance, s ince it gives an

account ofthe books forming what was called the Tr easu r y of
A nalysis (dvahvépeuos

‘

1 611-0 9)and , as regards those ofthe books
which ar e now lost , Pappus

’

s account, with the hints derivable
from the large collection of lemmas supplied by him to each
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book ,
practically constitutes our on ly source of information .

The Book begins (p . 6 3 4) with a definition of analysis and

synthesis which , as being the most elaborate Greek utterance
on the subject , deserves to be quoted in full .

‘The so- called Hvahvbpex/OS
‘ is , to put it s hortly , a special

body of doctrine provided for the use of those who,
after

finishing the ordinary E lements , ar e desirous ofacquiring the
power of solving problems which may be set them 1nvolv1ng

(the construction of) lines , and it is useful for this alone . It is
the work of three men ,

Euclid the author of the Elements ,
A pollonius of Perga and A ristaeus the elder, and proceeds by
way ofanalysis and synthesis .

’

Definition of A nalysis and Synthesis .

‘ A nalysis , then ,
takes that which is sought as if it were

adm itted and passes from it through its successive oonss

quences to something which is admitted as the result of

synthesis : for in analysis we assume that which is sought
as if it were already done (yeyovés), and we inquire

'

what it is
from which this results , and again what is the antecedent
cause ofthe latter, and so on , until by so retracing our steps
we come upon someth ing already known or belonging to the
class of first principles , and such a method we call analysis
as being solution backwards (dvdwahw Adai r ).

‘But in synthesi s , reversing the process , we take as already
done that which was last ar rived at in the analys is and

,
by

arranging in their natural order as consequences what before
Were antecedents , and successively connecting them one with
another , we arrive finally at the construction of what was
sought ; and this we call synthesis .

‘Now analys is is oftwokinds , the one directed to searching
for the truth and called theor etical, the other directed to
finding what we ar e told to find and called pr oblematical.

(1 ) In the theor etical kind we assume what is sought as if
it were existent and true

,
after which we pass through its

successive consequences , as if they toowere true and established
by virtue of our hypothesis , to something admitted : then
(a), if that something admitted is true , that which is sought
will also be true and the proof will correspond in the reverse
order to the analysis , but (b), if we come upon something
admittedly false ,

that which is sought will also be
,

false .

(2) In the pr oblematical kind we assume that which is pro
pounded as if it were known,

after which we pass through its
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successive consequences
,
taking them as tr ue, up to something

admitted : if then (a)what is admitted is possible and obtain
able that is, what mathematicians call given ,

what was
or ig mally proposed will also be possible, and the proofwill
again correspond in the reverse order to the analysis, but if (b)
we come upon something admittedly impossible, the problem
will alsobe impossible.

’

This statement could hardly be improved upon except that
itoughtto be added that each step in the chain of inference
in the analys is must be uncond itionally conver tible ; that is ,
when in the analysis we say that, if A is true

,
B is true,

we must be sure that each statement is a necessary conse

quence of the other, so that the truth of A equally follows
fr om the truth of B . This

,
however, is almost implied by

Pappus when he says thatwe inquire ,
not what it is (namely

B) which follows from A ,
but what it is (B) from which A

follows , and so on.

List ofwor ks inthe
‘ Tr easu r y of Analysis

’

.

Pappus adds a list in order, of the books forming the
Muahvépevos

‘

,
namely

‘Euclid’s Data , one Book, Apollonius
'

s Cutting
- of ofa r atio,

two Books , Cutting- of of an ar ea , two Books , Determinate
Section , two Books , Contacts, two Books, Euclid

’

s Por isms,
thr ee Books , Apollonius

’

s Inclinations or Ver gings (var
i

ou s),
two Books , the same author’s P lane Loci , two Books, and
Conics, eight Books , Ar istaeus

’

s Solid Loci, five Books, Euclid
’

s

Su rface-Loci, two Books, Eratosthenes
’

s On mean s, twoBooks .

There ar e in all thirty - three Books , the contents ofwhich up
to the Conic

'

s ofApollonius I have setoutfor your considera
tion,

including not on ly the number of the propositions , the
dimi smi and the cases dealt with in each Book, but also the
lemmas which ar e required ; indeed I have not, to the best
ofmy belief, omitted any question ar ising in the study ofthe
Books in question.

’

Descr iption of the tr eatises .

Then follows the short description of the contents of the

var ious Books down to Apollonius
’

s Conics ; no account is
given of A r istaeus

’

s Solid Loci , Euclid
’

s Su rface-Loci and

mm D d
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utility . In justification of this statement and ‘ in order that
he may not appear empty - handed when leaving the subject ’

,

he will present his readers with the following .

(A nticipation of Ga ldin
’

s Theor em.)

The enunciations ar e not very clearly worded ,
‘but there

is no doubt as to the sense.

Figu r es gener ated by a complete r evolution ofa planefigu r e
about an axis ar e in a r atio compounded (1 ) of the r atio

of the ar eas ofthe figu r es , and (2 ) ofthe r atio of the str aight

lines similar ly d r awn to(i .e. d r awn tomeetatthe same angles)
the axes of r otation fr om the r espective centr es of gr avity.

Figur es gener ated by incomplete r evolutions ar e in the r atio

compou nded (1 ) of the r atio of the a r eas of the figu r es and

(2 ) of the r atio ofthe ar cs descr ibed by the centr es ofgr avity
ofthe r espectivefigu r es , the latter r atio being itselfcompounded

the r atio of the str aight lines similar ly d r awn fr om
the r espective centr es of gr avity to the axes of r otation) and

(b) of the r atio ofthe angles contained (i . e. d escr ibed) about
the axes of r evolution by the extr emities of the said str aight

lines (i . e. the centr es of

H ere, obviously , we have the essence of the celebrated
theorem commonly attributed to P. Guldin (1 5 7 7

quantitas rotunda in viam r otationis ducta producit Pote
statem Rotundam unogradoaltior em Potestate sive Quantitate
Rotata
Pappus adds that

these propositions , which ar e practically one, include any
number of theorems of all sorts about curves , surfaces , and

solids , all ofwhi ch ar e proved at once by one demonstration
,

and include propositions both old and new ,
and in particular

those proved in the twelfth Book of these Elements .

’

Hu ltsch attributes the whole passage (pp . 6 8 0 . 3 0—6 8 2 . 2 0)
to an interpolator, I do not know for what reason ; but it
seems to me that the propositions ar e quite beyond what
could be expected from an interpolator, indeed I know of

no Greek mathematician from Pappus’s day onward except
Pappus himself who was capable of discovering such a pro

pos ition .

1 Centrobaryca, Lib. ii , chap. viii
,
Prop. 3 . Viennae 1 641 .

D d 2
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If the passage is genuine, it seems to indicate, '

what is not

elsewhere confirmed , that the Collection originally contained ,

or was intended to contain , twelve Books .

Lemmas to the difler ent tr eatises.

A fter the description ofthe treatises forming the Tr easu r y
ofA nalysis come the collections of lemmas given by Pappus
to assist the student ofeach of the books (except Euclid

'

s

Data) down to Apollonius
’

s Conics, with two isolated lemmas

to the Su rface- Loci of Euclid . It is difficult to give any

summary or any general idea of these lemmas , because they
ar e very numerous , extremely various , and often quite diffi
cult

,
requir ing fir st- rate ability and full command of all the

resources of pure geometry . Their number is also greatly
increased by the addition ofalternative proofs , often requiring
lemmas of their Own

,
and by the separate formulation of

particular cases where by the use of algebra and conventions
with regard to sign we can make one proposition cover all the
cases . The style is admirably terse , often so condensed as to

make the argument difficult to follow without some little
filling

- out; the hand is that of a master throughout . The

only misfortune is that , the books elucidated being lost (except
the Conics and the Cutting

—offofa r atio of A pollonius), it is
difficult, often impossible, to see the connexion of the lemmas

with one another and the problems of the book towhich they
relate. In the circumstances

,
all that I can hope to do is to

indicate the types of propositions included in the lemmas and ,

by way of illustration
,
now and then to give a proof where it

is sufficiently out ofthe common.

(a) Pappus begins with Lemmas to the Sectio r ationis and

Sectio spati i of Apollonius (Props . 1 — 2 1
,
pp . 6 8 4 The

first two show how to divide a straight line in a given ratio,
and how ,

given the first, second and fourth terms of a pro

portion between straight lines , to find the thi rd term . The

next section (Props. 3— 1 2 and 1 6) shows how to manipulate
relations between greater and less ratios by transforming
them

,
e.g . componendo, conver tendo, &c.

,
in the same way

as Euclid transforms equal ratios in Book V ; Prop . 1 6 proves
that, according as a z b or oz d ,

ad or be. Props .
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1 7 — 2 0 deal with three straight lines a, b, c in geometrical
progress ion, showing how tomark on a straightline containing
a
, b, c as segments (including the whole among ‘

segments
lengths equal toa c i 2 (ac); the lengths ar e of course equal
to a + c+ 2 b respectively. These lemmas ar e preliminary to
the problem (Prop . Given two straight lines A B ,

BC

(0 lying between A and B), tofind a point D on BA produced
such that BD DA CD : (AB +BU 2 s/AB BC). This is,
of course, equivalent to the quadratic equation (a + x) x

(a — c -l- x): (a + c— 2 s/dd), and , after marking off AE along
AD equal to the fourth term of this proportion,

Pappus solves
the equation in the usual way by application ofareas .

Lemmas to the ‘Determinate Section
’

ofApolloniu s.

The next set ofLemmas (Props. 2 2—6 4, pp. 7 04 - 7 0)belong s
to the Determinate Section of A pollonius. A s we have seen

(pp . 1 8 0—1 , above), this work seems to have amounted to

a Theor y of I nvolution . Whether the application of certain
ofPappus’s lemmas corresponded to the conjecture ofZeuthen
or not, we have at all events in this set of lemmas some

remarkable applications of ‘ geometrical algebra ’

. They may

be divided into groups as follows

I . Props . 2 2 , 2 5 , 2 9 .

If in the figure AD DC BD DE, then

The proofs by proportions ar e notdifficult. Prop . 29 is an

alternative proof by means of Prop. 26 (see below). The

algebraic equivalentmay be expressed thus : if ax by, then
6 (a b)(b x)

v c+we+w
II. Props . 30

,
3 2 , 3 4 .

If in the same figure AD .DE BD DC, then

BD DC AB . BE zEC . CA .
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Twoproofs ar e givenof the first theorem. We will give the
first (Prop . 2 6) because it is a case of theor etical analysis

followed by synthesis. Describe a circle about ABD : produce
EA , CA tomeet the circle again in F, G, and join BF,

FG.

Substituting GC CA for BC . CD and FE . EA for BE . ED,

we have to inquire Whether GC CA CA 2 FE . EA AE ’
.

i . e . whether GC : OA FE : EA ,

i. e . whether GA zA C FA : AE
,

i. e . whether the triangles GAF, CAE ar e similar or , in other
words , whether GF is parallel to BC.

But GF is parallel to BC, because, the angles BA C, DAE

being supplementary
,
ADAE A GAB AGFB , while atthe

same time ADAE suppt. ofA FAD AFBD.

The synthes is is obvious .

An alternative proof (Prop . 2 7 ) dispenses with the circle,
and only requires EXH to be drawn parallel to CA tomeet
AB , AD in H , K .

S imilarly (Prop. 2 8)for case (b) it is only necessary to draw
FG through D parallel to AC meeting BA in F and AE

produced in G.

Then ,
Ama, A ADF ADA C) being both right angles,

FD DC

Therefore CA ?‘ AD2 CA 2 FD DC (CA :FD) (CA :DG)

(BC : BD) (or : DE )
— DC . CE : BD .DE .

In case (0)a circle is circumscribed to ADE cutting A B in F
and A C in G. Then, since AFAD A GAE, the arcs DF,

EG

ar e equal and therefore FG is parallel toDE . The proof is
like that ofcase (a).
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VI . Props . 3 7 3 8 .

If A B zBC = ADz
zDC”, whether AB be gr eater or less

than AD, then
A B . BC BDZ .

[E in the figti r e is a point such that ED CD ]

a

E (bi
These lemmas ar e subsidiary to the next (Props . 3 9 ,

being used in the first proofs of them.

The algebraical equivalent is : If then ac=b2 .

Props . 3 9 , 40 prove the following
IfA CDEB be a straight line, and if

A C 2 z CD2
,

If A B a ,
BC BD 0, BE (Z, the algebraic equiva

lents ar e the following.

a (a — d) (a ~ b)
z

c(c— d) (b— e)
2

(a — d)(c— d) (b— dP
;

(a — b)b (Ir — c) (a— d)(a —b) (a— c)
and If

(a — d)a (c— d) 0
2

VII . Props . 4 1
,
42

,
43 .

If AD DC BD .DE , suppose that in Figures (1 )and

k AE + CB, and in Figure (3) If; AE BC, then
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The algebraical equivalents for Figures (1) and (2) r e

spectively may be written (if a AD, 6 0 0 , 0 BD
,

d DE):

If ab= cd
,
then

b (c -

_

b)

c (c a)(Gi b),

d (a i d)(d + b)

Figure (3) gives other varieties of sign . Troubles about
sign can be avoided by measuring all lengths in one direction
from an origin 0 outside the line. Thus , if OA a , OB b,
&c. , the - proposition may be as follows :

If (d — a)(d — c) (b —d)(e — d) and k e—a + b— c,

then k (d — a) (b— a)(e—a), k(d — c) (b— c)(e— e),

k (b— d) (b— a)(b - c) and k (e - d) (e - a)(e— c).

VIII . Props . 45 — 5 6 .

More generally , if AD : DC BD .DE and k AE + Ba
then, if F be any point on the line, we have, according to the
position ofF in relation to A

,
B

,
C
,
D

,
E

,

lc .DF.

A lgebraically, if OA a , OB b OF 56 , the equivalent
is : If (d — a)(cl — c) (b— d)(e— d), and k (e — c),

(ao— a)(w — e)(b— ao) k(m— d).

By making a; a ,
b
, c, e successively in this equation, we

obtain the results ofProps . 4 1— 3 above .

IX. Props . 5 9 — 6 4 .

In thi s group Props . 5 9 , 6 0 , 6 3 ar e lemmas required for the
remarkable propositions (6 1 , 6 2 , 6 4) in which Pappus investi
gates singular and m inimum

’ values ofthe ratio

Where (A ,
D), (B ,

C) ar e point - pairs on a straight line and P

is another point on the straight line . He finds
,
notonly when

the ratiohas the singular and min imum (or maximum) value ,
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Now suppose (A ,
D), (B , C) to be two point- pairs on a

straight line , and letP ,
another point on it, be determined by

the relation
AB . BD zA C . CD BP z z CP z ;

then , says Pappus , the ratio A P PD : BP PC is singular and
a minimum, and is equal to

On AD as diameter draw a circle , and draw BF, perpen

dicular to AD on opposite sides .

Then , by hypothesis , A B . BD . A C . CD : BP 2 CP Z
;

therefore BF2
: OGZ ._ BP 2

: CP 2
,

or BF : CG BP CP
,

whence the triangles FBP , GOP ar e s imilar and therefore
equiangula1 ,

<o that FP G I S a straight line .

P1 oduce GC tomeet the circle m H
,
join FH ,

and d 1 aw DK

per pendicular to FH pi oduced . Draw the diamete1 FL and

join LH .

Now ,
by the lemma , FK

‘ A C . BD, and HK 2=AB CD
,

therefore FH EX EX s/(A C . BD) x/ (A B CD).

Since ,
in the triangles FHL, P CG,

the angles at H , C ar e

right and AFLH z AP GC, the triangles ar e s im ilar , and

GP z P C
'
z FL zFH z AD z FH

AD : { J(A O . BD)

GP z P C — FP z PB

G1” : P 0 2 : FP . PG : BP PC
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Therefore
AP . PD BP . PC = A D2 : J(A C . BD)

The proofs of Props . 6 2 and 6 4 ar e different , the former
being long and 1nvolved . The results ar e :

Prop . 6 2 . If P is between C and D, and

AD . DB : AC . CB DP z
z PC z ,

then the ratio AP PB CP PD is s ingular and a minimum
and is equal to BD) / (AD BC)}

2 DC 2

Prop . 6 4 . If P is on AD produced ,
and

AB BD A C . CD BP 2 CP 2
,

then the ratio AP PD BP P C is s ingular and a maximum,

and is equal to ADZ
: / (A C . BD) / (A B CD)}

2
.

(y) Lemmas on the Neéoets‘ of Apolloniu s .

A fter a few easy propositions (e.g. the equivalent of the
proposition that, if ax + oc

2 by+ y
2
,
then , according as a

or b
, a + az or 6 + y), Pappus gives (Prop. 7 0) the

lemma leading to the solution of the vefio-

Lg with regard to
the rhombus (see pp . 1 90— 2 , above), and after that the solu
tion by one H eraclitus of the same problem with respect to
a square (Props . 7 2 , pp. 7 8 0 The problem is , Given a

squar e ABCD,
to d r aw thr ough B a str aight line, meeting CD

in H and AD pr oduced in E , such thatHE is equal to a given

length.

The solution depends on a lemma to the effect that , if any
straight line BHE through B meets CD in H and AD pro

duced in E, and if EF be drawn perpendicular to BE meeting
BC produced in F

, then
CF” BC 2 HE ”

.
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Draw EG perpendicular to BF.

Then the triangles BCH , EGF ar e s imilar and (s ince
BC EG) equal in all respects : therefore EF BH .

BF2 BE Z EFz
,

BC . BF+BF . FC BH . BE +BE . EH +EF2 .

But, the angles H CF, HEE being right , H , C,
F

, E ar e

concyclic, and BC BF EH BE .

Therefore , by subtraction,

BF . FC = BE . EII + EF2

BE . EE + EE 2

BH . HE +EH
2
+ BH 2

— EE . EE +EE

Taking away the common part
,
BC CF

, we have

CF2 BC 2 EH 2

Now suppose that we have to draw BHE through B in

such a way that HE 70 . Since BC,
EH ar e both given , we

have only to determine a length x such that 03
2 BC 2 + 702 ,

produce BC to F so that CF x, draw a semicircle on BF as

diameter , produce AD to meet the semicircle in E
, and join

BE . BE is thus the straight line required.

Prop . 7 3 (pp . 7 8 4— 6) proves that , if D be the middle point
of BC,

the base of an isosceles triangle A BC
,
then BC is the

shor test of all the straight lines through D terminated by
the straight lines A B ,

A C, and the nearer toBC is shorter than
the more remote .

There follows a considerable collection of lemmas mostly
showing the equality of certain intercepts made on straight
lines through one extremity of the diameter of one of two

semicircles having their diameters in a straight line
,
either

one including or partly including the other, or wholly ex

ternal to one another
,
on the same or opposite sides of the

diameter.
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The problem is reduced to a problem contained in A pollo
nims ’s Deter minate Section thus .

Suppose the problem solved by the semicircle DEF,
BE

being equal to AD. Join E to the centre G of the semicircle

DEF. Produce DA to H
,
making H A equal to

be the middle point ofDC.

Since the triangles ABC, GEC ar e s imilar ,
A GZ

: G0 2 BE z
zEC”

AD2 EC Z , by hypothesis ,

ADz
z GC — DG2 (since DG

A G2 — A D2 DG2

HG DG DG
‘Z

H G DG.

Therefore

H G z DG AD2
: GC z — DG2

AD2 : 2DC . GK .

Take a straight line L such that AD2
2 L

therefore HG DG L GK ,

HG . GK L . DG.

Therefore, given the two straight lines HD,
DK (or

three points H , D,
K on a straight line), we have

a point G between D and K such that

which is the second epitagma of
.

the third Problem
Determi nate. Section of A pollonius , and ther efore may be
taken as solved . (The problem is the equivalent of the
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solution of a certain quadratic equation .) Pappus observes
that the problem is always possible (requires no

and proves that it has only one solution .

(8) Lemmas on the tr eatise ‘ On contacts
’

by Apolloniu s .

These lemmas ar e all pretty obvious except two, which ar e

important , one belonging toBook I ofthe treatise , and the other
toBook II . The two lemmas in question have already been set

outapropos ofthe treatise ofApollonius (see pp . 1 8 2—5
,
above).

A s , however , there ar e several cases of the first (Props. 1 0 5 ,

1 0 7 , 1 0 8 , one case (Prop . 1 0 8 , pp . 8 3 6 different from
that before given,

may be put down here : Given a cir cle a nd

twopoints D,
E within it, to d r aw str aightlines thr ough D,

E

to a pointA on the cir cumfer ence in such a way that, ifthey
meetthe cir cle again in B , C,

BC shall be par allel to DE .

We proceed by analysis . Suppose the problem solved and

DA , EA drawn to A in such a way that, if AD,

A E meet the circle again in B
, C,

BC is parallel toDE .

Draw the tangent at B meeting
ED produced in F.

Then 1 FBD A ACB AA ED ;

therefore A , E , B , F ar e concyclic,
and consequently

But the rectangle AD . DB is given
,
since it depends only

on the position of D in relation to the circle
, and the circle

is given .

Therefore the rectangle FD . DE is given .

And DE is given ; therefore FD is given , and therefore F.

If follows that the tangent FB is given in position, and

therefore B is given . Therefore BDA is given and conse

quently AE also.

To solve the problem ,
ther ef0 1 e

, we merely take F on ED

produced such that FD . DE _ the given rectangle made by
the segments of any chord through D,

draw the tangent FB ,

join BD and produce it to A , and lastly draw AE through to
C ; BC is then parallel toDE .
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The other problem (Prop. 1 1 7
,
pp . 8 4 8— 50) is , as we have

seen , equivalent to the following : Given a cir cle and thr ee

points D,
E

, F in a str aight line exter nal to it
,
to inscr ibe in

the cir cle a tr iangle A BC such that its s ides pass sever ally
thr ough the thr ee points D,

E
,
F. For the solution ,

see

.pp. _ 1 8 2— 4 , above .

(6) The Lemmas to the P lane Loci of A pollonius (Props .

1 1 9— 2 6 , pp . 8 5 2— 6 4) ar e mostly propositions in geometrical
algebra worked out by the methods ofEuel . , Books II and VI .

We may mention the following :

Prop . 1 2 2 is the well - known proposition that, if D be the
middle point ofthe side BC in a triangle A BC

,

+ Acz 2 (AD
2

Props . 1 2 3 and 1 2 4 ar e two cases of the same proposition ,

the enunciation being marked by an expression which is also
found in Eucli d’s Data . Let AB : BC be a given ratio,

and

D 0

let the rectangle CA . AD be given ; then , if BE is a mean

propor tional between DB,
BC

,

‘
the square on A E is greater

by the rectangle CA AD than in the ratio ofAB to BC to the
square on EC by which is meant that

A E 2 CA AD

(AE
2 — CA . AD): EC

’Z AB : Ba

The algebraical equivalent may be expressed thus (if AB=a
,

BC : b, A B = a, Bs ):

(a s
t er — (awn
(a: b)

2

Prop . 1 2 5 is remarkable : If C,
D be two points on a straight

line A B,

AD2 + DB2 AC z + AC . CB +
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i . e. (if DA A C be'

subtracted from each side)
that

i e (if AF . CD be subtracted from each side)
FD DC+FD DB A C . DB

,

FD . CB A C . DB :

which is true, since, by (1)above,
FD DB A C : CB .

(f) Lemnws to the ‘Por isms’ of E uclid .

The 3 8 Lemmas tothe Por isms ofEuclid form an important
collection which, of course, has been included in one form or

other in the ‘ restorations ’

of the original treatise . Chasles 1
in particular gives a classification of them, and we cannot
do better than use it in this place : 2 3 ofthe Lemmas relate
to rectilineal figures , 7 refer to the harmonic ratio of four
points , and 8 have reference to the circle.

Of the 2 3 relating to rectilineal figures , 6 deal with the
quadrilateral cut by a transversal 6 with the equality of .

the anharmonic ratios of two systems of four points arising
from the intersections of four straight lines issuing from
one point with two other straight lines ; 4 may be regarded as

expressing a property ofthe hexagon inscribed in two straight
lines ; 2 give the relation between the areas of two tr iangles
which have two angles equal or supplementary ; 4 others refer
to certain systems of straight lines ; and the last is a case
ofthe problem ofthe Cutting- offofan ar ea .

’

The lemmas relating to the quadrilateral and the transversal
ar e 1

,
2
,
4
,
5
, 6 and 7 (Props . 1 30 , 1 3 1 , 1 3 2 ,

Prop . 1 3 0 is a general p roposition about any transversal

whatever
,
and is equivalent to one ofthe equations by which

we express the involution of six points. If A , A
’

; B ,
B

’

;

C,
C

’

be the points in which the transversal meets the pairs of
Chasle

'

s, Les trots limes de Pomsmes d
’

Euctide, Paris, 1860 , pp. 7 4 sq.

E e 2
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opposite sides and the two diagonals respectively, Pappus
’

s

resu lt is equivalent to
AB . B

’
O CA

A
’

B
’

. BO” 0 91
”

Props . 1 2 7 , 1 2 8 ar e particular cases in which the transversal
is parallel to a s ide ; in Prop . 1 3 1 the tr ansversal passes
through the points of concourse of opposite sides , and the

result is equivalent to the fact that the two diagonals divide
into proportional parts the straight line joining the points of
concourse of opposite s ides ; Prop. 1 3 2 is the particular case
ofProp . 1 3 1 in which the line joining the points of concourse
ofopposite sides is parallel to a diagonal ; in Prop . 1 3 3 the

transversal passes through one only ofthe points of concourse
ofopposite sides and is parallel to a diagonal , the result being

Props. 1 29 , 1 4 5 (Lemmas 3 , 1 0 , 1 1 ,
1 9) establish the equality of the anharmonic ratios which
four straight lines issuing from a point determine on two

transversals ; but both transversals ar e supposed to be drawn
from the same point on one of the four straight lines . Let

0

A B
, A C, AD be cut by transversals HBCD,

required to prove that

IIE . FG

EG . EE
_

Pappus gives (Prop . 1 29) two methods of proof which ar e

practically equivalent. The following is the proof ‘ by com
pound ratios
Draw HK parallel to AF meeting DA and A E produced
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in K
, L ; and draw LM parallel to AD meeting GH pro

duced in M.

HE . FG HE FG LH AF LH

3 1
"
11 0

“

117 " m
“

EX
’

In exactly the same way, if DH produced meets LM in [11
’

we prove that

3 11 3 0
—

117 2
“

HE . FG EB . CD

H G . EF
_

HD . BC

(The proposition is proved for HBCD and any other trans
versal not passing through H by applying our proposition
twice, as usual .)
Props . 1 3 6 , 1 42 ar e the reciprocal ; Prop . 1 3 7 is a particular

case in which one ofthe transversals is parallel to one of the

straight lines, Prop . 1 40 a reciprocal of Prop. 1 3 7 , Prop. 1 45

another case ofProp. 1 2 9 .

The Lemmas 1 2 , 1 3 , 1 5 ,
1 7 (Props . 1 3 8 , 1 3 9 , 1 4 1 , 1 4 3) ar e

equivalent to the property of the hexagon inscribed in two

straight lines, viz . that
,
if the vertices of a hexagon ar e

s ituate,
“ three and three, on two straight lines

,
the points of

concourse of opposite sides ar e in a straight line ; in Props .

1 3 8
,
1 4 1 the straight lines ar e parallel, in Props. 1 3 9 , 1 43 not

parallel .
Lemmas 2 0 , 2 1 (Props . 1 4 6 , 1 4 7 ) provethat , when one angle

of one triangle is equal or supplementary to one angle of

another tr iangle, the areas of the triangles ar e in the ratios
of the rectangles contained by the sides containing the equal
or supplementary angles ;
The seven Lemmas 2 2 , 2 3 , 2 4 , 2 5 , 26 , 2 7 , 3 4 (Props . 1 48— 5 3

1nd 1 6 0)ar e propositions relating tothe segments ofa straight
l1ne on which two intermediate points ar e marked . Thus :

Props . 1 48
,
1 50 .

If C
,
D be two points on AB , then

(a) if 2 AB 0 0 08 2, AD
2

Therefore

A C D B— 9

(b) if 0 112, 1 13
2

1 11 3
1 03

2
,
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Since A B bisects DE perpendicularly
, (ar cAE ) (ar cAD)

and AEFA AAFD, or AF bisects the angle EFD.

Since the angle AFB is right , FB bisects AHFG, the supple
ment ofAEFD.

Therefore (Eucl. vi : 3) 0 3 3 11 0 3 : 3 11 0 A A 11
,

and , alternately and inversely , AH HB A G GB.

Prop . 1 5 7 is remarkable in that (without any mention of

a conic) it is practically identical with Apollonius
’

s Con ics

III . 45 about the foci of a central conic. Pappus ’s theorem
is as follows . Let A B be the diameter pf a sem1c1 r cle , and

from A
, B let two straight lines AE ,

BD be drawn at right
angles toA B . Letany straight line DE meet the two perpen
dicular s in D,

E and the semicircle in F. Further
,
letFG be

drawn at right angles toDE , meeting AB produced in G.

I t is to be proved that

A G . GB AE . BD

S ince F
,
D

, G, B ar e concyclic, ABDG AEFG.
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And , since AFB ,
EFG ar e both right angles , ABFG=AAFE .

But
, since A , E,

G, F ar e concyclic
,
AAFE AA GE .

Therefore ABDG AA GE ;

and the right - angled triangles DBG, GAE ar e simi lar.

Therefore AG A E BD : GB,

In A pollonius G and the corresponding point G’
on BA

produced which is obtained by drawing F’

G
’ perpendicular to

ED (where DE meets the circle again in F’

) ar e the foci
of a central conic (in this case a hyperbola), and DE is any

tangent to the conic ; the rectangle AE . BD is of course equal
to the square on half the conjugate axis .

(77 ) The Lemmas to the Conics ofApollonius (pp . 9 1 8— 1 0 0 4)
donotcall for any extended notice . There ar e a large number
of propositions in geometrical algebra of the usual kind ,
relating tothe segments ofa straight line marked by a number
ofpoints on it ; propositions about l ines divided into propor
tional segments and about s imilar figures ; two propos itions
relating to the construction of a hyperbola (Props . 2 0 4 , 2 0 5)
and a proposition (2 08) proving thattwo hyperbolas with the
same asymptotes do not meet one another . There ar e also
two propositions (2 2 1 , 2 2 2) equivalent to an obvious trigono

metrical formula. Let ABCD be a rectangle , and let any
straight line through A meet DC produced in E and BC

(produced if necessary) in F.

EA AF ED . .DC + CB BF.
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3 11 2+ A3 2 3D2 DA 2
+ 1 13 2 3 1

1 1

ED2 BC2 CD2 RFZ

EA 2
+AF2 EF2 ZEA AF.

Therefore

ZEA AF BA 2
+ AFZ— EF2

ED2 BC 2 CD2 BEZ EF2

(3 D
2 CD2

) (3 0
2 3 1 W) 3 11 2

E0 2 + 2ED .D0 + CF2 + 2 6
'
B .BF

2ED . DC+ 2 0B BF;

i. s . EA AF : ED DC+ CB BF.

This is equivalent to see 0 cosec 0 tan 0 cot6 .

The algebraical equivalents of some ofthe results obtained
by the usual geometrical algebra may be added .

Props . 1 7 8 , 1 7 9 , 1 92—4 .

—
.v)

Prop . 1 9 5 . 4a2 2 { (a

Prop . 1 9 6 .

(a + b (w

Props . 1 9 7 , 1 99 , 1 98 .

If

or if then a
- = y.

or i f (w+ y 31
2
,

Props . 2 0 0 , 2 0 1 . If (a + b)m b
'z
, then

2 b

(:
- a

Si:
(2 b+ a)a (a +- b)(a + b

Prop . 2 0 7 . If (a + b)b 2 a
”
, then a b.

(0) The two Lemmas to the Su rface-Loci of Euclid have
already been mentioned as significant . The fir st has the
appearance of being a general enunciation, such as Pappus
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but the genuine proof is indicated, although breaks
before it is quite complete.

Since AF : FB BG : GC,

AB : EB BC z GC,

But, by hypotlfesis, A B BC BG : GC

therefore BF BG.

From this point the proof apparently proceeded by analysis .

Suppose it done ’

(yeyoué
-

r co), i. e. suppose the propos ition true,
and BED perpendicular to A C.

Then , by similarity oftriangles, AD DB AB BC ;

therefore AF : FB AD : DB , and consequently the angle
ADB is bisected by DE.

S imilarly the angle EDG is bisected by DG.

Therefore each of the angles BDF, EDG is half a right
angle, and consequently the angle FDG is a right angle.

Therefore B ,
G, D, F ar e concyclic ; and , since the angles

FDB, EDG ar e equal, FB BG.

This is of course the result above proved .

Evidently the interpolator tried to clinch the argument by
proving thatthe angle BDA could notbe anything but a right
angle .

Book VIII.

BookVIII ofthe Collection is mainly onmechanics , although
it contains , in addition, some propos itions ofpurely geometrical
interest.
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H istor ical pr eface.

It beg ins with an interesting preface on the claim of

theoretical mechan ics , as distinct from the merely practical
or industrial , to be regarded as a mathematical subject .

A rchimedes , Philon ,
H eron of A lexandria ar e referred to as

the principal exponents ofthe science, while Carpus ofAntioch
is also mentioned as having applied geometry to

‘ certain

(practical) arts
’

.

The date ofCarpus is uncertain ,
though it is probable that

he came after Geminus ; the most likely date seems

“

to be the

first or second century A .D. S implicius gives the authority of
Iamblichus for the statement that Carpus squared the circle
by means of a certain curve, which he s imply called a curve
generated by a double motion .

1 Proclus calls him ‘ Carpus the
writer on mechanics (6 pnxavtk és‘) and quotes from a work of

his on A stronomy some remarks about the relation between
problems and theorems and the ‘ priority in order ’

of the

former.

2 Proclus also mentions him as having held that an

angle belongs to the category of quantity since it
represents a sort of ‘ distance ’ between the two lines forming
it

,
this distance being ‘

extended one way
’

(e
’

gb
’

811 81 6 0 11 69)
though in a different sense from that in which a line represents
extension one way , so that Carpus

’

s view appeared to be the

greatest poss ible paradox 3
; Carpus seems in reali ty to have

been anticipating the modern View ofan angle as representing
diver gence rather than distance, and to have meant by é¢

’ ‘

e
‘

u

in one sense (rotationally), as distinct from one way or in one

dimension (linearly).
Pappus tells us that H eron distinguished the logical , i. s .

theoretical
,
part of mechanics from the practical or manual

(xetpovpyméu), the former being made up of geometry , arith
metic, astronomy and physics, the latter of work in metal,
architecture , carpentering and painting ; the man who had

been trained from hi s youth up in the sciences aforesaid as well
as practised in the said ar ts would naturally prove the best
architect and inventor ofmechanical devices , but , as it is diffi
cult or impossible for the same person to doboth the necessary

1 Simplicius on Arist. Categ , p. 192
,
Kalbfieisch .

2 Proclus on Eucl . I , pp. 24 1—3 .

3 I b. , pp. 1 25 . 25—1 26 . 6 .
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mathematics and the practical work , he whohas notthe former
must per force use the resources which practical experience in
his particular ar t or craft gives him. Other varieties of

mechanical work included by the ancients under the general
term mechanics we re (1) the use of the mechanical powers ,
or devices for moving or lifting great weights by means of

a small force, (2) the construction of engines of war for

throwing proj ectiles a long distance , (3)the pumping ofwater
from great depths , (4) the devices of ‘wonder - workers
(Cavpaacovpyof), some depending on pneumatics (like H eron
in the P neumatica), some using Strings

,
&c. , to produce move

ments like those of living things (like Heron in ‘Automata and

Balancings some employing floating bodies (like A rchimedes
in Floating others using water to measure time
(like H eron in his ‘Water and lastly sphere- making
or the construction ofmechanical imitations ofthe movements
of the heaven ly bod ies with the un iform circular motion of

water as the motive power. A rchimedes , says Pappus , was

held to be the one person who had understood the cause and

the reason of all these various devices , and had applied his
extraordinarily versatile genius and inventiveness to all the

purposes of daily life
,
and yet, although this brought him

unexampled fame the : world over, so that his name was on

every one
’

s lips , he disdained (according to Carpus) to write
any mechanical work save a tract on sphere- making , but

diligently wrote all that he could in a small compass of the
most advanced parts of geometry and of subjects connected
with arithmetic . Carpus himself, says Pappus, as well as

others applied geometry to practical arts , and with reason :

for geometry is in no wise injured, nay it is by nature
capable ofgiving substance to many arts by being associated
with them ,

and , so far from being injured , it may be said
,

while itself advancing those ar ts
,
to be honoured and adorned

by them in return .

’

The object of the Book.

Pappus then descr ibes the object of the Book
,
namely

to set out the propositions which the ancients established by
geometrical methods , besides certain useful theorems dis
covered by himself, but in a shor ter and clearer form and
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Now , by hypothesis ,

CE z EA = BD : DC,

whence CA AE BC CD,

and , i f we halve the antecedents,
AK zA E = HC : CD ;

therefore

whence, componendo, CE : EX BD DH .

AF z FB = BD : DC =

(CE zEK ) (DH : DC). (2)

Now , ELD being a transversal cutting the sides of the

tr iangle K HC, we have

113 K L (3)

[This is
‘Menelaus’s theorem ’

; Pappus does not, however,
quote it , but proves the relation ad hoc in an added lemma by
drawing CM parallel toDE tomeet HK produced in M . The

proof is w ay,
for 113 3 3 (HL LM) (LM :

(HD D0 ) (03 ;

It follows from (2)and (3) that

AF: 3 3 113 3 3 ,

and
,
s ince AB is parallel to HK

,
and AH , BK ar e straight

lines meeting in G,
FGL is a straight line.

[This is proved in another easy lemma by r eductio ad

a.bsu r dum.]
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We have next to prove that EL LD.

Now [again by
‘Menelaus ’s theorem ’

, proved
drawing CN parallel to HK tomeet ED produced

EL : LB (EK : K C) (CH z HD).

But,
“by (1)above , CE : EK BD DH ;

therefore

so that (EK K C ) (CH HD) 1
,
and therefore , from

EL LD.

It remains to prove that FG 2 GL,
wh ich is obvious by

parallels , since FG : GL = A G : GH 2 : 1 .

Two more propositions follow w ith reference to the centre
of gravity . The first is

,
Given a rectangle w ith AB ,

BC as

adjacent sides , to draw from C a straight line meeting the side
oppos ite BC in a point D such that , if the trapez ium ADCB is

hung from the point D,
it will rest with AD

,
BC horiz ontal .

In other words
,
the centre of gravity must be in DL drawn

perpendicular to BC . Pappus proves by analys is that
CL2 3BLZ

,
so that the problem is reduced to that of

dividing BC into parts BL,
LC such that this relation holds .

The latter problem is solved (Prop . 6) by taking a point
,

say X, in CB such that CX 3XB
,
describing a semicircle on

BC as diameter and drawing XY at right angles to BC to
meet the semicircle in Y

,
so that XY2

T
a
g BC

Q
, and then

dividing CB atL so that

The second proposition is this (Prop . 7 ) Given two straight
lines AB ,

A C , and B a fixed point on
)
AB

,
if CD be drawn
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with its extremities on A C, AB and so that AC BD is a given
ratio, then the centre of gravity ofthe triangle ADC will lie
on a straight line.

Take E , the middle pointof A C, and F a point on DE such
that DE : 2 FE . A lso let H be a point on BA such that
BH 2 HA . Draw FG parallel to A C .

Then A G é—AD, and AH : § AB ;
therefore H G 1 BD.

A lso FG 2 AE 1 A C. Therefore
,

since the 1 atio A C : BD is given , the

ratio GH : GF 1 5 given .

And the angle FGH (z A ) is given ,

therefore the triangle FGH 1s given in

species , and consequentlv the angle GHE
is given. And H is a given point .
Therefore HF is a given straight line,

and it contains the
centre ofgravity ofthe triangle ADC .

The inclined plane.

Prop . 8 is on the construction ofa plane at a given
‘

inclina

tion to another plane parallel to the horiz on, and with this
Pappus leaves theory and proceeds to the practical part .
Prop . 9 (p . 1 0 5 4 . 4 sq.) investigates the problem ‘Given
a weight which can be drawn along a plane parallel to the
hor iz on by a given force , and a plane inclined to the horiz on
at a given angle, to find the force required to draw the weight
upwards on the inclined plane ’

. This seems to be the first
or only attempt in ancient times to investigate motion on

an inclined plane, and as such it is curious, though of no

value.

LetA be the weight which can be moved by a force C along
a horiz ontal plane. Conceive a sphere with weight equal toA
placed in contact atL w ith the given inclined plane ; the circle
OGL represents a section of the sphere by a vertical plane
passing through E its centre and LK the line ofgreatest slope
drawn through the pointL. Draw EGH horiz ontal and there
fore parallel to MN in the plane of section , and draw LF

per pendicular to EH . Pappus seems to regard the plane
as rough , s ince he proceeds to make a system in equilibrium

F f
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is left intact, and let it be required to find the diameter of
a circular section of the cylinder. We take any two points
A ,
B on the surface ofthe fragment and by means of these we

find five points on the surface all lying in one plane section,

in general oblique. This is done by taking five different radii
and drawing pairs of circles with A , B as centres and with
each ofthe five r adii success ively. These pairs ofcircles with
equal radii , inter secting at points on the surface, determine
five points on the plane bisecting A B at right angles . The five

points ar e then represented on any plane by triangulation.

Suppose “

the points ar e A , B , C, D,

'E and ar e such that
no two ofthe lines connecting the different pairs ar e parallel .

This case can be reduced tothe construction ofa conic through
the five points A , B,

D,
E

,
F whe1 e EF is parallel to AB .

This i s shown 111 a subsequent lemma (chap .

For , if EF be drawn through E parallel to AB,
and if CD

meet A B in O and EF ln O
’

,
we have, by the well known

proposition about : intersecting chords ,

C0 . 0D : AO OB CO
’

.

whence O’F is known, and F is determined .

We have then (Prop. 1 3)to constructa conic through A ,
B ,

D,
E , F,

where EF is parallel to AB .

Bisect AB, EF at V,
W ; then VW produced both ways

is a d iameter. Draw DR ,
the chord through D parallel

F f 2
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to this diameter . Then R is determined by means of the

relation

in thi s way .

Join DB, R A ,
meeting EF in K , L respectively.

Then ,
by similar triangles ,

R H . HD z K H . HL.

Therefore, by FH . HE K H HL
,

whence HL is determined , and therefore L. The intersection
ofAL, DH determines R .

Next , in order to find the extremities P ,
P

’

ofthe diameter
through V, W, we draw ED, RFmeeting PP ’

in M , N r espec

tively .

Then
, as before,

FW. WE z P
'W . WP FH . HE : RH . HD, by the ellipse,

FW.WE N ll
’

fl
’
df

, by s imilar triangles .

Therefore

and similarly we can find the value ‘

ofP
’

V . VP .

Now , says Pappus , s ince P ’

ll
’

.WP and P
’
V.VP ar e given

areas and the points V W ar e given , P , P
’

ar e given . H is

determination of P , P
’

amounts (Prop . 1 4 following) to an

elimination of one of the points and the find-ing ofthe other
by means ofan equation ofthe second degree.

Take two points Q, Q
’

on the diameter such that

P
’W.WP VW.WQ

’

Q, Q
’

ar e thus known,
while P

,
P

’ remain found .

By (a) P
'
V : VW: QV : VP ,

whence P
’WzVW: PQ: PV.

Therefore,
by means of

PC P V= Q
’W: WP
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so that

PQ. PQ
’= QV . Q

'W.

Thus P can be found
,
and similarly P ’

.

The conjugate diameter is found by virtue ofthe relation

(conjugate diam)2 PP
’ 2

p : PP
'

.

where p is the latus rectum to PP
’ determined by the property

f th0 6 cur ve

2) 3 3 : A V 2
z P V.VP

P r oblem, Given two conjugate diameter s of an ellipse,

tofind the axes .

Lastly
,
Pappus shows (Prop . 1 4 , chap . 1 7 )how , when We ar e

given two conjugate diameters , we can find the axes . The

cons truction is as follows . LetAB , CD be conjugate diameters
(CD being the greater), E the centre .

Produce EA to .H so that

Through A draw FG parallel to CD. BisectEH in

draw right angles to EH meeting FG in L.

With L as centre, and LE as radius , describe a circle cutting

Join EF, EG, and from A draw AM ,
AN parallel to EF,

EG

respectively .
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Then he proves that, if we join AB, A B is equal to the length
ofthe side ofthe hexagon required .

Produce BC to D so that BD BA
,
and join DA . ABD

is then equilateral .
Since EB is a tangent to the segment , AE . EC EB2 or

AE EB EB EC, and the triangles EAB, EBC ar e similar .

Therefore BA z
zBC 2 AE Z

: EB2 AE : EC 9 : 4 ;

and BC :
2 BA § ED, so that BC 2 CD.

But CF 2 0 A therefore A C : CF DC : CB
,
and AD,

ar e parallel .

Ther efore BF : AD BC : CD 2 1
, so that

BF : 2 AB QAB .

A lso AFBC A BDA so that A ABF : and

the triangle ABF is therefore equal and similar tothe required
triangle NLO.

Construction oftoothed wheels and indented scr ews .

The rest of the Book is devoted to the construction (1) of
toothed wheels with a given number of teeth equal to those of
a given wheel , (2)ofa cylindrical helix , the cochlias, indented
so as to work on a toothed wheel . The text is evidently
defective, and at the end an interpolator has inserted extracts
about the mechanical powers from H eron’

s Mechanics .
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Beginnings learnt fr om Egypt.

IN algebra, as in geometry ,
the Greeks learnt the beginnings

from the Egyptians . Familiarity on the part ofthe Greeks
with Egyptian methods of calculation is well attested . (1)
These methods ar e found in operation in the H er onian writings
and collections . 2)Psellus in the letter published by Tannery
in his edition ofDiophantus speaks of ‘

the method of arith
metical calculations used by the Egyptians , by which problems
in analysis ar e handled ’

; he adds details , doubtless taken
from Anatolius

,
ofthe technical terms used for different kinds

of numbers , including the powers of the unknown quantity.

(3) The scholiast to Plato’s Charmides 1 6 5 E says that ‘ parts
ofAoyw r mfi, the science ofcalculation , ar e the so- called Greek
and Egyptian methods in multiplications and divisions , and

the additions and subtractions of fractions (4)Plato himself
in the Laws 8 1 9 A—C says that free- born boys should, as is the
practice in Egypt

,
learn , side by s ide with reading , simple

mathematical calculations adapted to their age, which should
be put into a form such as to combine amusement w ith
instruction : problems about the distribution of

,
say , apples or

garlands , the calculation of mixtures , and other questions
arising in military or civil life .

Hau -calculations .

The Egyptian calculations here in point (apart from their
method of writing and calculating in fractions

,
which

,
with

the exception of g, were always decomposed and written
as the sum of a diminishing series of aliquot parts or sub

multiples)ar e the hau - calculations . H au , meaning a heap,
is

the term denoting the unknown quantity
, and the calculations
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in terms ofitar e equivalent to the solutions of. simple equations
with one unknown quantity. Examples from the Papyrus
Bhind cor respond to the following equations :

1 9 ,

3 3
,

1 0 .

The Egyptians anticipated
,
though only in an elementary

form, a favourite method of Diophantus, that of the ‘ false
supposition or regula fals i An arbitrary assumption is

made as to the value of the unknown, and the true value
is afterwards found by a comparison of the result of sub

stituting the wrong value in the original expression with the
actual data . Two examples may be given . The first, from
the Papyrus Bhind

,
is the problem of dividing 1 0 0 loaves

among five persons in such a way that the shares ar e in

arithmetical progression, and one- seventh of the sum of the

first three shares is equal to
_

the sum of the other two. If
a + 4d , a + 3 d , a + 2d , a + d ,

a be the shares , then

3 a + 9 d

d = 5%a.

Ahmes says , without any explanation,
make the difference,

as it is, 5% and then, assum ing a 1 , writes the ser ies
2 3 , N i , 1 2 , 1 . The addition of these gives 6 0 , and 1 00 is
13, times 6 0 . Ahmes says simply ‘multiply 1g times

’

and

thus gets the correct values 2 0 , g,

The second example (taken from the Berlin Papyrus 6 6 1 9)
is the solution ofthe equations

x
2
+y

2
z 1 0 0 ,

or y = %w.

a: is first assumed to be 1 , and 56
2
+ y

2 is thus found to be %5 .

In order to make 1 00 , has to be multiplied by 6 4 or 8
2
.

The true value ofa; is therefore 8 times I , or 8 .

A r ithmetical epigrams in the
°

Gr eek A nthology.

The simple equations solved in the Papyrus Bhind ar e just
the kind ofequations

'

ofwhich we find many examples in the
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tions of this type with the same number ofunknown quantities
which was given by Thymar idas , an early Pythagorean, and

was called the évroivdnua ,

‘ flower ’

or bloom ’

ofThymar idas

(see vol. i , pp . 9 4 (3) Six more ar e problems ofthe usual
type about the filling and emptying of vessels by pipes ; e .g.

(xiv . 1 3 0)one pipe fills the vessel in one day , a second in two
and a third in three ; how long will all three running together
take to fill it ? Another about brickmakers (xiv. 1 36) is of
the same sort .

Indeterminate equations of the fir st degr ee.

The Anthology contains (4)two indeterminate equations of
the first degree which can be solved in positive integers in an

infinite number ofways (xiv . 4 8 , the first is a distr ibu
tion ofapples , 3 x in number

,
into parts satisfying the equation

w— 3 y y,
where y is not less than 2 ; the second leads to

three equations connecting four unknown quantities :

m+ y w
1 + yl a

the general solution of which is so 4 70, y Is, as
,

3 10 ,

y, 2 13 . These very equations, which , however , ar e made
determinate by assuming thatw y a

"

, y1 1 0 0
,
ar e solved

in Dioph . I . 1 2 .

Enough has been said to show that Diophantus was not

the inventor ofA lgebra . Nor was he the first to solve inde
terminate problems ofthe second degree .

Indeterminate equations of second degr ee befor e

Diophantus .

Take first the problem (Dioph . II . 8)of dividing a square
number intotwo squares ; or offinding a right- angled triangle
with sides in rational numbers. We have already seen that
Pythagoras is credited with the discovery ofa gener al formula
for finding such triangles , namely,

r a w — 1)
2 = 14.- (r a m
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where n is any odd number
,
and Plato with another formula

of the same sort , namely (2 n)2 + (n 2 (
1

11
2
+ Euclid

(Lemma following X. 2 8) finds the following more general
formula

111
2 2

(mnp +mnq
2

)}
2

(mnp
z — mnq

z

)j—
i

.

The Pythagoreans too
,
as we have seen (vol. i , pp . 9 1

solved another indeterminate problem
,
d iscovering , by ,

means

of the series of ‘

side and ‘ diameter - numbers any number
ofsuccessive integral solutions ofthe equations

2 56 2 + 1 .

Diophantus does not particularly mention this equation
but from the Lemma to V I . 1 5 it is clear that he knew how
to find any number of solutions when one is known . Thus ,
seeing that 2w2 1 y

2 is satisfied by a: l
, y l

,
he would

put
2 (1 + x)

2 — 1 a square

(Zw 0
2
> say ;

whence (4

Take the value p z 2
,
and we have a: 4

,
and

in thi s case 2 5 2 — 1 4 9 7 2 . Putting :c+ 5 in

we can find a still higher value , and so on .

Indeterminate equations in the H er onian collections .

Some further Greek examples of indeterminate analys is ar e
now available . They come from the Constantinople manuscri pt
(probably of the twelfth century) from which Schone edited
theMetr ica ofH eron ; they have been published and translated
by H eiberg , with comments by Zeuthen .

l Twoofthe problems
(thirteen 1n number) had been published in a less com-

plete

form in Hultsch
’

s H eron (Geeponicu s , 7 8 , the others
ar e new .

I . The first problem is to find two rectangles such that the
perimeter of the second is three times that of the first

, and

the area of the first is three times that ofthe second. The

1 B ibliotheca mathematica
,
viiia, pp. 1 18—34. See now

'

Geom.

24 . 1— 13 in Heron, vol . iv (ed . Heiberg), pp. 414—26 .
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number 3 is ofcourse only an illustration, and the problem
equivalent to the solution ofthe equations

(1 ) u + v n (az+ y

(2) xy = n . uv

The solution given. in the text is equivalent to

u n (4 u
3

v

Zeuthen suggests that the solution may have been obtained
thus . A s the problem is indeterminate

,
it would be natural

to start with some hypothesis, e .g. to put v n . It would
follow _ _f1

'

0 111 equation (1 ) that u is a multiple of n ,
“

say

We have then
a; y 7: 1 +

cry n
3
z ,

my
— n ,

(cc— n
?
)(y

— n
"
) n

3
(n

3

A n obvious solution is

513 — 91
3

n
3 1

, y
— n

3

which gives e
’ 2 n3 — 1 2 11 3 — 1 4 n3 2

, so that

u n z n (4 u3

I I . The second is a s imilar problem about two rectangles ,
equi valent to the solution ofthe equations

11>w+ y = u + v

(2) pg
—
n . .uv

and the solution given in the text is

u n 1
, v n (nz — l)

11
2 1

, y n (n — l )

In this case trial may have been made ofthe assumptions
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and b. The method employed is to take the sum ofthe area
and the perimeter 3 + 2 8 , separated into its two obvious
factors to put s (r + 2) A (the given number), and
then to separate A into suitable factors to which 3 and r + 2

may be equated. They must obviously be such that sr , the
area, is divisible by 6 . To take the first example where
A - 2 8 0 : the possible factors ar e 2 x 1 40 , 4 x 7 0 , 5 x 5 6 , 7 x 4 0 ,

8 x 3 5 , 1 0 x 2 8 , 1 4 x 2 0 . The suitable factors in this case ar e

r + 2 8
, s : 3 5

, because r is then equal to 6
,
and r s is

a multiple of 6 .

The author then says that

7 [s + 3 5 s (4 1 — 1)z 2 0 ,

z 2 1 ,

C 3 5 — 6 29 .

The triangle is therefore (2 0 , 2 1 , 29) in this case. The

triangles found in the other three cases , by the same method
,

ar e (9 , 40 , (s, 1 5 , 1 7 ) and (9 , 1 2 ,
Unfortunately there is no guide to the date ofthe problems

just given . The probability is that the original formulation
of the most important of the problems belongs to the period
between Euclid and Diophantus . This supposition best agrees
with the fact that the problems include nothing taken from
the great collection in the A r ithmetica . On the other hand ,
it is strange thatnone ofthe seven problems above mentioned
is found in Diophantus . The five relating to rational r ight
angled triangles might well have been included by him ; thus
he finds rational right - angled triangles such that the areaplu s
or minu s one ofthe perpendiculars is a given number, but not
the rational triangle which has a giy en area ; and he finds
rational right - angled triangles such that the areaplus or minu s
the sum of two sides is a given number, but not the rational
triangle such that the sum of the area and the thr ee sides is
a given number. The omitted problems might, it is true, have
come in the lost Books ; but, on the other hand , Book VI would
have been the appropriate place for them.

The crowning example of a difficult indeterminate problem
propounded before DiOphantus

’

s time is the Cattle- Problem
attributed to A rchimedes, described above (pp . 9 7



44 8 ALGEBRA : DIOPHANTUS or ALEXANDR IA

Numer ical solution of quadr atic equations .

The geometr ical algebra of the Greeks has been in evidence
all through our history from the Pythagoreans downwards ,
and nomore need be said ofit here except that its arithmetical
application was no new thing in Diophantus . It is probable,
for example

,
that the solution of the quadratic equation,

discovered fir st by geometry, was applied for the purpose of

finding numer ical values for the unknown as early as Euclid,
if not earlier still . In H eron the numerical solution of

equations is well established , so that Diophantus was not the
first to treat equations algebraically. What he did was to
take a step forward towards an algebraic notation .

The date ofDIOPHANTUS can now be fixed with fair certainty .

H e was later than Hypsicles , from whom he quotes a defin ition
ofa polygonal number, and earlier than Theon ofA lexandria,

who has a quotation from Diophantus
’

s definitions . The

possible limits ofdate ar e therefore, say ,
1 50 B .C . to A .D . 3 5 0 .

Butthe letter ofPsellus already mentioned says that Anatolius

(Bishop of Laodicea about A .D. 2 8 0) dedicated to Diophantus
a concise treatise on the Egyptian method of reckoning ;
hence Diophantus must have been a contemporary, so that he
probably flourished A .D. 2 5 0 or notmuch later .

An epigram in the Anthology gives some personal particulars :
his boyhood lasted gth of his life ; his beard grew after Tl—Z- th
more ; he married after %th more , and his sonwas born 5 years
later ; the son lived to half his

_ father
’

s age, and the father
died 4 years after his son . Thus

,
if so was his age when

he died
,

4 x)

which gives as 8 4.

Works of Diophantus .

The works on which the fame ofDiophantus rests are

(1) the A r ithmetica (originally in thirteen Books),

(2) a tract On Polygonal Number s.
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Six Books only of the former and a fragment ofthe latter
survive.

A llus ions in the A r ithmetica imply the existence of

(3) A collection of propositions under the title ofPor isms ;
in three propositions (3 , 5 , 1 6)ofBook V , Diophantus quotes
as known certain propositions in the Theory of Numbers ,
pr efixing to the statement of them the words ‘We have it in
the P or isms that
A scholium on a passage of I amblichus , where Iamblichus

cites a dictum of certain Pythagoreans about the unit being
the dividing line (pedéptou)between number and aliquot parts ,
says thus Diophantus in the Mor iastica . for he describes
as parts the progression without limit in the . direction of

less than the unit The Mor iastica may be a separate work
by Diophantus giving rules for reckoning with fractions ; but
I do not feel sure that the reference may not s imply be to the
definitions atthe beginning ofthe A r ithmetica .

The A r ithmetica.

The seven lost Books and thei r place.

None of the manuscripts which we possess contain more
than six Books of the A r ithmetica , the only variations being
that some few divide the six Books into seven ,

while one or

two give the fragment on Polygonal Numbers as VIII . The

miss ing Books were evidently lost at a very early date.

Tannery suggests that Hypatia’

s commentary extended only
to the firstsix Books , and that she leftuntouched the remain
ing seven ,

which , partly as a consequence were first forgotten
and then lost (cf. the case of Apollonius s Conics , where the
only Books which have survived in Greek , I —I V, ar e those
0 11 which Eutocius commented). There is no sign that even
the A rabians ever possessed the missing Books . The Falchr i ,

an algebraical treatise by Abe Bekr Muh. b . al—Hasan al

K arkhi (d . about contains a collection of problems in
determinate and indeterminate analysis which not only show
that their author had deeply studied Diophantus but in many
cases ar e taken direct from the A r ithmetica , sometimes with
a change in constants ; in the fourth section of the work

,

G g
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R elation of the
‘Por isms

’

to the A r ithmetica .

Did the P or isms form partofthe A r ithmetica in its original
form? The phrase in which they ar e alluded to, and which
occurs three times , ‘We have it in the Por isms that . suggests
that they were a distinct collection of propositions concerning
the properties of certain numbers

,
their divisibility into a

certain number of squares
,
and so on ; and it is possible that

it was from the same collection that Diophantus took the

numerous other propositions which he assumes
,
explicitly or

implicitly . If the collection was part of the A r ithmetica ,
it

would be strange to quote the propositions under a separat
title ‘ The

’

Por isms
’ when it would have been more natural

to refer to particular propositions of particular Books , and

more natural still to say TOCTO yelp npodédu xr a z , or some such
phrase , ‘ for this has been proved ’

, without any reference to
the particular place where the proof occurred . The expression
‘We have it in the Por isms

’

(in the plural) would be still
more inappropriate if the P or isms had been , as Tannery
supposed, not collected together as one or more Books of the
A r ithmetica , but scattered about in the work as cor ollar ies to

particular propositions . H ence I agree with the view of

Hultsch that the Por isms were not included in the A r ith

metica at all, but formed a separate work .

If this is right, we cannot any longer hold to the View of

Nesselmann that the lost Books were in the middle and notat

the end of the treatise ; indeed Tannery produces strong
arguments in favour of the contrary view , that it is the last
and most difficult Books wh ich ar e lost. H e replies first to
the assumption that Diophantus could not have proceeded
to problems more difficult than those of Book V .

‘ If the
fifth or the s ixth Book ofthe A r ithmetica had been lost, who,
pray,

among us would have believed that such problems had
ever been attempted by the Greeks ? It would be the greatest
error, in any case in which a thing cannot clearly be proved
to have been unknown to all the ancients , to maintain that
it could net have been known to some Greek mathematician .

If we do not know to what lengths A rchimedes brought the
theory of numbers (to say nothing of other things), let us

admitour ignorance. But, between the famous problem ofthe

G g 2
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cattle and the most“ difficultofDiophantus
’

s problems , is there
not a sufficient gap to require seven Books to fill it ? And ,

without attributing to the ancients what modern mathe
maticians have discovered , may not a number of the things
attributed to the Indians and A rabs have been drawn from
Greek sources ? May not the same be said of a problem
solved by Leonardo of Pisa,

wh ich is very similar to those of
Diophantus but is not now to be found in the A r ithmetica?

In fact
,
it may fairly be said that , when Chasles made his

reasonably probable restitution of the Por isms of Euclid , he,

notwithstanding that he had Pappus’s lemmas to help him,

undertook amore difficult task than he would have undertaken
if he had attempted to fill up seven Diophantine Books with
numerical problems which the Greeks may reasonably be

supposed to have solved .

’ 1

I t is notso easy to agree with Tannery ’

s view ofthe relation
of the treatise On Polygonal Number s to the A r ithmetica .

A ccording to him, jus t as Ser enus
’

s treatise on the sections
of cones and cylinders was added to the mutilated Conics of
Apollonius consisting offour Books only ,

in order tomake up
a convenient volume , so the tract on Polygonal Numbers was

added to the remains of the A r ithmetica ,
though forming no

part ofthe larger work .

2 Thus Tannery would seem to deny
the genuineness of the whole tract on Polygonal Numbers ,
though in his text he only signaliz es the portion beginning
w ith the enunciation ofthe problem Given a number , tofind
in how many ways it can be a polygonal number ’

as
‘
a vain

attempt by a commentator ’

to solve this problem . Hultsch ,

on the other hand , thinks that we may conclude that Dio
phantus really solved the problem . The tract begins , like
Book I of the A r ithmetica, w ith definitions and preliminary
propositions ; then comes the difficult problem quoted , the
discussion ofwhich breaks off in our text after a few pages ,
and to these it would be easy to tack on a great variety of

other problems .

The name ofDiophantus was used
,
as were the names of

Euclid , A rchimedes and H eron in their turn
,
for the pur

pose of palming offthe compilations of much later authors .

Diophantus, ed . Tannery, vol . ii, xx.

I b.

, p. xv1ii.
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Tannery includes in his edition three fragments under the
heading ‘Diophantus Pseudepigr aphus

’

. The first, which is
not ‘ from the A rithmetic of, Diophantus ’

as its heading states ,
is worth notice as containing some particulars of one of ‘ two

methods of finding the square rbot of any square number ’

;

we ar e told to begin by writing the number ‘
according to

the arrangement of the Indian method ’

,
i.e. in the Ind ian

numerical notation which reached us through the A rabs . The

second fragment is the work edited by C . H enry in 1 8 7 9 as

Opu scu lum de mu ltiplicatione et divisione sexagesimalibu s

Diophanto vel Pappo attr ibuendum . The third , beginning
with A tocpdu

'

r ov e
’

m rr edoy er pmd is a Byz antine compilation
from later reproductions of the yemper pouy eua and or epeo

yer pofipeva of H eron . Not one of the three fragments has
anything to do with Diophantus .

I

Commentator s fr om Hypatia downwar ds .

The first commentator on Diophantus of whom we hear
is Hypatia, the daughter of Theon of A lexandria ; she

was mur dered by Christian fanatics in A .D. 4 1 5 . I have
already mentioned the attractive hypothesis of Tannery that
H ypatia’

s commentary extended only to our six Books , and
that this accounts for their survival when the rest were lost .

It is possible that the remarks ofPsellus (eleventh century)at
the beginning of his letter about Diophantus, Anatolius and

the Egyptian method of
'

ar ithmetical reckoning were taken
from H ypatia

’

s commentary .

Georgius Pachymer es (1 2 40 to about 1 3 1 0)wrote in Greek
a paraphrase of at least a portion of Diophantus . Sections
2 5 — 44 of thi s commentary relating to

'

Book I, Def. 1 to Prop .

1 1 , survive. Maximus Planudes (about 1 2 6 0— 1 3 1 0) also wrote
a systematic commentary on Books I , II . A rabian commen

tator s were Abu’l Wafa al - Buzjani (9 40 Qusta b. Luqa

al- Ba
‘

labakki (d . about 9 1 2) and probably Ibn al- H aitham

(about 9 6 5

Tr anslations and editions.

To Regiomontanus belongs the credit of being the first to
call attention to the work ofDiophantus as being extant in
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unfortunately spoiled by corrections made, especially in Books
I , II, from some manuscript of the ‘ Planudean

’ class ; where
thi s is the case recourse must be had to Vat. gr . 1 9 1 which
was copied from itbefore it had suffered the general alteration
r eferred to : these ar e the first twoofthe manuscripts used by
Tannery in his definitive edition of the Greek text (Teubner ,

Other editor s can only be shortly enumerated. In 1 5 8 5

S imon Stevin published a French version of the first four
Books, based on Xylander . A lbert Girard added the fifth and

s ix th Books , the complete edition appear ing in 1 6 2 5 . German
translations Were brought out by Otto Schulz in 1 8 2 2 and by
G. Wertheim in 1 8 9 0 . Poselger translated the fragment on
Polygonal Numbers in 1 8 1 0 . A ll these translations depended
on the text ofBachet.

A reproduction of Diophantus in modern notation With
introduction and notes by the present writer (second edition
1 9 1 0) is based on the text ofTannery and may claim to be the

most complete and up
- to- date edition.

My account ofthe A r ithmetica ofDiophantus will be most
conveniently arranged under three main headings 1) the
notation and definitions, (2) the principal methods employed,
so far as they can be generally stated, (3) the nature of the
contents , including the assumed Porisms , with . indications of
the devices by which the problems ar e solved.

Notation and definitions .

In his work Die A lgebr a der Gr iechen Nesselmann distin

guishes thr ee stages “

in the evolution of algebra. (1) The
first stage he calls Rhetorical Algebra ’

or reckoning by
means of complete words. The characteristic of this stage
is the absolute want ofall symbols , the whole of the calcula
tion being carried on by means of complete words and forming
in fact continuous prose. This first stage is represented by
such writers as Iamblichus, all A r abianand Persian algebraists ,
and the oldest Italian algebraists and their followers , including
R egiomontanus . (2) The second stage Nesselmann calls the
‘ Syncopated A lgebra ’

,
essentially like the first as regards
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literary style , but marked by the use of certain abbr eviational

symbols for constantly recurring quantities and operations .

To this stage belong Diophantus and ,
after him ,

all the later
Europeans until about the middle of the seventeenth century

(W ith the exception ofV ieta ,
who was the first to establish,

under the name ofLogistica speciosa ,
as distinct from Logistica

numer osa ,
a regular system ofreckoning with letters denoting

magnitudes as well as numbers). (3) To the third stage
Nesselmann gives the name of ‘ Symbolic A lgebra ’

, which
uses a complete system ofnotation by signs having no visible
connexion with the words or things which they represent,
a complete language of symbols , which entirely supplants the
‘ rhetorical ’ system,

it being possible to work out a solution
without using a single word ofordinary language with the
exception ofa connecting word or two here and there used for
clearness’ sake.

Sign for the unknown a), and its or igin .

Diophantus
’

s system of notation then is merely abbrevia
tional. We will consider first the representation of the

unknown quantity (our a). Diophantus defines the unknown

quantity as containing an indeterminate or undefined mu lti

tu de of units
’

(17 71 17 90 9 pouddaw dépw r ov), adding that it is
called dptCIuCS‘ , i. s . number s imply, and is denoted by a certain
sign . This sign is then used all through the book . In the

earliest (the Madrid) MS . the s ign takes the form q,
in

Marcianus 3 0 8 it appears as S . In the printed editions of
Diophantus before Tannery’

s it was represented by the final
s igma with an accent , which is sufficiently like the second
of the two forms . Where the symbol takes the place of

inflected forms ciple/1 6V , dptdpofi, &c the termination was put
above and to the right ofthe Sign like an exponent, e .g. 9

“

for

ciple/1 6V as r
“
for 7 611 , for the symbol was

,
in

addition
,
doubled in the plural cases , thus &c. The

coefficient is expressed by putting the required Greek numeral
immediately after it ; thus cat 1 1 dptdpoz

’

,
equivalent

to 1 1 50 , ac
,
and so on . Tannery gives reasons for think

ing that in the archetype the case - endings did not appear
,
and
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that the sign was not duplicated for the plural , although such
duplication was the practice of the Byz antines . That the
sign was merely an abbreviation for the word dp16y69 and no

algebraical symbol is shown by the fact that itoccurs in the
manuscripts for dp16y69 in the ordinary sense as well as for
dp16p69 in the technical sense ofthe unknown quantity. Nor

is it confined to Diophantus . It appears in more or less
similar forms in the manuscripts of other Greek mathe
maticians, e.g. in the Bodleian MS . of Euclid (D

’

Or ville 3 0 1)
of the ninth century (in the forms 0

9 or as a curved line
s imilar . to the abbreviation for Kai), in the manuscripts of

the Sand - r eckoner of A rchimedes (in a form appr oximat

ing to where again there is confusion caused by the

s imilarity of the signs for ciple/469 and Ka i, in a manuscript
ofthe Geodaesia included in the H er onian collections edited
by B ultsch (where it appears in various forms resembling
sometimes sometimes p, sometimes 0

,
and once g, : w ith

case - endings superposed) and in a manuscript of Theon of

Smyrna.

What is the origin of the sign? It is certainly not the

final sigma, as is proved by several of the forms wh ich it
takes . I found that in the Bodleian manuscript ofDiophantus
it is written in the form larger than and quite unlike the
final s igma . This form,

combined with the fact that in one

place Xylander
’

smanuscript read apfor the full word , suggested
tome thatthe sign might be a simple contraction ofthe first
two letters of dpz dpo

’

e This seemed to be confirmed by
Gar dthausen

’

s mention of a contraction for ap, in the form Up
occurring in a papyrus of A .D. 1 5 4 , since the transition to the
form found in the manuscripts of Diophantus might easily
have been made through an intermediate form$1 . The loss of
the downward stroke, or of the loop, would give a close
approximation to the forms which we know . This hypothesis
as to the origin of the s ign has not, so far as I know , been
improved upon. It has the immense advantage that it makes
the s ign for similar to the signs for the powers of

the unknown , e.g. A
Y
for sex/ 11 ,1 1 9 , K

Y
for Kaflo9, and to the

s ign Ni for the unit, the sole difference being that the two
letters coalesce into one instead ofbeing separate .
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When there ar e units in addition ,
the units ar e indicated by

the abbrev iation M ; thus K
Y
or A

Y
t
’

y s e M [3 corresponds to
x
3
+ 1 3w2 + 5w+ 2 .

The sign (A)for minu s and its meaning.

For subtraction alone is . a sign used . The full term for

wanting is Ad min s, as opposed to vnapits
‘

, a for thcoming,
which denotes a positive term. The symbol used to indicate
a wanting, correspond ing to our s ign for minu s, is A , which
is described in the text as a xp turned downwards and

truncated (‘F e
’

AAmés‘ Kai-rmvefioy). The description is evidently
inter polated, and it is now certain that the sign has nothing
to dowith Nor is itconfined toDiophantus, for it appears
in practically the same form in H eron’

s Metr ica,

1 where in one

place the reading of the manuscript is
,
uovcié

'

aw 0 8 T

7 4 — 1
—1
3 .

'

_

In the manuscripts of Diophantus, when the sign
is resolved by writing the full word instead of it, it is
generally resolved into Aet

’

xpet, the dative ofM ixin g, but in
other places the symbol is used instead of parts ofthe verb
M in-

aw, namely Ama
’

w or Acid/ a s and once even Aimw t ;

sometimes Aet
’

xpet in the manuscripts is followed by the .

accusative, which shows that in these cases the sign was

wrongly resolved . It is therefore a question whether Dio
phantus himsel f ever used the dative Acid/a for min/us atall .
The use is cer tainly foreign to classical Greek . Ptolemy has
in two places heal/ av and Aet

’

nouu
’

av respectively followed,
properly, by the accusative, and in one case he has Ta dm

‘

)

Tfi? TA Aeupdév t
‘

nrb
'

foi} (in?) 7 77 9 Z F (where the meaning is
Z I

'z — TA z

). H ence H eron would probably have written a

participle where the ’
I
‘
occurs in the expression quoted above,

say [1 0 1/ 0?d 0 8 heulr aac
’

iwTeaa apaxa idéxa
‘

r ou. On the whole,
therefore, it is probable that in Diophantus, and wherever else
it occurred, A is a compendium for the root ofthe verb Aet

’

rr euz ,

in fact a A with I placed in the middle (cf. R , an abbreviation
for r aiAax/rov). This is the hypothesis which I put forward
in 1 8 8 5 , and it seems to be confirmed by the fresh evidence
now available as shown above.

1 Heron, Metr ica, p. 156 . 8 , 10.
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A ttached to the definition of minu s is the statement that
‘

a wanting (i. e . a minu s) multiplied by a wanting makes
a for thcoming (i. e. a plus); and a wanting (a minus)multi
plied by afor thcoming (a plu s)makes a wanting (a
Since Diophantus uses no sign for plus , he has to put all

the positive terms in an express ion together and write all the
negative terms together after the sign for minu s ; e .g. for

oc3 — 5 x2 + 8 x — 1 he necessarily writes KY 01 s 77 A A
Y
e M a .

The Diophantine notation for fractions as well as for large
numbers has been fully explained with many illustrations
in Chapter II above. It is only necessary to add here that,
when the numerator and denominator consist of composite
expressions in terms of the unknown and its powers , he puts
the numerator first followed by e

’

v
,
uopt

’

cp or
,
uopt

’

ov and the

denominator.

0 0

Thus A
Y

gMmix 63!
,
uopL

/

(p AM a M 7 )mAy e

— 6 0 x
2

), [VI . 1 2]

and A
Y
te /h M Ag

-

G
’

V popfm A A a fil Aq /h A t

- 1- 3 6 — 1 2w2)

For a term in an algebraical expression ,
i. e . a power of a:

with a certain coefficient, and the term containing a certain
number of units , Diophantus uses the word 6 780 9 ,

‘
species ’

,

which primarily means the particular power of the variable
w ithout the coefficient . Atthe end ofthe defin itions he gives
directions for simplifying equations until each side contains
pos itive terms only, by the addition or subtraction of coeffi

cients , and by getting rid ofthe negative terms (which is done
by adding the necessary quantities to both s ides); the object ,
he says , is to reduce the equation until one term only is left
on each side ; ‘ but ’

, he adds
,

‘ I will show you later how,
in

the case also where two terms ar e left equal to one term,

such a problem is solved ’

. We find in fact that , when he has
to solve a quadratic equation

, he endeavours by means of

suitable assumptions to reduce it either to a simple equation
or a pu r e quadratic . The solution of the mixed quadratic
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in three terms is clearly assumed in several places of the
A r ithmetica , but Diophantus never gives the necessary ex

planation of this case as promised in the preface.

Before leaving the notation ofDiophantus, we may observe
that the form of it limits him to the use ofone unknown at
a time . The disadvantage is obvious . For example,

where
we can begin with any number of unknown quantities and

gradually eliminate all but one , Diophantus has practically to
perform his eliminations beforehand so as to express every
quantity occurring in the problem in terms of only one

unknown . When he handles problems which ar e by nature
indeterminate and would lead in our notation to an inde
terminate equation containing two or three unknowns , he has
to assume for one or other of these some particular number
arbitrarily chosen , the efi

'

ect being to make the problem
determinate. H owever, in doing so, Diophantus is careful
to say that we may for such and such a quantity put any
number whatever, say such and such a number ; there is

therefore (as a rule)no real loss ofgenerality . The particular
devices by which he contrives to express all his unknowns
in terms of one unknown ar e extraordinarily various and

clever . H e can, of course, use the same variable 9 in the

same problem with different significations successively,
as

when it is necessary in the course of the problem to solve
a subsidiary problem in order to enable h im to make the
coefficients of the different terms of expressions in a; such
as will answer his purpose and enable the original problem
to be solved. There ar e, however, two cases , II . 2 8 , 2 9 , where
for the proper working - out of the problem two unknowns ar e
imperatively necessary . We should of course use a: and y ;

Diophantus calls the first 9 as usual ; the second ,
for want

of a term, he agrees to call in the first instance ‘

one u nit
’

,

i. e . 1 . Then later, having completed the part of the solution
necessary to find a ,

he substitutes its value and uses g over
again for what he had or iginally called 1 . That is , he has to
put his finger on the place to which the 1 has passed , so as

to substitute 9 for it . This is a tou r olefor ce in the particular
cases , and would be difficult or impossible in more complicated
problems .
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equation and neutraliz e negative terms by adding to both
sides , then take like from like again, until we ' have one term
left equal to one term. A fter these operations have been
performed , the equation (after dividing out

,
if both sides

contain a power ofto, by the lesser power) reduces to A tom B ,

and is considered solved . Diophantus regards this as giving
one root only

, excluding any negative value as
‘ impossible ’

.

No equation of the kind is admitted which does not give
a rational ’ value, integral or fractional . The value to O is

ignored in the case where the degree ofthe equation is reduced
by d ividing outby any power ofa).

(2) M ixed quad r atic equations .

Diophantus never gives the explanation of the method of
solution which he promises in the preface. That he had

a definite method like that used in the Geometry of H eron
is proved by clear verbal explanations in different propositions .

A s he requires the equation to be in the form of two positive
terms being equal to one positive term, the possible forms for

Diophantus ar e

(a) mac
2
+pcc q, mx

2

px + q, (0) mac
2
+ q pa.

It does not appear tfiat Diophantus divided by m in order to
make the first term a square ; rather he multiplied by m for

this purpose . It is clear that he stated the roots in the above
cases in a form equivalent to

29 + 73 +
3

m
3

%P+ t p
z — W Q)

m

The explanations whi ch show this ar e to be found in V I . 6 ,

in IV . 3 9 and 3 1 , and in V . 1 0 and V I . 2 2 respectively. For

example in V . 1 0 he has the equation 1 7 7 2 a
,
and he

says ‘Multiply half the coefficient ofto into itself and we have
1 2 9 6 ; subtract the product of the coefficient of x

2
and the

term in uni ts , or 2 8 9 . The remainder is 1 0 0 7 , the square root
ofwhich is not greater than 3 1 . A dd half the coefficient ofa:
and the result is notgreater than 6 7 . Divide by the coefficient
of £13

2
,
and a: is not greater than In IV. 3 9 he has the
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equation z az 1 8 and says , ‘To solve this , take the square
of half the coefficient ofac, i. e . 9 , and the product ofthe unit
term and the coefficient of $

2
,
i. e. 3 6 . A dding , we have 45

,

the square root of which is not less than 7 . A dd half the
coefficient ofa: [and divide by the coefficient of whence a:
is not less than In these cases it will be observed that 3 1
and 7 ar e not accurate limits , but ar e the nearest integral
limits which will serve his purpose.

Diophantus always uses the positive sign with the radical
,

and there has been much discussion as to whether he knew
that a quadratic equation has two roots . The evidence ofthe
text is inconclus ive because his only object, in every case, is to
get one solution ; in some cases the other root would be
negative , and would therefore naturally be ignored as

‘

absurd ’

or
‘ impossible ’

. In yet other cases where the second root is
possible it can be shown to be useless from Diophantus

’

s point
of View . For my part , I find it difficult or impossible to
believe that Diophantus was unaware of the existence of two

real roots in such cases . It is so obvious from the geometrical
form of solution based on Eucl . II . 5 , 6 and that contained in
Eucl . V I . 2 7 — 9 ; the construction of VI . 2 8

, too, corresponds
in fact to the negative s ign before the radical in the case ofthe
particular equation there solved, while a qui te obvious and

slight variation of the construction would give the solution
corresponding to the positive sign .

The following particular cases of quadratics occurring in
the A r ithmetica may be quoted, with the results stated by
Diophantus .

4 513 — 4 ; therefore a 2 . (IV . 2 2)

3w+ 1 8 ; a
'

(IV . 3 1)

8 4 .u
“

(VI . 6)

8 4w2 — 7 w (VI . 7 )

6 3 0w2 — 7 SJ; 6 ; a; (VI . 9)
7 3 56 6 a; is rational . (VI . 8)

B
2 — 6 0 a: not < 1 1 and not > 1 2 . (V . 30)

1 7 a2 + l 7 a: not and not (V . 1 0)
2 2 36 a

'2
+ 6 0 2 4a ; a; not 1 9 but 2 1 . (V . 3 0)
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In the first and third of the last three cases the limits ar e not
accurate , but ar e integr al limits which ar e a for tior i safe.

In the second $3 should have been gg, and itwould have been
more corr ect to say that, if a is not greater than g; and not

less than $5, the given conditions ar e afor tiori satisfied .

For compar ison with Diophantus
’

s solutions of quadratic
equations we may refer to a few ofhis solutions of

(3) Simu ltaneous equations involving quadr atics.

In I . 2 7 , 2 8 , and 3 0 we have the following pairs ofequations .

(B) 1 (7 ) é— n

s + r = B l a = B l
'

I use the Greek letters for the numbers required to be found
as distinct from the one unknown which Diophantus uses , and
which I shall call a:

In (a), he says, let f— fl 2m(5

It follows, by addition and subtraction, that g a +w,

7 7 64 - 90 ;

therefore $7 7 (a + a) (a — w) a
2 — a

2 B,

and ac is found from the pure quadratic equation .

In (B) similarly he assumes g— q 2m
,
and the resulting

i

equation is §
2
+ 77

2
(a + a3)

z
(a — ac)

2 2 (a
2
+ cc

2
) z : B .

In (y)he puts 5+ 7 7 2 x and solves as in the case of(a).

(4) Cubic equation.

Only one very particular case occurs . InVI . 1 7 the problem
leads to the equation

w2 + 2w+ 3 x
3
+ 3 x — 3w

'

— 1 .

Diophantus says simply ‘whence a; is found to be 4 In fact

the equation reduces to

(13
3

-Fa; z : 4w2 + 4 .

Diophantus no doubtdetected, and divided outby , the common

factor 902 + 1 , leaving a: 4 .
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(B) When 0 is positive and a square, say 0
2
;

in this case Diophantus puts A x? 0
2
(mm and obtains

(y) When one solution is known, any number of other
solutions can be found . This is stated in the Lemma to

VI . 1 5 . It Would be true notonly ofthe cases A rr ”i O y
”
,

but ofthe general case A 902 Bx + 0 y
2
. Diophantus , how

ever, only states it ofthe case A acz 0 y
2

.

H is method of finding other (greater) values ofw satisfy
ing the equation when one (930 ) is known is as follows . If
Awo

2 — C' (1
2
, he substitutes in the original equation (mo+ tc)

for x and (q— kx)for 1 ,
where k is some integer.

Then , s ince A (.r 0 + 9 0
2 — 0 (q— hfc)

2
,
while Amo

z 0 Q
2
,

it follows by subtraction that

afllc
fi—A ),

whence cc 2 (Awo+ lcq)/(lo
2— A ),

2 (A cc + 10
and the new value ofa: 1 s ao+ [02 1 A

q

Form A x2 _ c
2

y
e
.

Diophantus says (VI . 1 4) that a rational solution of this
case is only possible when A is the sum oftwo squares .

[In fact, if as p q satisfies the equation, and A a
P— c

'3 N ,

we have AP
2

o
2

g
z keg

s
,

cq log
2

(
27 )

- l (I?)
Form A a: 2 C y

?

Diophantus proves in the Lemma to VI . 1 2 that this equa
tion has an infinite number ofsolutions when A 0 1 s a square,
i
. e. in the particular case where a 1 is a solution . (He does
not, howeve1 , always hear this in mind , for in III . 1 0 he

regards the equation 5 2 x
2
+ 1 2 y

2
as imposs ible though

6 4 is a square, just as , in III . 1 1
,
2 6 6m2 — 1 0

is r egarded as impossible.)
Suppose that A + O= q

2 ' the equation is then solved by
H h 2
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substituting in the original equation 1 + oc for a; and (q— koc)
for where It is some integer .

3 . Form A 11
2
+Bw+ C y

2
.

This can be reduced tothe form in which the second term is
B

wanting by r eplacmg a: by 2 A

Diophantus , however, treats this case separately and les s
fully . A ccording to him,

a rational solution ofthe equation
A ns“ Bx + C y

2 is only possible

(a) when A is positive and a square, say a

(B) when 0 is positive and a square , say 0
2

(y) when 43
3— AO is positive and a square.

In case (a)y is put equal to (arc— m), and in case (B)y is put
equal to (mm— c).

Case (y) is not expressly enunciated , but occurs
,
as it

.were , accidentally (IV . The equation to be solved is
3 as 1 8 a

?
y
2
. Diophantus first assumes 3 so 1 8 x

2
: 4 $ 2 ,

which gives the quadratic 3 33+ 1 8 but this ‘ is not

rational ’. Therefore the assumption of for y
2 will notdo,

‘

and we must find a square [to replace 4] such that 1 8 times
(this

'

square 1 ) (g) may be a square ’

. The auxi liary
equation is therefore 1 8 (m

2
+ 1) g. y

z
, or 7 2 7 7 1 2 + 8 1 a

square, and Diophantus assumes 7 2m2 8 1 (8m whence
m : 1 8 . Then

,
assuming 3 a: 1 8 —x

2

(1 8)
2
x
2
, he obtains the

equation 3 2 5w2 3 91 1 8 0
,
whence a?

3
7

5
8
3 , that is , 2

9

5
.

(2) Double equation.

The Greek term is dtflhol'ooms, dark?) iaé‘ms or dtflhfifamous .

Two different functions of the unknown have to be made
simultaneously squares . The general

'

case is to solve in

rational numbers the equations
ma;

2
ora a

nw2 +c + b w2

The necessary preliminary condition is that each of the two

express ions can be made a square . This is always possible
when the first term (in is wanting. We take this s implest
case first .
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1 . Double equation ofthefir stdegr ee.

The equations ar e
or d) a

Boc+ l) =w
2

.

Diophantus has one general method taking slightly different
forms according to the nature -ofthe coefficients .

(a) First method of solution .

This depends upon the identity

{A(10 + q)1-
2— { s09 — l 199

If the difference between the two expressions in a: can be

separated into two factors p, q, the express ions themselves
ar e equated to and (p —

q)}
2 respectively . A s

Diophantus himself says in II . 1 1 , we
‘

equate either the square
of half the difference of the two factors to the lesser of the
express ions , or the square ofhalf the sum to the greater ’

.

We w ill consider the general case and investigate to what
particular classes

,
of cases the method is applicable from

Diophantus
’

s point of v1ew
, remembering that the final quad

r atic in a; must always reduce to a single equation.

Subtracting ,
we have (or B)x (a b) u w2

Separate
,

(or ma: (a b) into the factors

{ (a

We write accordingly

J (or (a — b)
1

Z9

u + w = p .

Thus u = orx + a
(a — b)

+ p
i

19 f

therefore (or — B)ac+ a — b+p
2
}
2

This reduces to

(Oi — Bfw“ 2m{OX (a — b)

+ (a — b)
2
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Ex . from Diophantus

(IV 3 2)

therefore u

The difference 1 9 5 say ;

therefore — s4 e ; that is and ac

Taking now the condition ((2) that ab is a square, we see

that the
b

equations can be solved in the cases where either
a and b ar e both squa1 es , or the 1 atio of a to 1) 1s the ratio of
a square to a square . If the equations ar e

ax + c
2 =

Bac+ d
2 =w2

,

and factors aretaken ofthe difference between the expressions
as they stand then

,
s ince one factor p,

as we saw , satisfies the

equation p (c
2 d z)}

2 4 c
z d z ,

we must have

Ex . from Diophantus :
- 1- 9

5 5c+ 4 : w2

The difference is 5 a + s 5 (w+ the solution is given by
(%x + = 1 0 x + 9 , and as

Another method is to multiply the equations by squares
such that, when the express ions ar e subtracted, the absolute
term vanishes . The case can be worked out generally , thus .

Multiply by d 2 and c
2 respectively, and we have to solve»

aolZa: 0
2d 2 u

2

Bc
2
a3+ c

2
0l2 wz

(II I . 1 5)

Difference (ord
z
Bc

2
)tc pa: . q say .

Then a is found from the equation

ord c
z d 2 2

1

; (pa: q)
2
,

which gives p
2
5):
2 2 :1 ; (pq 2 ad2) q

z 4ozol2 O
,
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or
,
since pq ad z — B

p
2
oc
2 2 -

.r (orrl
2

9
2 4 c

2d 2 0 .

In order that this may reduce to a s imple equation , as

Diophantus requires , the absolute term must vanish, so that

q 2 cd . The method therefore only gives one solution ,
since

q is restricted to the value 2 cd .

Ex . from Diophantus

Difference q necessarily taken to be 2 s/4 or 4 ; factors
ther efore %cc, 4 . Therefore 8 a; 4 3, (gr -t and ac 1 1 2 .

Second method of solution of a double equation of the

first degree.

There is only one case ofthis in Diophantus , the equations
being ofthe form

(h +f)x + n
2

Suppose ha' n
2
(y n)

2
; therefore hr y

2 2 ny,

(h+f)zc+ n
2 { (gfl 2 ny).

It only r emams to make the latter expression a square,
which is done by equating it to (pg— n)
The case in Diophantus is the same as that last mentioned

(IV . Where I have used y, Diophantus as usual contrives
to use his one unknown a second time.

2 . Double equations ofthe second degr ee.

The general form is

A ir
2
+ Bcc + 0 =~u

2

A
’

oc
2 B

’

cc O
’
: 10

2

but only three types appear in Diophantus , namely

p
gw“+ 6 9: b

Where
» except In one case

,
a b.
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a
2
+ aaz + a u

Bocz + a =w2

(The case where the absolute terms ar e in the ratioofa square
to a square reduces to this .)
In all examples ofthese cases the usual method of solution

applies .

The usual method does not here serve, and a special artifice
is required.

Diophantus assumes u m2w2

Then a: — a) and
, by substitution in the second

equation
,
we have

m a

, which mustbe made a square,

a
Z
B ba (m — a) must be a square.

We have therefore to solve the equation

ab m2 + a (aB— ab)

which can or cannot be solved by DiOphantus
’

s methods
according to the nature of the coefficients. Thus it can be
solved if (aB— a b) a is a square, or if a b is a square .

Examples in VI . 1 2 . 1 4 .

(b) I ndeterminate equations ofa degr ee higher than the
second .

1) Single equations.

There ar e two classes , namely those in which expressions
in a: have to be made squares or cubes respectively. The

general form is therefore

fix + s — L y
2
or y

a
.

In Diophantus n does not exceed 6 , and in the second class
of cases, where the express ion has to be made a cube

,
n does

not generally exceed 3 .
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a square . Wher ethis does not hold (in IV . 1 8) Diophantus
harks back and replaces the equation x

“ 1 6 5123 w+ 6 4 z y
2

by another, teG 1 2 8 5133 + cc 4096 g
z

.

Of expressions which have to be made cubes , we have the
following cases .

1 . A oc2 + Bx + C z y
3

There ar e only two cases ofthis . First, in VI . 1 , a
2— 4 x 4

has to be made a cube
,
being already a square . Diophantus

naturally makes 51 1— 2 a cube .

Secondly,
a peculiar case occurs in VI . 1 7

,
where a cube has

to be found exceeding a square by 2 . Diophantus assumes
(cc for the cube and (513+ for the square. This gives

x
3 — 3 x

2
+ 3 x — 1 mz + 2 a3+ 3 ,

or 4x
2
+ 4 . We divide out by x

2
+ 1 , and so 4 . It

seems evident that the assumptions were made with knowledge
and intention . That is

,
Diophantus knew of

"

the solution 2 7

and 2 5 and deliberately led up to it . It is unlikely that he was
aware ofthe fact, observed by Fermat, that 2 7 and 25 ar e the

only integral numbers satisfying the condition .

2 . Aoc3 +Bcc2 + Ccc+D y
3
,
where either A or D is a cube

number
,
or both ar e cube numbers Where A is a cube (a3),

we have only toassume 3) an and where D is a cube

(d
3
), y a + d . Where: A a

3
and D d 3 , we can use

either assumption ,
or put y ax cl. Apparently Diophantus

used the last assumption only in this case ,
for in I V . 2 7 he

rejects as impossible the equation 8 a3 — a
'2
+ 8 a; — 1 y

3
,

because the assumption 3) 2 90 — 1 gives a negative value
at -

1
-
2
T ,
whereas either of the above assumptions gives

a rational value.

(2) Double equations .

H ere one expression has to be made a square and another
a cube . The cases ar e mostly very simple , e.g. (VI . 1 9)

4w+ 2 y
s

thus y3 and z 2 .
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More complicated is the case in VI . 2 1

2w2 + 2x 31

512
3
+ 2w

2
+ az=z

3

Diophantus assumes y moo, whence cc 2 (m
2

2 (47 6 3
2

We have only tomake 2m4
, or 2m ,

a cube.

I I . Method of Limits .

A s Diophantus often has to find a series of numbers in
order of magnitude, and as he does not admit negative
solutions , it is often necessary for him to reject a solution
found in the usual course because it does not satisfy the

necessary conditions ; he is then obliged
,
in many cases, to

find solutions lying within cer tai n limits in place of those
rejected. For example :

1 . It is required to find a value of a: such that some power of
it , cc" , shall lie between two given numbers, say a and b.

Diophantus multiplies both a and b by and so on,

successively , until some nth power is seen which lies between
the two products . Suppose that c" lies between tip

”
and

then we can put as c p,
for lies between a and b.

Ex . To find a square between 14 and 2 . Diophantus
multiplies by a square 6 4 ; this gives 8 0 and 1 2 8

,
between

which lies 1 0 0 . Therefore solves the problem
(IV . 3 1

To find a sixth power between 8 and 1 6 . The sixth powers
of 1 , 2 , 3 , 4 ar e 1

,
6 4

,
7 2 9

,
40 9 6 . Multiply 8 and 1 6 by 64

and we have 5 1 2 and 1 0 2 4
,
between which 7 2 9 lies ; 752391 13

therefore a solution (V I .

2 . Sometimes a value of a: has to be found which w ill give
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some function of
v
a; a value intermediate between the values

oftwo other functions ofa).

Ex . 1 . In IV. 2 5 a value ofa; is required such that 8 (a;2 a
'

)
shall lie between toand a; 1 .

One part of the condition gives 8 46
3
4- 5153. Diophantus

accordingly assumes 8 which is
a
3
+ x

2
. Thus w+ § 2 or a 3 satisfies one part of

the condition. Incidentally it satisfies the other, namely
8 w+ 1 . This is a piece of luck , and Diophantus
is satisfied with it, saying nothing more.

Ex . 2 . We have seen how Diophantus concludes that, if

ge
e— 6 0) x gee

then a: is not less than 1 1 and not greater than 1 2 (V .

The problem further requires that afl 6 0 shall be a square .

A ssuming 6 0 (w we find a: (m
2 6 0) 2m .

S ince a 1 1 and 1 2
,
says Diophantus

,
it follows that

2 4m m2
+ 6 0 2 2m ;

from which he concludes that m lies between 1 9 and 2 1 .

Putting m 2 0
,
he finds a: 1 14 .

I I I . Method of appr oximation to Limits .

H ere we have a very di stinctivemethod called byDiophantus
name-67 17 9 or name-67 117 0 9 d

‘

yfoyfi. The object is to solve such
problems as that of finding two or three square numbers the
sum of which is a given number , while each of them either
approximates to one and the same number, or is subject to
limits which may be the same or different .
Two examples will best show the method.

Ex . 1 . Divide into two squares each ofwhich 6 (V .

Take half of 1 3 , i.e. 64, and find what small fraction 1 /a
'2

added to it will give a square ;

6 1 or 26 1 must be a square.
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therefore (11 2 , and 1 /a' and 3 3
1

; + 3
1
35

1
3
2
3
1
, a square .

We have now, says Diophantus , to divide 1 0 into three
squar es with sides as near as may be to

1
5
1

.

Now 1 0 3 2 + (effigy.

Bringing 3 , and n to a common denominator, we have
9 0 1 8 2 5
3 6 1

"

5 3 1 E% an 5g?

0
'

a
n
;

c
n

l

w

w
l
w

A

A

V

If now we took 3 f; g% as the sides ofsquares ,
the sum ofthe squares would be -

6

1 2
or

34
3
—3
6
1
, which is > 1 0 .

A ccordingly we assume as the sides 3 35 x, 3 7 56 , g 3 1m,
where it must therefore be not exactly 3

1
5 but near it .

Solving (3 = 1 0
,

1 0 1 0 ,

we find at 3
1

3
1

3
3

3 ;

2 1thus the s1des ofthe r equI r ed squa1 es ar e 7
3—
17 3

4
7
2 l

v
z

f
e
f
‘i

,

9 9the squares themselves ar e 43 7 6455507 4T1 ,

1

3
9

5
5
555

2

5 ,
l
g
s
a
fi
g gfi

t
.

Other instances of the application of the method . will be
found in V . 1 0 , 1 2 , 1 3 , 1 4 .

Por isms and propositions in the Theory ofNumber s .

I . Three propositions ar e quoted as occurr ing in the Por isms

We have it in the Por isms that and some other pro
positions assumed W ithout proof may very likely have come
from the same collection . The thr ee propositions from the

Por isms ar e to the following effect.

1 . If a is a given number and cc, 3; numbers . such that
x + a mi

,
y + a then, if xy+ a is alsoa square,m and n

differ by unity (V .

[From the first two equations we obtain easily

xy+ a m2
n
2

a (m
2
+ n

2

and this is obviously a square if m2
+ n

2 — 1 2mn , or

m — n i
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0

2 . If m2
, (m be consecutive squares and a third number

be taken equal to 2 {m
2
(m 2

,
or 4 (m

2
+m the

three numbers have the property that the product ofany two

plu s either the sum of those two or the remaining number
gives a square (V .

[In fact , if X,
Y

,
Z denote the numbers respectively ,

YY+X+ Y = XY+ Z =

YZ + Y+ Z (2 7 11
2 3m + YZ + X (2m

2 3m +

The difference of any two cubes is also the sum of two

cube s, i.e . can be transformed into the sum of two cubes
(V .

[Diophantus merely states this without proving it or show
ing how to make the transformation . The subject of the

transformation of sums and differences of cubes was investi
gated by V ieta ,

Bachet and Fermat.]

II . Of the many other propositions assumed or implied by
Diophantus which ar e not referred to the Por isms we may
distinguish two classes .

1 . The first class ar e of two sorts ; some ar e more or less
of the nature of identical formulae , e.g. the facts that the
expressions — ab and ar e

respectively squares, that a (a
2 — a) is always a

cube
,
and that 8 times a triangular number plu s 1 gives

a square, i. e . Others ar e of the

same kind as the first two propos itions quoted from the

Por isms
,
e.g.

(1) If X = a
2
x + 2 a , or , in other

words , if .rX+ 1 and aY+ l

then XY 1 is a square (IV . In fact

XV+ I

(2) If X + a m“
,
Y+ a and Z 2 (X+ Y)— 1

,

then YZ + a ,
ZX+ a , K Y+ a ar e all squares (V . 3 ,
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In fact

ZX-

t a

XYi a

(3) If

X m2
+ 2 , Y : (m + Z

then the six expressions

YZ ZX XY

XY— Z

ar e all squares (V .

In fact

YZ 3m + 3)
2
, 17 2 — 26 : (2 47 1.2 1L &c.

2 . The second class is much more important , consisting of

propositions in the Theory of Numbers which we find first
stated or assumed in the A r ith1-

netica It was in explana
tion or extension of these that Fermat’s most famous notes
were written . How far Diophantus possessed scientific proofs
of the theorems which he asshmes must remain largely a

matter ofspeculation .

(a) Theor ems on the composition ofnumbers as the sum
oftwo squar es .

(1) Any square number can be resolved into two squares in
any number ofways (II .

(2) Any number which is the sum of two squares can be

resolved into two'

other squares in any number ofways (II .

(It is implied throughout that the squares may be fractional
as well as integral.)

(3) If there ar e two whole numbers each of which is the
sum of two squares , the product of the numbers can be

resolved intothe sum oftwo squares in twoways.

In fact (a2 b?)(c
2 d z) (ac bd)

2
(ad 1Fbc)

?

This proposition is used in III . 1 9 , where the problem is

to find four rational right - angled triangles with the same

I i
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a g1 ven number is added to either part
, the result will be a

square .

’

The condition is in two parts . There is no doubt as
to the first , ‘The given number must not be odd

’

[i. e . no

,
number of the form 4 n + 3 or 4n — 1 can be the sum of two

squares] the textofthe second part is corrupt , but the words
actually found in the textmake it qu ite likely that corrections
made by H ankel and Tannery give the real meaning of the

original , ‘
nor must the double of the given number plus 1 be

measured by any prime number which is less by 1 than a

multiple of 4 This is tolerably near the true condition
stated by Fermat

,

‘The given number must not be odd
,
and

the double of it increased by 1
,
when divided by the greatest

square which measures it, must not be divisible by a prime
number ofthe form 4 n

(B) On number s which ar e the sum ofthr ee squar es.

In v. 1 1 the number has to be divisible into three
squares . Diophantus says that a

‘must not be 2 or any

multiple of 8 increased by 2 That is , ‘
a number of the .

form 2 4 n 7 cannotbe the sum ofthr ee squar es A s a matter
of fact, the factor 3 in the 24 is irrelevant here, and Diophantus
might have said that a number of the form 8 n + 7 cannot be
the sum of three squares . The latter condition is true , but
does not include all the numbers which cannot be the, sum of

three squares . Fermat gives the conditions towhich a must be
subject , proving that 3 a + 1 cannot be ofthe form 4" (24 16 + 7 )
or 4" (8k where 76 0 or any integer.

(y) Composition ofnumber s as the sum offou r squar es .

There ar e three problems , I V. 2 9
,
3 0 and V . 1 4

,
in which it

is required to divide a number intofour squares . Diophantus
states 11 0 necessary condition in this case ,

as he does when
it is a question ofdividing a number into thr ee or two squares .

Now ever y number is either a squ ar e or the sum oftwo, thr ee

or fou r squar es (a theorem enunciated by Fermat and proved
by Lagrange who followed up results obtained by Euler), and
this shows that any number can be divided into four squares

(admitting fr actional as well as integral squares), since any

square number can be divided into two other squares , integra l
I i 2
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or fractional . It is possible, therefore, that Diophantus was
empi r i cally aware of the truth ofthe theorem ofFermat , but
we cannot be sure ofthis .

Conspectus of the A r ithmetica, with typical solutions .

There seems to be no means of conveying an idea of the

extent ofthe problems solved by Diophantus except by giving
a conspectus ofthe whole of the six Books . Fortunately this
can be done by the help ofmodern notation without occupying
too many pages .

It w ill be best to classify the propositions according to their
character rather than to give them in Diophantus

’

s order. It
should be premised that as, y,

the first , second
and third numbers required do not mean that Diophantus
indicates any of them by his unknown he gives his un

known in each case the signification which is most convenient ,
his object being to express all his required numbers atonce in
terms ofthe one unknown (where possible),ther eby avoiding the
necessity for eliminations. Where I have occasion to specify
Diophantus

’

s unknown , I shall as a rule call it 5, except when
a problem includes a subsidiary problem and it is convenient
to use different letters for the unknown in the original and
subsidiary problems respectively, in order to mark clearly the
d istinction between them . When in the equations expressions
ar e said to be u

2
, v

z
, i 0

2
, t
2 this means simply that they

ar e to be made squares . Given numbers will be indicated by
a , b, c m , n and will take the place of the numbers used
by Diophantus , which ar e always specific numbers .

Where the solutions , or particular devices employed, ar e

specially ingenious or interesting , the methods of solution will
be shortly indicated . The character of the book will be best
appreciated by means of such illustrations .

[The problems marked with an asterisk ar e probably
spurious ]

(i) Equations ofthe first degree with one unknown .

I . 7 . cc— a m (tc— b).

I . 8 . a + a
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9 . a — x m (b— cc).

I . 1 0 . x + b m (a - w).

I . l l . x + b m (r — a).

I . 3 9 .
-l

or (.a b)

or

Diophantus states this problem in this form,

‘Given
two numbers (a, b), to find a third number such that
the numbers

(a + b)9c

ar e in arithmetical progression.

’

The result is of course different according to the order
ofmagnitude of the three expressions . If a > b (5 and 3

ar e the numbers in Diophantus), then (a +w)b (b+ 56)a ;
there ar e consequently three a lternatives

,
since

must be either the least or the middle, and (b w)a either
the middle or the greatestofthe three products . We may

have

(a + b)cc

and the corresponding equations ar e as setout above .

(i i) Determinat
‘

e systems ofequations ofthe first degree.

I . 1 . x + y : a ,
:c— y z z b.

I 2 . x + y a ,
so

I . 4 . :c— y a , a:

I 3 . w+ y a
,
cc

I
. 5 . w+ y a ,

i s: y=b, subject to necessary condition .

1 l
I . 6 . a + y z a ,

— w -

y=b,
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my,

2
nae.

In36 . so my, y
2

ny.

my. 31
2 Mac— v)

a : um+m.

n (sc— y).

II . coq -

y a , to —
y
2

a —
y + b.

I V . 3 6 . ye z oo my

[:Solved by means of Lemma : see under Inde
terminate equations ofthe first degree ]

(iv) Determinate systems reducible to equations of
second degree.

[Dioph . states the necessary condition
,
namely that

% a
2 — b must be a square, with the words é’o-

r t dé 7 0 01 - 0

whaopan xév, whi ch no doubt means ‘ this is of the

natur e of a formula (easily H e puts
w— ~

v= 2 5]

3 0 . az —y at, my b.

[Necessary condition (with the same words)4 b a
2

a square. w- l- y is put

I . 2 8 . Ct, x
2
+ y

2 l).

[Necessary condition 2 b - a
2

a square. x

l . a
3
+ y = a ,

[Dioph . puts (l s— y : 25, whence w=%b+g, y l b— g.

The numbers a ,
b ar e so chosen that (a %b

3

)/3 b is
a square ]
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IV . 1 5 . (y+ z )rc a, (z + 5c)y b
,

c.

[Dioph . takes the third number 2 as his unknown ;

at y c/z .

A ssume a
:

p z , y q Then

+ q = b.

These equations ar e incons istent unless p— q a — b.

We have therefore to determine p, q by dividing c into
two parts such that their difference a— b (cf. I .

A very interesting use of the ‘ false hypothesis ’

(Diophantus first takes two ar bitr ary numbers for p , q
such that p + q c,and finds that the values taken have
to be corrected).

The final equation being 222 p a
,
where p, q ar e

determined in the way described
,
z pq (a p) or

pq/ (b— q), and the numbers a ,
b
, e have to be such that

either of these expressions gives a square ]

I V 3 4 . a
2 — I

,

— 1 .

[Dioph . states as the necessary condition for a rational
solution that each of the three constants to which the
three expressions ar e to be equal must be some square
diminished by l . The true condition is seen in ou r

notation by transforming the equations yz or,

B, y into
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whence
or 1

and it is only necessary that (or 1)(B l)(y 1) should
be a square, not that each ofthe expressions or + 1 , B 1

,

y 1 should be a square.

Dioph . finds in a Lemma (see under (vi) below)a solu
tion e

’

u dopiar cp (indeterminately) of acy
- l (cc+ y) k

,

which practically means finding y in terms ofan]

IV . 3 5 . ye a
2 — l

, z a b
iz — 1

,

ate 0
2 — 1

[The remarks on the last proposition apply mutatis
mutandis . The lemma in this case is the indeterminate
solution of wy

3 7 . ya : a (s; are :

[Another in teresting case of false hypothesis Dioph .

first gives cc+ y + z an ar bitr ar y value, then finds that
the result is not rational

,
and proceeds to solve the new

problem offinding a value ofa; + y z totake the place of
the first value.

If w x + y + z , we have to cw/y,
z : aw/y, so that

ac

b

For a rational solution this last expression must be

acwz

/y
2 bw by hypothesis ; therefore y2

a square . Suppose
,
therefore , that w 7 7 £

2
,
and we have

y :

7 7 5,
z :

Eliminating a
'

, y, 2 , we obtain g ac,

and

re y

Lemma to V . 8 . yz a
z
, 2 51; b2 , my 0

2
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IV . 3 3 . 96 + l y m (y 1
y), y

l a; n (a 1 a)

[Dioph . assumesi- y

(vi) Indeterminate equations ofthe first degree .

Lemma to IV . 3 4 . my + (ccfy) (L.

[Soluti0 11 s e
’

v dopia r w.

IV . 3 5 . my (cc y) a . y practically found
IV . 3 6 . my

in terms Ofa ]

(vi i) Indeterminate analysis ofthe second degree .

8 . .

’

U
2
+ y

2
(t
2

.

[y
2

a
2 — x

2 must be a square (mas — a) say]
aah -

y
2

a
2
+ b2 . [Put a § + a , y i ng- b]

fe
z —
y
2

a .

[Put a
"

y+m , choosing m such that m1a
a .]

II . 1 1 . w+ a = u
2
,
m+ h z v

2
.

. a — zc u
2

(Ii — l) 0
2

.

[Dioph . solves II . 1 1 and 1 3
, (l ) by means of the

‘ double equation ’

(see p . 46 9 above), (2)w ithout a double
equation by putting cc £

2
i a and equating (52 i “) b

to —m)
2

. In II . 1 2 he puts a: a

1 4 = III . 2 1 . oc+ y = a , x + z
2

y + z
2 =

[Diophantus takes 2 as the unknown, and puts
u
2

v
2

(a+ n)
2

. Therefore a 2me m2
,

y 2 na+ n
2
,
and z is found

,
by substitution in the first

a (m
2

n
?
)

equation, tobe In order that the solution

may be rational, m, n must satisfy a certain condition .

Dioph. takes them such thatm2
+ n

2
a , but it is suffi

' cient, if m n , that a mn should be n
2

. ]

1 5 III . 2 0 . cc+ y a, z
Z — x u

z
, z

Z —
y v

2
.

, [The solution is similar , and a similar remark applies
toDiophantus

’

s implied condition]
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II . 1 6 .

q

56
2—
y
~ m (y

m2 + y 97
2
4- 50

[A ssume y 2mac m2
,
and one condition is

cc
2 —
y = u y

z — cc v

condition

u y v
2

.

[Put x + y 2mm+m 2
. ]

2
74
2
. el

f— (m+m 1»

(w+ u , (m y) + 31 v

[A ssume a; (m
2

y (qi
z

[Put y mz
a

[Sincem
2

.n
2 2mn is a squar e, assume

fey and x + y z 2mnf
put 96 pg, y q5, where pg 3 m2

+ 7 1
2
; then

[Suppose w 2 2m . m, wh ich is a square, and

formula (2Wi)2 m2
+ 2 2m m a square ]
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3 4 = fu
2
.

- l- e)

[Since (m —n)}
2 mn is a square , take any number

separable into two factors (m, n) in three ways . This
gives three values, say, p, q, r for &(m — n). Put

514 : pg, y q§ , z r 5, and a + y + mng
z
; therefor e

mng
z
,
and gis found ]

3 5 . 96
2

u
, v

2
r (w+ y+ z l

[Use the formula n)}
2 m n a

'

square and

proceed similarly]
III . (m+ y + e)— az

2
u
2
,

—
y v

2
,

(fc+v Z)

III . + 0; v
2
,

III . 5 . x + y + z t2
, y + z — a

'

u
2
,
e + x

'
-

y v
2
,

w+ y
~ z

[The first solution ofthis problem assumes

l 2 w+ y+ z 1 0
2 1

, 5
2
,

whence 96 , y,
z ar e found in terms of g, and z + zc~

y

is then made a square .

The alternative solution ,
however , is much more ele

gant , and can be generaliz ed thus .

We have to find a
, y,

2: so that

a square

.v —
y + z a square

x + y a square

x + y+ z a square

Equate the first three expressions to a
2
,
b2 , 0

2
, being

squar es
‘

such that their sum is also a square 102 , say .
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1 4 . yz + x
2

u
2
, est+ y

2
v
2
, age/+ 2

2

1 5 . u
2
, v

2
,

W

[Lemma If a , a 1 be two consecutive numbers ,
d
2

(a a
2

(a is a square. Let

y m2
, (m

Therefore (m
2 2m 2)cc (m

(m
2 1)x m2

have to be made squares . This is solved as a double
equation ; in Diophantus

’

s problem m 2 .

Second solution. Let so be the first number , m tli
'
e

second ; then (m + l )9c+m is a square n
2
, say ; there

fore a: (n
2

/(m + while y m . We have then

(m + 1)z m a square

a square

Diophantus has m 3 , n 5 , so that the expressions
to be made squares ar e with him

4 z + 3

6%e + 5% l

This is not possible because, of the corresponding coeffi~

cients , neither pair ar e in the ratioofsquares . In order to
substitute, for 4

,
coefficients which ar e in the ratio

of a square to a square he then finds two numbers , say ,

p , q to replace 3 such that pq+p+ q a square, and
a square . H e assumes g and 4 5+ 3 ,

which satisfies the second condition , and then solves for g,
which must satisfy

a square say ,

which gives 5 : $5 , 44.

H e then solves , for 2 , the third number, the double
equation

sgz 44 square ]
3

9

1
3
5 squarciN

I

H
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after multiplying by 2 5 and 1 0 0 respectively ,
making

expr essions
1 3Oa 1 0 5

1 30m+ 3 0

In the above equations we should only have tomake

n
2 1 a square, and then multiply the first by n

“ 1 and

the second by (m +

Diophantus , with his notation ,
was hardly m a pos1t1 0 n

to: solve, as we should, by writing

66
2
+ l

a

(9 + 1 )(m+ 1) bz + l >

0
2
+ 1 ,

which gives x + 1 4/ 1)(0
2
+ l l} , &C

[The method isthe same mutatis mutandis the

second ofthe above solutions ]

III . 1 7 .
= u

2
,
azy +w=

l

l

1 9 . (a, at
,

50
3
w
,)
2
j; a} ,

(951 5U
s i $

2

(56 , + a
'

2 + 96
3
w
,)
2
i x

3

(551 56
2

90
3 +w4)

2

i tc
4

‘

[Diophantus finds , in the way have seen (p .

four different rational right - angled triangles
.

with the
same hypotenuse , namely (6 5 , 5 2 , (6 5 , 6 0 , (6 5 ,

(6 5 , 6 3 , or
,
what is the same thing

,
a square

which is divisible intotwo squares in four different ways ;
thi s will solve the problem, since ,

if h
, p,

b be the three
sides ofa right - angled triangle

,
h2 i 2 pb

'

ar e both squares .
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Puttherefore

and 93
1
: se

,
: 2 . 2 5 . 6 0g

2
,

2 . 1 6 . 6 3g
2
;

this gives 1 2 7 6 8g
2 6 5 5, and f le

e

s
-

b
e e ]

4 . a
2
+ y = u

2
, m+ y = u .

5 . a
2
+ y = u , 96 + y = u

2
.

1 3 . w+ 1 = t2 , y+ l = u
2
, y

[Put a: — 1 =m2

§
2 2m§ ; the second and

third conditions require us tofind two squares with a: as

difference. The difference m2

5
2 2m § is separated into

the factors 67 1
2

5 2m , 5 the square of half the differ
ence Put this equal to y+ 1 , so

that y (m
2 m (m

2 1) m2 1
, and the

first three conditions ar e satisfied . The fourth gives
Mm4

6m2 1)£
2

(m
3 3m)5 m2

a square, which
we can equate to (n §
1 4 . x

2
+ y

2
+ z

2 = (x
2 —z

2
).

1 6 . w+ y + z = t2
,
w -

y = u
2
, y

2
+ z =

[Put 4m § for y, and by means
.

of the factors 2 6mg, 2
we can satisfy the second condition by making noequal
to half the difference, or mg— l . The third condition
is satisfied by subtracting (4m§)2 from some square, say

therefore z 8m§ + 1 . By the fir st
'

con

di tion 1 3mgmust be a square. Let it be 1 6 9 17 2 ; the
numbers .ar e therefore 1 3 0

2 — 1
,
5 2 17

2 1 0 4 71
2 1

, and

the last condition gives 2 2 1 17
2

a square ,
i.e. 1 0 8 1 6 7 7

2
+ 2 2 1 a square (1 0 4 7, say . This

gives the value of and solves the problem]
1 7 . x

2 —
y = u

2
, y

2 — z = v
2
, z

2— x =

1 9 . yz + 1 = u , zw+ 1 = v
2
, acy+ 1 = w

2
.

[We ar e
"

asked to solve this indeterminately (e
’

u Tc?)
dopia

-

r rp). Put for ye some square minus 1
, say m

2

§
2

+ 2mg; one condition is now satisfied . Put 2 .f,
that y m2

§ + 2m.



https://www.forgottenbooks.com/join


IV

IV

I V

IV

V .

INDETERMINATE ANALYSIS 499

. 2 9 . a.

[Since 562 to+ 7
1
; is a square,

(96
2
+ a) (y

2
+y) (s

2
+ e) (w

2
+w)+ 1

is the sum offour squares, and we only have to separate
a 1 into four squares]
3 0 .

. 3 1 . x + y l , (y+ b) z : u
2

. 3 2 . w+ y+ z a , xy+ z = u
2
, ay

. 3 9 . w— y =m (y— z ), y+ z = i
2
, z +ac= v

2
, w+ y = w .

40 . x
2 — 1

2 = m (y— e), y+ s = u , w+ y = w

1 . £132 : y
2
, ao

— a=u
2
, y

— a = v
2
, z

— a =w2
.

2 . we =
‘

y
2
, x + a =u

2
, y+ a = v

2
, z + a= w

2

3 . .v+ a r
2
, y+ a s

2
+ a = t2 ,

yz + a =u
2
, z zc+ a v , ay+ a =w .

4 . cc— a r , y
— a = s

2
, z

— a = t2 ,

yz
— a u

2
, z x

— a = v
2
, any

— a : w .

[Solved by means of the Por isms that, if a be the

given number, the numbers m2— a , (m+ 1)
2 — a satisfy

the conditions of V . 3
, and the numbers m2

+ a ,

(m + a the conditions ofV . 4 (see p . 4 7 9 above). The

third number is taken to be 2 (m + l )
2+a } 1

,

and the three numbers automatically satisfy two more
conditions (see p . 48 0 above). It only remains tomake

2 {m
2 ¢ a + (m + —Fa } 1 + a a square,

4m2
+ 4m+ 3 a + 1 : a square,

which is easily solved.

With
'

Diophantus 5+ 3 takes the place ofm in V . 3

and 5 takes its place in V . 4 , while a is 5 in V . 3 and 6

in V . 4]
5 . y

2
z
2
+ a

2
r
2
, z

2
x
2
+y

2
3
2
, x

2
y
2
+ z

2 t2 , 1?

w2y
2
+w

2
+ y

2=w2

[Solved by means ofthe Porismnumbered 2 on p . 48 0 .

x k 2



500

V .

DIOPHANTUS OF ALEXANDR IA

6 . 511 — 2 = r , y
— 2 = s

2
, z — 2 = t2 ,

yz
—
y

+ z u , z oo
— z — cc v

2
, xy

—w—y = w
2
,

ys
— a z u z oo— y = v ay

— z :

[Solved by means of the proposition numbered
p. 48 1 ]

Lemma 1 to V . 7 . tey+ ao + y
2

u
2

.

V .

V

u
2

2 (v7
u
’2

’ i <66 +v+ 6 l
(v

[Solved bymeans ofthe subsidiary problem (Lemma 2)
of finding three rational right - angled triangles with
equal area . If m

,
n satisfy the condition in Lemma 1

,

i. e . if mn m2
n
2

p
2
,
the triangles ar e formed from

the pairs of numbers (p ,
m), (p , n), (p ,

m + n) r espec
tively . Diophantus assumes this , but it is easy to prove.

In his case m
_

: 3 , n 5 , so that p 7 . Now,
in

a right - angled triangle
, (hypotenuse)

2
i four times area

is a square . We equate, therefore, oc+ y+ z to four
times the common area multiplied by 52 , and the several
numbers ac, y, z to the three hypotenuses multiplied by g,
and equate the two values . In Diophantus

’

s case the
triangles ar e (40 , 4 2 , (24 , 7 0 , 7 4) and (1 5 , 1 1 2 ,
and 2 45 5

8 . ye i 1

wvfl x +v+v=

[Solved by means of the same three rational righ t
angled triangles found in the Lemma to V . 7

,
together

with the Lemma that we can solve the equations ye=a
2
,

z oo b2
,
coy c

2
.]

9 . (Cf. II . fc+ y = 1 x + a = u
2
, y+ a

. 1 1 . oc+ y+ z = l
,
to+ a = u

, y+ a = v , s + a z

[These ar e the problems of name-67 17 7 0 9 dycoyfi
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described above (pp . 4 7 7 The problem is ‘ to divide
unity into two (or three)parts such that, if one and the

same given number be added to each part , the results ar e
all squares

1 0 . m+ y = l
, m+ a u

2
, y + b= v

2
.

1 2 . x +y+ z = 1
,
a + a = u

2
, y+ b= v

2
,
z +c=

[These problems ar e like the preceding except that
dig

'

er ent given numbers ar e added. The second of the
two problems is notworked out, but the first is worth
reproducing. We must take the particular figures used
by Diophantus , namely a 2

,
b 6 . We have then to

divide 9 into two squares such that one of them lies
between 2 and 3 . Take two squares lying between 2

and 3
,
say We have then to find a square 52

lying between them ; if we can do this, . we can make
9 a square

,
and so solve the problem.

Put 9 — 5
2

(3 say, so that g :

and m has to be determined so that g lies between
H and 1 9

.

1 2

1 7 6m 1 9
f

oI
‘

her efor e
1 2 m2

+ 1 1 2

Diophantus , as we have seen ,
finds afor tior i integral

limits for m by solving these inequalities, making m not

gr eater thanasand not less than 23 (see pp. 46 3—5 above).
H e then takes m 3% and puts 9 — 5

2
(3

whi ch gives 5 gs.

V .\
I 3 . x + y+ z a

, y+ z u
2
,
z + a> v

2
,
w+ y w2

.

V . 1 4 . a
,
oc+ y+ z 8

2
, y+ e +w t

’

,

z +w+ x u
2
, w+w+y v

2
.

[The method is the same]

2 1 . a
2

y
2
z
2
+ a

2
u
2
, m

2

y
2
z
2
+y

2
v
2
,
w2y

2
z
2
+ 2

2

2 2 . w2y
2
z
2 — w2 u

2
,
x
2

y
2
z
2 —
y
2

v
2
,
w2y

2
z
2 — z

2 w

2 3 . x
é— x

2
y
2
2
2

u
2
, y

2
_ w2y

2
2
2 ,0

2
’ 2

2
_ m2y

2
2
2

[Solved by means ofright- angled tr iangles in rational
numbers]
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Let the first part : 5 3 ; therefore (second part)
1 14— 3 , or second part 92 — 8 z .

Therefore — 8 z 7 24, and 2

therefore the number offive- drachmameasures is
the number ofeight- drachma measures 44.

Lemma 2 toVI . 1 2 . acc
2 b u

2

(where a b 0
2

) (see p . 46 7

Lemma toVI . 1 5 . 6156
2 b=u

2

(where ad 2 b above.)

x+ 1
'

xy u
2
, w— l

2 (y
— l ).

m+ 1

10
2
, y

2
+ 1 z

”
0
2
, w2.

(viii) Indeterminate analysis ofthe degree.

3 . a y = u , xy = u
3

.

6 . w3 + y
2

u
3
, z

2
+ y

2
v
2

.

7 . w3 + y u
2
, 2

2
+ y

2
.= v

3

8 . ac+ y
3

u
3
,
so+ y u .

9 . w+ i
3

u , 56 + u
3

.J y
(really reducible

1 0 . $
3
+y

3
a: + y. to the second

1 1 ' x
3 —
y
3

a: y.

degree.)

the same problem .

1 2 . a: + y = y + 96 .

[We may give as examples the solutions of IV. 7
,

IV . 8
,
IV . 1 1 .

IV . 7 . Since z
2
+ y

2
a cube

, suppose 2
2
+ y

2 w

To make + y
2
a square

,
put x

2
a
2
+ b2 , y

2 z ab
,

which alsosatisfies 962 — y2 3
2

. We have then tomake
2 ab a square. Let a 5, b= 2 § ; therefore a

2
+ b2 5 5

2
,

2 ab 45
2
, y e g, and we have only to make

5 5
2
a cube. g : 5

,
and 96

3 = 1 25
, y

2 = 1 0 0 z
2 2 5 .



504 DIOPHANTUS OF ALEXANDR IA

IV. 8 . Supposen , y
3=m3

§
2
; therefore u (m +

must be the side ofthe cube m3
§
3
+f, and

m 3

§
2
+ 1 (m

a 3m + 1)5
2
.

To solve this , we must have 3m2 3m 1 (the difference
between consecutive cubes)a square . Put

— nm)
2
,
and m

IV . 1 1 . A ssume so y mg, and we have
to make (3m3

+ 3m2
+ l )§ equal to 1

,
i . e . we have

only tomake 3m2 3m + ,
1 a square ]

1 8 . x
3
+ y = u

3
, y

2
+ x

2 4 . a + y z a , cog/ = w
2

[y a — cc; therefore aw— sc
2 has to be made a

minus its side, say (mac - (ma

Therefore ax 56
2 m3

96
2 3m2 2ma .

To reduce this to a sinrple equation , we have only to
put m a .]

fa—
v)+ (af — z )}

3

(fl: y z )

[The cube 8 (x — z )
3
. Let x z mg, so

that y 8 g/ (m
2 m), and we have only to contrive that

8 /(m
2 m) lies between m and m 1 . Dioph . takes the

first limit 8 m3
+m2

, and puts
1 3 18 _ (m + 4 ) or m 3

+m2 —m+ 4
l

7 ,

whence m 4 ; therefore a:
3 g, y :

5 5, z Or ,

multiplying by 1 5 , we have a 405, y 2 7 5, z _ 2 5 5.
The fir st equation then gives

u
3
, asy+ y v .

u
3
, coy

—
y v .

2 8 . u , coy v
3
.

[96 + 4(u
3 — v

3

), to? therefore

i (66
3

2

which latter expression has to be made a square.
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Diophantus assumes u 5 1
, v g l

,
whence

s ag”

must be a square, or

9 5
4

square= (3 §2 say ;

therefore 3 2 53 3 6 5
2
, and g Thus to, v ar e found ,

and then at, y.

The second (alternative)solution uses the formula that
a cube . Put y = §

and one condition i s satisfied . We then only have to
make or £

3 2 5
2
a cube (less than

1 - 9 - 5
3 — 2 5

2
(tfi a

$9 l

3 8 .

3
, [m+ y+ z

[Suppose x + y z 5
2
; then

u (u 1 ) v

2 15
2

5

therefore éuw 1) v
2

1 0
3
.

Diophantus puts 8 for but we may take any cube, as
m and he assumes v

2
(5
2 for which we might

substitute (gZ — n
2

)
2

. We then have the tr iangul

number 2 n
2

5
2 — fn

4 —m 3
. Since 8 times a

triangular number plus 1 gives a square
,

1 6 n
2

g
z — 8 n4 — 8m3

+ 1 a square (4 91 5— 70
2
,
say ,

and the problem is solved ]

V 1 5 . + y = v ,

[Let x + y+ z = 5, ”L
3
5
3
:

’
U ”

3

15
3
" w = P

3

§ a

therefore g { (m
3

and we
'

have to find three cubes m n , 29
3
such that

ma
+ n

3
+y

3 — 3 a square . Diophantus assumes as

the s ides of the cubes (2 2 ; this gives
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(ix) Indeterminate analysis ofthe fourth degree.

2 9 £0
4

211
4

z
4

Why
’

, says Fermat , ‘ did not Diophantus seek two '

fourth powers such that their sum is a square. This
problem is , in fact, impossible, as by my method I am

able to prove with all rigour. ’ No doubt Diophantus
knew this truth empirically . Let 513

2
: £

2
, 31

2

p
z
2 = q

2
. Therefore §4 +p4 + q4 = a square say ;

‘

therefore § 2 = (r 2 £1
4

) and we have to make .

this expression a square .

Diophantus puts r 19
2 4

, Q
2

4
,
so that the expres~

sion reduces to 8p2/(2p2 8)or Tomake 4

this a square
,
let23

2 4 (p say therefore p 1 —1
2

and p
2 24, q

2 4
, r 64 ; or (multiplying by 4)

20
2

9
, 9

2 1 6 ,
fr 2 5 , which solves the problem ]

[V x
2
+ y

2
+ z

2 — 3 = u
4

.

(See above under V .

(x) Problems ofconstructing right - angled triangles with
sides in rational numbers and satisfying various

other conditions .

[I shall in ‘

all cases call the hypotenuse z
,
and the

other two sides as
, y, so that the condition w2 + y2 z

2 ‘

applies in all cases , in addition to the Other conditions
specified]

[Lemma to V . my cp l yl x
z yz .

VI . 1 .

—
y = v .

[Form a right - angled triangle from g, on , so that .

5
2
+m

2
,
$0 y g

2 — m2
; thus z — y 2m2

,

'

and , as this must be a cube, we put m 2 ; therefore
'

z — w= £
2 must be a cube, or g 2 = a cube

,

say n
2
, and § = n

2
+ 2 ]

VI . 2 . z +w= u , z + y = v .
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3 . 4wy+ a = u .

[S
uppose the required triangle tobe kg, 10 5, bg . ther

e

fore 4p?)$2 a a square £
2
,
say, and the ratio ofa

to 7 1
2 m

'ust be the ratio of a square to a square.

To find at, p,
b so as to satisfy this condi tion, form

1

a right- angled triangle from m, a
,

therefore 4pb m2 A ssume n
2

or 4 a2 + has to be made a square. Put
m

m2
a (4a -

2 1) z : (2 am lc)
2
,
and we have a solution .

Diophantus has a 5
,
leading to loom2 5 0 5 a square

(1 0m say ,
which gives m 2

4
4

and n 5
4

1

4
3

h, p,
b ar e thus determined in such a way that

1
1
7 17 65

2
+ 06 07

2

5
2 gives a rational solution]

. 5 . a

6 . 4my+m

[A ssume the triangle to be kg, pf, bg, so that
4176g

2
+pg a ,

and for a rational solution of this equa
tion we must have (4p)2 a (%pb) a square. Diophantus
assumes p 1

, b m
, whence 4arm or z am+ 1

a square.

But, since the triangle is rational , m2 } 1 a square.

That is , we have a double equation . Difference
m2 — 2 am m (m — 2 a). Put

z am+ 1 = {4(m— m and m (a
2

The sides of the aux iliary triangle ar e thus determined
in such a way that the original equation in gis solved
rationally]
7 . i—n — CB a.



INDETERMINATE ANALYSIS 509

8 . a .

[With the same assumptions we have in these cases
to make {403 + —é—pb) a square. Diophantus
assumes as before 1 , m for the values ofp, b, and obtains
the double equation

(m 4am square

m2
+1 1 square

,

m2 1

solving in the usual way]

square

square

1 1 . 4xy

[In these cases the auxi liary right - angled triangle
to be found such that

a square.

Diophantus assumes it formed from 1
, m 1 thus

+m2
+ 2m }

2

(m
2
+ 2m+ 1)

2
,

a ( 2m),

Therefore

m4
+ (a + + (2 a + 4)m+ i

a square

{ 1 (a 2)m — m2
}
2
, say ;

and m is found]

Lemma 1 to VI . 1 2 . a: u
2
,
w— y v

2
, 4xy+ y

VI . 1 2 . 4my+m xy
-i- y

VI . 1 3 . 4xy— 93 nay
—
y 4

2
.

[These problems and the two following ar e interesting ,

but their solutions r un to some length ; therefore only
one case can here be given . We will take VI . 1 2 with
its Lemma 1 .
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[The auxiliary right - angled triangle in this case must
be such that

m2 hp 4pli p (h p)is a Square.

If , says Diophantus (VI . we form a triangle from
the numbers X

1 ,
X
2
and suppose that p 2X

1
X
2 ,
and if

we then divide out by (X1
X which is equal to h -

p ,

we must find a square 702 m2
(Xl

— X such that
702 i — 4pb p is a square .

The pr oblem , says Diophantus , can be solved if X1 ,
X
2

ar e
‘

similar plane numbers ’

(numbers such as (1 6,
/

g ab).
7 7.

This is stated without proof, but itcan easily be verified
that

,
if 762 X

1
X
2 ,
the expression is a square . Dioph.

takes 4 , 1 as the numbers , so that 762 4 . The equation
for m becomes

8 . 1 7 m2 — 4 . 1 5 a square,

l 3 6m2 4 3 2 0 a square.

The solution m2 3 6 (derived from the fact that

702 m2

/(X1
— X

2)
2
, or 4 m2

/ 3
2

)

satisfies the condition that

m2hp
— 4pb p (h p) is a square]

VI . 1 6 .
= a , g/n= y/ z .

[Tofind a rational right - angled triangle such that the
number representing the (portion intercepted within
the triangle ofthe)bisector ofan acute angle is rational .

Let the bisector be the segment BD of the base 3 5,
so that the perpendicular is 45.

Let CB 3m Then AC AB CD DB,
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so that A O 4 (n Therefore (Eucl. I . 4 7 )

1 6 (n
2

so that 5 7 -n
2
/3 2 -n 4

7

2
—n . [Dioph . has n 1 ]

1 7 . 4xy+ z u w+y+ z =

[Let 5 be the area and let 2 [02 — 5. S ince
my 2 5, suppose a: 2

, y 5. Therefore 2 + 102 must
be a cube. A s we have seen (p . Diophantus
takes (m for the cube and (m + 1)

2 for giving
m2 3

'

m2 3m — 1 =m2 2m 3 , whence m : 4 . There
fore k 5

, and we assume éxy 5, z 2 5 — 5, with
a: 2 , y 5 as before. Then we have to make
(2 5 4 + 5

2
, and 5 12

4
2
4
1

.

0

d

1 8 . 4xy+ z = u
, x + y + z

1 9 . 493y +m= u
2
, w+ y+ z =

[Here a right - angled triangle is formed from one odd

number , say according to the Pythagorean for

mula m2
+ {4(m

2
{ 4(m

2
+ where m is an

odd number. The sides ar e therefore 2 5+ 1 , 2 52 + 25,
25

2
+ 2 5+ 1 . Since the perimeter a cube

,

a oube.

Or , if we divide the sides by 5+ 1 , has to be

made a cube.

which reduces to 2 5+ 1 a square .

But 45+ 2 is ,
a cube. We therefore put 8 for the cube,

and 5 :

Again 5933! a: a square,

2 0 » %wy+_
x M

3
, w+ y+ z

VI . 2 1 . x + y+ z =

[Form a right - angled triangle from 5, l , i. s . (2 5, 5
2 1 ,

5
2 Then 25

2
+2 5must be a squar e, and 52+ 25

2
+ 5
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a cube . Put m2

5
2
, so that 5 2 /(m

2

and we have tomake

8 8 2 m4

b
(m

2

(m
2— 2)

or

(m
2

d cu 6 °

Make 2m a cube -n so that 2m4 m2
n

‘2
, and

8therefore 5
n
“ 8

and 5 must be made

greater than 1 , in order that 52 1 may be positive.

Therefore 8 at“ 1 6 ;

this is satisfied by at
“ 1

4
2
4
9
or n and m

2 2 m+ y+ e z a

First seek a rational right - angled triangle such
that its perimeter and its area ar e given numbers ,
say m .

Let the perpendiculars be é, 2m5 ; therefore the hypo
tenuse p

—2m5, and (Eucl. I . 4 7 )

2

5
20 — 4mp5 + 4m2

5
2
,

13
2
+ 4m 4mp5+

2

5
19

,

that is , (19
2
+ 4m)5 4 991235

2
+ 2p

(2) In order that thi s may have a rational solution ,

{4 p
2 4m)}

2 829
2m must be a square,

4m2— 6p
2m+ 410

4 z a square

m2 — gp
2m + 4

1

4 p
4

a square

A lso,
by the second condition , m p a square

To solve this , we must take for p some number whi ch
is both a square and a cube (in order that it may be
possible, by multiplying the second equation by some

square, tomake the constant term equal to the constant
L l
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Pythagoreans , While Philippus ofOpus and Speusippus carried
on the tradition . Hypsicles (about 1 7 0 B. C .) is twice men

tioned by Diophantus as the author of a
‘ definition ’

of

a polygonal number which, although it does not in terms

mention any polygonal number beyond the pentagonal ,
amounts to saying that the nth a -

gon (l counting as the

first) is
4n { 2 + (n — 1)(ct

Theon of Smyrna
,
Nicomachus and Iamblichus all devote

some space to polygonal numbers . Nicomachus in particular
gives various rules for transforming triangles into squares ,
squares into pentagons , &c.

1 . If we put two consecutive triangles together , we geta square .

In fact
(n — l )n + —1

2
—n (n + 1)

2 . A pentagon is obtained from a square by adding to it
a triangle the side ofwhich is 1 less than that ofthe square ;
similarly a hexagon from a pentagon by adding a triangle
the side ofwhich is 1 less than that ofthe pentagon, and soon .

In fact

— 1)(a 505— l )n,

+ (n

3 . Nicomachus sets out the fir st triangles , squares , pentagons ,
hexagons and heptagons in a diagram thus :

1 3 6 1 0 1 5 2 1 2 8 3 6 45 5 5 ,

1 4 9 1 6 2 5 3 6 49 6 4 8 1 1 0 0
,

Pentagons 1 5 1 2 2 2 3 5 5 1 7 0 9 2 1 1 7 1 45 ,

H exagons l 6 1 5 2 8 45 6 6 9 1 1 2 0 1 5 3 1 90 ,

H eptagons 1 7 1 8 3 4 5 5 8 1 1 1 2 1 48 1 8 9 2 3 5
,

and observes that
Each polygon is equal to the polygon immediately above it

in the diagram plu s the triangle with 1 less in its side, i. e. the

triangle in the preceding column.

L l 2
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4 . The vertical columns ar e in arithmetical progression, the

common difference being the triangle in the preceding column.

Plutarch , a contemporary of Nicomachus , mentions another
method of transforming triangles into squares . Ever y tr i

angu lar number take n eight times and then incr eased by 1

gives a squar e.

In fact ,

Only a fragment of Diophantus
’

s treatise On Polygonal

Number s survives . Its character is entirely different from
that of the A r ithmetica . The method of proof is strictly
geometrical, and has the disadvantage , therefore , ofbeing long
and involved . He begins with some preliminary propositions
ofwhich two may be mentioned . Prop . 3 proves that , if a be
the first and l the last term in an arithmetical progression
of n terms , and if s is the sum of the terms , 2 8

Prop . 4 proves that
,
if 1

, 1 + b, — 1)b be an

A . P . , and s the sum ofthe terms ,

n { 2 + (n

The main result obtained in the fragment as we have it
is a generaliz ation ofthe formula 8 %n (n 1) 1 (2 n
Prop . 5 proves the fact stated in Hypsicles

’

s definition and also
(the generaliz ation referred to) that

8 P (a— 2) (a a square,

where P is any polygonal number with a angles .

It is also proved that, if P be the nth a - gonal number
(1 being the first),

8 P (a - 2) (a {2 + (2 n — 1)(a

Diophantus deduces rules as follows .

1 . Tofind the number fr om its sid e.

{ 2 + (2 n — 1 )(a — (a — 4)
8 (a — 2 )

2 . Tofirwl the sidefr om the number .

x/ { 8 P (a

a — 2
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The last proposition ,
which breaks offin the middle , is :

Given a number , tofind in how many ways it can be

polygonal.

The proposition begins in a way which suggests that
Diophantus first proved geometrically that , if

8 P (a
‘2 + (2 n — 1)(a

2 P n { 2 + (n — 1)(a

Wertheim (in his edition of Diophantus) has suggested a

restoration of the complete proof of this proposition, and

I have shown (in my edition) how the proof can be made
shorter . Wertheim adds an investigation of the main pro
blem

, but no doubt Opinions will continue to differ as to

whether Diophantus actually solved it.
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survive in Greek . Tannery
,
as we have seen ,

conj ectured
that , in like manner , the first six of the thirteen Books of
Diophantus

’

s A r ithmetica survive because Hypatia wrote
commentaries on these Books only and did not reach the
others .

The first writer who calls for notice in this chapter is one
who was rather more than a commentator in so far as he

wrote a couple of treatises to supplement the Conics of

A pollonius , I mean SERENUS. Ser enus came from Antinoeia

or A ntinoupolis , a city in Egypt founded by Hadrian (A . D.

1 1 7 H is date is uncertain , but he most probably be
longed to the fourth century A .D. , and came between Pappus
and Theon of A lexandria. H e tells us himself that he wrote
a commentary on the Conics of Apollonius .

1 This has
perished and , apart from a certain proposition ‘

of Ser enus

the phi losopher, from the Lemmas preserved in certain manu
scripts ofTheon of Smyrna (to the effect that, if a number of
rectilineal angles be subtended at a point on a diameter ofa
circle which is notthe centre, by equal arcs of that circle

,
the

angle nearer to the centre is always less than the angle more
remote), we have only the two small tr eatises by him entitled
On the Section of (1 Cylinder and On the Section ofa Cone.

These works came to be connected , from the seventh century
onwards , with the Conics of A pollonius , on account of the

afiinity of the subj ects , and this no doubt accounts for their
survival . They were translated into Latin by Commandinus
in 1 5 6 6 the firstGreek text was brought outby Halley along
with his Apollonius (Oxford and we now have the
definitive text edited by H eiberg (Teubner

(a) On the Section of a Cylinder .

The occasion and the object of the tract On the Section of
a Cylinder ar e stated in the preface . Ser enus observes that
many persons who were students of geometry were under the
erroneous impression that the oblique section of a cylinder
was different from the oblique section ofa cone known as an

ellipse, whereas it is of course the same curve. H ence he
thinks it necessary to establish , by a regu lar geometrical

1 Serenas , Opuscmla , ed . Heiberg, p. 52 . 25 - 6 .
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proof, that the said oblique sections cutting all the generators
ar e equally ellipses whether they ar e sections of a cylinder or
of a cone. H e begins with ‘

a more general definition '

of a

cylinder to include any oblique circular cylinder .

‘ If in two
equal and parallel circles which remain fixed the diameters,
while remaining parallel toone another throughout , ar e moved
round in the planes of the circles about the centres , which
remain fixed , and if they carry roundwith them the straight line
joining their extremities on the same side until they bring it
back again to the same place, letthe surface described by the
straight line so carried round be called a cylindr ical su rface.

’

The cylinder is the figure contained by the parallel circles and
the cylindrical sur face intercepted by them ; the parallel
circles ar e the bases , the axis is the straight line drawn
through their centres ; the generating straight line in any

position is a s ide. Thirty - three propositions follow. Of these
Prop . 6 proves the existence in an oblique cylinder of the

parallel circular sections subcontrary to the series of which
the bases ar e two, Prop. 9 that the section by any plane not

parallel to that of the bases or of one of the subcontrary
sections but cutting all the generators is not a circle ; the
next propositions lead up to the main results , namely those in
Props . 1 4 and 1 6

,
where the said section is proved to have the

property of the ellipse which we write in the form

QV
2 P V . P

’
V CD2 CP 2

,

and in Prop . 1 7 , where the property is put in the Apollonian
form involving the latu s r ectum

, QV
2 P V . VR (see figure

on p . 1 3 7 above), which is expressed by saying thatthe square
on the semi - ordinate is equal to the rectangle applied to the
latu s r ectum PL

, having the abscissa P V as breadth and falling
short by a rectangle s imilar to the rectangle contained by the
diameter PP ’

and the latu s r ectum PL (which is determined
by the condition PL . PP

’
: 3 17 2 and is drawn at right angles

to P V). Prop . 1 8 proves the corresponding property w ith
reference to the conjugate diameter DD'

and the correspond
ing latu s r ectum,

and Prop . 1 9 gives the main property in the
form QV

2
z P V . P

'
V P ’

V
’
. Then comes the

'

proposition that ‘ it is possible to exhibit a cone and a cylinder
which ar e alike cut in one and the same ellipse ’

(Prop .
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Ser enus then solves such problems as these : Given a cone

(or cylinder)and an ellipse on it
,
to find the cylinder (cone)

which is cut in the same ellipse as the cone (cylinder)
(Props . 2 1 , given a cone (cylinde1 ), to find a cylinder
(cone)and to cut both by one and the same plane so that the
sections thus made shall be similar ellipses (Props . 2 3 ,

Props . 2 7
,
2 8 deal with similar elliptic sections of a scalene

cylinder and cone there ar e two pairs of infinite sets ofthese
s imilar to any one given “

section
, the first pair being those

which ar e parallel and subcontrary respectively to the given
section , the other pair subcontrary to one another but not to
either of the other sets and having the conjugate diameter
occupying the corresponding place to the transverse in the

other sets , and vice versa.

In the propos itions (2 9— 3 3) from this point to the end of

the book Ser enus deals with what is really an optical pro
blem . It is introduced by a remark about a certain geometer,
Peithon by name, who wrote a tract on the subject of

parallels . Peithon
,
not being satisfied with Euclid’s treat

ment of parallels , thought to define parallels by means of an

illustration , observing that parallels ar e such lines as ar e

shown on a wal l or a roof by the shadow of a pillar with
a light behind it . This definition ,

it appears , was generally
r idiculed ; and Ser enus seeks to rehabilitate Peithon , who

was his fr iend, by showing that his statement is after all

mathematically sound. H e therefore proves , with r egard to
the cylinder, that, if any number of rays from a point outside
the cylinder ar e drawn touching it on both sides , all the rays
pass thr ough the sides of a parallelogram (a section of the

cylinder parallel to the axis)— Prop . 2 9— and if they ar e

produced farther to meet any other plane parallel to that
ofthe parallelogram the points in which they meet the plane
will lie on two parallel lines (Prop . 3 0) he adds that the lines
w ill not seem parallel (vi de Euclid

’

s Optics, Prop . The

problem about the rays touching the surface of a cylinder
suggests the similar one about any number of rays from an

external point touching the surface ofa cone ; these meet the
surface in points on a triangular section ofthe cone (Prop. 3 2)
and ,

if produced to meet a plane parallel to that of the
triangle, meet that plane in points forming a similar triangle
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Observing that the sum ofx2 and r
2 — cc2 is constant, we

see that A 2
, and therefore A ,

is a maximum when

r — cc
2
+ h2 , or

.

w2

and , since ac is not greater than r
,
it follows that , for a real

value ofm(other than r ), h is less than r , or the cone is obtuse
angled . When h is not less than r , the maximum triangle is
the triangle through the axis and vice versa (Props . 5

,

when h r
, the maximum triangle is also right - angled

(Prop.

If the triangle with base 2 0 is equal to the triangle through
the axis, h2 .r 2 c

2
(r
2

or (r
2

.

— c
2

) (0
2 — h2) 0 , and ,

since c< r
,
h =c, so that h< r (Prop . If x lies between r

and c in this case, (r 2 — a: (93
2 — h2)>

'

O or m2 (r
2 — a3

2 h2)>h
2
r
2
,

and the triangle w ith base 2 98 is greater than either of the
equal triangles with bases 2 r ,

2 0 , or 2 h (Prop .

In the case of the scalene cone Ser enus compares individual
triangular sections belonging toone of three classes with other
sections of the same class as regards their area . The classes
ar e :

(1) axial triangles , including all sections through the axis

(2) isosceles sections, i . e . the sections the bases ofwhich ar e

perpendicular to the projection of the axis of the cone on the
plane ofthe base

(3) a setof triangular sections the bases ‘

ofwhich ar e (a)the
diameter ofthe circular base which passes through the foot of
the perpendicular from the vertex to the plane ofthe base

,
and

(b)the chords ofthe circular base parallel to that diameter .

A fter two
' preliminary propositions (1 5 ,

1 6) and some

lemmas , Ser enus compares the areas of the first class of

triangles through the axis . If, as we said , ‘

p is the perpen

dicular from the vertex to the plane ofthe base, d the distance
of the footof this perpendicular from the centre of the base,
and 0 the angle whi ch the base ofany axial triangle with area
A makes with the base of the axial tri angle passing through

pthe perpendicular ,
A r s/ (p

2 d 2 sin2

This area is a minimum when 6 O
,
and increases with 6
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until 6 =4 1r when it is a maximum,
the triangle being then

isosceles (Prop .

In Prop . 2 9 Ser enus takes up the third class ofsections with
bases parallel to d . If the base ofsuch a section is 2x,

A a s/ (r
2 — 9c

2
+p

2

)

and, as in the case of the right cone, we must have for a r eal
maximum value

4 (r
2
+p

2

), whi le a: r
,

so that, for a real value ofa; other than r
, p must be less than

r
,
and , if p is not less than r , the maximum triangle is that

which is per pendicular to the base ofthe cone and has 2 r for
its base (Prop. If p< r

,
the triangle in question is not

the maximum ofthe setof triangles (Pr opi
Coming now to the isosceles sections we may suppose

2 6 to be the angle subtended at the centre of the base by the
base of the section in the direction away from the projection
ofthe vertex . Then

A

If A 0 be the area of the isosceles triangle through the axis,
we have
A
O

2 — A 2
r
2
(p

2 d 2)— r
2
sin2 6 (p

2
+ d

2
r
2
cos

2 6 2 dr cos 6)

r
2
(p
2 d 2)cos

2 6 r
4
sin2 6 cos2 6 2 dr 3cos 6 sin2 6.

If A A
O,
we must have for triangles on the side of the

centre ofthe base of the cone towards the vertex ofthe cone
(since cos 6 is negative for such triangles)

p
2
+ d

2
< r

2
sin2 6, and afor tior i p

2 d 2 < 7
2
(Prop .

If p2 + d 2> r
2
,
A
O
is always greater than A , so that A O

is the

maximum isosceles triangle ofthe set (Props . 3 1 ,

If A is the area of any one of the isosceles triangles with
bases on the side of the centre of the base of the cone away
from the projection of the vertex, cos 6 is positive and A 0

is

proved to be neither the minimum nor the maximum triangle
of this setoftriangles (Props . 3 6

,
40

In Prop . 45 Ser enus returns to the setoftriangular sections
through the axis, proving that the feet of the perpendiculars
from the vertex of the cone on their bases all lie on a circle
the diameter ofwhich is the straight line joining the centre of
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the base of the cone to the projection of the vertex on its

plane ; the areas of the axial triangles ar e therefore propor
tional to the generators of the cone with the said circle as

base and the same vertex as the original cone . Prop . 5 0 is to

the effect that
,
if the axisof the cone is equal to the radius of

the base
,
the least axial triangle is a mean proportional

between the gr eatest axial triangle and the isosceles triangular
section perpendicular tothe base that is

,
with the above nota

tion , if r x/ (p
2
+ d

2
), then r s/ (p

2
+ d

2
)
'

rp rp pJ (r
2 — d 2),

which is indeed obvious .

Prop . 5 7 is interesting because of the lemmas leading to it .
It proves that the greater axial triangle in a scalene cone has
the greater perimeter , and conversely. This is proved by
means of the lemma (Prop . applied to the variable sides
of axial triangles , that if a

2
+ d

2 b2 + c
2
and a >b c> d ,

then a d < b c (a , d ar e the sides other than the base ofone
axial triangle, and b, 0 those of the other axial triangle com

pared with it ; and if A BC, ADE be two ax ial triangles and

O the centre ofthe base
,
BA 2 A C 2=DA 2 AE 2 because each

ofthese sums is equal to 2 A O2 2B0 2 , Prop. This proposi
tion again depends on the lemma (Props . 5 2 , 5 3) that , if
straight lines be ‘ inflected ’ from the ends of the base of

a segment of a circle to the curve (i . e . if we join the ends
ofthe base to any point on the curve)the line (i . e. the sum of

the chords) is greatest when the point taken is the middle
point of the ar c, and diminishes as the point is taken farther
and farther from that point.
Let B be the middle pointofthe

ar c of the segment A BC,
D

,
E any

other points on the curve towards
C ; I say that

With B as centre and BA as radius
describe a circle, and produce AB ,

AD,
AE tomeet this circle in F, G,

H . Join FC, CC,
H C.

Since AB BC BF,
we have AF AB + BC.

angles BFC,
BCF ar e equal , and each of them

the angle A BC.
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pp . 5 8 Of the historical notices we may mention the

following. (1) Theon mentions the treatise ofMenelaus On
Chor ds in a Cir cle, i.e. Menelaus ’s Table ofChords, which came
between the s imilar Tables ofH ipparchus and Ptolemy . (2) A
quotation from Diophantus furn ishes incidentally a lower limit
for the date ofthe A r ithmetica. (3) It is in the commentary
on Ptolemy that Theon tells us that the second part ofEuclid
VI . 3 3 r elating to sector s in equal circles was inserted by him
self in his edition of the Elements, a notice which is ofcapital
importance in that it enables the Theonine manuscripts of

Euclid to be distinguished from the ante- Theonine
,
and is

therefore “

the key to the question how far the genuine text
of Euclid was altered in Theon’

e edition . (4) A s we have
seen (pp . 2 0 7 Theon , a propos of an allus ion ofPtolemy
to the theory of isoperimetric figures , has preserved for u s

several propositions from the treatise by Zenodor us on that
subject .

Theon
’

s
'

edition of Euclid’s E lements .

We ar e able to judge of the character ofTheon ’

s edition of

Euclid by a comparison between the Theonine manuscripts
and the famous Vatican MS . 1 90 , which contains an earlier
edition than Theon

’

s , together with certain fragments of

ancient papyri . It appears that , while Theon took some

trouble to follow older manuscripts , it was not so much his
object to get the .

most authoritative text as tomake what he
considered improvements of one‘ sort or other . (1) H e made
alterations where he found

,
or thought he found , mistakes’in

the original ; while he tried to remove some real blots , he
altered other passages too hastily when a little more considera
tion would have shown that Euclid’s words ar e right or could
be excused

,
and offer no difficulty to an intelligent reader.

(2) H e made emendations intended to improve the form or

diction of Eucl id in general they were prompted by a desire
to eliminate anything which was outofthe common in expres
sion or inform,

in order to reduce the language toone and the

same standard or norm. (3) H e bestowed, however, most
attention upon add itions designed to supplement or explain
the original ; (a) he interpolated whole propositions where he
thought them necessary or useful, e.g. the addition toVI . 3 3
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already referred to, a second case toVI . 2 7 a porism or corollary
to II . 4

,
a second porism to III . 1 6

,
the proposition VI I . 2 2

,

a lemma after X. 1 2 , besides alternative proofs here and there ;
(b) he added words for the purpose of making smoother and
clearer, or more precise,

things which Euclid had expressed
with unusual brevity, harshness , or carelessness ; (0) he sup

plied intermediate steps where Euclid ’s argument seemed too
difficult to follow . In short , while making only inconsider
able additions to the content ofthe Elements , he endeavoured
to r emove

'

difliculties that might be felt by learners in study
ing the book , as a modern editor m ight do in editing a classical
text~book for use in schools ; and there is no doubt that his
edition was approved by his pupils atAlexandria for whom it
was written , as well as by later Greeks , who used it almost
exclusively,

with the result that the more ancient text is only
preserved complete in one manuscript .

Edition of the Optics of Euclid .

In addition to the Elements , Theon edited the Optics of

Euclid ; Theon
’

s recens ion as well as the genuine work is
included by H e iberg in his edition . It is possible that the
Catoptr ica included by H eiberg in the same volume is also by
Theon .

Next to Theon should be mentioned his daughter HYPATIA ,

who is mentioned by Theon himself as having assisted in the
revision of the commentary on Ptolemy . This learned lady
is said to have been mistress of the whole of pagan science,
especially of philosophy and medicine, and by her eloquence
and authority to have attained such influence that Christianity
considered itsel f threatened , and she was put to death by
a fanatical mob in March 4 1 5 . A ccording to Suidas she wr ote
commentar ies on Diophantus , on the A stronomical Canon (of
Ptolemy) and on the Conics of A pollonius . These works
have not survived

,
but it has been conjectured (by Tannery)

that the remarks of Psellus (eleventh century) at the begin
ning of his letter about Diophantus , Anatolius , and the

Egyptian method ofarithmetical reckoning were taken bodily
from some manuscript of Diophantus containing an ancient
and systematic commentary which may very well have been
that ofHypatia . Possibly her commentary may have extended
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only tothe first six Books , in which case the fact that Hypatia
wrote a commentary on them may account for the survival of
these Books while the rest ofthe thirteen were first forgotten
and then lost .
It will be convenient to take next the series of Neo

Platon ist commentators . It does not appear that Ammonius
Saccas (about A . D. 1 7 5 the founder ofNeo- Platonism, or

his pupil Plotinus (A .D. 2 04 who first expounded the

doctrines in systematic form , had any special connexion with
mathematics, but PORPHYRY (about 2 3 2 the disciple of
Plotinus and the reviser and editor of his works , a

ppears to
have written a commentary on the Elements . This we gather
from Proclus, who quotes from Porphyry comments on Eucl .
I . 1 4 and 2 6 and alternative proofs of I . 1 8 , 2 0 .

It is possible
that Por phyry’

s work may have been used later by Pappus in
writing his own commentary, and Proclus may have got his
references from Pappus , butthe form ofthese references sug
gests that he had direct access to the original commentary of
Porphyry.

I AMBL ICHUS (died about A .D. 3 3 0)was the author ofa com
mentary on the I ntr oductio ar ithmetica of Nicomachus , and

ofother works whi ch have already been mentioned . H e was

a pupil ofPorphyry as well as ofAnatolius, also a disciple of
Porphyry .

But the most important of the Neo- Platonists to the his
torian of mathematics is PR OCLUS (A .D. 4 1 0 Proclus
received his early training at A lexandria,

where Olympio
dorus was his instructor in the works of A ristotle, and

mathematics was taught him by one Heron (of course a

different H eron from the ‘mechanicus Hero ’

of the Metr ica ,

H e afterwards went to A thens
,
where he learnt the

Neo-Platonic philosophy from Plutarch, the grandson of Nes

tor ius, and from his pupil Syr ianus , and became one of its

most prominent exponents . H e speaks everywhere with the
highest respect ofhis master s ,

'

and was in turn regarded with
extr avagant veneration by hi s contemporaries

,
as we learn

from Marinus, his pupil and biographer. On the death of

Syr ianu s he was put at the head of the Neo- Platonic school .
H e was a man of untiring industry, as is shown by the

M m
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viated form usual with ancient writers . Now in the second
book of the history of geometry he writes as follows In

like manner Eutocius speaks
‘

of the paralogisms handed down
in connexion with the attempts of H ippocrates and Antiphon
to square the circle, ‘with which I imagine that all persons
ar e accurately acquainted who have examined
the geometrical history of Eudemus and know the Cer ia

A r istotelica

The references by Proclus to Eudemus by name ar e not

indeed numerous ; they ar e five in number ; but on the other
hand he gives at least as many other historical data which can

with great probability be attributed to Eudemus .

Proclus was even more indebted to Geminus , from whom
he borrows long extracts , often mentioning him by name

there ar e some eighteen such references— but often omitting
to do so. We ar e able to form a tolerably certain judge
ment as to the origin of the latter class of passages on the

strength ofthe similarity ofthe subjects treated and the views
expressed to those found in the acknowledged extracts . A s

we have seen ,
the work of Geminus mainly cited seems to

have borne the title TheDoctr ine or Theor y oftheMathematics ,

which was a very comprehensive work dealing, in a portion of
it , w ith the ‘ class ification ofmathematics ’

.

We have already discussed the question of the authorship
of the famous historical summary given by Proclus . It is

divided, as every one knows , into two distinct parts between
which comes the remark ,

‘

Those who compiled histories
bring the development of this science up to this point . Not

much younger than these is Euclid , who
’

,
&c. The ultimate

source at any rate of the early part of the summary must
presumably have been the great work of Eudemus above
mentioned .

It is evident that Proclus had before him the original works
of Plato, A ristotle , A rchimedes and Plotinus , the EvyptK—r atof
Porphyry and the works of hi s master Syr ianus, as well as a
group ofworks representing the Pythagorean tradition on its

mystic , as distinct from its mathematical , side, from Philo
laus downwards , and comprising the more or less apocryphal

1 Simplicius on Arist . Phys , p. 60 . 28 , Diels .

2 Archimedes, ed . Heib.
,
vol. iii , p. 228 . 1 7 —19.

M m 2
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lepbs Aéyos of Pythagoras , the Or acles (Aéyca) and Orphic
verses.

The following will be a convenient summary ofthe other
works used by Proclus , and will at the same time give an

indication of the historical value of his commentary on

Euclid, Book I

Eudemus : H istor y ofGeometr y.

Geminus : The Theory ofthe Mathematical Sciences.

Heron : Commentar y on the Elements ofEuclid .

Porphyry
Pappus :
Apollonius of Perga : A work relating to elementary
geometry.

Ptolemy : On thepar allel- postu late.

Posidonius : A book controverting Zeno ofSidon.

Carpus : A str onomy.

Syr ianus : A discussion on the angle.

(5) Char acter of the Commentar y.

We know that in the Neo—Platonic school the pupils learnt
mathematics ; and it is clear that Proclus taught this subject,
and that this was the origin of his com-mentary . Many
passages show him as a master speaking to scholar s ; in one
place he speaks of ‘my hearers Further

,
the pupils whom

hewas addressing were beginner s in mathematics ; thus in one
passage he says that he omits for the present ’ to speak ofthe
discoveries of those who employed the curves ofNicomedcs
and H ippias for trisecting an angle, and ofthose who used the
A rchimedean spiral for dividing an angle in a given ratio

,

because these things woul d be too difficult for beginners
But there ar e signs that the commentary was . r evised and

r e- edited for a larger public ; he speaks for instance in one

place of ‘ those whowill come across his work There ar e

also passages , e.g . passages “

about the cylindrical helix , con

choids and cissoids , which would not have been understood by
the beginners towhom he lectured .

Proclus on Euel . I , p.

3

2

1

1

1

0 . I b.
, p. 27 2 . 12 .

p. 9 .
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The commentary opens with two Prologues . The first is
on mathematics in general and its relation to

,
and use in,

philosophy
,
fromwhich Proclus passes to the classification of

mathematics . Prologue II deals with geometry generally and

its subject -matter according to Plato, A ristotle and others .

A fter this section comes the famous summary (pp . 6 4—8)
ending with a eulogium of Euclid ,

with particular reference
to the admirable discretion shown in the selection of the pro

positions which should constitute the Elements of geometry,
the ordering of the whole subject - matter, the exactness and

the conclusiveness ofthe demonstrations , and the power w ith
which every ques tion is handled . Generalities follow , such as

the discussion ofthe nature ofelements , the distinction between
theorems and problems according to different authorities , and
finally a div ision of Book I into three main sections , (1) the
construction and properties of triangles and their parts and

the comparison between triangles in respect of their angles
and s ides , (2) the properties of parallels and parallelograms

and their construction from certain data, and (3)the bringing
of triangles and parallelograms into relation as regards area.

Coming to the Book itself
,
Proclus deals historically and

critically w ith all the definitions , postulates and axioms in

order . The notes on the postulates and axioms ar e preceded
by a general discussion of the principles of geometry, hypo
theses , postulates and axioms

,
and their relation to one

another ; here as usual Proclus quotes the opinions of all the

important authorities . Again
,
when he comes to Prop . 1

, he

discusses once more the difference between theorems
‘

and

problems
,
then sets out and explains the formal divis ions of

a proposition , the enunciation (wpér ams), the setting
- out

(3x6ecn g), the definition or specification the con

str uction the pr oof the con clu sion
and finally a number of other technical terms

,

e .g. things said to be given, in the various senses of this term
,

the lemma ,
the case

,
the por ism in its two senses

,
the objection

the r eduction ofa problem, r eductio ad absu r dum ,

analysi s and synthesis .

In his comments on the separate propositions Proclus
generally proceeds in this way : first he gives explanations
regarding Euclid ’

s proofs , secondly he gives a few different
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second Book ’

. But at the time when the commentary on

Book I was wr itten he was evidently uncertain
'whether he

would be able to continue it
,
for at the end he says , ‘For my

part, if I should be able to discuss the other Books in the

same way , I should give thanks to the gods ; but, if other
cares should draw me away

,
I beg those who ar e attracted by

this subj ect to complete the exposition of the other Books as

well, fol lowing the same method and addressing themselves
throughout to the deeper and more sharply defined questions
involved Wachsmuth

,
finding a Vatican manuscript contain

ing a collection of scholia on Books X
,
headed E ly 7 a

E i
’

z KAet
'

dou or mxefa npoAapBal/éyeua 15K 7 631; H péKAOU onopcidmf
Kai K a r

’

ém r opfiu, and seeing that the scholia on Book I were
extracts from the extant commentary of Proclus

,
concluded

that those on the other Books were also from Proclus but
the 7 rpo in wpoAa/iflavéyeua rather suggests that only the

scholia to Book I ar e from Proclus . H eiberg found and

published in 1 9 0 3 a scholium to X. 9 , in wh ich Proclus is
expressly quoted as the authority, but he does not regard
this circumstance as conclusive. On the other hand , H eiberg
has noted two facts which go against the view that Proclus
wrote on the later Books : (1) the scholiast ’s copy of

Proclus was not much better than our manuscripts ; in
particular , it had the same lacunae m the notes to I . 3 6

,

3 7 , and I . 4 1—3 ; this makes it improbable that the scholiast
had further commentaries of Proclus which have vanished
for us ; (2) there is no trace in the scholia of the notes
which Proclus promised in the passages already referred to
A ll, therefore, that we can say is that , while the Wachsmuth
scholia may be extracts from Proclus , it is on the whole
improbable .

Hypotyposis of A str onomical Hypotheses .

Another extant work of Proclus which should be referred
to is his - Hypotyposis of A str onomical Hypotheses, a sort of
readable and easy introduction to the astronomical system
of H ipparchus and Ptolemy . It has been well edited by
Man itius (Teubner . Three things may be noted as

1 Proclus on Euol . I , p. 432 . 9—15 .
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regards this work. It contains 1 a description of the method
of measuring the sun’

s apparent d iameter by means of

H eron’

s water - clock , which , by comparison with the corr e
sponding description in Theon

’

s commentary to the Synta-xis

of Ptolemy
,
is seen to have a common source with it . That

source is Pappus
,
and ,

inasmuch as Proclus has '

a figure (repro
duced by Manitius in his text from one set ofmanuscripts)
corresponding to the description ,

while the text ofTheon has
no figure

,
it is clear that Proclus drew d irectly on Pappus ,

who doubtless gave, in his account of the procedure, a figure
taken from Heron’

s own work
'

ou water - clocks . A simple
proof of the equivalence of the epicycle and eccentric hypo
theses is quoted by Proclus from one H ilarius of Antioch .

2

An interesting passage is that in chap . 4 (p. 1 3 0 , 1 8) where
Sosigenes the Peripatetic is said to have recorded in his work
‘
on reacting spheres ’ that an annu lar eclipse of the sun is

sometimes observed at times of perigee ; this is , so far as

I know
,
the only allusion in ancient times to

“

annular eclipses ,
and Proclus himself questions the correctness of Sosigenes ’s
statement .

Commentary on the R epublic.

The commentary of Proclus on the R epublic contains some

passages of great interest to the historian ofmathematics .

The most important is that 2 in which Proclus indicates that
Props . 9 , 1 0 of Euclid , Book II, ar e Pythagorean proposi
tions invented for the purpose of proving geometrically the
fundamental property of the series of ‘

side and ‘ diameter
numbers, giving successive approximations ‘

to the value of

x/ 2 (see vol. 1, p. The explanation “
of the passage in

Plato about the Geometrical Number is defective and dis

appointing , but it contains an interesting reference to one

Pater iu s, of date presumably intermediate between Nestorius
and Proclus. Pater ius is said to have made a calculation

,
in

units and submultiples , of the lengths ofdifferent segments of

Proclus , Hypotyposis , c. 4 , pp. 120—22.

2 I h.
, c . 3, pp. 7 6 , 1 7 sq .

3 P rocli Diadochi in Platom
‘

s R empublicam Commentar n , ed . Kroll,
vol. ii , p. 27 .

4 Ib., vol. 1 1 , pp. 36 - 42.
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straight lines in a figure formed by taking a triangle with
sides 3 , 4 , 5 as ABC, then drawing
BD from the right angle B perpen

dicular to A C, and lastly drawing E

perpendiculars DE, DF to AB
,
BC.

A diagram in the text with the

lengths of the segments shown along
s ide them in the usual numerical
notation shows that Pater ius obtained from the data AB 3 .

BC 4
, CA 5 the following :

F0 B 5 K, 25 5
1

0 1
— 65 [=225l

FB = awe s e a 14 ]
BE : a S “

Y ‘f
’

V
' = 12 3 r

’

5 5
’

5 [= lffl
1

This is an example of the Egyptian method of stating frac
tions preceding by some three or four centuries the exposition
ofthe same method in the papyrus ofAkhmim.

MAR INUS of Neapolis , the pupil and biographer ofProclus,
wrote a commentary or rather introduction to the Data of

Euclid. l It is mainly taken up with a discuss ion of the

question r t 7 6 8680ye
’

uou, what is meant by given ? There
were apparently many different definitions of the term given

by earlier and later authorities . Of those who tried to define
it in the s implest way by means ofa single clifier entia , three
ar e mentioned by name. A pollonius in his work on veto-a s

and his ‘ general treatise ’

(presumably that on elementary
geometry) described the given as assigned or fixed (Ter ay

,
uéyov), Diodor us called it known others regarded
itas r ational (517 7 617)and Ptolemy is classed with these, rather
oddly ,

because ‘he called those things given the measure of
which is given either exactly or approximately ’

. Others

1 See Heiberg and Menge
'

s Euclid , vol. vi, pp. 2344 6 .
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sophy at A thens, the last members of the school
,
including

Damascius and S implicius , migrated to Persia,
but returned

about 5 3 3 to A thens , where Simplicius continued to teach for
some time though the school remained closed.

Extr acts fr om Eudemu s .

To
'

Simplicius we owe two long extracts of capital impor
tance for the history of mathematics and astronomy . The

first is his account , based upon and to a large extent quoted
textually from Eudemus

’

s Histor y ofGeometr y, ofthe attempt
by A ntiphon to square the circle and of the quadratures of
lunes by H ippocrates ofCh

'

ios . It is contained in S implicius ’s
commentary on A ristotle’s Physics ,l and has been the subject
of a considerable literature extending from 1 8 7 0

,
the date

when Br etschneider first called attention to it, to the latest
critical edition with translation and notes by R udio (Teubner ,

It has already been discussed (vol. i , pp . 1 8 3

The second , and not less important , of the two passages is
that containing the elaborate and detailed account of the

system of concentric spheres , as first invented by Eudoxus for
explain ing the apparent motion ofthe sun

,
moon,

and planets ,
and of the modifications made by Callippus and A ristotle. It
is contained in the commentary on A r istotle’s De caelo 2

;

S implicius quotes largely from Sosigenes the Peripatetic
(second century observing that he in his turn drew
from Eudemus , who dealt with the subject in the second
book of his H istor y of A str onomy. It is this passage of

S implicius which ,
along with a passage in A ristotle’s Meta

physics,
3
enabled Schiaparelli to reconstruct Eudoxus ’

s system
(see vol. 1

,
pp . 3 2 9 Nor must it be forgotten that it is in

S implicius ’s commentary on the Physics
“ that the extract

from Geminus ’s summary of the Meteorologica of Posidonius
occurs which was used by Schiaparelli

.

to support his view
that it was H er aclides of Pontus , not A ristarchus of Samos ,
who first propounded the heliocentric hypothes is .

Simplicius also wrote a commentary on Euclid ’s Elements ,
Book I , from which an- Nair iz i

,
the A rabian commentator,

Simpl . in Phys , pp. 54—69. ed . Diels .

2 Simpl . on Arist . De cneio, p. 488 . 1 8—24 and pp. 493—506 , ed . Heiberg.

3 Metaph. A . 8 , 107 3 b 1 7
— 1 0 7 4 a 14.

Simpl . in Phys , pp. 291—2 , ed . Diels .
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made valuable extracts , including the account ofthe attempt of
‘Aganis

’

to prove the parallel - postulate (see pp . 2 2 8 3 0 above).

Contemporary with Simplicius , or somewhat earlier , was

EUTOCIUS, the commentator on A rchimedes and A pollonius .

A s he dedicated the commentary on Book I On the Spher e

and Cylinder to Ammonius (a pupil of Proclus and teacher
ofSimplicius), who can hardly have been alive after A .D. 5 1 0 ,

Eutocius was probably born about A .D . 4 8 0 . H is date used
to be put some fifty years later because ,

atthe end ofthe com

mentar ies on Book II On the Spher e and Cylinder and on

the Meas ur ementofa Cir cle, there is a note to the effect that
‘

the edition was revised by Isidorus ofMiletus , the mechanical
engineer, ou r teacher

’

. But
,
in v iew ofthe relation to Ammo

nius , it is impossible that Eutocius can have been a pupil of
Isidorus

,
who was younger than Anthemius of Tralles, the

arch itect of Saint Sophia at Constantinople in 5 3 2
, whose

work was continued by Is idorus after Anthemius ’s death “

about A . D . 5 3 4 . Moreover , it was to Anthemius that Eutocius
dedicated , separately,

the commentaries on the fir st four
Books of Apollonius

’

s Conics , addressing Anthemius as
‘my

dear friend ’

. H ence we conclude that Eutocius was an elder
contemporary ofAnthemius , and that the reference to Is idorus
is by an editor ofEutocius ’s commentaries whowas a pupil of
Is idorus . For a like reason, the reference in the commentary
on Book II On the Spher e and Cylinder

1 to a dtafifi‘

r ns
‘

invented by Isidorus ‘

our teacher ’

for drawing a parabola
must be considered to be an interpolation by the same editor .

Eutocius
’

s commentaries on A rchimedes apparently ex

tended on ly to the three works , On the Spher e and Cylind er ,

Measu r ement of a Ci r cle and P lane Equ ilibr iums , and those
on the Conics of Apollonius to the first four Books only .

We ar e indebted to these commentaries for many valuable
historical notes . Those deserving special mention here ar e

(1 ) the account ofthe solutions of the problem ofthe duplica
tion of the cube, or the finding of two mean proportionals,
by ‘Plato ’

,
H eron

,
Philon

,
Apollonius , Diocles , Pappus ,

Sporns , Menaechmus , A rchytas, Eratosthenes , Nicomedcs , (2)
the fragment discovered by Eutocius himself containing the

1 Archimedes, ed . Heiberg , vol. iii, p. 84. 8—1 1 .



EUTOCIUS . ANTHEMIUS 541

missing solution , promised by A rchimedes in On the Spher e

and Cylinder , II . 4 , of the auxiliary problem amounting
to the solution by means of comics of the cubic equation
(Ct— w)50

2 bc2 , (3) the solutions (a) by Diocles ofthe original
problem of II . 4 without bringing in the cubic , (b) by Diony
sodor us ofthe auxiliary cubic equation .

ANTHEMI US of Tralles , the architect, mentioned above, was
himself an able mathematician , as is seen from a fragment of
a work of his , On Bu r ning

-mir r or s . This is a document of
cons iderable importance for the history of conic sections .

Originally edited by L . Dupuy in 1 7 7 7 , it was reprinted in
Westermann

’

s II apa805o
-

ypoi950 1 (Scr iptor es r er um mir abilium
Gr aeci), 1 8 3 9 , pp. 1 49 — 5 8 . The first and third portions of

the fragment ar e those which interest us .

1 The first gives
a solution of the problem, To contrive that a r ay of the sun

(admitted through a small hole or window) shall fall in . a

given spot , without moving away at any hour and season .

This is contrived by constructing an elliptical mirror one focus
ofwhich is at the point where the r ay ofthe sun is admitted
while the other is at the point to which the r ay is required
to be reflected at all times . LetB be the hole , A the point
to which reflection must always take place

,
BA being in the

mer id ian and parallel to the horiz on. Let BC be at right
angles to BA ,

so that CB is an equinoctial r ay ; and letBD be
the r ay at the summer solstice , BE a winter r ay.

Take F at a convenient distance on BE and measure FQ
equal to FA . Draw HFG thr ough F bisecting the angle
AFQ,

A and letBG be the straight line bisecting the angle EBC
between the winter and the equinoctial rays . Then clearly

,

since FG bisects the angle QFA ,
if we have a plane mirror in

the position HFG,
the r ay BFE entering atB will be reflected

to A .

To get the equinoctial r ay s imilarly reflected to A , join GA ,

and with G as centre and GA as radius draw a circle meeting
BC in K . Bisect the angle K GA by the straight line GLM
meeting BK in L and terminated atM , a point on the bisector
ofthe angle CBD. Then LM bisects the angle K LA also, and
K L and KM : MA . If then GLM is a plane mirror

,

the r ay BL will be reflected to A .

1 See B z
'

bliotheca mathematica, vii 1 907 , pp. 225—33.
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the focus to the intersection of two tangents bisects the angle
between the straight lines joining the focus to the two points
of contact respectively.

In the third portion ofthe fragment Anthemius proves that
parallel rays can be reflected to one single point from a para
bolic mirror ofwhich the point is the focus . The dir ectr ix is

used in the construction ,
which follows , mutatis mutandis, the

same course as the above construction in the case ofthe ellipse .

A s to the suppos ition of H eiberg that Anthemius may also
be the author ofthe Fr agmentam mathematicum Bobiense, see

above (p .

The P apyr u s oj A khmim .

Next in chronological order must apparently be placed
the Papyrus of Akhmim, a manual of calculation written
in Greek , which was found in the metropolis of Akhmim ,

the ancient Panopolis , and is now in the Musée du

Giz eh . It was edited by J . Baillet 1 in 1 8 9 2 . A ccord
ing to the editor , it was written between the s ixth and

n inth centuries by a Christian . It is interesting because
it preserves the Egyptian method of reckoning ,

w ith proper
fractions written as the sum of primary fractions or sub

multiples , a method which survived alongside the Greek and

was employed, and even exclusively taught , in the East. The

advantage of this papyrus, as compared with Ahmes
’

s , is that
we can gather the formulae used for the decompos ition of

ordinary proper fractions into sums of submultiples . The

formulae for decomposing a proper fraction into the sum of

two submultiples may be shown thus :
a l

1
be b+ c

+

b .

(L

E
1 1 3 1 1 1 8

K amp es
n

‘

ées
’

1 1 0 7 0 7 7
’

32 3

1 Me
'

moir es publiés par les membr es de la Mission ar cheologiguefrangaise

an Cair e, vol. ix, part 1 , pp. 1—89.
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1 1 1

and 2 2 2 “
7

1 6
7 1 7 0 8 0

7 ( 3 3 2

Example.

2 8 2 8 l l 1

1 3 2 0 1 2 0 9 0 9 9

2 8

The object is
,
ofcourse, to choose the factors ofthe

“

denomi

nator, and the multiplier m in in such a way as tomake
the two denominators on the right- hand side integral .
When the fraction has tobe decomposed into a sum of thr ee

or more submultiples, we take out an obvious submultiple
first

,
then if necessary a second , until one of the formulae

will separate what remains into two submultiples . Or we

take outa part which is not a submultiple but wh ich can be
divided into two submultiples by one ofthe formulae .

For example , todecompose 43414 . The factors of6 1 6 ar e 7

0 1
' 7 - 3 8 ' Take out 313 »

and thi s 5
1

3
“

5
2

1

4—
6

“

7
2

7 5
1

5 7
1

7 7
2

7 ;

and 4
2

4 4
1
4

-

1

4 4 by formula (I ), so that 2

4 4
1
4 44 4

1

4
1

4 4
1

4 .

Take 4
2

4
3

4
9

4 . The fact0 1 s of 6 46 0 a1 e 8 5 . 7 6 0or Take
6 4 4

1

4 4 4 4 4 . Again take out 414 , and we have
-

8

1

4
1

4 4 244 or 4 4 4 4 4
1

4
. The actual problem here is to find

444 r d of 1 144 4
1

4 4
1

4 , which latter expression reduces to
_

1

4
2 3 9 .

The sort ofproblems solved in the book ar e (1)the di vision
of a number into parts in the proportion of certain given
numbers , (2) the solution of s imple equations such as this :
From a certain treasure we take away

4
1

4th,
then from the

remainder 414 th of that remainder , and we find 1 5 0 units left ;
what was the treasure?

l
a;

bum L
a:
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(3) subtractions such as : From g subtract 414 1 1 1

1 1 1 1 1 1 1 1
Ti e

—
0 2 2 3 6 3 3

"

1
~ _

1 1 1 1 1
I o 4 4 5 0 5 5 so es 7 15 7 7 ea 5 0 9 9

“

W E r r t Answer, 17 5 5
—
0
"

The book ends with long tables of results obtained (1)by
multiplying successive numbers

,
tens, hundreds and thousands

up to by g, 4, 4, 4, &c. , up to 4
1

4 , (2)by multiplying

all the successive numbers 1 , 2 , 3 n by l , where n is succes
7 b

sively 1 1
, 1 2 , and 2 0 ; the results ar e all arranged as the

sums of integers and submultiples .

The Geodaesia ofa Byz antine author formerly called
,
with

out any authority,

‘H eron the Younger ’

was translated into
Latin by Barocius in 1 5 7 2

, and the Greek text was published
with a French translation by Vincent .1 The place of the

author’s observations was the hippodrome at Constantinople,
and the date apparently about 9 3 8 . The treatisewas modelled
on H eron of A lexandria, especially the Dioptr a,

while some

measur ements of areas and volumes ar e taken from the

MI CH AEL PsELLUs lived in the latter part of the eleventh
century, since his latest work bears the date 1 0 92 . Though
he was called ‘fir st of philosophers ’

, it cannot be said that
what survives of his mathematics suits this title . Kylander
edited in 1 5 5 6 the

“

Greek text, with a Latin translation, of

a book purporting to be by Psellus on the four mathematical
sciences , arithmetic, mus ic, geometry and astronomy,

but it is
evident that it cannot be entirely Psellus’s own work , since
the as tronomical portion is dated 1 90 8 . The arithmetic con
tains nomore than the names and classification of numbers
and ratios . The geometry has the extraordinary remark that,
while opinions differed as to how tofind the area of a circle,
the method which found most favour was to take the area as

the geometric mean between the inscribed and circumscribed
squares ; this gives 11 x/ 8 - 8 2 8 42 7 1 The only thing of
Psellus which has any value for us is the letter published by
Tannery in his edition ofDiophantus .

2 In this letter
_

Psellus

says thatboth Diophantus and Anatolius (Bishop ofLaodicea
about A . D. 2 8 0)wrote on the Egyptian method of reckoning,

1 Notices etextr a its , xix, pt. 2 , Paris, 1858 .

2 Diophantus , vol. ii, pp. 37 - 42.

N n
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R echenbnch des Maximus P lanud es in Greek by Gerhardt
(Halle, 1 8 6 5) and in a German translation by H . Waeschke

(Halle, 1 8 7 There was , however , an earlier book under the
similar title p r

‘

; 1 73? ,
ueyciAns Kai

’

I v8u<fis
* \If 77¢l¢opfa 9 (sic),

written in 1 2 52
,
which is extant in the Paris MS . Suppl . Gr .

3 8 7 ; and Planudes seems to have raided this work . H e

begins with an account ofthe symbols which ,
he says , were

‘ invented by certain distinguished astronomers for the most
conven ient and accurate expression of numbers . There ar e

nine of these symbols (our 1 , 2 , 3 ,
4
,
5
, 6 ,

7
,
8
,

to which is
added another called Tz iffr a (cypher), written 0 and denoting
z ero. The nine signs as well as this one ar e Indian .

’

But this is
,
of course, not the first occurrence of the Indian

numerals ; they were known , except the z ero, to Ger ber t

(Pope Sylvester II) in the tenth century, and were used by
Leonardo of Pisa in his Libe'r abaci (written in 1 20 2 and

rewritten in Planudes used the Persian form of the

numerals , differing in this from the writer of the treatise of

1 2 5 2 referred to,
who used the form then current in Italy .

It scarcely belongs to Greek mathematics to give an account
ofPlanudes

’

s methods ofsubtraction ,
multiplication ,

&c.

Extr action of the squar e r oot.

A s regards the extraction of the square root, he claims to
have invented a method different from the Indian method
and from that of Theon . It does not appear , however , that
there was anything new about it. Let us try to see in what
the supposed new method consisted.

Planudes describes fully the method of extracting the

square root of a number with several digits , a method which
is essentially the same as ours . This appears to be what he
refers to later on as

‘ the Indian method ’

. Then he tells us

how tofind a first approximation to the root when the number
is not a complete square.

‘Take the square root of the next lower actual square
number, and double it : then ,

from the number the square root
ofwhich is required, subtract the next lower square number
so found , and to the remainder (as numerator) give as de

nominator the double ofthe square root already found.

’

N u 2
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The example given is x/ S ince 42 : 1 6 is the next
2

lower square, the approximate square root i s 4

The formula used is , therefore, a + approx i

mately. (A n example in larger numbers is

x/(1 6 9 0 1 9 6 7 8 9) 4 1 1 1 2 444-34 approximately.)

Planudes multiplies 4 7
1

,
by itself and obtains 1 8

4
1

4 ,
which

shows that the value 44 is notaccurate. H e adds that he will
explain later a method which is more exact and nearer the
truth

, a method ‘which I claim as a discovery made by me

with the help ofGod ’

. Then , coming to the method which he
claims to have discovered, Planudes applies it to x/ 6 . The

object is to develop this in uni ts and sexagesimal fractions .

Planudes begins by multiplying the 6 by 3 6 0 0 , making 2 1 6 0 0
second - s ixtieths , and finds the square root of 2 1 6 0 0 to lie

between 1 46 and 1 4 7 . Writing the 1 4 6 ’ as 2 he proceeds
tofind the rest ofthe approximate square root (2 2 6 ’ 5 8 "

by the same procedure as that used by Theon in extracting
the square root of 4 5 0 0 and 2 2 8

' respectively. The differ
ence is that in neither ofthe latter cases does Theon multiply
by 3 6 0 0 so as to reduce the units to second - s ixtieths , but he
begins by taking the approximate square root of 2 , viz . 1 , just
as he does that of45 0 0 (viz . It is

,
then

,
themultiplication

by 3 6 0 0 , or the reduction to second - sixtieths to start with
,
that

constitutes the difference from Theon
’

s method
, and this m ust

therefore be what Planudes takes credit for as a new dis

covery . In such a case as x/(2 or s/ 3 , Theon
’

s method
has the inconvenience that the number of minutes in the

second term (3 4 ’ in the one case and 4 3
’

in the other) cannot
be found without some trouble, a difficulty which is avoided
by Planudes ’s expedient . Therefore the method of Planudes
had its advantage in such a case . But the discovery was not
new . For it will be remembered that Ptolemy (and doubtless
H ipparchus before him) expressed the chord in a circle sub
tending an angle of 1 2 0° at the centre (in terms of 1 2 0th parts
of

'

the diameter)as 1 0 3 1
0
55

’

which indicates that the first
step in calculating x/ 3 was to multiply it by 3 6 0 0 , making
1 0 8 0 0 , the nearest square below which is 1 0 3 2 In
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the scholia to Eucl.
, Book X, the same method is applied.

Examples have been given above (vol. i , p . The supposed
new method was therefore not only already known to the
scholiast, but goes back , in all probability

, to Hippar chus .

Two pr oblems.

Two problems given at the end ofthe Manual of Planudes
ar e worth mention. The first is stated thus : ‘ A certain man
finding himself at the point of death had his desk or safe
brought to him and divided his money among his sons w ith
the following words , “ I wish to divide my money equally
between my sons : the firstshall have one piece and 4th ofthe

rest, the second 2 and 4th of the remainder
,
the third 3 and

%th ofthe remainder . At this point the father died without
getting to the end either of his money or the enumeration of

his sons . I wish to know how many sons he had and how
much money.

’

The solution is given as (n for the number
of coins to be divided and (n 1)for the number ofhis sons ;
or rather this is how it might be stated, for Planudes takes
n 7 arbitrarily . Comparing the shares of the first two we
must clearly have

1 1 513— 1
1 +

n
(x 1) 2 +

n
{oc (1 +

whi ch gives a: (n therefore each of(n 1)sons received
(n
The other problem is one which we have already metwith,

that of finding two rectangles of equal perimeter such that
the area of one of them is a given multiple of the area of

the other . I f n is the given multiple, the rectangles ar e

(n
Z— l

, n
3 — n

2
) and (n — l

, n
3 — n) respectively . Planudes

states the solution correctly , but how he obtained it is notclear.
We find also in the Manual ofPlanudes the ‘ proof by nine ’

(i. e. by casting out nines), with a statement that it was dis

covered by the Indians and tr ansmitted to us through the

A r abs .

MANUEL MOSCHOPOULOS, a pupil and friend of Maximus
Planudes , lived apparently under the Emperor Andronicus II
(1 2 8 2— 1 3 2 8)and perhaps under his predecessor Michael VIII

(1 2 6 1 - 8 2) also. A man of wide learning, he wrote (at the
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of Smyr na, arithmetician and geometer , 7 0 17
‘

P ad , at the

instance of the most r evered Master of Requests , Georgius
Chatz yces, and most easy for those who desire to study it.’

A long passage, called é
'

xcppacn s
‘
r oi} daxr vhucofi ye

’

r pov, deals
with a method offinger - notation

,
in which the fingers of each

hand held in different positions ar e made to represent num
bers .

1 The fingers ofthe left hand serve to repr esent all the
units and tens , those of the right all the hundreds and

thousands up to 9 0 0 0
‘for numbers above these it is neces

sary to use writing, the hands not sufficing to represent such
numbers .

’

The numbers begin with the little fingers of each
hand ; if we call the thumb and the fingers after it the 1 st,
2nd , 3 r d , 4th , and 5th fingers in the German style, the succes
s ive signs may be thus described , premising that, where fingers
ar e not either bent or

‘ half—closed ’

or
‘ closed ’

(cvor ehhiipeuor), they ar e supposed to be held out straight

(a) On the lefthand

for 1 , half- close the 5th finger only ;
2
,

4th and 5th fingers only ;
3
,

3 r d , 4th and sth fingers only ;
3 r d and 4th fingers only

3 r d finger only ;
6 , 4th

7 , close the 5th finger only ;
8
,

4th and 5th fingers only “

9
,

3 r d , 4th and sth fingers only.

(6) The same operations on the r ighthand give the than
sands, from 1 0 0 0 to 9 0 0 0 .

(c) On the lefthand :

for 1 0 , apply the tip ofthe forefinger to the first jointof
the thumb so that the resulting figure resembles a ;

A simi lar description occurs in the works of the
_

Venerable Bede

De computovel loquela d igitorum forming chapter 1 ofDe tempomm
r atione), where expressions ar e also quoted from St. Jerome (d. 420 A . D.)
as showing that he toowas acquaintedwith the system (TheM i scellaneous

Wor ks ofthe Vener able Bede, ed . J. A . Gi les, vol. vi , 1843 , pp. 141
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for 2 0
, stretch out the forefinger straight and vertical ,
keep fingers 3 , 4 , 5 together but separate from it
and inclined slightly to the palm ; in this position
touch the forefinger with the thumb ;

3 0 , join the tips ofthe forefinger and thumb
40 , place the thumb on the knuckle of the forefinger
behind, making a figure like the letter r

5 0
,
make a like figure with the thumb on the knuckle
ofthe forefinger inside ;

6 0 , place the thumb inside the forefinger as for 5 0 and
bring the forefinger down over the thumb, touch
ing the bal l of it ;

7 0
,
rest the forefinger round the tip

_

of the thumb,
making a curve like a spiral ;

8 0 , fingers 3
,
4
,
5 being held together and inclined

at an angle to the palm,
put the thumb across the

palm to touch the third phalanx of the middle
finger (3) and in this position bend the forefinger
above the first joint ofthe thumb ;

9 0
,
close the forefinger only as completely as possible .

(d) The same operations on the r ight hand give the hun
d r eds , from 1 0 0 to 9 0 0 .

The first letter also contains tables for addition and sub

traction and for multiplication and divis ion ; as these ar e said
to be the ‘ invention of Palamedes ’

,
we must suppose that

such tables were in use from a remote antiquity . Lastly
, the

first letter contains a statement which
,
though applied to

particular numbers , expresses a theorem to the effect that

is not 1 0m+n+
2
,

where a
0 ,
a
1

b
e,
6
1

ar e any numbers from 0 to 9 .

In the second letter of Rhabdas we find simple algebraical
problems of the same sort as those ofthe A nthologia Gr aeca
and the Papyrus of Akhmim. Thus there ar e five problems
leading to equations ofthe type

£6
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Rhabdas solves the equation 2 a ,
practically as we

m
ShOUId

, by multiplying up to get rid of fractions, whence he
obtains se mna/(m n). Again he solves the simultaneous
equations 90 4-

31 a , mm n? also the pair ofequations

“ : CL.

7 1;

Of course, m, n , a have particular numerical values in
all cases .

R habdas
’

s R u lefor appr oximating to the squar e r ootof
a non - squar e number .

We find in Rhabdas the equivalent ofthe H eronian formula
for the approximation to the square root of a non - square
number A a

2 6
,
namely

a :

he further observes that, if or be an approximation by excess ,
then a

,
A or is an appr ox 1mation by defect

,
and 4

is an approximation nearer than e ither. This last form is of

course exactly H eron ’

s formula or 4
1

(a The formula

was also known to Bar laam (presently to be mentioned), who
also indicates that the procedure can be continued indefinitely .

It should here be added that there i s interesting evidence
ofthe Greek methods ofapproximating to square roots in two
documents published by Heiberg in The fir st of

these documents (from a manuscript of the fifteenth century
atVienna) gives the approximate square rootofcertain non

square numbers from 2 to 1 4 7 in integers and proper fractions .

The numerals ar e the Greek alphabetic numerals , but they ar e

given place- value like our numerals : thus on) 1 8
,
0185 1 4 7 ,

Qty 1 3

Br 2 8

A ll these square roots, such as 4
4 4 , x/ (3 5) 514,

x/ (1 1 2) 1 0 4
9
4 , and so on, can be obtained (either exactly or ,

in a few cases , by neglecting or adding a small fraction in the

and so on : 0 is indicated by q or , sometimes , by

1 Byz an
tinische Analekten ’

in A bk. z ur Gesek. d . Math. ix. Heft, 1899,
pp. 1 63 sqq.
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ordinary fr actions and sexages imal fractions (printed at

Strassburg in 1 592 and at Paris in Bar laam,
as we

have seen
, knew the H er onian formulae for finding successive

approximations tosquare roots, and was aware that they could
be indefinitely continued.

ISA AC A RGYRUS, a monk , who lived before 1 3 6 8 , was one of
a number of Byz antine trans lators of Persian astronomical
works . In mathematics he wrote a Geodaesia and scholia to
the first six Books of Euclid’s Elements. The former is con

tained in the Paris MS . 2 42 8 and is called ‘
a method of

geodesy or themeasurement of surfaces, exact and shortened ’

the introductory letter addressed to one Colybos is
- followed

by a compilation of extracts from the Geometr ica and Ster eo

metr ica of H eron. He is apparently the author -of some

further additions to Rhabdas
’

s revision of the Manual of
Planudes contained in the same manuscript . A short tract
of his On the discovery of the square roots of non—rational
square numbers is mentioned as contained in twoothermanu
scripts atVeni ce and Rome respectively (Codd . Marcianus Gr .

3 3 3 and Vaticanus Gr . where it is followed by a table
of the square roots of all numbers from 1 to 1 0 2 in sexa

gesimal fractions (e.g
'

. 2 1 2 4
’

5 1
” / 3= 1 4 3

’

5 6
”

1 Heiberg ,
Byz antinische Analekten ’

,
in A bh. z ur Gesek. d . Math. ix

,

pp. 1 69—7 0 .



A PPENDIX

On A r chimedes
’

s pr oofof the subtangent
-

pr oper ty of
a spir al .

TH E section of the treatise On Spir als from Prop . 3 to

Prop. 2 0 is an elaborate series of propositions leading up
to the proof of the fundamental property of the subtangent
corresponding to the tangent at any point on any turn of the

spiral . Libri , doubtless w ith this series of propositions in
m ind

,
remarks (H istoir e des sciences mathématiqu es en I talie,

i
,
p. 3 1) that ‘ Apres vingt siecles de travaux et de décou

ver tes
,
les intelligences les plus puissantes viennent encore

échouer contre la synthese diflicile du Tr aite
’

des Sp ir ales

d
’

A r chimede.

’

There is no foundation for this statement,
which seems to be a too hasty generaliz ation from a dictum ,

apparently of Fontenelle, in the H istoir e de l
’

A cadémie des

Sciences pou r l
’

annec 1 7 04 (p . 42 of the edition of

who says of the proofs of A rchimedes in the work On

Spir als :
‘ Elles sont si longues , et si difficiles a embrasser ,

que, comme
_

on l
’

a pfi voir dans la Preface de l’Analyse des
Infiniment petits

,
M. Bouillaud a avoué qu ’il ne les avoit

jamais bien entendues , et que V iete les a injustement soup
connees de paralogisme, parce qu’ il n

’

avoit pfi non plus
parvenir a les bien entendre. Mais toutes les preuves qu’on
peut donner de leur difficulté et de leur obscurité tournent
a la g'loire d ’

A r chimede ; car quelle vigueur d
’

esprit , quelle
quantité de vues différentes, quelle opiniatr eté de travail n

’

a

t- il pas fallu pour lier et pour disposer un raisonnement que
quelques - uns de nos plus grands geometr es ne peuvent suivre,
tout lié et tout dispose qu

’il est?’

P. Tannery has observed 1 that, as a matter of fact
, no

mathematicians of real authority who have applied or ex

tended A rchimedes ’s methods (such men as Huygens
,
Pascal ,

Roberval and Fermat, who alone could have expressed an

opinion worth hav ing), have ever complained of the

Bulletin des sciences mathématiques , 1895, Part i, pp. 265—7 1 .
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‘

obscurity ’

of A rchimedes ; while, as regards Vieta,
he has

shown that the statement quoted is based on an entire mis
apprehension , and that, so far from suspecting a fallacy in
A rchimedes ’s proofs , V ieta made a special study ofthe treatise
On. Spir als and had the greatest admiration for that work .

But, as in many cases in Greek geometry where the analy
sis is omitted or even (as Wallis was tempted to suppose)of
set purpose hidden ,

the reading of the completed synthetical
proof leaves a certain impression of mystery ; for there is
nothing in it to show why A rchimedes should have taken
precisely this line of argument, or how he evolved it . It is
a fact that

, as Pappus said
,
the subtangent - property can be

established by purely ‘ plane ’

methods
,
without recourse to

a
‘

solid ’

uefim g (whether actually solved or merely assumed
capable ofbeing solved). If, then, A rchimedes chose the more
difficult method which we actual ly find him employing ,

it is
scarcely possible to assign any reason except his definite
predilection for the form of proof by r eductio ad absu r dum

based ultimately on his famous ‘Lemma
’

or Axiom .

It seems worth wh ile to r e - examine the whole question of

the discovery and proof of the property , and to see how

A rchimedes ’s argument compares with an easier ‘ plane ’ proof
suggested by the figures of some of the very propositions
proved by A rchimedes in the treatise.

In the first place, we may be sure that the property was
not discovered by the steps leading to the proof as it stands .

I cannot but think thatA rchimedes divined the result by an

argument corresponding to our use of the differential calculus
for determining tangents . H e must have considered the

instantaneous direction of the motion of the point P descr ib

ing the spiral , using for this purpose the parallelogram of

velocities . The motion of P is compounded of twomotions ,
one along OP and the other at right angles to it. Comparing
the d istances traversed in an instant oftime in the two dir ec
tions, we see that

,
corresponding to a small increase in the

radius vector r , we have a small distance traversed perpon
dicular ly to it , a tiny ar c of a circle of radius r subtended by
the angle representing the s imultaneous small increase of the“

angle 0 (AOP ). Now r has a constantratioto 0 which we call
a (when 6 is the circular measure ofthe angle Consequently
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But (ar cASP ) OT, by hypothesis ;
therefore it was necessary to prove, alter nando, that

(3) F
’

R : (ar cR P) R O : OT, or PO zOT,

PM :MO, where OM is perpendicular to SP .

S imilarly , in order to satisfy it was necessary to

prove that

(4) FQ: (arcPQ) PM :MO.

Now , as a matter of fact, (3) is afortior i satisfied if

F’
R : (chor d R P ) PM :MO ;

but in the case of (4) we cannot substitute the chor d PQfor

the ar c PQ, and we have to substitute PG’

,
where G’

is the

point in which the tangent at P to

the circle meets OQ produced ; for
ofcourse PG’

(ar e PQ), so that (4)
I S afortior i satisfied if

FQz PG
’

PM zMo.

It is remarkable that Archimedes
usesfor his proof ofthe

’

twocases Prop .

FI G . 1 . 8 and Prop. 7 respectively , and makes
no use of Props 6 and 9

,
whereas

the above argument points precisely to the use of the figures
ofthe two latter propositions only.

For in the figure of Prop . 6 (Fig. if OFP is any radius
cutting A B in F, and if PB produced cuts OT, the parallel to
AB through 0 ,

in H , it is obvious , by parallels, that

PF : (chord PB) OP : PH .

A lso PH becomes greater the farther P moves from B

towards A , so that the ratio PF : PB diminishes continually
,

while it is always less than OB : BT (where BT is the tangent
atB and meets OH in T), i. e . always less than BM : MO.

H ence the relation (3) is always satisfied for any point R
’

of

the spiral on the backward side ofP .

But (3) is equivalent to from which it follows that F’
R

is always less than RR ’

,
so that R ’

always lies on the side
ofTP towards O.
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Next, for the point Q
’

on the
‘ forward ’

s ide of the spiral
from P ,

suppose that in the figure ofProp . 9 or Prop . 7 (Fig . 2)

any radius OP of the circle meets A B pr oduced in

FI G . 2 .

the tangent atB in G ; and draw BPH ,
BGTmeeting

parallel through 0 to AB. in H ,
T.

Then PF : BG FG : BG, s ince PF FG,

OG GT, by parallels ,

OB : BT, afor tior i ,

and obviously ,
as P moves away from B towards OT,

i. e. as G

moves away from B along BT,
the ratio OG : GT increases

continually, while, as shown , PF : BG is always BM : MO,

and , afor tior i,
PF : (ar cPB) BM : MO.

That 1 8 (4) is always satisfied for any point Q
’

ofthe spiral
‘ forward ofP , so that 2)is also satisfied , and QQ

’

is always
less than QF.

It will be observed that no VGUO
'

LS
‘

, and nothing beyond
‘ plane ’

methods , is required in the above proof , and Pappus
’

s

criticism ofArchimedes ’s proof is therefore j ustified .

Let us now consider for amoment what A rchimedes actually
does . In Prop. 8

,
which he uses to prove our proposition in

the " backward
’ case (R

’

,
R , he shows that

,
if PO OV

is any ratio whatever less than P O OT or PM : MO,
we can

find points F ’

, G corresponding to any ratio P O DV
’ where

OT OV
’

OV
,
i . e. we can find a point F ’ corresponding to

a ratio still nearer to PO OT than P O OV is . This proves
that the ratio RF’

: P G, while it is always less than PM : MO,
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approaches that ratio without limit as R approaches P . But

the proof does not enable us to say that PR ),
which is RF

’

: PG,
is also always less than PM MO. At

first sight , therefore, it would seem that the proof must fail .
Not so, however ; A rchimedes is nevertheless able to prove
that, if P V and not PT is the tangent at P to the spiral , an
absurdity follows . For his proof establishes that , if P V is the
tangent and OF’

is drawn as in the propos ition,
then

F
’

O R O OR
’

: OP ,

or F’

O OR
’

,

‘which is impossible ’

. Why this is impossible
does not appear in Props . 1 8 and 2 0 , but it follows from the

argument in Prop . 1 3 , which proves that a tangent to the spiral
cannot meet the curve again , and in fact that the spiral is
everywhere concave towards the origin .

S imilar remarks apply to the proof by A rchimedes of the
impossibility ofthe other alternative supposition (that the tan
gent atP meets OT at a point U nearer to 0 than T is).
A rchimedes ’s proof is therefore in both parts perfectly valid ,

in spite of any appearances to the contrary . The only draw
back that can be urged seems to be that , if we assume the
tangent to cut OT at a point ver y near to T on either side ,
A rchimedes’s construction brings us perilously near to infini
tesimals

,
and the proof may appear to hang, as it were, on

a thread , albeit a thread strong enough to carry it . But it is

remarkable that he should have elaborated such a difficult
proof by means ofProps . 7 , 8 (including the ‘

solid ’

r ef/ars: of

Prop . when the figures of Props . 6 and 7 (or 9) themselves
suggest the direct proof above given ,

which is independent of
any uefiaw.

P . Tannery ,
l in a paper on Pappus

’

s criticism ofthe proof as
unnecessarily involving solid ’

methods
,
has given another

proof of the subtangent - property based 0 1 1
‘ plane ’

methods
only ; but I prefer the method which I have given above
because it corresponds more closely tothe preliminary proposi
tions actually given by A rchimedes .

1 Tannery , Me
’

moir es scientifiques , i , 1 912 , pp. 300—16 .
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Behmrodxa ofHei on 18 , ii . 298 , ii.
302 , ii. 308 9.

Buffet» : BeBraam
’

l/os , forced 0 1
“

nu
"

natural ii . 362 .

tiptepqr uais , - 6v : 611 1611 17 1 1 10) cloa

wyf; ofNicomachus 97 .

611 1611 69 , numbe i : definitions of
‘
nu111be1

’

69 7 0 : in Diophantus,
used for unknown quantity (as)
94, ii. 456

611 1011 0 0 7 611 reciprocal of 6p1011 69
(=x) in Diophantus 11 458

p

6pfx
-

1 80 1 161rm 1
,

‘
1 0pe

-

‘

stretchers 121

- ov
,
irrational 1 5 7 .

6pr 1 1i1<1s~ apn ns , men- times - even 7 1
,

with Neo-Pythagoreans 7 2 .

6p
~r 16 1<1s~wcpc

—
r r ér , eve n

-times—odd 7 2
dpfl orre 17 7 0 9 , even-odd, 1

"

est1 icted

eo- Pythag0 1 eai1 s to form
-1 7 2 .

1

’

1
’

p
-
r 1os

'

,
- a,

0 11
,
even 7 0 .

‘

Apxa

8
1
’

,

l

a lost wo1k ofA 1 chimedes
1 1

Aor poeemfal. ofEratosthenes 1 1 . 109.

(io'
r poluiBov 6pyavov of H ipparchus
ii . 256 .

60 611 11 6 7 11 0 9 ,
157 .

61r v11 7 rr wr os ,
-ov

,
non~secant

6 17 111106 7 0 9 , - rw
,
incomposite 7 2 .

61 0 11 0 1 ,
- ou, ind ivisible 18 1 : Aristo

telian 1r ep1 111 -611 111 11
‘

ypamui w 15 7 ,

- ou, absurd 1 1 . 462 .

11 135611 6 1 11 : r pls
'

11 11517 06 1 9 (Plato)306 7 .

a ir
'

Er), 7 p1
'

r n, 297 : 11 143111 11 avg- 17 , 297 .

6 115710 1 : 305 6 n.

avr opar ono1nr 1x1
'

1 1 1 . 308 .

641 1
’

s , ssegment ofcircle less than a

semicncle i i .
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Bwpioxos
‘

,

‘ little altar '

, properly a

wedge
- shaped solid ii . 319 , ii . 333 :

measurement of(Heron), ii . 332— 3 :
odmviaxos) Of a certain kind

of solid number 10 7 , ii . 240 , ii .
3 1 5 .

yew8111 a £a=mensuration 1 6 .

Pewuér pofipeva of Heron ii . 3 18 , ii .
453 .

‘

yluoxt
'

s
‘ (arrow- head), Pythagorean

name for angle 1 66 .

1 8 .

7 1 11 1611 111 1
1

, gnomon, q. v . : Kar r
‘

z yucbpova
= p0 1pendicular

‘

yudip111 0 9 ,
- ov, an

alternative te1m foi 86 80 11 611 0 11 ,
(1 1 1

-eu ii 53 7 .

yumpipws , 1nthe
1 ecoon1 z edmanne1

ypdppa,
‘figure ’

or proposition, of
theorem ofEucl . 1 . 4 7

,
144 .

ypnppq : 61 11 or 6 K “
r a w ypannwv of

the0 1 etical proof i i . 25 7 , 258 .

- r; , linear : used of

pume numbe1 s 7 3 : ypappu ml

e
’

m u
-

r da e ig ,
‘ Considei ations 0 11

Curves ’

,
by Demetrius ii . 359 :

ypappukcb s
'

, graph ically 93 .

ypdcpew, to draw or write on 1 59,
1 7 3 : also top r ove 339.

OGOOflG
’

VUS
‘

,
- Yl,

- ou, gir en : senses of,
ii . 537 —8 .

66 1 10 1 1311 1 1 1
,
toprove 328 .

6 6 111 : 66 2 617 3 7 1 .

86 67 6 11 0 9 , secondary : of composite
numbers 7 2 : oeur épa 11 1111 16 9

40 .

6 10 6 737 179 , compasses 308 , ii . 540 .

81a 1peiv : 81 5 116 11 7 1 , separ andoor div

dendo(intransformation ofratios)
386 .

81a1
'

p6 1r 1 s : )\6you, separ ation of a

ratio 386 : wepi 61a 1p60 6wv 6 186 17 1 11 ,
0 7 1 d ivisions (Of figu r es), by
Euclid 425 .

81dor aa 1 s, dimension 1T€pl 8 1 11 11 7 6

oews, a work ofPtolemy ii . 295 .

8166 7 1111 11 , interval 215 d istance
239 .

811111 1 0 1 ,
‘race- course ’ representa

tions ofsquare and oblong num
bers as sums ofterms 1 14 .

818611a1 : 81 60 11 611 0 11 , given, senses ii .
53 7 —8 .

A

“
d oor ,

(1) 31 6 17 7 61 9 , extended

‘figur e
'

of a conic ii .
spemes

‘

particular power

816 50 81 1 59 (1 6m g), a species of locus
ii . 185 .

dtior dum e
’

d)
’

one way 11. 428 .

dcxéhovpor ,
- ov, twice- truncated 1 07 .

6io7 r -r pa , d ioptra, q.v.

81 0 7 r 'r pucq
'

1 8 .

SLOplfew duo/1 1 0 11 611 17 B etef

minate Section
,
by Apollonius

ii. 180.

stoptopos
‘

,
definition , delimitation :

two senses (l ) a constituent part
of a theorem or problem 37 0

,

(2) a statement of conditions of
possibility ofa problem 303 , 3 1 9
20 428 , ii . 45
6
,
ii . 1 29 - 32 , ii. 1 68 , ii . 230 .

5 1 7 1'Ni

'

1

'

0 6 7 - r1 9 , double- equation (Dio

phantus) ii . 468 .

du rhofis , 47 ,
- oDv : 81 706 ] pvpuis

‘

(Apollonius) 40 :
Za ér qs , foa m s

,
double- equa

tion (Diophantus) ii . 468 .

Som
’

g, beam, a class of solid number
1 07 ii . 240 .

doxés Sold ? 1 1 . 3 15 .

sign for , 3 1 , 49, 50 .

6611 11 11 1 9 : incommensurable side of

square containing a non - square
number of units ofarea 2034 :

square or square root 209 n. ,

29 7 square ofunknown quantity
x
2
) (Diophantus) ii. 45 7 —8 :

dvudpet,
‘ in square 1 8 7 , 308

r e
-

r parrhf) 8 1311 0 11 19 eighth power
(Egypt) ii . 546 power in
mechanics 445 .

dvvapoduvapts , square square
fourth power (Heron) ii. 458
fourth power of unknown (Dio
phantus) ii . 458 , ii. 546 .

50 V1111 6K 1 1fios
'

, square-

cube, fifth
power of unknown (Diophantus)
ii. 458 .

8 11 1 11 11 0 0 7 61 , Suvapodvvapoa r év, &c.
,

reciprocals ofpowers ofunknown
(Diophantus) ii . 458 .

oéuaodm
,
tobeequivalent ‘ in square

to, i. e . to be the side ofa square
equal to (a given area) 8 1111 1111 6 1 17
305—6 11 .

dvvacr Opp. to Sw ape
'

vq
305— 6 7 1 .
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ofunknown, or term,
in an equation (Diophantus) ii . 460 .

6 7 9, yin, é
’

v
, one E

'

va nheiw
,

‘
several

ones (definition of number
7 0.

eloqyetodm , to introduce or explain
2 13.

gkeems
‘

, setting
-out37 0 , 1 1 . 533.

'

E1

i
1 r e'r tiopar a Of Democritus 1 7 8

,

81 .
e
'

xrfiyopos‘ (11 1510 1 0 5) 1 1 . 288 .

6 141 19,falling-short(inapplication
ofareas ), name given to 1 11111 3 2 by
Apollonius 1 50 , ii . 1 38 .

e
’

M m-

r
’

p , defective (ofnumbers),
contrasted with perfect 7 4, 101
‘P s

’

Ahm e
‘

cmin .) uefiov ii . 459.

81110 01 65, alternately (in proportions)
385 .

3
'

uvoca, notion Kowai E
'

www
, 0 0m

mon notions axioms 336 .

2110 7 11 0 1 9 , objection 37 2 , ii. 31 1 , ii. 533 .

bulging out 6 .

356 11 1n ii . 234.

ééfiywyo‘w, elucidation 11 .

23 1—2 .

6591 0 0 7 1111 , or npdrr ou {g. , a 6oth
a minute), 8e17 r epov £5 a second ,
&c. 45 .

e
’

na
’

udqpa , ofThymar idas :
asystemoflinear equations solved
94 .

e
’

nacpr
’

l , contact Contacts

or Tangencies , by Apollonius ii .
181 .

e
’

m
'

, on : 7 6 0 011 6 20 11 (5 (Or 0 3)K ,

archaic for ‘
the point K ’

199 :
1) £4] 77 AB ,

‘ the straight line
A B ib.

e
’

mpepflg, super partiens ,

223
,
ii.

ratio 1 +
m+ a

e
’

mpdptos, supeiparticular is ratio
of form (7 1 + n, 90, 101 c

’

m

;Aépcou 816 0 2 15 .

E
'

TTLWGSOPETl é ii . 453 .

émonmaiat, weather indications
1 7 7 n. ,

ii. 234 .

e
’

m
'

rpvr og ratio 1 0 1 c1r 1
'

7 prr o;

111 1911611 (Plato) 306 - 7 .

gaxa
-
r os r d Eaxar a , extremities

293
ér epopqq ,

oer , oblong ; of numbers
ofform 82 , 108.

eéduypappmos (dp19pds
‘) pr ime 7 2 .

565

a class of locus 11 . 1 85,
ii. 193.

e
'

¢6dtov, Method 1 1 . 246 .

(11 7 611 , lever or balance wept
a work of Archimedes ii . 23 - 4,
ii. 351 .

r
'

mtdhzos‘ , - a
,

- ou
,
ratio of 101 .

fiptwfiéhtov, -obol , signfor , 31 , 49, 50 .

18 .

Geohoyobpwa dp16pqr u<fis 97 .

96 0 1 9 , position n apd 660 6 1 (so. 86 30
pe

’

uqu), parallel to a str aight
'

line

given in position ii. 1 93 : npts

06 17 6 1. 6 v96 iuts‘ , on Straight lines
given in position 1 1 . 426 .

191111 6 139 , shield , old name for ellipse
439, ii . 1 1 1 ii. 125.

{M ag da ihhope
’

uqv used by Platoof
the earth 314—1 5 .

20 1111 1 9 211 0 1 , equal an equal number
of times , or equal multiplied by
equal 204.

« caper pos
‘

, of equal contour
1r 6p1 1 0 0

-
11 67 11 111 11 oxnpé

‘
r wv, by Zeno

dorus ii . 207 , ii . 390.

1a
'

ovr 7\6 vpor , -ou, equilater zal of

square number (Plato)204
iaoppomn

, equilibrium : 11 6 11 1 w oppo

1 1 1 13 11 , work by Archimedes ii . 24 ,
ii. 35 1 .

w as
, equal : 81” 1 1r ov, ex aequali (in
proportions) 386 : 8 1" 1

'

aov e
’

u

'
r apa

‘

ypa y (i1 ahoym 386 .

or 1 17 111 0 19 , equation 1 1 . 468 .

1 11
-
r op1

'

a
,
inquiry,

Pythagoras
’

3 name

for geometry 1 66 .

wxvs , power (in mechanics)445 .

Kayn rfip, turning-

point in race
course 1 14.

Kaynvhos
‘

,
47 , -o1/ , curved 249, 341 .

Canonic, q. v.

xaudw, ruler 239 : Table (astron.

Hpoxapmv 16 11 11 0 11 10 11 61 11 7 11 0 1 9 Kat

11m¢o¢npia, work by Ptolemy ii .
293 : canon (inmusic), v. KaTa‘

r opq.

Ka
‘

r a
‘

ypucfxw : to i
'

nscu
'

be in or on (c .
gen 1 3 1 .

Ka r ahoyot, work by Eratosthenes 1 1 .

1 08 .

Kar aoxevdfa v 193 n.

xar aaxevé, constmction (constituent
part ofproposition)37 0 , ii . 533 .
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véaan , goal o r end of race -cou rse
1 14.

dBoko
’

s , obol sign for, 31 , 49 , 50 .

’

Okuumw ixm, work by Eratosthenes
ii . 109 .

o'uvf, a wedge - shaped figure ii . 3 19 ,
ii . 333 .

18 .

spam ,
-a ,

-ou, right or perpendi
cular : 6p6r

’

a nkevpd, latus r ectum
i i . 1 39 : 6pdz

'

a St ripe-r pm ,
e re ct

diamete r in double hyperbola ,
ii .

ripifew : épwuc
’

uos
‘

, defined , i. e . de
terminate 94, 340.

o
'

piga w (Kud os), dividing ci rcle
hom

‘

z on (Eucl .) 351 , 352 .

8pm , (I ) definition 37 3 : (2) limit
o r boundary 293 : (3) term (in a
proportion) 306 n .

og
’

q ufa 0 1
‘ sign for 39 , 45 .

6 6) m l mm.) r dv yav, say ing of
Arch imedes u . 18 .

mip
’

i
‘

wSui/aur a l (a i xa r ayépevm '

r e
'
r ay

ne
’

ums), expre ssion for par ameter
of o rdinates ii . 139.

wapaBoKfi,applicati0 n : 7 5 Wxwpfcov,
application of areas 1 50 : r d e

’

x

r fis mxpaBoXfis‘ ywépem urn/4 620 , the
foci of a cen tral conic , ii . 156
pa r abola (the con ic) 1 50 , ii . 1 38 .

H apadogoypdfbm ii ._ 541 .

napdoogos paradoxical curve
(of Menelau s) ii . 260— 1 , ii . 360 .

napafl rrypa 1 7 7 , i i . 234 .

fl apaandv, to pull awry : napemm

ape
’

uos
‘ ii . 398 .

wapw ér qe, n earness to equality, ap
prox imat ion naptoém‘

r os (iycoyf;

(Diophantus) ii . 4 7 7 , ii . 500 .

wékexvs‘ , axe - shaped figure ii . 3 15 .

wepmifew ,
to fiVe

’ count) 26 .

ne
'

ur adkoc 1 7 6 , ii. 104

nepaiyovaa woaér ns
‘ unit , 69 .

m
’

pag , limi t o r extremity 293

limiting surface 166 : fl épas a vy

Kkeiov, defin ition of figure ii . 221 .

mpzo
-mipn os, odd -exert with Neo

Pythagoreans is of fo rm
2m 7 2 .

-fi, 0 611
, odd , q. v.

ner
'

r a
'

a 1 9.

wu
’

xos
'

,
- r; ,

-ou
,
how great (of mag

nitude) 1 2 .

56 7

m

m+ a
’

nokkawkam empopms
‘

, multiplex su

perpar tieular v
'

s
, ratio of form

103 .

fiqr de, rational used in sense
of given i i . 537 .

fiom
'

) wepl riomfw, a mechanical
work by Ptolemy ii . 295.

”mam , siz e 384.

flhriyzos
‘

,
- a,

my
, transverse ? wbayia

Stripe
‘

r pos
‘ o r whevpd ii . 139 .

narrow -
“ x69 , « iv

, (easily) formable
ii . 48 7 .

nxum mmiy , a work by Eratosthenes
ii . 1 04.

" i tem ,
multitude : ”M7 60 9 Eu unit ,

69 wkfidoc c
'

opto
'

pe
'

uou number,
7 0 nkfidor pos

'

cidawdripur r ov, def.
of unknown ‘

quantity 94, ii .
456 .

fi l m/91
'

s , a br ick, a sol id number of
a certain fo rm 1 0 7 , ii . 240 , ii .
3 1 5 .

nokkankam empepfis
‘

,
multiplex sup?)

par tiens , ratio of form

nokkanhria tos‘ , -a
,

-

cv
,
mul tiple 10 1 .

v ol

i

timracr
'

r or , a compound pulley 1 1 .
8.

miptpos
‘

,
-nu procu rable

one sense of Scoopévog ii . 538 .

wopw ya , porism : (l ) corollary ,
(2)a certain type of proposition
537 2 - 3 ,

ii. 533 .

woody , quanti ty , of number, 12 .

woaér qs ,
“

quantity 69 , 7 9 : number
defined as wood-mm ; xépa e

’

K nomi

dawa vyxelpevou 7 0 .

r ponéxqs
‘

, p r olate oblong) 203
but distinguished from ér epoyfixqs
83, 108 .

flpoaayéytou 309.

wpér ams enunciation 37 0 , 1 1 .

533.

1rp6rr os
‘

, prime 7 2 .

a fflic ts, case 3 7 2 .

nvey r
'

lu, base ; digit 55— 7 , 1 15—1 7 :
e
’

fl lr ptr ocm dpfiv 306
— 7 .

v anis , pyramid 126 .

mipa ou, miptou, burning mirror
nepi flvpeimv, work by Diocle s
264, ii. 200 ; 7repl 7 0 0 v iov

,
by

Apollonius ii . 194.



568 INDEX OF GR EEK WORDS

mikwov of Arch imedes i i. 23, ii .
103.

o
‘

r
'

pwpa 49.
axd¢q, a form of sun- dial 1 1 . 1

,
1 1 . 4.

O
'

Knvoypaffil ), scene -painting 1 8 , ii .
224.

Bogota, nickname ofDemocritus 1 7 6
w r eipa, sp ir e or tar e ii 1 1 7 : varie
ties of (619 07 9 , a uvexfis , e

’

y rr e
'
rrkey

ps
'

w) or dwahhdr r ov fa), ii . 204 .

plumb line 7 -8 , 309 .

amp, sign for, 3 1 .

ar epeoper pia , ssolid geometr y 12 1 3 .

a r epeoper povpeva ii 453 .

aq ir , column, a class of
' solid

number, 10 7 .

point 69 : an y/pr) debtor
unit

, 69.

ar oaxmbmr ,
oo, the writer of Ele

ments used of Euclid
357 .

Ur prr

é
yvhos

‘

,
- oy , round or ci rcular

29

a uprr e
'

paaua , conclusion (of p1oposi
tion) 37 0, ii . 533.

aw deaw
'

(Koyou), composition (of a
r atio) 385 .

avvr afgr , coll ection : M eyélxq m
’

m

may of
" Ptolemy 348 , called

Madnpar mr
‘

; afivr agw ii . 27 3.

ovvr cdeuat a ux/6611 7 1 componendo

(in proportion)385 .

a var ams
,
construction

a¢a¢ptkos, -ou, spher ical u sed of
cube numbei s ending In 5 o r 6

,

1 0 7 —8 .

a¢ 7 xla kos°, stake, a form of solid
number , 1 07 .

a¢qviaxos, wedge, a. solid of a ce rtain
form, measurement of, ii . 332— 3 :
a solid number

, 107 , ii . 315 , ii .
319.

a
'

xérn v, relation 384.

axqpar on
’oce

'

iv, to f0 1m a figure ii .
226 .

Tokay-r ow
, Sign for (T); 31 , 50 .

r apaaaew : (61. laov) e
’

v r cr apaype
'

uy
avahoyt

’

a
, in d istw bed pr

'

opor tzon
3 86 .

7 110 0 6 141 : r er ayue
’

vov, assigned (la
tum ii . 192, ii . 537 : at Kar a -

youevat

r er aypéums (sudenu), (straight
lines) d1awn_ or

'

dmate- wlse oi

dinates i i . 1 39 : r er aype
’

ums Kar

fixdat ii . 1 34.

r dxog, speed : weni r axév, wor k by
Eudoxus 329 .

r e
’

kew s,
-a - ou, perfect : r ékeios dptd

11 69 7 4 1 01 .

r er apr nuopwv, i of obol , Sign for, 31 ,
49, 50 .

r er paycom
'

few,
to square : 7} r er paym

VKova a (ypapnfi), the quadr atm
‘

x

225 , ii . 359.

squar ing
r er pakr fis 7 5 , 99m,

3 13, i i. 241 .

r e
‘

r pmr lu
‘

i Sfivapw 8 111 powe r of
unknown (Egyptian term) 1 1 .

546 .

r yfipn, segment : used of lunes as
well as segmen ts of circl es 184
segments or se ctors 18 7 —9 : nu}
par a l/360th parts of circum
ference and 1/120th parts of
diameter of circle (Ptol emy)45.

foncés , shoemaker
’

s knife , term for
sector of circle 381 .

r ow}, se ction : nepi r i p; r opr
'

p/

(Proclus) 324—5 .

locus : classifications of loci
2 1 8— 1 9

,
ii. 1 85 1 61 ml. apes ypan

pair , 7 6 77 0 1 npos
‘
e
’

mcfmveiatr -

9)
2 18— 19 , 439 : r drror apes plead

-mm ;

ii . 1 05 : °r zf7 ros‘ dvakvdpevos , Tr ea

su ry ofA nalysis , q. v .

r dpvos
‘

,
circle - drawer 7 8 , 308 .

Tplymvoc dptdyés , triangular number
1 5 —1 6 .

r pméhovpor , thrice - truncated 107 .

r pln
‘hevpou, thr eeo side, Menelaus’s
term fo r spherical triangle ii.
2 62.

r piéifiokov, sign for, 49.

68pm c
‘

opoo
'xon

-

eia
,
water- clocks 1 1 .

309.

6 1rap§ ts°, forthcoming : positive t erm,

dist . from negative (MN/w) i i.
459.

inra rq upr
'

p , subsupeepar tieew, reci
procal of e’mpepfis 102 .

onempéproc, subsuperpm
'ticulan

'

s, re

ciprocal of e’muéptor 10 1 .

{inept exceeding (in application
of areas) : name given to hyper
bola 1 50

,
1 1 . 1 38 .

finepr éhe ioc, onepr ekfis, over -

perfect
(number) 7 4, 100.

‘

Y’
fr ode

'

a a s nhav e
’

uwv, Work by
Ptolemy ii . 293.

fiwowokkaflhda los , inorrokkan
'haa iem
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peptic, finanohhanhamsmpdptos , &c.

1 01— 3 .

inror a
'

uew
,
subtend 193 7 1 .
starting- point (of race

course) 1 14.

(Inia'

ets
°

(inkavé u da r e
’

pmv, wor k by
Ptol emy

,
1 1. 293 .

(ptahir qs
‘

(numbei )of bowls
(in simple altvebr aical pl oblems)
14

,
i i . 442 .

mikoxaMa
,
by Geminus ii . 223 .

t pq OPIa xar
' '

lvdofls ii . 546 .

t xovs
‘ (1 th o f obol), Sign

'

QKd mou of Apollonius 234 , ii . 194 .

ii . 253 .

Xa
’

p, menus in sense of number of
men 2 7 .

xerpofirikhw r pa 1 1 . 309.

xpoui, colour or skin : Pythagoreanname fo r surface 166 , 293 .

Xpovoypacpz
'

ai , work by Eratosthenes
ii . 109 .

xpepa, colour (in relation to sur
face)293 .

xcopr
'

ov, area 300 xwpiov (inn-

r oar} ,
sectio spam,

by Apollonius ii .
1 7 9.
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Anthemius of '
°1

‘
1 all es 243

,
ii . 1 94

,

ii . i i . 5 1 8
,
i i . 540

,
ii .

541 3 .

A

n2
t

ép
hon 1 84 , 2 1 9 , 22 12 . 224

,

1

A pastamba S
’

nlba Suitm 145 6

Apelt, E . F. 330

Apelt, O . 18 1 n .
,
1 82 .

Ap ices 47 .

Ap
l

ol

é
odorus

,
autho r of Chr onica ,

7

Apollodor us 0 M yta n /« is : distich of
,

13 1

Apollonius o f Pe rga ii . 1
,
i i . 126 .

A ri thmet ic : dmv r dmou 234 , i i .
1 94

,
ii . 253 (approximation to

7 r ,

‘ tetrads ’ 40 , continued
mul tiplications 54— 7 .

A stronomy ii . 1 95— 6 : A . and
Tycho Brahe 3 1 7 , ii . 196 : on
epicycles and eccentrics ii . 1 95 — 6

,

ii . 243 trigonometry i i . 253 .

Conics ii . 1 26 — 7 5 : text i i . 1 26
8
,
Arab ic t ranslations ii. 1 27

,

prefaces i i . 1 28—32 , char acter is

tics ii . 1 32— 3 : conics obtained
from obl ique cone ii . 1 34—8 ,
prime p roperty equivalent to
Cartesian equation (oblique axes)
ii . 139 , new name s , par abola , &c.

1 50 , 1 6 7 , ii . 1 38, transformation
o

f
coo rdinates ii . 141 — 7

,
tangents

140 1 , asymptote s ii . 1 48 9 ,
rectangles under segments of 1 11
ters ecting ch0 1 ds 1 i . 1 52 3

,
bar

monic prope rtie s ii . 1 54 5 , focal
properties (cent1 al conics) 156

7
,
no rmals as maxima and mini

nria ii. 1 59 67 , construction o f
normals ii . 1 66 7 , number of
ll OlmalS th i ough point i i. 1 6 3 4,
propositions giving evolute i i .
1 64 5 .

On contacts i i . 18 1—5 (l emmas
to

,
i i . 41 6 three - circl e pro

blem ii . 1 82—5 .

Sectior ationis 9 (lemmas
to

,
i i . 404
Sectio spam ii . 1 7 9 80 , i i . 337 ,
ii . 339 .

Determinate section i i . 1 80— 1
(l emmas to , ii . 405
Comparison of dodecahedron

and icosahedron 419—20 , ii . 1 92 .

Duplication of cube 262—3 , ii .
1 94 .

5 7 1

General treatise ”

1 1 . 192—3 , 11 .

253 0 11 Book I of Euclid 358 .

vu
’

um c i i . 68 , ii . 189—92 (lemmas
to

,
1 1 . 4 12 rhombu s- problem

ii . 190—2 , square problem ii .
412— 1 3 .

Plane Loci 1 1 . 185—9 (l emmas to ,
1 1 . 4 1 7

0 11. cochl-ias 232
,
1 1 . 1 93 ,

‘ siste r
of coch loid ’

225
,
23 1—2

,
On ir r a

tionals i i . 193, On the bur ning
mir rm‘ ii . 1 94 , 1 1 . 200—1 .

Application of areas 150—3 : method
attributed to Pythagoras 1 50 ,
equival en t to sol ution of general
quadratic 150 — 2 , 394— 6 .

Approximations to J2 (by means
of ‘ side and ‘ diameter num
bers)91 3 , (Indian) 146 to M3
(Ptolemy)45 , 62—3 , (Arch imedes)
i i. 51 —2 : to 7 1 232 - 5

,
i i . 194 , ii .

253 : to surds (He ron) ii . 323—6 ,
cf. 1 1 . 547 — 9 , 1 1 . 553 - 4 : to cube
root (Her on)i i . 341—2 .

Apuleius of Madaura
A rchibald , R . C . 425 n .

A rch imedes 3
,
52

,
54

,
202 ,

203 n .
,
2 1 3 , 2 1 7 , 224

—5
,
229, 234 ,

2 7 2 ,
i i . 1 .

Traditions 1 1 . 16—1 7 , engines 1 1 .

1 7
,
mechanics ii . 1 8 , general

estimate ii .
WOr ks : character of, 1 1 . 20—2 ,

works extant ii . 22— 3
,
lost ii . 23~

5 , 103 text ii . 25— 7 , MSS. ii . 26 ,

editions ii . 27 TheMethod

2 1
,
22

,
2 7 - 34, 1 1 . 246 , i i. 3 1 7 — 18

On the Spher e and Cylinder ii . 34
50 M easur ementofa cir cle ii . 50
6 , 1 1 . 253 On Conoids and Sphe

roids ii . 56—64 On Sp ir als 230
4 1

,

ii . 64— 7 5 (cf. ii . ii . 556 — 6 1 :
Sand - r eckone-

r ii . 8 1—5 : Quad r a
tu r e of Par abola ii . 85—9 1 : me
chanical works, titles ii . 23—4 ,
Plane eqm

'

libr lums i i . 7 5—8 1 On

Floating Bod ies ii . 9 1— 7 , problem
of crown ii . 92—4 : Liber assump
tor um ii . 1 01—3 : Cattle - problem
14, 15 , 1 1 . 23

,
1 1 . 9 7 —8

,
ii . 447

Catoptr ica 444 ,
ii . 24 .

A rithmetic : octads 40— 1 , frac
tions 42 , value of 1r 232—3 , 234 ,

ii . 50—6 : approximations to J?»
ii . 5 1—2 .

Astronomy 1 1 . 1 7 — 18 , sphere
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making ii . 1 8 , on A ristarchus 's
hypothesis i i . 3—4 .

Conics
,
propositions in , 438—9

ii . 1 22 — 6 .

Cubic equation solved by conics
i i . 45—6 .

On
, Democritus 1 80 , 327

,

equality of angles. of incidence
and refle ction i i . 353—4 ,

in tegral
calculus anticipated ii . 4 1— 2 , 6 1 ,
62 - 3

,
7 4 , 89— 90 : Lemma or Axiom

of A . 326—8 , ii . 35 veéoa g in ,
ii .

65—8 (Pappus on , i i . on semi
regular solids ii . 98—10 1 : triangle ,

area in terms of sides ii . 103 :
trisection ofany angle 240— 1 .

A rchytas 2 , 1 7 0 , 21 2 - 1 6 , ii . 1 : on
paefipam 1 1 , on logistic 14 , on 1
as odd - even 7 1 on means 85 , 86 :
no mean proportional between n

and n + 1
,

on music 2 14 :
mechanics 2 1 3 : solution o f pro
blem of two mean proportional s
2 14

,
2 1 9

,
245 , 246 4 9 , 334 , ii . 26 1 .

A rgyr us , Isaac , 224 ii . 555.

A ristaeus comparison of five regu
lar solids 420 Sol-iaLoc i (conics)
438 , ii . — 1 9 .

A ristaeu s of (1 1 0 130 11 86 .

A r istai chus of Samos i i . 1
25 1 . date 11. 2 . O

'

K ( 1¢ r7 Of,
ii . 1 : anticipated Copernicus ii .
2—3 : other hypotheses i i . 3 , 4 :
treatise On siz es and d istances of
Sun and Moon ii . 1 , 3 , 4—15 , tri
gonometr ical purpose ii . 5 num
bers in , 39 fractions in

,
43 .

A r istonOphus , vase of, 1 62 .

A ristophanes 48 , 1 6 1 , 220 .

Aristotelian treatise on indivisible
line s 1 5 7

, 346—8 .

A r istother us 348 .

A r .istotle on Oi igin of
s cience 8 . on mathematical sub
jects 1 6 1 7 : onfii stp1 incip1es, de
finitions ,postulates , axioms 336 8 .

A 1 1thmetic reckoning by tens
26 7

, why 1 is odd - even 7 1 : 2

even and prime 7 3 . on Pytha
gor eans and numbers 6 7 ~ 9 z on
the gnomon 7 7 8 , 83 .

Astronomy . Pythag0 1 ean sys
tem 1 64 5 , on hypothe si s of con
centri c sphei es 329 , 335 , i i 244,
on Plato ‘s View about the eai th
3 14 - 15 .

INDEX

On the continuous and infinite
342—3 proof of incommensu ra
bility of diagona1 91 : on prin ciple
of exhaustion 340 on Zeno ’s
paradoxes 2 7 2

,
2 7 5 - 7

,
2 7 8—9 , 282

on Hippocrates 22 : encomium on
Democritus 1 7 6 .

Geome try : illustrations from,

335 , 336 . 338—40 , on parallels
differing fromEuclid ’s

338—9, propositions no t in Euclid
340 , 0 11 quadratures 1 84—5 , 221 ,
223 , 224 n. ,

2 7 1 , on quadrature
by lunes (Hippocrates) 184—5 ,

198—9 : on Plato and regular
solids 1 59 : curves and solids in
A . 341 .

Mechanics 344—6
,
445—6 : paral

lelog ram of velocitie s 346 ‘Aris
totle

’

s wheel ’ ii . 347 — 8 .

A r istoxenus 24 n .
, 66 .

Arithmetic (1 J theory of numbers
(Opp. to Aoym r mfi) 1 3— 1 6 : early
‘Elements of A r ithmetic ’

90 , 216 :
systematic treatises , Nicomachus
I ntr od . A r . 97 — 1 12

, Theon of
Smyrna ] 1 2
on Nicomachus 1 1 3— 15

,
Domninus

i i . 538 . (2)Practical arithmetic
originated with Phoenicians 120
1
, in primary education 19—20 .

A rithmetic mean , defined 85 .

A r ithmetica of Diophantus 15— 16 ,
ii . 449— 514 .

Arithmetical operations : see Addi
tion , Subtraction , &c.

of Zeno 27 6 ,
A ryabhatta 234 .

A sclepiu s of Tralles 99 .

A stronomy in elementaryeducation
1 9 as secondary subj ect 20—1 .

Athelhar d of Bath , first translator
of Euclid

Athenaeus 144 , 145 .

Athenaeus of Cyz icus 320— 1 .

‘

Atti c ’

(or ‘Herodianic ’)numerals
30— 1 .

August , E . F. 299, 302 , 361 .

Autolycu s of Pitane 348 works
On the moving Spher e 348 - 52 , On
R is ings and Settings 352—3 rela
tion to Euclid 35 1 —2 .

Auverus , C . i i . 26 .

Axioms : Aristotle Com
monNotions in Euclid 37 6 : Axiom
of Arch imede s 326 - 8 , ii . 35 .
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Babylonians : civ il iz ation of, 8 , 9 :

system of numei als 28 9 : sexa
gesimal f1 actions 29 : ‘ perfect
prop0 1tion

'
86 .

Bachet , edit0 1 of Diophantus ii .
454— 5 , ii . 480

Ba con , Rogei z on Euclid 36 7 — 8 .

Bai lle t , J . ii . 543 .

Baldi , B . ii . 308 .

Bar laam ii . 324 n . ,
ii . 554— 5 .

Baroc ius ii . 545 .

Barrow ,
I . , edition of Euclid, 369

7 0 on Book V 384.

Bathycles 1 42 ,
Baudhayana S. S. 1 46 .

Baynard , D . i i . 128 .

Benecke , A . 298 , 302 3 .

Benedetti, G. B . 344
,
446 .

Bei tr and , J . ii . 324 n .

Bessai ion
Besthom

,
R . O . 362 , i i. 3 1 0 .

Bi llingsley ,
Sir H . 369 .

Bjornbo , A . A . l 97 n .

, 363 , ii. 262 .

Blass , C . 298 .

B lass
,
F. 18 2.

Boeckh
,
A . 50 , 7 8 , 31 5 .

Boe' tius 3 7 , 4 7 , 90 : translation of
Euclid 359.

Boissonade i i . 538 .

Bombelli , R afael , 1 1 . 454 .

Borchardt
,
L. 125=1 2 7 .

Borelli
,
G . A . ii. 1 27 .

Bou illaud (Bullialdus) i i . 238 , 1 1

556 .

Br aunmuhl , A . von , ii. n.
,
i i .

288 , ii. 291 .

Bre ton (de Champ), P. 436 , ii . 360 .

Br etschneider , C . A . 149
,
183 , 324 - 5 ,

ii. 539 .

Brochard , V . 2 7 6— 7 , 2 7 9 n . ,
282 .

Brougham,
Lord , 436 .

Brugsch , H . K . 124 .

Bryson 2 1 9
,
223 - 5 .

Burnet , J . 203 n .
,
285 . 3 14— 1 5 .

Bu tcher , S . H . 299
,
300 .

Buz engeiger ii . 324 n .

Cajor i, F. 283 n

Calculation , practical : the abacus
46 8 , addition and subt1 action

52 , inultip1ication (i)
(Egyptian52 3 (R u ssian ‘? 53 n. (ii)G1 eek

53 8 , divi sion 58 60 , ext1 action
of squai e i cot 60 3, of cube i oot
63 4 ,

1 1. 341—2 .

Callimachus 14 1—2 .

5 7 3

Callippus : Great Year 1 7 7 : sy stem of
concentric spheres 329, 335 . ii . 244 .

Cambyses 5 .

Camer ar ius , Joachim ,
1 1 . 2 7 4 .

Camerer
,
J . G . ii . 360 .

Campanus , translator of Euclid
363—4.

Canonic theory ofmusical inter
vals 1 7 .

Cantor
,
G . 2 7 9.

Can tor
,
M . 3 7 —8 , 123 , 12 7 , 1 31 , 135,

182 , ii . 203 , ii . 207 .

Carpus of Antioch 225 , 232 , 1 1 .

359.

Case (m am ) 3 7 2, 1 1 . 533 .

Cassini ii . 206 .

Cast-ing outnines 1 15— 1 7 , 1 1 . 549 .

Catoptr z
'

c, theory of mirrors 18 .

Catoptr ica : treatises by Euclid (it)
442 , by Theon 444

,
by A rchi

medes 444, and Heron 444 , i i. 294 ,
ii . 310 , ii . 352—4 .

Cattle -problem of Archimede s 14 ,
1 5

,
i i . 23 , ii . 97 —8 , i i . 447 .

Cavalieri
,
B . 1 80 , ii .

Censorinus 1 7 7 .

Centre of gravity definitions 1 1 .

302, ii. 350
— 1 , ii . 430 .

Ceri a Am
’

stotelica ii . 531 .

Chalcidius ii . 242 , 244 .

Chaldaeans measurement ofangles
by ells ii . 2 15— 1 6 : order of planets
ii . 242 .

Charmandr us 1 1 . 359 .

Chasles
,
M . ii . 19, 20 : on Porisms

435—7 , i i . 41 9 .

Chords
,
Tables o f

,
45 , 1 1 . 257 , 1 1 .

259—60 .

Chrysippus 1 7 9 : definitionofunit69
Cice ro 144, 359 , i i . 1 7 , 19.

Circle division into degrees
15 squaring of, 1 7 3 , 220— 35 ,
Antiphon

_

221 - 2 , Bryson 223 —4 ,

by Arch imedes ’s spiral 225, 230
1 , Nicomedcs , Dinostr atus , and
quadratrix 225—9 , Apollon ius
225 , Cal

-pus 225 ; approximations
to 1 r 124 , 232—5 , ii . 194, i i . 253 ,
i i . 545 .

Cissoid of D iocles
Clausen , Th . 200 .

Cleanthes ii . 2 .

Cleomedes :
‘paradoxical ’ eclipse 6 :

De motu cir cular i ii . 235—8 , 244.

Cleonides 444.

Cochlias 232 , 1 1 . 1 93.
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448 : works and editions i i . 448:
55 : A r ithmetica 1 5— 1 6 : fractions
in , 42—4 : notation and definitions
ii . 455— 6 1 signs for unknown (or )
and powers ii . 456—9 , fo r minus
i i . 459 : methods ii . 462— 7 9 : de
terminate equations i i. 462 5 ,

4
-84 90 : indeterminate analy sis

i i . 466 7 6
,
491 5 14 :

‘Po r isms ’ ii .
44 9

, 450 , 45 1 , ii . 47 9 80 : propo
sitions in th eory of numbei s 1 1.
48 1 4 : conspectus of A 7 1thmetica
ii . 484 514 : On Polygonal Num
be7 8 1 6

, 84, l i . 5 14— 1 7 : MDI OH aStM a

i i . 449 .

Dioptra 18 . i i. 256 . He 1 on ’ s Diopti a
1 1 . 345 6 .

Division : Egyptian method 53 ,
Greek 58— 60 example with sexa
gesimal fractions (Theon of A lex
andria) 59 60 .

Di visions (ofFignr es) On ,
by Euclid

425 30 : similar p1oblems inHe ron i i. 33 6—40 .

Dodecagon , area of, i i . 328 .

Dodecahedron discovery attributed
to Pythagoras 0 1

° Pythagorean s
158 eai ly occur

r ence 1 60 : inscr ibed in
O

sphei e

(Euclid)418 - 1 9
, 1Pappus) 1 1 369

A pollonius on , 4 19 20 : volume
of

,
ii . 335 .

Domninus ii . 538 .

Dositheus ii . 34 .

Duhem ,
P . 446 .

Dupuis
,
J . ii . 239 .

Earth : measurements of
,
i i . 82 ,

(Eratosthenes) i i . 106 - 7
, (Posido

n iu s) ii. 220 .

Ecliptic : obl iquity dis covered by
Oenopides 1 7 4, ii . 244 : estimate
of inclination 1Eratosthene s , Pto
lemy) ii . 1 0 7 —8 .

Ecyhantus 3 1 7 , ii . 2 .

Edfu
,
Temple of Horus 124 .

Egypt : pr iests 4 5 , 8 9 : r elations
°

w1th G1 eece 8 ; Oi iginofgeometi y
in

,
120 2 : 0 1 ientation of temples

1 22

Egyptian mathematics : numeral
D

sy

l
stem 27 8 , fractions 28 , multi
plication

,
860 14 - 1 5

,
52- 3 : geo

n1 et1y (mensuration) 1 22 8 :

tD

ir i

angle 5) right angled 122 ,
147 : value oi 'n

' measure

5 7 5

ment of pyramids 126 - 8 : maps
(regional)1 39 algebra in Papyru s
Bh ind , &c. ii. 440—1 .

Eisenlohr, A . 123 , 126 , 1 27 .

E isenmann , H . J . ii . 360 .

Elemen ts as known to Pytha

gor eans 1 66
—8 : progress in , down

to Plato 1 7 0— 1 , 1 7 5—6 , 20 1—2 , 209
1 3 , 2 16 - 1 7 write rs ofElements

,

H ippocrate s of Chios 1 7 0— 1 , 20 1
2 , Leon, Theudius 320 - 1 other
contributors to

,
Leodamas, A r

chytas 1 7 0 , 2 12— 13 , Theaetetus
209— 1 2 , 354 , Hermotimus of Colo
phon 320 , Eudoxus 320 , 323 - 9 ,
354 : E lements of Euclid 35 7 —4 19
the so- called ‘ Books XIV

,
XV

’

41 9- 2 1 .

Ell
, as measure of angles 1 1 . 2 15 - 16 .

Empedocles on Pythagoras 65 .

Enestrom,
G . ii . 341 - 2 .

Enneagon : Heron ’s measuremen t
ofside ii . 259 , ofarea ii . 328—9.

Epanthema of Thymar idas (system
of simp le equations) 94 : other
types reduced to , 94 - 6 .

Equations simple
,
in Papyrus

Bhind
,
&c. ii. 441 in epanthenia

of Thymar idas and in Iamblichus
94— 6 in Greek anthology ii .
441 —3 : indeterminate see Ind e
terminate Analysis see also

Quadratic , Cubic .
Eratosthene s ii . 1

,
l6 date

, &c.

ii . 104 : siete (Kdomuuu)for finding
primes 1 6 , 100 , ii. 105 : on dupli
cation ofcube 244- 6 , 251 , 258 - 60

theP latonicus ii . 104—5 On Means
°

11. 105— 6 , ii . 359 Measu r ementof
ear th 1 1 . 1 06 - 7 , 1 1 . 242

,
ii. 346 :

astronomy ii . ' 1 0 7 — 9 chronology
and Geogr aphica ii. 1 09 : on 0 ctaé'
ter is ih.

Erycinus r r . 359, 365
—8 .

Euclid 2 - 3 , 93 , 13 1 date , &c. 354
6 : stories of, 25 , 354 , 35 7 : re la
tion to predecessors 354, 35 7
Pappu s on , 356 — 7 .

A ri thmetic : classification and
definitions of numbers 7 2—3 , 397 ,
‘ perfect ’ numbers 7 4 , 402 : for
mula for right - angled triangle s
in rational numbers 8 1 - 2, 405 .

Canics 438— 9, i i . 12 1—2 , focus
directrix property ii . 1 1 9— 2 1 on
ell ipse 439. ii . 1 1 1 , ii . 125 .
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Data 42 1 - 5
, Divis ions (of Exhaust-ion

, method of, 2 ,
figur es)425 - 30 , ii . 326

,
327 — 9 z -d evelop

E lements : text 360— 1 , Theon
’

s ment of
,
by A r ch imedes

edit-ion 358 , 360 , ii . 52 7 —8 , trans 35 6 .

lation by Boetius 359, A rab ic
translations 362 , ancient com
mentaries 358 - 9, ed itio p r inceps

of Greek text 360 , Greek texts o f
Gregory, Peyrard , August , Hei
be rg 360— 1 : Latin translations ,
Athelhar d 362— 3 , Gherar d 363 .

Campanus 363—4 , Commandinus
365 : fi rst printed editions

,
Rat

dolt 364—5 , Zamberti 365 : first
introduction into England 363 :

first English editions , Billingsley ,

&c. 369— 7 0 : Euclid in M iddl e
Ages 365—9 , at Universities 368
9 : analysis of, 3 7 3—41 9 : arrange
ment of postulates and axioms
3 6 1 : how or iginally proved
147 —9 : parallel—postulate 358 ,
7 5

,
i i . 227 - 30 , ii . 295— 7 , ii . 534 :

so- called ‘

B
‘ooks XIV

,
XV ’

41 9

21 .

Mechanics 445 - 6 Music 444
5 , Sectio canonis 1 7 , 90, 2 15

,

444—5 : Optics 1 7 - 18 , 441 —4 : Phae
nomena 349 , 35 1 - 2 , 440 - 1

,
ii .

249 : Por isms 43 1— 8 , lemmas to ,
ii . 419 - 24 : Psendar ia 430—l Sur

face-Loci 243—4 , 439—40 , lemmas
to

,
ii . 1 19—2 1 , ii . 425—6 .

Eudemus 201 , 209, 222 : H istor y of
Geometry 1 18 , 1 19, 120 , 1 30, 1 31 ,
1 35 , 1 50 , 1 7 1 : on H ippocrates ’s
lunes 1 7 3 , 1 82 , 1 83—98 : H istoiy/
ofA stronomy 1 7 4 , 329, ii . 244 .

Eudoxus 24, 1 18 , 1 19 , 1 2 1 , 320 ,
322— 4 new theory of proportion
(that of Eucl. V. ii) 2 , 1 53 , 2 1 6 ,
325 - 7 : d iscovered method of ex
haustion 2 , 1 7 6 , 202 , 206 , 2 1 7 ,
222

, 326 , 327 - 9 : problem of two
meanpropor tionals 249

5 1 discove red three new means
86 ‘

general theorems ’ 323—4 :
On speeds , theory of concent ric
spheres 329—34 , ii . 244 : Phaeno
mena and Jil l - ”

n or 322 .

Eugenius Siculus , Admiral , ii . 293 .

Euler
, L. 7 5 n .

,
ii . 482 , i i. 483 .

Euphorbus Pythagoras ) 142 .

Eurytus 69 .

Eutocius 52 , 5 7 - 8 , ii . 25, ii . 45 , ii .
126 , i i . 51 8 , ii . 540— 1 .

False hypothesis : Egyptian use 1 1 .

441 : in Diophan tus i i. 488 , 489.

F °

,ermat P . 7 5 n
,
ii 20 , ii . 1 85 , i i.

454 , i i . 480 , ii 48 1 4 : on Por isms
435

Fontenelle 1 1 . 556 .

Fr zactions Egy ptian (submultiples
except a ) 2 7 - 8 , 4 1 : Greek sys

tems 42 4 : Greek notation ih
sexagesimal fra ctions , Babylo
nian 29, in Greek 44—5 .

‘Friendly numbers 7 5 .

Galilei 344, 446 .

Geeponicus , Liber , 1 24, 1 1 . 309, 1 1 .

3 1 8 , ii . 344 .

Geminus 1 1 9
,
1 1 . 222— 34 : on ari th

me tic and logistic 14 : on divi
sions of optics , &c. 1 7 — 1 8 : on
original steps in proof of Eucl. I
32

,
1 35— 6 : on paral lels 358

attempt to prove parallel - postu
late i i . 22 7 —30 : on original way
of producing the three conics
ii . 1 1 1 : encyclopaedic work on
math ematics ii . 223—3 1 on Posi
donius

’

s Meteorologica 1 1 . 23 1—2

Introduction to Phaenomena ii .
2 32 - 4 .

Geodesy (yewdara ia) mensuration
(as distinct from geometry)1 6 - 1 7 .

Geometricmean , defined (A rchytas)
85 one mean between two

squares (or simi lar numbers), two
between cubes (o r similar solid
numbers) 89— 90 , 1 1 2 , 20 1 , 297 ,
400 : no rational mean between
consecutive numbers 90 , 2 15 .

‘Geometrical harmony ’

(Ph ilolaus’s
name fo r cube) 85—6 .

Geometry : origin in Egypt 120—2
geometry in secondary. education
20 1 .

Georgiu s Pachymeres 1 1 . 453 , 1 1 .

546 .

Ger ber t (Pope Sylvester 1 1) 365— 7
geometry of

, 366 : ii . 547 .

Ge rhardt, C . J . ii . 360, i i . 547 .

Gherar d of Cremona , tr anslator of
Euclid and an-Nair iz i 363 , 36 7 ,
ii . 309 : ofMenelaus i i . 252

,
ii . 262 .
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Ghetaldi, Marino , ii. 1 90 .

Girard , Albert , 435, ii . 455.

Gnonron h istory of term 7 8—9 :

gnomons of square numbers 7 7
8 , of oblong numbers 82 3, of
polygonal numbers 7 9 : in appli

cation of areas 151 - 2 use by
al - Karkhi 109 - 10 : in Eucl id 3 7 9
sun dial with vertical needle 139 .

Gomper z , Th . 1 7 6 .

Govi , G . ii. 293 n .

Gow
, J . 38 .

Great Y ear, of Oenopides 1 7 4- 5 ,
of Cal lippus and Democritus 1 7 7 .

Gregory , D. 360— 1 , 440, 44 1 , ii . 1 2 7 .

Griffith , F. LI. 1 25 .

Gunther, S . i i . 325 n.
,
ii . 550 .

Guldin
’

s theo rem
,
anticipated by

Pappus i i . 403 .

H z

g
l

i
carnassus inscriptions 32 — 3 ,

Halley ,
E. , editions of Apollonius

‘

s

Conics ii . 1 2 7 —8
, and Sectio r atio

nis i i . 1 7 5 , 1 7 9 , of Menelaus ii .
252

,
1 1 . 262 , of extracts from

Pappus ii . 360 , of Ser enus ii . 5 19 .

Halu

g

a, e ditor of Ptolemy ii . 2 7 4,
2 7

Hammer - Jensen , 1 . i i . 300 n .
,
ii .

304 n .

Hankel, H . 145 , 149, 288 , 369 , i i .
483 .

Hardy
,
G . H . 280 .

Harmonic mean (originally ‘ sub
contra ry ’

) 85 .

H aipedonaptae,
‘
1
‘ope - stretchers

1 2 1 - 2
,
1 7 8 .

Han
—
i n ar- R ashid 362 .

Ha ir. cal culations (Egyptian)
440— 1 .

Hecataeus of M ile tus 6 3 , 1 7 7 .

Heiben
,
J . L. 233 n .

Heiberg , J . L. 1 84
,
1 8 7 n. ,

1 88 ,
1 92 n . , 1 96— 7 n .

,
3 1 5, 36 1 , ii. 203 ,

ii . 309 , 31 0 , 3 1 6 , i i . 51 9 ,
ii . 535 , 543 , 553 , 555 n.

H elceph 1 1 1 .

Hendecagon in a circle (He ron) 1 1 .
259, ii . 329.

Henry , C . ii . 453 .

Heptagon in a circl e , i i. 1 0

Heron ’s measurement of, ii . 328 .

Heraclides of Pontus 24, ii . 231 - 2 :

discovered rotation ofearth about
axis 3 1 6 — 1 7 , ii . 2 3, and thatVenu s

P p

1

5 7 7

and Mercury revol ve about sun
312 , 3 1 7 , ii . 2 , i i . 244 .

Heraclitu s of Ephesu s 65 .

Heracl itus , mathematician 1 1 . 192 ,
ii . 359, ii . 412 .

Hermannus Secundus 1 1 . 292 .

Hermesianax 142 n . , 1 63 .

Hermodor us ii . 359 .

Hermotimus of Colophon 320 - 1

Elements and Loci ih. 354.

ngoldianic
’

(or ‘A ttic numerals

Herodotus 4
,
5
, 48 , 65 , 12 1 , 1 39 .

Heron of A lexandria 12 1 , i i. 198 ,
ii . 2 59 : controversie s on date ii .
298—30 7 relation to Ctesibius
and Philon ii . 298 - 302

,
to Pappus

i i . 299—300 , to Posidonius and
Vitruvius ii . 302 - 3 , to agr inien

sor es ii. 303 , to Ptol emy ii . 303 - 6 .

A rithmetic : fractions42—4 ,mul

tiplications 58 , approximation to
surds ii . 51 , ii . 323—6 , approxima
tion to cube root 64 , ii . 341 - 2 ,

quadratic equations ii . 344, in
determinate problems ii . 344,
444— 7 .

Character of works 1 1 . 307 - 8

list of treatises ii . 308 - 1 0 .

Geometry ii . 3 10— 14 , Definitions
1 1 . 314—1 6 comm . on Euclid ’s
Elements 358

,
ii . 31 0—1 4 proof of

formula for area of triangle in
terms of sides ii . 32 1 —3 : duplica
tion of cube 262—3 .

Metr ica i i . 320—43 : (1 )w ensu
ration ii . 3 1 6—35 triangles ii .
320 - 3 , quadrilateral s ii . 326 ,
regular pe l 11 . 3 2 6 - 9

,
circle

and segments 1 1 . 329—3 1 : volume s
11. 331 —5 , fiwpioxos 11. 332—3 , fr us
tum ofcone , sphere and segment
ii . 334, tor e ii . 334 - 5 , five regular
solids ii . 335 . (2 ) divisions of
figures ii . 336 - 43

,
of frustum of

cone ii . 342—3 .

Mechanics ii . 346—52 : 0 11 Ar
chimedes

’

s mechanical works ii .
23—4

,
on centre ofgravity ii. 350- 1

,

352 .

Belopoei ca 18 , 1 1 . 308—9 , CatOp
tr ica 13 ,

ii . 294 , i i. 3 10 , ii . 352 - 4.

Dioptr a ii . 345 - 6 , Pnenntatica

and A utomata 18 , i i . 308 , 3 10 .

On lVater - cloclcs ii . 429, i i . 536 .

He ron
,
teacher o f Proclus ii. 529 .
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Jan , C . 444.

Joach im Came rar ius i i. 2 7 4 .

Joach im, H . H . 348 n.

Johannes de Sac robosco 368 .

Jor danus Nemora r ius ii . 328.

Jourdain
,
P. E . B. 283 n.

Kahun Papyri 125
,
1 26.

K ant 1 7 3 .

K eil
,
B . 34—5 .

K epler ii . 20 , n . 99 .

Koehly , H . A . T. ii . 309.

Ko

g
p
z
pa (Qfor 90)= Phoenician

K ub itschek, W. 50 .

Lagrange i i . 483.

Laird, A . G . 306 n.

Laplace 1 7 3 .

Lar feld ,W . 3 1 33—4 .

Lawson 436 .

Leibniz 2 7 9
,
ii . 20 .

Lemma 3 7 3 , ii . 533 .

Leodamas of Thasos 1 20 , 1 7 0, 2 12 ,
291 , 3 1 9.

Leon 31 9.

Le on (o f Constantinopl e) ii . 25 .

Leonardo of Pisa 36 7 426 , ii . 547 .

Lepsius , C . R . 124.

Leucippus 1 8 1 .

Libri, G. i i . 556 .

Linear (of numbers )‘7 3 .

Linear loci and problems 2 1 8— 19 .

Lines , classification of, ii. 226
Livy ii. 18 .

Loci : classificationof,2 18—l 9, plane ,
sol id , linear 2 1 8 : loci on surface s
2 19 :

‘ solid loci ’ ii . 1 16— 1 9.

Loftus W. K . 28 .

Logi sti c (opp. to ‘ arithme tic 'l,
sc ience of calculation 13—1 6

,
23 ,

53 .

Logistica speciosa and numerosa

(Vieta) ii. 456 .

Loria
,
G. iv - v, 350 n . ,

1 1 . 293 n.

Luca Paciuolo 367 , ii. 324 7 1 .
Lucas, E . 7 5 n .

Lucian 7 5 n . , 7 7 , 99, 1 6 1 , i i . 18 .

Lucretius 1 7 7 .

Magic squares i i . 550 .

Magnus , Logistica 234—5 .

Mamercu s o r Mamertius 140, 14 1 ,
1 7 1 .

al—Ma’mun, Cal iph 362 .

al-Mansur, Caliph 362 .

57 9

Mamas
,
for number 27 .

Marinus 444, i i . 192, ii . 537 —8.
Martianus Capella 359 , 365 .

Martin, '

I
‘

. H . ii. 238, ii . 546 .

Maslama b. Ahmad al -Majr iti n .

292 .

Massalia 8 .

Mastaba tombs 1 28 .

Math ematics : meaning 1 0—1 l , clas
sification of subjects 1 1—18

branche s of applied mathematics
1 7 —18 mathematics in Greek
education 1 8 - 25 .

Maurolycus ii . 262 .

Means arithmetic , geometric, and
subcontrary (harmonic) known
in Pythago ras ’ s time 85 : defined
by A rchytas ih. fourth, fifth , and
sixth discovered

,
perhaps by Eu

doxus 8 6, fourmore by Myonides
and Euphranor 86 : ten m eans
in Nicomachus and Pappus 8 7 —9 ,
Pappus ’s propositions 88—9 no

rational geom. mean between suc
cessive numbers (Archytas) 90,
2 15 .

Mechanics
,
d iv isions of, 18 write rs

on, A rchytas 2 1 3, Aristotle 344—6 ,
445—6

,
A rchimede s ii. 18, i i . 23—4,

ii. 7 5 He ron ii.

346 - 52
,
Pappu s ii. 427 —34.

Megethion ii . 360 .

Memus, Johannes Baptista, n . 12 7 .

Menaechmus 2, 25, 251 —2, 320 - 1

discoverer of conic sections 251
3, ii . 1 10— 1 6 : solved problem of
two mean proportionals
251—5 on problems ’ 3 1 8 .

Mene laus of Al exandria ii. 198 , 1 1 .
252—3 : date , &c. ii . 260— 1 : Table of
Chords ii . 25 7 : Sphaer ica ii . 26 1
7 3 Menelaus’s theorem ii . 266
8 , 27 0 : anharmonic property ii.
2 69 napddoéos‘ curve i i . 260—l .

Mensa Pythagor ea 47 .

Mensuration : in prima ry education
19 in Egypt 1 22—8 : in Heron ii.

Meton 220 .

Metrodor us n . 442 .

M inus , sign fo r, in Diophantus 1 1 .
459—60.

Mochus 4 .

Moschopoulos
,
Manuel

,
1 1 . 549 50.

Muhammad Bagdadinus 425 .

Multiplication : Egyptian method
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52—3, Greek 53—4 ,

‘Russian’

53 7 1

examples from Eutocius, Heron ,
Theon 57 —8 Apollonius

’

s con
tinned multiplications 54—7 .

Multiplication Table 53 .

Muh an,
an angular measure ii . 215 .

Musical intervals and numerical
ratios 69, 7 5—6 , 85, 1 65 .

Myriads , first second &c., nota
tion fo r, 39—40.

Nag] , A . 50 .

an- Nair iz i : comm. on Euclid 363,
ii . 224, i i . 228—30, ii . 309—10 .

Nasi raddin at-Tfisi : version of Eu
clid 362 , of Apollonius’s Conics
i i . 1 2 7 of Ptolemy ii. 2 7 5 .

Naucratis inscriptions 33 .

Nemesius 44 1 .

Neoclides 3 19.

Ner (Babylonian) 600) 28 , 1 1 .

2 15 .

Nesselmann, G . H . F. ii. 450—1 1 1 .

455—6 .

Newton 3 7 0 , n . 20 , n . 182 .

Nicolas Rhabdas 40, ii . 324 7 1 , i i .
550—3.

Nicomachus of Gerasa 12 , 69, 7 0 ,
7 2

, 7 3 , 7 4, 7 6 , 83 , 85 , 86 , i i . 238 ,
ii . 51 5 : works of, 97 : I ntr oductio
ar ithmetica : character of treatise
98 - 9 , contents 99—1 1 2 , classifica
tion of numbers 921—100 : on ‘per
feet ’ numbers 7 4, 100—1 : on ten
means 8 7 : on a ‘Platonic ' theo
rem 297 : sum of serie s of
natural cubes 109—1 0 .

Nicomedes 225—6
,
i i . 1 99 : cochloids

or conchoids 238—40 : duplica
tion of cube

Niloxenus 1 29 .

Nine , rule of, 1 15— 1 6 : casting out
nines ii. 549.

Nipsus, M . Juniu s
, 1 32.

Nix , L. ii . 1 28 , 131 , ii .
NO6 ] , G. 282 .

Number : defined , by Thales 69 , by
Moderatus, Eudoxus , Nicoma
chus, Aristotle 7 0 : classification
of numbers 7 04 ‘ perfect ’
‘ over- perfect ’ and defective
numbers 7 4—5

, friendly 7 5
figured 7 6 - 9 ‘oblong ’

,

‘prolate
82—3, 1 08 , 1 14, similar plane and
solid numbers 8 1—2

, 90, solid
numbers classified 106 - 8 ‘ the

numbe r in the heaven (Pytha
gor ean)68 ,

‘number ’ of an obJect

69.

Numerals : sy stems of,decimal ,qui
nary , v ige simal 26 o rigin of
decimal system 26 - 7 : Egyptian
2 7 —8 ; Babylonian sys tem s (1)
decimal 28 , (2)sexagesimal 28
Gre ek (1) ‘Attic ’ or ‘Herodianic ’
30 1 (2) alphabetic sy stem,

original in Gre ece 3 1—7 , how
evolved 3 1 - 2 , date of introduc
tion 33—5 , mode of writing 36—7 ,
comparison of two systems 3 7 —9
notation for large numbers , Apol
lonius

’

s tetrads 40, Arch imedes ’s
octads 40—1 .

Nymphodorus 2 13.

Oblong numbers 82—3 , 108 , 1 14
gnomons of, 82—3 .

Ocr eatus , 1 1 1 .

Octads , of A rch imedes 40—1 .

Odtagon , r egular , _

ar ea of, ii . 328 .

Octahedron 1 59, 160 , 1 62 : vo lume
of, i i . 335 .

Odd ’ number defin ed 7 0—1 1

called odd - even 7 1 : ‘ odd - even

q
dd - time s - odd ’

, &c.
,

' numbers
7 —4 .

Oenopides of Chios 22
,
1 21 dis

covered obliqu ity of ecl iptic 1 38
1 7 4 , ii . 244 : Great Year of, 1 7 4—5
called perpendicular gnomon-wise

7 8 , 1 7 5 : two propositions in e le
men tary geometry 1 7 5 .

Olympiodor us 444.

One
,
the principle of number 69.

Oppermann ii . 324 n .

Optics : divisions of, l 7 - l 8 : of Eucl id '

441—4 of Ptolemy ii . 293 - 4.

O val of Cassini i i . 206 .

Oxyrhyn chus Papyri 142 .

Pamphile, 1 31 , 1 33 , 134.

Pand rosion i i. 360 .

Pappu s (see alsoTable of Contents ,
under Chap .XIX)ii. 1 7 —1 8 , i i . 1 7 5 ,

188
, 1 89 , 190. ii . 207 , 2 1 1 , 2 12 ,

213 , i i. 26 2 , ii. 33 7 , i i . 355 - 439
on Apollonius’ s tetrad s 40 , on
Apollonius

’

s continued multi
lications 54 - 7 : on ten means
7 —9 : on mechanical works of
Archimedes ii . 23 - 4 : on con ics
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of Eucl id and Apollonius 438
,

proof o f focu s- directrix pro er ty
i i . 1 20 - 1 : commentary on uclid
358 , ii . 356— 7 , on Book X 154—5 ,
209

, 2 1 1 , i i . 1 93 : commentary on
Eucl id 's Data 42 1—2

,
ii . 357 , on

Diodorus
’

s A nalemma ii . 28 7
,

scholia on Syntax is i i. 27 4 : on
classification of problems and
loc i (plan e , solid , l inear ) 2 1 8— 19 ,
i i . 1 1 7 — 18 , criticismOnArchimedes
and A pollonius 288 , i i . 68 , ii . 1 6 7
on su rface - loci 439—40 , ii . 425—6
on Euclid ’ s Por isms 431— 3 , 436 - 7 ,
i i . 2 7 0

, ,

ii . 4 19—24 on Treasury
of Analysis ’ 421 , 422 , 439. ii . 399
427 on cochloids 238—9 on qua d
r atri x 229—30 , i i . 3 7 9—80 , con

str uctions for
,
i i . 380—2 : on dupli

cation of cube 266 - 8 , 268— 7 0 : on
trisection of any angle 241—3,
ii . 385—6 , r eams

: with regard to
parallelogram 236—7 : on isoperi
me try (cf. Zenodor us) ii . 207 ,

’ i i .
2 1 1—1 2

,
ii . 390—4 .

Paradoxes o f Erycinus i i . 365—8 .

Parall elogram of vel ocities 346 , i i .
348—9 .

Par apegma of Democritus 1 7 7 .

Parmenides 1 38 .

Pater ius ii . 536 "—7 .

Patr icius i i . 3 18 . 3 19 .

Pebbles
,
for cal culation 46 , 48 .

Pentagon
,
regular Construction

Pythagorean 1 60—2 areaof, ii.32 7 .

Pentagram ,
Pythagorean 1 6 1 - 2 (see

E r r ata).
‘ Perfect ’ numbers 7 4—5 : list of

fi rst ten ib. contrasted with
‘ over- perfect ’ and def

’

ective '

ib. : 10 wi th Pythago reans 7 5 .

Perfect ’ propo rtion 86 .

Pe ricles 1 7 2 .

Peri cles
,
a mathematician 1 1 . 360 .

Pe rseus 226 sp iric sections 1 1 .

203- 6 .

‘Phaenomena ’ obse rvational as
tronomy 1 7 : 322 , 349.

Phi lippus of Opu s 354 : works by ,
321 : on polygonal numbers 84,
ii . 5 15 : astronomy 32 1 .

Ph ilolau s 67 , 7 2 , 7 6 , 7 8 ,
ii . 1 on odd , even , ,

and even - odd
numbers 7 0 —1 Pythagorean non
geocentri c‘ astronomy attributed
to, 1 63- 4 .

INDEX 581

Philon of Byz antium 213 duplica
tion of cube 262—3 : Philon , Ctesi

bins and Heron ii . 298—302.

Philon of Gadara 234.

Philon of Tyana ii . 260 .

Philoponus , Joannes, 99, 223 , 224 n .

Phocaeans 7 .

Phocus of Samos 1 38 .

Phoenician alphabet, how treated
by Greeks 3 1—2 : arithmetic ori
ginated with Pho enicians 120—1 .

‘Piremus
’ or ‘

per emus
’ in pyramid

126
,
1 2 7 .

Plane loci 2 18 .

‘ Plane .

’ problems 2 18—19.

P lan-isphaem
'

um ofPtolemy — 3 .

Planudes
,
Maximus

,
1 1 7 , ii . 453 , i i .

546—9 .

Plato 19, 22 , 24, 12 1 , 142n. ,
1 7 0, 1 7 6

e eos ciei 'yscope
'

r pei 10 undeis
'
r pn

'

r os cia i'r coiii , 24, 355 : on educa
tion in mathematics 1 9—20 , 284
on mathematical ‘arts ’ , measu re
men t and weighing 308 , instr u
ments fo r , 308—9, principle of
lever 309 : on optics 309 , 441
on music 310 : Plato ’s astronomy
3 10 - 1 5 : on arithmetic and logisiic
13— 14 : classification of numbers ,
odd

,
even

,
&c. 7 1—2 , 292 : on

number 5040, 294 : the Geometri
cal Number, 305—8 : on ar ithme
tical problems ' 1 5 , ii . 442 : on
geometry 286—8 , constructions
alien to true geometry ib. : ou

tology of mathematics 288 —9
hypotheses of mathematics 289
90 two intellectual methods
290—2 supposed discovery of
mathematical analysis , 120 , 2 12
1 3 , 291

- 2 definitions of various
specie s of numbers 292 , figure
292 - 3 , line and straight line 293 ,
circl e and sphere 293 —4 : on
points and indivisible lines 293 :
formula for rational right - angled
triangles 8 1 , 304 :

‘rational ’ and
‘ irrational diameter of 5 ’

93 ,

306—7 Plato and the irrational
1 56 , 203—5 , 304 : on sol id geo

metry 1 2 on regular and
semi - regular solids 294— 7 : Plato
and duplication of cube 245— 6 ,
255 , 28 7

—8 , 303 : on geometric
means between two squares and
two cubes r espectively 89, 1 1 2 ,
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Giz eh , and Medum 128 : measure
ment of height by Thal es 129—30
volume of pyramid 1 7 6 , 180, 2 1 7 ,
ii . 2 1 , &c. , volume of frustum ii .
334.

Pythago ras 65—6 , 1 21 , 1 31 , 1 33 , 1 38
travels 4—5, story of bribed pupi l
24— 5 : motto 25

,
141 : Heraclitus

,

Empedocles and Herodotus on
,

65 : Pro clus on d iscoveries of
, 84

5
, made mathe
maties a part of liberal education
141

, called geometry ‘ inqui ry .

’

1 66 , u sed definitions 1 66 : arith
metic (theory of numbers) 66—80 ,
figured numbe rs 7 6- 9 : gnomons
7 7

,
7 9 : ‘fri endly ’ numbers 7 5 :

formula for righ t- angled tri
angles in rational numbers 7 9
80 : founded theory of proportion
84—5 , introduced ‘ perfect ’ pro
portion 86 : discove red depen
dence of musical intervals on
numerical ratios 69, 7 5—6 , 85 ,
1 65 : astronomy 1 62—3

,
earth

spherical ib. ,
independen t move

ment of planets 6 7
,
1 63 : Theorem

of Pythagoras 142 , 144—9 , how
discove red 147 —9, general proof,
how developed ib.

, Pappu s ’s ex
tension i i . 369~ 7 l .

Pythago reans 2
,
1 1 , 220 : quad r i

e ium 1 1 a Pythagorean fi rst
taught for money 22 : first to
advance mathematics 6 6 : ‘ all
things are numbers ’ 6 7 —9 ‘

num

ber of an obj e ct 69
,
number in

the heaven ’

68 : figured numbers
69 : definition of un it 69 : 1 i s
odd- even 7 1 classifi cation of
numbers 7 2—4 : friendly ’

num
bers 7 5 : 1 0 th e ‘perfect ’ number
7 5 : oblong numbe rs 1 08 ,
1 14 side and diameter numbe rs
giving approx imations to s/ 2 , 91
3 : first case s of indeterminate
analysis 80, 91 , 96—7 sum o f
angles of triangle 2 12, 1 35 ,
143 : geometrical theorems attr i
buted to , 143—54 invented appli
cation of areas and geometrical
algebra 1 50—4 : discovered the in
commensu rable 6 5 , 90 —1 , 1 54,
with refe ren ce to / 2 155 , 1 68 :

th eory of proportion only ap
plicable to commensur ablcs 153 ,

58 3

1 55
,
1 6 7

,
216 : construction of

regular pentagon 1 60—2 astro
nomical system (non geocentric)
1 63—5 : definitions 166 on order
of planets ii . 242 .

Qa
i
i/
27

en lzeru , height (of pyramid)

Quadratic equation : solved by Py
thagorean application of areas
1 50—2

,
1 6 7 , 394—6 , 422—3 nu

merical solutions ii . 344, ii . 448 ,
ii . 463—5 .

Quad r atr z
'

x 2
,
23 , 1 7 1 , 182 ,

225—30, i i. 8 7 9—82.

Quadr a
’

w
’

um of Pythagoreans 1 1 .

Quinary system of numerals 26 .

Quintilian ii . 207 .

Qustab . Lfiqa, translator of Euclid
362 , ii . 453 .

Rangabé, A . R . 49—50 .

Ratdolt
,
E rhard

,
fi rst edition of

Eucl id 364 —5 .

R eductio ad absur dum 3 7 2 already
used by Pythagoreans 1 68 .

R eduction (of a problem)3 7 2.

R eflection : equality of angles of
incidence and reflection 442, i i .
294, ii . 353—4.

R efraction 6 — 7 , 444 : first attempt
at a law (Ptolemy)ii . 294 .

R egiomon tanus 369 , ii . 27 , i i . 453—4.

R egu la Nicomachi 1 1 1 .

Rhabdas , Nicolas , 40 , ii . 324 ii .
550—3 .

Rh ind Papyr us : mensuration in ,
1 22—8 : algebra in , ii . 440- 1 .

R ight - angled triangl e : inscribed
by Thale s in circle 1 3 1 : theorem
of Eucl. I . 47 , attributed to
Pythagoras 142 , 144—5 , supposed
Indian origin of, 145—6 .

R ight- angled triangles in ra ti onal
numbers : Pythagoras ’s formula
80 , Plato ’s 8 1 , Eucl id ‘s 8 1—2 ,
405 : triangle 5) known to
Egyptians 1 22 : Indian examples
146 : Diophantus

’
s problems on ,

i i . 507 —14 .

R obertson , Abram,
i i . 2 7 .

R odet , L . 234.

R odolphu s P ius 1 1 . 26 .

Boomen , A . van , ii . 182 .

R udio , F. 1 7 3 , 1 84
,
187 —91 , i i .

539.
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Rudolph of Bruges ii . 292 .

Ruelle
,
Ch . Em. ii . 538 .

R iistow,
F. W. ii . 309 .

R uler and compasses restricti on
1 7 5—6 .

Sachs, Eva, 209 n.

Salaminian table 48 , 50—1 .
Salmon ii . 23 , ii . 103 .

Sampi (7 1 900) derived from
Ssade q.v.

Sar (Babylonian for 602) 28 , ii . 2 15 .

Satupatha B r cihmaaa , 146 .

Savile
,
Sir H .

,
on Euclid 360 , 369.

Scalene : oftr iangles 142 : of certain
solid numbers 107 : of an odd
number (Plato)292 : ofan oblique
cone ii. 1 34 .

Schiaparelli
, G. 31 7 , 330 , ii . 539.

Schmidt
,
W . ii . 308 , 309, 3 10 .

Schone , H . i i . 808 .

Schone , R . ii . 308
,
31 7 .

Scholiast to Charm-ides 14 , 53 .

Schooten
,
F. van , 7 5 n. , ii. 1 85 .

Schul z
, 0 . ii . 455.

Scopinas 1 1 . 1 .

Se condary numbers 7 2 .

Sectio canom
'

s 1 7 , 2 15 , 444 .

Seelhofi
'

,
P. 7 5 n.

Seleucu s ii . 3
Semi circl e angle in, is right
(Thal es) 1 31 , 1 33— 7 .

Senker eh , Tables 28 , 29.

Senti, base (of pyramid) 1 2 7 .

Sea- get,
‘thatwh ichmakesthenatur e ’

(of pyramid) cotangent ofangle
of s10 pe 12 7 —8 , 1 30 , 1 3 1 .

Serenne i i . 519—26 : On sect-ion of
cylinder ii . 5 19—22 , On section of
cone ii. 522 - 6 .

Sesostris (Ramses I I) 121 .

Sexagesimal system of numerals
and fractions 28 - 9 : sexagesimal
fractions in Greek 44—5 , 59, 6 1—3 ,
233 , ii . 2 7 7 — 83.

Sextius 220 .

Sicily 8 .

Side and ‘diameter—numbers ’ 91
3 , 1 12 , 1 53 , 308 , 380 , ii . 536 .

Simon
, M. 200 .

Simplicius : extract from Eudemus

on Hippocrate s ’s quadrature of
lunes 1 7 1 , 1 82—99 : on Antiphon
221— 2 : on Eudoxus ’s theory of
con centric spheres 329 : commem
tary on Euclid 358 , i i. 539—40 on

INDEX

mechanical works of A rchimedes
ii . 24 : i i . 538—40 .

Simson , R . ,
edition of Euclid ’s

E lements 365 , 369, and of Euclid ’s
Data 42 1 : on Eucl id ’s Por isms
435—6 : restoration of Plane Loci
of Apollonius i i. 1 85 , i i . 360 .

Simms of Posidonia 86 .

S ines
,
Tables of

,
i i . 253 , 1 1 . 259—60 .

S inus r ectus , sinus ver sus 367 .

Sluse
,
R . F. de , 96 .

Smith
,
D. E . 49 , 1 33

‘ Solid ’ loci and problems 2 18 , 11 .

1 1 7 —1 8 : Solid Loci of Ar istaeus
438 , ii . 1 1 8—1 9 .

‘ Solid numbers, classified 1 06—8 .

Solids
,
Five regular : discovery at

tributed to Pythagoras or Pytha
gor ean s 84, 141 , 1 58 - 60 ,
alternatively (as regards octahe
dron and icosahedron) to Theae
tetus 1 62 : all fi ve investigated
by Theaetetus 1 59 , 1 62 , 2 1 2 , 2 1 7 :
Plato on

,
1 58—60 : Euclid ’s con

str uctions for, 41 5—1 9 : Pappus ’s
constructions i i . 368—9 content
of

,
ii. 335

,
i i . 395—6 .

Solon 4 , 48 .

SOphists : taugh t math ematics 23 .

Sosigenes 31 6 , 329 .

Soss sussu 60 (Babylonian) 28 ,
'ii. 2 15 .

Speusippus 7 2 , 1 1 . 5 1 5 : on
Pythago rean numbers 7 6 , 318 :

on the five regular solids 3 18 on
theor ems ih.

Sphaer ic 1 1
- 12 treatises on , byAu

tolycus and Euclid 348—52 , 440
1 : earlier text- book pre supposed
in Autolycus 349—50 : Sphaer ica
o f Theodosius ii . 245 , 246—52 , of
Menelaus ii . 252—3 , 260 , 26 1—7 3 .

Sphere -making 18 : Arch imedes on ,

ii . 1 7 —1 8 .

Spiric sections 1 1 . 203 - 6 .

Sporns 226 : criticisms on quad ra
tr ix 229—30 : xnpiu 234 : duplica
tion of cube 266—8 .

Square
.root , extraction of, 60—3

ex . in sexage simal fractions
(Theon) 6 1—2 , (schol iast to Eu
cl id) 63 : method of approxima
ting to surds i i . 5 1—2 , i i . 323—6 ,
ii. 547 —9

, ii . 553—4 .

Square numbe rs 69 : formation by
adding successive gnomons (odd
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numbers) 7 7 : any square is sum
of two triangular numbers 83—4
8 times a triangular number
1 square, 84 , ii . 5 16 .

Ssade, Phoenician s ibi lant (signs
'
1‘ A m became 7 ) (900) 32 .

Stadium,

’
l /60th of ii . 2 15 .

Stad ium of Zeno 2 7 6—7 , 281—3 .

Star- pentagon , o r pentagr am, of
Pythagoreans 1 6 1 - 2 .

Stereographic proj ection (Ptolemy)
i i . 292 .

Stevin
,
S . ii . 455 .

Stigma ,’ name for numeral
originally E (digamma) 32 .

Strabo 1 2 1 , ii . 1 0 7 , ii . 220.

Strato ii . 1 .

Subcontrary harmonic) mean ,
defined 85
Subtraction in Greek notation 52 .

Surds : Theodorus on , 22—3 , 1 55—6 ,
203—9, 304 : Theaetetus’s general
iz ation 203—4 , 205 , 209, 304 see
also ‘Approximations

SurfaceLoci 2 1 9 , ii . 380—5 : Euclid’s
439- 40 , ii . 1 1 9, ii . 425—6 .

S l
'

lr ya
- S iddhdnta ii . 253 .

Sussu 3 03 8 (Babylonian for 60)28 ,
ii. 21 5 .

Synesius of Cyrene ii . 293 .

Synthesis 37 1— 2 : defined by Pappu s
ii . 400.

Syra cuse 8 :

Table of Chords 45 , i i. 259—60, i i.
283 .

Tdittir lya Sarnhitd 146 .

Tannery , P . 8 7 , 89, 1 1 9, 1 32 ,
180 , 182 , 184, 1 88 , 196 n . , 232 ,
2 7 9, 326 , 440 , ii . 5 1 , ii . 105 , ii .
204—5 , i i . 2 15 , i i . 2 18 , ii . 253,
ii . 31 7 , ii . 453 , ii . 483, i i . 5 1 9,
i i . 538 , 1 1 . 545 , 546 , ii . 550 , ii . 556 ,
i i. 561 .
Teles on secondary education 2 1 .

Teos inscription 32 , 34.

Tetr adaofA pollonius 40 .

Tetrahedron : constr uction 416 , 1 1 .

368 : volume o f, ii. 335 .

Thab it b . Qurra : translator of Eu
clid 362 , 363 : of A rch imedes ’s
I/lber assumptor um i i . 22 : of
Apollonius

’

s (Ionics V—VI I i i. 12 7 :
of Menelaus’s E lements of Geo

metry ii. 260 : of Ptolemy ii .
2 7 4 - 5 .

585

Thales 2 , 4, 67 one of Seven Wise
Men 1 28 , 1 42 : introduced geo
me try into Greece 128 : geometri
cal theOr ems attributed to, 130
7 measurement of heigh t of
pyramid 1 29—30, and of di stance
of ship from shore 1 31—3 : defini
tion of number 69 : astronomy
1 3 7 —9, ii . 244 : pred icted solar
eclipse 1 3 7 —8 .

Theaetetus 2
,
1 1 9, 1 7 0 : on surds

22 203 - 4 , 205 , 209, 304

investigated regular solids 1 59
,

1 62 , on irrationals 209
—1 7 .

Themistius 221 , 223 , 224.

Theodoru s ofCyrene taughtmathe
mat ies 22 - 3 on surds 22—3

,
1 55

6 , 203—9, 304.

Theodosius ii . 245—6 : Sphaer ica349
50

,
i i . 246—52 : other works ii .

246 : no trigonometry in , i i . 250 .

Theologumena artthmetices 96 , 97 ,
318 .

Theon of A lexandria : examples of
mul tiplication and division 58 ,
59 - 60 extraction of square root
6 1 - 3 edition ofEuclid ’sElements
360— 1 , ii . 527 —8 : of Optics 441 ,
ii . 528 : Catoptr i

'ca ib. : commen

tary on Syntax i
‘

s 58
,
60 , ii . 2 7 4 ,

ii . 526—7 .

Theon of Smyrna 12 , 7 2 , 7 3 , 7 4, 7 5 ,
7 6 , 7 9, 83 , 8 7 , ii . 5 1 5 : treatise
of, ii . 238 - 44 : on ‘ side and
‘ diameter—numbers ’ 9 1—3 , 1 12 :
forms of numbers which cannot
be squares 1 1 2 —.l 3 .

Theophrastus 158 , 1 63 : on Plato ’s
view of the earth 315 .

Theudius 320 - 1 .

Theuth , Egyptian god, reputed in
ventor of mathematics 1 21 .

Thevenot, M . ii . 308 .

Th r asyllus 97 , 1 7 6 , 1 7 7 , 1 1 . 241 , 1 1 .

243 .

Thucydides 1 1 . 207 .

Thymar idas definition of unit 69
rectilinear prime numbers
7 2 e

’

vréudqpa , a system of simple
equations solved 94.

Timaeus of Locri 86 .

Tittel ii . 300 , 301 , 304 .

Tor e (o r anchor- ring): use by Ar
chytas 219 , 247

—9 : sections of
(Perseus), ii . 203—6 : volume of
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