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Preface

JPEG2000 is the most recent addition to a family of international
standards developed by the Joint Photographic Experts Group (JPEG).
The original JPEG image compression standard has found wide accep-
tance in diverse application areas, including the internet, digital cam-
eras, and printing and scanning peripherals. Image compression plays
a central role in modern multi-media communications and compressed
images arguably represent the dominant source of internet traffic to-
day. The JPEG2000 standard is intended as the successor to JPEG in
many of its application areas. It is motivated primarily by the need for
compressed image representations which offer features increasingly de-
manded by modern applications, while also offering superior compression
performance.

This text is written to serve the interests of a wide readership and to
facilitate the adoption of the JPEG2000 standard by providing the tools
needed to efficiently exploit its capabilities. The book is organized into
four parts and is accompanied by a comprehensive software implemen-
tation of the standard. The first part provides a thorough grounding in
the theoretical underpinnings and fundamental algorithms contributing
to the standard. Although the elements of the original JPEG standard
are carefully expounded in a large body of existing works, JPEG2000
employs fundamentally different approaches and many recently devel-
oped techniques to achieve its goals. This first part of the book provides
in-depth coverage of a diverse range of topics, which have not previ-
ously been brought together in a single volume. The intent is not only
to provide a backdrop to the JPEG2000 standard, but also to serve the
needs of students and academics interested in modern image compression
techniques.

The second part of the book is devoted to a thorough description of
the JPEG2000 standard. This material is intended to serve as a compre-
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hensive reference for implementors of the standard. The authors draw
upon their extensive involvement with the development of JPEG2000 to
shed light on all technical aspects of JPEG2000 Part 1. Treatment of
JPEG2000 Part 2 (extensions) is less comprehensive. Parts I and II of
the book are written so as to complement one another. The book offers
at least two different perspectives on many of the key concepts, with
Part I offering the more theoretical perspective and Part II offering the
more practical. As far as possible, Part II of the book strives to provide
an accessible description of the standard, which can be comprehended
without first absorbing the more theoretical material in Part 1.

The third part of the book addresses practical considerations for im-
plementing and efficiently utilizing the standard. The intention is to
impart a body of knowledge acquired by the authors through their in-
volvement in developing the standard, including software and hardware
implementation strategies and guidelines for selecting the most appro-
priate parameters for a variety of applications. This part of the book
also deals with compliance testing and related matters.

The fourth and final part of the book provides a useful introduction
to other image compression standards, namely JPEG and JPEG-LS.
The purpose of this material is twofold. In the first place, these much
simpler standards provide excellent practical examples of some of the
image compression techniques which are treated in Part I of the book,
but do not find expression in JPEG2000. Secondly, JPEG and JPEG-
LS provide the most important alternatives to JPEG2000 in its two
most important fields of application: lossy and lossless compression of
continuous tone imagery. Only by describing these standards is the text
able to offer meaningful comparisons with JPEG2000. In some cases,
particularly those in which scalability and accessibility are not sought-
after features, the use of JPEG2000 in preference to JPEG or JPEG-LS
may be likened to using a sledge hammer to swat a fly. Part IV of the
book should prove a useful guide to application developers wishing to
avoid such excesses.

Included with the book is a compact disc, containing documentation,
binaries and all source code to the Kakadu software tools. This software
provides a complete C++ implementation of JPEG2000 Part 1, demon-
strating many of the principles described in the text itself. The software
is frequently referenced from the text as an additional resource for un-
derstanding complex or subtle aspects of the standard. Conversely, the
software makes frequent reference to this text and has been written to
mesh with the terminology and notation employed herein. The Kakadu
tools have been commercially licensed by a significant number of corpora-
tions. Non-commercial licenses are also sold separately by the University
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of New South Wales and the software may otherwise be obtained only
with the purchase of this book. A copy of the non-commercial license
granted with this book may be found at the back cover. Provisions are
also in place to encourage site-licensing by Universities whose libraries
own a copy of the book. For more information in this regard, refer to
the compact disc itself and the accompanying license statement.
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Chapter 1

IMAGE COMPRESSION OVERVIEW

1.1 ELEMENTARY CONCEPTS
1.1.1 DIGITAL IMAGES

For our purposes an image is a two dimensional sequence of sample
values,
x[nla’n’?]a 0§n1<N1a 0§n2<N27

having finite extents, N1 and Ng, in the vertical and horizontal direc-
tions, respectively. The term “pixel,” where used here, is to be under-
stood as synonymous with an image sample. The first coordinate, n; is
understood as the row index, while the second coordinate, ng, is under-
stood as the column index of the sample or pixel. This is illustrated in
Figure 1.1.

The sample value, x [n,ng|, represents the intensity (brightness) of
the image at location [nj,n2]. The sample values will usually be B-bit
signed or unsigned integers. Thus,

x[n1,ng] € {O, 1,...,2B — 1} for unsigned imagery
z[ny,n9) € { —9B-l 9Bl g 9Bl _ 1} for signed imagery

Most commonly encountered digital images have an unsigned B = 8 bit
representation, although larger bit-depths are frequently encountered in
medical, military and scientific applications. In many cases, the B-bit
sample values are best interpreted as uniformly quantized representa-
tions of real-valued quantities, 2’ [n;,ng], in the range 0 to 1 (unsigned)
or —% to 4 (signed). Letting (-) denote rounding to the nearest integer,
the relationship between the real-valued and integer sample values may
be written as

x[ny,ng) = <2Bx’ [n1,n2]) (1.1)

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice

© Springer Science+Business Media New York 2002



4 Elementary Concepts

Figure 1.1.  Interpretation of image sample coordinates

Colour images are typically represented with three values per sample
location, corresponding to red, green and blue primary colour compo-
nents. We represent such images with three separate sample sequences,
xR [n1,n2], zg [n1,n2] and xp [n1,ns]. More generally, we may have an
arbitrary collection of image components,

ch[nl,nQ], C:1,2,...,C

Images prepared for colour printing often have four colour components
corresponding to cyan, magenta, yellow and black dyes; in fact, some
colour printers add green and violet for six primary colour components.
Hyperspectral satellite images can have hundreds of image components,
corresponding to different regions of the spectrum. For the most part
we shall restrict our attention to a single image component, with the
understanding that it is always possible to apply a compression system
separately to each component in turn.

The degree to which an image may be compressed depends upon its
content. For this reason, we often refer to particular classes of imagery.
Some useful classifications are:

Natural Images representing natural scenes, including photographic
images.

Text Images representing scanned or computer generated text, e.g., fac-
simile images.
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Graphics Scanned or computer generated graphics such as line-art and
comics.

Compound Images which typically contain a mixture of the above
three types of content, e.g., scanned documents.

Unless otherwise stated, we will be primarily concerned with natural
images in this text.

1.1.2 LOSSLESS AND LOSSY COMPRESSION

The primary goal of lossless compression is to minimize the number of
bits required to represent the original image samples without any loss of
information. All B bits of each sample must be reconstructed perfectly
during decompression. For image compression, however, some loss of
information is usually acceptable for the following three reasons:

m Significant loss can often be tolerated by the human visual system
without interfering with perception of the scene content.

m In most cases, digital input to the compression algorithm is itself an
imperfect representation of the real-world scene. This is certainly true
when the image sample values are quantized versions of underlying
real-valued quanties, as expressed in equation (1.1).

m Lossless compression is usually incapable of achieving the high com-
pression requirements of many storage and distribution applications.

Nevertheless, lossless compression is often demanded in medical ap-
plications so as to avoid legal disputation over the significance of errors
introduced into the imagery. Lossless compression is also often applied
in cases where it is difficult to determine how to introduce an acceptable
loss which will increase compression. In palettized colour images, for
example, a small error in the numeric sample value may have a drastic
effect upon the colour representation. The highly structured nature of
non-natural imagery such as text and graphics usually renders it more
amenable to lossless compression. Finally, lossless compression may be
appropriate in applications where the image is to be extensively edited
and recompressed so that the accumulation of errors from multiple lossy
compression operations may become unacceptable. We note, however,
that JPEG2000 allows certain common image editing operations such as
cropping and simple geometric manipulations to be performed as often
as desired without the accumulation of errors.
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LOSSY COMPRESSION AND DISTORTION

By allowing the introduction of small errors, it is natural to expect
that we should be able to represent the image approximately using a
smaller number of bits than is possible within the constraints of loss-
less compression. The more distortion we allow, the smaller the com-
pressed representation can be. The primary goal of lossy compression
is to minimize the number of bits required to represent an image with
an allowable level of distortion. Distortion of course must be assessed in
an appropriate manner. Formally, we write D (x,%), for the distortion
between the original image, x = x [n1,ng], and the reconstructed image,
X=2Z [Tl,l, ’ng].

The most commonly employed measure of distortion is MSE (Mean
Squared Error), defined by

1 N1—1N2-1
MSE 2 == D (@lna,mel = & [y, mal)”
n1=0 ngo=0

For image compression, the MSE is most commonly quoted in terms of
the equivalent reciprocal measure, PSNR (Peak Signal to Noise Ratio),
defined by

28 _ 1)

The PSNR is expressed in dB (decibels). Good reconstructed images
typically have PSNR values of 30 dB or more.

The popularity of MSE as a measure for image distortion derives
partly from the ease with which it may be calculated and partly from
the tractability of linear optimization problems involving squared error
metrics. More appropriate measures of visual distortion are discussed
in Sections 4.3.4 and 16.1. At this point, however, it is worth pointing
out the importance of non-linearities in the most commonly encountered
image representations.

GAMMA CORRECTION

Display devices such as televisions and computer monitors are highly
non-linear in that the excitation power delivered to the phosphor is ap-
proximately proportional to v7, where v is the control voltage applied
to the electron gun and <y typically ranges from about 1.8 to 2.8. The
image sample values, x [n1,n2g], are usually assigned so as to compensate
for such a non-linearity.

More specifically, let xj;, [n1,72] denote the normalized scene radiance
at image location [ng,n2]. The normalization is such that z;, = 0 corre-
sponds to the absence of light and zy;,, = 1 corresponds to the maximum
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Figure 1.2. The sRGB gamma function.

intensity level which we expect to encounter in the scene. The so-called
“gamma” function, with parameters v and (3, assigns similarly normal-
ized image sample values, 2’ [nq,ng], in the range 0 to 1, according to

/ 9ZTin [nlan2] if 0 S Llin [nl,nz] S g,
z'[ny,ng| = 1 .
(14 B) (ziin [n1,m2]) = B if e < @iy [n1,m2] <1

where the linear breakpoint, €, and the gradient, g, are defined in terms
of v and 3 by

v

- o __B
€= and g_e('y—l)

1+8)(1-1)

These definitions ensure that the gamma function has a continuous deriv-
ative at the breakpoint, zj;, = €.

An emerging standard for the representation of colour images is the
sRGB (standard RGB) colour space, in which carefully defined linear
red, green and blue primaries are each mapped to non-linear RGB sample
values through the gamma function described above with parameters
v = 2.4 and # = 0.055. The function is plotted in Figure 1.2.

It should be noted that most digital images encountered in practice
will be gamma corrected, which affects the interpretation of errors in-
troduced in the image sample values during compression. Ignoring the
small linear segment in the gamma function (or assuming that 8 = 0), so
that xy;, = (2')7, we see that a small error, dz’, in the gamma corrected
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value corresponds to a scene radiance error, dxy,, of
dzy, = (a:' )7—1 dx’
=y (xlin)l_% dz’ (1.3)

Thus, the scene radiance error will be larger in brighter regions of the
image. By a most fortunate coincidence (as opposed to design), this be-
haviour is well matched to a property of the human visual system known
as Weber’s law. According to Weber’s law, the change in scene radiance
dzxyiy, required to effect a just noticeable change in perceived brightness is
proportional to xyy, itself. For large values of v, equation (1.3) indicates
that ‘%ﬁ& is approximately proportional to dz’. Thus, the gamma cor-
rected values are more perceptually uniform measures of intensity than
linear scene radiance, xj;,,. In this way, the effect of Weber’s law is au-
tomatically accomodated in simple numerical distortion measures such
as MSE, provided they are applied to gamma, corrected sample values.

Conversely, MSE turns out to be a much less useful measure of dis-
tortion when applied to image samples which have not been gamma
corrected. Lossy compression algorithms also yield substantially poorer
visual performance when applied to such images. Special care should
be taken when working with non-natural image sources; medical X-rays
and SAR (Synthetic Aperture Radar) images, for example, are often
encountered in linear form.

1.1.3 MEASURES OF COMPRESSION

The purpose of image compression is to represent the image with a
string of binary digits or “bits,” called the compressed “bit-stream,”
denoted c. The objective is to keep the length, ||c||, as small as possible.
In the absence of any compression, we require N1 N2 B bits to represent
the image sample values, so we define the compression ratio as

NiN>B
el

Equivalently, we define the compressed bit-rate, expressed in bps (bits
per sample), as

. . A
compression ratlo =

llell
NiN;

For lossy compression, bit-rate is arguably a more meaningful perfor-
mance measure for image compression systems, since the least significant
bits of high bit-depth imagery can often be discarded without introduc-
ing substantial visual distortion. As a result, the average number of bits

bit-rate (bps) £
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Table 1.1.  Typical compressed bit-rates.

Lossless Lossy quality
High Moderate  Usable

B —3bps 1 bps 0.5 bps 0.25 bps

spent in representing each image sample is often the more meaningful
measure of compression performance, regardless of the precision with
which these samples were originally represented.

If images are to be printed or displayed with a constant physical size
regardless of the pixel dimensions, a similar argument to that given
above suggests that the size of the bit-stream itself is a more meaningful
measure of performance than the bit-rate. In such applications, much
of the original image resolution may be lost during display so that the
compression algorithm could be applied to a reduced resolution version
of the image without incurring substantial distortion. In summary, the
bit-rate is a meaningful measure of lossy compression performance only
when N7 and N, are proportional to the physical dimensions with which
the image is to be printed or displayed.

Table 1.1 provides a rough indication of the compressed bit-rates
which may be achieved when compressing natural images, although there
can be substantial dependence on the content of the particular image.
The assumption here is that lossy reconstructed images are viewed on
a computer monitor with a typical resolution of about 90 pixels/inch
(22 pixels/mm). Higher compression ratios are usually achievable if the
image is to be printed with a much closer dot pitch.

1.2 EXPLOITING REDUNDANCY

Without any compression, the image sample values are represented
with N1N2B bits. Compression is only possible if some of these bits
may be understood as redundant. In this section we briefly discuss the
nature of this redundancy so as to motivate the operations introduced
in Section 1.3 which are common to most image compression systems.

1.2.1 STATISTICAL REDUNDANCY

Consider two B-bit integers, z1,z2 € [0, 1,...,2B - 1]. As an ex-
ample, these integers might correspond to two adjacent image sample
values. Without compression, the two integers are represented using 25
bits. Suppose, however, that the decompressor knows a priori that the
only values which will ever occur are 0 and 1; for example, the image
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might be known to be bi-level. Clearly, then, it is sufficient to use only
one bit in the representation of each of z; and x2 with a compression
ratio of B : 1. Suppose further that the decompressor knows a priori
that the two values are always identical. Then, of course, a single bit is
sufficient to represent the pair of numbers, with a compression ratio of
2B : 1.

Of course, the type of prior knowledge described above is uncommon
in practice. More commonly, the decompressor might know that some
subset of the possible values is more likely than the others. If the de-
compressor knows that x; € {0,1} with very high probability then we
hope to be able to expend little more than 1 bit representing the actual
value of x1. This hope is well founded. As we shall see in Chapter 2,
we expect on average to be able to spend as little as H (X7) bits where
X4 is a random variable, which summarizes the decompressor’s a priori
knowledge concerning the value of z1, and H (X;) is a function of the
statistical distribution of X7, known as its entropy.

Similarly, the decompressor might know that z; and x3 are very likely
to be equal, perhaps because the image is smooth so that changes in
intensity between adjacent pixels is rare. In this case, we would hope to
be able to avoid spending many bits in representing x5 once the value of
z1 has already been identified in the compressed bit-stream. Again, this
hope is well founded. The relevant prior knowledge is summarized by
the joint statistics of the random variables, X; and X3s, corresponding
to the values, z1 and z9 and the expected number of bits required to
represent zp given that xs is already known to the decompressor is given
by the conditional entropy, H (X2|X71).

A thorough development of these concepts, along with practical cod-
ing tools which are able to exploit the redundancy is the subject of
Chapter 2. For the moment, however, it is sufficient to appreciate that
the average number of bits required to represent the image sample val-
ues without error depends upon their statistical properties. In the worst
case, if all possible combinations of sample values are equally likely, there
is no redundancy whatsoever and all N1 Ny B bits must be used. At the
opposite extreme, when a small number of samples provides sufficient in-
formation to predict the remaining samples with high probability, high
compression ratios can be achieved.

1.2.2 IRRELEVANCE

The form of redundancy described above allows us to exactly represent
the original sample values with a reduced number of bits. In many cases,
however, some of the information associated with these sample values
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may be irrelevant so that it is unnecessary to represent the image exactly.
The following examples should help to clarify this point.

Visual irrelevance: If the image sample density exceeds the limits of
human visual accuity for any appropriate set of display and viewing
conditions, the excess image resolution is irrelevant to the human
observer. Visual irrelevance may arise in more complex ways, some
of which are addressed in Section 16.1.

Application specific irrelevance: In some applications, particularly
in the military and medical arenas, the value of an image may be de-
termined entirely by its usefulness in fulfilling some task; e.g., target
recognition or medical diagnosis. Regions of the image which do not
contribute to this task may then be taken to be irrelevant.

One way to exploit irrelevance is to transform the original image sam-
ple values to a new set of sample values which capture the relevant
information using fewer bits. In the simplest case, this transform might
involve sub-sampling or discarding the samples corresponding to irrele-
vant regions of the image. The statistical redundancy of the remaining
samples may be further exploited to improve compression.

IRRELEVANCE IN COLOUR IMAGERY

An interesting example of irrelevance occurs in colour imagery, where
the human viewer is substantially less sensitive to rapid changes in the
hue and saturation properties of the image than to intensity changes.
For image compression purposes, this property is usually modeled by
mapping the original RGB image samples to a luminance-chrominance
space using a linear transform and then sub-sampling the chrominance

components.

We illustrate this with the so-called YCbCr transform:
Ty 0.299  0.587 0.114 TR
zc, | =1 —0.169 -0.331 0.5 | oz
zc, 0.5 —-0.419 -0.0813 TR

Note that the first chrominance component, z¢,, is a scaled version of
the difference between the original blue channel and the new luminance
(intensity) channel, specifically

T, = 0.564 (zp — :Ey)
Similarly, z¢,. is a red-luminance colour difference,

zc, =0.713 (zg — zy)
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It is common to model the reduced visual sensitivity to rapid colour
changes by reducing the resolution of the chrominance channels. Specif-
ically, it is common to work with YCbCr representations in which the
chrominance components are sub-sampled by 2 in both the horizontal
and vertical directions. In this way, the eliminated samples are deemed
irrelevant.

IRRELEVANCE AND DISTORTION

Recall that the goal of a lossy compression system is to minimize
distortion for a given bit-rate or, equivalently, to minimize the bit-rate
for a given distortion. A suitable distortion measure should reflect the
relevance of information in the image. In particular, visually or otherwise
irrelevant information should have no impact on the distortion measure
whatsoever. That is, D (x,%) = 0 whenever the images x = x [n{, no)
and X =% [x1, z9] differ only in some irrelevant respect.

Suppose, for example, that %X is obtained by interpolating a sub-
sampled version of the original image, x. Since X is represented with
fewer samples, it should be more easily compressed. Thus, provided the
additional spatial resolution associated with x is visually irrelevant, we
should have D (x,%) = 0 and a good lossy compression algorithm will
choose to code the sub-sampled representation.

In this way, irrelevance may be “automatically” exploited by a good
lossy compression algorithm provided the distortion measure which it is
attempting to minimize correctly reflects the relevance of different types
of information. This is possible within the framework offered by the
JPEG2000 image compression standard; this framework is the subject
of Chapter 8.

The role of the distortion measure is to capture the relative signifi-
cance of different types of distortion. Completely irrelevant information
may thus be viewed as an extreme case of the redundancy embodied by
the distortion measure. This situation parallels that of statistical redun-
dancy, discussed in Section 1.2.1, where the extreme case corresponds to
entirely deterministic relationships among the image samples.

We conclude by pointing out that there should be no need to explic-
itly sub-sample chrominance components of a YCbCr representation for
colour image compression, as suggested in the previous section, provided
the distortion measure which is minimized by the lossy compression sys-
tem correctly models the relative significance of spatial resolution in
the luminance and chrominance components. For this very reason, the
JPEG2000 standard does not explicitly offer a sub-sampled YCbCr rep-
resentation for colour image compression. The reader is referred to Sec-
tion 16.1.2 for a discussion of colour image compression with JPEG2000.
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Figure 1.3.  Compression viewed as a global mapping operation.

1.3 ELEMENTS OF A COMPRESSION
SYSTEM

Figure 1.3 depicts the compression and subsequent decompression sys-
tems as two mappings, M, and M1, respectively. For lossless compres-
sion, we require M~! = ML, For lossy compression, however, M is not
invertible, so we use the notation, M1, to remind the reader that the
decompression system represents an approximate inverse. We can think
of the compressor as an enormous lookup table with 2128 entries.

Compression systems may be classified as either “fixed length” or
“variable length.” In the former case, the compressed bit-stream has a
fixed length, ||¢||, and the reconstructed image distortion, D (x,X), will
vary from image to image. In the case of fixed length compression, we
can also think of the decompressor as an enormous lookup table with
ollell entries. Since the image is being compressed, ||c|| should be much
smaller than Ny Ny B, so that the decompressor’s lookup table is smaller
than that used during compression. In fact, an obvious way to construct
the compressor, M, is to assign

c=M(x) = argcrlninD <X,F (c’)) (1.4)

Thus, it is sufficient to maintain the smaller lookup table correspond-
ing to M~ in both the compressor and the decompressor. The com-
pressor then selects the bit-stream whose reconstructed image will be
“closest” to the original in the sense induced by the appropriate distor-
tion measure. This approach has the desirable side effect that M~1is a
right-inverse of M i.e.,

M <7vf——1(c)) —c

Such a compression system is said to be “idempotent” because the op-
erations of compression and decompression may be repeated indefinitely
without effecting the result produced by their first application.

1.3.1 THE IMPORTANCE OF STRUCTURE

The approach embodied by equation (1.4) is essentially the idea be-
hind Vector Quantization (VQ). The generality of the VQ approach is
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image | transform | samples | quantizer | indices encoder | bit-stream
X y=T(x) y q=0(y) q c=C(qQ) ¢
reconstruction |inverse xform| Samples |dequantizer| indices | decoder
X x=TYy) y y=0"(q)| 49 q=C"(c)

Figure 1.4.  Elements of a structured compression system.

attractive; however, the exponential growth in the size of the lookup
table for M~! renders it impractical for all but the smallest of images
having only a few samples. For practical image compression, it is nec-
essary to impose additional structure on the form of the maps, M and
M~-1. Although this can be done in various ways, our objective here is
to motivate the structure which is most commonly encountered in image
compression systems. This structure is illustrated in Figure 1.4. Some
alternative structures are discussed briefly in Section 1.4.

As depicted in Figure 1.4, the first step is to transform the original
image samples into a new set of samples, which are more amenable to
compression. For this step we write y =T (x), where y = y [k, ko] is
another finite two dimensional sequence, having K7 K> elements. The
properties of the operator 7" will be discussed further shortly, but for
the moment we point out that the operator is usually invertible. The
decompressor employs the inverse transform, 7!, and no distortion is
introduced by this step. The second step is to represent the transform
samples approximately using a sequence of quantization indices. For this
step we write q = @ (y), where q = q[p1, p2] denotes the finite two di-
mensional sequence of quantization indices, having P P, elements. The
set of possible outcomes for each quantization index, ¢ [p1, p], is gener-
ally much smaller than that for the transform samples; also, the num-
ber of such quantization indices, P; Py, is no larger and may be smaller
than the number of transform samples, K;Ks. Thus, the quantization
mapping, @, introduces distortion and the decompressor uses an ap-
proximate inverse, @~1. Finally, the quantization indices are coded to
form the final bit-stream. We write ¢ = C'(q). This step is invertible
and introduces no distortion so that the decompressor may recover the
quantization indices as q = C~! (c).

1.3.2 CODING

The purpose of coding is to exploit statistical redundancy amongst
the quantization indices, g [p1,p2], as introduced in Section 1.2.1. The
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quantization and transform elements are designed in such a way as to
ensure that this redundancy is spatially localized. Ideally, the under-
lying random variables, @ [p1,p2], are all statistically independent. In
that case, the indices may be coded independently and the only form of
statistical redundancy which need be considered is that associated with
any non-uniformity in their probability distributions.

As a simple example suppose that there are four possible quantization
indices which we label ¢ = 0,1, 2, 3, having probabilities,

1/2 ifq=0
14 ifg=1
PQR=9=1 18 ifq=2
1/8 ifg=3

An optimal code in this case represents each of the four possible out-
comes using the following bit strings:

q — 0 “17?
g=1 “017
g=2 ~ “001”
¢=3 “000”

That is, a prefix of ¢ “0”s precedes the “1” which delineates the code-
words corresponding to distinct quantization indices. The average num-
ber of bits spent coding each sample is

1 1 1 1 3.
which is less than the 2 bits which would be required to distinguish the
four possible indices without coding. In practical image compression
applications, much larger reductions in bit-rate are often possible.

It is not usually possible to ensure that the quantization indices are
statistically independent. However, so long as statistical interactions are
confined to the immediate neighbours of any given sample, it is often
possible to design efficient coding schemes with manageable complexity.
Coding is the subject of Chapter 2.

1.3.3 QUANTIZATION

Quantization is solely responsible for introducing distortion. For loss-
less compression there should be no quantization. In the simplest case
we might map each transform sample, y [k1, k2], independently to a cor-
responding quantization index, q [k, k2]. This is known as scalar quan-
tization; it is the simplest and most commonly employed form of quan-
tization. Scalar quantization associates each quantization index with an
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Figure 1.5.  Simple scalar quantizer with four output symbols.

interval on the real line according to
qlkr, ko] = 1 if y [k, ko) € I,

where the intervals, Z;, are disjoint and cover the real line!. As an
example, the scalar quantizer of Figure 1.5 maps each transform sample
to one of 4 distinct indices. L

The approximate inverse quantization operator, !, maps each in-
dex, ¢ [k1, k2], to some representation level in the corresponding interval,
3 [k1,k2]. In the simplest case, we might select § [k1, ko] as the midpoint
of the interval, Zy, r,. From this elementary discussion, it should be

apparent that Q! is a right-inverse of Q; i.e.,
Q7)) =¥

Both scalar and more sophisticated quantization schemes are the subject
of Chapter 3.

1.3.4 TRANSFORMS

The transform is responsible for massaging the original image sam-
ples into a form which enables comparatively simple quantization and
coding operations. On the one hand, the transform should capture the
essence of statistical dependencies amongst the original image samples
so that the transform samples, y [k1, k2], and hence the quantization in-
dices, q[p1,p2), exhibit at most only very local dependencies; ideally,
they should be statistically independent. On the other hand, the trans-
form should separate irrelevant information from relevant information so
that the irrelevant samples can be identified and quantized more heavily
or even discarded.

Fortunately, it is possible to construct transforms which at least par-
tially achieve both of these objectives simultaneously. Such transforms

1Strictly speaking, the Z; may be any disjoint cover of R; however, there is no practical value
in selecting the sets to be anything other than intervals.
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Figure 1.6.  Simple image transform example.

are the subject of Chapters 4 and 6. For the moment, however, we mo-
tivate the concept with a simple example. Taking the image in 2 x 2
blocks we may represent each block with the average sample value over
the block and the differences between any three of the samples and this
average; e.g.,

yfm,n] = }1 Zi,jE{O,l} z[m+in+j if m,n.both even
’ z[m,n] —y[2 L%J ,2 L—g” otherwise
This transform is illustrated in Figure 1.6. The inverse transform is
obtained by setting

3 [, m] = 29[m,n] =3, jer01y ¥ [m+i,n+j] if m,n both even
tml = e 45 12 2],2]2]] otherwise

The transform samples, y [m, n] with m or n odd, contain high resolution
details which may be discarded if the original image resolution exceeds
the visual accuity of the intended observer. Thus, this simple transform
assists in exposing a potential form of irrelevance in the image. Since
most images contain substantial smooth regions, we also expect the de-
tail samples, y {m, n] with m or n odd, to contain values which are close
to zero most of the time. As a result, the quantization index correspond-
ing to zero should occur with high probability so that simple codes which
operate on each sample independently should be able to exploit at least
some of the underlying statistical redundancy.

1.4 ALTERNATIVE STRUCTURES

The image compression algorithms explored in the present text have
the structure illustrated in Figure 1.4. Various other structures, however,
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are of interest in some applications. The most popular of these involve
some form of predictive feedback, such as that illustrated in Figure 1.7.
In this case, a scalar quantizer is used so that transform samples may
be quantized one-by-one following a raster scan from the top row of the
sample array through to the bottom row and from left to right within
each row. Instead of quantizing sample y [k] = y [k1, ko] directly, we
quantize the prediction residual,

e[k] =y k] —yp [K]

where the predictor, yp [k|, is a function of the reconstructed samples,
7 [n], at locations n which have already been visited. That is, either
ny < k1, or n; = k; and ny < k. These samples have already been
reconstructed by the decompressor so that exactly the same predictor,
yp [k, is computed in both the compressor and the decompressor.

The idea behind predictive feedback is that the prediction residual,
e [k], should generally be close to zero. After quantization, then, the sta-
tistical distribution of the quantization indices should be highly skewed
toward the index whose quantization interval contains zero. The re-
sulting statistical redundancy is then exploited by appropriate coding
algorithms. The simplest predictor is the previous reconstructed sam-
ple, yp [k1, ko] = §[k1, ke — 1]; for historical reasons, this is known as
DPCM (Differential Pulse Code Modulation). As another example, we
might use the average of the previous samples to the left and above that
being predicted; i.e., yp [k1, k2] = % (9 [k1, k2 — 1], 9 [k1 — 1, k2)).

Predictive feedback is of little value unless the transform fails to re-
move most of the spatial redundancy — recall that a key objective of
the transform is to minimize the statistical interaction between samples.
For this reason, predictive feedback of the form shown in Figure 1.7 is
often used in place of a transform. Alternatively, the feedback loop may
include both the quantizer and the transform, as shown in Figure 1.8.
In this case, multiple images are to be compressed one after the other
and the prediction is formed from previous reconstructed images. The
feedback structure of Figure 1.8 is fundamental to popular video com-
pression schemes such as those embodied by the CCITT H.261 and H.263
video telephony standards and the group of ISO/IEC standards devel-
oped by the MPEG (Motion Picture Experts Group) working group.
Other variants on the predictive feedback concept may be found in loss-
less compression image algorithms and some of the modes supported by
the JPEG image compression standard.

A general characteristic of feedback compression structures is that
they rely upon the compressor’s ability to precisely replicate some or all
of the samples which will be reconstructed by the decompressor. In fact,
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Figure 1.7. Modified compression structure with predictive feedback.
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Figure 1.8. Predictive feedback structure for compressing multiple images (video).



Chapter 1: Image Compression Overview 21

Figures 1.7 and 1.8 reveal the fact that the compressor must include an
exact copy of certain elements from the decompressor. Therein lies the
principle weakness of predictive feedback structures.

A key requirement driving the JPEG2000 standardization process is
scalability. A scalable bit-stream is one which may be partially discarded
to obtain an efficient representation of the original image or a lower res-
olution version of it at a different bit-rate. A highly scalable bit-stream
may be decompressed in many different ways with different results, de-
pending upon what information has been discarded. It is difficult for the
compressor to replicate the state which the decompressor may attain un-
der all possible scalings of the compressed bit-stream. Consequently, the
feedforward structure of Figure 1.4 is preferred for scalable compression.
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ENTROPY AND CODING TECHNIQUES

2.1 INFORMATION AND ENTROPY

A binary digit, or “bit,” b, takes one of the values b = 0 or b = 1.
A single bit has the ability to convey a certain amount of information
— the information corresponding to the outcome of a binary decision, or
“event,” such as a coin toss. If we have N bits, then we can identify the
outcomes of NV binary decisions.

Intuitively, the average amount of information associated with a bi-
nary decision depends upon prior knowledge which we have concerning
the likelihoods of the possible outcomes. For example, there is little
informative value to including snow conditions in the weather report
during summer - in common parlance, the result is a foregone conclu-
sion. By contrast, the binary events which convey most information
on average are those which are equally likely. Similarly, the N-bit se-
quences which convey most information are those for which each bit has
equally likely outcomes, regardless of the outcomes of the other bits in
the sequence — loosely speaking, these are “entirely random” sequences
of bits.

Source coding is the art of mapping each possible output from a given
information source to a sequence of binary digits called “code bits.”
Ideally, the mapping has the property that the code bits are “entirely
random,” i.e., statistically independent, taking values of 0 and 1 with
equal probability. In this way, the code bits convey the maximum pos-
sible amount of information. Then, provided the mapping is invertible,
we can identify the number of code bits with the amount of information
in the original source output.

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice

© Springer Science+Business Media New York 2002
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The above concepts were formalized in the pioneering work of Claude
Shannon [130]. A quantity known as “entropy” is defined in terms of the
statistical properties of the information source. The entropy represents
a lower bound on the average number of bits required to represent the
source output. Moreover, it is possible to approach this lower bound ar-
bitrarily closely. In fact, practical coding algorithms can achieve average
bit rates which are extremely close to the entropy in many applications
and when they do so the code bits must be entirely random.

2.1.1 MATHEMATICAL PRELIMINARIES
RANDOM VARIABLES AND VECTORS

Let X denote a random variable. Associated with the random variable
is a set of possible outcomes, known as the aphabet, Ax. The outcome
of the random variable is denoted x, and is one of the elements of Ax.
A random variable is said to be discrete if its alphabet is finite or at
most countably infinite. That is, we can enumerate the elements of the
alphabet,

AX = {ao,al,ag, .. }
In this case, the statistical properties of the random variable are de-
scribed by its probability mass function (PMF)

fx (x) £ P(X = x) for each z € Ax

In words, fx (z) is the probability of the outcome X = z. By contrast, a
continuous random variable has uncountably many outcomes, e.g. Ax =
R, the set of all real numbers. In this chapter we will be concerned
exclusively with discrete alphabets. As an example, we model binary
decisions as random variables whose alphabets have only two entries,
usually written Ay = {0,1}. Binary random variables play a special
role in coding.

The notion of a random variable is trivially extended to random vec-
tors, X, with alphabet, Ax and PMF, fx (x), for each vector, x € Ax.
An m-dimensional random vector is a collection of m random variables,
usually taken as a column vector,

Xm—l
The PMF, fx (x), is sometimes written longhand as

fX (X) = fX(),Xl,.‘.,Xm_l (CUO, Ilv .. 7Im—1)
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It denotes the probability that Xo = z¢, X7 = z1, ..., and X1 = -1
simultaneously. For this reason, it is often called the joint PMF, or joint
distribution, for the m random variables.

From the joint distribution of a collection of m random variables,
we can obtain the “marginal” distribution of any one of the random

variables, X;, as
fxi(@= Y fxx)

XDT;=T

INDEPENDENCE AND CONDITIONAL PMEF’S

We say that two random variables are statistically independent, or
simply independent, if their joint distribution is separable; i.e.,

on,Xl (x()aml) = on (:Eo) le (xl)

That is, the probability that both X = g and X; = x; is the product of
the two marginal probabilities. As suggested by the introductory com-
ments above, the notion of statistical independence plays an important
role in coding.

We define the conditional distribution of X7, given Xy, by

a [xix (T1,20)  fxy x, (21, %0)
e S D DY S s

The function, fx,|x, (-, o), is interpreted as a modified PMF for X1,
where the modification is to reflect the fact that the outcome X¢ = zo
is already known. If the two random variables are statistically indepen-
dent, we expect that the outcome of X has no bearing on the distribu-
tion of X; and indeed we find that

Fx11x, (%1, 70) = fx, (z1) if and only if X1, X are independent

We note that the marginal distribution of Xy and the conditional distrib-
ution of X1, given Xy, together are equivalent to the joint distribution of
X1 and Xo. More generally, we write fx,|x,_,,..x, (Tn,--.,%0) for the
conditional distribution of X,,, given Xy through X,,_;. The joint dis-
tribution of all m random variables of an m-dimensional random vector,
X, may be recovered from

fx (%) = fxo (Zo) fx11x0 (T1,%0) - X 1| Ximes Xo (Tm—1, - - - 5 T0)

and the random variables are said to be mutually independent if

fx (%) = fx, (%0) fx, (x1) - Xy (Tm—1)
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EXPECTATION

The expectation of a random variable, X, is denoted E [X] and defined

by
EX]2 Y zfx(2)
zeAx

It represents the statistical average or mean of the random variable X.
Here, for the first time, we are concerned with the algebraic properties
of random variables. More generally, let g () be any function. We may
define Y = ¢g(X) to be the random variable whose outcomes are y =
g (z) whenever the outcome of X is z. Consequently, the distribution of
Y may be found from

rw)= Y, fx(@

z3g(z)=y

It is readily shown that the expectation of the new random variable, Y,
satisfies

EY]=Elg(X)]= > yfr®= Y 9@ fx(z) (22

y€Ay z€Ax

Given two random variables, Xy and X7, we may define conditional
expectations in the most obvious way as

EXi|Xo=xzol2 Y zfx,x, (& 20)

:L‘E.Axl

and for any function, ¢ (), we have

Elg(X1) | Xo=xo]= ) 9(2) fxyixo (2, 20)

z€AX;

RANDOM PROCESSES

We conclude this section by introducing the concept of a discrete
random process, denoted {X,}. A random process is nothing but a se-
quence of individual random variables, X,,, n € Z, all having a common
alphabet, Ax. The key distinction from a random vector is that there
are infinitely many random variables. The statistics are summarized by
the vector PMF’s, fx, . (), for all i < j € Z, where we use the notation,
X5, to refer to the (j — 4)-dimensional random vector formed from the
elements, X, ¢ < k < j, of the random process.

The random process, {X,}, is said to be stationary if the vector
PMF’s satisfy

IXiiom = [Xom for alli,m € Z,m >0
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That is, all collections of m consecutive random variables from the
process have exactly the same joint distribution. Thus, a stationary
random process is characterized by the PMF’s, fx, = for each m =
1,2,.... Alternatively, from equation (2.1) we see that stationary ran-
dom processes are characterized by the marginal distribution, fx, = fx,
together with the sequence of conditional distributions, fx..|x¢.., for
m=12 ...

In most applications we find that the conditional distributions satisfy

me|X0:m = me|Xm—p:m (23)

for a sufficiently large value of the parameter, p. That is, the conditional
distribution of X, given Xy through X,,_1, is actually a function of only
the p most recent random variables, X,,_, through X,,_,. We say that
Xm is “conditionally independent” of X¢ through X, _,_1. Conditional
independence is a phenomenon which we usually expect to encounter in
the information sources which we model using random processes. Indeed
statistical dependencies among samples taken from natural physical phe-
nomena such as images and audio are generally of a local nature. For
stationary processes, conditional independence means that the entire
process is described by a finite number of conditional PMF’s

on’ fX1|X07 sz]Xo;za ceey prlx();p

These are called Markov random processes with parameter p. A Markov-
1 random process is entirely described by fx and fx,|x,- Ilf p =0, all ele-
ments of the random process are statistically independent with identical
distribution, fx. Such a random process is said to be IID (Independent
and Identically Distributed). It is also said to be “memoryless.”

Stationary random processes with conditional independence proper-
ties (i.e. Markov processes) play an extremely important role in coding,
precisely because they are described by a finite number of conditional
PMF’s. By observing the outcomes of the random process over a finite
period of time, we can hope to estimate these conditional PMF’s and use
these estimates to code future outcomes of the random process. In this
way, we need not necessarily have any a priori knowledge concerning the
statistics in order to effectively code the source output. Adaptive coders
are based on this principle.

The technical condition required to enable estimation of the rele-
vant PMF’s from a finite number of outcomes is “ergodicity.” To be
more precise, suppose we observe the outcomes of random variables X
through Xj/_1. For each m-dimensional vector, y, let Ky ps denote the
number of occurrences of y as a “sub-string” of the observed sequence,
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X0 M; 1.€.,

Ky v = |[{#|0 <i< M —m and X;i1m =y}
It is natural to estimate the conditional PMF’s according to

K(y@),M + 46
sex (K(y,z)ar +8)

me[XQ,m (z,y) = 5 foreachm <p< M

where ¢ is a small offset (e.g. § = 1), included to avoid undefined or
ill-conditioned estimates when M is small and (y, =) denotes the vector
formed by appending z to y. If the random process is ergodic, these
estimates will converge to the actual conditional PMF’s as M increases.
Most random processes encountered in practice are ergodic. At least,
practical coding algorithms are based on the assumption that the under-
lying random process is ergodic, so that we can estimate the statistics
through observation.

2.1.2 THE CONCEPT OF ENTROPY
ENTROPY OF A RANDOM VARIABLE

The entropy of a random variable, X, is defined as

H(X)& - " fx(z)logy fx (x)

rE€EAx

We shall find the following equivalent expression more convenient and
intuitive

H (X) = E[-log, fx (X)]
To clarify this expression, define the function, hx (), by

hx (z) £ —log, fx (z)

As with any function, then, we may define the random variable, ¥ =
hx (X), and apply equation (2.2) to see that the entropy of X is the
expectation of the new random variable, Y; i.e.,

H(X) = E[hx (X)]

As we shall see, the quantity hx (x) may be interpreted as the amount
of information associated with the event X = x and then the entropy
may be interpreted as the average (or expected) amount of information
conveyed by the outcome of the random variable, X.

Entropy measures information in units of bits. The precise connec-
tion between entropy, as defined above, and the average number of bits
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required to code the outcome of the random variable will be explored
in Sections 2.1.3 and 2.1.4. For the moment, however, it is instructive
to reflect on the intuitive appeal of the definition, as suggested by the
following properties:

1. hx (z) is a strictly decreasing function of the likelihood, fx (z). This
agrees with the notion that a highly unlikely event carries consid-
erable information when it occurs. For example, the appearance of
snow in summer is a newsworthy event in most cities.

2. The entropy is bounded below by 0. Moreover, H (X) = 0 occurs if
and only if X has a deterministic outcome, say X = xg. That is,

1 ifz= o
fX(m)z{ 0 if z #

3. For random variables with finite alphabets, the entropy is bounded
above by H (X) < logy || Ax||. Moreover, the upper bound occurs if
and only if X has a uniform distribution; i.e., fx (z) = WAITH’ Vz €
Ax. Of particular interest is the case in which the alphabet consists
of B-bit numbers, Ax = {0,1,...,2 —1}. Then H (X) < B with
equality if and only if all 22 outcomes are equally likely. Put another
way, an information source whose outcomes are represented with B

bit numbers has an entropy of at most B bits, where this maximum
occurs if and only if the B bits are “entirely random.”

Example 2.1 Let X be a binary random variable with fx (0) = p and
fx (1) = (1 —p). Figure 2.1 plots H (X) as a function of the parameter,
p. The figure clearly indicates the fact that the entropy is zero when X is
deterministic (p =0 or p = 1) and is mazimized when the two outcomes
are equally likely (p = %)

JOINT AND CONDITIONAL ENTROPY

The definition of entropy extends naturally to random vectors so that
H(X) £ E[~log, fx (X)] = E [hx (X)]

In fact, since the alphabet of the random vector is discrete, we can enu-
merate its elements, Ax = {ag, @1,...}, and define a random variable,
K = k whenever X = . Since the outcomes of K and X convey ex-
actly the same information we must insist that H (X) = H (K). The
above definition then follows immediately.

We sometimes use the longhand expression

H(X) = H(Xo,X1,..., Xm-1)
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H(X)

0 p=05 1

Figure 2.1. Entropy of a binary random variable, X, as a function of p = fx (0).

where X is an m-dimensional random vector with elements, X through
Xm-1. We may also call this the joint entropy of the m random variables
since it is a function of their joint PMF.

The conditional entropy of X given Y is defined by

HX|Y)2 -3 i) Y fxv(z,y)logs fxy(z,y)

yEAy TEAX

- _ Z E Ixy(z,y)logs fxy(z,v)

yEAy z€Ax
= E [~ log,y fxy(X,Y)]

H (X | Y) may be interpreted as the average additional information we
receive from the outcome of X given that the outcome of Y is already
known. This interpretation follows directly from the interpretation of
H (X) as the average amount of information we receive from the outcome
of X.! To see this, observe that

H(X,Y)=E[-log, fxy (X,Y)]
= E[-log, (fy (V) fx)y (X,Y))]
= E[-log, fy (Y)] + E [~ log, fx|y (X,Y)]
—H{Y)+H(X|Y) (2.4)

L Although the properties of H (X) suggest an interpretation as a measure of information,
the connection with information will be concretely established in Section 2.1.3.
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Thus, H (X |Y) indeed represents the extra information, H (X,Y) —
H(Y). When X and Y are independent random variables we find that

H(X|Y)=E[-log, fxjy (X,Y)]
= E[-log, fx (X))
= H(X)

which agrees with the fact that the outcome of Y has no bearing on the
information conveyed by X.

An important property of the conditional entropy is summarized by
the following theorem.

Theorem 2.1 Let X be a random variable. Let Y be a random vector
with elements Yy through Yo,—1 and let Y' be a random vector consisting
of any subset (possibly empty) of these elements. Then

H(X|Y)<H(X|Y)

with equality if and only if fx;y = fx|y:; i-e., if and only if X is condi-
tionally independent of the elements in Y which are missing from Y.

Corollary 2.2 For random variables, X and Y, H(X |Y) < H (X),
with equality if and only if X and Y are independent.

Corollary 2.3 From equation (2.4), we also have H (X,Y) < H (X)+
H(Y), with equality if and only if X and Y are independent.

These results have considerable intuitive appeal. If we know the out-
comes of some collection of random variables, Yy through Y;,_1, which
are not statistically independent of X, then this reduces the uncertainty
of X and hence the amount of additional information conveyed by the
outcome of X. As m increases, the uncertainty in X and hence the con-
ditional entropy, H (X | Y), continues to decrease so long as each new
random variable Y}, provides some new information about X, which is
not already present in the other random variables, Yy through Y,,,_;.

Equation (2.4) is easily generalized to expand the entropy of any ran-
dom vector, X, as

(X) = E[-log, fx (X)]

E [—logy (fxo (X0) -+ Xom1|XmessXo (Xm=1,- - -, X0))]
H(X0)+H(X1 IXo) -+H(Xm_1 IXm_g,...,Xo)
m—1

H(X (2.5)
=0

IA

3
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where equality holds if and only if the random variables, X;, are all inde-
pendent. As we shall see in Section 2.1.4, this expansion is particularly
useful in coding.

ENTROPY RATE

Let {X,} be a discrete stationary random process. Since the random
process has infinite extent, the total amount of information conveyed by
the outcome of the random process will usually be infinite. In fact, for
Markov processes it must be either infinite or zero. Thus, it is more
meaningful to introduce the notion of an “information rate” for random
processes. A close analogy is the characterization of stationary random
processes by their power rather than their energy in the study of linear
systems.

We begin by defining the m!" order entropy of the random process by

HM({x,)) 2 %H(Xo:m) - %H(xi:mﬂ»), for all i € Z

Thus, the 1% order entropy is simply the entropy of any given random
variable, say X [0] (they all have the same distribution), taken individ-
ually from the process. The 2"¢ order entropy is half the joint entropy
of any pair of consecutive random variables from the process. From
Corollary 2.3,

H® ({X,}) < % (H (Xo) + H (X1))

= HY ({X,})
In fact, from Theorem 2.1, we see that

mH™ ({X,}) = H (Xo) + H (X1 | Xoa) + -+ + H (X1 | xo:m(_g |
2.6

>mH (Xm-1 | Xo:m—1)
and hence
(m+ 1) HOHD (X,}) = mB) (X)) + H (X | Xom)
<mH™ ({X,}) + H (X1 | Xoim-1)
< (m+1) H™ ({Xa})
So H™ ({X,}) is a monotonically decreasing function of m. Since it

is bounded below by 0, the sequence must converge and we define the
entropy rate of the random process to be

H({(X.) 2 lim B ((X,}) (2.7)
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This quantity is interpreted as the average rate at which the random
process conveys information as the outcomes X, = z, are discovered
one by one.

For a Markov-p source process, equation (2.7) may be recast as

H({Xn}) =H (Xp 1 XO:p) (2-8)

This very simple form follows from equation (2.6) and the conditional
independence property of the random process, according to which

H™ ({X,}) = % (H (Xo) + H (X1 | Xo1) + -+ H (Xp_1 | Xop-1))

m-—p
+ m H(Xp l XO:p)

— H (X, | Xo,p) asm — 00

2.1.3 SHANNON’S NOISELESS SOURCE
CODING THEOREM

In Section 2.1.2 we defined a quantity called entropy, having prop-
erties which we would expect of a measure of information. The value
of entropy, however, as a tool for understanding and developing practi-
cal compression algorithms, arises from a rigorous connection between
these definitions and fundamental bounds on coding performance. This
connection was first established by Shannon’s “noiseless source coding
theorem” [130]. The essence of this theorem is that the entropy rate of
a random process provides a lower bound on the average number of bits
which must be spent in coding each of its outcomes and also that this
bound may be approached arbitrarily closely as the complexity of the
coding scheme is allowed to grow without bound. Due to the impor-
tance of this result, we choose to reproduce Shannon’s proof here, for
the simple case of a stationary, memoryless random process.

Let {X,} be an IID random process, each element having distribution
fx and entropy H (X). The entropy rate, H ({X,}), in this case, is
identical to H (X). For ease of expression we shall sometimes refer to
the individual source outcomes, xg, x1, ..., as symbols. Then, we assess
the information rate of the random process as the average number of bits
per symbol required to represent the source output over a period of m
consecutive symbols, in the limit as m becomes very large. Specifically,
we construct a code which maps outcomes of the random vector, Xg.;,
to L-bit codewords. This is a “fixed length” code since each block of m
symbols is represented by the same number of code-bits, L. Codes of this
form are known as (m, L) codes. The ratio, % represents the average
number of bits spent coding each symbol. The idea is essentially to show
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that in the limit as m becomes very large, this ratio # may be made
arbitrarily close to H (X).

There are a total of || Ax||™ possible m-dimensional outcomes, Xg.p,,
and so it is clearly impossible to represent all outcomes perfectly un-
less 28 > ||Ax||™; ie., £ > logy || Ax|l. But we know that H (X) <
log, || Ax]|, attaining this maximum value only when fx is the uniform
distribution,with all outcomes equally likely. Thus, in order to establish
a connection between entropy and the bit-rate of a fixed length code, we
will need to admit the possibility that the coded representation might
not be exact. Let P, (m, L) denote the probability that our L-bit code
does not represent the random vector, Xg.,,, exactly. The idea behind
the noiseless source coding theorem is to show that P, (m, L) may be
made arbitrarily small as m grows, provided the code-rate # > H (X).

Theorem 2.4 Let {X,} be a discrete IID random process having finite
entropy, H (X), and consider fized length (m, L) codes, associating m-
element outcome vectors, Xo.m, to L-bit codewords. Only one outcome
vector may be associated with each codeword, so let P, (m, L) denote the
probability of the event that Xo..,, has no associated codeword. Then,
by making m sufficiently large, the error probability, P.(m,L), may be
made arbitrarily small, so long as the code-rate satisfies

;Ll—>H(X)

Conversely, the error probability, Pe (m,L), tends to 1 as m — oo for
codes having

%<H(X)

Proof. Consider the random variable, hx,.,, (Xo:m), which we defined to be
—log, fxg.,m (Xo0:m). Since the elements of the random vector, Xo.m, are all indepen-
dent, fx,.,, is separable and we obtain

m-—1
hXoum (Xom) = —logy [] fx (X:)
1=0

=Y hx (X
i=0

So hx.,, (Xo:m) is a sum of the IID random variables, hx (X;). According to the
weak law of large numbers, = "™ 1 hx (X;), converges to E [hx (X)] = H (X), as
m — oo. Specifically, for any § > 0, let £ (m, §) denote the probability

)

- P <|%hx0 (xom) — H (X)’ > 5) (2.9)

L3 b (X0 - Blhx (0)

e (m,é) =P<
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Then the weak law of large numbers states that

lim e(m,6) =0

m— o0

Equivalently, let 7 (m,8) be the set of outcomes, Xo.m, for which

1
—hXo.p (Xom) = H(X)| < 6

m— o0

Then ¢ (m, 6) = P(Xo:m ¢ T (m,6)) — 0. For small 6 and large m so that ¢ (m, §)
is very small, we may think of 7 (m, §) as the set of “typical” outcomes. The idea is
to assign codewords only to these typical outcomes, since the probability of anything
else becomes vanishingly small as m grows. For each xo.m, € T (m,§), we have

H(X) =8 < —hxy,, (xom) < H (X) +8
m
and hence the probability of each typical outcome is bounded by
2 OO ¢ o (xgum) < 270 (2.10)

Letting 6 become very small, the typical outcomes all have essentially the same likeli-
hood, so that if we assign codewords only to the typical outcomes, the resulting L-bit
codewords will be uniformly distributed, or “entirely random.”

Using equation (2.10), we see that

P(Xom €T (m,8) = > fXon (Xo:m)

x0:m €T (m,8)
> 27T (m, 5)|
So the number of typical outcomes is bounded above by
1—e(m,0)
17 (m,d)] < STmEX)T6)
< om(H(X)+46)

It follows that so long as we select L > m (H (X) + §), we can represent all of the
typical outcomes with a distinct codeword and then the probability of error, P. (m, L),
must be at most € (m, §), which tends to 0 as m — oco. This proves the first statement
of the theorem, since § > 0 is arbitrary.

To prove the converse statement, we use equation (2.10) again to obtain a lower
bound for the number of typical outcomes; i.e.,

1—¢e(m,d)

7 (m,8)|l > S=m(H(X)=6)

Suppose that L < m(H (X)—26). Let T denote the number of elements from
T (m, 6) which are represented in this code. Then T satisfies
L —mé
T < 2 < 2
W7 (m, 8)ll = IIT (m,8)|l = 1—e(m,é)

So the fraction of typical outcomes which can be represented tends to 0 as m —
oo, whenever the code rate is less than H (X). This suggests the validity of the
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second statement of the theorem. To make the proof rigorous, observe that the total
probability associated with the T elements of 7 (m,§) which are represented by the

code is at most
2L . 2—m(H(X)—6) < 2—m6

and the total probability of all other outcomes is & (m, §), so

P.(m,L)>1—¢(m,6) —27™

m— oo
1

]

Several points are worth noting concerning the noiseless source coding
theorem. Firstly, for finite length codes, fixed length coding is incapable
of guaranteeing that all source outcomes will be represented exactly. The
solution to this dilemma is variable length codes, which are examined
next. Despite this obstacle, the noiseless source coding theorem does
indeed establish a strong connection between entropy and coding. The
entropy clearly partitions the set of code rates into two classes. So long
as the code-rate exceeds the entropy, we can make sure that the entire
message is coded without error with arbitrarily high confidence; if the
code-rate is less than the entropy, long messages will contain errors with
probability approaching 1.

As noted in the proof of the theorem, reliable codes whose rate ap-
proaches the entropy have the property that their codewords all occur
with equal likelihood. That is, the L bit sequences are “entirely ran-
dom.” Recall that we began Section 2.1 with the claim that the repre-
sentation of source outcomes with entirely random sequences of bits is
the goal of source coding. This is perhaps the most important observa-
tion arising from the noiseless source coding theorem.

Shannon'’s original result has been extended over the years to random
processes satisfying a variety of technical conditions. For more gen-
eral random processes than the simple memoryless processes considered
above, the key difficulty is to demonstrate convergence of ¢ (m,§), as
defined by equation (2.9). This is known as the entropy-ergodic prop-
erty. Shannon himself extended the result to Markov processes, while
extensions to more general ergodic random processes were developed
by McMillan [107] and extended by Breiman [29, 30] and others. The
more general result is often known as the Shannon-McMillan-Breiman
theorem, or the asymptotic equipartition (AEP) theorem.

2.1.4 ELIAS CODING

As mentioned above, fixed length codes cannot generally guarantee
lossless coding. In this section, we consider variable length codes. It is
most instructive to describe a particular coding algorithm, whose ability
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to approach the entropy rate of a stationary markov random process
can be demonstrated rather easily. The algorithm is not practical as
it stands since its implementation requires infinite precision arithmetic.
Nevertheless, it is the basis for a family of highly efficient practical coding
techniques, known collectively as arithmetic coding. Indeed one mem-
ber of this family is at the heart of the JPEG2000 image compression
standard (see Section 12.1). Practical arithmetic coding is the subject
of Section 2.3. P. Elias is usually credited with conceiving the algorithm
shortly after Shannon’s original publication on information theory.

MAPPING OUTCOMES TO INTERVALS

Let {X,} be a stationary random process. To begin, we will restrict
ourselves to memoryless processes, as in Section 2.1.3. In this case, we
hope to be able to code the outcomes of the random process at an average
rate of H (X) bits per symbol.

Following the notation developed above, we denote the first n out-
comes of the random process by the vector, Xg.,. The algorithm is best
understood as associating each such length n prefix of the source se-
quence with a unique interval on the real line,

[cn, cn + ar) € [0,1)

such that the length of this interval is equal to fx,., (Xo:n). The algo-
rithm is implemented recursively as follows:

Elias Coding Algorithm
Initialize ¢g = 0 and ag = 1.
For each n=0,1,...
Update any1 < anfx (zn)
Update ¢py1 < cn + anFx (z5)

Here, Fx denotes the cumulative distribution?,

i—1
Fx (og) 2 fo(ozj) where Ax = {ap,a1,...}

4=0

We assume that the encoder and decoder both have access to the un-
derlying distribution function, fx and hence Flx, or else they both use
identical estimates for this function.

2Note the non-standard definition here, in which the probability of a; itself is not included
in the summation.
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Figure 2.2.  Elias coding for a memoryless binary source.

Example 2.2 Consider a binary memoryless source with fx(0) = %
and fx(1) = ;3; and suppose the source outputs the sequence “01101...7.
Figure 2.2 indicates the evolution of the intervals [c,,cn + ay).

The intervals, [c,, cn, + an) have the following easily verified proper-
ties:

1. The set of intervals, [c,, ¢n + ay,), corresponding to each distinct vec-
tor, Xg.n, € || Ax||", are disjoint and their union is [0,1). That is, the
set of all possible length n prefixes of the source output induces a
partition of the unit interval, [0,1).

2. The intervals corresponding to successively longer prefixes of the
source output sequence are nested; i.e.,

[cn-i—l; Cn+1 + an—{-l) - [Cn; Cn + an)

3. The length of the interval associated with xg.,, satisfies
n—-1
an = H Ix (371) = fXO:n (xOrn)
=0

MAPPING INTERVALS TO CODEWORDS

Suppose we apply the recursive algorithm described above for a total
of m source output symbols. The key observation behind Elias coding
is that the particular outcome, Xg.,, may be uniquely identified by any
number in the interval [¢m,cm + am), as a consequence of property 1
above. Since the interval has length a,, it must contain at least one L,,
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bit binary fraction of the form

0.bbbbb ... b
N—_—
L

where L,, is any integer satisfying 27 < a,,. Thus, we conclude that
the number of bits in the representation is

m—1
n=0

In this way, the Elias coding algorithm firmly establishes the connection
between hx (z) and the amount of information associated with the out-
come X = z. Each individual outcome, X,, = z,, reduces the interval
length by the factor fx (z,), adding exactly hx (zn) = —logy fx (zn)
bits to the code length.

This in turn means that the average number of bits required to code m
symbols from the source output sequence is F [hx,.,. (Xo.m)] = mH (X).

ELIAS TERMINATION

There is a subtle weakness in the above argument in that the decoder
does not know a priori the number of bits, L,,, which are being used
to represent the source output, Xg.,. Therefore, we ought to provide
a mechanism for signalling this length and include the number of bits
consumed by this mechanism in the overall bit count. In practical arith-
metic coding algorithms, we will usually code a very large number of
source outcomes, m, together, so that this cost may often be neglected.
Nevertheless, it is worthwhile presenting a particular codeword termina-
tion policy suggested by Elias, for which there is no need to explicitly
signal the code length, L,,.

Since ¢, € [0,1), it may be represented as a binary fraction of the
form

0.bbbbb . . .

where the b’s denote binary digits, 0 or 1. Now let

1
L, = [logQ ——w +1 = [hx,.,, (Xom)] +1

am

so that

1
2_Lm < '2-am

and let ¢,, be the quantity formed by taking only the first L,, fraction
bits of ¢, and adding 1 to the least significant bit position; i.e.,

b =271 |20, + 1] > ¢y
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Note that
bm + 27 < e +2x 27 <o 4ay,

Suppose that the decoder receives any arbitrary string of bits which
agrees with é,, in its first L,, bit positions. Treating this string of bits
as a binary fraction, with value, r, we see that

<l ST < by + 27 <o Fan

SO T € [¢m, Cm + am) uniquely identifies Xg.,.

In this way, the outcome, Xq.,, is represented exactly using the first
L., bits of an otherwise arbitrary string of bits. Suppose we take the
source output in blocks of m symbols at a time, X, k.m(k+1), and de-

termine the Lgf) -bit representation, aE,’i), for each such block. A coded

bit-stream may be created by concatenating these representations. The
decoder then sees a quantity

r© =0.bb...0bb...b...
N N~
) LY

It determines the interval, [¢m, ¢ + @), to which 7(%) belongs and hence
(0) (0)

the first source block, xXg.,. Deducing a,;,” and hence Ly, it discards
the first L,(g) bits from the received bit-stream to obtain the quantity

rMD =0.bb...bbb...b...
N ——
A IS

from which the second source block, Xm.om, is decoded, and so forth.
In this way, the lengths, L,(jf), need not be transmitted. The average

bit-rate is thus
1 1
LpiL.=1E H10g2 } }

1 3
= — B hx, . (Xom)] + 5
3
=H(X)+ —
(X) + 5~
and in the limit as m — oo the bit-rate exceeds the entropy by a negli-

gible margin.

FURTHER OBSERVATIONS ON ELIAS CODING

As it stands, Elias coding is impractical even for moderate values of
m since it involves arithmetic operations whose precision is comparable
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to the number of code bits. Nevertheless, by making suitable approx-
imations, it is relatively straightforward to derive an algorithm which
experiences negligible increase in bit-rate and involves only fixed, finite
precision arithmetic, for arbitrarily large values of m. In this way, prac-
tical algorithms which are able to achieve average bit-rates arbitrarily
close to the source entropy do actually exist! These “arithmetic coding”
algorithms are discussed further in Section 2.3.

An important property of Elias coding is that it is “incrementally de-
codable.” Given any r € [¢m, Cm + @), we can decode the prefixes Xo.p,
one by one since 7 € [¢,, ¢p + ay) for each n = 1,2,...,m. This leads
to a recursive algorithm for incrementally decoding the source outputs,
Zg, 1, ..., which strongly resembles the incremental encoding algorithm
already described. We defer further discussion of incremental decoding
until Section 2.3.

EXTENSION TO MARKOV RANDOM PROCESSES

The incremental decodability described above permits an easy exten-
sion of the Elias coding algorithm to Markov random processes. The
modified algorithm becomes

Elias Coding Algorithm for Markov-p Sources

Initialize ¢g = 0 and ag = 1.
For each n=0,1,...
Let p’ = min {p,n}
Update anpt1 «— aannIXn_p:m (:cn, xn_p/;n)

Update ¢pt1 «— cp + anFXHIXn_p/m (xn,xn_p/;n)

Here, Fix,x__, denotes the cumulative conditional distribution,

P’
i—1

A
FXn|Xn_p/:n (ai,xn—p’:n) = Z fXHIXn_p/m (aj7xn:n—p’)
j=0

Since the random process is assumed to be Markov-p, there are only
finitely many conditional distributions, an|Xn_p':n = pr'lXo;p/’ and cor-
responding cumulative distributions. We assume that the encoder and
decoder both have access to these conditional distributions or else they
both use identical estimates of the distributions.
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Figure 2.8.  Elias coding for a binary Markov-1 source.

Example 2.3 Consider a binary Markov-1 source with

z'fx1=0, :L’():O
ifry=120=0
ifI1:0, I0=1
ifl’lzl, Iozl

[xuxo (1, %0) =

Q0| ~30l = | Lok =

Note that the unconditional (marginal) PMF for this source is fx (0) =
%, fx (@) = g. Figure 2.8 indicates the evolution of the nested sub-
intervals [cn, ¢p, + apn) when the source outputs the sequence “01101...7.

The algorithm is identical to that described earlier, except that we use
conditional distributions to exploit information which is available from
previously coded outcomes. To see that any value, 7 € [cim, Cm + am),
uniquely specifies Xq.,, consider the following strategy for incremental
decoding. The decoder first reconstructs xp = Xg.1 based on the in-
terval, [c1,¢1 + a1) containing r. This is possible because the partition
of [0,1) into ||Ax]| sub-intervals corresponding to each possible out-
come, Ty, depends only upon fx, exactly as in the IID case examined
earlier. Knowing xg.1, the decoder is able to determine the function,
fx1|Xoa (->X0:1), and hence the partition of [c1,¢1 + a1) which was used
to represent x1. Hence z7 is decoded from the particular sub-interval,
[c2, 2 + ag), containing 7, in this partition. By continuing this incre-
mental decoding strategy, the decoder is always able to reconstruct the
context, Xg.n, which is needed to determine the conditional distribution
and hence the sub-interval partition required to recover Xg.p41 for each
n=0,1,...,m—1.
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Exactly as before, a block of m symbols, Xq..,,, may be represented by
an Lmy,,-bit binary fraction where L, is any integer satisfying

1
Ly > 10g2 CL_

m

m—1

= - logZ H an|X0;n (mn,xo:n)

n=0
=- logZ fXO:m (Xom)
= hXo.m (X0:m)
Here, we have used the joint PMF expansion formula of equation (2.1). If

we employ the Elias termination procedure described above, we conclude
that the expected bit-rate is

1 1 3
—E(Lm] = —E [hxo.n (Xom)] + 5~
1 3
= EH (Xom) + o
3
= gm 2
H™ ({Xn}) + 5~

and so, in the limit as m becomes large, the expected bit-rate approaches
the entropy rate, H ({X,}), of the random process. Moreover, accord-
ing to the entropy-ergodic theorem for Markov processes, it is possible to
ensure that the actual bit-rate will be arbitrarily close to this expected
bit-rate with arbitrarily high probability, by chosing m sufficiently large.
This would be of little interest if it were not for the fact that the com-
plexity of practical arithmetic coding algorithms does not grow with m,
as we shall see in Section 2.3.

We refer to this modified version of the Elias coding algorithm as
conditional coding. Conditional arithmetic coding algorithms are central
to the JBIG and JPEG2000 image compression standards.

2.2 VARIABLE LENGTH CODES

In this section, we introduce simple variable length coding techniques
which are commonly found as elements of image compression algorithms.
Let {X,} be a memoryless random process with alphabet Ax and dis-
tribution, fx. A variable length code assigns a distinct codeword, ¢, to
each element, x € Ax, where ¢; is a string of ||c;|| bits. The sequence
of outcomes, x,, from the random process are represented by concate-
nated codewords, c;,,. The choice of codewords is clearly constrained by
the requirement that the decoder must be able to identify the outcomes,
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Zn, from this concatenated sequence of codewords. Codes having this
property are said to be uniquely decodable.

Example 2.4 Consider the quaternary alphabet, Ax = {0, 1,2, 3}, with
codewords

co = 0"
Cl - “O].”
CQ - “].O”
c3 = “117

Suppose we use this code to represent source outcomes “0,2,3,0,1”.
Then the resulting bit-stream s
“0 10 11 0 017
N N S
co co c3 o Cc1
This same bit-stream may be produced by a different sequence of source
outcomes, e.g.
“01 0 11,0 017
N N S
c3 co c3 co c1

and so it violates the unique decodability requirement.

Amongst all selections of codewords satisfying the unique decodability
requirement, we are most interested in those which minimize the average
code-rate,

R= " el - fx ()
T€EAx

In view of the fundamental results presented in Section 2.1, we must
have

R> H (X)
Example 2.5 Consider a memoryless source having an alphabet con-
sisting of all non-negative integers, Ax = {0,1,2,...}, with distribution
fx (m) — 2—(a:+1)

Let ¢, be the codeword consisting of ||cz|| = x + 1 bits, the initial x of
which are 07, with the last bit in each codeword being a “1”. Thus, the
codewords are

0 = 1

c; = “01”

co = “001”
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It is easy to see that this code is uniquely decodable, since the codewords
are all different and are delimited within the bit-stream by the “1” bit.
This 1s called a “comma” code, since the “1”7 may be interpreted as a
comma separating the codewords corresponding to successive symbols, T,
in the concatenated bit-stream. In this case, we find that

R= Y (z+1)- fx(x)

z€EAx

= Y oy fx (@) fx (2) = H(X)

IEAX

so this is an optimal code, actually achieving the entropy rate of the
source. The comma code is also sometimes called a “unary” code.

To facilitate efficient decoding we are generally interested only in “pre-
fix codes.” A prefix code is one in which no codeword is the prefix of
any other codeword. The codewords in Example 2.5 clearly satisfy the
prefix condition. Any prefix code is also uniquely decodable. This may
be seen from the following sequential decoding algorithm:

Sequential Decoding Algorithm for Prefix Codes
Foreach I =0,1,...
For each a € Ax
Compare the first | bits of the received bit-stream with c,.
If a match is found,
The prefix condition guarantees that no other value of
[ will yield a match and so the first symbol must be
o = Q.
Remove the initial [ bits from the bit-stream and apply
the algorithm recursively to decode the next symbol.

The following results establish some key properties of variable length
codes.

Theorem 2.5 (McMillan) A necessary condition for unique decodabil-
ity is that the codeword lengths, Iy = ||cz||, satisfy

Yook < (2.11)
J:G.AX

Proof. For a proof, the reader is referred to {106, Thm 10.1]. m

Theorem 2.6 (Kraft) Given any set of lengths, l;, satisfying equa-
tion (2.11), there exists a prefix code (it is not unique) having ||c|| = ls
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Figure £2.4.  Mapping between prefix codewords and sub-intervals of [0, 1).

for each x € Ax. So the condition in equation (2.11) is both necessary
and sufficient for unique decodability and there is no need to consider
anything other than prefiz codes.

Proof. Arrange the elements of Ax = {ag, a1,...} such that
lao Slal Slag S

Then let the codeword, cq;, be the l4;-bit integer whose value is

i—1

210,,. —la.;

co"i, = b 2 7
Jj=0

To see that these codewords form a prefix code, consider the intervals

[cz,cz +az) C[0,1)
e = 27 g,
az = 27'¢
as illustrated in Figure 2.4. Clearly, the intervals are disjoint. Now consider any

sequence of bits having the prefix, c;, for some z € Ax, and let » € [0,1) be the
quantity whose binary fraction representation is formed from these bits; i.e.,

r=0.bb...0b...
N

Cx

Clearly r € [c,,c, +az). Let y # = € Ax. Since the sub-intervals are disjoint,
cy ¢ |, i + az) and so ¢y cannot have ¢, as a prefix. W

This proof suggests a connection between prefix codes and Elias cod-
ing which is by no means coincidental. In fact, if fx (z) = 27, the
variable length code produces exactly the same bit-stream as Elias cod-
ing. Of course, this is the special case in which the variable length code
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achieves the entropy. Thus, variable length coding may be understood
as an approximate (and much simpler) form of Elias coding, in which
the values assumed by the PMF are approximated by reciprocal powers
of 2. This interpretation leads immediately to the next theorem.

Theorem 2.7 For any distribution, fx, a prefix code may be found,
whose rate satisfies

H(X)<R<H(X)+1 (2.12)

Proof. The left hand inequality is a necessary consequence of Shannon’s noiseless
coding theorem, although a direct proof is not difficult, e.g. [106, Thm 10.3]. For
the right hand inequality, simply let Iz = [—log, fx (z)]. Evidently this is a crude
approximation of fx (z) as 27%=. These lengths satisfy equation (2.11) and so, by
Theorem 2.6, there exists a prefix code with ||¢cz|| = lz. The code has rate

R= Y fx(z)[-log, fx (z)]

z€EAx

< Y fx(2)(1-log, fx (2))
z€EAx

=H(X)+1

2.2.1 HUFFMAN CODING
Given any finite alphabet,

‘AX = {a0’a1> ce- >aK—-1}

and associated PMF, fx, it is reasonable to seek an optimum code,
for which the average codeword length is minimized over all uniquely
decodable codes. The optimum code is, of course, not unique. In fact,
even the codeword lengths, I; = ||cz||, need not be unique amongst
optimal codes. Huffman [77] developed an algorithm for finding one set
of lengths satisfying equation (2.11), which minimize the average code-
rate R.
Suppose for convenience that the alphabet is ordered so that

fx (a0) < fx (a1) <+ < fx (akx-1)
Huffman’s algorithm is based on the following key observation.

Lemma 2.8 Amongst all optimal codes, at least one has loy = lo, =
Imax, the largest codeword length, with co, and cq, differing only in their
last bit.
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Proof. Any optimal code must have loq > lo; > -+ > lay_,. This intuitive
fact is trivially established. Now suppose that we have a prefix code with loy > la, -
Then the first Iy, bits of co, must differ from all codewords with length /., and hence
the last bit of cq, is wasted. We conclude that in an optimal code, lo, = la,. The
constructive proof of Theorem 2.6 is easily rearranged to show that the prefix code

having .
Co,; = 2lni (1 - Z 2—luj>
j=0

is uniquely decodable. This construction yields codewords cq, and ¢q, which differ
only in their last bit position. m

This observation suggests that we can reduce the optimization prob-
lem to that of finding only K — 1 codewords: the lo, — 1 bit prefix, Colys
common to both ¢y, and cq,; and the codewords c, 1= Co for 1 = 2
through K — 1. The reduced problem may be stated as follows. Find
lengths, [, through la:K » satisfying

K-1
D oot <1
i=1

which minimize

K~1
= (fx (a0) + fx (a)) (Lo +1) + _z fx (@) la,
= fx (20) + fx () + Y fx/ ()l

T E.Axl

where X’ is a new random variable, having alphabet

Axr = {a'l,ag,...,aK_l}
and ’ ,
fota)={ Irleg B o) Ba2el ey

The new problem is thus exactly the same as our original problem, but
on a reduced alphabet. This leads naturally to the following algorithm,
which recursively reduces the problem of optimal code construction to
the trivial case of a binary alphabet.

Huffman Code Construction
Order the elements of the alphabet such that

fx (a0) < fx (a1) £+ < fix (k-1)
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If K =2,
Assign cqp = “0” and ¢q, = “1”
Else
Create a new alphabet, Ay, = {&}, a2, a3, ...,aK}, and prob-

ability assignment, fx-, satisfying equation (2.13).
Invoke the code construction algorithm recursively to find an
optimal code, ¢y, Cay), -y Cagx_y, for Axs and fxi.
Extend this code by appending “0” and “1” to ¢,
Cap and ¢y, , respectively.

/5 o obtain

Example 2.6 Suppose Ax ={0,1,2,3} with

3 2 2 9
fX(0)=1—67 fx(l)Zﬂin fX(Q):Téa fx(3):E

The entropy in this case s
H(X) =1.6697 bits/symbol

The steps in the recursive algorithm above may be represented in terms of
the construction of a binary tree, as in Figure 2.5. Each leaf in the tree
corresponds to one of the codewords. The codeword lengths may be read
directly from the tree by counting the number of branches between the
root and each leaf. A corresponding set of codewords may be obtained by
labeling the branches with “0”s and “1”s; and reading the branch labels
following the path from the root to each leaf. In this case, the codewords

are
co = «0077’ o= 440105a7 cy = 44011;7’ c3 = “p1”

and the code-rate 1is

3 2 2 9
R=2 c+3 o4+3 = +1

= 1.6875 bits/symbol

Notice how closely the code rate approaches the entropy in this case.

LIMITATIONS OF HUFFMAN CODING

Despite the promising performance obtained in Example 2.6, Huff-
man codes, and hence variable length codes in general, cannot guarantee
code-rates which approach the entropy more closely than the bounds in-
dicated in equation (2.12). This performance can be inadequate in some
applications. Most notably, when the entropy of the source is much less
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Figure 2.5. Huffman code construction example.

than 1 bit/symbol, variable length codes are particularly inefficient since
at least one bit is consumed by each codeword.

A solution to this problem is to block the source output into m-
dimensional vectors, Xgm:(k+1)m, and assign codewords to each vector.
In this way, the inefficiency of up to 1 bit/vector is distributed over all
m source symbols in the vector and the Huffman code-rate is bounded
by

H(X)§R<H(X)+%
The problem with this approach is that the size of the alphabet, Ax,...,
grows exponentially with m. The number of codewords which must be
maintained in memory grows as || Ax||™.

Up until now we have considered only memoryless random processes.
In order to capture the redundancy between successive elements of the
random process, the procedure must be modified in one of two ways. One

approach is to block the source into m-dimensional vectors, assigning
codewords to each vector exactly as described above. In this case the
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th order entropy of the source, bounded by

1

m

code-rate approaches the m

H™ ({Xa}) < R < H™ ({X}) + (2.14)
The practical limitations described above apply here as well.

A second approach is to construct a separate Huffman code for each
of the conditional distributions,

me|X0:m ('7X0:m) »  Xom € (Ax)m_l

Denote the optimized codewords by cgx,... When we come to code
(or decode) symbol z,, we use the codewords, c, 0<1i<K,

where K = || Ax||. In this way, there are |[Ax|™ " separate codes, each
of which has m codewords, so the codeword memory grows as || Ax||™,
exactly as in the blocking approach. The code-rate for this conditional
Huffman coding strategy, however, is bounded by

We note that H (X, | Xo.m) < H™ ({Xn}) with equality only for
memoryless processes and, for a Markov-p process, H (X;, | Xo.m) =
H ({X,}), provided m > p+ 1.

Thus, conditional Huffman coding may approach the entropy rate
of the process to within 1 bit per symbol, with a finite (albeit of-
ten enormous) codeword memory. Although the conditional entropy,
H (Xm | Xo.m), approaches the entropy rate of the process much more
rapidly than the m*™ order entropy, H™ ({X,}), the blocking approach
may still be preferable for sources whose entropy rate is very low, since
the upper bound in equation (2.14) tightens as % It is worth pointing
out that the memory efficiency of conditional Huffman coding may be
substantially improved by exploiting the context reduction techniques
described in Section 2.4.1.

i|zn—m:n’

FAST DECODING ALGORITHMS

From an implementation point of view, Huffman encoding is simply a
lookup table; each source symbol is mapped to its codeword with a single
table lookup operation. The bit-serial decoding algorithm on Page 45,
however, is generally much slower, with a separate operation for each
received bit. A faster approach is to use a lookup table with the next

L = max {l
IE.AX{ z}
bits in the bit stream serving as the table index. The table lookup
returns the outcome, x € Ax, as well as the length, I, of the unique
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codeword, ¢, which forms the [;-bit prefix of the L-bit index. The initial
[, bits are then removed from the bit-stream in preparation for decoding
the next symbol. In this way, a single table lookup suffices to decode
each source symbol.

The problem with this method is that the table may need to contain as
many as 2% entries, which can be much larger than the number of code-
words. The Huffman algorithm does not constrain the maximum code
word length, L, which may end up being as large as L = || Ax|| — 1. For
this reason, “constrained length Huffman codes” have been developed.
The Voorhis method [165] is one of the first algorithms developed to find
optimal variable length codes, subject to a maximum length constraint.

ADAPTIVE HUFFMAN CODING

Huffman codes are simply variable length codes, optimized for the sta-
tistics of a given source. The problem is that the statistics of the source
may not be known ahead of time, or they may vary from time to time.
Two potential solutions present themselves. The encoder may periodi-
cally estimate the statistics of the source, construct an optimal Huffman
code and transmit the codewords to the decoder. This approach is used
in the JPEG image compression standard (see Chapter 19), where the
Huffman codewords are explicitly signalled in the header of each com-
pressed image file.

A second approach is for both the encoder and decoder to periodically
estimate the source statistics and construct identical Huffman codes,
based on previously encoded source outcomes. This approach, known
as adaptive Huffman coding, avoids the overhead of transmitting the
codewords to the decoder. On the other hand, only those source out-
comes which have already been encoded may be used to estimate source
statistics. As a result, the estimates are generally poorer and hence the
coding is less efficient than may be obtained if the encoder is free to es-
timate the source statistics by looking ahead into the source outcomes.
Thus there is a trade-off between the cost of explicitly sending Huffman
codewords and the reduction in efficiency incurred by adaptively discov-
ering the statistics. The adaptive approach is usually avoided since it
also burdens the decoder with the task of periodically implementing the
optimal code construction algorithm — not a trivial task.

2.2.2 GOLOMB CODING

As noted above, one of the problems with Huffman coding is that
code construction is expensive so that adaptive coding algorithms may
require large computational resources as they try to adapt to changing
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statistics by periodically modifying the code. Golomb coding [71] is an
interesting alternative.
Consider a “geometric” source with alphabet Ax = {0,1,2,...} =Z,
and
fx(x)= 2=+ >0

An optimal prefix code in this case is the “comma” code of Example 2.5,
whose codewords, ¢, consist of a string of z consecutive “0”s, terminated
by a single “1” (the “comma”). In this isolated case, the comma code
achieves the entropy; i.e., R = H (X). More generally, the PMF of a
geometric source is given by

fx () = (1 = p) p*, with parameter, 0 < p < 1 (2.15)

and the comma code is an optimal variable length code for any geometric
source with parameter p < % One way to see this is to apply the
Huffman code construction algorithm to such a source.

For geometric sources with parameter p > -%, the comma code is no
longer so efficient. Suppose, however, that we express each outcome,
x € 7Ly, as

T =MmZy+ T

where z, is the quotient and z, the remainder, upon division of z by the
integer, m. That is,
L
To=|—
1 m

T, = zmodm

Let X, and X, denote the random variables whose outcomes are z,
and x, respectively. Evidently, X, follows a geometric distribution with
parameter p™ since

m—1 m—1
fry (@) = fx (mzg+1) = p™ (1= p) ¥ fx (i)
=0 1=0

Moreover, it is easily shown that X, and X, are independent random
variables.
The idea behind Golomb coding is to select the integer divisor, m,
such that )
m > -
PRy

Then the comma code is an efficient code for Xg, while X, follows an
approximately uniform distribution on {0,1,...m — 1}. Specifically,

F O f, (1) 2 2 fx, (m—1) > £ fx, (0)
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Let ky = |logom| and k, = [loggm]. An optimal variable length code
for X, is the modified binary code, which uses k; bits to represent out-
comes z, < 2F¢ —m and k, bits to represent the remaining outcomes.?
It can be shown [68] that the concatenation of the comma code for X,
followed by the modified binary code for X, yields an optimal variable
length code for the geometrically distributed source, subject to suitable
choice of the Golomb parameter, m. This is true for any value of the
parameter, p.

In practice, it is convenient to restrict the Golomb parameter, m, to
an exact power of 2, namely

m = 2F

so that z, is trivially formed by discarding the least significant & bits
in the binary representation for z and these discarded k bits form the
remainder part, z,. As an example, with parameter k = 3, the outcome
x = 21 would be represented as

o=2— L1

Tq=2z,=5

GOLOMB PARAMETER ESTIMATION

Many sources do exhibit a roughly geometric distribution?. With
such sources, Golomb coding can achieve close to the optimal variable
length coding performance. Since sources are rarely exactly geometric
the Golomb parameter, m = 2F, is best optimized experimentally if
possible. The scheme is also well suited to adaptive coding, because
only a single parameter need be adapted. In this case, simple indicators
of the source statistics are formed at the encoder and decoder, based
on previously coded outcomes, and these indicators are used to estimate
the best value for the parameter, k.

We now describe one suitable adaptation procedure, which is based
around estimates of the statistical mean, F [X]. Suppose that the source

3The modified binary code may be obtained as follows. First set z,. = 2z, if z» < 2ka _m
and z!. = z, 4+ 2%¢ — m otherwise. Next, the fixed length binary code, ¢ , is formed from
the kq-bit binary representation of z!., with the MSB first and LSB last. Finally, observe
that the last bit of this code, c'zr, is guaranteed to be 0 whenever z, < 2ka — m, allowing us
to reduce the codeword length to k; as claimed.

4 As an example, consider an IID binary random process for which fx (0) = g = 1. We expect
the source to produce long runs of 0’s, interspersed usually by isolated 1’s. Accordingly, it
is reasonable to represent the source outcomes via an equivalent sequence of run-lengths, r,
indicating the number of consecutive 0’s, between each pair of 1’s. It is easy to see that the
run lengths obey a geometric distribution with parameter, p = 1 — g, so they are well suited
to Golomb coding.
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distribution is indeed geometric with unknown parameter, p, and observe
that

EX]=) (1-paf=(1~p)) (x-1)p*"
z=0 =1
d & d 1
:{(1—Pd—z } :{1—p)d—pm}_1
P
l-p

Suppose further that (1 — p) < 1; then

pr=1-(1-p)"
~1l-m(l-p)

m
~1-

E[X]

Recalling that we want p™ 2> %, this suggests that we should select m

so that !
m=2F > 5E (X]

An appropriate strategy, then, is to set

R {0, [Iogg (%E[X]ﬂ}

Although this policy is derived under the assumption that p ~ 1, it
also yields reasonable Golomb parameters for smaller values of p. Fur-
ther refinements are best derived empirically for the application at hand,
since the source is unlikely to be exactly geometric anyway. The follow-
ing simple algorithm demonstrates the incorporation of the above strat-
egy into an adaptive coding scheme. A very closely related algorithm
is employed by the JPEG-LS lossless image compression standard (see
Chapter 20) to code prediction residuals.

Adaptive Golomb Coder
Initialize A= jix and N =1
(Here fix is an initial estimate for F/ [X] The ratio, 1’—:}-, is to be interpreted
as an estimate of F' [X].)
For each n =0,1,2,...
Set k = max {0, [log, (5%)]}
Code symbol z,, using the Golomb code with parameter k.
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Update Counters

If N = Npyax (renormalize counters)
Set A« |A/2] and N « |N/2|
Update A «— A+ z, and N «— N + 1

The decoder updates its own copy of the counters, A and N, following the
same procedure as the encoder, so as to deduce the Golomb parameter,
k, used to code each source symbol. Larger values of the parameter,
Nmax, yield more stable estimates for E [X], while smaller values enable
the algorithm to adapt more rapidly to changing source statistics.

2.3 ARITHMETIC CODING

In Section 2.1.4, we introduced Elias coding. Unlike the variable
length codes introduced in Section 2.2, Elias coding incrementally con-
structs a single codeword for an arbitrarily long sequence of source sym-
bols as they arrive. As we shall see, incremental decoding is possible.
In this way, the benefit of very long, highly efficient codes is realized
without the delay or the memory required to maintain an enormous
collection of codewords. Moreover, the incremental construction is eas-
ily adapted to the conditional statistics of Markov sources and it lends
itself to adaptive coding in which the relevant conditional probabilities
are estimated dynamically from previously coded outcomes of the source
process.

The code construction algorithm involves simple arithmetic opera-
tions. Unfortunately, these operations involve ever increasing numeric
precision, rendering them impractical as is. As a result of this weakness,
the Elias coding algorithm remained for quite some time little more than
an academic curiosity, before the discovery of finite precision implemen-
tations by Rissanen [125] and Pasco [116]. In this section we take the
reader through most of the key principles behind modern arithmetic cod-
ing algorithms. For a detailed description of the actual arithmetic coding
variant employed in the JPEG2000 standard, the reader is referred to
Section 12.1.

2.3.1 FINITE PRECISION REALIZATIONS

Recall that the recursive interval sub-division algorithm operates on
the lower bound and length of an interval,

[cn,cn +an) €[0,1)
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The interval corresponding to Xg., is updated to the interval for xg.,+1
by assigning

an41 < aan (xn) (2'16)
Cntl  Cn + anFx (z5) (2.17)

The key observation required to bound the implementation precision
is that we need not use the exact value of a, produced by these ideal
update relationships. Suppose instead that

0 <ant1 S anfx (zn)

Then the sub-intervals corresponding to each potential outcome of X,

remain disjoint so that unique decoding is still guaranteed. There is of
course some loss in coding efficiency; in fact, we sacrifice log, -‘%ﬁ"f—"l
bits in coding the outcome X,, = z,,. As we shall see, however, modest
arithmetic precision is sufficient to render this loss negligible.

We are now in a position to describe a practical coding algorithm.
Let the interval length be represented by an N-bit integer, A,, together

with an exponent, b,,, with
an =27 (27V4,)
The quantity, A’ = 27N A,,, is an N-bit binary fraction of the form

A =0.laa...q
—
N bits

and the quantity, by, is the number of leading “0”s in the binary fraction
representation of a,; i.e.,

ap=0.00...0laa...q (2.18)
bn, bit A
n bits n

Next, we represent all probabilities approximately using P-bit integers,
P, Such that

fx (@)= ph=2""ps, a€Ax
The interval length is then updated according to equation (2.16) and
rounded down, if necessary, to the closest representation of the form

in equation (2.18). Together, these operations are embodied by the
following algorithm.

Set T« Appz, and bpiq < by,
(Note that T = 2~ (N+P)Tis an (N + P)-bit binary fraction with 7" =
Anpl, <1)
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While T < 2M*+F~1 (ie., while T < 1)
Increment by41 < bpty1 +1
Shift T« 2T

Set Ant1 = [27FT]

Evidently we have made two approximations which lead to slight losses
in coding efficiency: the probabilities are approximated with finite pre-
cision representations; and the rounding operation in the last line of
the algorithm, which reduces the interval length and hence increases the
number of code bits by an amount strictly less than

2V-141
log, W_il_-— ~ 2~ (N1 log, e bits

We have now only to describe the manipulation of the interval lower
bound, ¢,. Since the PMF, fx («), is approximated by P-bit binary
fractions, p,, the cumulative distribution is also approximated by P-bit
binary fractions

i—1
Féél = Zp:lJ = 2—PFO£1'
§=0

From the update equation (2.17) we deduce that ¢, is an (N + P + b,)-
bit binary fraction of the form

e, =0.22...2zcc...c
o =~
b, bits Chn

Let C), be the integer formed from the least significant NV + P bits of
this representation. Then the update operation consists of adding two
(N + P)-bit integers, A, Fy and Cy,, and propagating any carry bit into
the initial b,-bit prefix of c,.

At first glance it appears that the need to resolve a carry will force us
to buffer the entire b,-bit prefix of ¢,. Fortunately, however, the carry
may effect only the least significant r,, + 1 bits of this prefix, where r,, is
the number of consecutive least significant 1’s. In fact, no future coding
operations may have any effect on the more significant bits in the prefix.
To see this, observe that

Cnik € [CnyCn + ) C [cn,cn + 2*”71) . VE>0
so that at most one carry bit may be propagated into the b, most sig-

nificant fraction bits of the codeword when augmenting ¢, to c¢,4x for
any k.



Chapter 2: Entropy and Coding Techniques 59

It follows that the initial b, — 7, — 1 bits of the codeword may be sent
to the decoder so we need not allocate storage for them. The binary
fraction representation of the evolving codeword then consists of three
key segments,

0.zzxzzz...x011...1cc...c
e o [~

bn—rn—1 bits r,+1 bits Cp

The encoder need only maintain four state variables, A,, Cy, r, and
b, and the complete encoding algorithm is shown below. Note that we
drop the sub-scripts in order to better reflect the behaviour of a real
coder. Also, note that we need to introduce a special state, identified
by » = —1, to deal with the possibility that a carry may occur when
r = 0, causing the 0 bit to flip to a 1 with no subsequent “0” bits. Since
future carries can never propagate this far, it is sufficient to flag the
unusual condition by setting r «— —1, which has the interpretation that
the central segment in the binary fraction representation of ¢, is empty
and can remain empty until a zero bit is propagated out of Cj,.

Finite Precision Arithmetic Coding
Initialize C =0, A=2N r=-1,b=0
For eachn=0,1,...,

Set T« Ap,,

Set C «+— C + AF,,

If C > 2N+P,

Propagate carry
emit-bit(1)

Ifr >0,
execute 7 — 1 times, emit-bit(0)
Set r =0

else (we can be sure that 7 = 0)
Set r = —1

While T < 2N+P-1,

Renormalize once
Increment b «— b+ 1
Shift T« 2T
Shift C «— 2C
If C > 2NV+FP (pushing a “1” bit out of C)
If r <0,
emit-bit(1)
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else,
Increment r —r+1
else
Ifr>0
emit-bit(0)
execute r times, emit-bit(1)
Set r =0

Set Apy1 = [277T|

After each iteration of the algorithm, the number of bits which have
actually been output is given by b, — r, — 1. If this quantity is of no
interest, the state variable, b,, may be dropped. For simplicity, we will
describe the corresponding decoding algorithm only in connection with
binary arithmetic coding below.

2.3.2 BINARY ENCODING AND DECODING

Specializing the arithmetic coding procedure to the case of a binary
alphabet, Ax = {0, 1}, we obtain the following algorithm

Binary Arithmetic Encoder
Initialize C =0, A =2V, r=—-1,b=0
For each n =0,1,...,
Set T — Apo
Ifz,=1
C—C+T
T—2PA-T
If C > 2N+P,
Propagate carry (affects r; outputs bits)
While T < 2N+P-1,
Renormalize once (affects T, C, b, r; outputs bits)
Sot Anp1 = [2-PT]

Here, po, denotes the P-bit integer which is used to represent the
probability that X,, = 0. For a stationary memoryless process, pon
has no dependence on n. For a Markov—k binary random process, po »
depends upon the previous k outcomes; i.e.,

27 Fpon ~ fx. %, (0sXn—kin)

In practice, the source random process may not be stationary and we
generally have to estimate the probabilities. Consequently, it is con-
venient to simply write p,, = 2=Fpy , for the current estimate of the
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n Binary

e d — arithmetic codestream
»| arithmetic coder
[)i}.u

Figure 2.6.  Binary arithmetic coding machine.

probability that X,, = 0, given the previously coded source outcomes.
The binary arithmetic coder may then be represented by the machine
(“black box”) illustrated in Figure 2.6. If the statistical properties of the
source are known exactly, then we supply the appropriate probabilities,
p{),n, with each symbol, z,, and achieve a code-rate which approaches
the entropy rate of the source to within a negligible margin. The opera-
tion of the machine, however, is independent of the correctness of these
probability estimates.

SUFFICIENCY OF BINARY CODERS

Henceforth, we shall consider only binary arithmetic coders. As it
turns out, this does not represent a practical limitation. To see this,
suppose that Ax has 2K entries for some K € Z. Then each element
of Ax may be represented by a K bit integer. In this way, the random
variable, X, is equivalent to a K-dimensional random vector, B, where

Bo (MSB)
By
B= .

Bi_1 (LSB)

and the By are binary random variables representing the binary digits
in the K-bit representation of X. Then

H(X)=H(B)
= H(Bo) + H(By| Bo) + -+ H(Bk-1| Bo,- - ., Bk-2)
Now suppose we have a memoryless random process with alphabet Ax
and we wish to code the outcomes at a bit-rate which approaches the

entropy-rate of the process. This may be accomplished with the binary
arithmetic coding machine of Figure 2.6 by supplying the pairs

(bo,0,0)  (b1,P0,1) 5 -+, (bK—1,P0.K—1)
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when coding each of the successive bits of each source symbol, where the
Po k. represent conditional probability estimates

Pog = 2 Ppo g ~ IBiBo.x (0, bo:k)
The total number of conditional probability estimates is
1+2+... 2871 =2K 1

which is identical to the total number of unique probabilities describing
the original PMF, fx. An important simplification arising from the
use of binary arithmetic coding is that there are often only a few non-
trivial conditional probabilities to estimate. As an example, the least
significant bits in many numeric quantities often obey an approximately
uniform distribution (i.e., they are “entirely” random); then we need
only estimate and store 26~V — 1 conditional probabilities, where U is
the number of uniformly distributed LSBs.

The binary coding approach described above is easily extended to
Markov processes and sources with arbitrary alphabets, finite or other-
wise; we have only to supply the appropriate conditional probabilities
to the binary arithmetic coding machine.

DECODING ALGORITHM

We now describe an incremental decoding algorithm for the binary
arithmetic codeword. The decoder maintains an N-bit state variable,
A, which represents the current interval width, a,, exactly as in the
encoder, following identical update procedures. The decoder also main-
tains an (NN + P)-bit state variable, C; however, the interpretation of
this quantity is somewhat different to that in the encoder.

To develop the decoding algorithm, let ¢ denote the value represented
by the entire arithmetic codeword, taken as a binary fraction. Then

CcElen,entan), Vn

Suppose we have correctly decoded z( through z,,_1 and that the decoder
has reproduced the evolution of a,, in the encoder. We could keep track
of ¢, in the decoder and then decode x,, according to

o = 0 ifc<cn+anpp,
"1 ife>cn+anpp,

It is simpler, however, to keep track of ¢ — ¢, and then decode z,, ac-

cording to
[0 ifc—cp <anpp,
In = { 1 ifc—cp 2> anpp, (2.19)
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To see why this is simpler, note that ¢ — ¢, € [0,a,) where a, has the
binary fraction representation

a, =0.00...0laa...qa
N e
bn bits An

and a,pj ,, has the binary fraction representation

anPon, =0.00...0zz...2
bn bits  Anpo,n

It follows that the b,-bit prefix of ¢ — ¢, is zero and the decision in
equation (2.19) may be formed using the next N + P bits of ¢ — ¢,,. This
is the quantity managed by the decoder’s state variable, C,,. The binary
fraction representation of ¢ — ¢, has the structure,

c—c,=0.00...0cc...cbbb...
by bits C,

where the suffix, bbb . . ., represents remaining bits in the arithmetic code-
word, which have not yet been imported by the decoder. The decoding
algorithm follows immediately:

Binary Arithmetic Decoder

Initialize A =2V, b=0

Import N + P bits from the codeword to initialize C.
For each n=0,1,...,

Set T« Apon
fC<T
Output z, =0
else
Output z, =1
C—C-T
T—2PA-T

While T < 2N+P-1,

Renormalize once
Increment b — b+ 1
Shift T « 2T

Shift C « 2C

C « C+ retrieve-bit().

Set An+1 = LQ_PTJ
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n Binary

e SR <4— arithmetic codestream
» arithmetic decoder
;)U_n‘

Figure 2.7. Binary arithmetic decoding machine.

After each iteration of the algorithm, the number of bits which have
been imported from the arithmetic codeword is b, + N + P. The decoder
is somewhat simpler than the encoder, since it need not deal with the
effects of carry propagation. The binary arithmetic decoder may then
be represented by the machine illustrated in Figure 2.7.

2.3.3 LENGTH-INDICATED TERMINATION

In Section 2.1.4 we described a particular termination policy which
allows the decoder to discover the number of bits occupied by the arith-
metic codeword when it is included as part of a larger bit-stream. This
Elias termination policy produces a codeword of length

s 1
Lf,lz“‘ =1+ [logg —C—L—-I

It has the advantage that there is no need to explicitly indicate the num-
ber of bits in the arithmetic codeword. In some applications, however,
the length must be explicitly signalled to fulfill some other objective,
e.g. to facilitate manipulation and indexing of a compressed data file.

In this section we discuss a termination strategy which takes advan-
tage of the fact that the length of the codeword, L,, is explicitly sent
to the decoder. We call this length-indicated termination. As with Elias
termination, we assume that the decoder knows the number of source
outcomes, m, which have been coded.

Since the decoder knows the value of L,,, it can append a known
sequence of bits to the Ly, bits which it receives in order to construct the
quantity, ¢ € [¢m,Cm + am). In particular, we assume that the decoder
extends the received string of bits by appending 1’s as needed, until
all m symbols have been decoded. A simple termination policy for the
encoder is to set

Lpn=bn+1
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outputting the first L, bits of ¢,,. The decoder then reconstructs

c=0.bb...5111...
——
Ly bits

€ [em,cm +275m)
C [emy em + am)

where the final relationship follows from
am € [270m 4D, 270

Now by, is the smallest integer such that a, > 2_(bm+1); ie., bp =
[logQ ﬁ\, —1. Consequently, this termination policy yields a code length

of
1
Lm = [logz aw

which is 1 bit less than L¢lias,

The encoder can easily improve on this termination by discarding any
trailing 1’s from the string of bits sent to the decoder. This policy reduces
L., by 1 bit on average, so if we ignore the often negligible inefficiencies
introduced by the finite precision implementation

E[Lm) = E[[hXo.m (Xom)]] = 1
< H (X();m)

This result appears to contradict the noiseless coding theorem. However,
we are exploiting the fact that the decoder knows L,, and we are not
including the number of bits required to signal its value.

Even more careful termination is possible. The ultimate objective is to
compute a minimum length prefix of ¢,, such that the non-negative error
introduced by appending 1’s to this prefix is strictly less than an,. In this
way, length-indicated termination can produce codewords approximately
2% bits shorter than those obtained with Elias termination, bearing in

mind that we are not counting the cost of explicitly signalling the value
of Ly,.

2.34 MULTIPLIER-FREE VARIANTS

A significant source of complexity in the binary arithmetic encoding
and decoding algorithms described above is the multiplication required
to implement

T Anpo,n
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27 A <

Figure 2.8.  Interval sub-division using the multiplier-free approximation.

In dedicated hardware implementations, fast parallel multiplier circuits
consume substantially more silicon real-estate than adders. Modern
CPU’s do not always incorporate dedicated fast integer multiplication
paths and even those CPU’s which do offer such features often have
higher latencies for multiplication than addition.

As a result, most practical arithmetic coders introduce a further ap-
proximation in order to avoid the need for multiplication. The approx-
imation is based on the observation that A, always lies between oN-1
and 2" so that

Appon = 2Nap0,n where o ~ 1

We defer a discussion of the optimum selection of « for a little while,
using the approximate value of % for illustrative purposes only. Adopting
this approximation, we should be able to fold the factor, 2¥a, into our
probability estimates and simply assign

T Po,n
where
~ N __oN+P_ 1
Pon = 2 apon = 2 aPo

Before proceeding any further we will need to resolve a serious problem
with this approximation. If the symbol is z, = 1, the algorithm proceeds

to assign
T 24, -T =2F (4, - 2" apy,)

which can be negative if pp ,, > % o~ %! The problem may be understood
with the aid of Figure 2.8, where we use the use the prime-notation, A,
D6 n ﬁg,n, to denote the binary fractions represented by Ay, po n and po r.
The approximation is clearly inappropriate when

1
Fon =t 2 A € [5.1)

a situation which will arise with any choice of o > %
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THE MPS-LPS SWITCH

The usual solution to the above dilemma is to flip the roles of the
symbols 0 and 1 whenever pg,, > —%— Specifically, let s, € {0,1} denote
the most probable symbol (MPS) outcome. That is,

o A 1 ifpp, <3
" 0 ifp6’n>—%

and let p/, denote our estimate of the probability that the least probable
symbol (LPS) occurs; i.e.,

go={ Pa HHa <3
n L—pp, if p67n > %

Estimating the probability of the zero symbol, pa,n, is equivalent to
estimating the identity of the MPS, s,, and the probability of the LPS,
pl,, so we will work exclusively with these quantities from now on. The
binary encoding algorithm now becomes

Multiplier-Free Encoder
Initialize C =0, A=2N, r=-1,b=10
For eachn=0,1,...,
If x,, = s, (encode an MPS)
A—A-p,
C—CH+pn
else (encode an LPS)
A pn
If C > 2N,
Propagate carry (affects r; outputs bits)
While A < 2V-1,
Renormalize once (affects A, C,b,r; outputs bits)

Notice that there is no longer any need to carry an intermediate
(N + P)-bit quantity, T, and that all operations are performed directly
on the N-bit variable, A. For this to work, we require only that

- ~N -
pn = 2 Pn = ap{n
With these modified conventions, C is now an N-bit quantity and the

“renormalize once” routine must be modified in an obvious way. The
multiplier-free decoding algorithm becomes
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Multiplier-Free Decoder
Initialize A =2V, b=0
Import N bits from the codeword to initialize C.

For eachn =0,1,...,

If C < pr (decode an LPS)
Output z, =1 - s,
A —p,

else (decode an MPS)
Output =, = s,
A—A-p,
C—C—pn

While A < 2VN-1
Renormalize once (affects A, C, b; imports bits)

IMPACT ON CODING EFFICIENCY

It is instructive to investigate the impact on coding efficiency of the
multiplier-free approximation developed above. To do this, we will need
to determine the best value for a. The effect of coding any symbol

Zn 1s to add log, ﬁf‘; bits to the final codeword length. To facilitate

analysis, we shall assume here that A/, is uniformly distributed over the
interval [%, 1) and statistically independent of the source process; we
shall reconsider this assumption shortly. The expected code rate may
then be expressed as

-1 T T
R(oh,0) =2 [ |phioms (o) + (150 ogs (7= ) do

2

which is easily integrated with standard forms. We may find the opti-
mum value of « in the obvious manner by solving %g =0 for each LPS
probability, p/, € (0, %] The result is plotted in Figure 2.9.

Evidently, « is a weak function of p),. As it turns out, however, the
code rate is not highly sensitive to the exact choice of & within the range
suggested by Figure 2.9. To illustrate this point, Figure 2.10 shows a
plot of the code rate expansion factor,

R (py,, )
—p logs py, — (1 — p},) logy (1 — ply)

as a function of p), for two different fixed choices of . From the figure, we
see that the loss in coding efficiency is quite small, particularly when the
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opt

0.7201

07151

0.710t

0.7051

0.700+

210 99 28 27 26 2 o4 -3 22 -l

Figure 2.9. Optimum « as a function of the LPS probability, p,, assuming a uniform
distribution for AZ,.

Figure 2.10. Code rate expansion factor, R (p,,a)/H (p,), for values of a which
bracket aopt.

symbol probabilities are highly skewed, where the highest compression
ratios are achieved.
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The above analysis is based on the assumption that A/ is uniformly
distributed over [%—, 1). This assumption is quite reasonable for mixed
context applications in which the LPS probability, p/,, changes rapidly
with n, usually because the arithmetic coder is switching between dif-
ferent contexts, having quite distinct probability models. Most image
compression applications involve a mixture of contexts. In single context
models, however, where p), is at most a slowly varying function of n, A],
tends to be distributed more toward the lower half of the interval, so
that the optimum value for & is close to . The reader is referred to [88]
for further discussion of this phenomenon. A value of o = % is implic-
itly assumed in many developments of multiplier-free arithmetic coding.
Henceforth, we shall adopt the value a = 0.708, which is reported in
[119] as the experimentally observed optimum value, aopt, for the JBIG
application.

CONDITIONAL EXCHANGE
From Figure 2.10, we see that the largest loss in coding efficiency
occurs when the LPS probability is close to % A mechanism known as
conditional exchange was invented to mitigate this loss in the QM coder
which is used by the JPEG and JBIG image compression standards [119].
Referring to Figure 2.8, we see that the interval assigned to the MPS is
smaller than that assigned to the LPS when

1 11
5> Al e |-, =

The conditional exchange mechanism exchanges the roles of the MPS
and LPS whenever this happens, so as to ensure that the MPS is always
assigned the larger interval. From the above relationship, conditional
exchange can affect only those symbols for which ;11 <P, < %; ie.,
those whose distributions are close to uniform. The modified encoding

algorithm is

Conditional Exchange Encoder
Initialize C =0, A=2 r=-1,b=0
For each n =0,1,.. .,
S« Sp
A—A-p,
If A<p,
s—1-s
If 2, = s, (encode an MPS)
C—CH+py
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else (encode an LPS)
A— Dy,
If C > 2V,
Propagate carry (affects r; outputs bits)
While A < 2N—1,
Renormalize once (affects A, C,b,r; outputs bits)

The modified decoding algorithm is

Conditional Exchange Decoder
Initialize A =2V, b=0
Import N bits from the codeword to initialize C'.

For each n=0,1,...,

S« Sp

A—A-p,

If A<p,
s—1-s

If C' < pp, (decode an LPS)
Output z, =1-3s
A—p,

else (decode an MPS)
Output z, = s
C—C-pn

While 4 < 2V-1)

Renormalize once (affects A, C,b; imports bits)

In the straightforward incarnations illustrated above, the introduction
of conditional exchange appears to increase the complexity of the coder
by at least one test per symbol. Fortunately, however, the algorithm can
be reoganized to test for conditional exchange only once it has been de-
termined that a renormalization is required. To understand this, observe
that whenever conditional exchange occurs we must have

A—pp < pp=2Napl, <2N1 (2.20)

Since A is assigned to one of A — p, or p,, conditional exchange must
always be accompanied by renormalization.

2.3.5 ADAPTIVE PROBABILITY
ESTIMATION

In this section we introduce the reader to some of the considerations
involved in estimating the probabilities, p{)’n, used to code the source
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outcome of X,, € {0,1}. We assume here that the source is a stationary
Markov-k random process so that we are trying to estimate

p(),n ~ anan_k,n (07 Xn—lc:n)

Now, since the random process is assumed stationary, there are only 2*
distinct conditional probabilities,

ka|X0,1c (Oaxn—k:n> = anlxn—k:n (07 Xn—k:n)

corresponding to the 2¥ possible context vectors, X,_k:mn. It is helpful to
define a context labeling function, A (x), which assigns a unique integer
in the range 0 through 2¢ — 1 to each k-dimensional vector, x. An
adaptive coder estimates py, ,, based on any or all previous outcomes, z;,
i < n, which have occurred within the same context; i.e., A(X;_k;) =
A (Xp—k:n)- A natural way to form such estimates is to maintain counts
of the number of 0 and 1 symbols which have been observed within each
context; i.e.,

Coa[n] = 8 (1A (Kiks)) - (1 — )
<n
Cyy[n] = 25 (LA (Rizkd)) - @5
i<n
If the counts are sufficiently large, we should expect any reasonable
estimate to satisfy

o~ CO,/\(xn__km) [n]
07” Coyf\(xn—k:n) [n] + Cly)\(xn—k:n) [n]

Although it is conceivable that prior knowledge concerning the inter-
action of distinct contexts might prove useful in estimating probabilities,
we shall assume that probabilities are estimated independently within
each context. Associated with each context, then, is a “learning penalty”

which arises from the fact that the first few symbols are generally coded
using inappropriate probability estimates. As more symbols are coded
within any given context, the probability estimates stabilize (assuming
an approximately stationary source) and coding becomes more efficient.
The learning penalty is a function of the estimation procedure, its initial
state and the conditional PMF which is being estimated. Regardless of
such variables, however, it is clear that the creation of too many contexts
is undesirable. If two distinct coding contexts exhibit identical condi-
tional PMF’s, their combined learning penalty may clearly be halved by
merging the contexts.
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In the ensuing development we shall ignore the existence of multi-
ple contexts and the problem of good context design. This approach
simplifies the discussion without sacrificing its applicability to multi-
ple contexts, since the probability estimates for each context are to be
adapted independently.

SCALED COUNT ESTIMATORS

Perhaps the most natural estimation strategy is to assign

o Co [n] +1
Pon = Colm] +1) + (Ci 0] + 1)

where 1 is added to each of the symbol counts so as to ensure that
Pon € (0,1).° More generally, we might assign

;o Co [n] + A
Pon = Coln + &)+ (Ci (] + A)

Large values of A reflect a conservative policy in which we are reluc-
tant to estimate highly skewed (i.e., non-uniform) distributions until we
have observed a large number of outcomes. Conversely, smaller values
of A reflect a more radical approach. These estimators may be shown to
be maximum a posteriori (MAP) estimates for the actual zero-symbol
probability, pf, subject to certain a priori assumptions on the distribu-
tion of the underlying random variable from which pj, is drawn [175]. In
particular, the selection A = 1 yields the MAP estimate if we assume
that pj is uniformly distributed on (0,1) a priori, while smaller values
of A correspond to the assumption that highly skewed probabilities (pg
close to 0 or 1) are most likely. This interpretation is useful, since in
many applications we have some idea as to whether or not we expect
highly skewed distributions.

In practical applications, the statistics are often not stationary, so we
prefer to weight the probability estimates toward more recently observed
outcomes. This can be done by periodically renormalizing the counts. A
simple renormalization strategy is to halve both Cy and C) whenever the
count exceeds some limits. There will inevitably be some upper bound,
Crnax, to the counts which can be represented in an implementation so
that the need for a renormalization strategy is usually unavoidable. If,
however, we wish to track non-stationary statistics, then it is advisable
to renormalize as frequently as possible without overly compromising the

°Without deterministic prior knowledge, we must generally assume that both symbols have
some non-zero probability of occuring in every context.
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accuracy of the estimates. Intuitively, the minimum of the two counters
primarily determines the accuracy of our probability estimate and this
may be demonstrated more rigorously [53]. This suggests that we should
renormalize whenever either Cy or C exceeds some lower bound, Cpp.
The following so-called “scaled count” estimation algorithm reflects these
considerations.

Scaled Count Probability Estimator
Initialize Cy = C; =0
Forn=0,1,...,
Ifz, =1,
Ci—Ci+1
else
Co—Cp+1
If min {Cp, C1} > Cpin or max {Cp, C1} > Crax
Co— 9] O = |F]

: / Co+A
Estimate pO,TL — m

There are, of course, many variations on this basic theme.

FINITE STATE MACHINES FOR PROBABILITY
ESTIMATION

The scaled count estimator described above is a finite state machine.
The number of states is more apparent if we modify the implementation
to count the number of LPS and MPS symbols, Cr, [n] and Cyy [n], and
to keep track of the identity of the MPS; i.e., s,. Then Cf, [n] < Ciy [n]
so the range of these counters is

0 S CL [n} S Cmin
0 S C]VI [n] S C’max

and we have a total of 2(Cuin +1) (Cmax + 1) states®. As an exam-
ple, we might set Cpin = 15 and Cpax = 1023, enabling us to generate
reliable estimates over the range of probabilities encountered in many
practical applications. The task of computing an estimate of the LPS
symbol probability, p/,, may then be reduced to a table lookup opera-
tion, involving a table with 2! entries. The table lookup approach has
the added advantage that the mapping from p, to p, = 2Nap),, for
multiplier-free implementations, may be built into the table.

5The factor of 2 arises from the fact that we must keep track of which symbol is the MPS.
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Table 2.1. Probability state transition table for the MQ-coder. LPS probability, p',
is estimated using a = 0.708.

p Transition Estimate p Transition Estimate

Em ps Elps Xs ﬁ (heX) pl = 2_1%2 Em ps EIPS Xs ﬁ (hex) pl = 2-1%2
0 1 1 1 x5601 0.475 24 25 22 0 =x1co1 0.155
1 2 6 0 x3401 0.292 25 26 23 0 x1801 0.132
2 3 9 0 =x1801 0.132 26 27 24 0 x1601 0.121
3 4 12 0 x0AC1 0.0593 27 28 25 0 x1401 0.110
4 5 29 0 x0521 0.0283 28 29 26 0 x1201 0.0993
5 38 33 0 x0221 0.0117 29 30 27 0 x1101 0.0938
6 7 6 1 x5601 0475 30 31 28 0 x0AC1L 0.0593
7 8 14 0 x5401 0463 31 32 29 0 x09C1 0.0499
8 9 14 0 x4801 0.397 32 33 30 0 =x08A1 0.0476
9 10 14 0 x3801 0.309 33 34 31 0 =x0521 0.0283
10 11 17 0 x3001 0.265 34 35 32 0 x0441 0.0235
11 12 18 0 x2401 0.199 35 36 33 0 x02a1 0.0145
12 13 200 0 =xicoit 0.155 36 37 34 0 x0221 0.0117
13 29 21 0 x1601 0.121 37 38 35 0 x0141 0.00692
14 15 14 1 x5601 0.475 38 39 36 0 x0111 0.00588
15 16 14 0 x5401 0.463 39 40 37 0 x0085 0.00287
16 17 15 0 x5101 0.447 40 41 38 0 x0049 0.00157
17 18 16 0 x4801 0.397 41 42 39 0 x0025 0.000797
18 19 17 0 x3801 0.309 42 43 40 0 x0015 0.000453
19 20 18 0 x3401 0.292 43 44 41 0 x0009 0.000194
20 21 19 0 x3001 0.265 44 45 42 0 x0005 0.000108
21 22 19 0 x2801 0.221 45 45 43 0 x0001 0.000022
22 23 20 0 x2401 0.199 46 46 46 0 x5601 0.475
23 24 21 0 x2201 0.188

As it turns out, the complexity associated with probability estimation
may be reduced significantly further again by using the renormalization
events in the arithmetic coder to probabilistically gate transitions in
the state machine. Specifically, the state is updated immediately after
any symbol coding operation which involves one or more calls to the
“renormalize once” routine. The new state identifies the probabil-
ity estimates to be used for all subsequent symbols, until a subsequent
renormalization event induces another transition in the state machine.

We illustrate the process with the MQ coder’s state transition table,
Table 2.1. The second and third columns in the table indicate the state
to which the machine transitions in the event of MPS-induced and LPS-
induced renormalizations, respectively, while the fourth column holds a
1 if the symbols associated with the LPS and MPS are to be exchanged
upon an LPS-induced renormalization (i.e., if s is to be replaced by 1—s).
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States ¥ = 0 through ¥ = 13 correspond to the “start-up” portion of
the transition table, where few symbols have been observed. This part
of the table is complicated to analyze. The last state, ¥ = 46 is non-
adaptive, since it is impossible to enter this state from any other state
or leave it once one has entered; the JPEG2000 application uses this
state to code symbols which are known to have an essentially uniform
distribution. The remaining states ¥ = 14 through ¥ = 45 represent the
non-transient portion of the table. Once entered from one of the start-up
states, the state machine can never leave the non-transient portion.

To understand the principles behind renormalization-driven probabil-
ity estimation, it is instructive to consider the non-transient portion of
Table 2.1. The LPS probability is a decreasing function of the state
index, ¥. MPS-induced renormalizations tend to drive the machine to-
ward larger state indices, decreasing p and hence the relative frequency
of MPS-induced renormalizations. Conversely, LPS-induced renormal-
izations tend to drive the machine toward smaller state indices. In this
way, the machine can be expected to converge to an equilibrium state
which depends upon the LPS probability, p’.

Now suppose that an MPS-induced renormalization always increments
Y by 1 and let k denote the amount by which an LPS-induced renor-
malization reduces ¥. We suppose for convenience that all states in the
neighbourhood of the equilibrium state have approximately the augend
value, p’ = ap’. Then the average downward drift due to LPS-induced
renormalization is p'k states per symbol. The average upward drift due
to MPS-induced renormalization may be estimated by assuming that A’
is uniformly distributed over [%, 1). At equilibrium, these effects must
balance with

2+7
Pk=(1-7p) / 2dz = (1 —p') 20p/

1

[V}

which yields
k=2a(1-p)~15(1-p)

This crude analysis suggests that k should be set to 1 when p’ is not
too small and set to 1 or 2 at the highly skewed end of the table where
p’ < 1. This conclusion is supported by the structure of the table, where

the transition from k£ = 1 to k = 2 occurs at an LPS probability of about
1

Renormalization-driven probability estimation works well in practice,
not so much because the models used to construct the table are accurate,
but because the optimum transition step, &, is almost entirely indepen-
dent of p’. The natural forces driving the state machine to equilibrium
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will yield an approximately optimal value of p, regardless of the particu-
lar entries which we place in the table, provided they are monotonically
decreasing with ¥ and cover the range of probabilities which we expect to
encounter. Careful modeling is of value only in fine tuning the structure.

2.3.6 OTHER VARIANTS

Multiplier-free arithmetic coder variants may be traced to the “skew
coder” [89], some of the history being reproduced in [88]. Multiplier-
free operation and renormalization-driven probability estimation are the
most distinguishing features of a broad class of arithmetic coding algo-
rithms which includes the Q coder [118], QM coder, [119] MQ coder (see
Section 12.1) and Z coder [28]. An alternate method of approximating
the multiplication of A by pg, is embodied in the ELS coder [170].

The Q coder and MQ coder variants incorporate a “bit-stuffing” mech-
anism which limits the extent of carry propagation in the encoder, sim-
plifying the implementation at the expense of a small loss in coding
efficiency. This mechanism is explained in Section 12.1.

It should be noted that we have adopted a number of arbitrary con-
ventions in our discussion of arithmetic coding. The assignment of sub-
intervals to specific symbols and the representation of the coding interval
in terms of a lower bound and length, rather than an upper bound and
length, are arbitrary choices. Various coders and implementations of
these coders adopt different conventions.

2.4 IMAGE CODING TOOLS

In the preceding sections we have introduced what we might call “low-
level” coding tools. In theory, these are sufficient to fully exploit the
statistical redundancy in any data set, including a collection of image
sample values. In practice, however, these techniques alone are usually
insufficient to exploit the rich structure in images subject to reason-
able constraints on implementation complexity. For this reason, we now
briefly discuss a selection of image-specific coding tools which are widely
used in practice.

2.4.1 CONTEXT ADAPTIVE CODING

Markov random processes are a powerful modeling tool for informa-
tion sources, including images. We have already seen (equation (2.8))
that the entropy rate of a Markov-p random process is given by the p't
order conditional entropy H (X, | Xo.5). Moreover, we have seen that
practical arithmetic coding algorithms exist which are able to achieve
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Figure 2.11.  Context coding and associated neighbourhoods.

code rates remarkably close to this bound, provided they are driven by
the appropriate conditional probabilities, fx x,.,-

In light of these observations, a natural approach to image compres-
sion is to scan the sample values, z [n] =  [n1, ny], into a one dimensional
sequence, usually following a lexicogaphical (raster-scan) order, and to
code each sample using an appropriate model for the sample’s distribu-
tion, conditioned on previous samples in the scan. This is illustrated in
Figure 2.11.

In two dimensions, the Markov model is parametrized by a causal
“neighbourhood,” N, rather than a single parameter, p. Specifically, N
is an ordered subset of the causal half-plane,

N® £{n|n; <0}U{n|n; =0, ny <0}
and the Markov conditional independence property becomes

Fx ) Xnin (T XN+0) = X)X oo n (Ts XA 4n)

The notation used here is a natural extension of that we have been
using for one dimensional processes. The vector, xps, consists of the
elements z [k] for each k €A and the set N'+-n is obtained by adding the
displacement vector, n, to each element of A/. A typical neighbourhood
configuration is illustrated in Figure 2.11.

A straightforward application of these principles to image compression
is depicted schematically in Figure 2.12. In the simplest case, the context
labeling operation assigns a distinct label,

I=X(XN+n)
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Arithmetic
n )
x(n] encoder
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Figure 2.12.  Context-adaptive image compression and decompression.

to each neighbourhood vector, xxr4+n. The arithmetic encoder and de-
coder are driven by identical estimates, P (X | ), for the conditional
distribution of X [n], given the context label, | = X (Xp/4n). The esti-
mates may be fixed or adaptive probability estimates. If the underlying
random process is indeed Markov-N and the probability estimates are
exact, the compression system will be optimal, achieving the entropy
rate of the source to within a negligible margin.

This direct approach is most appropriate for compressing bi-level im-
agery for which z[n] € {0,1}, since then the total number of context
labels for which probability estimates are required can be quite mod-
est. The JBIG image compression standard operates in this manner,
assigning a separate context label to each of the 2!° possible neighbour-
hood vectors arising from the selection of one or the other of the two
neighbourhood configurations shown in Figure 2.13. In the JBIG ap-
plication, the arithmetic coder variant is the QM coder, and estimates
of the LPS probability, p/,, and MPS identity, s, are obtained from a
renormalization-driven finite state machine, as discussed in Section 2.3.5.
When a renormalization event occurs, the state machine updates the
state, ¥;, associated with context label [. Each state may be repre-
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Figure 2.13. Two context generating neighbourhoods used by the JBIG image com-
pression standard.

sented with a single byte so that the entire adaptive probability model
is contained within a 1 kbyte memory.

For non-binary alphabets, the direct labeling approach is less attrac-
tive. Consider, for example, a direct application to 8-bit imagery. The
conditional distribution for each context is characterized by 255 free pa-
rameters and there are 256!V distinct contexts. Thus, even for a simple
two-element neighbourhood, we must estimate approximately 224 dis-
tinct parameters. Quite apart from the storage concerns, images do not
contain sufficient samples to reliably estimate this many parameters.

For multi-valued images, therefore, we must employ a context reduc-
tion function, A(), to reduce the input vector, Xar4n, to a manageable
number of context labels. A common approach is to first apply the pre-
dictive techniques of Section 2.4.2, reducing the original image sample
values to an equivalent array of prediction residuals, e[n]. The predic-
tion residuals tend to be clustered around zero so that e[n] is very likely
to lie inside a small alphabet, Ag C Ag, with ”713” < [Agll. An
obvious way to reduce the number of context labels without sacrificing
much coding efficiency is to assign a unique label,

L= Aensn) = X (ehvan)

to each €/, ,,, where the elements of e’ are formed by setting

(32:{?, IfeiEAE ) ’L:].,Z,”N”

e, otherwise

Here, €, is used to collectively represent all symbols in Ag \XE. The
JPEG-LS image compression standard follows this paradigm, as dis-
cussed in Chapter 20.

We conclude by noting that the arithmetic coding operation illus-
trated in Figure 2.12 may be replaced by Huffman coding, Golomb cod-
ing, or any of a variety of other coding techniques, adaptive or otherwise,
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which are able to exploit the statistical redundancy available within each
context.

2.4.2 PREDICTIVE CODING

In predictive coding, the image samples, z[n], are converted into an
equivalent array of prediction residuals (or errors), e[n]. Because z[n]
and e[n| are equivalent sequences, with the same sample rate, they have
the same entropy rate, H({X[n]}) = H({E[n]}). However, e[n] is gen-
erally easier to code efficiently when faced with practical limitations.

The prediction residual sequence is formed by setting

e[n] = z[n] - p1p(Xp4n)

where N' C N’ is a causal neighbourhood” and y, () is a function of
the prediction vector, xar41n, whose elements have already been coded.
The predictor function, 1, is ideally designed to minimize the first or-
der entropy of the residuals, HV) ({E[n]}) = H (E). In practice, this
is usually approximately equivalent to minimizing the variance of the
residuals, which may be achieved by setting the predictor equal to the
conditional mean; i.e.,

Hp (Xn4n) = E[X 0] | Xp1n = XA4n)]

This explains our choice of notation, 1, for the predictor®. If a good
predictor can be found, most of the residuals will be close to zero.
As a simple example, let

N = {[0’ _1] ’ [_1’0]}

so that the prediction vector consists of the values of the samples to the
left and immediately above z [n]; i.e.,

XN+n = (LII [nl,’I’I/Q - 1] ) x[nl - 1an2])t

The most obvious predictor function would simply average these two
neighbouring samples,

b (oace) = 5 (& a2 = 1]+ — 1,

"The reader is referred to Section 2.4.1 for definitions of A/, N°° and XA +4n-

8We use the same notation for the predictor in a lossy DPCM feedback loop, as discussed in
Section 3.3. Subject to certain assumptions, the optimal predictor for lossy DPCM is well
justified as the conditional mean of X, given its causal neighbours.
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and indeed this is one of the predictors supported by the original lossless
compression algorithm defined by the JPEG image compression stan-
dard?® [119].

In many images, the X[n] obey an approximately uniform distrib-
ution over the range of sample values, whereas the random variables,
Eln], generally have highly non-uniform distributions, centered about
0. Hence we may conclude that the first order entropy of the predic-
tion residual process, H(E), should be significantly smaller than that of
the original image, H")({X[n]}). This means that simple arithmetic or
Huffman coders, which use no context modeling at all, stand to benefit
significantly from a prediction front end. Moreover, if context modeling
is also to be used then contexts with a reduced number of states may
be formed more easily from the prediction error sequence than from the
image samples themselves, as discussed at the end of Section 2.4.1.

2.4.3 RUN-LENGTH CODING

Graphics images, bi-level images and pseudo-images representing class
information extracted from a real image (e.g. high activity vs. low activ-
ity) often contain large regions of constant sample values. Context-based
coding schemes generally have difficulty capturing the statistical behav-
iour of such regions because memory resources and the need for reli-
able statistical estimates place practical limits on the size of the context
neighbourhoods, A/, which may be used. Run-length coding schemes
have been adapted to handle this very situation.

The most basic run-length coding scheme may be understood by con-
sidering a one dimensional sequence, {z,}, of symbols from an alpha-
bet, Ax. Run-length coding replaces {z,} by a sequence of symbol
pairs, {(ak, rt)}, representing symbol values, a; € Ax, and run-lengths,
Tk € Z+. The mapping between {(ag,7%)} and {z,} is obvious; namely,
T = ag for all n such that

o

-1

k
Ty <n < ZT]'
1 j=1

where k =1,2,...andn = 1,2,.... The value, r¢ is normally the longest
run of symbols, x,, n > Zf;ll r;, such that x, has a constant value, ay,.

The sequence of run-length symbol pairs, {(ax,7%)}, is usually coded
using a Huffman code, although arithmetic coding may also be used. In
the simplest case, separate codes are constructed for the symbol values,

.
Il

9The original lossless algorithm described by the JPEG standard is not to be confused with
its more efficient successor, known as JPEG-LS.
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Figure 2.14. A suitable scanning pattern for applying 1D run-length coding to image
data.

ak, and the run-lengths, r,. When the alphabet is small and the distri-
bution of run-lengths is expected to vary for different symbols, then the
pairs, (ak,rk), should be coded jointly. Equivalently, we may code a
and then r; conditioned on the context established by ay, since

H((Ak,Rk)) = H(Ak) +H(Rk | Ak)

This is most commonly done for binary images, in which case runs of the
“0” symbol are referred to as “black” runs, while runs of the “1” symbol
are referred to as “white” runs. Separate conditional distributions are
estimated for the black and white runs, from which separate codes are
optimized for the black and white run lengths. Note that in the binary
case the symbol values, ax, may not need to be coded provided we can
guarantee that we have alternating sequences of black and white runs;
i.e., ar =1 — ag_1. The situation often becomes slightly more complex,
as a result of the practical necessity to impose a limit on the maximum
run length.

The one dimensional run-length coding schemes discussed above may
be applied to images by following an appropriate scanning pattern, such
as that illustrated in Figure 2.14. Further improvement in coding ef-
ficiency, however, is often achievable by explicitly modifying the run-
length coding scheme to exploit statistical dependencies between scan
lines. Facsimile codes use such an approach, in which the end of each
white run may be specified relative to the beginning of that run on the
current line (regular one dimensional run-length coding) or relative to
the beginning or end of the nearest white run on the previous scan line.
For further information concerning such “two dimensional” run-length
coding schemes, the reader is referred to [35].

2.4.4 QUAD-TREE CODING

Quad-tree coding shares many features with run-length coding, but
is intended to exploit multi-dimensional dependencies more efficiently.
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The idea is most easily explained and most commonly applied with bi-
level images, where one symbol, say “0”, occurs much more frequently
than the other, “1”. For simplicity, we assume that the image is square
with dimensions 27 x 2T for some T' € Z,.

Let z[n] € {0,1} denote the image sample values, defined over 0 <
ni,ng < 27. Define quad-tree node values, z(*) [n], at each level, ¢, in
a quad-tree as follows. At ¢ = 0, the leaf nodes are the image samples
themselves; i.e., z(® [n] = z[n]. At higher levels in the tree, the node
values are defined recursively through the relations

2(t+1) [n] = max 2t 2n+k], 0<np;,ny< oT—t
0<k,k2<2

Thus, at the root of the tree we have the single node value

D [0]= max x[n|
0<ky,ka<2T

The idea is to emit the quad-tree node values, starting from the root
and working down to the leaves of the tree, skipping any nodes whose
value may be deduced from a higher level node in the tree. In particular,
if z(**1) [n] = 0, the definition given above implies that all four children,
2 [2n + K], 0 < ky, ko < 2, must also be zero, so these nodes and their
descendants will not contribute to the bit-stream. Since the “0” symbol
is assumed to occur with high probability, we hope to encounter high
level tree nodes whose value is zero, thereby coding a large block of zeros
with a single binary digit.

Quad-tree coding may be implemented using the following algorithm,
although recursive implementations are also possible and may be more
natural. To simplify the description we define z(T+1 [0] = 1.

Quad-Tree Coder
Fort=1T,...,1,0
For each n over the range 0 < nj,ns < oT-t

1) (|3, |2]] = 1

emit-bit(z(t) [n])

While simple and often more efficient than run-length coding, quad-
tree coding can be substantially more memory intensive than the latter
when T is large. To minimize this difficulty, the image may be divided
into smaller blocks to which the quad-tree code is applied independently.
Many other variants on the basic algorithm exist, some of which are
explored later in this book. Embedded quad-tree codes for non-binary
image data are explored in Section 8.3.4.
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2.5 FURTHER READING

In Section 2.1.2 we introduced random variables as a tool for refer-
ing to the underlying statistical properties which govern the likelihood
of different events. More rigorous mathematical treatments of random
variables may be found in many texts, including [115]. More compre-
hensive treatments of the properties of entropy and entropy rate, coding
theorems for Markov and more general random processes, and entropy-
ergodic theorems may be found in [17], [67], [106] and [74], amongst
others. An alternative treatment of arithmetic coding, along with a
comprehensive list of references to articles and private communications
may be found in [119]. For a useful tutorial article on adaptive proba-
bility estimation for arithmetic coders, the reader is referred to [53].



Chapter 3

QUANTIZATION

3.1 RATE-DISTORTION THEORY

Chapter 2 discussed entropy coding algorithms possessing the desir-
able feature that the data obtained from decompression are identical
to the original data. That is, the compression algorithms described in
that chapter are lossless. As mentioned in Chapter 1, some applications
(such as certain medical imaging systems) require lossless compression,
while other applications may tolerate some amount of distortion in the
decompressed data in return for a smaller compressed representation.
Quantization is the element of lossy compression systems responsible for
reducing the precision of data in order to make them more compressible.
In most lossy compression systems, it is the only source of distortion.

Chapter 2 introduced the concept of entropy, and established it as the
fundamental bound on the performance of lossless compression. In this
section, the rate-distortion function is introduced as the fundamental
bound on the performance of quantization.

3.1.1 SOURCE CODES

Let {X,} be a discrete random process taking values in Ax. A
source code of length m, and size M = 2F™ with alphabet Ay is a
set of codewords (vectors) C ={Xo,%X1,...,Xp—1} with X, € A? q=
0,1,...,M — 1. Given a data vector X = Xg.;, a source coder (vector
quantizer) selects the index of the codeword in C that minimizes some
distortion measure. That is

~

Q(x) = argmin  pm(x,%,) (3.1)
q€{0,1,...,M—1}

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice

© Springer Science+Business Media New York 2002
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The corresponding source decoder (dequantizer) is given by

In the discussion above, we have referred to ) as quantization, and
-~ las dequantization. Often in the literature, the end-to-end behavior

% =Q71(Q(x))

is referred to as quantization. Even though @ is generally many-to-one,
Q! is one-to-one. Thus, “the quantized version of X” may refer to either
q or X, and the ambiguity in terminology is generally not a problem.

The distortion measure employed in equation (3.1) is often chosen to
be of the form
m—1

p(z;,2;)

7=0

Pm(X%,X) =

where p is a non-negative measure of distortion between a single sample
from each vector. Measures of this form are referred to as single letter
distortion measures.

The average distortion of a source code C is given by

A(€) = E [pm(Xom, Kom)| = B [ps(Xon, T (QXom))| (3.2

Since the index of the codeword selected (¢ = Q(x)) can be represented
with loge M bits, and each codeword represents m samples, the rate of
the code is given by

R

= log, M bits/sample
m

with a resulting compression ratio of

log, | Ax ||
R

3.1.2 MUTUAL INFORMATION AND THE
RATE-DISTORTION FUNCTION

From Section 2.1.2, the entropy and conditional entropy of discrete
random variables X and Y are given by

H(X) = E[-log, fx(X)]

and
H(X|Y) = E [-logs fxy(X,Y)]
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respectively.

H(X) was established as the average information conveyed (equiv-
alently, the average uncertainty removed) by learning the value of X.
Similarly, the conditional entropy is the average uncertainty remaining
about X after learning the value of Y. The mutual information between
X and Y is then defined by

I(X;Y) = H(X) - H(X]Y)

and is the difference in uncertainty about X before and after learning

Y. In other words, it is the average information conveyed (uncertainty

removed) about X by learning Y. Since H(X|Y) < H(X), it is clear

that J(X;Y) > 0 with equality if and only if X and Y are independent.
Manipulating the expression for I(X;Y), we have

I(X;Y)=H(X) - H(X|Y)
—fo ) logy fx ()

+Z y(y fo\y z,y)logy fxjy (7,y)

X,y (z,y)
S‘foy (z,y)log, P OIE0) (3.3)

fY]X (y7 IL')
= frix(y, ) fx (z) logy ———— 3.4
ZZ Y|X ) 2 fy(y) ( )
From equation (3.3), it is clear that I(X;Y) = I(Y;X). Also, noting
that fy(y) = > fy)x (¥, ) fx(x), we conclude that for a given PMF fy,
the mutual infg(c)rmation is a function of the conditional PMF fy|x.

Now, given a single letter distortion measure, and an 11D process { X, }
with marginal PMF fx, the rate-distortion function is given by

R(D)= inf I(X:X
(D) fml;gD (X;X)

where

Fp= {fj(p( : Zijqx(i'?x)fX(x)p(x’i) < D}

The importance of the rate-distortion function is summed up in the
two theorems given below. These theorems are offered without rigorous
proof. The interested reader is referred to [24, 67, 43]. In these theorems,
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it is assumed that pr, is a single letter distortion measure with p(z, ) <
o0, V(z,2) € Ax x Ay. It is also assumed that for every z € Ax there
is at least one Z € A4 such that p(z,%) = 0.

Theorem 3.1 Source Coding Theorem

For any e > 0 and any D > 0, there exists an integer m such that a
source code C, of length m, exists having average distortion d(C) < D
and rate R < R(D) + €.

Theorem 3.2 Converse Source Coding Theorem
For all D > 0, there exists no source code C with average distortion
d(C) < D and rate R < R(D).

Intuition into these results can be obtained by noting that a source
coder is a deterministic mapping (i.e., Xo.m is uniquely determined as
Q(Xo:m)). Thus, H(Xg.m|Xo:m) = 0 which yields

I(XO:m; XO:m) = I(XO:m; XO:m)

Thus, I (Xo:m; Xo:m) = H(Xo.m) is the information required to represent
Xo:m (the quantized version of Xg.n) and should be minimized under
the constraint that the average distortion should not exceed D. That is,

diC)=FE [pm(Xo;m,@——l(Q(onm)))} |
- Z Zfxo,m|x0:m(5<lx)fxo:m(X)pm(x,fc) <D

X€AY %EC

Comparing to the definition of the rate-distortion function, we see that
the rate-distortion function is the scalar version of the vector expres-
sions above. It is interesting to note that in the vector version, the
deterministic nature of () implies that fXO:mIXO:m (%|x) is necessarily ei-
ther 0 or 1, while the resulting marginal distribution, le «(2|z) is not
so constrained.

3.1.3 CONTINUOUS RANDOM VARIABLES

Extension of the theory from discrete random variables to continuous
random variables is straightforward. In this case, Ax = Ay = R and
the entropy (as defined previously) is generally infinite. Replacing prob-
ability mass functions by probability density functions (PDF) and sums
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by integrals, the differential entropy is defined by

W(X) = ~E [log, fx(X)] = - / Fx (@) logs fx (z)dz

where fx is the PDF of X. Differential entropy is a relative measure
of uncertainty and, unlike entropy for discrete random variables, can be
negative. h(X) can be thought of as being relative to the case when X
is distributed uniformly on 0 to 1, for which h(X) = 0.

Example 3.1 Let X be Gaussian with mean 0 and variance 0. Then,

fX (:E) — __]_~_e—m2/202

V2no?

and

h(X) = —/fx(a:) log, fx(x)dx
:/fX(:c) |7 + Inv2m0?)

03 dx (3.5)
[% +In W}
In2
= % log, 2mea? (3.6)

In fact, the same result is obtained in the example above when the
mean is not zero. More generally, the differential entropy of any ran-
dom variable is unaffected by the addition of a constant to that random
variable (change of mean). On the other hand, scaling a random vari-
able by any constant a (change of variance) will add log, |a| bits to the
differential entropy.

An interesting property of the Gaussian distribution is that it has
the highest differential entropy of any continuous distribution of a given
variance.

Theorem 3.3 Let X and Y be random wvariables each of variance o2
and let X be Gaussian. Then h(X) > h(Y).
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Proof. Without loss of generality, assume X and Y are zero mean. Then

A(Y) = h(X) = h(Y) + [ fx(@)log, fx (a)do
=h(Y)+ / fx(z) [clm2 +c2] dz
=h(Y)+ 102 + ¢z

= h(Y) + / fy(y) [C1y2 + 02] dy
+ / fr(y)log, fx (y)dy

_ [ o, 1X®)
= [ oo, ¥y

where ¢1 and cg are as in equation (3.5). Applying Jensen’s inequality, which states
that E[g(Y)] < g(E[Y]) for convex N (concave) functions g,

h(Y) - h(X) < log, /fy f’“zg y

= log, / fx(y)dy <log,1=0

The inequality in the second line above results from the fact that the last integral is
over the support of fy (which may not contain the support of fx). m
Conditional differential entropy is defined as

WX|Y) = ~E [logy fxpy (X, V)]

—/ ‘fX,Y(x:y) logy fxy (z,y)dzdy

and mutual information is defined as
I(X;Y)= h(X) — h(X|Y)

It should be noted that I(X;Y) is interpreted as in the discrete case.
It is an absolute (i.e., not relative) measure of the information that ¥
provides about X.

For an IID process {X,}, and single letter distortion measure, the
rate-distortion function is given as

R(D)= inf_ I(X:;X)
fx1x€¥p

where

- {fm . / -leX(x,,fj) Fx(2)p(z, £)dzdi < D}
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This is the obvious generalization from the discrete case, obtained by
substituting PDFs for PMFs, and integrals for sums. Theorems simi-
lar to Theorem 3.1 and Theorem 3.2 can be proven for a large class of
distortion measures and source distributions, and hence, in the continu-
ous case, the rate-distortion function is again the fundamental limit on
performance.

It can be shown [24] that the rate-distortion function is convex U,
continuous and monotonically decreasing on the interval (0, Dyax) where
Dippax is some value of D after which R(D) = 0. Hence the rate-distortion
function has an inverse which is called the distortion-rate function. The
obvious interpretation of the distortion-rate function is that it is the
theoretical limit on distortion given a desired encoding rate. The rate-
distortion function and the distortion-rate function will be used inter-
changeably throughout the text as the choice of one or the other is largely
a matter of convenience.

A key point in the development of any source coding scheme is the
choice of the distortion measure p. The most widely used measure is
squared error with p(z;,%;) = (x; — #;)?, and hence, average distortion
(equation (3.2)) becomes mean-squared-error (MSE). It should be noted
that for continuous random variables coded at a rate of R bits/sample,
the compression ratio is infinite, and clearly not meaningful. In this case,
the more relevant measure of performance is R for a given distortion D
or vice versa.

Theorem 3.4 Shannon Lower Bound
For an IID process with variance o2, the MSE rate-distortion function
18 lower bounded by

Ri(D) = h(X) — %mgQ omeD (3.7)

Proof. Without loss of generality, assume X is zero mean. We then seek to
minimize I(X; X) subject to the constraint that £ [(X - X)Q] < D. Now,

I(X; X) = h(X) — h(X]X) (3.8)
= h(X) - h(X - X|X)
> h(X) - h(Z)

where Z = X —A)A(. The second equality is easily established, and follows from the
fact that given X, X — X has the same distribution as X (but different mean) and
thus the same differential entropy. The inequality follows from h(Z]|X) < h(Z). Now,

for a given value of 6%, E [(X — )A()ﬂ =F [ZQ] = 02 + p% is smallest when wz =0.

Also, for a given value of ¢%, h(Z) is maximum when Z is Gaussian (Theorem 3.3).
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Thus, for E [(X - X’)Q} < D, we have

1(X; X) > h(X) — —;-logl, 2meD
]

Corollary 3.5 For an IID Gaussian process with variance o2, the MSE
rate-distortion function is given by

1 1
R(D) = 3 log, 2mes? — 3 log, 2meD

1 o2
= 5 log2 j)— (39)

Proof. Choose fgy so that X and X are jointly Gaussian with

e—(x—a‘c)2/2D

Ixix (#.8) = 7=

From Example 3.1, we then have
I(X; X) = h(X) — h(X|X)

= %log2 omeo? — % log, 2meD
=1 lo U—2
—2%7p

Furthermore,

Thus, I(X; X) achieves the minimum possible value (as given in Theorem 3.4) subject
to the constraint that E [(X —X)2] < D. Hence, R(D) = log, ZDE. It is easily
verified, and worth noting, that the correlation coefficient between X and X is given
by r = \/1— D/o2. Also, E[X] = E[X] and 0% = 0> — D. As should be expected,
when D — 0, we have r — 1 and 0’?2 —o’

Note that if D > 02, R(D) = 0. In this case, fixing X = E[X] yields
E [(X -X )2] = 02 < D. Inverting the rate-distortion function, we get

the distortion-rate function

D(R) = ¢%2728 (3.10)
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Table 3.1.  Entropy power by distribution.

Distribution  Entropy Power

Uniform  £04% 20.7030°
Laplacian %‘72 =~ (.86502
Gaussian o?

The theoretical bound on signal-to-noise ratio (SNR) is then given by

2

g
SNRD(R) =10 logm —ﬁ

=~ 6.02R dB

For most distributions, the rate-distortion function cannot be ex-
pressed in closed form. In these cases, it must be computed numerically.
While most numerical optimization techniques can be used, the iterative
technique of [26, 21] is particularly elegant.

The rate-distortion function for any IID distribution can be bounded

by
2

RL(D) < R(D) < -;-logz % (3.11)

The right hand expression is the Gaussian rate-distortion function, while
the expression on the left is the Shannon lower bound as given by equa-
tion (3.7) The Shannon lower bound is known to be tight for small D
(large R). That is, Dr(R) = D(R) when R is large.

Inverting the expressions of equations (3.11) and (3.7), we get

1
Dr(R) = 2———22h(X>2-2R < D(R) < ¢%272R (3.12)
e
The quantity -271—22’1()() is known as the entropy power, and has max-
imum value of 0 when X has the Gaussian distribution. Expressions
for the entropy power of the uniform, Laplacian (two-sided exponential),
and Gaussian (normal) distributions are given in Table 3.1.

3.14 CORRELATED PROCESSES

In general, the rate-distortion function is extremely difficult to com-
pute for correlated processes. A notable exception is for stationary
Gaussian processes. Assume a mean of zero and denote the autocor-
relation function of such a process by

Rx [k] = B [XnXn 1]
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Figure 8.1.  Computation of D as water filling. The shaded region has area 27 D.

The power spectral density of the process is the Fourier transform of
Rx [kl

Sx(w) = Z Rx [k] g Ik

k=—c0

The rate-distortion function is then given in parametric form [24] by

D) = = [ min{), Sx(w)} dw
2 J_ .
and Lo . Sx(@)
R(\) = o /_Wmax{O,QlogQ 3 }dw

The rate-distortion function is computed from these expressions by vary-

ing A € <O,max {Sx (w)}} to obtain values of D and the corresponding
w

values of R(D). The computation of D is often described as “water fill-

ing.” As can be seen in Figure 3.1, D can be pictured as the “area of
water” obtained when Sx(w) is “filled” to the level of \. Computation
of R can be viewed as a similar water filling but on a level shifted version
of 3 log, Sx (w).

Note that when A = max {Sx (w)}, R(A) = 0 and D(A\) = Dpax =

™
5= [ Sx (w)dw = 2. Finally, we note that for A\ < min {Sx (w)} (small

D, large R),
D) = A (3.13)
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and

R(\) = i/ %logz Sx(w)dw

2m A
= L [ L iog, Sy (w)duw — Llog, A (3.14)
T on | g o%enxW 9 082 '

Solving equation (3.14) for A and substituting into equation (3.13) yields
D(R) = 40?272 (3.15)

where
2 -1 ! / " (w)dw
= —ex n
is known as the spectral flatness measure of {X,}. It is easily shown
that v% < 1 with equality if and only if Sx(w) = 02 Yw (i.e., {X,} is
1ID).

3.2 SCALAR QUANTIZATION

The scalar quantizer (SQ) is the simplest of all lossy compression
schemes. It can be described as a function that maps each element in
a subset of the real line to a particular value in that subset. Consider
partitioning the real line into M disjoint intervals

Iq = [tQ7tq+1)7q:0717"'7M—1

with

—oo=1{) <t < <ty = —+oo.
Within each interval, a point Z,is selected as the output value (or
codeword) of Z,. A scalar quantizer is then a mapping from R to
{0,1,...,M —1}. Specifically, for a given x, Q(x) is the index ¢ of
the interval Z, which contains z. The dequantizer is given by

Q~(q) = 24
Example 3.2 Let M =4,t) = -1,t2 =0,t3 =1, Zg = —1.5, &; =
—0.5, 22 = 0.5, 23 = 1.5. Then, if x < —1, the quantized version of =
is —1.5 (index = 0). Specifically, Q(z) =0 and Q=1(Q(z)) = Q~1(0) =
—1.5. Similarly, if 0 <z < 1, the quantized version of z is 0.5 (inder =
2). This situation is illustrated in Figure 3.2.

A different depiction of the quantizer from Example 3.2 is found in
Figure 3.3a. The more general case is shown in Flgure 3.3b. This figure
shows that when = € 7, = [tg,t411), that Q71(Q(z)) = Q~1(q) = %,
Clearly, the t; can be thought of as thresholds, or decision boundaries
for the ;.
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Figure 3.2.  Scalar quantizer of Example 3.2.

a)
& I Py ! & } ] @ »
hd T *— * T T d >
X0 X L X, 4 ) Lyiot Xy
b)
Figure 3.3.  Alternate graphical representation of scalar quantization.

3.21 THE LLOYD-MAX SCALAR
QUANTIZER

In this section, we develop necessary conditions for the optimality of
scalar quantizers of a fixed size M. Quantizers satisfying these condi-
tions are known as Lloyd-Max quantizers [97, 105]. Here we assume a
stationary process with marginal PDF fx and the MSE criterion for
measuring distortion is adopted. Using the notation developed in previ-

ous subsections,

d = MSE = E[(X X} MIE[X X) |Xezk]P(XeIk)
k=0
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M-1 the1
-3 / (z — &) fx (2)dz (3.16)
k=0 7tk

Setting the partial derivative of d with respect to ¢, equal to zero yields
(tg — Zg-1)fa(ty) — (tqg — 24)%fu(tq) = 0. Solving for t, yields

tq:xq%w g=1,2,...,.M—1 (3.17)
Similarly, differentiating with respect to &4 yields

fa+1 zfx(x)dx
:z'qutqm g=01, .. M~1 (3.18)
ft: fx(z)dz

Equations (3.17) and (3.18) then form necessary conditions for an opti-
mal scalar quantizer.

Equation (3.17) implies that the endpoints of the quantizer decision
regions should be halfway between output points. This implies nearest
neighbor encoding, which means that the input x is encoded as &4, where
%4 is the codeword closest to . The denominator of equation (3.18) is
the probability that X lies in Zg and hence, £, = E[X|X € T ]. Code-
words satisfying this property are called conditional means, or centroids.

Easily proven consequences of these properties are that

E[(X - X)]=0

0% =% — B[(X - X)?]

E [<X~X> X] )
El(X - X)*|X € Ijlp; = E[(X - X)*|X € I Jp; Vi,q

where p, = P(X € Z,). These properties state respectively, that the
quantization error is zero mean (whether or not E [X] = 0), quantiza-
tion reduces the data variance by an amount equal to the MSE. The
quantization error is uncorrelated with the quantizer output (but not
the input), and that on average, the contribution of all intervals (toward
the overall MSE) are equal.

As necessary conditions, equations (3.17) and (3.18) do not guarantee
optimality. In fact, examples of suboptimal quantizers satisfying equa-
tions (3.17) and (3.18) are easily constructed. Optimality is assured
however, for all sources having log-concave PDFs (i.e., log fx is a con-
cave, or convex N, function) [61]. Uniform, Laplacian, and Gaussian
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distributions all satisfy this property and hence, their corresponding
Lloyd-Max quantizers are optimal (as scalar quantizers).

Solving equations (3.17) and (3.18) in closed form is usually quite
difficult. One notable exception occurs for symmetric distributions and
M = 2. Let p be the point of symmetry, i.e., fx(z+p) = fx(—z+u) V.
Then, t; = p, Zo = E[X|X < y|, 1 = E[X|X > p] = 2u — &o. Another
exception occurs when X is distributed uniformly. Specifically, suppose
that X is uniform on [a,b). Then the Lloyd-Max quantizer partitions
[a,b) evenly into M intervals

Iq = a-l-%ﬂq,a-l-%z@(q-l—l)) qg=0,1,..., M -1 (319)
and I, is the center of each such interval. Quantizers of this form (equal
length decision regions, with their centers as output points) are known
as uniform scalar quantizers.

For many other cases, solution of equations (3.17) and (3.18) must
proceed iteratively. The following algorithm can be used to that end.

The Max Algorithm (Lloyd Form IT)
1) Choose an initial code C = {Zo, 21, -..,Zm—1}, set j = 1,dp = 00
2) Calculate the t, according to equation (3.17)
3) Calculate the &, according to equation (3.18)
4) Calculate d; according to equation (3.16)
)

5) If ij;di < ¢ stop; else set j = j + 1 and go to step 2
2

For a given set of 4, the {; computed in step 2 are optimal. Thus,
step 2 is guaranteed not to increase distortion. Similarly, for the ¢,
computed in step 2, the £, computed in step 3 will not increase the dis-
tortion. Thus, the sequence of distortions d;, 7 = 1,2,... is monotone
non-increasing (and bounded below by 0). Thus, the algorithm is guar-
anteed to converge. In the case of a log-concave PDF| the resulting code
is optimal. Otherwise, the resulting code is at least locally optimal.

This algorithm can be rewritten in the form shown below. This form
is easily adapted to estimation of the optimal quantizer in the event that
the PDF is unknown, but sample data from {X,} are available.

The Lloyd Algorithm (Form I)

1) Choose an initial code C = {Zo, £1,...,Zpm-1}, set j =1,dp = 00

2) Let Iy = {z€R: (x—%)* < (z—&x)2Vk#q} ¢ = 0,1,...,
M-1
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3) tg=EX|X €T q=0,1,...,. M -1
M-1
4)dj= Y E[(X - )*|X € Iy] P(X € I,)
g=0

5) If d—]':(;;éi < ¢ stop; else set 7 = j + 1 and go to step 2
7

In step 2, we ignore the zero probability event that (z — j:q)Q =
(z — &3)? for k # q. In this case, x can be assigned to either set with no
effect on MSE

Now, in the case where the PDF of {X,,} is unknown, but a set of sta-
tistically representative “training data” 7 is available, the algorithm can
be modified by substituting sample averages for expectations and rela-
tive frequencies for probabilities. In the limit as the size of the training
set goes to infinity, the weak law of large numbers implies that these sta-
tistical substitutes will converge to the true underlying ensemble values.
The resulting algorithm is as follows.

The Lloyd Algorithm (with Training Data)

1) Given a training set of samples from {X,}, say 7 = {zo,z,...,
Z|7|-1}, choose an initial code C = {Zo,%1,..., -1}, set j = 1,
dO =0

2)Let By={zeT:Q@)=q} ={z €T : (x—3)° < (z — &)?
Vk#q} ¢q=0,1,....M—1

3) 2y = ”gq” Sz o¢=0,1,...,M -1

z€By
—_— M-1
Ndi=p LE@-Q0Q@) =1 ¥ T (z-2)°
zeT q=0 zeB,

5) If gﬁ(ﬁj;(ii < € stop; else set j =74+ 1 and go to step 2

As before d; < d;_1 and convergence is ensured.

3.2.2 PERFORMANCE OF THE LLOYD-MAX
SCALAR QUANTIZER

Table 3.2 gives the values of 4 for the zero mean, unit variance Uni-
form, Laplacian, and Gaussian PDFs at rates R = 1,2, and 3 bits/sam-
ple. Table 3.3 gives the SNR values for Lloyd-Max quantization of these
sources at rates up to 5 bits/sample. For more extensive tables, see [82].

For large R, it can be shown that the MSE of Lloyd-Max quantization
behaves like

d(R) = %g%272E (3.20)
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Table 3.2. Lloyd-Max quantizer reconstruction values.

Uniform Laplacian Gaussian

1 +0.866 +0.707 +0.798
R 2 +0433,+£1.299 +0.420, £1.834 40.453, £1.510
3 £0.217, £0.650, +0.233, £0.833, 40.245, +:0.756,
+1.083, £1.516 +£1.673, £3.087 £1.344, £2.152

Table 3.3. MSE performance of Lloyd-Max quantizers (SNR in dB).

Uniform Laplacian Gaussian

1 6.02 3.01 4.40
2 12.04 7.54 9.30
R 3 18.06 12.64 14.62
4 24.08 18.13 20.22
S 30.10 23.87 26.01

where €2 is a function of the particular PDF. For smooth, zero mean,

symmetric PDFs
2 [ [ 5
620'2 = § l:/o \3/ fx(w)d$:|

The reader is referred to [114] for a proof of this fact. The values of 2
for the uniform, Laplacian, and Gaussian sources are given in Table 3.4
as 1, 9/2, and v/31/2 = 2.721, respectively.

It is worth noting that equation (3.20) is somewhat pessimistic at low
rates. For example, equation (3.20) predicts 13.72 dB for the Gaussian
PDF at R = 3, while the actual value from Table 3.3 is 14.62 dB. For
R = 6, the values predicted by equation (3.20) are all within about 0.2
dB of the exact values. It is also worth noting that equation (3.20)
provides the exact correct values for the uniform PDF at all rates.

We close this section by noting that Lloyd-Max scalar quantizers are
in fact, special cases of the source codes described in Section 3.1.1. In
this case, m = 1,C = {%o,...,2m_1},p(z,%) = (z — £)?, and M is
usually chosen as a power of 2 so that Z; can be signalled using an
integer number (R = logy, M) of bits.

3.2.3 ENTROPY CODED SCALAR
QUANTIZATION

The Lloyd-Max quantizer minimizes the MSE subject to a constraint
on the size of the code, M. The presumption is that R = logy M bits
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will be used to signal the codeword chosen by the quantizer. If log, M
is an integer, this is straightforward. If log, M is not an integer, then
R = [logy M| < logy M + 1 bits may be used to signal one index at
a time. Alternatively, we can block L indices qo,q1,.-.,qrL—1 together
to form one “super-index” in {O, 1,...,ME— 1}. This super-index can
then be signalled using

R= % [logy M*™] < logy M + % bits/index
Thus, we see that for the Lloyd-Max quantizer R = logy M bits/sample
can be approached arbitrarily closely with “fixed length” coding, even
when M is not a power of 2.

We now consider the application of variable length codes such as Hufi-
man, or arithmetic (Chapter 2) to the indices produced by a scalar quan-
tizer. Such coding is lossless and has no effect on Q=1(q) = Q—1(Q(x)).
Thus, the MSE is unchanged. However, the rate of the resulting “en-
tropy coded quantizer” can approach the entropy of the indices, which is
equal to H(X). For simplicity, we assume in what follows that efficient
entropy coding is used, so that

R= H(X) <logy M (3.21)

with the inequality achieving equality if and only if all quantizer outputs
are equally likely (i.e., f¢(2g) =1/M ¢=0,1,...,M ~ 1).

In the case that H(X) < log, M, the Lloyd-Max quantizer is not
the optimal quantizer to be used in the entropy coded scenario. The
optimal quantizer minimizes MSE subject to a constraint on entropy.
From equation (3.21), we see that we must have M > 28 M can
be chosen arbitrarily largely without concern for performance. In fact,
for unbounded random variables (e.g., Laplacian, Gaussian) M = oo is
generally the optimal choice. If a particular choice of M is too large for
a given PDF| the optimization techniques discussed below will result in
some of the codewords having probability of zero, effectively reducing
the value of M.

For a desired rate of R, we now seek to minimize

M=1 ot

E [(X - Xﬂ - f\:‘o iq/ (& — &) fx (z)dw (3.22)

subject to the constraint that

M-1

H(X) == Z Pqlogapg < R (3.23)
q=0
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where
tq+1

pg=P(X €L, = / fx(z)dx

Using the technique of Lagrange multipliers, [54] we seek to minimize

—E [(X - X)Q] +AH(X) (3.24)
M1 bt
(z - &;)* fx(z)dx
J=0 t;
1 bitt tit+1
—)\Z/ dxlogg/f (x)dz
J=0 tj

If there exists a A > 0 such that the solution to the unconstrained min-
imization of J (1)) yields H(X) = R, the same solution will satisfy the
constrained problem of equations (3.22) and (3.23). Setting -2-7(\) = 0

S 0,
reveals that %, is the conditional mean of Z, as before (see equation
(3.18)). Similarly, differentiating with respect to ¢, yields

(tg — i"q—l)Q —(tg - iq)Q — A(logg pg—1 — loga pg) =0 (3.25)

For a given A, these equations form the basis for an iterative algorithm
which is the generalization of the Max Algorithm of Section 3.2.1. An
outer loop can be employed to search for the proper A such that H (X ) =
R. Unfortunately, equation (3.25) can not be solved for t; in terms of
&q and 41 as in equation (3.17), since pg—1 and p, together depend
on ty—1, tq, and tg41. However, another iterative algorithm can be used
to solve for the ¢, as a subroutine to the main iteration. The interested
reader is referred to [55].

Rather than pursue this algorithm, we examine the generalization of
the Lloyd Algorithm (Section 3.2.1) to the entropy constrained case.
Here we try to minimize equation (3.24) directly rather than attempting
to solve the necessary conditions. This results in the following iterative
algorithm [39].

Entropy Coded Scalar Quantizer Design Algorithm

0) Choose an initial A > 0

1) Choose an initial code C = {Z¢,1,...,Zrp-1}, with initial prob-
abilities P = {po,p1,--.,Pm-1}, and set j =1, dp = oo
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2) Let Z, = {z € R: (z — &4)% — Mogy py < (x — 2x)? — Alogy pi V
k#q} ¢q=0,1,...,M -1

3)i,=EX|X€T) ¢=0,1,....,.M -1

4)

M-1
5) d; = Zo E [(X —3,)%|1X € Iq] Pq

T
pq:P(XEIq) q———O,l,,M—l
d

6)fd 4iz1=di ¢ g0 to step 7; else set j = j + 1 and go to step 2
7) It H( () = qu logy pq ¢ (R — 7, R], adjust A and go to step 1

Comments:

1) It is easily shown that H(X) is non-increasing as a function of
X, which makes the search for the proper A (such that H(X) = R)
straightforward. One simple approach is to choose two extreme
values of A and then use bisection to iteratively narrow the interval
of possible .

2) For a given value of A, the inner loop (steps 2-6) is non-increasing
in d;. Thus, convergence is ensured.

3) Adaptation to training data is straightforward with sample aver-
ages replacing expectations, and relative frequencies replacing prob-
abilities in the obvious way, as in the Lloyd Algorithm of Section
3.2.1.

4) At convergence, A, pg, and &4 are known for all¢g = 0,1,..., M —1.
Equation (3.25) is then easily solved for

Tq—1 + g 4 /\IOgQ Pg—1 — logy py
2 2(2g — 24-1)

ty =

and we see that the entropy constraint effectively introduces a bias
to the nearest neighbor thresholds of equation (3.17).

3.24 PERFORMANCE OF ENTROPY
CODED SCALAR QUANTIZATION

It can be shown that for large H(X) (small MSE), the optimal scalar
quantizer in the entropy coded case is uniform for all “smooth” PDFs
[70]. As mentioned previously, the optimum number of levels is generally
infinite. In the case of a zero mean, symmetric PDF, it is then conve-
nient to let the quantizer indices range over all integers. The quantizer
output values can then be written in the form ¢A,q =0,+1,+2,... and
the thresholds are the midpoints between the output values. Thus, the
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quantization intervals are given by

A A
I, = [qA — E,qA + 5) (3.26)

From equation (3.16),

tol[>

o qA+
; / (z — qA)? fx(z)dz

— qA———

For small A, fx(z) is approximately constant within each interval. That
is, fx(x) 2 fx(qA) Yz € Z,. So

~ 90+5 K
d= 3 fxlad) [ (@-gd)do= S fead)s
g== qA-—é q=-0
00 A oo
Z fx(gA)A %—Q/fx(x)dx
q——oo %
A2
=1 (3.27)
Similarly,
- Z Pq logs pg
q=—00
= — N [fx(qA)A]log, [fx (qA)A]
gq=—00
= [ fx(a)logs fx(@)da - [ fx(s)log, Ads
= h(X) —logy A

(3.28)

As before, we assume efficient entropy coding so that R & H (X ). Then
from equation (3.28)

Substituting in equation (3.27) yields

1
d(R) = 1—222h<X>2—2R (3.29)
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Comparing equation (3.29) to the Shannon lower bound of equation
(3.12), we see that at high rates, entropy coded uniform scalar quanti-
zation differs from the distortion-rate function by a factor of only 7e/6,
or 1.53 dB.

At low rates, the optimal entropy coded scalar quantizer is no longer
uniform. However, a quantizer with uniform intervals (equation (3.26)),
but centroid codewords, &4 = E[X|X € 1], is very nearly optimal [55].
Often, for zero mean PDFs, a small improvement in the d(R) behavior
can be obtained by widening the interval about 0. This interval, Z,
is sometimes called the “zero-bin.” Quantizers of this type are usually
called “deadzone uniform scalar quantizers.” Widening Zy increases the
distortion somewhat, but often decreases H(X) enough to offset this
effect. The intervals of a deadzone quantizer are of the form

[~(1-9A,(1-§A) ¢=0
Ip,=q Ua=8A(g+1-§A) ¢>0 (3.30)
(g=1+8§A,(g+&A) ¢<0

where ¢ < 1 determines the width of Zg.
This quantizer can be implemented as

sign(zx) L%l +£J J%l +£>0
0 otherwise

q=Q@O={ (3.31)
Interesting special cases occur when £ =0, and £ = 1/2. When £ = 1/2,
the previous case of equation (3.26) results, with Zy having a width of A.
On the other hand, £ = 0 results in a zero-bin width of 2A. This case is
particularly important, and is discussed further in Section 3.2.7. Values
of £ < 0 are reasonable, and result in further widening of the deadzone.

As before, the optimal reconstruction values are centroids. However,
for simplicity, some fixed value within Z, is often employed. In this case,

0 q=0
fo={ (q—€+8)A ¢>0
(q+£—-0)A ¢<0

_{ 0 gq=20
| sign(q) (lg] —€+8)A q#0

where 0 < § < 1 specifies the placement of &, within Z,. The case with
6 = 1/2 yields &, at the center of Z,. The quantizer that results from
€ =0and 6§ = 1/2 is depicted in Figure 3.4.

As in the Lloyd-Max case, the high rate asymptotic results are rather
pessimistic if applied at low rates. Indeed, as R approaches 0, the MSE
of a well designed quantizer should approach D(0) = 0?2, rather than
(22X /12 as predicted by equation (3.29).
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+ =3A -2A -A 0 A 2A 3A +. X

Figure 3.4.  Uniform scalar quantizer with deadzone.

3.2.5 SUMMARY OF SCALAR QUANTIZER
PERFORMANCE

In summary, we see from equations (3.12), (3.20),and (3.29) that for
high rates and IID data, the distortion-rate function, as well as the MSE
of both Lloyd-Max quantization, and entropy coded uniform quantiza-
tion, are all of the form

d(R) = 20?2721 (3.32)

More generally,
d(R) = g(R)o?272E (3.33)

where g(R) is a weak function of R. For large R, g(R) = 2. On the
other hand, as R approaches 0, g(R) approaches 1.

The appropriate values of €2 for each case are given in Table 3.4. From
this table, we see that (as expected) entropy coding is of no benefit for
the uniform PDF. This follows from the fact that for this PDF, 2 is
the same for both Lloyd-Max and entropy coded quantizers. Also as
expected, the Gaussian PDF boasts the largest value of €2 for the D(R)
and entropy-coded cases. This is in support of the previous statement
that the distortion-rate function is largest in the Gaussian case. On the
other hand, it is interesting to note that the Lloyd-Max MSE is larger
for the Laplacian PDF than for the Gaussian PDF. This is indicative of
a general trend that Lloyd-Max scalar quantization performance suffers
for “heavy tailed” PDFs.

We conclude this subsection with Figure 3.5. This figure shows the
distortion-rate function, as well as MSE performance for Lloyd-Max and
entropy-coded quantization of IID Gaussian data. As R grows, all three
curves become parallel straight lines with slopes of 6.02 dB/bit. The
vertical gap between D(R) and entropy coded quantization is me/6, or
1.53 dB. The vertical gap between D(R) and Lloyd-Max quantization
is v/3m/2, or 4.35 dB. Although not discussed above, the performance
for uniform scalar quantization without entropy coding will result in less
than 6.02 dB per bit improvement (for all but the uniform PDF). For
these cases, the SNR curve will diverge from D(R) as R grows, as shown
in Figure 3.5.
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Table 3.4.  Values of &2 for various PDFs.
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D(R) Lioyd-Maz  Entropy-Coded
Uniform Wi = 0.703 1 1
Laplacian £ 2 0.865 2 < 1932
Gaussian 1 V3m 9791 Ze 1423
40 -
354
251 -
= .
z
© 20 +
z
»
15 1
s D(R)
10 4
Entropy Coded
5 A Loyd-Max
x  Uniform (Uncoded)
0+~ : } } : : —
0 1 2 3 4 5 6
R (bits/'sample)

Figure 3.5. MSE performance for scalar quantization of IID Gaussian data.

3.2.6 EMBEDDED SCALAR QUANTIZATION

A very desirable feature of compression systems is the ability to suc-
cessively refine the reconstructed data as the bit-stream is decoded. In
this situation, a (perhaps crude) approximation of the reconstructed data
becomes available after decoding only a small subset of the compressed
bit-stream. As more of the compressed bit-stream is decoded, the recon-
struction can be improved incrementally until full quality reconstruction
is obtained upon decoding the entire bit-stream. Compression systems

possessing this property are facilitated by embedded quantization.
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Figure 3.6. Embedded scalar quantizers Qo, @1, and Q2, of rates R = 1,2, and 3
bits/sample.

In embedded quantization, the intervals of higher rate quantizers are
embedded within the intervals of lower rate quantizers. Equivalently, the
intervals of lower rate quantizers are partitioned to yield the intervals of
higher rate quantizers. Consider a sequence of K embedded scalar quan-
tizers Qo, @1,Q2,...,Qx—1. The intervals of Qx_1 are then embedded
within the intervals of () _2, which in turn are embedded within those
of @k _3, and so on. Equivalently, the intervals of Qg are partitioned to
get the intervals of )1, which in turn are partitioned to get the intervals
of (J2, and so on.

Specifically, each interval of Qo (Zg, g0 =0,1,...,Mp — 1) is parti-
tioned into My intervals Zy, 4, q1 =0,1,...,M; — 1. The total number
of intervals of @, is then MyM,. Similarly, the intervals of ¢, are par-
titioned to obtain the intervals of Q2 as Zg5 9,90 92 =0,1,..., M2 — 1.

k
In general then, Qx (k =0,1,..., K —1) has [[ M; intervals, given by

J=0
IQO#le--an'
With this partitioning, it is natural to take the comma separated
list qo,q1,--.,qr as the “quantizer index” of Zyy 4, .. q,- This situation

is illustrated in Figure 3.6 for K = 3 and My = M; = My = 2. It
should be clear from this figure, that for the binary case (M =2 k =
0,1,...,K —1), the indices of Qk (i-e., 90,41, ---,qx) can be interpreted
as binary representations of the “usual integer” indices.

With the formalism described above, all indices of lower rate quan-
tizations can be obtained by dropping components from (the comma
separated) indices of higher rate quantizations. Specifically, the index
for Qx can be obtained by dropping the last component of Q1. To see
this, let

Qk+l (LL') =40, --,49k,9k+1
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This implies that © € Zg,, . g, giy1- NOW since
My y1-1
IQO,er-ka = U IQUV--,%,%H
qr+1=0

we must have £ € Zy; 4, . 4., which implies that

Qk (.T}) =4q0,91,---,Gk

We close this subsection by noting that the embedded quantization
framework discussed here suggests a simple implementation trick for
scalar quantization. For simplicity, we consider only the case depicted
in Figure 3.6. The ()2 index is easily determined using only three binary
threshold comparisons. The first bit g is determined by comparing z
to the single threshold of Qg. Once qq is known, ¢; is determined by
comparing z to the single threshold within Z4,. Finally g9 is determined
by comparing z to the single threshold within Zy 4, .

This process (especially in the non-binary case) can be viewed as a
series of dependent quantizations of x. For example, g1 = Q1,4, (x) where
Q1,40 (%) represents the quantization of z within Zy,. Similarly, g2 =
Q2,q0,: () represents the quantization of x within Zy, 4,. We will have
more to say on this subject in Section 3.4.4. For now, we point out that it
is not possible (in general) for more than one of the embedded quantizers
to simultaneously satisfy the Lloyd-Max conditions. For example, if the
highest rate quantizer is chosen to satisfy the Lloyd-Max conditions,
then the thresholds of all lower rate quantizers are fixed. The only
design parameter then available for the lower rates are the codewords,
which should be chosen as the centroids of their respective intervals.

3.2.7 EMBEDDED DEADZONE
QUANTIZATION

A notable example where all embedded quantizers can be optimal
is the uniform case. Indeed, uniformly subdividing the intervals of a
uniform scalar quantizer clearly yields another uniform scalar quantizer.
In this way, a family of embedded uniform scalar quantizers may be
constructed. These quantizers all satisfy the Lloyd-Max conditions for
the uniform distribution.



112 Differential Pulse Code Modulation

A particularly elegant (and important) example is the uniform dead-
zone quantizer of Section 3.2.4. For the case when ¢ = 0, we have!

1=Q@) =sim(s) | 5 (330

and 0 0
A~ _ q=
r=q (”‘{sgumam+®A q#0
This quantizer has embedded within it, all uniform deadzone quantizers
with step sizes 2PA for integer p > 0.
Assuming that the magnitude of g can be represented with K bits,
then ¢ can be written in sign magnitude form as

(3.35)

q=Qxr-1(x)=5,9,q,---,9K~1 (3.36)
Now, let
¢ =5,90,q1,- -, qK-1-p

be the index obtained by dropping the last p bits of q. Equivalently, ¢(?)
is obtained by right shifting the binary representation of |q| by p bits.
It is then easily verified that

QK—l—p (:II) = q(p)

where Qx_1-p is the uniform deadzone quantizer with step size 2PA.

From this discussion, we can deduce that if the p LSBs of |q| are
unavailable, we may still dequantize, but at a lower level of quality. In
particular, the result will be the same as if quantization were performed
using a step size of 2PA (rather than A) in the first place. In this
situation, the inverse quantization is performed as

o 0 q(p) =0
e { sign (¢®) (|¢®] +8)2PA ¢® #£0

It is worth noting that when p = 0, this yields the full quality dequan-
tization as given by equation (3.35).

We wrap up this section by noting that context dependent binary
entropy coding can be used to compress the bits in equation (3.36).
In the case of IID data, only the previous bits of the same index (as
discussed in Section 2.3) need to be incorporated in the contexts to
achieve the performance promised in Section 3.2.4 for each and every
partial decoding (with step size 2?A p > 0). When the data is not
IID, compression performance can be improved by including bits from
neighboring indices when forming contexts (as described in Section 8.3).

(3.37)

1 The case when & # 0 is discussed in Section 8.3.1.
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3.3 DIFFERENTIAL PULSE CODE
MODULATION

Throughout our discussion of quantization, we have assumed that
{X,} is TID. If the process is not IID (but stationary), scalar quan-
tization performance will be governed by the marginal PDF, and will
be identical to the performance that would be achieved for IID data
having the same marginal PDF. On the other hand, more sophisticated
techniques exist which can exploit the dependencies in non-IID data to
improve quantization performance. One such approach is to perform a
transform on the data so that the resulting transform coefficients are
(at least approximately) IID. Such transforms are discussed in detail in
Chapters 4 and 6. Another approach is to employ context dependent
entropy coding (Section 2.4.1) to scalar quantization indices. A hybrid
of these two approaches is discussed in Chapter 8 and forms the basis for
JPEG2000. Yet another approach is vector quantization, as discussed
in a subsequent section of this chapter.

In this section, we discuss the addition of quantization to the predic-
tive scheme described in Section 2.4.2. The resulting system is known
as differential pulse code modulation (DPCM). Figure 3.7 shows the
basic block diagram for DPCM. As was the case in Section 2.4.2, a pre-
diction g, of the current sample X, is formed using previously coded
values. As before, only previously coded values are used in forming
predictions since the decoder must track the procedure performed by
the encoder. The prediction error (or prediction residual) is formed as
én, = Tpn — Mn. The algorithm now differs from that discussed previously
in that e, is quantized to get an index g, (Both entropy and non-entropy
coded quantization are possible.) The reconstructed prediction error é,
is added back to the prediction at both encoder and decoder to obtain
the reconstructed value of the data Z,,.

A fundamental property of DPCM is that the error between z, and
Iy, is precisely equal to the error introduced into e, by quantization.
This can be seen by examining Figure 3.7 in which

€n = Tp — Un
and
Tn = €p + Ln

Combining these two equations yields the stated result. Specifically,
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Figure 8.7.  Block diagram for differential pulse code modulation.

From this, we have that
E [(X - X)Q] —E [(E - E)Q]

From previous sections, we then have d(R) = %0222 where €% and
0125 are the appropriate values for the PDF of the prediction error. If
E% = 53(, we see that the MSE for DPCM is better than that for scalar

quantization by a factor (prediction gain) of G = 6% /0%. That is,

1
MSEppcum = G_MSESQ
P
or,
SNRppcm = SNRgq + 10log;o Gp

It is clear that G, is maximized by minimizing the prediction error
variance. This occurs when pu, is chosen as the conditional mean of X,
given the neighborhood used in prediction. Calculation of the optimal
tn is often difficult since the prediction must be based on previously
coded (quantized) values of the neighborhood samples. A high rate
(small MSE) assumption is often used to overcome this difficulty. In
this case, the optimal predictor is formulated assuming that Z,, = z,.
Another common simplification is to restrict the predictor to be a linear
combination of the values in the neighborhood. A suitably chosen linear
predictor will be optimal in the Gaussian case, but will be suboptimal
in general.

Example 3.3 Suppose { Xy} is a Gaussian Markov-1 process with mean
0 and correlation coefficient r. Then

Hn = FE [Xn’xo:n] = E [Xn|$n—1] =TTp-1 (338)
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Since en, = Ty, — in, Ern is zero mean and Gaussian. Thus, é‘%( = 6%7 and
oh=E[E] =E [(Xn —rXn_1)?] = (1 -1))0%

In the example above, G, = 1_% Thus, at high rates, dppcm(R) =

e2(1 — r?)o%272R. Tt can be shown, that for this process, the spectral
flatness measure is ’yg( = (1 —r?). In fact, for any Gaussian Markov
process, Gp = 1/v% and thus

dppem(R) = e2y% o) 2728 (3.39)

Comparing to equations (3.15), (3.10), and (3.32), we see that the high
rate performance of DPCM differs from the distortion-rate function by
a factor of €2, just as in the case of scalar quantization of IID Gaussian
data. Specifically, DPCM (using entropy coded uniform quantization)
is within 1.53 dB of the distortion-rate function at high rates.

We close this section by noting that in the low rate case, equation
(3.39) is overly optimistic. Indeed, as R approaches zero, the MSE
of any realizable quantization scheme must be at least Jg( which can
be considerably larger than the value of 2v%0% as implied by equa-
tion (3.39). This should be expected since equation (3.39) was derived
assuming that predictions are based on the unquantized data X,. In
practice, we are forced to use X,, which can differ from X, significantly
at low rates. This degrades the quality of predictions, and ultimately,
the compression performance.

3.4 VECTOR QUANTIZATION

Vector quantization (VQ) is another name for the general case (m > 1)
of the “source codes” discussed in Section 3.1.1. Tt is a way of quantizing
all samples in a vector of data xg., jointly rather than individually (as
in the previous sections on scalar quantization (SQ)). As a simple ex-
ample, consider the vector quantizer depicted in Figure 3.8. This figure
extends the graphical depiction of 1-D (scalar) quantization to the 2-D
case. As before, the heavy “dots” represent quantizer codewords (code-
vectors). The regions bounded by the dashed lines are generalizations
of the decision intervals Z, from the 1-D case. These “decision regions”
are often called Voronoi regions. The 2-D VQ of Figure 3.8 is of size
M = 8. The rate of this VQ is R = L log, M = 1.5 bits/sample. This
follows from the fact that the index of a codeword can be represented
using log, 8 = 3 bits, and a codeword serves as the reconstruction for
m = 2 samples.

VQ can outperform SQ, even in the case when { X, } is IID. To see why
this is true, it is useful to examine the VQ of Figure 3.9a. This figure
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_____

Figure 3.8. Two-dimensional VQ of rate R = 1.5 bits/sample.

depicts a 2-D VQ of size M = 64 (R = 3 bits/sample). This VQ is
particularly interesting in that it yields precisely the same results as the
3 bits/sample uniform SQ of Figure 3.9b. For example, consider a data
vector (two consecutive samples) x = (g, z1)" that lies in the rectangle
bounded by 4 and 6 horizontally, and —4 and —2 vertically. The VQ
reconstruction of any such x is X = (5, —3)*. Note that each such x has
4 < xp <6 and —4 < x; < —2. Thus, applying the quantizer of Figure
3.9b independently to o and z; also yields X = (5, —3)!. Generalizing
this idea to higher dimensions, it is easy to see that independent SQ
of all samples in a vector is a special case of VQ. In this special case,
the (m-dimensional) codewords are constrained to lie on a rectangular
grid. Note however, that the grid spacing need not be uniform (e.g.,
Lloyd-Max scalar quantizer).

The first (and foremost) deficiency of the scalar quantizer is then the
fact the boundary of the grid is constrained to be cubic (generalized cube
for m # 3). The second deficiency is that the Voronoi regions are also
constrained to be cubic (rectangular for non-uniform scalar quantizers).
That the first property is indeed a deficiency can be seen by considering
data having a high probability of falling within the circular region shown
in Figure 3.10a (e.g., IID Gaussian data). Since the “corner” codewords
of Figure 3.9a fall outside this region, they are largely wasted. They can
be discarded to yield a VQ of (at least roughly) the same MSE but of
lower rate. If the data have an elliptical high probability region as shown
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Figure 3.9. Rate 3 quantization: a) 2-D VQ. b) Equivalent SQ.

in Figure 3.10b (e.g., correlated Gaussian data), even more codewords
can be discarded to achieve further reduction in rate without significant
increase in MSE.

We note here that (joint) entropy coding of SQ indices can be used
to similar effect. In particular, such entropy coding can overcome (only)
the first deficiency of SQ described above. We will have more to say
on this matter in subsequent sections. In what follows however, unless
specifically stated otherwise, “SQ” refers to non-entropy coded scalar
quantization.

3.4.1 ANALYSIS OF VQ
THE TYPICAL REGION

To gain more insight into the first deficiency of SQ, we now examine
the high probability (or typical) region of a continuous process. This
region is governed by the joint PDF of {X,}. In the proof of Theorem
2.4, we saw that for IID discrete processes there is a set of typical vectors
(sequences) that are (roughly) equally likely. Furthermore, the proba-
bility of getting a sequence outside this set becomes vanishingly small
as m gets large. This concept extends naturally to the continuous case.
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Figure 3.10. High probabilty region: a) Circular region of radius 8. b) Similar, but
elliptical.

To this end, let the typical set for a continuous process be given by

T (m,é) = {x():m : —% logs fxe.m (Xo:m) — R(X)| < (5} (3.40)

The volume of this set is

Vol(T (m, 6)) :/---/darodarl...d:cm_l :/-.-/dx&m

Theorem 3.6 AFEP for Continuous IID Processes

Let {X,} be a sequence of IID random variables with marginal PDF
fx(z). Then for any 6 > 0 and € > 0, there exists m suitably large so
that

1) P(Xom ¢ T (m,6)) <e
2) (1 _ 6) om(h(X)—6) < VOl(T (m, (5)) < om(h(X)+6)
Proof. The first property follows from the weak law of large numbers. Specifically,

m—1
1 1
——logy fXo.m (Xom) = —— Y log, fx(X:)

=0

— E[-log, fx(X)] =h(X) asm — o0
The right hand side of property 2 follows from

1 =/"-/fxO;m (x0:m) dX0im > // fXo.m (X0:m) dX0:m

T(m,6)

> /.../Q—m(h(x)+5)dx0,m (by equation (3.40))
T (m,8)
= 27RO T (m, 6))



Chapter 8: Quantization 119

The left hand side of property 2 follows from
1—e < PXom €T (m,6§) (from property 1)

= co fXO,m (xo:m) dXo.m

T (m,6)

< / / 278 4xo.m  (by equation (3.40))
T(m,8)

= 2~ ™AX)=Oo|(T (m, §))

"

It is worth noting that within the typical region, Xgq.n, is distributed
roughly uniformly. This follows from the definition of 7 (m, §). That is,
for xp.m € T (m, 0),

1
—;’L- 10g2 fXO:m (XO:m) = h(X)

or

fXO:m (XO:m) = 2—'mh(X)

Example 3.4 Consider the IID Gaussian case for which the typical set
satisfies

1 1
T 1085 fXo.m (X0:m) = H(X) = 3 log, 2mec?

or,
e 2 /9,2 1
———1og e7%3/2" | = Zlog, 2mec?
2 1;1 Vono? 2
Some algebra results in
1
1< 1
m ‘= m

Thus, the typical region for the IID Gaussian source consists of all vec-
tors lying near the surface of a sphere having radius vVmao?2. For large m,
the probability of a vector occurring far from this surface is vanishingly
small, and the distribution of vectors near this surface is uniform.

The following discussion can be carried out more generally, but for
simplicity, we limit ourselves to the IID Gaussian case from the example
above.

Since with very high probability, only vectors in the typical region
will occur, codewords should be placed only near the sphere surface.
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Actually, for large m, essentially all the volume of a sphere lies near its
surface, and it is reasonable (and in fact preferable for small to moderate
m) to distribute codewords throughout the entire interior of the sphere.
This was alluded to in the previous discussion of Figure 3.10a.

The fact that all the volume lies near the surface of the sphere follows

from noting that a sphere of radius p has volume given by
m/2 m

—op

Vol(S = —

and then considering the fraction of volume lying within € > 0 of the
surface. Specifically

VOIS (9) ~ Vol(S (p=¢) . (p—e\™
VoI(S (7)) =1 ( , )

which tends to 1 as m gets large.

VECTOR QUANTIZATION OF IID GAUSSIAN DATA

Consider populating the typical region with codewords having spher-
ical Voronoi regions each of radius

¢=/(m+2)D (3.42)

Since the distribution within the typical region is uniform, the distri-
bution within each (spherical) Voronoi region is also uniform, and we
have

1 )
~E [|| Xom — Ko || |X0.m € zq}
m / / VOI dXO:m
5 2<C?

_ ¢
= = (3.43)

The last equality above follows from [72, equation (4.642)], repeated here

as
/---/f(\/x%-l—----l—xfn_1>dx0:m

3 a?<¢2

_ 2,n.m/2 ¢ Im—l z)dz
= Ty J,
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Substituting equation (3.42) and ignoring the low probability event that
Xo.m falls outside the typical region, we have

1 A
d= “77—1 ZE [“ Xom — Xo:m “2 |X0:m € Iq P(XO:m € Iq)
q

=D P (Xom €1,
q
=D

The number of spheres of radius ¢ (number of codewords) required to
cover the typical region is

Vol(T (m, 6)) 2mh(X)

o

VoIS Q) ( i )

((5+)

M=

Substituting equations (3.6) and (3.42), and simplifying yields

o1 (3 +1) (5)"

M=
(m+ 2)"‘/2

Substituting Stirling’s formula, I' (a + 1) & V27« (%)a and solving for
the required rate yields

1
R=— lOgQ M
m
ullo 02-1—11 ik -I-llo mm
2B T T g B
which converges to
1 o?
fi=glay

as m grows large. Comparing to equation (3.9), we see that a VQ de-
signed in this fashion can achieve the rate-distortion function as m tends
to infinity.

In fact, this derivation is not completely rigorous. It ignores the un-
likely sequences that fall outside the typical set, and ignores the fact
that spheres do not pack. That is, spheres cannot be used to cover the
typical region without overlap. Nevertheless, the discussion provides
substantial intuition into the superiority of VQ over SQ, and motivates
the comparison of spherical vs. rectangular Voronoi regions in the sub-
section below.
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SPHERICAL VORONOI REGIONS

We can now examine the second deficiency stated earlier for SQ.
Specifically, the Voronoi regions induced by SQ are restricted to be rec-
tangular. For simplicity, assume cubic Voronoi regions with edges of
length a. Considering the equivalent scalar quantizer (with A = a), it
is then clear that the MSE is d = a?/12. To preserve the same rate as
in the previous discussion, we equate the volume of the Voronoi regions
so that

a™ = Vol (Z,) = Vol(S ()
™2 (4 )™ D2
ST

or
(m+2)7D
a = m—
r/m (2 +1)
with a resulting MSE of

a? (m+2)7D

12 1rYm (i)

Applying Stirling’s formula and simplifying yields

. e(m+2)17rD e,
6m (mm)/™ 6

Thus, as m grows we see that cubic Voronoi regions are inferior to spher-
ical Voronoi regions by a factor of me/6 = 1.53 dB.

Although spheres do not pack for any dimension 2 < m < 0o, spherical
Voronoi regions can be well approximated for large m. Much effort has
been spent investigating lattice structures for codewords with efficient
Voronoi regions. In two dimensions, the optimal shape is known to be
a regular hexagon. In higher dimensions, the optimal shape is generally
unknown, however lattices have been found [42] in dimensions m =
4,8,16, and 24 that achieve 0.37,0.65,0.86, and 1.03 dB (of the 1.53
dB possible), respectively. Trellis coded quantization (Section 3.5) can
achieve substantially all of the 1.53 dB difference.

DISCUSSION

The 1.53 dB difference between VQ (with cubic Voronoi regions) and
the distortion-rate function is no coincidence. We saw in Section 3.2.4,
that for IID processes, entropy coded uniform SQ also falls 1.53 dB short
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of the distortion-rate function. As discussed throughout this section, the
gap in performance between uncoded uniform SQ and the distortion-rate
function is comprised of two portions: a portion associated with the
high probability (or typical) region; and a portion associated with the
shape of the Voronoi region. In the previous subsection, we showed that
this latter portion is 1.53 dB. We can conclude from this (as claimed
just before Section 3.4.1) that entropy coding of SQ indices can obtain
(only) the gain associated with the typical region. We also conclude
that for IID processes, joint (or context dependent) entropy coding is
not required.’

As a final note, we point out that the optimal (spherical) Voronoi cell
shape is a property only of the MSE distortion measure and not the
PDF of {X,}. The typical region, on the other hand, is a function of
the PDF (but is independent of any distortion measure that might be
chosen). For example, the typical region for a Gaussian Markov process
lies near the surface of an ellipsoid (as hinted by Figure 3.10b), while
the typical region for Laplacian data lies near the surface of a “pyramid”
[57].

3.4.2 THE GENERALIZED LLOYD
ALGORITHM

As in the scalar case (m = 1), iterative techniques can be employed to
design VQ codebooks. The direct generalization of the Lloyd Algorithm
(with training data) from Section 3.2.1 appeared in [96] and resulted in
an explosion of research in the area of vector quantization. The resulting
algorithm is given by

The Generalized Lloyd Algorithm (with Training Data)

1) Given a set of training vectors, say 7 = {xo,X1,---, X||T|z 1h
choose an initial code C = {xo,xl, cXye1)set j=1,do =

)Lethz{xeT:Q(x):q}z{xeT:(X—xq) < (x —%g)?
vk # q}
3)5<q=”g” S x  ¢=0,1,...,M~1

2For Markov processes, MSE performance within 1.53 dB of the distortion-rate function can
still be achieved by entropy coding of uniform SQ indices. However conditional (context
dependent) entropy coding is required.
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5) If itjj—_di < € stop; else set j = 7+ 1 and go to step 2

The entropy coded scalar quantizer design algorithm of Section 3.2.3
generalizes in the same way to yield an entropy coded VQ design algo-
rithm [39)].

An unfortunate result of these algorithms is the potential for getting
caught in local minima. The codebook (and associated MSE perfor-
mance) can change significantly depending on the choice of the initial
codebook in step 1. Strategies for choosing the initial codebook, as well
as alternate design algorithms (e.g., simulated annealing) are discussed
in [69].

Another problem that plagues most VQ design algorithms is the lack
of structure among the resulting codewords. Although fast search tech-
niques may be found for small m, in general, exhaustive search must be
employed to implement the nearest neighbor encoding rule. That is, a
data vector xg.,, to be encoded must be compared to each codevector
Xq=01,....M = 2mE to find the one that minimizes the MSE.
Specifically,

ANCLEY
= argmin | —[x— %]
ge{0,1,...,M—-1} LT
Thus, the encoding complexity is proportional to the size of codebook
(M = 2™%) and grows exponentially in both m and R.

3.4.3 PERFORMANCE OF VECTOR
QUANTIZATION

According to Theorem 3.1, the MSE performance of VQ tends to the
distortion-rate function as m tends to infinity. Unfortunately, complex-
ity severely limits practically achievable values for m. For IID Gaussian
data at a rate of R = 2 bits/sample, m = 6 yields performance roughly
1 dB better than Lloyd-Max SQ (m = 1). For correlated Gaussian data,
improvements can be much more significant. For example, for a corre-
lation coefficient of » = 0.9, and a rate of R = 1 bit/sample, m = 6
provides roughly 6.5 dB improvement over non-entropy coded Lloyd-
Max SQ [69]. For comparison, entropy coded DPCM can provide about
7 dB, while uncoded DPCM provides only about 5.5 dB. )

The encoder complexity of VQ is significantly higher than that of en-
tropy coded DPCM which in turn is higher than that of uncoded DPCM.
On the other hand, the decoder complexity of VQ is negligible. It con-
sists of a simple table look-up operation. VQ also has an advantage in
error resiliency. If a bit error occurs in the communication of compressed
data, no more than m samples will be affected in the VQ case. Since
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DPCM contains a prediction feedback loop, error propagation can be
significant. Some form of damping is often included to reduce this effect

182).

3.4.4 TREE-STRUCTURED VQ

Tree-structured VQ (TSVQ) is a technique for reducing the search
complexity required in VQ. The basic idea of TSVQ is to search a series
of “small” codebooks to “home in” on the choice of a vector in the
codebook C. At level 0 (or the root) of the “tree” is a single codebook
Co of length m and size My = 2™, As before, a data vector X = X.m
is quantized to yield an index gy = Qo(x).

At level 1 of the tree, there are My codebooks C1,q, g0 =0,..., Mp—1.
Each of these codebooks is of length m and of size M; = 2™, As hinted
by the notation, if Qo(x) = qo, then x is subjected to C; 4, to get a second
index 1 = Q1,4 (x). At level 2 of the tree, there are M codebooks for
each choice of qp, denoted by Co 4041 @1 =0,..., M; — 1, each of length
m and of size My = 2mF2 If Q1,00 (X) = q1, then x is subjected to C2 49 4,
to yield g2 = Q2,49,q, (X), and so on. The union of all codebooks at the
final level (K — 1) forms the codebook of the TSVQ.

This situation is depicted in Figure 3.11. In this figure, there are
K = 3 levels with My = M; = My = 2 (Rg = Ry = Ry = 1/m).
At level 0 (the “root,” or “top” level), is one codebook Cy of size two.
The possible index selections are shown (on the two branches leaving
the root) as 0 and 1. At level 1, there are two codebooks, C; ¢ and
C1,1, each of size two, for a total of four codewords. At level 2, there
are four codebooks each of size two, for a total of eight codewords.
At this level, we have added “leaves” depicting the codewords of the
level 2 codebooks to emphasize that these (taken together) form the
codebook of the TSVQ. Specifically, C = {Xo,%1,...,%7},M = 8, and
R=21log,8=3/m.

More generally, at level 0, there is one codebook of size My = 2™f0,
At level 1, there are My codebooks, each of size M; = 2™ for a total of
MoM; = 2mFot+R1) codewords. At level 2, there are MyM; codebooks,
each of size My, for a total of MyM; My = 2mFe+la+R2) codewords. For
a K level tree, this continues until level K — 1, where there are

K-1 mKZ_IRk
M = H M, =2 #=o

k=0
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X0 X X, X3 X, X Xe X

Figure 3.11.  Binary tree structured VQ with K = 3 levels.

codewords. The rate of the resulting TSVQ is

1 K-1
R=—log, M = > Ry
k=0

Since one codebook must be searched at each level, the search com-

K-1

plexity of TSVQ is proportional to Y Mj. If the same size codebooks
k=0

are used at each level then

Ry =R/K (3.44)

With this choice, My = 2™k = 2mR/K 5o the total search complexity
is proportional to

K-1
> My, = K2mRIK (3.45)
k=0

The smallest complexity is achieved for the binary tree with My = 2, or
Ry, = 1/m. From equation (3.44), we then require K = mR levels in the
tree. Substituting in equation (3.45) results in a complexity proportional
to only 2mR. Thus, we see that the search complexity of TSVQ can grow
only linearly in rate and dimension (as opposed to exponentially as in
the full search case). The reader should verify however, that in this case,
the storage space required for the codewords is roughly doubled.

Many algorithms have been proposed for TSVQ design. One reason-
able approach is to use the generalized Lloyd algorithm to design Cp.
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The training set 7 can then be partitioned into My training sets
7710—_—{XE,T(:QO(X):(IO} QOZO,l,...,M()—l

These training sets can then be used to design the level 1 codebooks
Ci,p 9o =0,1,...,Mp — 1. The Ty, can then be further subdivided
based on the level 1 results, for use in training at level 2, and so on.

TSVQ PERFORMANCE

As mentioned in Section 3.2.6, it is generally not possible for more
than one of the embedded quantizers to be optimal. When m = 1, it
is easy to ensure that any single quantizer @)y satisfies the Lloyd-Max
conditions. We discussed this for the highest rate quantizer in Section
3.2.6. This is possible when m = 1 because the Voronoi regions are
intervals, and highly structured. Unfortunately, in the more general case,
it is difficult to ensure optimality for all but the lowest rate quantizer

Qo.
In fact, even if the final TSVQ codebook

C = UCK_l’qO:""qK——Q

is optimal, the search strategy imposed by the tree structure can render
the overall process suboptimal. Specifically, there is no guarantee that
for a given input x, the best X € C will be chosen. However, experimental
results show that for binary trees (Mo = My = --- = Mg = 2, or
Ry =Ry =--- = Rx_1 = 1/m), TSVQ can perform within about 1.0
dB of “full search” VQ for Gaussian Markov-1 processes. This gap can
be decreased considerably by increasing M} to only 4 [69).

EMBEDDED VQ

We close our discussion of VQ by noting that although TSVQ was
described above as a complexity reduction technique, it also provides
for embedded quantization. In fact, TSVQ is exactly the generalization
(to m > 1) of the embedded scalar quantizers discussed in Section 3.2.6.
Additionally, Figure 3.11 is just another representation of Figure 3.6
when m = 1.

As discussed above, x is first quantized using codebook Cj to yield an
index gg. This implies that x is in the Voronoi region Zjy of Q¢. x is then
requantized using codebook Cy, qg to yield an index gy, implying that x is
in the Voronoi region Zy, 4, of (1. Note that the Zy; 5, ¢1 =0,...,M;—1
necessarily form a partition of Zy, so that Zy, = (JZ4,q,- Continuing this

a
process, eventually x is quantized using codebook Cx_1 4,,.. to yield

HqK -2
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an index gx—1, implying that x € Zgy 4,....q—, of @x—1. The partition-
ing at this final level is such that Zg, 6, ar 0 = U Zgo, a0k —2.a61-
dK -1
From this discussion it should be clear that dropping qx_1 from the

index representation is equivalent to dropping the last level of the tree.
K—2

This results in a TSVQ with K — 1 levels and a rate of R = )  Ry.
k=0

Continuing to drop one level at a time, we see that embedded in the

K—1
index from the rate R = ) Ry TSVQ, is the corresponding index for
k=0

, J
all TSVQs of rates R= Y Ry j=0,1,...,K — 1. It is then clear that
k=0
dropping index bits in this fashion yields identical results as if TSVQ

had been performed at the lower rates in the first place.

3.5 TRELLIS CODED QUANTIZATION

Trellis coded quantization (TCQ) [104] is a special case of trellis cod-
ing [56, 169]. TCQ borrows ideas from communication theory to achieve
better MSE performance at lower complexity than previous trellis cod-
ing systems. Specifically, TCQ employs the trellises and set partitioning
ideas from trellis coded modulation [153] to achieve MSE performance
very close to that promised by rate-distortion theory.

3.5.1 TRELLIS CODING

A trellis is nothing more than a state transition diagram (that takes
time into account) for a finite state machine. Consider the 4 state ma-
chine shown in Figure 3.12. In this machine, each of the boxes (labeled
t, and tp) are binary storage elements (of a shift register) and the circle
containing “+” represents modulo-2 addition, or “exclusive OR” (i.e.,
0+0=1+1=0,0+1=1+0=1). The (binary) input to the machine
is labeled u, while z; and 2z are the (binary) outputs. The state of the
machine is simply the contents of the storage elements. For example, if
t;1 = 1 and ty = 0, the state of the machine is written as ttg = 10 = 2.

Figure 3.13 shows the state transition diagram for the machine of
Figure 3.12. In this diagram, each circle represents a state of the machine
and the binary number inside each circle is the number or label of that
state (i.e., t1tg). The arrows represent state transitions, while the labels
on each arrow indicate the input necessary to cause that transition,
together with the associated output. Each of these labels is of the form
u/z129. For example, if the machine is in state 01 = 1 and u = 0 is input,
the next state will be 00 = 0 and the output will be z;29 = 10 = 2.
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Zi
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u t o

Zo

Figure 8.12.  Block diagram of a finite state machine (with four states).

Figure 3.13.  State transistion diagram for the machine of Figure 3.12.

Similarly, if a 1 is input, the next state will be 10=2, and the output
will be 00 = 0.

Trellises are used to study sequences of state transitions, or equiv-
alently, sequences of states. A typical trellis is diagrammed in Figure
3.14. Each column of heavy dots (or nodes) represents the four possible
states at one point in time. The states are implicitly labeled 0, 1, 2, and
3 from top to bottom. Each branch in the trellis represents a transition
from one state to another, at the next point in time (next stage). The
reader should verify that the trellis in Figure 3.14 is equivalent to the
state machine of Figure 3.12 and the state transition diagram of Figure
3.13.

Specifying a path through the trellis is equivalent to specifying a se-
quence of states or state transitions. Given an initial state at the left
edge of the trellis, such a path can be specified by a sequence of 1’s and
0’s (the associated binary input sequence, u).

A rich class of trellises having 2 branches entering and leaving each
state can be specified by the machine of Figure 3.15. In the communi-
cation theory literature, machines of this type are known as rate 1/2
feedback-free convolutional encoders [63]. Trellises derived from the
machine in this figure have N = 2V states. The parameters h/ =
(Rl Rl _1,...,h}), 5 = 0,1 are called parity check coefficients. The bi-
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Figure 3.14.  Trellis for the machine of Figure 3.12.
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Figure 3.15. Finite state machine with N = 2" states.

nary values hg specify whether or not a connection is present in Fig-
ure 3.15. The values for h’ used in this text are from [154], and are
given in Table 3.5. It is important to note that the parity check co-
efficients given in this table are in octal. For example, the finite state
machine of Figure 3.12 (and hence, the trellis of Figure 3.14) are ob-
tained from h® = 5 = (1,0,1) and h! = 2 = (0,1,0). Similarly, the
eight-state trellis of Figure 3.16 is obtained from h® = 13 = (1,0,1,1)
and h! = 04 = (0,1,0,0).

In a fixed rate trellis code, there are 2% (with R > 0 an integer)
branches leaving each trellis state and hence, any path through the trellis
starting from a given initial state can be specified by a sequence of R bit
indices. A method for constructing trellises of this type will be given in
Section 3.5.2.
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