
Introduction to GNU Octave
A brief tutorial for linear algebra and calculus students

by Jason Lachniet

Introduction to GNU Octave

A brief tutorial for linear algebra and calculus students

Jason Lachniet
Wytheville Community College

jlachniet@wcc.vccs.edu

First Edition

mailto:jlachniet@wcc.vccs.edu

iv

v

© 2017 by Jason Lachniet (CC-BY-SA)
ISBN 978-1-365-98319-1

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Li-
cense. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.
0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Corrected 1st Ed. (compiled on October 21, 2018)

Download for free at:
https://www.wcc.vccs.edu/sites/default/files/Introduction-to-GNU-Octave.pdf.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://www.wcc.vccs.edu/sites/default/files/Introduction-to-GNU-Octave.pdf

vi

Contents

Contents vii

Preface ix

1 Basic operation 1

1.1 Introduction . 1

1.1.1 What is GNU Octave? . 1

1.1.2 Installing Octave . 2

1.1.3 Getting started . 3

1.2 Matrices and vectors . 4

1.2.1 Vector operations . 4

1.2.2 Projections . 5

1.2.3 Matrix operations . 6

1.2.4 Saving your work . 8

1.3 Plotting . 8

1.3.1 Plot options . 12

1.3.2 Saving plots . 13

Chapter 1 Exercises . 14

2 Matrices and linear systems 17

2.1 Linear systems . 17

2.1.1 Gaussian elimination . 17

2.1.2 Left division . 19

2.1.3 LU decomposition . 19

2.2 Polynomial curve fitting . 23

2.3 Matrix transformations . 26

2.3.1 Rotation matrices . 27

2.3.2 Other transformations . 29

Chapter 2 Exercises . 31

3 Calculus 35

3.1 Limits, sequences, and series . 35

3.2 Numerical integration . 38

3.2.1 Quadrature . 39

3.2.2 Approximating sums . 39

3.3 Parametric and polar plots . 42

3.4 Special functions . 43

Chapter 3 Exercises . 45

4 Eigenvalue problems 47

4.1 Eigenvalues and eigenvectors . 47

4.2 Markov chains . 48

4.2.1 A random walk . 48

4.3 Diagonalization . 52

4.3.1 Orthogonal diagonalization . 54

vii

viii CONTENTS

4.4 Singular value decomposition . 56

4.4.1 Least squares . 59

4.4.2 Image compression . 62

4.5 Gram-Schmidt and the QR algorithm . 63

4.5.1 The Gram-Schmidt process . 63

4.5.2 QR decomposition . 65

4.5.3 The QR algorithm . 67

Chapter 4 Exercises . 69

5 Additional topics 73

5.1 Three dimensional graphs . 73

5.1.1 Space curves . 73

5.1.2 Surfaces . 75

5.1.3 Solids of revolution . 76

5.2 Multiple integrals . 77

5.2.1 Double Riemann sums . 82

5.3 Vector fields . 84

5.4 Statistics . 86

5.5 Differential equations . 90

5.5.1 Slope fields . 90

5.5.2 Euler’s method . 91

5.5.3 The Livermore solver . 93

Chapter 5 Exercises . 95

A MATLAB compatibility 97

B List of Octave commands 99

References 103

Index 105

Preface

These notes are not intended as a comprehensive manual. Instead, what follows is a tutorial
that puts Octave to work solving a selection of applied problems in linear algebra and calculus.
The goal is to learn enough of the basics to begin solving problems with minimum frustration.
Note that minimum frustration does not mean no frustration. Be patient!

Features of the text

To get the most out of this book, you should read it alongside an open Octave window where
you can follow along with the computations (you will want paper and pencil, too, as well as your
math books). Blocks of Octave commands are indented and printed with special formatting as
follows.

>> % example Octave commands :
>>
>> x = [−3 : 0 . 1 : 3] ;
>> p lo t (x , x . ˆ 2) ;
>> t i t l e ('Example p l o t ')

Comments used to explain the code are preceded by a “%” sign and shown in green. Key
words are highlighted in magenta. Strings (text variables) are highlighted in purple. The same
formatting is used for commands that appear inline in the text. The Octave prompt is shown
as “>>”.

Octave scripts (.m-files) are shown between horizontal rules and are labeled with a title, as in
the following example. These are short programs in the Octave language.

Octave Script 1: Example

1 % This i s an example Octave s c r i p t (.m− f i l e)
2 t = l i n s p a c e (0 , 2*pi , 50) ;
3 x = cos (t) ;
4 y = s i n (t) ;
5

6 % plo t the graph o f a un i t c i r c l e
7 p lo t (x , y) ;
8 g r id on ;

The line numbers are for reference purposes and are not part of the code.

ix

x PREFACE

The color coding is not essential to understand the text. Thus the text can be printed in black
and white to save on printing costs.

If you are reading the electronic PDF version, there are numerous hyperlinks throughout the
text that link back to other parts of the text, or to external urls. There is a set of bookmarks to
each chapter and section that can be used to easily navigate from section to section. Open the
bookmark link at the left side of the screen in your PDF viewer to use this feature (not visible
in a web browser view; use a full PDF reader, like https://get.adobe.com/reader/).

Solutions to the many example problems are offset with a bar along the left side of the page,
as shown here. A box signifies the end of the example.

MATLAB

The majority of the code shown in this book will work in MATLAB. This guide can therefore
also be used an introduction to that software package. Refer to Appendix A for some notes on
MATLAB compatibility.

Scope and purpose

This guide is heavy on linear algebra and makes a good supplement to a linear algebra textbook.
But, it is assumed that any college student studying linear algebra will also be studying calculus
and differential equations, maybe statistics. Therefore it makes sense to apply the Octave skills
learned for linear algebra to these subjects as well. Chapters 3 and 5 have several applications
to calculus, differential equations, and statistics. The overarching objective is to enhance our
understanding of calculus and linear algebra using Octave as a tool for computations. For the
most part, we will not address issues of accuracy and round-off error in machine arithmetic.
For more details about numerical issues, refer to [1], which also contains many useful Octave
examples.

To get started, read Chapter 1, without worrying too much about any of the mathematics you
don’t yet understand. After grasping the basics, you should be able to move into any of the
chapters or sections that interest you.

Every chapter concludes with a set of problems, some of which are routine practice, and some
of which are more extended applied projects.

Most examples assume the reader is familiar with the mathematics involved. In a few cases,
more detailed explanation of relevant theorems is given by way of motivation, but there are no
proofs. Refer to the linear algebra and calculus books listed in the references for background on
the underlying mathematics. In the spirit of openness, all references listed are available for free
under GNU or Creative Commons licenses and can be accessed using the links provided.

https://get.adobe.com/reader/

Chapter 1

Basic operation

1.1 Introduction

1.1.1 What is GNU Octave?

GNU Octave is free software designed for scientific computing. It is intended primarily for
solving numerical problems. In linear algebra, we will use Octave’s capabilities to solve systems
of linear equations and to work with matrices and vectors. Octave can also generate sophisticated
plots. For example, we will use it in vector calculus to plot vector fields, space curves, and
three dimensional surfaces. Octave is mostly compatible with the popular “industry standard”
commercial software package MATLAB, so the skills you learn here can be applied to MATLAB
programming as well. In fact, while this guide is written and intended as an introduction to
Octave, it can serve equally well as a basic introduction to MATLAB.

What is GNU? A gnu is a type of antelope, but GNU is a free, UNIX-like computer operating
system. GNU is a recursive acronym that stands for “GNU’s not Unix.” GNU Octave (and
many other free programs) are licensed under the GNU General Public License: http://www.

gnu.org/licenses/gpl.html.

From www.gnu.org/software/octave:

GNU Octave is a high-level interpreted language, primarily intended for numerical
computations. It provides capabilities for the numerical solution of linear and non-
linear problems, and for performing other numerical experiments. It also provides
extensive graphics capabilities for data visualization and manipulation. Octave is
normally used through its interactive command line interface, but it can also be
used to write non-interactive programs. The Octave language is quite similar to
MATLAB so that most programs are easily portable.

Octave is a fully functioning programming language, but it is not a general purpose programming
language (like C or Java). Octave is numerical, not symbolic; it is not a computer algebra system

1

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
www.gnu.org/software/octave

2 CHAPTER 1. BASIC OPERATION

Figure 1.1: Windows Octave GUI

(like Maple, Mathematica, or Sage). However, Octave is ideally suited to all types of numeric
calculations and simulations. Matrices are the basic variable type and the software is optimized
for vectorized operations.

1.1.2 Installing Octave

It’s free! Octave will work with Windows, Macs, or Linux. Go to https://www.gnu.org/

software/octave/download.html and look for the download that matches your system. For
example, Windows users can find an installer for the current Windows version at https:

//ftp.gnu.org/gnu/octave/windows/. Manual installation can be tricky, so look for the most
recent .exe installer file and run that. Installation in most Linux systems is easy. For example,
in Debian/Ubuntu, run the command sudo apt-get install octave. If you find Octave use-
ful, consider making a donation to support the project at https://www.gnu.org/software/

octave/donate.html.

Beginning with version 4.0, Octave uses a graphical user interface (GUI) by default. When you
start Octave, you should see something like Figure 1.1.

The user can customize the arrangement of windows. By default, you will have a large command
window, which is where commands are entered and run, a file browser, a workspace window
displaying the variables in the current scope, and a command history.

https://www.gnu.org/software/octave/download.html
https://www.gnu.org/software/octave/download.html
https://ftp.gnu.org/gnu/octave/windows/
https://ftp.gnu.org/gnu/octave/windows/
https://www.gnu.org/software/octave/donate.html
https://www.gnu.org/software/octave/donate.html

1.1. INTRODUCTION 3

1.1.3 Getting started

There are several good help resources on the web, and built-in help functions within Octave.
The shell command help can be used at the Octave prompt. In particular, if you know the name
of the command you want to use, help NAME will give the correct syntax.

Here are two good free, online resources:

� The Octave Manual [3]:
http://www.gnu.org/software/octave/octave.pdf

� Wikibooks Tutorial:
https://en.wikibooks.org/wiki/Octave_Programming_Tutorial

Additional help can be found with internet searches. Depending on what you are looking for,
searches for Octave commands and searches for MATLAB commands can both be useful. Nu-
merous commercial user’s guides and textbooks for Octave and/or MATLAB are available.
Linear algebra textbooks sometimes contain MATLAB code examples and these generally work
in Octave as well.

The best way to get started is to try some simple problems. Use the following examples as
a tutorial to learn your way around the program. Octave knows about basic arithmetic. Try
something simple like:

>> 2*6 + (7 − 4) ˆ2
ans = 21

Octave ignores white space, so 2*6 and 2 * 6 are interpreted the same way. You can’t take
shortcuts and leave out implied operations, though. For example, 2(5 − 1) will give an error.
Use 2*(5 − 1).

Vectors and matrices are basic variable types, so it is easier to learn Octave syntax if you already
know a little linear algebra. Try this example to enter a row vector and name it u. You do not
need to enter the comments (indicated by the % sign).

>> u = [1 −4 6] % row vecto r
u = % v a r i a b l e name

1 −4 6 % output

The code u = . . . assigns the result of the operation that follows to the variable u, which can
then be recalled and used in further calculations.

To create a column vector instead, use semicolons:

>> u = [1 ; −4; 6] % column vecto r
u = % v a r i a b l e name

1 % output
−4

6

http://www.gnu.org/software/octave/octave.pdf
https://en.wikibooks.org/wiki/Octave_Programming_Tutorial

4 CHAPTER 1. BASIC OPERATION

Notice that the function of the semicolon is to begin a new row. The same basic syntax is used
to enter matrices. For example, let’s see how to enter a matrix:

>> A = [1 2 −3; 2 4 0 ; 1 1 1] % matrix
A = % v a r i a b l e name

1 2 −3 % output
2 4 0
1 1 1

1.2 Matrices and vectors

Matrices are the basic variable type in Octave. In fact, a scalar is treated as a 1 × 1 matrix.
Similarly, a row vector is a 1× n matrix and a column vector is an m× 1 matrix.

1.2.1 Vector operations

We’ll start with some simple examples. First, enter the column vector u from above, if it is not
already in memory.

>> u = [1 ; −4; 6]
u =

1
−4

6

Now enter another column vector v and try the following vector operations which illustrate
linear combinations, dot product, cross product, and norm.

>> v = [2 ; 1 ; −1]
v =

2
1
−1

>> 2*v + 3*u
ans =

7
−10

16

>> dot (u , v) % dot product
ans = −8

>> c r o s s (u , v) % c r o s s product

1.2. MATRICES AND VECTORS 5

ans =

−2
13

9

>> norm(u) % length o f vec to r u
ans = 7.2801

Try a few more operations:

� Find cross(v, u). How does that compare to u× v?

� Calculate the length of v, ||v||, using norm(v).

� Create a unit vector v1 that points in the direction of v.

1.2.2 Projections

-��
��

�
��
�*

-θ

u

projv(u) v

Figure 1.2: Vector projection

The projection of u onto v, denoted projv(u), is the component of u that points in the direction
of v. This can be thought of as the shadow u casts onto v from a direction orthogonal to
v, as shown in the figure. To find the magnitude of the projection, use basic right-triangle
trigonometry:

‖projv(u)‖ = ‖u‖ cos(θ)

Then, since u · v = ‖u‖‖v‖ cos(θ),

‖projv(u)‖ = ‖u‖ cos(θ)
= ‖u‖ u·v

‖u‖‖v‖
= u·v

‖v‖

This is known as the scalar projection of u onto v. The vector projection onto v is obtained by
multiplying the scalar projection by a unit vector that points in the direction of v. Thus,

projv(u) = u·v
‖v‖

v
‖v‖

= u·v
‖v‖2 (v)

Since v · v = ‖v‖2, this can also be written as:

projv(u) =
u · v
v · v

(v)

6 CHAPTER 1. BASIC OPERATION

Example 1.2.1. Find the projection of 〈3, 5〉 onto 〈7, 2〉.

Solution. The operations needed for vector projection are easily carried out in Octave.

>> u = [3 5]
u =

3 5

>> v = [7 2]
v =

7 2

>> pro j = dot (u , v) /(norm(v)) ˆ2*v
pro j =

4.0943 1 .1698

Thus projv(u) = 〈4.0943, 1.1698〉.

1.2.3 Matrix operations

Matrix operations are carried out very easily. We’ll start with matrix multiplication.

Example 1.2.2. Let A =

 1 2 −3
2 4 0
1 1 1

 and B =

 1 2 3 4
0 −2 −4 6
1 −1 0 0

. Find AB.

Solution.

>> A = [1 2 −3; 2 4 0 ; 1 1 1] % matrix
A = % v a r i a b l e name

1 2 −3 % output
2 4 0
1 1 1

>> B = [1 2 3 4 ; 0 −2 −4 6 ; 1 −1 0 0]
B =

1 2 3 4
0 −2 −4 6
1 −1 0 0

>> A*B % mult ip ly A and B
ans = % r e s u l t s to r ed as ' ans '

−2 1 −5 16 % answer
2 −4 −10 32
2 −1 −1 10

Notice that the result is stored in the temporary variable ans.

1.2. MATRICES AND VECTORS 7

Arithmetic operations in Octave are always assumed to be matrix operations. Therefore, for
A and B defined as above, we can compute things like 4A or AB by entering 4*A or A*B, but
operations like B*A or A+B give errors (why?).

To get the transpose of a matrix, use the single quote. For example, try calculating BTA.

>> B' *A % B ' i s the t ranspose o f B
ans =

2 3 −2
−3 −5 −7
−5 −10 −9
16 32 −12

To perform basic matrix arithmetic, we also need the identity matrix. This is easy to do in
Octave with the eye(n) command, where n is the dimension of the matrix. Let’s find 2A− 4I.

>> 2*A − 4* eye (3) % eye (3) i s a 3x3 i d e n t i t y matrix
ans =

−2 4 −6
4 4 0
2 2 −2

Octave can also find determinants, inverses, and eigenvalues. For example, try these commands.

>> det (A) % determinant
ans = 6

>> inv (A) % matrix i n v e r s e
ans =

0.66667 −0.83333 2.00000
0.33333 0.66667 −1.00000
0.33333 0.16667 0.00000

>> e i g (A) % e i g e n v a l u e s
ans =

4.52510 + 0.00000 i
0 .73745 + 0.88437 i
0 .73745 − 0.88437 i

Notice that our matrix has one real and two complex eigenvalues. Octave handles complex
numbers, of course! Eigenvalues will be discussed in more detail in Chapter 4. Octave can also
compute many other matrix values, such as rank:

>> rank (A) % matrix rank
ans = 3

8 CHAPTER 1. BASIC OPERATION

1.2.4 Saving your work

If we have solved some problems, we are going to want some way to save our work and maybe
reload it later. In Octave, you can save variables that you defined in your session, but you cannot
save the commands you used or a whole worksheet. Octave does have a command history that
persists between sessions, so past commands can be brought up using the up arrow key, or using
the command history list in the GUI. If you want to document how you did something, use copy
and paste to copy your commands into a Word document or text file.

Within the Octave graphical user interface, you should see your current directory listed near
the top left. You can click the folder button to navigate to a different directory, such as the
desktop or your personal flash drive. Under the file menu, the option “save workspace as” will
save all of your current variables in a file of your choosing. You can see a list of the variables
currently defined listed under “workspace” on the left side of the screen. You can use the “load
workspace” option under the file menu to load previously saved variables.

Another approach is to use the manual save and load commands at the command line. If you
type save FILENAME var1 var2 ..., Octave will save the specified variables in the file FILENAME.
If you do not supply a list of variables, then all variables in the current scope will be saved. You
can then reload the saved variable(s) at another time by navigating to the appropriate directory
and using load FILENAME. You can also load a variable or workspace by double-clicking on its
name in the file browser.

If you want to save a series of commands that can be reopened and run again, you can create
an Octave script, also known as an .m-file. This will be described in more detail in Chapter 3.

1.3 Plotting

Basic two-dimensional plotting of functions in Octave is accomplished by creating a vector for
the independent variable and a second vector for the range of the function. There are several
forms for the syntax and we will attempt to outline the simplest methods here. See also:

� http://www.gnu.org/software/octave/doc/interpreter/Plotting.html

� http://en.wikibooks.org/wiki/Octave_Programming_Tutorial/Plotting

Let’s start by plotting the graph of the function sin(x) on the interval [0, 2π]. Like a typical
graphing calculator, Octave will simply plot a series of points and connect the dots to represent
the curve. The process is less automated in Octave (but in the end, much more powerful). We
begin by creating a vector of x-values.

>> x = l i n s p a c e (0 , 2*pi , 50) ;

Notice the format linspace(start val , end val, n). This creates a row vector of 50 evenly spaced
values beginning at 0 and going up to 2π. The smaller the increment, the smoother the curve
will look. In this case, 50 points should be suitable. The semicolon at the end of the line is to

http://www.gnu.org/software/octave/doc/interpreter/Plotting.html
http://en.wikibooks.org/wiki/Octave_Programming_Tutorial/Plotting

1.3. PLOTTING 9

Figure 1.3: Default graph of y = sin(x) on [0, 2π]

suppress the output to the screen, since we don’t need to see all the values in the vector. Now,
we want to create a vector of the corresponding y-values. Use this command:

>> y = s i n (x) ;

Now, to plot the function, use the plot command:

>> p lo t (x , y) ;

You should see the graph of f(x) = sin(x) as a thin blue line pop up in a new window (like
Figure 1.3).

This is the default graph. You may wish to customize it a little bit. For example, the x-axis
extends too far. We can set the window with the axis command. The window is controlled by a
vector of the form [Xmin Xmax Ymin Ymax]. Let’s set the axes to match the domain and range
of the function.

>> a x i s ([0 2* pi −1 1]) ;

We may want to change the color (to, say, red) or make the line thicker. We can add a grid to
help guide our eye. In addition, a graph should usually be labeled with a title, axis labels, and
legend. Try these options to get the improved graph shown in Figure 1.4.

>> p lo t (x , y , ' r ' , ' l i n ew id th ' , 3)
>> g r id on
>> x l a b e l ('x ') ;
>> y l a b e l ('y ') ;
>> t i t l e (' Sine graph ') ;
>> l egend ('y=s i n (x) ') ;

10 CHAPTER 1. BASIC OPERATION

Figure 1.4: Improved graph of y = sin(x) on [0, 2π]

Note that some adjustments, like zooming in, or turning on the grid, can be done within the
graph window using the controls provided. Some standard color options are red, green, blue,
cyan, and magenta, which can be specified with their first letter in single quotes.

Now, let’s try plotting points. The procedure is the same, but we use an option to spec-
ify the marker we want. Some marker options are o, +, or *. We will plot the set of points
{(1, 1), (2, 2), (3, 5), (4, 4)} using circles as our marker. First, clear the variables from the workspace
and clear any existing graphs. Then define a vector of x-values and a vector of y-values and use
the plot command.

>> c l e a r ; c l f ;
>> x = [1 2 3 4]
>> y = [1 2 5 4]
>> p lo t (x , y , ' o ')

Now suppose we want to graph the line y = 1.2x on the same set of axes (this is the line of best
fit for this data). To add to our current graph we need to use the command hold on. Then any
new plots will be drawn onto the current axes. We can switch back later with hold off .

>> hold on
>> p lo t (x , 1 .2* x)

Now we should see four points and the graph of the line. Alternately, we can create multiple
plots within a single plot command. Try this, for example:

>> c l e a r ; c l f ;
>> x = [1 2 3 4] ;
>> y1 = [1 2 5 4] ;

1.3. PLOTTING 11

Figure 1.5: Scatter plot with regression line

>> y2 = 1.2* x ;
>> p lo t (x , y1 , ' o ' , x , y2)
>> a x i s ([0 5 0 6]) ;
>> g r id on ;
>> l egend (' data po in t s ' , ' r e g r e s s i o n l i n e ') ;

Notice that sets of input and output variables come in pairs, followed by any options that apply
to that pair. The result is shown in Figure 1.5.

It would be good practice for you to try graphing some other functions. One thing to remember
is that we are defining the independent variable x as a vector, so when we multiply, Octave
will regard multiplication as matrix multiplication, unless we indicate otherwise. Likewise,
division and exponentiation are interpreted as matrix operations. To graph a function such as
y = x2 sin(x), we need to use elementwise exponentiation and multiplication. This is done by
preceding the operation with a period (as in, .ˆ or .*). For example, these commands will give
an error:

>> x = l i n s p a c e (−10 , 10 , 100) ;
>> p lo t (x , xˆ2* s i n (x))
e r r o r : f o r Aˆb , A must be a square matrix . Use . ˆ f o r e lementwise power .
e r r o r : eva lua t ing argument l i s t element number 2

But this will do the trick:

>> x = l i n s p a c e (−10 , 10 , 100) ;
>> p lo t (x , x . ˆ 2 . * s i n (x))

12 CHAPTER 1. BASIC OPERATION

Figure 1.6: Graph of y = x2 sin(x)

Remember to use elementwise multiplication, division, and exponentiation! This is the source
of many errors and frustration for beginning Octave users. The result is in Figure 1.6.

1.3.1 Plot options

The following table summarizes some standard plot options.

Plot options

marker '+' crosshair color 'k' black
'o' circle 'r ' red
'*' star 'g' green
' . ' point 'b' blue
's ' square 'm' magenta
'ˆ' triangle 'c ' cyan

size ' linewidth' , n (where n is a positive value)
'markersize' , n (where n is a positive value)

line style '−' solid line (default)
'−−' dashed line
' : ' dotted line

Several options may be combined. For example, plot(x, y, 'ro: ') indicates red color with circle
markers joined by dotted lines.

1.3. PLOTTING 13

1.3.2 Saving plots

If we have created a good plot, we probably want to save it. The easiest option is to use copy
and paste from the plot window. You can also use the “save as” option under the file menu to
save the plot as a PDF.

An alternate method is to save the plot directly by “printing” it to a file. Octave supports
several image formats. In the example below, the PNG format is used. To save the current
graph as a PNG, use this syntax:

>> pr in t f i l ename . png −dpng

Here “filename” is whatever file name you want. You can replace “png” with other image
formats, such as “jpg” or “eps.” Your file will be saved in your current working directory.

14 CHAPTER 1. BASIC OPERATION

Chapter 1 Exercises

Begin each problem with no variables stored. You can clear any previous results with the
command clear .

1. For practice saving and loading variables, try the following.

(a) Create a new directory called “octave projects”.

(b) Change to the octave projects directory.

(c) Save the example matrices A and B from above in a text file named “matrices.txt”.

(d) Quit Octave.

(e) Restart Octave and reload the saved matrices.

2. Let a = 〈2,−4, 0〉 and b = 〈3, 1.5,−7〉. Find each of the following.

(a) x = 2a + 5b

(b) d = a · b
(c) l = ||a||
(d) Find a vector n orthogonal to both a and b.

(e) Find projb(a).

Be sure to use the variable names indicated to store your answers. Save your workspace
including all of the required variables. What does the dot product reveal about a and b?
How did you produce a vector mutually orthogonal to a and b?

3. Begin this problem with no variables stored. Enter the following matrices.

A =

 1 −3 5
2 −4 3
0 1 −1

 , B =

 1 −1 0 0
−3 0 7 −6
2 1 −2 −1

 , and I3 =

 1 0 0
0 1 0
0 0 1

 .
Use Octave to compute each of the following, if possible, or explain why the operation is
undefined.

(a) d = det(A)

(b) C = 2A+ 4I

(c) D = A−1

(d) E = B−1

(e) F = BA

(f) G = (AB)T

(g) H = BTAT

Use the variable names indicated to store your answers. Save your workspace including
all of the required variables. Which of the operations were undefined and why? Did you
notice anything about (AB)T and BTAT ? If so, explain the relationship between these
quantities.

EXERCISES 15

4. Modify the plot of y = x2 sin(x) given in Figure 1.6 as follows:

(a) Make the graph of y = x2 sin(x) a thick red line.

(b) Graph y = x2 and y = −x2 on the same axes, as thin black dotted lines.

(c) Use a legend to identify each curve.

(d) Add a title.

(e) Add a grid.

(f) Save the plot as a PNG or JPG image file.

16 CHAPTER 1. BASIC OPERATION

Chapter 2

Matrices and linear systems

Octave is a powerful tool for many problems in linear algebra. We have already seen some of the
basics in Section 1.2. In this chapter, we will consider systems of linear equations, polynomial
curve fitting, and rotation matrices.

2.1 Linear systems

2.1.1 Gaussian elimination

Octave has sophisticated algorithms built in for solving systems of linear equations, but it is
useful to start with the more basic process of Gaussian elimination. Using Octave for Gaus-
sian elimination lets us practice the procedure, without the inevitable arithmetic errors that
come when doing elimination by hand. It also teaches useful Octave syntax and methods for
manipulating matrices.

Row operations are easy to carry out. But first, we need to see how matrices and vectors are
indexed in Octave. Consider the following augmented matrix.

>> B = [1 2 3 4 ; 0 −2 −4 6 ; 1 −1 0 0]
B =

1 2 3 4
0 −2 −4 6
1 −1 0 0

If we enter B(2, 3), then the result given is −4. This is the scalar stored in row 2, column 3. We
can also pull out an entire row vector or column vector using the colon operator. A colon can
be used to specify a limited range, or if no starting or ending value is specified, it gives the full
range. For example, B(1, :) will give every entry out of the first row.

>> B(1 , :)
ans =

17

18 CHAPTER 2. MATRICES AND LINEAR SYSTEMS

1 2 3 4

Now, let’s use this notation to carry out basic row operations on B to reach row-echelon form.

Example 2.1.1. Let

B =

 1 2 3 4
0 −2 −4 6
1 −1 0 0

Use row operations to put B into row-echelon form, then solve by backward substitution. Com-
pare to the row-reduced echelon form computed by Octave.

Solution. The first operation is to replace row 3 with −1 times row 1, added to row 3.

>> B(3 , :) = (−1)*B(1 , :) + B(3 , :)
ans =

1 2 3 4
0 −2 −4 6
0 −3 −3 −4

Next, we will replace row 3 with −1.5 times row 2, added to row 3.

>> B(3 , :) = −1.5*B(2 , :) + B(3 , :)
ans =

1 2 3 4
0 −2 −4 6
0 0 3 −13

The matrix is now in row echelon form. We could continue using row operations to reach
row-reduced echelon form, but it is more efficient to simply write out the corresponding
linear system on paper and solve by backward substitution. Do it! The solution vector is
〈173 ,

17
3 ,−

13
3 〉. Of course, Octave also has a built-in command to find the row-reduced echelon

form of the matrix directly. Try rref (B) to see the result.

>> r r e f (B)
ans =

1.00000 0.00000 0.00000 5.66667
0.00000 1.00000 0.00000 5.66667
0.00000 0.00000 1.00000 −4.33333

From here, the solution to the system is evident. Notice that everything is now expressed
as floating point numbers (i.e., decimals). Five decimal places are displayed by default. The
variables are actually stored with higher precision and it is possible to display more decimal
places, if desired (type format(long)).

2.1. LINEAR SYSTEMS 19

2.1.2 Left division

The built-in operation for solving linear systems of the form Ax = b in Octave is called left
division and is entered as A\b. This is conceptually equivalent to the product A−1b. For
example, let’s go back to the matrix B given previously, which represents an augmented matrix.

Example 2.1.2. Use left division to solve the system of equations with augmented matrix B.

B =

 1 2 3 4
0 −2 −4 6
1 −1 0 0

Solution. To use left division, we need to extract the coefficient matrix and vector of right-
side constants. Let’s call the coefficient matrix A and the right-side constants b. (You have
probably already noticed that Octave is case-sensitive.)

>> B = [1 2 3 4 ; 0 −2 −4 6 ; 1 −1 0 0]
B =

1 2 3 4
0 −2 −4 6
1 −1 0 0

>> A = B(: , 1 : 3) % e x t r a c t c o e f f i c i e n t matrix
A =

1 2 3
0 −2 −4
1 −1 0

>> b = B(: , 4) % e x t r a c t r i g h t s i d e cons tant s
b =

4
6
0

>> A\b % s o l v e system Ax = b
ans =

5.6667
5 .6667
−4.3333

The solution vector matches what we found by Gaussian elimination.

2.1.3 LU decomposition

LU decomposition is a matrix factorization that encodes the results of the Gaussian elimination
algorithm. The goal is to write

A = LU

20 CHAPTER 2. MATRICES AND LINEAR SYSTEMS

where L is a unit lower triangular matrix and U is an upper triangular matrix. We will see that
this factored form can be used to easily solve Ax = b.

The process is best explained with an example. We will not attempt to justify why the algorithm
works; refer to [5] for the underlying theory.

Example 2.1.3. Find an LU decomposition for

A =

 1 2 3
0 −2 −4
1 −1 0

Solution. This is the same coefficient matrix we row-reduced in Example 2.1.1. We proceed
the same way, carefully noting the multiplier used to obtain each 0. The lower triangular
L starts as an identity matrix, then the negative of each multiplier used in the elimination
process is placed into the corresponding entry of L.

The first zero in position (2, 1) is already there, so we put 0 for that multiplier in the corre-
sponding position of L. Then we replace row 3 with −1 times row 1 plus row 3. The negative
of this multiplier is −(−1) = 1, which is entered in L at the point where the 0 was obtained.

At this point, we have two entries for L along with a partly reduced A:

A =

 1 2 3
0 −2 −4
1 −1 0

→
 1 2 3

0 −2 −4
0 −3 4

 ;L =

 1 0 0
0 1 0
1 0 1

The next step is to replace row 3 using −1.5 times row 2. Thus we put −(−1.5) = 1.5 in
the corresponding position of L. Once A has reached row echelon form, we have the desired
upper triangular matrix U .

A =

 1 2 3
0 −2 −4
1 −1 0

→
 1 2 3

0 −2 −4
0 −3 4

→
 1 2 3

0 −2 −4
0 0 3

 = U

L =

 1 0 0
0 1 0
1 1.5 1

 , U =

 1 2 3
0 −2 −4
0 0 3

So, to review, U is the row-echelon form of A and L is an identity matrix with the negatives
of the Gaussian elimination multipliers placed into the corresponding positions where they
were used to obtain zeros.

Let’s check to see if it worked.

>> L = [1 0 0 ; 0 1 0 ; 1 1 .5 1]
L =

1.00000 0.00000 0.00000
0.00000 1.00000 0.00000
1.00000 1.50000 1.00000

2.1. LINEAR SYSTEMS 21

>> U = [1 2 3 ; 0 −2 −4; 0 0 3]
U =

1 2 3
0 −2 −4
0 0 3

>> L*U
ans =

1 2 3
0 −2 −4
1 −1 0

It worked! In fact, the procedure outlined in this example will work anytime Gaussian elimi-
nation can be performed without row interchanges.

Now, let’s see how the LU form can be used to solve linear systems Ax = b. If A = LU , then
the system Ax = b can be written as LUx = b. Let Ux = y. Then we can proceed in two
steps:

1. Solve Ly = b.

2. Solve Ux = y.

Since we are dealing with triangular matrices, each step is easy.

Example 2.1.4. Solve Ax = b, where A =

 1 2 3
0 −2 −4
1 −1 0

 and b =

 4
6
0

, using LU decom-

position.

Solution. We already have the LU decomposition. Since L =

 1 0 0
0 1 0
1 1.5 1

, the first step

is to solve: 1 0 0
0 1 0
1 1.5 1

 ·
 y1
y2
y3

 =

 4
6
0

The corresponding systems of equations is

y1 = 4
y2 = 6

y1 + 1.5y2 + y3 = 0

Starting with the first row and working down, this system is easily solved by forward substi-
tution. We can see that y1 = 4 and y2 = 6. Substituting these values into the third equation

and solving for y3 gives y3 = −13. Thus the intermediate solution for y is

 4
6
−13

.

22 CHAPTER 2. MATRICES AND LINEAR SYSTEMS

Step two is to solve Ux = y, which looks like: 1 2 3
0 −2 −4
0 0 3

 ·
 x1
x2
x3

 =

 4
6
−13

This is easily solved by backward substitution to get x =

 17/3
17/3
−13/3

.

If row interchanges are used, then A is multiplied by a permutation matrix and the decomposition
takes the form PA = LU . This is the default form of the LU decomposition given by Octave
using the command [L U P] = lu(A).

Example 2.1.5. Find an LU decomposition (with permutation) for

A =

−7 −2 9 4
−4 −9 3 0
−3 4 6 −2

6 7 −4 −8

Solution. We will use Octave for this.

>> A = [−7 −2 9 4 ; −4 −9 3 0 ; −3 4 6 −2; 6 7 −4 −8]
A =

−7 −2 9 4
−4 −9 3 0
−3 4 6 −2

6 7 −4 −8

>> [L U P] = lu (A)
L =

1.00000 0.00000 0.00000 0.00000
0.57143 1.00000 0.00000 0.00000
−0.85714 −0.67273 1.00000 0.00000

0.42857 −0.61818 0.36000 1.00000

U =

−7.00000 −2.00000 9.00000 4.00000
0.00000 −7.85714 −2.14286 −2.28571
0.00000 0.00000 2.27273 −6.10909
0.00000 0.00000 0.00000 −2.92800

P =

Permutation Matrix

1 0 0 0
0 1 0 0

2.2. POLYNOMIAL CURVE FITTING 23

0 0 0 1
0 0 1 0

Refer to Exercise 4 to see how PA = LU can be used to solve a linear system, using a method
almost to identical to what we did in Example 2.1.4.

LU decomposition is widely used in numerical linear algebra. In fact, it is the basis of how
Octave’s left division operation works. It is especially efficient to use LU decomposition when
one is solving several systems of equations that all have the same coefficient matrix, but different
right side constants. The LU decomposition only needs to be done once for all of the systems
with that coefficient matrix.

2.2 Polynomial curve fitting

In statistics, the problem of fitting a straight line to a set of data is often considered. We tackle
the more general problem of fitting a polynomial to a set of points.

Example 2.2.1. Find the least-squares parabola for the set of points in the following 6×2 data
matrix D.

D =

1 1
2 2
3 5
4 4
5 2
6 −3

The matrix shows x-values in column 1 and y-values in column 2.

Solution. Enter the data matrix in Octave and extract the x- and y-data to column vectors.
Then plot the points to get a sense of what the data look like.

>> D = [1 1 ; 2 2 ; 3 5 ; 4 4 ; 5 2 ; 6 −3]
>> xdata = D(: , 1)
>> ydata = D(: , 2)
>> p lo t (xdata , ydata , 'o− ') % p lo t l i n e segments with c i r c l e markers

In this case, we are constructing a model of the form y = a + bx + cx2, but it is easy to see
how our approach generalizes to polynomials of any degree (including linear functions). By
plugging in the given data to the proposed equation, we obtain the following system of linear
equations.

1 1 1
1 2 4
1 3 9
1 4 16
1 5 25
1 6 36

 ·
 a
b
c

 =

1
2
5
4
2
−3

24 CHAPTER 2. MATRICES AND LINEAR SYSTEMS

Notice the form of the coefficient matrix, which we’ll call A. The first column is all ones, the
second column is the x-values, and the third column is the square of the x-values (this column
would not appear if we were using a linear model). The right-side constants are the y-values.
There are several ways to construct the coefficient matrix in Octave. One approach is to use
the ones command to create a matrix of ones of the appropriate size, and then overwrite the
second and third columns with the correct data.

>> A = ones (6 , 3) ;
>> A(: , 2) = xdata ;
>> A(: , 3) = xdata .ˆ2
A =

1 1 1
1 2 4
1 3 9
1 4 16
1 5 25
1 6 36

Note the use of elementwise exponentiation to square each value of the vector xdata. Our
system is inconsistent. It can be shown that the least-squares solution comes from solving

the normal equations, ATAb = ATy, where b is the vector

 a
b
c

 of polynomial coefficients.

We can use Octave to construct the normal equations.

>> A' *A
ans =

6 21 91
21 91 441
91 441 2275

>> A' * ydata
ans =

11
28
60

The corresponding augmented matrix is: 6 21 91 11
21 91 441 28
91 441 2275 60

We can then solve the problem using Gaussian elimination. Here is one way to create the
augmented matrix and row-reduce it:

>> B = A' *A;
>> B(: , 4) = A' * ydata ;

2.2. POLYNOMIAL CURVE FITTING 25

Figure 2.1: Least-squares parabola

>> r r e f (B)
ans =

1.00000 0.00000 0.00000 −4.40000
0.00000 1.00000 0.00000 5.65000
0.00000 0.00000 1.00000 −0.89286

Thus the correct quadratic equation is y = −4.4 + 5.65x − 0.89286x2. Figure 2.1 shows a
graph of this parabola together with our original data points.

These are the commands used to create Figure 2.1:

>> x = l i n s p a c e (0 , 7 , 50) ;
>> y = −4.4 + 5.65*x − 0.89286*x . ˆ 2 ;
>> p lo t (xdata , ydata , ' o ' , x , y , ' l i n ew id th ' , 2)
>> g r id on ;
>> l egend (' data va lue s ' , ' l e a s t−squares parabola ')
>> t i t l e ('y = −4.4 + 5.65 x − 0.89286 xˆ2 ')

You may be wondering if any of this process can be “automated” by built-in Octave functions.
Yes! If we want Octave to do all of the work for us, we can use the built-in function for polynomial
fitting, polyfit . The syntax is polyfit (x, y, order), where “order” is the degree of the polynomial
desired. For example, our previous problem can be directly solved as follows.

>> p o l y f i t (xdata , ydata , 2)
ans =

−0.89286 5.65000 −4.40000

26 CHAPTER 2. MATRICES AND LINEAR SYSTEMS

Figure 2.2: Plot of original data vs. polyfit data

Notice that the order of the coefficients is reversed, relative to how we had originally set up the
problem. We can also use the built-in function polyval to evaluate the polynomial at the given
x-values. This code, for example, will create the least-squares polynomial and plot the graph of
the original data vs. the polyfit data, as shown in Figure 2.2:

>> P = p o l y f i t (xdata , ydata , 2) ;
>> y = po lyva l (P, xdata) ;
>> p lo t (xdata , ydata , 'o− ' , xdata , y , '+− ') ;
>> g r id on ;
>> l egend (' o r i g i n a l data ' , ' p o l y f i t data ') ;

2.3 Matrix transformations

Matrices and matrix transformations play a key role in computer graphics. There are several
ways to represent an image as a matrix. The approach we take here is to list a series of vertices
that are connected sequentially to produce the edges of a simple graph. We write this as a 2×n
matrix where each column represents a point in the figure. As a simple example, let’s try to
encode a ‘house graph.’ First, we draw the figure on a grid and record the coordinates of the
points, as in Figure 2.3.

There are many ways to encode this in a matrix. An efficient method is to choose a path that
traverses each edge exactly once, if possible1. Here is one such matrix, starting from (1, 2) and

1This is called an Eulerian path. Such a path exists if the graph has exactly 0 or 2 vertices with odd degree.

2.3. MATRIX TRANSFORMATIONS 27

-

6

t t

t
t

t�
�
�
�
�@

@
@
@
@

1 2 3 4 5

1

2

3

Figure 2.3: House graph

traversing counterclockwise.

D =

[
1 1 3 3 2 1 3
2 0 0 2 3 2 2

]

Try plotting it in Octave and see if it worked.

>> D = [1 1 3 3 2 1 3 ; 2 0 0 2 3 2 2]
D =

1 1 3 3 2 1 3
2 0 0 2 3 2 2

>> x = D(1 , :) ;
>> y = D(2 , :) ;
>> p lo t (x , y) ;
>> g r id on

You may want to zoom out to see the origin. Then the graph appears correct (Figure 2.4).

2.3.1 Rotation matrices

Now that we have a representation of a digital image, we consider various ways to transform it.
Rotations can be obtained using multiplication by a special matrix.

A rotation of the point (x, y) about the origin is given by

R ·
[
x
y

]
where

R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
and θ is the angle of rotation (measured counterclockwise).

28 CHAPTER 2. MATRICES AND LINEAR SYSTEMS

Figure 2.4: House graph

For example, what happens to the point (1, 0) under a 90◦ rotation?

[
cos(90◦) − sin(90◦)
sin(90◦) cos(90◦)

]
·
[

1
0

]
=

[
0 −1
1 0

]
·
[

1
0

]
=

[
0
1

]

The rotation appears to work, at least in this case. Try a few more points to convince your-
self. Notice that a rotation about the origin corresponds to moving along a circle, thus the
trigonometry is fairly straightforward to work out.

Now, to produce rotations of a data matrix D, encoded as above, we only need to compute the
matrix product RD.

Example 2.3.1. Rotate the house graph through 90◦ and 225◦.

Solution. Note that θ must be converted to radians. Here we go:

>> D = [1 1 3 3 2 1 3 ; 2 0 0 2 3 2 2] ;
>> x = D(1 , :) ;
>> y = D(2 , :) ;
>>
>> theta1 = 90* pi /180 ;
>> R1 = [cos (theta1) −s i n (theta1) ; s i n (theta1) cos (theta1)] ;
>> RD1 = R1*D;
>> x1 = RD1(1 , :) ;
>> y1 = RD1(2 , :) ;
>>
>> theta2 = 225* pi /180 ;

2.3. MATRIX TRANSFORMATIONS 29

Figure 2.5: Rotations of the ‘house graph’

>> R2 = [cos (theta2) −s i n (theta2) ; s i n (theta2) cos (theta2)] ;
>> RD2 = R2*D;
>> x2 = RD2(1 , :) ;
>> y2 = RD2(2 , :) ;
>>
>> p lo t (x , y , 'bo− ' , x1 , y1 , ' ro− ' , x2 , y2 , ' go− ')
>> a x i s ([−4 4 −4 4] , ' equal ') ;
>> g r id on ;
>> l egend (' o r i g i n a l ' , ' ro ta ted 90 deg ' , ' ro ta ted 225 deg ') ;

Note the combined plot options to set color, marker and line styles. The original and rotated
graphs are shown in Figure 2.5. Notice that the rotation is about the origin. For rotations
about an arbitrary point, see Exercise 11.

2.3.2 Other transformations

While some transformations, such as translations, could be accomplished by addition, in prac-
tice even these operations are completed using matrix multiplication. The advantage to using
multiplication is that the composition of several transformations can be handled with the rela-
tively simple operation of matrix multiplication. Furthermore, inverse transformations are easily
produced by inverting the original transformation matrix.

For example, if T is a translation, R is a rotation, and S is a stretch, the combined operations

30 CHAPTER 2. MATRICES AND LINEAR SYSTEMS

of first translating, then rotating, then stretching can be completed with the matrix SRT and
a data matrix D can be transformed with the product (SRT)D. The inverse of these combined
operations is (SRT)−1 = T−1R−1S−1.

Refer to Exercises 10–11 for some of the details and an example.

EXERCISES 31

Chapter 2 Exercises

1. Solve the system of equations using Gaussian elimination row operations
−x1 + x2 − 2x3 = 1
x1 + x2 + 2x3 = −1
x1 + 3x2 + 2x3 = −11

To document your work in Octave, click “select all,” then “copy” under the edit menu,
and paste your work into a Word or text document. After you have the row-echelon form,
solve the system by hand on paper, using backward substitution.

2. Use the Gaussian elimination multipliers from Exercise 1 to write an LU decomposition

for A =

 −1 1 −2
1 1 2
1 3 2

. Use this factorization to solve the system from Exercise 1.

3. Let A =

 1 −3 5
2 −4 3
0 1 −1

 be the coefficient matrix for a system of linear equations Ax = b,

where b = 〈1,−1, 3〉. Solve the system using left division. Then, construct an augmented
matrix A1 and use rref to row-reduce it. Compare the results.

4. Use LU decomposition to solve the system from Exercise 3. Use Octave’s [L U P] = lu(A)

command. To use PA = LU to solve Ax = b, first multiply through by P , then replace
PA with LU :

Ax = b
PAx = Pb
LUx = Pb

First solve Ly = Pb, then solve Ux = y.

5. So far we have only looked at consistent systems. How does Octave handle inconsistent
systems? Let’s turn our previous system into an inconsistent one. Let Ax = b be the
system from Exercise 3. To make this into a inconsistent system, we will make one row of
the coefficient matrix into a linear combination of some other rows, without making the
corresponding adjustment to the right-side constants. Do the following:

>> A(1 , :) = 3*A(2 , :) − 4*A(3 , :)

Now Ax = b should be an inconsistent system. Try solving it and see what Octave does.
Compare the results of left-division with the row-reduced echelon form. How can you see
that the system is inconsistent?

6. Octave can easily solve large problems that we would never consider working by-hand.
Let’s try constructing and solving a larger systems of equations. The command rand(m, n)

will generate an m× n matrix with entries uniformly distributed from the interval (0, 1).
If we want integer entries, we can multiply by 10 and use the floor function to chop off
the decimal. Use this command to generate an augmented matrix M for a system of 25
equations in 25 unknowns:

32 CHAPTER 2. MATRICES AND LINEAR SYSTEMS

>> M = f l o o r (10* rand (25 , 26)) ;

Note the semicolon. This suppresses the output to the screen, since the matrix is now too
large to display conveniently. Solve the system of equations using rref and/or left division
and save the solution as a column vector x.

7. On July 4, 2006, during a launch of the space shuttle Discovery, NASA recorded the
following altitude data2.

Time (s) Altitude (ft)

0 7
10 938
20 4,160
30 9,872
40 17,635
50 26,969
60 37,746
70 50,548
80 66,033
90 83,966

100 103,911
110 125,512
120 147,411

(a) Find the quadratic polynomial that best fits this data. Use Octave to set-up and
solve the normal equations. After you have the equations set up, you may solve using
either the rref command or the left-division operator. Do not use polyfit .

(b) Plot the best-fitting parabola together with the given data points. Save or print the
plot. Your plot should have labeled axes and include a legend.

(c) Use the height model to determine models for the velocity and acceleration of the
shuttle. Estimate the velocity two minutes into the flight.

8. There are many situations where the polynomial models we have considered so far are
not appropriate. However, sometimes we can use a simple transformation to linearize the
data. For example, if the points (x, y) lie on an exponential curve, then the points (x, ln y)
should lie on a straight line. To see this, assume that y = Cekx and take the logarithm of
both sides of the equation:

y = Cekx

ln y = lnCekx

= lnC + ln ekx

= kx+ lnC

Make the change of variables Y = ln y and A = lnC. Then we have a linear function of
the form

Y = kx+A

2https://www.nasa.gov/pdf/585034main_ALG_ED_SSA-Altitude.pdf

https://www.nasa.gov/pdf/585034main_ALG_ED_SSA-Altitude.pdf

EXERCISES 33

We can find the line that best fits the (x, Y)-data and then use inverse transformations to
obtain the exponential model we need:

y = Cekx

where
C = eA

Consider the following world population data3:

x = year y = population (in millions) Y = ln y

1900 1650 7.4085
1910 1750
1920 1860
1930 2070
1940 2300
1950 2525
1960 3018
1970 3682
1980 4440
1990 5310
2000 6127
2010 6930

(a) Fill in the blanks in the table with the values for ln y. Note that in Octave, the log(x)

command is used for the natural logarithm. Make a scatter plot of x vs. Y . This is
called a semi-log plot. Is the trend approximately linear?

(b) Use the polyfit function to find the best-fitting line for the (x, Y)-data and add the
graph of the line to your scatter plot from part (a). Save or print the plot. Your
plot should have labeled axes and include a legend. Note that the vertical axis is the
logarithm of the population. Give the plot the title “Semi-log plot.”

(c) Use the data from part (b) to determine the exponential model y = Cekx. Plot the
original data and the exponential function on the same set of axes. Save or print the
plot. Your plot should have labeled axes and include a legend. Give the plot the title
“Exponential plot.”

(d) Use the model from part (c) to predict the date when the global population will (or
did) reach 7 billion.

9. Create a data matrix that corresponds to a picture of your own design, containing six or
more edges. Plot it, then plot two rotations of the same image.

10. Let the point (x, y) be represented by the column vector

 x
y
1

. These are known as

homogeneous coordinates. Then the translation matrix

T =

 1 0 h
0 1 k
0 0 1

3https://esa.un.org/unpd/wpp/

https://esa.un.org/unpd/wpp/

34 CHAPTER 2. MATRICES AND LINEAR SYSTEMS

is used to move the point (x, y) to (x+ h, y + k) as follows: 1 0 h
0 1 k
0 0 1

 ·
 x
y
1

 =

 x+ h
y + k

1

Use a translation matrix and homogeneous coordinates to shift the graph you created in
problem 9 as follows: shift 3 units left and 2 units up.

11. The translation method described in problem 10 can be combined with a rotation matrix
to give rotations around an arbitrary point. Suppose for example that we wished to rotate
the house graph from Figure 2.3 about the center of the rectangular portion (coordinates
(2, 1) in the original figure). This can be done by using homogeneous coordinates and a
translation T to move the figure, then a rotation matrix R for the rotation. The form of
R is now

R =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

The shifted and rotated figure is then given by (RT)D. To shift back to the original
position, an inverse transformation T−1 is used. Thus the rotated image can be found by
computing (T−1RT)D. Use this method to rotate the house graph 90◦ about the point
(1, 2). Show the combined transformation matrix T−1RT and the results.

Chapter 3

Calculus

3.1 Limits, sequences, and series

Octave is an excellent tool for many types of numerical experiments. Octave is a full-fledged
programming language supporting many types of loops and conditional statements. However,
since it is a vector-based language, many things that would be done using loops in FORTRAN
or other languages can be “vectorized.” As an example, let’s construct some numerical evidence
to guess at the value of the following limit:

lim
n→∞

(
1 +

1

n

)n

We simply want to evaluate the expression for a series of larger and larger n-values. This is
what we mean by vectorized code: instead of writing a loop to evaluate the function multiple
times, we will generate a vector of input values, then evaluate the function using the vector
input. This produces code that is easier to read and understand, and executes faster, due to
Octave’s underlying efficient algorithms for matrix operations.

First, we need to define the function. There are a number of ways to do this. The method we
use here is known as an anonymous function. This is a good way to quickly define a simple
function.

>> f = @(n) (1 + 1 ./ n) . ˆ n ; % anonymous func t i on

Note the use of elementwise operations. We have named the function f . The input variable is
designated by the @-sign followed by the variable in parentheses. The expression that follows
gives the rule to be used when the function is evaluated. Now f can be used like any function
in Octave.

Next we create an index variable, consisting of the integers from 0 to 9:

>> k = [0 : 1 : 9] ' % index v a r i a b l e
k =

35

36 CHAPTER 3. CALCULUS

0
1
2
3
4
5
6
7
8
9

The syntax [0:1:9] produces a row vector that starts at 0 and increases by an increment of 1
up to 9 (linspace can also be used). Notice that we have used the transpose operation, simply
because our results will be easier to read as column vectors. Now, we’ll take increasing powers
of 10, which will be the input values, then evaluate f(n).

>> format long % d i s p l a y a d d i t i o n a l decimal p l a c e s
>> n = 10 .ˆ k
n =

1
10

100
1000

10000
100000

1000000
10000000

100000000
1000000000

>> f (n)
ans =

2.00000000000000
2.59374246010000
2.70481382942153
2.71692393223552
2.71814592682436
2.71826823719753
2.71828046915643
2.71828169398037
2.71828178639580
2.71828203081451

>> format % return to standard 5−d i g i t d i s p l ay

This is good evidence that the limit converges to a finite value that is approximately 2.71828 . . .
You (hopefully!) recognize the number as e.

Similar methods can be used for numerical exploration of sequences and series, as we show in
the following examples.

3.1. LIMITS, SEQUENCES, AND SERIES 37

Example 3.1.1. Let

∞∑
n=2

an be the series whose nth term is an =
1

n(n+ 2)
. Find the first ten

terms, the first ten partial sums, and plot the sequence and partial sums.

Solution. To do this, we will define an index vector n from 2 to 11, then calculate the terms.

>> n = [2 : 1 : 1 1] ' ; % index
>> a = 1 . / (n . * (n + 2)) % terms o f the sequence
a =

0.1250000
0.0666667
0.0416667
0.0285714
0.0208333
0.0158730
0.0125000
0.0101010
0.0083333
0.0069930

If we want to know the 10th partial sum, we need only type sum(a). If we want to produce
the sequence of partial sums, we need to make careful use of a loop. We will use a “for loop”
with index i from 1 to 10. For each i, we produce a partial sum of the sequence an from the
first term to the ith term. The output is a 10-element vector of these partial sums.

>> f o r i = 1 :10
s (i) = sum(a (1 : i)) ;

end
>> s ' % sequence o f p a r t i a l sums , d i sp layed as a column
ans =

0.12500
0.19167
0.23333
0.26190
0.28274
0.29861
0.31111
0.32121
0.32955
0.33654

Finally, we will plot the terms and partial sums, for 2 ≤ n ≤ 11.

>> p lo t (n , a , ' o ' , n , s , '+ ')
>> g r id on
>> l egend (' terms ' , ' p a r t i a l sums ')

The result is shown in Figure 3.1.

An advantage of using a language like Octave is that it is simple to determine the sum of many

38 CHAPTER 3. CALCULUS

Figure 3.1: Plot of a sequence and its partial sums

terms of a series. If the series is known to converge, this can help give an estimate for the sum.

Example 3.1.2. Find the sum of the first 1000 terms of the harmonic series.

1000∑
n=1

1

n

Solution. We only need to generate the terms as a vector, then take its sum.

>> n = [1 : 1 : 1 0 0 0] ;
>> a = 1 ./ n ;
>> sum(a)
ans = 7.4855

Of course, Octave cannot tell us if this figure is a good estimate for the sum of the infinite
series. In this case it is not, since, by the integral test, we know the series diverges. We
can use Octave to easily document how slowly this particular series diverges. The first 1000
terms sum to only about 7.5. If we look at the 1, 000, 000th partial sum, it is still only about
14.4.

3.2 Numerical integration

When it is not possible to find an explicit antiderivative, numerical methods are used to find
definite integrals. We will use Octave’s built-in numerical integration capability, then try writing

3.2. NUMERICAL INTEGRATION 39

our own scripts to apply the midpoint rule, trapezoid rule, and Simpson’s rule.

3.2.1 Quadrature

Octave has several built in functions to calculate definite integrals. We will use the quad com-
mand. ‘Quad’ is short for quadrature, which refers to the process of numeric integration.

Example 3.2.1. Estimate

∫ π/2

0
ex

2
cos(x) dx using Octave’s quad algorithm.

Solution. The correct syntax is quad('f ' , a, b). We need to first define the function.

>> f unc t i on y = f (x)
y = exp (x . ˆ 2) .* cos (x) ;

end
>> quad (' f ' , 0 , p i /2)
ans = 1.8757

Note that the function exp(x) is used for ex. In this example, we used the function . . . end

construction to define f . This is a versatile format that allows for multiple operations and
outputs. We could have also used an anonymous function. Note that no quotes are used
around f if using an anonymous function.

3.2.2 Approximating sums

The midpoint rule, trapezoid rule, and Simpson’s rule are common algorithms used for numerical
integration. Ideally these are implemented in a computer program and Octave is well suited for
this purpose.

Let {a = x0, x1, x2, . . . , xn = b} be a partition of [a, b] into n subintervals, each of width

∆x =
b− a
n

. Then

∫ b

a
f(x) dx can be approximated as follows.

Midpoint rule:
∆x [f(m1) + f(m2) + · · ·+ f(mn)]

where mi is the midpoint of the ith subinterval.

Trapezoid rule:

∆x

2
[f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + 2f(xn)]

where xi = a+ i∆x.

Simpson’s rule:

∆x

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)]

where xi = a+ i∆x.

40 CHAPTER 3. CALCULUS

Notice that the sum in the midpoint formula has n terms, while the trapezoid and Simpson’s
rules have n+1 (the index i goes from 0 to n). To implement these rules in Octave, we will write
script files, which are plain text files containing a series of Octave commands. Use a text editor,
such as Notepad, Notepad++, or Emacs. A script file needs to have a “.m” extension (not the
.txt used by default in Windows for text files) and cannot begin with the keyword function. The
Octave GUI has its own built in text editor which can be accessed by changing to the “Editor”
tab option displayed below the main command window. This editor is ideal for creating, editing,
and running .m files and will automatically color code comments and key words.

Example 3.2.2. Write an Octave script to calculate a midpoint rule approximation of∫ π/2

0
ex

2
cos(x) dx

using n = 100.

Solution. The basic strategy is to use a loop that adds an additional function value to a
running total with each iteration. Then the final answer is found by multiplying the sum by
∆x.

The following code can be used. Enter the code in a plain text file and name it “midpoint.m”.
It must be placed in your working directory, then it can be run by typing ‘midpoint’ at the
command prompt.

Octave Script 3.1: Midpoint rule approximation

1 % f i l e ' midpoint .m'

2 % c a l c u l a t e s a midpoint r u l e approximation o f
3 % the i n t e g r a l from 0 to p i /2 o f f (x) = exp (xˆ2) cos (x)
4 % t r a d i t i o n a l looped code
5

6 % s e t l i m i t s o f i n t e g r a t i o n , number o f terms and d e l t a x
7 a = 0
8 b = pi /2
9 n = 100

10 dx = (b − a) /n
11

12 % d e f i n e func t i on to i n t e g r a t e
13 f unc t i on y = f (x)
14 y = exp (x . ˆ 2) .* cos (x) ;
15 end
16

17 msum = 0 ; % i n i t i a l i z e sum
18 m1 = a + dx /2 ; % f i r s t midpoint
19

20 % loop to c r e a t e sum of func t i on va lue s
21 f o r i = 1 : n
22 m = m1 + (i − 1) *dx ; % c a l c u l a t e midpoint
23 msum = msum + f (m) ; % add to midpoint sum
24 end
25

26 % midpoint approximation to the i n t e g r a l
27 approx = msum*dx

3.2. NUMERICAL INTEGRATION 41

Now run midpoint.m.

>> midpoint
a = 0
b = 1.5708
n = 100
dx = 0.015708
approx = 1.8758

The traditional code works fine, but because Octave is a vector-based language, it is also possible
to write vectorized code that does not require any loops.

Example 3.2.3. Write a vectorized Octave script to calculate a midpoint rule approximation
of ∫ π/2

0
ex

2
cos(x) dx

using n = 100.

Solution. Now our strategy is to create a vector of the x-coordinates of the midpoints. Then
we evaluate f over this midpoint vector to obtain a vector of function values. The midpoint
approximation is the sum of the components of the vector, multiplied by ∆x.

Octave Script 3.2: Midpoint rule approximation - vectorized

1 % f i l e ' midpoint2 .m'

2 % c a l c u l a t e s a midpoint r u l e approximation o f
3 % the i n t e g r a l from 0 to p i /2 o f f (x) = exp (xˆ2) cos (x)
4 % v e c t o r i z e d code
5

6 % s e t l i m i t s o f i n t e g r a t i o n , number o f terms and d e l t a x
7 a = 0
8 b = pi /2
9 n = 100

10 dx = (b − a) /n
11

12 % d e f i n e func t i on to i n t e g r a t e
13 f unc t i on y = f (x)
14 y = exp (x . ˆ 2) .* cos (x) ;
15 end
16

17 % c r e a t e vec to r o f midpoints
18 m = [a + dx/2 : dx : b − dx / 2] ;
19

20 % c r e a t e vec to r o f func t i on va lue s at midpoints
21 M = f (m) ;
22

23 % midpoint approximation to the i n t e g r a l
24 approx = dx*sum(M)

This code will give the same results as the traditional looped code, but it executes much
faster.

42 CHAPTER 3. CALCULUS

Figure 3.2: Graph of a cycloid

3.3 Parametric and polar plots

Curves defined by parametric and polar equations are usually studied in Calculus II. Such curves
can be difficult to graph by hand! The plotting methods we used in Section 1.3 carry over easily
to these new settings. For example, parametric equations for a cycloid are given by

x = r(t− sin(t))
y = r(1− cos(t))

Example 3.3.1. Graph three periods of a radius 2 cycloid.

Solution. The functions have period 2π, so we need 0 ≤ t ≤ 6π to see three full cycles. We
need to define the parameter t as a vector over this range, then we calculate x and y, and
plot x vs. y.

>> t = l i n s p a c e (0 , 6*pi , 30) ;
>> r = 2 ;
>> x = r *(t − s i n (t)) ;
>> y = r *(1 − cos (t)) ;
>> p lo t (x , y)
>> a x i s (' equal ')
>> a x i s ([0 12* pi 0 4])
>> g r id on

The command axis('equal') is used to force an equal aspect ratio between the x- and y-axes.
The result is shown in Figure 3.2.

Polar graphs are handled in a similar way. For a function r = f(θ), we start by defining the
independent variable θ, then we calculate r. To plot the graph, we calculate x and y using the
standard polar identities x = r cos(θ), y = r sin(θ), then plot x vs. y.

Example 3.3.2. Plot the limaçon r = 1− 2 sin(θ).

Solution. The needed commands are shown below and the graph is shown in Figure 3.3.

>> theta = l i n s p a c e (0 , 2*pi , 50) ;
>> r = 1 − 2* s i n (theta) ;
>> x = r .* cos (theta) ;
>> y = r .* s i n (theta) ;
>> p lo t (x , y)

3.4. SPECIAL FUNCTIONS 43

Figure 3.3: Graph of a limaçon

3.4 Special functions

Octave has many common special functions available, such as Bessel functions (bessel), the error
function (erf), and the gamma function (gamma), to name a few.

For example, the gamma function is defined by

Γ(x) =

∞∫
0

tx−1e−t dt

This is an extension of the factorial function, since for positive integers n, the gamma function
satisfies

Γ(n) = (n− 1)!

Example 3.4.1. Graph Γ(x + 1) together on the same set of axes with the factorial function
n!.

Solution. Both the gamma function and factorial function grow quite large very quickly, so
we need to take care in selecting the domain. The gamma function is defined for positive and
negative real numbers, while the factorial function is of course defined only for nonnegative
integers. We will try the graph for x ∈ [−5, 5] for the gamma function and n = 0, 1, 2, 3, 4, 5
for the factorial.

Trial and error shows that a fine increment is needed for a smooth graph of the gamma
function.

44 CHAPTER 3. CALCULUS

Figure 3.4: Improved graph of gamma function and factorial function

These are the basic commands needed:

>> n = [0 : 5] ;
>> x = l i n s p a c e (−5 , 5 , 500) ;
>> p lo t (n , f a c t o r i a l (n) , ' * ' , x , gamma(x+1))
>> a x i s ([−5 5 −10 2 5]) ;
>> g r id on ;
>> l egend ('n ! ' , 'gamma(n+1) ')

Notice the vertical asymptotes at each negative integer. If you run the plot commands as
shown above, you will see vertical line segments that are not a true part of the graph. If we
don’t want to see these, we can divide the domain into separate intervals with breaks at the
discontinuities. This is somewhat tedious, but produces a more accurate graph, as shown in
Figure 3.4.

Define the x-values as follows:

x1 = l i n s p a c e (−5 , −4, 200) ;
x2 = l i n s p a c e (−4 , −3, 200) ;
x3 = l i n s p a c e (−3 , −2, 200) ;
x4 = l i n s p a c e (−2 , −1, 200) ;
x5 = l i n s p a c e (−1 , 5 , 200) ;

Then, plot x1 vs. Γ(x1 + 1), x2 vs. Γ(x2 + 1), etc., on the same set of axes.

EXERCISES 45

Chapter 3 Exercises

1. Show (numerically) that lim
θ→0

sin θ

θ
= 1.

2. Let
∑
an be the series whose nth term is an =

1

2n
− 1

3n
, n ≥ 1. Find the first ten terms,

the first ten partial sums, and plot the sequence and partial sums. Do you think the series
converges? If so, what is the sum?

3. How many terms need to be included in the harmonic series to reach a partial sum that
exceeds 10?

4. Write an Octave script based on a for loop to calculate

∫ π/2

0
ex

2
cos(x) dx using the trape-

zoid rule with n = 100. Compare your answer to the midpoint approximation given above.
(Use the command format long to see more decimal places.)

5. Write a vectorized Octave script to calculate

∫ 2

−2

1√
2π
e

−x2

2 dx using Simpson’s rule with

n = 100. Compare your answer to the midpoint approximation using the script from
Example 3.2.3. Which approximation seems to be most accurate, judged against Octave’s
quad algorithm?

6. Graph each equation.

(a) x = t3, y = t2

(b) x = sin(t), y = 1− cos(t)

(c) r = θ

(d) r = sin(2θ)

(e) r = cos(7θ/3)

7. Graph the Bessel functions of the first kind J0(x), J1(x), and J2(x) on [0, 20].

8. The gamma function can be used to calculate the “volume” (or “hypervolume”) of an
n-dimensional sphere. The volume formula is

Vn(a) =
πn/2

Γ(n2 + 1)
· an

where a is the radius, n is the dimension, and Γ(n) is the gamma function.

(a) Write a user-defined Octave function Vn = f(n, a) that gives the volume of an n-
dimensional sphere of radius a. Test it by computing the volumes of 2- and 3-
dimensional spheres of radius 1. The answers should be π and 4π/3, respectively.

(b) Use the function to calculate the volume of a 4-dimensional sphere of radius 2 and a
12-dimensional sphere of radius 1/2.

46 CHAPTER 3. CALCULUS

(c) For a fixed radius a, the “volume” is a function of the dimension n. For n =
1, 2, . . . , 20, graph the volume functions for a = 1, a = 1.1, and a = 1.2 on the
same axes. Your graph should show only points for integer values of n and should
have axis labels and a legend. Use the graph to determine the following limit:

lim
n→∞

Vn

Does the answer surprise you?

9. Octave scripts can be used for many problems in numerical analysis. Newton’s method
for root finding is a good example. Newton’s method is an iterative process based on the
formula

xi+1 = xi +
f(xi)

f ′(xi)

Starting from an initial guess of x1, a sequence of approximations xi is generated (refer to
[1], §2.4 and [6], Vol. 1 §4.9).

(a) The function f(x) = x3 + 5x2 + x− 1 has one positive root. Write an Octave script
to find it using Newton’s method.

(b) Compare your answer to the result obtained with Octave’s fsolve command.

>> f s o l v e (' f ' , x1) %s o l v e f (x) = 0 numer i ca l ly us ing i n i t i a l
guess x1

(c) How many iterations of Newton’s method were needed to obtain agreement with the
fsolve result to five decimal places (using the same initial guess)?

(d) Plot the function and its tangent lines at x1, x2, and x3.

Chapter 4

Eigenvalue problems

4.1 Eigenvalues and eigenvectors

Let A =

 1 2 −3
2 4 0
1 1 1

. We showed in Section 1.2.3 the use of eig(A) to find the eigenvalues of a

matrix A. You might be wondering about the eigenvectors for this matrix. To find those, we use
the eig command with two output arguments. The correct syntax is [v lambda] = eig(A). The
first output will be a matrix whose columns represent the eigenvectors and the second output
value will be a diagonal matrix with the eigenvalues on the diagonal.

>> [v lambda] = e i g (A) % 2−ouput form o f e i g command
v =

−0.23995+0.00000 i −0.79195+0.00000 i −0.79195−0.00000 i
−0.91393+0.00000 i 0.45225+0.12259 i 0.45225−0.12259 i
−0.32733+0.00000 i 0.23219+0.31519 i 0.23219−0.31519 i

lambda =

Diagonal Matrix

4.52510+0.00000 i 0 0
0 0.73745+0.88437 i 0
0 0 0.73745−0.88437 i

Notice that the output Λ (lambda) is classified as a diagonal matrix. That means the computer
only stores the diagonal entries, which can be an important savings for large matrices.

Perhaps we would like to see a matrix with real eigenvalues. We can make a symmetric matrix
(which must have real eigenvalues, as will be explained in Section 4.3.1) by multiplying a matrix
and its transpose. For example:

>> C = A' *A
C =

47

48 CHAPTER 4. EIGENVALUE PROBLEMS

6 11 −2
11 21 −5
−2 −5 10

>> [v lambda] = e i g (C)
v =

0.876137 0.188733 −0.443581
−0.477715 0.216620 −0.851390
−0.064597 0.957839 0.279949

lambda =

Diagonal Matrix

0 .14970 0 0
0 8.47515 0
0 0 28.37516

Here we can see that the diagonal entries of Λ are the eigenvalues and the corresponding columns
of V are the associated eigenvectors. We know that each eigenvalue corresponds to an infinite
family of eigenvectors. The representative eigenvectors given by Octave are normalized to unit
length. Moreover, the collection of eigenvectors given will be linearly independent when possible.

4.2 Markov chains

Consider a sequence of random events, subject to the following conditions.

� A finite number of states are possible.

� At regular intervals an observation is made and the state of the system is recorded.

� For each state, we assign a probability of moving to each of the other states, or staying
the same. The essential assumption is that these probabilities depend only on the current
state.

Such a system is known as a Markov chain. Our problem is to predict the probability of future
states of the system.

4.2.1 A random walk

Suppose we walk randomly along a four-block stretch of road in the following manner1. At
intersections 2, 3, or 4 we either move to the left or to the right at random. Upon reaching the
end of the road (intersections 1 or 5) we stop.

1The idea for this example comes from [4], which is an excellent open reference for more details about Markov
chains and probability.

4.2. MARKOV CHAINS 49

y y y y yX X← ? → ← ? → ← ? →

1 2 3 4 5

Figure 4.1: Random walk

Our goal is to predict where we will end up. We begin with a probability vector. For exam-
ple, suppose we could start at any point with equal probability. Then the initial vector is
〈0.2, 0.2, 0.2, 0.2, 0.2〉. On the other hand, we may know the initial state. Suppose we begin
at intersection 3. Then the initial vector is 〈0, 0, 1, 0, 0〉. In any case, we want to predict our
location after k moves.

This is done by forming a transition matrix. Form an n × n array whose ijth entry is the
probability of moving from state i to j. Let T (for transition matrix) be the transpose of this
matrix. The matrix product Tx gives the new probability distribution after one time period.
Continued left-multiplication by T gives the probabilities for future states. Thus for any initial
probability vector x and any positive integer k, the probability vector after k time periods is
y = T kx.

Example 4.2.1. For our random walk example, find the probability vector after 5 steps for
each of these initial probability vectors:

a = 〈0.2, 0.2, 0.2, 0.2, 0.2〉

b = 〈0.5, 0, 0, 0, 0.5〉

c = 〈0, 1, 0, 0, 0〉

d = 〈0, 0, 1, 0, 0〉

Solution. We form an array that records the probability of moving from each row to column.

To
1 2 3 4 5

From 1 1 0 0 0 0
2 0.5 0 0.5 0 0
3 0 0.5 0 0.5 0
4 0 0 0.5 0 0.5
5 0 0 0 0 1

The transition matrix is the transpose.

T =

1 0.5 0 0 0
0 0 0.5 0 0
0 0.5 0 0.5 0
0 0 0.5 0 0
0 0 0 0.5 1

Notice that the sum of each column is 1. Now, the future state probabilities are easily
computed as T kx, where x is the initial probability vector (as a column vector).

50 CHAPTER 4. EIGENVALUE PROBLEMS

>> T = [1 0 .5 0 0 0 ; 0 0 0 .5 0 0 ; 0 0 .5 0 0 .5 0 ; 0 0 0 .5 0 0 ; 0 0 0
0 .5 1] ;

>> a = [0 . 2 ; 0 . 2 ; 0 . 2 ; 0 . 2 ; 0 . 2] ;
>> b = [0 . 5 ; 0 ; 0 ; 0 ; 0 . 5] ;
>> c = [0 ; 1 ; 0 ; 0 ; 0] ;
>> d = [0 ; 0 ; 1 ; 0 ; 0] ;
>> Tˆ5*a
ans =

0.450000
0.025000
0.050000
0.025000
0.450000

>> Tˆ5*b
ans =

0.50000
0.00000
0.00000
0.00000
0.50000

>> Tˆ5* c
ans =

0.68750
0.00000
0.12500
0.00000
0.18750

>> Tˆ5*d
ans =

0.37500
0.12500
0.00000
0.12500
0.37500

We notice that b results in no change from the initial probability.

A probability vector x is an equilibrium vector if x = Tx where T is the transition matrix for the
Markov chain. An equilibrium vector is one which results in no change moving to future states.
Every Markov chain has at least one equilibrium vector and the eigenvalues of the transition
matrix are the key to finding it.

Theorem 4.2.2. Let T be the transition matrix for a Markov chain. Then λ = 1 is an eigenvalue
of T . If x is an eigenvector for λ = 1 with nonnegative components that sum to 1, then x is an
equilibrium vector for T .

4.2. MARKOV CHAINS 51

Example 4.2.3. Find an equilibrium vector for the Markov chain with transition matrix

T =

 0.48 0.51 0.14
0.29 0.04 0.52
0.23 0.45 0.34

Solution.

>> T = [0 . 4 8 0 .51 0 . 1 4 ; 0 .29 0 .04 0 . 5 2 ; 0 .23 0 .45 0 . 3 4]
T =

0.480000 0.510000 0.140000
0.290000 0.040000 0.520000
0.230000 0.450000 0.340000

>> [v lambda] = e i g (T)
v =

−0.64840 −0.80111 0.43249
−0.50463 0.26394 −0.81601
−0.57002 0.53717 0.38351

lambda =

Diagonal Matrix

1 .00000 0 0
0 0.21810 0
0 0 −0.35810

>> x = v (: , 1) /sum(v (: , 1))
x =

0.37631
0.29287
0.33082

Thus x = 〈0.37631, 0.29287, 0.33082〉 is an equilibrium vector. Let’s test it.

>> Tˆ10*x
ans =

0.37631
0.29287
0.33082

>> Tˆ50*x
ans =

0.37631
0.29287
0.33082

There is no change evident, so it seems to work!

52 CHAPTER 4. EIGENVALUE PROBLEMS

4.3 Diagonalization

Diagonal matrices have important properties. Some matrices can be transformed into a spe-
cial diagonal matrix that shares some properties with the original matrix, in particular, its
eigenvalues. The diagonalization problem is to find a matrix S such that

S−1AS = Λ

where Λ is a diagonal matrix.

Theorem 4.3.1. Let A be an n× n matrix with n linearly independent eigenvectors. Form an
n×n matrix S whose columns are the eigenvectors of A. Then S is invertible and S−1AS = Λ,
where

Λ =

λ1

λ2
. . .

λn

and λi is the eigenvalue associated with the ith column of S. It follows that A can be written as
A = SΛS−1.

Theorem 4.3.1 tells us how to diagonalize a square matrix. Notice that this can be done only
for matrices that have enough independent eigenvectors. We need one more result.

Theorem 4.3.2. If A is an n × n diagonalizable matrix and A = SΛS−1 and k is a positive
integer, then

Ak = SΛkS−1 = S

λk1

λk2
. . .

λkn

S−1

Theorem 4.3.2 shows how the diagonalized form can be used to simplify certain computational
problems, such as raising a matrix to a high power.

Example 4.3.3. Let A =

[
7 8
−4 −5

]
. Find A100.

Solution. Octave can solve such a problem easily.

>> A = [7 8 ; −4 −5]
A =

7 8
−4 −5

>> Aˆ100
ans =

1.0308 e+048 1 .0308 e+048
−5.1538 e+047 −5.1538 e+047

4.3. DIAGONALIZATION 53

But how does Octave do this? Not by brute force, but by using Theorem 4.3.2. Here’s
how. First we need to calculate the eigenvalues and associated eigenvectors. Verify that the
eigenvalues and eigenvectors are

λ1 = 3,v1 =

[
−2

1

]

λ2 = −1,v2 =

[
−1

1

]

Then Λ =

[
3 0
0 −1

]
. We form the matrix S using the eigenvectors:

S =

[
−2 −1

1 1

]

Now we need to calculate the inverse matrix. It is

S−1 =

[
−1 −1

1 2

]

Therefore the diagonalized form is

A = SΛS−1

=

[
−2 −1

1 1

]
·
[

3 0
0 −1

]
·
[
−1 −1

1 2

]

So,
A100 = SΛ100S−1

=

[
−2 −1
1 1

]
·
[

3 0
0 −1

]100
·
[
−1 −1
1 2

]
=

[
−2 −1
1 1

]
·
[

3100 0
0 1

]
·
[
−1 −1
1 2

]
=

[
2 · 3100 − 1 2 · 3100 − 22
−3100 + 1 −3100 + 2

]

Compare to the earlier Octave result:

>> [2*3ˆ100−1 2*3ˆ100−2; −3ˆ100+1 −3ˆ100+2]
ans =

1.0308 e+048 1 .0308 e+048
−5.1538 e+047 −5.1538 e+047

This example shows the power of diagonalization.

54 CHAPTER 4. EIGENVALUE PROBLEMS

4.3.1 Orthogonal diagonalization

We have already observed that not all square matrices can be diagonalized. However, a cer-
tain class of square matrices always has a diagonalization, and this diagonalization has special
properties. First, we need to recall a few definitions.

� A symmetric matrix is a square matrix A such that AT = A. Recall that a matrix with
real entries may have complex eigenvalues. That cannot happen with symmetric matrices.
A real symmetric matrix has all real eigenvalues.

� An orthogonal matrix is a square matrix whose columns are orthonormal (orthogonal and
length 1). An important property of orthogonal matrices is that their inverse is equal to
their transpose: If A is orthogonal, then A−1 = AT .

All symmetric matrices are diagonalizable. Moreover, we can say the following:

Theorem 4.3.4. Let A be a symmetric matrix. Then A can be diagonalized as

A = QΛQT

where Q is an orthogonal matrix whose columns are eigenvectors of A and Λ is a diagonal matrix
with the associated eigenvalues on the diagonal.

Example 4.3.5. Find an orthogonal diagonalization for A =

[
2 −1
−1 2

]
.

Solution. A has eigenvalues 3 and 1. The eigenvectors are

[
1
−1

]
and

[
1
1

]
. Notice that

these are orthogonal. They are normalized by dividing by their length (both have length
√

2).
Then A can be diagonalized as

A = QΛQT

=

[
1√
2

1√
2

−1√
2

1√
2

]
·
[

3 0
0 1

]
·

[
1√
2
−1√
2

1√
2

1√
2

]

The eigenvectors in this example were orthogonal since the eigenvalues were distinct. If
the matrix A is symmetric, but has repeated eigenvalues, then the problem is a bit more
difficult and finding a set of orthonormal eigenvectors requires the Gram-Schmidt process
(see Section 4.5.1). We won’t show the details here, but note that even in those cases, an
orthonormal set of eigenvectors can still be found.

Now, with these ideas in mind, let’s take another look at the output of Octave’s eig command.

>> A = [2 −1; −1 2]
A =

2 −1

4.3. DIAGONALIZATION 55

−1 2

>> [v lambda] = e i g (A)
v =

−0.70711 −0.70711
−0.70711 0.70711

lambda =

Diagonal Matrix

1 0
0 3

While the matrices are arranged slightly differently (the diagonalization is not unique), you
should see that results given by Octave are precisely what is needed for the orthogonal diago-
nalization problem.

Example 4.3.6. Use Octave to diagonalize A =

[
2 −1
−1 2

]
.

Solution. If an orthogonal diagonalization is possible, Octave will return the output of eig(A)

in that format. This explains why Octave chooses normalized vectors that form an orthogonal
set, when possible.

>> A = [2 −1; −1 2]
A =

2 −1
−1 2

>> [Q L] = e i g (A)
Q =

−0.70711 −0.70711
−0.70711 0.70711

L =

Diagonal Matrix

1 0
0 3

>> Q*L*Q' % check the f a c t o r i z a t i o n by mul t ip ly ing
ans =

2.00000 −1.00000
−1.00000 2.00000

56 CHAPTER 4. EIGENVALUE PROBLEMS

4.4 Singular value decomposition

We are now prepared to tackle the singular value decomposition (SVD). This factorization is
something of a generalized version of what we just did for symmetric matrices in Section 4.3.1.
But, the singular value decomposition exists for any matrix; the matrix need not even be square!
The key is to consider the matrices ATA and AAT . These are always square symmetric matrices,
and so, can be orthogonally diagonalized.

There are many applications associated with the SVD. Netflix recently sponsored a competition
with a one million dollar prize to improve their movie recommendation algorithm. The team
that won used a method based in part on the SVD2, which can be used to discover hidden
relationships among variables. We will consider applications to least-squares problems and
image compression.

Theorem 4.4.1. Let A be an m × n matrix. The square roots of the nonzero eigenvalues of
ATA and AAT (they are the same) are called the singular values of A,denoted σ1, σ2, . . . , σr.
Then A can be factored as

A = UΣV T

where the columns of U are eigenvectors of AAT , the columns of V are eigenvectors of ATA,
and the r singular values of A are on the diagonal of Σ. This factorization is called the singular
value decomposition of A.

� U is m×m and orthogonal

� V is n× n and orthogonal

� Σ is m× n and diagonal of the special form

Σ =

σ1

...
σ2 0

. . .
...

σr
· · · 0 · · · 0

If all the eigenvalues of ATA are distinct, then the associated eigenvectors are “automatically”
orthogonal. We only need to make them unit vectors. If there are repeated eigenvalues, it
is still possible to choose orthogonal eigenvectors, but more advanced methods are needed (see
Section 4.5.1). Our procedure starts with eigenvectors of ATA, then appropriate orthogonal unit
eigenvectors for AAT are found using a simple formula, rather than by direct computation. The
number of singular values (nonzero eigenvalues) corresponds to the rank of the original matrix
A. We will only consider examples where the number of singular values r is equal to m, the
number of rows of A, otherwise, again, more advanced methods are required. We will consider

2http://buzzard.ups.edu/courses/2014spring/420projects/math420-UPS-spring-2014-gower-netflix-

SVD.pdf

http://buzzard.ups.edu/courses/2014spring/420projects/math420-UPS-spring-2014-gower-netflix-SVD.pdf
http://buzzard.ups.edu/courses/2014spring/420projects/math420-UPS-spring-2014-gower-netflix-SVD.pdf

4.4. SINGULAR VALUE DECOMPOSITION 57

a simple example using a 2× 2 matrix, then see how Octave commands can be used to find the
SVD for larger or more difficult matrices.

Here is the simplified procedure we will use:

1. Find ATA.

2. Find the eigenvalues of ATA. The square roots of these are the singular values σ1, σ2, . . .,
σr, arranged in decreasing order.

3. Find the corresponding eigenvectors and make them unit vectors v1,v2, . . . ,vn.

4. Find the vectors ui by computing ui =
1

σi
Avi.

5. Then A = UΣV T , where σ1, σ2, . . . , σr are on the diagonal of Σ and

U =
[
u1 u2 · · · um

]
V =

[
v1 v2 · · · vn

]
� Remember to transpose V when you write the factorization.

� Remember to keep the eigenvalues and eigenvectors in their correct order.

� This simplified procedure only works if ATA has no repeated eigenvalues and r = m.

Example 4.4.2. Let A =

[
4 4
−3 3

]
. Find the SVD via the simplified procedure outlined

above, then compare to the results obtained using the Octave function svd.

Solution. We can readily verify that rank(A) = 2, so the matrix should have two singular
values.

>> A = [4 4 ; −3 3]
A =

4 4
−3 3

>> ATA = A' *A
ATA =

25 7
7 25

>> [v lambda] = e i g (ATA)
v =

−0.70711 0.70711
0.70711 0.70711

lambda =

58 CHAPTER 4. EIGENVALUE PROBLEMS

Diagonal Matrix

18 0
0 32

Notice that the given eigenvectors are orthogonal unit vectors. However, the eigenvalues are
not in decreasing order. So, we need to switch the order of both eigenvectors and singular
values (they must be in decreasing order) as we build V and Σ.

>> Sigma = ze ro s (2 , 2) ;
>> Sigma (1 , 1) = s q r t (lambda (2 , 2))
Sigma =

5.65685 0.00000
0.00000 0.00000

>> Sigma (2 , 2) = s q r t (lambda (1 , 1))
Sigma =

5.65685 0.00000
0.00000 4.24264

>> V(: , 1) = v (: , 2)
V =

0.70711
0.70711

>> V(: , 2) = v (: , 1)
V =

0.70711 −0.70711
0.70711 0.70711

Now we build U to complete the factorization.

>> U(: , 1) = 1/Sigma (1 , 1) *A*V(: , 1)
U =

1.00000
0.00000

>> U(: , 2) = 1/Sigma (2 , 2) *A*V(: , 2)
U =

1.00000 0.00000
0.00000 1.00000

Now, let’s verify that UΣV T = A.

>> U*Sigma*V'

ans =

4.4. SINGULAR VALUE DECOMPOSITION 59

4 .0000 4 .0000
−3.0000 3 .0000

Now that we have a rough sense of how an SVD is determined, let’s try the built-in Octave
function. The command [U, S, V] = svd(A) computes the SVD of a matrix A and stores the
result in matrices U, S, and V. Let’s use this command to find the SVD of the matrix A and
verify that U*S*V' returns A.

>> [U S V] = svd (A) % 3−output format o f svd command
U =

−1 0
0 1

S =

Diagonal Matrix

5 .6569 0
0 4 .2426

V =

−0.70711 −0.70711
−0.70711 0.70711

>> U*S*V'

ans =

4.0000 4 .0000
−3.0000 3 .0000

Notice that the factorization returned by svd is slightly different than we obtained above.
This is normal: the SVD is not unique due to variations in how representative eigenvectors
are chosen.

4.4.1 Least squares

In Section 2.2, we used the normal equations, ATAx = ATb, to solve least-squares prob-
lems. One potential problem with this approach is that the normal equations are typically
ill-conditioned. This means that a small change in the data can lead to a large change in the nu-
meric solution. This is bad! One way to avoid this computational problem is to use a generalized
inverse known as the pseudoinverse, based on the SVD.

Theorem 4.4.3. For an m × n matrix A with singular value decomposition A = UΣV T , the
least-squares solution to the system Ax = b is given by

x = A+b

where
A+ = V Σ+UT

60 CHAPTER 4. EIGENVALUE PROBLEMS

Figure 4.2: Regression line and original data

and Σ+ is the n ×m matrix found by transposing Σ and taking the reciprocals of the singular
values:

Σ+ =

1/σ1

...
1/σ2 0

. . .
...

1/σr
· · · 0 · · · 0

The matrix A+ is called the pseudoinverse or Moore-Penrose inverse of A.

Example 4.4.4. Consider the following sample data.

x 5 10 12 18 21

y 42 24 30 18 15

Find a linear equation of the form y = a+ bx to model this data.

Solution. The given points give us a system Ax = b, with

A =

1 5
1 10
1 12
1 18
1 21

 , x =

[
a
b

]
, and b =

42
24
30
18
15

First we need to find the SVD of A. From Octave,

4.4. SINGULAR VALUE DECOMPOSITION 61

>> [U S V] = svd (A)
U =

0.156839 0.767088 −0.427793 −0.340442 −0.296766
0.311700 0.407114 −0.027649 0.469589 0.718208
0.373645 0.263125 0.857417 −0.162313 −0.172178
0.559478 −0.168843 −0.189306 0.580804 −0.534141
0.652394 −0.384827 −0.212668 −0.547638 0.284878

S =

Diagonal Matrix

32.22136 0
0 0.88546
0 0
0 0
0 0

V =

0.063748 0.997966
0.997966 −0.063748

Next, we construct Σ+ by taking the transpose of Σ (called S in our Octave code) and the
reciprocal of the nonzero entries:

Σ+ =

[
1/32.22136 0 0 0 0

0 1/0.88546 0 0 0

]
=

[
0.031035 0.000000 0.000000 0.000000 0.000000
0.000000 0.885459 0.000000 0.000000 0.000000

]

After saving Σ+ as SP, the pseudoinverse, A+, can be calculated as:

>> Aplus = V*SP*U'

Aplus =

0.864865 0.459460 0.297297 −0.189189 −0.432432
−0.050369 −0.019656 −0.007371 0.029484 0.047912

Thus the pseudoinverse is:

A+ ≈
[

0.864865 0.459460 0.297297 −0.189189 −0.432432
−0.050369 −0.019656 −0.007371 0.029484 0.047912

]

Finally, we are prepared to solve the original system of equations. The least-squares solution

is simply A+b, easily computed in Octave. The (approximate) solution vector is

[
46.3784
−1.5590

]
.

So, the correct linear equation is y = 46.3784 − 1.5590x. The original data and best-fitting
line are shown in Figure 4.2.

62 CHAPTER 4. EIGENVALUE PROBLEMS

Figure 4.3: SVD approximations

Notice that this method is not a good choice when doing the work by-hand! But, with a computer
to do the computations, there are advantages to this approach over the normal equations we
used in Section 2.2 (the computations are more numerically stable).

4.4.2 Image compression

How do we reduce large images to manageable file sizes? One approach uses the SVD. A digital
image can be represented as a matrix, where each entry represents a pixel and we assign a
numeric value to each color. The singular values of the matrix are the key. Typically some of
these are large, but many are very small. By keeping only the significant singular values and
throwing out the rest, we can significantly reduce the amount data that we need to store.

To illustrate the idea, we have imported a small grayscale image file. It is 133 × 150, which
means the matrix has 19, 950 entries. The SVD is then used to generate several approximations
at significantly reduced file sizes. The original and reduced images are shown in Figure 4.3 (the
original, exact image is at the far right).

The first approximation uses only 3 singular values. That means we keep three σs, plus three
columns of U and three columns of V . We can simply set the other values to 0 (then we don’t
need to store that data) and multiply the matrices back together to obtain the compressed
image. The result is we have only have to store 3 + (3 × 133) + (3 × 150) = 852 data values,
compared to the original of total 19, 950! That is only 4% of the original size. Keeping a few
more singular values, the second approximation uses 10 singular values and is 14% of the original
size. The image quality is not bad, considering how much of the original data we threw away.
The third approximation, with 30 singular values, looks almost as good as the original. But, it
is only 43% of the original size. For comparison, the exact image is shown on the far right.

Octave supports several image file types. We will use .jpg files, which will be loaded as RGB
(red, green, blue) images, represented as a set of three m×n matrices containing the color values
for each pixel. For simplicity, we will convert this to a single m× n grayscale matrix. Some of
the Octave commands needed for basic image processing are listed in the table below.

4.5. GRAM-SCHMIDT AND THE QR ALGORITHM 63

Image processing commands

Syntax Description

pkg load image load the image package
im = imread('filename.jpg'); load an image
name = imresize(im, 0.5); . reduce image size by a specified factor (e.g., 0.5)
name = rgb2gray(im); convert to grayscale
imshow(im) display an image
imagesc(im) display a matrix as a scaled image

In Exercise 6 you will use the SVD method to reduce the size of a digital image.

4.5 Gram-Schmidt and the QR algorithm

4.5.1 The Gram-Schmidt process

Let u and v be two linearly independent vectors. Then the vector u−projv(u) will be orthogonal
to v.

-�
��

�
��

��*
�

-

6

θ

u

projv(u) v

u− projv(u)

−projv(u)

Figure 4.4: Orthogonal projection

Notice that the set {v,u− projv(u)} is now an orthogonal set which has the same span as the
original set {v,u}. This use of orthogonal projections to make a linearly independent set into
an orthogonal set is the basis of the famous Gram-Schmidt process.

Theorem 4.5.1. The Gram-Schmidt process
Let {u1,u2, . . . ,un} be a linearly independent set. Then the following procedure will produce an
orthogonal set {v1,v2, . . . ,vn} with the same span.

v1 = u1

v2 = u2 − projv1(u2)
v3 = u3 − projv1(u3)− projv2(u3)

...
vn = un − projv1(un)− projv2(un)− · · · − projvn−1(un)

To normalize, set

wi =
vi
‖vi‖

Then the set {w1,w2, . . . ,wn} is an orthonormal set with the same span as {u1,u2, . . . ,un} and
{v1,v2, . . . ,vn}.

64 CHAPTER 4. EIGENVALUE PROBLEMS

Example 4.5.2. Find an orthonormal set with the same span as

{〈10, 9,−3, 0〉, 〈−7, 7,−3, 4〉, 〈9, 1,−8,−1〉}

Solution. Since we are going to make extensive use of vector projections, it would be a good
idea to write a function that handles that part of the computation. This can be entered at
the command line, or better yet, it can be saved in a function file ‘proj.m’ and reused in
future problems.

>> f unc t i on vect = pro j (u , v)
vect = dot (u , v) / dot (v , v) *v ;

end

As defined, proj(u, v) now computes the projection of u onto v.

Now, we will enter the original set of vectors as columns in a matrix U .

>> U = [10 −7 9 ; 9 7 1 ; −3 −3 −8; 0 4 −1]
U =

10 −7 9
9 7 1
−3 −3 −8

0 4 −1

Next, we go through the steps of the Gram-Schmidt process to create a matrix V whose
columns are an orthogonal set with the same span as the original set.

>> V = ze ro s (4 , 3) ;
>> V(: , 1) = U(: , 1) ;
>> V(: , 2) = U(: , 2) − pro j (U(: , 2) , V(: , 1)) ;
>> V(: , 3) = U(: , 3) − pro j (U(: , 3) , V(: , 1)) − pro j (U(: , 3) , V(: , 2))
V =

10.00000 −7.10526 0.37157
9.00000 6.90526 −2.73222
−3.00000 −2.96842 −6.95810

0.00000 4.00000 0.21304

These vectors are orthogonal, but not yet unit vectors, so we normalize. The final output
matrix W should have columns that are orthogonal unit vectors with the same span as the
original set.

>> W = zero s (4 , 3) ;
>> W(: , 1) = V(: , 1) /norm(V(: , 1)) ;
>> W(: , 2) = V(: , 2) /norm(V(: , 2)) ;
>> W(: , 3) = V(: , 3) /norm(V(: , 3))
W =

0.72548 −0.64071 0.04962
0.65293 0.62268 −0.36490
−0.21764 −0.26768 −0.92929

0.00000 0.36070 0.02845

The columns of W are the desired orthonormal set.

4.5. GRAM-SCHMIDT AND THE QR ALGORITHM 65

We might want to verify that the process worked. As a spot check, we can look at the dot
product of any two columns and we should get 0. Also, each column should have norm 1.

>> dot (W(: , 1) , W(: , 3))
ans = 2.2204 e−016
>> norm(W(: , 3))
ans = 1

Notice that the dot product is not quite zero due to rounding error, but the results are more than
adequate for our purposes. We should note that the Gram-Schmidt algorithm in its classic form
is known to be numerically unstable. Consult a numerical linear algebra book for details about
some simple modifications that can reduce the loss of orthogonality due to round-off error3.

4.5.2 QR decomposition

We have already seen several important matrix factorizations. The Gram-Schmidt process is the
key to another, one that turns out to provide a good means for finding eigenvalues numerically.
This is known as the QR decomposition.

Theorem 4.5.3. Let A be a nonsingular square matrix. Then there exists an orthogonal matrix
Q and an upper triangular matrix R such that A = QR.

Here’s how to find Q and R.

1. Apply the Gram-Schmidt process to the columns of A. Use the resulting orthonormal
vectors as columns of Q.

2. Let R =

q1 · a1 q1 · a2 q1 · a3 · · · q1 · an

0 q2 · a2 q2 · a3 · · · q2 · an
0 0 q3 · a3 · · · q3 · an
...

...
...

. . .
...

0 0 0 0 qn · an

, where qi is the ith column of Q and

aj is the jth column of A.

Example 4.5.4. Find the QR decomposition of the matrix A =

 5 7 0
10 8 0
5 6 −5

.

Solution. First we apply the Gram-Schmidt process to A.

>> A = [5 7 0 ; 10 8 0 ; 5 6 −5]
A =

5 7 0
10 8 0

5 6 −5

3Or try an internet search for ‘numerical instability Gram-Schmidt’ and you will find many explanations and
modified code examples.

66 CHAPTER 4. EIGENVALUE PROBLEMS

>> Q = ze ro s (3 , 3) ;
>> Q(: , 1) = A(: , 1) /norm(A(: , 1)) ;
>> Q(: , 2) = A(: , 2) − pro j (A(: , 2) ,Q(: , 1)) ;
>> Q(: , 2) = Q(: , 2) /norm(Q(: , 2)) ;
>> Q(: , 3) = A(: , 3) − pro j (A(: , 3) , Q(: , 1)) − pro j (A(: , 3) , Q(: , 2))

;
>> Q(: , 3) = Q(: , 3) /norm(Q(: , 3))
Q =

0.40825 0.72900 0.54944
0.81650 −0.56077 0.13736
0.40825 0.39254 −0.82416

Notice that we normalized each vector as we went through the process to find Q. Now, let’s
verify that Q is orthogonal. For an orthogonal matrix, Q−1 = QT , so a good way to check
for orthogonality is to compute QTQ, which should be an identity matrix.

>> Q' *Q
ans =

1.00000 −0.00000 0.00000
−0.00000 1.00000 −0.00000

0.00000 −0.00000 1.00000

This looks correct (some round-off error can be seen if we check more digits than displayed
here). Now, we build R using the appropriate dot products of columns of Q and A.

>> R = ze ro s (3 , 3) ;
>> R(1 , 1) = dot (Q(: , 1) , A(: , 1)) ;
>> R(1 , 2) = dot (Q(: , 1) , A(: , 2)) ;
>> R(1 , 3) = dot (Q(: , 1) , A(: , 3)) ;
>> R(2 , 2) = dot (Q(: , 2) , A(: , 2)) ;
>> R(2 , 3) = dot (Q(: , 2) , A(: , 3)) ;
>> R(3 , 3) = dot (Q(: , 3) , A(: , 3))
R =

12.24745 11.83920 −2.04124
0.00000 2.97209 −1.96270
0.00000 0.00000 4.12082

Of course, for a larger problem, we would use loops to compute the entries in R. Finally we
check to see that QR = A.

>> Q*R
ans =

5.00000 7.00000 0.00000
10.00000 8.00000 0.00000

5.00000 6.00000 −5.00000

It works as expected.

4.5. GRAM-SCHMIDT AND THE QR ALGORITHM 67

4.5.3 The QR algorithm

The QR decomposition is the basis of a numerical method for finding eigenvalues.

Theorem 4.5.5. The QR algorithm

Let A be an n× n matrix with n real eigenvalues.

Let A1 = A.

For each k = 1, 2, 3, . . . do the following:

(i) Find the QR decomposition of Ak, Ak = QkRk.

(ii) Set Ak+1 = RkQk.

Repeat steps (i) and (ii).

As k increases, the matrices Ak approach an upper triangular form with the eigenvalues of A on
the diagonal.

Example 4.5.6. Apply three iterations of the QR algorithm to the matrix A =

 5 7 0
10 8 0
5 6 −5

.

Solution. We will use the built-in QR-decomposition function, [Q R] = qr(A).

>> A1 = A
A1 =

5 7 0
10 8 0

5 6 −5

>> [Q1 R1] = qr (A1) ;
>> A2 = R1*Q1
A2 =

13.8333 −1.4881 10.0378
−1.6254 −2.4371 −2.0258

1 .6823 −1.6176 −3.3962

>> [Q2 R2] = qr (A2) ;
>> A3 = R2*Q2
A3 =

15.159187 4.145301 −6.805968
−0.013431 −4.054621 1.168669

0.430485 1.750645 −3.104566

>> [Q3 R3] = qr (A3) ;
>> A4 = R3*Q3
A4 =

68 CHAPTER 4. EIGENVALUE PROBLEMS

14.959822 6.640881 5.216123
0.065351 −4.860028 −0.375929
0.064287 −0.846029 −2.099794

It turns out that the correct eigenvalues of A are 15, −5, and −2. These values are already
evident on the diagonal after only three iterations.

It is a simple matter to codify the algorithm into a loop, which allows easily running a large
number of iterations. This is left as an exercise for the reader (see Exercise 9).

EXERCISES 69

Chapter 4 Exercises

1. Suppose a hypothetical state is divided into four regions, A, B, C, and D. Each year, a
certain number of people will move from one region to another, changing the population
distribution. The initial populations are given below:

Region Population

A 719
B 910
C 772
D 807

The following table records how the population moved in one year.

To
A B C D

From A 624 79 2 14
B 79 670 70 91
C 52 6 623 91
D 77 20 58 652

For example, we see that A began with 624 + 79 + 2 + 14 = 719 residents. Of these, 624
stayed in A, 79 moved to B, 2 moved to C, and 14 moved to D. From this empirical data,
we can give approximate probabilities for moving from A. Of the 719 residents, 624 stayed
in A, so the probability of ‘moving’ from A to A is 624/719 = 0.8678720. The probability
of moving from A to B is 79/719 = 0.1098748, and so on.

(a) Find the transition matrix T for this Markov chain. This is done by converting each
entry in the table above to a probability, then transposing.

(b) Express the initial population distribution as a probability vector x. Remember, the
components must add to 1.

(c) Find the population distribution (expressed as percentages) in 5 years and in 10 years.

(d) Compute the eigenvalues and eigenvectors for T and use the eigenvector for λ = 1 to
construct an equilibrium vector q for this Markov chain. This represents a population
distribution for which there is no further change from year to year. Verify that the
distribution is in equilibrium by computing several future states, such as T 25q and
T 50q. Is there any change in the distribution?

2. Diagonalize the matrix A =

[
1 4
1 −2

]
as A = SΛS−1 and use this to calculate A50. Show

all the steps needed to find the eigenvalues, eigenvectors, etc.

3. Orthogonally diagonalize the symmetric matrix A =

 1 1 3
1 1 3
3 3 9

. Verify that A = QΛQT

and show by direct calculation that Q is an orthogonal matrix.

4. Find the SVD of the matrix

[
2 3
0 2

]
without using the svd command. Show all the steps

needed to find the eigenvalues, eigenvectors, etc. Verify that A = UΣV T .

70 CHAPTER 4. EIGENVALUE PROBLEMS

5. Use the pseudoinverse to find the least-squares line y = a + bx through the given set of
points.

{(−1, 5), (1, 4), (2, 2.5), (3, 0)}

You may use the svd command, but show all the rest of the details, including construction
of the pseudoinverse. Include a plot of the data values and the least-squares line.

6. For this problem, you will use the SVD to produce a compressed image using n singular
values. You choose n (something between 5 and 50 would be suitable). To begin, you will
need a digital photo in .JPG format.

(a) Load the image in Octave as ‘imcolor,’ then convert to a grayscale image. Check the
size of your grayscale image and if it is larger than approximately 320×280, determine
an appropriate reduction factor and reduce it. Name the reduced, grayscale format
image ‘im.’ This is the image that will be compressed via the SVD method. Display
the reduced grayscale image using imagesc and verify that it still looks like the original.
Include a copy of this grayscale image with your problem solutions and state its size.

Here is a summary of the commands needed for the initial image processing:

>> imco lor = imread (' photo . jpg ') ; % load image
>> imgray = rgb2gray (imco lor) ; % make g r a y s c a l e
>> s i z e (imgray) % check image s i z e
>> im = i m r e s i z e (imgray , f a c t o r) % r e s i z e image
>> imagesc (im) % dip lay image matrix

(b) Find the SVD of the matrix representation ‘im.’ Calculate an approximation using
n singular values. That means you should only keep the first n columns of U , the
n largest values of Σ, and the first n columns of V . Set the other values to 0, then
compute UΣV T to recover an approximation of the original image. Save it as ‘im2’
and display it using imagesc.

How many nonzero values are saved in the compressed factorization compared to the
original? Include a copy of the reduced image with your problem solution.

7. Write an Octave script that takes a matrix U with linearly independent columns and
outputs a matrix V with orthonormal columns. The core loop could look like this (or use
your own formulation):

V(: , 1) = U(: , 1) /norm(U(: , 1)) ;
f o r i = 2 : n

V(: , i) = U(: , i) ;
f o r j = 1 : i−1

V(: , i) = V(: , i) − pro j (U(: , i) , V(: , j)) ;
end
V(: , i) = V(: , i) /norm(V(: , i)) ;

end

You will need to determine m and n and from the dimensions of U and the function
proj(u,v) must be defined. Test your code on the vectors from Example 4.5.2.

8. Use your code from Exercise 7 as the starting point of a script file that computes the QR
decomposition of an n × n matrix A. Test your script on a randomly generated 4 × 4
matrix, A = rand(4,4). Check Q for orthogonality by computing QTQ, which should be an
identity matrix, and verify that A = QR.

EXERCISES 71

9. Using Octave’s built-in [Q R] = qr(A) function for the QR decomposition, write a loop (at
the command line or in a script file) that will approximate the eigenvalues of the matrix

A =

 1 −1 2
−1 1 −2

2 −2 0

. Run your loop through ten iterations. The actual eigenvalues are

integers. Were you able to determine the correct values from the QR algorithm?

72 CHAPTER 4. EIGENVALUE PROBLEMS

Chapter 5

Additional topics

5.1 Three dimensional graphs

5.1.1 Space curves

Plotting a curve in 3-dimensions is similar to the 2-dimensional plotting explained in Section 1.3.
To plot space curves, we use the command plot3(x, y, z), where x, y, and z correspond to the
parametric equations for the function. For example, let’s plot a simple helix, with vector equation
r(t) = sin(t)i+cos(t)j+tk. First we generate a row vector for the parameter t, then we calculate
the range for x, y, and z.

>> t = l i n s p a c e (0 , 2*pi , 30) ;
>> x = s i n (t) ;
>> y = cos (t) ;
>> z = t ;
>> p lo t3 (x , y , z)

The graph is shown in Figure 5.1.

Now consider a more complicated curve, like

x = (4 + sin 20t) cos t, y = (4 + sin 20t) sin t, z = cos 20t

This is a ‘toroidal spiral.’ We will need to use a much finer increment for t to get a smooth
picture.

>> t = l i n s p a c e (0 , 2*pi , 500) ;
>> x = (5 + s i n (25* t)) .* cos (t) ;
>> y = (5 + s i n (25* t)) .* s i n (t) ;
>> z = cos (25* t) ;
>> p lo t3 (x , y , z)

These types of graphs are not easy to draw without a computer! See Figure 5.2.

73

74 CHAPTER 5. ADDITIONAL TOPICS

Figure 5.1: Helix

Figure 5.2: Toroidal spiral

5.1. THREE DIMENSIONAL GRAPHS 75

Figure 5.3: Saddle surface

5.1.2 Surfaces

How about plotting surfaces rather than curves? In this case, we use a two-dimensional ‘mesh’
of input values and calculate the range using a function of two variables. For example, let’s
graph the familiar saddle surface defined by:

f(x, y) = x2 − y2

First we define the domain.

>> x = l i n s p a c e (−2 , 2 , 40) ;
>> y = l i n s p a c e (−2 , 2 , 40) ;

Then, we use the meshgrid command to create a mesh of all possible combinations of x and y in
the domain.

>> [X Y] = meshgrid (x , y) ;

Now calculate the range using these meshgrid variables.

>> Z = X.ˆ2 − Y. ˆ 2 ;

Finally, we can plot the surface with the surf command.

>> s u r f (X, Y, Z)

Notice that the graph is color coded by elevation. The color map and many other settings can
be modified as needed. The graph can be rotated in space by clicking and dragging with the

76 CHAPTER 5. ADDITIONAL TOPICS

mouse. To see the graph of the mesh without the surface filled in, use mesh(X, Y, Z). Also try
contour(X, Y, Z) to see a contour plot of the surface.

We can use similar steps to plot surfaces defined parametrically, or surfaces defined in terms of
polar/cylindrical or spherical coordinates.

Example 5.1.1. The function

ρ = 1 +
1

4
sin(5θ) cos(6φ), 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

in spherical coordinates is known as a bumpy sphere. Graph this function.

Solution. We use a (θ, φ)-meshgrid to calculate ρ. Then we can calculate X, Y , and Z using
the standard spherical to rectangular coordinate identities.

>> % d e f i n e phi (P) and theta (T)
>> theta = l i n s p a c e (0 , 2*pi , 30) ;
>> phi = l i n s p a c e (0 , pi , 30) ;
>> [T P] = meshgrid (theta , phi) ;
>>
>> % c a l c u l a t e rho (R)
>> R = 1 + 1/4* s i n (5*P) .* cos (6*T) ;
>>
>> % use s p h e r i c a l i d e n t i t i e s f o r X, Y, Z
>> X = R.* s i n (P) .* cos (T) ;
>> Y = R.* s i n (P) .* s i n (T) ;
>> Z = R.* cos (P) ;
>>
>> % plo t the s u r f a c e
>> s u r f (X, Y, Z)

The graph is shown in Figure 5.4.

5.1.3 Solids of revolution

Solids of revolution can be graphed as parametrically defined surfaces. For example, parametric
equations for the surface formed by rotating the graph of y = f(x) about the x-axis, a ≤ x ≤ b
are:

x = x (5.1)

y = f(x) cos(t) (5.2)

z = f(x) sin(t) (5.3)

where 0 ≤ t ≤ 2π and a ≤ x ≤ b.

Equations 5.1–5.3 can be modified as needed to produce rotations around the other axes.

5.2. MULTIPLE INTEGRALS 77

Figure 5.4: Bumpy sphere

Example 5.1.2. Graph the solid obtained by rotating f(x) = x2− 4x+ 5, for 1 ≤ x ≤ 4, about
the x-axis.

Solution. These commands will graph the surface.

>> x = l i n s p a c e (1 , 4 , 25) ; % d e f i n e the domain
>> f = @(x) x .ˆ2 − 4*x + 5 ; % d e f i n e the func t i on
>> t = l i n s p a c e (0 , 2*pi , 25) ; % d e f i n e the parameter
>> [X T] = meshgrid (x , t) ; % (x , t)−mesh
>> Y = f (X) .* cos (T) ; % c a l c u l a t e Y
>> Z = f (X) .* s i n (T) ; % c a l c u l a t e Z
>> s u r f (X, Y, Z) % graph s u r f a c e

The result is in Figure 5.5.

5.2 Multiple integrals

We showed methods for evaluating single integrals numerically in Chapter 3. We now consider
multiple integrals. The commands dblquad and triplequad can be used to evaluate double and
triple integrals over a rectangle or rectangular box.

For example, let’s evaluate:
3∫
−1

2∫
0

(x2y + 2y) dx dy

78 CHAPTER 5. ADDITIONAL TOPICS

Figure 5.5: Solid of revolution

>> % double i n t e g r a l us ing dblquad
>> f unc t i on z = f (x , y)

z = x . ˆ 2 . * y + 2*y ;
end

>> dblquad (' f ' , 0 , 2 , −1, 3)
ans = 26.667

Evaluating over a nonrectangular domain is a trickier problem. Let’s give it a try.

Example 5.2.1. Evaluate ∫∫
R

(x2y + y2x) dA

over the region R bounded by the graphs of y = x2 and y =
√
x.

Solution. An analysis of the region of integration (Figure 5.6) shows that we need to evaluate
the following integral:

1∫
0

√
x∫

x2

(x2y + y2x) dy dx

We need to evaluate over only part of the rectangle [0, 1] × [0, 1]. One approach is to define
the integrand to be 0 for values outside of the region of integration. We do this using logical
functions. Logical functions simply test whether a statement is true and return a value of 1
if true or 0 if false. For example 2 + 3 < 4 returns 0, since the inequality is false. We can also
use Boolean operators, like and and or. Our region demands that we meet two conditions:

5.2. MULTIPLE INTEGRALS 79

Figure 5.6: Region of integration for Example 5.2.1

y > x2 and y <
√
x, so we use these conditions to define the function. By multiplying the

integrand by the correct logical operator, it is set to 0 outside the region of interest.

>> % double i n t e g r a l over a nonrectangu lar domain
>> f unc t i on z = f (x , y)

z = (x . ˆ 2 . * y + y . ˆ 2 . * x) .* and (y > x . ˆ 2 , y < s q r t (x)) ;
end

>> dblquad (' f ' , 0 , 1 , 0 , 1)
ans = 0.10701

Thus

1∫
0

√
x∫

x2

(x2y + y2x) dx dy ≈ 0.10701. This is reasonably close to the exact value of 3/28,

but not in perfect agreement. The problem is that we have defined f as a discontinuous
function (see Figure 5.7), but the quadrature algorithm works best on a smooth integrand.

The approach in Example 5.2.1 is nice for two reasons: it illustrates the formal definition of a
double Riemann integral over a nonrectangular domain (see [6], Vol. 3 §5.2), and it also allows
us to plot the surface over the region of interest (Figure 5.7).

>> x = l i n s p a c e (0 , 1 , 30) ;
>> y = x ;
>> [X Y] = meshgrid (x , y) ;
>> Z = f (X, Y) ;
>> s u r f (X, Y, Z)

If we are unsatisfied with the numerical accuracy of this method for the double integral, another

80 CHAPTER 5. ADDITIONAL TOPICS

Figure 5.7: Solid volume for Example 5.2.1

approach is to use a change of variables to transform to a rectangular region of integration as
follows:

y = y1 + u(y2 − y1) (5.4)

dy = (y2 − y1) du (5.5)

Then as y ranges from y1 to y2, u ranges from 0 to 1 and the integrand becomes:

∫ x2

x1

∫ y2

y1

f(x, y) dy dx =

∫ x2

x1

∫ 1

0
f(x, y1 + u(y2 − y1))(y2 − y1) du dx (5.6)

This is a bit cumbersome to enter in Octave. We’ll use a series of anonymous functions (see
page 35) to define the integrand, then try dblquad again.

Example 5.2.2. Use the change of variable formulas in Equations 5.4–5.6 to evaluate

1∫
0

√
x∫

x2

(x2y + y2x) dy dx

Solution.

>> f 1 = @(x , y) x . ˆ 2 . * y + y . ˆ 2 . * x ;
>> y1 = @(x) x . ˆ 2 ;
>> y2 = @(x) s q r t (x) ;
>> f 2 = @(x , u) f 1 (x , y1 (x) + u . * (y2 (x) − y1 (x))) .* (y2 (x) − y1 (x)) ;

5.2. MULTIPLE INTEGRALS 81

>> format long
>> dblquad (f2 , 0 , 1 , 0 , 1) % no quotes around anonymous func t i on name
ans = 0.107142857143983
>> 3/28 % compare r e s u l t to known exact answer
ans = 0.107142857142857

This approach gives a more satisfactory result.

If one wishes to evaluate many integrals of this form, writing a function file to automate the
above steps would be a good idea.

Example 5.2.3. Write an Octave function file that computes∫∫
R

f(x, y) dA

over the region R bounded by the graphs of y = y1(x), y = y2(x), x = a, and x = b, using the
change of variables in Equations 5.4–5.6.

Solution. A function file is similar to script: it is a plain text .m-file containing a series
of Octave commands. To be recognized as a function file, the first line of code (excluding
comments and white space) must be function. With the file placed in the load path, it can be
run from the command line like any other Octave function. The function name should match
the file name. A well written function file will include details like help text and provisions for
error checking. Refer to [3]. We will give a minimal example that accomplishes our change
of variables procedure.

Octave Script 5.1: Double integral function file

1 % func t i on f i l e ' d b l i n t .m'

2 % eva lua t e s dblquad (f , x1 , x2 , y1 , y2)
3 % where f i s an anonymous func t i on o f x and y
4 % y1 and y2 are anonymous f u n c t i o n s o f x
5 % x1 and x2 are r e a l numbers
6

7 f unc t i on va l = d b l i n t (f , x1 , x2 , y1 , y2)
8 f 2 = @(x , u) f (x , y1 (x) + u . * (y2 (x) − y1 (x))) .* (y2 (x) − y1 (x)) ;
9 va l = dblquad (f2 , x1 , x2 , 0 , 1) ;

10 end

Note that the comment lines at the top of our function file will be displayed if we type
help dblint. Thus we should strive to put a good description of the syntax in those lines.
Now, to use this function, saved in our working directory as ‘dblint.m,’ we need to define the
integrand, and the functions representing the limits of integration on y. Then we pass these
to our function dblint. Let’s try it on the integral from Example 5.2.1.

>> f = @(x , y) x . ˆ 2 . * y + y . ˆ 2 . * x ;
>> y1 = @(x) x . ˆ 2 ;
>> y2 = @(x) s q r t (x) ;
>> d b l i n t (f , 0 , 1 , y1 , y2)
ans = 0.10714

It works!

82 CHAPTER 5. ADDITIONAL TOPICS

5.2.1 Double Riemann sums

Suppose we want to write our own algorithms for double integration. It is straightforward
to write an Octave script that will estimate a double integral over a rectangle using a double
Riemann sum, taking sample points to be the upper right hand corners of the subrectangles in the
partition. For our example, we’ll use the function f(x, y) = x+2y2, defined on R = [0, 2]× [0, 4],
using m = n = 1000. Use the following code.

Octave Script 5.2: Nested loop double integral

1 % approximates a double i n t e g r a l us ing upper r i g h t hand co rne r s o f
2 % s u b r e c t a n g l e s as sample po in t s
3 % nested loop v e r s i o n
4

5 c l e a r
6

7 % d e f i n e func t i on
8 f unc t i on z = f (x , y)
9 z = x + 2*y . ˆ 2 ;

10 end
11

12 % d e f i n e r eg i on o f i n t e g r a t i o n
13 a = 0 ;
14 b = 2 ;
15 c = 0 ;
16 d = 4 ;
17

18 % d e f i n e p a r t i t i o n
19 m = 1000
20 n = 1000
21

22 % c a l c u l a t e dA and i n i t i a l i z e Riemann sum t o t a l
23 dx = (b − a) /n
24 dy = (d − c) /m
25 dA = dx*dy ;
26 rsum = 0 ;
27

28 % compute double Riemann sum
29 f o r i = 1 : n
30 f o r j = 1 :m
31 rsum = rsum + dA * f (a + dx* i , c + dy* j) ;
32 end
33 end
34

35 % d i s p l a y r e s u l t
36 rsum

This gives an estimate of 93.469, reasonably close to the correct value of 93.333. However, the
script is very slow, due to the inefficiency of running the calculation via nested loops. Notice
that the program needs to compute one million function values in this example! The routine
can be sped up dramatically by using vectorized code, which takes advantage of Octave’s fast
algorithms for executing matrix and vector calculations. The new strategy is to generate a

5.2. MULTIPLE INTEGRALS 83

meshgrid array of the sample points, then that can be used to define an m×n matrix containing
the function values at the sample points. Then the Riemann sum is simply dA times the sum
of all entries in the matrix. This runs MUCH faster!

Octave Script 5.3: Vectorized double integral

1 % approximates a double i n t e g r a l us ing upper r i g h t hand co rne r s o f
2 % s u b r e c t a n g l e s as sample po in t s
3 % v e c t o r i z e d ve r s i o n
4

5 c l e a r
6

7 % d e f i n e func t i on
8 f unc t i on z = f (x , y)
9 z = x + 2*y . ˆ 2 ;

10 end
11

12 % d e f i n e r eg i on o f i n t e g r a t i o n
13 a = 0 ;
14 b = 2 ;
15 c = 0 ;
16 d = 4 ;
17

18 % d e f i n e p a r t i t i o n
19 m = 1000
20 n = 1000
21

22 % c a l c u l a t e dA
23 dx = (b − a) /m
24 dy = (d − c) /n
25 dA = dx*dy ;
26

27 % c a l c u l a t e x and y va lue s in p a r t i t i o n
28 x = [a + dx : dx : b] ;
29 y = [c + dy : dy : d] ;
30

31 % c r e a t e matrix o f func t i on va lue s
32 [X Y] = meshgrid (x , y) ;
33 A = f (X, Y) ;
34

35 % c a l c u l a t e Reimann sum
36 rsum = dA*sum(sum(A))

While this executes significantly faster, it is still not particularly accurate, considering the rather
large values for m and n. The problem is that taking the upper right hand corners as sample
points generally does not give the best estimate. The code can easily be improved by taking
sample points at the midpoints of each rectangle. This minor adjustment is left as an exercise
for the reader (see Exercise 7).

84 CHAPTER 5. ADDITIONAL TOPICS

Figure 5.8: Vector field plot

5.3 Vector fields

A vector field assigns vectors to points in space. Vector fields are used to describe things like
wind speed, fluid flow, electric charge, or gravitational force. A vector field is conveniently
visualized by drawing a directed line segment for a series of representative points in the space.
As any archer knows, a collection of arrows is called a quiver. Thus the command for plotting a
vector field is quiver. The simplest form of the command is quiver(X, Y, U, V), where X and Y
are meshgrid variables over which the field is plotted and U and V are the x- and y-components,
respectively.

Example 5.3.1. Graph the vector field F(x, y) = 〈−x, y〉.

Solution.

>> x = l i n s p a c e (−2 , 2 , 10) ;
>> y = x ;
>> [X Y] = meshgrid (x , y) ;
>> qu iver (X, Y, −X, Y) ;
>> g r id on

See Figure 5.8. Some experimentation may be needed to determine the correct grid spacing.
Too many points will result in an array of vectors too dense to interpret.

We can also plot vector fields in three dimensions with quiver3 or add a vector field plot to the
contour graph of a surface. We will illustrate these ideas with two more examples.

5.3. VECTOR FIELDS 85

Figure 5.9: Three dimensional vector field

Example 5.3.2. Plot the vector field F(x, y, z) = 〈1, 1, z〉.

Solution.

>> x = l i n s p a c e (−3 , 3 , 10) ;
>> y = x ;
>> z = x ;
>> [X Y Z] = meshgrid (x , y , z) ;
>> quiver3 (X, Y, Z , ones (s i z e (X)) , ones (s i z e (Y)) , Z)

Note the use of the ones command to produce the constant terms. The result is in Figure 5.9.

Example 5.3.3. Graph a contour plot of the Octave function “peaks” and its gradient field.

Solution. The command peaks plots an example graph of a surface with a number of maxi-
mums and minimums. Type help peaks for details, or just peaks to see the graph. It will be
instructive to see its contours plotted together with its gradient field. We can use the built-in
gradient function.

>> [X Y Z] = peaks ;
>> [DX DY] = grad i en t (Z) ;
>> contour (X, Y, Z)
>> hold on
>> qu iver (X, Y, DX, DY)
>> a x i s ([−2 2 −2 2])
>> hold o f f

See the results in Figure 5.10.

86 CHAPTER 5. ADDITIONAL TOPICS

Figure 5.10: Gradient field

5.4 Statistics

Octave has good capabilities for statistical analysis. We’ll start with something simple. Let’s
try rolling a six-sided die:

>> f l o o r (6* rand + 1)
ans = 6 % the answer i s random − your r e s u l t s w i l l vary !

Now let’s try repeating the experiment 100 times, storing the results in a column vector. We
can analyze the results by looking at the sample mean, variance, and a histogram.

>> A = f l o o r (6* rand (100 , 1) + 1) ;
>> mean(A)
ans = 3.4100
>> var (A)
ans = 2.9514
>> h i s t (A, [1 2 3 4 5 6])

Your results will vary, but you should see something that looks close to a uniform distribution,
such as in Figure 5.11. The vector [1 2 3 4 5 6] specifies the midpoints of the bins.

Now, let’s use a loop to generate a distribution of 100 sample means.

>> f o r i = 1:100
A = f l o o r (6* rand (100 , 1) + 1) ;
d (i) = mean(A) ;

end
>> h i s t (d)

5.4. STATISTICS 87

Figure 5.11: Results from 100 6-sided die trials

Figure 5.12: Distribution of sample means

88 CHAPTER 5. ADDITIONAL TOPICS

Notice that the distribution of the sample means is approximately normal (Figure 5.12), even
though the underlying distribution is not. We have just demonstrated the Central Limit Theo-
rem!

We have seen that the rand function corresponds to a uniform distribution. Octave has other dis-
tributions built-in. For example, the function randn returns a matrix with normally distributed
elements with mean 0 and standard deviation 1.

Example 5.4.1. Create a vector Z of 1000 elements from the standard normal distribution. Use
the transformation X = Zσ + µ to generate a vector X of elements from a normal distribution
with mean 400 and standard deviation 50. Compare the means and variances of X and Z. Plot
histograms of Z and X.

Solution. Here are the commands we need:

>> Z = randn (1000 , 1) ;
>> mu = 400 ;
>> sigma = 50 ;
>> X = Z* sigma + mu;
>> format f r e e ;
>> means = mean ([Z X])
means =

−0.00116119 399.942

>> va r i ance s = var ([Z X])
va r i anc e s =

1.04291 2607.28

>> h i s t (Z)
>> h i s t (X)

The command format free changes from the default short form scientific notation, which makes
it a bit easier to compare the means and variances, in this case. We can see Z has mean and
variance near 0 and 1, respectively, while X has a mean near 400 and variance near 2500, as
expected. The histograms are identical, except for the scale on the horizontal axis (see, for
example, Figure 5.13).

Octave can handle many other statistical functions. As a final example, we will consider a simple
hypothesis test. See [2] for background on the basic theory of statistical tests.

Example 5.4.2. Consider the following set of sample data (from a normally distributed popu-
lation):

{24.9, 22.8, 16.2, 10.8, 32.0, 19.2}

Test the following hypotheses at significance level α = 0.05:

H0 : µ = 30
Ha : µ < 30

5.4. STATISTICS 89

Figure 5.13: X-distribution

Solution. Enter the data and calculate the mean.

>> x = [2 4 . 9 22 .8 16 .2 10 .8 32 .0 1 9 . 2] '

x =

24.900
22 .800
16 .200
10 .800
32 .000
19 .200

>> mean(x)
ans = 20.983

Is x = 20.983 good evidence that µ < 30? We can use the t test command. We enter the
vector x, the value of µ from the null hypothesis, and the alternative, which takes the form
‘<’, ‘>’, or ‘<>’ (for 6=).

>> t t e s t (x , 30 , '< ') ;
pval : 0 .0149318

We can see that the P -value is less than α. Based on this, we reject the null hypothesis.

90 CHAPTER 5. ADDITIONAL TOPICS

5.5 Differential equations

5.5.1 Slope fields

The quiver function we used to plot vector fields in Section 5.3 can also be used to plot the slope
field of a differential equation. The key is recognizing that a differential equation of the form
dy/dx = f(x, y) is a function that gives us slopes, which we can interpret as vectors. This will
be illustrated with a simple example.

Example 5.5.1. Plot the slope field along with several solutions of the differential equation

dy

dx
= x

Solution. The solution is y = 1
2x

2 + C. For differential equations that cannot be solved so
easily, plotting the slope field can be used to get a sense of the solutions. In this example,
since we know the solution, we can show how the solutions follow the slope field.

We need to define the input range as a meshgrid, define the function, then use the function
to calculate slopes. To get a good looking graph, we then scale these slope vectors to a unit
length. Finally, we plot some solutions for different values of C.

>> % d e f i n e input va lue s
>> x = l i n s p a c e (−5 , 5 , 30) ;
>> y = x ;
>> [X Y] = meshgrid (x , y) ;
>>
>> % d e f i n e func t i on
>> f = @(x , y) x ;
>>
>> % delta−y , r e l a t i v e to 1 un i t de l ta−x
>> dY = f (X, Y) ;
>> dX = ones (s i z e (dY)) ;
>>
>> % f a c t o r to s c a l e to un i t l ength
>> L = s q r t (1 + dY. ˆ 2) ;
>>
>> % plo t the f i e l d
>> qu iver (X, Y, dX. /L , dY. /L , 0 . 5) % s c a l i n g f a c t o r 0 .5
>> a x i s ([−4 4 −4 4])
>> g r id on
>> x l a b e l ('x ')
>> y l a b e l ('y ')
>>
>> % add some p a r t i c u l a r s o l u t i o n s to graph f o r comparison
>> hold on
>> f o r C = −4:3

p l o t (x , 0 .5* x .ˆ2 + C, ' r ' , ' l i n ew id th ' , 2)
end

The results are shown in Figure 5.14.

5.5. DIFFERENTIAL EQUATIONS 91

Figure 5.14: Slope field and solutions

5.5.2 Euler’s method

Euler’s method is probably the simplest numerical technique for solving an ordinary differential
equation.

Given a differential equation y′ = f(x, y) with initial condition y(x0) = y0, Euler’s method gives
approximate solutions:

yi+1 = yi + hf(xi, yi) (5.7)

The value of h is the step size. If the interval [x0, b] is divided into n equally spaced subintervals,

then h =
b− x0
n

. To see how this works, let’s look at an example.

Example 5.5.2. Solve

y′ = e−3x − 3y, y(0) = 1

on [0, 3] using a step size of 1.

Solution. We will generate a series of approximate y-values at x = 0, 1, 2, 3. The value y0 is
given. We compute the remaining values using Equation 5.7. Here is the first step:

y1 = y0 + hf(x0, y0)
= 1 + (1)f(0, 1)
= 1 + (1)(−2)
= −1

92 CHAPTER 5. ADDITIONAL TOPICS

This is then used to compute y2.

y2 = y1 + hf(x1, y1)
= −1 + (1)f(1,−1)
= 2.0498

One more step:
y3 = y2 + hf(x2, y2)

= 2.0498 + (1)f(2, 2.0498)
= −4.0971

Our approximate solutions are summarized in the following table.

x y

0 1.0000
1 −1.0000
2 2.0498
3 −4.0971

Unfortunately, these solutions are not very accurate. But, we can do much better by decreas-
ing the step size, as shown in the next example.

These repetitive computations are best implemented in an Octave script. This allows using
a smaller step size, which gives a finer range of solution values and also improves the overall
accuracy. Refer to [7] for a fuller discussion of the accuracy of Euler’s method and a range of
more sophisticated algorithms.

Example 5.5.3. Solve

y′ = e−3x − 3y, y(0) = 1

on [0, 3] using a step size of 0.1.

Solution. We will write a fairly general Octave script that can be easily modified for different
functions, intervals, and step sizes.

Octave Script 5.4: Euler’s method

1 % Euler ' s method s o l u t i o n f o r
2 % dy/dx = eˆ(−3x) − 3y , y (0) = 1 on [0 , 3]
3

4 % d e f i n e func t i on and i n i t i a l c ond i t i on
5 f = @(x , y) exp(−3*x) − 3*y ;
6 y0 = 1 ;
7

8 % d e f i n e i n t e r v a l and step s i z e
9 a = 0 ;

10 b = 3 ;
11 h = 0 . 1 ; % note : s tep s i z e must d iv id e b−a
12 n = (b − a) /h ;
13

5.5. DIFFERENTIAL EQUATIONS 93

Figure 5.15: Euler’s method solution for Example 5.5.3

14 % d e f i n e x−va lue s
15 c l e a r x ;
16 x = [a : h : b] ;
17

18 % c a l c u l a t e y−va lue s
19 c l e a r y ;
20 y (1) = y0 ;
21 f o r i = 1 : n
22 y (i + 1) = y (i) + h* f (x (i) , y (i)) ;
23 end
24

25 % plo t s o l u t i o n s
26 >> p lo t (x , y , ' o : ' , ' l i n ew id th ' , 2)

Figure 5.15 shows the approximated solution compared to the exact solution, which is known
to be y = e−3x(x+ 1).

5.5.3 The Livermore solver

Octave has a built-in function for solving differential equations numerically, called lsode, which
implements the FORTRAN routine of the same name (Livermore solver for ordinary differential
equations). The command lsode(f , x 0, t) solves differential equation dx/dt = f(x, t) with
initial condition x(t0) = x0 over the range specified by t. Notice that the initial value x0 needs
to correspond to the first value of the vector t. Refer to the documentation for further details.

94 CHAPTER 5. ADDITIONAL TOPICS

Figure 5.16: lsode numeric solution

Example 5.5.4. Solve the differential equation

dx

dt
= x(t2 + 1)

with initial condition x(0) = 1.

Solution. We use Octave to solve the problem on 0 ≤ t ≤ 3.

>> % d e f i n e the funct ion , input values , and i n i t i a l c ond i t i on
>> f = @(x , t) x . * (t . ˆ2 + 1) ;
>> t = l i n s p a c e (0 , 3 , 50) ;
>> x0 = 1 ;
>>
>> % c a l c u l a t e the s o l u t i o n s
>> s o l = l s ode (f , x0 , t) ;
>>
>> % plo t the s o l u t i o n s
>> p lo t (t , so l , ' g ' , ' l i n ew id th ' , 3)
>> g r id on
>> x l a b e l (' t ')
>> y l a b e l ('x ')
>> a x i s ([0 3 0 1 0 0])

The solution is shown in Figure 5.16. Note that the exact solution is easily found to be
x = e

1
3
t2+t, which is in good agreement with our graph.

EXERCISES 95

Chapter 5 Exercises

1. Graph the function r(t) = 〈e−t, t, sin(t)〉.

2. Graph the function f(x, y) = sin(xy) + 1.

3. Find a vector function that represents the curve of intersection of the circular cylinder
x2 + y2 = 4 and the parabolic cylinder z = x2. Graph the two surfaces and the curve of
intersection.
The command [X Y Z] = cylinder([2 2]) can be used to obtain a cylinder of radius 2.

4. Calculate the volume of the bumpy sphere from Example 5.1.1.

5. A cylindrical drill with radius 1 is used to bore a hole through the center of a sphere of
radius 5. Graph the ring shaped solid that remains and find its volume.

6. Use dblquad to evaluate the double integral∫∫
D

x cos y dA

where D is bounded by y = 0, y = x2, and x = 2.

7. Let f(x, y) = x+2y2, defined on R = [0, 2]×[0, 4]. Write a vectorized algorithm to compute
a double Riemann sum using midpoints of each subrectangle as the sample points. Use
a partition with m = n = 1000. Compare your results to the value computed using
dblquad('f ' , 0, 2, 0, 4) and to the estimate using upper right hand corner sample points.

8. Plot the vector field F(x, y) = tan−1
(y
x

)
i + ln(x2)j.

9. Plot the vector field F(x, y, z) = −x
(x2+y2+z2)3/2

i + −y
(x2+y2+z2)3/2

j + −z
(x2+y2+z2)3/2

k.

10. The function binopdf(x, n, p) gives the probability of x successes in n trials of a binomial
experiment with a probability of success p on each trial. Plot binomial distributions for
n = 10, 25, and 50 with p = 0.8. This can be done with the command bar(x, B), where x is
the vector of possible outcomes and B is the corresponding vector of binomial probabilities.
What happens to the shape of the distribution as n increases?

11. Use Euler’s method to solve the differential equation

dx

dt
= x(t2 + 1)

with initial condition x(0) = 1 on [0, 3] using a step size h = 0.1. Compare to the lsode
solution from Example 5.5.4.

12. Graph the slope field for the logistic equation
dy

dx
= y(1− y). Verify that y = 1/(1 + e−x)

is a solution to the equation. Graph this function over the slope field and set the axes to
an appropriate range.

13. Use lsode to solve the differential equation from Exercise 12 if y(0) = 0.5. Plot the solution
over the slope field. Does the solution agree with the previous solution?

96 CHAPTER 5. ADDITIONAL TOPICS

Appendix A

MATLAB compatibility

Octave and MATLAB use similar syntax, but the programs are not identical. MATLAB, espe-
cially when extended with its various toolboxes, has many functions not available in Octave. For
example, symbolic operations are possible, and many more options exist for solving differential
equations beyond Octave’s lsode. However, most code in this book will work in MATLAB, so
what you’ve learned here will easily transfer to more advanced MATLAB programming.

Octave allows some flexibility in syntax that MATLAB does not. This book has been written
with MATLAB compatibility in mind, so when multiple forms of a command or operation are
possible, the MATLAB compatible option has been used. Here is a summary of a few of the
potential coding differences.

� Comments in Octave can be preceded by # or %. MATLAB uses %.

� Octave recognizes single quotes and double quotes around strings. MATLAB requires
single quotes.

� Blocks in Octave can be ended with end statements based on the initial command (endfor,
endfunction, etc). MATLAB uses only end.

� The not-equal comparison can be written as != or ˜= in Octave. MATLAB uses ˜=.

� Octave allows user-defined functions to be entered at the command line or in scripts.
MATLAB requires the use of separate function files.

� The lsode command is not implemented in MATLAB. There are many other options avail-
able, such as ode45. To use ode45 and several other MATLAB compatible solvers in Octave,
load the package ‘odepkg.’

97

98 APPENDIX A. MATLAB COMPATIBILITY

Appendix B

List of Octave commands

The names and basic syntax for many common commands are provided below. Type help NAME

at the Octave prompt for more details.

List of Octave commands

Syntax Description

[a:step:b] . vector from a to b by increment ‘step’

A' . transpose of A

A*B . matrix product A×B
A\b . left division, solves system Ax = b

Aˆn . matrix power

A + B . sum A+B

x < y . less than comparison

x > y . greater than comparison

x == y . equality comparison

x ˜= y . not equal comparison

x.*y . elementwise product

x./y . elementwise quotient

x.ˆn . elementwise exponent

abs(x) . absolute value of x

acos(x) . inverse cosine of x in radians

and(a, b) . logical AND

ans . result of last calculation

asin(x) . inverse sine of x in radians

atan(x) . inverse tangent of x in radians

axis ([Xmin Xmax Ymin Ymax]) set axis limits

bar(x, y) . bar graph of y vs. x

besselj (n, x) order n Bessel functions of the first kind

binopdf(x, n, p) binomial probability of x successes

ceil (x) . dxe, the least integer greater than or equal to x

clear var1 . clear variable (clear all if no variable listed)

clf . clear plot window

contour(X, Y, Z) contour plot of surface

corr(x, y) . linear correlation coefficient r

cos(x) . cosine of x (x in radians)

cosh(x) . hyperbolic cosine of x

cross(u, v) . cross product of vectors u and v

cylinder ([r r]) cylinder of radius r

dblquad('f ' , a, b, c, d) double integral over rectangle

continued . . .

99

100 APPENDIX B. LIST OF OCTAVE COMMANDS

. . . continued

Syntax Description

det(A) . determinant of A

dir . list files in current directory

dot(u, v) . dot product of vectors u and v

[v lambda] = eig(A) find eigenvalues and eigenvectors

e . the number e

erf (x) . the error function

exp(x) . natural exponential function

eye(n) . n× n identity matrix

floor (x) . bxc, the greatest integer less than or equal to x

for i = 1:n ... end for loop

format opt . decimal format, options = short, long, free, bank, etc

fsolve (' f ' , x1) solve f(x) = 0, initial guess x1
function y = f(x) ... end define a function

f = @(x1, x2, ...) rule anonymous function of x1, x2, . . . given by rule

[DX DY] = gradient(Z) gradient field of Z

gamma(x) . the gamma function

grid on/off . toggle plot grid

help NAME get documentation for command ‘NAME’

hist (X, B) . histogram of X, optional B specifies bins

hold on/off . add to current plot toggle on/off

I . the imaginary unit

im = imread('name') load image

imagesc(A) . display matrix as scaled image

imresize(im, factor) scale image by factor

imshow(im) . display image

inv(A) . inverse of matrix A

legend('plot1 ' , 'plot2 ' , ...) . . . plot legend

linspace(a, b, n) vector of n evenly spaced points from a to b

load filename load saved variables

log(x) . natural logarithm

lsode(f , x 0, t) solves dx/dt = f(x, t), x(0) = x0
[L U P] = lu(A) LU decomposition of A, with permutation

max(A) . maximum of vector, or column-wise maximums of a matrix

max(max(A)) maximum of all entries in matrix A

mean(x) . mean of x

mesh(X, Y, Z) surface plotted as a mesh

[X Y] = meshgrid(x, y) generate X,Y -meshgrid

min(A) . minimum of vector, or column-wise minimums of a matrix

min(min(A)) minimum of all entries in matrix A

norm(u) . norm (length) of vector u

normcdf(x, mu, sigma) area under normal curve to the left of x

norminv(a, mu, sigma) inverse normal distribution given area a

ones(m, n) . m× n matrix of ones

continued . . .

101

. . . continued

Syntax Description

or(a, b) . logical OR

peaks . example 3d graph of a surface with many local extrema

pi . the number π

pinv(A) . pseudoinverse of A

pkg install −forge NAME download and install a package from Octave Forge

pkg list . list installed packages

pkg load NAME load an installed package

plot(x, y) . plot of x vs. y

plot3(x, y, z) plot space curve

polyfit (x, y, order) polynomial fit x vs. y of degree ‘order’

polyval(P, x) evaluate polynomial P at x

print −dpng filename.png save plot as png (substitute jpg, eps, etc)

pwd . list current working directory

[Q R] = qr(A) QR decomposition of A

quad('f ' , a, b) definite integral

quiver(X, Y, U, V) plot vector field with components U and V

quiver3(X, Y, Z, U, V, W) plot 3d vector field with components U, V, W

rand(m, n) . m× n random matrix (uniformly distributed entries)

randn(m, n) m× n random matrix (normally distributed entries)

rank(A) . rank of A

rgb2gray(im) convert image to grayscale

save filename A, B, save variables A, B, ...

sin(x) . sine of x (x in radians)

sinh(x) . hyperbolic sine of x

size (A, opt) dimensions of A; dimension option: 1=rows, 2=cols

sqrt(x) . principle square root of x

sum(A) . sum of vector components or column-wise sum of matrix A

sum(sum(A)) sum of all entries in matrix A

surf(X, Y, Z) surface plot

[U S V] = svd(A) singular value decomposition of A

tcdf(x, n) . Students t-distribution CDF with degrees of freedom n

tinv(a, n) . inverse t-distribution with degrees of freedom n

t test (X, mu 0, alt) t-test, alternative hypothesis = ‘<’,‘>’, or ‘<>’

tan(x) . tangent of x (x in radians)

tanh(x) . hyperbolic tangent of x

title ('name') assign plot title

triplequad(' f ' , a, b, c, d, e, f) triple integral over a rectangular box

var(x) . variance of x

whos . list variables in current scope

xlabel('name') horizontal axis label

ylabel('name') vertical axis label

zeros(m, n) . m× n matrix of zeros

102 APPENDIX B. LIST OF OCTAVE COMMANDS

References

[1] Brin, Leon Q, Tea Time Numerical Analysis, 2nd edition. CC-BY-SA, 2016.
http://lqbrin.github.io/tea-time-numerical/

[2] Diez, David M, Christopher D Barr, and Mine Çetinkaya-Rundel, OpenIntro Statistics, 3rd
edition. CC-BY-SA, 2015.
https://www.openintro.org/stat/textbook.php

[3] Eaton, John W, David Bateman, Søren Hauberg, and Rik Wehbring, GNU Octave Manual:
Edition 4. GNU FDL, 2017.
https://www.gnu.org/software/octave/octave.pdf

[4] Grinstead, Charles M, and J Laurie Snell, Introduction to Probability, 2nd Edition.
American Mathematical Society. GNU FDL, 2006.
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_

book/book.html

[5] Kuttler, Ken, A First Course in Linear Algebra. CC-BY, 2017.
http://lyryx.com/textbooks/Kuttler-LinearAlgebra-AFirstCourse-2017A.pdf

[6] Strang, Gilbert, Edwin Herman, et al, Calculus Volumes 1–3. OpenStax. CC-BY-NC-SA,
2016.
https://openstax.org/details/books/calculus-volume-1

https://openstax.org/details/books/calculus-volume-2

https://openstax.org/details/books/calculus-volume-3

[7] Trench, William F, Elementary Differential Equations. Trinity University, Digital Com-
mons. CC-BY-NC-SA, 2013.
http://digitalcommons.trinity.edu/mono/8/

103

http://lqbrin.github.io/tea-time-numerical/
https://www.openintro.org/stat/textbook.php
https://www.gnu.org/software/octave/octave.pdf
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
http://lyryx.com/textbooks/Kuttler-LinearAlgebra-AFirstCourse-2017A.pdf
https://openstax.org/details/books/calculus-volume-1
https://openstax.org/details/books/calculus-volume-2
https://openstax.org/details/books/calculus-volume-3
http://digitalcommons.trinity.edu/mono/8/

104 REFERENCES

Index

bar graph, 95
Bessel function, 43
binomial distribution, 95
Boolean operators, 78
bumpy sphere, 76

Central Limit Theorem, 88
clear plot window, 10
clear variables, 14
code listing, format, ix
color map, 75
comments, ix, 3
contour plot, 76
cross product, 4
cylinder, 95

dblquad, 77
determinant, 7
diagonalization, 52
differential equation, 90, 93
display format, 36
dot product, 4

eigenvalues/eigenvectors, 7, 47, 55
elementwise operations, 11
equal axes, 42
equilibrium vector, 50
error function, 43
Euler’s method, 91
Eulerian path, 26
exponential function, base e, 39

factorial, 43
floating point, free format, 88
floating point, long format, 18
floor function, 32
for loop, 37
forward substitution, 21
fsolve, 46
function file, 81
function, anonymous, 35

function, user-defined, 39

gamma function, 43, 45
Gaussian elimination, 17
GNU, 1
gradient field, 85
Gram-Schmidt process, 63

harmonic series, 38
helix, 73
histogram, 86
hold on/off, 10
homogeneous coordinates, 33

identity matrix, 7
ill-conditioned system, 59
image processing, 62
imagesc, 63
imread, 63
imresize, 63
imshow, 63
integral, definite, 39
integral, multiple, 77

left division, 19
limaçon, 42
limit, 35
linspace, 8
load, 8
load workspace, 8
loading packages, 63
logical function, 78
logistic growth equation, 95
lsode, 93
LU decomposition, 19
lu(A), 22

m file, ix, 8
Markov chain, 48
MATLAB, x, 1, 97
matrix entry, 4

105

106 INDEX

matrix indexing, 17
matrix inverse, 7
matrix multiplication, 6
mean, 86
mesh, 76
meshgrid, 75
midpoint rule, 39

natural logarithm, 33
nested loops, 82
Newton’s method, 46
nonrectangular domain, 78
norm, 4
normal distribution, standard, 88
normal equations, 24
numerical integration, 38, 77

Octave script, ix, 8, 40
Octave, graphical user interface, 2
Octave, installation, 2
ones, 24, 85
orthogonal diagonalization, 54
orthogonal matrix, 54
orthonormal set, 63

parametric surface, 76
partial sums, sequence of, 37
peaks, 85
permutation matrix, 22
plot, 9
plot options, 10, 12
plot3, 73
plotting points, 10
polar coordinates, 42
polyfit, 25
polyval, 26
printing to file, 13
probability vector, 49
projection, scalar, 5
projection, vector, 5, 64
pseudoinverse, 59

QR algorithm, 67
QR decomposition, 65
qr(A), 67
quad, 39
quadrature (definite integral), 39
quiver, 84, 90
quiver3, 84

random matrix, 31
rank, 7
rgb2gray, 63
Riemann sum, 82
rotation matrix, 27
rref, 18

save, 8
save workspace, 8
semi-log plot, 33
sequence, 37
Simpson’s rule, 39
singular value decomposition, 56
singular values, 56
slope field, 90
solid of revolution, 76
space curve, 73
special functions, 43
string variables, ix
surf, 75
surface, 75
svd, 59
symmetric matrix, 54

transition matrix, 49
transpose, 7
trapezoid rule, 39
triplequad, 77

uniform distribution, 86

variable assignment, 3
variance, 86
vector field, 84
vectorized code, 35, 82

Cover image: Mandelbrot Set, created with GNU Octave by the author.

These notes are intended to provide a brief, noncomprehensive introduction to GNU
Octave, a free open source alternative to MatLab. The basic syntax and usage is
explained through concrete examples from the mathematics courses a math,
computer science, or engineering major encounters in the first two years of college:
linear algebra, calculus, and differential equations.

Copyright 2017 by Jason Lachniet.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International License.

	Contents
	Preface
	Basic operation
	Introduction
	What is GNU Octave?
	Installing Octave
	Getting started

	Matrices and vectors
	Vector operations
	Projections
	Matrix operations
	Saving your work

	Plotting
	Plot options
	Saving plots

	Chapter 1 Exercises

	Matrices and linear systems
	Linear systems
	Gaussian elimination
	Left division
	LU decomposition

	Polynomial curve fitting
	Matrix transformations
	Rotation matrices
	Other transformations

	Chapter 2 Exercises

	Calculus
	Limits, sequences, and series
	Numerical integration
	Quadrature
	Approximating sums

	Parametric and polar plots
	Special functions
	Chapter 3 Exercises

	Eigenvalue problems
	Eigenvalues and eigenvectors
	Markov chains
	A random walk

	Diagonalization
	Orthogonal diagonalization

	Singular value decomposition
	Least squares
	Image compression

	Gram-Schmidt and the QR algorithm
	The Gram-Schmidt process
	QR decomposition
	The QR algorithm

	Chapter 4 Exercises

	Additional topics
	Three dimensional graphs
	Space curves
	Surfaces
	Solids of revolution

	Multiple integrals
	Double Riemann sums

	Vector fields
	Statistics
	Differential equations
	Slope fields
	Euler's method
	The Livermore solver

	Chapter 5 Exercises

	MATLAB compatibility
	List of Octave commands
	References
	Index

