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1. A Few Elementary Calculations

>> 2+4
ans =

6

Enter 2 + 4 and hit return/enter key.

>> x = 2+5
ans =

7

Assigning the value of an expression to a variable.

>> z= 3^4+log(pi)*cos(x);
>> z

81.8630

A semicolon suppresses screen output. You can re-
call the value of z by typing z

>> format short e
>> z
z =

8.1863e+01

The floating point output display is controlled by
the format command.

>> format long
>> z
z =

81.863014441556018
>> format short
>> z
z =

81.8630
>> quit Quit Matlab. Alternatively you can type exit com-

mand or select Exit Matlab from the File Menu.

For additional help type in Matlab: help format

2. Finding Help in Matlab

There are several ways to get help in Matlab:

• help functionname provides direct on-line help on the function whose eaxct name you know. For
example help help provides help on the function help.

• lookfor keyword provides a list functions with the string keyword in their description. For example,

>> lookfor prime
isprime - True for prime numbers.
factor - Prime factors.
primes - Generate list of prime numbers.

By clicking on isprime, factor, or primes additional help on those functions will be listed.
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• helpwin provides the click and navigate help. A new help windows opens. One can also select help
choices from the Help menu.

• helpdesk is the web browser-based help, including printable (PDF) documentation on the Web.
• demo provides the demonstration programs on Matlab.

Additionally, one can find detailed online help on Matlab at:

http://www.mathworks.com/access/helpdesk/help/techdoc/index.html

3. Working with Arrays of Numbers

>> x = [1 2 3]
x =

1 2 3
>> size(x)
ans =

1 3

x is a row vector with 3 elements.

Size of array. Here, 1 row and 3 columns.

>> y = [4; 5; 6]
y =

4
5
6

>> size(y)
ans =

3 1

y is a column vector with 3 elements.

Size of y: 3 rows and 1 column.

>> x’
ans =

1
2
3 x’ creates a column vector from x.

>> b = [3 -1 0]
b =

3 -1 0
>> a = x+b
a =

4 1 3

Addition of two vectors of the same size. The same
holds for subtraction.

>> x+y
??? Error using ==> plus
Matrix dimensions must agree.

Addition or subtraction of a row vector to a column
vector is not allowed.

>> c = x.*a
c =

4 2 9
>> d = x./a
d =

0.2500 2.0000 1.0000
>> x*a
??? Error using ==> mtimes
Inner matrix dimensions must agree

One can multiply (or divide) the elements of two
same-sized vectors term by term with the array op-
erator : .* (or ./). The array operator .ˆ produces
term by term exponentiation.

However, x*a produces an error.

http://www.mathworks.com/access/helpdesk/help/techdoc/index.html
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>> X = linspace(-2,7,4)
X =

-2 1 4 7
>> X = -2:3:7
X =

-2 1 4 7

linspace(a,b,n) creates a linearly spaced
vector of length n from a to b. Note
that u=linspace(a,b,n) is the same as
u=a:(b-a)/(n-1):b, another way of creating
vectors (see also Section 7).

>> y = cos(X);
>> z = sqrt(abs(X)).*y
z =
-0.5885 0.5403 -1.3073 1.9946

Elementary math functions operate on vectors term
by term.

4. Creating Script Files and Simple Plots

A script file is an external file that contains a sequence of Matlab statements. By typing the filename,
subsequent Matlab input is obtained from the file. Script files have a filename extension of .m and are often
called M-files.

Select New from File menu (alternatively, use any text editor) and type the following lines into this file:

% ELLIPSE_PARABOLA - A script file to draw ellipse (x/2)^2+(y/3)^2=1 and parabola y=x^2.
alpha = linspace(0,2*pi,100);
x = 2*cos(alpha);
y = 3*sin(alpha);
t = linspace(-2,2,100);
z = t.^2;
plot(x,y,t,z);
axis(’equal’);
xlabel(’x’)
ylabel(’y’)
title(’Ellipse (x/2)^2+(y/3)^2=1 and parabola y=x^2’)
clear alpha x y t z;

Lines starting with % sign are ignored; they are interpreted as comment lines by Matlab.

Select Save As... from File menu and type the name of the document as, e.g., ellipse parabola.m.
Alternatively, if you are using an external editor, use a suitable command to save the document in the file
with .m extension.

Once the file is placed in the current working directory of Matlab, type the following command in the
command window to execute ellipse parabola.m script file.

>> ellipse_parabola Execute the file. You should see the plot of the

ellipse
(

x
2

)2
+
(

y
3

)2
= 1 and parabola y = x2 (see

Figure 1, below).

>> print Print the created graph on the default printer.

>> print my_graph.eps -depsc Save the graph in (color) Encapsulated PostScript
format in the file my graph.eps. Use -djpeg,
-dtiff, or -dpng options for JPEG, TIFF, or PNG
graphic formats, respectively.

The above script file also illustrates how to generate plot x vs y from the generated x and y coordinates of
100 equidistant points between 0 and 2π. For example, in the above script change the entry plot(x,y,t,z)
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Figure 1.

to plot(x,y,’--’,t,z,’o’) and see the difference in graphs drawings. For more information, check Matlab
help on plot command and its options by invoking help plot in the command window of Matlab. For print
options enter help print in the command window of Matlab.

5. Creating and Executing a Function File

Function file is a script file (M-file) that adds a function definition to Matlab’s list of functions. Edit
ellipse parabola.m script file (listed in Section 4 to look like the following:

function circle_f1(r);
% CIRCLE_F1 - Function to draw circle x^2+r^2=r^2.
alpha = linspace(0,2*pi,100);
x = r*cos(alpha);
y = r*sin(alpha);
plot(x,y);
axis(’equal’);
xlabel(’x’)
ylabel(’y’)
title([’Circle of radius r =’,num2str(r)]) % put a title with the value r.

Save it in circle_f1.m file (remember to place it in the working directory of Matlab) and try it out.

>> radius=3;
>> circle_f1(radius)

Specify the input and execute the function. You
should see the graph of the circle with radius 3.
You can also just enter circle f1(2.4) to draw
the circle with radius r = 2.4.

And here is slightly different version of circle_f1.m function file, called circle_f2.m This function file, in
addition to drawing a circle with radius r, computes the area inside this circle together with the outputs for
x and y coordinates.

function [A,x,y] = circle_f2(r);
% CIRCLE_F2 - Function draws circle x^2+r^2=r^2
% and output its area together with x and y coordinates.
alpha = linspace(0,2*pi,100);
x = r*cos(alpha);
y = r*sin(alpha);
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A = pi*r^2;
plot(x,y);
axis(’equal’);
xlabel(’x’)
ylabel(’y’)
title([’Circle of radius r =’,num2str(r)]) %put a title with the value r.

Save it in circle_f2.m file (remember to place it in the working directory of Matlab) and execute it in one
of the following ways:

>> circle_f2(5)
>> [Area] = circle_f2(5)
>> circle_f2(5);
>> [Area] = circle_f2(5);

The first two commands output the graph of a circle with
radius 5 and its area. The last two commands create the
graph while suppressing the output for the area.

>> [AREA,X,Y] = circle_f2(5) The complete output of the function is displayed: the
graph of a circle with radius 5 and its area, together with
the outputs for x and y coordinates.

Finally, suppose you need to evaluate the following function many times at different values of x during your
Matlab session: f(x) = exp(−0.3x) sin(30x) + x10

1+x10 . You can create an inline function and pass its name to
other functions:

>> fun = inline(’exp(-0.3*x).*sin(30*x)+x.^10./(1+x.^10)’);
>> fun(2)
ans =

0.8317
>> sin(fun(1))+fun(cos(1))
ans =

-0.6363
>> x=linspace(0,10,100);
>> plot(x,fun(x))
>> x0=fzero(fun,10)
x0 =

1.0193
Use Matlab help command help fzero to check what
this last command computes.

In the case you want to use function f(x) = exp(−0.3x) sin(30x)+ x10

1+x10 in future Matlab sessions, create the
following function file:

function f = my_f(x);
% MY_F evaluates function f = exp(0.3x)sin(30x)+x^10/(1+x^10)
f = exp(-0.3*x).*sin(30*x)+x.^10./(1+x.^10);

and save it in my_f.m file (remember to place it in the working directory of Matlab). You can use it in many
ways:

>> my_f(2)
ans =

0.8317
>> sin(my_f(1))+my_f(cos(1))
ans =

-0.6363
>> x=linspace(0,10,100);
>> plot(x,my_f(x))
>> x0=fzero(@my_f,10)
x0 =

1.0193

Use the command help function handle
to check what is the meaning of @ symbol
in the last command.
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And here is Matlab function that for a given x ∈ R and given n ∈ N computes

1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
,

function s=expseries(x,n);
% EXPSERIES: function calculates the sum
% 1+x+(x^2)/2!+(x^3)/3!+...+(x^n)/n! (up to nth power).
% Call syntax:
% s=expseries(x,n);
% where x is real and n nonnegative integer.
k = 0:n; % create a vector from 0 to n
series = (x.^k)./factorial(k); % create a vector of terms in the series
s = sum(series); % sum all terms of the vector ’series’.

Save the script in expseries.m file (remember to place it in the working directory of Matlab) and try it out.
Alternatively, you can also download it from:

http://www.csun.edu/~hcmth008/matlab_tutorial/expseries.m

6. Saving/Loading Data, Recording a Session, Clearing Variables, and More on Plotting

>> save Saves all workspace variables in the file
matlab.mat.

>> save FILENAME.dat Saves all workspace variables in the file
FILENAME.dat. If FILENAME has no exten-
sion, .mat is assumed.

>> save X Saves variable X in the file X.mat.

>> save FILENAME.dat X Saves variable X in the file FILENAME.dat. If
FILENAME has no extension, .mat is assumed.

>> load Loads the variables saved in the default file
matlab.mat.

>> load FILENAME Loads the variables saved in the file
FILENAME.mat.

>> diary FILENAME Causes a copy of all subsequent command win-
dow input and most of the resulting command
window output to be appended to the named
file. If no file is specified, the file diary is
used.

>> diary off Suspends diary.

>> diary on Turns diary back on. The command diary,
by itself, toggles the diary state.

>> clear X
>> clear all

Removes variable X from memory.
clear all command removes all variables,
functions and MEX links. Also clear all at
the command prompt removes the Java pack-
ages import list. It is a good idea to start a
Matlab session with this command !

http://www.csun.edu/~hcmth008/matlab_tutorial/expseries.m
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In addition to plot command, introduced in Section 4, Matlab has many plotting utilities. Here are sample
uses of two of them.

fplot command

>> fplot(’exp(-x).*sin(30.*x)’,[-1,5])
>> xlabel(’x’),ylabel(’f(x)=e^{-x} sin(30x)’)
>> title(’How to use fplot’)

Plots a function between −1 and 5. The last
two commands are optional and only annotate
the graph with the title and other details.

>> F = ’exp(-x).*sin(30.*x)’;
>> fplot(F,[0,10])
>> F = inline(’exp(-0.3*x).*sin(30*x)’);
>> fplot(F,[0,10])
>> fplot(’[my_f(0.5*x),cos(10*x),sin(x)^2]’,[-7,7])

Other uses of fplot, including multiple
plots. Here, my f is the function file de-
fined in Section 5.

>> [X,Y] = fplot(’exp(-x).*sin(30.*x)’,[-1,1])
>> X(1)
ans =

-1
>> Y(1)
ans =

2.6857

Returns X and Y such that Y =
exp(−X) sin(30X) (output not provided
here). No plot is drawn on the screen. One
can check the length of vectors X and Y with
length(X) and length(Y) commands. Also,
X(i) or Y(k) provide i-th and k-th elements
of vectors X and Y , respectively.

ezplot command

>> F = ’exp(-x).*sin(30.*x)’;
>> ezplot(F)
>> F = inline(’exp(-0.3*x).*sin(30*x)’);
>> ezplot(F)
>> ezplot(’my_f’)
>> ezplot(’my_f(3*x^2)’)

Plots the function over the default domain −2π <
x < 2π and with the default title. Also,
ezplot(fun,[min,max]) plots fun(x) over the do-
main: min < x < max.

>> ezplot(’x^2*y^2-sin(x^2+y^2)=1’)
>> ezplot(’t*sin(t)’,’1+cos(2*t)^2’)

Additionally, ezplot can be used for implicitly defined
functions and parametrically defined curves. For paramet-
ric curves (x(t), y(t)), the default domain is 0 < t < 2π.

For other plotting utilities check Matlab help on the following commands:
ezcontour, ezcontourf, ezmesh, ezmeshc, ezplot3, ezpolar, ezsurf, ezsurfc.

7. Matrices and Vectors

>> A=[0 1 2; 3, 4, 5; 6 7 8]
A =

0 1 2
3 4 5
6 7 8

While entering matrices, rows are separated by semicolons and
columns are separated by spaces or commas.
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>> A=[0 1 2
3 4 5
6 7 8]
A =

0 1 2
3 4 5
6 7 8

>> A=[0 1 ...
2; 3 4 5; 6 7 8]
A =

0 1 2
3 4 5
6 7 8

A matrix can be also entered across multiple lines using carriage
returns at the end of each row.

Three consecutive periods (ellipsis) signal continuation of the
input on the next line.

>> A(3,2)
ans =

7

>> A(3,:)
ans =

6 7 8

>> A(:,2)
ans =

1
4
7

>> A(:,2:3)
ans =

1 2
4 5
7 8

Element Aij of matrix A is accessed by A(i,j).

The colon by itself as a row or column index specifies all rows
or columns of the matrix.

>> Z = [-2.4 1 5 2.6 0]
Z =

-2.4000 1.0000 5.0000 2.6000 0

>> D=[1;-3;sin(1);exp(1)]
D =

1.0000
-3.0000
0.8415
2.7183

Z is a row vector with 5 elements.

D is a column vector with 4 elements.

>> v=1:10:111
v =

1 11 21 31 41 51 61 71 81 91 101 111

The command v=InitValue:Increment:FinalValue

creates a vector over a given range with a specified increment,

>> x=-2:10

x =
-2 -1 0 1 2 3 4 5 6 7 8 9 10

while x=InitValue:FinalValue produces a vector over a
given range with increment 1.

The command linspace(a,b,n) creates a linearly spaced (row) vector of length n from a to b. Note that
u=linspace(a,b,n) is the same as the command u=a:(b-a)/(n-1):b.
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Also, logspace(a,b,n) generates a logarithmically spaced (row) vector of length n from 10a to 10b. For
example,
>> v=logspace(0,4,5)
v =

1 10 100 1000 10000
Finally, logspace(a,b,n) is the same as 10.^(linspace(a,b,n) where .^ is term by term operator of
exponentiation (see Section 7.3).

There are many ways to create special vectors, for example, vectors of zeros or ones of specific length:

>> u=zeros(1,5)
u =

0 0 0 0 0

>> u=ones(2,1)
u =

1
1

7.1. Appending or Deleting a Row or Column. A row/column can be easily appended or deleted,
provided the row/column has the same length as the length of the rows/columns of the existing matrix.

>> C=eye(3)
C =

1 0 0
0 1 0
0 0 1

The command eye(m,n) produces m by n matrix
with ones on the main diagonal. eye(n) produces
n× n matrix with ones on the main diagonal. The
commands zeros, ones, rand work in a similar way.

>> v=[5; 6; 7]; C=[C v]
C =

1 0 0 5
0 1 0 6
0 0 1 7

The command C=[C v] appends the column vector
v to the columns of C.

>> C=eye(3); v=[5 6 7]; C=[C; v]
C =

1 0 0
0 1 0
0 0 1
5 6 7

The command C=[C; v] appends the row vector v
to the rows of C.

>> A=[0 1 2 3; 4 5 6 7; 8 9 -1 -2]
A =

0 1 2 3
4 5 6 7
8 9 -1 -2

>> A(:,2)= []
A =

0 2 3
4 6 7
8 -1 -2

>> A=[0 1 2 3; 4 5 6 7; 8 9 -1 -2]
A =

0 1 2 3
4 5 6 7
8 9 -1 -2

>> A(2:3,:)=[]
A =

0 1 2 3

The command A(:,2)=[] deletes the second col-
umn of A.

The command A(2:3,:)=[] deletes the second and
third row of A.
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7.2. Matrix Operations. In Matlab, as in Pascal, Fortran, or C, matrix product is just C=A*B, where A is
an m× n matrix and B is n× k matrix, and the resulting matrix C has the size m× k.

• A+B and A-B are valid if the matrices A and B have the same size (i.e., the same number of rows and
the same number of columns).

• A*B is valid if A’s number of columns equals B’s number of rows. The command A^2, which equals
A*A, makes sense if A is a square matrix.

• X=A/B (right division) is valid if A and B have the same number of columns and it denotes the solution
to the matrix equation XA = B. In particular, if A and B are square matrices, A/B ≡ AB−1, if B−1

exists.
• X=A\B (left division) is valid if A and B have the same number of rows and it denotes the solution to

the matrix equation AX = B. In particular, if A and B are square matrices, A\B ≡ A−1B, if A−1

exists.

If A is m×p and B is p×n, their product C = AB is m×n. Matlab defines their product by C = A*B, though
this product can be also defined using Matlab for loops (see Section 9) and colon notation considered in the
Section 7.1. However, the internally defined vectorized form of the product A*B is more efficient; in general,
such vectorizations are strongly recommended, whenever possible.

>> A=pascal(3); B=magic(3);

>> C = A*B
C =

15 15 15
26 38 26
41 70 39

>> A=pascal(3); B=magic(3);
m=3; n=3;
for i = 1:m
for j = 1:n
C(i,j) = A(i,:)*B(:,j);
end
end

>> C
C =

15 15 15
26 38 26
41 70 39

The matrix A=magic(3) belongs to the family of so called magic squares. M = magic(n) returns an n × n
matrix (n ≥ 3) constructed from the integers 1 through n2 such that the n numbers in all rows, all columns,
and both diagonals sum to the same constant. The constant sum in every row, column and diagonal is called
the magic constant or magic sum M . The magic constants of a magic square depend only on n and have the
values

15, 34, 65, 111, 175, 260, . . . ,
n(n2 + 1)

2
, . . .

(See, for example, http://en.wikipedia.org/wiki/Magic_square .)

>> magic(3)
ans =

8 1 6
3 5 7
4 9 2

>> magic(4)
ans =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

>> magic(5)
ans =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

The commands below check that the sums in all rows, columns, and in main diagonals of A=magic(5) are
indeed the same and equal to 65.

http://en.wikipedia.org/wiki/Magic_square
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>> A=magic(5);
>> for i=1:5
rows(i)=sum(A(i,:));
columns(i)=sum(A(:,i));
end

>> rows
rows =

65 65 65 65 65

>> columns
columns =

65 65 65 65 65

>> A=magic(5); dr=0;
for i=1:5
dr=dr+A(i,5-i+1); % right diagonal
end

>> A=magic(5); dl=0;
for i=1:5
dl=dl+A(i,i); % left diagonal
end

>> dr
dr =

65

>> dl
dl =

65

For information on pascal(n) matrices see Section 12.1.

The scalar (dot) product of two vectors or multiplication of a matrix with a vector can be done easily in
Matlab.

>> a=[1 2 3 4]; b=[5 6 7 8];

>> dot(a,b) % Scalar (dot) product of a and b
ans =

70

>> a=[1 2 3 4]; b=[5 6 7 8];

>> a*b’ % dot product using matrix product
ans =

70

>> A=[1 2 3; 4 5 6; 7 8 9]
A =

1 2 3
4 5 6
7 8 9

>> X=[0;-1;-2]
X =

0
-1
-2

>> A*X
ans =

-8
-17
-26

7.3. Array Operations. Array operations are done on an element-by-element basis for matrices/vectors of
the same size:

.* denotes element-by-element multiplication;

./ denotes element-by-element left division;

.\ denotes element-by-element right division;

.^ denotes element-by-element exponentiation.

>> x=[1 2]
x =

1 2

>> y=[3 4]
y =

3 4

>> x.*y
ans =

3 8

>> x.^y
ans =

1 16

>> x./y
ans =

0.3333 0.5000

>> x.\y
ans =

3 2

Comparison of matrix and array operations
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>> A=[1 2; 3 4]
A =

1 2
3 4

>> B=[5 6; 7 8]
B =

5 6
7 8

>> A*B
ans =

19 22
43 50

>> A.*B
ans =

5 12
21 32

>> A=[1 2; 3 4]
A =

1 2
3 4

>> B=[5 6; 7 8]
B =

5 6
7 8

>> A/B
ans =

3.0000 -2.0000
2.0000 -1.0000

>> A\B
ans =

-3 -4
4 5

>> A./B
ans =

0.2000 0.3333
0.4286 0.5000

>> A.\B
ans =

5.0000 3.0000
2.3333 2.0000

>> A^2
ans =

7 10
15 22

>> A.^2
ans =

1 4
9 16

7.4. Matrix Functions.

expm(A) computes the exponential of a square matrix A, i.e., eA. This operation should be distin-
guished from exp(A) which computes the element-by-element exponential of A;

logm(A) computes log(A) of square matrix A. log(A) is the matrix such that A = elog(A);

sqrtm(A) computes
√

A of square matrix.
√

A is the matrix such that A = (
√

A) ∗ (
√

A).

For more information on these functions see also Section 12.8.6.
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>> A=[1 1 0; 0 0 2; 0 0 -1]
A =

1 1 0
0 0 2
0 0 -1

>> expm(A)
ans =

2.7183 1.7183 1.0862
0 1.0000 1.2642
0 0 0.3679

>> exp(A)
ans =

2.7183 2.7183 1.0000
1.0000 1.0000 7.3891
1.0000 1.0000 0.3679

Notice that the diagonal elements of the two results are
equal. This would be true for any triangular matrix. But
the off-diagonal elements, including those below the di-
agonal, are different.

For additional help type in Matlab: help matfun

or find expm, logm, or sqrtm in:

http://www.mathworks.com/access/helpdesk/help/techdoc/index.html

8. Character Strings

(This section can be skipped in the first reading of the tutorial.)

S = ’Any Characters’ creates a character array, or string. All character strings are entered using single
right-quote characters. The string is actually a vector whose components are the numeric codes for the
characters (the first 127 codes are ASCII). The length of S is the number of characters. A quotation within
the string is indicated by two single right-quotes.

S = [S1 S2 ...] concatenates character arrays S1, S2, etc. into a new character array, S.

S = strcat(S1, S2, ...) concatenates S1, S2, etc., which can be character arrays or Cell Arrays of Strings.

Trailing spaces in strcat character array inputs are ignored and do not appear in the output. This is not
true for strcat inputs that are cell arrays of strings. Use the S = [S1 S2 ...] concatenation syntax, to
preserve trailing spaces.

>> name = [’Thomas’ ’ R. ’ ’Lee’]
name =
Thomas R. Lee

>> name = strcat(’Thomas’,’ R.’,’ Lee’)
name =
Thomas R. Lee

>> S = [’toge’ ’ther’]
S =
together

>> S = strcat(’toge’, ’ther’)
S =
together

>> S = [’toge ’ ’ther’]
S =
toge ther

S = strcat(’toge ’, ’ther’)
S =
together

A column vector of text objects is created with C=[S1; S2; ...], where each text string must have the same
number of characters.

http://www.mathworks.com/access/helpdesk/help/techdoc/index.html
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>> S1=[’alpha ’;’gamma ’]
S1 =
alpha
gamma

>> S=[S1 S2]
S =
alpha ALPHA
gamma GAMMA

>> size(S)
ans =

2 11

>> S2=[’ALPHA’; ’GAMMA’]
S2 =
ALPHA
GAMMA

>> S=strcat(S1,S2)
S =
alphaALPHA
gammaGAMMA

>> size(S)
ans =

2 10

The command char(S1,S2,...) converts strings to a matrix. It puts each string argument S1, S1, etc., in a
row and creates a string matrix by padding each row with the appropriate number of blanks; in other words,
the command char does not require the strings S1, S2, . . . to have the same number of characters. One can
also use strvcat and str2mat to create strings arrays from strings arguments, however, char does not ignore
empty strings but strvcat does.

>> S=char(’Hello’,’’,’World’)
S =
Hello

World

>> size(S)
ans =

3 5

>> S(1,:)
ans =
Hello

>> S(2,:)
ans =

>> S(3,:)
ans =
World

>> S=strvcat(’Hello’,’’,’World’)
S =
Hello
World

>> size(S)
ans =

2 5

>> S(1,:)
ans =
Hello

>> S(2,:)
ans =
World

>> S(3,:)
??? Index exceeds matrix dimensions.

For additional help type in Matlab: help strings or help strfun

or find strings in:

http://www.mathworks.com/access/helpdesk/help/techdoc/index.html

8.1. eval Function. eval executes string containing Matlab expression. For example, the command

>> eval(’y=exp(3)*cos(pi/4)’)
y =

14.2026

evaluates y = exp(3) cos(π/4) and is equivalent to typing y = exp(3) cos(π/4) on the command prompt. eval
function is often used to load or create sequentially numbered data files. Here is a hypothetical example:

http://www.mathworks.com/access/helpdesk/help/techdoc/index.html
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>> for d=1:10
s = [’load August’ int2str(d) ’.mat’]
eval(s)

end

Loads MAT-files August1.mat to August10.mat into the
Matlab workspace.

These are the strings being evaluated:

s =

load August1.mat

s =

load August2.mat

s =

load August3.mat

...

For additional help type in Matlab: help eval

or find eval in:

http://www.mathworks.com/access/helpdesk/help/techdoc/index.html

9. for and while Loops and if Conditionals

for x=initval:endval, statements end command repeatedly executes one or more Matlab statements
in a loop. Loop counter variable x is initialized to value initval at the start of the first pass through the
loop, and automatically increments by 1 each time through the loop. The program makes repeated passes
through statements until either x has incremented to the value endval, or Matlab encounters a break, or
return instruction,

while expression, statements, end command repeatedly executes one or more Matlab statements in
a loop, continuing until expression no longer holds true or until Matlab encounters a break, or return
instruction.

if conditionally executes statements. The general form of the if command is

if expression
statements

elseif expression
statements

else
statements

end

The else and elseif parts are optional.

Example 1.

The graph of function f(x) = 3x2 − ex

indicates that f(x) = 3x2 − ex has two positive zeros.

The computation of these two positive roots can be achieved by the so called fixed-point iteration scheme.

For example, the smaller positive root p is the fixed point of g1(x) =
√(

1
3
· ex
)
. defined on [0, 1], i.e., such

that
g1(p) = p, 0 ≤ p ≤ 1.

The larger positive root is the fixed point c of g2(x) = ln(3x2) defined on [3, 4], i.e., such that

g2(c) = c, 3 ≤ c ≤ 4.

http://www.mathworks.com/access/helpdesk/help/techdoc/index.html
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Figure 2. The graph of function f(x) = 3x2 − ex.

These fixed points (and ultimately the positive roots of f(x) = 3x2 − ex) can be computed accurately by
running the so called fixed-point iteration scheme in the form:

xn+1 = g1(xn) or xn+1 = g2(xn), n ≥ 0, with x0 provided.

And here is the actual Matlab session for the above fixed-point iteration scheme based on g1:

>> g1=inline(’((1/3)*exp(x))^(1/2)’);
>> p0=1.0; iter=1;
>> for n=1:200

p=g1(p0);
err=abs(p-p0);
if err>=0.00001

iter=iter+1;
p0=p;

else
break

end
end
>> p
p =

0.9100

Define g1;
Define initial p0 and iteration counter;
Start for loop;
Computation of the next approximation pi+1 = g1(pi);
Compute the difference between the two consecutive iterations;
If the difference is greater than (0.00001), advance iteration by
one step;
change p0 to p, the next approximation computed;

Terminates the execution when the error is less than 0.00001.

The computed value of the root of f(x) = 3x2 − ex.

and here fixed-point iteration scheme based on g2:

>> g2=inline(’log(3*x^2)’);
>> p0=4.0; iter=1;
>> for n=1:200

p=g2(p0);
err=abs(p-p0);
if err>=0.00001

iter=iter+1;
p0=p;

else
break

end
end
>> p
p =

3.7331

Define g2;
Define initial p0 and iteration counter;
Start for loop;
Computation if the next approximation pi+1 = g1(pi);
Compute the difference between the two consecutive iterations;
If the difference is greater than (0.00001), advance iteration by
one step;
change p0 to p, the next approximation computed;

Terminates the execution when the error is less than 0.00001.

The computed value of the root of f(x) = 3x2 − ex.

The accurate value of the root of f(x) = 3x2 − ex in [0, 1] (to within 10−10) is p = 0.9100075725.

The accurate value of the root of f(x) = 3x2 − ex in [3, 4] (to within 10−10) is p = 3.733079029.
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Note: It is interesting to know that the fixed-point iteration based on g1 does not converge to the larger
positive root of f(x) = 3x2 − ex. Similarly, the fixed-point iteration based on g2 does not converge to the
smaller positive root of f(x) = 3x2 − ex.

Example 2.

The Euler numerical method for approximating the solution to the differential equation,

y′ = f(x, y), y(x0) = y0,

has the form
yn+1 = yn + hf(xn, yn), where xn = x0 + nh, and n = 0, 1, 2, . . . .

In the above scheme, yn, for n = 1, 2, . . . , approximates true solution at xn, i.e., y(xn).

The initial value problem
y′ + 2y = 3 exp(−4x), y(0) = 1,

has the exact solution
y(x) = 2.5 exp(−2x)− 1.5 exp(−4x).

We will use the Euler method to approximate this solution. We will also compute the differences between
the exact and approximate solutions.

>> h=0.1;
>> x=0:h:2;
>> clear y; % clear possibly existing variable y
>> y(1)=1; % x1=0, thus y(1) corresponds to y(x1)=1
>> f=inline(’3*exp(-4*x)-2*y’)
f =

Inline function:
f(x,y) = 3*exp(-4*x)-2*y

>> size(x) % size of x to be used in determining the size of vector i
ans =

1 21
>> for i=1:20 y(i+1)=y(i)+h*f(x(i),y(i)); end
>> Y_exact=2.5*exp(-2*x)-1.5*exp(-4*x);
>> plot(x,y,’--’,x,Y_exact)

10. Interactive Input

(This section can be skipped in the first reading of the tutorial.)

The commands input, keyboard, menu, and pause provide interactive user input and can be used inside a
script or function file.

>> R = input(’How many apples: ’)
How many apples: sqrt(36)+factorial(4)
R =

30

gives the user the prompt in the text string and then waits
for input from the keyboard. The input can be any Matlab
expression, which is evaluated, using the variables in the
current workspace, and the result returned in R. If the user
presses the return key without entering anything, input
returns an empty matrix.

>> R = input(’How many apples: ’,’s’)
How many apples: sqrt(36)+factorial(4)
R =
sqrt(36)+factorial(4)

gives the prompt in the text string and waits for charac-
ter string input. The typed input is not evaluated; the
characters are simply returned as a Matlab string.

keyboard command, when placed in a script or function file, stops execution of the file and gives control to
the user’s keyboard. The special status is indicated by a K appearing before the prompt. Variables may be
examined or changed - all Matlab commands are valid. The keyboard mode is terminated by executing the
command return and pressing the return key. Control returns to the invoking script/function file.
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>> error = abs(Y_exact-y)’
error =

0
0.0587
0.0793
0.0794
0.0696
0.0560
0.0418
0.0289
0.0180
0.0092
0.0025
0.0024
0.0058
0.0080
0.0093
0.0099
0.0100
0.0097
0.0092
0.0086
0.0079 Figure 3. Plots of the exact solution (solid line) and the

approximate solution (dashed line) on the interval [0, 2].

Command menu generates a menu of choices for user input. On most graphics terminals menu will display
the menu-items as push buttons in a figure window, otherwise they will be given as a numbered list in the
command window. For example,

choice = menu(’Choose a color’,’Red’,’Blue’,’Green’)

creates a figure with buttons labeled Red, Blue and Green. The button clicked by the user is returned as
choice (i.e. choice = 2 implies that the user selected Blue).

After input is accepted, the dialog box closes, returning the output in choice. You can use choice to control
the color of a graph:

t = 0:.1:60;
s = sin(t);
color = [’r’,’g’,’b’]
plot(t,s,color(choice))

pause commands waits for user response. pause(n) pauses for n seconds before continuing.

pause causes a procedure to stop and wait for the user to strike any key before continuing.

pause off indicates that any subsequent pause or pause(n) commands should not actually pause. This
allows normally interactive scripts to run unattended.

pause on (default setting) indicates that subsequent pause commands should pause.

pause query returns the current state of pause, either on or off.

11. Input/Output Commands

(This section can be skipped in the first reading of the tutorial.)

Matlab provides many C-language file I/O functions for reading and writing binary and text files. The
following five I/O functions: fopen, fclose, fgetl, fscanf, and fprintf are frequently used.
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fid = fopen(filename) opens or creates the filename. The filename argument is a string enclosed
in single quotation marks.
Output value fid is a scalar Matlab integer that you use as a file identifier for all subsequent low-level
file input/output routines.

fclose(fid) closes the specified file if it is open, returning 0 if successful and -1 if unsuccessful. fid
is an integer file identifier associated with an open file.

fclose(’all’) closes all open files.

tline = fgetl(fid) returns the next line of the file associated with the file identifier fid. The
returned string tline does not include the newline characters with the text line. To obtain the
newline characters, use fgets function.

A = fscanf(fid, format) reads data from the text file specified by fid, converts it according to the
specified format string, and returns it in matrix A. Argument fid is an integer file identifier obtained
from fopen. format is a string specifying the format of the data to be read.

count = fprintf(fid, format, A, ...) formats the data in the real part of matrix A (and in any
additional matrix arguments) under control of the specified format string, and writes it to the file
associated with file identifier fid. count returns a count of the number of bytes written.
Argument fid is an integer file identifier obtained from fopen. It can also be 1 for standard output
(the screen) or 2 for standard error. Omitting fid causes output to appear on the screen. For exam-
ple, fprintf(’A unit circle has circumference %g radians.\n’, 2*pi) displays a line on the
screen:
A unit circle has circumference 6.283186 radians.

The example below reads and displays the first three lines from the file circle_f2.m (see, Section 5) and
available from: http://www.csun.edu/~hcmth008/matlab_tutorial/circle_f2.m
It also tests for end-of-file and then closes circle_f2.m file.

>> fid = fopen(’circle_f2.m’);
tline = fgetl(fid); i=1;
while feof(fid)==0 & i<=5 % Alternatively, you can use ischar(tline)

% instead of feof(fid)==0;
% == and <= are relational operators
% EQUAL and LESS THAN OR EQUAL,
% respectively;
% & denotes the logical operator AND.

disp(tline) % disp(X) displays an array, without
% printing the array name. If X contains
% a text string, the string is
% displayed.

tline = fgetl(fid);
i=i+1;
end
is_end_of_file = feof(fid) % feof(fid) command checks for end-of-file.
fclose(fid); % Closes circle_f2.m file.

% The result is displayed below:

function [A,x,y] = circle_f2(r);
% CIRCLE_F2 - Function draws circle x^2+r^2=r^2
% and output its area together with x and y coordinates.

is_end_of_file =
0

The value of variable is_end_of_file = 0 indicates that the end of circle f2.m file was not reached.
Changing name of the file and replacing i<=3 by i<=n will make the above script read and display the first
n lines. The entire file will be displayed if the number of lines in the file is less or equal to n.

http://www.csun.edu/~hcmth008/matlab_tutorial/circle_f2.m
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The next script reads and displays every line from the file my_f.m (created in Section 5) and available from:
http://www.csun.edu/~hcmth008/matlab_tutorial/my_f.m
It also tests for end-of-file and then closes the file my_f.m. No a priori information about the number of lines
in the file is needed in the script.

>> fid = fopen(’my_f.m’);
tline = fgetl(fid);
while feof(fid)==0 % Alternatively, you can use ischar(tline) instead of feof(fid)==0.
disp(tline)
tline = fgetl(fid);
end
is_end_of_file = feof(fid) % Checks for end-of-file.
fclose(fid); % Closes my_f.m file.

% The result is displayed below:

function f = my_f(x);
% MY_F evaluates function f = exp(0.3x)sin(30x)+x^10/(1+x^10)
f = exp(-0.3*x).*sin(30*x)+x.^10./(1+x.^10);

is_end_of_file =
1

The value of variable is_end_of_file = 1 indicates that the end of my f.m file was reached.

The next example is more advanced. It shows how to read and display lines from given file in a non-sequential
order. It uses eval and int2str commands for a customized display. The script below reads and displays
the 4th, 5th, 8th, and 9th lines from circle_f2.m file. It also appends the numbers to the above lines. No
a priori information about the number of lines in the file is needed in the script.

>> fid = fopen(’circle_f2.m’); % output -->
tline = fgetl(fid); i=1; % output -->
while feof(fid)==0 % output -->
if i<=3 % output -->
tline = fgetl(fid);
end
if 4<=i & i<=5
disp([’<’ eval(’int2str(i)’) ’>’ ’ ’ tline])
tline = fgetl(fid);
end
if i>=6 & i<=7
tline = fgetl(fid);
end
if 8<=i & i<=9
disp([’<’ eval(’int2str(i)’) ’>’ ’ ’ tline])
tline = fgetl(fid);
end
if i>=10
tline = fgetl(fid);
end
i=i+1;
end
fclose(fid);

<4> alpha = linspace(0,2*pi,100);
<5> x = r*cos(alpha);
<8> plot(x,y);
<9> axis(’equal’);

The next examples show how to use fprintf and fscanf commands. First, create a text file called exp.txt
containing a short table of the exponential function. (On Windows platforms, it is recommended that you
use fopen with the mode set to ’wt’ to open a text file for writing.)

http://www.csun.edu/~hcmth008/matlab_tutorial/my_f.m
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x = 0:.1:1;
y = [x; exp(x)];
fid = fopen(’exp.txt’, ’wt’);
fprintf(fid, ’%6.2f %12.8f\n’, y);
fclose(fid)

%6.2f stands for fixed-point notation field of width 8 with
two digits after the decimal point, while %12.8f stands
for fixed-point notation field of width 12 with 8 digits
after the decimal point. \n stands for new line.

Now, examine the contents of exp.txt with type filename command.

type exp.txt

0.00 1.00000000
0.10 1.10517092
0.20 1.22140276
0.30 1.34985881
0.40 1.49182470
0.50 1.64872127
0.60 1.82211880
0.70 2.01375271
0.80 2.22554093
0.90 2.45960311
1.00 2.71828183

One can now read this file back into a two-column Matlab matrix with the script:

fid = fopen(’exp.txt’, ’r’);
a = fscanf(fid, ’%f %f’, [2 inf]);
a = a’;
fclose(fid);

It has two rows now. inf indicates to read to the end of
the file.

Comparing it with exp.txt and long format outputs we observe no loss of accuracy.

>> disp(a)
0 1.0000

0.1000 1.1052
0.2000 1.2214
0.3000 1.3499
0.4000 1.4918
0.5000 1.6487
0.6000 1.8221
0.7000 2.0138
0.8000 2.2255
0.9000 2.4596
1.0000 2.7183

>> type exp.txt
0.00 1.00000000
0.10 1.10517092
0.20 1.22140276
0.30 1.34985881
0.40 1.49182470
0.50 1.64872127
0.60 1.82211880
0.70 2.01375271
0.80 2.22554093
0.90 2.45960311
1.00 2.71828183

>> format long; disp(a)
0 1.000000000000000

0.100000000000000 1.105170920000000
0.200000000000000 1.221402760000000
0.300000000000000 1.349858810000000
0.400000000000000 1.491824700000000
0.500000000000000 1.648721270000000
0.600000000000000 1.822118800000000
0.700000000000000 2.013752710000000
0.800000000000000 2.225540930000000
0.900000000000000 2.459603110000000
1.000000000000000 2.718281830000000

As the final example, start with a file temp.dat that contains temperature readings

78◦F 72◦F 65◦F 105◦F − 10◦F

File temp.dat is available from: http://www.csun.edu/~hcmth008/matlab_tutorial/temp.dat

Open the file using fopen and read it with fscanf. If you include ordinary characters (such as the degrees
character ◦ (ASCII 176) and Fahrenheit (F) symbols used here) in the conversion string, fscanf skips over
those characters when reading the string. This allows for further processing (see below). The display on the
right is given for a comparison.

http://www.csun.edu/~hcmth008/matlab_tutorial/temp.dat
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>> fid = fopen(’temp.dat’, ’r’);
degrees = char(176);
a=fscanf(fid, [’%d’ degrees ’F’]);
fclose(fid);
disp(a’)
78 72 65 105 -10

>> sin(a)
ans =

0.5140
0.2538
0.8268

-0.9705
0.5440

>> fid = fopen(’temp.dat’, ’r’);
a=fscanf(fid, ’%c’);
%
fclose(fid);
disp(a)

78◦F 72◦F 65◦F 105◦F − 10◦F

>> sin(a)
??? Undefined function or method ’sin’ for input
arguments of type ’char’.

12. Linear Algebra

12.1. Solving Linear Square Systems. Write the system of linear algebraic equations

x1 + x2 + x3 + x4 = 1

x1 + 2x2 + 3x3 + 4x4 = −1

x1 + 3x2 + 6x3 + 10x4 = 2

x1 + 4x2 + 10x3 + 20x4 = 3

in matrix form

AX = b,

with

A =

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

 , X =

x1

x2

x3

x4

 , b =

 1
−1
2
3

 .

Please note that the number of columns of A equals to the number of rows of X, and thus the matrix
multiplication of A with X is defined.

Enter the matrix A and vector b, and solve for vector X with A\b.

>> A = [1 1 1 1; 1 2 3 4; 1 3 6 10; 1 4 10 20]
A =

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

>> b = [1; -1; 2; 3]
b =

1
-1
2
3

>> X = A\b % Solve for X
X =

15
-33
26
-7

>> c = A*X % Check the solution
c =

1
-1
2
3

The matrix A belongs to the family of so called Pascal matrices and can be entered by the command
A = pascal(4).
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>> pascal(1)
ans =

1

>> pascal(2)
ans =

1 1
1 2

>> pascal(3)
ans =

1 1 1
1 2 3
1 3 6

>> pascal(4)
ans =

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

In general, A = pascal(n) returns the Pascal matrix of order n: a symmetric positive definite matrix with
integer entries taken from Pascal’s triangle that determines the coefficients which arise in binomial expansions.
See, for example, http://en.wikipedia.org/wiki/Pascal’s_triangle .

12.1.1. Singular Coefficient Matrix. A square matrix A is singular if it does not have linearly independent
columns. A is singular if and only if the determinant of A is zero (see Section 12.3). If A is singular, the
equation AX = b either has no solution or it has infinite many solutions. Actually, one can show that
AX = b system has a solution if and only if b ⊥ N (i.e, the scalar product of b and N is zero) for all N
such that A′N = 0, where A′ is the transpose (the complex conjugate transpose, if A has complex entries) of
A, i.e., the matrix where the original rows and columns are interchanged. The matrix

>> A=[1 3 7; -1 4 4; 1 10 18]
A =

1 3 7
-1 \label{sub:factors}\label{sub:factors} 4 4
1 10 18

is singular, as easy verified by typing

>> det(A) % det(A) calculates the determinant of A
ans =

0

For b = [5;2;12], the equation AX = b has a solution given by

>> b = [5;2;12]; format rat; X=pinv(A)*b, format;

X = % "format rat" requests a rational format,
82/213 % while the last command "format" returns

-47/426 % to the default format.
301/426

>> A*X

ans = % Solution’s verification
5.0000
2.0000

12.0000

For more information on pinv(A), see Section 12.4. In this case, command A\b returns an error condition.

One can also verify that b = [5;2;12] is perpendicular to any solution of the homogeneous system A′N = 0:

>> A’ % transpose of A

ans =
1 -1 1
3 4 10
7 4 18

>> N = null(A’,’r’)

N = % Solves the homogeneous equation A’*N=0
-2 % with an option ’r’ requesting
-1 % a rational format
1

and

>> dot(N,b)
ans =

0

This verifies that b ⊥ N.

The general (complete) solution to AY = b is given by

Y = cZ + X, with Z =

[−16/7
−11/7

1

]
and X =

[
82/213
−47/426
301/426

]
,

where Z solves the homogeneous system AZ = 0 and c is any constant (scalar), as verified by

http://en.wikipedia.org/wiki/Pascal's_triangle
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>> format rat; Z = null(A,’r’), format;

Z = % Solves the homogeneous equation
16/7 % A*Z=0 with an option ’r’

-11/7 % requesting a rational format.
1

>> c = 1.5; A*(c*Z+X)

ans =
5.0000
2.0000

12.0000

On the other hand, for b = [1;2;3], b 6⊥ N. (indeed, dot(N,b)=-0.4082) and the system AX = b does
not have an exact solution.

In this case, pinv(A)*b returns a least squares solution X, i.e.,

X = min
Y

‖AY − b‖,

where for v = (v1, v2, . . . , vn), ‖v‖ =

(
n∑

i=1

|vi|2
)1/2

is the so called norm of vector v. Matlab command for

the norm of vector v is norm(v). We have

>> b = [1;2;3]

b =
1
2
3

>> format rat; X=pinv(A)*b, format;

X = % a least squares solution
-395/1278
1081/2556

-107/2556

>> format rat; A*X, format;

ans = % It does not get back the original vector
2/3 % b=[1;2;3].

11/6
19/6

>> norm(A*X-b)

ans =
0.4082

12.2. Gaussian Elimination. One of the techniques learned in linear algebra courses for solving a system
of linear equations is Gaussian elimination. One forms the augmented matrix that contains both the coef-
ficient matrix A and vector b, and then, using Gauss-Jordan reduction procedure, the augmented matrix is
transformed into the so called row reduced echelon form. Matlab has built-in function that does precisely this
reduction. For A = pascal(4) and b = [1; -1; 2; 3], considered in Section 12.1, the commands C=[A b]
and rref(C) calculate the augmented matrix and the row reduced echelon matrix, respectively.

>> A = pascal(4)
A =

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

>> b = [1; -1; 2; 3]
b =

1
-1
2
3

>> C = [A b]; rref(C)
ans =

1 0 0 0 15
0 1 0 0 -33
0 0 1 0 26
0 0 0 1 -7

Since matrix A=pascal(4) is not singular, the last column of rref(C) (One could also use rref([A b])
command here.) provides the solution X already obtained in Section 12.1 by using X = A\b command.

Here is another use of rref command. One can determine whether AX = b has an exact solution by finding
the row reduced echelon form of the augmented matrix [A b]. For example, enter
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format rat; A = [1 3 7; -1 4 4; 1 10 18]; b = [1;2;3]; rref([A b]), format;

ans = % For better visibility, the command
1 0 16/7 0 % "format rat" displays the result in

% rational format, while the last
0 1 11/7 0 % command "format" returns the

% default format.
0 0 0 1

Since the bottom row contains all zeros except for the last entry, the equation AX = b does not have a
solution. Indeed, the above row reduced echelon form is equivalent to the following system of equations:

1 · x1 + 0 · x2 + (16/7)x3 = 0

0 · x1 + 1 · x2 + (11/7)x3 = 0

0 · x1 + 0 · x2 + 0 · x3 = 1

As indicated in Section 12.4, in this case, pinv(A)*b command returns a least squares solution.

12.3. Inverses, Determinants, and Cramer’s Rule. For a square and nonsingular matrix A, the equa-
tions AX = I and XA = I (here I is an identity matrix), have the same solution, X. This solution is called
the inverse of A and is denoted by A−1. Matlab function inv(A) computes the inverse of A.

The inverse of A=pascal(4) is

>> A = pascal(4)
A =

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

>> format rat; inv(A)
ans =

4 -6 4 -1
-6 14 -11 3
4 11 10 -3

-1 3 -3 1

and thus, the solution of the system AX = b with b=[1;0;2;0] is

>> b = [1;0;2;0]; format rat; X = inv(A)*b

X =
12

-28
24
-7

>> Y=A\b % the backslash operator is another
% way to compute the same solution
% and is much more efficient for
% large size matrices

Y =
12

-28
24
-7

The determinant is a special number associated with any square matrix A and is denoted by |A| or det(A).
The meaning of a determinant is a scale factor for measure when the matrix is regarded as a linear trans-
formation. Thus a 2 × 2 matrix, with determinant 3, when applied to a set of points with finite area will
transform those points into a set with 3 times the area.

The determinant of

A =

[
a b c
d e f
g h i

]
is det(A) = aei− afh + bfg − bdi + cdh− ceg

and the Rule of Sarrus is a mnemonic for this formula:

The determinant of n× n matrix A = (aij)i,j=1,2,...n (n ≥ 1) can be defined by the Leibniz formula:

det(A) =
∑
σ∈Sn

sign(σ)
n∏

i=1

ai σ(i) .
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The matrix A =

[
a b
c d

]
has the determi-

nant det(A) = ad − bc and the geometric
interpretation presented in Figure 4.

Figure 4. The area of the parallelogram is the
absolute value of the determinant of the matrix
formed by the vectors representing the parallelo-
gram’s sides.

Figure 5. The determinant of a 3 × 3
matrix can be calculated by its diago-
nals.

Figure 6. The volume of this paral-
lelepiped is the absolute value of the de-
terminant of the matrix formed by the
rows r1, r2, and r3.

Here the sum is computed over all permutations σ of the numbers {1, 2, . . . , n}. A permutation is a function
that reorders this set of integers. The set of such permutations is denoted by Sn. The sign function of
permutations in the permutation group Sn returns +1 and −1 for even and odd permutations, respectively.

For example, for n = 4 and σ = (1, 4, 3, 2), sign(σ) = −1 (one pair switch) and
4∏

i=1

ai σ(i) = a11a24a33a42.
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Furthermore, for A =

[
a11 a12

a21 a22

]
, S2 = {σ1, σ2}, with σ1 = (1, 2), σ2 = (2, 1), sign(σ1) = +1, sign(σ2) = −1,

and we have
2∏

i=1

ai σ1(i) = a11a22,

2∏
i=1

ai σ2(i) = a12a21, and thus, det(A) = a11a22 − a12a21.

Matlab function det(A) computes the determinant of a square matrix A. For A = pascal(4), we have

>> A = pascal(4)
A =

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

>> det(A)
ans =

1

Actually, det(pascal(n)) is equal to 1 for any n ≥ 1.

A square matrix A has the inverse A−1 if and only if det(A) 6= 0. In this case, det(A−1) = 1/ det(A).

12.3.1. Cramer’s rule. For square matrices A that are invertible, the system of equations AX = b with a
given n-dimensional column vector b can be solved by using so called Cramer’s rule. This rule states that
the solution X = (x1, x2, . . . , xn)T is obtained by the formula:

xi =
det(Ai)

det(A)
, i = 1, 2, . . . , n,

where Ai is the matrix formed by replacing the ith column of A by the column vector b.

Here is Matlab code for Cramer’s rule applied to A=magic(5) and b=[1;2;3;4;5]

>> A = magic(5);
>> b = [1;2;3;4;5];
>> format rat;
>> for i=1:5 % only these three
C=A; C(:,i)=b; X(i,:)=det(C)/det(A); % lines represent

end % the actual code

>> format rat; X
X =

1/78
1/78
7/39
1/78
1/78

Check that the backslash operator A\b and the command inv(A)*b provide the same solution.

Note: For large size matrices, the use of Cramer’s rule and of the inverse is not computationally efficient
as compared to the backslash operator.

12.4. Pseudoinverses or Generalized Inverses.

(This section can be skipped in the first reading of the tutorial.)

The pseudoinverse A+ f an m × n matrix A is a generalization of the inverse matrix. The terms Moore-
Penrose pseudoinverse or generalized inverse are also used as synonyms for pseudoinverse. Pseudoinverse is
a unique n×m matrix A+ satisfying all of the following four conditions:

(1) AA+A = A;
(2) A+AA+ = A+;
(3) (AA+)′ = AA+ (i.e.,AA+ is Hermitian);
(4) (A+A)′ = A+A (i.e.,A+A is Hermitian).



MATLAB PRIMER 29

Here A′ is the Hermitian transpose (also called conjugate transpose) of a matrix A. For matrices whose
elements are real numbers instead of complex numbers, A′ = AT , In Matlab notation, Hermitian transpose
of A is A’.

Pseudoinverses satisfy many properties. Here are some of them:

• The pseudoinverse exists and is unique for any matrix A.
• If A has real entries, then so does A+; if A has rational entries, then so does A+.
• If the matrix A is invertible, the pseudoinverse and the inverse coincide, i.e., A+ = A−1.
• The pseudoinverse of a zero matrix is its transpose.
• The pseudoinverse of the pseudoinverse is the original matrix, i.e., (A+)+ = A.
• Pseudoinversion commutes with transposition, conjugation, and taking the conjugate transpose.
• The pseudoinverse of a scalar multiple of A is the reciprocal multiple of A+, i.e., (αA)+ = α−1A+

for α 6= 0.

For more information go to the webpage: http://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse

A common use of the pseudoinverse is to compute a best fit (least squares) solution to a system of linear
equations that lacks a unique solution. In general, a given linear system AX = b may not have a solution.
Even if there exists such a solution, it may not be unique. One can however ask for a vector X that brings
AX as close as possible to vector b, i.e., a vector that minimizes the Euclidean norm

‖AX− b‖,

where for v = (v1, v2, . . . , vn), ‖v‖ =

(
n∑

i=1

|vi|2
)1/2

. Matlab command for the norm of vector v is norm(v).

If there are several such vectors X, one could ask for the one among them with the smallest Euclidean norm.
Thus formulated, the problem has a unique solution, given by the pseudoinverse:

X = A+b.

Matlab function that computes the pseudoinverse of a matrix A is pinv(A). If for given A and b, the least
square solution X is unique, it can be computed by entering either X=pinv(A)*b or X=A\b. If there exist many
least square solutions (for the so called rank-deficient matrices), X=pinv(A)*b computes vector X with the
smallest norm norm(X), while X=A\b computes a vector X that has at most r nonzero components. Here, r is
the rank of matrix A equal to rank(A).

Sections 12.5.1 and 12.5.2 provide many examples for the use of pinv(A).

12.5. Underdetermined and Overdetermined Linear Systems.

12.5.1. Underdetermined linear systems. Underdetermined linear systems involve more unknowns than equa-
tions. Such systems are studied in linear programming, especially when accompanied by additional con-
straints. A solution, when exists, is never unique.

For A=[0 1 1 0; 1 1 0 1; 1 2 1 1] and b=[1;2;1], the corresponding system has three equations and
four unknowns:

x2 + x3 = 1

x1 + x2 + x4 = 2

x1 + 2x2 + x3 + x4 = 1

>> A=[0 1 1 0; 1 1 0 1; 1 2 1 1]; b=[1;2;1]; reduced_echelon_form =rref([A b])

reduced_echelon_form =
1 0 -1 1 0
0 1 1 0 0
0 0 0 0 1

http://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse
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The row reduced echelon form shows that the system has no exact solutions. In this case, least square
solutions X such that

X = min
Z
‖AZ− b‖, where for v = (v1, v2, . . . , vn), ‖v‖ =

(
n∑

i=1

|vi|2
)1/2

,

can be obtained by entering A\b or pinv(A)*b (see Section 12.4):

>> format rat; X=A\b

Warning: Rank deficient, rank=2, tol=2.1756e-15.
X =

1
1/3
0
0

>> format rat; Y=pinv(A)*b

Y =
7/15
2/5

-1/15
7/15

We observe that there are many vectors Z (here, X and Y) that minimize norm(A*Z-b). This is due to the
fact that matrix A has only 2 linearly independent columns (so called rank-deficient system, while the full
rank would be 3), the least square problem is not unique.

Consider now the following two equations with four unknowns:

6x1 + 8x2 + 7x3 + 3x4 = 1

3x1 + 5x2 + 4x3 + x4 = 2

Enter A=[6 8 7 3;3 5 4 1] and b=[1;2], and calculate rref([A b]):

>> A=[6 8 7 3;3 5 4 1]; b=[1;2]; format rat; rref([A b])

ans =

1 0 1/2 7/6 -11/6
0 1 1/2 -1/2 3/2

Thus, the system has an exact solution that can be obtained by entering X=A\b or W=pinv(A)*b:

>> format rat; X=A\b

X =
0
5/7
0

-11/7

>> format rat; W=pinv(A)*b

W =
-81/137
119/137
19/137

-154/137

Both X and W are exact solutions:

>> A*X

ans =
1
2

>> A*W

ans =
1
2

The general (complete) solution to AY = b is given by

Y = c1Z1 + c2Z2 + X, with Z1 =

−1/2
−1/2

1
0

 , Z2 =

−7/6
1/2
0
1

 , and X =

 0
5/7
0

−11/7

 ,
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where c1 and c2 are any constants (scalars), and Z1 and Z2 are fundamental solutions of the system AZ = 0,
as verified by

>>D = null(A,’r’)

D =
-1/2 -7/6
-1/2 1/2
1 0
0 1

>> Z1 = D(:,1); A*Z1

ans =
0
0

>> Z2 = D(:,2); A*Z2

ans =
0
0

The other solution, W=pinv(A)*b, is also of the form c1Z1 + c2Z2 + X, for some constants c1 and c2. Indeed,
the constants c1 and c2 are the solutions of the following linear system D*C=W-X with C=[c1;c2], as verified
by

>> D=null(A,’r’)

D =
-1/2 -7/6
-1/2 1/2
1 0
0 1

>> format rat; C=D\(W-X)

C =
19/137 %c1 = 19/137

429/959 %c2 = 429/959

12.5.2. Overdetermined linear systems. Overdetermined linear systems involve more equations than un-
knowns. For example, they are encountered in various kinds of curve fitting to experimental data (see
Section 13).

Enter the following data into Matlab:

t=[0;0.25;0.5;;0.75;1.00;1.25;1.50;1.75;2.00;2.25;2.50];
y=sin(t)+rand(size(t))/10;

We will model the above randomly corrupted sine function data with a quadratic polynomial function.

y(t) = c1 + c2t + c3t
2

In other words, we want to approximate the vector y by a linear combination of three other vectors:

y(0.00)
y(0.25)
y(0.50)
y(0.75)
y(1.00)
y(1.25)
y(1.50)
y(1.75)
y(2.00)
y(2.25)
y(2.50)


= c1



1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00


+ c2



0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50


+ c3



(0.00)2

(0.25)2

(0.50)2

(0.75)2

(1.00)2

(1.25)2

(1.50)2

(1.75)2

(2.00)2

(2.25)2

(2.50)2


.

The above system has eleven equations and three unknowns: c1, c2, and c3. It is represented 11-by-3 matrix
A and b=y. The row reduced echelon form of A shows the above system does not have an exact solution:



32 JACEK POLEWCZAK

>> A = [ones(size(t)) t t.^2]
A =

1.0000 0 0
1.0000 0.2500 0.0625
1.0000 0.5000 0.2500
1.0000 0.7500 0.5625
1.0000 1.0000 1.0000
1.0000 1.2500 1.5625
1.0000 1.5000 2.2500
1.0000 1.7500 3.0625
1.0000 2.0000 4.0000
1.0000 2.2500 5.0625
1.0000 2.5000 6.2500

>> b=y
b =

0.0863
0.4295
0.5158
0.7344
0.8706
0.9762
1.1714
1.0999
1.0193
0.8071
0.7691

>> rref([A b])
ans =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Since rank(A)=3, both the backslash operator (i.e., A\b) and pinv(A)*b provide the same (unique) least
square solution:

>> X=A\b
X =

0.0207 % c1
1.2570 % c2

-0.4041 % c3

>> Y=pinv(A)*b
Y =

0.0207 % c1
1.2570 % c2

-0.4041 % c3

In other words, the least squares fit to the data is

y(t) = 0.0207 + 1.2570t− 0.4041t2

The following commands evaluate the model at regularly spaced increments in t (finer than the original
spacing) and then plot the result including the original data.

>> T=(0:0.1:3.0)’;
>> Y=[ones(size(T)) T T.^2]*X;
>> plot(T,Y,’-’,t,y,’o’)

Another way of obtaining the same least square solution is to enter the command

>> polyfit(t,y,2)
ans =

-0.4041 1.2570 0.0207 % c3 c2 c1

For more information on polyfit, see Section 13.1 on curve fitting and interpolation.

Note: Due to randomness of y = sin(t) + rand(size(t))/10, your results will differ slightly from the
above interpolating polynomial and the graph.



MATLAB PRIMER 33

And here is another attempt at fitting randomly corrupted sine function data into

y(t) = c1 + c2 sin(t) + c2 cos(t) + c4 exp(−t).

A = [ones(size(t)) cos(t) sin(t) exp(-t)]
A =

1.0000 1.0000 0 1.0000
1.0000 0.9689 0.2474 0.7788
1.0000 0.8776 0.4794 0.6065
1.0000 0.7317 0.6816 0.4724
1.0000 0.5403 0.8415 0.3679
1.0000 0.3153 0.9490 0.2865
1.0000 0.0707 0.9975 0.2231
1.0000 -0.1782 0.9840 0.1738
1.0000 -0.4161 0.9093 0.1353
1.0000 -0.6282 0.7781 0.1054
1.0000 -0.8011 0.5985 0.0821

>> b=y
b =

0.0409
0.3069
0.5056
0.7419
0.9126
0.9712
1.0092
1.0137
0.9412
0.8205
0.6493

>> X=A\b
X =

-0.0461 % c1
-0.0336 % c2
1.0582 % c3
0.1777 % c4

>> T=(0:0.1:3.0)’;
>> Y=[ones(size(T)) cos(T) sin(T) exp(-T)]*X;
>> plot(T,Y,’-’,t,y,’o’)

And here is another attempt at fitting randomly corrupted sine function data into

y(t) = c1 + c2 sin(t) + c2 cos(t) + c4 exp(−t).

The next two examples consider the systems with more equations than unknowns that have exact solutions.

Consider the system generated by 5 equations with 4 unknowns.

>> A=magic(5); A = A(:,1:4)
A =

17 24 1 8
23 5 7 14
4 6 13 20

10 12 19 21
11 18 25 2

b=[1;0;-43/648;0;0]
b =

1.0000
0

-0.0664
0
0

By computing the row reduced echelon form of A, we immediately get a solution.
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>> rref([A b])
ans =

1.0000 0 0 0 -0.0026
0 1.0000 0 0 0.0434
0 0 1.0000 0 -0.0305
0 0 0 1.0000 0.0040
0 0 0 0 0

>> X=A\b
X =

-0.0026
0.0434

-0.0305
0.0040

>> Y=pinv(A)*b
Y =

-0.0026
0.0434

-0.0305
0.0040

This solution is also confirmed by using the backslash operator, A\b, and pinv(A)*b. The solution is unique
since the homogeneous system AZ = 0 has only the trivial solution, as verified by the command

>> null(A)
ans =

Empty matrix: 4-by-0

Finally, consider the linear system with 8 equations and 6 unknowns as generated by

>> A = magic(8); A = A(:,1:6)
A =

64 2 3 61 60 6
9 55 54 12 13 51

17 47 46 20 21 43
40 26 27 37 36 30
32 34 35 29 28 38
41 23 22 44 45 19
49 15 14 52 53 11
8 58 59 5 4 62

>> b = 260*ones(8,1)
b =

260
260
260
260
260
260
260
260

The scale factor 260 is the 8-by-8 magic sum. With all eight columns, one solution to A*X = b would be a
vector of all 1’s. With only six columns, the equations are still consistent, as verified by looking at the row
reduced echelon form of A.

rref([A b])
ans =

1 0 0 1 1 0 4
0 1 0 3 4 -3 8
0 0 1 -3 -4 4 -4
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

So a solution exists, but it is not all 1’s. Since the matrix is rank deficient (rank(A)=3), there are infinitely
many solutions. Two of them are

>> format rat; X=A\b
Warning: Rank deficient, rank=3, tol=1.8829e-13.

X =
4
5
0
0
0

-1

>> format rat; W=pinv(A)*b

W =
15/13
19/13
18/13
18/13
19/13
15/13
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The general (complete) solution to AY = b is given by Y = c1Z1 + c2Z2 + c3Z3 + X with

Z1 =


719/2961
373/2112

−1161/6842
−2694/3481

316/595
−75/10834

 , Z2 =


−542/2847
−1262/1851

93/152
−136/1045
642/2003
257/3674

 , Z2 =


1389/2738
475/4663
159/326

−199/1255
−2226/6383
−102/173

 , and X =


4
5
0
0
0
−1

 ,

where c1, c2, and c3 are any constants (scalars), and Z1, Z2, and Z3 are fundamental solutions of the system
AZ = 0, as verified by

>> format rat; null(A)

ans =
719/2961 -542/2847 1389/2738
373/2112 -1262/1851 475/4663

-1161/6842 93/152 159/326
-2694/3481 -136/1045 -199/1255

316/595 642/2003 -2226/6383
-75/10834 257/3674 -102/173

12.6. Finding Eigenvalues and Eigenvectors. An eigenvalue and eigenvector of a square n × n matrix
A are a scalar λ and a nonzero (n-dimensional) column vector v that satisfy

Av = λv. (1)

Usually, one obtains the solution by solving for the n eigenvalues from the characteristic equation

det(A− λI) = 0,

and then solving for the eigenvectors by substituting the corresponding eigenvalues in (1), one at a time.
The eigenvectors are determined up to multiplicative scalars. In Matlab, λ and v are computed using
[V,D]=eig(A) command. For A=magic(3), and requesting the rational format (with fornat rat) for better
visibility, we have

>> A=magic(3)

A =
8 1 6
3 5 7
4 9 2

>> format rat; [V,D]=eig(A)

V =
-780/1351 -735/904 -452/1323
-780/1351 1121/2378 -1121/2378
-780/1351 452/1323 735/904

D =
15 0 0
0 4801/980 0
0 0 -4801/980

Matrix V contains the eigenvectors of A as its columns, while matrix D contains the eigenvalues on its
diagonal. By comparing

>> A*V(:,1)

ans =
-1351/156
-1351/156
-1351/156

>> 15*V(:,1)

ans =
-1351/156
-1351/156
-1351/156

>> A*V(:,2)

ans =
-3541/889
1351/585
3319/1983

>> (4801/980)*V(:,2)

ans =
-3541/889
1351/585
3319/1983

and similarly for the third column of V, we easily recover the eigenvalues and the corresponding eigenvectors
of the matrix A.
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Also by checking

>> format rat; det(V)
ans =

-1121/1189
we observe that V−1 exists, with the property

>> format rat; V*D*inv(V)

ans =
8 1 6
3 5 7
4 9 2

>> A=magic(3)

A =
8 1 6
3 5 7
4 9 2

Thus, we have A = VDV−1. Furthermore, V−1AV =
D. Because of this last property, we say that the ma-
trix A is diagonalizable.

The eigenvalues and eigenvectors can be complex valued as the next example shows:

>> A=[0 -6 -1;6 2 -16;-5 20 -10]

A =
0 -6 -1
6 2 -16

-5 20 -10

>> format rat; [V,D]=eig(A)

V =
-383/460 899/4489 - 387/2777i 899/4489 + 387/2777i
-1071/3014 -753/3568 - 519/805i -753/3568 + 519/805i
-489/1151 -1736/2505 -1736/2505

D =

-2294/747 0 0
0 -1841/747 + 4277/243i 0
0 0 -1841/747 - 4277/243i

Not every n × n matrix A has n linearly independent eigenvectors. For example, it is easy to show that

matrix A =

[
0 1
0 0

]
has a double eigenvalue λ = 0 and only one eigenvector v =

[
1
0

]
.

One can prove that if n × n matrix A has n distinct eigenvalues λ1, λ2, . . . , λn, then A has n linearly
independent eigenvectors: K1, K2, . . . ,Kn. Furthermore, if V denotes n × n matrix whose columns are
eigenvectors K1, K2, . . . ,Kn, then

A = VDV−1 and D = V−1AV, where D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
0 0 · · · λn


Because of the identity V−1AV = D, we say that the matrix A is diagonalizable. An important class of
diagonalizable matrices are square symmetric matrices whose entries are real. A square matrix A is symmetric
if it is equal to its transpose, i.e., A = A′. In other words, if for A = (aij)i,j=1,2,...,n , we have aij = aji, for
i, j = 1, 2, . . . , n.

A matrix with repeated eigenvalues may still have a full set of linearly independent vectors, as the next
example shows:
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>> A=[1 -2 2;-2 1 -2;2 -2 1]

A =
1 -2 2

-2 1 -2
2 -2 1

>> format rat; [V,D]=eig(A)

V =
-247/398 1145/2158 780/1351
279/1870 1343/1673 -780/1351

1040/1351 1013/3722 780/1351

D =
-1 0 0
0 -1 0
0 0 5

Matrix A has eigenvalues λ1 = λ2 = −1 and λ3 = 5.

A more readable expressions for the eigenvectors can be obtained by entering the command [P,J]=jordan(A)
(see Section 12.8.5 for more information on Jordan decomposition):

>> format rat; [P,J]=jordan(A)

P =
2/3 1/3 -1
1/3 -1/3 0

-1/3 1/3 1

J =
-1 0 0
0 5 0
0 0 -1

The columns of P represent the eigenvectors of A. Furthermore, after taking into account that eigenvectors
are determined up to multiplicative scalars, here are the eigenvalues and the corresponding eigenvectors:

λ1 = −1, K1 =

[
2
1
−1

]
; λ2 = 5, K2 =

[
1
−1
1

]
; λ2 = −1, K3 =

[−1
0
1

]
.

As verified below, the first two columns of V (i.e., the eigenvectors corresponding to the repeated eigenvalue
−1) can be expressed as the linear combinations of the eigenvectors K1 and K3 :

>> format rat; [3*P(:,1) P(:,3)]\V(:,1)

ans =
279/1870 % c1
624/679 % c2

>> format rat; [3*P(:,1) P(:,3)]\V(:,2)

ans =
1343/1673 % c1
947/881 % c2

Consider the following non diagonalizable matrix:
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>> A=[5 4 2 1;0 1 -1 -1;-1 -1 3 0;1 1 -1 2]

A =
5 4 2 1
0 1 -1 -1

-1 -1 3 0
1 1 -1 2

>> [V,D]=eig(A)

V =
0.5774 0.5774 0.5774 0.7071
0.0000 0.0000 -0.5774 -0.7071

-0.5774 -0.5774 0.0000 0.0000
0.5774 0.5774 0.5774 -0.0000

D =
4.0000 0 0 0

0 4.0000 0 0
0 0 2.0000 0
0 0 0 1.0000

We observe that the first two columns of matrix V are identical, thus matrix A does not have 4 linearly
independent eigenvectors. Further checking shows that Matlab cannot compute V−1 within its default error
of tolerance:

>> det(V)

ans =
1.3084e-16

>> inv(V)
Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.602469e-16.

ans =

1.0e+15 *

1.8014 1.8014 1.8014 -0.0000
-1.8014 -1.8014 -1.8014 0.0000
0.0000 -0.0000 0.0000 0.0000

-0.0000 -0.0000 -0.0000 -0.0000

12.7. Generalized Eigenvectors.

(This section can be skipped in the first reading of the tutorial.)

A non diagonalizable n×n matrix does not have n linearly independent eigenvectors. Generalized eigenvectors
are introduced to form a complete basis of such matrix. A generalized eigenvector of matrix A is a nonzero
vector w, which has associated with it an eigenvalue λ having algebraic multiplicity m ≥ 1, satisfying

(A− λI)mw = 0, (2)

where I denotes n× n identity matrix. For m = 1, generalized eigenvectors become ordinary eigenvectors.

Assume λ is an eigenvalue of multiplicity m ≥ 1, and there is only one eigenvector v1. The generalized
eigenvectors v1,v2, . . . ,vm satisfy

(A− λI)vk = vk−1, k = 1, 2, . . . ,m, with v0 = 0,

and they are linearly independent. Furthermore, for any k ≥ 1,

(A− λI)kvk = 0. (3)

In particular, (3) yields

(A− λI)mvk = 0, k = 1, 2, . . . ,m,

and thus implying (2).

Matlab jordan(A) function can be used to find generalized eigenvectors of matrix A (see also Section 12.8.5
for more information on Jordan decomposition). Consider the following example:
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>> A=[5 4 2 1;0 1 -1 -1;-1 -1 3 0;1 1 -1 2]

A =
5 4 2 1
0 1 -1 -1

-1 -1 3 0
1 1 -1 2

>> [P,J]=jordan(A)

P =

1 1 -1 1
0 0 1 -1

-1 0 0 0
1 0 0 1

J =
4 1 0 0
0 4 0 0
0 0 1 0
0 0 0 2

The numbers 1, 2, and 4 are the eigenvalues of matrix A. Furthermore 4 is double eigenvalue. Let us denote
the columns of P by p1, p2, p3, and p4, then we have

(A− 2I)p4 = 0, (A− 1I)p3 = 0, (A− 4I)p1 = 0, and (A− 4I)p2 = p1.

Indeed,

>> (A-2*eye(4))*P(:,4)
ans =

0
0
0
0

>> (A-1*eye(4))*P(:,3)
ans =

0
0
0
0

>> (A-4*eye(4))*P(:,1)

ans =
0
0
0
0

>> (A-4*eye(4))*P(:,2)

ans =
1
0

-1
1

Thus p1, p3, and p4 are ordinary eigenvectors corresponding to the eigenvalues 4, 1, and 2, respectively.
Since (A−4I)p2 = p1 and (A−4I)p1 = 0, we also have (A−4I)2p2 = 0 and p2 is a generalized eigenvector
corresponding to the eigenvalue 4.

The matrix in the next example has the eigenvalues 1 (with multiplicity 3), 2 (with multiplicity 2), and 3
with multiplicity 1).

>> A=[1 1 1 2 -1 2;0 1 2 -1 -1 2; 0 0 1 2 1 2;0 0 0 2 2 -1; 0 0 0 0 2 2; 0 0 0 0 0 3]

A =
1 1 1 2 -1 2
0 1 2 -1 -1 2
0 0 1 2 1 2
0 0 0 2 2 -1
0 0 0 0 2 2
0 0 0 0 0 3
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>> format rat; [P,J]=jordan(A)
P =

29/4 -58 116 -29 -145/2 -493/4
7/2 -174/7 2378/49 0 -29 -58
5 -116/7 435/49 0 0 -29/2
3 -58/7 -87/49 0 0 0
2 0 -29/7 0 0 0
1 0 0 0 0 0

J =

3 0 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1

Let us denote the columns of P by p1, p2, p3, p4, p5, p6. then we have,

(A− 3I)p1 = 0, (A− 2I)p2 = 0, (A− 2I)p3 = p2, (A− I)p4 = 0, (A− I)p5 = p4, and (A− I)p6 = p5,

Since (A − 2I)p2 = 0 and (A − 2I)p3 = p2, we have (A − 2I)2p3 = 0 and p3 is a generalized eigenvector
corresponding to the eigenvalue 2. Also, since (A − I)p4 = 0, (A − I)p5 = p4, (A − I)p6 = p5, we have
(A − I)3p6 = 0 and (A − I)3p5 = 0, implying that p5 and p6 are generalized eigenvectors corresponding
to the eigenvalue 1. On the other hand, p1, p2, and p4 are the ordinary eigenvectors corresponding to the
eigenvalues, 3, 2, and 1, respectively.

In the last example, the matrix also has the eigenvalues 1 (with multiplicity 3), 2 (with multiplicity 2), and
3 with multiplicity 1), however here, there are two linearly independent eigenvectors corresponding to the
eigenvalue 1.

>> A=[1 0 1 2 3 4;0 1 5 8 -1 2; 0 0 1 7 4 2;0 0 0 2 6 9; 0 0 0 0 2 5; 0 0 0 0 0 3]

A =
1 0 1 2 3 4
0 1 5 8 -1 2
0 0 1 7 4 2
0 0 0 2 6 9
0 0 0 0 2 5
0 0 0 0 0 3
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>> format rat; [P,J]=jordan(A)

P =
489/4 -2093/10 -29117/56 -18837/43 22271/56 991/1554

2093/4 -2093/2 -10465/4 -2093 2093 0
295/2 0 -2093/10 -14651/43 22637/404 0
39 0 0 -2093/43 -4216/117 0
5 0 0 0 2093/258 0
1 0 0 0 0 0

J =
3 0 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 2 1 0
0 0 0 0 2 0
0 0 0 0 0 1

Let us denote the columns of P by p1, p2, p3, p4, p5, p6. We have,

(A− 3I)p1 = 0, (A− I)p2 = 0, (A− I)p3 = p2, (A− 2I)p4 = 0, (A− 2I)p5 = p4, and (A− I)p6 = 0,

Since (A − I)p2 = 0 and (A − I)p3 = p2, we have (A − I)2p3 = 0, thus p3 is a generalized eigenvector
corresponding to the eigenvalue 1. Also, since (A−2I)p4 = 0 and (A−2I)p5 = p4, thus we have (A−2I)2p5 =
0 and p5 is a generalized eigenvector corresponding to the eigenvalue 1. On the other hand, p1, p2, p4, and
p6, are the ordinary eigenvectors corresponding to the eigenvalues, 3, 1, 2, and 1, respectively.

12.8. Matrix Factorizations, Matrix Powers and Exponentials.

(This section can be skipped in the first reading of the tutorial.)

12.8.1. Cholesky factorization. The Cholesky factorization expresses a symmetric (or more generally Hermit-
ian) and positive definite matrix A as the product of an upper triangular matrix R and its transpose R′, i.e.,
A = R′R.

>> A=pascal(5)

A =
1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

>> R=chol(A)

R =
1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

>> R’*R % verification

ans =
1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

For a symmetric (or more generally Hermitian) and positive definite matrix the Cholesky factorization exists.
In this case, it is also unique in the sense that there exists only one upper triangular matrix R with strictly
positive diagonal entries such that A = R′R.
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12.8.2. LU factorization. The LU factorization is a matrix decomposition which writes a matrix A as the
product of a lower triangular matrix L and an upper triangular matrix U, i.e., A = LU. The product
sometimes includes a permutation matrix as well. The LU decomposition is a modified form of Gaussian

elimination. Not all square matrices have LU factorization, For example, A =

[
0 1
1 0

]
cannot be expressed at

the product of triangular matrices. Even when such a factorization exists it is not unique (since A = LU =
(−L)(−U)), unless one puts some restrictions on L and U matrices. Often, one such conditions is to require
that the diagonal of L (or U) consists of ones. Though, the matrix

A =

[
ε 1
1 0

]
=

[
1 0

1/ε 1

] [
ε 1
0 −1/ε

]
(4)

can be expressed as the product of the lower and upper triangular matrices, however, when ε is small, the
factors are large and magnify errors, so even the permutations matrix is not necessary, it is desirable. For a
given matrix A, Matlab command [L,U,P]=lu(A) returns an upper triangular matrix U, a lower triangular
matrix L with ones on its diagonal, and a permutation matrix P, such that LU = PA. (A permutation
matrix is matrix of zeros and ones that has exactly one entry 1 in each row and column.) Furthermore, such
decomposition always exist (even A is not square matrix). On the other hand, the command [L,U]=lu(A)
returns an upper triangular matrix U, and a permuted lower triangular matrix L such that LU = A. LU
decomposition is used in numerical analysis to solve systems of linear equations or calculate the determinant.
Finally, when A is symmetric (Hermitian) and positive definite matrix, one can choose L in such a way that
L = U′ and we get back to the Cholesky factorization.

For matrix in (4) with ε = 1/1000, we have

>> format rat; A=[0.001 1;1 0]
A =

1/1000 1
1 0

>> [L,U,P]=lu(A)
L =

1 0
1/1000 1

U =
1 0
0 1

P =
0 1
1 0

>> format rat; A=[0.001 1;1 0]
A =

1/1000 1
1 0

>> [L,U]=lu(A)
L =

1/1000 1
1 0

U =
1 0
0 1

And here is another example.
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>> A=magic(5)
A =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

>> format rat; [L,U,P]=lu(A)
L =

1 0 0 0 0
17/23 1 0 0 0
11/23 359/467 1 0 0
4/23 118/467 1199/2322 1 0
10/23 226/467 1679/2322 12/13 1

U =
23 5 7 14 16
0 467/23 -96/23 -54/23 73/23
0 0 6787/273 -1350/467 -510/467
0 0 0 845/43 2752/145
0 0 0 0 -200/9

P =
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

12.8.3. QR factorization. An orthogonal matrix Q is a real matrix whose columns all have length one and
are perpendicular, equivalently Q′Q = I, where I is the identity matrix. This also implies that Q−1 = Q′.
The following is the simplest 2× 2 orthogonal matrix representing two-dimensional coordinate rotations:

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]

For complex matrices, the corresponding term is unitary. Orthogonal (unitary) matrices preserve length,
preserve angles, and do not magnify errors, and thus they are often used in numerical computations.

The qr function performs the orthogonal-triangular decomposition of a matrix. This factorization is useful
for both square and rectangular matrices. It expresses the matrix as the product of an orthogonal (unitary)
matrix and an upper triangular matrix.

Matlab command [Q,R] = qr(A) produces an upper triangular matrix R of the same dimension as A and
a unitary matrix Q so that A = QR. If m × n is the size of A, then Q is m × m and R is m × n. Since
we also have A = (−Q)(−R), with −Q being orthogonal (unitary) and −R being upper triangular, this
factorization is not unique. If A is square and invertible matrix, then this factorization is unique if, for
example, we require that the diagonal elements of R are positive (negative).
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>> A=[12 -51 4; 6 167 -68;-4 24 -41]
A =

12 -51 4
6 167 -68

-4 24 -41

>> format rat; [Q,R]=qr(A)
Q =

-6/7 69/175 58/175
-3/7 -158/175 -6/175
2/7 -6/35 33/35

R =
-14 -21 14

0 -175 70
0 0 -35

>> Q*R % verification
ans =

12 -51 4
6 167 -68

-4 24 -41

12.8.4. Schur decomposition. For a matrix A, there exist orthogonal (unitary) matrix Q and an upper tri-
angular matrix U such that

A = QUQ−1.

Note that Q−1 = Q′. Since U is similar to A and U is triangular, the eigenvalues of A are the diagonal
entries of U. The corresponding Matlab command is [Q,U]=schur(A).

>> A=[6 12 19;-9 -20 -33;4 9 15]
A =

6 12 19
-9 -20 -33
4 9 15

>> format rat; [Q,U]=schur(A)
Q =

-540/1139 926/1393 780/1351
1467/1805 286/3657 780/1351
-489/1444 -2506/3373 780/1351

U =
-1 1351/65 -9520/213
0 1 -523/858
0 0 1

12.8.5. Jordan normal (canonical) form.

(This section requires Symbolic Math Toolbox.)

For a given square matrix A there exists an invertible matrix P (similarity matrix) such that P−1AP = J
and J is block diagonal matrix

J =

J1

. . .
Jk


where each block Ji (1 ≤ i ≤ k) is a 1× 1 matrix or it is a square matrix of the form of

Ji =


λi 1

λi
. . .
. . . 1

λi


J is such that the only non-zero entries of J are on the diagonal and the super-diagonal. J is called the
Jordan normal form of A and each Ji is called a Jordan block of A. In a given Jordan block, every entry on
the super-diagonal is 1. The Jordan decomposition is not unique.
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We have the following properties:

• Counting multiplicity, the eigenvalues of J (and therefore A) are the diagonal entries.
• Given an eigenvalue λi, its geometric multiplicity is the dimension of Ker(A−λI), and it is the number

of Jordan blocks corresponding to λi.
• The sum of the sizes of all Jordan blocks corresponding to an eigenvalue λi is its algebraic multiplicity.
• A is diagonalizable if and only if, for every eigenvalue λ of A, its geometric and algebraic multiplicities

coincide.
• A = PJP−1 and the columns of P are the generalized eigenvectors of A (see Section 12.7).

The following 11× 11 Jordan block matrix

2 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 i 1 0 0 0 0 0
0 0 0 0 0 i 0 0 0 0 0
0 0 0 0 0 0 i 1 0 0 0
0 0 0 0 0 0 0 i 0 0 0
0 0 0 0 0 0 0 0 7 1 0
0 0 0 0 0 0 0 0 0 7 1
0 0 0 0 0 0 0 0 0 0 7


has

one 1× 1 block corresponding to eigenvalue 2 (with algebraic multiplicity 1 and geometric multiplicity 1);
one 3× 3 block corresponding to eigenvalue 0 (with algebraic multiplicity 3 and geometric multiplicity 1);
two 2× 2 blocks corresponding to eigenvalue i (with algebraic multiplicity 4 and geometric multiplicity 2);
one 3× 3 block corresponding to eigenvalue 7 (with algebraic multiplicity 3 and geometric multiplicity 1).

Matlab J=jordan(A) computes the Jordan canonical (normal) form of A, The matrix must be known exactly.
Thus, its elements must be integers or ratios of small integers. Any errors in the input matrix may completely
change the Jordan canonical form.

The command [P,J]=jordan(A) computes both J, the Jordan canonical form, and the similarity transform,
P, whose columns are the generalized eigenvectors.

>> A=[5 4 2 1;0 1 -1 -1;-1 -1 3 0;1 1 -1 2]
A =

5 4 2 1
0 1 -1 -1

-1 -1 3 0
1 1 -1 2

>> [P,J]=jordan(A)
P =

1 1 -1 1
0 0 1 -1

-1 0 0 0
1 0 0 1

J =
4 1 0 0
0 4 0 0
0 0 1 0
0 0 0 2

12.8.6. Matrix Powers and Exponentials. If A is a square matrix and k a positive integer, then A^k effectively
multiplies A by itself k−1 times. If A is a square and invertible matrix and k a positive integer, then A^(-k)
effectively multiplies A−1 (i.e., inv(A), in Matlab notation) by itself k − 1 times. Fractional powers, like
A^(3/4) are also permitted.

The operator .^ produces element-by-element powers. For example, for A=[1 2 3;3 4 5;6 7 8],
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>> A^2
ans =

25 31 37
45 57 69
75 96 117

>> A.^2
ans =

1 4 9
9 16 25

36 49 64

The command sqrtm(A) computes A^(1/2) by a more accurate algorithm. The m in sqrtm distinguished
this function from sqrt(A) which, like A.^(1/2) does its job element-by-element.

The command expm(A) computes the computes the exponential of a square matrix A, i.e., eA. This operation
should be distinguished from exp(A) which computes the element-by-element exponential of A.

>> A=[1 2; 0 1]
A =

1 2
0 1

>> expm(A)
ans =

2.7183 5.4366
0 2.7183

Using Symbolic Math Toolbox additional symbolics operations are possible:

>> syms t; % defines symbolic variable t
>> f=inline(’expm(t*A)’) % defines symbolic inline

% function in A and t
f =

Inline function:
f(A,t) = expm(t*A)

>> f(A,t)

ans =

[ exp(t), 2*t*exp(t)]
[ 0, exp(t)]

>> f(A,1)

ans =

2.7183 5.4366
0 2.7183

12.9. Characteristic Polynomial of a Matrix and Cayley-Hamilton Theorem. Matlab command
p = poly(A), where A is n×n matrix returns an n+1 element row vector whose elements are the coefficients
of the characteristic polynomial of A:

det(A− λI) = 0.

The coefficients are ordered in descending powers: if a vector c = (c1, c2, . . . , cn+1) has n+1 components, the
polynomial it represents is

c1λ
n + · · ·+ cnλ + cn+1.

The command p = poly(r), where r is a vector returns a row vector whose elements are the coefficients of
the polynomial whose roots are the elements of r.

>> A=[1 2 3;4 5 6;7 8 0]
A =

1 2 3
4 5 6
7 8 0

>> format rat; p=poly(A)
p =

1 -6 -72 -27

>> A=[1 2 3;4 5 6;7 8 0]
A =

1 2 3
4 5 6
7 8 0

>> p=poly(sym(A)) % requires Symbolic Math Toolbox
% computes the characteristic polynomial
% of A in symbolic variable x

p =
x^3 - 6*x^2 - 72*x - 27
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>> A=[1 2 3;4 5 6;7 8 0]
A =

1 2 3
4 5 6
7 8 0

>> format rat; p=poly(A)
p =

1 -6 -72 -27

>> pA = polyvalm(p,A)
pA =

* * *
* * *
* * *

The command polyvalm(p,A) evaluates a polynomial in a matrix sense. This is the same as substituting
matrix A in the polynomial p. The zero matrix pA verifies Cayley-Hamilton theorem. This theorem states
that if p(λ) = p0 + p1λ + . . . + (−1)nλn is the characterstic polynomial of A, then

p(A) = p0I + p1A + . . . + (−1)nAn = 0.

Finally, the last script below computes the roots of the characteristic polynomial p.

>> A=[1 2 3;4 5 6;7 8 0]
A =

1 2 3
4 5 6
7 8 0

>> format rat; p=poly(A)
p =

1 -6 -72 -27

>> format rat; roots(p) % computes the roots of
ans = % the polynomial p, i.e.,

2170/179 % the eigenvalues of A
-648/113
-769/1980

13. Curve Fitting and Interpolation

Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit (in a least
square sense) to a series of data points, possibly subject to additional constraints. Interpolation is the method
of constructing new data points within the range of a discrete set of known data points. Extrapolation is the
process of constructing new data points outside a discrete set of known data points.

Matlab has many utilities for curve fitting and interpolation. The example below involves fitting the randomly
corrupted sine function using linear, quadratic, and polynomial of degree 4 curves fitting.

>> x = (0: 0.25: 2.5);
>> y = sin(x) + rand(size(x))/5;
>> plot(x,y)
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Go to your figure window and click on Tools, and select Basic Fitting. A new window opens with Basic
Fitting menu. Check linear, quadratic, and 4th degree polynomial, together with the boxes for Show
equations, Plot residuals, and Show norm of residuals. Select also Separate figure.

Note: Due to randomness of y = sin(x) + rand(size(x))/5, your results will differ slightly from the
above interpolating polynomials, graphs and norms.

13.1. Hands-on Understanding of Curve Fitting Using Polynomial Functions. p = polyfit(x,y,n)
finds the coefficients of a polynomial p(x) of degree n that fits the data, p(x(i)) to y(i), in a least squares
sense. The result p is a row vector of length n+1 containing the polynomial coefficients in descending powers
of x, i.e, p = [p1, p2 . . . , pn, pn+1] corresponding to

p(x) = p1x
n + p2x

n−1 + · · ·+ pnx + pn+1

Next, the command polyval(p,x) evaluates the polynomial at the data points x(i) and generates the values
y(i) such that

yi = p1x
n
i + p2x

n−1
i + · · ·+ pnxi + pn+1.

The next example involves fitting the error function, erf(x), by a polynomial in x of degree 6. In mathematics,
the error function (also called the Gauss error function) is a special function (non-elementary) of sigmoid
shape which occurs in probability, statistics, materials science, and partial differential equations. It is defined
as:

erf(x) =
2√
π

∫ x

0

e−t2dt.

>> x = (0: 0.1: 2.5)’;
>> y=erf(x);

First generate x, a (column) vector of equally spaced
points in the interval; then evaluate erf(x) at those
points.

>> p = polyfit(x,y,6)
p =

0.0084 -0.0983 0.4217 -0.7435 0.1471 1.1064 0.0004

Compute the coefficients in the approximating polynomial
of degree 6.

There are seven coefficients and the polynomial is

0.0084x6 − 0.0983x5 + 0.4217x4 − 0.7435x3 + 0.1471x2 + 1.1064x + 0.0004

>> f = polyval(p,x); Evaluates the polynomial at the data points.
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>> table = [x y f y-f]
table =

0 0 0.0004 -0.0004
0.1000 0.1125 0.1119 0.0006
0.2000 0.2227 0.2223 0.0004
0.3000 0.3286 0.3287 -0.0001
0.4000 0.4284 0.4288 -0.0004
...

2.1000 0.9970 0.9969 0.0001
2.2000 0.9981 0.9982 -0.0001
2.3000 0.9989 0.9991 -0.0003
2.4000 0.9993 0.9995 -0.0002
2.5000 0.9996 0.9994 0.0002

The (partial) table is showing the data, fit,
and error.

So, on the interval [0, 2.5], the fit is good to between three and four digits. Beyond this interval, the graph
below shows that the polynomial behavior takes over and the approximation quickly deteriorates.

>> x = (0: 0.1: 5)’;
>> y = erf(x);
>> f = polyval(p,x);
>> plot(x,y,’o’,x,f,’-’)
>> axis([0 5 0 2])

13.2. Interpolation. Given the data points (xi, yi), find yj at desired xj 6= xi from yj = f(xj), where f is a
continuous function to be found from interpolation. The command is ynew = interp1(x,y,xnew, method ).
The methods are:

’nearest’ Nearest neighbor interpolation

’linear’ Linear interpolation (default)

’spline’ Cubic spline interpolation

’pchip’ Piecewise cubic Hermite interpolation

’cubic’ (Same as ’pchip’)

The default method is linear.

As an example, we generate a coarse sine curve and interpolate over a finer abscissa.

x = 0:10;
y = sin(x);
xi = 0:.25:10;
yi = interp1(x,y,xi,’nearest’);
plot(x,y,’o’,xi,yi)

Uses nearest method.
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The figures below show the results of different interpolating methods.

For other interpolating functions/methods check Matlab help on spline or interpft. For two- and three-
dimensional analogs of interp1, check Matlab help on interp2 and interp3 commands, respectively.

14. Solving Nonlinear Algebraic Equations

The command fzero solves nonlinear equations involving one variable of the form:

f(x) = 0.

In the first example, we calculate π by finding the zero of the sine function near 3.

>> x0=fzero(’sin’,3)
x0 =

3.1416

>> x0=fzero(’my_f’,10)
x0 =

1.0193 my f is from the function file defined in Section 5.

>> x = fzero(@cos,[1 2])
x =

1.5708

Finds the zero of cosine between 1 and 2. Use the
command help function handle to check what
is the meaning of @ symbol in this command.
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>> f = @(x)x.^3-2*x-5;
>> z = fzero(f,2)
z =

2.0946

An alternative way to find the zeros of the function
f(x) = x3−2x−5 is to use an anonymous function
@(x)x.^3-2*x-5 and find the zero near 2.

Because f(x) = 1 · x3 + 0 · x2 + (−2) · x1 + (−5) · x0 is a polynomial, the following command,

>> roots([1 0 -2 -5])
ans =

2.0946
-1.0473 + 1.1359i
-1.0473 - 1.1359i

finds the same zero and the remaining roots of this polynomial.

15. Numerical Integration - Quadrature

Numerical integration (often abbreviated to quadrature) is an algorithm for calculating the numerical value
of a definite integral. Matlab command y = quad(’your_function’,a,b,tol) evaluates the integral of
your function of one variable from a to b, using adoptive Simpson’s rule. The optional parameter tol
specifies absolute tolerance. The default value is 10−6,

If one uses the statement [y,evals] = quad(’your_function’,a,b,tol), the procedure also returns, evals,
the number of function evaluations used to find the numerical value of the integral.

For example, in order to compute
2∫

0

1

x3 − 2x− 5
dx

type the following:

>> y = quad(’1./(x.^3-2*x-5)’,0,2)
y =

-0.4605

>> f = inline(’1./(x.^3-2*x-5)’);
>> [y,evals] = quad(f,0,2)
y =

-0.4605
evals =

41

An alternative way to find the integral of the same
function with the number of function evaluations
provided as an outcome.

>> [integral,evals] = quad(’my_f’,0,1)
integral =

0.0917
evals =

125

The definite integral from 0 to 1 of my f, the func-
tion file defined in Section 5.

Another Matlab quadrature, y = quadl(’your_function’,a,b,tol), numerically evaluates integral using
adaptive Lobatto algorithm. Often this quadrature is more accurate than quad method. In order to compare
these two quadratures, we compute the integral,

0.7∫
0.3

exp(−x2) dx =

√
π

2
[erf(0.7)− erf(0.3)] ,

where erf(x) is the internal Matlab function (see also Section 13.1),
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>> format long
>> value = (sqrt(pi)/2)*(erf(0.7)-erf(0.3));
>> [y,evals] = quad(’exp(-x.^2)’,0.3,0.7);
>> [yl,evalsl] = quadl(’exp(-x.^2)’,0.3,0.7);
>> table = [value y yl (value-y)/value (value-yl)/value evals evalsl]’
table =

0.309447785425779
0.309447785513074
0.309447785425838

-0.000000000282099
-0.000000000000191
13.000000000000000
18.000000000000000

With the default accuracy quad gives only (0.00028× 10−6)% error, while quadl gives (0.00000019× 10−6)%
error. The algorithm quad uses 13 and quadl uses 18 functions evaluations to compute the integral.

15.1. Quadrature For Double Integrals. For double integrals,

ymax∫
ymin

 xmax∫
xmin

f(x, y) dx

 dy,

Matlab provides q = dblquad(’your_function’,xmin,xmax,ymin,ymax,tol,@method), where @method can
be @quad (default) or @quadl. You need [] as a placeholder for the default value of tol, when the optional
argument @method is used. For example, for the double integral,

π∫
0

 2π∫
π

(y sin x + x cos y) dx

 dy = −π2,

we can compare quad and quadl methods:

>> format long
>> value =-pi^2;
>> q = dblquad(’y*sin(x)+x*cos(y)’,pi,2*pi,0,pi);
>> ql = dblquad(’y*sin(x)+x*cos(y)’,pi,2*pi,0,pi,[],@quadl);
>> table = [value q ql (value-q)/value (value-ql)/value]’
table =

-9.869604401089358
-9.869604377254573
-9.869604289913852
0.000000002414969
0.000000011264434

Note that the lower order method (quad) performs better in this case than the higher order method (quadl).

16. Solving Ordinary Differential Equations

Matlab has many algorithms for solving systems of ordinary differential equations (ODE). Two procedures,
ode23 and ode45, described below are implementations of 2nd/3rd-order and 4th/5th-order Runge-Kutta
methods, respectively.

For the system of ODE in the vector form,

ẋ = f(x, t),
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where

x = [x1 x2 . . . xn]T =


x1

x2
...

xn

 , ẋ =

[
dx1

dt

dx2

dt
. . .

dxn

dt

]T

=



dx1

dt

dx2

dt
...

dxn

dt


,

and

f = [f1 f2 . . . fn]T =


f1(x1, x2, . . . , xn, t)

f2(x1, x2, . . . , xn, t)

...

fn(x1, x2, . . . , xn, t)

 ,

one has to write a function that computes f1, f2 . . . , fn, given the input (x, t), where x is the column vector
x = [x1 x2 . . . xn]T . Your function must return the state derivative ẋ as a column vector.

Here is the syntax for ode23 (for ode45, just replace ode23 with ode45):

(time, solution) = ode23(’your_function’, tspan, x0),

where tspan= [t0, tfinal] and x0 is the initial condition(s). For a system of n equations, the output solution
contains n columns. Note which column corresponds to which variable in order to extract the correct column.

Example 1. For the first order differential equation,

dx

dt
= x2 − t2

t4 + 1
, with the initial condition x(−2) = 0.55, (5)

create the following function file:

function xdot = ode1(t,x);
% ODE1: computes xdot.
xdot = x.^2-t.^2./(t.^4+1);

and save it as ode1.m in the current working directory of Matlab.

>> x0 = 0.55;
>> tspan = [-2,15];
>> [t,x] = ode23(’ode1’,tspan,x0);
>> plot(t,x)

Figure 7. Graph of the solution to (5).

Example 2a. The one-dimensional motion of an object projected vertically downward (toward the surface
of the Earth) in the media offering resistance proportional to the square root of velocity can be modeled by
the following differential equation:

m
dv

dt
= mg − k

√
v, v(0) = v0 ≥ 0, (6)
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where v is velocity, m is the mass of the object, g = 9.81 (m/sec2) is the acceleration due to gravity, k is
the proportionality constant, and v0 is the initial velocity. The positive direction of the velocity is in the
downward direction.

In this example we are not interested in the positions of the moving object, though you can imagine that the
object was thrown vertically downward from a very high building. Computation of the positions is done in
Example 2b.

In the calculations below, we choose m = 1, the drag constant k = 9, and experiment with different (positive)
initial velocities.

Create the following function file:

function dvdt = ode2(t,v);
% ODE2A: computes dvdt.
m =1; g = 9.81; k = 9;
dvdt = g-(k/m)*sqrt(v);

and save it as ode2a.m in the current working directory of Matlab.

>> v0 = 1;
>> tspan = [0,3];
>> [t,v] = ode23(’ode2a’,tspan,v0);
>> plot(t,v)
>> hold on
>> v0 =1.5;
>> [t,v] = ode23(’ode2a’,tspan,v0);
>> plot(t,v,’--’)

Figure 8. Graph of the solutions to (6).

The dashed curve in Figure 8 represents a function decreasing in time and thus, it does not describe the
intended physical situation. Indeed, the terminal velocity for the problem described by (6) is given by

Vterminal =
(mg

k

)2

=

(
9.81

9

)2

= 1.1881,

corresponding to one of the equilibrium solutions of (6): v(t) = (mg/k)2 = 1.1881. Therefore, for initial
velocities greater than 1.1881, as is the case of the initial velocity v0 = 1.5, the typical behavior of such
solutions is indicated by the dashed curve in Figure 8.

Practice exercise. Write you own function file to solve the problem of an object projected vertically
upward in the media offering resistance proportional to the square root of velocity (with k = 1, g = 9.81,
and m = 1). As before, choose the positive direction of the velocity in the downward direction and the initial
velocity v0 = −10. Additionally, find the time t0 such that v(t0) = 0.
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Note: The direction of the drag force always opposes the motion of the object, and thus it is different for
upward/downward motions.

Example 2b.

In this example we consider the same physical problem as in Example 2a and, in addition to the velocity, we
also compute the positions of the object of mass m = 1 kg that is dropped from the height of 100 meters.

m
d2x

dt2
= mg − k

√
dx

dt
, x(0) = 0,

dx

dt
(0) = 0, (7)

We assume that k = 1 and the positive direction of the velocity and the position is in the downward direction.

Equation (7) can be written as the system of two differential equations for z1 = x and z2 = dx/dt = v as
follows:

dz

dt
=


dz1

dt
dz2

dt

 =

 z2

g − k

m

√
z2

 ,

[
z1(0)

z2(0)

]
=

[
0

0

]
.

Create the following function file:

function dzdt = ode2b(t,z);
% ODE2B: computes dzdt.
g = 9.81; k = 1; m = 1;
dzdt = [z(2); g-(k/m)*sqrt(abs(z(2)))];

and save it as ode2b.m in the current working directory of Matlab.

>> z0=[0,0];
>> tspan =[0,10];
>> [t,z] = ode23(’ode2b’,tspan,z0);
>> x=z(:,1); v=z(:,2);
>> plot(t,x,t,v,’--’)

Figure 9. Graph of the solutions to (7):
the solid curve represents positions and the
dashed curve represents velocities.

Please note that in the commands x=z(:,1) and v=z(:,2), x denotes the 1st column (i.e., the position) and
v denotes the 2nd column (i.e, the velocity) of the vector z = [z1, z2], respectively.

Next, we would like to compute the time needed for the object to reach the ground level. Let us look at the
output:
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>> [t,x]
ans =

0 0
0.0000 0.0000
0.0000 0.0000
0.0002 0.0000
0.0007 0.0000
0.0019 0.0000
0.0048 0.0001
0.0113 0.0006
0.0225 0.0024
0.0397 0.0075
0.0676 0.0214
0.1111 0.0572
0.1772 0.1432
0.2750 0.3391

0.4168 0.7626
0.6183 1.6368
0.8994 3.3665
1.2857 6.6575
1.8092 12.6973
2.5101 23.4179
3.4389 41.8660
4.4389 66.6306
5.4389 96.0028
6.4389 129.5746
7.4389 166.9978
8.4389 207.9697
9.4389 252.2230

10.0000 278.3993

We see that this event occurs between 5.4389 and 6.4389 seconds. In order to determine this time more pre-
cisely we use the interpolation from Section 13.2 to build a continuous function that represents the trajectory
of the object (we use here s variable to denote time since t is already used as a variable). This can be done
with the command interp1(t,x,s). Now, the function f(s) = 100−x dist, where x_dist=interp1(t,x,s),
is the height of the object as a function of time. Furthermore, with fzero command (nonlinear equation
solver) from Section 14, we can compute the zero of f(s), which will represent the time needed for the object
to reach the ground level.

And here is the actual Matlab session to do the above calculations:

>> f = inline(’100-interp1(t,x,s)’)
f =

Inline function:
f(s,t,x) = 100-interp1(t,x,s)

>> fzero(@(s)f(s,t,x),5)
ans =

5.5580

This time can be compared to the time needed by the same object to reach the ground if there is no drag
force:

t =

√
2h

g
=

√
2 · 100

9.81
= 4.5152.

Practice exercise. Repeat Example 2b (the same mass and height, and with k = 1) when the drag force
is proportional to v and to v2.

Example 3.

The motion of the nonlinear pendulum is

θ̈ + ω2 sin θ = 0. (8)

We consider the initial conditions
θ(0) = 0, θ̇(0) = 1.

Equation (8) can be written as the system of two differential equations for z = [z1, z2], with z1 = θ and

z2 = θ̇, as follows:

dz

dt
=


dz1

dt
dz2

dt

 =

 z2

−ω2 sin(z1)

 ,

[
z1(0)

z2(0)

]
=

[
0

1

]
.

Create the following function file:
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function dzdt = ode3(t,z);
% ODE3: computes dzdt.
w=1;
dzdt = [z(2); -w^2*sin(z(1))];

and save it as ode3.m in the current working directory of Matlab.

>> z0=[0,1];
>> tspan =[0,20];
>> [t,z] = ode45(’ode3’,tspan,z0);
>> x=z(:,1); v=z(:,2);
>> plot(t,x,t,v,’--’)
>> figure(2)
>> plot(x,v)

Please note that in the commands x=z(:,1); v=z(:,2); x denotes the 1st column (i.e., the position θ ) and

v denotes the 2nd column (i.e, the velocity θ̇) of the vector z = [z1, z2], respectively.

Figure 10. On the left: graphs of the solutions to (8). The solid curve represents positions

θ(t) and the dashed curve represents velocities θ̇(t). On the right: the phase portrait of the
pendulum.

16.1. Solving Linear Systems of First Order Differential Equations. Consider a system of homoge-
neous linear first order differential equations

Ẋ = AX, (9)

where

X = [x1 x2 . . . xn]T =


x1

x2
...

xn

 , Ẋ =

[
dx1

dt

dx2

dt
. . .

dxn

dt

]T

=



dx1

dt

dx2

dt
...

dxn

dt


,

and A is n× n matrix with real entries.
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16.1.1. Distinct real eigenvalues. In the case A has n real distinct eigenvalues λ1, λ2, . . . , λn and the corre-
sponding (linearly independent) eigenvectors K1,K2, . . . ,Kn, the general solution of (9) can be written in
the form

X(t) = c1X1(t) + c2X2(t) + · · ·+ cnXn(t),

where
X1(t) = exp(λ1t)K1, X2(t) = exp(λ2t)K2, . . . , Xn(t) = exp(λnt)Kn ,

and constants c1, c2, . . . , cn are determined from the initial condition at t = t0 on X, i.e., X(t0) = X0, where
vector X0 is provided.

>> A=[-4 1 1;1 5 -1;0 1 -3]

A =
-4 1 1
1 5 -1
0 1 -3

>> format rat; [V,D]=eig(A)
V =

-129/1048 201/203 985/1393
-129/131 -201/2030 *
-129/1048 201/2030 985/1393

D =

5 0 0
0 -4 0
0 0 -3

The columns of matrix V provide the eigenvectors of A, where * in the last column of V signifies 0. Eigen-
vectors are determined up to multiplicative scalars and since 129/131 = 8 · (129/1048) and 201/203 =
10 · (201/2030), the general solution is

X(t) = c1 exp(5t)

[
1
8
1

]
+ c2 exp(−4t)

[
10
−1
1

]
+ c3 exp(−3t)

[
1
0
1

]
.

For the initial condition X0 = (1, 2, 3)T , the constants c1, c2, and c3 are given by

>> B=[1 10 1;8 -1 0;1 1 1]
B =

1 10 1
8 -1 0
1 1 1

>> X0=[1;2;3]
X0 =

1
2
3

>> format rat; C=B\X0
C =

2/9 % c1
-2/9 % c2
3 % c3

and the solution is

X(t) = (2/9) exp(5t)

[
1
8
1

]
− (2/9) exp(−4t)

[
10
−1
1

]
+ 3 exp(−3t)

[
1
0
1

]

=

[
(2/9) exp(5t)− (20/9) exp(−4t) + 3 exp(−3t)

(16/9) exp(5t) + (2/9) exp(−4t)
(2/9) exp(5t)− (2/9) exp(−4t) + 3 exp(−3t)

]
(10)

The general solution to (9) has also the following form,

X(t) = exp(tA)C,

where C = (c1, c2, . . . , cn)T and exp(tA) is the exponential of the matrix tA. In particular, for

Ẋ = AX, X(0) = X0 ,

the solution is given by
X(t) = exp(tA)X0 .

Using the above example, the following Matlab session (that uses Symbolic Math Toolbox )
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>> A=[-4 1 1;1 5 -1;0 1 -3]
A =

-4 1 1
1 5 -1
0 1 -3

>> X0=[1;2;3]
X0 =

1
2
3

>> syms t % defines symbolic variable t

>> f=inline(’expm(t*A)’)

f =
Inline function:
f(A,t) = expm(t*A)

>> X=f(A,t)*X0
X =
3/exp(3*t) - 20/(9*exp(4*t)) + (2*exp(5*t))/9

2/(9*exp(4*t)) + (16*exp(5*t))/9
3/exp(3*t) - 2/(9*exp(4*t)) + (2*exp(5*t))/9

provides the solution already obtained in (10).

16.1.2. Repeated real eigenvalues. If n × n matrix A in the system (9) has only k < n linearly independent
eigenvectors K1, K2,. . .Kk then, we have only k linearly independent solutions of the form exp(λit)Ki.
i = 1, . . . k. To find additional solutions we pick an eigenvalue λ of A and find all vectors v for which
(A− λI)2v = 0, but (A− λI)v 6= 0. For such vectors v,

exp(At)v = exp(λt) exp (A− λI) tv = exp(λt) [v + t(A− λI)v]

is an additional solution of (9).

If we still don’t have enough solutions, then we find all vectors v for which (A−λI)3v = 0, but (A−λI)2v 6= 0.
For such vectors v,

exp(At)v = exp(λt) exp (A− λI) tv = exp(λt)

[
v + t(A− λI)v +

t2

2!
(A− λI)2v

]
is an additional solution of (9). We keep proceeding in this manner until we obtain n linearly independent
solutions. The result from linear algebra guarantees that this algorithm works, Indeed, if n × n matrix A
has k distinct eigenvalues λ1, λ2 . . . , λk with multiplicity n1 . . . , nk, then for each j = 1, . . . k, there exists
dj ≤ nj such that the equation (A − λI)djv = 0 has at least nj linearly independent solutions. Thus, for
each eigenvalue λj of A, we can compute nj linearly solutions of (9). All these solutions have the form

X(t) = exp(λjt)

[
v + t(A− λI)v + . . . +

tdj−1

(dj − 1)!
(A− λI)dj−1v

]
.

Furthermore, n1 + n2 + . . . nk = n and such obtained solutions must be linearly independent. We know from
Section 12.7 that vectors v satisfying (A− λI)djv = 0 are the generalized eigenvectors of A.

Consider the system (9) with A given by

A =

1 −2 3 −1
1 −5 7 −2
2 −9 10 −2
2 −8 6 1


The command [P,J]=jordan(A) computes both J, the Jordan canonical form, and the similarity transform,
P, whose columns are the generalized eigenvectors.
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>> A=[1 -2 3 -1; 1 -5 7 -2; 2 -9 10 -2;2 -8 6 1]
A =

1 -2 3 -1
1 -5 7 -2
2 -9 10 -2
2 -8 6 1

>> format rat; [P,J]=jordan(A)
P =

4 -1 3 -3
4 -2 5 -4
4 -3 6 -4
4 -4 6 -4

J =
1 0 0 0
0 2 1 0
0 0 2 1
0 0 0 2

Let us denote the columns of P by v1, v2, v3, v4. We have,

(A− I)v1 = 0, (A− 2I)v2 = 0, (A− 2I)v3 = v2, (A− 2I)v4 = v3, (A− 2I)2v3 = 0, (A− 2I)3v4 = 0,

as also verified by the following Matlab commands:

>> (A-eye(4))*P(:,1)

ans =
0
0
0
0

>> (A-2*eye(4))*P(:,2)

ans =
0
0
0
0

>> (A-2*eye(4))*P(:,3)

ans =
-1
-2
-3
-4

>> (A-2*eye(4))*P(:,4)

ans =
3
5
6
6

>> (A-2*eye(4))^2*P(:,3)

ans =
0
0
0
0

>> (A-2*eye(4))^3*P(:,4)

ans =
0
0
0
0

The solution of (9) corresponding to λ = 1 (eigenvalue of multiplicity 1) is

X1(t) = exp(t)v1 = exp(t)

4
4
4
4

 .

Three linearly independent solutions of (9) corresponding to λ = 2 (eigenvalue of multiplicity 3) are

X2(t) = exp(2t)v1 = exp(2t)

−1
−2
−3
−4

 , X3(t) = exp(2t) [I + t(A− 2I)]v3 = exp(2t) [v3 + tv2] = exp(2t)

 3− t
5− 2t
6− 3t
6− 4t

 ,
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and

X4(t) = exp(2t)

[
I + t(A− 2I) +

t2

2!
(A− 2I)2

]
v4 = exp(2t)

[
v4 + tv3 +

t2

2!
v2

]
= exp(2t)

 3t− t2/2− 3
5t− t2 − 4

6t− (3/2)t2 − 4
6t− 2t2 − 4


and the general solution is

X(t) = c1X1(t) + c2X2(t) + c3X3(t) + c4X4(t)

For the initial condition X0 = (1, 0, 0, 0)T , the constants c1, c2, c3, and c4 are solutions of the system:1
0
0
0

 = X0 = c1v1 + c2v2 + c3v3 + c4v4 =

4 −1 3 −3
4 −2 5 −4
4 −3 6 −4
4 −4 6 −4


c1

c2

c3

c4


Using Matlab, we obtain

>> X0=[1;0;0;0]

X0 =
1
0
0
0

>> format rat; C=P\X0

C =
1 % c1
0 % c2
0 % c3
1 % c4

and the solution of (9) with the initial condition X0 = (1, 0, 0, 0)T is

X(t) = X1(t) + X4(t) =

 4 exp(t) + (3t− t2/2− 3) exp(2t)
4 exp(t) + (5t− t2 − 4) exp(2t)

4 exp(t) + (6t− (3/2)t2 − 4) exp(2t)
4 exp(t) + (6t− 2t2 − 4) exp(2t)

 . (11)

Finally, the following Matlab session (that uses Symbolic Math Toolbox )

>> A=[1 -2 3 -1; 1 -5 7 -2; 2 -9 10 -2;2 -8 6 1]
A =

1 -2 3 -1
1 -5 7 -2
2 -9 10 -2
2 -8 6 1

>> X0=[1;0;0;0]
X0 =

1
0
0
0

>> syms t % defines symbolic variable t

>> f=inline(’expm(t*A)’)

f =
Inline function:
f(A,t) = expm(t*A)

>> X=f(A,t)*X0

X =
4*exp(t) - 3*exp(2*t) + 3*t*exp(2*t) - (t^2*exp(2*t))/2

4*exp(t) - 4*exp(2*t) + 5*t*exp(2*t) - t^2*exp(2*t)
4*exp(t) - 4*exp(2*t) + 6*t*exp(2*t) - (3*t^2*exp(2*t))/2

4*exp(t) - 4*exp(2*t) + 6*t*exp(2*t) - 2*t^2*exp(2*t)

verifies the solution already obtained in (11).
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16.1.3. Complex eigenvalues. If λ = α + iβ is a complex eigenvalue of multiplicity 1 of the coefficient matrix
A (with real entries) and K is the corresponding eigenvector, then

exp(λt)K and exp(λ̄t)K,

are complex-valued solutions of (9), where λ̄ = α− iβ and K is the conjugate vector of K. Furthermore, if

B1 =
1

2
(K + K) and B2 =

i

2
(K−K),

then

X1(t) = [B1 cos(βt)−B2 sin(βt)] exp(αt)

X2(t) = [B2 cos(βt) + B1 sin(βt)] exp(αt)

are linearly independent real-valued solutions of (9) corresponding to the eigenvalue λ of multiplicity 1.

Consider (9) with A =

[
4 −5
5 −4

]
. After using [P,J]=jordan(A) command,

>> A=[4 -5;5 -4]

A =
4 -5
5 -4

>> format rat; [P,J]=jordan(A)

P =
1/2 + 2/3i 1/2 - 2/3i
0 + 5/6i 0 - 5/6i

J =
0 - 3i 0

0 0 + 3i

>> B1=(1/2)*(P(:,1)+conj(P(:,1)))

B1 =
1/2
0

>> B2=(i/2)*(conj(P(:,1))-P(:,1))

B2 =
2/3
5/6

we obtain

X1(t) = B1 cos(3t) + B2 sin(3t) =

[
1
2
cos(3t) + 2

3
sin(3t)

5
6
sin(3t)

]

X2(t) = B2 cos(3t)−B1 sin(3t) =

[
2
3
cos(3t)− 1

2
sin(3t)

5
6
cos(3t)

]
The general solution is a linear combination of X1 and X2 in the form

X(t) = c1

[
1
2
cos(3t) + 2

3
sin(3t)

5
6
sin(3t)

]
+ c2

[
2
3
cos(3t)− 1

2
sin(3t)

5
6
cos(3t)

]

With X0 = (1, 0)T , c1 = 2 and c2 = 0 and the solution is

X(t) =

[
cos(3t) + 4

3
sin(3t)

5
3
sin(3t)

]
.

One can easily plot phase portrait of the solutions using Matlab expm(A) and for loop commands:
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>> X=[]; Y=[]; Z=[];
>> for t=0:.01:10
X=[X expm(t*A)*[1;0]]; Y=[Y expm(t*A)*[1;3]]; Z=[Z expm(t*A)*[10;-2]];
end
>> plot(X(1,:),X(2,:),’r’,Y(1,:),Y(2,:),’b’,Z(1,:),Z(2,:),’g’)

Figure 11. Three different plots of phase portrait. Red curve corresponds to the initial
condition X0 = (1, 0)T , blue curve corresponds to X0 = (1, 3)T , and green curve corresponds
to X0 = (10,−2)T .

And here is another example of use of expm(A) and three dimensional phase plot (plot3) commands:

>> A = [0 -6 -1;6 2 -16;-5 20 -10]
A =

0 -6 -1
6 2 -16

-5 20 -10

>> X=[];
for t=0:.01:1
X=[X expm(t*A)*[1;1;1]];
end

>> plot3(X(1,:),X(2,:),X(3,:),’o’)

Figure 12. Three-dimensional phase portrait shows the
solutions (with the initial condition X0 = (1, 1, 1)T ) spi-
raling in toward the origin.

16.1.4. Nonhomogeneous systems. The solution of the nohomogeneous system

Ẋ = AX + f , X(t0) = X0, (12)
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is given by the variation of parameters formula,

X(t) = exp [(t− t0)A]X0 +

t∫
t0

exp [(t− s)A] f(s) ds. t ≥ t0. (13)

Here, f(t) is a given vector valued function of t.

Although the method of variation of parameters is often a time consuming process if done by hand, with
Matlab, it can be easily performed.

Consider the nonhomogeneous system,

Ẋ =


2 −2 2 1

−1 3 0 3

0 0 4 −2

0 0 2 −1

X +


t exp(t)

exp(−t)

exp(2t)

1

 , X(0) =


1

0

1

0

 . (14)

First, we find the general solution of (14).

>> A=[2 -2 2 1;-1 3 0 3;0 0 4 -2;0 0 2 -1]

A =
2 -2 2 1

-1 3 0 3
0 0 4 -2
0 0 2 -1

>> format rat; [P,J]=jordan(A)

P =
1 -8/3 4 2/3
2/3 4/3 4/3 -2/3

-1/6 0 8/3 0
-1/3 0 4/3 0

J =
0 0 0 0
0 1 0 0
0 0 3 0
0 0 0 4

The eigenvalues are 0, 1, 3, and 4, with the corresponding eigenvectors

K1 =

 1
2/3
−1/6
−1/3

 , K2 =

−8/3
4/3
0
0

 , K3 =

 4
4/3
8/3
4/3

 , and K4 =

 2/3
−2/3

0
0

 .

A particular solution is given by

Xp(t) = exp(tA)

∫
exp(−tA)f(t) dt.

The corresponding Matlab script is,

>> syms t
>> Xp = expm(t*A)*int(expm(-t*A),t); % The output is a very long

% expression and thus initially
% is suppressed.

>> Xp = simplify(Xp) % simplify command makes Xp
% much simpler

Xp =
(t^2*exp(t))/3 - 1/(5*exp(t)) - 5*exp(2*t) - exp(t)/27 - 4*t - (t*exp(t))/9 - 59/12
exp(t)/27 - 3/(10*exp(t)) - 2*exp(2*t) - (8*t)/3 + (t^2*exp(t))/6 + (t*exp(t))/9 - 95/36
(2*t)/3 - (3*exp(2*t))/2 + 2/9
(4*t)/3 - exp(2*t) + 1/9
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Thus, the general solution of (14) is

X(t) = c1

 1
2/3
−1/6
−1/3

+ c2 exp(t)

−8/3
4/3
0
0

+ c3 exp(3t)

 4
4/3
8/3
4/3

+ c4 exp(4t)

 2/3
−2/3

0
0

+ Xp(t),

where

Xp(t) =


(t2/3) exp(t)− (1/5) exp(−t)− 5 exp(2t)− (1/27) exp(t)− 4t− (t/9) exp(t)− 59/12

(1/27) exp(t)− (3/10) exp(−t)− 2 exp(2t)− (8/3)t + (t2/6) exp(t) + (t/9) exp(t)− 95/36

(2/3)t− (3/2) exp(2t) + 2/9

(4/3)t− exp(2t) + 1/9


Finally, the following Matlab script computes the solution to the initial value problem (14):

>> syms s t
>> X=expm(t*A)*[1;0;1;0]+expm(t*A)*int(expm(-s*A)*[s*exp(s);exp(-s);exp(2*s);1],0,t);

>> X=simplify(X)

X =

(8*exp(3*t))/3 - 1/(5*exp(t)) - 5*exp(2*t) - 4*t - (457*exp(4*t))/540
+ (332*exp(t))/27 + (t^2*exp(t))/3 - (t*exp(t))/9 - 95/12

(8*exp(3*t))/9 - 3/(10*exp(t)) - 2*exp(2*t) - (8*t)/3 + (457*exp(4*t))/540
+ (335*exp(t))/54 + (t^2*exp(t))/6 + (t*exp(t))/9 -167/36

(2*t)/3 - (3*exp(2*t))/2 + (16*exp(3*t))/9 + 13/18

(4*t)/3 - exp(2*t) + (8*exp(3*t))/9 + 10/9

The solution is

X(t) =


(8/3)e3t − (1/5)e−t − 5e2t − 4t− (457/540)e4t + (332/27)et + (t2/3)et − (t/9)et − 95/12

(8/3)e3t − (3/10)e−t − 2e2t − (8/3)t + (457/540)e4t + (335/54)et + (t2/6)et + (t/9)et − 167/36

(2/3)t− (3/2)e2t + (16/9)e3t + 13/18

(4/3)t− e2t + (8/9)e3t + 10/9

 .

16.2. Linearization of a Double Pendulum. Consider the double-pendulum system consisting of a pen-
dulum attached to a pendulum shown in Figure 13. The system oscillates in a vertical plane under influence
of gravity, the mass of each rod is negligible, and there are no dumping forces acting on the system. The
displacement θ1 is measured (in radians) from vertical line extending downward from the pivot of the system.
The displacement θ2 is measured from a vertical line extending downward from the center of mass m1. The
positive direction is to the right, the negative direction is to the left. The system of nonlinear differential
equations describing the motion is:

(m1 + m2)L
2
1θ̈1 + m2L1L2θ̈2 cos(θ1 − θ2) + +m2L1L2(θ̇2)

2 sin(θ1 − θ2) + (m1 + m2)L1g sin θ1 = 0;

m2L
2
2θ̈2 + m2L1L2θ̈1 cos(θ1 − θ2)−m2L1L2(θ̇1)

2 sin(θ1 − θ2) + m2L2g sin θ2 = 0.
(15)

If the displacements θ1(t) and θ2(t) are assumed to be small, then cos(θ1 − θ2) ≈ 1, sin(θ1 − θ2) ≈ 0,
sin(θ1) ≈ θ1, sin(θ2) ≈ θ2, and the following linearization of (15) is obtained:

(m1 + m2)L
2
1θ̈1 + m2L1L2θ̈2 + (m1 + m2)L1gθ1 = 0;

m2L
2
2θ̈2 + m2L1L2θ̈1 + m2L2g sin θ2 = 0.

(16)
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Figure 13. Double pendulum

Consider (16) with m1 = 3, m2 = 1, L1 = L2 = 16, g = 32, and the initial conditions: θ1(0) = 1, θ2(0) = −1,

θ̇1(0) = 0, and θ̇2(0) = 0. We obtain the following system:

4θ̈1 + θ̈2 + 8θ1 = 0;

θ̈1 + θ̈2 + 2θ2 = 0.
(17)

Finally, with the z = (z1, z2, z3, z4)
T and z1 = θ1, z2 = θ̇1, z3 = θ2, and z4 = θ̇2, the system of second order

differential equations becomes the system of first order differential equations:

ż =

ż1

ż2

ż3

ż4

 = Az =

 0 1 0 0
−8/3 0 2/3 0

0 0 0 1
8/3 0 −8/3 0


z1

z2

z3

z4

 , and the initial conditions, z(0) =

 1
0
−1
0

 . (18)

We compute the eigenvalues of A by computing the roots of the characteristic polynomial det(A− λI) = 0.

>> A = [0 1 0 0;-8/3 0 2/3 0;0 0 0 1;8/3 0 -8/3 0]

A =
0 1 0 0

-8/3 0 2/3 0
0 0 0 1
8/3 0 -8/3 0

>> factor(poly(sym(A)))

ans =

((x^2 + 4)*(3*x^2 + 4))/3

The eigenvalues of matrix A are ±2i and ±(2/
√

3)i. We can find the solution z(t) of (18) by computing
z(t) = exp(tA)z0. Here is the corresponding Matlab script:
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>> z0=[1;0;-1;0]

z0 =
1
0

-1
0

>> syms t; f=inline(’expm(t*A)’)

f =

Inline function:
f(A,t) = expm(t*A)

>> z=f(A,t)*z0

z =
1/(8*exp((2*3^(1/2)*i*t)/3)) + exp((2*3^(1/2)*i*t)/3)/8 + 3/(8*exp(2*i*t)) + (3*exp(2*i*t))/8

(3*i*exp(2*i*t))/4 - (3*i)/(4*exp(2*i*t)) - (3^(1/2)*i)/(12*exp((2*3^(1/2)*i*t)/3)) +
(3^(1/2)*i*exp((2*3^(1/2)*i*t)/3))/12

1/(4*exp((2*3^(1/2)*i*t)/3)) + exp((2*3^(1/2)*i*t)/3)/4 - 3/(4*exp(2*i*t)) - (3*exp(2*i*t))/4

(3*i)/(2*exp(2*i*t)) - (3*i*exp(2*i*t))/2 - (3^(1/2)*i)/(6*exp((2*3^(1/2)*it)/3)) +
(3^(1/2)*i*exp((2*3^(1/2)*i*t)/3))/6

The first and third rows of z provide expressions for θ1(t) and θ2(t), respectively:

θ1(t) =
1

4
cos

(
2√
3
t

)
+

3

4
cos(2t)

θ2(t) =
1

2
cos

(
2√
3
t

)
− 3

2
cos(2t)

(19)

From (19), we observe that the motion of the (linearized) pendulums is not periodic since cos(2t/
√

3) has
period

√
3π, cos(2t) has period π, and the ratio of these periods is

√
3, which is not a rational number.

The following Matlab script computes the plots of θ1(t), θ2(t), and the plot of θ2 versus θ1 (i.e., the Lissajous
curve of compound pendulum).

>> A = [0 1 0 0;-8/3 0 2/3 0;0 0 0 1;8/3 0 -8/3 0]

A =
0 1 0 0

-8/3 0 2/3 0
0 0 0 1
8/3 0 -8/3 0

>> X=[];
for t=0:.1:30
X=[X expm(t*A)*[1;0;-1;0]];
end

>> t=0:.1:30;
plot(t,X(1,:)) % plot of theta1
figure(2)
>> plot(t,X(3,:)) % plot of theta2
figure(3)
>> plot(X(1,:),X(3,:)) % plot of X(3,:) versus X(1,:)

And finally, the link below provides animation of a double compound nonlinear pendulum showing its chaotic
behaviour:

http://www.csun.edu/~hcmth008/matlab_tutorial/double_pendulum.html

http://www.csun.edu/~hcmth008/matlab_tutorial/double_pendulum.html
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Figure 14. Plot of θ1(t). Figure 15. Plot of θ2(t).
Figure 16. The Lissajous curve
of compound pendulum.

17. Use of Global Variables

Occasionally, it is desirable to declare variables globally. Such variables will be accessible to all or some
functions without passing these variables in the input list. The command global u v w declares variables
u, v, and w globally. This statement must go before any executable in the functions and scripts that will use
them. Global declarations of variables should be used with a caution.

Here is one example of a global declaration use. In Example 2a of Section 16, the one-dimensional motion
of an object projected vertically downward (toward the surface of the Earth) in the media offering resistance
proportional to the square root of velocity was modeled by the equation:

m
dv

dt
= mg − k

√
v, v(0) = v0 ≥ 0,

where v is velocity, m is the mass of the object, g = 9.81 (m/sec2) is the acceleration due to gravity, k is
the proportionality constant, and v0 is the initial velocity. The positive direction of the velocity is in the
downward direction.

The use of global variables in the following function (on the left) and script files

function dvdt = ode2a_global(t,v);
% ODE2A_GLOBAL: computes dvdt.
global m_value g_value k_value
dvdt = g_value-(k_value)/(m_value)*sqrt(v);

% script file to solve 1st order ode.
global m_value g_value k_value
m_value=3; g_value=9.81; k_value=6;
v0 = 2;
tspan = [0,30];
[t,v] = ode23(’ode2a_global’,tspan,v0);
plot(t,v)

allow for changing the values of m_value, g_value, and k_value in the script file without changing those
variables in the function file. It’s important to note that these global declarations will be available only to
the above function and script files.

Save the above function and script file in ode2a_global.m and in ode2a_global_script.m files, respectively.
Remember to place them in the working directory of Matlab and try them out. Alternatively, you can also
download them from:

http://www.csun.edu/~hcmth008/matlab_tutorial/ode2a_global.m

and

http://www.csun.edu/~hcmth008/matlab_tutorial/ode2a_global_script.m

http://www.csun.edu/~hcmth008/matlab_tutorial/ode2a_global.m
http://www.csun.edu/~hcmth008/matlab_tutorial/ode2a_global_script.m
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18. Publishing Documents and Opening Web Pages in Matlab

Matlab (version 7, or greater) includes easy to use automatic report generator. It publishes scripts in various
formats: HTML/XML, LATEX, (MS Word) DOC, and (MS PowerPoint) PPT formats. The last two formats
are available only on PC Windows systems with MS Office installed.

Script my_scrip.m, placed in the working Matlab directory, can be published with the following command:

>> publish(’my_script’)

publish(’my_script’) command creates my_script.html file in html sub-directory of your current working
directory. If the script creates plots/graphics, the plots and graphic images will be also included in html
sub-directory and automatically linked to my_script.html file.

You can view this newly created my_script.html file in Matlab’s internal browser with the command:

>> open html/my_script.html

or using the command:

>> web(’html/ex1_script.html’)

By the way, the command web(’url’) can be used to display any url in Matlab’s internal browser, for
example,

>> web(’www.csun.edu’)

displays the home page of CSUN.

Furthermore, any other browser can also be used to view this file. While viewing my_script.html file in
Matlab’s internal or in any external browser, one can also print the file using Print option from the File
menu.

The command publish(’my_script’) is a default for publish(’my_script’,’html’) that generates HTML
format. The other formats are created by the following commands:

publish(’my_script’,’latex’) – LATEX source file my_script.tex is generated. If the script
creates plots/graphics, the plots and graphic images will be
included in .eps (encapsulated Postscript format) files.

publish(’my_script’,’xml’) – XML file my_script.xml is generated and can be trans-
formed with XSLT or other tools.

publish(’my_script’,’doc’) – MS Word file my_script.doc is generated. Available only on
PC Windows systems with MS Office installed.

publish(’my_script’,’ppt’) – PowerPoint file my_script.ppt is generated. Available only
on PC Windows systems with MS Office installed.

Consider the script from Example 2 of Section 9, where the the Euler method is used to approximate the
solution to a given differential equation. The differences between the exact and approximate solutions and
the corresponding plots are also provided.

Here is the complete Matlab script:

h=0.1; % grid size
x=0:h:2; % specify the partition of the interval [0,2]
clear y; % clear possibly existing variable y
y(1)=1; % initial value: x1=0, thus y(1) corresponds to y(x1)=1
f=inline(’3*exp(-4*x)-2*y’); % define your function
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size(x); % size of x to be used in determining the size of vector i
for i=1:20 y(i+1)=y(i)+h*f(x(i),y(i));end % compute the approximation
Y_exact=2.5*exp(-2*x)-1.5*exp(-4*x); % the exact solution
error = abs(Y_exact-y)’ % the differences between exact

% and approximate solutions
plot(x,y,’--’,x,Y_exact) % plot of the exact and approximate

% solutions

Save the script in ex1_script.m file (remember to place it in the working directory of Matlab) and try it
out. Alternatively, you can also download it from:

http://www.csun.edu/~hcmth008/matlab_tutorial/solved_problems/ex1_script.m

Once the Matlab script is running and placed in the current working directory of Matlab, you can publish it
using the following Matlab command:

>> publish(’ex1_script’)

ex1_script.html file will be created in html sub-directory of your current working directory. If the script
creates plots/graphics (as this is the case here), the plots and graphic images will be also included in html
sub-directory and automatically linked to ex1_script.html file.

You can view this newly created ex1_script.html file in Matlab’s internal browser with the command:

>> open html/ex1_script.html

or using the command:

>> web(’html/ex1_script.html’)

And here is the link to ex1_script.html file:

http://www.csun.edu/~hcmth008/matlab_tutorial/solved_problems/ex1_script.html

Any other browser can also be used to view this file. While viewing ex1_script.html file in Matlab’s internal
or in any external browser, you can also print the file using Print option from the File menu.

It is possible to add further formatting features to ex1_script.m for better readability. Furthermore, one
can also use LATEX markup commands to obtain nicely formatted mathematical expressions. And here is an
example of such an improved script:

%% A simple example of publishing reports
%% The Euler approximation of the differential equation on [0,2]:
% $$y’+2y=3\exp(-4x),\quad y(0)=1.$$
%% Define the grid size, interval’s partition, and the initial value
h=0.1; % grid size
x=0:h:2; % specify the partition of the interval [0,2]
clear y; % clear possibly existing variable y
y(1)=1; % initial value: x1=0, thus y(1) corresponds to y(x1)=1
%% Define the function
f=inline(’3*exp(-4*x)-2*y’);
%% Compute the Euler approximation
size(x); % size of x to be used in determining the size of vector i
for i=1:20 y(i+1)=y(i)+h*f(x(i),y(i));end
%% The exact solution
Y_exact=2.5*exp(-2*x)-1.5*exp(-4*x);
%% The differences between exact and approximate solutions
error = abs(Y_exact-y)’
%% Plot the exact and approximate solutions
plot(x,y,’--’,x,Y_exact)

http://www.csun.edu/~hcmth008/matlab_tutorial/solved_problems/ex1_script.m
http://www.csun.edu/~hcmth008/matlab_tutorial/solved_problems/ex1_script.html
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As before, save the script in ex1_script_improved.m file (remember to place it in the working directory of
Matlab) and try it out. Alternatively, you can also download it from:

http://www.csun.edu/~hcmth008/matlab_tutorial/solved_problems/ex1_script_improved.m

Once the Matlab script is running and placed in the current working directory of Matlab, you can publish it
using the following Matlab command:

>> publish(’ex1_script_improved’)

ex1_script_improved.html file will be created in html sub-directory of your current working directory.

You can view this newly created ex1_script_improved.html file in Matlab’s internal browser with the
command:

>> open html/ex1_script_improved.html

And here is the link to ex1_script_improved.html file:

http://www.csun.edu/~hcmth008/matlab_tutorial/solved_problems/ex1_script_improved.html

After typesetting the LATEX file publish(’ex1_script_improved’,’latex’), its pdf output can be found
here:

http://www.csun.edu/~hcmth008/matlab_tutorial/solved_problems/ex1_script_improved.pdf

The last example publishes the script in Example 3 of Section 16. The script uses an additional function file
ode3.m that can be downloaded from

http://www.csun.edu/~hcmth008/matlab_tutorial/ode3.m

and placed in the working Matlab directory.

Here is the corresponding Matlab script:

%% Nonlinear pendulum
%% The differential equation:
% $$\ddot{\theta}+\omega^2\sin\theta=0,\qquad \theta(0)=0,\qquad \dot{\theta}(0)=1.$$
%% The corresponding system of the first order differential equations:
% $$\frac{dz_1}{dt}=z_2,\,\,\frac{dz_2}{dt}=-\omega^2\sin(z_1),\,\, z_1(0)=0,\,\, z_2(0)=1.$$
%% Input initial conditions:
z0=[0,1];
%% Define the interval on which solution is computed:
tspan =[0,20];
%% Solve the system using |ode45| procedure:
[t,z] = ode45(’ode3’,tspan,z0);
%% Extract the positions and velocities:
x=z(:,1); v=z(:,2);
%% Plots of the positions and velocities as functions of time:
% *Note:* _The dashed curve indicates velocities_
plot(t,x,t,v,’--’)
%% Plot of the phase portrait (velocity as the function of position):
figure(2)
plot(x,v)

Save the script in ex2_script.m file (remember to place it in the working directory of Matlab) and try it
out. Alternatively, you can also download it from:

http://www.csun.edu/~hcmth008/matlab_tutorial/solved_problems/ex2_script.m

Publish it using the Matlab command:

http://www.csun.edu/~hcmth008/matlab_tutorial/solved_problems/ex1_script_improved.m
http://www.csun.edu/~hcmth008/matlab_tutorial/solved_problems/ex1_script_improved.html
http://www.csun.edu/~hcmth008/matlab_tutorial/solved_problems/ex1_script_improved.pdf
http://www.csun.edu/~hcmth008/matlab_tutorial/ode3.m
http://www.csun.edu/~hcmth008/matlab_tutorial/solved_problems/ex2_script.m
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>> publish(’ex2_script’)

and view it with the command:

>> open html/ex2_script.html

And here is the link to ex2_script.html file:

http://www.csun.edu/~hcmth008/matlab_tutorial/solved_problems/ex2_script.html

Finally, the output generated by publish(’ex2_script’,’latex’) and converted topdf file can be found
here:

http://www.csun.edu/~hcmth008/matlab_tutorial/solved_problems/ex2_script.pdf

19. How to Download the Matlab Files Used in this Tutorial

The Matlab files created and used in this tutorial can be downloaded from:

http://www.csun.edu/~hcmth008/matlab_tutorial/
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