
Introduction to MATLAB

UE Numerische Mathematik 1

Wintersemester 2015

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 1 / 94

Section 1

Introduction

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 2 / 94

Introduction

MATLAB is a high-level programming language for numerical
computation.

Can be used in an interactive calculator-style mode

Can also be used to write complex scripts/programs for numerical
computation

In the first two weeks we shall do a very brief overview of MATLAB. You
will potentially need to study more yourself using books/online resources.
The documentation within MATLAB is also a good place to look
(especially to find built-in MATLAB functions).

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 3 / 94

Introduction I

Waltraud Huyer.
Einfürhung in MATLAB.
Universität Wien, 2012.
URL http://www.mat.univie.ac.at/~huyer/matlab.pdf.

Peter Arbenz.
Einfürhung in MATLAB.
ETH Zürich, 2008.
URL http:

//people.inf.ethz.ch/arbenz/MatlabKurs/matlabintro.pdf.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 4 / 94

http://www.mat.univie.ac.at/~huyer/matlab.pdf
http://people.inf.ethz.ch/arbenz/MatlabKurs/matlabintro.pdf
http://people.inf.ethz.ch/arbenz/MatlabKurs/matlabintro.pdf

Introduction II

Stormy Attaway.
Matlab: A Practical Introduction to Programming and Problem
Solving.
Butterworth-Heinemann, Boston, third edition, 2013.
URL
http://www.sciencedirect.com/science/book/9780124058767.

Timothy A. Davis.
MATLAB Primer.
CRC Press, Boca Raton, eighth edition, 2010.

Brian R. Hunt, Ronald L. Lipsman, and Jonathan M. Rosenberg.
A Guide to MATLAB for Beginners and Experienced Users.
Cambridge University Press, Cambridge, third edition, 2014.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 5 / 94

http://www.sciencedirect.com/science/book/9780124058767

Introduction III

Frieder Grupp and Florian Grupp.
MATLAB 7 für Ingenieure.
Oldenbourg Verlag, München, 2004.

Frank Haußer and Yury Luchko.
Mathematische Modellierung mit MATLAB. Eine praxisorientierte
Einführung.
Spektrum Akademischer Verlag, Heidelberg, 2011.
URL http://www.springerlink.com/content/h153hn/

#section=786206&page=1.

MathWorks.
MATLAB Central, 2015.
URL http://de.mathworks.com/matlabcentral.
[Online].

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 6 / 94

http://www.springerlink.com/content/h153hn/#section=786206&page=1
http://www.springerlink.com/content/h153hn/#section=786206&page=1
http://de.mathworks.com/matlabcentral

Overview of the UI

Command

Window

Command

History

Current

Folder

Menu Bar Layout Workspace

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 7 / 94

Basics of the Command Window

Command Window consists of a prompt (>>) at which MATLAB
commands can be entered. Results are also displayed in the Command
Window.
You can clear the current command window of all output by entering the
clc command into the Command Window.
MATLAB keeps a history of all commands (see the Command History
panel). Use and arrow keys on the keyboard to scroll through
history.
To exit MATLAB type exit at the prompt.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 8 / 94

Current Directory

When you try to execute a MATLAB function it searches in a list of paths
for the a file containing the definition of that function. By default this is a
set of built-in MATLAB directories and also the current directory.
Entering the command, cd, on its own lists the current directory.
You can also change the current directory by using

>> cd path

A special .. directory can be used to change to the parent directory. If
any folder contains a space you should surround the path with single
quotation marks:

>> cd ’../ Folder With Space/Folder ’

You can see a list of all files in the current directory with the ls command,
or only MATLAB specific files with the what command.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 9 / 94

Documentation & Help

MATLAB has built-in documentation, which can be viewed in two
different ways.

1. A graphical help window which can be launched via the UI, or by
entering the command doc. The doc command can be followed by a
name (MATLAB function) to display help for that function.

2. A text-based help displayed directly in the Command Window. Enter
the help command to view. Again you may add a name of a
function/command to display the help for that command.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 10 / 94

Documentation & Help

help Example

>> help sin

sin Sine of argument in radians.

sin(X) is the sine of the elements of X.

See also asin , sind.

Other functions named sin

Reference page in Help browser

doc sin

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 11 / 94

Section 2

Basic Mathematics

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 12 / 94

Scalar Arithmetic

MATLAB supports several basic scalar mathematical operators:

+ for addition,

- for subtraction,

* for multiplication,

/ for division,

^ for raising to a power, and

\ for left division (divides the second term by the first).

Using these basic commands you can use MATLAB as a calculator; i.e.,
entering

Basic Calculations

>> 5^2+9.5 -11*2

ans =

12.5000

displays the result of 52 + 9.5− 11× 2
UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 13 / 94

Scalar Arithmetic

MATLAB follows the basic mathematical rules for precedence; ^, then *

and /, and then + and -. Operators of same precedence evaluated
left-to-right. Brackets () can be used to specify order of evaluation.

Evaluating (22)3 and 223

>> 2^2^3

ans =

64

>> 2^(2^3)

ans =

256

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 14 / 94

Scalar Arithmetic

Multiplication symbol must be used wherever multiplication is required.

Demonstration of Requirement for Multiplication Symbol

>> 2(4+5)

2(4+5)

|

Error: Unbalanced or unexpected parenthesis or bracket.

>> 2*(4 + 5)

ans =

18

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 15 / 94

Number Format

MATLAB all numbers generated are of double type (by default). This
means it represents floating-point numbers, but we have to allow for
rounding errors in computations.
MATLAB allows numbers in an exponential (base 10) form:

1.5e-10 ≡ 1.5× 10−10, and

7.95e5 ≡ 7.95× 105.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 16 / 94

Number Format

By default MATLAB displays numbers in short form (four decimal places).

Short Format for Real Numbers

>> 190.2

ans = 190.2000

>> 1909.205

ans = 1.9092e+03

Enter format long to display in long form (15 decimal places) and
format short for short form. See help format for complete list of formats.

Short Format for Real Numbers

>> format long

>> 19.2

ans = 19.199999999999999

>> 1909.205

ans = 1.909205000000000e+03

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 17 / 94

Special Constants

MATLAB has several built-in constants/special.

pi returns the constant value for π,
eps returns difference between 1 and next largest double number,
inf or Inf represent ∞,
-inf or -Inf represent −∞, and
nan or NaN represents a special Not a Number value.

MATLAB Constants/Special Values

>> 0/0

ans = NaN

>> 1/0

ans = Inf

>> -1/0

ans = -Inf

>> pi

ans = 3.141592653589793

>> eps

ans = 2.220446049250313e-16

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 18 / 94

Variables

MATLAB has a concept of variables that be used to store values.
Assigning a value to a variable is done via the assignment = operator.
When assigning a variable, the value stored is output in the Command
Window; this can be suppressed by suffixing with a semicolon (;).

Definition and Usage of Variables

>> x = 2^2

x =

4

>> 5*x+9

ans =

29

>> y = 9;

>> y

y =

9

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 19 / 94

Variables

Several rules exist for variable names:

Start with a letter,

Contain letters, numbers or the underscore _ only,

They are case sensitive (A 6= a), and

Should not be the same as a MATLAB constant, function or keyword.

By letters we mean the 26 English letters (i.e., NO ä, ö, ü, or ß).
When working in the Command Window all variables are saved in the
Workspace. Use the Workspace panel, or enter who or whos command, to
see a list of variables.
Clear all variables from the current workspace with the clear command;
alternatively, clear a single variable or list of variables by enter the names
of the variables after the clear command.

Clearing Only Some Variables

>> clear x y

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 20 / 94

Complex Numbers

MATLAB also supports complex numbers. To specify an imaginary
number you use i or j directly or as a suffix to a number.

Definition of Complex Number

>> z = 5+4i

z =

5.0000 + 4.0000i

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 21 / 94

Functions

MATLAB has a large collection of built-in functions for mathematical
operations.
Functions are called by giving the name of the function followed by the
arguments within brackets after the name.

Calling a Function

>> sin(pi/2)

ans =

1

Some functions can take more than one argument; in this case, we enter
the arguments separated by a comma.

Calling a Function with Multiple Arguments

>> min(pi, 3)

ans =

3

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 22 / 94

Functions

Below is a non-exhaustive list of basic mathematical functions.

sin, cos, tan, cot, sec, csc Trigonometric functions
asin, acos, atan, acot, sec, csc Inverse trigonometric functions
sinh, cosh, tanh, coth, sech, csch Hyperbolic functions

asinh, acosh, atanh, acoth, asech, acsch Inverse hyperbolic functions
abs Absolute value |x |
exp Exponential function ex

log, log10, log2 Logarithmic function (e, 10 & 2)
fix, floor, ceil, round Round: zero, down, up, nearest.

sqrt, nthroot Square and nth root.
angle Phase angle (complex number)
conj Complex conjugate

real, imag Real/imaginary parts

Enter help elfun for a more complete list.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 23 / 94

Section 3

Vectors & Matrices

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 24 / 94

Defining Matrices & Vectors

The basic method to create a vector/matrix is to use square brackets []

containing a list of numbers to place in the matrix.
Each row of a matrix is a list of numbers separated by either a space
and/or a comma, and each row is separated by a semi-colon ;.

Generating Matrices/Vectors Directly

>> A = [1 9 7; -3 8 0; 2 -7 -9]

A =

1 9 7

-3 8 0

2 -7 -9

>> x = [5 -8 0 9]

x = 5 -8 0 9

>> y = [-2; 3; 6]

y =

-2

3

6

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 25 / 94

Matrix Concatenation

The previous notation is really a concatenation of matrices/vectors. The
space/comma concatenates columns and the semi-colon concentrates rows.
We can concatenate matrices into larger matrices using this notation,
providing the sizes are compatible.

Matrix/Vector Concatenation

>> B = [A y; x]

B =

1 9 7 -2

-3 8 0 3

2 -7 -9 6

5 -8 0 9

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 26 / 94

Defining Matrices & Vectors

start:step:end or start:end syntax defines sequences (row vector), where

start is the first number in the sequence,

step is the difference between elements (defaults to 1), and

end is the last number that can be contained in the sequence.

Generating Sequence Vector

>> 1:4

ans =

1 2 3 4

>> 1:0.5:3

ans =

1.0000 1.5000 2.0000 2.5000 3.0000

>> 1:2:6

ans =

1 3 5

>> 7: -1:1

ans =

7 6 5 4 3 2 1

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 27 / 94

Defining Matrices & Vectors

The end value is not always included in the sequence. A sequence of
equally distributed values (including start and end) can be generated with
the linspace(start, end, no_points) function.

Example Usage of linspace

>> linspace (1,2,6)

ans =

1.0000 1.2000 1.4000 1.6000 1.8000 2.0000

>> linspace (1,0,6)

ans =

1.0000 0.8000 0.6000 0.4000 0.2000 0

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 28 / 94

Defining Matrices & Vectors

Below is a list of basic matrix construction routines.

eye Identity matrix (1 on diagonal, 0 elsewhere)
zeros Matrix filled with 0
ones Matrix filled with 1
rand Uniformly distributed numbers between 0 and 1
randn Normally distributed numbers between 0 and 1

These functions take three different formats:

Single scalar (N) — Generates a N × N matrix

Two scalars (N and M) — Generates a N ×M matrix

Vector of two values ([N M]) — Generates a N ×M matrix

Matrix Construction Functions

>> ones (2,3)

ans =

1 1 1

1 1 1

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 29 / 94

Defining Matrices & Vectors

The diag function takes a vector and places entries on the leading diagonal
of a matrix. A second optional integer allows a different diagonal to be set.

Creating a Diagonal Matrix

>> diag ([1 2])

ans =

1 0

0 2

>> diag ([1 2],1)

ans =

0 1 0

0 0 2

0 0 0

>> diag ([1 2],-1)

ans =

0 0 0

1 0 0

0 2 0

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 30 / 94

Reshaping a Matrix

The reshape function allows a matrix to be reshaped. This function takes a
matrix as the first argument followed by a matrix size. An empty vector []

allows MATLAB to automatically calculate the size of that dimension.

Reshaping a Matrix

>> A = rand (4 ,2);

>> reshape(A,[2 4])

ans =

0.7363 0.6834 0.4423 0.3309

0.3947 0.7040 0.0196 0.4243

>> reshape(A,2 ,[])

ans =

0.7363 0.6834 0.4423 0.3309

0.3947 0.7040 0.0196 0.4243

The number of elements in the reshaped matrix must be the same as in
the original matrix.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 31 / 94

Indexing

An vector/matrix is accessed with element index in brackets (starting at
1). Matrices should use two indices (row and column).
A special value of end can be used to index the last value.

Basic Matrix/Vector Indexing

>> A = rand (2)

A =

0.8147 0.6324

0.9058 0.0975

>> A(1,2)

ans =

0.6324

>> x = 1:5;

>> x(3)

ans =

3

>> x(end)

ans =

5

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 32 / 94

Indexing

An index can also be a vector of indices or a single : for all values (useful
for extracting a complete row or column).

Vector Indices for Matrix/Vector Indexing

>> x([1 3])

ans =

1 3

>> x(end :-1:2)

ans =

5 4 3 2

>> A(2,:)

ans =

0.9058 0.0975

>> A(:,2)

ans =

0.6324

0.0975

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 33 / 94

Indexing

You can change matrix entries by indexing and then assigning with =. You
can delete values by assigning to them the empty matrix [].

Vector Indices for Matrix/Vector Indexing

>> A(2,2) = 1

A =

0.8147 0.6324

0.9058 1.0000

>> A(end ,:3) = 0.5

A =

0.8147 0.6324

0.5000 0.5000

>> A(end ,1:2) = [0.25 0.7]

A =

0.8147 0.6324

0.2500 0.7000

>> x(2:3) = []

x =

1 4 5

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 34 / 94

Matrix/Vector Size

The size returns a vector containing the dimension of a matrix.
The length function returns the size of the largest dimension.

Obtaining Matrix/Vector Size

>> size(A)

ans =

2 2

>> size(x)

ans =

1 3

>> length(A)

ans =

2

>> length(x)

ans =

3

As size returns a two-value vector you can use the result as an argument
to the matrix construction functions.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 35 / 94

Basic Matrix Arithmetic

The basic mathematics function can be used for matrix operations.

+ for element-wise addition (can be applied to two matrices or a
matrix and scalar),
- for element-wise subtraction (can be applied to two matrices or a
matrix and scalar),
* for matrix-scalar multiplication or matrix-matrix multiplication,
/ for division of each matrix element by a scalar,
^ for raising a matrix to a scalar power, and
\ for left division of each matrix element by a scalar.

Matrix Multiplication

>> A = [2 0.5 1.5 4; 0 6 3 1];

>> x = [1;2;3;4];

>> A*x

ans =

23.5000

25.0000

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 36 / 94

Element-wise Arithmetic

MATLAB also supports element-wise arithmetic operators. These apply
the matching scalar operation to the elements with the same index when
applied to matrices of the same size.

.* for element-wise multiplication,

./ for element-wise division,

.^ for element-wise raising to a power, and

.\ for element-wise left division.

When applied to a matrix and scalar the scalar is treated as a matrix of
the same size filled with the scalar.

Element-wise Multiplication

>> A = [2 0.5 1.5 4; 0 6 3 1];

>> B = [3 1 4 6; 2 0 9 0];

>> A.*B

ans =

6.0000 0.5000 6.0000 24.0000

0 0 27.0000 0

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 37 / 94

Transpose

MATLAB has two matrix suffix operators (and matching functions) to
take the transpose.

’ (or ctranspose) transposes and takes the complex conjugate, and

.’ (or transpose) just transposes

Transpose

>> Z = [2+1i 1-8i; 0.5 -0.5i 9];

>> Z’

ans =

2.0000 - 1.0000i 0.5000 + 0.5000i

1.0000 + 8.0000i 9.0000 + 0.0000i

>> Z.’

ans =

2.0000 + 1.0000i 0.5000 - 0.5000i

1.0000 - 8.0000i 9.0000 + 0.0000i

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 38 / 94

Solving Linear Systems

MATLAB can solve linear systems by use of the left division (\) and
division (/) operators. Given two matrices A,B and a vector of unknowns
x ; then,

x = A\B gives the solution to the equation Ax = B, and

x = B/A gives the solution to the equation xA = B.

Solving Linear Systems

>> A = [3 1 -1; 1 1 1; 0 1 -1];

>> B = [0;0;1];

>> A\B

ans =

-0.3333

0.6667

-0.3333

>> B’/A

ans =

-0.1667 0.5000 -0.3333

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 39 / 94

Vector Functions

Below is a non-exhaustive list of functions for vectors.

min, max Minimum/maximum value in the vector
sum Sum of all values
prod Product of all values

mean, median Mean/median of the values
std, var Standard deviation/variance of the values
cumsum Cumulative sum of the values
cumprod Cumulative product of the values
sort Sorts the values in the vector

These can also be applied to matrices, in which case each column of the
matrix is treated as a different vector by default, returning a row vector of
the results.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 40 / 94

Matrix Functions

Below is a non-exhaustive list of functions for matrices.

inv Inverse a matrix (do not use for solving linear systems)
det Calculate the determinant of a matrix
trace Calculate the trace of a matrix
norm Calculate a norm of the matrix (defaults to 2-norm)
rank Calculate the rank of the matrix
eig Calculate eigenvalues and eigenvectors of the matrix
poly Calculate characteristic polynomial of the matrix
cond Calculate the condition number of the matrix

expm, logm Matrix exponential and logarithm
sqrtm Square root of the matrix

The basic mathematics functions we saw earlier can also be applied to
vectors/matrices (usually element-wise).

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 41 / 94

Multiple Returns

eig returns multiple values. To access all returns list variable names
separated by commas (surrounded by square brackets []) on the left of the
assignment. To ignore a return use the tilde ~ instead of a function name.

Multiple Returns

>> [V,D] = eig(A)

V =

-0.9011 0.2579 0.2860

-0.4226 -0.8773 -0.4480

-0.0969 -0.4048 0.8471

D =

3.3615 0 0

0 1.1674 0

0 0 -1.5289

>> [V,~] = eig(A)

V =

-0.9011 0.2579 0.2860

-0.4226 -0.8773 -0.4480

-0.0969 -0.4048 0.8471

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 42 / 94

Section 4

Strings

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 43 / 94

Strings

MATLAB supports string/character values. A string is essentially a special
vector of characters, entered using single quotation marks. You can access
sub-strings and characters using standard indexing.

String Example

>> str = ’This is a test string ’

str =

This is a test string

>> str (6)

ans =

i

>> str (11:14)

ans =

test

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 44 / 94

Strings

You can concatenate strings by surrounding multiple values/literals with
square brackets [].

String Concatenation

>> newstr = [’Concatenate "’ str ’" in the middle ’]

newstr =

Concatenate "This is a test string" in the middle

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 45 / 94

Formatting Numbers

MATLAB has a couple of functions for converting numbers to strings.

num2str converts a number to a string (4 decimal places). An optional
integer argument can specify the number of decimal places, and

sprintf is a more complex number formatter (check documentation).

Formatting Numbers

>> num2str (2.53380112)

ans =

2.5338

>> num2str (2.53380112 ,7)

ans =

2.533801

>> sprintf(’%08d’ ,4)

ans =

00000004

>> sprintf(’Test %d %d %d; ’, [3 1 -1; 1 1 1; 0 1 -1])

ans =

Test 3 1 0; Test 1 1 1; Test -1 1 -1;

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 46 / 94

Displaying Text

MATLAB by default outputs results of its computation in its own format.
Using strings it is possible to generate customised text output using the
disp command, which outputs a string to the Command Window.

Displaying Text

>> disp([’Fact.:’ sprintf(’\n%4d: %8d’,[x;cumprod(x)])])

Fact.:

1: 1

2: 2

3: 6

4: 24

5: 120

6: 720

7: 5040

8: 40320

9: 362880

10: 3628800

A fprintf (similar to sprintf) function directly outputs its result.
UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 47 / 94

Section 5

Graphics

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 48 / 94

Plot Basics

The plot function plots x and y data as a line plot. A third argument
specifies a line specification string: colour, marker and line type.

Colour Marker Line

b Blue . Point - Solid
g Green o Circle : Dotted
r Red x Cross -. Dash-dot
c Cyan + Plus -- Dashed
m Magenta * Star (none) No line
y Yellow s Square
k Black d Diamond
w White v Triangle (down)

^ Triangle (up)
< Triangle (left)
> Triangle (right)
p Pentagram
h Hexagram

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 49 / 94

Plot Basics

Basic Plotting

>> x = 0:0.5:3;

>> plot(x,x,’-xr’,x,x.^2,’-ob’,x,x.^3,’-sk’)

0 0.5 1 1.5 2 2.5 3

0

5

10

15

20

25

30

plot uses a linear x and y axis. loglog, semilogx, and semilogy, are
identical but use (one or more) logarithmic axis.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 50 / 94

Annotation

Annotating a Plot

>> xlabel(’x’)

>> ylabel(’f(x)’)

>> title(’Basic Polynomial Functions ’)

>> legend(’x’,’x^2’,’x^3’,’Location ’,’NorthWest ’)

x

0 0.5 1 1.5 2 2.5 3

f(
x
)

0

5

10

15

20

25

30
Basic Polynomial Functions

x

x2

x3

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 51 / 94

3D Plots

plot3 is used for 3D line plots.

3D Line (Parametric) Plot

>> t = linspace (0 ,10*pi ,501);

>> plot3(sin(t),cos(t),t,’-r’)

1

0.5

0

-0.5

-1-1

-0.5

0

0.5

25

0

5

10

20

15

35

30

1

The annotations work as before (with an extra zlabel function).
UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 52 / 94

3D Plots

surf is used to plot 3D data. This function takes three arguments, for the
x , y and z data. z must be a M × N matrix; whereas, x and y can be a
matrix or a vector.

If x and y are matrices they must be the same size as the z matrix —
matching elements from the vectors denotes a x , y and z point to
plot.

If x is a vector of length N and y vector of length M each point
plotted is (x(j), y(i), z(i , j).

The meshgrid function takes a x and y vector and creates a full x and y
matrix representing the tensor points.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 53 / 94

3D Plots

Mesh Grid

>> x = linspace (0,1,5);

>> [X, Y] = meshgrid(x,x)

X =

0 0.2500 0.5000 0.7500 1.0000

0 0.2500 0.5000 0.7500 1.0000

0 0.2500 0.5000 0.7500 1.0000

0 0.2500 0.5000 0.7500 1.0000

0 0.2500 0.5000 0.7500 1.0000

Y =

0 0 0 0 0

0.2500 0.2500 0.2500 0.2500 0.2500

0.5000 0.5000 0.5000 0.5000 0.5000

0.7500 0.7500 0.7500 0.7500 0.7500

1.0000 1.0000 1.0000 1.0000 1.0000

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 54 / 94

3D Plots

3D Surface Plot

>> x = linspace (0 ,1,25);

>> [X, Y] = meshgrid(x,x);

>> surf(X, Y, X.*Y.*(1-X).*(1-Y))

>> colorbar

1

0.8

0.6

0.4

0.2

00

0.2

0.4

0.6

0.8

0.03

0.02

0.04

0.01

0

0.05

0.06

0.07

1

0

0.01

0.02

0.03

0.04

0.05

0.06

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 55 / 94

3D Plots

The colorbar function displayed a colour bar on the active plot. The
colour scheme used can be changed by the colormap function. help graph3d

for a list available colour maps.
Rotate 3D tool-bar button () allows plot rotation by dragging within the
plot area. The view(2) or view(3) function switches the current plot view
to a 2D top-down view or the default 3D view, respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.01

0.02

0.03

0.04

0.05

0.06

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 56 / 94

3D Plots

Other 3D plot functions exist:
mesh Plots mesh, rather than surface

contour Plots a contour
surfc, meshc Plots surface/mesh with contour underneath

trisurf, trimesh Takes 3 vectors and M × 3 vector of triangles (indices)

3

2

1

0

-1

-2

-3-3

-2

-1

0

1

2

3

1

-1

-0.5

0

0.5

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 57 / 94

Section 6

Programming

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 58 / 94

Scripts

MATLAB scripts are simple text files (with a .m extension) filled with
MATLAB commands to execute.
Scripts are executed by typing the name of the file (without extension) at
the prompt.
All variables and values in the script file are saved into the workspace.
To start editing a script file within MATLAB either:

Create a file with Home New Script or Home New Script menu bar
buttons, or

Type edit filename at the prompt (where filename is the name of the
file). If a file with the name already exists it will be opened for
editing; otherwise, a prompt will ask if you want to create a script
with that name.

The Editor window will appear with the file to edit.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 59 / 94

Scripts

MATLAB scripts may contain the following:

Comments (lines not executed) in MATLAB start with a percentage
sign %,

Blank lines,

MATLAB commands, and

Block statements (if, for, while, switch, etc).

When run the script will output the result of any command not ending in a
semi-colon ;.
With scripts it is desirable to keep lines short so they can be easily read.
To split a line over multiple lines use the line continuation ellipsis ...

(three periods) at the end of the line to continue.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 60 / 94

Scripts

Sample Script

% This is a comment

% Set up variables

A = [3 1 -1; 1 1 1; 0 1 -1];

B = [0;0;1];

% Print out some matrix properties

disp(’Properties of A:’);

disp([’ Condition number: ’ num2str(cond(A))]);

disp([’ Determinant: ’ num2str(det(A))]);

% Following command is split over two lines

fprintf ([’ Characteristic Polynomial: ’ ...

’%.1fx ^3%+.1 fx ^2%+.1 fx%+.1f\n\n’], charpoly(A));

% Solve Ax=b

disp(’Solving Ax=b’);

x = A\B

% Display the output

disp([’x = [’ sprintf(’%8.4f’, x) ’]’]);

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 61 / 94

Scripts

To execute the script, do one of the two following options:

Ensure you are in the directory containing the file (cd as necessary)
and enter the script name into the Command Window, or

Click the Run button in the Editor tab of the Editor window with the
script file open (if you are not in the correct folder MATLAB will
present a warning dialog — select Change Folder from this dialog).

Either method will run the code and output the results.

Sample Script Output

>> sample_script

Properties of A:

Condition number: 3.2355

Determinant: -6

Characteristic Polynomial: 1.0x^3 -3.0x^2 -3.0x+6.0

Solving Ax=b

x = [-0.3333 0.6667 -0.3333]

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 62 / 94

Functions

MATLAB allows us to define our own functions.
These are defined in a script file similar to basic scripts, but with a specific
format. Create a function by editing a script file as specified above and
entering the necessary code, or to have MATLAB automatically generate a
template use the Home New Function menu bar button.

Function Structire

function [output_args] = functionname(input_args)

%FUNCTIONNAME Summary of this function goes here

% Detailed explanation goes here

end

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 63 / 94

Functions

A function breaks down into the following components:

function Keyword Keyword to denote we are writing a function.

output_args Comma-separated list of output argument names.

functionname The name of the function (used when calling the function).
The file name of the file containing the function must be
functionname.m.

input_args Comma-separated list of input argument names.

H1 Comment Line The first comment line. Should contain the function
name followed by a very short description.

Further documentation comments More comment lines immediately
following the function definition. The text in these comment
lines, along with the H1 Comment Line, will be displayed
when doc functionname or help functionname are called.

Main Body All code between the function definition and the matching
end keyword.

end Keyword The end of the function definition.
UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 64 / 94

Functions

Sample Function

function [z, w] = sample_function(x, y)

%SAMPLE_FUNCTION Calculates the product and difference

z = x*y;

w = x-y;

end

This function is called like any other MATLAB function.

Calling Sample Function

>> x = sample_function (2,3)

x =

6

>> [x,y] = sample_function (2,3)

x =

6

y =

-1

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 65 / 94

Functions

While this function works for scalars it will fail with vector/matrix inputs.

Calling Sample Function with Vector Arguments

>> [x,y] = sample_function ([1 5],[2 5])

Error using *

Inner matrix dimensions must agree.

Error in sample_function (line 3)

z = x*y;

We can fix this by using the element-wise operators.

Sample Function Changed for Vector/Matrix Arguments

function [z, w] = sample_function_vec(x, y)

%SAMPLE_FUNCTION_VEC Calculates the product and difference

z = x.*y;

w = x-y;

end

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 66 / 94

Sub-functions

Function files can contain more than one function.
Only the first “main” function defined in a file is visible outside the file.
This allows you to write local functions used by the main function in the
file but not usable by anyone else.

Sub-functions

function [z, w] = sample_subfunction(x, y)

%SAMPLE_SUBFUNCTION Calculates the product and difference

z = multiply(x, y);

w = x-y;

end

function [z] = multiply(x,y)

%MULTIPLY Elementwise multiplication of the vectors

z = x.*y;

end

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 67 / 94

Functions

A special statement, return, can be used anywhere in a function.
This statement exits the current function and executes no more commands
from the function.

Unlike in some other programming languages return does not take any
arguments (a return value), as return values are set by assignment.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 68 / 94

Logical Operators

MATLAB has a built-in logical type, which can take a true or false value
only (represented in MATLAB by 1 and 0, respectively). The following
element-wise comparison operators return logical matrices:

A < B Checks if A < B
A > B Checks if A > B
A <= B Checks if A ≤ B
A >= B Checks if A ≥ B
A == B Checks if A = B
A ~= B Checks if A 6= B

The first four work on the real part only; whereas, == and ~= works on the
real and imaginary parts.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 69 / 94

Logical Operators

Previously we mentioned that doubles suffer from rounding error.
The issue is equality comparisons do not always return true when expected.

Rounding Error in Comparisons

>> (19.2 -19) == 0.2

ans =

0

>> 19.2 -19 -0.2

ans =

-7.216449660063518e-16

When comparing floating point numbers instead calculate the absolute
value of the difference and check if it less than some tolerance value.
For example, rather than evaluate A==B, we instead use, abs(A-B) < 1e-8.
The comparison operators work on numbers. The strcmp and strcmpi

perform case sensitive and case insensitive, respectively, comparisons on
two strings.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 70 / 94

Logical Operators

The following element-wise logical operators and functions work on logical
matrices.

Operator Function Description

~A not(A) Logical NOT (0 becomes 1, 1 becomes 0)
A & B and(A,B) Logical AND (1 if both A and B are 1)
A | B or(A,B) Logical OR (1 if either A or B are 1)

xor(A,B) Logical XOR (1 if only one of A and B are 1)
The all function logically ANDs vector elements and any logically ORs
vector elements.
Applied to a matrix the logical AND or OR is applied to each column
(returning a row vector).

Short-circuit logical AND && and short-circuit logical OR || can be applied
to scalar logical arguments.
These functions are called short-circuit because they only evaluate the
second argument if necessary.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 71 / 94

Logical Indexing

A logical matrix can be used to index a matrix.

Logical Indexing

>> x = rand (1,4)

x =

0.7803 0.0965 0.3897 0.1320

>> x(x < 0.5) = 0

x =

0.7803 0 0 0

The find function returns indices of all non-zero entries in a matrix.

Find Indices of all Values < 0.02 in matrix

>> [i,j] = find(x < 0.02)

i =

1

j =

4

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 72 / 94

Loops

Loops are a programming structure that allows us to execute a number of
statements several times.
MATLAB has both for and while loop types.

Important: Although we can use loops to iterate through the elements in a
vector/matrix and handle them one at a time this should be avoided
wherever possible (by using element-wise and matrix operations) for
performance (speed) reasons.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 73 / 94

for Statement

A for loop executes a set of statements a set number of times. Each time
it executes the index variable takes the next value/column from an
vector/matrix.

General for Loop Structure

for index = values

statements

end

Here,

index is a variable name to use as the index variable,

values is the vector/matrix of values to take, and

statements is the list of statements to execute each loop.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 74 / 94

for Statement

Factorial Calculation with for Loop

disp(’The first 10 factorials ’);

v = 1;

for i = 1:10

v = v*i;

fprintf(’%3d : %8d\n’, i, v);

end

Within a for loop, two special statements can be used.

break exits the loop completely (no more values from values list are
evaluated), and

continue stops executing the statements for the current value and
moves to the next value from values (if one exists).

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 75 / 94

while Statement

The while loop continues to execute the statements it contains while some
condition holds true.

while Loop Structure

while expression

statements

end

The expression, which should return a logical matrix, is evaluated.

If all values in the matrix are non-zero (true) then the statements are
executed.

The expression is then evaluated again and statements executed if all
entries of the matrix are non-zero.

This continues until one entry of expression evaluates to 0 (false).

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 76 / 94

while Statement

while Loop Example

v = 100;

while v > 0.5

disp(num2str(v,8));

v = v/2;

end

If the expression never evaluates to false then the code will be stuck in an
infinite loop.
You can force a running script to terminate by using the Ctrl + C

keyboard shortcut.

A while loop can contain break and continue statements.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 77 / 94

if-else Statement

An if statement executes commands dependent on if a condition is true.

if-elseif-else Structure

if expression

if_statements

elseif expression

elseif_statements

else

else_statements

end

The elseif (with following statements) and the else (with following
statements) are both optional. Multiple elseif statements are also allowed.

The if expression is evaluated. If true, if_statements are executed;
if false then the expression for the first elseif statement is evaluated
and elseif_statements executed if this is true.
Each elseif expression is evaluated, in order, until one is true.
If no expression evaluates to true then else_statements are executed.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 78 / 94

if-else Statement

if Example

function plotdata(x, y, xtype , ytype)

% plotdata Plots the data on linear or log plots

% xtype and ytype are strings specify the type of

% scale for that axis - either ’log ’ or ’linear ’.

if (strcmpi(xtype ,’log’) && strcmpi(ytype ,’log’))

loglog(x, y);

elseif strcmpi(xtype ,’log’)

semilogx(x, y);

elseif strcmpi(ytype ,’log’)

semilogy(x, y);

else

plot(x, y);

end

end

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 79 / 94

switch Statement

A switch selects statements to execute based on number/string value.

switch Structure

switch expression

case case_expression

statements

otherwise

otherwise_statements

end

The otherwise is optional and you can have multiple case statements.
case_expression can be single value, or multiple values (comma-separated
and surrounded by braces {}).

switch evaluates the expression and compares the result against all
case_expressions.

The statements of first matching case_expression are executed.

If no match occurs then the otherwise_statements are evaluated.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 80 / 94

switch Statement

switch Example

function [city] = capital(country)

switch country

case ’Austria ’

city = ’Vienna ’;

case ’Germany ’

city = ’Berlin ’;

case {’United Kingdom ’,’Great Britain ’}

city = ’London ’;

otherwise

city = ’<Unknown >’;

end

end

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 81 / 94

Function Handles

It is possible to store a reference to a function within a variable.
You call that function via the variable by just using the variable like a
function.
To take function handle just use the function name prefixed by a @ symbol.

Taking & Using a Function Handle

>> sinhandle = @sin;

>> sinhandle(pi/2)

ans =

1

This allows generic functions to be written that operate on a function,
without having to know what function it operates on.
The ezplot function takes a function handle of the function to plot.

Calling ezplot with Function Handle

>> ezplot(@sin ,[-pi pi]);

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 82 / 94

Function Handles

We can use function handles to functions we have written as well.

Calling ezsurf with Handle to own Function

>> ezsurf(@sample_function)

Warning: Function failed to evaluate on array inputs;

vectorizing the function may speed up its evaluation and

avoid the need to loop over array elements.

> In ezplotfeval (line 56)

In ezgraph3 >ezeval (line 635)

...

>> ezsurf(@sample_function_vec)

Previously we mentioned that functions should be written as generic as
possible, we have here another demonstration of why.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 83 / 94

Anonymous Functions

Using function handles we can also define anonymous functions.
This are functions that are written inline in MATLAB (usually fairly simple
one-line functions).

Anonymous Function Syntax

@(input_args) functioncode

You can use this anonymous function like a normal function handle
(passing to a function or assigning to a variable).
For example, we can write the meshc example as follows.

3D Mesh/Contour plot Using Anonymous Function

>> ezmeshc(@(x, y) sin(x).* sin(y), [-pi pi])

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 84 / 94

Section 7

Structures

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 85 / 94

Structures

A MATLAB structure is essentially a group of variables stored together in
a single object
The various variables (fields) in a structure can be different types.
A structure type can be generated in two different ways:

With the struct function, or

by direct assignment of fields.

The struct function takes a variable number of values, where each pair is
a key-value pair.

Generating Structure using struct Function

>> course = struct(’Name’,’Numerische Mathematik 1’ ,...

’Group ’,3,’Year’ ,2015,’Semester ’,’WS’)

course =

Name: ’Numerische Mathematik 1’

Group: 3

Year: 2015

Semester: ’WS’

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 86 / 94

Structures

You can access a field, for reading or assignment, by using the dot .

notation. You use the variable name, followed by a period and then the
name of the field.

Generating & Reading Structure Directly

>> course.Name = ’Numerische Mathematik 1’;

>> course.Group = 3;

>> course.Year = 2015;

>> course.Semester = ’WS’;

>> course

course =

Name: ’Numerische Mathematik 1’

Group: 3

Year: 2015

Semester: ’WS’

>> course.Name

ans =

Numerische Mathematik 1

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 87 / 94

Structures

Structure arrays are also possible. Structure arrays are accessed in the
same way as vectors, and the array will grow to the correct size.

Accessing Structure Array

>> course (3). Group = 4;

>> course (2)

ans =

Name: []

Group: []

Year: []

Semester: []

>> course (3)

ans =

Name: []

Group: 4

Year: []

Semester: []

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 88 / 94

Section 8

Error Handling

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 89 / 94

Understanding Error Messages

When running code occasional errors may occur. This are displayed in red
in the Command Window.
Error messages usually describe the potential error fairly accurate,
although the error can be caused elsewhere.
Often the error message will include a line number inside a script/function
file where the error occurred. Clicking on this line number takes us to the
Editor with the relevant file open.
See if you can spot the error in the following before running.

Function with Error

function [b] = invalid_func(n)

% invalid_func Function that we want to take a number

% and perform Ax for A=rand(n), x=1:n

A = rand(n);

x = 1:n;

b = A*x;

end

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 90 / 94

Understanding Error Messages

If we try to run this function we get an error.

Running Function with Error

>> invalid_func (4)

Error using *

Inner matrix dimensions must agree.

Error in invalid_func (line 6)

b = A*x;

MATLAB has told us the error (matrix multiplication with incorrect
dimensions), the line the error occurred on, and has even printed the line
causing the error as well.
If we click the line number we can then look at the code to try and find
the error.
The problem is x is a row vector and it needs to be a column vector.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 91 / 94

Generating Errors

You can generate error messages in your scripts (i.e., to check inputs).
To generate an error call the error function, passing an error message.

Generating Errors

function [x] = basic_factorial(n)

% basic_factorial A very basic factorial implementation

x = 1;

if (n < 0)

error(’Factorial only defined for non -negative numbers ’);

elseif (round(n) ~= n)

error(’Factorial only defined for integer values ’);

elseif (n > 0)

for i=1:n

x = x*i;

end

end

end

A similar warning function also exists.
UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 92 / 94

Debugging

MATLAB has a debugger, which allows code to be run and inspected.
The best way to enter debug mode is to place a breakpoint on a line of
code by:

Clicking in the left margin of the Editor window, or

By using the Editor Breakpoints menu.

When a breakpoint is active a red circle appears in the left margin.

When the code is executed the script will run until this line is reached, and
then pause (with the Editor window active at that line).
While debugging you can inspect values by:

Hovering over them with the mouse.

By entering a variable name or expression at the K>> prompt.

Select some code, right-click and select Evaluate Expression .

Note that a breakpoint pauses the code before execution of a line (so any
variables on that line will not exist yet).

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 93 / 94

Debugging

In debug mode the Editor tab on the Editor window contains a set of tools
for controlling the execution of the script.

Continue continues running the script until the next breakpoint.

Step executes the current line and then pause on the next line.

Step In does the same, but if the line contains a function call then
instead it will pause at the first line inside that function.

Step Out will run the rest of the current function and will pause at the
line of code after the function call.

Quit Debugging will terminate the currently executing script and exit the
debugger.

UE Numerische Mathematik 1 Introduction to MATLAB Wintersemester 2015 94 / 94

	Introduction
	About MATLAB
	Literature & Resources
	Overview of the UI
	Basics of the Command Window
	Documentation & Help

	Basic Mathematics
	Scalar Arithmetic
	Number Format
	Special Constants
	Variables
	Complex Numbers
	Functions

	Vectors & Matrices
	Defining Matrices & Vectors
	Indexing
	Vector & Matrix Operators
	Functions

	Strings
	Formatting Numbers
	Displaying Text

	Graphics
	Plot Basics
	Annotation
	3D Plots

	Programming
	Scripts
	Functions
	Logical Operators
	Loops
	if-else Statement
	switch Statement
	Function Handles

	Structures
	Error Handling
	Understanding Error Messages
	Generating Errors
	Debugging

