
JPEG2000
Image Compression Fundamentals,
Standards and Practice

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

JPEG2000
Image Compression Fundamentals,
Standards and Practice

DAVID S. TAUBMAN
Senior Lectuer, Electrical Engineering and Telecommunications
The University of New South Wales
Sydney, Australia

MICHAEL W. MARCELLIN
Professor, Electrical and Computer Engineering
The University of Arizona
Tucson, Arizona, USA

Springer Science+Business Media, LLC

Library of Congress Cataloging-in-Publication Data

Taubman, David S.
JPEG2000: image compression fundamentals, standards, and practice I David S.
Taubman, Michael W. Marcellin.

p. cm.-(The Kluwer international series in engineering and computer science; SECS 642)
Includes bibliographical references and index.

Additional material to this book can be downloaded from http://extras.springer.com.

ISBN 978-1-4613-5245-7 ISBN 978-1-4615-0799-4 (eBook)
978-1-4615-0799-4 DOI 10.1007/

I. JPEG (Image coding standard) 2. Image compression. I. Mareeil in, Michael W. II.
Title. 111. Series.

TK6680.5 .T38 2002
006.6-dc21

200I038589

Copyright © 2002 by Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 2002
Softcover reprint of the bardeover Ist edition 2002
Third Printing 2004.
Kakadu source code copyright © David S. Taubman and Unisearch Limited
JPEG2000 compressed images copyright © David S. Taubman

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, mechanical, photo­
copying, recording, or otherwise, without the prior written permission of the
publisher, Springer Science+Business Media, LLC.

Printedon acid-free paper.

to Mandy, Samuel and
Joshua,

Therese, Stephanie and
Sarah

Contents

Preface

Acknowledgments

Part I Fundamental Concepts

1. IMAGE COMPRESSION OVERVIEW
1.1 Elementary Concepts

1.1.1 Digital Images
1.1.2 Lossless and Lossy Compression
1.1.3 Measures of Compression

1.2 Exploiting Redundancy
1.2.1 Statistical Redundancy
1.2.2 Irrelevance

1.3 Elements of a Compression System
1.3.1 The Importance of Structure
1.3.2 Coding
1.3.3 Quantization
1.3.4 Transforms

1.4 Alternative Structures

2. ENTROPY AND CODING TECHNIQUES
2.1 Information and Entropy

2.1.1 Mathematical Preliminaries
2.1.2 The Concept of Entropy
2.1.3 Shannon's Noiseless Source Coding Theorem
2.1.4 Elias Coding

2.2 Variable Length Codes
2.2.1 Huffman Coding
2.2.2 Golomb Coding

2.3 Arithmetic Coding
2.3.1 Finite Precision Realizations
2.3.2 Binary Encoding and Decoding
2.3.3 Length-Indicated Termination

XVll

XXI

3
3
3
5
8
9
9
10
13
13
14
15
16
17

23
23
24
28
33
36
43
47
52
56
56
60
64

Vlll Contents

2.3.4 Multiplier-Free Variants
2.3.5 Adaptive Probability Estimation
2.3.6 Other Variants

2.4 Image Coding Tools
2.4.1 Context Adaptive Coding
2.4.2 Predictive Coding
2.4.3 Run-Length Coding
2.4.4 Quad-Tree Coding

2.5 Further Reading

65
71
77
77
77
81
82
83
85

3. QUANTIZATION 87
3.1 Rate-Distortion Theory 87

3.1.1 Source Codes 87
3.1.2 Mutual Information and the Rate-Distortion Function 88
3.1.3 Continuous Random Variables 90
3.1.4 Correlated Processes 95

3.2 Scalar Quantization 97
3.2.1 The Lloyd-Ma'<: Scalar Quantizer 98
3.2.2 Performance of the Lloyd-Max Scalar Quantizer 101
3.2.3 Entropy Coded Scalar Quantization 102
3.2.4 Performance of Entropy Coded Scalar Quantization 105
3.2.5 Summary of Scalar Quantizer Performance 108
3.2.6 Embedded Scalar Quantization 109
3.2.7 Embedded Deadzone Quantization 111

3.3 Differential Pulse Code Modulation 113
3.4 Vector Quantization 115

3.4.1 Analysis of VQ 117
3.4.2 The Generalized Lloyd Algorithm 123
3.4.3 Performance of Vector Quantization 124
3.4.4 Tree-Structured VQ 125

3.5 Trellis Coded Quantization 128
3.5.1 Trellis Coding 128
3.5.2 Fixed Rate TCQ 132
3.5.3 The Viterbi Algorithm 134
3.5.4 Performance of Fixed Rate TCQ 136
3.5.5 Error Propagation in TCQ 138
3.5.6 Entropy Coded TCQ 139
3.5.7 Predictive TCQ 142

3.6 Further Reading 142

4. IMAGE TRANSFORMS 143
4.1 Linear Block Transforms 143

4.1.1 Introduction 143
4.1.2 Karhunen-Loeve Transform 151
4.1.3 Discrete Cosine Transform 155

4.2 Subband Transforms 160
4.2.1 Vector Convolution 160
4.2.2 Polyphase Transfer Matrices 161

4.2.3 Filter Bank Interpretation
4.2.4 Vector Space Interpretation
4.2.5 Iterated Subband Transforms

4.3 Transforms for Compression
4.3.1 Intuitive Arguments
4.3.2 Coding Gain
4.3.3 Rate-Distortion Theory
4.3.4 Psychovisual Properties

5. RATE CONTROL TECHNIQUES
5.1 More Intuition

5.1.1 A Simple Example
5.1.2 Ad Hoc Techniques

5.2 Optimal Rate Allocation
5.3 Quantization Issues

5.3.1 Distortion Models
5.4 Refinement of the Theory

5.4.1 Non-negative Rates
5.4.2 Discrete Rates
5.4.3 Better Modeling for the Continuous Rate Case
5.4.4 Analysis of Distortion Models
5.4.5 Remaining Limitations

5.5 Adaptive Rate Allocation
5.5.1 Classification Gain

6. FILTER BANKS AND WAVELETS
6.1 Classic Filter Bank Results

6.1.1 A Brief History
6.1.2 QMF Filter Banks
6.1.3 Two Channel FIR 'ITansforms
6.1.4 Polyphase Factorizations

6.2 Wavelet'ITansforms
6.2.1 Wavelets and Multi-Resolution Analysis
6.2.2 Discrete Wavelet Transform
6.2.3 Generalizations

6.3 Construction of Wavelets
6.3.1 Wavelets from Subband Transforms
6.3.2 Design Procedures
6.3.3 Compression Considerations

6.4 Lifting and Reversibility
6.4.1 Lifting Structure
6.4.2 Reversible Transforms
6.4.3 Factorization Methods
6.4.4 Odd Length Symmetric Filters

6.5 Boundary Handling
6.5.1 Signal Extensions
6.5.2 Symmetric Extension
6.5.3 Boundaries and Lifting

Contents IX

163
168
176
182
183
186
194
199

209
210
210
212
212
215
216
217
218
219
220
223
227
227
228

231
231
231
232
235
244
247
248
256
259
262
262
272
278
281
281
286
289
293
295
296
297
299

x Contents

6.6 Further Reading 301

7. ZERO-TREE CODING 303
7.1 Genealogy of Subband Coefficients 304
7.2 Significance of Subband Coefficients 305
7.3 EZW 306

7.3.1 The Significance Pass 308
7.3.2 The Refinement Pass 308
7.3.3 Arithmetic Coding of EZW Symbols 311

7.4 SPIRT 313
7.4.1 The Genealogy of SPIRT 313
7.4.2 Zero--Trees in SPIRT 314
7.4.3 Lists in SPIRT 315
7.4.4 The Coding Passes 315
7.4.5 The SPIRT Algorithm 316
7.4.6 Arithmetic Coding of SPIRT Symbols 320

7.5 Performance of Zero--Tree Compression 321
7.6 Quantifying the Parent-Child Coding Gain 323

8. HIGHLY SCALABLE COMPRESSION 327
8.1 Embedding and Scalability 327

8.1.1 The Dispersion Principle 327
8.1.2 Scalability and Ordering 329
8.1.3 The EBCOT Paradigm 333

8.2 Optimal Truncation 339
8.2.1 The PCRD-opt Algorithm 339
8.2.2 Implementation Suggestions 345

8.3 Embedded Block Coding 348
8.3.1 Bit-Plane Coding 349
8.3.2 Conditional Coding of Bit-Planes 352
8.3.3 Dynamic Scan 360
8.3.4 Quad-Tree Coding Approaches 369
8.3.5 Distortion Computation 375

8.4 Abstract Quality Layers 379
8.4.1 From Bit-Planes to Layers 379
8.4.2 Managing Overhead 382

8.5 Experimental Comparison 389
8.5.1 JPEG2000 versus SPIRT 389
8.5.2 JPEG2000 versus SBHP 394

Part II The JPEG2000 Standard

9. INTRODUCTION TO JPEG2000 399
9.1 Historical Perspective 399

9.1.1 The JPEG2000 Process 401
9.2 The JPEG2000 Feature Set 409

9.2.1 Compress Once: Decompress Many Ways 410

9.2.2 Compressed Domain Image Processing/Editing
9.2.3 Progression
9.2.4 Low Bit-Depth Imagery
9.2.5 Region of Interest Coding

10. SAMPLE DATA TRANSFORMATIONS
10.1 Architectural Overview

10.1.1 Paths and Normalization
10.2 Colour Transforms

10.2.1 Definition of the ICT
10.2.2 Definition of the RCT

10.3 Wavelet Transform Basics
10.3.1 Two Channel Building Block
10.3.2 The 2D DWT
10.3.3 Resolutions and Resolution Levels
10.3.4 The Interleaved Perspective

10.4 Wavelet Transforms
10.4.1 The Irreversible DWT
10.4.2 The Reversible DWT

10.5 Quantization and Ranging
10.5.1 Irreversible Processing
10.5.2 Reversible Processing

10.6 ROI Adjustments
10.6.1 Prioritization by Scaling
10.6.2 The Max-Shift Method
10.6.3 Impact on Coding
10.6.4 Region Mapping

11. SAMPLE DATA PARTITIONS
11.1 Components on the Canvas
11.2 Tiles on the Canvas

11.2.1 The Tile Partition
11.2.2 Tile-Components and Regions
11.2.3 Subbands on the Canvas
11.2.4 Resolutions and Scaling

11.3 Code-Blocks and Precincts
11.3.1 Precinct Partition
11.3.2 Subband Partitions
11.3.3 Precincts and Packets

11.4 Spatial Manipulations
11.4.1 Arbitrary Cropping
11.4.2 Rotation and Flipping

12. SAMPLE DATA CODING
12.1 The MQ Coder

12.1.1 MQ Coder Overview
12.1.2 Encoding Procedures
12.1.3 Decoding Procedures

Contents Xl

411
413
415
415

417
417
419
420
421
422
423
423
428
430
431
433
433
435
436
436
441
442
443
445
446
447

449
450
451
452
454
455
456
458
458
460
463
464
465
467

473
473
473
477
481

xu Contents

12.2 Embedded Block Coding
12.2.1 Overview
12.2.2 State Information
12.2.3 Scan and Neighbourhoods
12.2.4 Encoding Procedures
12.2.5 Decoding Procedures

12.3 MQ Codeword Termination
12.3.1 Easy Termination
12.3.2 Truncation Lengths

12.4 Mode Variations
12.4.1 Individual Mode Switches
12.4.2 Modes for Coder Parallelism
12.4.3 Modes for Error Resilience

12.5 Packet Construction
12.5.1 Pack-Stream Structure
12.5.2 Anatomy of a Packet
12.5.3 Packet Header
12.5.4 Length Coding

13. CODE-STREAM SYNTAX
13.1 Code-Stream Organization

13.1.1 Progression
13.2 Headers

13.2.1 The Main header
13.2.2 Tile Headers
13.2.3 Tile-Part Headers
13.2.4 Packet Headers

13.3 Markers and Marker Segments
13.3.1 Start of Code-stream (SOC)
13.3.2 Start of Tile (SOT)
13.3.3 Start of Data (SOD)
13.3.4 End of code-stream (EOC)
13.3.5 Image and tile size (SI2)
13.3.6 Coding style default (COD)
13.3.7 Coding Style Component (COC)
13.3.8 Quantization Default (QCD)
13.3.9 Quantization Component (QCC)
13.3.10Region of Interest (RGN)
13.3.11 Progression Order Change (POC)
13.3.12Tile-part Lengths: Main Header (TLM)
13.3.13Packet Lengths: Main Header (PLM)
13.3.14Packet Lengths: Tile-Part (PLT)
13.3.15 Packed Packet Headers: Main Header (PPM)
13.3.16Packed Packet Headers: Tile-Part (PPT)
13.3.17Start of Packet (SOP)
13.3.18End of Packet Header (EPH)
13.3.19 Component Registration (CRG)
13.3.20Comment (COM)

484
484
487
489
490
492
495
495
497
502
502
508
509
513
513
514
516
520

523
523
524
533
534
536
537
539
539
540
541
543
543
543
545
549
551
553
554
555
560
562
564
565
567
568
569
570
572

Contents Xlll

14. FILE FORMAT 573
14.1 File Format Organization 574

14.1.1 The structure of a Box 575
14.2 JP2 Boxes 576

14.2.1 The JPEG2000 signature box 576
14.2.2 The File Type Box 577
14.2.3 The JP2 Header Box 578
14.2.4 The Contiguous Code-Stream Box 591
14.2.5 The IPR Box 591
14.2.6 XML Boxes 591
14.2.7 UUID Boxes 591
14.2.8 UUID Info Boxes 592

14.3 Discussion 594

15. PART 2 EXTENSIONS 597
15.1 Variable Level Offset 598
15.2 Non-Linear Point Transform 599
15.3 Variable Quantization Deadzones 599
15.4 Trellis Coded Quantization 600
15.5 Visual Masking 601

15.5.1 Discussion 602
15.6 Wavelet Transform Extensions 603

15.6.1 Wavelet Decomposition Structures 603
15.6.2 User Definable Wavelet Kernels 607
15.6.3 Single Sample Overlap Transforms 611

15.7 Multi-component Processing 614
15.7.1 Linear Block Transforms 616
15.7.2 Dependency Transforms 618
15.7.3 Wavelet Transforms 619

15.8 Region of Interest Coding 620
15.9 File Format 620

Part III Working with JPEG2000

16. PERFORMANCE GUIDELINES 625
16.1 Visual Optimizations 625

16.1.1 CSF Based Optimizations 625
16.1.2 Weights for Color Imagery 628
16.1.3 Subjective Comparison of JPEG2000 with JPEG 631
16.1.4 Exploiting Visual Masking 633

16.2 Region of Interest Encoding 637
16.2.1 Max-Shift ROI Encoding 638
16.2.2 Implicit ROI Encoding 639

16.3 Bi-Level Imagery 641

17. IMPLEMENTATION CONSIDERATIONS 645
17.1 Block Coding: Software 645

XIV Contents

17.1.1 MQ Coder Tricks
17.1.2 State Broadcasting
17.1.3 Dequantization Signalling

17.2 Block Coding: Hardware
17.2.1 Example Architecture
17.2.2 Throughput Enhancements
17.2.3 Opportunities for Parallelism
17.2.4 Distortion Estimation

17.3 DWT Numerics
17.3.1 BIBO Analysis Gain
17.3.2 Reversible Transforms
17.3.3 Fixed Point Irreversible Transforms

17.4 DWT Structures
17.4.1 Pipelining of DWT Stages
17.4.2 Memory and Bandwidth
17.4.3 On-Chip Resources

17.5 System Considerations
17.5.1 Coded Data Buffering
17.5.2 Bandwidth Reduction
17.5.3 Putting it all Together

17.6 Available Hardware

18. COMPLIANCE
18.1 A System of Guarantees
18.2 Code-Stream Profiles
18.3 Decompressor Guarantees

18.3.1 Parsing Obligations
18.3.2 Block Decoding Obligations
18.3.3 Transformation Obligations
18.3.4 Compliance Classes

Part IV Other Standards

19. JPEG
19.1 Overview
19.2 Baseline JPEG

19.2.1 Sample Transformations
19.2.2 Category Codes
19.2.3 Run-Value Coding
19.2.4 Variable Length Coding
19.2.5 Components and Scans

19.3 Scalability in JPEG
19.3.1 Successive Approximation
19.3.2 Spectral Selection
19.3.3 Hierarchical Refinement
19.3.4 Comparison with JPEG2000

20. JPEG-LS

645
648
652
653
654
658
664
665
666
666
667
669
675
675
677
688
690
690
692
694
695

697
698
699
702
704
709
711
714

719

719

721
721
724
726
728
729
730
731
733
734
735

737

Contents xv

20.1 Overview 737
20.1.1 Context Neighbourhood 738
20.1.2 Normal and Run Modes 738
20.1.3 Near Lossless Compression 740

20.2 Normal Mode Coding 741
20.2.1 Prediction 741
20.2.2 Golomb Coding of Residuals 742

20.3 Run Mode Coding 748
20.3.1 Golomb Coding of Runs 748
20.3.2 Interruption Sample Coding 750

20.4 Typical Performance 751

References 755

Index 765

Preface

JPEG2000 is the most recent addition to a family of international
standards developed by the Joint Photographic Experts Group (JPEG).
The original JPEG image compression standard has found wide accep­
tance in diverse application areas, including the internet, digital cam­
eras, and printing and scanning peripherals. Image compression plays
a central role in modern multi-media communications and compressed
images arguably represent the dominant source of internet traffic to­
day. The JPEG2000 standard is intended as the successor to JPEG in
many of its application areas. It is motivated primarily by the need for
compressed image representations which offer features increasingly de­
manded by modern applications, while also offering superior compression
performance.
This text is written to serve the interests of a wide readership and to

facilitate the adoption of the JPEG2000 standard by providing the tools
needed to efficiently exploit its capabilities. The book is organized into
four parts and is accompanied by a comprehensive software implemen­
tation of the standard. The first part provides a thorough grounding in
the theoretical underpinnings and fundamental algorithms contributing
to the standard. Although the elements of the original JPEG standard
are carefully expounded in a large body of existing works, JPEG2000
employs fundamentally different approaches and many recently devel­
oped techniques to achieve its goals. This first part of the book provides
in-depth coverage of a diverse range of topics, which have not previ­
ously been brought together in a single volume. The intent is not only
to provide a backdrop to the JPEG2000 standard, but also to serve the
needs of students and academics interested in modern image compression
techniques.
The second part of the book is devoted to a thorough description of

the JPEG2000 standard. This material is intended to serve as a compre-

XVlll

hensive reference for implementors of the standard. The authors draw
upon their extensive involvement with the development of JPEG2000 to
shed light on all technical aspects of JPEG2000 Part 1. Treatment of
JPEG2000 Part 2 (extensions) is less comprehensive. Parts I and II of
the book are written so as to complement one another. The book offers
at least two different perspectives on many of the key concepts, with
Part I offering the more theoretical perspective and Part II offering the
more practical. As far as possible, Part II of the book strives to provide
an accessible description of the standard, which can be comprehended
without first absorbing the more theoretical material in Part 1.
The third part of the book addresses practical considerations for im­

plementing and efficiently utilizing the standard. The intention is to
impart a body of knowledge acquired by the authors through their in­
volvement in developing the standard, including software and hardware
implementation strategies and guidelines for selecting the most appro­
priate parameters for a variety of applications. This part of the book
also deals with compliance testing and related matters.
The fourth and final part of the book provides a useful introduction

to other image compression standards, namely JPEG and JPEG-LS.
The purpose of this material is twofold. In the first place, these much
simpler standards provide excellent practical examples of some of the
image compression techniques which are treated in Part I of the book,
but do not find expression in JPEG2000. Secondly, JPEG and JPEG­
LS provide the most important alternatives to JPEG2000 in its two
most important fields of application: lossy and lossless compression of
continuous tone imagery. Only by describing these standards is the text
able to offer meaningful comparisons with JPEG2000. In some cases,
particularly those in which scalability and accessibility are not sought­
after features, the use of JPEG2000 in preference to JPEG or JPEG-LS
may be likened to using a sledge hammer to swat a fly. Part IV of the
book should prove a useful guide to application developers wishing to
avoid such excesses.
Included with the book is a compact disc, containing documentation,

binaries and all source code to the Kakadu software tools. This software
provides a complete C++ implementation of JPEG2000 Part 1, demon­
strating many of the principles described in the text itself. The software
is frequently referenced from the text as an additional resource for un­
derstanding complex or subtle aspects of the standard. Conversely, the
software makes frequent reference to this text and has been written to
mesh with the terminology and notation employed herein. The Kakadu
tools have been commercially licensed by a significant number of corpora­
tions. Non-commercial licenses are also sold separately by the University

Preface XiX

of New South Wales and the software may otherwise be obtained only
with the purchase of this book. A copy of the non-commercial license
granted with this book may be found at the back cover. Provisions are
also in place to encourage site-licensing by Universities whose libraries
own a copy of the book. For more information in this regard, refer to
the compact disc itself and the accompanying license statement.

Acknowledgments

There are many individuals without whom this work would never have
come to pass. To our colleagues in the JPEG working group, WGl, we
extend our most sincere gratitude. Their cooperative endeavours and
determination to see this new standard meet the communication needs
of the modern world have shaped JPEG2000. We especially thank the
tireless editor of the standard, Martin Boliek, for his instrumental role
in initiating the standardization process and his extensive and ongoing
contribution in documenting and solidifying the JPEG2000 technology.
We thank the WGI convener, Daniel Lee, and the coeditors, Eric Majani
and Charis Christopoulos, for their many labours in keeping the standard
on track. Also deserving of special thanks is Thomas Flohr, for his
outstanding support of the JPEG2000 Verification Model software.
We would like to thank the many individuals who have encouraged

us in this work and especially Michael Gormish, Jim Andrew and Ali
Bilgin, whose feedback has significantly improved the quality of the text.
Finally, and above all, we acknowledge the encouragement, love and
support of our wives and families, whose sacrifice and generosity has
enabled us to find the energy to write.

I

FUNDAMENTAL CONCEPTS

Chapter 1

IMAGE COMPRESSION OVERVIEW

1.1
1.1.1

ELEMENTARY CONCEPTS
DIGITAL IMAGES

For our purposes an image is a two dimensional sequence of sample
values,

X[nI,n2] , 0::; nI < NI, 0::; n2 < N2,

having finite extents, N I and N2, in the vertical and horizontal direc­
tions, respectively. The term "pixel," where used here, is to be under­
stood as synonymous with an image sample. The first coordinate, nI is
understood as the row index, while the second coordinate, n2, is under­
stood as the column index of the sample or pixel. This is illustrated in
Figure 1.1.
The sample value, x [nI' n2], represents the intensity (brightness) of

the image at location [nI' n2]. The sample values will usually be B-bit
signed or unsigned integers. Thus,

x [nI' n2] E {O, 1, ... ,2B
- I} for unsigned imagery

x [nI, n2] E { - 2B- I , _2B- I + 1, ... ,2B - 1 - I} for signed imagery
Most commonly encountered digital images have an unsigned B = 8 bit
representation, although larger bit-depths are frequently encountered in
medical, military and scientific applications. In many cases, the B-bit
sample values are best interpreted as uniformly quantized representa­
tions of real-valued quantities, x' [nI' n2], in the range 0 to 1 (unsigned)
or -~ to ~ (signed). Letting (-) denote rounding to the nearest integer,
the relationship between the real-valued and integer sample values may
be written as

(1.1)

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

4 Elementary Concepts

column index

o 2

0

I

2
x
!l)

-0
c:

3 n l
0...

I j ! I
__I__....l-..J .I--. .L__._._...._. ._. ._. .~. _

i !! I} I

I I I i
I I I r--;

--.--L-···-~--·-l·--·---····--·-j---·-·-i.-.--.-.-.----.-- -_._--
I I I I I x[n p n2 J

-+--1 I j j~-------j----j
I I I i--1,:11

1

----1 r------,
I iii,-) -.L-r--l------r--··,-·---·--·--.-------t"-

Figure 1.1. Interpretation of image sample coordinates

Colour images are typically represented with three values per sample
location, corresponding to red, green and blue primary colour compo­
nents. We represent such images with three separate sample sequences,
xR [nl,n2], Xc [nl,n2] and XB [nl,n2]. More generally, we may have an
arbitrary collection of image components,

Images prepared for colour printing often have four colour components
corresponding to cyan, magenta, yellow and black dyes; in fact, some
colour printers add green and violet for six primary colour components.
Hyperspectral satellite images can have hundreds of image components,
corresponding to different regions of the spectrum. For the most part
we shall restrict our attention to a single image component, with the
understanding that it is always possible to apply a compression system
separately to each component in turn.
The degree to which an image may be compressed depends upon its

content. For this reason, we often refer to particular classes of imagery.
Some useful classifications are:

Natural Images representing natural scenes, including photographic
images.

Text Images representing scanned or computer generated text, e.g., fac­
simile images.

Chapter 1: Image Compression Overview 5

Graphics Scanned or computer generated graphics such as line-art and
comICS.

Compound Images which typically contain a mixture of the above
three types of content, e.g., scanned documents.

Unless otherwise stated, we will be primarily concerned with natural
images in this text.

1.1.2 LOSSLESS AND LOSSY COMPRESSION
The primary goal of lossless compression is to minimize the number of

bits required to represent the original image samples without any loss of
information. All B bits of each sample must be reconstructed perfectly
during decompression. For image compression, however, some loss of
information is usually acceptable for the following three reasons:

• Significant loss can often be tolerated by the human visual system
without interfering with perception of the scene content.

• In most cases, digital input to the compression algorithm is itself an
imperfect representation of the real-world scene. This is certainly true
when the image sample values are quantized versions of underlying
real-valued quanties, as expressed in equation (1.1).

• Lossless compression is usually incapable of achieving the high com­
pression requirements of many storage and distribution applications.

Nevertheless, lossless compression is often demanded in medical ap­
plications so as to avoid legal disputation over the significance of errors
introduced into the imagery. Lossless compression is also often applied
in cases where it is difficult to determine how to introduce an acceptable
loss which will increase compression. In palettized colour images, for
example, a small error in the numeric sample value may have a drastic
effect upon the colour representation. The highly structured nature of
non-natural imagery such as text and graphics usually renders it more
amenable to lossless compression. Finally, lossless compression may be
appropriate in applications where the image is to be extensively edited
and recompressed so that the accumulation of errors from multiple lossy
compression operations may become unacceptable. We note, however,
that JPEG2000 allows certain common image editing operations such as
cropping and simple geometric manipulations to be performed as often
as desired without the accumulation of errors.

6 Elementary Concepts

LOSSY COMPRESSION AND DISTORTION
By allowing the introduction of small errors, it is natural to expect

that we should be able to represent the image approximately using a
smaller number of bits than is possible within the constraints of loss­
less compression. The more distortion we allow, the smaller the com­
pressed representation can be. The primary goal of lossy compression
is to minimize the number of bits required to represent an image with
an allowable level of distortion. Distortion of course must be assessed in
an appropriate manner. Formally, we write D (x, x), for the distortion
between the original image, x == x [nI' n2], and the reconstructed image,
x== x [nI' n2]'
The most commonly employed measure of distortion is MSE (Mean

Squared Error), defined by

N1-I N2- I

MSE ~ N
I

1
N

2
L L (x [nI' n2] - X [nI' n2])2
nl=O n2=O

For image compression, the MSE is most commonly quoted in terms of
the equivalent reciprocal measure, PSNR (Peak Signal to Noise Ratio),
defined by

6. (2B _1)2
PSNR = 10 10glO MSE (1.2)

The PSNR is expressed in dB (decibels). Good reconstructed images
typically have PSNR values of 30 dB or more.
The popularity of MSE as a measure for image distortion derives

partly from the ease with which it may be calculated and partly from
the tractability of linear optimization problems involving squared error
metrics. More appropriate measures of visual distortion are discussed
in Sections 4.3.4 and 16.1. At this point, however, it is worth pointing
out the importance of non-linearities in the most commonly encountered
image representations.

GAMMA CORRECTION
Display devices such as televisions and computer monitors are highly

non-linear in that the excitation power delivered to the phosphor is ap­
proximately proportional to v"f, where v is the control voltage applied
to the electron gun and, typically ranges from about 1.8 to 2.8. The
image sample values, x [nI' n2], are usually assigned so as to compensate
for such a non-linearity.
More specifically, let Xlin [nI' n2] denote the normalized scene radiance

at image location [nI' n2]' The normalization is such that X]in = 0 corre­
sponds to the absence of light and Xlin = 1 corresponds to the maximum

Chapter 1: Image Compression Overview 7

1.0r--------------------::o",

0.8

0.6
X'

0.4

0.2

o 0.2 0.4 0.6 0.8 1.0

Figure 1.2. The sRGB gamma function.

intensity level which we expect to encounter in the scene. The so-called
"gamma" function, with parameters, and {3, assigns similarly normal­
ized image sample values, x' [nIl n2], in the range 0 to 1, according to

where the linear breakpoint, c, and the gradient, g, are defined in terms
of"(and f3 by

{3
and 9 = --:--'----,-

c(r - 1)

These definitions ensure that the gamma function has a continuous deriv­
ative at the breakpoint, Xlin = c.
An emerging standard for the representation of colour images is the

sRGB (standard RGB) colour space, in which carefully defined linear
red, green and blue primaries are each mapped to non-linear RGB sample
values through the gamma function described above with parameters
"(= 2.4 and {3 = 0.055. The function is plotted in Figure 1.2.

It should be noted that most digital images encountered in practice
will be gamma corrected, which affects the interpretation of errors in­
troduced in the image sample values during compression. Ignoring the
small linear segment in the gamma function (or assuming that {3 = 0), so
that Xlin = (x')', we see that a small error, dx', in the gamma corrected

8 Elementary Concepts

value corresponds to a scene radiance error, dXlill' of

d (,),-1 d 'XliII =, X X

1-1 ,
= ,(Xlin) -y dx (1.3)

Thus, the scene radiance error will be larger in brighter regions of the
image. By a most fortunate coincidence (as opposed to design), this be­
haviour is well matched to a property of the human visual system known
as Weber's law. According to Weber's law, the change in scene radiance
dXlin, required to effect a just noticeable change in perceived brightness is
proportional to Xlin itself. For large values of" equation (1.3) indicates
that dXlin is approximately proportional to dx'. Thus, the gamma cor-

Xl lJl

rected values are more perceptually uniform measures of intensity than
linear scene radiance, Xlin' In this way, the effect of Weber's law is au­
tomatically accomodated in simple numerical distortion measures such
as MSE, provided they are applied to gamma corrected sample values.
Conversely, MSE turns out to be a much less useful measure of dis­

tortion when applied to image samples which have not been gamma
corrected. Lossy compression algorithms also yield substantially poorer
visual performance when applied to such images. Special care should
be taken when working with non-natural image sources; medical X-rays
and SAR (Synthetic Aperture Radar) images, for example, are often
encountered in linear form.

1.1.3 MEASURES OF COMPRESSION
The purpose of image compression is to represent the image with a

string of binary digits or "bits," called the compressed "bit-stream,"
denoted e. The objective is to keep the length, Ilell, as small as possible.
In the absence of any compression, we require N1N2B bits to represent
the image sample values, so we define the compression ratio as

• . b. N1N2 B
compreSSIOn ratIO = Ilell

Equivalently, we define the compressed bit-rate, expressed in bps (bits
per sample), as

bit-rate (bps) ~ JlSL
N1N2

For lossy compression, bit-rate is arguably a more meaningful perfor­
mance measure for image compression systems, since the least significant
bits of high bit-depth imagery can often be discarded without introduc­
ing substantial visual distortion. As a result, the average number of bits

Chapter 1: Image Compression Overview 9

Table 1.1. Typical compressed bit-rates.

Lossless Lossy quality
High Moderate Usable

B-3 bps 1 bps 0.5 bps 0.25 bps

spent in representing each image sample is often the more meaningful
measure of compression performance, regardless of the precision with
which these samples were originally represented.

If images are to be printed or displayed with a constant physical size
regardless of the pixel dimensions, a similar argument to that given
above suggests that the size of the bit-stream itself is a more meaningful
measure of performance than the bit-rate. In such applications, much
of the original image resolution may be lost during display so that the
compression algorithm could be applied to a reduced resolution version
of the image without incurring substantial distortion. In summary, the
bit-rate is a meaningful measure of lossy compression performance only
when N 1 and N2 are proportional to the physical dimensions with which
the image is to be printed or displayed.
Table 1.1 provides a rough indication of the compressed bit-rates

which may be achieved when compressing natural images, although there
can be substantial dependence on the content of the particular image.
The assumption here is that lossy reconstructed images are viewed on
a computer monitor with a typical resolution of about 90 pixels/inch
(22 pixels/mm). Higher compression ratios are usually achievable if the
image is to be printed with a much closer dot pitch.

1.2 EXPLOITING REDUNDANCY
Without any compression, the image sample values are represented

with N1N2B bits. Compression is only possible if some of these bits
may be understood as redundant. In this section we briefly discuss the
nature of this redundancy so as to motivate the operations introduced
in Section 1.3 which are common to most image compression systems.

1.2.1 STATISTICAL REDUNDANCY
Consider two B-bit integers, Xl,X2 E [0,1, ... ,2B -1]. As an ex­

ample, these integers might correspond to two adjacent image sample
values. Without compression, the two integers are represented using 2B
bits. Suppose, however, that the decompressor knows a priori that the
only values which will ever occur are °and 1; for example, the image

10 Exploiting Redundancy

might be known to be bi-Ievel. Clearly, then, it is sufficient to use only
one bit in the representation of each of Xl and X2 with a compression
ratio of B : 1. Suppose further that the decompressor knows a priori
that the two values are always identical. Then, of course, a single bit is
sufficient to represent the pair of numbers, with a compression ratio of
2B: 1.

Of course, the type of prior knowledge described above is uncommon
in practice. More commonly, the decompressor might know that some
subset of the possible values is more likely than the others. If the de­
compressor knows that Xl E {O, I} with very high probability then we
hope to be able to expend little more than 1 bit representing the actual
value of Xl. This hope is well founded. As we shall see in Chapter 2,
we expect on average to be able to spend as little as H (Xd bits where
Xl is a random variable, which summarizes the decompressor's a priori
knowledge concerning the value of Xl, and H (Xl) is a function of the
statistical distribution of Xl, known as its entropy.

Similarly, the decompressor might know that Xl and X2 are very likely
to be equal, perhaps because the image is smooth so that changes in
intensity between adjacent pixels is rare. In this case, we would hope to
be able to avoid spending many bits in representing X2 once the value of
Xl has already been identified in the compressed bit-stream. Again, this
hope is well founded. The relevant prior knowledge is summarized by
the joint statistics of the random variables, Xl and X 2 , corresponding
to the values, Xl and X2 and the expected number of bits required to
represent Xl given that X2 is already known to the decompressor is given
by the conditional entropy, H (X2!XI).

A thorough development of these concepts, along with practical cod­
ing tools which are able to exploit the redundancy is the subject of
Chapter 2. For the moment, however, it is sufficient to appreciate that
the average number of bits required to represent the image sample val­
ues without error depends upon their statistical properties. In the worst
case, if all possible combinations of sample values are equally likely, there
is no redundancy whatsoever and all NIN2B bits must be used. At the
opposite extreme, when a small number of samples provides sufficient in­
formation to predict the remaining samples with high probability, high
compression ratios can be achieved.

1.2.2 IRRELEVANCE

The form of redundancy described above allows us to exactly represent
the original sample values with a reduced number of bits. In many cases,
however, some of the information associated with these sample values

Chapter 1: Image Compression Overview 11

may be irrelevant so that it is unnecessary to represent the image exactly.
The following examples should help to clarify this point.

Visual irrelevance: If the image sample density exceeds the limits of
human visual accuity for any appropriate set of display and viewing
conditions, the excess image resolution is irrelevant to the human
observer. Visual irrelevance may arise in more complex ways, some
of which are addressed in Section 16.1.

Application specific irrelevance: In some applications, particularly
in the military and medical arenas, the value of an image may be de­
termined entirely by its usefulness in fulfilling some task; e.g., target
recognition or medical diagnosis. Regions of the image which do not
contribute to this task may then be taken to be irrelevant.

One way to exploit irrelevance is to transform the original image sam­
ple values to a new set of sample values which capture the relevant
information using fewer bits. In the simplest case, this transform might
involve sub-sampling or discarding the samples corresponding to irrele­
vant regions of the image. The statistical redundancy of the remaining
samples may be further exploited to improve compression.

IRRELEVANCE IN COLOUR IMAGERY
An interesting example of irrelevance occurs in colour imagery, where

the human viewer is substantially less sensitive to rapid changes in the
hue and saturation properties of the image than to intensity changes.
For image compression purposes, this property is usually modeled by
mapping the original RGB image samples to a luminance-chrominance
space using a linear transform and then sub-sampling the chrominance
components.
We illustrate this with the so-called YCbCr transform:

(
XY) (0.299 0.587 0.114) (XR)
xCb -0.169 -0.331 0.5 . xc
xCr 0.5 -0.419 -0.0813 XB

Note that the first chrominance component, xCb ' is a scaled version of
the difference between the original blue channel and the new luminance
(intensity) channel, specifically

xCb = 0.564 (XB - Xy)

Similarly, XCr is a red-luminance colour difference,

XCr = 0.713 (XR - Xy)

12 Elements of a Compression System

It is common to model the reduced visual sensitivity to rapid colour
changes by reducing the resolution of the chrominance channels. Specif­
ically, it is common to work with YCbCr representations in which the
chrominance components are sub-sampled by 2 in both the horizontal
and vertical directions. In this way, the eliminated samples are deemed
irrelevant.

IRRELEVANCE AND DISTORTION

Recall that the goal of a lossy compression system is to minimize
distortion for a given bit-rate or, equivalently, to minimize the bit-rate
for a given distortion. A suitable distortion measure should reflect the
relevance of information in the image. In particular, visually or otherwise
irrelevant information should have no impact on the distortion measure
whatsoever. That is, D (x, x) = 0 whenever the images x =x [nl' n2]
and x=:1; [Xl, X2] differ only in some irrelevant respect.
Suppose, for example, that x is obtained by interpolating a sub­

sampled version of the original image, x. Since x is represented with
fewer samples, it should be more easily compressed. Thus, provided the
additional spatial resolution associated with x is visually irrelevant, we
should have D (x, x) = 0 and a good lossy compression algorithm will
choose to code the sub-sampled representation.
In this way, irrelevance may be "automatically" exploited by a good

lossy compression algorithm provided the distortion measure which it is
attempting to minimize correctly reflects the relevance of different types
of information. This is possible within the framework offered by the
JPEG2000 image compression standard; this framework is the subject
of Chapter 8.
The role of the distortion measure is to capture the relative signifi­

cance of different types of distortion. Completely irrelevant information
may thus be viewed as an extreme case of the redundancy embodied by
the distortion measure. This situation parallels that of statistical redun­
dancy, discussed in Section 1.2.1, where the extreme case corresponds to
entirely deterministic relationships among the image samples.
We conclude by pointing out that there should be no need to explic­

itly sub-sample chrominance components of a YCbCr representation for
colour image compression, as suggested in the previous section, provided
the distortion measure which is minimized by the lossy compression sys­
tem correctly models the relative significance of spatial resolution in
the luminance and chrominance components. For this very reason, the
JPEG2000 standard does not explicitly offer a sub-sampled YCbCr rep­
resentation for colour image compression. The reader is referred to Sec­
tion 16.1.2 for a discussion of colour image compression with JPEG2000.

Chapter 1: Image Compression Overview 13

image reconstruction

x x

Figure 1.3. Compression viewed as a global mapping operation.

1.3 ELEMENTS OF A COMPRESSION
SYSTEM

Figure 1.3 depicts the compression and subsequent decompression sys­
tems as two mappings, M, and 1\11-1, respectively. For lossless compres­
sion, we require 1\11-1 = 1\11-1. For lossy compression, however, M is not
invertible, so we use the notation, M -1, to remind the reader that the
decompression system represents an approximate inverse. We can think
of the compressor as an enormous lookup table with 2N1N2B entries.
Compression systems may be classified as either "fixed length" or

"variable length." In the former case, the compressed bit-stream has a
fixed length, Ilell, and the reconstructed image distortion, D (x, x), will
vary from image to image. In the case of fixed length compression, we
can also think of the decompressor as an enormous lookup table with
211cll entries. Since the image is being compressed, Ilell should be much
smaller than N1N2B, so that the decompressor's lookup table is smaller
than that used during compression. In fact, an obvious way to construct
the compressor, 1\11, is to assign

c =1\11 (x) = argc~in D (x, 1\11-1 (e')) (1.4)

Thus, it is sufficient to maintain the smaller lookup table correspond­
ing to M-1 in both the compressor and the decompressor. The com­
pressor then selects the bit-stream whose reconstructed image will be
"closest" to the original in the sense induced by the appropriate distor­
tion measure. This approach has the desirable side effect that 1\11- 1 is a
right-inverse of 1\11; i.e.,

Such a compression system is said to be "idempotent" because the op­
erations of compression and decompression may be repeated indefinitely
without effecting the result produced by their first application.

1.3.1 THE IMPORTANCE OF STRUCTURE
The approach embodied by equation (1.4) is essentially the idea be­

hind Vector Quantization (VQ). The generality of the VQ approach is

14 Elements of a Compression System

image
x

bit-stream
c

reconstruction
i

Figure 1.4- Elements of a structured compression system.

attractive; however, the exponential growth in the size of the lookup
table for M-l renders it impractical for all but the smallest of images
having only a few samples. For practical image compression, it is nec­
essary to impose additional structure on the form of the maps, Ai! and
M-l. Although this can be done in various ways, our objective here is
to motivate the structure which is most commonly encountered in image
compression systems. This structure is illustrated in Figure 1.4. Some
alternative structures are discussed briefly in Section 1.4.
As depicted in Figure 1.4, the first step is to transform the original

image samples into a new set of samples, which are more amenable to
compression. For this step we write y =T (x), where y == y [k1, k2] is
another finite two dimensional sequence, having KIK2 elements. The
properties of the operator T will be discussed further shortly, but for
the moment we point out that the operator is usually invertible. The
decompressor employs the inverse transform, T- 1 , and no distortion is
introduced by this step. The second step is to represent the transform
samples approximately using a sequence of quantization indices. For this
step we write q = Q (y), where q == q [PI, P2] denotes the finite two di­
mensional sequence of quantization indices, having PIP2 elements. The
set of possible outcomes for each quantization index, q [PI, P2], is gener­
ally much smaller than that for the transform samples; also, the num­
ber of such quantization indices, PI P2, is no larger and may be smaller
than the number of transform samples, K 1K 2 . Thus, the quantization
mapping, Q, introduces distortion and the decompressor uses an ap­
proximate inverse, Q-l. Finally, the quantization indices are coded to
form the final bit-stream. We write c = C (q). This step is invertible
and introduces no distortion so that the decompressor may recover the
quantization indices as q = C- 1 (c).

1.3.2 CODING
The purpose of coding is to exploit statistical redundancy amongst

the quantization indices, q [Pl,P2], as introduced in Section 1.2.1. The

Chapter 1: Image Compression Overview 15

quantization and transform elements are designed in such a way as to
ensure that this redundancy is spatially localized. Ideally, the under­
lying random variables, Q [PI, P2], are all statistically independent. In
that case, the indices may be coded independently and the only form of
statistical redundancy which need be considered is that associated with
any non-uniformity in their probability distributions.
As a simple example suppose that there are four possible quantization

indices which we label q = 0,1,2,3, having probabilities,

{

1/2 if q = 0
p = = 1/4 if q = 1

(Q q) 1/8 if q = 2
1/8 if q = 3

An optimal code in this case represents each of the four possible out­
comes using the following bit strings:

q=O
q=l
q=2
q=3

"1"
"01"
"001"
"ODD"

That is, a prefix of q "O"s precedes the "1" which delineates the code­
words corresponding to distinct quantization indices. The average num­
ber of bits spent coding each sample is

1 1 1 1 3
- . 1 + - ·2+ - ·3+ - ·3= 1- bits
24884

which is less than the 2 bits which would be required to distinguish the
four possible indices without coding. In practical image compression
applications, much larger reductions in bit-rate are often possible.

It is not usually possible to ensure that the quantization indices are
statistically independent. However, so long as statistical interactions are
confined to the immediate neighbours of any given sample, it is often
possible to design efficient coding schemes with manageable complexity.
Coding is the subject of Chapter 2.

1.3.3 QUANTIZATION
Quantization is solely responsible for introducing distortion. For loss­

less compression there should be no quantization. In the simplest case
we might map each transform sample, y [k I , k2], independently to a cor­
responding quantization index, q [k1 , k2J. This is known as scalar quan­
tization; it is the simplest and most commonly employed form of quan­
tization. Scalar quantization associates each quantization index with an

16 Elements of a Compression System

y[k, k2]

• 0>--+;----+,-----..~
___V .../'--y-----Ji'--y-----Ji,'-__V-V__

II I 2 I) I 4

~q[k, ~]=2

Figure 1.5. Simple scalar quantizer with four output symbols.

interval on the real line according to

where the intervals, Ii, are disjoint and cover the real line l . As an
example, the scalar quantizer of Figure 1.5 maps each transform sample
to one of 4 distinct indices.
The approximate inverse quantization operator, Q-I, maps each in­

dex, q [k l , kz]' to some representation level in the corresponding interval,
iJ [k l , kz]. In the simplest case, we might select iJ [k l , kz]as the midpoint
of the interval, Iq[k

1
,k2]' From this elementary discussion, it should be

apparent that Q-I is a right-inverse of Q; i.e.,

Both scalar and more sophisticated quantization schemes are the subject
of Chapter 3.

1.3.4 TRANSFORMS
The transform is responsible for massaging the original image sam­

ples into a form which enables comparatively simple quantization and
coding operations. On the one hand, the transform should capture the
essence of statistical dependencies amongst the original image samples
so that the transform samples, y [k l , kz], and hence the quantization in­
dices, q [PI, pz]' exhibit at most only very local dependencies; ideally,
they should be statistically independent. On the other hand, the trans­
form should separate irrelevant information from relevant information so
that the irrelevant samples can be identified and quantized more heavily
or even discarded.
Fortunately, it is possible to construct transforms which at least par­

tially achieve both of these objectives simultaneously. Such transforms

I Strictly speaking, the Ii may be any disjoint cover of!R; however, there is no pract.ical value
in selecting t.he sets to be anything other than int.ervals.

Chapter 1: Image Compression Overview 17

o

o

o

o

o

o

o

o
\........_--, ~--_./

V
Image,x

\. .J
V

transfonn samples,y

Figure 1.6. Simple image transform example.

are the subject of Chapters 4 and 6. For the moment, however, we mo­
tivate the concept with a simple example. Taking the image in 2 x 2
blocks we may represent each block with the average sample value over
the block and the differences between any three of the samples and this
average; e.g.,

y [m, n] = { ~ I:i,jE{O,l} x [mm+ i, n ~ j]
x[m,n] -y [2 h-J ,2l2JJ

if m, n both even
otherwise

This transform is illustrated in Figure 1.6. The inverse transform is
obtained by setting

A [] = { 2y [m, n] - I:i,jE~O,l} Y[m + i, n + j]
x n,m y[m,n] +y l2l~J ,2l~JJ

if m, n both even
otherwise

The transform samples, y [m, n] with m or n odd, contain high resolution
details which may be discarded if the original image resolution exceeds
the visual accuity of the intended observer. Thus, this simple transform
assists in exposing a potential form of irrelevance in the image. Since
most images contain substantial smooth regions, we also expect the de­
tail samples, y [m, n] with m or n odd, to contain values which are close
to zero most of the time. As a result, the quantization index correspond­
ing to zero should occur with high probability so that simple codes which
operate on each sample independently should be able to exploit at least
some of the underlying statistical redundancy.

1.4 ALTERNATIVE STRUCTURES
The image compression algorithms explored in the present text have

the structure illustrated in Figure 1.4. Various other structures, however,

18 Alternative Structures

are of interest in some applications. The most popular of these involve
some form of predictive feedback, such as that illustrated in Figure 1.7.
In this case, a scalar quantizer is used so that transform samples may
be quantized one-by-one following a raster scan from the top row of the
sample array through to the bottom row and from left to right within
each row. Instead of quantizing sample y [k] = y [k1 , k2] directly, we
quantize the prediction residual,

e [k] = y [k] - YP [k]

where the predictor, YP [k], is a function of the reconstructed samples,
f; [n], at locations n which have already been visited. That is, either
nl < k1 , or nl = k1 and n2 < k2. These samples have already been
reconstructed by the decompressor so that exactly the same predictor,
Yp [k], is computed in both the compressor and the decompressor.
The idea behind predictive feedback is that the prediction residual,

e [k], should generally be close to zero. After quantization, then, the sta­
tistical distribution of the quantization indices should be highly skewed
toward the index whose quantization interval contains zero. The re­
sulting statistical redundancy is then exploited by appropriate coding
algorithms. The simplest predictor is the previous reconstructed sam­
ple, Yp [k1, k2] = f; [k1, k2 - 1]; for historical reasons, this is known as
DPCM (Differential Pulse Code Modulation). As another example, we
might use the average of the previous samples to the left and above that
being predicted; Le., YP [kl, k2] = ~ (f; [k1 , k2 - 1] ,f; [kl - 1, k2]).
Predictive feedback is of little value unless the transform fails to re­

move most of the spatial redundancy - recall that a key objective of
the transform is to minimize the statistical interaction between samples.
For this reason, predictive feedback of the form shown in Figure 1.7 is
often used in place of a transform. Alternatively, the feedback loop may
include both the quantizer and the transform, as shown in Figure 1.8.
In this case, multiple images are to be compressed one after the other
and the prediction is formed from previous reconstructed images. The
feedback structure of Figure 1.8 is fundamental to popular video com­
pression schemes such as those embodied by the CCITT H.261 and H.263
video telephony standards and the group of ISOJIEC standards devel­
oped by the MPEG (Motion Picture Experts Group) working group.
Other variants on the predictive feedback concept may be found in loss­
less compression image algorithms and some of the modes supported by
the JPEG image compression standard.
A general characteristic of feedback compression structures is that

they rely upon the compressor's ability to precisely replicate some or all
of the samples which will be reconstructed by the decompressor. In fact,

~ ",
,' >: (;J
.
:-4 ~ o 0- S
;

(l
) 0
­

(
) o S '"...., (l) U
J

U
J 0' ::s ~, >:: (
) 2", (l) :i! ::;
:
::
r'

"C
l, (l) 0
­ n' ~ ~. Ol" (l) 0­ cr
"

~ :-
;-

im
ag
e
tr
an
sf
or
m
sa
m
pl
es

+
r
\
re
si
du
al

qu
an
tiz
er

in
di
ce
s

en
co
de
r
bi
t-
st
re
am

x
y
=

T
(x

)
y[
k]

\..
. J

e[
k]

q
[k

] =
Q

(e
[k

])
q

[k
]

c
=

C
(q

)
c

pr
ed
ic
to
r

Y
p[

k]

,
ca
us
al
pr
ed
ic
to
r

~
bu
ff
er

Y
[k
li
~
e[
k]

de
qu
an
tiz
er
~

'-
-

Y
p[

k]
=

P
(y

[k
),

k 2
-I

],
..

.)
11

11
11

1
11

)1
1

1
1

\..
..J

+
er
kl
=
0
-1
(q
rk
])

re
co
ns
tr
uc
tio
n
in
ve
rs
e
xf
or
m

~
y
[
k
:
V
\
j
[
k
]

de
qu
an
tiz
er

in
di
ce
s

de
co
de
r

~
~

~
~

x=
r-

I(y
)

~
v
+

e[
k]
=
Q
-I
(q
[k
])

q[
k]

q
=

C
-I

(c
)

x
pr
ed
ic
to
r

y,
,[
k]

bu
ff
er

ca
us
al
pr
ed
ic
to
r

l+
A

H
H

f
'
I
I
I
I
I
I
~

Y
p[

k]
=

P
(Y

[k
),

k 2
-1

],
..

.)
-

9 ~ '"'l­ ('t
> .., >-
< ~ J; ('t

> ~ ~ ~ '" '" o' ;:
l (
)

<: ('t
> ~. ('t
> EO f-
-'
C
D

~ ~ ~ '- ~ '1:
J

...., Cl
l
~ C;

" ~
" (t
'

C
ll
~ 0
­

\l
' ~ rJ
l, C () C, Cl
l 0', () o S '0, Cl
l

rJ
l

rJ
l i:r a

q S S0
" ro s" \l
'

a
q C
ll

rJ
l

~ 0.: Cl
l 2
-

im
ag
es
,7
fT
\

re
si

du
al

~
tr
an
sf
or
m

sa
m
pl
es

qu
an
ti
ze
r

in
di
ce
s~

en
co
de
r

bi
t-
st
re
am

X
(/

)
....
\.

LJ
e(

')
y
=

T(
e)

y(
i)

q
=
Q
(y
)

q(
1}

c
=

C
(q

)
c

-
pr
ed
ic
to
r

(I
)
x p

~

ca
us
al
pr
ed
ic
to
r
f+
-
bu
ff
er

rr
\

in
ve
rs
e
xf
or
m

sa
m
pl
es

de
qu
an
ti
ze
r
f+
-

L
-

X
C
i)
=
p~
(H
)

~(r
-2)

'\
I
I
I
I
I
I
I

~(
i)

\..
LJ

+
~(
/)

e=
T

-'
(y

)
~
(i
)
Y
=
Q
-I
(q
)

'"
,x

,.
..

x
e

y

~
re
co
ns
tr
uc
ti
on

r
f
\

in
ve
rs
e
xf
or
m

sa
m
pl
es

de
qu
an
ti
ze
r
in
di
ce
s

de
co
de
r

.
f4
-

i(
i)

~
LJ

+
~(
/)

e=
T

-'
(y

)
~
(I
)

y
=
Q
-I
(q
)

.....
qU

)
q
=

C
-'

(c
)

e
y

-,
pr
ed
ic
to
r

xC
') p

4
bu
ff
er

f-+
ca
us
al
pr
ed
ic
to
r

(I
)

_
p~

(i
-I

)
~(

i-
2)

"tI-
-

I
I
I
I
I
I
1

X
V

-
,
x

,
..

.)

tv o :=t
-. ­.,.... '" ;i (::

) .,...
.

~
" '" ~ ~ " ~ ~ en

Chapter 1: Image Compression Overview 21

Figures 1.7 and 1.8 reveal the fact that the compressor must include an
exact copy of certain elements from the decompressor. Therein lies the
principle weakness of predictive feedback structures.
A key requirement driving the JPEG2000 standardization process is

scalability. A scalable bit-stream is one which may be partially discarded
to obtain an efficient representation of the original image or a lower res­
olution version of it at a different bit-rate. A highly scalable bit-stream
may be decompressed in many different ways with different results, de­
pending upon what information has been discarded. It is difficult for the
compressor to replicate the state which the decompressor may attain un­
der all possible scalings of the compressed bit-stream. Consequently, the
feedforward structure of Figure 1.4 is preferred for scalable compression.

Chapter 2

ENTROPY AND CODING TECHNIQUES

2.1 INFORMATION AND ENTROPY

A binary digit, or "bit," b, takes one of the values b = 0 or b = l.
A single bit has the ability to convey a certain amount of information
- the information corresponding to the outcome of a binary decision, or
"event," such as a coin toss. If we have N bits, then we can identify the
outcomes of N binary decisions.

Intuitively, the average amount of information associated with a bi­
nary decision depends upon prior knowledge which we have concerning
the likelihoods of the possible outcomes. For example, .there is little
informative value to including snow conditions in the weather report
during summer - in common parlance, the result is a foregone conclu­
sion. By contrast, the binary events which convey most information
on average are those which are equally likely. Similarly, the N-bit se­
quences which convey most information are those for which each bit has
equally likely outcomes, regardless of the outcomes of the other bits in
the sequence - loosely speaking, these are "entirely random" sequences
of bits.

Source coding is the art of mapping each possible output from a given
information source to a sequence of binary digits called "code bits."
Ideally, the mapping has the property that the code bits are "entirely
random," i.e., statistically independent, taking values of 0 and 1 with
equal probability. In this way, the code bits convey the maximum pos­
sible amount of information. Then, provided the mapping is invertible,
we can identify the number of code bits with the amount of information
in the original source output.

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

24 Information and Entropy

The above concepts were formalized in the pioneering work of Claude
Shannon [130]. A quantity known as "entropy" is defined in terms of the
statistical properties of the information source. The entropy represents
a lower bound on the average number of bits required to represent the
source output. Moreover, it is possible to approach this lower bound ar­
bitrarily closely. In fact, practical coding algorithms can achieve average
bit rates which are extremely close to the entropy in many applications
and when they do so the code bits must be entirely random.

2.1.1 MATHEMATICAL PRELIMINARIES
RANDOM VARIABLES AND VECTORS
Let X denote a random variable. Associated with the random variable

is a set of possible outcomes, known as the aphabet, Ax. The outcome
of the random variable is denoted x, and is one of the elements of Ax .
A random variable is said to be discrete if its alphabet is finite or at
most countably infinite. That is, we can enumerate the elements of the
alphabet,

Ax = {ao,al,a2, ... }

In this case, the statistical properties of the random variable are de­
scribed by its probability mass function (PMF)

fx (x) #:. P (X = x) for each x E Ax

In words, fx (x) is the probability of the outcome X = x. By contrast, a
continuous random variable has uncountably many outcomes, e.g. Ax =

JR, the set of all real numbers. In this chapter we will be concerned
exclusively with discrete alphabets. As an example, we model binary
decisions as random variables whose alphabets have only two entries,
usually written Ax = {O, I}. Binary random variables playa special
role in coding.
The notion of a random variable is trivially extended to random vec­

tors, X, with alphabet, Ax and PMF, fx (x), for each vector, x EAx.
An m-dimensional random vector is a collection of m random variables,
usually taken as a column vector,

X=

X m - 1

The PMF, fx (x), is sometimes written longhand as

fx (x) == fXO,XI,,,,,Xm-l (XO,Xl,'" ,Xm-l)

Chapter 2: Entropy and Coding Techniques 25

It denotes the probability that Xo = Xo, Xl = Xl, ... , and Xm - l = Xm-l
simultaneously. For this reason, it is often called the joint PMF, or joint
distribution, for the m random variables.
From the joint distribution of a collection of m random variables,

we can obtain the "marginal" distribution of anyone of the random
variables, Xi, as

IXi (X) = L Ix (x)
X3 X i=X

INDEPENDENCE AND CONDITIONAL PMF'S
We say that two random variables are statistically independent, or

simply independent, if their joint distribution is separable; i.e.,

That is, the probability that both Xo = Xo and Xl = Xl is the product of
the two marginal probabilities. As suggested by the introductory com­
ments above, the notion of statistical independence plays an important
role in coding.
We define the conditional distribution of Xl, given Xo, by

The function, Ix llxo (-, xo), is interpreted as a modified PMF for X I,
where the modification is to reflect the fact that the outcome Xo = Xo
is already known. If the two random variables are statistically indepen­
dent, we expect that the outcome of Xo has no bearing on the distribu­
tion of X I and indeed we find that

IXllXo (XI,XO) = IXI (Xl) if and only if XI,Xo are independent

We note that the marginal distribution of Xo and the conditional distrib­
ution of Xl, given Xo, together are equivalent to the joint distribution of
Xl and Xo· More generally, we write IXnIXn-l, ... ,Xo (xn , ... ,xo) for the
conditional distribution of X n , given Xo through X n - l . The joint dis­
tribution of all m random variables of an m-dimensional random vector,
X, may be recovered from

Ix (x) = Ixo (xo) IXllXo (Xl, Xo) ... IXm -lIXm -2, ... ,Xo (Xm-l, . .. , xo)
(2.1)

and the random variables are said to be mutually independent if

Ix (x) = Ixo (xo) IXl (Xl) ... IXm - 1 (xm-d

26 Information and Entropy

EXPECTATION
The expectation of a random variable, X, is denoted E [X] and defined

by

E[X] ~ L xfx (x)
xEAx

It represents the statistical average or mean of the random variable X.
Here, for the first time, we are concerned with the algebraic properties
of random variables. More generally, let 9 0 be any function. We may
define Y = 9 (X) to be the random variable whose outcomes are y =
9 (x) whenever the outcome of X is x. Consequently, the distribution of
Y may be found from

fy (y) = L fx (x)
x3g(x)=y

It is readily shown that the expectation of the new random variable, Y,
satisfies

E [Y] =E [g (X)] = L yfy (y) = L 9 (x) fx (x) (2.2)
yEAy xEAx

Given two random variables, Xo and XI, we may define conditional
expectations in the most obvious way as

E [Xl IXo = xo] ~ L xfx1IXo (x, xo)
XEAxl

and for any function, gO, we have

E [g (Xl) IXo = xo] = L 9 (x) fXl\XO (x, xo)
xEAxl

RANDOM PROCESSES
We conclude this section by introducing the concept of a discrete

random process, denoted {Xn }. A random process is nothing but a se­
quence of individual random variables, X n , nEZ, all having a common
alphabet, Ax. The key distinction from a random vector is that there
are infinitely many random variables. The statistics are summarized by
the vector PMF's, fXi:j 0, for all i < j E Z, where we use the notation,
X i :j , to refer to the (j - i)-dimensional random vector formed from the
elements, X k , i ::; k < j, of the random process.
The random process, {Xn }, is said to be stationary if the vector

PMF's satisfy

fX i :i+m = fXo: m for all i, m E Z, m > 0

Chapter 2: Entropy and Coding Techniques 27

That is, all collections of m consecutive random variables from the
process have exactly the same joint distribution. Thus, a stationary
random process is characterized by the PMF's, fXo:m for each m =
1,2, Alternatively, from equation (2.1) we see that stationary ran­
dom processes are characterized by the marginal distribution, fxo == fx,
together with the sequence of conditional distributions, fXmIXo:m' for
m= 1,2,
In most applications we find that the conditional distributions satisfy

(2.3)

for a sufficiently large value of the parameter, p. That is, the conditional
distribution of X m given Xo through X m - 1 , is actually a function of only
the p most recent random variables, X m - p through X m - 1 . We say that
X m is "conditionally independent" of X o through X m - p- 1 ' Conditional
independence is a phenomenon which we usually expect to encounter in
the information sources which we model using random processes. Indeed
statistical dependencies among samples taken from natural physical phe­
nomena such as images and audio are generally of a local nature. For
stationary processes, conditional independence means that the entire
process is described by a finite number of conditional PMF's

fxo' fXllxo' fX2Ixo:2' ... , fXplxo: p

These are called Markov random processes with parameter p. AMarkov­
1 random process is entirely described by Ix and IXllxo' IfP = 0, all ele­
ments of the random process are statistically independent with identical
distribution, fx. Such a random process is said to be IID (Independent
and Identically Distributed). It is also said to be "memoryless."
Stationary random processes with conditional independence proper­

ties (i.e. Markov processes) play an extremely important role in coding,
precisely because they are described by a finite number of conditional
PMF's. By observing the outcomes of the random process over a finite
period of time, we can hope to estimate these conditional PMF's and use
these estimates to code future outcomes of the random process. In this
way, we need not necessarily have any a priori knowledge concerning the
statistics in order to effectively code the source output. Adaptive coders
are based on this principle.
The technical condition required to enable estimation of the rele­

vant PMF's from a finite number of outcomes is "ergodicity." To be
more precise, suppose we observe the outcomes of random variables Xo
through XM-l' For each m-dimensional vector, y, let Ky,M denote the
number of occurrences of y as a "sub-string" of the observed sequence,

28 Information and Entropy

XO:M; I.e.,

Ky,M = II{ il 0 :s; i < lYI - m and Xi:i+m = y}II

It is natural to estimate the conditional PMF's according to

A K(y x) M + fJ
IXmlXo:m (x, y) = " (") for each m :s; p < lYI

L....zEAx K(y,z),M + fJ

where fJ is a small offset (e.g. fJ = 1), included to avoid undefined or
ill-conditioned estimates when M is small and (y, x) denotes the vector
formed by appending x to y. If the random process is ergodic, these
estimates will converge to the actual conditional PMF's as M increases.
Most random processes encountered in practice are ergodic. At least,
practical coding algorithms are based on the assumption that the under­
lying random process is ergodic, so that we can estimate the statistics
through observation.

2.1.2 THE CONCEPT OF ENTROPY
ENTROPY OF A RANDOM VARIABLE
The entropy of a random variable, X, is defined as

H (X) ~ - L Ix (x) log2 Ix (x)
xEAx

We shall find the following equivalent expression more convenient and
intuitive

H(X) = E[-log2Ix (X)]

To clarify this expression, define the function, hx 0, by

hx (x) ~ -log2 Ix (x)

As with any function, then, we may define the random variable, Y =
hx (X), and apply equation (2.2) to see that the entropy of X is the
expectation of the new random variable, Y; i.e.,

H (X) = E [hx (X)]

As we shall see, the quantity hx (x) may be interpreted as the amount
of information associated with the event X = x and then the entropy
may be interpreted as the average (or expected) amount of information
conveyed by the outcome of the random variable, X.
Entropy measures information in units of bits. The precise connec­

ti,on between entropy, as defined above, and the average number of bits

Chapter 2: Entropy and Coding Techniques 29

required to code the outcome of the random variable will be explored
in Sections 2.1.3 and 2.1.4. For the moment, however, it is instructive
to reflect on the intuitive appeal of the definition, as suggested by the
following properties:

1. hx (x) is a strictly decreasing function of the likelihood, fx (x). This
agrees with the notion that a highly unlikely event carries consid­
erable information when it occurs. For example, the appearance of
snow in summer is a newsworthy event in most cities.

2. The entropy is bounded below by O. Moreover, H (X) = 0 occurs if
and only if X has a deterministic outcome, say X = xo. That is,

{
I if x = Xo

fx (x) = 0 if x =1= Xo

3. For random variables with finite alphabets, the entropy is bounded
above by H (X) ~ log21lAxll. Moreover, the upper bound occurs if
and only if X has a uniform distribution; i.e., fx (x) = lI)xll' \/x E

Ax. Of particular interest is the case in which the alphabet consists
of B-bit numbers, Ax = {o, 1, ... , 2B -I}. Then H (X) ~ B with
equality if and only if all 2B outcomes are equally likely. Put another
way, an information source whose outcomes are represented with B
bit numbers has an entropy of at most B bits, where this maximum
occurs if and only if the B bits are "entirely random."

Example 2.1 Let X be a binary random variable with fx (0) = p and
fx (1) = (1 - p). Figure 2.1 plots H (X) as a function of the parameter,
p. The figure clearly indicates the fact that the entropy is zero when X is
deterministic (p = 0 or p = 1) and is maximized when the two outcomes
are equally likely (p = ~).

JOINT AND CONDITIONAL ENTROPY
The definition of entropy extends naturally to random vectors so that

H (X) ~ E [-log2 fx (X)] = E [hx (X)]

In fact, since the alphabet of the random vector is discrete, we can enu­
merate its elements, Ax = {ao, aI, ...}, and define a random variable,
K = k whenever X = ak. Since the outcomes of K and X convey ex­
actly the same information we must insist that H (X) = H (K). The
above definition then follows immediately.
We sometimes use the longhand expression

30 Information and Entropy

1······ .

H(X)

o p=

Figure 2.1. Entropy of a binary random variable, X, as a function of p = Ix (0).

where X is an m-dimensional random vector with elements, Xo through
X m - 1. We may also call this the joint entropy ofthe m random variables
since it is a function of their joint PMF.
The conditional entropy of X given Y is defined by

H(X IY) £ - L !y(y) L !xlY(x, y) log2 !xIY(x, y)
yEAy xEAx

= - L L !x,Y(x, y) log2 !xlY(x, y)
yEAy xEAx

= E [-log2!xIY(X,Y)]

H (X IY) may be interpreted as the average additional information we
receive from the outcome of X given that the outcome of Y is already
known. This interpretation follows directly from the interpretation of
H (X) as the average amount of information we receive from the outcome
of X. 1 To see this, observe that

H (X, Y) = E [-log2 !X,Y (X, Y)]

= E [-log2 (Iy (Y) !xlY (X, Y))]

= E [-log2 fy (Y)] + E [-log2 fxlY (X, Y)]

= H (Y) + H (X IY) (2.4)

1Although the properties of H (X) suggest an interpretation as a measure of information,
the connection with information will be concretely established in Section 2.1.3.

Chapter 2: Entropy and Coding Techniques 31

Thus, H (X IY) indeed represents the extra information, H (X, Y) ­
H (Y). When X and Yare independent random variables we find that

H (X IY) = E [-log2 fxlY (X, Y)]

= E [-log2 fx (X)]
=H(X)

which agrees with the fact that the outcome of Y has no bearing on the
information conveyed by X.
An important property of the conditional entropy is summarized by

the following theorem.

Theorem 2.1 Let X be a random variable. Let Y be a random vector
with elements Yo through Ym-l and let Y' be a random vector consisting
of any subset (possibly empty) of these elements. Then

H (X IY) :::; H (X IY')
with equality if and only if fXIY = fXIY/" i. e., if and only if X is condi­
tionally independent of the elements in Y which are missing from Y'.

Corollary 2.2 For random variables, X and Y, H (X IY) :::; H (X),
with equality if and only if X and Yare independent.

Corollary 2.3 From equation (2.4), we also have H (X, Y) :::; H (X) +
H (Y), with equality if and only if X and Yare independent.

These results have considerable intuitive appeal. If we know the out­
comes of some collection of random variables, Yo through Ym - l , which
are not statistically independent of X, then this reduces the uncertainty
of X and hence the amount of additional information conveyed by the
outcome of X. As m increases, the uncertainty in X and hence the con­
ditional entropy, H (X IY), continues to decrease so long as each new
random variable Ym provides some new information about X, which is
not already present in the other random variables, Yo through Ym-l.
Equation (2.4) is easily generalized to expand the entropy of any ran­

dom vector, X, as

H (X) = E [-log2 fx (X)]

= E [-log2 (Jxo (Xo) fXm -lIXm -2, ... ,xo (Xm - l , ,X o))]

= H (Xo) + H (Xl IX o) + ... + H (Xm - l IX m - 2 , ,Xo)

(2.5)

32 Information and Entropy

where equality holds if and only if the random variables, Xi, are all inde­
pendent. As we shall see in Section 2.1.4, this expansion is particularly
useful in coding.

ENTROPY RATE
Let {Xn } be a discrete stationary random process. Since the random

process has infinite extent, the total amount of information conveyed by
the outcome of the random process will usually be infinite. In fact, for
Markov processes it must be either infinite or zero. Thus, it is more
meaningful to introduce the notion of an "information rate" for random
processes. A close analogy is the characterization of stationary random
processes by their power rather than their energy in the study of linear
systems.
We begin by defining the mth order entropy of the random process by

(m) ({ }) ~ 1 () _ 1 (. .) £ .H X n - -H XO:m - -H X~:m+~ ,lor all 1, E Z
m m

Thus, the 1st order entropy is simply the entropy of any given random
variable, say X [0] (they all have the same distribution), taken individ­
ually from the process. The 2nd order entropy is half the joint entropy
of any pair of consecutive random variables from the process. From
Corollary 2.3,

H(2) ({Xn }) :::; ~(H(Xo)+H(XI))

= H(l) ({Xn })

In fact, from Theorem 2.1, we see that

mH(m) ({Xn }) = H (Xo) + H (Xl IXo: I) + ... + H (Xm- l IXo:m - l)

(2.6)

~ mH (Xm - l IXO:m - l)

and hence

(m + 1) H(m+l) ({Xn }) = mH(m) ({Xn }) + H (Xm IX O:m)

:::; mH(m) ({Xn }) + H (Xm- l IXO:m - l)

:::; (m + 1) H(m) ({Xn })

So H(m) ({Xn}) is a monotonically decreasing function of m. Since it
is bounded below by 0, the sequence must converge and we define the
entropy rate of the random process to be

(2.7)

Chapter 2: Entropy and Coding Techniques 33

This quantity is interpreted as the average rate at which the random
process conveys information as the outcomes X n = xn are discovered
one by one.
For a Markov-p source process, equation (2.7) may be recast as

(2.8)

This very simple form follows from equation (2.6) and the conditional
independence property of the random process, according to which

H(m) ({Xn}) = ~ (H (Xo) + H (Xl IXO:I) + ... + H (Xp- l IX O:p- I))
m
m-p+ --H (Xp IX O:p)
m

----+ H (Xp IX O:p) as m ---t 00

2.1.3 SHANNON'S NOISELESS SOURCE
CODING THEOREM

In Section 2.1.2 we defined a quantity called entropy, having prop­
erties which we would expect of a measure of information. The value
of entropy, however, as a tool for understanding and developing practi­
cal compression algorithms, arises from a rigorous connection between
these definitions and fundamental bounds on coding performance. This
connection was first established by Shannon's "noiseless source coding
theorem" [130]. The essence of this theorem is that the entropy rate of
a random process provides a lower bound on the average number of bits
which must be spent in coding each of its outcomes and also that this
bound may be approached arbitrarily closely as the complexity of the
coding scheme is allowed to grow without bound. Due to the impor­
tance of this result, we choose to reproduce Shannon's proof here, for
the simple case of a stationary, memoryless random process.
Let {Xn } be an IID random process, each element having distribution

Ix and entropy H(X). The entropy rate, H({Xn }), in this case, is
identical to H (X). For ease of expression we shall sometimes refer to
the individual source outcomes, Xo, Xl, ... , as symbols. Then, we assess
the information rate of the random process as the average number of bits
per symbol required to represent the source output over a period of m
consecutive symbols, in the limit as m becomes very large. Specifically,
we construct a code which maps outcomes of the random vector, XO:m
to L-bit codewords. This is a "fixed length" code since each block of m
symbols is represented by the same number of code-bits, L. Codes of this
form are known as (m, L) codes. The ratio, f;, represents the average
number of bits spent coding each symbol. The idea is essentially to show

34 Information and Entropy

that in the limit as m becomes very large, this ratio !:i may be made
arbitrarily close to H (X).
There are a total of /lAx 11 m possible m-dimensional outcomes, Xo:m ,

and so it is clearly impossible to represent all outcomes perfectly un­
less 2£ 2: IIAx 11m ; i.e., !:i 2: log211Ax II· But we know that H (X) :::;
log2 /lAx II, attaining this maximum value only when fx is the uniform
distribution,with all outcomes equally likely. Thus, in order to establish
a connection between entropy and the bit-rate of a fixed length code, we
will need to admit the possibility that the coded representation might
not be exact. Let Pe (m, L) denote the probability that our L-bit code
does not represent the random vector, XO:m , exactly. The idea behind
the noiseless source coding theorem is to show that Pe (m, L) may be
made arbitrarily small as m grows, provided the code-rate ~ > H (X).

Theorem 2.4 Let {Xn } be a discrete IID random process having finite
entropy, H (X), and consider fixed length (m, L) codes, associating m­
element outcome vectors, Xo:m , to L-bit codewords. Only one outcome
vector may be associated with each codeword, so let Pe (m, L) denote the
probability of the event that XO:m has no associated codeword. Then,
by making m sufficiently large, the error probability, Pe (m, L), may be
made arbitrarily small, so long as the code-rate satisfies

L
- > H(X)
m

Conversely, the error probability, Pe (m, L), tends to 1 as m ~ 00 for
codes having

L- <H(X)
m

Proof. Consider the random variable, hXo'm (XO:m), which we defined to be
-log2 !xo,,,, (XO:m)' Since the elements of the random vector, Xo:m , are all indepen­
dent, !Xo'm is separable and we obtain

m-l

hXO'm (XO:m) = -log2 II !x (Xi)
i=O

m-l

= L hx (Xi)
i=O

So hxo,,,, (Xo:m) is a sum of the IID random variables, hx (Xi)' According to the
weak law of large numbers, ~ L::'~l hx (X;), converges to E [hx (X)] = H (X), as
m -> 00. Specifically, for any 8 > 0, let c (m, 8) denote the probability

d m ,8) =P (I~, ~l hx (Xi) - E[hx (X)l! > 8)

=P (I ~. hXOm (XO:m) - H (X)I > 8) (2.9)

Chapter 2: Entropy and Coding Techniques 35

Then the weak law of large numbers states that

lim c (m, 8) = 0
m-oo

Equivalently, let T (m, 8) be the set of outcomes, Xo:m , for which

I~, hXo m (xo:m) - H (X) I ::; 8

Then c (m, 8) = P (XO:m rf. T (m, 8)) m~ O. For small 8 and large m so that c (m, 8)
is very small, we may think of T (m, 8) as the set of "typical" outcomes. The idea is
to assign codewords only to these typical outcomes, since the probability of anything
else becomes vanishingly small as m grows. For each XO:m E T (m, 8), we have

1
H (X) - 8::; -hxOm (xo:m) ::; H (X) + 8m .

and hence the probability of each typical outcome is bounded by

rm(H(X)+O) ::; fXo
m
(xo:m) ::; r m (H(X)-6) (2.10)

Letting 8 become very small, the typical outcomes all have essentially the same likeli­
hood, so that if we assign codewords only to the typical outcomes, the resulting L-bit
codewords will be uniformly distributed, or "entirely random."
Using equation (2.10), we see that

P (XO:m E T (m, 8» =
xo:m ET(m,6)

::::: rm(H(X)+o) liT (m, 8)11

So the number of typical outcomes is bounded above by

1 - £ (m,o)
IIT(m,o)11 ::; 2-m (H(X)+o)

::; 2m (H(X)+o)

It follows that so long as we select L ::::: m (H (X) + 8), we can represent all of the
typical outcomes with a distinct codeword and then the probability of error, Pe (m, L),
must be at most £ (m, 8), which tends to 0 as m --; 00. This proves the first statement
of the theorem, since 8 > 0 is arbitrary.
To prove the converse statement, we use equation (2.10) again to obtain a lower

bound for the number of typical outcomes; i.e.,

IIT(m 8)11 > l-c(m,8)
, - 2-m (H(X)-6)

Suppose that L ::; m (H (X) - 28). Let T denote the number of elements from
T (m, 8) which are represented in this code. Then T satisfies

T < 2
L

T
m6

liT (m, 8)11 ~ liT (m, 8)11 ::; 1 - £ (m, 8)

So the fraction of typical outcomes which can be represented tends to 0 as m --;
00, whenever the code rate is less than H (X). This suggests the validity of the

36 Information and Entropy

second statement of the theorem. To make the proof rigorous, observe that the total
probability associated with the T elements of T (m, 8) which are represented by the
code is at most

2£ . T m (H(X)-8) :s; T m8

and the total probability of all other outcomes is c (m, 8), so

Pe (m, L) ~ 1 - c (m, 8) _ T m8

~1

•
Several points are worth noting concerning the noiseless source coding

theorem. Firstly, for finite length codes, fixed length coding is incapable
of guaranteeing that all source outcomes will be represented exactly. The
solution to this dilemma is variable length codes, which are examined
next. Despite this obstacle, the noiseless source coding theorem does
indeed establish a strong connection between entropy and coding. The
entropy clearly partitions the set of code rates into two classes. So long
as the code-rate exceeds the entropy, we can make sure that the entire
message is coded without error with arbitrarily high confidence; if the
code-rate is less than the entropy, long messages will contain errors with
probability approaching 1.
As noted in the proof of the theorem, reliable codes whose rate ap­

proaches the entropy have the property that their codewords all occur
with equal likelihood. That is, the L bit sequences are "entirely ran­
dom." Recall that we began Section 2.1 with the claim that the repre­
sentation of source outcomes with entirely random sequences of bits is
the goal of source coding. This is perhaps the most important observa­
tion arising from the noiseless source coding theorem.
Shannon's original result has been extended over the years to random

processes satisfying a variety of technical conditions. For more gen­
eral random processes than the simple memoryless processes considered
above, the key difficulty is to demonstrate convergence of c (m, b), as
defined by equation (2.9). This is known as the entropy-ergodic prop­
erty. Shannon himself extended the result to Markov processes, while
extensions to more general ergodic random processes were developed
by McMillan [107] and extended by Breiman [29, 30] and others. The
more general result is often known as the Shannon-McMillan-Breiman
theorem, or the asymptotic equipartition (AEP) theorem.

2.1.4 ELIAS CODING
As mentioned above, fixed length codes cannot generally guarantee

lossless coding. In this section, we consider variable length codes. It is
most instructive to describe a particular coding algorithm, whose ability

Chapter 2: Entropy and Coding Techniques 37

to approach the entropy rate of a stationary markov random process
can be demonstrated rather easily. The algorithm is not practical as
it stands since its implementation requires infinite precision arithmetic.
Nevertheless, it is the basis for a family of highly efficient practical coding
techniques, known collectively as arithmetic coding. Indeed one mem­
ber of this family is at the heart of the JPEG2000 image compression
standard (see Section 12.1). Practical arithmetic coding is the subject
of Section 2.3. P. Elias is usually credited with conceiving the algorithm
shortly after Shannon's original publication on information theory.

MAPPING OUTCOMES TO INTERVALS
Let {Xn } be a stationary random process. To begin, we will restrict

ourselves to memoryless processes, as in Section 2.1.3. In this case, we
hope to be able to code the outcomes of the random process at an average
rate of H (X) bits per symbol.
Following the notation developed above, we denote the first n out­

comes of the random process by the vector, Xo:n . The algorithm is best
understood as associating each such length n prefix of the source se­
quence with a unique interval on the real line,

such that the length of this interval is equal to fXo: n (xo:n). The algo­
rithm is implemented recursively as follows:

Elias Coding Algorithm
Initialize Co = 0 and ao = 1.
For each n = 0,1, ...
Update an+! f- anfx (xn)
Update Cn+I f- Cn + anFx (xn)

Here, Fx denotes the cumulative distribution2 ,

i-I

Fx (ai) ~ Lfx(aj) where Ax = {ao,aI, ...}
j=O

We assume that the encoder and decoder both have access to the un­
derlying distribution function, fx and hence Fx, or else they both use
identical estimates for this function.

2Note the non-standard definition here, in which the probability of Qi itself is not included
in the summation.

C 7 28
3 4' -----:)(';4 4'

38 Information and Entropy

4
4'--.;:----~

16
4'-

o

37,.. :rr"'--

Figure 2.2. Elias coding for a memoryless binary source.

Example 2.2 Consider a binary memoryless source with fx(O) = :t
and fx(l) = ~ and suppose the source outputs the sequence "01101 ... ".
Figure 2.2 indicates the evolution of the intervals [cn,en + an).

The intervals, [en, en + an) have the following easily verified proper­
ties:

1. The set of intervals, [cn, Cn + an), corresponding to each distinct vec­
tor, XO: n E IIAx r, are disjoint and their union is [0, 1). That is, the
set of all possible length n prefixes of the source output induces a
partition of the unit interval, [0, 1).

2. The intervals corresponding to successively longer prefixes of the
source output sequence are nested; i.e.,

3. The length of the interval associated with XO: n satisfies

n-l

an = II fx (Xi) = fXo:n (XO:n)
i=O

MAPPING INTERVALS TO CODEWORDS

Suppose we apply the recursive algorithm described above for a total
of m source output symbols. The key observation behind Elias coding
is that the particular outcome, XO:m , may be uniquely identified by any
number in the interval [em, Cm + am), as a consequence of property 1
above. Since the interval has length am, it must contain at least one Lm

Chapter 2: Entropy and Coding Techniques 39

bit binary fraction of the form

o.~
L m

where Lm is any integer satisfying 2-Lm < am. Thus, we conclude that
the number of bits in the representation is

m-l

Lm ~ -log2 am = hXo:m (XO:m) = L hx (xn)

n=O

In this way, the Elias coding algorithm firmly establishes the connection
between hx (x) and the amount of information associated with the out­
come X = x. Each individual outcome, X n = X n , reduces the interval
length by the factor Ix (xn), adding exactly hx (xn) = -log2 Ix (xn)

bits to the code length.
This in turn means that the average number of bits required to code m

symbols from the source output sequence is E [hxo:m (Xo:m)] = mH (X).

ELIAS TERMINATION
There is a subtle weakness in the above argument in that the decoder

does not know a priori the number of bits, Lm , which are being used
to represent the source output, Xo:m . Therefore, we ought to provide
a mechanism for signalling this length and include the number of bits
consumed by this mechanism in the overall bit count. In practical arith­
metic coding algorithms, we will usually code a very large number of
source outcomes, m, together, so that this cost may often be neglected.
Nevertheless, it is worthwhile presenting a particular codeword termina­
tion policy suggested by Elias, for which there is no need to explicitly
signal the code length, Lm .

Since em E [0,1), it may be represented as a binary fraction of the
form

O.bbbbb ...

where the b's denote binary digits, 0 or 1. Now let

Lm = flOg2 a~1+ 1 = fhXO:m (xo:m)l + 1

so that
2-LTn < !a- 2 m

and let em be the quantity formed by taking only the first Lm fraction
bits of Cm and adding 1 to the least significant bit position; i.e.,

em = TLTn l2LTn cm + 1J > em

40 Information and Entropy

Note that
c + 2-Lm < C + 2 X 2-Lm < C + am _ m _ m m

Suppose that the decoder receives any arbitrary string of bits which
agrees with em in its first Lm bit positions. Treating this string of bits
as a binary fraction, with value, r, we see that

em < em :s; r < em + 2-Lm :s; em + am

so r E [em, em + am) uniquely identifies XO:m ·

In this way, the outcome, XO:m , is represented exactly using the first
Lm bits of an otherwise arbitrary string of bits. Suppose we take the
source output in blocks of m symbols at a time, xmk:m(k+l) ' and de-

termine the L~)-bit representation, ~), for each such block. A coded
bit-stream may be created by concatenating these representations. The
decoder then sees a quantity

r(O)=O.~~...

L~) L~)

It determines the interval, [cm, em + am), to which r(O) belongs and hence

the first source block, XO:m ' Deducing a~) and hence L~), it discards

the first L~) bits from the received bit-stream to obtain the quantity

r(1)=O.~~...

L~) L~)

from which the second source block, X m :2m, is decoded, and so forth.
In this way, the lengths, L~), need not be transmitted. The average
bit-rate is thus

and in the limit as m ---+ 00 the bit-rate exceeds the entropy by a negli­
gible margin.

FURTHER OBSERVATIONS ON ELIAS CODING
As it stands, Elias coding is impractical even for moderate values of

m since it involves arithmetic operations whose precision is comparable

Chapter 2: Entropy and Coding Techniques 41

to the number of code bits. Nevertheless, by making suitable approx­
imations, it is relatively straightforward to derive an algorithm which
experiences negligible increase in bit-rate and involves only fixed, finite
precision arithmetic, for arbitrarily large values of m. In this way, prac­
tical algorithms which are able to achieve average bit-rates arbitrarily
close to the source entropy do actually exist! These "arithmetic coding"
algorithms are discussed further in Section 2.3.
An important property of Elias coding is that it is "incrementally de­

codable." Given any r E [em, em + am), we can decode the prefixes XO: n

one by one since r E [en, en + an) for each n = 1,2, ... ,m. This leads
to a recursive algorithm for incrementally decoding the source outputs,
Xo, Xl, ... , which strongly resembles the incremental encoding algorithm
already described. We defer further discussion of incremental decoding
until Section 2.3.

EXTENSION TO MARKOV RANDOM PROCESSES

The incremental decodability described above permits an easy exten­
sion of the Elias coding algorithm to Markov random processes. The
modified algorithm becomes

Elias Coding Algorithm for Markov-p Sources

Initialize Co =°and ao = l.

For each n = 0,1, ...

Let p' = min {p,n}

Update an+l f- anfxnlxn_p/:n (xn , xn-pl:n)

Update en+l f- en + anFxnlxn_p/:n (xn,Xn-pl: n)

Here, FXnlxn_p/:n denotes the cumulative conditional distribution,

i-I

FXnIXn_p/:n (ai,Xn-pl:n) £ LfXnIXn_p/:Jaj,Xn:n-pl)
j=O

Since the random process is assumed to be Markov-p, there are only
finitely many conditional distributions, fXnIXn_p/: n = fXpllxo:pl' and cor­
responding cumulative distributions. We assume that the encoder and
decoder both have access to these conditional distributions or else they
both use identical estimates of the distributions.

42 Information and Entropy

32
8.4.1---

109

.. (8"~'1---

I
OJ ~

.C
j
1' _o__-.J .. -
8.4.1 J 8'.4.1 -

f
'- (0--~

". ;f ",J ",

Figure 2.3. Elias coding for a binary Markov-l source.

Example 2.3 Consider a binary Markov-1 source with

{
i if Xl = 0, Xo = °
- if Xl = 1, Xo =°

fX1lxo (Xl, XO) = ; if Xl :: 0, Xo :: 1

"8 zf Xl - 1, Xo - 1

Note that the unconditional (marginal) PMF for this source is fx (0) =
~, f x (1) = ~. Figure 2.3 indicates the evolution of the nested sub­
intervals [en, en + an) when the source outputs the sequence "01101 ... ".

The algorithm is identical to that described earlier, except that we use
conditional distributions to exploit information which is available from
previously coded outcomes. To see that any value, r E [em, em + am),
uniquely specifies Xo:m , consider the following strategy for incremental
decoding. The decoder first reconstructs Xo = XO:I based on the in­
terval, [CI' CI + ad containing r. This is possible because the partition
of [0,1) into IIAxl1 sub-intervals corresponding to each possible out­
come, xo, depends only upon fx, exactly as in the IID case examined
earlier. Knowing XO:I, the decoder is able to determine the function,
fX1lxo:1(., XO:I), and hence the partition of [CI' CI + al) which was used
to represent Xl. Hence Xl is decoded from the particular sub-interval,
[C2, C2 + a2), containing r, in this partition. By continuing this incre­
mental decoding strategy, the decoder is always able to reconstruct the
context, Xo: n , which is needed to determine the conditional distribution
and hence the sub-interval partition required to recover XO:n+1 for each
n = 0,1, ... ,m - 1.

Chapter 2: Entropy and Coding Techniques 43

Exactly as before, a block of m symbols, Xo:m, may be represented by
an Lm-bit binary fraction where Lm is any integer satisfying

1
Lm ;::: log2­

am
m-l

= -log2 II fXnlXo:n (xn,XO:n)

n=O

= -log2 fXo:m (xo:m)

= hXo:m (xo:m)

Here, we have used the joint PMF expansion formula of equation (2.1). If
we employ the Elias termination procedure described above, we conclude
that the expected bit-rate is

1 1 3
mE [Lm] = mE [hxo:m (Xo:m)] + 2m

1 3
= -H (XO:m) +-
m 2m

= H(m) ({Xn }) +~
2m

and so, in the limit as m becomes large, the expected bit-rate approaches
the entropy rate, H({Xn }), of the random process. Moreover, accord­
ing to the entropy-ergodic theorem for Markov processes, it is possible to
ensure that the actual bit-rate will be arbitrarily close to this expected
bit-rate with arbitrarily high probability, by chosing m sufficiently large.
This would be of little interest if it were not for the fact that the com­
plexity of practical arithmetic coding algorithms does not grow with m,
as we shall see in Section 2.3.
We refer to this modified version of the Elias coding algorithm as

conditional coding. Conditional arithmetic coding algorithms are central
to the JBIG and JPEG2000 image compression standards.

2.2 VARIABLE LENGTH CODES
In this section, we introduce simple variable length coding techniques

which are commonly found as elements of image compression algorithms.
Let {Xn } be a memoryless random process with alphabet Ax and dis­
tribution, f x· A variable length code assigns a distinct codeword, Cx to
each element, x E Ax, where Cx is a string of IIcx II bits. The sequence
of outcomes, X n , from the random process are represented by concate­
nated codewords, CXn ' The choice of codewords is clearly constrained by
the requirement that the decoder must be able to identify the outcomes,

44 Variable Length Codes

xn , from this concatenated sequence of codewords. Codes having this
property are said to be uniquely decodable.

Example 2.4 Consider the quaternary alphabet, Ax = {O, 1,2, 3}, with
codewords

Co = "0"

C1 = "01"

C2 = "10"

C3 = "II"

Suppose we use this code to represent source outcomes "0,2,3,0, I" .
Then the resulting bit-stream is

"0 10 11 0 01"
'-v-''-v-''-v-''-v-''-v-'
Co C2 C3 co Cl

This same bit-stream may be produced by a different sequence of source
outcomes, e.g.

"01 0 11 0 01"
'-v-''-v-''-v-''-v-''-v-'
C3 Co C3 Co Cl

and so it violates the unique decodability requirement.

Amongst all selections of codewords satisfying the unique decodability
requirement, we are most interested in those which minimize the average
code-rate,

R = L Ilcxll' fx (x)
xEAx

In view of the fundamental results presented in Section 2.1, we must
have

R 2: H(X)

Example 2.5 Consider a memoryless source having an alphabet con­
sisting of all non-negative integers, Ax ~ {O, 1,2, ...}, with distribution

fx (x) = 2-(x+1)

Let Cx be the codeword consisting of Ilcxll = x + 1 bits, the initial x of
which are I'O", with the last bit in each codeword being a 111". Thus, the
codewords are

co = "I"

C1 = "01"

C2 = "001"

Chapter 2: Entropy and Coding Techniques 45

It is easy to see that this code is uniquely decodable, since the codewords
are all different and are delimited within the bit-stream by the 111" bit.
This is called a Ilcomma" code, since the 111" may be interpreted as a
comma separating the codewords corresponding to successive symbols, x n ,

in the concatenated bit-stream. In this case, we find that

R = L (x + 1) . fx (x)
xEAx

= L -log2 fx (x) . fx (x) = H (X)
xEAx

so this is an optimal code, actually achieving the entropy rate of the
source. The comma code is also sometimes called a iiunary" code.

To facilitate efficient decoding we are generally interested only in "pre­
fix codes." A prefix code is one in which no codeword is the prefix of
any other codeword. The codewords in Example 2.5 dearly satisfy the
prefix condition. Any prefix code is also uniquely decodable. This may
be seen from the following sequential decoding algorithm:

Sequential Decoding Algorithm for Prefix Codes
For each l = 0,1, ...
For each a E Ax
Compare the first l bits of the received bit-stream with Ca'

lf a match is found,
The prefix condition guarantees that no other value of
l will yield a match and so the first symbol must be
XQ = a.
Remove the initiall bits from the bit-stream and apply
the algorithm recursively to decode the next symbol.

The following results establish some key properties of variable length
codes.

Theorem 2.5 (McMillan) A necessary condition for unique decodabil­
ity is that the codeword lengths, Lx = Ilcx II, satisfy

(2.11)

Proof. For a proof, the reader is referred to [106, Thm 10.1].•

Theorem 2.6 (Kraft) Given any set of lengths, lx, satisfying equa­
tion (2.11), there exists a prefix code (it is not unique) having Ilcx II = Lx

46 Variable Length Codes

c~s = 0.111

c~ = 0.110•
c~J =0.101

C~l = 0.100

Figure 2.4. Mapping between prefix codewords and sub-intervals of [0,1).

for each x E Ax. So the condition in equation (2.11) is both necessary
and sufficient for unique decodability and there is no need to consider
anything other than prefix codes.

Proof. Arrange the elements of Ax = {QO, Q1, ...} such that

Then let the codeword, co;, be the lai-bit integer whose value is

i-I

co; = 21"" L 2-
I
"j

j=O

To see that these codewords form a prefix code, consider the intervals

[C~,C~ +ax) ~ [0,1)

c~ = 2-1"cx

ax = 2:- 1
"

as illustrated in Figure 2.4. Clearly, the intervals are disjoint. Now consider any
sequence of bits having the prefix, Cx , for some x E Ax, and let r E [0,1) be t~e

quantity whose binary fraction representation is formed from these bits; i.e.,

r = O. bb ... bb ...
'-v-"

Clearly r E [c~,c~ + ax). Let y i= x E Ax. Since the sub-intervals are disjoint,
c~ rf. [c~, c~ + ax) and so cy cannot have Cx as a prefix. •

This proof suggests a connection between prefix codes and Elias cod­
ing which is by no means coincidental. In fact, if fx (x) = 2-lx , the
variable length code produces exactly the same bit-stream as Elias cod­
ing. Of course, this is the special case in which the variable length code

Chapter 2: Entropy and Coding Techniques 47

achieves the entropy. Thus, variable length coding may be understood
as an approximate (and much simpler) form of Elias coding, in which
the values assumed by the PMF are approximated by reciprocal powers
of 2. This interpretation leads immediately to the next theorem.

Theorem 2.7 For any distribution, fx, a prefix code may be found,
whose rate satisfies

H (X) ::; R < H (X) + 1 (2.12)

Proof. The left hand inequality is a necessary consequence of Shannon's noiseless
coding theorem, although a direct proof is not difficult, e.g. [106, Thm 10.3]. For
the right hand inequality, simply let Ix = r-log2 /x (x)l Evidently this is a crude
approximation of Ix (x) as r 1x • These lengths satisfy equation (2.11) and so, by
Theorem 2.6, there exists a prefix code with Ilex II = Ix. The code has rate

R = L Ix (x) r-log2 Ix (x)l
xEAx

< L Ix (x) (1 -log2 Ix (x))
xEAx

=H (X) + 1

•
2.2.1 HUFFMAN CODING
Given any finite alphabet,

and associated PMF, fx, it is reasonable to seek an optimum code,
for which the average codeword length is minimized over all uniquely
decodable codes. The optimum code is, of course, not unique. In fact,
even the codeword lengths, Ix = Ilcxll, need not be unique amongst
optimal codes. Huffman [77] developed an algorithm for finding one set
of lengths satisfying equation (2.11), which minimize the average code­
rate R.
Suppose for convenience that the alphabet is ordered so that

Huffman's algorithm is based on the following key observation.

Lemma 2.8 Amongst all optimal codes, at least one has lao = lal =
lmax, the largest codeword length, with cao and Cal differing only in their
last bit.

(2.13)

48 Variable Length Codes

Proof. Any optimal code must have l",o 2: l"'l 2: ... 2: l"'K_I. This intuitive
fact is trivially established. Now suppose that we have a prefix code with l",o > l"'l.
Then the first l"'l bits of C"'O must differ from all codewords with length l"'l and hence
the last bit of C"'O is wasted. We conclude that in an optimal code, l",o = l"'l. The
constructive proof of Theorem 2.6 is easily rearranged to show that the prefix code
having

- 21", .. (1 ~ 2-1"' ..)Ca:.i - " - ~ J

j=O

is uniquely decodable. This construction yields codewords c"'o and C"'l which differ

only in their last bit position. •

This observation suggests that we can reduce the optimization prob­
lem to that of finding only K - 1 codewords: the lao - 1 bit prefix, Ca' ,

1
common to both cao and cal; and the codewords Ca' = cai for i = 2
through K - 1. The reduced problem may be stated as follows. Find
lengths, lal through lal satisfying

1 K-l

K-l

LTl"'i' ~1
i=l

which minimize

K-l

R= (Ix (ao) + Ix (al)) (lQ~ + 1) + L Ix (ai) lai

i=2

= Ix (ao) + Ix (al) + L Ix' (x') lx'
x'EAxl

where X' is a new random variable, having alphabet

and
f I (x) = { Ix (ao) + Ix (al) if x = ~~
x Ix (x) otherWIse

The new problem is thus exactly the same as our original problem, but
on a reduced alphabet. This leads naturally to the following algorithm,
which recursively reduces the problem of optimal code construction to
the trivial case of a binary alphabet.

Huffman Code Construction
Order the elements of the alphabet such that

Chapter 2: Entropy and Coding Techniques 49

If K = 2,
Assign cao = "a" and caj = "I"

Else
Create a new alphabet, Ax' = {0:~, 0:2, 0:3, ... ,0:K-I}, and prob­
ability assignment, fx', satisfying equation (2.13).
Invoke the code construction algorithm recursively to find an
optimal code, ca~, Ca2 , ... , caK_l' for AXI and fx'.
Extend this code by appending "a" and "I" to Co:', to obtain

1
Cao and caj ' respectively.

Example 2.6 Suppose Ax = {a, 1,2, 3} with

3
fx (0) = 16'

2
fx (1) = 16'

2
fx (2) = 16'

9
fx (3) = 16

The entropy in this case is

H (X) = 1.6697 bits/symbol

The steps in the recursive algorithm above may be represented in terms of
the construction of a binary tree, as in Figure 2.5. Each leaf in the tree
corresponds to one of the codewords. The codeword lengths may be read
directly from the tree by counting the number of branches between the
root and each leaf A corresponding set of codewords may be obtained by
labeling the branches with "0" s and "I" s; and reading the branch labels
following the path from the root to each leaf In this case, the codewords
are

Co = "00", Cl = "010", C2 = "011", C3 = "I"
and the code-rate is

322 9
R=2·-+3·-+3·-+1·-

16 16 16 16
= 1.6875 bits/symbol

Notice how closely the code rate approaches the entropy in this case.

LIMITATIONS OF HUFFMAN CODING
Despite the promising performance obtained in Example 2.6, Huff­

man codes, and hence variable length codes in general, cannot guarantee
code-rates which approach the entropy more closely than the bounds in­
dicated in equation (2.12). This performance can be inadequate in some
applications. Most notably, when the entropy of the source is much less

50 Variable Length Codes

{3 }{OJ

root

(1,2)

I' .!.

, • .!...
16

merge ~

root

~
{OJ {I,2} {3}

1'.2..
16

root

~
{1} {2} {OJ {3}

~ merge

reorderroot

~
(O) (1) {2} {3}

root

.~
{O,I,2} {3}

Pr!'" P 1-
16 16

,~,

{OJ (1,2}

I' 3 I'~.!.
16 16

..~.,
{I} {2}

P.2. p..!.
16 16

Figure 2.5. Huffman code construction example.

than 1 bit/symbol, variable length codes are particularly inefficient since
at least one bit is consumed by each codeword.

A solution to this problem is to block the source output into m­
dimensional vectors, Xkm:(k+l)m, and assign codewords to each vector.
In this way, the inefficiency of up to 1 bit/vector is distributed over all
m source symbols in the vector and the Huffman code-rate is bounded
by

1
H (X) ~ R < H (X) + -

m

The problem with this approach is that the size of the alphabet, Axo:m'
grows exponentially with m. The number of codewords which must be
maintained in memory grows as IIAx 11 m

.

Up until now we have considered only memoryless random processes.
In order to capture the redundancy between successive elements of the
random process, the procedure must be modified in one of two ways. One
approach is to block the source into m-dimensional vectors, assigning
codewords to each vector exactly as described above. In this case the

Chapter 2: Entropy and Coding Techniques 51

code-rate approaches the mth order entropy of the source, bounded by

(2.14)

The practical limitations described above apply here as well.
A second approach is to construct a separate Huffman code for each

of the conditional distributions,

fXmlXo: m (-, xO:m) , XO:m E (Ax)m-l

Denote the optimized codewords by cxl xo:
m

' When we come to code
(or decode) symbol X n , we use the codewords, cn;Ixn - m :n , 0 ::; i < K,
where K = IIAx II. In this way, there are IIAx Il m -

1 separate codes, each
of which has m codewords, so the codeword memory grows as IIAx 11

m
,

exactly as in the blocking approach. The code-rate for this conditional
Huffman coding strategy, however, is bounded by

H (Xm IXo: m) ::; R < H (Xm IX O:m) + 1

We note that H (Xm IXo: m) ::; H(m) ({Xn }) with equality only for
memoryless processes and, for a Markov-p process, H (Xm IXo: m) =
H ({Xn }), provided m ~ p + 1.
Thus, conditional Huffman coding may approach the entropy rate

of the process to within 1 bit per symbol, with a finite (albeit of­
ten enormous) codeword memory. Although the conditional entropy,
H (Xm IXo: m), approaches the entropy rate of the process much more
rapidly than the mth order entropy, H(m) ({Xn }), the blocking approach
may still be preferable for sources whose entropy rate is very low, since
the upper bound in equation (2.14) tightens as ~. It is worth pointing
out that the memory efficiency of conditional Huffman coding may be
substantially improved by exploiting the context reduction techniques
described in Section 2.4.1.

FAST DECODING ALGORITHMS
From an implementation point of view, Huffman encoding is simply a

lookup table; each source symbol is mapped to its codeword with a single
table lookup operation. The bit-serial decoding algorithm on Page 45,
however, is generally much slower, with a separate operation for each
received bit. A faster approach is to use a lookup table with the next

L = max{Lx }
xEAx

bits in the bit stream serving as the table index. The table lookup
returns the outcome, x E Ax, as well as the length, Lx, of the unique

52 Variable Length Codes

codeword, ex, which forms the lx-bit prefix of the L-bit index. The initial
Ix bits are then removed from the bit-stream in preparation for decoding
the next symbol. In this way, a single table lookup suffices to decode
each source symbol.

The problem with this method is that the table may need to contain as
many as 2£ entries, which can be much larger than the number of code­
words. The Huffman algorithm does not constrain the maximum code
word length, L, which may end up being as large as L = IIAx II - 1. For
this reason, "constrained length Huffman codes" have been developed.
The Voorhis method [165] is one of the first algorithms developed to find
optimal variable length codes, subject to a maximum length constraint.

ADAPTIVE HUFFMAN CODING

Huffman codes are simply variable length codes, optimized for the sta­
tistics of a given source. The problem is that the statistics of the source
may not be known ahead of time, or they may vary from time to time.
Two potential solutions present themselves. The encoder may periodi­
cally estimate the statistics of the source, construct an optimal Huffman
code and transmit the codewords to the decoder. This approach is used
in the JPEG image compression standard (see Chapter 19), where the
Huffman codewords are explicitly signalled in the header of each com­
pressed image file.
A second approach is for both the encoder and decoder to periodically

estimate the source statistics and construct identical Huffman codes,
based on previously encoded source outcomes. This approach, known
as adaptive Huffman coding, avoids the overhead of transmitting the
codewords to the decoder. On the other hand, only those source out­
comes which have already been encoded may be used to estimate source
statistics. As a result, the estimates are generally poorer and hence the
coding is less efficient than may be obtained if the encoder is free to es­
timate the source statistics by looking ahead into the source outcomes.
Thus there is a trade-off between the cost of explicitly sending Huffman
codewords and the reduction in efficiency incurred by adaptively discov­
ering the statistics. The adaptive approach is usually avoided since it
also burdens the decoder with the task of periodically implementing the
optimal code construction algorithm - not a trivial task.

2.2.2 GOLOMB CODING
As noted above, one of the problems with Huffman coding is that

code construction is expensive so that adaptive coding algorithms may
require large computational resources as they try to adapt to changing

Chapter 2: Entropy and Coding Techniques 53

statistics by periodically modifying the code. Golomb coding [71] is an
interesting alternative.
Consider a "geometric" source with alphabet Ax = {O, 1,2, ...} = Z+

and
fx (x) = 2-(x+l), x;:: °

An optimal prefix code in this case is the "comma" code of Example 2.5,
whose codewords, ex, consist of a string of x consecutive "0" s, terminated
by a single "I" (the "comma"). In this isolated case, the comma code
achieves the entropy; i.e., R = H (X). More generally, the PMF of a
geometric source is given by

fx (x) = (1- p) pX, with parameter, 0< p < 1 (2.15)

and the comma code is an optimal variable length code for any geometric
source with parameter p ::; ~. One way to see this is to apply the
Huffman code construction algorithm to such a source.
For geometric sources with parameter p > ~, the comma code is no

longer so efficient. Suppose, however, that we express each outcome,
x E Z+, as

x = mXq +xr

where xq is the quotient and X r the remainder, upon division of x by the
integer, m. That is,

X r = xmodm

Let X q and X r denote the random variables whose outcomes are xq

and Xr respectively. Evidently, X q follows a geometric distribution with
parameter pm since

m-l m-l

fXq (xq) = L fx (mxq + i) = pmxq (1 - p) L fx (i)
i=O i=O

Moreover, it is easily shown that X q and X r are independent random
variables.
The idea behind Golomb coding is to select the integer divisor, m,

such that
m>1

p rv"2
Then the comma code is an efficient code for X q , while X r follows an
approximately uniform distribution on {O, 1, ... m - I}. Specifically,

1
fXr (0) ;:: fXr (1) ;:: ... ;:: fXr (m - 1) > "2 fxr (0)

54 Variable Length Codes

Let kb = llog2 mJ and ka = flog2 m1. An optimal variable length code
for X r is the modified binary code, which uses kb bits to represent out­
comes Xr < 2ka - m and ka bits to represent the remaining outcomes.3

It can be shown [68] that the concatenation of the comma code for X q

followed by the modified binary code for X r yields an optimal variable
length code for the geometrically distributed source, subject to suitable
choice of the Golomb parameter, m. This is true for any value of the
parameter, p.
In practice, it is convenient to restrict the Golomb parameter, m, to

an exact power of 2, namely

so that xq is trivially formed by discarding the least significant k bits
in the binary representation for x and these discarded k bits form the
remainder part, X r . As an example, with parameter k = 3, the outcome
x = 21 would be represented as

x = 21 --t "001 101 "
'-v-" '-v-"
x q =2 Xr=5

GOLOMB PARAMETER ESTIMATION
Many sources do exhibit a roughly geometric distribution4 . With

such sources, Golomb coding can achieve close to the optimal variable
length coding performance. Since sources are rarely exactly geometric
the Golomb parameter, m = 2k , is best optimized experimentally if
possible. The scheme is also well suited to adaptive coding, because
only a single parameter need be adapted. In this case, simple indicators
of the source statistics are formed at the encoder and decoder, based
on previously coded outcomes, and these indicators are used to estimate
the best value for the parameter, k.
We now describe one suitable adaptation procedure, which is based

around estimates of the statistical mean, E [X]. Suppose that the source

3The modified binary code may be obtained as follows. First set x~ = 2xr if X r < 2ka - Tn

and x~ = X r + 2ka - Tn otherwise. Next, the fixed length binary code, c~r' is formed from
the ka-bit binary representation of x~, with the MSB first and LSB last. Finally, observe
that the last bit of this code, c~,., is guaranteed to be 0 whenever X r < 2ka - Tn, allowing liS
to reduce the codeword length to k b as claimed.
4 As an example, consider an IID binary random process for which Ix (0) = q ~ 1. We expect
the source to produce long runs of D's, interspersed nsually by isolated 1'so Accordingly, it
is reasonable to represent the source outcomes via an equivalent sequence of run-lengths, T,

indicating the number of consecutive O's, between each pair of 1'so It is easy to see that the
run lengths obey a geometric distribntion with parameter, p = 1 - q, so they are well suited
to Golomb coding.

Chapter 2: Entropy and Coding Techniques 55

distribution is indeed geometric with unknown parameter, p, and observe
that

00 00

E [X] =L (1- p) xpx = (1 - p) L (x - 1) px-l
x=o x=l

= {(1 -p) !£ f px} - 1= {(1 -p) !£_1_} - 1
~x~ ~l-p

=-p-
1-p

Suppose further that (1 - p) « 1; then

pm = (1 _ (1 _ p))m

~ 1- m (1- p)
m

~1---

E[X]

Recalling that we want pm ~ ~, this suggests that we should select m
so that

m = 2k ~ ~E[X]

An appropriate strategy, then, is to set

Although this policy is derived under the assumption that p ~ 1, it
also yields reasonable Golomb parameters for smaller values of p. Fur­
ther refinements are best derived empirically for the application at hand,
since the source is unlikely to be exactly geometric anyway. The follow­
ing simple algorithm demonstrates the incorporation of the above strat­
egy into an adaptive coding scheme. A very closely related algorithm
is employed by the JPEG-LS lossless image compression standard (see
Chapter 20) to code prediction residuals.

Adaptive Golomb Coder
Initialize A = {Lx and N = 1

(Here {Lx is an initial estimate for E [X]. The ratio, ~, is to be interpreted
as an estimate of E [X].)

For each n = 0,1,2, ...
Set k = max {O, flog2 ut)l}
Code symbol X n using the Golomb code with parameter k.

56 Arithmetic Coding

Update Counters

If N = Nmax (renormalize counters)

Set A..- lA/2J and N..- IN/2J
Update A ..- A + X n and N ..- N + 1

The decoder updates its own copy of the counters, A and N, following the
same procedure as the encoder, so as to deduce the Golomb parameter,
k, used to code each source symbol. Larger values of the parameter,
Nmax , yield more stable estimates for E [X], while smaller values enable
the algorithm to adapt more rapidly to changing source statistics.

2.3 ARITHMETIC CODING
In Section 2.1.4, we introduced Elias coding. Unlike the variable

length codes introduced in Section 2.2, Elias coding incrementally con­
structs a single codeword for an arbitrarily long sequence of source sym­
bols as they arrive. As we shall see, incremental decoding is possible.
In this way, the benefit of very long, highly efficient codes is realized
without the delay or the memory required to maintain an enormous
collection of codewords. Moreover, the incremental construction is eas­
ily adapted to the conditional statistics of Markov sources and it lends
itself to adaptive coding in which the relevant conditional probabilities
are estimated dynamically from previously coded outcomes of the source
process.
The code construction algorithm involves simple arithmetic opera­

tions. Unfortunately, these operations involve ever increasing numeric
precision, rendering them impractical as is. As a result of this weakness,
the Elias coding algorithm remained for quite some time little more than
an academic curiosity, before the discovery of finite precision implemen­
tations by Rissanen [125] and Pasco [116]. In this section we take the
reader through most of the key principles behind modern arithmetic cod­
ing algorithms. For a detailed description of the actual arithmetic coding
variant employed in the JPEG2000 standard, the reader is referred to
Section 12.1.

2.3.1 FINITE PRECISION REALIZATIONS
Recall that the recursive interval sub-division algorithm operates on

the lower bound and length of an interval,

Chapter 2: Entropy and Coding Techniques 57

The interval corresponding to XO: n is updated to the interval for XO:n+l
by assigning

an+l f- anix (xn)

Cn+l f- en + anFx (xn)

(2.16)

(2.17)

The key observation required to bound the implementation precIsIOn
is that we need not use the exact value of an produced by these ideal
update relationships. Suppose instead that

0< an+l ;S anix (Xn)

Then the sub-intervals corresponding to each potential outcome of X n

remain disjoint so that unique decoding is still guaranteed. There is of
course some loss in coding efficiency; in fact, we sacrifice 10g2 anfx(xn)

an +l
bits in coding the outcome X n = X n . As we shall see, however, modest
arithmetic precision is sufficient to render this loss negligible.
We are now in a position to describe a practical coding algorithm.

Let the interval length be represented by an N-bit integer, An, together
with an exponent, bn , with

The quantity, A~ = 2-N An, is an N-bit binary fraction of the form

A~=O.~
N bits

and the quantity, bn , is the number of leading "O"s in the binary fraction
representation of an; i.e.,

an=O.~~

bn bits An

(2.18)

Next, we represent all probabilities approximately using P-bit integers,
Pa, such that

ix (a):::::: P~ = TPpa, a E Ax

The interval length is then updated according to equation (2.16) and
rounded down, if necessary, to the closest representation of the form
in equation (2.18). Together, these operations are embodied by the
following algorithm.

Set T f- AnPxn and bn+l f- bn
(Note that T' = 2-(N+P)Tis an (N + P)-bit binary fraction with T' =
A' p' < 1)n X n

58 Arithmetic Coding

While T < 2N +P - I (i.e., while T' < ~)

Increment bn+1 f- bn+1 + 1
Shift T f- 2T

Set An+I = l2-P T J

Evidently we have made two approximations which lead to slight losses
in coding efficiency: the probabilities are approximated with finite pre­
cision representations; and the rounding operation in the last line of
the algorithm, which reduces the interval length and hence increases the
number of code bits by an amount strictly less than

We have now only to describe the manipulation of the interval lower
bound, Cn. Since the PMF, Ix (a), is approximated by P-bit binary
fractions, p~, the cumulative distribution is also approximated by P-bit
binary fractions

i-I

F~i = LP~j = 2-P Fcxi
j=O

From the update equation (2.17) we deduce that Cn is an (N + P + bn)­

bit binary fraction of the form

Cn=o.~~
bn bits en

Let Cn be the integer formed from the least significant N + P bits of
this representation. Then the update operation consists of adding two
(N + P)-bit integers, AnFxn and Cn, and propagating any carry bit into
the initial bn-bit prefix of Cn.
At first glance it appears that the need to resolve a carry will force us

to buffer the entire bn-bit prefix of Cn. Fortunately, however, the carry
may effect only the least significant r n + 1 bits of this prefix, where r n is
the number of consecutive least significant 1's. In fact, no future coding
operations may have any effect on the more significant bits in the prefix.
To see this, observe that

so that at most one carry bit may be propagated into the bn most sig­
nificant fraction bits of the codeword when augmenting Cn to Cn+k for
any k.

Chapter 2: Entropy and Coding Techniques 59

It follows that the initial bn - r n -1 bits of the codeword may be sent
to the decoder so we need not allocate storage for them. The binary
fraction representation of the evolving codeword then consists of three
key segments,

o.~~~
bn-rn-l bits rn+l bits en

The encoder need only maintain four state variables, An, Cn, r n and
bn and the complete encoding algorithm is shown below. Note that we
drop the sub-scripts in order to better reflect the behaviour of a real
coder. Also, note that we need to introduce a special state, identified
by r = -1, to deal with the possibility that a carry may occur when
r = 0, causing the°bit to flip to a 1 with no subsequent "0" bits. Since
future carries can never propagate this far, it is sufficieI).t to flag the
unusual condition by setting r f-- -1, which has the interpretation that
the central segment in the binary fraction representation of en is empty
and can remain empty until a zero bit is propagated out of Cn'

Finite Precision Arithmetic Coding

Initialize C =° A = 2N r = -1 b=°, , ,
For each n = 0,1, ... ,
Set T f-- Apxn

Set C f-- C + AFxn

IfC> 2N +P
- ,

Propagate carry
emit-bit(l)
If r > 0,
execute r - 1 times, emit-bit(O)
Set r =°

else (we can be sure that r = 0)

Set r = -1

While T < 2N +P - 1,

Renormalize once
Increment b f-- b+ 1
Shift T f-- 2T
Shift C f-- 2C
If C 2: 2N +P (pushing a "I" bit out of C)
If r < 0,
emit-bit(l)

60 Arithmetic Coding

else,
Increment r ~ r + I

else
Ifr2:0
emit-bit(O)
execute r times, emit-bit(I)
Set r = 0

After each iteration of the algorithm, the number of bits which have
actually been output is given by bn - rn - 1. If this quantity is of no
interest, the state variable, bn , may be dropped. For simplicity, we will
describe the corresponding decoding algorithm only in connection with
binary arithmetic coding below.

2.3.2 BINARY ENCODING AND DECODING
Specializing the arithmetic coding procedure to the case of a binary

alphabet, Ax = {O, I}, we obtain the following algorithm

Binary Arithmetic Encoder

Initialize C = 0 A = 2N r = -1 b = 0, , ,
For each n = 0,1, ... ,
Set T ~ APo,n
If X n = 1
C~C+T

T ~ 2P A-T
If C > 2N +P

- ,
Propagate carry (affects r; outputs bits)

While T < 2N +P - 1,
Renormalize once (affects T, C, b, r; outputs bits)

Set An+1 = l2-P TJ

Here, PO,n denotes the P-bit integer which is used to represent the
probability that X n = O. For a stationary memoryless process, PO,n
has no dependence on n. For a Markov-k binary random process, PO,n
depends upon the previous k outcomes; i.e.,

2-Pp ~ f (0 x .)O,n xnlxn_k :n , n-k.n

In practice, the source random process may not be stationary and we
generally have to estimate the probabilities. Consequently, it is con­
venient to simply write PO,n = 2-PPO,n for the current estimate of the

Chapter 2: Entropy and Coding Techniques 61

X
n
---.-I-

B
:-·:------,

mary ~ arithmetic codestream
arithmetic coder

PO.1J1---i~====:::...J

Figure 2.6. Binary arithmetic coding machine.

probability that X n = 0, given the previously coded source outcomes.
The binary arithmetic coder may then be represented by the machine
("black box") illustrated in Figure 2.6. If the statistical properties ofthe
source are known exactly, then we supply the appropriate probabilities,
Po n' with each symbol, X n , and achieve a code-rate which approaches
th~ entropy rate of the source to within a negligible margin. The opera­
tion of the machine, however, is independent of the correctness of these
probability estimates.

SUFFICIENCY OF BINARY CODERS
Henceforth, we shall consider only binary arithmetic coders. As it

turns out, this does not represent a practical limitation. To see this,
suppose that Ax has 2K entries for some K E Z. Then each element
of Ax may be represented by a K bit integer. In this way, the random
variable, X, is equivalent to a K -dimensional random vector, B, where

(

Bo (MSB))
Bl

B=

BK - 1 (LSB)

and the B k are binary random variables representing the binary digits
in the K-bit representation of X. Then

H(X)=H(B)

= H (Bo) + H (B1 IBo) + ... + H (BK-l IBo, ... ,BK-2)

Now suppose we have a memoryless random process with alphabet Ax
and we wish to code the outcomes at a bit-rate which approaches the
entropy-rate of the process. This may be accomplished with the binary
arithmetic coding machine of Figure 2.6 by supplying the pairs

62 Arithmetic Coding

when coding each of the successive bits of each source symbol, where the
PO,k represent conditional probability estimates

P~,k = 2-
P

PO,k ~ IBklBo:k (0, bO:k)

The total number of conditional probability estimates is

1+ 2+ ... 2K -1 = 2K - 1

which is identical to the total number of unique probabilities describing
the original PMF, Ix. An important simplification arising from the
use of binary arithmetic coding is that there are often only a few non­
trivial conditional probabilities to estimate. As an example, the least
significant bits in many numeric quantities often obey an approximately
uniform distribution (i.e., they are "entirely" random); then we need
only estimate and store 2K -u - 1 conditional probabilities, where U is
the number of uniformly distributed LSBs.
The binary coding approach described above is easily extended to

Markov processes and sources with arbitrary alphabets, finite or other­
wise; we have only to supply the appropriate conditional probabilities
to the binary arithmetic coding machine.

(2.19)
if c - en < anPo n
if c - en 2 anPo:n

DECODING ALGORITHM
We now describe an incremental decoding algorithm for the binary

arithmetic codeword. The decoder maintains an N-bit state variable,
A, which represents the current interval width, an, exactly as in the
encoder, following identical update procedures. The decoder also main­
tains an (N + P)-bit state variable, C; however, the interpretation of
this quantity is somewhat different to that in the encoder.
To develop the decoding algorithm, let C denote the value represented

by the entire arithmetic codeword, taken as a binary fraction. Then

C E [cn, en + an) , 'in

Suppose we have correctly decoded Xo through Xn -1 and that the decoder
has reproduced the evolution of an in the encoder. We could keep track
of Cn in the decoder and then decode X n according to

Xn = {O ~f C < en + anP?,n
1 If C 2 en + anPo,n

It is simpler, however, to keep track of C - en and then decode X n ac­
cording to

Chapter 2: Entropy and Coding Techniques 63

To see why this is simpler, note that c - en E [0, an) where an has the
binary fraction representation

and anPo n has the binary fraction representation,

anPon = 0.00 .. .Oxx ... x, '-v-""-v-'
bn bits AnPo,n

It follows that the bn-bit prefix of c - en is zero and the decision in
equation (2.19) may be formed using the next N +P bits of c-en. This
is the quantity managed by the decoder's state variable, Cn. The binary
fraction representation of c - en has the structure,

c-en=O.~~bbb...
bnbits en

where the suffix, bbb . .. , represents remaining bits in the arithmetic code­
word, which have not yet been imported by the decoder. The decoding
algorithm follows immediately:

Binary Arithmetic Decoder

Initialize A = 2N , b = 0
Import N + P bits from the codeword to initialize C.
For each n = 0,1, ... ,
Set T +- APo,n
IfC<T
Output X n = 0

else
Output X n = 1
C+-C-T
T +- 2P A-T

While T < 2N +P - 1,

Renormalize once
Increment b +- b+ 1
Shift T +- 2T
Shift C +- 2C
C +- C+ retrieve-bitO.

64 Arithmetic Coding

XII 4-----r--=B::·----,
. hm I~aryd d +-arithmetic codestream
ant ehc eco er

PO.III---.c..:::==:"'::=:::J
Figure 2.7. Binary arithmetic decoding machine.

After each iteration of the algorithm, the number of bits which have
been imported from the arithmetic codeword is bn +N +P. The decoder
is somewhat simpler than the encoder, since it need not deal with the
effects of carry propagation. The binary arithmetic decoder may then
be represented by the machine illustrated in Figure 2.7.

2.3.3 LENGTH-INDICATED TERMINATION
In Section 2.1.4 we described a particular termination policy which

allows the decoder to discover the number of bits occupied by the arith­
metic codeword when it is included as part of a larger bit-stream. This
Elias termination policy produces a codeword of length

Lclias = 1 + flOg 2-l
m 2 am

It has the advantage that there is no need to explicitly indicate the num­
ber of bits in the arithmetic codeword. In some applications, however,
the length must be explicitly signalled to fulfill some other objective,
e.g. to facilitate manipulation and indexing of a compressed data file.
In this section we discuss a termination strategy which takes advan­

tage of the fact that the length of the codeword, Lm , is explicitly sent
to the decoder. We call this length-indicated termination. As with Elias
termination, we assume that the decoder knows the number of source
outcomes, m, which have been coded.
Since the decoder knows the value of L m , it can append a known

sequence of bits to the Lm bits which it receives in order to construct the
quantity, c E [em, em + am). In particular, we assume that the decoder
extends the received string of bits by appending 1's as needed, until
all m symbols have been decoded. A simple termination policy for the
encoder is to set

Lm = bm + 1

Chapter 2: Entropy and Coding Techniques 65

outputting the first Lm bits of em. The decoder then reconstructs

c=O.~111 ...
L m bits

E [em, em + TLm)

~ [em, Cm + am)

where the final relationship follows from

Now bm is the smallest integer such that am ~ 2-(bm +l); i.e., bm =
Ilog2 a~1-1. Consequently, this termination policy yields a code length
of

Lm = flOg2 a~l
which is 1 bit less than L~as.

The encoder can easily improve on this termination by discarding any
trailing 1's from the string of bits sent to the decoder. This policy reduces
Lm by 1 bit on average, so if we ignore the often negligible inefficiencies
introduced by the finite precision implementation

E [LmJ = E [fhxO:m (Xo:m)lJ -1
< H (Xo:m)

This result appears to contradict the noiseless coding theorem. However,
we are exploiting the fact that the decoder knows Lm and we are not
including the number of bits required to signal its value.
Even more careful termination is possible. The ultimate objective is to

compute a minimum length prefix of em such that the non-negative error
introduced by appending 1's to this prefix is strictly less than am. In this
way, length-indicated termination can produce codewords approximately
2! bits shorter than those obtained with Elias termination, bearing in
mind that we are not counting the cost of explicitly signalling the value
of Lm .

2.3.4 MULTIPLIER-FREE VARIANTS
A significant source of complexity in the binary arithmetic encoding

and decoding algorithms described above is the multiplication required
to implement

T +- AnPo,n

3
AnPon::::::: 2N apon where a:::::::-, , 4

We defer a discussion of the optimum selection of a for a little while,
using the approximate value of i for illustrative purposes only. Adopting
this approximation, we should be able to fold the factor, 2N a, into our
probability estimates and simply assign

66 Arithmetic Coding

Figure 2.8. Interval sub-division using the multiplier-free approximation.

In dedicated hardware implementations, fast parallel multiplier circuits
consume substantially more silicon real-estate than adders. Modern
CPU's do not always incorporate dedicated fast integer multiplication
paths and even those CPU's which do offer such features often have
higher latencies for multiplication than addition.
As a result, most practical arithmetic coders introduce a further ap­

proximation in order to avoid the need for multiplication. The approx­
imation is based on the observation that An always lies between 2N - 1

and 2N so that

T ~ PO,n

where
- 2N 2N+P IPO,n = apO,n = aPO,n

Before proceeding any further we will need to resolve a serious problem
with this approximation. If the symbol is Xn = 1, the algorithm proceeds
to assign

T ~ 2PAn - T = 2P (An - 2Nap~,n)

which can be negative if P~,n > 2~ ::::::: ~! The problem may be understood
with the aid of Figure 2.8, where we use the use the prime-notation, A~,
PO,n PO,n' to denote the binary fractions represented by An, PO,n and PO,n.
The approximation is clearly inappropriate when

_I I I [1)PO,n = aPO,n 2:: An E 2,1

a situation which will arise with any choice of a > ~.

Chapter 2: Entropy and Coding Techniques 67

THE MPS-LPS SWITCH
The usual solution to the above dilemma is to flip the roles of the

symbols 0 and 1 whenever P~,n > ~, Specifically, let Sn E {O, I} denote
the most probable symbol (MPS) outcome, That is,

1l:.. {I if P~,n ~ ~
Sn - 0 'f I 1

1 PO,n> "2

and let P~ denote our estimate of the probability that the least probable
symbol (LPS) occurs; i.e"

P~ = {

I
PO,n

1- p'a,n

if p' < 1O,n - 2
'f I 1
1 PO,n > "2

Estimating the probability of the zero symbol, P~ n' is equivalent to
estimating the identity of the MPS, Sn, and the probability of the LPS,
P~, so we will work exclusively with these quantities from now on. The
binary encoding algorithm now becomes

Multiplier-Free Encoder

Initialize C = 0 A = 2N r = -1 b = 0, , ,
For each n = 0,1, ... ,

If X n = Sn, (encode an MPS)

A f-- A - Pn
C f-- C + fin

else (encode an LPS)
A f-- Pn

If C ~ 2N ,

Propagate carry (affects r; outputs bits)
While A < 2N - 1,

Renormalize once (affects A, C, b, r; outputs bits)

Notice that there is no longer any need to carry an intermediate
(N + P)-bit quantity, T, and that all operations are performed directly
on the N-bit variable, A. For this to work, we require only that

-I 2-N - I
Pn = Pn = O:Pn

With these modified conventions, C is now an N-bit quantity and the
"renormalize once" routine must be modified in an obvious way, The
multiplier-free decoding algorithm becomes

68 Arithmetic Coding

Multiplier-Free Decoder

Initialize A = 2N
, b = °

Import N bits from the codeword to initialize C.

For each n = 0,1, ... ,
If C < Pn (decode an LPS)
Output X n = 1 - Sn

A f- Pn
else (decode an MPS)
Output X n = Sn

Af-A-Pn
C f- C - Pn

While A < 2N - 1 ,

Renormalize once (affects A, C, b; imports bits)

IMPACT ON CODING EFFICIENCY

It is instructive to investigate the impact on coding efficiency of the
multiplier-free approximation developed above. To do this, we will need
to determine the best value for a. The effect of coding any symbol
X n is to add log2 -=-aa bits to the final codeword length. To facilitate

n+l

analysis, we shall assume here that A~ is uniformly distributed over the
interval [~, 1) and statistically independent of the source process; we
shall reconsider this assumption shortly. The expected code rate may
then be expressed as

which is easily integrated with standard forms. We may find the opti­
mum value of a in the obvious manner by solving $~ = °for each LPS
probability, p~ E (O,!]. The result is plotted in Figure 2.9,
Evidently, a is a weak function of p~. As it turns out, however, the

code rate is not highly sensitive to the exact choice of a within the range
suggested by Figure 2.9. To illustrate this point, Figure 2.10 shows a
plot of the code rate expansion factor,

R(p~,a)

-pin 10g2 p~ - (1 - p~) 10g2 (1 - p~)

as a function ofp~ for two different fixed choices of a. From the figure, we
see that the loss in coding efficiency is quite small, particularly when the

Chapter 2: Entropy and Coding Techniques 69

Figure 2.9. Optimum Q as a function of the LPS probability, p~, assuming a uniform
distribution for A~.

1.030

1.025

1.020

1.015

1.010

1.005

a = 0.690··

Figure 2.10. Code rate expansion factor, R(p~,Q)/H(p~), for values of Q which
bracket Qopt.

symbol probabilities are highly skewed, where the highest compression
ratios are achieved.

70 Arithmetic Coding

The above analysis is based on the assumption that A~ is uniformly
distributed over [~, 1). This assumption is quite reasonable for mixed
context applications in which the LPS probability, P~, changes rapidly
with n, usually because the arithmetic coder is switching between dif­
ferent contexts, having quite distinct probability models. Most image
compression applications involve a mixture of contexts. In single context
models, however, where P~ is at most a slowly varying function of n, A~
tends to be distributed more toward the lower half of the interval, so
that the optimum value for (} is close to ~. The reader is referred to [88]
for further discussion of this phenomenon. A value of (} = ~ is implic­
itly assumed in many developments of multiplier-free arithmetic coding.
Henceforth, we shall adopt the value (} = 0.708, which is reported in
[119] as the experimentally observed optimum value, (}opt, for the JBIG
application.

CONDITIONAL EXCHANGE
From Figure 2.10, we see that the largest loss in coding efficiency

occurs when the LPS probability is close to ~. A mechanism known as
conditional exchange was invented to mitigate this loss in the QM coder
which is used by the JPEG and JBIG image compression standards [119].
Referring to Figure 2.8, we see that the interval assigned to the MPS is
smaller than that assigned to the LPS when

_I 11 [1 1)
Pn> 2An E 4' 2

The conditional exchange mechanism exchanges the roles of the MPS
and LPS whenever this happens, so as to ensure that the MPS is always
assigned the larger interval. From the above relationship, conditional
exchange can affect only those symbols for which t < P~ < ~; Le.,
those whose distributions are close to uniform. The modified encoding
algorithm is

Conditional Exchange Encoder

Initialize C = 0 A = 2N r = -1 b = 0, , ,
For each n = 0,1, ... ,

S'- Sn

A.- A - Pn
If A < Pn

s.-l-s
If X n = S, (encode an MPS)

C.- C +Pn

Chapter 2: Entropy and Coding Techniq1les 71

else (encode an LPS)
A f- fin

If C ~ 2N ,

Propagate carry (affects r; outputs bits)
While A < 2N - 1,

Renormalize once (affects A, C, b, r; outputs bits)

The modified decoding algorithm is

Conditional Exchange Decoder

Initialize A = 2N
, b = °

Import N bits from the codeword to initialize C.
For each n = 0,1, ... ,
Sf- Sn

A f- A - fin

If A < fin
Sf-1-s

If C < fin (decode an LPS)
Output X n = 1 - S

A f- fin

else (decode an MPS)
Output Xn = S

C f- C - fin

While A < 2N - 1,

Renormalize once (affects A, C, b; imports bits)

In the straightforward incarnations illustrated above, the introduction
of conditional exchange appears to increase the complexity of the coder
by at least one test per symbol. Fortunately, however, the algorithm can
be reoganized to test for conditional exchange only once it has been de­
termined that a renormalization is required. To understand this, observe
that whenever conditional exchange occurs we must have

(2.20)

Since A is assigned to one of A - fin or fin, conditional exchange must
always be accompanied by renormalization.

2.3.5 ADAPTIVE PROBABILITY
ESTIMATION

In this section we introduce the reader to some of the considerations
involved in estimating the probabilities, Po n' used to code the source,

72 Arithmetic Coding

outcome of X n E {O, I}. We assume here that the source is a stationary
Markov-k random process so that we are trying to estimate

P' ;::::! (0 x .)O,n XnIXn-k:n' n-k.n

Now, since the random process is assumed stationary, there are only 2k

distinct conditional probabilities,

!XkIXo:k (O,Xn-k:n) = !XnIXn-k:n (O,Xn-k:n)

corresponding to the 2k possible context vectors, Xn-k:n. It is helpful to
define a context labeling function, .A (x), which assigns a unique integer
in the range 0 through 2k - 1 to each k-dimensional vector, x. An
adaptive coder estimates Po n based on any or all previous outcomes, Xi,

i < n, which have occurred within the same context; i.e., .A (Xi-k:i) =
.A (Xn-k:n). A natural way to form such estimates is to maintain counts
of the number of 0 and 1 symbols which have been observed within each
context; i.e.,

CO,1 [n] =L [) (l,.A (Xi-k:i)) . (1 - Xi)

i<n

CI,1 [n] = L 8 (l,.A (Xi-k:i)) . Xi

i<n

If the counts are sufficiently large, we should expect any reasonable
estimate to satisfy

I '"'" CO,A(Xn_k:n) [n]
PO,n'"'" C [n] +C [n]O,A(Xn-k:n) I,A(Xn-k:n)

Although it is conceivable that prior knowledge concerning the inter­
action of distinct contexts might prove useful in estimating probabilities,
we shall assume that probabilities are estimated independently within
each context. Associated with each context, then, is a "learning penalty"
which arises from the fact that the first few symbols are generally coded
using inappropriate probability estimates. As more symbols are coded
within any given context, the probability estimates stabilize (assuming
an approximately stationary source) and coding becomes more efficient.
The learning penalty is a function of the estimation procedure, its initial
state and the conditional PMF which is being estimated. Regardless of
such variables, however, it is clear that the creation of too many contexts
is undesirable. If two distinct coding contexts exhibit identical condi­
tional PMF's, their combined learning penalty may clearly be halved by
merging the contexts.

Chapter 2: Entropy and Coding Techniques 73

In the ensuing development we shall ignore the existence of multi­
ple contexts and the problem of good context design. This approach
simplifies the discussion without sacrificing its applicability to multi­
ple contexts, since the probability estimates for each context are to be
adapted independently.

SCALED COUNT ESTIMATORS

Perhaps the most natural estimation strategy is to assign

, Co [n]+ 1
PO,n = (Co [n] + 1) + (Cdn] + 1)

where 1 is added to each of the symbol counts so as to ensure that
P~,n E (0,1).5 More generally, we might assign

, Co[n]+~

PO,n = (Co [n] +~) + (C1 [n] +~)

Large values of ~ reflect a conservative policy in which we are reluc­
tant to estimate highly skewed (i.e., non-uniform) distributions until we
have observed a large number of outcomes. Conversely, smaller values
of ~ reflect a more radical approach. These estimators may be shown to
be maximum a posteriori (MAP) estimates for the actual zero-symbol
probability, p~, subject to certain a priori assumptions on the distribu­
tion of the underlying random variable from which p~ is drawn [175]. In
particular, the selection ~ = 1 yields the MAP estimate if we assume
that Po is uniformly distributed on (0,1) a priori, while smaller values
of ~ correspond to the assumption that highly skewed probabilities (Po
close to °or 1) are most likely. This interpretation is useful, since in
many applications we have some idea as to whether or not we expect
highly skewed distributions.
In practical applications, the statistics are often not stationary, so we

prefer to weight the probability estimates toward more recently observed
outcomes. This can be done by periodically renormalizing the counts. A
simple renormalization strategy is to halve both Co and C1 whenever the
count exceeds some limits. There will inevitably be some upper bound,
Cmax , to the counts which can be represented in an implementation so
that the need for a renormalization strategy is usually unavoidable. If,
however, we wish to track non-stationary statistics, then it is advisable
to renormalize as frequently as possible without overly compromising the

5Without deterministic prior knowledge, we must generally assume that both symbols have
some non-zero probability of occuring in every context.

74 Arithmetic Coding

accuracy of the estimates. Intuitively, the minimum of the two counters
primarily determines the accuracy of our probability estimate and this
may be demonstrated more rigorously [53]. This suggests that we should
renormalize whenever either Go or G1 exceeds some lower bound, Gmin.
The following so-called "scaled count" estimation algorithm reflects these
considerations.

Scaled Count Probability Estimator

Initialize Go = G1 = 0
For n = 0,1, ... ,

If X n = 1,

G1 -- G1 + 1
else

Go -- Go + 1
If min {Go, Gd > Gmin or max {Go, Gd > Gmax

Go -- l~ J; G1 -- l%J
E t · t I Co+~
SIma e PO,n -- CO+Cl+2~ .

There are, of course, many variations on this basic theme.

FINITE STATE MACHINES FOR PROBABILITY
ESTIMATION
The scaled count estimator described above is a finite state machine.

The number of states is more apparent if we modify the implementation
to count the number of LPS and MPS symbols, GL [n] and GM [n], and
to keep track of the identity of the MPS; i.e., Sn' Then GL [n] S GM [n]
so the range of these counters is

oS GL [n] S Gmin
Os GM [n] S Gmax

and we have a total of 2 (Gmin + 1) (Gmax + 1) states6 . As an exam­
ple, we might set Gmin = 15 and Gmax = 1023, enabling us to generate
reliable estimates over the range of probabilities encountered in many
practical applications. The task of computing an estimate of the LPS
symbol probability, P~, may then be reduced to a table lookup opera­
tion, involving a table with 214 entries. The table lookup approach has
the added advantage that the mapping from P~ to Pn = 2N ap~, for
multiplier-free implementations, may be built into the table.

"The factor of 2 arises from the fact that we must keep track of which symbol is the MPS.

Chapter 2: Entropy and Coding Techniques 75

Table 2.1. Probability state transition table for the MQ-coder. LPS probability, pi,
is estimated using 0: = 0.708.

~ Transition Estimate ~ Transition Estimate

~mps ~Ips Xs P (hex) '* ~mps ~lps Xs P (hex) 1*P = 2 1 Q P = 21 Q

0 1 1 1 x5601 0.475 24 25 22 0 x1C01 0.155
1 2 6 0 x3401 0.292 25 26 23 0 x1801 0.132
2 3 9 0 x1801 0.132 26 27 24 0 x1601 0.121
3 4 12 0 xOAC1 0.0593 27 28 25 0 x1401 0.110
4 5 29 0 x0521 0.0283 28 29 26 0 x1201 0.0993
5 38 33 0 x0221 0.0117 29 30 27 0 x1101 0.0938
6 7 6 1 x5601 0.475 30 31 28 0 xOAC1 0.0593
7 8 14 0 x5401 0.463 31 32 29 0 x09C1 0.0499
8 9 14 0 x4801 0.397 32 33 30 0 x08A1 0.0476
9 10 14 0 x3801 0.309 33 34 31 0 x0521 0.0283
10 11 17 0 x3001 0.265 34 35 32 0 x0441 0.0235
11 12 18 0 x2401 0.199 35 36 33 0 x02A1 0.0145
12 13 20 0 x1C01 0.155 36 37 34 0 x0221 0.0117
13 29 21 0 x1601 0.121 37 38 35 0 x0141 0.00692
14 15 14 1 x5601 0.475 38 39 36 0 x0111 0.00588
15 16 14 0 x5401 0.463 39 40 37 0 xOO85 0.00287
16 17 15 0 x5101 0.447 40 41 38 0 xOO49 0.00157
17 18 16 0 x4801 0.397 41 42 39 0 xOO25 0.000797
18 19 17 0 x3801 0.309 42 43 40 0 xOO15 0.000453
19 20 18 0 x3401 0.292 43 44 41 0 xOOO9 0.000194
20 21 19 0 x3001 0.265 44 45 42 0 xOOO5 0.000108
21 22 19 0 x2801 0.221 45 45 43 0 xOOO1 0.000022
22 23 20 0 x2401 0.199 46 46 46 0 x5601 0.475
23 24 21 0 x2201 0.188

As it turns out, the complexity associated with probability estimation
may be reduced significantly further again by using the renormalization
events in the arithmetic coder to probabilistically gate transitions in
the state machine. Specifically, the state is updated immediately after
any symbol coding operation which involves one or more calls to the
"renormalize once" routine. The new state identifies the probabil­
ity estimates to be used for all subsequent symbols, until a subsequent
renormalization event induces another transition in the state machine.
We illustrate the process with the MQ coder's state transition table,

Table 2.1. The second and third columns in the table indicate the state
to which the machine transitions in the event of MPS-induced and LPS­
induced renormalizations, respectively, while the fourth column holds a
1 if the symbols associated with the LPS and MPS are to be exchanged
upon an LPS-induced renormalization (i.e., if 8 is to be replaced by 1-8).

76 Arithmetic Coding

States 2: = 0 through l: = 13 correspond to the "start-up" portion of
the transition table, where few symbols have been observed. This part
of the table is complicated to analyze. The last state, 2: = 46 is non­
adaptive, since it is impossible to enter this state from any other state
or leave it once one has entered; the JPEG2000 application uses this
state to code symbols which are known to have an essentially uniform
distribution. The remaining states 2: = 14 through 2: = 45 represent the
non-transient portion of the table. Once entered from one of the start-up
states, the state machine can never leave the non-transient portion.
To understand the principles behind renormalization-driven probabil­

ity estimation, it is instructive to consider the non-transient portion of
Table 2.1. The LPS probability is a decreasing function of the state
index, 2:. MPS-induced renormalizations tend to drive the machine to­
ward larger state indices, decreasing j5 and hence the relative frequency
of MPS-induced renormalizations. Conversely, LPS-induced renormal­
izations tend to drive the machine toward smaller state indices. In this
way, the machine can be expected to converge to an equilibrium state
which depends upon the LPS probability, p'.
Now suppose that an MPS-induced renormalization always increments

2: by 1 and let k denote the amount by which an LPS-induced renor­
malization reduces 2:. We suppose for convenience that all states in the
neighbourhood of the equilibrium state have approximately the augend
value, pi = ap'. Then the average downward drift due to LPS-induced
renormalization is pik states per symbol. The average upward drift due
to MPS-induced renormalization may be estimated by assuming that A'
is uniformly distributed over [!' 1). At equilibrium, these effects must
balance with

1+j5'

p'k = (1 - pi)12

2dx = (1 - pi) 2ap'
2

which yields
k = 2a (1 - pi) ~ 1.5 (1 - pi)

This crude analysis suggests that k should be set to 1 when pi is not
too small and set to 1 or 2 at the highly skewed end of the table where
pi « 1. This conclusion is supported by the structure of the table, where
the transition from k = 1 to k = 2 occurs at an LPS probability of about
1
4'
Renormalization-driven probability estimation works well in practice,

not so much because the models used to construct the table are accurate,
but because the optimum transition step, k, is almost entirely indepen­
dent of p'. The natural forces driving the state machine to equilibrium

Chapter 2: Entropy and Coding Techniques 77

will yield an approximately optimal value of p, regardless of the particu­
lar entries which we place in the table, provided they are monotonically
decreasing with L; and cover the range of probabilities which we expect to
encounter. Careful modeling is of value only in fine tuning the structure.

2.3.6 OTHER VARIANTS
Multiplier-free arithmetic coder variants may be traced to the "skew

coder" [89], some of the history being reproduced in [88]. Multiplier­
free operation and renormalization-driven probability estimation are the
most distinguishing features of a broad class of arithmetic coding algo­
rithms which includes the Q coder [118], QM coder, [119] MQ coder (see
Section 12.1) and Z coder [28]. An alternate method of approximating
the multiplication of A by PO,n, is embodied in the ELS coder [170].

The Q coder and MQ coder variants incorporate a "bit-stuffing" mech­
anism which limits the extent of carry propagation in the encoder, sim­
plifying the implementation at the expense of a small loss in coding
efficiency. This mechanism is explained in Section 12.1.

It should be noted that we have adopted a number of arbitrary con­
ventions in our discussion of arithmetic coding. The assignment of sub­
intervals to specific symbols and the representation of the coding interval
in terms of a lower bound and length, rather than an upper bound and
length, are arbitrary choices. Various coders and implementations of
these coders adopt different conventions.

2.4 IMAGE CODING TOOLS

In the preceding sections we have introduced what we might call "low­
level" coding tools. In theory, these are sufficient to fully exploit the
statistical redundancy in any data set, including a collection of image
sample values. In practice, however, these techniques alone are usually
insufficient to exploit the rich structure in images subject to reason­
able constraints on implementation complexity. For this reason, we now
briefly discuss a selection of image-specific coding tools which are widely
used in practice.

2.4.1 CONTEXT ADAPTIVE CODING
Markov random processes are a powerful modeling tool for informa­

tion sources, including images. We have already seen (equation (2.8))
that the entropy rate of a Markov-p random process is given by the pth

order conditional entropy H (Xp IXo:p). Moreover, we have seen that
practical arithmetic coding algorithms exist which are able to achieve

78 Image Coding Tools

columns n.-
calls:~a~f:Pl:Y;, ~[~:~=~~.~~=+~~~! Ii:.~. 'j,.~~.-7.~.~.:;;l

COdin~c::tex~ ~'-:~:-7~ 0 ~iS:'···~6;'
x[n]

o 0 000 0 0 0

o 0 000 0 0 0

Figure 2.11. Context coding and associated neighbourhoods.

code rates remarkably close to this bound, provided they are driven by
the appropriate conditional probabilities, !xplxo:p'
In light of these observations, a natural approach to image compres­

sion is to scan the sample values, x [n] == x [nl' n2], into a one dimensional
sequence, usually following a lexicogaphical (raster-scan) order, and to
code each sample using an appropriate model for the sample's distribu­
tion, conditioned on previous samples in the scan. This is illustrated in
Figure 2.11.
In two dimensions, the Markov model is parametrized by a causal
"neighbourhood," N, rather than a single parameter, p. Specifically, N
is an ordered subset of the causal half-plane,

NOO £{nlnl<O}u{nlnl=O,n2<O}

and the Markov conditional independence property becomes

!X[nIIXN+n (x, XN+n) = !X[nJIXNOO+n (x, XN°o+n)

The notation used here is a natural extension of that we have been
using for one dimensional processes. The vector, XN, consists of the
elements x [k] for each k EN and the setN +n is obtained by adding the
displacement vector, n, to each element ofN. A typical neighbourhood
configuration is illustrated in Figure 2.11.
A straightforward application of these principles to image compression

is depicted schematically in Figure 2.12. In the simplest case, the context
labeling operation assigns a distinct label,

Chapter 2: Entropy and Coding Techniques 79

] Arithmetic
'"""--

encoder

I = A(XNtJ~ p(X II)

Extract ContextILine buffer(s)If conditioning
~

labeling and
vector modeling

XN'tn xN + n

] Arithmetic
~decoder

I = A(XNtn)~ p(X It)

Extract Context
ILine buffer(s)If conditioning

~
labeling and

vector modeling

x[n

x[n

XN"tn

Figure 2.12. Context-adaptive image compression and decompression.

to each neighbourhood vector, XN+n. The arithmetic encoder and de­
coder are driven by identical estimates, j> (X If), for the conditional
distribution of X [n], given the context label, f = ,\ (XN+n). The esti­
mates may be fixed or adaptive probability estimates. If the underlying
random process is indeed Markov-N and the probability estimates are
exact, the compression system will be optimal, achieving the entropy
rate of the source to within a negligible margin.
This direct approach is most appropriate for compressing bi-level im­

agery for which x [n] E {O, I}, since then the total number of context
labels for which probability estimates are required can be quite mod­
est. The JBIG image compression standard operates in this manner,
assigning a separate context label to each of the 210 possible neighbour­
hood vectors arising from the selection of one or the other of the two
neighbourhood configurations shown in Figure 2.13. In the JBIG ap­
plication, the arithmetic coder variant is the QM coder, and estimates
of the LPS probability, p~, and MPS identity, Sn, are obtained from a
renormalization-driven finite state machine, as discussed in Section 2.3.5.
When a renormalization event occurs, the state machine updates the
state, L:l , associated with context label f. Each state may be repre-

80 Image Coding Tools

. ~.~.~.~.~-}O.---7.
---------~....:;e___7.~---7.~~---7

.~.~.~-7() 0 0 0

000 0 0 0 0 0

.~.~.~.-}o.~.-}o.

.--;e~.~.-}o~---'

.--;i~~.-7() 0 0

o 0 0 0 000
Figure 2.13. Two context generating neighbourhoods used by the JBIG image com­
pression standard.

sented with a single byte so that the entire adaptive probability model
is contained within a 1 kbyte memory.
For non-binary alphabets, the direct labeling approach is less attrac­

tive. Consider, for example, a direct application to 8-bit imagery. The
conditional distribution for each context is characterized by 255 free pa­
rameters and there are 25611N1I distinct contexts. Thus, even for a simple
two-element neighbourhood, we must estimate approximately 224 dis­
tinct parameters. Quite apart from the storage concerns, images do not
contain sufficient samples to reliably estimate this many parameters.
For multi-valued images, therefore, we must employ a context reduc­

tion function, .\ 0, to reduce the input vector, XN+n, to a manageable
number of context labels. A common approach is to first apply the pre­
dictive techniques of Section 2.4.2, reducing the original image sample
values to an equivalent array of prediction residuals, ern]. The predic­
tion residuals tend to be clustered around zero so that ern] is very likely
to lie inside a small alphabet, AE cAE, with IIAEII « IIAEII. An
obvious way to reduce the number of context labels without sacrificing
much coding efficiency is to assign a unique label,

to each eN+n' where the elements of e' are formed by setting

e' = { ei,
2 -e,

if ei E AE
otherwise

i = 1,2, ... IINII

Here, e, is used to collectively represent all symbols in AE \ AE. The
JPEG-LS image compression standard follows this paradigm, as dis­
cussed in Chapter 20.
We conclude by noting that the arithmetic coding operation illus­

trated in Figure 2.12 may be replaced by Huffman coding, Golomb cod­
ing, or any of a variety of other coding techniques, adaptive or otherwise,

Chapter 2: Entropy and Coding Techniques 81

which are able to exploit the statistical redundancy available within each
context.

2.4.2 PREDICTIVE CODING
In predictive coding, the image samples, x[n], are converted into an

equivalent array of prediction residuals (or errors), ern]. Because x[n]
and ern] are equivalent sequences, with the same sample rate, they have
the same entropy rate, H({X[n]}) = H({E[n]}). However, ern] is gen­
erally easier to code efficiently when faced with practical limitations.
The prediction residual sequence is formed by setting

where N c N°o is a causal neighbourhood7 and /-ip 0 is a function of
the prediction vector, XN+n, whose elements have already been coded.
The predictor function, /-ip, is ideally designed to minimize the first or­
der entropy of the residuals, H(l) ({E [n]}) = H (E). In practice, this
is usually approximately equivalent to minimizing the variance of the
residuals, which may be achieved by setting the predictor equal to the
conditional mean; i.e.,

This explains our choice of notation, /-ip for the predictors. If a good
predictor can be found, most of the residuals will be close to zero.
As a simple example, let

N = {[a, -1], [-I,O]}

so that the prediction vector consists of the values of the samples to the
left and immediately above x [n]; i.e.,

The most obvious predictor function would simply average these two
neighbouring samples,

7The reader is referred to Section 2.4.1 for definitions of N, Nco and x.N'+n'
AWe use the same notation for the predictor ill a lossy DPCM feedback loop, as discussed in
Section 3.3. Subject to certain assumptions, the optimal predictor for lossy DPCM is well
justified as the conditional mean of X n given its causal neighbours.

82 Image Coding Tools

and indeed this is one of the predictors supported by the original lossless
compression algorithm defined by the JPEG image compression stan­
dard9 [119].
In many images, the X[n] obey an approximately uniform distrib­

ution over the range of sample values, whereas the random variables,
E[n], generally have highly non-uniform distributions, centered about
O. Hence we may conclude that the first order entropy of the predic­
tion residual process, H(E), should be significantly smaller than that of
the original image, H(1)({X[n]}). This means that simple arithmetic or
Huffman coders, which use no context modeling at all, stand to benefit
significantly from a prediction front end. Moreover, if context modeling
is also to be used then contexts with a reduced number of states may
be formed more easily from the prediction error sequence than from the
image samples themselves, as discussed at the end of Section 2.4.1.

2.4.3 RUN-LENGTH CODING
Graphics images, bi-level images and pseudo-images representing class

information extracted from a real image (e.g. high activity vs. low activ­
ity) often contain large regions of constant sample values. Context-based
coding schemes generally have difficulty capturing the statistical behav­
iour of such regions because memory resources and the need for reli­
able statistical estimates place practical limits on the size of the context
neighbourhoods, N, which may be used. Run-length coding schemes
have been adapted to handle this very situation.
The most basic run-length coding scheme may be understood by con­

sidering a one dimensional sequence, {xn }, of symbols from an alpha­
bet, Ax. Run-length coding replaces {xn } by a sequence of symbol
pairs, {(ak,rk)}, representing symbol values, ak E Ax, and run-lengths,
rk E Z+. The mapping between {(ak,rk)} and {xn} is obvious; namely,
X n = ak for all n such that

k-l k

'\:"'r· < n < '\:"'r'
~ J -~ J
j=l j=l

where k = 1,2, ... and n = 1,2, The value, rk is normally the longest
run of symbols, Xn, n > 2:;:i rj, such that X n has a constant value, an·

The sequence ofrun-length symbol pairs, {(ak, rk)}, is usually coded
using a Huffman code, although arithmetic coding may also be used. In
the simplest case, separate codes are constructed for the symbol values,

9The original lossless algorithm described by the JPEG standard is not to be confused with
its more efficient successor, known as JPEG-LS.

Chapter 2: Entropy and Coding Techniques 83

O~O~O~O~O~O~O~

~
CY-CY-CY-CY-CY-CY-CY-O
~
o~o~o~~o~o~o~

CY-Cfr-Cfr-Cfr-Cfr-Cfr-Cfr-6

Figure 2.14. A suitable scanning pattern for applying ID run-length coding to image
data.

ak, and the run-lengths, rk. When the alphabet is small and the distri­
bution of run-lengths is expected to vary for different symbols, then the
pairs, (ak, rk), should be coded jointly. Equivalently, we may code ak
and then rk conditioned on the context established by ak, since

This is most commonly done for binary images, in which case runs of the
"0" symbol are referred to as "black" runs, while runs of the "I" symbol
are referred to as "white" runs. Separate conditional distributions are
estimated for the black and white runs, from which separate codes are
optimized for the black and white run lengths. Note that in the binary
case the symbol values, ak, may not need to be coded provided we can
guarantee that we have alternating sequences of black and white runs;
i.e., ak = 1 - ak-l' The situation often becomes slightly more complex,
as a result of the practical necessity to impose a limit on the maximum
run length.
The one dimensional run-length coding schemes discussed above may

be applied to images by following an appropriate scanning pattern, such
as that illustrated in Figure 2.14. Further improvement in coding ef­
ficiency, however, is often achievable by explicitly modifying the run­
length coding scheme to exploit statistical dependencies between scan
lines. Facsimile codes use such an approach, in which the end of each
white run may be specified relative to the beginning of that run on the
current line (regular one dimensional run-length coding) or relative to
the beginning or end of the nearest white run on the previous scan line.
For further information concerning such "two dimensional" run-length
coding schemes, the reader is referred to [35].

2.4.4 QUAD-TREE CODING
Quad-tree coding shares many features with run-length coding, but

is intended to exploit multi-dimensional dependencies more efficiently.

84 Further Reading

The idea is most easily explained and most commonly applied with bi­
level images, where one symbol, say "0", occurs much more frequently
than the other, "1". For simplicity, we assume that the image is square
with dimensions 2T x 2T for some T E Z+.
Let x [n] E {O, I} denote the image sample values, defined over °::;

nl, n2 < 2T . Define quad-tree node values, x(t) [n], at each level, t, in
a quad-tree as follows. At t = 0, the leaf nodes are the image samples
themselves; Le., x(O) in] = x [n]. At higher levels in the tree, the node
values are defined recursively through the relations

x(t+l) in] = max x(t) [2n+ k], 0::; nl, n2 < 2T - t

O~kllk2<2

Thus, at the root of the tree we have the single node value

The idea is to emit the quad-tree node values, starting from the root
and working down to the leaves of the tree, skipping any nodes whose
value may be deduced from a higher level node in the tree. In particular,
if x(t+I) in] = 0, the definition given above implies that all four children,
x(t) [2n + k], °::; kl , k2 < 2, must also be zero, so these nodes and their
descendants will not contribute to the bit-stream. Since the "0" symbol
is assumed to occur with high probability, we hope to encounter high
level tree nodes whose value is zero, thereby coding a large block of zeros
with a single binary digit.
Quad-tree coding may be implemented using the following algorithm,

although recursive implementations are also possible and may be more
natural. To simplify the description we define x(T+I) [0] = 1.

Quad-Tree Coder

For t = T, ... ,1,°
For each n over the range °::; nl, n2 < 2T - t

Ifx(t+I) [lTJ, lTJJ = 1
emit-bit (x(t) [nn

While simple and often more efficient than run-length coding, quad­
tree coding can be substantially more memory intensive than the latter
when T is large. To minimize this difficulty, the image may be divided
into smaller blocks to which the quad-tree code is applied independently.
Many other variants on the basic algorithm exist, some of which are
explored later in this book. Embedded quad-tree codes for non-binary
image data are explored in Section 8.3.4.

Chapter 2: Entropy and Coding Techniques 85

2.5 FURTHER READING
In Section 2.1.2 we introduced random variables as a tool for refer­

ing to the underlying statistical properties which govern the likelihood
of different events. More rigorous mathematical treatments of random
variables may be found in many texts, including [115]. More compre­
hensive treatments of the properties of entropy and entropy rate, coding
theorems for Markov and more general random processes, and entropy­
ergodic theorems may be found in [17], [67], [106] and [74], amongst
others. An alternative treatment of arithmetic coding, along with a
comprehensive list of references to articles and private communications
may be found in [119]. For a useful tutorial article on adaptive proba­
bility estimation for arithmetic coders, the reader is referred to [53].

Chapter 3

QUANTIZATION

3.1 RATE-DISTORTION THEORY
Chapter 2 discussed entropy coding algorithms possessing the desir­

able feature that the data obtained from decompression are identical
to the original data. That is, the compression algorithms described in
that chapter are lossless. As mentioned in Chapter 1, some applications
(such as certain medical imaging systems) require lossless compression,
while other applications may tolerate some amount of distortion in the
decompressed data in return for a smaller compressed representation.
Quantization is the element of lossy compression systems responsible for
reducing the precision of data in order to make them more compressible.
In most lossy compression systems, it is the only source of distortion.
Chapter 2 introduced the concept of entropy, and established it as the

fundamental bound on the performance of lossless compression. In this
section, the rate-distortion function is introduced as the fundamental
bound on the performance of quantization.

3.1.1 SOURCE CODES
Let {Xn } be a discrete random process taking values in Ax. A

source code of length m, and size Ail = 2Rm with alphabet Ax is a
set of codewords (vectors) C= {XO,X1, ... ,xM-d with xq E A'i q =

0,1, ... , Ail - 1. Given a data vector x = XO:m , a source coder (vector
quantizer) selects the index of the codeword in C that minimizes some
distortion measure. That is

Q(X) = argmin Pm(x, xq)
qE{O,1, ... ,M-1}

(3.1)

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

88 Rate-Distortion Theory

The corresponding source decoder (dequantizer) is given by

Q-l(q) = xq

-..!£1 the discussion above, we have referred to Q as quantization, and
Q-las dequantization. Often in the literature, the end-to-end behavior

X=Q-l(Q(x))

is referred to as quantization. Even though Q is generally many-to-one,
Q-l is one-to-one. Thus, "the quantized version of x" may refer to either
q or xq and the ambiguity in terminology is generally not a problem.
The distortion measure employed in equation (3.1) is often chosen to

be of the form
m-l

Pm(x, x) = ~ L p(Xj,Xj)
m j=O

where P is a non-negative measure of distortion between a single sample
from each vector. Measures of this form are referred to as single letter
distortion measures.
The average distortion of a source code C is given by

Since the index of the codeword selected (q = Q(x)) can be represented
with log2 loll bits, and each codeword represents m samples, the rate of
the code is given by

log2 loll
R = bits/sample

m

with a resulting compression ratio of

3.1.2

log211Axli
R

MUTUAL INFORMATION AND THE
RATE-DISTORTION FUNCTION

From Section 2.1.2, the entropy and conditional entropy of discrete
random variables X and Yare given by

H(X) = E [-log2 !x(X)]

and
H(XIY) = E [-log2!xlY(X,Y)]

Chapter 3: Quantization 89

respectively.
H(X) was established as the average information conveyed (equiv­

alently, the average uncertainty removed) by learning the value of X.
Similarly, the conditional entropy is the average uncertainty remaining
about X after learning the value of Y. The mutual information between
X and Y is then defined by

I(X; Y) = H(X) - H(XIY)

and is the difference in uncertainty about X before and after learning
Y. In other words, it is the average information conveyed (uncertainty
removed) about X by learning Y. Since H(XIY) s:; H(X), it is clear
that I(X; Y) ~ 0 with equality if and only if X and Yare independent.
Manipulating the expression for I(X; Y), we have

I(X; Y) = H(X) - H(XIY)

= - L fx(x) log2 fx(x)
x

+L fy(y) L fxlY(x, y) log2 fxlY(x, y)
y x

'" '" fx,Y(x, y)
= ~7 fx,Y(x, y) log2 fx(x)fy(y)

'" '" fYIX(Y, x)= L..- L..- fYIX(Y, x)fx(x) log2 f ()
x y Y Y

(3.3)

(3.4)

From equation (3.3), it is clear that I(X; Y) = I(Y; X). Also, noting
that fy(y) = L. fYlx(Y, x)fx(x), we conclude that for a given PMF fx,

x
the mutual information is a function of the conditional PMF fYlx,
Now, given a single letter distortion measure, and an IID process {Xn }

with marginal PMF fx, the rate-distortion function is given by

R(D) = inf I(X; X)
fxlxEFD

where

The importance of the rate-distortion function is summed up in the
two theorems given below. These theorems are offered without rigorous
proof. The interested reader is referred to [24, 67, 43]. In these theorems,

90 Rate-Distortion Theory

it is assumed that Pm is a single letter distortion measure with p(x, x) <
00, V(x, x) E Ax x Ax' It is also assumed that for every x E Ax there
is at least one x E Ax such that p(x, x) = O.

Theorem 3.1 Source Coding Theorem
For any c > 0 and any D 2: 0, there exists an integer m such that a

source code C, of length m, exists having average distortion d(C) :::; D
and rate R < R(D) + c.

Theorem 3.2 Converse Source Coding Theorem
For all D 2: 0, there exists no source code C with average distortion

d(C) < D and rate R < R(D).

Intuition into these results can be obtained by noting that a source
coder is a deterministic mapping (i.e., XO:m is uniquely determined as
Q(XO:m)). Thus, H(Xo:mIXo:m) = 0 which yields

I(Xo:m;XO:m) = I(Xo:m;XO:m)

= H(Xo:m) - H(Xo:mIXo:m)

= H(Xo:m)

Thus, I(Xo:m;XO:m) = H(Xo:m) is the information required to represent
XO:m (the quantized version of Xo:m) and should be minimized under
the constraint that the average distortion should not exceed D. That is,

d(C) = E [Pm(Xo:m,Q-l(Q(Xo:m)))]

= L Lfxo:mIXo:m(xlx)fxo:m(x)Pm(x,x):::; D
xEAX':X.EC

Comparing to the definition of the rate-distortion function, we see that
the rate-distortion function is the scalar version of the vector expres­
sions above. It is interesting to note that in the vector version, the
deterministic nature of Q implies that fXo:mIXo:m (xix) is necessarily ei­
ther 0 or 1, while the resulting marginal distribution, fxIx (xix) is not
so constrained.

3.1.3 CONTINUOUS RANDOM VARIABLES
Extension of the theory from discrete random variables to continuous

random variables is straightforward. In this case, Ax = Ax = 1R and
the entropy (as defined previously) is generally infinite. Replacing prob­
ability mass functions by probability density functions (PDF) and sums

Chapter 3: Quantization 91

by integrals, the differential entropy is defined by

h(X) = -E [log2 fx(X)] = -Jfx(x) log2 fx(x)dx

where fx is the PDF of X. Differential entropy is a relative measure
of uncertainty and, unlike entropy for discrete random variables, can be
negative. h(X) can be thought of as being relative to the case when X
is distributed uniformly on 0 to 1, for which h(X) = O.

Example 3.1 Let X be Gaussian with mean 0 and variance (}2. Then,

and

h(X) = - Jfx(x) log2 fx(x)dx

= Jfx(x) [~+ In J21W2] dx
In2

_[! + In J21W2]
In2

1= 2Iog221Te(}2

(3.5)

(3.6)

In fact, the same result is obtained in the example above when the
mean is not zero. More generally, the differential entropy of any ran­
dom variable is unaffected by the addition of a constant to that random
variable (change of mean). On the other hand, scaling a random vari­
able by any constant a (change of variance) will add log21al bits to the
differential entropy.
An interesting property of the Gaussian distribution is that it has

the highest differential entropy of any continuous distribution of a given
vanance.

Theorem 3.3 Let X and Y be random variables each of variance (}2
and let X be Gaussian. Then h(X) ~ h(Y).

92 Rate-Distortion Theory

Proof. Without loss of generality, assume X and Yare zero mean. Then

h(Y) - h(X) = h(Y) + / fx(x)log2fx(x)dx

=h(Y) + / fx(x) [CIX
2+ C2] dx

=h(Y) +Cla2+ C2

=h(Y) + / fy(y) [Cly2 + C2] dy

=h(Y) + / fy(y) log2 fx(y)dy

j. fx(y)
= fy(y) log2 fy(y) dy

where Cl and C2 are as in equation (3.5). Applying Jensen's inequality, which states
that E [g(Y)] ::; g(E [YJ) for convex n (concave) functions g,

/

fx(y)
h(Y) - h(X) ::; log2 fy(y) fy(y) dy

= log2 / fx(y)dy ::; log21 = 0

The inequality in the second line above results from the fact that the last integral is

over the support of fy (which may not contain the support of fx) .•

Conditional differential entropy is defined as

h(XIY) = -E [log2 !XIY (X, Y)]

= - JJ!X,y(x, y) log2 !Xty(x, y)dxdy

and mutual information is defined as

I(X; Y) = h(X) - h(XJY)

It should be noted that I(X; Y) is interpreted as in the discrete case.
It is an absolute (i.e., not relative) measure of the information that Y
provides about X.
For an IID process {Xn }, and single letter distortion measure, the

rate-distortion function is given as

R(D) = inf I(X; X)
!;fqxEFD

where

Chapter 3: Quantization 93

This is the obvious generalization from the discrete case, obtained by
substituting PDFs for PMFs, and integrals for sums. Theorems simi­
lar to Theorem 3.1 and Theorem 3.2 can be proven for a large class of
distortion measures and source distributions, and hence, in the continu­
ous case, the rate-distortion function is again the fundamental limit on
performance.

It can be shown [24] that the rate-distortion function is convex U,
continuous and monotonically decreasing on the interval (0, Dmax) where
Dmax is some value ofD after which R(D) = O. Hence the rate-distortion
function has an inverse which is called the distortion-rate function. The
obvious interpretation of the distortion-rate function is that it is the
theoretical limit on distortion given a desired encoding rate. The rate­
distortion function and the distortion-rate function will be used inter­
changeably throughout the text as the choice of one or the other is largely
a matter of convenience.
A key point in the development of any source coding scheme is the

choice of the distortion measure p. The most widely used measure is
squared error with p(Xi' Xi) = (Xi - Xi)2, and hence, average distortion
(equation (3.2)) becomes mean-squared-error (MSE). It should be noted
that for continuous random variables coded at a rate of R bits/sample,
the compression ratio is infinite, and clearly not meaningful. In this case,
the more relevant measure of performance is R for a given distortion D
or VIce versa.

Theorem 3.4 Shannon Lower Bound
For an IID process with variance (J2, the MSE rate-distortion junction

is lower bounded by

(3.7)

Proof. Without loss of generality, assume X is zero mean. We then seek to

minimize I(X; X) subject to the constraint that E [(X - X)2] :::; D. Now,

I(X; X) = h(X) - h(XIX)

= h(X) - h(X - XIX)
;::: h(X) - h(Z)

(3.8)

where Z = X - X. The second equality is easily established, and follows from the
fact that given X, X - X has the same distribution as X (but different mean) and
thus the same differential entropy. The inequality follows from h(ZIX) :::; h(Z). Now,

for a given value of 0"1, E [(X - X)2] = E [Z2] = 0"1 + /-11 is smallest when /-1z = o.
Also, for a given value of 0"1, h(Z) is maximum when Z is Gaussian (Theorem 3.3).

94 Rate-Distortion Theory

Thus, for E [(X - Xf] :::; D, we have

•
Corollary 3.5 For an IID Gaussian process with variance (12, the MSE
rate-distortion function is given by

(3.9)

Proof. Choose fXIX so that X and X are jointly Gaussian with

1 2

f (') -(x-x) J2D
XIX X,X = ~e

v27rD

From Example 3.1, we then have

I(Xj X) = h(X) - h(XIX)

1 2 1
= "2 log2 27re(7 -"2 log2 27reD
1 (72

= "2 log2 D

Furthermore,

E[(X - Xf] =if (x - X)2 f X IX (x, x) dx!x (x) dx

= /D!x(X)dX

=D

Thus, I(X; X) achieves the minimum possible value (as given in Theorem 3.4) subject
to the constraint that E [(X - xf] :::; D. Hence, R(D) = ~ log2 ~. It is easily

verified, and worth noting, that the correlation coefficient between X and X is given
by r = J1-D/(72. Also, E[X] = E[X] and (7l = (72 - D. As should be expected,
when D ----> 0, we have r ----> 1 and (7l ----> (72. •

Note that if D ~ (12, R(D) = O. In this case, fixing X = E[X] yields
E [(X - X)2] = (12 :::; D. Inverting the rate-distortion function, we get

the distortion-rate function

(3.10)

Chapter 3: Quantization 95

Table 3.1. Entropy power by distribution.

Distribution Entropy Power

Uniform
Laplacian
Gaussian

The theoretical bound on signal-to-noise ratio (SNR) is then given by

(J2

SNRD(R) = 10logIO D(R)

= 20RloglO 2

~ 6.02R dB

(3.12)

For most distributions, the rate-distortion function cannot be ex­
pressed in closed form. In these cases, it must be computed numerically.
While most numerical optimization techniques can be used, the iterative
technique of [26, 21] is particularly elegant.
The rate-distortion function for any IID distribution can be bounded

by
1 (J2

RL(D) ::; R(D) ::; 2log2 D (3.11)

The right hand expression is the Gaussian rate-distortion function, while
the expression on the left is the Shannon lower bound as given by equa­
tion (3.7) The Shannon lower bound is known to be tight for small D
(large R). That is, DL(R) ~ D(R) when R is large.
Inverting the expressions of equations (3.11) and (3.7), we get

DL(R) =-2
1

22h(X)2-2R ::; D(R) ::; (J2T 2R

7fe

The quantity 2; 22h(X) is known as the entropy power, and has max­
imum value of (J~ when X has the Gaussian distribution. Expressions
for the entropy power of the uniform, Laplacian (two-sided exponential),
and Gaussian (normal) distributions are given in Table 3.1.

3.1.4 CORRELATED PROCESSES
In general, the rate-distortion function is extremely difficult to com­

pute for correlated processes. A notable exception is for stationary
Gaussian processes. Assume a mean of zero and denote the autocor­
relation function of such a process by

96 Rate-Distortion Theory

Figure 3.1. Computation of D as water filling. The shaded region has area 21rD.

The power spectral density of the process is the Fourier transform of
Rx [k],

00

Sx(w) = I:: Rx [k] e-jkw

k=-oo

The rate-distortion function is then given in parametric form [24] by

1 j'1rD(>.) = - min{>',Sx(w)}dw
2n -1r

and

R(>') = 2~1:max {o, ~ log2 Sx;w)} dw

The rate-distortion function is computed from these expressions by vary­

ing >. E (O,m:x{Sx (w))] to obtain values of D and the corresponding

values of R(D). The computation of D is often described as "water fill­
ing." As can be seen in Figure 3.1, D can be pictured as the "area of
water" obtained when Sx(w) is "filled" to the level of >.. Computation
of R can be viewed as a similar water filling but on a level shifted version
of! log2 Sx (w).
Note that when>' = max {Sx (w)}, R(>') = °and D(>.) = Dmax =

w
1r

2~ .r Sx (w) dw = 0'2. Finally, we note that for>. :S min {Sx (w)} (small
-1r w

D, large R),
D(>') = >. (3.13)

Chapter 3: Quantization 97

and

R(A) = ~ j1r ~ I Sx(w) dw
21f 2 og2 A

-IT

1 lIT 1 1
= 21f -IT 2 log2 Sx(w)dw - 2log2 A (3.14)

Solving equation (3.14) for Aand substituting into equation (3.13) yields

D(R) = ,1(j2T2R (3.15)

where

,1 = (j~ exp [2~ J~ In Sx(W)dw]

is known as the spectral flatness measure of {Xn }. It is easily shown
that ,1 ~ 1 with equality if and only if Sx(w) = (j2 \:fw (i.e., {Xn } is
IID).

3.2 SCALAR QUANTIZATION
The scalar quantizer (SQ) is the simplest of all lossy compression

schemes. It can be described as a function that maps each element in
a subset of the real line to a particular value in that subset. Consider
partitioning the real line into M disjoint intervals

I q = [tq, tq+1), q = 0,1, ... , /VI - 1

with
-00 = to < t1 < ... < tM = +00.

Within each interval, a point xq is selected as the output value (or
codeword) of I q . A scalar quantizer is then a mapping from lR to
{O,I, ... ,M-l}. Specifically, for a given x, Q(x) is the index q of
the interval I q which contains x. The dequantizer is given by

Q-1(q) = xq

Example 3.2 Let M = 4, t1 = -1, t2 = 0, t3 = 1, Xo = -1.5, Xl =

-0.5, X2 = 0.5, X3 = 1.5. Then, if x < -1, the quantized version of x
is -1.5 (index = 0). Specifically, Q(x) = 0 and Q-1(Q(x)) = Q-1(0) =
-1.5. Similarly, if 0 ~ x < 1, the quantized version of x is 0.5 (index =
2). This situation is illustrated in Figure 3.2.

A different depiction of the quantizer from Example 3.2 is found in
Figure 3.3a. The more general case is shown in Figure 3.3b. This figure
shows that when x E I q = [tq,tq+d, that Q-1(Q(x)) = Q-1(q) = xq.
Clearly, the tq can be thought of as thresholds, or decision boundaries
for the xq .

98 Scalar Quantization

I'

Xq

1.5

0.5

-1

-0.5

-1.5

x

3.2.1

Figure 3.2. Scalar quantizer of Example 3.2.

• I • I • • ~

-1.5 -I -0.5 0 0.5 1.5 X

a)

• I • I • I • ~

~ ~ ~

t3 t
M

_I XM _
I

X
Xo tl XI t2 X 2

...
b)

Figure 3.3. Alternate graphical representation of scalar quantization.

THE LLOYD-MAX SCALAR
QUANTIZER

In this section, we develop necessary conditions for the optimality of
scalar quantizers of a fixed size M. Quantizers satisfying these condi­
tions are known as Lloyd-Max quantizers [97, 105]. Here we assume a
stationary process with marginal PDF Ix and the MSE criterion for
measuring distortion is adopted. Using the notation developed in previ­
ous subsections,

M-l

d = MSE = E [(X _X)2] = L E [(X -X)2IX E Ik] P(X E I k)
k=O

(3.16)

Chapter 3: Quantization 99

M-l

1
·t k +1

= L (x - Xk)2 fx(x)dx
k=Q tk

Setting the partial derivative of d with respect to tq equal to zero yields
(tq - Xq_l)2 fx(tq) - (tq - xq)2 fx(tq) = O. Solving for tq yields

Xq-l + xqtq = 2 q = 1,2, ... ,M - 1

Similarly, differentiating with respect to xq yields

A ft:q+
1 xfx(x)dx

xq = t q=0,1, ... ,M-1It q+l fx(x)dx
q

(3.17)

(3.18)

Equations (3.17) and (3.18) then form necessary conditions for an opti­
mal scalar quantizer.
Equation (3.17) implies that the endpoints of the quantizer decision

regions should be halfway between output points. This implies nearest
neighbor encoding, which means that the input x is encoded as Xq , where
xq is the codeword closest to x. The denominator of equation (3.18) is
the probability that X lies in I q and hence, xq = E[X\X E I q]. Code­
words satisfying this property are called conditional means, or centroids.
Easily proven consequences of these properties are that

E[(X -X)] = 0

2 2 A 2(Jx=(Jx-E[(X-X)]

E[(X-X)X]=O

E[(X - X)2IX E Ij]pj = E[(X - X)2IX E Iq]pq Vj,q

where pq = P(X E I q). These properties state respectively, that the
quantization error is zero mean (whether or not E [X] = 0), quantiza­
tion reduces the data variance by an amount equal to the MSE. The
quantization error is uncorrelated with the quantizer output (but not
the input), and that on average, the contribution of all intervals (toward
the overall MSE) are equal.
As necessary conditions, equations (3.17) and (3.18) do not guarantee

optimality. In fact, examples of suboptimal quantizers satisfying equa­
tions (3.17) and (3.18) are easily constructed. Optimality is assured
however, for all sources having log-concave PDFs (i.e., log fx is a con­
cave, or convex n, function) [61]. Uniform, Laplacian, and Gaussian

100 Scalar Quantization

distributions all satisfy this property and hence, their corresponding
Lloyd-Max quantizers are optimal (as scalar quantizers).
Solving equations (3.17) and (3.18) in closed form is usually quite

difficult. One notable exception occurs for symmetric distributions and
!VI = 2. Let f-l be the point of symmetry, i.e., !x(x+f-l) = !x(-x+f-l) '\fx.
Then, tl = f-l, Xo = E[XIX < tt], Xl = E[XIX > f-l] = 2f-l- xo· Another
exception occurs when X is distributed uniformly. Specifically, suppose
that X is uniform on [a, b). Then the Lloyd-Max quantizer partitions
[a, b) evenly into M intervals

[
(b-a) (b-a))

I q = a + M q, a + M (q + 1) q = 0, 1, ... ,!VI - 1 (3.19)

and xq is the center of each such interval. Quantizers of this form (equal
length decision regions, with their centers as output points) are known
as uniform scalar quantizers.
For many other cases, solution of equations (3.17) and (3.18) must

proceed iteratively. The following algorithm can be used to that end.

The Max Algorithm (Lloyd Form II)
1) Choose an initial code C= {xo, Xl, . .. ,XM-d, set j = 1, do = 00
2) Calculate the tq according to equation (3.17)
3) Calculate the xq according to equation (3.18)
4) Calculate dj according to equation (3.16)

5) If dj_~ :-d j < c stop; else set j = j + 1 and go to step 2
J

For a given set of Xq , the tq computed in step 2 are optimal. Thus,
step 2 is guaranteed not to increase distortion. Similarly, for the tq
computed in step 2, the xq computed in step 3 will not increase the dis­
tortion. Thus, the sequence of distortions dj , j = 1,2, ... is monotone
non-increasing (and bounded below by 0). Thus, the algorithm is guar­
anteed to converge. In the case of a log-concave PDF, the resulting code
is optimal. Otherwise, the resulting code is at least locally optimal.
This algorithm can be rewritten in the form shown below. This form

is easily adapted to estimation of the optimal quantizer in the event that
the PDF is unknown, but sample data from {Xn } are available.

The Lloyd Algorithm (Form I)
1) Choose an initial code C= {XO,Xl, ... ,xM-d, set j = I,do= 00
2) Let I q = {XElR:(X-xq)2«x-Xk)2'\fk#q} q = 0,1, ... ,

!VI -1

3.2.2

Chapter 3: Quantization 101

3) xq = E[XIX E I q] q = 0,1, ... , NI - 1
M-l

4) dj = 2:= E [(X - xq)2lX E I q] P(X E I q)
q=O

5) If dj_~~dj < c stop; else set j = j + 1 and go to step 2
J

In step 2, we ignore the zero probability event that (x - xq)2
(x - Xk)2 for k i= q. In this case, x can be assigned to either set with no
effect on MSE
Now, in the case where the PDF of {Xn } is unknown, but a set of sta­

tistically representative "training data" T is available, the algorithm can
be modified by substituting sample averages for expectations and rela­
tive frequencies for probabilities. In the limit as the size of the training
set goes to infinity, the weak law of large numbers implies that these sta­
tistical substitutes will converge to the true underlying ensemble values.
The resulting algorithm is as follows.

The Lloyd Algorithm (with Training Data)

1) Given a training set of samples from {Xn }, say T = {XO,Xl,""

XIITII-l}, choose an initial code C = {XO,Xl, ... ,XM-t}, set j = 1,
do = 00

2) Let Bq = {x E T: Q(x) = q} = {x E T : (x - xq)2 < (x - Xk)2
Vk i= q} q = 0, 1, ... ,M - 1

3) xq = IIJ
q

[[2:= x q = 0,1, ... , NI - 1
xEBq

M-l
4) dj = win 2:= (x - Q-l(Q(x)))2 = lIill 2:= 2:= (x - xq)2

xET q=O XEBq

5) If dj_~~dj < c stop; else set j = j + 1 and go to step 2
J

As before d j ::; dj-l and convergence is ensured.

PERFORMANCE OF THE LLOYD-MAX
SCALAR QUANTIZER

Table 3.2 gives the values of xq for the zero mean, unit variance Uni­
form, Laplacian, and Gaussian PDFs at rates R = 1,2, and 3 bits/sam­
ple. Table 3.3 gives the SNR values for Lloyd-Max quantization of these
sources at rates up to 5 bits/sample. For more extensive tables, see [82].
For large R, it can be shown that the MSE of Lloyd-Max quantization

behaves like
(3.20)

102 Scalar Quantization

Table 3.2. Lloyd-Max quantizer reconstruction values.

Uniform Laplacian Gaussian

1 ±0.866 ±0.707 ±0.798
R 2 ±0.433, ±1.299 ±0.420, ±1.834 ±0.453, ±1.51O
3 ±0.217, ±0.650, ±0.233, ±0.833, ±0.245, ±0.756,
±1.083, ±1.516 ±1.673, ±3.087 ±1.344, ±2.152

Table 3.3. MSE performance of Lloyd-Max quantizers (SNR in dB).

Uniform Laplacian Gaussian

1
2

R 3
4
5

6.02
12.04
18.06
24.08
30.10

3.01
7.54
12.64
18.13
23.87

4.40
9.30
14.62
20.22
26.01

3.2.3

where e2 is a function of the particular PDF. For smooth, zero mean,
symmetric PDFs

e2
(Y2 = ~ [100

Vfx(x)dxf

The reader is referred to [114] for a proof of this fact. The values of e2

for the uniform, Laplacian, and Gaussian sources are given in Table 3.4
as 1, 9/2, and V37f/2 ~ 2.721, respectively.

It is worth noting that equation (3.20) is somewhat pessimistic at low
rates. For example, equation (3.20) predicts 13.72 dB for the Gaussian
PDF at R = 3, while the actual value from Table 3.3 is 14.62 dB. For
R = 6, the values predicted by equation (3.20) are all within about 0.2
dB of the exact values. It is also worth noting that equation (3.20)
provides the exact correct values for the uniform PDF at all rates.
We close this section by noting that Lloyd-Max scalar quantizers are

in fact, special cases of the source codes described in Section 3.1.1. In
this case, m = l,e = {xo, ... ,XM-I} ,p(x,x) = (x - x)2, and M is
usually chosen as a power of 2 so that xq can be signalled using an
integer number (R = log2 lVI) of bits.

ENTROPY CODED SCALAR
QUANTIZATION

The Lloyd-Max quantizer minimizes the MSE subject to a constraint
on the size of the code, lVI. The presumption is that R = log2lVI bits

Chapter 3: Quantization 103

will be used to signal the codeword chosen by the quantizer. If log2 M
is an integer, this is straightforward. If log2 M is not an integer, then
R = flog2 Ml < log2 M + 1 bits may be used to signal one index at
a time. Alternatively, we can block L indices qo, ql, ... ,qL-l together
to form one "super-index" in {O, 1, ... ,lvIL - 1}. This super-index can
then be signalled using

R = ±pog2 M L1< log2 M +±bits/index
Thus, we see that for the Lloyd-Max quantizer R = log2 M bits/sample
can be approached arbitrarily closely with "fixed length" coding, even
when M is not a power of 2.
We now consider the application of variable length codes such as Huff­

man, or arithmetic (Chapter 2) to the indices produced by a scalar quan­
tizer. Such coding is lossless and has no effect on Q-l(q) = Q-l(Q(x)).
Thus, the MSE is unchanged. However, the rate of the resulting "en­
tropy coded quantizer" can approach the entropy of the indices, which is
equal to H(X). For simplicity, we assume in what follows that efficient
entropy coding is used, so that

(3.21)

with the inequality achieving equality if and only if all quantizer outputs
are equally likely (i.e., fx(;rq) = l/M q = 0,1, ... ,M - 1).
In the case that H(X) < log2 M, the Lloyd-Max quantizer is not

the optimal quantizer to be used in the entropy coded scenario. The
optimal quantizer minimizes MSE subject to a constraint on entropy.
From equation (3.21), we see that we must have M > 2R . M can
be chosen arbitrarily largely without concern for performance. In fact,
for unbounded random variables (e.g., Laplacian, Gaussian) M = 00 is
generally the optimal choice. If a particular choice of lvI is too large for
a given PDF, the optimization techniques discussed below will result in
some of the codewords having probability of zero, effectively reducing
the value of lvI.
For a desired rate of R, we now seek to minimize

subject to the constraint that

M-l

H(X) = - L pq log2Pq S; R
q=O

(3.22)

(3.23)

104 Scalar Quantization

where
tq+l

pq = P (X E I q) = Jfx(x)dx
tq

Using the technique of Lagrange multipliers, [54] we seek to minimize

:J(A) = E [(X - X)2] + AH(X)

[~' !'(X_x;)' fx(x)dx

_A~' [fx(XldX10g2tfX(XldX]

(3.24)

If there exists a A ;::: 0 such that the solution to the unconstrained min­
imization of :J (A) yields H(.<'Y) = R, the same solution will satisfy the
constrained problem of equations (3.22) and (3.23). Setting {)~ :J(A) = 0

X q

reveals that xq is the conditional mean of I q as before (see equation
(3.18)). Similarly, differentiating with respect to tq yields

(3.25)

For a given A, these equations form the basis for an iterative algorithm
which is the generalization of the Max Algorithm of Section 3.2.1. An
outer loop can be employed to search for the proper A such that H(X) =
R. Unfortunately, equation (3.25) can not be solved for tq in terms of
xq and Xq-1 as in equation (3.17), since Pq-1 and pq together depend
on tq-1, tq , and tq+1. However, another iterative algorithm can be used
to solve for the tq as a subroutine to the main iteration. The interested
reader is referred to [55].
Rather than pursue this algorithm, we examine the generalization of

the Lloyd Algorithm (Section 3.2.1) to the entropy constrained case.
Here we try to minimize equation (3.24) directly rather than attempting
to solve the necessary conditions. This results in the following iterative
algorithm [39].

Entropy Coded Scalar Quantizer Design Algorithm
0) Choose an initial A ;::: 0
1) Choose an initial code C = {xo, Xl, ... ,XM-I}, with initial prob­
abilities P = {po, PI,·· . ,PM-d, and set j = 1, do = 00

Chapter 3: Quantization 105

2) Let I q = {x E IR: (x - xq)2 - >.log2Pq < (x - Xk)2 - >.log2Pk V
k:f: q} q = 0,1, ... ,M - 1

3) xq = E[XIX E I q] q = 0,1, ... ,M - 1

4) Pq = P(X E I q) q = 0,1, ... ,M -1
M-l

5) dj = 2: E [(X - xq)2lX E I q]Pq
q=O

6)If dj_~~dj < E go to step 7; else set j = j + 1 and go to step 2
J

7) If H(X) = - 2:pqlog2Pq ~ (R - r,R], adjust>. and go to step 1
q

Comments:
1) It is easily shown that H(X) is non-increasing as a function of
>., which makes the search for the proper>. (such that H(X) = R)
straightforward. One simple approach is to choose two extreme
values of>. and then use bisection to iteratively narrow the interval
of possible >..

2) For a given value of >., the inner loop (steps 2-6) is non-increasing
in dj . Thus, convergence is ensured.

3) Adaptation to training data is straightforward with sample aver­
ages replacing expectations, and relative frequencies replacing prob­
abilities in the obvious way, as in the Lloyd Algorithm of Section
3.2.1.

4) At convergence, A, Pq, and xq are known for all q = 0,1, ... ,M-1.
Equation (3.25) is then easily solved for

and we see that the entropy constraint effectively introduces a bias
to the nearest neighbor thresholds of equation (3.17).

3.2.4 PERFORMANCE OF ENTROPY
CODED SCALAR QUANTIZATION

It can be shown that for large H(X) (small MSE), the optimal scalar
quantizer in the entropy coded case is uniform for all "smooth" PDFs
[70]. As mentioned previously, the optimum number of levels is generally
infinite. In the case of a zero mean, symmetric PDF, it is then conve­
nient to let the quantizer indices range over all integers. The quantizer
output values can then be written in the form q6., q = 0, ±1, ±2, ... and
the thresholds are the midpoints between the output values. Thus, the

106 Scalar Quantization

quantization intervals are given by

I q = [q~ - ~, q~ + ~)

From equation (3.16),

qLl+~
00 2

d = L J (x - q~)2 fx(x)dx
q=-oo ~

qLl-7j

(3.26)

For small~, fx(x) is approximately constant within each interval. That
is, fx(x) ~ fx(q~) Vx E I q . So

qLl+~
00 2 00 3

d ~ L fx(q~) J (x - q~)2 dx = L fx(q~) ~2
q=-oo ~ q=-oo

qLl-7j

00

~2 00 ~2 J
= 12 L fx(q~)~ ~ 12 fx(x)dx

q=-oo -00

~2

12

Similarly,

00

q=-oo
00

~ - L [jx(q~)~] log2 [jx(q~)~]
q=-oo

00

~ -Jfx(x) log2 fx(x)dx - Jfx(x) log2 ~dx
-00

= h(X) -log2 ~

(3.27)

(3.28)

As before, we assume efficient entropy coding so that R ~ H(i(). Then
from equation (3.28)

~ ~ 2h(X)-R

Substituting in equation (3.27) yields

d(R) ~ ~22h(X)2-2R
12

(3.29)

Chapter 3: Quantization 107

Comparing equation (3.29) to the Shannon lower bound of equation
(3.12), we see that at high rates, entropy coded uniform scalar quanti­
zation differs from the distortion-rate function by a factor of only 1re/6,
or 1.53 dB.
At low rates, the optimal entropy coded scalar quantizer is no longer

uniform. However, a quantizer with uniform intervals (equation (3.26)),
but centroid codewords, xq = E[XIX E I q]' is very nearly optimal [55].
Often, for zero mean PDFs, a small improvement in the d(R) behavior
can be obtained by widening the interval about O. This interval, Io,
is sometimes called the "zero-bin." Quantizers of this type are usually
called "deadzone uniform scalar quantizers." Widening I o increases the
distortion somewhat, but often decreases H(X) enough to offset this
effect. The intervals of a deadzone quantizer are of the form

{

[- (1 - O~, (1 -~)~)

I q = [(q-~)~,(q+1-~)~)

[(q -1 + O~, (q +~)~)

where ~ < 1 determines the width of I o.
This quantizer can be implemented as

q=O
q>O
q<O

(3.30)

q = Q(x) = { sign(x)1~Hj ~+~>O
otherwise

(3.31)

Interesting special cases occur when ~ = 0, and ~ = 1/2. When ~ = 1/2,
the previous case of equation (3.26) results, with I ohaving a width of ~.
On the other hand, ~ = 0 results in a zero-bin width of 2~. This case is
particularly important, and is discussed further in Section 3.2.7. Values
of ~ < 0 are reasonable, and result in further widening of the deadzone.
As before, the optimal reconstruction values are centroids. However,

for simplicity, some fixed value within I q is often employed. In this case,

{

0 q = 0
xq = (q - ~ + 8) ~ q > 0

(q + ~ - 8) ~ q < 0

{
0 q = 0

= sign(q)(jql - ~ + 8) ~ q =1= 0

where 0 :::; 8 < 1 specifies the placement of xq within I q . The case with
8 = 1/2 yields xq at the center of I q . The quantizer that results from
~ = 0 and 8 = 1/2 is depicted in Figure 3.4.
As in the Lloyd-Max case, the high rate asymptotic results are rather

pessimistic if applied at low rates. Indeed, as R approaches 0, the MSE
of a well designed quantizer should approach D(O) = (52, rather than
(22h(X)) /12 as predicted by equation (3.29).

108 Scalar Quantization

-3,1
• I
-2,1

• I •
o

•
2,1

•
3,1 x

3.2.5

Figure 3.4. Uniform scalar quantizer with deadzone.

SUMMARY OF SCALAR QUANTIZER
PERFORMANCE

In summary, we see from equations (3.12), (3.20),and (3.29) that for
high rates and IID data, the distortion-rate function, as well as the MSE
of both Lloyd-Max quantization, and entropy coded uniform quantiza­
tion, are all of the form

(3.32)

More generally,

(3.33)

where g(R) is a weak function of R. For large R, g(R) ~ c2 . On the
other hand, as R approaches 0, g(R) approaches 1.
The appropriate values of c2 for each case are given in Table 3.4. From

this table, we see that (as expected) entropy coding is of no benefit for
the uniform PDF. This follows from the fact that for this PDF, c2 is
the same for both Lloyd-Max and entropy coded quantizers. Also as
expected, the Gaussian PDF boasts the largest value of c2 for the D(R)
and entropy-coded cases. This is in support of the previous statement
that the distortion-rate function is largest in the Gaussian case. On the
other hand, it is interesting to note that the Lloyd-Max MSE is larger
for the Laplacian PDF than for the Gaussian PDF. This is indicative of
a general trend that Lloyd-Max scalar quantization performance suffers
for "heavy tailed" PDFs.
We conclude this subsection with Figure 3.5. This figure shows the

distortion-rate function, as well as MSE performance for Lloyd-Max and
entropy-coded quantization of IID Gaussian data. As R grows, all three
curves become parallel straight lines with slopes of 6.02 dB/bit. The
vertical gap between D(R) and entropy coded quantization is 1fe/6, or
1.53 dB. The vertical gap between D(R) and Lloyd-Max quantization
is V31f /2, or 4.35 dB. Although not discussed above, the performance
for uniform scalar quantization without entropy coding will result in less
than 6.02 dB per bit improvement (for all but the uniform PDF). For
these cases, the SNR curve will diverge from D(R) as R grows, as shown
in Figure 3.5.

Chapter 3: Quantization 109

Table 3.4. Values of c2 for various PDFs.

D(R) Lloyd-Max Entropy- Coded

Uniform ...2.. S;! 0.703 1 1
"e

Laplacian .£ S;! 0.865 9 ~ S;! 1.232
" '2

Gaussian 1 1" S;! 2.721 "Be S;! 1.423

40

35 .'

30

25

15

10

5

....••• D(R)

--Entropy Coded

t:. Lloyd-Max

x Unifonn (Uncoded)

6543

R (bits/sample)

2
O-¥"------+-----+-----I----+----+--------1

o

Figure 3.5. MSE performance for scalar quantization of IID Gaussian data.

3.2.6 EMBEDDED SCALAR QUANTIZATION
A very desirable feature of compression systems is the ability to suc­

cessively refine the reconstructed data as the bit-stream is decoded. In
this situation, a (perhaps crude) approximation of the reconstructed data
becomes available after decoding only a small subset of the compressed
bit-stream. As more of the compressed bit-stream is decoded, the recon­
struction can be improved incrementally until full quality reconstruction
is obtained upon decoding the entire bit-stream. Compression systems
possessing this property are facilitated by embedded quantization.

110 Scalar Quantization

°• • •

0,0 0,1 1,0 1,1
• • • • •

0,0,0 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1
• • • • • • • • •

Figure 3.6. Embedded scalar quantizers Qo, Ql, and Q2, of rates R = 1,2, and 3
bits/sample.

In embedded quantization, the intervals of higher rate quantizers are
embedded within the intervals of lower rate quantizers. Equivalently, the
intervals of lower rate quantizers are partitioned to yield the intervals of
higher rate quantizers. Consider a sequence ofK embedded scalar quan­
tizers Qo, Q1, Q2, ... ,QK-1· The intervals of QK-1 are then embedded
within the intervals of QK-2, which in turn are embedded within those
of QK -3, and so on. Equivalently, the intervals of Qo are partitioned to
get the intervals of Q1, which in turn are partitioned to get the intervals
of Q2, and so on.
Specifically, each interval of Qo (Iqo qo = 0, 1, ... ,Mo - 1) is parti­

tioned into M1 intervals I qO ,ql q1 = 0,1, ... ,M1 - 1. The total number
of intervals of Q1 is then MoM1. Similarly, the intervals of Q1 are par­
titioned to obtain the intervals of Q2 as Lqo ,qlm q2 = 0,1, ... ,M2 - 1.

k

In general then, Qk (k = 0, 1, ... ,K - 1) has IT Mj intervals, given by
j=O

I qO ,Ql, ... ,qk·

With this partitioning, it is natural to take the comma separated
list qo, q1, ... ,qk as the "quantizer index" of I Qo,ql, ... ,Qk· This situation
is illustrated in Figure 3.6 for K = 3 and Mo = M1 = Nh = 2. It
should be clear from this figure, that for the binary case (Mk = 2 k =
0,1, ... ,K -1), the indices of Qk (i.e., qO,q1, ... ,qk) can be interpreted
as binary representations of the "usual integer" indices.
With the formalism described above, all indices of lower rate quan­

tizations can be obtained by dropping components from (the comma
separated) indices of higher rate quantizations. Specifically, the index
for Qk can be obtained by dropping the last component of Qk+1. To see
this, let

Qk+1 (x) = qo,··· ,qk,qk+1

Chapter 3: Quantization 111

This implies that x E I qO ,... ,qk,qk+l' Now since

3.2.7

we must have x E IqO,ql, ... ,qk' which implies that

We close this subsection by noting that the embedded quantization
framework discussed here suggests a simple implementation trick for
scalar quantization. For simplicity, we consider only the case depicted
in Figure 3.6. The Q2 index is easily determined using only three binary
threshold comparisons. The first bit qo is determined by comparing x
to the single threshold of Qo. Once qo is known, ql is determined by
comparing x to the single threshold within I qo ' Finally q2 is determined
by comparing x to the single threshold within I qO ,ql'
This process (especially in the non-binary case) can be viewed as a

series of dependent quantizations of x. For example, ql = Ql,qo (x) where
Ql,qO (x) represents the quantization of x within I qo ' Similarly, q2 =
Q2,qom (x) represents the quantization of x within I qo,ql' We will have
more to say on this subject in Section 3.4.4. For now, we point out that it
is not possible (in general) for more than one of the embedded quantizers
to simultaneously satisfy the Lloyd-Max conditions. For example, if the
highest rate quantizer is chosen to satisfy the Lloyd-Max conditions,
then the thresholds of all lower rate quantizers are fixed. The only
design parameter then available for the lower rates are the codewords,
which should be chosen as the centroids of their respective intervals.

EMBEDDED DEADZONE
QUANTIZATION

A notable example where all embedded quantizers can be optimal
is the uniform case. Indeed, uniformly subdividing the intervals of a
uniform scalar quantizer clearly yields another uniform scalar quantizer.
In this way, a family of embedded uniform scalar quantizers may be
constructed. These quantizers all satisfy the Lloyd-Max conditions for
the uniform distribution.

112 Differential Pulse Code Modulation

A particularly elegant (and important) example is the uniform dead­
zone quantizer of Section 3.2.4. For the case when (= 0, we have1

and

q = Q (x) = sign (x) ll~1 J (3.34)

{
0 q = 0

x=Q-l (q) = sign (q) (Iql + 8) ~ q =J 0 (3.35)

This quantizer has embedded within it, all uniform deadzone quantizers
with step sizes 2P~ for integer p ;::: o.
Assuming that the magnitude of q can be represented with K bits,

then q can be written in sign magnitude form as

Now, let

q = QK-l (x) = s,qO,ql,··· ,qK-l (3.36)

q(p) = s,qO,ql,··· ,qK-l-p

be the index obtained by dropping the last p bits of q. Equivalently, q(p)
is obtained by right shifting the binary representation of Iqj by p bits.
It is then easily verified that

QK-l-p (x) = q(p)

where QK-l-p is the uniform deadzone quantizer with step size 2P~.
From this discussion, we can deduce that if the p LSBs of Iql are

unavailable, we may still dequantize, but at a lower level of quality. In
particular, the result will be the same as if quantization were performed
using a step size of 2P~ (rather than ~) in the first place. In this
situation, the inverse quantization is performed as

A { 0 q(p) = 0
x = sign (q(p)) (lq(p)1 + 8) 2P~ q(p) =J 0 (3.37)

It is worth noting that when p = 0, this yields the full quality dequan­
tization as given by equation (3.35).
We wrap up this section by noting that context dependent binary

entropy coding can be used to compress the bits in equation (3.36).
In the case of IID data, only the previous bits of the same index (as
discussed in Section 2.3) need to be incorporated in the contexts to
achieve the performance promised in Section 3.2.4 for each and every
partial decoding (with step size 2P~ p;::: 0). When the data is not
IID, compression performance can be improved by including bits from
neighboring indices when forming contexts (as described in Section 8.3).

1The case when ~ =P °is discussed in Section 8.3.1.

Chapter 3: Quantization 113

3.3 DIFFERENTIAL PULSE CODE
MODULATION

Throughout our discussion of quantization, we have assumed that
{Xn } is IID. If the process is not IID (but stationary), scalar quan­
tization performance will be governed by the marginal PDF, and will
be identical to the performance that would be achieved for IID data
having the same marginal PDF. On the other hand, more sophisticated
techniques exist which can exploit the dependencies in non-IID data to
improve quantization performance. One such approach is to perform a
transform on the data so that the resulting transform coefficients are
(at least approximately) IID. Such transforms are discussed in detail in
Chapters 4 and 6. Another approach is to employ context dependent
entropy coding (Section 2.4.1) to scalar quantization indices. A hybrid
of these two approaches is discussed in Chapter 8 and forms the basis for
JPEG2000. Yet another approach is vector quantization, as discussed
in a subsequent section of this chapter.
In this section, we discuss the addition of quantization to the predic­

tive scheme described in Section 2.4.2. The resulting system is known
as differential pulse code modulation (DPCM). Figure 3.7 shows the
basic block diagram for DPCM. As was the case in Section 2.4.2, a pre­
diction /-ln of the current sample X n is formed using previously coded
values. As before, only previously coded values are used in forming
predictions since the decoder must track the procedure performed by
the encoder. The prediction error (or prediction residual) is formed as
en = X n - /-In' The algorithm now differs from that discussed previously
in that en is quantized to get an index qn (Both entropy and non-entropy
coded quantization are possible.) The reconstructed prediction error en
is added back to the prediction at both encoder and decoder to obtain
the reconstructed value of the data xn.
A fundamental property of DPCM is that the error between X n and

xn is precisely equal to the error introduced into en by quantization.
This can be seen by examining Figure 3.7 in which

and

Combining these two equations yields the stated result. Specifically,

114 Differential Pulse Code Modulation

Figure 3.7. Block diagram for differential pulse code modulation.

From this, we have that

From previous sections, we then have d(R) = Ek(}k2-2R where Ek and
(}k are the appropriate values for the PDF of the prediction error. If
Ek = E3c, we see that the MSE for DPCM is better than that for scalar
quantization by a factor (prediction gain) of Gp = (}3c /(}k' That is,

1
MSEDPCM = G MSEsQ

p

or,
SNRDPCM = SNRSQ + 10 10glOGp

It is clear that Gp is maximized by minimizing the prediction error
variance. This occurs when f.ln is chosen as the conditional mean of X n
given the neighborhood used in prediction. Calculation of the optimal
f.ln is often difficult since the prediction must be based on previously
coded (quantized) values of the neighborhood samples. A high rate
(small MSE) assumption is often used to overcome this difficulty. In
this case, the optimal predictor is formulated assuming that xn = X n .

Another common simplification is to restrict the predictor to be a linear
combination of the values in the neighborhood. A suitably chosen linear
predictor will be optimal in the Gaussian case, but will be suboptimal
in general.

Example 3.3 Suppose {Xn } is a Gaussian Markov-l process with mean
oand correlation coefficient r. Then

(3.38)

Chapter 3: Quantization 115

Since en = Xn - f.ln, En is zero mean and Gaussian. Thus, c;~ = c;~ and

O"~ = E [E~] = E [(Xn - rXn_d2] = (1- r2)0"~

In the example above, Gp = 1!r2 ' Thus, at high rates, dDPcM(R) =
c;2(1 - r2)0"~2-2R. It can be shown, that for this process, the spectral
flatness measure is 1'1 = (1 - r 2). In fact, for any Gaussian Markov
process, Gp = 1h1 and thus

dDPcM(R) = c;2"&0"1T2R (3.39)

Comparing to equations (3.15), (3.10), and (3.32), we see that the high
rate performance of DPCM differs from the distortion-rate function by
a factor of c;2, just as in the case of scalar quantization of IID Gaussian
data. Specifically, DPCM (using entropy coded uniform quantization)
is within 1.53 dB of the distortion-rate function at high rates.
We close this section by noting that in the low rate case, equation
(3.39) is overly optimistic. Indeed, as R approaches zero, the MSE
of any realizable quantization scheme must be at least 0"1 which can
be considerably larger than the value of c;21'10"1 as implied by equa­
tion (3.39). This should be expected since equation (3.39) was derived
assuming that predictions are based on the unquantized data X n . In
practice, we are forced to use Xn which can differ from X n significantly
at low rates. This degrades the quality of predictions, and ultimately,
the compression performance.

3.4 VECTOR QUANTIZATION
Vector quantization (VQ) is another name for the general case (m 2:: 1)

of the "source codes" discussed in Section 3.1.1. It is a way of quantizing
all samples in a vector of data XO:m jointly rather than individually (as
in the previous sections on scalar quantization (SQ)). As a simple ex­
ample, consider the vector quantizer depicted in Figure 3.8. This figure
extends the graphical depiction of 1-D (scalar) quantization to the 2-D
case. As before, the heavy "dots" represent quantizer codewords (code­
vectors). The regions bounded by the dashed lines are generalizations
of the decision intervals I q from the 1-D case. These "decision regions"
are often called Voronoi regions. The 2-D VQ of Figure 3.8 is of size
M = 8. The rate of this VQ is R = ~ log2 M = 1.5 bits/sample. This
follows from the fact that the index of a codeword can be represented
using log2 8 = 3 bits, and a codeword serves as the reconstruction for
m = 2 samples.
VQ can outperform SQ, even in the case when {Xn } is IID. To see why

this is true, it is useful to examine the VQ of Figure 3.9a. This figure

116 Vector Quantization

•

Figure 3.8. Two-dimensional VQ of rate R = 1.5 bits/sample.

depicts a 2-D VQ of size'M = 64 (R = 3 bits/sample). This VQ is
particularly interesting in that it yields precisely the same results as the
3 bits/sample uniform SQ of Figure 3.9b. For example, consider a data
vector (two consecutive samples) x = (xQ, XI)t that lies in the rectangle
bounded by 4 and 6 horizontally, and -4 and - 2 vertically. The VQ
reconstruction of any such x is x = (5, -3)t. Note that each such x has
4 ~ XQ < 6 and -4 ~ Xl < -2. Thus, applying the quantizer of Figure
3.9b independently to XQ and Xl also yields x = (5, -3)t. Generalizing
this idea to higher dimensions, it is easy to see that independent SQ
of all samples in a vector is a special case of VQ. In this special case,
the (m-dimensional) codewords are constrained to lie on a rectangular
grid. Note however, that the grid spacing need not be uniform (e.g.,
Lloyd-Max scalar quantizer).
The first (and foremost) deficiency of the scalar quantizer is then the

fact the boundary of the grid is constrained to be cubic (generalized cube
for m =f:. 3). The second deficiency is that the Voronoi regions are also
constrained to be cubic (rectangular for non-uniform scalar quantizers).
That the first property is indeed a deficiency can be seen by considering
data having a high probability of falling within the circular region shown
in Figure 3.lOa (e.g., IID Gaussian data). Since the "corner" codewords
of Figure 3.9a fall outside this region, they are largely wasted. They can
be discarded to yield a VQ of (at least roughly) the same MSE but of
lower rate. If the data have an elliptical high probability region as shown

Chapter 3: Quantization 117

: Xl ; :
• : • : • j. 7-!· j • ! •

.------~-----_._~._._----1-------- -------~--------~-------+------

! !: !:!
• 1 • i • j. 5- 1 • 1 • 1 •·------l-------T-------y------- -------r-------r-----·--T------
• : • : • :. 3-:·:·:·
-------1-------+-------+------- -------i--------r-------f------
• ! • ! • j. I- j • ! • j •
-7: -5: ·3: -I I: 3: 5: 7 Xo

• : • : • : • _Ie 1 • : • : •
._-----{--------~-------~-------- -------~--------~-------+------: :: :::

• i·! • 1 • -3· ~ • i·! •-------i-------t-------i-------- -------i--------t-------f------
• j • j • j • -5- j • j • j •·------1--------;---------:-------- -------~--------~-------T------

• ! • : • : • -7- i • : • : •
! !: !:!

a)

'I'I'I'I'I'I'I'~
-7 -5 -3 -I 7 X

b)

Figure 3.9. Rate 3 quantization: a) 2-D VQ. b) Equivalent SQ.

in Figure 3.10b (e.g., correlated Gaussian data), even more codewords
can be discarded to achieve further reduction in rate without significant
increase in MSE.
We note here that (joint) entropy coding of SQ indices can be used

to similar effect. In particular, such entropy coding can overcome (only)
the first deficiency of SQ described above. We will have more to say
on this matter in subsequent sections. In what follows however, unless
specifically stated otherwise, "SQ" refers to non-entropy coded scalar
quantization.

3.4.1 ANALYSIS OF VQ
THE TYPICAL REGION

To gain more insight into the first deficiency of SQ, we now examine
the high probability (or typical) region of a continuous process. This
region is governed by the joint PDF of {Xn }. In the proof of Theorem
2.4, we saw that for IID discrete processes there is a set of typical vectors
(sequences) that are (roughly) equally likely. Furthermore, the proba­
bility of getting a sequence outside this set becomes vanishingly small
as m gets large. This concept extends naturally to the continuous case.

118 Vector Quantization

Xl

a) b)

Figure 3.10. High probabilty region: a) Circular region of radius 8. b) Similar, but
elliptical.

To this end, let the typical set for a continuous process be given by

T (m, 8) = {xo:m :1-~ log2 fXo: m (XO:m)- h(X)1 ~ 8} (3.40)

The volume of this set is

Vol(T (m,8)) = J...JdxOdxl··· dXm-l = J...JdXO: m

T(m,6) T(m,6)

Theorem 3.6 AEP for Continuous lID Processes
Let {Xn } be a sequence of lID random variables with marginal PDF

fx(x). Then for any 8 > 0 and c > 0, there exists m suitably large so
that

1) P(XO:m rt. T(m,8)) < c
2) (1 - c) 2m (h(X)-6) ~ Vol(T (m, 8)) ~ 2m (h(X)+6)

Proof. The first property follows from the weak law of large numbers. Specifically,

1 1 m-l
--log2 fxom (XO:m) = -- "" log2 fx(X;)
m' m L

i=O

---+ E[-logdx(X)] = h(X) as m ---+ 00

The right hand side of property 2 follows from

1 =J...Jfxom (XO:m) dxo:m ~ J...Jfxom (XO:m) dxo m

T(m,o)

~ J...Jrm(h(x)+O)dxo:m (by equation (3.40))

T(m,o)

= r m (h(X)+5)Vol(T (m, 8))

Chapter 3: Quantization 119

The left hand side of property 2 follows from

1 - E: :s: P (XO:-m E T (m, 8)) (from property 1)

= / ... / fxom (xo:m) dxo: m

7(m,6)

:s: / ... / T m (h(X)-6)dxo:-m (by equation (3.40))

7(m,6)

= 2- m (h(X)-6)Vol(T (m, 8))

•
It is worth noting that within the typical region, XO:m is distributed

roughly uniformly. This follows from the definition of T (m, 8). That is,
for XO:m E T (m, 8),

1 rv
--log2 fXo. m (xo:m) = h(X)m .

or

f (x.) ~ 2-mh(X)XO:m O.m

Example 3.4 Consider the IID Gaussian case for which the typical set
satisfies

or)

1 [m-l 1 2 2]--log2 II e-x j/2a

m j=O J27f(J2

Some algebra results in

m-l
1 L 2 _ 1 2rv 2- x j - - II xO:m II = (J

m m
j=O

(3.41)

Thus) the typical region for the IID Gaussian source consists of all vec­
tors lying near the surface of a sphere having radius Jm(J2. For large m)
the probability of a vector occurring far from this surface is vanishingly
small) and the distribution of vectors near this surface is uniform.

The following discussion can be carried out more generally, but for
simplicity, we limit ourselves to the IID Gaussian case from the example
above.
Since with very high probability, only vectors in the typical region

will occur, codewords should be placed only near the sphere surface.

120 Vector Quantization

Actually, for large m, essentially all the volume of a sphere lies near its
surface, and it is reasonable (and in fact preferable for small to moderate
m) to distribute codewords throughout the entire interior of the sphere.
This was alluded to in the previous discussion of Figure 3.10a.
The fact that all the volume lies near the surface of the sphere follows

from noting that a sphere of radius p has volume given by

1fm/2pm

Vol(S (p)) = ()r m +1
2

and then considering the fraction of volume lying within c > 0 of the
surface. Specifically

Vol(S (p)) - Vol(S (p - c)) = 1- (p - c)m
Vol(S (p)) p

which tends to 1 as m gets large.

VECTOR QUANTIZATION OF IID GAUSSIAN DATA
Consider populating the typical region with codewords having spher­

ical Voronoi regions each of radius

(=J(m+2)D (3.42)

(3.43)

Since the distribution within the typical region is uniform, the distri­
bution within each (spherical) Voronoi region is also uniform, and we
have

~E [II XO:m - .xo:m 11 2 IXo:m E I q]

_~ I... j' (x6 + ... + X~_l)
- m. Vol (Iq) dxo:m

L x~~(2

(2

m+2

The last equality above follows from [72, equation (4.642)], repeated here
as

J...Jf (Jx6 + ... + x~_l) dxo:m

Lx~~(2

21fm / 2 /-(

= r (m/2) Jo x
m

-
1
f(x)dx .

Chapter 3: Quantization 121

Substituting equation (3.42) and ignoring the low probability event that
Xo:m falls outside the typical region, we have

d = ~ LE [II XO:m - X.O:m 11 2 1Xo:m E I q] P(XO:m E I q)
q

= D LP (XO:m E I q)

q

=D

The number of spheres of radius ((number of codewords) required to
cover the typical region is

M ~ Vol(T (m, 8)) ~ 2mh(X)

- Vol(S(()) - (nm/2(m)
r(!f+l)

Substituting equations (3.6) and (3.42), and simplifying yields

M ~ (2e)m/2 r (~ + 1) (%)m/2

- (m + 2)m/2

Substituting Stirling's formula, r (Q + 1) ~ J27fQ (~t" and solving for
the required rate yields

1
R = -log21V1

m
1 0"2 1 m 1

~ -log2 - + -log2-- + -log2 7fm
2 D 2 m+2 2m

which converges to
1 0"2

R= -log2-
2 D

as m grows large. Comparing to equation (3.9), we see that a VQ de­
signed in this fashion can achieve the rate-distortion function as m tends
to infinity.
In fact, this derivation is not completely rigorous. It ignores the un­

likely sequences that fall outside the typical set, and ignores the fact
that spheres do not pack. That is, spheres cannot be used to cover the
typical region without overlap. Nevertheless, the discussion provides
substantial intuition into the superiority of VQ over SQ, and motivates
the comparison of spherical vs. rectangular Voronoi regions in the sub­
section below.

122 Vector Quantization

SPHERICAL VORONOI REGIONS
We can now examine the second deficiency stated earlier for SQ.

Specifically, the Voronoi regions induced by SQ are restricted to be rec­
tangular. For simplicity, assume cubic Voronoi regions with edges of
length a. Considering the equivalent scalar quantizer (with ~ = a), it
is then clear that the MSE is d = a2/12. To preserve the same rate as
in the previous discussion, we equate the volume of the Voronoi regions
so that

am = Vol (Iq) = Vol(S (C))

nm / 2 (m + 2)m/2 D m / 2

f (~ + 1)
or,

with a resulting MSE of

a=
J(m + 2)nD
fl/m (~ + 1)

d = a
2 = (m + 2) nD
12 12f2/m (~ + 1)

Applying Stirling's formula and simplifying yields

d~ e(m+2)nD ---+ neD
6m (mn)l/m 6

Thus, as m grows we see that cubic Voronoi regions are inferior to spher­
ical Voronoi regions by a factor of ne/6 = 1.53 dB.
Although spheres do not pack for any dimension 2 ::; m < 00, spherical

Voronoi regions can be well approximated for large m. Much effort has
been spent investigating lattice structures for codewords with efficient
Voronoi regions. In two dimensions, the optimal shape is known to be
a regular hexagon. In higher dimensions, the optimal shape is generally
unknown, however lattices have been found [42] in dimensions m =
4,8,16, and 24 that achieve 0.37,0.65,0.86, and 1.03 dB (of the 1.53
dB possible), respectively. Trellis coded quantization (Section 3.5) can
achieve substantially all of the 1.53 dB difference.

DISCUSSION
The 1.53 dB difference between VQ (with cubic Voronoi regions) and

the distortion-rate function is no coincidence. We saw in Section 3.2.4,
that for IID processes, entropy coded uniform SQ also falls 1.53 dB short

3.4.2

Chapter 3: Quantization 123

of the distortion-rate function. As discussed throughout this section, the
gap in performance between uncoded uniform SQ and the distortion-rate
function is comprised of two portions: a portion associated with the
high probability (or typical) region; and a portion associated with the
shape of the Voronoi region. In the previous subsection, we showed that
this latter portion is 1.53 dB. We can conclude from this (as claimed
just before Section 3.4.1) that entropy coding of SQ indices can obtain
(only) the gain associated with the typical region. We also conclude
that for IID processes, joint (or context dependent) entropy coding is
not required.2

As a final note, we point out that the optimal (spherical) Voronoi cell
shape is a property only of the MSE distortion measure and not the
PDF of {Xn }. The typical region, on the other hand, is a function of
the PDF (but is independent of any distortion measure that might be
chosen). For example, the typical region for a Gaussian Markov process
lies near the surface of an ellipsoid (as hinted by Figure 3.10b), while
the typical region for Laplacian data lies near the surface of a "pyramid"
[57].

THE GENERALIZED LLOYD
ALGORITHM

As in the scalar case (m = 1), iterative techniques can be employed to
design VQ codebooks. The direct generalization of the Lloyd Algorithm
(with training data) from Section 3.2.1 appeared in [96] and resulted in
an explosion of research in the area of vector quantization. The resulting
algorithm is given by

The Generalized Lloyd Algorithm (with Training Data)

1) Given a set of training vectors, say T = {XO,Xl,"" XIITII-d,
choose an initial code C = {XO,Xl,'" ,xM-d, set j = 1, do = 00

2) Let Bq = {x E T: Q(x) = q} = {x E T: (x - xq)2 < (x - Xk)2
Vk i= q}

3) xq = IIJqll 2: x q = 0,1, ... ,1\II - 1
XEBq

4) dj = m11T11 X~T Ilx - Q-l(Q(x))11
2

iFor Markov processes, MSE performance within 1.53 dB of the distortion-rate function can
still be achieved by entropy coding of uniform SQ indices. However conditional (context
dependent) entropy coding is required.

124 Vector Quantization

5) If di-~~di < E stop; else set j = j + 1 and go to step 2
J

The entropy coded scalar quantizer design algorithm of Section 3.2.3
generalizes in the same way to yield an entropy coded VQ design algo­
rithm [39].
An unfortunate result of these algorithms is the potential for getting

caught in local minima. The codebook (and associated MSE perfor­
mance) can change significantly depending on the choice of the initial
codebook in step 1. Strategies for choosing the initial codebook, as well
as alternate design algorithms (e.g., simulated annealing) are discussed
in [69].
Another problem that plagues most VQ design algorithms is the lack

of structure among the resulting codewords. Although fast search tech­
niques may be found for small m, in general, exhaustive search must be
employed to implement the nearest neighbor encoding rule. That is, a
data vector XO:m to be encoded must be compared to each codevector
xq q = O,l, ... ,!VI = 2mR to find the one that minimizes the MSE.
Specifically,

q = argmin [~llx - xq 11 2]
qE{O,l, ... ,M-l} m

Thus, the encoding complexity is proportional to the size of codebook
(M = 2mR) and grows exponentially in both m and R.

3.4.3 PERFORMANCE OF VECTOR
QUANTIZATION

According to Theorem 3.1, the MSE performance of VQ tends to the
distortion-rate function as m tends to infinity. Unfortunately, complex­
ity severely limits practically achievable values for m. For IID Gaussian
data at a rate of R = 2 bits/sample, m = 6 yields performance roughly
1 dB better than Lloyd-Max SQ (m = 1). For correlated Gaussian data,
improvements can be much more significant. For example, for a corre­
lation coefficient of r = 0.9, and a rate of R = 1 bit/sample, m = 6
provides roughly 6.5 dB improvement over non-entropy coded Lloyd­
Max SQ [69]. For comparison, entropy coded DPCM can provide about
7 dB, while uncoded DPCM provides only about 5.5 dB.
The encoder complexity of VQ is significantly higher than that of en­

tropy coded DPCM which in turn is higher than that of uncoded DPCM.
On the other hand, the decoder complexity of VQ is negligible. It con­
sists of a simple table look-up operation. VQ also has an advantage in
error resiliency. If a bit error occurs in the communication of compressed
data, no more than m samples will be affected in the VQ case. Since

Chapter 3: Quantization 125

DPCM contains a prediction feedback loop, error propagation can be
significant. Some form of damping is often included to reduce this effect
[82].

3.4.4 TREE-STRUCTURED VQ
Tree-structured VQ (TSVQ) is a technique for reducing the search

complexity required in VQ. The basic idea of TSVQ is to search a series
of "small" codebooks to "home in" on the choice of a vector in the
codebook C. At level °(or the root) of the "tree" is a single codebook
Co of length m and size !Vlo = 2mRo . As before, a data vector x = XO:m
is quantized to yield an index qo = Qo(x).
At level 1 of the tree, there are Mocodebooks CI,qo qo = 0, ... ,Mo-1.

Each of these codebooks is of length m and of size MI = 2mR1 . As hinted
by the notation, ifQo(x) = qo, then x is subjected to CI,qO to get a second
index ql = QI,qo(X). At level 2 of the tree, there are !Vh codebooks for
each choice of qo, denoted by C2,qO,ql ql = 0, ... ,!Vh - 1, each of length
m and of size !VI2 = 2mR2 . If QI,qO (x) = ql, then x is subjected to C2,qO,ql
to yield q2 = Q2,qo,ql (x), and so on. The union of all codebooks at the
final level (K - 1) forms the codebook of the TSVQ.
This situation is depicted in Figure 3.11. In this figure, there are

K = 3 levels with !Vlo = MI = M2 = 2 (Ro = R I = R2 = 11m).
At level °(the "root," or "top" level), is one codebook Co of size two.
The possible index selections are shown (on the two branches leaving
the root) as °and 1. At levell, there are two codebooks, CI,o and
el,l, each of size two, for a total of four codewords. At level 2, there
are four codebooks each of size two, for a total of eight codewords.
At this level, we have added "leaves" depicting the codewords of the
level 2 codebooks to emphasize that these (taken together) form the
codebook of the TSVQ. Specifically, C = {xo, Xl, ... ,X7} ,!VI = 8, and
R = ~ log28 = 31m.
More generally, at level 0, there is one codebook of size !Vlo = 2mRo .

At levell, there are Mo codebooks, each of size MI = 2mR1 for a total of
!Vlo!Vh = 2m(Ro+Rl) codewords. At level 2, there are MoMI codebooks,
each of size !Vh, for a total of !VloMI M2 = 2m(Ro+Rl +R2) codewords. For
a K level tree, this continues until level K - 1, where there are

K-I K-l
m L Rk

M = II Mk = 2 k=O

k=O

126 Vector Quantization

o

Figure 3.11. Binary tree structured VQ with K = 3 levels.

codewords. The rate of the resulting TSVQ is

1 K-l

R = m log2 M = L Rk
k=O

Since one codebook must be searched at each level, the search com­
K-l

plexity of TSVQ is proportional to l: Jvh. If the same size codebooks
k=O

are used at each level then

(3.44)

With this choice, Mk = 2mRk = 2mR/ K, so the total search complexity
is proportional to

K-l

L Mk = K2mR
/
K (3.45)

k=O

The smallest complexity is achieved for the binary tree with Jvh = 2, or
R k = 11m. From equation (3.44), we then require K =mR levels in the
tree. Substituting in equation (3.45) results in a complexity proportional
to only 2mR. Thus, we see that the search complexity of TSVQ can grow
only linearly in rate and dimension (as opposed to exponentially as in
the full search case). The reader should verify however, that in this case,
the storage space required for the codewords is roughly doubled.
Many algorithms have been proposed for TSVQ design. One reason­

able approach is to use the generalized Lloyd algorithm to design Co.

Chapter 3: Quantization 127

The training set T can then be partitioned into Mo training sets

Tqo = {x ET: Qo(x) = qo} qo = 0,1, ... ,Mo-1

These training sets can then be used to design the level 1 codebooks
C1,qO qo = 0,1, ... ,Mo - 1. The Tqo can then be further subdivided
based on the level 1 results, for use in training at level 2, and so on.

TSVQ PERFORMANCE
As mentioned in Section 3.2.6, it is generally not possible for more

than one of the embedded quantizers to be optimal. When m = 1, it
is easy to ensure that any single quantizer Qk satisfies the Lloyd-Max
conditions. We discussed this for the highest rate quantizer in Section
3.2.6. This is possible when m = 1 because the Voronoi regions are
intervals, and highly structured. Unfortunately, in the more general case,
it is difficult to ensure optimality for all but the lowest rate quantizer
Qo.
In fact, even if the final TSVQ codebook

C=UCK-1,qO,· .. ,qK-2

is optimal, the search strategy imposed by the tree structure can render
the overall process suboptimal. Specifically, there is no guarantee that
for a given input x, the best xE Cwill be chosen. However, experimental
results show that for binary trees (Mo = M1 = ... = MK-l = 2, or
Flo = R1 = ... = RK -1 = 11m), TSVQ can perform within about 1.0
dB of "full search" VQ for Gaussian Markov-1 processes. This gap can
be decreased considerably by increasing Mk to only 4 [69].

EMBEDDED VQ
We close our discussion of VQ by noting that although TSVQ was

described above as a complexity reduction technique, it also provides
for embedded quantization. In fact, TSVQ is exactly the generalization
(to m 2:: 1) of the embedded scalar quantizers discussed in Section 3.2.6.
Additionally, Figure 3.11 is just another representation of Figure 3.6
when m = 1.
As discussed above, x is first quantized using codebook Co to yield an

index qo. This implies that x is in the Voronoi region To of Qo. x is then
requantized using codebook C1, qo to yield an index ql, implying that x is
in the Voronoi region Tqo ,ql OfQl. Note that the Tqo ,ql ql = 0, ... ,M1 -1
necessarily form a partition of I qo so that I qO = UIqO,ql' Continuing this

ql
process, eventually x is quantized using codebook CK -l,qo, ... ,qK-2 to yield

128 Trellis Coded Quantization

an index qK-I, implying that x E IqO,ql, ,qK-l of QK-I' The partition-
ing at this final level is such that I qom , ,qK-2 = U I qO ,... ,qK-2,qK-l'

qK-l

From this discussion it should be clear that dropping qK-I from the
index representation is equivalent to dropping the last level of the tree.

K-2
This results in a TSVQ with K - 1 levels and a rate of R = L: Rk .

k=O
Continuing to drop one level at a time, we see that embedded in the

K-I
index from the rate R = L: Rk TSVQ, is the corresponding index for

k=O
j

all TSVQs of rates R = L: Rk j = 0,1, ... ,K -1. It is then clear that
k=O

dropping index bits in this fashion yields identical results as if TSVQ
had been performed at the lower rates in the first place.

3.5 TRELLIS CODED QUANTIZATION
Trellis coded quantization (TCQ) [104] is a special case of trellis cod­

ing [56, 169]. TCQ borrows ideas from communication theory to achieve
better MSE performance at lower complexity than previous trellis cod­
ing systems. Specifically, TCQ employs the trellises and set partitioning
ideas from trellis coded modulation [153] to achieve MSE performance
very close to that promised by rate-distortion theory.

3.5.1 TRELLIS CODING
A trellis is nothing more than a state transition diagram (that takes

time into account) for a finite state machine. Consider the 4 state ma­
chine shown in Figure 3.12. In this machine, each of the boxes (labeled
tl and to) are binary storage elements (of a shift register) and the circle
containing "+" represents modulo-2 addition, or "exclusive OR" (i.e.,
0+0 = 1+ 1 = 0, 0 + 1 = 1+0 = 1). The (binary) input to the machine
is labeled u, while Zl and Zo are the (binary) outputs. The state of the
machine is simply the contents of the storage elements. For example, if
tl = 1 and to = 0, the state of the machine is written as tltO = 10 = 2.
Figure 3.13 shows the state transition diagram for the machine of

Figure 3.12. In this diagram, each circle represents a state of the machine
and the binary number inside each circle is the number or label of that
state (i.e., tltO). The arrows represent state transitions, while the labels
on each arrow indicate the input necessary to cause that transition,
together with the associated output. Each of these labels is of the form
U/ZIZO. For example, if the machine is in state 01 = 1 and U = 0 is input,
the next state will be 00 = 0 and the output will be ZIZO = 10 = 2.

Chapter 3: Quantization 129

Figure 3.12. Block diagram of a finite state machine (with four states).

0/00

1/01

Figure 3.13. State transistion diagram for the machine of Figure 3.12.

Similarly, if a 1 is input, the next state will be 10=2, and the output
will be 00 = O.
Trellises are used to study sequences of state transitions, or equiv­

alently, sequences of states. A typical trellis is diagrammed in Figure
3.14. Each column of heavy dots (or nodes) represents the four possible
states at one point in time. The states are implicitly labeled 0,1,2, and
3 from top to bottom. Each branch in the trellis represents a transition
from one state to another, at the next point in time (next stage). The
reader should verify that the trellis in Figure 3.14 is equivalent to the
state machine of Figure 3.12 and the state transition diagram of Figure
3.13.
Specifying a path through the trellis is equivalent to specifying a se­

quence of states or state transitions. Given an initial state at the left
edge of the trellis, such a path can be specified by a sequence of 1's and
O's (the associated binary input sequence, u).
A rich class of trellises having 2 branches entering and leaving each

state can be specified by the machine of Figure 3.15. In the communi­
cation theory literature, machines of this type are known as rate 1/2
feedback-free convolutional encoders [63J. Trellises derived from the
machine in this figure have N = 2V states. The parameters h j =
(hi, h~_l'· .. ,hb), j = 0,1 are called parity check coefficients. The bi-

130 Trellis Coded Quantization

0/00 0/00

1/01 1/01

Figure 3.14. Trellis for the machine of Figure 3.12.

h:
h~

h~u ...
h:

h~ h~
h~

Figure 3.15. Finite state machine with N = 2v states.

nary values h{ specify whether or not a connection is present in Fig­
ure 3.15. The values for hi used in this text are from [154], and are
given in Table 3.5. It is important to note that the parity check co­
efficients given in this table are in octal. For example, the finite state
machine of Figure 3.12 (and hence, the trellis of Figure 3.14) are ob­
tained from hO = 5 = (1,0,1) and hI = 2 = (0,1,0). Similarly, the
eight-state trellis of Figure 3.16 is obtained from hO = 13 = (1,0,1,1)
and hI = 04 = (0,1,0,0).
In a fixed rate trellis code, there are 2R (with R > °an integer)

branches leaving each trellis state and hence, any path through the trellis
starting from a given initial state can be specified by a sequence of R bit
indices. A method for constructing trellises of this type will be given in
Section 3.5.2.
Consider associating a symbol from some output alphabet Ax with

each branch in such a trellis. Then, a sequence of R bit indices can be

Chapter 3: Quantization 131

State
o

2

3

4

5

6

7

Figure 3.16. Eight-state trellis used in JPEG2000.

Table 3.5. Parity check coefficients for TCQ. Values are given in octal.

Number of States
4 8 16 32 64 128 256

hO 5 13 23 45 103 235 515
hI 2 04 04 10 024 126 362

used to specify a sequence (vector) of output symbols associated with
a specific trellis path. Hence, populating a trellis (specifying output
symbols for each branch) and specifying an initial state yields a set of
allowable output sequences, C = {XO,Xl,'" ,XM-I}, where M = 2Rm

and m is the number of trellis stages, or equivalently the length of each
output sequence. This set of output sequences is known as an R bit per
sample trellis code.
For a given data sequence x, a trellis coder outputs the sequence of

R bit indices corresponding to the output sequence in C that minimizes
Pm (x, x). Thinking of the concatenation of the R bit indices as one
"super index," I E {a, 1, ... ,M - 1}, we see that trellis coding can be
considered a special case of VQ.
The structure of the trellis allows encoding to be done with the Viterbi

algorithm [64] which eliminates the need for an exhaustive search over all

132 Trellis Coded Quantization

2Rm allowable output sequences for the one which minimizes the distor­
tion. The Viterbi algorithm is a clever application of forward dynamic
programming [23] that allows encoding to progress from left to right
through the trellis with a number of hard decisions being made at each
stage. In fact, all but N paths may be discarded at each stage, where
N is the number of trellis states (independent of m or R).
For a single letter distortion measure, the Viterbi algorithm is quite

simple. Given a data sequence x, begin computing the distortion as­
sociated with each path emanating from the (given) initial state. Each
time two or more paths pass through the same state (at the same time),
only the one with the smallest distortion up to that point needs to be
searched further. This path is known as a "survivor path."
The number of survivor paths (and hence, the number of paths to be

searched at each stage) increases until there is one for each trellis state.
The number of survivors remains constant at N from then on. When the
end of the data sequence is reached, the sequence in C that minimizes
Pm (x, x) is simply the sequence of output symbols associated with the
survivor having the lowest final distortion. This process is described
more fully (including an example) in Section 3.5.3.
There are many theorems (see [164, 73] for example) guaranteeing

the ~xistence of trellis codes with performance converging to the rate­
distortion function as the number of trellis states and the length of the
sequences to be coded get large. The proofs of these theorems entail
random coding arguments, and codes based on these proofs involve pop­
ulating the trellis in a stochastic manner.
Early trellis coding schemes populated trellises stochastically with

output symbols drawn from a continuous distribution (resulting in an
uncountable output alphabet Ax). For long input sequences (m » v =
log2 N), the computational burden for such a trellis coder is easily shown

to be N2 R scalar distortion calculations (e.g., P(x, 5:) = (x - 5:)2), N2 R

additions, and N 2R-way compares per data sample. For large N, the
computational burden can be quite large. Pearlman and his coauthors
showed that good performance is obtainable by stochastically populating
a trellis from a finite alphabet of size, say L. This reduces the number
of required scalar distortion calculations (per sample) from N2 R to L.

3.5.2 FIXED RATE TCQ
As discussed in the previous subsection, 2R branches leave each state

of a trellis coder. In general, this leads to the computation of distortion
information for each such branch at each state, resulting in N2R scalar
distortion calculations, as claimed above. TCQ borrows the set parti-

Chapter 3: Quantization 133

01 De<-0 -"

lID)

a)

Do D, D) D3 Do D, D) D3.

b)

Figure 3.17. Four-state trellis and codebook with subset labeling for R 2
bits/sample.

tioning ideas of [154] to add more structure to the trellis, which results
in a reduced computational burden.
To this end, TCQ takes an output alphabet Ax (scalar codebook) of

size 2R+R and partitions it into 2R+1 subsets. For the sake of simplic­
ity, we take R = 1 in what follows. Thus, for an encoding rate of R
bits/sample, Ax is of size 2R+1 which is twice that of a scalar quan­
tizer of the same rate. This codebook is partitioned into four subsets
called Do, D1 , D2, and D3, each of size 2R - 1. The partitioning is done
starting with the left-most codeword and proceeding to the right, label­
ing consecutive codewords Do, D1 , D2, D3, Do, D1 , D2, D3,"" until the
right-most codeword is reached. This is illustrated in Figure 3.17b, for
the case of R = 2.
Subsets obtained in this fashion are then associated with branches of

a trellis having only two branches leaving each node. This is illustrated
in Figure 3.17a, where the state machine output bits (8180) have been
used to select which subset is associated with which branch of the trellis
in Figure 3.14. Only one stage (or section) of the trellis is shown, as all
other stages are identical.
Since each subset contains 2R- 1 codewords, each branch of the trellis

in Figure 3.17 can be thought of as comprising 2R- 1 parallel branches.
With this interpretation, there are 2R branches leaving each state, and
as before, a path through the trellis (sequence of scalar codewords) can
be specified by a sequence of R bit indices. Each R bit index can be
broken down into two components. The first such component is a single
bit u used to specify the next state (as well as the branch followed and

134 Trellis Coded Quantization

its associated subset). The second component consists of R - 1 bits used
to specify a particular scalar codeword within the subset selected.

3.5.3 THE VITERBI ALGORITHM
For a data sequence (vector) x = XO:m , an N-state trellis of m stages is

employed. Such a trellis has m+ 1 columns of states, which we label Si,l
i = a, 1, ... ,m, l = a, 1, ... ,N -1. For each state Si+1,l let Si,l' and Si,l"
be the two states having branches ending in Si+1,l. Also, let Dl',l and
Dl",l be the subsets associated with those branches, respectively. Let Cz' l,
and Cl",l be the codewords in Dl',l and Dl",l that minimize P (Xi, c) =

(Xi - c)2, and let dl',l = (Xi - Cl',l)2 and dl",l = (Xi - Cl",l)2. Finally, let
Si+1,l be the "survivor distortion" associated with the survivor path at
state Si+1,l.
The i th step (i = a, ... ,m - 1) in the Viterbi algorithm then consists

of setting Si+1,l = min {Si,l' + dl',l, Si,l" + dl",z} , preserving the branch
that achieves this minimum, while deleting the other branch from the
trellis. If two values compared for minimum survivor distortion are
equal, the "tie" can be resolved arbitrarily with no impact on MSE.
When the end of the data is reached (i = m - 1), the trellis is traced

back from the final state having the lowest survivor distortion, and the
corresponding set of TCQ indices are produced. For long data sequences
(m >> v = log2 N) the choice of initial state has negligible impact on
MSE. Thus, we arbitrarily fix the initial state at a. This is easily done
by setting so,o = a and SO,l = 00, l = 1,2, ... ,N - 1.

Example 3.5 Let m = 4, x = (-4.1,2.2, a.3, -2.5), R = 2, and let the
eight codewords of Figure 3.17b be given by Ax = {-7,-5,-3,-1,1,3,
5, 7}. Figure 3.18 shows the results of the encoding steps of the Viterbi al­
gorithm. The initial survivor distortions are shown as a, 00, 00, 00 down
the left-most set of states.

The best codewords in Do, D 1, D2, D3 for Xo = -4.1 are -7, -5, -3,
and -1, with distortions of8.41, a.81, 1.21, and 9.61, respectively. These
distortions are attached to the appropriate branches in the first trellis
stage of Figure 3.18. For state Sl,O we compute the survivor distortion as
the minimum between a+8.41 and 00+ 1.21. We write the new survivor
distortion of 8.41 above 51,0 and delete the losing branch (denoted by
x). This process is repeated at 5 1,1, Sl,2, and 5 1,3 to obtain survivor
distortions of 00,1.21, and 00, respectively.

For the next sample, Xl = 2.2, the best subset codewords are 1,3,5, and
-1, with distortions of 1.44,0.64, 7.84, and 10.24, respectively. These
are attached to the appropriate branches and survivor distortions are

Chapter 3: Quantization 135

Figure 3.18. Example of the Viterbi algorithm for TCQ with N = 4, m = 4, and
R= 2.

computed. For 52,0 the winning value is 8.41 + 1.44 = 9.85. The losing
branch (00 + 7.84) is deleted.

This process is repeated until the end of the data is reached. The
smallest survivor distortion at that point is S4,3 = 4.59. The "best path"
through the trellis is "traced back" from that point along the branches not
deleted. This is indicated by the heavy lines in the trellis. The codewords
associated with this path (from left to right) are -3,3, 1, -1. It is easily
verified that the resulting MSE is ~ Ilx - xl1 2 = ~ (4.59), as indicated by
the survivor distortion.

Since each subset has two codewords, the codeword chosen within a
subset can be specified with R - 1 = 1 bit. Denoting the left-most code­
word of each subset by 0 (and the other codeword by 1), the set of R = 2
bit TCQ indices becomes 10,01,11,10. This set of indices can be decoded
by starting at state 0 and noting that the first bit (u = 1) denotes that
the encoder progressed to state 2 and that the subset along the corre­
sponding branch is D2 (see Figure 3.17). The second bit of 0 denotes
the left-most codeword of D2 which is -3. The next bit of 0 indicates
that the encoder progressed from state 2 to state 1 with associated subset
D 1 . The following 1 bit denotes the right-most codeword ofDl which is
3. This process can be continued to decode the next two codewords as 1
and -1, respectively.

It should be pointed out that the scalar codewords (chosen from Ax)
are not always the closest to Xi. For example, the first codeword chosen
in the example above was -3, while the codeword -5 is actually closer
to the data (xo = -4.1). However, the entire sequence of codewords
(vector codeword x E C, as allowed by the trellis structure) will always
be the one closest to x.

136 Trellis Coded Quantization

It should also be pointed out that m, N, and R can all be chosen
independently. For a given R, increasing m and/or N generally improves
MSE performance. The computational requirements and memory usage
are both proportional to mN for a data sequence of length m. On a per
sample basis however, the computational requirements are independent
of m. More specifically, the i th step (corresponding to the i th sample
Xi) in the Viterbi algorithm requires essentially four scalar quantizer
operations (to find the best codeword in each subset), followed by four
add-multiply operations (to compute the distortion associated with each
such codeword). Finally, to determine the survivor at each state requires
2N adds and N 2-way compares.

The memory requirements can also be made independent of m [103].
Consider a given desired memory depth (or delay) of id+1 samples. After
completion of the Viterbi processing for sample Xi i = id, id+1, id+2, . .. ,
the survivor path is traced back id steps. The TCQ index for sample
Xi-id (from the "traced back" path) is released for the purpose of bit­
stream formation. The path metric (for step i) is then set to infinity for
any "inconsistent" survivor paths. An inconsistent survivor path is any
path that has not merged with the best path, when traced back id steps.

With this procedure, one index is released (with an id sample delay)
every time one new sample is input to the Viterbi algorithm. It should
be clear then that arbitrarily long sequences of data can be processed
using memory proportional to only idN (rather mN).

Experimental results indicate that negligible loss in performance oc­
curs if id is sufficiently large. In particular, whenever id 2: 51og2 N, the
MSE performance of TCQ is substantially preserved. For example, an
id of 15 to 20 is sufficient for the 8-state trellis of Figure 3.16.

3.5.4 PERFORMANCE OF FIXED RATE TCQ
The Lloyd algorithm is easily adapted to the design of codebooks for

TCQ. The resulting algorithm encodes a long sequence of training data
over-and-over, replacing each (scalar) codeword in Ax by the average
of all samples quantized to that codeword at each iteration [142]. Rate
R + 1 Lloyd-Max scalar quantizer codewords can serve as good initial
guesses for the iterative TCQ design procedure.

MSE results for IID uniform and Gaussian data appear in Tables 3.6
and 3.7, respectively. These results were obtained by averaging the 100
MSEs resulting from encoding 100 sequences (each of length m = 1000)
using codewords designed iteratively as discussed above. Also included
for comparison are MSE results for Lloyd-Max scalar quantization, and
the distortion-rate function. For both PDFs, the performance of TCQ is

Chapter 3: Quantization 137

Table 3.6. TCQ performance for IID uniform data (SNR in dB).

Trellis Size (States) Lloyd- Distortion-
Rate Max Rate
(bits) 4 8 16 32 64 128 256 Quantizer Function

1 6.22 6.33 6.39 6.44 6.48 6.55 6.58 6.02 6.79
2 12.62 12.73 12.80 12.85 12.91 12.97 13.00 12.04 13.21
3 18.83 18.94 19.01 19.08 19.13 19.18 19.23 18.06 19.42

Table 3.7. TCQ performance for IID Gaussian data (SNR in dB).

Trellis Size (States) Lloyd- Distortion-
Rate Max Rate
(bits) 4 8 16 32 64 128 256 Quantizer Function

1 5.00 5.19 5.27 5.34 5.43 5.52 5.56 4.40 6.02
2 10.56 10.70 10.78 10.85 10.94 10.99 11.04 9.30 12.04
3 16.19 16.33 16.40 16.47 16.56 16.61 16.64 14.62 18.06

superior to that of scalar quantization for only four states (N = 4) and
improves steadily as N is increased.

It is interesting to note that for the uniform PDF, TCQ is approaching
the distortion-rate function rather quickly as N is increased. In fact,
when N = 256, TCQ garners all but about 0.2 dB of the gap between
SQ and the distortion-rate function. This is also true for larger R, where
the optimum TCQ codebook is uniform [104]. As N grows beyond 256,
this gap can be further diminished.
Recall from Section 3.4.1, that the 1.53 dB gap for SQ is due solely

to the cubic Voronoi cell shape induced by SQ. Evidently, the m dimen­
sional Voronoi regions induced by TCQ are very "sphere-like." Indeed,
for small m, these Voronoi regions can be sketched. This is straightfor­
ward for the case of m = 2. For example, consider all possible pairs of
codewords allowed by the trellis structure. Specifically, starting with an
initial state of 0 in Figure 3.17, we see that Do can be followed by Do or
by D2. Similarly, D2 can be followed by D1 or by D3. Thus, the set of
all pairs of codewords consistent with these constraints forms the vector

138 Trellis Coded Quantization

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

Figure 3.19. Codewords and Veronoi region for 2-D TCQ (m = 2) using Figure 3.17.

codebook with m = 2. Specifically,

C = (Do x Do) U (Do x D2) U (D2 x Dr) U (D2 x D3)
= {(-7, -7), (-7,1), (1, -7), (1, I)}

U {(-7, -3), (-7,5), (1, -3), (1, 5)}

U {(-3, -5) , (-3,3) , (5, -5) , (5,3)}

U {(-3, -1) ,(-3,7) , (5, -1) , (5,7)}

Plotting these codewords in 2-D and sketching the Voronoi region about
any of the "interior" codewords yields a hexagon as shown in Figure
3.19.
Unfortunately, the hexagon is not quite regular, as the angles formed

at the vertices are 116.57° and 126.86° rather than all 120°, as in the
(optimal) hexagonal lattice. This demonstrates that the structure of
TCQ results in some suboptimality over unconstrained VQ. However,
this same structure allows encoding with very large m which ultimately
leads to very high compression efficiency. In fact, the results reported
in Table 3.6 for N = 256, correspond to a suboptimal (but low com­
plexity) VQ with m = 1000. These results are better than theoretically
possible for any VQ of dimension less than 69 [104], which would be of
astronomical complexity.

3.5.5 ERROR PROPAGATION IN TCQ
Although we have portrayed TCQ as high dimensional VQ in the

discussion above, it can also be thought of as time varying scalar quan­
tization. From. this point of view, there are four scalar quantizers to be
chosen from for each sample. This choice is not arbitrary, but is gov-

Chapter 3: Quantization 139

erned by the structure of the trellis (state machine). From this point of
view, we can establish that error propagation is not a serious problem
for TCQ.

Recall from previous sections, that if a bit error occurs in the commu­
nication of a VQ index, m output samples are affected by the resulting
incorrect decoding. Since TCQ employs very large m, this might appear
to be of some concern. Fortunately, the number of samples potentially
corrupted is considerably less than m for TCQ. Specifically, if a bit error
occurs in one of the (R - 1) bits used to select codewords from subsets,
only one decoded sample will be affected. On the other hand, if a bit
error occurs in one of the (single) bits used to select the trellis path,
multiple decoded samples can be affected.

This error propagation can be seen by examination of Figure 3.15.
This figure shows that one bit in error (at the input u) can affect the
selection of the current subset, plus the selection of the next v subsets,
as the error propagates through the shift register. It is clear however,
that after v + 1 = log2 N + 1 samples, correct decoding will resume.
Even these "short" sequences of subset errors are less serious than

might be expected. For example, consider the R = 2 case of Figure
3.17b. Each subset has a positive codeword and a negative codeword. It
is easy to see that even when the subset is chosen incorrectly, the sign
of the codeword chosen by the decoder will still be correct. For higher
rates, the bit assignment (for indices within subsets) can be chosen so
that the problem of incorrect subset selection is even less serious.

We close this subsection by noting that the scalar codebook Ax can be
replaced by a vector codebook to obtain trellis coded vector quantization
(TCVQ) [59]. TCVQ can exploit dependencies in non-IID data, as well
as achieve non-integer (but rational) encoding rates.

3.5.6 ENTROPY CODED TCQ
As in the case of scalar quantization, TCQ indices can be entropy

coded to achieve MSE performance limited only by the Voronoi cell
shape. Specifically, 256-state entropy coded TCQ (ECTCQ) can achieve
MSE performance within about 0.2 dB of the distortion-rate function at
all rates R for any smooth PDF.
The entropy constrained codebook design algorithm of Section 3.2.3 is

easily adapted to TCQ. However, as in the case ofSQ, uniform thresholds
with centroid codewords are very nearly optimal. In scalar quantization,
using uniform thresholds with centroid codewords is equivalent to using
nearest neighbor encoding with uniform codewords, then substituting
centroid codewords at decode time. For TCQ, uniform codewords are

140 Trellis Coded Quantization

D, Dz D) Do D, Dz D)
... Dz D3 Do Dj Dz D) Do

• • • • • • • • • •
-61'. -56 -46 -36 -26 -6 0 6 26 36 46 56 61'.

Figure 3.20. Codebook and subset labeling for ECTCQ.

DoUD, ... D, Do D, Do D, Do D,
• • . . . • •

Codewords -611 -4t! -2t! 0 t! 3t! 5t!

Indexes -3 -2 -I 0 2 3

a)

D,UDJ
.0. D, D, D, D, D, D, D). . . 0 . 0 . •

Codewords -5t! -3t! -t! 0 2t! 4t! M

Indexes -3 -2 I 0 -1 2 3

b)

Figure 3.21. Union codebooks with ECTCQ indexes.

employed in the Viterbi algorithm while centroid codewords can be sub­
stituted at the decoder.
Many variants of ECTCQ have been explored [60, 102, 84, 86, 25]. We

describe here only the scheme supported in JPEG2000. The single trellis
included in JPEG2000 is shown in Figure 3.16, however, the discussion
below applies to any trellis.
The codebook and partition used for ECTCQ is shown in Figure 3.20.

Notable features of this figure are that the codebook is uniform with step
size ~, and that the zero codeword appears in two subsets, Do and D1.

Encoding proceeds via the Viterbi algorithm as described previously,
however, the ECTCQ indices are constructed in a different manner.
All trellises resulting from Figure 3.15 and Table 3.5 (including those

of Figures 3.16 and 3.17a) have the property that the subsets associated
with the two branches leaving a given state are either Do and D2 , or
D1 and D3. The "union codebooks" Do UD2 and Dl UD3 are shown in
Figure 3.21, along with the ECTCQ index for each codeword. As was
the case for entropy coded SQ, the indices are signed.
Note that from the point of view of the decoder, there are two possible

codewords for each index. This ambiguity is resolved however by the
trellis structure. For example, with an initial state of 0 in the trellis of

Chapter 3: Quantization 141

Figure 3.17a, the index sequence (1,2,-3,-1,1) would be decoded as
(~, 4~, -6~, -2~, -~). This can be seen by noting that at state 0,
Do U D2 is the appropriate union codebook. Thus, the index 1 indicates
the codeword is ~, which is in D2, indicating (by examination of the
branch labels) that the next state is 2. At state 2, the appropriate union
codebook is D 1 U D3. The index 2 then indicates that the codeword is
4~, which is in D1 , indicating that the next state is 1, and so on.

At this point, we mention the seemingly strange sign flipping of the
±1 indices in D1UD3 . In fact, flipping the signs in this fashion for all the
indices in Dl U D3 is desirable. For symmetric PDFs, this would cause
the indices to have identical distributions in both Do U D2 and Dl U D3.
This in turn allows the trellis state to be omitted from any context model
employed for entropy coding of ECTCQ indices. Unfortunately, flipping
all the signs destroys any possibility of successive refinement.

A compromise solution is to flip only the sign of ±1, and omit the
trellis state from the context model anyway. Simple analysis and exper­
imental results show that the resulting distribution mismatch results in
a negligible loss in entropy coding efficiency.

EMBEDDED ECTCQ

The ECTCQ indices as described above can be entropy coded as in­
tegers using Huffman or arithmetic coding [84], as in the case of entropy
coded SQ. As mentioned previously, the performance of such a scheme
can approach the distortion-rate function quite closely for any IID data
with smooth PDF.

As in the case of SQ (Section 3.2.7), the sign magnitude representa­
tion of the TCQ indices can be employed to achieve an (approximate)
embedding for TCQ. Although inverse TCQ requires exact knowledge
of each index to track the state progression through the trellis, a par­
tial inverse is still possible. Examination of Figure 3.21 shows that if
the LSB of an ECTCQ index is unknown, the ambiguity is limited to
the choice of 4 codewords. For example, if the binary representation
(sign-magnitude form) of an index is known to be +1? (where? denotes
the missing LSB), the correct index is guaranteed to be either 2 or 3,
and the codeword can be anyone of 3~, 4~, 5~, or 6~. One reasonable
reconstruction policy in this case would be to chose x= 4~. Extending
this argument to the general case of p 2:: 1 missing LSBs, a reasonable
reconstruction policy is to set the missing LSBs to 0 to obtain an ap­
proximate index q and then setting x= 2q~. This is in fact the policy
recommended for use with JPEG2000 [25].

142 Further Reading

Employing the notation of Section 3.2.7, we have more generally

(3.46)

When there are missing LSBs, this form of ECTCQ provides MSE per­
formance slightly worse than that of embedded ECSQ (Section 3.2.7).
However, when all bits are decoded, the full benefit of ECTCQ is real­
ized, and the MSE performance is superior to that of ECSQ.

3.5.7 PREDICTIVE TCQ
TCQ can be inserted into the DPCM structure of Figure 3.7. DPCM

decompression is essentially unchanged by this modification. Since in­
verse TCQ can be performed on a sample-by-sample basis, it is easily
substituted for inverse SQ in the DPCM decompression structure.
On the other hand, DPCM compression can be a challenge when TCQ

is employed. In fact, optimal encoding is not generally possible. One
reasonable approach to compression is to perform a prediction for each
of the two paths (emanating from each state) at each step in the Viterbi
algorithm [104]. Of course, half of these predictions are immediately
discarded by the survivor selection process at each "next" state. The
complexity of such an approach is roughly 2N times that of DPCM.
Although the encoding of the Predictive TCQ (PTCQ) system de­

scribed above is suboptimal, the resulting MSE performance is quite
good. The MSE gain of PTCQ over DPCM is comparable to the gain of
TCQ over SQ. In particular, we saw in Section 3.3 that entropy coded
DPCM can achieve MSE performance within 1.53 dB of the distortion­
rate function for Gaussian Markov processes. Not surprisingly, entropy
coded PTCQ can bridge substantially all of this gap [16].

3.6 FURTHER READING
There are many excellent texts that treat the information theory of

quantization. One of the earlier works is the classic book by Gallager
[67]. More recent entries include Cover and Thomas [43] and Gray [74].
The special case of rate-distortion theory is covered extensively by Berger
in [24]. Although somewhat dated at the time of this writing, the Jayant
and Noll text [82] provides fairly comprehensive coverage of speech and
image compression, and in particular scalar quantization. Gersho and
Gray [69] provide a more recent discussion of compression concepts, and
an extensive treatment of vector quantization.

Chapter 4

IMAGE TRANSFORMS

This is the first of two chapters dealing with the extensive subject of
image transforms. This first chapter serves as an introduction to block
transform methods and the generalization of these methods to subband
transforms. As a practical matter, we do not begin with a motivating
discussion on the use of transforms for image compression. For a brief
review of the role played by linear transforms in image compression ap­
plications, the reader is encouraged to re-read Section 1.3. Armed with a
knowledge of the structural and mathematical properties of linear image
transforms, the reader should be able to appreciate the more compre­
hensive arguments organized at the end of the chapter, in Section 4.3.

4.1 LINEAR BLOCK TRANSFORMS
4.1.1 INTRODUCTION
ANALYSIS AND SYNTHESIS MATRICES

In this section, we consider finite dimensional linear transforms, which
map an n-dimensional input vector, x, into an m-dimensional output
vector, Y, according to

Y = A*x, x =

Xn-l

Y=

Yo
Yl

Ym-l

Here, A is an n x m matrix of real or complex coefficients and A* is its
m x n conjugate transpose. If the transform is real-valued then A* = At.
An example of a complex-valued finite dimensional transform is the well­
known DFT (Discrete Fourier Transform).

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

144 Linear Block Transforms

We restrict our attention to invertible transforms, writing the inverse
as

x=Sy

where S is a n x m left-inverse of A*; i.e., SA* = I, the n x n identity
matrix. Note that S is not necessarily unique. Henceforth, however,
we shall restrict our attention to "non-expansive" transforms, having
dimension m = n, using m to denote this dimension and reserving the
symbol, n, for other purposes. In this case, S is the unique inverse of
A*, which we may write as

S-l=A* orS=A-*,

Observe that the transform coefficients may be expressed as

Yq = a~x, q = 0, 1, ... ,m - 1 (4.1)

where aq is the qth column of the m x m matrix, A. We refer to aq as
the qth "analysis vector," since it "analyzes" the original vector x, to
determine its qth transform coefficient. Accordingly, we refer to A as the
analysis matrix. Also, the inverse transform may be expressed as

m-l

X= LYqSq
q=O

(4.2)

where Sq is the qth column of the m x m matrix, S. We refer to Sq

as the qth "synthesis vector," since x is "synthesized" from a linear
combination of the Sq, with the transform coefficients serving as the
weights. Accordingly, the matrix, S, is known as the "synthesis matrix."

Although it is natural to think primarily in terms of the forward
transform, A, the inverse transform, S, often provides greater insight.
In particular, the transform may be understood as a decomposition of
any input vector, x, as a linear combination of the synthesis vectors,
Sq, according to equation (4.2). The Sq may thus be interpreted as
"prototype" vectors, with x a linear combination of these prototypes.
As we shall see, transforms which are important for compression are
able to represent the source accurately with only a few such prototype
vectors. We also refer to the Sq, as "synthesis basis" vectors because
they necessarily form a basis for the linear space of all possible input
vectors.

In summary, the analysis and synthesis vectors are the columns of
the respective analysis and synthesis matrices, A and S. The synthesis

Chapter 4: Image Transforms 145

vectors form a basis of prototype signals and the transform decomposes
its input as a linear combination of these prototypes.

Example 4.1 The m-point DFT (Discrete Fourier Transform) is de­
fined by the equationsl

O~q<m

O~p<m

In this case, the analysis and synthesis vectors are identical. The ele­
ments of aq = Sq are unit spaced samples of a complex sinusoid with
frequency fq = ~; specifically, the pth element is

a - s - _1_ej27rfqp
q,p - q,p - ,;m

Thus, the DFT decomposes its input as a linear combination of complex
exponential waveforms having uniformly spaced frequencies, fq.

BLOCKING OF 1D AND 2D SIGNALS
In most applications, the length of the signals to be transformed is

unbounded, or at least far exceeds the dimension of the transform. Con­
sequently, the source must be processed in blocks and the selection of a
finite dimensional transform implies a block transform process. Fig­
ure 4.1 illustrates the process for one dimensional signals. We first
partition the signal, x [k]' into contiguous blocks of m samples each,
denoted x [n]. These blocks are then independently transformed into
corresponding transform blocks, denoted y [n], which form an equiva­
lent one dimensional sequence of transform coefficients, y [k].
Two dimensional signals such as images, are usually partitioned into

square blocks of m x m samples each, which we may represent by m 2_

dimensional vectors, x [nl' n2] = x [n], as illustrated in Figure 4.2. The
order in which the m2 samples in each block appear within its vector is
unimportant from a conceptual point of view. When necessary, we shall
assume that the samples are scanned into the vector in raster-scan order.
Often, however, it will be more convenient to employ a two dimensional

1Here, we use a less common normalization convention, which distributes the scaling factor
of ~ between the forward and inverse transforms.

146 Linear Block Transforms

III

~

\ A f\ i\ /\ /
~ xlkJ

/\. , . , . ,.- - ..

/ \/ \/ \/ \/ \.
••-t-r---t-y-----ty.i===JII~~~y-----t¥------1~-...~ y[k I

Figure 4.1. Block transform process for ID signals.

indexing notation2 for the elements of each block vector, x [n]; i.e.,

where

x[n] =

XO,o [n]
XO,l [n]

XO,m-l [n]
Xl,O [n]

Xm-l,m-l [n]

first scan line

and Pl and P2 denote row and column indices, respectively, of the sam­
ples in the block vector. We employ a similar notation to refer to the
elements, Yqlm [nl, of each transform vector, y [n] = A*x [n]. Thus, we
have

Yql,q2 [n] = a~lmx [n]; and x [n] =L SqlmYql,q2 [n]
qI,q2

where the analysis and synthesis vectors, a q1m and SqI,q2' are the (q2 +
mql)th columns of the m2 x m2 matrices, A and 5, respectively.

2The most natural notation here is that of tensors, where the vectors are replaced by two
dimensional tensors and the analysis and synthesis matrices are replaced by four dimensional
tensors. We choose not to burden the reader with tensor notation in this treatment.

Chapter 4: Image Transforms 147

11/

....- .._.....---

_......-..-....
...... ----_ --_ -...--

- .. --- ..._--------------
III

Figure 4.2. Blocking for 2D block transforms.

Amongst the clutter of notation being introduced here, substantial
insight may be gained into the behaviour of two dimensional block trans­
forms by observing that they represent each block in the input image
as a linear combination of "prototype image blocks," Sqlm [n]. Not sur­
prisingly, when block transforms are used in image compression, the
block structure of the prototype images can sometimes be observed in
the reconstructed image. We shall investigate the structure of prototype
image blocks further in Section 4.1.3.

SEPARABLE TRANSFORMS
An obvious way to construct a two dimensional transform, A, is by
"separable extension" of a one dimensional transform, A'. Each analysis
vector, aq1 ,q2' of a separable transform is formed by taking the "tensor
product" of the one dimensional analysis vectors, a~l and a~2; Le.,

(a) - (a/) (a/) 0 :s ql, q2, PI ,P2 < mql,q2 Pl,P2 - ql Pl q2 P2'

Similarly, each synthesis vector, Sql ,q2' is the tensor product of S~l and
I

Sq2 .

A key practical advantage of separable transforms is that they may
be implemented by applying the one dimensional transform first to the
rows of the image and then to its columns. To clarify this point, observe

148 Linear Block Transforms

X p"P2

r------::....-.....:.::.:.-;;.;.-------0-"- • _ .. - ..

-.:..'_.,-==--+------- ..
".,_----..... -a:

.. -------
---.:..'--.._=~---.~---------­.,----*------

Figure 4.3. Separable transform implementation by one dimensional transformation
of the rows and then the columns.

that

YqIm = a;lm X = L (aqIm);I,P2 XPI ,P2

Pl,P2

= L (a~I);1 L (a~2);2 Xpl ,P2

PI P2
'---..v..--_.....'"

(Y~2) PI

Thus, we first apply the one dimensional transform independently to
each row, PI, of the image, generating an intermediate two dimensional
array, Y~lm' each column of which is a vector, Y~2' to which we apply
the one dimensional transform again. The procedure is illustrated in
Figure 4.3.
Of course, the same argument shows that we can apply the trans­

form first to the columns and then to the rows, with identical results.
Furthermore, the inverse transform may clearly be implemented in an
analogous manner, starting with the rows of the coefficient array, YqIm,

and proceeding to the columns, or vice versa. Separable transforms in­
volve a substantial reduction in complexity. To form each coefficient
of a non-separable transform, we require m2 multiplications and addi­
tions. By contrast, only 2m multiplications and additions are required
to implement a separable transform3 .

3Further minor simplifications are possible. For example, one of the multiplicands for the
column transform may be folded into the row transform. In many cases, symmetry or richer
structural properties may be exploited for further simplification.

Chapter 4: Image Transforms 149

Example 4.2 The two dimensional m x m-point DFT is defined by

m-l m-l

Y = ~ "'" "'" x e-j~(Plql+P2q2) OS; Ql,Q2 < m
ql,Q2 m 6 6 Pl,P2 ,

Pl=OP2=O

m-l m-l

X = ~ "'" "'" Y ej~(Plql+P2q2) OS; Pl,P2 < mPl,P2 m 6 6 ql,Q2 ,

ql=Oq2=O

As in the case of the one dimensional DFT, the analysis and synthe­
sis vectors are identical; i. e., aQ1 ,Q2 = Sql ,q2 . Their elements are unit
spaced samples of a two dimensional complex sinusoid with vertical and
horizontal frequencies, !ql = ~ and !q2 = ~, respectively. It is easily
verified that this transform is the separable extension of the one dimen­
sional DFT in Example 4.1.

VECTOR SPACE PERSPECTIVE

The inner product between two m-dimensional vectors, v and w, is
defined by4

m-l

(v, w) = L vpw;
p=O

This is the familiar "dot-product." Thus, the forward transform (or
analysis) operation of equation (4.1) may be written as the inner prod­
uct,

Yq = (x,aq)

Admittedly, this is only notation. Its chief benefit to us is that we shall
be able to use the same notation with identical results and interpre­
tations when referring to non-block transforms, including subband and
wavelet transforms.
A transform is said to be orthonormal if the analysis vectors are all

mutually orthogonal, having unit norm (length); i.e.,

(ai,aj) = 0, Vi # j

(ai, ai) = 1I~1I2 = 1, Vi

(4.3)

(4.4)

This means that AA* = A*A = I, so that S = A is a unitary ma­
trix. Equivalently, the analysis and synthesis vectors for orthonormal
transforms are identical. The one- and two dimensional DFT's of Exam­
ples 4.1 and 4.2 are orthonormal transforms. An orthonormal transform

1 Formally, this is the definition of inner-product on a finite dimensional Hilbert space over
the field of complex numbers, C.

150 Linear Block Transforms

performs an orthonormal expansion of the input signal as the sum of its
projections onto each of the basis vectors; i.e.,

x = LYqSq = L (x,Sq)· Sq
q q

An important property of orthonormal transforms/expansions is that
they are "energy preserving," meaning that

L IXpf = IIxll2 = (x, x) = / ~YiSi, LYjSj)
p " 1 J

= LYiYj (Si,Sj) = L IYq l2 = IIYl1 2
i,j q

In words, the sum of the squares of the input samples (energy of the in­
put), is identical to the sum of the squares of the transform coefficients
(energy of the output). This property is often known as Parseval's rela­
tion.
To appreciate the significance of this property for compression, con­

sider the compression system of Figure 1.4. Let e y= Y - Ydenote the
error introduced into the transform coefficients by quantization. Simi­
larly, let ex = x - xdenote the error introduced into the reconstructed
image by the entire compression system. By linearity of the transform,
ex = Bey and if the transform is orthonormal, IIex ll2= lIeyl12. In words,
the error energy in the image domain is identical to the error energy in
the transform domain. Minimizing the MSE of the quantized transform
coefficients is then identical to minimizing the MSE of the reconstructed
image. This property will be exploited in Section 4.3, where we discuss
the rate-distortion properties of compression systems involving trans­
forms.
An orthogonal transform is one whose analysis vectors satisfy equa­

tion (4.3), but not necessarily equation (4.4). In this case AA* = D, a
diagonal matrix, with

Dii = (ai, 8.i), and Si = Dii, l 8.i

Thus, the synthesis vectors are also orthogonal and the energy preserving
property persists in the modified form

L Ixp l2 = L D~/ lyql2
p q

More generally, any arbitrary invertible transform has the property
that SA* = A*B = I, which means that the following "biorthogonality"

Chapter 4: Image Transforms 151

relations must hold

(Si, aj) = 0,

(Si, ai) = 1,

Vi i- j

Vi

The term "biorthogonal transform" may thus be applied to any invertible
transform, including orthogonal transforms as a special case.

4.1.2 KARHUNEN-LOEVE TRANSFORM
The KLT (Karhunen-Loeve Transform) is an orthonormal transform

of substantial theoretical significance. Since information sources are sta­
tistical in nature, let x be the outcome of an underlying random vector,
X. Then the transform vector, y = K*x, is an outcome of the random
vector

Y=K*X

Let J-tx = E [Xl denote the mean of the random vector, X, and Cx its
covariance matrix; i.e.,

Cx = E [(X - J-tx) (X - J-tx)*] = E [XX*] - J-txJ-tx

Clearly, Cx = Cx is a hermitian matrix (symmetric for real-valued
random vectors). The element at row i and column j of Cx holds the
covariance of the random variables, Xi and X j ; i.e.,

Recall that two random variables are said to be "uncorrelated" if their
covariance is zero. Accordingly, Cx will be a diagonal matrix if and
only if the constituent random variables, {Xi}O<i<m are mutually un-
correlated. -
Amongst all possible orthonormal transforms, the KLT is the unique5

transform which decorrelates its input. By this, we mean that the trans­
form vector has a diagonal covariance matrix, Cy . The relationship
between Cx and Cy is

Cy = E [(Y - J-ty) (Y - J-ty)*]

= E [(K*X-K*J-tx) (K*X-K*J-tx)*]

= E [K* (X - J-tx) (X - J-tx)* K]

= K*CxK

5Actually, any orthonormal dccorrelating transform must bc idcntical to thc KLT, up to a
permutation (re-ordering) and potential sign-flipping of thc transform coefficicnts.

152 Linear Block Transforms

Since Cy is to be diagonal and the transform is to be orthonormal (i.e.,
K K* = 1), we must have

KCy =CxK or

O"~ki = CXki , a~ i < m

where O"~ = cov (Yi, Yi) is the variance of the i th transform coefficient,

and k i is'the i th column of K; i.e., the i th synthesis/analysis vector of
the transform. We conclude that the k i must be the eigenvectors of
the hermitian matrix, Cx, with O"~ the eigenvalue corresponding to k i .

A well-known property of hermitian matrices is that their eigenvectors
are mutually orthogonal [166, Corollary 4.4.9]. Thus, the KLT always
exists.
A popular tool for finding the KLT matrix is the well-known SVD

(Singular Value Decomposition). Specifically, the SVD of Cx is

Cx = U2:;V*

where U and V are unitary (orthonormal rows/columns) and 2:; is a
diagonal matrix of singular values. Since Cx is symmetric, its SVD has
U = V. Setting K = U, we obtain

Cy = K*CxK = U*UEU*U = E

which is diagonal. Thus, the analysis/synthesis vectors, k i , of the KLT,
are the columns of the unitary matrix, U, from the SVD of Cx and the
variance of each transform coefficient, O"~, is the corresponding singular
value. Both the KLT and the SVD are d'efined so as to yield coefficient
variances (singular values) in decreasing order,

(4.5)

As a result of this connection, the KLT and SVD are often misunderstood
as synonymous.

SIGNIFICANCE OF DECORRELATING TRANSFORMS
Suppose two random variables, X and Y, are statistically indepen­

dent. Then, by definition, their joint PDF (probability density function)
is the separable product of the marginal distributions,

fx,Y (x,y) = fx (x) fy (y), 'r/x,y

Chapter 4: Image Transforms 153

and hence

E [XY] =.1 .I xyfx,y (x,y)· dx· dy

= .Ixfx (x) dx .I yfy (y) dy

= /-Lx /-Ly

Thus, cov (X, Y) = E [XY] - /-Lx /-Ly = 0 and the random variables are
uncorrelated. Unfortunately, the converse is not generally true. A com­
mon mistake is to refer to two quantities as uncorrelated, as though
that were tantamount to statistical independence. The following exam­
ple demonstrates the shortcomings of such an inference.

Example 4.3 Let X be a zero-mean random variable, uniformly dis­
tributed on the interval, [- ~ , !] and let Y = IXI. Then

cov (X, Y) = E [XY] - /-lx /-Ly = E [XY]
1

= 1: xlxldx = 0
2

So X and Yare uncorrelated, but they are certainly not independent; in
fact, Y is a deterministic function of X.

There is one important class of distributions for which decorrelation
and statistical independence are equivalent, namely Gaussian distribu­
tions. An m-dimensional random vector, X, has a Gaussian (normal)
distribution if its PDF has the form

fx (x) = 1 e-~(X-lLx)*Cxl(x-ILX)
J(21T)m det (Cx)

When the random variables, XO,X1 , ... ,Xm - 1 , are uncorrelated, Cx is
diagonal and the joint distribution becomes

which is a separable product of one dimensional Gaussian distributions.
Thus, jointly Gaussian random variables are statistically independent if
and only if they are uncorrelated.

154 Linear Block Transforms

Another important property of Gaussian distributions is that the dis­
tribution remains Gaussian under any linear transformation. Thus, if X
is Gaussian and Y = K*X is its KLT, then Y is a Gaussian random
vector with diagonal covariance matrix, meaning that the li are statis­
tically independent random variables. In Section 4.3.3 we show that the
KLT is in fact the optimal block transform for compression, subject to
the somewhat contrived assumption that the source follows a Gaussian
distribution.
For non-Gaussian distributions, we cannot hope to decompose the

source into statistically independent components by means of a linear
transform. Nevertheless, since decorrelation is a necessary if not suffi­
cient condition for statistical independence, the KLT is still an excellent
choice.

PRINCIPLE COMPONENTS AND THE KLT

As with any transform, the KLT may be interpreted as decomposing
the source as a linear combination of prototypes, k q . In the case of
the KLT, these prototypes are known as the "principle components"
of the source. Suppose that we are free to keep only a subset of the
coefficients, with indices in M, letting the remaining coefficients default
to their mean value (usually zero). We synthesize the source using this
reduced set of coefficients as

x = L yqkq + L /-lyqkq
qE~ q~~

and the expected (mean) squared error (MSE) of this approximation is

E [llx -xln = E [IIY - yin = L ~~q
q~~

Note that we have exploited the energy preserving property of ortho­
normal expansions. In view of equation (4.5), we should select the first
m' = 1M I coefficients,

M = {O, 1, ... ,m' - 1}

so as to minimize the MSE of the approximation. In fact, it can be
shown that amongst all linear transforms, the transform for which MSE
is minimum, if we keep only the first m' < m coefficients, is the KLT.
This is most fortuitous, because the optimum transform does not depend
upon the number of coefficients, m', which we choose to keep.
Thus, if we are free to approximate x as a multiple of only one vector

(plus a constant offset), the vector which will minimize the mean square

Chapter 4: Image Transforms 155

Figure 4.4. First three and last principle components for 8 X 8 blocks taken from the
image, "Goldhill."

approximation error is ko. If we are free to approximate x as a linear
combination of any two vectors (plus a constant offset), the selection
which will minimize the mean squared error (MSE) is the vectors, ko
and k1 , and so on. This explains the name "principle components" for
the KLT synthesis vectors, k q . This property has obvious appeal and
has given rise to many compression schemes. Nevertheless, as we shall
see in Section 4.3.2, this is not the optimal strategy for exploiting the
KLT.
When used as a two dimensional block transform, the synthesis vec­

tors are prototype image blocks. The first prototype image block, ko,
is the first principle component and usually corresponds to a block of
constant intensity samples so that Yo [n] is the "DC" coefficient of image
block x [n] and x [n] = Yo [n] ko is a piecewise constant approximation
to the original image. In general, the first few principle components
usually represent smoothly varying intensity patterns, since images typ­
ically contain much more energy at low spatial frequencies than at high
frequencies. Figure 4.4 offers evidence for this behaviour. The figure
illustrates the intensity patterns associated with the first few and last
principle components for blocks of size 8 x 8, where the relevant co­
variances are estimated by taking averages over blocks drawn from the
576 x 720 test image, "Goldhill," shown in Figure 4.5.

4.1.3 DISCRETE COSINE TRANSFORM
The DCT (Discrete Cosine Transform) is a real-valued orthonormal

transform, whose analysis/synthesis vectors, Sq, consist of unit spaced
samples of cosine functions, having frequencies, fq = i!n. Specifically,

q
f q =­

2m
(4.6)

156 Linear Block Transforms

Figure 4.5. 576 x 720 test image, "Goldhill."

where the normalization factor is selected to ensure that IIsqll = 1; its
value is

{f£
cq = f£ if q = 0

if q =1= 0

The orthogonality of these vectors is easily demonstrated.
The DCT and DFT (see Example 4.1) have much in common. Both

are orthonormal transforms whose basis vectors are unit sampled sinu­
soids. In the case of the DCT, the sinusoids are real-valued and their
frequencies are spaced at multiples of 2~' while the DFT's sinusoids are
complex-valued with frequencies separated by multiples of ~. We will
explore the relationship between the DCT and the DFT further shortly.
The two dimensional DCT is the separable extension of the one dimen­

sional DCT, having analysis/synthesis vectors, Sql,q2' whose elements are

ChapteT' 4: Image Tmnsforms 157

So.o SO.I

Figure 4.6. First few and last basis (prototype) blocks of the 8 x 8 DCT.

given by

(8q1 ,q2)Pl,P2 = Cq1 Cq2 cos (21r!ql (PI + t)) cos (21r!q2 (P2 + t))
(4.7)

These are the prototype vectors of the block-based DCT transform. Fig­
ure 4.6 shows the intensity patterns of a few of the lowest frequency
prototype blocks for the 8 x 8 DCT transform, along with the highest
frequency prototype block, 87,7' Notice the similarity between these in­
tensity patterns and those of the first few and last principle components
from the 8 x 8 KLT, appearing in Figure 4.4. In fact, a key attribute of
the DCT is its similarity to the KLT for natural image sources.

RELATIONSHIP BETWEEN THE DCT AND THE KLT
It can be shown [18] that the DCT approximately diagonalizes the co­

variance matrix of a first-order Gauss-Markov random process for which

cov (X XI I) = pIPl-P~I+IP2-p~1
Pl,P2 Pl,P2

where p is close to 1. In fact, one of the properties of any wide-sense
stationary (WSS) random process is that the Fourier coefficients are
uncorrelated. That is, as m becomes very large, the DFT, the DCT and
other related frequency transforms all diagonalize the source covariance
matrix [156]. Thus, these transforms are asymptotically equivalent to
the KLT for WSS sources, up to a reordering of the coefficients.
One suitable data independent ordering for the DCT coefficients is the
"zig-zag" scan shown in Figure 4.7. This order is based on the obser­
vation that the power density spectra of most images tends to decrease
rapidly with increasing spatial frequency; it is employed by the JPEG
image compression standard and most video compression standards.
Although most images are not well modeled as WSS random processes,

the DCT has been found to be a robust approximation to the KLT

158 Linear Block Transforms

2

3

4

5

6

5 qr-----'--=----------==------'-----=-----+' 2

Figure 4.7. Zig-zag scan to visit DCT coefficients in order of roughly decreasing
variance.

for natural image sources. From a practical perspective, the DCT has
numerous advantages over the KLT: it is a separable transform; highly
efficient implementations exist; and there is no need (or opportunity) to
adapt the transform to the statistics of the source material.

RELATIONSHIP BETWEEN THE DCT AND THE DFT
It is worth exploring the relationship between the DCT and the DFT

further. We restrict our attention to the one dimensional case and note
that the input vector, x, consists of a single block from an underlying
source sequence. Let x in] be the periodic sequence with period 2m
defined by

x [P] = X p , o:s; p < m
x[n]=x[-1-n]=x[2m-1-n], '<In

The first half of each period holds x, while the second half of each period
contains a mirror image of x, as illustrated in Figure 4.8. Since x in] is
periodic, it may be expanded in a Fourier series as

Chapter 4: Image Transforms 159

x n
period,2m

Figure 4.8. Periodic signal whose DFT is a scaled version of the DCT of x.

where the Fourier coefficients, Yq, are given by

2m-l
1 '" . 211"Yq = -- L X [n] e-J 2""nq
v2m n=O

which is the 2m-point DFT of a single period of x [n]. The above ex­
pression may be manipulated as follows:

v __1_ [~ _j!!3. p +~ -j!!3.(2m-l-p)]
Yq - v2m L xpe "" L xpe ""

p=o p=o
m-l

= _1_ej27nq L xp (e-j-;;(p+~) + ej-;;(p+~))
v2m p=o

= Ifei ,7.' 'foxp coo (2"2;" ~ +m
~ (Ifc;!ei ':") Yo

So the DCT coefficients of x are related to the 2m-point DFT coefficients
ofthe symmetrically extended sequence, x[n], by a constant scale factor,
which is not signal dependent; i.e.,

Yq = (Cq~e-j27nq) Yq, q = 0,1, ... ,m-1

One of many important consequences of this connection between the
DCT and the DFT is that we can exploit efficient FFT (Fast Fourier
Transform) algorithms [52] which have been developed for computing
the DFT. These algorithms have complexity of order m logz m which
represents a significant saving over direct implementation with complex­
ity of order m 2 .

160 Subband Transforms

x[k]

y[k]

Figure 4.9. One dimensional convolutional transform.

4.2 SUBBAND TRANSFORMS
The principle limitation of block transforms is that the source sig­

nal or image must be processed independently in blocks6 . Equivalently,
the transform decomposes the source as a linear combination of disjoint
blocks. Neighbouring source samples may lie within the influence of
different blocks. However, we do not usually have any a priori reason
to expect these neighbouring samples to be uncorrelatedj in fact, for
many sources, including natural images, neighbouring samples exhibit
the highest correlation. As a result, we can expect the transform coef­
ficients from adjacent blocks to exhibit significant residual correlation,
even if the block transform fully decorrelates each block, as in the KLT.
Thus, the full decorrelating potential of block transforms is realized only
asymptotically as the block size, m -+ 00.

4.2.1 VECTOR CONVOLUTION
A natural way to extend block transforms is by adding memory. The

idea is illustrated for one dimensional sources in Figure 4.9. Again, the
input and output sequences are grouped into m-dimensional vectors,
x [n] and y [n]. In this case, however, each output vector is formed from
multiple input vectors, through a sequence of transform matrices, A [n],

6III accordancc with the openillg statelllellts of Section 4.1, we cOllsistClltly restrict. our attcll­
tioll t.o lloll-expallsivc transforms, so that rcdundant transforms involvillg overlapping blocks
are ruled out.

Chapter 4: Image Transforms 161

according to

y [n] = LA* [i] x[n - i]
iEZ

(4.8)

From one perspective, this is simply the generalization of scalar convolu­
tion to m-dimensional vector convolution, suggesting the term "convolu­
tional" transform. From a different perspective, it is the generalization
from block transforms to "sliding window" transforms. As we shall see
shortly, a frequency domain perspective suggests the term "subband"
transform, while a particular implementation suggests the term "maxi­
mally decimated filter bank," or simply "filter bank." Throughout the
ensuing development, we shall use each of these terms as best befits
the context, bearing in mind that they refer to the same fundamental
operation.

It turns out that the inverse (synthesis) transform almost always exists
and that it has the same form with

x [n] = L S [i] Y [n - i]
iEZ

(4.9)

We point out, however, that unless the analysis matrices are selected
carefully, the synthesis system generally has infinite, non-causal sup­
port. For some applications, causality is important; i.e., we must have
A [i] = 0 for i < 0, as in the figure. Of particular interest, however,
is the case in which both the forward and inverse transforms have fi­
nite support. Non-causal transforms with finite support can always be
implemented causally by the introduction of sufficient delay, so we will
generally consider two-sided sequences, A [i] and S [i].

4.2.2 POLYPHASE TRANSFER MATRICES
The pth elements of each input vector, x [n]' form a sequence, xp [n],

which is known as the pth polyphase component of x [k]. Specifically,

xp[n] ~ (x [n])p = x [nm +p]

Similarly, we may refer to the sequences, Yq [n], as the polyphase com­
ponents of an interleaved sequence of transform coefficients, Y[k], given
byy[nm+q] =Yq[n].
As for scalar convolution, we may define the Z-transform of the matrix

impulse response, A* [i], as the formal power series

H (z) = LA* [i] z-i
iEZ

162 Subband Transforms

Similarly, we define

G(z) = I:S[i]z-i
iE£:

and then the analysis and synthesis operations of equations (4.8) and
(4.9) may be rewritten as

y(z)=H(z)x(z)

and
x(z) = G(z)y(z)

Here, x (z) and y (z) denote the vectors formed from the Z-transforms of
the respective polyphase components of the input and output sequences.

H (z) and G (z) are known as the "polyphase transfer matrices," or
simply the "polyphase matrices," of the analysis and synthesis systems.
Evidently, the synthesis system correctly inverts the analysis system if
and only if

G(z)H(z) = H(z)G(z) = I

Equivalently, the analysis and synthesis matrices, A [i] and S [i], must
satisfy

L S [j - i] A* [i] = L A* [i] S [j - i] = 1·8 [j], Vj E Z
iE£: iE£:

(4.10)

The Z-transform representation provides a direct method for deducing
the synthesis system from the analysis system or vice-versa. Specifically,
we must have

G (z) = (H (z))-l = cofactor (H (z))
det (H (z))

In the simple case when m = 2, this relation may be expressed as

(
Hll (z) -HOI (z))

(
Goo (z) GOI (z)) -HlO (z) Hoo (z)
GlO (z) Gll (z) Hoo (z) Hll (z) - HOI (z) HlO (z)

For the analysis system to be practically realizable, the elements of
H (z) must be rational polynomials in z, in which case the elements of
G (z) will also be rational polynomials in z so long as det (H (z)) is not
identically equal to zero. If we select an analysis system at random, the
event that det (H (z)) == 0 occurs with zero probability, so it is reasonable
to claim that the synthesis system does indeed exist for virtually all

Chapter 4: Image Transforms 163

choices of the analysis system7. If we are interested in analysis and
synthesis systems which both have finite support, then the elements
of both H (z) and G (z) must be finite polynomials in z. One way to
ensure this is by guaranteeing that det (H (z)) is a pure delay, z-d for
some d E Z. As we shall see in Section 6.1, this is also a necessary
condition for finite support transforms.

4.2.3 FILTER BANK INTERPRETATION
Equation (4.8) may be rewritten as

Y[nm + q] = Yq [n] = L a~ [i] x [n - i]

m-l

= L L (aq [i]); x [m (n - i) + j]
i j=O

= Lhq[k]x[mn-k] = (x*hq) [mn]
k

(4.11)

Here, as previously, aq [i] denotes the qth column of A [i] and (aq [i]);
is the complex conjugate of its jth element, which is also (A* [i])q,j' the
element at row q and column j of matrix A* [i]. The scalar filter impulse
responses, hq [k]' and the analysis matrices are related by

(A* [i])q,j = (aq[i]); = hq[mi - j]; 0:::; j < m (4.12)

Defining the ;th polyphase component of the scalar impulse response by

hq,j [i] = hq[mi - j] (4.13)

we see that the Z-transform of this polyphase component is the element
at row q and column j of the polyphase analysis matrix, H (z); Le.,

(H (z))q,j = hq,j (z) (4.14)

According to equation (4.11), the forward transform may be imple­
mented by filtering the source sequence, x [k], with a bank of m different

7For the synthesis system to be practici\lly realizable, the elements of G (z) must be the
Z-transforms of realizable filter impulse responses. These may be two-sided IIR filters, for
which stable causal realizations are not possible. In image processing applications, however,
the relevant signal sequences (rows or colulllns of the image) generally have finite support. In
this case, it is possible to implement anti-causal filtering operations by processing the samples
backwards in time. A filter with arbitrary rational Z-transfonn may then be implemented
as the composition of a causal componeut (poles inside the unit circle) and an anti-causal
component (poles outside the unit circle).

164 Subband Transforms

x[k]

Synthesis filter bank
-----y--------'

Ym_l[n]
'-y---'
ubbandsAnaly is filter bank

x[k]

Figure 4.10. Filter bank realization of a convolutional transform and its inverse.

analysis filters, having impulse responses, hq [k], and keeping only every
mth sample of each filter's output. This analysis filter bank is illus­
trated in fri~re 4.10. Note that the "decimation" or "down-sampling"
operator, , maps an input sequence, u [k], to an output sequence,
v [k] = u [mk]. The decimated outputs of the m filters are called sub­
bands, for reasons which shall soon become clear.
We may also rewrite equation (4.9) in terms of a collection of scalar

synthesis filters, gq [k]. Specifically,

m-l

X [nm + p] = (x [n])p = L L (Sq [i])p Yq [n - i]
i q=O

m-l

= L LYq [i] (Sq [n - i])p
q=O i

m-l

= L LYq [i] gq [nm + p - mil
q=O i

m-l

= L (fjq*gq) [nm+p]
q=O

(4.15)

where
if m divides i
otherwise

and
(8 [i])j,q = (Sq [i])j = gq [mi + j] (4.16)

According to equation (4.15), x [n] is recovered by "up-sampling" the
subband sequences, Yq [nJ, filtering the up-sampled sequences, Yq [nJ,

Chapter 4: Image Transforms 165

with a bank of synthesis filters, gq [n], and adding the results. These op­
erations are also illustrated in Figure 4.10. Note that the "up-sampling"
operator, [ill, inserts m-1 zeros between the elements of Yq [n] to obtain
Yq [n].
Defining the lh polyphase component of the synthesis filter, gq [k], by

gq,j [i] = gq [mi + j] (4.17)

we see that the Z-transform of this polyphase component is the element
at row j and column q of the polyphase synthesis matrix, G (z); i.e.,

(G (z))j,q = gq,j (z) (4.18)

Note carefully, the difference between the definitions of polyphase com­
ponents for the analysis and synthesis filter impulse responses in equa­
tions (4.13) and (4.17).

FREQUENCY-DOMAIN PERSPECTIVE
The analysis filter bank of Figure 4.10 does not represent an efficient

implementation of the vector convolution operation, since the decimation
operator discards all but every mth filter output. Similarly, the synthesis
filter bank does not represent an efficient implementation of the inverse
transform, since m -lout of every m samples processed by the synthesis
filters are zero. The filter bank interpretation does, however, allow us
to provide a frequency-domain perspective for the most useful class of
convolutional transforms. In fact, the term "subband" arises from the
fact that the filters, hq [n], usually correspond to bandpass filters.
Figure 4.11 illustrates stylistic magnitude responses for the analysis

filters of an m = 3 band filter bank. Note that hq (w) denotes the DTFT
(Discrete Time Fourier Transform) of the impulse response, hq [n], given
by

h (w) = {Lnhq[n]e-
jwn

ifw E [.-1f,1f) (4.19)
q 0 otherwIse

In general, each frequency band has a nominal bandwidth of ~ and, by
convention, the bands are uniformly spaced with q = 0 corresponding
to the DC band and q = m - 1 corresponding to the highest frequency
band. Although there is nothing in the convolutional transform struc­
ture which requires the analysis filters to be bandpass filters, the most
useful transforms for image compression and other image processing ap­
plications are of this form. We have already seen that the DCT is a good
decorrelating transform for images and other signals precisely becau?e it
is a frequency transform. As we shall see in Section 4.3, good decorre­
lating convolutional transforms for these sources all have the frequency

166 Subband Transforms

21r

3 3
o

3

21r

3

Figure 4.11. Bandpass filter responses for am = 3 band filter bank.

band structure. In recognition of the importance of this structure, we
shall use the term "subband transform" interchangeably with "convolu­
tional transform" and consistently assume the convention that Yo [n] is
a DC subband and Ym-l [n] is the highest frequency subband.
As illustrated in Figure 4.10, the subband sequences themselves are

obtained by decimating the bandpass filtered input sequence. Ideally,
the analysis filters are "ideal" bandpass filters with non-overlapping pass­
bands of bandwidth ~. In this case, each passband is represented per­
fectly by its decimated subband sequence, without aliasing, and may
be recovered by interpolating the subband samples with "ideal" synthe­
sis filters. This is nothing other than Nyquist's sampling theorem and
the ideal bandpass (analysis) and interpolation (synthesis) filters are the
modulated sinc functions8 ,

{

sinc (~) if q = 0
1 +1

h q [n] = 9q [n] = Viii cos (1T q
m

2 n) sinc U:rJ if 1 ~ q ~ m - 2
(-1)n sinc (~) if q = m - 1

(4.20a)
Of course, it is not possible to implement filters with ideal "brick

wall" frequency responses, so aliasing is inevitably incurred during dec­
imation. The effect of the downsampling and upsampling operations
of Figure 4.10 is illustrated in Figure 4.12. The figure illustrates the
introduction of aliasing and spectral expansion according to the down­
sampling relationship

(4.21)

8The normalization factor, Jrn, is chosen so that the analysis and synthesis filters will be
identical. In this case, each filter will have a passband gain of y'ffi.

Chapter 4: Image Transforms 167

41
-Jr

4 I
-Jr

-Jr

'----.....v~------"/ '-.....-----v~------"/

filtered bandpass signals subbands upsamplcd subbands

Figure 4.12. Frequency mapping of filtered bandpass signals due to downsampling
and upsampling operations.

The figure also illustrates the spectral contraction and replication asso­
ciated with upsampling, according to

Yq(w) = LYq (mw + 21Tk)
kEZ

(4.22)

From this perspective, the principle role of the synthesis filters must be to
eliminate spectral replicas from the upsampled subband signals, leaving
at least an approximate copy of the original bandpass components, which
may then be added to reconstruct the original sequence, x [n].
This reasoning suggests that the synthesis filters should be bandpass

filters with the same passbands as the corresponding analysis filters. The
synthesis filters should also correct for any phase distortion introduced
by the corresponding analysis filters. Thus, assuming that both the
analysis and synthesis filters are assigned a passband gain of~ to
compensate for the factor of ~ in equation (4.21), we should expect to
find that

9q (w) ~ h~ (w) or, equivalently, gq [n] ~ h~ [-n] (4.23)

Indeed, the ideal analysis and synthesis filters of equation (4.20a) have
exactly this form. In order to recover x [n] exactly, however, the synthesis
system must also be able to eliminate the aliasing introduced during
analysis and so the relationship embodied by equation (4.23) is often
only approximately valid. As it turns out, the relationship is exact if
and only if the transform is orthonormal. The relationship between
analysis and synthesis filters is discussed further below.

168 Subband Transforms

4.2.4 VECTOR SPACE INTERPRETATION
As for block transforms, considerable insight may be gained by ex­

pressing the forward transform as the inner product of the input with a
collection of analysis vectors and the reverse transform as a linear com­
bination of synthesis (or prototype) basis vectors. An appropriate vector
space is the Hilbert space of square summable sequences, £2 (Z). Given
any two vectors (sequences), u == u [k] and v == v [k], in £2 (Z), their
inner product is defined by

(u, v) = I.:u [k] v* [k]
k

The analysis equation (4.11) may then be massaged into the form of an
inner product as follows

Yq [n] = I.: hq[k] x [mn - k] = I.: a~ [k] x [mn + k]
k k

= I.:a~[k-mn]x[k] = \x,a~n))
k

Here, a~n) signifies a delayed version of the sequence, aq , by mn samples,
and aq == aq [k] is given by

aq [k] = h~ [-k]

Thus, the analysis vectors are the m-translates of the time-reversed,
complex conjugated analysis filter impulse responses.
The synthesis equation (4.15) may be rewritten as

m-l

X [k] = I.: I.:Yq [n] gq [k - mn]
q=O n

m-l

X = I.: I.:Yq [n] s~n)
q=o n

(4.24)

where s~n) is a delayed version of the sequence, Sq, by mn samples and
Sq == Sq [k] is identical to the qth synthesis filter impulse response, gq [k].
Thus, the synthesis vectors are the m-translates of the synthesis filter
impulse responses (no time-reversal or complex conjugation).
For completeness, we point out that the analysis vectors, aq , may be

related to the qth columns, a q [i], of the analysis matrices, A [i], through
equation (4.12), yielding

(A [iDj,q = (aq [iD j = aq[j - mil ; 0::; j < m (4.25)

Chapter 4: Image Transforms 169

Similarly, the synthesis vectors, Sq, may be related to the qth columns,
Sq [i], of the synthesis matrices, S [i], through equation (4.16), yielding

(S [i])j,q = (Sq [i])j = Sq [j + mil (4.26)

For a pure block transform, where S [i] = 0 and A [i] = 0 for all i =1= 0, the
analysis and synthesis vectors are exactly the columns of A [0] and S [0],
which is consistent with our treatment of block transforms in Section 4.1.

ORTHONORMAL TRANSFORMS
As for pure block transforms, we say that a transform is orthogo­

nal if its synthesis basis vectors are mutually orthogonal and we say
that the transform is orthonormal if its synthesis basis vectors also have
unit length. Since orthogonal transforms are related to orthonormal
transforms through a simple scaling of the subband samples, Yq [n], it is
sufficient to consider the orthonormal case.
Orthonormal transforms implement orthonormal expansions of the

input signal; i.e.,
m-l

X = L L (x,s~n») s~n)
q=O nEZ

It follows that (x, s~n») = y~n) = (x, a~n») for all x, and so the analysis
and synthesis vectors are identical. Equivalently, the analysis filters are
time-reversed, complex conjugated versions of the synthesis filters and
so equation (4.23) is satisfied exactly for orthonormal subband trans­
forms. Orthonormal transforms have the desirable "energy preserving"
property, also known as Parseval's relationship, according to which

m-l

IIxl12= (x,x) = L L IYq [n]1 2 = (y,y) = IIYl12
q=O nEZ

Here y == Y [k] is the interleaved sequence, Y [mn + q] = Yq [n].
Using equation (4.25), we may express the orthonormality of a con­

volutional transform in terms of the analysis matrices as

L A* [i] A [j + i] = I· b [j]

Also, since the synthesis and analysis vectors must be identical, compar­
ing equations (4.25) and (4.26), we see that the analysis and synthesis
matrices of an orthonormal transform are simply related according to

A [i] = S[-i] (4.27)

170 Subband Transforms

Again, these results are consistent with those obtained for block trans­
forms, where there is only one analysis matrix, A [0], and one synthesis
matrix, S [0].

Example 4.4 With the ideal filters of equation (4.20a), the synthesis
vectors are given by

{

sinc (k-nm)
1 1m

s~n)[k] = vm cos (1f q
: z (k-nm))sinc(k2~m)
(-1)k-nm sinc (k~m)

ifq = 0

if 1 ::; q ::; m - 2

ifq = m-1

To verify that these do indeed form an orthonormal basis, recall Parse­
val's theorem for the DTFT, according to which

(u, v) =~ u [k] v* [k] = 2~ (6, v) = 2~1:u(w) v* (w) dw

Now Sq (w) = vmlnq (w) where Is (w) denotes the indicator function for
set 5, equal to 1 forw E 5 and 0 otherwise, and R q denotes the passband
region for the qth subband. The passbands are disjoint, with bandwidth
~' Thus each passband region, R q, has area ~ (see Figure 4.11 for an
example of the regions when m = 3). Hence we may deduce that

Orthonormality follows from the fact that s~O) [nm] = Jm8 [n] for all q.

Example 4.5 Scalar LTI filtering is a degenerate case of a convolu­
tional transform for which m = 1. The forward transform is described
by a filter, with impulse response h [k]. Similarly, the inverse transform
is described by a filter, with impulse response g [k]. The two filters must
satisfy (h* g) [k] = 8 [k], or equivalently, g(w) = 1.-1 (w). The analysis
vectors are the sequences, a(n) == a(n) [k] = h* [-k - n], and the synthe­
sis vectors are the sequences, s(n) == s(n) [k] = g [k - n]. The transform
is orthonormal if and only if

Chapter 4: Image Transforms 171

which, by Parseval's theorem, is equivalent to the requirement that

b [n2 - nI] = ~ 171" h* (w) e-jwn1h(w) ejwn2 dw
21f -71"

= 2~1: Ih(w)1 2

e
jw

(n2-nddw

We may conclude that scalar filtering is an orthonormal transform if

and only if an all-pass filter is used, with Ih(w) I= 1 for all w E [-1f, 1f).
Then the synthesis and analysis vectors must be identical, meaning that
9 [k] = h* [-k] is the all-pass filter with the opposite phase response.

LAPPED ORTHOGONAL TRANSFORMS
The two examples of orthonormal subband transforms given above

involve filters with infinite impulse responses. Moreover, either one or
both of the filters is non-causal and hence not practically realizable in
many applications. This is unavoidable in the case of scalar filtering
(m = 1), except in the trivial case where the transform involves only a
single non-zero filter tap (a one dimensional block transform). By con­
trast, non-trivial orthonormal transforms involving finite support vector
filters exist for all m ~ 2. In this section we demonstrate this fact by
briefly considering a class of orthonormal transforms involving exactly
two non-zero analysis matrices, A [0] and A [1]. For historical reasons,
transforms of this form are known as a Lapped Orthogonal Transforms
(LOTs).
According to equation (4.25), the analysis vectors, a q == aq [k], of

an LOT are sequences supported on -m ~ k < m.9 We begin by
considering perhaps the simplest LOT, in which the analysis vectors are
cosines of the form

if - m ~ k < m
otherwise

where the cosine frequencies are

1
+ _q+2. O<_q<m
Jq - 2m '

The first few of these cosine functions are plotted in Figure 4.13a for
the case m = 8. One may easily verify that these cosine vectors are in-

9 Note that the analysis filters are time-reversed versions of the analysis vectors and are hence
llUll-causal ill the current developlIlellt. Most texts, illtroduce offsets to ensure causality;
however, these offsets clutter the notation. Since the system has finite support., there is no
need to insist on causality.

172 Subband Transforms

,/
,/'\, ~

'..

1/ \,
\

\

/ \
\
\
\'J

,..........
.: \

!

,,
\. /

\....,/

-8 -4.5

/(\\
I I \ '

/1 \\
\ \
\ \
\ '

~
3.5 k 7 -8 -4.5 -I 0

b)
3.5 k 7

Figure 4.13. First three cosine functions for an LOT with m == 8. The discrete
time index, k, is treated as though it were continuous to expose the structure of the
underlying cosine functions.

deed orthogonal with unit length. For the transform to be orthonormal,
however, we require the orthogonality of all the m-translates of these

vectors; i.e., all the a~n). Since the vectors have length 2m, it is suffi­
cient to verify that the sequences cq1 [k] and cq2 [k - m] are orthogonal
for all Ql,Q2. This follows from the fact that each of the cosines, cq [k],
is symmetric about k = m21 within the overlap interval, a :::; k < m,
while cq [k - m] exhibits anti-symmetry within the same interval. The
overlapping portions of abO) == Co [k] and a~1) == Cl [k - m] are illustrated
in Figure 4.13b. It follows that (a~?),ag)) = aand hence the a~n) form

an orthonormal basis for £2 (Z).
A more interesting LOT may be constructed by using the cosine func­

tions described above to modulate a smooth windowing sequence, w [k]'
supported over -m :::; k < m. In this case, the analysis vectors are given
by

aq [k] = w [k] cq [k]

It turns out that the window does not disturb the orthogonality of the
transform, provided it satisfies the following symmetry properties:

w [k] = w [-1 - k]; a< k < m
w2 [k] +w2 [m - 1 - k] = 2; 0:::; k < m

(4.28a)

(4.28b)

The first property states the w [k] is an even length symmetric sequence.
This property ensures that the condition (a~?) ,a~;)) = ais not destroyed

Chapter 4: Image Transforms 173

by the presence of the window. To see this, observe that

m-l

(a~~),a~;)) = LCql [k]cq2 [k-m]w[k]w[k-m]
k=O
m-l

= L Cq1 [k] Cq2 [k - m] w [k] w [m - 1 - k]
k=O

Cq1 [k] is symmetric, cq2 [k - m] is anti-symmetric, and w[k][wm - 1 - k]
is symmetric on 0 ::; k < m. Thus, their product is anti-symmetric and
the above summation yields O.
The second property, equation (4.28b), ensures that the orthonormal­

ity of the vectors, aq , is not disturbed. To see this, observe that

m-l m-l

(aql'aq2) = LCql[k]cq2[k]w2[k] + LCql[k - m]cq2 [k - m]w2[k - m]
k=O k=O

~-l ~-l

= L cq1 [k]cq2 [k]w2[k] + L cq1 [k - m]cq2 [k - m]w2[k - m]
k=O k=O

~-l

+ LCql[m -1- k]cq2 [m -1- k]w2[m -1- k]
k=O

~-l

+ ~cql[-l - k]cq2 [-1- k]w2[-1 - k]
k=O

~-l ~-l

= ~ Cq1 [k]cq2 [k]w2[k] + L cql[k-m]cq2[k-m]w2[m-1-k]
k=O k=O

~-l ~-l

+ ~cql[k]cq2[k]w2[m-1-k] + ~cql[k-m]Cq2[k-m]w2[k]
k=O k=O

~-l

= L(cq1 [k]cq2 [k] +cq1 [k-m]cq2 [k-m]) (w2[k] +w2[m-1-kJ)
k=O

= (cq1 ,cq2) = 8 (ql - q2)

where we have used the fact that cq1 [k]cq2 [k] and cq1 [k - m]cq2 [k - m]
are both symmetric functions over 0 ::; k < m.

It is instructive to consider the effect of this windowing operation
in the frequency domain. Each analysis sequence, aq [k], is a cosine

174 Subband Transforms

modulated version of the window sequence, w [k]; i.e.,

aq [k] = w [k] Jm cos (27rf q (k _m; 1))
Hence its DTFT is given by

aq(w) = 2~ (e- j27f}q m;\i; (w - 27r fq) + ej27ffqm;l 'Ii; (w + 27r fq))

Noting that the analysis filters satisfy h(w) = 0.* (w), we see that the
subbands are formed by filtering the input signal with a collection of
bandpass filters, whose frequency responses are identical to that of a
low-pass prototype, 'Ii; (w), translated in frequency by ±fq = ±21~1. To
obtain good frequency discrimination amongst the subbands, we would
like 'Ii; (w) to be an ideal low-pass function supported on w E [- i~, i~] .
Of course, the window is a finite length sequence, having 2m samples,
and so we can at best hope to design a low-pass filter, having as little
energy outside this band as possible. It is worth noting that the block
transform constructed from the DCT is also essentially of this same form,
except that its window is a constant over 0 :::; k < m and zero elsewhere;
in the frequency domain, this window is a sinc function, which is well­
known for its poor frequency localization.

Example 4.6 To see that equations (4.28a) and (4.28b) do not prevent
us from designing useful low-pass prototypes, consider the case m = 8
and the window coefficients identified in Table 4.1 (we have borrowed
these from [162}). Figure 4.14 shows the magnitude responses of the
first few bandpass filters for this 8-band LOT and compares them with
the bandpass filters associated with the 8-band block transform formed
by applying the DCT to each block. Evidently, the LOT subbands have
superior frequency discrimination to the DCT bands. It is worth noting
that even though the lowest frequency cosine in the LOT has a non-zero
frequency of fo = 4~' the positive and negative frequency contributions,

'Ii; (w + 4~) and 'Ii; (w - 4~)' merge to produce a response, 0.0 (w), which
peaks at DC.

Cosine modulated filter banks which implement orthonormal trans­
forms were first discovered by Princen and Bradley[120]. LOT's need
not necessarily take the form of a cosine modulated filter bank[lOOJ;
however, orthonormal cosine modulated filter banks do possess a num­
ber of desirable properties. From their close relationship to the DCT,
one might expect that efficient FFT-like algorithms exist for implement­
ing cosine modulated transforms and indeed this is the case[lOO]. All

Chapter 4: Image Transforms 175

Table 4.1. Example window coefficients for the cosine modulated LOT with m = 8
bands. Note that w[-I- k] = w[k] for 0::; k < 8.

w[O] w[l] w[2] w[3] w[4] w[5] w[6] w[7]

0.1255 0.3347 0.5994 0.8742 1.1117 1.2809 1.3740 1.4086

rr
It
I I
! I

-71

Figure 4.14. Magnitude responses of the first three analysis filters for the 8-band
LOT formed by cosine modulating the window sequence of Table 4.1 (left) and for
the 8-band DCT (right).

analysis filters have essentially the same passband characteristics, which
may be designed through a single low-pass prototype sequence and this
greatly simplifies the problem of designing good transforms. It turns out
that the ideas presented above may be extended to orthonormal trans­
forms with 2L analysis matrices, where L is any integer[99, 87]. This,
in turn, allows the design of longer window sequences with improved
frequency selectivity.

BIORTHOGONAL TRANSFORMS
Recall that the synthesis system of any convolutional transform in­

verts the analysis system if and only if equation (4.10) holds. Expressed
in vector notation, this becomes

(s~7d ,a~~2)) = 8 [ql - q2] 8 [nl - n2], 0 ~ ql, q2 < m, nl, n2 E Z

(4.29)
That is, each analysis vector, a~n), must be orthogonal to every synthesis

vector other than s~n). This property is known as biorthogonality. We
have already seen the biorthogonality relationship in our study of block
transforms, in which context it is nothing other than a vector space
interpretation of the matrix equation, A*S = SA* = I.

176 Subband TransfoT'ms

Even though orthogonal transforms are necessarily biorthogonal, the
term "biorthogonal transform" is most commonly employed to indicate
that the transform, while invertible, is not orthogonal. As it turns
out, biorthogonal transforms playa particularly important role in image
compression because all non-trivial orthogonal transforms with m = 2
bands (or channels) necessarily involve non-symmetric filter impulse
responses or infinite support filters. The importance of two channel
transforms and symmetric filters for image compression will become
apparent shortly. Since biorthogonal, as opposed to orthogonal, sub­
band transforms are motivated primarily by an interest in symmetric
filters, the term "biorthogonal transform" is often understood to refer
to a non-orthogonal transform, whose synthesis system correctly inverts
the analysis system, where both the analysis and synthesis filter banks
employ linear phase filters.

4.2.5 ITERATED SUBBAND TRANSFORMS
SEPARABLE IMAGE TRANSFORMS
Up until now we have considered one dimensional subband transforms,

having m subbands, whose sample rates are each ~ times the sample
rate of the original input sequence, x [k]. Such a transform may be sepa­
rably extended to a two dimensional transform with m2 subbands. The
separable extension procedure is no different to that described for block
transforms in Section 4.1.1 and illustrated in Figure 4.3. Specifically, the
one dimensional transform is applied to each row of the image, x [k], gen­
erating a new image, y' [k], whose rows contain the interleaved subband
samples from corresponding rows in x [k]; the one dimensional transform
is then applied to each column of y' [k], generating the transformed im­
age, y [k], whose columns contain the interleaved subband samples from
corresponding columns in y' [k]. As shown previously, it makes no differ­
ence whether the one dimensional subband transform is applied first to
the rows and then to the columns, or vice-versa. The m2 subbands are
labeled yql,q2 [n] and are related to the interleaved sequence of subband
samples, y [k], according to

Yql,q2 [nl' n2] = Y [mnl + ql, mn2 + q2], 0:::; ql, q2 < m

In the special case where m = 2, the separable two dimensional trans­
form has four subbands; an analysis filter bank is illustrated in Fig­
ure 4.15a, while the passband regions are illustrated in Figure 4.15b.
In the figure, we use the notation *h and *v to denote horizontal and
vertical convolution along rows and columns of the image, respectively.
Similarly, !h and !v denote horizontal and vertical decimation. In accor­
dance with the convention established for one dimensional transforms,

Chapter 4: Image Transforms 177

a)

1C ()I

HH LH LH HH

HL I.L LL HI.

7C JI (,
HI. LL LL HI.

HH LH LH HH

7C

b)

Figure 4.15. Analysis filter bank and passband regions for a 2D separable subband
transform with m = 2.

'--~--~y.------./ \..~-------.y--_--I

eparnblc 2D decimation
anti-aliasing filter

Figure 4.16. LL subband construction, viewed as classic resolution reduction.

YO,o [n] is the low-pass (or DC) subband and is most commonly identified
as the "LL" band. Similarly, Yl,l [n] represents high frequency content in
both the horizontal and vertical directions and is identified as the "HH"
band. YO,l [n] represents high frequency content in the horizontal direc­
tion and low frequency content in the vertical direction. Accordingly, it
is identified as the "HL" band, while Yl,O [n] is the "LH" band.

It is instructive to consider the nature of the image features which
we can expect to encounter in each of the four subbands defined above.
The LL subband may be understood as arising from the application of
a separable low-pass filter to the original image, followed by downsam­
pIing in both directions, as illustrated in Figure 4.16. This is the classic
paradigm for image resolution reduction, where the low-pass filter is in­
terpreted as an anti-aliasing filter. Accordingly, the LL band is a low
resolution version of the original image, which should be largely free
from the visually disturbing artifacts of aliasing, so long as the underly­
ing analysis filter, ho [k], is a good approximation to an ideal half-band
filter.
The horizontal high-pass filter used to generate the HL band filters

out smooth regions of the image as well as horizontally oriented edges

178 Subband TransfoTms

Figure 4.17. 576 x 720 cropped, reduced version of the ISO/IEe standard test image,
"Bike."

and lines. It responds most strongly to vertical edges and line segments
in the image. Similarly, the LH band responds most strongly to hori­
zontal edges and line segments, while the HH band responds primarily
to diagonally oriented features. To illustrate this orientation selectivity,
we apply a separable subband transform to the image in Figure 4.17;
the resulting subband images are shown in Figure 4.18. The underly­
ing one dimensional subband transform employed here is the CDF 9/7
biorthogonal transform developed in Section 6.3.2, having finite support
low- and high-pass analysis filters with 9 and 7 taps, respectively. This
is one of the two transforms explicitly defined by the JPEG2000 image
compression standard.

MULTI-RESOLUTION TRANSFORMS
The one dimensional and separable two dimensional subband trans­

forms described above may be classified as "uniform" transforms, since
all subbands have identical sample rates and their passbands all have
essentially the same bandwidth. By contrast with uniform subband

Chapter 4: Image Transforms 179

Figure 4.18. Separable subbands of the image in Figure 4.17: top left LL; top right
HL; bottom left LH; bottom right HH.

YI(,")[n]

Y~/»[I1]

b)

~r-I-12-----lIl---l
W

a)

x[k]

Figure 4.19. One dimensional tree-structured subband transform: (a) analysis filter
bank; (b) passband structure for D = 4 levels.

transforms, an interesting family of "tree-structured" transforms may
be obtained by recursively applying a one or two dimensional subband
transform, as appropriate, to its own low-pass subband.
Figure 4.19 illustrates the one dimensional case. The recursive sub­

division is continued for D levels, yielding a total of D+ 1 subbands. The

180 Subband Transforms

Figure 4.20. Filter bank structure for a 2D tree-structured subband transform with
D decomposition levels.

ILL) HL) al2
HL2

LH] HH)
HL.

LH2 HH)

LH. HH,

WI

Figure 4.21. Passband structure for a 2D tree-structured subband transform with
D = 3 levels.

low frequency (DC) subband has sample rate 21, while the remaining
subbands have rates 21d for 0 < d :::; D. The passbands have correspond­
ing bandwidths as suggested by the figure.
A two dimensional tree-structured filter bank is illustrated in Fig­

ure 4.20, with the passband structure shown in Figure 4.21. Note that
in two dimensions only one of the four subbands, the LL band, is re­
cursively decomposed into further subbands. The recursive sub-division
is again continued for D levels, yielding a total of 3D + 1 subbands,
again with non-uniformly spaced passbands. The subbands generated
by aD = 2 level image transform are illustrated in Figure 4.22, which is
obtained using the same source image and subband filters as Figure 4.18.
Recall that the LL band of a uniform subband decomposition is a

low resolution version of the original image. It follows that the low-pass
subbands, identified as LLd in Figure 4.20, which are formed during

Chapter 4: Image Transforms 181

Figul'e 4.22. Subbands produced by a 2D tree-structured subband transform, when
applied to the image in Figure 4.17.

tree-structured analysis, represent a family of successively lower resolu­
tion versions of the original image. The sampling density for LLd is 2-d

times that of the original image in each direction, where d = 1,2, ... , D.
Of course, all but the last of these low resolution images is an inter­
mediate result; only LLD is actually one of the subbands of the final
tree-structured transform. However, each of the images in this multi­
resolution family may be recovered by partial application of the syn­
thesis system. LLD-l, for example, may be synthesized from subbands
LLD, LHD, HLD and HHD, while LLD- 2 may be synthesized from these
subbands, together with LHD-l, HLD- 1 and HHD- 1 .

This multi-resolution property is particularly interesting for image
compression applications, since it provides a mechanism whereby a com­
pressed bit-stream may be partially decompressed to obtain successively
higher resolution versions of the original image. To be more specific, let
nd be the set consisting of subbands LHD+l-d, HLD+l-d and HHD+1- d
for 0 < d ::; D and let no be the set consisting of only subband LLD .

These groupings are also identified in Figure 4.20. We refer to the nd

182 Transforms for Compression

as resolution levels, since Ro contains the lowest resolution image and
each successive resolution level, Rd, contains the additional informa­
tion required to reconstruct the next member of the multi-resolution
family. Suppose now that the elements of each set, R d , 0 ::; d ::; D,
are compressed independentlylO and their compressed representations
are separately identifiably within the compressed image representation.
Then, the compressed representation has a property known as "resolu­
tion scalability," whereby a compressed representation of any member of
the multi-resolution family may be obtained simply by discarding those
pieces corresponding to the irrelevant resolution levels, Rd.
Tree-structured subband transforms may be constructed from one di­

mensional uniform transforms having any number of subbands, m. How­
ever, the smallest non-trivial value, m = 2, is of principle interest, since
it leads to multi-resolution families having the smallest change in res­
olution from one level to the next. It is common to refer to these as
"dyadic" decompositions. For image compression applications, the in­
terest in dyadic decompositions and hence two channel subband trans­
forms is driven primarily by the significance of resolution scalability.
Their comparative simplicity is also appealing for practical applications.

4.3 TRANSFORMS FOR COMPRESSION
Many of the fundamental properties of transforms used for image

compression have been outlined in the preceding sections. At this point
it is appropriate to collect some of the key arguments which have been
advanced for the use of transforms in compression.
As discussed in Chapter 3, vector quantization provides a method for

achieving the rate-distortion bound of an information source, without
the need for additional elements such as image transforms or entropy
coding. Unfortunately, the theoretical limit is achieved only asymptoti­
cally in the limit as we allow computation and memory to grow without
bound, quite apart from the limitations imposed by unknown and/or
non-stationary source statistics. In practice, unstructured vector quan­
tization is quite impractical except for very small vectors, where its per­
formance is usually found to be significantly inferior to techniques which
impose more structure on the compression system. To remedy this dif­
ficulty, a wide variety of structured vector quantization schemes have
been developed which permit the use of larger vectors at the expense of
generality.

toActually, it is sufficient for each nd to be compressed in a manner which depends at most
011 no through n d - 1 -

Chapter 4: Image Transforms 183

The use of a linear transform as part of the compression system, as
illustrated in Figure 1.4, represents a particular structuring technique.
For the transform to be useful as a structuring technique, it should allow
the use of simpler quantization and coding operations without sacrificing
compression efficiency. One of our goals in this section is to demonstrate
that this is the case. The arguments which follow are inevitably based on
assumptions which are at best only approximately valid for real images.
Nevertheless, they do help to identify the particular statistical properties
of images which linear transforms are able to exploit and the particular
characteristics of a transform which lend themselves to this task. We
begin in Section 4.3.1 with some informal arguments which are intended
to provide an intuitive framework for the more formal results which
follow.

4.3.1 INTUITIVE ARGUMENTS
FINITE DIMENSIONAL TRANSFORMS
Consider a random vector, X, of dimension m and let A be the uni­

tary m x m analysis matrix of an orthonormal transform, which maps
outcomes, x, of X to transform vectors, Y = A*x, which are outcomes
of the random vector, Y = A*X. We restrict our attention here to or­
thonormal transforms because they may be interpreted as rotation op­
erators in the m-dimensional space. We shall also restrict our attention
to real-valued transforms for simplicity, although the intuition extends
to complex-valued transforms, such as the DFT.
In the simplest case where m = 2, all real-valued unitary matrices are

of the form

A* = (C?s () - sin ())
sm() cos () (4.30)

up to a change of sign in one of the coordinates. We shall ignore the
possibility of such sign flips, since they have no impact on the arguments
which follow. In general, an m-dimensional real-valued unitary matrix
may be factored into a product of (~) one dimensional rotation operators
[166, §3.2]. That is,

Tn-I Tn-I

A = II II A(i,j)

i=O j=i+l

184 Transforms for Compression

\': "

" "

a) b) c)

Figure 4·23. Joint distributions: a) a two dimensional random vector, X; b) its
orthonormal transform, Y; and c) a random vector, X, which does not benefit from
linear transformation.

where A(i,j) implements a rotation in the plane described by coordinates
i and j; i.e.,

I 0
o cos (}(i,j)

o 0
o sin ()(i,j)
o 0

o 0
o - sin ()(i,j)
I 0
o cos ()(i,j)

o 0

o
o
o
o
I

+-- row ~

+-- row J

Rotations in more than 3 dimensions are difficult, if not impossible
to visualize. Fortunately, however, substantial intuition may be gained
by considering the two dimensional case. Suppose that the distribution,
lx, of the random vector, X, is concentrated between the two axes, as
shown in Figure 4.23a. In this case, a rotation of () = 45°, leaves the
transformed random vector, Y, with a distribution concentrated pre­
dominantly about the Yo axis, as shown in Figure 4.23b. In the extreme
case, we can ignore YI altogether without introducing substantial distor­
tion and we have only to quantize and code a single quantity, rather than
two quantities. Thus, the transform provides us with a simple way to
exploit the statistical redundancy in the random vector, X. Without the
transform, more complex quantization and/or coding techniques would
be required to exploit the statistical dependence between Xo and Xl.
More generally, we must quantize and code both quantities. However,
we expect to spend very few bits coding the quantized symbols required
to represent outcomes of YI , so that the bit-rate is approximately half
that which we would expect from independent quantization and coding
of Xo and Xl. Of course, a more thorough analysis needs to consider
the exact balance of bits spent on the two transform coefficients for a
given combined distortion; this is the subject of Section 4.3.2.

Chapter 4: Image Transforms 185

A helpful notion for summarizing the effectiveness of an orthonormal
transform is that of "energy compaction." The most effective transform
will concentrate the maximum amount of the energy from the source
vector, X, in a single transform coefficient, say Yo· That is, o-~o :::::: 0-1

0
+

0-1
1

, Energy compaction is meaningful only for orthonormal transforms,
or transforms which are approximately orthonormal, since these are the
energy preserving transforms, with o-~o + 0-~1 = 0-10 + 0-11 , An energy
compaction ratio may be defined as the ratio 0-~0/0-~1'

It is easy to see that linear transforms are not always able to exploit
the redundancy in the source. Consider, for example, the distribution
indicated in Figure 4.23c. Clearly, there is substantial redundancy, since
the distribution is concentrated on a one dimensional manifold (a shell).
However, no orthonormal transform is able to achieve any energy com­
paction. A suitable transform in this case would be a planar to polar
coordinate transformation, which is highly non-linear.
With higher dimensions, m, the potential for compression is also

higher. We hope to be able to find orthonormal transforms which are
able to rotate the source distribution into a low dimensional sub-space,
so that the transform vector, Y, is almost entirely described by a few of
its elements. In the extreme case, all but one transform coefficient may
be ignored and we have reduced the sample rate by a factor of m prior
to quantization and coding. Although the concept of energy compaction
does not immediately generalize to m > 2 dimensions, a related quan­
tity with suitable properties is the ratio of the arithmetic mean of the
variances, (T~, to their geometric mean; i.e.,

(4.31)
AM
GM

1 ",m-l 2
Tn L....i==O (Ty;vnm-1 0-

2
~==O y;

The arithmetic mean is dominated by the transform coefficients with the
largest variance, while the geometric mean is dominated by the transform
coefficients with the smallest variance. As we shall see in Section 4.3.2,
this ratio has a useful interpretation as a coding gain.

SUBBAND TRANSFORMS
Orthonormal subband transforms also exhibit the energy preserving

property and may be regarded as rotation operators in an infinite di­
mensional space, £2 (2). Intuition gained in two dimensions extends to
these transforms as well. Letting o-~ denote the variance of the subband
coefficients, Yi [n], we may define an energy compaction ratio for m = 2
band transforms as 0-~0/0-~1' or more generally, an AM/GM ratio as in
equation (4.31). Large ratios mean that most of the signal energy is

(4.32)

186 Transforms for Compr-ession

concentrated in a few of the subbands, so that the remaining subbands,
may be quantized and coded with very few bits.
Natural images typically have much more power at low frequencies

than at high frequencies. One model for the spectral power density of
an image, which is supported by some empirical evidence, is

0'
Sx (w) = 2 2

WI +W2

so that the power density decreases inversely with the square of radial
frequency. As a result, subband image transforms having passbands of
the form shown in Figure 4.21 can be expected to yield widely vary­
ing subband variances. The higher frequency subbands represent the
majority of the subband samples, most of which can be quantized to
owith negligible distortion. Evidence for this behaviour is also exhib­
ited by the subband images in Figure 4.18, which indicates that the LH,
HL and HH subband samples are almost all very close to 0, the excep­
tions being those samples which lie close to strong edges of the relevant
orientation.

IMAGE COMPRESSION EXPERIENCE

The reader may be somewhat sceptical of the extreme nature of the
preceding arguments, in which we suggest that most of the transform
coefficients might be quantized to O. As it turns out, however, this is
exactly what happens in practical image compression systems. As an
example, we note that high quality reconstructed images can usually be
obtained at compressed bit-rates of about 0.5 to 1.0 bps (bits per sam­
ple). This empirical observation holds for both the JPEG compression
standard and its more recent successor, JPEG2000. Since the number of
transform coefficients is the same as the number of image samples and
we cannot expect to spend less than 2 bits coding a non-zero transform
coefficientll , the majority of the coefficients must be quantized to zero in
order to achieve such compression ratios. Experience with the baseline
JPEG compression standard, for example, suggests that 70% to 85% of
the DCT coefficients can be 0 in a high quality image representation.

4.3.2 CODING GAIN
In this section we attempt to quantify the benefits associated with the

use of transforms for image compression.

11 A full bit is generally required to code thc sign of the non-zcro coefficicnt (most transforlll
coefficients have zero mean and are largcly uncorrelated with one anothcr), while we cannot
expect to spend less than one bit coding thc magnitude.

Chapter 4: Image Transforms 187

CODING GAIN FORMULATION

Coding gain expressions are a traditional means for comparing dif­
ferent compression techniques. The reference scheme is usually simple
scalar quantization with independent coding of the source samples; for
historical reasons, this is known as PCM. The distortion-rate perfor­
mance of this simple direct approach can generally be modeled by equa­
tion (3.33), which we repeat here as

(4.33)

Here X denotes the random variable whose outcome is the source sample
being quantized and coded, X denotes the output of the dequantizer,
R ?:: a is the bit-rate measured in bits per sample, d (R) is the MSE
achieved at rate R, oJ is the source variance, a ~ 2 loge 2 is a con­
stant, and 9 (R) is a weak function of the rate, which we shall take
to be a constant, 9 (R) = c2, for the purposes of this analysis. As it
turns out, equation (4.33) is applicable also for more elaborate quan­
tization schemes, such as TCQ (see Section 3.5). On the other hand,
we must exclude from our present consideration any quantization and
coding schemes whose distortion-rate function depends on the source
statistics in a more complex fashion. In particular, the reference PCM
scheme should not be able to exploit statistical dependencies between
the source samples.
We now consider applying this same PCM scheme to the transform

coefficients, instead of the original source samples and adjust the quanti­
zation parameters so as to achieve the same overall compressed bit-rate,
R, both with and without the transform. The ratio of the resulting dis­
tortions (MSE) is identified as the coding gain, GT, of the transform;
l.e.,

dPCM (R)
GT = dXFORM (R)

The key step in the procedure is the appropriate adjustment of quan­
tization parameters. To understand this step, we begin by defining a
transform band as a subset of the transform coefficients which we expect
to share the same statistics. The concept of transform bands is natural
for both block and subband transforms. For subband transforms, the
bands are simply the subbands themselves. For block transforms, the
bands contain one coefficient from each source block. Thus, for example,
the 8 x 8 DCT has 64 different bands: a DC band and 63 AC bands. Let

188 Transforms for Compression

B denote the number of bandsl2 . We index the bands by b = athrough
B-1. Let (J~b denote the variance in band b and let 'f}b denote the ratio
between the number of coefficients in the band and the total number
of samples in the source. We restrict our attention to non-expansive,
orthonormal transforms so that

B-1

I:: 'f}b = 1 and
b=O

Our task is to select the most appropriate operating point on the
distortion-rate curve for the PCM quantizer in each band. Equivalently,
we must assign rates, Rb, to each band, subject to

B-1

R = I:: 'f}bRb

b=O

Then, since the transform is orthonormal and the quantizer model of
equation (4.33) is assumed to hold in each band, the overall MSE will
be given by

B-1

dXFORM (R) = I:: 'f}b(J~bc2e-aRb (4.34)
b=O

The most appropriate rate allocation is that which minimizes the over­
all distortion, subject to the rate constraint. Following the method of
"Lagrange multipliers," this constrained minimization problem is equiv­
alent to the solution to the unconstrained minimization problem

R",:;::~n:1~_, (~ryb"Ve-aR"+,\~ rybRb)
for some A. Setting the partial derivatives equal to zero13 in the usual
way, we obtain

Then

1~Wc have prcviously used the symbol m to denotc the dimcnsion of a block transform and
also the number of bands in a uniform subband transform. In both of these cases, B = m.

For tree-structnred transforms, B is the total number of subbands.
l:IWc notc that the dcrivativcs exist only for positive rates, Rb, sincc d (0) = O'~b is thc
distortion incnrred when we code nothing. To cxtcnd thc rcsult dcvclopcd herc to low bit­
rates where some bands might have Rb = 0, thc Kuhn-Tuckcr thcorcm may bc cmploycd as
in [117].

Chapter 4: Image Transforms 189

and
1 B-1 a0"2 e2

R(A) = ~ L 17b loge ~o
b=O

Now, setting the compressed bit-rate for ordinary PCM (i.e., without
any transform) equal to R (A), we obtain

dPCM (A) = 0"1e2e-aR(.\)

B-1 (A) 1]b
- 0"2 e2 rr
- X a0"2 e2

b=O Yb

_ 0"1 A Brr-1 (_1)N~
- a 0"2

b=O Yb

where the last line follows from the fact that 'Lf=-01 TJb = 1. Finally, the
coding gain becomes

rrB - 1 (2)1]b
b=O O"Yb rrB-1 (0"2) ''Ib

b=O Yo

(4.35)

The numerator of the expression is a weighted arithmetic mean of the
band variances, while the denominator is a weighted geometric mean of
the band variances. From the convexity of the log function it is not hard
to show that the coding gain is greater than or equal to 1, with equality
if and only if all bands have exactly the same variance, O"~b = 0"1. Thus,
the coding gain is a measure of the amount of the diversity amongst the
band variances.

CODING GAIN FOR BLOCK TRANSFORMS
Block transforms contribute 1 coefficient to each of the B bands, so

that TJb = i· In this case, the coding gain expression simplifies to
1 ",B-1 2
B LJb=O O"Yb

vrrB
-

1 0"2b=O Yb

(4.36)

which is the AM/GM ratio of equation (4.31). In this way, the cod­
ing gain expression confirms the intuitive arguments developed in Sec­
tion 4.3.1.
In Section 4.1.2, we developed the KLT as the optimal block transform

in the sense of decorrelating random vectors produced by the source.
Moreover, based upon its interpretation as a decomposition of the source

190 Transforms for Compression

vectors into their principle components, we speculated that the KLT
should be suitable for compression. The following theorem establishes
the fact that the KLT is in fact the block transform which maximizes
the coding gain expression.

Theorem 4.1 Out of all orthonormal transforms with block size m =
B, the KLT maximizes the coding gain expression of equation (4.36).

Proof. Let K be the analysis (and synthesis) matrix of the KLT and write y(K) =
K*x for the vector of KLT transform coefficients. Similarly, let A be the analysis (and
synthesis) matrix of any arbitrarymxm orthonormal transform and write y(A) = A*x
for the corresponding transform coefficient vector. Then y(A) = (A* K) y(K) and the
covariance matrices are related by

Cy(A) = (A *K) Cy(K) (A *Kr

It follows that

B-1

det(Cy(A») = det (A)2 det (K)2 det (Cy(K») = II (J'~r
b=O

Finally, we may apply the Hadamard inequality [22, Theorem 3.6.3], which states
that the determinant of any symmetric, positive semi-definite matrix is less than or
equal to the product of its diagonal elements. This gives us

B-1 B-1

II (J'~t 2 II (J'~bK
b=O b=O

meaning that the coding gain for transform A is no larger than the coding gain for

the KLT.•

It is worth restating here the observation that the DCT has similar
diagonalizing properties to the KLT, when applied to images and a va­
riety of other sources. This is of great practical value, since the KLT
depends upon the source statistics, which can at best only be estimated
in practical applications.

CODING GAIN FOR SUBBAND TRANSFORMS
Having established the fact that the KLT is the optimal block trans­

form from the perspective of coding gain, it is natural to enquire as to
which subband transforms are likely to yield the largest coding gain.
The coding gain expression pr.ovides substantial insight in this regard.
We shall restrict our attention to image compression. Recall that the
power spectrum of a typical image decays rapidly with radial frequency,
where a reasonable model is given by equation (4.32). Accordingly, we
expect substantial coding gain when the transform divides the source
into frequency bands with good frequency selectivity.

Chapter 4: Image Transforrns 191

Tree- lru lured ubband

51 (w)

Iwi

Figure 4.24. One dimensional cross section of image power density spectrum, indi­
cating relative variances of uniform and dyadic tree-structured subbands.

Figure 4.24 illustrates a one dimensional cross section through the
image spectrum with two different subband structures, corresponding
to a uniform and a dyadic multi-resolution transform. In both cases,
substantial coding gain can be expected. In the figure, the uniform sub­
band transform involves many more subbands and will yield a slightly
larger coding gain than the dyadic structure. In general, the coding
gain increases whenever we divide a subband into smaller subbands.
Substantial gain, however, is achieved only when the power spectrum
exhibits significant decay over the relevant frequency range. Accord­
ingly, a non-uniform subband structure should always outperform a uni­
form structure, subject to constraints on the number of subbands or the
complexity14. The dyadic structure is particularly appealing, both for
its efficient exploitation of the decay typically observed in image power
spectra, and for its multi-resolution properties which have already been
discussed in Section 4.2.5.

LIMITATIONS AND EXTENSIONS
The coding gain formula in equation (4.35) should not be taken too

seriously. As a predictive tool for the performance which can be expected
in a practical compression system, the expression has a number of weak­
nesses. Chief among these is the assumption that the quantization and
coding techniques do not, themselves, exploit statistical dependencies
between the samples. All efficient image compression algorithms employ
coding schemes which are able to exploit some of the residual redundancy
between the transform coefficients.

14The complexity of a uniform subband structure is affected not only by the number of
subbands, but also by the fact that large, complex filters are required to separate many
narrow frequency bands.

192 Transforms for Compression

Key assumptions in the derivation of the coding gain expression are:
1) that the term, 9 (R), in equation (4.33), may be taken as a constant,
9 (R) ~ e2 ; and 2) that both E2 and the parameter, a, are identical
for all bands and for direct PCM quantization of the original source
samples. For well designed quantizers, the parameter a ~ 2 loge 2 for
all smooth PDF's. On the other hand, E2 generally exhibits a stronger
dependence on the source PDF. If we restrict our attention to jointly
Gaussian sources, then the transform coefficients also follow a Gaussian
distribution and our assumptions are satisfied. In reality, however, un­
transformed image sample values usually follow a roughly uniform dis­
tribution, while the transform coefficients follow a radically different dis­
tribution, which is often modeled by a Laplacian or similar generalized
Gaussian form.
Finally, we note that the coding gain expression is only strictly ap­

plicable to orthonormal transforms. It may be extended to general
biorthogonal transforms, subject to the assumption that quantization
errors in each subband sample are uncorrelated, with zero mean. Re­
stricting our attention to one dimensional uniform transforms for con­
venience, the expected energy of the reconstructed signal error may be
written using equation (4.24) as

E [~(X[kl-X[kl)'] 2]m-1

L L (~[n] - Yq [n]) s~n)
q=O n ' 'V '

OYq[n]

L E [8Yp [i] 8Yq [j]] (s~i), s~j»)
p,q,i,j

m-1

= L LE [(8Yq [i])2] 'lIs~n)1I2
q=O n

(4.37)

Noting that Ils~n) 11
2
= Gq is independent of n, the reconstructed signal

MSE may then be expressed as

B-1

dXFORM = L TJbGb(J'~be-aRb

b=O

(4.38)

This has the same additive form as equation (4.34), used in the derivation
of coding gain. The only change is the introduction of the factors, Gb,

which weight the individual subband variances according to the energy
expansion properties of the synthesis system. Incorporating these energy

SL1 [n] = go [n]
SLd [n] = I:k SLd_1 [k] go [n - 2k]

Chapter 4: Image Transforms 193

gain factors, we readily obtain the following more general expression for
coding gain.

dPCM (A) (J2
G - - X
T - dXFORM (A) - rrB-I (G 2)''1b

b=O b(JYb

The denominator of the above expression is a weighted geometric
mean of the terms, Gb(J~b' The numerator, however, is not generally
the corresponding weighted arithmetic mean of these same terms. The
expression is a ratio of arithmetic to geometric means only for orthogo­
nal transforms. Consequently, for general biorthogonal transforms, the
coding gain can actually be less than 1. We also stress the fact that the
above expression is based on the assumption of uncorrelated quantiza­
tion errors. This is a reasonable assumption only at very high bit-rates.
The coding gain expression above is applicable to tree-structured

transforms, as well as uniform subband transforms and block trans­
forms. In each case, the synthesis vectors associated with the coefficients
in any particular band, b, are all translates of a reference basis vector
(sequence), denoted Sb == Sb [n]. The relevant energy gain factor, Gb, is
just the squared norm of Sb, i.e., Gb = Ilsbl12. For a one dimensional
dyadic tree-structured subband transform with D levels, we denote the
subbands LD and HI through HD , as shown in Figure 4.19. The refer­
ence synthesis vector (sequence) may be computed from the low- and
high-pass subband synthesis filters, go [n] and gi [n], using the following
relations:

SH1 [n] = gi [n]
SHd [n] = I:k SHd_1 [k] go [n - 2k]

(4.39)
Note that the low-pass synthesis sequences, SLd [n], d < D, correspond
to intermediate low-pass subbands in the tree.
For two dimensional tree-structured subband transforms, such as that

shown in Figure 4.20, the subbands are labeled LLD and HLd, LHd, HHd,
for d = 1,2, ... ,D. The reader may verify that the reference synthesis
sequences for one and two dimensional tree-structured transforms are
related as follows.

SLLD [nI' n2] = SLD [nil SLD [n2]
SHLd [nI' n2] = SLd [nil SH d [n2]
SLHd [nI' n2] = SH d [nil SLd [n2]
SHHd [nI' n2] = SHd [nil SHd [n2]

~ GLLD = G LD . G LD

~ GHLd = G Ld . GHd
~ GLHd = GHd . GLd
~ G HHd = GHd . GHd

(4.40)

194 Transforms for Compression

4.3.3 RATE-DISTORTION THEORY
The coding gain arguments advanced above are insufficient to an­

swer some important fundamental questions concerning the use of linear
transforms for compression. One such question is whether or not the
use of a transform fundamentally limits the achievable compression effi­
ciency. Another such question is under what conditions linear transforms
permit the use of simple quantization and coding techniques while ap­
proaching the theoretical rate-distortion bound. These questions are the
concern of rate-distortion theory.
Unfortunately, results have been derived only under very restrictive

assumptions. In particular, the restriction to jointly Gaussian sources,
while unrealistic for many applications, dramatically simplifies the for­
mulation of most rate-distortion problems. In this section, our purpose
is to indicate without proof some of the conclusions of these information­
theoretic studies, along with their incumbent assumptions.

BLOCK TRANSFORMS

Consider an IID vector random process, {Xn}nEZ' The vectors have
dimension m and are statistically independent with PDF, IXn = Ix·
Note that the random variables within each vector are not assumed to
be independent. A block transform maps {Xn} to a new random process,
{Vn}, also IID, through Vn = A*Xn. In this case, the rate-distortion
function for {Xn } is defined by

1 A

Rx(D) = inf -If(X; X)
fXlxEFx(D) m

where

where If (X; X) denotes the mutual information between any random
vector, X, from the process, and its distorted reproduction, X, for a
given conditional PMF, Ixlx ' Note that the per-element mutual infor-

mation, ~If (X;X), and the per-element distortion, :nE [IIX- XIn,
each depend on both I x1x and the source distribution, Ix·
In the particular case of jointly Gaussian distributions, lx, and or­

thonormal transforms (A a unitary matrix), it is not difficult to show
that for each lXIX' there exists an equivalent conditional PMF, f yly , for

which If (X; X) =If (y;V) and E [llx -xln = E [liv-yin· It

Chapter 4: Image Transforms 195

follows that the source vector process, {Xn }, and the transform vector
process, {Yn}, have identical rate-distortion functions,

Rx (D) = Ry (D)

In the specific case where A = K is the KLT, the elements of each
transform vector, Y n, are uncorrelated and hence statistically indepen­
dent, since the process is assumed Gaussian. Intuitively, then, one would
expect that there should be no penalty to considering these elements

separately and coding the m IID random processes, {rq(n)} inde-
nEZ

pendently. Indeed this is the case and we find that Ry (D) may be
expressed as

1 m-l
Ry (D) = m L RYq (Dq)

q=O

where the distortions, Dq , are chosen so as to minimize the total rate,
subject to the constraint

1 m-l

m LDq~D
q=O

The solution to this minimization problem may readily be found using
the same Lagrangian techniques used to derive the coding gain expres­
sion in Section 4.3.2. For completeness, we summarize the result in
parametric form, with parameter A.

m-l m-l

D (A) = ~ L DYq (A) = ~ L min {cr~q, A}
q=O q=O

1m-l 1m-l {I cr2 }
R (A) = m ~ Rq (A) = m ~ max 0, 2log2 ~q (4.41)

In view of Shannon's source coding theorem (see Chapter 3), the sig­
nificance of this result is that optimal compression of the vector random
process, {Xn}nEZ' is reduced to the simpler problem of optimally com-

pressing the scalar IID processes, {yq(n)} . Simple scalar quantization
nEZ

and independent coding of the elements, yq(n>, is well justified under
these conditions, although sub-optimal, since the rate-distortion func­
tion of an IID random process may be achieved only by exploiting the
"Voronoi cell shape gain" or "sphere packing" potential of vector quan­
tization. Fortunately, there is little cause for a pessimistic conclusion,

196 Transforms for Compression

since highly structured vector quantization schemes such as TCQ, are
able to approach the rate-distortion function of an IID random process
with modest complexity (see Section 3.5).

The assumption of an IID vector process, {Xn }, is unrealistic for most
sources. Alternatively, we may model the source as a stationary scalar
random process, {Xd, and consider blocking the random process into
vectors of length m, applying the KLT to each block. In this case, the
above arguments and definitions refer to the mth order rate-distortion
function, R~m) (D), of the random process, which approaches the rate­
distortion bound, Rx (D), in the limit as m ---+ 00.

We have now seen four distinct respects in which the KLT may be
described as an optimal block transform and it is worth summarizing
these here. As discussed in Section 4.1.2, the KLT is both the optimal
decorrelating transform and the transform which yields the minimum
MSE when the source must be approximated with only m' transform
coefficients per block, for any m' ::; m. According to Theorem 4.1, the
KLT is also the transform which maximizes the coding gain expression.
Note that these three properties are independent of assumptions regard­
ing the source statistics. Finally, in the specific case of Gaussian random
processes, the KLT is the transform which maximizes compression per­
formance and asymptotically achieves the rate-distortion bound of the

source, if the coefficient sequences, {yq(n)} , are to be quantized and
nEZ

coded independently as IID processes.

SUBBAND TRANSFORMS

For subband transforms, we shall restrict our attention to station­
ary Gaussian sources and note that the subband sequences themselves
are also stationary Gaussian processes. Without loss of generality, we
shall assume that the random processes all have zero mean, so that they
are characterized entirely by their auto-correlation sequences, or equiva­
lently, the PDS (Power Density Spectrum), Sx (w). For sufficiently high

Chapter 4: Image Transforms 197

rates, the rate-distortion function is given by15

where

2 6 exp (frr J:1T loge Sx (w) dw)
IX = ...l.. J1T S (w) dw

21T -1T X

exp (frr J~1T loge Sx (w) dw)
O"~

is known as the "spectral flatness" of the source, {Xn}.The spectral flat­
ness, 11, is yet another ratio between arithmetic and geometric means.
Note that 11 ::; 1 with equality if and only if the power spectrum,
Sx (w), is flat.
The spectral flatness measure is also useful in evaluating the compres­

sion advantage associated with exploiting inter-sample dependencies. In
particular, if we apply quantization and coding techniques which are
optimized for an IID Gaussian random process (e.g., TCQ), then the
best compression we can hope to achieve is given by the first order rate­
distortion function and the performance penalty is

t:.Rx (D) = R~) (D) - Rx (D)

1 (0"1-) 1 (20"1-)= "2 log2 Ii -"2 log2 I X Ii
1 1

= -log2 - > 02 2 -IX

Now consider an ideal subband transform; i.e., an orthonormal trans­
form whose subbands occupy disjoint frequency bands, as in Exam­
ple 4.4. Subject to the restriction of a stationary Gaussian source, it
can be shown [117] that no penalty (in the rate-distortion sense) is in­
curred by quantizing and coding the subbands independently. That is,

l5This is just a rearrangement of equation (3.15). The result may be obtained by taking the
limit of the expressions in equation (4.41) as m -> 00, noting that the Fourier cOlllponents of
a stationary Gaussian random process are statistically independent. The result is valid for
rates sufficiently high that. the Lagrangian parameter, .x, of eqnation (4.41) satisfies .x = D <
Sx (w), for all w.

198 Transforms for Compression

provided we optimally balance the contributions of each subband to the
overall distortion and rate, the rate-distortion bound of the source may
be achieved by quantizing and coding each subband separately. This
result is analogous to that for block transforms. In both cases, the use
of an orthonormal transform has no impact on the rate-distortion func­
tion and the selection of an "ideal" transform ensures that the transform
bands may be quantized and coded independently without penalty.

If the individual subbands happen to be IID random processes, then
relatively simple techniques such as scalar quantization, or preferably
TCQ, may be applied without substantial penalty in compression effi­
ciency. In practice, we cannot expect the subbands to be IID; however,
the performance penalty associated with using relatively simple schemes
which are adapted to IID sources is given by

B-1

~R'ubballd (D) = - L ~ log2 J~b
b=O

where ''lb is the fraction of samples in subband b and J~b denotes the
spectral flatness of subband b. Thus the transform should be selected so
as to maximize the average log spectral-flatness of the subbands. This
objective is consistent with that deduced from the coding gain formula
in Section 4.3.2.
Note that the above result is dependent upon the assumption that the

subbands have disjoint passbands. This requires physically unrealizable
ideal filters. Fischer [58] showed that relaxing this condition to allow
realizable orthonormal subband transforms necessarily implies a rate­
distortion penalty, except in the trivial case where the power spectrum of
the source is perfectly flat. Further, Wong [172] showed the penalty may
be eliminated provided one is prepared to employ a cross-band prediction
filter. These and related results are all restricted to stationary Gaussian
sources.

DISCUSSION
The theoretical results presented above may be summarized as follows .

• For stationary Gaussian random processes, {Xd, the compression
performance of linear block transforms (specifically, the KLT), with
block size m, is limited only by the difference between Rx (D) and its
mth order approximation, RF) (D), assuming that we are prepared
to use quantization and coding schemes which are able to approach
the rate-distortion bound for the much simpler IID Gaussian random
processes.

Chapter 4: Image Transforms 199

• Subject to the same assumptions, the compression performance of
subband transforms is limited only by the degree to which we are
able to approximate ideal bandpass filters and by the lack of spectral
flatness within each subband's passband.

• Both block and subband transform methods are able to approach the
rate-distortion bound of a stationary Gaussian source, in the limit as
m ---+ 00, and complexity grows without bound.

While limited to the somewhat contrived model of Gaussian random
processes, these results serve to reinforce the conclusions drawn from the
coding gain arguments in Section 4.3.2.
Interestingly, the asymptotic performance conclusions drawn in this

section also apply to DPCM. As discussed at the end of Section 3.3,
for a Markov-p Gaussian random process, with optimal linear predictor
of order p, the gap between the performance of DPCM and Shannon's
lower bound is the factor, c:2 . This is the factor which describes the
performance loss of the inner quantizer when applied to IID data. It
is the same factor which describes the asymptotic performance loss for
block or subband-based compression systems, as discussed above.
In the transform case, we noted that practical techniques such as

TCQ may be used to bring c:2 remarkably clbse to 1. Unfortunately,
the feedback structure of DPCM makes this much more difficult (see
Section 3.5.7). More significantly, the DPCM results hold only at high
bit-rates. At lower bit-rates, the performance of the predictor degrades
substantially. Transform-based approaches do not suffer from this draw­
back.

4.3.4 PSYCHOVISUAL PROPERTIES
Up until now we have considered the rate-distortion properties of

transform coding systems, where distortion is taken as MSE. Unfor­
tunately, MSE is a poor model for the perceptual significance of distor­
tion in images. There remain numerous unanswered questions in regard
to modeling of the Human Visual System (HVS). Nevertheless, known
properties of the HVS have significant bearing on the selection of suit­
able transforms for image compression. We identify three such properties
below.

CONTRAST SENSITIVITY
Perhaps the best known property of the HVS is its differential sensi­

tivity to spatial frequencies. Figure 4.25 contains a plot of the so-called
Contrast Sensitivity Function (CSF), which represents the reciprocal of
the detection contrast threshold, T csf (1), for sinusoidal grating patterns

200 Transforms for Compression

0' 5' 10' 15' 2'
cycles/degree

Figure 4.25. Spatial Contrast Sensitivity Function (CSF).

against a uniform background, as a function of spatial frequency, f. The
figure is actually obtained by plotting a specific case of the much more
general parametric model proposed in [46]. Not revealed by this sim­
ple one dimensional plot, is the fact that the HVS is less sensitive to
diagonally oriented features than to horizontally or vertically oriented
features.
At high frequencies, sensitivity is limited by the optics of the human

eye, by the physical extent of the photo-receptive fields of the "cones,"
the sensors which determine visual acuity in the HVS, and by primitive
neurological processes. We note that the high frequency roll-off of the
CSF is steeper for older individuals and at shorter wavelengths (blue
portion of the spectrum)16. We also note that reported CSF curves
occasionally incorporate the high frequency limitations of the display
device used for experiments. When using CSF data to optimize an im­
age compression system, the MTF (Modulation Transfer Function) of
the intended rendering device should be included, which may differ sig­
nificantly from that used in the experiments which produced the CSF
data.

16The number of S-cones in the HVS is approximately 1% of the number of M- and L-concs,
t.hc latt.er being scnsitive to medium (green) and long (rcd) wavelengths, respcctively. Thc
optical properties of thc HVS arc adapted to match this differencc in sampling dcnsit.itics by
attcnuating high frcqucncy content in the blue portion of the spectrum morc sevcrely than
thc grecn anel the rcel.

Chapter 4: Image Transforms 201

The behaviour of the CSF at low frequencies may be explained in
terms of neurological processes known as "lateral inhibition," which at­
tenuate the sensitivity at any location on the retina in accordance with
the response produced at neighbouring locations. Lateral inhibition is
responsible for the HVS's remarkable ability to accommodate scenes with
internal illumination variations spanning some four orders of magnitude.
The strong dependence of the CSF on spatial frequency may be readily

exploited through the use of linear transforms which decompose the im­
age into different spatial frequency bands. As already noted, successful
block and subband transforms all possess this structure. A convenient
way to incorporate CSF effects into an image compression system is to
replace MSE by CSF-Weighted MSE (WMSE) and optimize the para­
meters of the system to minimize the WMSE for a given bit-rate.
For orthonormal transforms, the MSE distortion measure of equa­

tion (4.34), used in the calculation of coding gain, may be replaced by

B-1

dXFORM = ~ 7]bWbsfO"~b e-aRh

b=O

(4.42)

where the weights, Wbsf , vary as the square of the CSF over the frequency
range associated with each band, b. More specifically, we may write

H/:csf = (~) 2
b T,csf

b

(4.43)

where T bsf is some kind of "average" of the detection contrast thresh­
old, T csf (1), over band b and a is an arbitrary constant. One suitable
candidate for the "averaging" operation mentioned here is described in
Section 16.1.2.
Using equation (4.42), we find that the coding gain expression be­

comes
dPCM (') 2 '\""'B-1 TXTcsf

CWMSE _ /\ _ O"x LJb=O 7]b YV b

T - dXFORM (.\) - nB - 1 (Hl:CSf 2)1)b
b=O b O"Yb

The fador, L~=(} 7]bWbsf
, in the numerator of this expression arises from

the assumption that PCM quantization noise is an uncorrelated random
process so that the noise appears in every band with equal variance.
The appropriateness of WMSE as a measure of perceived visual dis­

tortion depends upon the "flatness" of the CSF within each band and the
frequency selectivity of the bands. Block transforms such as the DCT
have a uniform frequency band structure with many bands; however,
the fact that the blocks do not overlap severely restricts their frequency

202 Transforms for Compression

~ ~---------~-----------
U <::::: U 1~ 1n-----~c··' >'., .y:.--"~s:--;/----- ----

both - cycles/degree
B

Figure 4.26. Effect of viewing distance on the relationship between spatial frequency
measured in cycles/degree and cycles/pixel.

selectivity, as demonstrated in Example 4.6. Dyadic multi-resolution
subband transforms have a logarithmic frequency band structure, as
illustrated in Figure 4.21. Frequency selectivity is excellent at low fre­
quencies, but quite poor at high frequencies so that the use of a single
CSF weight in the high frequency subbands is far from ideal.
Not all applications lend themselves to exploitation of CSF character­

istics. To see this, observe that the horizontal axis in the CSF plot of
Figure 4.25 measures spatial frequency in terms of cycles per degree of
angle subtended at the observer's eye; Figure 4.26 provides the interpre­
tation for this measure. Changes in viewing distance clearly affect the
location of the transform's spatial frequency bands on the CSF curve, so
that it is difficult to exploit the CSF characteristic in applications where
little can be assumed concerning viewing distance, such as interactive
applications where the user is free to "zoom" in and out of the image
content.
A particularly convincing demonstration of the CSF characteristic

and its dependence on viewing distance is provided by the Campbell
and Robson test chart [34], reproduced in Figure 4.27. The frequency
of a sinusoidal grating pattern increases from left to right, while the
contrast of the pattern increases from the top to the bottom of the test
chart. The visual detection threshold at each spatial frequency manifests
itself in terms of the height on the chart at which the grating becomes
visible. The reader should observe a shift in the location at which the
peak sensitivity occurs, as the viewing distance is varied.

VISUAL MASKING
The CSF measures only the detectability of sinusoidal patterns (or

artifacts) on a uniform background. Not surprisingly, however, arti­
facts become less noticeable when superimposed on a non-uniform back-

Chapter 4: Image Transforms 203

Figure 4.27. Campbell and Robson CSF test chart.

ground, especially one containing substantial energy at approximately
the same spatial frequency and position. This phenomenon, known as
"masking," may be exploited with the aid of an image transform whose
synthesis vectors have good localization in both space and frequency.
To understand this, we begin by reviewing the origin of masking in the
HVS.
Early processing of visual stimuli in the part of the brain (visual cor­

tex) known as VI, is commonly modeled in terms of a collection of
bandpass filters, whose passbands are distributed logarithmically over
the radial frequency spectrum. Typical radial frequency bandwidths for
these cortical filters are about 1.4 octaves [49], while typical orientation
bandwidths are about 40° [50]. In Watson's "cortex transform," [167] the
cortical filter bandwidths are approximated by 1 octave and 45°, lead­
ing to the passband structure shown on the left in Figure 4.28. Daly's
"Visible Differences Predictor" [46] uses a cortical transform having 6
orientation bands per octave, as illustrated on the right in Figure 4.28.
In Section 1.1.2 we introduced Weber's law, which states that the

perceptibility of luminance changes varies inversely with the mean lu­
minance level. A similar process is helieved to be at work within each

204 Transforms for Compression

(4.44)

Figure 4.28. Passband structure of the cortical transforms used by Watson [167]
(left) and Daly [46] (right). Only the first two resolution levels are shown in each
case.

of the cortical bands, whereby the perceptibility of a stimulus whose
spatial frequency and orientation falls within some cortical band varies
inversely with the local activity within that same band. Like all visual
phenomena, masking is a complex process which is not fully understood.
This is partly evidenced by the fact that the two sets of cortical trans­
form bands in Figure 4.28 have quite different centre frequencies. Not
surprisingly then, signals in one band generally do contribute to the
masking of signals in adjacent bands. Nevertheless, we shall restrict our
attention to the principle effect of intra-band masking.
Although psychovisual data have been fitted to a variety of empirical

models, they differ mainly only in subtle details. A common model for
the detection contrast threshold, n (p), of an artifact at location p in
cortical band b is [90, 62]

11 () ~ T,csf max {l (Nh (P))P}
b p b 'T,csf

b

Here, M b (p) is a measure of the contrast (amplitude) of the masking
signal in cortical band b in the neighbourhood of location p and T;;sf is
the contrast detection threshold for the sinusoidal pattern on a uniform
background (no masking). As discussed earlier, the single T;;sf value
must be some kind of average of the CSF data over band b. It is related
to the CSF energy weighting factors W;;sf, through equation (4.43). The
exponent p, in equation (4.44), typically varies from 0.6 to 1.0 depending

Chapter 4: Image Transforms 205

upon the nature of the masking signal and the experience of the observers
involved in the psychovisual experiments [139].

It is convenient to define normalized detection and masking contrasts,
tb (p) and m p (p), as

t) ~ n (p)
b (p - T,csf '

b

Equation (4.44) then assumes the rather simple form

(4.45)

The normalized detection threshold, tb (p), is known as the "thresh­
old elevation" factor. It represents the amount by which the detection
threshold for an artifact in band b at location p is scaled (its log is
"elevated") relative to the masking-free detection threshold.
Watson [167] constructed an image transform from a bank of cortical

filters, followed by appropriate sub-sampling of the cortical subbands,
as part of an image compression system capable of exploiting masking.
In the proposed compression algorithm, each subband sample, Yb [nl,
is subjected to scalar quantization, where the quantizers are designed
to keep the quantization error below the relevant detection threshold,
n [n]. To simplify matters, the masking contrast is taken to be identical
to the unquantized amplitude of the same sample whose quantization
errors are being masked, i.e., Mb[n] = IYb [n]l. With this simplification,
the masking effect may be accommodated through appropriate design of
the scalar quantizer.
One drawback of Watson's cortical transform is that it cannot be

perfectly inverted. Moreover, maximally decimated transforms are not
possible without introducing substantial aliasing or significantly distort­
ing the passband characteristics shown in Figure 4.28. Two dimensional
tree-structured subband transforms suffer from neither of these ill effects,
while possessing a passband structure which bears some useful similar­
ity to that of a cortical transform. This may be seen by comparing
Figure 4.28 with Figures 4.15 and 4.21.
Figure 4.29 illustrates the impact of masking within a given subband

and between different subbands of a two dimensional tree-structured
subband transform. The underlying one dimensional subband trans­
form employed in this example is the CDF 9/7 biorthogonal transform
developed in Section 6.3.2. This is one of the two transforms explicitly
defined by the JPEG2000 image compression standard. A single quanti­
zation error in the middle of subband LH2 passes through the synthesis
system to produce the artifact shown without masking as the first image

206 Transforms for Compression

unmasked artefact in-band masking orthogonal-band masking octave-band masking

Figure 4.29. Masking of a single quantization artifact by image content (modeled
as Gaussian noise) from the same subband, the subband with opposite orientation,
and the subband with the same orientation but in the next resolution level of a
two dimensional tree-structured subband transform. All images are offset to allow
negative and positive amplitudes to be depicted as deviations from a uniform shade
of grey.

in Figure 4.29. The remaining images show this same artifact in the
presence of Gaussian noise, which has been added to subbands LH2 (in­
band masking), HL2 (orthogonal-band masking) and LH1 (octave-band
masking), respectively. The RMS amplitudes of all three synthesized
noise images are identical.
Even though Gaussian noise is not a particularly good model for the

subband samples produced by typical images, Figure 4.29 does sug­
gest the masking potential of image content from the same subband
as the quantization artifact. It also reveals the fact that image con­
tent from other subbands has a much weaker masking effect. In Sec­
tion 16.1.4, we develop these visual masking concepts further in the
context of JPEG2000.

VISIBILITY OF BLOCKING ARTIFACTS

Perhaps the greatest disadvantage of block transforms for image com­
pression is that the synthesis (or prototype) vectors are supported within
disjoint blocks. After quantization, then, the error image will be a linear
combination of disjoint blocks and so will generally exhibit discontinu­
ities at the block boundaries. The HVS is particularly sensitive to the
presence of strong gradients which line up in one direction or another,
since this is the mechanism by which edges are detected, as the primary
source of information for subsequent neurological processing stages. As a
result, the alignment of discontinuities at the artificial block boundaries
imposed by a block-based transform is a key source of visual disturbance.
To illustrate the phenomenon of blocking artifacts, Figure 4.30 shows

decompressed versions of the 256 x 256 version of the image, "Lenna,"
at 0.25 bits per sample, where the compression algorithms are JPEG

Chapter> 4: Image Transforms 207

Figure 4.30. 256 x 256 image, "Lenna," compressed to 0.25 bps using baseline JPEG
(left) and JPEG2000 (right).

and JPEG2000. JPEG is based on the 8 x 8 DCT, while JPEG2000 is
based on a dyadic multi-resolution subband transform. Admittedly, the
quantization and coding techniques are somewhat different for the two
compression schemes and neither is optimized for the reader's present
viewing conditions. Nevertheless, this crude comparison is sufficient to
reveal the blocking artifacts which are endemic to block-based trans­
forms.
The visibility of blocking artifacts may be reduced by appropriate

post-processing. For example, the decompressed image may be smoothed
in a direction perpendicular to the block boundaries. The price paid for
such post-processing is both complexity and the introduction of different
artifacts, including loss of detail and edge distortion in the neighbour­
hood of the block boundaries. The problem of blocking artifacts is one
of the most significant justifications for the use of subband transforms
in place of block transforms.

Chapter 5

RATE CONTROL TECHNIQUES

As discussed in Section 4.3, transform coding involves transforming
image samples to get transform coefficients arranged into bands, or sub­
bands. Each band is subjected to quantization and coding. For sim­
plicity, we assume as in Chapter 4 that the quantization and coding of
each band is independent of that in other bands, and that quantiza­
tion and coding do not exploit any dependencies that may exist between
coefficients of the same band.

As an example, consider an 8 x 8 block transform, such as the DCT.
All non-overlapping 8 x 8 blocks of image samples are transformed to get
8 x 8 blocks of transform coefficients. The [0,0] coefficients from each
block comprise band 0, the [0, 1] coefficients from each block comprise
band 1, and so on. In this way, we have B = 64 bands, each with a
fraction TJb = 1/64 of the total coefficients. As another example, consider
the D = 2 level subband decomposition of Figure 4.22. In this case, we
have B = 3D +1 = 7 subbands. The subbands HL1, LH1 , and HH1 each
have TJb = 1/4 of the total coefficients, while LL2, HL2, LH2, and HH2
each have TJb = 1/16 of the total coefficients.

In this context, rate allocation (or rate control) is the process by which
quantization and coding rates, Rb b = 0,1, ... ,B-1, are assigned to
the various bands. For a given desired overall encoding rate, we may try
to minimize MSE, or weighted MSE, while achieving the desired overall
encoding rate. On the other hand, for a given desired MSE, we may try
to minimize the overall encoding rate while achieving the desired MSE.

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

210

5.1
5.1.1

More Intuition

MORE INTUITION
A SIMPLE EXAMPLE

As an intuitive example, consider dividing an image into 2 x 1 blocks
(2-dimensional vectors) x = (xo, xd and transforming each x to get
Y = (yo, Yl)t where

A* 1[1Y= x=J2 1 (5.1)

Then all Yo coefficients comprise band 0 while all Yl coefficients comprise
band 1.
The transform of equation (5.1) can be seen as the special case of

equation (4.30) with e= -45°. The vector y is easily verified to be a
45° rotated (clockwise) version of the vector x. For example, the vector
x = (1, l)t has magnitude J2 and angle 45° while its transformed version

y = (J2,O)t has magnitude J2 and angle 0°. Whenever the x vectors
come from a stationary process, equation (5.1) is in fact, the KLT. l

This is easily verified by noting that in this case, the covariance matrix
is given by

ex = ~1 [~ ~]
where r is the correlation coefficient between Xo and Xl. The covariance
matrix for Y is then

Now assume that the x vectors come from a Gaussian Markov process,
and consider Figures 3.9 and 3.10b. In Section 3.4, we argued that ap­
plying the 2-dimensional VQ of Figure 3.9a to x = (xo, Xl)t is equivalent
to applying the SQ of Figure 3.9b independently to Xo and Xl. In the ab­
sence of any entropy coding, the resulting rate is 3 bits/sample. We also
argued that for Gaussian vectors x, the codewords of Figure 3.9a that
fall outside the elliptical region of Figure 3.lOb are largely wasted. These
codewords can be discarded to achieve a lower rate without increasing
the MSE appreciably. Unfortunately, this leads to an unstructured code­
book that is difficult to search for the best codeword x.
Consider nOw applying the transform of equation (5.1) to each point,

or vector, in the elliptical high probability region for x. This results in

lThe KLT given by equation (5.1) is entirely independent of the correlation structure of the
underlying process. As discussed in Chapter 4, we are not so lucky for vector dimensions
greater than 2.

Chapter 5: Rate Control Techniques 211

••••••••

a)

Yo • • • • • • •• Yo

b)

Figure 5.1. a) High probability region for independent (but not identically distrib­
uted) Gaussian data. b) R=2 bits/sample VQ.

the high probability region for y given in Figure 5.1a. Examination of
the rate R = 2 bits/coefficient VQ in Figure 5.1b shows that there are
no wasted codewords with respect to quantization of y vectors. Further­
more, the VQ in this figure is equivalent to independent application of SQ
to Yo and Y1· Specifically, the SQ for Yo is of rate Ro = 3 bits/coefficient,
while the SQ for Y1 is of rate R1 = 1 bit/coefficient. The overall rate is
then Ro + R1 = 4 bits/vector, or (Ro + R1) /2 = 2 bits/coefficient.
Since each vector of 2 coefficients represents 2 image samples, the

rate of the overall transform coding system is also R = (Ro + Rd /2
bits/sample. Note that the fraction of coefficients in each band is 7]0 =

7]1 = 1/2, so that R can also be computed as R = 7]ORo +7]lR1. Finally,
when y is inverse transformed to get x via

A _ A A __1 [1 1] A

X - Y - J2 1 -1 Y

the squared error in x is the same as the squared error in y. This follows
from the fact that the transform of equation (5.1) is orthonormal. Thus,
the transform coding system will attain MSE comparable to the R = 3
bits/sample SQ of Figure 3.9, while using only R = 2 bits/sample.
We conclude this section by stating once again that linear transforms

cannot be used to our advantage in the case of uncorrelated data (e.g.,
Figures 3.10a and 4.23c). Even though there may be striking dependen­
cies of a more general (non-linear) nature (e.g., Figure 4.23c), no benefit
can be derived via linear transforms.

212 Optimal Rate Allocation

5.1.2 AD HOC TECHNIQUES
Many ad hoc techniques have been developed for rate allocation. Prin­

ciple among these are "zonal coding" and "threshold coding" [81]. In
zonal coding, all bands that do not lie within a certain "zone" are dis­
carded (quantized to zero). For example, in the 8 x 8 DCT case, we
might discard all coefficients y [i, j] of each block with i + j > 3. In
this way, we retain only the coefficients in a triangular zone lying in the
upper left corner of each transformed block.
The zone is typically chosen in an ad hoc way, and rates for coefficients

within the zone are often chosen to be constant. In this way, the encoding
rate is R = 'rJzRz bits/sample where 'rJz is the fraction of coefficients in
the zone, and Rz is the rate assigned to coefficients within the zone.
Assuming Rz = 4 in the DCT example of the previous paragraph yields
R = (10/64)4 = 0.625 bits/sample.
In threshold coding, all coefficients below a certain magnitude thresh­

old are quantized to zero. The coefficients retained are quantized, then
encoded via their locations and quantization indices. The SPIRT algo­
rithm (see Chapter 7) was originally described as a very sophisticated
form of threshold coding. We will describe SPIRT from a very different
point of view in Chapter 7.

5.2 OPTIMAL RATE ALLOCATION
From Section 4.3, we can infer a general expression for the MSE vs.

rate of a transform coding system. This expression depends on the MSE
and rates assigned to the individual bands as

B-1

d(R) = L'rJbGbWbdb(Rb)
b=O

where the encoding rate for the image is

(5.3)

(5.4)

As before, 'rJb is the fraction of coefficients in band b, and Gb is the
synthesis (inverse transform) gain associated with band b. When ortho­
normal transforms are employed, Gb = 1.0 Vb. The Wb can differ from
1.0 if minimization of "weighted MSE" is desired. For example, these
weights might be chosen to match d(R) to the human visual system as
discussed in Section 4.3.4.

Chapter 5: Rate Control Techniques 213

To find the optimal rates for each band, we may use the method of
Lagrange multipliers and set

This yields
-A = GbWbd~(Rb) b= 0,1, ... ,B-1 (5.5)

where d~(Rb) is the derivative of the band b distortion, evaluated at Rb
bits/coefficient. This quantity represents the slope of db at Rb and is
non-positive for well designed quantization and coding.
From equation (5.5), the band rates Rb b = 0,1, ... ,B-1 should be

chosen so that the weighted distortion-rate slopes, GbWbd~(Rb), of all
bands are equal to the (as yet unknown) constant -A.
From equation (3.33), we have

db(Rb) = 9b(Rb)o-;2-2Rb

If all Rb are large enough so that 9b(Rb) = c~, we have

db(Rb) = c~O'l2-2Rb (5.6)

and

d~(Rb) = -c~O'l(2ln 2)2-2Rb

= - (21n 2) db(Rb) (5.7)

Comparing equations (5.5) and (5.7) we see that the weighted distortions
of all bands should be equal. That is,

,\
GbWbdb(Rb) = 2ln 2 b = 0,1, ... ,B-1 (5.8)

Solving this expression for Rb yields

R -~l GbWbc~O'l2ln2 (5.9)
b - 2 og2 ,\

Substitution of this quantity in equation (5.4) yields

2R ~ log, IT (G,w,£~121n2r
1=0

B-1
Exponentiating both sides (base 2) and noting that L 'r/l = 1 yields

1=0

B-1

IT (2 2)'11 2RA = 2ln 2 GzTV[cz O'z 2-
z=o

(5.10)

214 Optimal Rate Allocation

Substitution in equation (5.9) yields

R - R ~ 1 GbWbc~ol
b - + 2 og2 B-1

n (Gz W'ic[ol) '11

z=o

(5.11)

From this expression, we see that any band having weighted variance
(numerator of the log expression) equal to the geometric mean of all
weighted variances (denominator of the log expression) should receive
the nominal R bits/coefficient. Bands with larger or smaller weighted
variances should receive more or less than R bits/coefficient, respectively.
This is all done in such a way that the weighted average of all band rates
is R, as desired.
Substitution of equation (5.11) into equation (5.6) yields

(5.12)

and we see that as before, the weighted band distortions GbWbdb(Rb)
are all equal. In the case of an orthonormal transform and no HVS
weighting (i.e., Gb = Wb = 1) the band distortions themselves are all
equal.
The distortion in the image after inverse quantization and inverse

transformation is given by equation (5.3). Substitution of equation
(5.12) yields

B-1

dXFORM(R) = II (GbWbc~O';)'7b 2-2R

b=O

(5.13)

We note here that when Wb =1= 1 b = 0,1, ... ,B-1, this expression
represents a weighted MSE, and should not be compared directly to the
more usual unweighted MSE. Proper treatment of this case is discussed
in Section 4.3.4. When Wb = 1 Vb, we can compare to the case of direct
quantization and coding of the image samples. In this case,

and transform coding is superior whenever

B-1

II (Gbc~O';) < c~O'l
b=O

Chapter 5: Rate Control Techniques 215

For efficient quantization of IID Gaussian data, c~ = c~ ~ 1, and the
results here are consistent with the discussion in Section 4.3.2.
As an example, consider the two band case from Section 5.1, and let

Wo = WI = 1. For this case we have "10 = "11 = 1/2 and Go = G1 = 1.
From equation (5.2), we also have 0"5 = O"~ (1 + r) and O"? = O"~ (1 - r).
Equation (5.11) then yields

(5.14a)

(5.14b)

From this, we can conclude that our intuitive rate allocation of Ro = 3
and R1 = 1 is optimal for R = 2 only when r = 15/17 ~ 0.88. As r is
increased or decreased, the portion of the rate allocated to Ro increases
or decreases accordingly. Note that when r = 255/257 ~ 0.99, the
limiting case of Ro = 4 and R1 = 0 is reached. In this case, band 1 is
discarded entirely, in favor of allocating all available rate to band O.
From equation (5.12) and equation (5.13),

The ratio of dPCM (R) to dXFORM (R) then gives the transform coding
gain of equation (4.35). Even for this simple two dimensional example,
we get the significant gain

1
GTe = JI=r2 (5.15)

which is approximately 3.27 dB for the value r = 15/17 discussed above.
For the limiting value of r = 255/257, we get a transform coding gain of
9.05 dB.
We conclude this section by noting that r = 255/257 is only limiting

in a very narrow sense. In our example, we chose an encoding rate of
R = 2 bits/sample. If r > 255/257, this value of R is not large enough to
satisfy our "high rate" assumption. Specifically, equation (5.14) results
in R1 < O. For larger choices of R, equations (5.14) and (5.15) remain
valid for larger values of r.

5.3 QUANTIZATION ISSUES
It should be clear at this point that rate allocation is equivalent to

quantizer selection. In the case of uncoded SQ, VQ, or TCQ, choosing

216 Quantization Issues

a rate Rb is equivalent to choosing a set of quantizer codewords or code­
vectors (e.g., Table 3.2). In the case of entropy coded systems designed
iteratively (Section 3.2.3), this is also the case.
For uniform ECSQ (Section 3.2.4) or ECTCQ (Section 3.5.6), rate

allocation is equivalent to step size selection. For Rb sufficiently large,
as assumed throughout this section, we then have

where Cb is a constant. For example, Cb = 1/12 for ECSQ (see equation
(3.27)). Comparing with equation (5.6), we see that

(5.16)

Finally, since all GbWbdb(Rb) are equal (equation (5.12)), we have

or

Thus,

Ll = JGOWOLl (5.17)b GbWb 0

If an orthonormal transform is employed and we normalize the HVS
weights so that Wo = 1, we have

This is in fact, the methodology behind the selection of the example "Q­
table" (table of step sizes) provided in the original JPEG standard. As
a concluding remark, we note that when HVS weights are not employed,
all step sizes are equal.

5.3.1 DISTORTION MODELS
We began our discussion of optimal rate allocation with equation (5.3).

This equation assumes that the MSE for quantizing coefficients in band
b, at a rate of Rb bits/coefficient, is given by db(Rb). The constants
1]b, Gb, and Wb determine how these "band distortions" combine to yield
the overall image distortion d(R). In equation (5.6), we assumed a high­
rate approximation of db (Rb)' This expression requires knowledge (or
estimation) of only two parameters, c~ and lTl- These values can be

Chapter 5: Rate Control Techniques 217

estimated based on a large collection of typical imagery, or on an image­
by-image basis. For a given band of a given image, 0-; can be estimated
in the usual way as

~2 1 ~ (~)2
ob = N

b
_ 1~ Y - /-lb

y

where
~ 1 ~
/-lb = N. ~Y

b y

The summations above are over all Y in band b, and Nb is the number
of coefficients in band b.
A common method for estimating c~ involves modeling the subband

data as coming from a generalized Gaussian distribution with PDF

fry) = 20"r~1/") exp { - (r(3/a) Iy - /-lY\) a}
r (l/a) a

(5.18)

Given band b for a particular image, the parameter ab is estimated and
used in turn, to determine an appropriate choice for c~. For example,
with ab = 2, equation (5.18) yields the Gaussian distribution. Similarly,
ab = 1 yields the Laplacian distribution. For these choices, appropriate
values of c~ can be found in Table 3.4. For other values of ab, or for
quantization schemes not represented in Table 3.4, suitable values for c~
can be derived or measured experimentally.
Several strategies for estimating ab have been proposed. In the case

of the DCT, the DC (or [0,0]) coefficients are often modeled as Gaussian
while all other coefficients are modeled as Laplacian [123]. The maxi­
mum likelihood estimate of ab is discussed in [51], while more ad hoc
approaches are discussed in [98], [85], and [86]. In [85], it is shown that
there is little difference between any of these approaches.
One approach derives from the fact that for the PDF of equation

(5.18),

(5.19)
r (5/a) r (l/a)

(r (3/a))2

of E [(Yb - /-lyb)4]Thus, ab can be found from estimates
E [(1'b - /-lYb)2] using equation (5.19).

5.4 REFINEMENT OF THE THEORY
There are a number of limitations to the rate allocation algorithm

discussed in the previous sections. Throughout the discussion, we as-

218 Refinement of the Theory

sumed Rb 2: 0 Vb. In fact, we assumed that all Rb are large so that
gb(Rb) = cEo Additionally, we assumed that quantization and coding
can be performed at any rate Rb. In some situations, we may not be
able to control these rates precisely. In other situations, we may wish
to restrict Rb to integers (e.g., uncoded SQ) or rational numbers with
small denominators (e.g., uncoded VQ).

5.4.1 NON-NEGATIVE RATES

(5.20)

We first address the situation when R is not large enough to yield
Rb 2: 0 Vb. This situation occurs in our two band example when r =
255/257 and R < 2. The problem arises when A is so large that equation
(5.9) calls for Rb < O. From equation (5.6), this is equivalent to db(Rb)
exceeding cE(]~' The solution to this problem2 is to set

R (A) {I I GbWbcE(]~2In2}
b = max 0'"2 og2 A

This in turn yields

db(Rb(A)) = db (A) = min {CE(]~' Gb~2ln2}
These equations satisfy the Kuhn-Tucker optimality conditions. As be­
fore, the value of >.. must be adjusted so that the resulting Rb achieve
the desired rate. That is,

B-1

L 17bRb(A) = R
b=O

Unfortunately, for small R, there is generally not a closed form ex­
pression for computing the proper A. From equation (5.20), the Rb are
functions of A, so finding the proper A is equivalent to finding the root
of the non-linear equation

B-1

f (A) = L 17bRb(A) - R = 0
b=O

Any numerical algorithm for finding roots will suffice. However, the
problem is facilitated by the fact that the Rb (and thus f (>..)) are non­
increasing and convex Ufunctions of A (see equation (5.20)). This allows
a simple bisection algorithm to be used.

2In fact, equation (5.6) lIlay not be a reasonable distortion lIlodel when Rb is small. We will
address this issue in a subsequent section.

5.4.2

Chapter 5: Rate Control Techniques 219

DISCRETE RATES
We now treat the case where the rates are constrained to be inte­

gers. This constraint occurs when uncoded SQ is employed. Actually,
the technique described below [134] is more general, and works for any
finite set of allowable rates. For example, rates corresponding to "half
integers" {O, 1/2, 1,3/2, ... ,Rmax } arise from the use of 2-dimensional
uncoded VQ.
To this end, let Rb be the set of allowable rates for band b. We proceed

as before, and seek to minimize equation (5.3) subject to the constraint
of equation (5.4). Additionally, we have the new constraint that Rb E Rb
b = 0,1, ... ,B - 1. We form the Lagrangian cost function

B-1 B-1

L "llGlWldl(Rl) + AL "llRl
l=O l=O

B-1

= L 171 (GlVVidl(RL) + ARl)
l=O

(5.21)

Rather than differentiating as before, we seek to mInImIZe equation
(5.21) directly.
Noting that each term in the sum depends on only a single rate, we

can minimize the sum by minimizing each term individually. Thus, for
a given A, we perform the B individual minimizations

(5.22)

Since each R b is finite in size, we can create B tables of rate-distortion
pairs. Specifically, the table for band b contains rate-distortion pairs
(Rb' db(Rb)) for each Rb E Rb. Each minimization of equation (5.22)
can then be performed by testing every pair from the appropriate table.
As in the previous section, A must be adjusted until the desired rate

is achieved. Due to the discrete nature of Rb' it will not generally
be possible to achieve the target rate exactly. For example, if integer
rates are used in our two-band example, then R must be of the form
L 17bRb= (Ro + R1) /2 and only "half-integer" rates can be achieved.3
b

3Actually, "time-shariug" cau be used to approach the desired rate more closely. For example,
half the coefficients of band 0 can be coded at 3.0 bits/coefficient, while the other half arc
coded at 2.0 bits/coefficieut. The average rate for the band is then Ro = 2.5 bits/coefficieut.
Applyiug a similar argullleut to band 1 aud computiug R = (Ro + Rl) /2, we sec that
"quarter-integer" rates can be achieved. The techuique is easily generalized to yield finely
spaced rates, but non-uuiform quality is obtained withiu each bam!.

220 Refinement of the Theory

As a concluding remark, we note that the method described in this
subsection circumvents all of the limitations discussed at the beginning
of Section 5.4. Since only non-negative rates are included in the tables
of rate-distortion pairs, there is no need to explicitly ensure Rb 2: O.
Also, no explicit expressions are required for the band distortions. The
values of db(Rb) contained in the tables can be individually calculated,
or experimentally measured for each Rb E Rb. This avoids any reliance
on high rate approximations.

5.4.3 BETTER MODELING FOR THE
CONTINUOUS RATE CASE

The rate allocation method described above is very general and is
particularly appropriate for uncoded SQ and/or VQ, where the achiev­
able rates are inherently discrete. In the case of entropy coded uniform
SQ (or TCQ), the step size can be used to adjust distortion and rate
in a continuous fashion. In principle, any Rb 2: 0, or any distortion
o:::; db(Rb) :::; (T~ can be achieved.
The discrete rate allocation strategy of the previous section can be

effectively employed by choosing many finely spaced rates for inclusion
in Rb. However, under this strategy the tables of rate-distortion pairs
may grow quite large. The tables may be eliminated if expressions for
db(Rb) are available for b= 0,1, ... ,B - 1. In this case, we can solve the
B (continuous) minimization problems of equation (5.22) independently.
Alternatively, we can revisit the continuous rate allocation equations

of previous sections. For example, equation (5.11) yields continuous
rates, but does not guarantee non-negativity. Equation (5.20) represents
an improvement to this situation, as it yields continuous rates and also
ensures non-negativity. Unfortunately, both of these schemes employ
the simple distortion model of equation (5.6) which is not valid when Rb
is small.
On the other hand, equation (5.5) does not depend on a high rate

assumption. This expression assumes only that db(Rb) is differentiable
and convex U. Noting that d~ is a function of Rb' let hb be the inverse
function. That is,

From equation (5.5), we then have the rate allocation equations

Rb= hb (G~~b) b = 0, 1, ... ,B-1

(5.23)

(5.24)

Chapter 5: Rate Control Techniques 221

As before, Amust be adjusted until the rates satisfy

(5.25)

It is worth noting, that for well behaved quantization and coding
such as ECSQ or ECTCQ, db(Rb) is non-negative, strictly decreasing,
convex U, and differentiable. Equivalently, d~(Rb) is strictly negative,
strictly increasing, and converges to zero as Rb gets large. For exam­
ple, Figure 5.2 shows a plot of db(Rb) vs. Rb for uniform ECSQ4 of IID
Gaussian data. This plot was obtained by quantizing 1,000,000 sam­
ples of unit variance pseudo-random Gaussian data and computing the
resulting MSE and entropy.5 This procedure was carried out for many
step sizes to obtain very fine spacing (:S 0.01 bits/coefficient) between
samples in the plot. Figure 5.3 shows d~(Rb) vs. Rb for IID Gaussian
data. This plot was obtained from finite difference calculations of the
data from Figure 5.2.
From the discussion of the previous paragraph, we conclude that hb

is non-negative and non-increasing as a function of A (equation (5.24)).
Thus, for every A > 0, only non-negative rates are obtained. In fact, for
any finite A, only strictly positive rates are obtained. Thus, with more
accurate modeling of the band distortions (than that of equation (5.6)),
we will always find that Rb > 0 b = 0,1, ... ,B-1, and bands should
never be discarded. This is in contrast to zonal coding (Section 5.1)
and to the policy obtained via high rate approximation theory (Section
5.2). That being said, Rb becomes negligibly small quite quickly as A is
increased beyond a certain point. Also, for a very small band rate Rb,
it is still entirely possible for all coefficients of the band to be quantized
to zero in any given image.
For example, if ECSQ is employed, the step size may be chosen so

large that only the 0 codeword is chosen. Some portion of the available
bits (albeit a small portion) must still be spent to code these zeros.
More refined techniques may be useful in this situation. Such techniques
include signalling, via a single "flag" bit, that all codewords are zero.
This is discussed in Chapters 7 and 8. Even in this case however, bands
are not discarded. All bands are assigned finite step sizes for quantization
and then coded appropriately.

iNo deadzone was employed. Specifically, quantization was performed usinl'; equation (3.31)
with'; = O. Centroids (equation (3.18)) were used for inverse quantization.
5As in Chapter 3, we assume efficient entropy coding so that the resulting encoding rate is
closely approximated by the entropy.

222 Refinement of the Theory

I.o.--r--,--..,--...,-----,-...,---,--,.----,-----,

0.6

0.4

0.2

5.04.03.02.01.0
0.0 l---'_--'-_-'-_-'-_--'----=::L::::====>_--'-_-l

0.0

Figure 5.2. MSE vs. rate for ECSQ of unit variance IID Gaussian data.

0.0 ,-,------,----,---,---,-----:::'=====.----r---,

-0.4

-0.8

-1.2

0.0 1.0 2.0 3.0 4.0 5.0

Figure 5.3. Distortion-rate slope for ECSQ of unit variance IID Gaussian data (i.e.,
the derivative of Figure 5.2).

5.4.4

Chapter 5: Rate Control Techniques 223

ANALYSIS OF DISTORTION MODELS

(5.26)

(5.27)

Considerable insight can be gained by re-plotting Figures 5.2 and
5.3 in the form of Figures 5.4 and 5.5. Figure 5.4 portrays SNRb ~

10logIO (O"l!db(Rb)) vs. Rb for ECSQ ofIID Gaussian data. After a brief
transient, the SNR converges to the high rate behavior of 6.02Rb - 1.53
dB, as expected. Figure 5.5 is essentially a plot of the inverse function
hb (equation (5.23)). Since d~ is always negative, we have plotted Rb
vs. logIO (-d~).

From the high rate approximation of equation (5.7),

1 -d'
Rb = - -2 log2 2 22 ~ 2cbO"b n

= - I 1 logIO(-d~) +!log2(c~0"~2In2)
2 ogIO 2 2

Thus, we note that at high rates (i.e., large Rb, small -d~, small A),
Rb should be linear in logIO (-d~). We note further that the slope is
independent of the PDF and is given by

1 '"--- = -1.66
2logIO 2

The constant term depends on both PDF and quantizer type, through
c~. Varying this term shifts the straight line up or down. As an example,
for ECSQ with O"l = 1, we have c~ = 7fe/6 (Table 3.4, IID Gaussian),
and the constant term is

(5.28)

The high rate linear approximation given by equations (5.26), (5.27),
and (5.28) is included in Figure 5.5, and agrees closely with the measured
data. The point at which the line crosses the horizontal axis (Rb = 0)
occurs at

logIO (-d~) = logIO (c~O"l2In2) ~ 0.295

corresponding to the maximal A in equation (5.20) beyond which Rb = O.
However, as previously noted, this critical slope only appears in the high
rate approximation, and never occurs for practical quantization schemes.
As A is increased (equivalently logIO (-d~) is increased), the actual rate
becomes nearly zero more quickly than the straight line approximation.
However the actual rate never reaches zero, but converges to zero as­
ymptotically.
When ECTCQ is used, plots of SNRb vs. Rb and Rb vs. logIO (-db)

look very much like those of Figures 5.4 and 5.5. Of course, the gap

224 Refinement of the Theory

30.0 ,-----,---,---.--,----,-----,-----,-----,----,----,

20.0

SNR
(dB)

10.0

0.0 ""----'----'------'------'-----'---'----'---'------'----'
0.0 1.0 2.0 3.0 4.0 5.0

Figure 5.4. SNR vs. rate for ECSQ of lID Gaussian data.

5.0,...---,---.-----.------,----,-----,-----,

4.0

3.0

2.0

1.0

0.0-1.0-2.0
O.OL---'----'----'-------..J'-------..J'----"''---'----'
-3.0

Figure 5.5. Rate vs. distortion-rate slope for ECSQ of unit variance lID Gaussian
data. The dashed line represents the high rate approximation. The solid line repre­
sents the actual measured performance.

Chapter 5: Rate Control Techniques 225

0.0-4.0 -2.0,
IOglO(-db)

-6.0
0.0 '---'-----''-----'----"----"----'----'----<:---'

-8.0

12.0

4.0

8.0

Figure 5.6. Rate vs. distortion-rate slope for ECTCQ of unit variance IID Laplacian
data.

between ECTCQ performance and the distortion-rate function is con­
siderably smaller than the 1.53 dB of Figure 5.4. Additionally, the low
rate behavior in Figure 5.5 is not quite as precipitous for ECTCQ. Heav­
ier tailed PDFs can also temper the Rb vs. loglO (-d~) behavior at low
rates.
For example, Figure 5.6 shows Rb vs. loglO (-d~) for 8-state ECTCQ

of IID Laplacian data. Note that in both Figures 5.5 and 5.6, the high
rate linear segment transitions into a low rate linear segment, followed by
an asymptotic convergence to zero. As mentioned in the previous para­
graph, the slope of the low rate linear segment is steeper for Gaussian
data than for Laplacian data. This is indicative of the heavier tails
of the Laplacian PDF. That is, the Gaussian PDF falls off extremely
rapidly (exponentially with x2), while the Laplacian PDF falls off more
slowly (exponentially with Ixl). More generally, smaller Ctb in equation
(5.18), results in a less precipitous drop in the low rate region of Rb vs.
loglO (-d~).

STEP SIZE VS. DISTORTION-RATE SLOPE
Once A has been adjusted to satisfy equation (5.25), the distortion­

rate slopes (one for each band) are given by -d~ = A/(GbWb), b =
0,1, ... ,B -1 (equation (5.5)). The required quantization step sizes can

226 Refinement of the Theory

0.8

0.4

-0.4

-0.8

-3.0 -2.0 -LO 0.0

Figure 5.7. Step size vs. distortion-rate slope for ECSQ of unit variance IID Gaussian
data. The dashed line represents the high rate approximation. The solid line repre­
sents the actual measured performance.

then be determined as functions of -d~. Figure 5.7 shows this relation­
ship for ECSQ of unit variance IID Gaussian data. Plots for ECTCQ
and/or other PDFs are quite similar.
Substituting equation (5.7) into equation (5.16), we see that the high

rate behavior of b..b is governed by

b..b=

or
1 (') 1loglO b..b = '2log10 -db - '2 loglO cb2ln 2

For ECSQ, Cb = 1/12, and we have a straight line with slope 1/2 and
intercept (loglO (-d') = 0) of loglO b..b ~ +0.47. This high rate linear
approximation is included in Figure 5.7 and is in close agreement with
the experimentally measured data. At low rates however (i.e., large b..b,
large A, large -d~), the high rate approximation differs significantly from
actual performance.
We conclude this section by noting that accurate expressions modeling

the behavior of Rb and loglO b..b vs. loglO(-dD were obtained in [86] for
ECTCQ. These expressions are based on linear segments as discussed
above, but employ hyperbolic sections to model the "curved" conver-

Chapter 5: Rate Control Techniques 227

gence behavior at low rates. Similar models are easily developed for
ECSQ.

5.4.5 REMAINING LIMITATIONS
In some cases, we may not be able to precisely control the rate achiev­

ed in any given band. This situation arises frequently in entropy coded
systems. The difference between desired and achieved rate is typically
due to errors in the rate-distortion models employed in the allocation
process.
One solution to this problem is, of course, better models. Unfortu­

nately, little is currently known in this regard. Another solution is to
iteratively encode the image, adjusting the target rate, until the desired
rate is achieved. Unfortunately, this is a very high complexity solution.
Nevertheless, for many compression systems (e.g., baseline sequential
JPEG), there is no other choice when precise rate control is desired.6

Embedded quantization and coding provide an elegant solution to this
problem. As mentioned in Chapter 3, embedded compression systems re­
sult in an incrementally decodable bit-stream. For such systems, precise
rate control can be accomplished by simply truncating the bit-stream at
the point corresponding to the desired rate. Embedded compression is
discussed extensively in Chapters 7 and 8.

5.5 ADAPTIVE RATE ALLOCATION
In the previous sections, rate allocation strategies were all spatially

invariant. That is, no effort was made to adapt the quantization and
coding to take into account local variations in scene content. For exam­
ple, in the 8 x 8 DCT case, all [0,0] coefficients were grouped together
into a single band for the purpose of rate allocation, quantization, and
coding. More generally for each choice of i,j E {O, 1, ... , 7}, all [i,j]
coefficients were grouped together to form a single band. We then had
B = 64 bands, each with a fraction "7b = 1/64 of all coefficients in the
Image.
We now note that each [i, j] coefficient comes from a different 8 x 8

image block and thus from a different spatial region. In our previous
discussions, we have assumed that the coefficients within a band are
IID, and thus stationary (or at least that the quantization and coding
do not exploit any dependency or non-stationarity). Since real images

6The typical policy employed in baseline JPEG is to not attempt any sort of precise rate
control. The step size Llo in equation (5.17) is simply set to achieve a desired level of quality
(distortion). The rate that results from this process is then not known in advance and can
vary widely from image to image.

228 Adaptive Rate Allocation

are non-stationary, it is reasonable to attempt to allocate the available
rate in a spatially varying fashion.
To this end, consider classifying image blocks based on local "image

activity." One measure of such activity is block variance or "AC energy"
given by

7 7

EAC = LLy2 [i,j] - y2 [0,0]
i=O j=O

Consider further, computing EAC for each block and dividing the blocks
into classes based on these energies. The simplest case is when each class
is chosen to have the same number of blocks [36]. We refer to this case
as "percentile" or "uniform" classification.
For a given class and given i, j E 0, 1, ... , 7, the [i, j] coefficients from

each block within the class are collected together to form a band for
the purpose of rate allocation, quantization, and coding. If there are Ne

classes, there are then B' = 64Ne bands, each with a fraction 1/(64Ne)

of the total coefficients. Any of the rate allocation schemes discussed
in this chapter can then be applied to these bands, to yield a spatially
varying (or spatially adaptive) rate allocation algorithm. The weights
Wb, b = 0,1, ... ,B' - 1 can be chosen to exploit HVS properties and/or
spatial masking phenomena as discussed in Section 4.3.4.
These ideas are easily extended to the case of subband transforms

[85]. Consider partitioning the image into N xN non-overlapping blocks.
After performing a D-Ievel dyadic subband transform of the entire image,
the original N x N partition induces a N /2 x N /2 coefficient block
partition of the HL1, LH1, and HH1 subbands, a N/4 x N/4 partition
of the HL2, LH2, and HH2 subbands, and so on. The blocks of each
subband can then be classified into N e classes, based on the variance of
coefficients within blocks. All coefficients of all blocks from a given class
and subband then comprise one of B' = (3D + 1) Ne "bands" for the
purpose of rate allocation, quantization, and coding.

5.5.1 CLASSIFICATION GAIN
For simplicity, we assume the simplified distortion model of equation

(5.6) with Wb = Gb = E~ = 1. As before, we assume that each "original"
band is divided into N e classes resulting in B' = BNe "bands" for the
purpose of rate allocation, quantization and coding. We index these
bands by the pair (b,n) b = O,l, ... ,B -1, n = O,l, ... ,Ne -1. We
also relax the uniform (or percentile) assumption on class population,
and let Pb,n be the fraction of coefficients in original band bwhich belong
to band (b, n). Finally, letting (Jl,n be the variance of band (b, n), we

Chapter 5: Rate Control Techniques 229

have

(5.29)

As before, we seek to minimize

B-1 N c-l

d(R) = L L Pb,nT]b(Jt,nT2Rb,n

b=O n=O

subject to the constraint that

B-1 N c-l

L L Pb,nT]bRb,n = R

b=O n=O

Proceeding as in previous sections, we employ the Lagrange multiplier
method and assume high rates to obtain

B-1 N c-l

d(R) = II II ((Jt,n)Pb,n1)b 2-2R

b=O n=O

(5.30)

which is the obvious generalization of equation (5.13), but with Wb =

Gb = c~ = 1. Taking the ratio of these two expressions results in the
classification gain

B-1 (2)'7b
= IT Ne l ((Jb)Pb n

b=O IT (J2 '
b,n

n=O

Substituting equation (5.29), we see that

B-1

Gc = II (GC,b)1)b

b=O

where

230 Adaptive Rate Allocation

is the classification gain of band b. Since GC,b is a ratio of arithmetic to
geometric means, it exceeds 1 to the extent that the a-l n differ from a-l.
These differences are the mechanism whereby image n~n-stationarity is
exploited. Specifically, when the data is non-stationary, so that local
variances differ markedly, the classification gain will be large.
The discussion above omits the overhead associated with the coding

of class information. Such information may be required for the decoder
to determine class membership and/or encoding rates employed for all
coefficients of each "original" band. If Rc bits/coefficient are required for
this task, only R - Rc bits are available for coding coefficients. Taking
this into account in equation (5.30), the classification gain should be
reduced by a factor of 22Rc .

Several strategies for coding class information are discussed in [85]
along with an optimal method for selecting the class population fractions
Pb,n' Experimental results indicate that gains exceeding 1.25 dB are
achievable when classification is employed with subband transforms.

In closing we note that JPEG2000 also performs quantization and cod­
ing on blocks of subband coefficients. The size of the blocks is not con­
strained to shrink pyramidally with transform level as described above.
Embedded bit-streams are formed for each block, and encoding rates
Rb,n (or equivalently, truncation points) are chosen for each block as de­
scribed above. Many such truncation points per block can be chosen to
serve a wide variety of purposes. A complete discussion of these ideas,
and much more, appears in Chapter 8.

Chapter 6

FILTER BANKS AND WAVELETS

6.1 CLASSIC FILTER BANK RESULTS
In this section we review some of the classic results in the development

of filter bank theory and subband transforms. The reader is encouraged
not to gloss over this material, since it provides a foundation for intuition
concerning subband transforms. We take up from the introduction to
subband transforms in Section 4.2. As a departure from the development
there, however, we shall assume for simplicity that the analysis and
synthesis filters (respectively, the analysis and synthesis vectors) have
only real-valued coefficients.

6.1.1 A BRIEF HISTORY
In the development of Section 4.2, we imposed the requirement that

the synthesis system must perfectly invert the analysis system of a sub­
band transform. Equivalently, the analysis and synthesis vectors (se­
quences) must satisfy the biorthogonality relationship of equation (4.29).
Moreover, our development of subband transforms began with a natural
generalization of block transforms to convolutional, or sliding window
transforms, showing that these are equivalent to filter bank systems.
While convenient for the present treatment, this is not the historical
sequence of events.

Subband transforms were first proposed in the mid-1970's for the cod­
ing of speech signals, by Croisier, Esteban and Galand [44, 45], using a
special type of analysis-synthesis system, known as a QMF (Quadrature
Mirror Filter) filter bank. QMF filter banks do not generally satisfy the
so-called "Perfect Reconstruction" (PR) property, whereby the synthesis
system perfectly inverts the analysis system. The term "filter bank" here

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

232 Classic Filter Bank Results

refers not just to an arbitrary collection of filters, but rather a "maxi­
mally decimated" system of filters and decimators, of the form shown in
Figure 4.10, where the combined rate of the subband samples is identical
to the sample rate of the input sequence. The distinctive characteristic
of QMF filter banks is that the end-to-end transfer function, through the
analysis-synthesis system, is that of an LTI (Linear Time Invariant) op­
erator. That is, the aliasing necessarily introduced during analysis (see
Figure 4.12) is perfectly cancelled during synthesis. The introduction of
alias-free maximally decimated filter banks, led to the investigation of
perfect reconstruction systems, in which the end-to-end transfer func­
tion is at most a pure delay. The key results on PR subband systems
were developed in the mid-1980's by Smith and Barnwell [137], Mintzer
[108], Vetterli [161] and Vaidyanathan [157]. Some of the classic results
of these studies are reproduced below.

6.1.2 QMF FILTER BANKS
We are interested in the end-to-end transfer function through the

analysis-synthesis system of Figure 4.10. Let xq [k] be the sequence ob­
tained by filtering the input sequence, x [n], with the qth analysis filter,
having impulse response hq [k]. Also, let x~ [k] be the sequence obtained
after decimating xq [k] by the factor IvI and then upsampling the re­
sulting subband samples, Yq [n]' by the same factor, lVI. Thus, x~ [k]
is identical to xq [k] at each k = mn and zero everywhere else. In the
Z-transform domain, this may be expressed through the aliasing rela­
tionship,

m-l

x~ (z) = ~ L xq(W~z)
p=o

·2rr h
where w~ = e-JmP , 0 ::; p < m are the m t roots of unity. This result
may be verified by observing that

m-l m-l

L xq(W~z) = L xq [k] z-k L W;;:;pk
p=O kEZ p=o

and

~ Wm-'-pk =~W~k = {m
a
if k is divisible by m

D D otherwise
p=o p=o

Chapter 6: Filter Banks and Wavelets 233

Now let x' [k] denote the sequence produced by the synthesis system.
Ideally, this is equal to x [k]. In the Z-transform domain it is given by

m-I

x' (z) = L x~ (z) gq (z)
q=O
1 m-I m-I

= m L LX (w!:t z) hq(w!:t z)gq (z)
q=O p=O

In order to avoid aliasing, all terms in x (W!:tz) with p#-O must be
cancelled. That is, the filters must satisfy

m-I

L hq(W!:t z) gq (z) = 0, 1 ~ P < m
q=O

We then have
m-I

x' (z) = x(z)~ L hq(z) gq (z)
m q=O

In the simple case of m = 2 subbands, equation (6.1) becomes

ho(-z) go (z) + hI(-z) gI(z) = 0

and

x' (z) = ~x(z) (ho(z)go(z) + hl(z)gl(Z))

(6.1)

(6.2)

CLASSICAL QMF DEFINITION

Some confusion exists in the literature concerning the use of the term
QMF in describing a filter bank. The original definition proposed by
Croisier et al. [44] refers to a two channel system, having analysis and
synthesis filters which are related to a single low-pass prototype, j (z),
according to

ho(z) = go (z) = j (z)
hI (z) = -gl (z) = j(-z)

One motivation for this selection is that all filters have the same region of
support as the prototype, so that a causal prototype will ensure that all
filters are causal. It is trivial to verify that this choice of filters satisfies
the alias cancellation condition of equation (6.2). If we also wish to
obtain perfect reconstruction, the end-to-end transfer function must be
a pure delay, z-l; i.e.,

1 1"2 (ho(z) go (z) + hI (z) gl (z)) = "2 (J2 (z) - j2 (-z)) = z-l

234 Classic Filter Bank Results

Note that 12 (z) - 12 (-z) contains only odd powers of z, so the delay, I,
cannot be zero (must be odd). As it turns out [162], this property cannot
be satisfied exactly by FIR filters, except in the relatively uninteresting
case where 1(z) is the 2-tap filter, known as the Haar filter,

1
I(z) = J2 (1+z- 1

)

This case is uninteresting because then the transform becomes a block
transform. Nevertheless, FIR filter banks with good frequency discrim­
ination have been designed, which very nearly satisfy the perfect recon­
struction requirement. The family of linear phase, even length filters
designed by Johnson [83] have been particularly popular in the litera­
ture.

ALTERNATIVE QMF DEFINITION
Although the original definition of a QMF filter bank is not com­

patible with perfect reconstruction using finite support filters, the term
is sometimes used in a more generic sense to refer to any two channel
alias-free analysis-synthesis system, in which case perfect reconstruction
certainly is possible. One popular definition (see [135] for example) is

ho(z) = go (z-1) = 1(z)

hI (z) = 91 (z-l) = zl (_z-l)

Equivalently, the impulse responses satisfy

ho [k] = go [-k] = 1 [k]

hI [k] = 91 [-k] = (_l)k+l 1 [- (k + 1)] (6.3)

Again, we see by substitution that the alias condition of equation (6.2)
is satisfied. Moreover, zero delay perfect reconstruction is possible, for
which we require

2 = ho (z) go (z) + hI (z) gl (z)

=ho(z) ho (z-l) + ho(-z) ho (_z-l) (6.4)

Thus, we have only to find a low-pass prototype, ho(z), whose Fourier
transform satisfies the power complementary property,

(6.5)

This is the starting point of Smith and Barnwell's popular procedure l

for designing perfect reconstruction filter banks [136].

101lt.lines of the procedure may be found ill lIlany texts, e.g. [162, §3.2.3J.

Chapter 6: Filter Banks and Wavelets 235

In the time-domain, equation (6.4) becomes

28 [n] = L ho[k] ho[k - n] (1 + (-1t)
k

so the sequence, ho [k]' and all of its 2-translates, ho [k - 2n], are mu­
tually orthonormal. The other filters satisfy the same property, being
related through equation (6.3). Moreover, since perfect reconstruction
holds, the biorthogonality relations of equation (4.29) must be valid.
This in turn means that

0= L90 [k] hI [2n - k] = Lho [k] hI [k - 2n]
k k

so that the 2-translates of ho [k] are orthogonal to all the 2-translates of
hI [k]. We conclude that this alternative definition for a QMF filter bank
yields an orthonormal subband transform whenever the low-pass proto­
type filter, ho, is selected to ensure perfect reconstruction. As we shall
see, all 2-band orthonormal subband transforms involving FIR filters are
essentially2 of this form. For transforms with IIR filters, the conditions
of equation (6.3) are not the only way to achieve orthonormality3, but
they have convenient properties.

6.1.3 TWO CHANNEL FIR TRANSFORMS
The special case of two channel subband transforms is important for

a variety of reasons. These transforms playa central role in the con­
struction of dyadic multi-resolution transforms and hence in implement­
ing resolution-scalable image compression schemes, as pointed out in
Section 4.2.5. Moreover, iterative application of a two channel filter
bank along one or both of the low- and high-pass subbands provides a
conceptually simple way to create a wide variety of different subband
structures. For these reasons two channel filter banks and their tree­
structured derivatives have always been a primary focus of interest in
the literature. Convolutional transforms whose analysis and synthesis
systems involve finite support are also of primary interest for a variety
of practical reasons. A number of striking statements may be made con­
cerning two channel FIR filter banks exhibiting perfect reconstruction,

20rthonormality is preserved if the analysis filter impulse responses are delayed by any nnm­
ber of samples, d, and the synthesis filters are advanced by the same d samples. The present
definition corresponds to what we call the "delay-normalized" case.
3As an example, note that orthononnality is preserved if the analysis filters are both convolved
by any all-pass filter impulse response, a [n], and the synthesis filters are convolved by its
inverse, a[-n].

236 Classic Filter Bank Results

some of which we reproduce here. The statements are either less elegant
or simply not true for filter banks involving m > 2 bands, or IIR filters.
Since the results which follow concern perfect reconstruction filter

banks, it is worth making a few comments concerning end-to-end delay
at this point. Perfect reconstruction analysis-synthesis systems are usu­
ally permitted to have some non-zero end-to-end delay, since otherwise
one or both filters must be non-causal (except in the trivial case of the 2
tap Haar filters). As noted earlier, however, we do not insist on causality,
firstly because it is not particularly relevant to image processing appli­
cations, and secondly because the addition of sufficient delay to render
a finite support filter causal is primarily a matter of implementation.
No generality is sacrificed by insisting on zero end-to-end delay, since
end-to-end delay can always be absorbed in the synthesis filters. Thus,
to simplify the statement and interpretation of results and also for con­
sistency with our development of convolutional transforms, we adopt the
convention that the end-to-end delay in a perfect reconstruction system
is zero, unless stated otherwise.

ANALYSIS-SYNTHESIS RELATIONSHIPS

Theorem 6.1 The polyphase analysis and synthesis transfer matrices,
H (z) and G (z), of any two channel FIR filter bank having perfect re­
construction must satisfy

det (H (z)) = az-d

det (G (z)) = a-1zd

for some arbitrary delay, d E Z and non-zero a E R Note that this
result is not restricted to m = 2 bands.

Proof. Since G (z) H (z) = I for perfect reconstruction, the product of det (H (z))
and det (G (z)) must be equal to 1. But both of these are finite polynomials in z, since
both analysis and synthesis systems are FIR. Consequently, they must be monomials

of the form given in the statement of the theorem. •

Theorem 6.2 The analysis and synthesis filters of any two channel FIR
filter bank with perfect reconstruction are related according to

go (z) = _a-1z2d-1h1 (-z)
91 (z) = a-I z2d-1ho (-z)

where d and a are the delay and scale factor of Theorem 6.1.

(6.6)

Proof. From the definition of analysis polyphase components in equation (4.13)
and the association of the elements of H (z) with these polyphase components in

Chapter 6: Filter Banks and Wavelets 237

equation (4.14), we have

hq(z) = hq,o (Z2) + Zhq,l (Z2)

= Hq,o (Z2) + ZHq,l (Z2) (6.7)

Also, from the definition of the synthesis polyphase components in equation (4.17)
and the association of the elements of G (z) with these polyphase components in
equation (4.18), we have

gq (z) = gq,O (z2) + z-lgq,l (z2)

=GO,q (z2) + Z-lGl,q (z2)

Now, using Theorem 6.1, we have

(
Go,o (z) GO,l (z)) = cofactor (H (z)) = a-I zd (Hl,l (z)
Gl,O (z) Gl,l (z) ard -Hl,o (z)

The result then follows by substitution. •

TRANSLATED IMPULSE RESPONSES

(6.8)

-HO,l (z))
Ho,o (z)

Before pressing on, it is worth providing a framework to assist in in­
terpreting and remembering the above results. We begin by observing
that neither the delay, d, nor the scale factor, 0:, in the statement of
Theorem 6.1 are fundamental properties of the subband transform. The
scale factor, 0:, may trivially be absorbed into the filters. The delay,
d, may be eliminated by advancing the analysis filter impulse responses
and delaying the synthesis filter impulse responses by exactly d samples.
Furthermore, it is easy to see that det (H (z)) and det (G (z)) are unaf­
fected if we delay the low- and high-pass subbands by 8 and -8 samples,
respectively, for any 8 E Z. Thus, without sacrificing any generality, we
may restrict our attention to what we shall call "delay-normalized" filter
banks (respectively, "delay-normalized" subband transforms), defined as
follows.

Definition: We say that an FIR filter bank is "delay-normalized" if
the polyphase analysis matrix satisfies det (H (z)) = 0: E IR and the
region of support of the low-pass analysis filter's impulse response,
ho [k], is centred about 0 (for odd length filters) or -~ (for even
length filters). Note that this definition is not commonplace in the
literature.

The statement and interpretation of Theorem 6.2 may be further sim­
plified by defining translated impulse responses,

ht [k] = hq [k - q]
g![k] =gq[k+q] (6.9)

238 Classic Filter Bank Results

For a delay-normalized transform, equation (6.6) may be restated in
terms of these translated impulse responses as

96 [k] = a-I (_1)k hi [k]
9i [k] = a-I (_1)k h6 [k]

(6.10)

Thus, the translated low- and high-pass synthesis filters are obtained by
scaling and modulating the translated low- and high-pass analysis filters,
and vice-versa. This is an easily remembered form of the statement of
Theorem 6.2.
The scale factor, a, may also be found in a simple manner by observing

that the polyphase components of the low- and high-pass filters may be
expressed as

hq,o (z2) = ~ (hq(z) + hq(-z))

(2) 1 1hq,I z = 2Z- (hq(z) - hq(-z))

from which we find, after simple algebraic manipulations, that

)
1 1

a = det (H (z) = 2Z- (hI (z) ho(-z) - ho(z) hI (-z))

= ~ (hi (z) hb (-z) + hb (z) hi (-z)) (6.11)

Setting z = 1 and expressing this relationship in the Fourier domain, we
obtain

(6.12)

Substituting equation (6.10) into this expression, we obtain an equivalent
relationship in terms of the synthesis filters,

as well as the useful identity,

h~ (0) g~ (0) + h~ (7T) g~ (7T) = 2, q = 0,1

(6.13)

(6.14)

Since good low-pass filters will almost invariably have a Nyquist gain
close to zero and, likewise, good high-pass filters will almost invari­
ably have a DC gain close to zero, the second term in the above equa­
tions (6.12) and (6.13) can usually be neglected, so that a is determined
by the product of the DC gain of the low-pass filter and the Nyquist gain
of the high-pass filter. In Section 6.3.1, we shall see that this is in fact

Chapter 6: Filter Banks and Wavelets 239

a necessary condition for the subband transform to arise in connection
with a continuous wavelet transform (see Theorem 6.6).
We may specify the regions of support of the finite length translated

impulse responses in terms of parameters, Lt, Lo' Li and LI , where

h& [k], gi [k] = 0 for k ~ [-Lo,Lt]
hi [k], 96 [k] = 0 for k ~ [-LI,Li]

From the definition of a delay-normalized transform, we must have

Lo = Lt or Lo = Lt + 1

A particularly important class of transforms for image compression in­
volves odd length linear phase filters. In this case, we shall see that the
translated impulse responses of a delay-normalized filter bank must all
be symmetric about 0; i.e., Lt = Lq, q = 0,1.
At least in some respects, the translated impulse responses have a

more natural interpretation than their non-translated counterparts. To
see this, let y [k] be the interleaved sequence of subband samples defined
by

y [mk + q] = Yq [k]

Then the analysis operation may be expressed as the periodically time­
varying convolution operation

y[k] = Lh~modm[i]x[k-i]
iEZ

and synthesis may be expressed as a dual time-varying convolution

x [k] = LY [i] gfmodm [k - i]
iEZ

Equivalently, suppose we define prototype analysis and synthesis se­
quences, a~ == a~ [n] and s~ == s~ [n] and their translates, a(k) and s(k)'
by

a~ [n] = h~ [-n]
a(k) [n] = a~modm [n - k]

Then we have

and
S~ [n] = g~ [n]

s(k) [n] = S~ mod m [n - k]

y [k] = \ x,a(k)) and x = LY [k] S(k)
k

So a(k) and s(k) are the interleaved analysis and synthesis vectors for the
subband transform. These equations represent an easily remembered im­
plementation procedure for the analysis and synthesis operations, which

240 Classic Filter Bank Results

x[k]

k=O k;\ k;2 k;3

ynthesis by accumulation

x[k]

y[k]

Figure 6.1. Implementation of subband analysis and synthesis operations.

is illustrated in Figure 6.1. In words, to generate each sample, y [k], in
the interleaved sequence of subband samples, we translate the appropri­
ate prototype analysis sequence (vector), a~, k samples to the "right"
and take its inner product (dot product) with the input sequence. To
synthesize the input sequence, we scan through the interleaved sequence
of subband samples, y [k], multiplying the sample value by the relevant
prototype synthesis sequence (vector), s~, translated k samples to the
"right," and accumulate the result into an output buffer.

ORTHONORMAL FIR TRANSFORMS
In any orthonormal transform, the analysis and synthesis vectors must

be identical. Thus,

h~ [k] = a~ [-k] = s~ [-k] = g~ [k] (6.15)

Together, equations (6.10) and (6.15) reveal the fact that all four filters
of a normalized orthonormal filter bank are related to a single prototype
according to

(6.16)

This relationship is nothing other than the alternate QMF definition of
equation (6.3), in connection with which we found that a necessary and
sufficient condition for perfect reconstruction is that ho(w) must satisfy
the power complementary property of equation (6.5).

Theorem 6.3 If a two channel FIR filter bank implements an ortho­
normal subband transform, then all of its filters must have the same

Chapter 6: Filter Banks and Wavelets 241

even length. Moreover, if it is delay-normalized, the regions of support
for the translated impulse responses are given by

Lo= Lt + 1; (6.17)

Proof. Consider the low-pass synthesis vectors, Shk)' which are the 2-translates

of the low-pass prototype, s~. If this sequence has odd length, 2£ + 1, then s(O) and
S(2L) have a single non-zero sample of overlap so that (s(O),ShL») i- 0, contradicting
the requirement that the synthesis vectors be orthonormal. The fact that all filters

must have the same even length with the indicated regions of support follows from

equation (6.16). •

LINEAR PHASE FIR TRANSFORMS
A linear phase filter is one whose impulse response is either symmetric

or anti-symmetric. Specifically, one of the following holds:

1. The impulse response is symmetric. Let d denote the centre of sym­
metry. For odd length filters, d E Z, while for even length filters, d
is an odd multiple of ~. In this case, the impulse response and its
Fourier transform (DTFT) satisfy

h [d + n] = h [d - n]; h(w) = ± Ih(w) Ie- jwd

and so the phase response is linear in w.

2. The impulse response is anti-symmetric. Again, letting d denote the
centre of symmetry (an odd multiple of ! for even length filters), we
have

h[d+n] = -h[d-n]; h(w) = ±lh(w)!jsgn(w)e-jWd

and so the phase response is linear in w, except for a discontinuity at
w=O.

The following theorem provides a useful characterization of the lengths
and regions of support for the filters in a linear phase filter bank.

Theorem 6.4 Apart from certain pathological cases, perfect reconstruc­
tion, linear phase, two channel FIR filter banks involve filters whose
lengths are either all odd or all even. Assume a delay-normalized filter
bank. Then, in the odd length case, all translated impulse responses are
centred about k = 0; i. e. J

242 Classic Filter Bank Results

In the even length case, the translated low-pass analysis impulse response
is centred about -~ and the translated high-pass analysis impulse re­

sponse is centred about +~,. i. e.,

La = Lt + 1, and L1 = Lt - 1
Furthermore, Lt - Lt must be odd. In the case of odd length filters,
this means that the filter lengths must differ by an odd multiple of2. For
even length filters, the filter lengths must either be identical or differ by
an even multiple of 2.

Proof. We assume a delay-normalized filter bank throughout. Combining equa­
tions (6.10) and (6.11) we obtain

Q= ~ (g~(-z)h~(-z)+g~(z)h~(z))

Let t (z) = h~ (z) g~ (z). Since h~ (z) and g& (z) are both low-pass and linear phase,
the impulse responses must be symmetric (anti-symmetry implies a high-pass filter).
Hence, t (z) also has linear phase and the finite support impulse response, t [k]' is
symmetric about its centre of symmetry. Moreover, the above equation implies that
t [271,] = 8 [71,] and so the even sub-sequence, t [271,], is symmetric about 71, = O. There
are two possibilities: either t [k] is symmetric about k = 0; or the odd sub-sequence,
t [271, + IJ = 8 [71, - pJ for some p E Z. The latter possibility leads to the pathological
cases in which t [nJ has only two non-zero terms; the resulting transforms are of little
interest (e.g., filters with lengths 1 and 2). The statement of the theorem excludes
these. Thus we conclude that t (z) = t (z-l).

If h~ is an odd length filter, then h~ (z) = h~ (Z-l) from the definition of delay­
normalization. Thus, to satisfy t(z) = t(Z-l), we must have 95(Z) = g5(Z-1),
meaning that 95 [k] has odd length and L"1 = Lt.

If ho is an even length filter, then h~ (z) = zh~ (Z-l), again from the definition of
delay-normalization. Then 95 (z) = z-lg5 (Z-l) and so g~ [kJ has even length and is
symmetric about ~; i.e., L"1 = Lt - 1.
To complete the proof we have only to show that Lt - Lt is odd. To see this,

note that

Lt
t [Lt +LtJ = L h~ [k] g~ [Lt + Lt - kJ = h~ [LtJ g~ [LtJ =1= 0

k=-Lo
But t [271,] =0 for 71, =1= 0, so Lt + Lt and hence Lt - Lt must be odd. •
Linear phase is important for a variety of reasons. Firstly, and perhaps

least significantly, the symmetry allows us to reduce the total number
of multiplication operations by a factor of two in many implementations
(consider the implementation identified in Figure 6.1, for example). A
more significant benefit of linear phase filters is that there exist con­
venient boundary extension formulations, which permit non-expansive
transformation of finite length sequences, without significantly compli­
cating the implementation. Boundary handling is the subject of Sec­
tion 6.5.

Chapter 6: Filter Banks and Wavelets 243

Linear phase filters are particularly important for resolution-scalable
image compression applications. As discussed in Section 4.2.5, these
applications involve a tree-structured transform, constructed by itera­
tive application of a two channel filter bank. Subsets of the bit-stream
represent successively lower resolution versions of the original image, ob­
tained by low-pass filtering and sub-sampling, where the low-pass filter
is hQ• It is well-known that non-linear phase filtering introduces visually
disturbing edge distortion in images [95, §4.1]. In fact, for visual intel­
ligibility, phase alignment of the sinusoidal components in the Fourier
representation of an image is far more important than the magnitudes of
these components. This explains the interest in linear phase two channel
subband transforms for image compression.
Unfortunately, useful two channel linear phase subband transforms

with finite support cannot also be orthonormal. We summarize this
negative result as follows:

Theorem 6.5 There are no two channel orthonormal subband trans­
forms having FIR linear phase filters with more than 2 non-zero coeffi­
cients in any filter.

Proof. Suppose that a two channel orthonormal subband transform has finite
length linear phase filters. According to Theorem 6.3, all filters must have even
length 2L, so the coefficients of g/j [n] must have the form

where the ± sign stands for + if the filter is symmetric and - if it is anti-symmetric.
For convenience of expression, we define the sequence bk also in the range L ::; k < 2L,
by bk = ±b2L-1-k. Thus, bk = g/j [k + d] for some d E Z. Note that bo = ±b2L-1
is necessarily non-zero; otherwise, the filter length would not be 2L. We will show
that all other coefficients, bk , 0 < k < 2L - 1, must be zero; the statement of the
theorem then follows from the fact that all filters are related by equation (6.16). By
orthogonality, we must have

o= (s~O), s~L-l»), for l = 1,2, ... L - 1

~-1 ~-1

= L bi bi+2(L-l) = ± L bib21-1-i
i=O i=O

The fact that b1= 0 follows by setting l = 1 in the above formula, yielding 0 = 2b1bo
with bo i- O. Proceeding by induction, suppose that the odd terms b2j-1 = 0 for
1::; j < l, where l < L. Then the next odd term, b21 - 1, must also be zero, since

21-1

0= L bib21+1-i = bob21 - 1
i=O

It follows that b2j - 1 = 0 for all j in the range 1 .:; j < L. But then b2j = b2L-2j-l = 0
for all j in the same range. Thus, the only non-zero filter coefficients are bo = ±b2L-1.

•

244 Classic Filter Bank Results

We note that this negative result holds only for the two channel case.
Nevertheless, the importance of the result is evidenced by the fact that
the term "biorthogonal subband transform" is commonly interpreted as
a perfect reconstruction filter bank with linear phase filters. As already
mentioned, all transforms with inverses possess the biorthogonality prop­
erty. However, apart from orthogonal transforms, the most interesting
practical transforms have been those involving linear phase filters.

6.1.4 POLYPHASE FACTORIZATIONS
ORTHONORMAL FIR TRANSFORMS
Recall (see equation (4.27)) that the analysis and synthesis matrices

of an orthonormal convolutional transform satisfy

A[i]=S[-i]

where this is nothing other than a restatement of the fact that the analy­
sis and synthesis vectors are identical. Now recall that H (z) is the Z­
transform of the matrix sequence, A* [i] and G (z) is the Z-transform of
the matrix sequence, S [i]. It follows that the polyphase transfer matrices
of an orthonormal transform must satisfy

(6.18)

where Ht (z) is formed by taking the transpose of H (z) and complex
conjugating all the coefficients of the resulting power series in z. Since we
are restricting our attention to real-valued coefficients, Ht (z) is simply
the transpose, H t (z).
Combining equation (6.18) with the requirement that

G (z) H (z) = H (z) G (z) = I

for perfect reconstruction, we see that H (z) must satisfy

Any matrix of this form is said to be "paraunitary." Of course, G (z)
must also be paraunitary. If the convolutional transform is only a block
transform (i.e., A [i] = S [i] = 0 for i =1= 0) then H (z) and G (z) are
scalar matrices. In this case H (z) = H, Ht (z) = H* (or simply H t for
real-valued coefficients) and the paraunitary condition reduces to the
unitary condition, H* H = I.

Chapter 6: Filter Banks and Wavelets 245

-,,[n\ y,[n]

.<.[n] ¥,[n]

Figure 6.2. Lattice realization of a 2 channel orthonormal subband transform.

It is well-known that m x m unitary matrices may be factored into
a cascade of (~) single-parameter rotation matrices4 . A similar factor­
ization exists for paraunitary matrices. In the simple case with m = 2
subbands, the factorization is normally given for causal filters of length
2L samples in the form

£-1 (1 0)
H (z) = Uo g a z-l Ui (6.19)

where the Ui are 2 x 2 unitary matrices. Obviously, each of the factors is
paraunitary and so any expansion of this form must be paraunitary. It
is less obvious that all paraunitary matrices corresponding to causal FIR
filters have such an expansion [157]. Notice that in this factorization,
det(H(z)) = z-(£-1). To obtain a delay-normalized transform from
equation (6.19), all analysis filter impulse responses should be advanced
by L - 1 samples.
Each of the L unitary 2 x 2 matrices, Ui, in equation (6.19), is char­

aCterized by a single rotation parameter, (Ji, with

Ui = (~~~;; ~~~n(J:i) = cos (Ji (ta~ (Ji - t~n (Ji)

leading to the lattice implementation depicted in Figure 6.2. The syn­
thesis filter bank has essentially the same structure, except that the
operations are performed in reverse order with the angles, (Ji, negated.
Notice that only L+ 1 multiplications are required to generate each sub­
band sample. By comparison, a direct implementation of the analysis
filter bank of Figure 4.10 involves two 2L-tap convolutions; i.e., 4L - 2
multiplications per sample. Of course half of the samples produced by
the filters are discarded by the decimators, so a slightly more sophisti­
cated version of the direct implementation would require only 2L - 1

4 Actually a variety of factorizations exist of which the most widely known are the factorization
in terms of Givcns rotations and the Householder factorization. Each of thcse approaches
may be cxtended to paraunitary matrices.

246 Classic Filter Bank Results

multiplications per sample, still almost twice as large as that required
by the lattice implementation. The origin of this computational saving
lies in the fact that the filters are far from arbitrary.
The paraunitary factorization provides an obvious design tool, since it

exposes all the degrees offreedom in the design (the rotation angles, 0d.
The coefficients of H (z) are multi-variate trigonometric polynomials of
degree L and so least square optimization objectives (e.g., minimiza­
tion of the stop band energy) lead to systems of polynomial equations
which may be solved using a variety of standard techniques. Noteworthy
among these is a systematic reduction method for systems of polynomial
equations due to Buchberger [32].
The factorization of equation (6.19) extends naturally to arbitrary

m x m FIR paraunitary matrices [157]; an alternative factorization [160],
however, has been found to be more convenient for optimization. We
note that expansions of this form with large m and L can lead to highly
complex optimization problems, so that less general formulations are
often preferred. For uniform transforms with large m, the modulated
cosine structure discussed in Section 4.2.4 leads to a comparatively sim­
ply design problem based on a single low-pass prototype.

LINEAR PHASE FIR TRANSFORMS
We have already mentioned the importance of two channel transforms

with linear phase filters for image compression and indeed these are cen­
tral to the JPEG2000 image compression standard. Since there are no
useful two channel orthonormal subband transforms with linear phase
filters, it is natural to seek alternative factorizations. A large class of
useful transforms may be generated by factorizations with similar prop­
erties to the paraunitary factorization given above. Unlike the parau­
nitary case, however, these factorizations do not generate all possible
transforms subject to an arbitrary length constraint.
Symmetric filters with odd length have particularly convenient prop­

erties when the boundaries of finite length sequences must be taken
into account, as discussed in Section 6.5. They are also central to the
JPEG2000 image compression standard. For this reason, it is worth re­
producing here a factorization due to Vetterli and LeGall [163], which
generates symmetric analysis filters oflengths 2L+3 and 2L+ 1.5 Adapt­
ing the original form of the factorization given in [163] to our current

5Note that odd length symmetric filters must necessarily have lengths which differ by an odd
multiple of 2. See, for example, Theorem 6.4.

Chapter 6: Filter Banks and Wavelets 247

notation and delay-normalization convention, we have

(6.20)

where the 2L parameters, ai and bi , are arbitrary apart from the re­
quirement that ai #- 0 and bi #- 2. As in the paraunitary case, the
factorization represents an efficient lattice implementation of the filter
bank, requiring 2 (L + 1) multiplications to generate each pair of sub­
band samples (each of the matrices in equation (6.20) contributes a lat­
tice stage with one multiplication). Thus, implementation complexity is
essentially identical to that for orthonormal transforms.

OTHER FACTORIZATIONS AND DESIGNS
We shall encounter a different type of polyphase factorization in Sec­

tion 6.4, which is particularly interesting for applications in compres­
sion. Also, as we shall see in Section 6.2, the wavelet transform pro­
vides us with valuable insight for the design of good subband trans­
forms for image compression. Indeed some of the most successful trans­
forms for image compression have been discovered in this way, includ­
ing the Cohen-Daubechies-Feauveau (CDF) 9/7 biorthogonal transform
[41], which is specified by the JPEG2000 image compression standard
and has been employed by most proposed image compression algorithms
of recent times.

6.2 WAVELET TRANSFORMS
In this section we provide a brief introduction to wavelet transform

theory. Our principle objective is to expose the intimate connection
between subband transforms and wavelet transforms. So close is this
connection that the terms wavelet transform and subband transform
are often used interchangeably. More particularly, the Discrete Wavelet
Transform (DWT) is generally understood as a dyadic tree-structured
subband transform with the multi-resolution structure identified in Fig­
ure 4.19 (in the one dimensional case) or Figures 4.20 and 4.21 (in the
two dimensional case). As noted in Section 4.2.5, such structures are of
great importance for image compression. Compression schemes based
upon these tree-structured subband transforms are usually known as
wavelet-based schemes. The wavelet transform perspective provides sub­
stantial intuition concerning the interpretation of multi-resolution sub-

6.2.1

248 Wavelet Transforms

band transforms, as well as guidance concerning the selection of good
subband filters for tree-structured transforms.
As in the case of block and subband transforms, our development

focuses primarily on one dimensional signals for simplicity, indicating
the generalization to multiple dimensions at the appropriate points.

WAVELETS AND MULTI-RESOLUTION
ANALYSIS

Up to this point we have considered discrete signals, x [k]. By con­
trast, the wavelet transform is concerned with functions, x (t). In fact,
the importance of the wavelet transform derives from an interest in the
regularity (e.g., continuity, differentiability, etc.) of the waveforms which
are represented by discrete sequences of samples. We confine our atten­
tion to the Hilbert space of square-integrable (finite energy) functions
on the real-line, £2 (~), writing x == x (t), when we wish to stress the
vector-space properties of the function, x (t). Inner products on £2 (~)

are defined by

(x,y) £ 1: x(t)y*(t)dt

The Fourier transform is well-defined on £2 (~), through the familiar
relations

x(w) = 1: x (t) e-jwtdt

1 100

.x (t) = - x(w) eJwtdw
271' -00

(6.21a)

(6.21b)

Moreover, we have the generalized Parseval relation, which allows com­
putation of inner products in the Fourier domain according to

(x,y) = ~ foo X (w) f;* (w) dw
271' . -00

(6.22)

COUNTABLE BASES OF WAVELETS
A wavelet basis for £2 (~) is a family of functions, 'l/J~m) (t), all derived

by translation and dilation (expansion) of a single "mother wavelet,"
'l/J (t), according to

(6.23)

such that the 'l/J~m) are linearly independent and span £2 (~). That is,
any signal, x E £2 (~), can be written as a linear combination of the

Chapter 6: Filter Banks and Wavelets 249

form
00 n==oo

X = L L y~m) [n] 'ljJ~m)
m==-oo n==-oo

(6.24)

where y~m) [n] is a sequence of real numbers. Note that increasing the
value of m corresponds to increasing the scale (i.e., expansion or dilation)

of the wavelet functions, 'ljJ~m) (t). The factor, J2-m , in equation (6.24)
ensures that the wavelet basis signals all have identical norm (energy);

i.e., 11'ljJ~m)11 = 111/J11, Vm,n. This is important if {1/J~m)}m,nEZ is to form
an orthonormal basis for £2 (JR.), although wavelet bases need not neces­
sarily be orthonormal.
The fact that only countably many basis functions, 1/J~m), are required

to span the space of all square integrable functions, may seem surprising
at first. To alleviate concerns and provide some intuition, we give an
example using familiar signal processing concepts.

Example 6.1 Consider the sub-space, v(m) C £2 (JR.), of finite energy
bandlimited signals having Fourier transform supported on Iwl < 2-m 7f.
Let x(m) denote the projection of any x E£2 (JR.) onto v(m). That is,
x = x(m) + e where x(m) E v(m) and (x(m), e) = O. From the gen-

eralized Parseval relation of equation (6.22), we conclude that x(m) (t)
is obtained by low-pass filtering x (t) with an ideal low-pass filter with
cut-off frequency at w = 2-m 7r; then e (t) occupies the high frequency
remainder and is necessarily orthogonal to x(m) (t).

Applying Shannon's well-known sampling theorem, we have

(m) _ ~ (m) [] sine (2- m
t - n) _ ~ (m) [] (m)

X - L.J Yo n y'2ffi - L.J Yo n <Pn
2mn==-oo n==-oo

(m) [1= (() sine (2-
m t)) I = / (m))Yo n x t * M:m \ x, <Pn

y 2m t==2- m n

where <p~m) (t) = <p(m) (t - 2mn) and

<p(m) (t) = J2-m sine (2-m t)

or, equivalently,

(6.25a)

(6.25b)

Recognizing equations (6.25a) and (6.25b) as an orthonormal expansion,

we see that {<p~m)}nEZ is an orthonormal basis for v(m) and x(m) may
be represented as a countable linear combination of the basis vectors.

250 Wavelet Transforms

Since x has finite energy,

IIxll 2 = 21
00

Ix (w)1
2

dw

the energy of the bandlimited approximation error,

IIx(m) - xl1
2

= 21~mrr Ix (w)1 2
dw

must converge to 0 as m -t -00. Equivalently, the approximation sub­
spaces, v(m), converge to £2 (lR) as m -t -00, which we may write as

m->-oo

This suggests that any x E £2 (lR) can be represented to arbitrary ac­

curacy as a countable linear combination of the basis signals {<p~m) }nEZ
for some m. To carry the reasoning further, define w(m) to be the or­
thogonal complement ofv(m) in the higher resolution sub-space, v(m-I).
Then w(m) is the set of finite energy signals whose Fourier transform
is supported on 2-m7T :::; Iwl < 2-m +I 7T. Again, applying Shannon's
sampling theorem, we find that an orthonormal basis for w(m) is the

modulated sine functions, 'ljJ~m) (t) = 'ljJ(m) (t - 2mn), with

'ljJ(m) (t) = J2-meos (~7T2-mt) sine (~Tmt), or equivalently,

A(m) W = {.j2ffl if 2-m 7T :::; Iwl < 2-m+l7T
'ljJ () 0 otherwise

It follows that for any p 2: m, x(m) can be expressed as

P 00

x(m) = x(p) + L L yim) [n] 'ljJ~k), where yim) [n] = (x, 'ljJ~m))
k=m+1 n=-oo

This construction is illustrated in Figure 6,3.
Finally, since the Fourier transform of a finite energy signal cannot

grow without bound as w -t 0, we mus't have

IIx(p) 11 2 = 212-
prr

Ix (w)1 2 dw < TP (27TB2)

for some suitable bound Bon Ix(w)l. It follows that limp -+oo IIx(P) II = 0,
which may be written as

n v(m) = {O}
m-+oo

Chapter 6: Filter Banks and Wavelets 251

span{ ",~p-I)}"

'------......,..-----_./
V(p-2)

'---------------.....----------------'
V(p-3)

Figure 6.3. Frequency bands corresponding to the subsets, v(m), and their orthog­
onal complements, w(m) in v(m-l), for the multi-resolution hierarchy generated by
the sinc basis functions.

Combining this with the fact that x(-m) converges to x, we see that any
x E£2 (IR) can be expressed as a linear combination of the orthonormal

basis signals, 'ljJ~m), as in equation (6.24). Moreover, the 'ljJ~m) are all

related to the mother wavelet, 'ljJ = 'ljJbO) , according to equation (6.23).

The above example is instructive from a number of perspectives.
Firstly, it illustrates the close connection between the wavelet basis and
a multi-resolution hierarchy of nested sub-spaces of £2 (IR). The key
properties of £2 (lR) which we required to obtain the basis of scaled and
dilated versions of a mother wavelet were:

1. Each x E £2 (IR) is essentially bandlimited (or "resolution-limited")
so that the approximations, x(m), converge to x as m ---+ -00 and the
sub-spaces, v(m), cover £2 (lR).

2. No non-zero x E £2 (IR) can have zero bandwidth (or zero "resolu­
tion"), so that the approximations, x(m), must tend to 0 as m ---+ 00

and the complement spaces, w(m), must cover £2 (IR).

We point out that convergence of the infinite summations in equa­
tion (6.24) is in the £2 sense. Strictly speaking then, this equation
states only that the error between x and its representation as a linear
combination of the wavelet basis signals has zero energy; there is no
guarantee of point-wise convergence. The Fourier transform relations of
equations (6.21a) and (6.21b) are valid in exactly the same sense, as are
most other expressions in the sequel.

252 Wavelet Transforms

MULTI-RESOLUTION ANALYSIS
Motivated by Example 6.1, a "multi-resolution" analysis on £2 (JR)

is defined as a set of sub-spaces (note that resolution increases with
decreasing m),

... C V(2) C V(1) c V(O) c V(-l) c V(-2) c ...

satisfying the following additional properties.

(MR-l) UmEZ v(m) = £2 (JR). This property, known as "upward com­
pleteness" means that every x E£2 (JR) is the limit (in the £2 sense)
of its projections, x(m), onto successively higher resolution spaces,
v(m), m = -1, -2, Since convergence is only in the £2 sense, it is
formally more correct to say that the union of the resolution spaces
is "dense" in £2 (JR), or that £2 (JR) is its closure.

(MR-2) nmEZ v(m) = {O}. This property, known as "downward com­
pleteness," means that every x E £2 (JR) has non-zero resolution so
that its projections, x(m), converge to 0, as m tends to 00, where
convergence is again in the £2 sense.

(MR-3) x (t) E V(O) if and only if x (2- m t) E v(m). Thus, dilating a
signal from resolution space V(O) by the factor 2m yields a signal in
the lower resolution space v(m).

(MR-4) x (t) E V(O) if and only if x (t - n) E V(O) for all n E Z. Com­
bining this with the above property, we see that translating a signal
in resolution space v(m) by any integer multiple of 2m does not alter
its resolution.

(MR-5) There exists an orthonormal basis, {CPn}nEZ, for V(O) such that
CPn (t) = cp (t - n). The function, cp (t) is called the "scaling function."

A family of sub-spaces satisfying the above properties is also known
as a "multi-scale" analysis. Projections onto larger resolution (or band­
width) sub-spaces expose features at a smaller scale. The parameter,
m, is best understood as a "scale parameter," since it decreases as the
scale of signal features decreases (resolution increases). This convention
is also convenient in unifying the notation adopted in Section 4.2.5 for
tree-structured subband decompositions with that being developed here
for multi-resolution analysis and the wavelet transform.
We shall see shortly how this multi-resolution/multi-scale framework

leads to wavelets. First, however, properties (MR-4) and (MR-5) deserve
some additional comments.

Chapter 6: Filter Banks and Wavelets 253

Translation Invariance (MR-4). From a signal processing perspec­
tive, the most natural definition of resolution is in terms of bandwidth.
Accordingly, the bandlimited spaces of Example 6.1 constitute the most
natural multi-resolution analysis. As it turns out, this particular multi­
resolution analysis is unique in that all translates (whether by integers
or otherwise) of a bandlimited signal have the same bandwidth. That
is,

(6.26)

Intuitively, we expect that the resolution of a signal should be unaffected
by translation. By contrast, property (MR-4) states only that the integer
translates of each element of V(O) also belong to V(O).

This weakening of the translation invariance property is unfortunate,
but necessary in order to generalize the multi-resolution concept from
strictly bandlimited signals to approximately bandlimited signals for
which the basis functions can have more compact support. The sinc
basis functions of Example 6.1 decay only slowly as t. As a result, phys­
ically realizable approximations converge only slowly and the wavelet

coefficients, yim
) [n], exhibit poor localization with respect to features

in the underlying signal, x (t). By contrast, we are chiefly interested
in scaling functions with exponential decay and especially finite sup­
port. Nevertheless, to the extent that the scaling function approximates
the ideal low-pass characteristic of the sinc function, the corresponding
multi-resolution analysis will approximately satisfy the ideal of complete
translation invariance, as expressed in equation (6.26).

Orthonormal Basis (MR-5). The orthonormality of the basis func­
tions, {!Pn}nEZ, is not central to the concept of a multi-resolution analy­
sis. The important property is that the basis functions for V(O) are
integer translates of a single scaling function. In fact, there is a simple
orthogonalization procedure which may be used to create an orthonormal
basis satisfying this shift property from a non-orthogonal one satisfying
the same shift property [98]. The generalization to non-orthogonal bases
is discussed in Section 6.2.3. For the moment, however, the simplicity
afforded by an orthonormal basis is convenient.
Properties (MR-5) and (MR-3) together indicate that each resolution

space, v(m), has an orthonormal basis, {!p~m) }nEZ, where

254 Wavelet Transforms

Also, using the Poisson formula, the orthonormality of the functions,
{'P (t - n)}nEZ, may be expressed in the Fourier domain as

L I<p (w + 27fk)12 = 1
kEZ

(6.27)

WAVELETS FROM SCALING FUNCTIONS
The introduction of multi-resolution analysis as a tool for interpreting

and constructing wavelet bases is due to Mallat [98]. Starting with the
scaling function, 'P (t), which characterizes a multi-resolution analysis, it
is possible to construct an orthonormal wavelet basis (it is not unique).
Following the procedure of Example 6.1, let w(rn) denote the orthogonal
complement of Vern) in v(rn-1); i.e.,

w(rn) 1.. Vern) and W(rn) EB Vern) = vern-I)

Our objective is to find an orthonormal basis, {1/J~rn)}nEZ, for each w(rn)

where the basis functions, 1/J~rn) are all translated and dilated versions of
a single mother wavelet, 1/J. Properties (MR-1) and (MR-2) of the multi­
resolution analysis will then ensure that {1/J~rn)}n,rnEZ is an orthonormal
basis for £2 (Il~.).

Since V(O) c V(-I), the scaling function, 'P (t), may be expressed as
a linear combination of the functions, 'P~-1) (t) = V2'P (2t - n), which
span v(-1). Specifically, we may write

00

'P (t) = J2 L 90 [n] 'P (2t - n)
n=-oo

(6.28)

for some sequence of weights, 90 [n]. The reason for this choice of nota­
tion will become apparent shortly. Now, since {'P~O)}nEZ and {'P~-I)}nEZ
are orthonormal bases for V(O) and V(-1), respectively, we have

8 [n] = \ 'P~O), 'P~O))

= 2i: (~>o Ii] 'I'(2t -i) ~90 Ij] 'I'(2(t -n) - j)) dt

= 22::90 [i] 90 [j - 2n]I: 'P (2t - i) 'P (2t - j) dt
t,)

= L90 [i] 90 [j - 2n] \ 'P~-1), 'P;-I)) = L90 [i] 90 [i - 2n]
iJ i

Chapter 6: Filter Banks and Wavelets 255

That is, treating the coefficient sequence, 90 [n], as a vector in £2 (25),
we see that it has unit norm and is orthogonal to all of its 2-translates.
As discussed in Section 6.1.2, this is exactly the condition required of
the low-pass synthesis filter which defines a two channel orthonormal
subband transform. Thus, following equation (6.3) we may set

and the 2-translates of 90 [n], together with the 2-translates of 91 [n],
form an orthonormal basis for £2 (25). Now set

00

¢ (t) = J2 L 9dn] cp(2t - n)
n=-oo

and observe that ¢ (t) satisfies the following properties.

1. ¢ (t) and its integer translates are orthonormal, since

(6.29)

(¢o, ¢n) = 21: (2::91 [i] cp (2t - i) . 91 [j] cp (2 (t - n) - j)) dt
Z,]

= L 91 [i] 91 [j - 2n] (cp~ -1), cp)-I))
i,j

= L 91 [iJ 91 [i - 2nJ = 8 [nJ

2. ¢ (t) and its integer translates are all orthogonal to V(O), since

(,pn, <pp) =2.l: (L9dil <p (2 (t - n) - i) ·90 lil <p (2 (t - p) - j~ dt
~Z,] J

= L91 [i - 2n]90 [j - 2p] (cp~-I>,cp)-I»)
i,j

Combining this with the fact that ¢ (t) and its translates are linear
combinations of the basis functions, cp~-I), for V(I), we see that they
all belong to the orthogonal complement of V(O) in V(-1); i.e., W(O).

256 Wavelet Transforms

3. The mutually orthonormal functions, {'l/Jn}nEZ and {CPn}nEZ, together
span V(-1). To see this, note that any x E V(-1) can be written as

x = LYb-1
) [n] CP~-l)

nEZ

= L (LYbO) [i] 90 [n - 2i] + LY~O) [j] 91 [n - 2j]) CP~-l)
nEZ iEZ jEZ

= LYbO) [i] CP~O) + LY~O) [j] 'l/J)O)
iEZ jEZ

where the second line follows from the fact that the sequence, Yb- 1
) [n]

has finite energy and so belongs to £2 (Z), meaning that it can be
written as a linear combination of the 2-translates of 90 and the 2­
translates of 91. It follows that the {'l/Jn}nEZ must span W(O).

We conclude that {'l/Jn}nEZ is an orthonormal basis for W(O). More­
over, it is easy to see that the above properties hold also for the di­
lated versions of 'l/J (t), so that {'l/J~m)}nEZ is an orthonormal basis for
the orthogonal complement, w(m), of v(m) in v(m-1). In this way, the
{'l/J~m)}n,mEZ form an orthonormal wavelet basis for £2 (lR).

6.2.2 DISCRETE WAVELET TRANSFORM
We have seen that every multi-resolution analysis gives rise to a

wavelet basis. Moreover, subband transforms are at the heart of the
construction of the wavelet basis. In particular, the key steps in the
construction are: 1) write cp = cp6°) as a linear combination of the

{cp~-l)}nEZ, with coefficients, 90 [n]; 2) identify 90 [n] as one of the syn­
thesis filters of a two channel subband transform; and 3) use the other

synthesis filter, 91 [n], to express 'l/J = 'l/JbO) as a linear combination of

the {cp~-l)}nEZ' In fact, the underlying filter bank provides a vehicle for
implementing the wavelet transform.
Suppose that the input signal, x (t), is characterized at some resolu-

tion, say V(O), by the discrete sequence, YbO) [n], such that

x(O) (t) = LYbO) [n] cp (t - n)
nEZ

(6.30)

This sequence may be decomposed into low- and high-pass subband se­
quences, Yb1

) [n] and yP) [n], using the analysis system of the two channel
subband transform and then reconstructed using the synthesis system

Chapter 6: Filter Banks and Wavelets 257

y~/)-I)rnl

y~J)) [11)

y~lJ) [111

analysis

Figure 6.4. DWT analysis and synthesis with D levels.

of the same transform, yielding

x(O) (t) = L (LY61
) [i] 90 [n - 2i] + LYi1

) [j] 91 [n - 2j]) <p (t - n)
nEZ iEZ jEZ

= LY6
1
)[i] (I::90[n]<p((t-2i)-n))

iEZ nEZ

+ LY?) [j] (L9dn]<p((t - 2j) - n))
jEZ nEZ

= LY61
) [i] <p~1) (t) + LYi1

) [j] 1jJ~1) (t)
iEZ jEZ\, v ...""'---v----'~

x(l)EV(l) w(1)EW(1)

Thus, the subband transform decomposes x(O) as a sum of two pieces,
x(1) E V(1), and w(1) = x(O) - x(1) E W(1).

Now suppose we apply the subband analysis operation recursively to
the low-pass subband sequences, Y61

) [n], Y62
) [n] and so forth. The result

is a tree-structured transform with D levels, as illustrated in Figure 6.4

258 Wavelet Transforms

and x(O) is decomposed as

D

x(O) = LY6D
) [n] 'P~D) + L Ly~m) [n] VJ~m)

nEZ m=l nEZ

D

= x(D) + L Ly~m) [n] VJ~m)

m=lnEZ

D

D~ L Ly~m) [n] VJ~m)
m=l nEZ

In summary, the high-pass subband samples in the tree-structured trans­
form are in fact wavelet transform coefficients and the low-pass subband
samples are of vanishing importance as the number of levels in the tree
becomes large. For this reason, any tree-structured subband transform
of the form illustrated in Figure 6.4 is known as a Discrete Wavelet
Transform (DWT).
Before moving on, we make several observations concerning the imple­

mentation of the continuous wavelet transform using a tree-structured
subband transform; i.e., a DWT. Firstly, we have assumed that the in­
put sequence, yaO

) [n], supplied to the discrete transform, is related to
the underlying continuous input waveform through the basis of trans­
lated scaling functions, {'P~O)}nEZ' There is not usually any reason to
believe this. However, physical signals inevitably possess some degree
of smoothness6 so that any smooth interpolation of their samples repre­
sents a good approximation, so long as the sampling rate is sufficiently
high. Secondly, the DWT is usually applied to signals which have fi­
nite power, rather than finite energy. Even when the signals have finite
support, as in image compression applications, the DWT is usually ap­
plied to appropriately extended, periodic versions of the signals which do
not have finite energy (see Section 6.5). As a result, the low-resolution
approximations, x(D), do not generally converge to 0 as D --t 00. Conse­
quently, practical DWT implementations must include the low resolution

subband samples, Y6D
) [n], in the reconstruction.

6 Signals with finite energy (respectively power) are essentially bandlimited, meaning that they
cannot have non-negligible power at arbitrarily high frequencies. More significantly, physical
imaging (more generally, data acquisition) processes necessarily involve signal integration
over finite windows in space or time, which is equivalent to low-pass filtering.

Chapter 6: Filter Banks and Wavelets 259

6.2.3 GENERALIZATIONS
BIORTHOGONAL WAVELETS
We have seen that every multi-resolution analysis leads to an ortho­

normal wavelet basis and that the wavelet transform is associated with
a tree-structured orthonormal subband transform. On the other hand,
Theorem 6.5 demonstrates that there are no useful two channel ortho­
normal subband transforms whose synthesis filters have linear phase and
finite support. Linear phase and finite support are important properties7

for image compression applications, as discussed in Section 6.1.3. This
leads us to consider multi-resolution analyses with non-orthogonal bases
and hence non-orthogonal wavelet transforms. We begin by modifying
property (MR-5) describing a multi-resolution analysis to read

(MR-5)' There exists a basis8 , {<Pn}nEZ, (not necessarily orthonormal)
for V(O) such that <Pn (t) = <P (t - n). The function, <P (t) is called the
"scaling function."

The scaling function still satisfies equation (6.28), which is known as
the "two-scale" equation, and we may identify the coefficient sequence,
90 [n], as the low-pass synthesis impulse response of some two channel
subband transform. It is not hard to show that such an association is
always possible, although the subband transform is far from unique. Let
91 [n] be the high-pass synthesis impulse response of the transform. Then
the 2-translates of 90 and 91 together form a basis for £2 (2). Defining
the mother wavelet 'l/J (t) in terms of equation (6.29), we find that any
x E V(-1) can be expressed as

x = LY6-1) [n] <p~-I)

nEZ

= L (LY6°) [i] 90 [n - 2i] + LyiO) [j] 91 [n - 2j]) <p~-I)
nEZ iEZ jEZ

= LY6°) [i] <p~0) + LyiO) [j] 'l/J)O)
iEZ jEZ

exactly as in the orthonormal case. The same property applies at every
scale so that each x E v(m-l) can be written as a sum x(m) + w(m), , ,

7Actually, if a filter is to have linear phase (symmetric impnlse response) then it must also
have finite support for practical reasons.
8Technically, we require the {'Pn}nEZ to constitute a Riesz basis, meaning that the basis

functions are linearly independent and each x E V(O) may be expressed as a linear combi­

nation, x = LnEZ YbO) [n] 'P~m), with YbO) E £2 (Z) and AIIYbO)1I ~ IIxli ~ BIIYbO)II, where
A ~ 1 ~ B are two positive constants, independent of x.

260 Wavelet Transforms

where x(rn) is a linear combination of the basis signals, {'P~rn)}nEZ' for

v(rn) , while w(rn) is a linear combination of the {'l/J~rn)}nEZ' Now define

w(rn) to be the linear span of the {'l/J~rn)}nEZ' It follows that

Vern-I) = vern) E9 w(rn)

so that w(rn) is a complement of Vern) in v(rn-I). Then, by upward and

downward completeness of the resolution spaces, v(rn), the {'l/J~rn) }n,rnEZ

together span £2 (1R). Linear independence of the {ljJ~rn)}nEZ for each
m follows from linear independence of the 2-translates of gi in ;2 (1:).
Linear independence of the entire set of wavelet functions, {'l/J~rn)}n,rnEZ,
may be deduced by observing that

(w(rn+I) n w(rn)) c (v(rn) n w(rn))

and that Vern) n w(rn) = {O} since the 2-translates of go and the 2­
translates of gi are linearly independent in £2 (1:).
In summary, the "two-scale" equation inherent to any multi-resolution

analysis may be used to identify the low-pass synthesis filter of a two
channel subband transform, whose high-pass synthesis filter may then
be used to generate a wavelet whose translates and dilates form a basis
for £2 (~). For each m, the {'l/J~rn)}nEZ form a basis for the complement
space, w(rn). In general, the complement spaces are neither orthogonal
to one another nor to the v(rn) , nor are the wavelet basis functions
orthonormal.
The construction described above leads to an immediate implemen­

tation of the wavelet transform in terms of a tree-structured subband
transform, or DWT, exactly as in Section 6.2.2. In fact, we deliber­
ately avoided any dependence on orthonormality in the development of
Section 6.2.2. In the orthonormal case, the analysis filters, ho[n] and
hI [n] (see Figure 6.4), must be time-reversed copies of the synthesis fil­
ters, go [n] and gi [n], and the analysis system necessarily implements
the inner products

y~rn) [n] = \ x(O), 'l/J~rn)), Vn E 1:, Vm > 0

where x(O) is defined in terms of the input sequence, Y6°) [n], by equa­
tion (6.30). Also, x(rn) is clearly the orthogonal projection of x(O) onto
Vern).

In the non-orthogonal case, the analysis and synthesis filters are gen­
erally different and the analysis system implements a different set of

Chapter 6: Filter Banks and Wavelets 261

inner products

y~m) [n] = (x(O), ep~m)) ,

Under appropriate conditions (see Section 6.3.1), the {'0~m)}n,mEZ con­
stitute a dual wavelet basis for £2 (lR). It is easily checked that these
bases satisfy the biorthogonality condition,

('ljJ~m), '0Am)) = [) [n - ii] [) [m - m], "In, m, ii, mE 2

which is the analog in £2 (lR) of the biorthogonality conditions in £2 (2)
which must be satisfied by the underlying subband transform (see equa-

tion (4.29)). For this reason, we refer to {'0~m)}n,mEZ and {'ljJ~m)}n,mEZ
as biorthogonal wavelet bases.

Subject to the conditions mentioned above, {ep~m) }nEZ and {'0~m)}nEZ
form bases for sub-spaces, v(m) and w(m), respectively, such that the
v(m) constitute a dual multi-resolution analysis and w(m) is the non­
orthogonal complement of v(m) in V(m-l). Moreover, biorthogonality
implies that w(m) 1- v(m) and w(m) 1- V(m). Note that the succession
of lower resolution approximations, x(m) E v(m), no longer represent
orthogonal projections of x(O) onto v(m). When necessary, we refer to
ep (t) and '0 (t) as the analysis scaling and wavelet functions and to c.p (t)
and 'ljJ (t) as the synthesis scaling and wavelet functions.

MULTI-DIMENSIONAL TRANSFORMS

For image compression applications, we are most interested in tree­
structured filter banks of the form illustrated in Figure 4.20; the as­
sociated passband structure is indicated in Figure 4.21. In this case,
the appropriate Hilbert space is £2 (lR2) , the complete inner product
space of all square-integrable two dimensional functions, x == x (SI, S2) ==
x (8). The multi-resolution analysis consists of a family of nested res­
olution spaces, v(m), exhibiting upward and downward completeness
on £2 (lR2), where x (SI' S2) E V(O) if and only if its 2m -fold dilation,
x (2-m SI, 2-m S2) E v(m). The other properties generalize in the obvious
way. The scaling function then satisfies a two-scale equation of the form

c.p(8l,82) = 2 L 90 [nl, n2] c.p (281 - nl, 282 - n2)
nl,n2EZ

Since we are generally unwilling to consider implementations involving
non-separable subband transforms, we restrict our attention to multi­
resolution analyses in which the two-scale equation involves separable

262 Construction of Wavelets

coefficient sequences; i.e.,

<p (81, 82) = 2 L 90 [n1] 90 [n2] <p (281 - n1, 282 - n2)
nl,n2EZ

Identifying 90 [n] as the low-pass synthesis impulse response of a two
channel subband transform, we may use the other synthesis filter, 91 [n],
to construct a wavelet basis. In this case, there are three distinct mother
wavelets,

0,1'lj; (81,82) = 2 L 90 [n1] 91 [n2] <p (281 - n1, 282 - n2)
nl,n2EZ

1,0'lj; (81, 82) = 2 L 91 [n1] 90 [n2] <P (281 - n1, 282 - n2)
nl,n2EZ

1,1'lj; (81,82) = 2 L 91 [n1] 91 [n2] <P (281 - n1, 282 - n2)
nl,n2EZ

whose translates and dilates together span £2 (lR2). Accordingly, there
are three complement spaces, w~~), wir;;) and wi~), such that

" ,

All other concepts generalize naturally from the one dimensional case
and the DWT implementation is simply the two dimensional multi­
resolution subband transform of Figure 4.20.

6.3
6.3.1

CONSTRUCTION OF WAVELETS
WAVELETS FROM SUBBAND

TRANSFORMS
We have seen that every multi-resolution analysis leads to a wavelet

transform (the association is not unique) and that the wavelet transform
is associated with a tree-structured subband transform which we call a
DWT. It is natural to enquire as to the validity of the converse state­
ments. It is generally acknowledged that every useful wavelet transform
arises in connection with a multi-resolution analysis. The key question
is whether or not every subband transform can arise from some multi­
resolution analysis. The answer is decidedly no.

PRODUCT FORM EXPANSIONS
Suppose we are given the low-pass synthesis filter of a two channel

subband transform, having impulse response 90 [n]. If this transform

Chapter 6: Filter Banks and Wavelets 263

does arise in connection with a multi-resolution analysis, then the scal­
ing function of the multi-resolution analysis must satisfy the two-scale
equation (6.28). In the Fourier domain this becomes

where

ep (w) = V22::90 [n] ~e-jn~ep (~)
nEZ

= J2=lep (~) 90 (~), Vw E ~

90 (w) = 2::90 [n] e-jnw

nEZ

(6.31)

Note that 90 (w) is essentially the DTFT of the sequence, 90 [n], except
that it is defined for all w E ~ as a 2n-periodic function.
Equation (6.31) indicates that ep (w) arises as an infinite product of

the form,
00

ep(w) = J3II rno (;)
i=l

where rno (w) is the normalized 2n-periodic function defined by

rno (w) ~ ~90 (w)

(6.32)

(6.33)

The infinite product in equation (6.32) can converge at w = 0 only if
rno(O) E (-1,1]. There are various ways to show that in fact we must
have rno (0) = 1. One way to see this is as follows. Suppose that rno (w)
is continuous about w = 0 (all practical subband synthesis filters will
have this property) with Irno (0) I < 1. Then there exists c, b > 0 such
that Irno (w) I < I-b whenever Iwl < c. For any w, all but a finite number
of terms in the infinite product of equation (6.32) have 12- i wl < c and
so the infinite product would converge to 0 everywhere.
The value of J3 in equation (6.32) determines the norm of the scaling

function and hence all of its dilates and translates. In the orthonormal
case, we have no option but to select J3 = 1.9 In the general biorthogonal
case, we find it convenient to adopt the same value, J3 = 1. In the Fourier

9Por an orthonormal transform, equation (6.5) yields Irno (w)12 + Irno (w + 11")12 = 1 and
so rno (11") = go (11") = O. It follows from equation (6.32) that <p (211"k) = 0 for all k =I O.
Combining this with the Poisson formula of equation (6.27), we see that <p (0) = 1, so we
lllust set (3 = 1.

264 Construction of Wavelets

domain, equation (6.29) becomes

where we find it convenient to define ml (w) as the normalized DTFT
of the translated impulse response, 9i [n] = 91 [n + 1]; i.e.,

As noted in Section 6.1.3, many statements concerning subband trans­
forms are simpler when expressed in terms of the translated impulse
responses, defined through equation (6.9), and this turns out to be true
in the present context also.
In summary, given the synthesis filters of a two channel subband trans­

form, and hence mo (w) and ml (w), the associated scaling function and
wavelet, if they exist, may be explicitly constructed using

00

<p(w) = IImo (~)
i=l

(6.34)

(6.35)

We will obviously need to consider the conditions under which the
infinite product of equation (6.34) converges. In fact, convergence is not
enough to ensure that the limit, <p (w), is the Fourier transform of a valid
scaling function, <p (t), or that the translates and dilates of this scaling
function form bases for a family of resolution spaces, v(m), satisfying the
upward and downward completeness requirements of a multi-resolution
analysis. These matters are at the heart of the distinction between
wavelet transforms and general multi-resolution tree-structured subband
transforms. First, however, it is instructive to consider the following
example.

Example 6.2 (Haar Wavelet) Here we consider one of the simplest
linear transforms, in which each pair of samples, XQ [n] = x [2n] and
Xl [n] = X [2n + 1], is represented by its sum and difference. Specifically,
choosing the normalization which leads to an orthonormal transform, we
have

(
Yo [n]) _ 1 (XQ [n] + Xl [n])
Yl [n] - J2 Xl [n] - XQ [n]

Chapter 6: Filter Banks and Wavelets 265

Evidently this is an orthonormal block transform with block dimension
m = 2. It is also a two channel subband transform, where the translated
analysis and synthesis impulse responses are given by

(
ht (z)) (gt (z-1)) 1 (1 + z)
h~ (z) = gt (z-1) = J2 1- z-1

Applying equation (6.34) we see that this transform arises in connec­
tion with a multi-resolution analysis whose scaling function has Fourier
transform,

d 1+ e-j2-iw d
$ (w) = lim II 2 = lim II e-j2-i-lw cos 2- i - 1w

d-'>oo d-'>oo
i=1 i=1

d . 2- i . w
= e-j~ lim II sm .w = e-j~ lim sm 2

d-'>oo 2sin 2- t - 1w d-'>oo 2d sin 2-d~
i=1 2

. w
·w sm 2 ·w w

= e-J2-- = e-J2 sinc - (6.36)
~ 27T

In the second line of the above equation, we have used the trigonometric
identity, sin 28/ sin 8 = 2cos 8. We conclude that cp (t) is a unit pulse,
centred at t = !; i.e.,

(t) _ {I ift E (0,1)
cp - ° ifttt(O,l)

From equation (6.35), we deduce that

which is equivalent to the convolution integral,

1jJ(t) = /[~ (8(T-~) -8(T))] . [2cp(2(t-T))]dT

{

-I iftE(O,!)
= 1 if t E (!, 1)° if t tt(O,l)

Note that resolution space, v(m), consists of functions which are piece­
wise constant on intervals of length 2m , so that the projections, x(m),

represent piecewise constant approximations ofx E £2 (IR). The mother
wavelet, 1jJ (t), is known as the Haar wavelet. Accordingly, the corre­
sponding subband transform and its recursive extension to the DWT are
commonly identified as discrete Haar transforms. The discontinuous or­
thonormal functions, cp (t) and 1jJ (t), are illustrated in Figure 6.5.

266 Construction of Wavelets

cp(t) V/(t)

-(!-_-...J

I

Figure 6.5. Haar scaling function and wavelet.

CONVERGENCE AND DUALS
Recall that our first concern is with the convergence of the infinite

product expression in equation (6.32). To simplify matters, we restrict
our attention to FIR subband transforms. Since rna [n] = ~ga [n] has
finite support, its Z-transform, rna (z) = 2:n rna [n] z-n, is a finite two­
sided polynomial (formally, this is known as a Laurent polynomial).
Then rna (w) = rna (z)lz=ejw is a finite trigonometric polynomial. It
follows that rna (w) and hence Irna (w)1 have bounded derivatives; i.e.,

~lma(w)l:Sc, VWE~

Combining this with the fact that rna (0) = 1, we obtain

Irna (w)1 :::; 1+ c Iwl :::; ec1wl , for some c 2: 0 (6.37)

It follows that the infinite product in equation (6.34) converges uniformly
on any compact set to an infinitely differentiable (i.e., CC'O) function
bounded by

Of course, this bound is far too loose to guarantee square-integrability
of <p (w). Thus, <p (w) is by no means guaranteed to be the Fourier
transform of a valid scaling function. Nevertheless, <p (w) and ;j; (w) are
at least well-defined by equations (6.34) and (6.35).
At this juncture, it is also appropriate to point out that the dual

scaling function, 0 (t), and the dual wavelet, ;jJ (t), if they exist, may be

Chapter 6: Filter Banks and Wavelets 267

constructed through similar infinite product expressions,

00

~(W) = II 7ho (~)
i=l

(6.38a)

(6.38b)

(6.39)

where 7ho(w) and 7h1 (w) are normalized DTFT's of the time-reversed,
translated analysis filters, hb [-nJ and hi [-nJ. These duals arise when
we exchange the subband transform's analysis and synthesis vectors. As
discussed in Section 6.2.3, the analysis of an input signal, x (t), into its
multi-resolution coefficients, Y6m) [n], or its wavelet coefficients, y~m) [n],
corresponds to taking its inner product with the corresponding translates
and dilates of the dual scaling function and wavelet respectively. Of
course, in the orthonormal case, we must have rp (t) = <p (t), 7ho (w) =
mo (w), etc. In the biorthogonal case, however, the existence ofthe duals
becomes an additional concern.
Since we are restricting our attention to FIR transforms, we may

invoke the analysis-synthesis relationships derived in Section 6.1.3 to
express 7ho (w) and 7h1 (w) in terms of ml (w) and mo (w). Specifically,
the translated impulse responses are related through equation (6.10),
which we reproduce here as

In the Fourier domain, this becomes
At At
hq (w) = agl-q (w + 7r) , q = 0,1

Theorem 6.6 below shows that a necessary condition for the existence
of a suitable scaling function is go (7r) = O. Noting that go (0) = ..j2,
equation (6.14) then yields ho(0) = ..j2. Together with equation (6.13),
we find easily that

gi (7r) = ha-1, and hi (7r) = ha
In the orthonormal case, the analysis and synthesis filters must be time­
reversed versions of each other, so we are compelled to select a = ±1.
We are free to select any a in the general case; however, a convenient
selection is a = 1. Putting everything together, we have

A () _ g~(w)
m q w - 12

Y<' q = 0,1
~ itt (-w) ,
mq(w) =~ =ml_q (7r-W)

268 Construction of Wavelets

and

~q (q1f) =mq (q1f) = 1, q= 0,1
~l-q (q1f) =ml-q (q1f) = 0, q= 0,1

REGULARITY
We have established the convergence of the infinite product expres­

sions for rjJ (w) and its dual, ~ (w), in terms of the low-pass synthesis
and analysis filters of any FIR subband transform. The important ques­
tions now are: 1) whether these well-defined functions are valid Fourier
transforms of functions 'P (t) and iJ (t) in £2 (lR); and 2) whether 'P (t)
and iJ (t) are valid scaling functions, whose translates and dilates form
bases for sub-spaces v(m) and v(m), satisfying the upward and down­
ward completeness conditions of a multi-resolution analysis. A variety
of detailed mathematical studies may be found in the literature concern­
ing the conditions under which these questions may be answered in the
affirmative. For the mathematically inclined, good entrees to this body
of literature may be found in [47, 48, 41].
While of significant theoretical interest, pursuit of the weakest con­

ditions under which wavelets arise from subband transforms has little
impact on practical applications, since these conditions admit discontin­
uous, highly irregular scaling functions and wavelets. For our purposes,
it is more fruitful to review the conditions required to produce wavelets
and scaling functions with a certain degree of regularity (e.g., continu­
ity, differentiability, etc.). Popular designs for both orthonormal and
biorthogonal wavelets are all based on these conditions.
Before plunging into the formal statements of various theorems con­

cerning regularity, it is worth providing a brief summary of the main
results. Firstly, the regularity of the wavelet functions is identical to
that of their corresponding scaling functions10 , so we may restrict our
attention to the latter. The regularity theorems all emphasize the im­
portance of the number of "zeros at 1f" exhibited by the trigonomet­
ric polynomials, mo (w) and ~o (w). As noted earlier, mo (w) may be
written as mo (z)lz=eiw , where the Z-transform, mo (z), is a polynomial
(generally two-sided) in z. As such, it may be factored as

(
1+)Nmo(z) = T r(z)

laThe reader is reminded that we are restricting our attention to FIR subband transforms.
Consequently, the wavelet functions defined by equations (6.35) and (6.38b) are nothing but
finite linear combinations of the corresponding dilated and translated scaling functions.

Chapter 6: Filter Banks and Wavelets 269

where N is the number of zeros at z = -1 and r (z) represents the
remaining factors. Equivalently,

(
1+ e-jW)N

rno(w) = 2 f(w) (6.40)

and we say that rno (w) has N zeros at 7r. Note that f (0) 1 since
rno (0) = 1.
As we shall see, if r.p (t) is to be a valid scaling function, rno (w) must

have at least one zero at 7f. In the case of the Haar wavelet (Example 6.2),
we have N = 1 and r (z) = 1, so it is reasonable to think of this as
the simplest possible wavelet transform. When r (z) is more complex,
there is no guarantee that a single zero at 7f is sufficient to obtain a
valid scaling function. However, by adding more zeros at 7f one may
ensure the existence of the scaling function and progressively increase
its regularity. As discussed in Section 6.3.3, we are interested in scaling
functions which are at least continuous, for which at least two zeros at
7f are required - recall that the Haar wavelet is discontinuous.

REGULARITY THEOREMS
To demonstrate the necessity of a zero at 7f, we adopt an approach

developed by Rioul [124]. This approach has substantial intuitive ap­
peal, being connected with a simple recursive algorithm for constructing
the scaling function directly in the signal domain. In what follows, we
regard a valid scaling function as one which has at least some degree of
regularity (e.g., at most a finite number of discontinuities).

Theorem 6.6 If <P (w) = n:l rno C~T) is the Fourier transform of a
valid scaling function, <p (t) E £2 (IR), then rno (7f) = O.

Proof. To simplify matters, we shall restrict the proof to the case of finite support
filters. Write dcjJ (w) for the cfh approximation of cjJ (w); specifically,

d

dcjJ (w) = 1[-2<1".2<1,,] (w) . IT mo (;)
;=1

where 1x (w) denotes the indicator function for the set, X. Thus dcjJ (w) is obtained by
expanding the first d terms in the infinite product expression for cjJ (w) and bandlim­
iting the resulting 2d+l1r-periodic function to the interval, [-2d1r, 2d1r]. We introduce
this bandwidth restriction to ensure that dcjJ (w) E £2 (JR); as a result, it must be a valid
Fourier transform of some function, d<p (t) E £2 (JR). By assumption, cjJ (w) E £2 (JR),
so it is effectively bandlimited. Thus, multiplication by 1[-2<1",2<1,,] (w) does not affect

the convergence of dcjJ (w) to cjJ (w) and hence d<p (t) to <p (t).
Now let

270 Construction of Wavelets

be the Nyquist sampling of dep (t). Then dep (w) is effectively the DTFT of dep [k]
(except for a scaling of the frequency axis) and it is easy to verify (by direct application
of the fact that multiplication in the DTFT domain is equivalent to convolution of the
discrete sequences) that the sequences, dep [k]' are obtained by the recursive formula

lep [k] = 2mo [k]

dep [k] =L (d-lep U]) (2mo [k - 2j]) , d = 2,3, ...
j

(6.41)

This recursive formula is interesting in its own right, since it is equivalent to obtaining
dep [k] from the synthesis system of ad-level DWT, with the low-pass subband sequence
set to y~d) [k] = 0[k] and all high-pass subband sequences set to zero.
By change of variable in equation (6.41), the even and odd sub-sequences of dep [k]

may be expressed as

dep [2kJ =L (2mo [2j]) (d-lep [k - jl)
j

dep [2k + 1] =L (2mo [2j + 1]) (d-lep [k - jJ)
j

(6.42)

(6.43)

If ep (t) exists then dep [2kJ and dep [2k + 1] both converge to samplings of ep (t), each
having rate 2d - 1 . Suppose, however, that rno (1r) = C i= 0, meaning that

L mo [2j] - L rna [2j + 1] = c i= 0
j

(6.44)

For FIR filters, the summations in equations (6.42) and (6.43) involve only finitely
many j. They are thus effectively forming weighted sums of samples from ep(t), taken
over a narrow region, whose size decreases exponentially with d. It follows that ep (t)
cannot be continuous. In fact, it cannot be continuous about any point to, at which
ep (to) i= O.
To clarify this, let to be an arbitrary time instant and let Ot > O. It is possible to

find k and d such that both the left and right hand sides of equations (6.42) and (6.43)
involve samples of ep (t) which are drawn only from the interval (t - Ot, t + Ot). If
ep (t) is continuous at to then we can select any 0", > 0 and find Ot sufficiently small
such that all of these samples will differ from ep (to) by no more than 0",. Writing
5 = Lj Imo U]I, the right hand side of equation (6.42) then differs by at most 50",
from ep (to) Lj mo [2j] and the right hand side of equation (6.43) differs by at most
50", from ep (to) Lj mo [2j + 1]. This means that

rep (to) I'I~ mo [2j]-~ mo [2j + 1]1:::; 2 (5 + 1) 0",

Imposing the assumption of equation (6.44) and letting Ot and 0", go to zero, this

equation can hold only with ep (to) = O. That is, unless rno (1r) = C= 0, ep (t) cannot

be continuous about any point which lies within its region of support. •

One way to guarantee that 0 (w) ,;P (w) E £2 (JR) is to ensure that

10 (w)1 and 1;P (w) I both decay faster than Iwl-~ as Iwl -7 00. Then
the scaling functions, 'P (t) and ep (t), will at least exist. In fact, this

Chapter 6: Filter Banks and Wavelets 271

condition is also sufficient to guarantee that the scaling functions lead to
dual multi-resolution analyses and biorthogonal wavelet bases for £2 (~)

(see [41] for a proof).
If !ct3 (w)1 decays faster than Iwl-(l+~) with ~ ~ 0, then r.p (t) not only

exists, but is continuous and ~ times differentiable; i.e., r.p (t) E C(The
parameter, ~, may then be interpreted as a measure of the regularity of
the scaling function. Since we are restricting our attention here to FIR
subband transforms, the wavelet is a finite linear combination of dilated
and translated scaling functions; it therefore has the same regularity.
The following theorem, taken from [48], establishes a useful family of
sufficient conditions for such decay, in terms of rno (w) and iiio(w).

Theorem 6.7 Suppose rno (w) has N zeros at]f, with the factorization
given in equation (6.40); i.e.,

(
1+ _jW)N

rno(w) = ; f(w)

Suppose also that f (w) is bounded by

B = sup If (w)1 < 2'Y
wE [O,27l"]

Then
!ct3 (w)1 ~ C (1 + Iwl)-(N-'Y)-C:

where c = "y -log2B > O.

Proof. We begin by decomposing Ii> (w)1 as

Ii> (w)1 = lu (w)I N
. Iv (w)1

where the first term is (see equation (6.36))

lu (w)I N = lfi 1+ e~jTiW IN

=lsinc(~)IN ~C/(l+lwl)-N

and the second term is

Iv (w)1 = IT If (;)I
;=1

Now If (w)1 satisfies the same type of bound as Irno (w)1 in equation (6.37), since both
are trigonometric polynomials with a DC gain of 1. Thus, for some constant, c, we
have

272 Construction of Wavelets

so that

Iv (w)1 ~ exp (c~ I~I) =ec1wl

Clearly, Iv (w)1 is bounded for Iwl ~ 1 and we need only consider Iwl > 1. For each
Iwl > 1, let Jw be the non-negative integer for which 2Jw - 1 ~ Iwl < 2Jw and write

J

w

00 I (2-
J

) IIv (w)1 = illf (~)I' il f 2;w

< (fj If (~) I) .eC ~ eCBJw = e
C

2
Jw log2 B

~ eC (2Iwl)log2 B = eCB jwl1og2 B ~ e" (1 + Iwl)log2 B

where e" =eCB. Combining the two bounds, we obtain

lep (w)1 ~ e (1 + Iwl)log2 B-N = e (1 + Iwl)-(N-')')-<

•
The above theorem suggests a strategy for increasing the regularity

of scaling functions and hence wavelets by adding as many zeros at 1r
as possible. In this way, we increase the decay of 1<t3 (w)1 and hence the
regularity of e.p (t) and 'l/J (t). Of course, one cannot simply assume that
filters with more zeros necessarily lead to more regular wavelets, because
the residual factor, f (w) is generally non-trivial.
Since the above result represents a sufficient, rather than a neces­

sary condition, one might suspect that it could be possible to construct
highly regular wavelets and scaling functions without placing any more
than the minimum of one zero at 1r. The following theorem, however, es­
tablishes the fact that there is no way to construct ~-times differentiable
functions without assigning at least ~+1 zeros at 1r to the trigonometric
polynomials, rno (w) and ;ho (w). The reader is referred to [41] for a
proof.

Theorem 6.8 If {'l/J~m)}n,mEZ and {~~m)}n,mEZ constitute biorthogonal

bases for £2 (lR) with continuous mother wavelets, 'l/J (t) E C~ and ~ (t) E

C~, then the trigonometric polynomials, rno (w) and ;ho must have at
least ~ + 1 and ~ + 1 zeros, respectively, at 1r.

6.3.2 DESIGN PROCEDURES
ORTHONORMAL WAVELETS

Consider again the regularity condition of Theorem 6.7. As noted
above, this theorem suggests that one should design rno (w) to have as
many zeros at 1r as possible. Equivalently, rno (z) should have as many
zeros at z = -1 as possible. In the orthonormal case, there is only

Chapter 6: Filter Banks and Wavelets 273

one scaling function and one wavelet and we must select the sequence,
ma [n] = ~ga [n], to satisfy (see equation (6.5))

Irna (w)1 2 + Irna (w + 11")1 2 = 1

or, in the Z-transform domain (see equation (6.4)),

Restricting our attention to FIR filters with N zeros at w = 11", we
may write

(
1 + e-jW)N 'NW (W)Nrna (w) = 2 f (w) = e- J 2" cos 2' f (w)

Then, noting that If (w)12 = P (cosw) for some polynomial, P (x), we
have

1 = Irna (w)j2 + Irna (w + 11")12

= (cos2 ~) N P (cosw) + (cos2W ; 11") N P (cos (w + 11"))

Our objective is to find the polynomial, P (x), after which f (w) may be
obtained by spectral factorization. Specifically,

so that we have only to find the zeros of P (~ (z + z-l)), and distrib­
ute them between r (z) and r (z-l). Note that the particular choice of
spectral factorization (distribution of the zeros) affects only the phase
response of rna (w); it has no impact on the regularity of the scaling
function or wavelet.
To find the polynomial, P (x), observe that sin2~ = ~ (1 - cosw). So

P (cosw) = Q (sin2 ~), where Q (x) is another polynomial, from which
we may recover P (x) == Q (~ (1 - x)) . To satisfy the orthonormality
condition we require

(cos2 ~) N Q (sin2~) + (cos2w ; 11") N Q (sin2w ; 11") = 1

or, letting u be a placeholder for cos2 ~,

UNQ (1 - u) + (1 - ut Q (u) = 1 (6.45)

274 Construction of Wavelets

Table 6.1. Daubechies family of orthonormal subbandjwavelet filters, with the min­
imum phase spectral factorization. Note that we have selected the delay-normalized
convention for which the support of go[n] is given by Theorem 6.3.

go [n] = ho [-nJ N = 2 zeros N = 3 zeros N = 4 zeros

go [-3] 0.230378
go [-2J 0.332670 0.714847
go [-1] 0.482963 0.806891 0.630881
go [0] 0.836516 0.459877 -0.027984
go [1] 0.224144 -0.135011 -0.187035
go [2] -0.129410 -0.085440 0.030841
go [3J 0.035220 0.032883
go [4] -0.010597

It follows that all orthonormal subband transforms whose low-pass filter
has at least N zeros at Jr are obtained by spectral factorization, based
on a polynomial Q(x), satisfying equation (6.45).
Using Bezout's theorem, Daubechies [48] showed that all solutions to

this problem are of the form

where R (x) is any polynomial containing only odd powers of x. To mini­
mize the length of the filters, Daubechies selected R (x) == 0, obtaining a
unique family (up to distribution of the spectral factors) of orthonormal
subband/wavelet transforms, parametrized by N, the number of zeros at
Jr. The Daubechies family of orthonormal subband/wavelet transforms
has enjoyed tremendous popularity in a wide variety of applications,
where the minimal phase factorization is most commonly encountered.
The first few members of the family are given in Table 6.1 using this
factorization. For greater accuracy, however, the reader can and should
reproduce the construction directly from the procedure described.

LINEAR PHASE WAVELETS
Recall that orthonormality is incompatible with linear phase filters

(see Theorem 6.5) and linear phase plays a particularly important role
in image compression. Following techniques closely related to those
involved in the construction of orthonormal wavelets above, Cohen,
Daubechies and Feauveau [41] have developed families of biorthogo­
nal transforms involving linear phase filters. Some of their designs are
amongst the most successful and widely deployed transforms for image

Chapter 6: Filter Banks and Wavelets 275

compression. We briefly outline their approach here, together with some
important examples.
In the biorthogonal case, the sequences rno [n] =)z90 [n] and rno [n] =

)zho[-n] must be designed jointly. The choice of rno [n] and rno [n] is
constrained by the biorthogonality condition (see equation (4.29)), which
may be expressed in the Z-transform domain as

or in the Fourier domain as

..-. * ..-. *
rho (w) rno (w) + rho (w + 71") rno (w + 71") = 1

To simplify matters, we restrict our attention to delay-normalized trans­
forms having odd length FIR filters with linear phase (consult [41] for the
parallel development with even length filters). Then rno [n] and rno [n]
are both symmetric about n = 0 and their Fourier transforms must be
polynomials in cosw. Noting that

is a polynomial in cosw if and only if N is even, we see that rho (w) and
-Iho (w) must each have an even number of zeros at 71", say N = 2L and
N = 2£, respectively. We may then write

(W)2L
rho (w) = cos "2 Po (cosw) , ~ (W)2L .and rno (w) = cos "2 Po (cosw)

and the biorthogonality condition becomes

(cos2 ~) M P (cosw) + (cos2 W ; 71") M P (cos (w + 71")) = 1

where NI = L + £ and P (x) == Po (x) PO (x).
We encountered exactly the same constraint in the orthonormal case

described above. The solution is obtained by setting P (x) == Q(!(1-x))
where

Q(x)~ ~ (M+:-l)xn+XMRG-X)
and R (x) is any odd polynomial. As in the orthonormal case, for mini­
mum length filters we select R (x) == 0, which leads to a unique family of
biorthogonal linear phase subbandjwavelet transforms, whose members

(6.46)

276 Construction of Wavelets

are distinguished only by the choice of parameters, Land L, and the way
in which the factors of P (x) are distributed between Po (x) and Po (x).
Interestingly, the regularity of the wavelet and its dual generally differ

substantially. In the extreme case we may set Po (x) == 1 and Po (x) ==
P (x), so that all 2L roots of mo (z) are at z = -1. This leads to a
family of transforms, parametrized by Land L, in which the synthesis
scaling function, <p (t) is the B-spline of order N = 2L. To see this, note
that

;' (w) = fi (cos 2~1t = (Si;~r= (sine ~)N
Thus, <p (t) is the N-fold convolution of a unit pulse with itself, which
is, by definition, the B-spline of order N.
One particularly attractive feature of this family is that the sequences,

mo [n] and rno [n], both consist entirely of dyadic fractions (rationals
whose denominators are powers of 2). This means that the filtering
operations of the DWT may be effected using low precision integer mul­
tiplication and bit shifting operations.

Example 6.3 (Spline 5/3 transform) The first member of the spline
family described above is obtained by setting L = L = 1 so that rno (w)
and Tho (w) each have N = f.r = 2 zeros at 7f. The analysis and synthesis
prototype sequences are given by

(
mo (z)) (lz-l + 1 + lz)
rno (z) = -iz-2 -: ~z-l ~ ~ -: ~z - iz2

We refer to this as the "spline 5/3" or simply the "5/3" transform, since
the low- and high-pass analysis filters have 5 and 3 taps, respectively. Its
remarkable simplicity recommends it for practical image compression ap­
plications and it is one of the two transforms which must be implemented
by every compliant JPEG2000 decompressor. The synthesis and analysis
scaling functions, <p (t) and rj; (t), and their wavelets, 'IjJ (t) and '0 (t), are
plotted in Figure 6.6.

In order to increase the regularity of the dual wavelet and scaling
functions in spline-based designs, the support of rno [n] must be made
much larger than that of ma [n]. This is because more zeros at 1r must
be added to compensate for the effect of assigning all factors of P (x)
to Po (x). Cohen, Daubechies and Feauveau [41] describe an alternate
design strategy in which the analysis and synthesis filters have "least
dissimilar" lengths. Recall from Theorem 6.4 that the filter lengths
must differ by an odd multiple of 2. In this design strategy, both rno (w)

Chapter 6: Filter Banks and Wavelets 277

cp(t)

cp(t)

If/(t)

o

fl(t)

-2 -I -I

Figure 6.6. Synthesis and analysis scaling and wavelet functions for the spline 5/3
transform.

and rho (w) are assigned the same number of zeros at 1r and the factors
of P (x) are divided as equally as possible between Po (x) and Po (x).

Example 6.4 (CDF9/7 transform) The first member of the abovefam­
ily has L = L = 2 so that there are N = N = 4 zeros at 1r. In this case,
P (x) has only 3 factors and the subband/wavelet transform is unique
up to exchanging the roles of the analysis and synthesis functions. In
particular, we have

= (!.±..:)2(1 +z-l)2(Rl _z+r 1

)

ma (z) 2 2 R
1

- 1

in z = (~)2 (1 + z-1)2 (Rt -z+r 1

) (R2 - z+r 1

)

a () 2 2 R+ - 1 R- - 1
2 2

278 Construction of Wavelets

where the roots are

Evaluating these irrational coefficients numerically yields

rna (z) =

0.602949018236
+ 0.266864118443
0.078223266529
0.016864118443

+ 0.026748757411

ma (z) =
0.557543526229

+ 0.2956358815571z1 +Z-lj
- 0.028771763114 z2 + z-2

- 0.045635881557 z3 + z-3

Zl + z-l
z2 + z-2

z3 + z-3

z4 + z-4

(6.47)
We refer to this as the iiCDF 9/7" transform, since the low- and high­
pass analysis filters have 9 and 7 taps respectively. This transform has
been found to yield optimal or near optimal performance in image com­
pression applications and has enjoyed widespread popularity in the image
compression community. It is one of the two transforms which must be
implemented by every compliant JPEG2000 decompressor, the other be­
ing that of Example 6.3.

The synthesis and analysis scaling functions, <p (t) and <p (t), and their
wavelets, 'ljJ (t) and;j; (t), are plotted in Figure 6.1. Note that the analysis
and synthesis functions here resemble each other much more closely than
in the spline 5/3 case,. this is a clear indication of the fact that the wavelet
and multi-resolution bases are approximately orthonormal.

6.3.3 COMPRESSION CONSIDERATIONS
We have seen that multi-resolution analysis is intimately connected

with the wavelet transform and that both are realized in practice through
the DWT. Moreover, the DWT is nothing other than a tree-structured
multi-resolution filter bank constructed by iterative application of a one
dimensional, two channel subband transform. We have also seen that
not all subband transforms may be associated with wavelets in this way.
The obvious question is whether the narrower conditions associated with
the wavelet transform are important for image compression.
To answer this question, consider the synthesis system of a one dimen­

sional tree-structured filter bank with D levels, as shown in Figure 6.8.

Chapter 6: Filter Banks and Wavelets 279

, :
cp(t)

\
(! ,

4 3 " 3 4

!

If/(t) A

-1\ (~r
- " J 4

!

Ij/(t)

n r-
,

Figure 6.7. Synthesis and analysis scaling and wavelet functions for the CDF 9/7
transform.

y~D)[n]

y~D)[n]

Figure 6.8. Synthesis system for a one dimensional tree-structured subband trans­
form with D levels.

Suppose, for convenience that the synthesis filters are given by

9q [n] = 2mq [n], q = 0,1

Thus, the synthesis filters are scaled up by V2 relative to the normal­
ization represented by equation (6.33), meaning that the analysis filters
must be scaled down by the same factor, yielding

280 Construction of Wavelets

Table 6.2. Relationship between scaling and wavelet functions and the synthesis basis
sequences of a tree-structured subband transform.

Subband sequence:
Basis vectors:
Function E £2 (~):

Sampling:

Now the synthesis vectors corresponding to the low-pass subband se­
quence, y~D) [n], may be written D<pn == D<p [k - 2Dn], where D<p [k] is
obtained by the recursive up-sampling and filtering algorithm of equa­
tion (6.41). As demonstrated in the proof of Theorem 6.6, D<p [k] is a
sampling at rate 2D of the function, D<p (t), which converges to <p (t)
as D -+ 00. Similarly, each high-pass subband sequence, y~d) [n], has
synthesis vectors, d'ljJn == d'ljJ [k - 2dn] , which are obtained through the
recursion

1'ljJ [k] = 2ml [k - 1]

d'ljJ [k] =L d-l'ljJ [j] (2mo [k - 2j]) , d = 2,3, ...
j

and represent rate 2d samplings of a function, d'ljJ (t), which convergesll

to 'ljJ (t) as d -+ 00. These relationships are summarized in Table 6.2.
We conclude that the synthesis basis vectors of a tree-structured sub­

band transform converge to samplings of functions in £2 (1R) if and only
if the scaling and wavelet functions exist. Moreover, the regularity
of the synthesis basis vectors12 is that of the underlying scaling and
wavelet functions. For images, the synthesis basis vectors associated
with the various subbands of the dyadic multi-resolution subband trans­
form shown in Figure 4.20 are the appropriate translates of the separable
products,

D<p [k1, k2] = D<p [k1] . D<p [k2]

o,~'ljJ [k1,k2] = d<p [kl] . d'ljJ [k2]

1,i'ljJ [k1, k2] = d'ljJ [k1] . d<p [k2]

1,~'ljJ [k1, k2] = d'ljJ [k1] . d'ljJ [k2]

III[the scaling function exhibits some regularity, then d<p (t) and d'lj; (t) are typically excellent
approximations to <p (t) and 'Ij; (t), even for quite small values of d, such as 3 or 4.
12We usc the term "regularity" losely here to refer to the regularity of the functions obtained
hy interpolating the discrete synthesis basis sequences.

Chapter 6: Filter Banks and Wavelets 281

and the same regularity considerations apply.
Suppose now that some subband sample, say yidJ [nl, is in error by

an amount b, due to quantization during compres'sion. In the image
domain, this individual sample error manifests itself as the error vector
(image),

b· 1,~'l/Jn [k] = b (d'l/J (81) . d<p (82)) IS=2- dk-n
~ b . 'l/J (2-dk1 - n1) . <p (2-dk2 - n2)

Thus, if the compression artifacts in the reconstructed image are to
have a smooth regular appearance, the underlying subband transform
must satisfy the constraints associated with the existence of a sufficiently
regular scaling function. By contrast, highly disturbing discontinuous
image artifacts arise if the associated scaling function (and hence the
wavelet) is discontinuous or does not exist. Differentiability and even
greater regularity of the scaling and wavelet functions is also desirable.
The above arguments suggest that good multi-resolution subband

transforms for image compression should lead to synthesis wavelets with
substantial regularity. When the analysis and synthesis wavelets are dif­
ferent, which is necessarily the case for FIR linear phase transforms, the
regularity of the synthesis wavelet is generally more important than that
of the analysis wavelet.

6.4 LIFTING AND REVERSIBILITY
In Section 6.1.4, we introduced some useful factorizations for the

polyphase analysis or synthesis matrix of an FIR subband transform
and showed that these factorizations are convenient both for design and
implementation of the transform. In this section we introduce the so­
called "lifting factorization," which is particularly important for image
compression applications. We confine our attention entirely to one di­
mensional two channel transforms, since common multi-resolution trans­
forms, including the DWT, are all obtained by iterative application of
this basic building block.

6.4.1 LIFTING STRUCTURE
Let x [k] denote the input sequence and Yo [n] and Y1 [n] the subband

sequences of a two channel subband transform. In the simplest possible
transform, the subband sequences are simply the even and odd sub­
sequences of x [k]. Call these YdO} [n] = x [2n] and y{O} [n] = x [2n + 1].
This is sometimes called the "lazy wavelet" transform, although it cannot
formally arise in connection with a valid wavelet transform. It turns out

282 Lifting and Reversibility

x[2n] = y~OI[nl

Figure 6.9. Lifting implementation of subband analysis.

(see Section 6.4.3) that any subband transform may be implemented

by successively updating these trivial subband sequences, yJO} [n] and
yiO} [n], in a sequence of so-called "lifting steps."
The lifting procedure is illustrated in Figure 6.9. In each lifting step,

one sub-sequences is updated by the addition of a filtered version of the
other sub-sequence. We use indices, I = 1,2, ... ,L, to identify the lifting
steps. For odd indices, I, the odd sub-sequence is updated and we have

yJI} [n] = yJI-I} [n]

yiI} [n] = yiI- I } [n] +L Al [i] yJI-I} [n - i]

For even I, the even sub-sequence is updated and we have

yJI} [n] = yJI-I} [n] + L Al [i] yiI- I } [n - i]
i

It is convenient to express these relationships more compactly as

{I} [] _ {I-I} []
YI-p(I) n - YI-p(l) n

{I} [] {I-I} [] ~ [.] {I-I} [.]
yp(I) n = yp(I) n + L.t Al '/, YI-p(I) n - '/, (6.48)

where p (l) denotes the parity of I (0 if I is even, 1 if I is odd).
Upon completion of all L lifting steps, the sub-sequences yJL} [n] and

AL} [n] need only be scaled by some factors, Ko and K I , to recover

the low- and high-pass subbands, Yo [n] and YI [n]. Just as yJO} [n]
and yiO} [n] are the even and odd sub-sequences of x [k]' so yJL} [n]
and yiL} [n] are essentially the even and odd sub-sequences of the in­
terleaved subband sequence, y [k]. We saw in Section 6.1.3 how subband

Chapter 6: Filter Banks and Wavelets 283

y[2n]

III
y[2n+1]

Figure 6,10, Lifting implementation of subband synthesis,

analysis and synthesis may both be understood as time-varying convo­
lution operations mapping x [k] to the interleaved sequence, Y[k]' and
vice-versa (see Figure 6.1). From both perspectives, it is natural to asso­
ciate even indexed samples with the low-pass subband and odd indexed
samples with the high-pass subband. This association provides a conve­
nient mnemonic which will be particularly useful when we consider the
boundaries of finite length sequences in Section 6.5.
The lifting structure of Figure 6.9 is trivial to invert. In particular,

after inverting the subband gains, Ko and K I , we have only to apply
the lifting steps in reverse order, flipping the sign of the filter impulse
responses, as shown in Figure 6.10. Each successive inverse lifting step,
1= L, . .. ,1, implements

{I-I} n - {I} [n]
Y1-p(l) [] - Y1-p(l)

{l-I} [] _ {I} [] ~ ['J {I} [']
Yp(l) n - Yp(l) n - 6 Al '" YI-p(l) n - '"

i

_ {I} [] ~ \ ['] {I-I} [']
- Yp(l) n - 6/11 '" YI-p(l) n - '"

i

which trivially inverts the corresponding forward step, Evidently, in­
vertibility of the structure is unaffected if we replace the convolution
operators of Figures 6.9 and 6.10 with arbitrary operators, whether lin­
ear or non-linear, fixed or time-varying, As we shall see in Section 6.4.2,
this flexibility is precisely what is required to construct a single image
compression system, capable of achieving both efficient lossy compres­
sion and efficient lossless compression.

Example 6.5 Consider the spline 5/3 biorthogonal transform of Ex­
ample 6.3. Adopting the convention that the low- and high-pass analysis
filters should be normalized to have unit gain at w = 0 and w = 7f,

(6.49)

284 Lifting and Reversibility

respectively, we have

and

(~~ ~~~) = 2 (:~ ~~~) = 2 (~o(~l))
(

lz-1 + 1 + lz)- 2 2
- 1 -2 1 -1 3 1 1 2

- 4z - 2z + 2- 2z - 4z

The transform may be implemented using L = 2 lifting steps, where
Al (z) = -~ (1 + z) and A2 (z) = ~ (1 + z-I). To see this, we may
expand the lifting steps as follows

yl2} [n] = yp} [n] = ylo} [n] - t (yJO} [n] + yJO} [n + 1])
1

= x [2n + 1] - 2 (x [2n] + x [2n + 2])

= 2 (x * hi) [2n + 1] = 2y [2n + 1]

and

yJ2} [n] = yJl} [n] + l (yP} [n] + yP} [n - 1])
= x [2n] + ~ (x [2n + 1] - t(x [2n] + x [2n + 2]))

4 + x [2n - 1] - 2 (x [2n - 2] + x [2n])

3x [2n] x [2n + 1] + x [2n - 1] x [2n + 2] + x [2n - 2]
= 4 + 4 - 8

= (x * hb) [2n] = y [2n]

Thus, the gain factors are Ko = 1 and K 1 = !. The complete imple­
mentation is illustrated in Figure 6.11.

The first lifting step in the above example has an obvious interpre­
tation in terms of prediction. Specifically, the output of filter AI, is
! (x [2n] + x [2n + 2]), which may be interpreted as a reasonable predic­
tor for x [2n + 1]. The first lifting step, then, converts the odd sub­
sequence into a prediction residual, which is essentially the high-pass
subband sequence. While this behaviour is shared by the lifting im­
plementations of a number of useful subband transforms, the following

Chapter 6: Filter Banks and Wavelets 285

-....r
ynthe is

y[2n] yJ21[II)
........::..,......;~-----IM-+-+-=-::.......:.....:.----;.I...:..,....~I--+:....::.......:.....:......t~+---::....-....:....,.

~
I I iI I

x[2n+I] y[2n+l]
'-----------....r-----------'

Analysis

Figure 6.11. Lifting implementation of the spline 5/3 transform.

important example shows that such simple interpretations are not always
possible.

Example 6.6 Consider the CDF 9/7 biorthogonal transform of Exam­
ple 6.4. Adopting the convention that the low- and high-pass analysis
filters should be normalized to have unit gain at w = 0 and w = 1f,

respectively, we have

(~t ~~~)= (:~ ~~=~~)= (~o(~:J))
where rno (z) and rno (z) are given by equation (6.41). It can be shown,
either by direct expansion or by the factorization method of Section 6.4.3,
that four lifting steps are required to implement this transform, where

Al (z) = -1.586134342 (1 + z)

A2 (z) = -0.052980118 (1 + z-l)

A3 (z) = 0.882911075 (1 + z)

A4 (z) = 0.443506852 (1 + z-l)

1 K
K o = K' K 1 = 2' where K = 1.230174105

Notice that only 6 multiplications are required to produce each pair of
subband samples. If we are prepared to accept an unusual normalization
for the subband samples then the final gains may be omitted and only
4 multiplications are required to produce each pair of subband samples.
These may be compared with the 16 multiplications required for a direct
implementation as in Figure 6.1, which reduces to 9 multiplications if
we are careful to exploit symmetry and 7 if we are prepared to accept
an unusual normalization for the subband samples, with the central filter
taps scaled to 1.

286 Lifting and Reversibility

LIFTING WHAT?

The lifting structure described above was first proposed by Sweldens
[145], who coined the term "lifting" in consideration of its usefulness
for designing biorthogonal wavelet bases. Specifically, suppose one is
given dual scaling functions, ep (t) and ep (t), and wavelets, 'If; (t) and
,(fi (t), constituting biorthogonal wavelet bases, all four functions having
compact support. Associated with this biorthogonal system, there must
be an FIR subband transform whose analysis and synthesis filters are
appropriately modulated, time-reversed and translated versions of the
two finite sequences, rno [n] and rno [n], according to equation (6.39).
From Theorem 6.6, rno (z) and rno (z) must each have at least one zero
at z = -1.
Now suppose we start with a lifting factorization of this initial trans­

form and add a single lifting step, Al (z), with l odd. Recall that this
affects only the odd output sub-sequence produced by the transform,
i.e., the high-pass subband samples. The new lifting structure thus im­
plements an FIR subband transform with a different high-pass analysis
filter, but the same low-pass analysis filter. Equivalently, we have mod­
ified only rno (z) = rnl (-z). By suitable choice of Al (z), we can ensure
that the new rno (z) has at least one extra zero at z = -1. Recall that
the number of zeros at z = -1 is intimately connected with the regular­
ity of the scaling function, ep (t) and its wavelet, 'ljJ (t), as established by
Theorems 6.7 and 6.8.

In the same way, an even-indexed lifting step can always be designed
to "lift" the number of zeros assumed by rno (z) at z = -1 and hence the
regularity of the dual functions, ep (t) and ,(fi (t). In this way, the lifting
scheme provides a framework for alternately "lifting" the regularity of
the synthesis and analysis wavelets and their scaling functions, each
building upon the other. Although the number of zeros assumed by
rno (z) and rno (z) at z = -1 does determine a lower bound for the
regularity of the respective wavelets, it is not the sole determining factor.
Furthermore, the strategy described here is only one particular example
of the use of lifting for design.

6.4.2 REVERSIBLE TRANSFORMS
Linear transforms are inherently ill-suited to lossless compression.

Many transforms involve irrational coefficients so that the transform
samples cannot be precisely represented with any finite number of bits.
Two quite different examples of this are the block DCT of Section 4.1.3
and the CDF 9/7 subband/wavelet transform of Example 6.4. In Sec­
tion 6.3.2, we described a family of biorthogonal subband/wavelet trans-

Chapter 6: Filter Banks and Wavelets 287

forms based upon the B-splines. This family has the desirable property
that the transform coefficients are dyadic fractions, which means that
the subband samples may be represented with finite precision. Even
in the simple case of the 5/3 transform, however, the precision of the
subband samples increases by approximately 3 bits for each level in a
one dimensional DWT and by 6 bits for each level in a two dimensional
DWT.
It is instructive to consider the Haar transform of Example 6.2, which

is the simplest linear transform with any merit for compression. After
suitable normalization, we may write the low- and high-pass subband
samples as

(
Yo [n]) _ (~ (xo [n] + Xl [n])) (6.50)
YI [n] - Xl [n] - Xo [n]

where Xo [n] = X [2n] and Xl [n] = X [2n + 1] are the polyphase com­
ponents of the input sequence. This is the simplest non-trivial block
transform, with block size 2. It is also a degenerate subband trans­
forml3 and it implements the most primitive Haar wavelet transform.
Even in this case, the precision of the subband samples increases by 1
bit for each level in a one dimensional DWT and by 2 bits for each level
in a two dimensional DWT. This is a substantial obstacle to efficient
lossless compression.
The fundamental problem is that linear transforms introduce redun­

dancy into the least significant bits of the transform sample values. This
redundancy cannot be fully eliminated by subsequent coding, no matter
how elaborate, unless the transform bands are coded jointly. As stated
in Section 4.3, however, one of the key benefits which transforms bring
to compression is the simplification which results from quantizing and
coding each transform band (or even each sample) independently.
In the specific case of the Haar transform, the problem of expand­

ing numeric precision can be solved in the form of the S (Sequential)
transform, by the introduction of a slight non-linear perturbation to
equation (6.50). Specifically,

YI [n] = Xl [n] - Xo [n]

lYI [n]J 1Yo [n] = Xo [n] + -2- ~"2 (xo [n] + Xl [n])

This construction may be interpreted in terms of the lifting structure of
Figure 6.12, whence the inverse transform is easily seen to be

l~ Degenerate, because the basis sequences associated with successive subband samples do
not overlap - i.e., it is only a block transform.

288 Lifting and Reversibility

x[2n] y[2n] y~ll{n]

~
III

x[2n+1] y{2n+1]
....... --' Y"

Analysis Synthesis

Figure 6.12. Lifting steps for the S transform.

lYI [n]JXo [n] = Yo [n] - -2-

Xl [n] = YI [n] + XQ [n]

Suppose that the input sequence, X [k], consists of B-bit integers. Then
Yo [n] is also a sequence of B-bit integers. The high-pass subband sam­
ples, YI [n], require a (B + I)-bit representation, but the values are
mostly close to zero and can usually be coded with a small number
of bits. The S transform has been proposed for compression of medical
images [75], where truly lossless performance is considered important to
minimize the risk of liability in malpractice lawsuits.
The S transform was generalized independently and in related ways

by the S+P transform of Said and Pearlman [127] and the TS transform
of Zandi et al. [174]. These transforms stimulated some interest in the
possibility of a unified framework for both lossy and lossless compression
of images; however, they represented only isolated examples of reversible
transforms. Calderbank et al. [33] later demonstrated that reversible
transforms could be synthesized from the lifting implementation of any
two channel FIR subband transform. In particular, if we eliminate the
subband gain factors, Ko and K I , and replace equation (6.48) with the
non-linear approximation,

{l} _ {l-I} II "" [.] {l-I} [.]]
Yp(l) [n] - Yp(l) [n] + "2 + L..: Al ~ Yl-p(l) n - ~ (6.51)

then integer-valued input samples are always mapped to integer-valued
subband samples. The inherent invertibility of the lifting structure of
Figure 6.9 is clearly preserved under such non-linear modifications. The

Chapter 6: Filter Banks and Wavelets 289

TS transform and some parametrizations of the S+P transform may be
understood as special cases of this general construction14 .
The term "reversible" has sometimes been used in the literature to

refer to the perfect reconstruction property of filter banks which imple­
ment subband transforms. In more recent usage, however, a reversible
transform is understood as one which satisfies two conditions: 1) the
transform samples must have bounded, finite precision representations,
depending upon the input sample bit-depth; and 2) it must be possible to
recover the input samples exactly from the subband samples, using finite
precision arithmetic with bounded complexity. These are clearly neces­
sary conditions for lossless compression. The first condition is satisfied
by the modifications to the lifting structure described above. To satisfy
the second condition, any irrational terms, Al [k]' in equation (6.51) must
be replaced with rational approximations. In fact, the coefficients in a
reversible lifting transform are usually expected to be dyadic fractions
for convenience of implementation.
The fact that the transform maps integers to integers does not prevent

significant expansion in the dynamic range of the subband samples. For
this, it is usually sufficient to insist that the DC gain of the equivalent
(linearized) low-pass analysis filter be close to 1. Consider, for example,
the lifting implementation of the CDF 9/7 subband/wavelet transform
in Example 6.6. To create a reversible version of the transform, we
may approximate the four lifting step coefficients with suitable dyadic
fractions and eliminate the subband gain factors, Ko and K1 . The DC
gain of the equivalent low-pass analysis filter is then K ~ 1.23. Thus,
assuming that the original source signal has most of its energy at low
frequencies (almost invariably true for images), the dynamic range of
the subband samples can be expected to grow by approximately 0.3 bits
for each level in a one dimensional DWT, or 0.6 bits for each level in a
two dimensional DWT. This difficulty does not arise with the spline 5/3
subband/wavelet transform of Example 6.5, where Ko is already equal
to 1.

6.4.3 FACTORIZATION METHODS
In this section we show that any two channel subband transform in­

volving FIR filters may be implemented using the lifting structure of
Figure 6.9, subject to the delay-normalization convention defined on
Page 237. Moreover, we show how the lifting steps may be found from

11Thc recommcndcd choice of parameters for thc S+P transform actually corresponds to a
subband system with FIR analysis filters and recursive IIR synthesis filters, which are not.
compatiblc with the lifting st.ruct.ure as it is presentcd here.

if l is odd

if l is even

290 Lifting and Reversibility

the filters of the subband transform. First observe that each lifting step
may be written in matrix form as

(

{I} ()) ({I-I} ())Yo z _ A z Yo z
vii} (z) - I (). vii-I} (z)

where

{
(6 AliZ

))

Al (z) =

(Al ~z) ~)
It follows that the lifting system may be expressed in matrix form as

(
yo(z)) (xo(z))= K . AL (z) A2 (z) . Al (z) .
YI (z) Xl (z)

where K is the diagonal matrix of subband gain factors,

K= (Ko 0)o K I

Evidently, the lifting steps represent a factorization of the polyphase
analysis matrix as

(6.52)

Theorem 6.9 Suppose that H (z) is the polyphase analysis matrix of a
delay-normalized two channel subband transform with FIR filters. Then
H (z) may be factored into lifting steps as in equation (6.52).

Proof. The proof is constructive, although the constructed factorization is not
unique. Let e (z) = (H (Z))-I be the polyphase synthesis matrix. Since the transform
is in delay-normalized form, we have det (e (z)) = a-I We seek lifting steps which
satisfy

AL (z) A2 (z) .Al (z) . e (z) =K- I

Without loss of generality, we may assume that the number of lifting steps, L, is even
- if necessary, the last lifting step may be empty (i.e., AL (z) = 0 so that AL (z) = I).
Then, the above expression may be rewritten as

AL- I (z) A2 (z) .Al (z) . e (z) = (~ -A~ (z)) K- I (6.53)

Let e{l} (z) denote the partial products, defined recursively by e{O} (z) = e (z)
and

e{l} (z) = Al (z) . e{l-I} (z) , 1~ 1

Chapter 6: Filter Banks and Wavelets 291

The idea is to select the lifting steps, Al (z), so as to successively reduce the degree
of the polynomials in the first column of G{l} (Z).l5 Specifically, write

G{I} (z) _ (G~~} (z) G~~} (z))
- G~~} (z) GW (z)

The entries in the first column of G{I} (z) (this is all that concerns us) are generally
two-sided (Laurent) polynomials of the form

with degree deg(G~~} (z)) = B~b} - A~~. Note that deg(O) = -1. For convenience, we
also define the degree of the whole matrix, G{I} (z), to be the sum of the degrees of
the polynomials in its first column; i.e., deg(G{I} (z)) = deg(G~~} (z)) +deg(G~~ (z)).
Suppose I is even; then

(

G~~} (z)) _ (1 Al (z)) (G~~-l} (z)) _ (G~~-l} (z) + Al (z) G~~-l} (z))
G~~} (z) - 0 1 G~~-l} (z) - G~~-l} (z)

So long as deg(G~~-l} (z)) ~ deg(G~~-l} (z)), we can always choose Al (z) so as to
ensure that deg(G{I} (z)) < deg(G{I-l} (z)). Otherwise, let Al (z) = 0 and there is no
change in the degree. Similarly, for I odd we have

(
G~~} (Z)) (1 0) (G~~-l} (Z)) (G~~-l} (z))
G~~} (z) = Al (z) 1 G~~-l} (z) = G~~-l} (z) + Al (z) G~~-l} (z)

and so long as deg(G~~-l} (z)) ~ deg(G~~-l} (z)), we can choose Al (z) to ensure
that deg(G{I} (z)) < deg(G{I-l} (z)). Thus, subject to suitable choice of the >"1 (z),
deg(G{I} (z)) is non-decreasing in I and decreases at least on every other lifting step,
until eventually either G~~} (z) = 0 or G~~} (z) = O. In the latter case, we may add
extra lifting steps to move the zero from G~~} (z) to G~~} (z). In this way, we arrive
at some point, L', with

(
{L'})

G{L'} (z) = ? G01 , (z)
G}~ }(z) G}~} (z)

But det(G(z)) =a-I and det(AI (z)) = 1 for alii, so we must have

G{L'} (). G{L'} () __ -1
10 Z 01 Z - a

This means that deg(G}~'} (z)) = deg(GJ~'} (z)) = 0 and G{L'} (z) has the form

{L'} (0 K11ZP)
G (z) = -K01z-P Gg'} (z)

l5The choice of the first column, instead of the second, is entirely arbitrary.

292 Lifting and Reversibility

for some p E Z and some factors, Ko,K 1 E lR, satisfying

KoK1 = a = det (H (z))

Setting L = L' + 3, we add two further lifting steps to obtain

_ (Kr;l G~~-l} (z))
- 0 K;l

Equation (6.53) is then satisfied by setting AL (z) = -KIG~~-l} (z) .•
The idea behind the above proof is very simple: select the lifting steps

so as to successively reduce the degree of either G~~ (z) or G~~ (z), as
appropriate. The proof is complicated only by the final steps, in which
we show that differential delay in the subband sequences can always
be absorbed into lifting steps. In many cases, these additional steps
are not required and the number of lifting steps is substantially smaller
than one might suspect from the proof. The following simple example
is instructive.

Example 6.7 Let us start with the spline 5/3 filters of Example 6.5.
The translated synthesis impulse responses are given by equation (6.49),
which may be rewritten as

(
go (z)) _ (g6 (z)) (~z-1 + 1+ ~z)
g1 (z) - z-1gi (z) -tz-3 - ~z-2 + ~z-1 - ~ - tz

whence we find that the polyphase synthesis matrix is (see equation (6.8))

(
1 -~(1+z-1))

G (z) = ~ (1 + z) ~ - t (z-l + z)

Since deg(Goo (z)) :; deg(G lO (z)), we can reduce deg(G lO (z)) in the
first lifting step. In fact, because the inequality is strict, we can reduce
the degree by 2. Specifically, setting Al (z) = - ~ (1 + z), we obtain

G{1} (z) = (_ ~ (t + z) ~) (~ (1~ z)

= (~ -! (1; z-l))

and we are finished, with Ko = 1, K 1= ~ and A2 (z) = -K1Gg} (z) =

t (1 + z-l) satisfying equation (6.53). These are the same lifting steps
with which we began in Example 6.5.

Chapter 6: Filter Banks and Wavelets 293

In the above example, we saw that it is possible sometimes to reduce
the degree of one of the polynomials by more than 1 in any given lifting
step. On the other hand, we could have chosen Al (z) = -~z for the first
lifting step; by so doing we would have reduced the degree by only 1 and
the total number of lifting steps would have been larger. To minimize
the complexity of the implementation it is usually desirable to select
each Al (z) so as to minimize deg(G{I} (z)).

6.4.4 ODD LENGTH SYMMETRIC FILTERS
In the case of odd length filters, deg(Goo (z)) - deg(GlO (z)) must

be an odd integer. It is then easy to verify that deg(G (z)) can be
reduced by an even integer (perhaps 0) in the first lifting step, leaving

deg(G6~} (z)) - deg(Gi~} (z)) also an odd integer. Proceeding in this
way, every non-empty lifting step reduces the degree by a multiple of 2
and the lifting factorization involves relatively few steps.
In the specific case of transforms having odd length filters with linear

phase, the translated analysis and synthesis impulse responses are sym­
metric about the origin (see Theorem 6.4). Now observe that Goo (z)
and GlO (z) are Z-transforms of the even and odd sub-sequences of
go [n] = go [-n]. Consequently, they must both be symmetric poly­
nomials of even and odd degree, respectively. Specifically,

Goo (z) = Goo (Z-I) , and GlO (z) = zGlO (z-I) (6.54)

The reader may verify this in the specific case of Example 6.7.
It follows that an efficient lifting step, which reduces deg(GlO (z))

by the even integer deg(GlO (z)) - (deg(Goo (z)) - 1), must involve a
symmetric polynomial, Al (z), of odd degree. Moreover, the remainder
polynomial, Gg} (z) = GlO (z) - Al (z) Goo (z), must have exactly the
same symmetry as GlO (z). Using equation (6.54), one may easily ver­
ify that Al (z) = ZAI(Z-I), so that Al [n] is an even length sequence,
symmetric about n = -~.

Since the symmetry properties have not changed, an efficient choice

for the second lifting step is the one which reduces deg(GM} (z)) by the
even integer deg(GM} (z)) - (deg(Gg} (z)) - 1). Again, this involves a

symmetric polynomial, A2 (z), of odd degree and leaves G6~} (z) with
exactly the same symmetry as Goo (z), from which one may verify that
A2 (z) = z-l A2 (z-l). Proceeding in this way, we find that the sequence
of efficient lifting steps always involves symmetric lifting filters, Al [n], of
even length. The centre of symmetry is -1 for I odd and 1for I even;

294 Lifting and Reversibility

y~JI[n - 3J
=y[2n-5]

Figure 6.13. Analysis lifting state machine for the special case of 2-tap symmetric
lifting filters. Final subband gain factors not shown.

that is,

Al [n] = { Al [1 - n] if l even
Ad-1 - n] if l odd

(6.55)

It is also easily shown that any lifting factorization whose lifting filters
have even length with the symmetries of equation (6.55) corresponds to
an FIR subband transform with odd-length symmetric filters. Thus,
we have a compact description of all odd length linear phase subband
transforms in the lifting domain. The reader is invited to verify that
this description includes that proposed by Vetterli and LeGall [163] (see
equation (6.20)), which essentially restricts the lifting steps to length 2.
The specific case of 2-tap symmetric lifting filters, Al [nJ, is of particu­

lar interest for JPEG2000, since the two wavelet kernels defined for Part
1 of the standard both have this form. All two channel FIR subband
transforms having odd length, symmetric filters with least dissimilar
lengths (filter lengths differ by 2) may be factored into lifting steps of
this form. With this restriction, the analysis lifting network of Figure 6.9
reduces to the simple state machine shown in Figure 6.13. We emphasize
the fact that this structure is applicable only to the case of odd length
symmetric subband filters whose lengths differ by exactly 2.
The state machine involves L state variables, ~I, one for each lifting

step (four lifting steps are shown). These state variables are identified by
the lightly shaded boxes in the figure. Each state variable holds one of
the two inputs required by its lifting step filter, where the other input is
the output from the previous lifting step. The lifting step filters (darkly
shaded boxes in the figure) add their two inputs and multiply the result
by AI, the value of the two identical non-zero taps in the lifting filter,
Al [n]. For reversible transforms, the result is also rounded to an integer,
while for irreversible transforms, the results may need to be scaled by
factors Ko and K 1. Neither of these details are shown in the figure.

Chapter 6: Filter Banks and Wavelets 295

x[2n-4]

yi"[n-2]

=y(2n+l)

y~.I(n) = y(2n)

Figure 6.14. Synthesis lifting state machine for 2-tap symmetric lifting filters. Initial
subband gain factors not shown.

The analysis state machine of Figure 6.13 may be implemented by the
following simple algorithm. In this algorithm, A and 2:new are two tem­
porary variables, which may be interpreted respectively as the "augend"
for the next lifting step and the new value which will be assumed by the
state variable for that lifting step. At this point, we deliberately avoid
specifying initial and terminal boundary conditions, since these are the
subject of the ensuing Section 6.5.

Lifting Analysis Algorithm (for 2-tap symmetric lifting filters)

For n = ... ,0,1,2, ... ,
2:11ew +- x [2n]
A +- x [2n - 1]
For I = 1,2, ... ,L,

A +- A + Al (2:new + 2:l)
A+- 2:l +- 2:new +- A

(rotates contents of the triplet, A, 2:l, 2:11ew ,to the left)
y [2n - L - 1] +- A
y [2n - L] +- 2:new

Not surprisingly, the synthesis network of Figure 6.10 reduces to a
similar lifting state machine and algorithm. The synthesis lifting state
machine is depicted in Figure 6.14.

6.5 BOUNDARY HANDLING
In our development of subband and wavelet transforms, starting in

Chapter 4 and continuing throughout the present chapter, we have con­
sistently ignored the fact that real signals have boundaries. In some
one dimensional applications (e.g., sampled time waveforms), the source
produces a practically unbounded number of samples and we might be

296 Boundary Handling

able to ignore boundary effects. By contrast, two dimensional sources
such as images usually have modest dimensions, bounded by physical
constraints16 . In this section, we address practical methods for adapting
subbandjwavelet transform techniques to finite length source sequences.
Since our two dimensional transforms have all been constructed by the
separable application of one dimensional building blocks, it is sufficient
to restrict the ensuing discussion to one dimension.

6.5.1 SIGNAL EXTENSIONS
In general, a one dimensional source produces samples, x [k], over a

finite range of indices,
E~k<F (6.56)

It is often convenient to set E = 0, with F the length of the sequence.
Subband transforms, however, are cyclo-stationary operators so that the
location of the source samples has an impact on the subband sample
values which are produced. There are important applications in which
the ability to control the location of the source sequence relative to the
periodicity of the transform is most beneficial. One such application is
efficient editing of JPEG2000 compressed images. For this reason, we
shall maintain arbitrary lower and upper bounds for the source sequence,
as in equation (6.56).
We may consider the finite sequence, x [k], as being embedded in an

infinite extended sequence, x [k], where

x [k] = x [k], E ~ k < F (6.57)

and we are free to choose the remaining samples of x [k]. Let y [k] be
the interleaved sequence of subband samples generated by applying an
m band subband transform to the extended sequence, x [k]. This inter­
leaved sequence is defined by

y [mn + q] = Yq [n] , 0 ~ q < m, "in E Z
The relationship between x [k] and Y[k] may be simply expressed in
terms of the translated impulse responses defined in equation (6.9). We
repeat the time-varying convolution expressions here for convenience.

y[k] = Lhtmodm[i]x[k-i]
iEZ

x[k] = Ly[i]g;modm[k-i]
iEZ

1fiOnc exception to this is satelite imagery, which is often acquired by continuously scanning
the eart.h·s surface with a linear sensor.

Chapter 6: Filter Banks and Wavelets 297

From these, one deduces easily that so long as x [k] is periodic with
period divisible by m, if [k] will exhibit the same property. This suggests
a periodic extension procedure in which the F - E samples of x [k] are
first padded out to a multiple of m and then periodically extended as
necessary to form x [k] and thence if [k]. Only one period of subband
samples must be preserved, so that the total number of subband samples
exceeds F - E by at most m - 1.
Periodic extension has a number of serious drawbacks. A practical

concern is that some of the initial source samples must be buffered in
memory until the end of the sequence is encountered, where they are
required to perform the extension. In the case of images, the amount of
memory required for this buffering is non-trivial, involving some number
of rows or columns of the image.
Another serious objection to periodic extension is that the synthesis

basis vectors span the boundary between the end of one period and the
start of the next. As a result, quantization artifacts introduced at the
end of the reconstructed source sequence are highly correlated with those
introduced at the beginning of the sequence, which can be quite disturb­
ing. A related difficulty is that the periodically extended sequence, x [k]'
typically contains high frequency transients at the boundaries between
successive periods, which manifest themselves in unusually large high
frequency subband samples, degrading compression efficiency. These
difficulties may all be overcome by increasing the period, at the expense
of additional redundant subband samples.

6.5.2 SYMMETRIC EXTENSION.
Suppose we restrict our attention to delay-normalized FIR subband

transforms having odd length, linear phase filters. For convenience, we
will further restrict our consideration to the important case of m = 2
subbands. A discussion of the importance of such transforms for image
compression appears toward the end of Section 6.1.3. From Theorem 6.4,
we know that the translated impulse responses are all symmetric about
the origin; i.e.,

h~ [k] = h~ [-k] , and g~ [k] = g~ [-k] , q = 0,1
Now let x[k] be the symmetrically extended sequence defined by equa­
tion (6.57), together with

x [E - k] = x [E + k], Vk E 7L

x [F - 1 - k] = x [F - 1+ k], Vk E 7L

(6.58a)

(6.58b)

For F - E 2: 2, these constraints uniquely identify x [k] as a periodic se­
quence with period 2 (F - E - 1), symmetric about each of the original

298 Boundary Handling

end points, k = E and k = F - 1. The following simple algorithm may
be used to construct this unique sequence.

Symmetric Extension Algorithm

Assign x [k] f- x [k] for E ::; k < F
For each i = 1,2, ...
Assign x [E - i] f- x [E + i].
(Note that X[E + i] is certain to have been assigned earlier)
Assign x [F -1 + i] f- x [F - 1 - i].
(Note that X [F - 1 - i] is certain to have been assigned earlier)

Now observe that the interleaved sequence of subband samples, if [k]'
exhibits exactly the same symmetries as x [k]. Specifically,

if [E - k] = Lh(E-k)mod2 [i] X [(E - k) - i]
iE£:

= Lh(E-k)mod2 [-i] X [E - (k - i)]
iE£:

= Lh(E-k)mod2[i]X[(E+k) -i]
iE£:

= 'Lh(E+k)mod2 [i] X [(E + k) - i]
iE£:

=if[E+k]

and, by similar reasoning, if [F - 1 - k] = if [F - 1+ k]. Thus, it is
sufficient to keep the F - E subband samples,

y [k] = if [k]' E::; k < F (6.59)

from which if [k] may be symmetrically extended and inverse transformed
to recover the original source samples, x [k]. Although x [k] and if [k] are
formally infinite length sequences, the subband filters have only finite
extent, so it is sufficient in practice to extend x [k] and y [k] by only a
few samples at each end.
Evidently, the symmetric extension policy introduces no redundant

subband samples. In fact, it avoids all of the problems cited above in
connection with periodic extension. The approach may be extended to
subband transforms having even length linear phase filters [138]. How­
ever, the symmetry conditions for even length filters are not nearly so
elegant as in the odd length case presented above. Moreover, they ex-

Chapter 6: Filter Banks and Wavelets 299

hibit a complex dependence on the parity of g17 For this reason, we
shall not consider the even length case further.
As mentioned several times throughout this chapter, it is appealing

to formally associate the even (respectively odd) indexed samples of
x [k] with the low-pass (respectively high-pass) subband samples. This
connection is strongly reinforced by the symmetric extension procedure
described above. In particular, suppose F - E is odd so that the num­
ber of low- and high-pass subband samples must differ. According to
equation (6.59), the interleaved sequence of subband samples, y [k], has
exactly the same region of support as the original source sequence,
x [k]. Consequently the low-pass (respectively high-pass) subband re­
ceives more samples precisely when there are more even (respectively
odd) indexed source samples. This association is a direct consequence
of the delay-normalization convention, as defined on Page 237. We have
consistently adopted this appealing convention for results which depend
upon the relative displacement of the source and subband sequences.

6.5.3 BOUNDARIES AND LIFTING
The symmetric extension procedure described above is appropriate

only for subband transforms involving linear phase filters. While non­
redundant boundary handling methods may be developed for more gen­
eral subband transforms, they lack the elegant simplicity of symmetric
extension. Within the context of a lifting implementation, however, a
rich family of boundary handling policies may be realized with ease for
any two channel FIR subband transform.

ARBITRARY EXTENSIONS

Recall that every two channel FIR subband transform may be real­
ized through the lifting structure of Figure 6.9 and that the structure
is trivially inverted, as in Figure 6.10, even if the lifting step filters,
Al (z), are replaced by non-stationary operators. Let y{l} [k] be formed
by interleaving the even and odd sub-sequences, Y61

} [n] and yi l
} [n], pro­

duced by each lifting step. Since the input sequence, x [k], is supported
on E :s: k < F, the most reasonable policy is to define the y{l} [k] as

17To deduce the relevant relationships, observe firstly that in the even length case, h6 [k] =
h6 [-1 - kJ and hi [k] = -hi [1 - k] (see Theorem 6.4). Next, construct x [k] to satisfy
x[E + kJ = x [E - 1 - k] and x [F + kJ = x [F - 1 - kJ. The subband symmetries may then
be deduced by following essentially the same procedure as that used in the odd length case.
Note, however, that the low- and high-pass subband samples need to be treated separately.
Also, one encounters a complication at the left boundary when E is odd. The problem can
be resolved by changing the delays of h6 [kJ and hi [k], but then complications arise at the
right boundary for odd values of F.

300 Boundary Handling

sequences supported over the same interval. Equivalently, yJI} [n] is sup­
ported over E ~ 2n < F and yi l

} [n] is supported over E ~ 2n + 1 < F.
This policy has the agreeable implication that the final interleaved se­
quence of subband samples, y [k], will have the same region of support
as the input sequence.
To operate on these finite sequences, the lifting procedure can be

modified in an obvious manner near the boundaries. In particular, each

filter, Al [k], may be applied to an extended version, y~~~a) [k], of the fi-

nite sequence, y~~~~i) [k], where any arbitrary extension ~ay be employed
without sacrificing the invertibility of the system, so long as the same ex­
tension procedure is applied during synthesis. The extension procedure
may equivalently be defined on the interleaved sequences, y{l} [k].

SYMMETRIC EXTENSION

In the particular case of a delay-normalized FIR subband transform
with linear phase odd length filters, the symmetric extension procedure
of Section 6.5.2 may be applied directly in the lifting domain, in the
manner described above. To see this, recall that the subband transform
may be factored into lifting steps satisfying the symmetry conditions of
equation (6.55); in fact, these are the efficient factorizations in the sense
that they minimize the total number of lifting steps. Adopting such a
lifting factorization, it is easy to see that each individual lifting step
represents a "single stage subband transform" which takes the extended
interleaved sequence y{l-l} [k] as its input and produces the interleaved
sequence, y{l} [k]. Moreover, this single stage is itself a delay-normalized
transform with linear phase odd length filters.
The arguments advanced in Section 6.58 indicate that the interleaved

sequences, y{l} [k], must all satisfy the symmetry conditions of equa­
tions (6.58a) and (6.58b). The symmetry conditions for the individual

sub-sequences, yJI} [n] and yil} [n], are trivially derived from those for
y{l} [k], but the expressions are less elegant. In a practical implementa­
tion, the symmetric extension procedure need not be applied explicitly.
Instead, the convolution operation of equation (6.48) can simply be mod-

ified at the boundaries of the finite sequence, y~~~a) [n].
In the special case of 2-tap symmetric lifting filters, symmetric exten­

sion in the lifting domain requires the synthesis of at most one sample
beyond the boundary. Within each lifting step then, the extension oper­
ation may be implemented simply by replicating the boundary samples
of the sub-sequence which is being filtered. The state-based lifting analy­
sis algorithm on Page 295 may then be completed as shown below. In

Chapter 6: Filter Banks and Wavelets 301

this algorithm, the temporary variables, A and ~l1CW' as well as the state
variables, ~l, are each associated with an "existence flag," which indi­
cates whether or not the corresponding sample position lies within the
region of support, E :::; n < F. The existsO operator identifies whether
or not this flag is set and the assignO operator marks the relevant vari­
able as non-existent whenever an attempt is made to assign a sample
value which lies outside the region of support.

Complete Lifting Analysis Algorithm
Mark all state variables, ~l, as non-existent.

For n = li J ' ... , rFtL1'
assign(x [2n] to ~new) (marks ~new as non-existent if 2n ~ [E, F))
assign(x [2n -1] to A) (marks Aas non-existent if 2n -1 ~ [E, F))

For l = 1,2, ... ,L,
if exists(A) and exists(~new) and exists(~l)

A ~ A + Al (~Ilew + ~l)

else if exists(A) and exists(~new)

A ~ A + 2Al~new (implements symmetric extension at left)
else if exists(A)

A ~ A + 2Al~l (implements symmetric extension at right)
A ~ ~l ~ ~Ilew ~ A
(rotates values and existence states of A, ~l, ~new to the left)

if exists(A)
y [2n - L -1] ~ A

if exists(~llcw)
y [2n - L] ~ ~new

6.6 FURTHER READING
An early tutorial on subband transforms is that by Vaidyanathan

[158], which still makes good introductory reading. Likewise, the classic
paper by Mallat [98] provides an excellent introduction to the wavelet
transform. For more in depth treatment of these subjects, the book by
Vetterli and Kovacevic [162] and that by Strang and Nguyen [143] are
to be recommended, while the book by Vaidyanathan [159] is a com­
prehensive reference on subband transforms and filter banks in general.
The material on lifting and reversible transforms in Section 6.4 may not
be found in those references due to its more recent advent.
We have deliberately limited the scope of the material presented in

this chapter in accordance with the types of transforms which have been
found most effective and/or most practical for image compression. In

302 Further Reading

particular, there is no discussion whatsoever of non-separable subband
and wavelet transforms, or transforms involving recursive, IIR filters.
Moreover, our treatment exhibits a decided bias toward two channel
subband transforms having odd length linear phase filters.

Chapter 7

ZERO-TREE CODING

Embedded zero-tree coding of wavelet coefficients (EZW) was intro­
duced by Shapiro [132]. At that time, it produced state-of-the-art com­
pression performance at a relatively modest level of complexity. The
bit-stream produced by EZW is also embedded. Every prefix of the
compressed bit-stream is itself a compressed bit-stream, but at a lower
rate (quality). As we will see, EZW achieves its embedding via binary
bit-plane coding of deadzone scalar quantizer indices.

Embedding via bit-plane coding had been previously studied, and
even inc!uded as part of the original JPEG standard [119]. However,
most previous "mainstream" bit-plane coding systems followed a fixed
scan pattern. For example, [121] describes a raster scan of bit-planes of
image sample data, while the progressive mode of JPEG can employ a
"zig zag" scan of DCT coefficient bit-planes [119]. In contrast, the bit­
plane coding of EZW allows data dependent departures from a raster
scan of transform coefficients. These departures are in the form of "zero­
trees," which allow for the coding of large numbers of zeros using very
few compressed bits.

The state-of-the-art MSE performance of EZW, together with its mod­
est complexity and embedded bit-stream captured the interest of the
compression research community, and a tremendous research effort was
ignited by its publication. In [126], Shapiro's zero-trees were general­
ized, and set partitioning techniques were introduced to effectively code
these generalized trees of zeros. The resulting technique is known as set
partitioning in hierarchical trees (SPIRT - pronounced "spite"). The
SPIHT algorithm produces results superior to those of EZW at even
lower levels of complexity. Example software for SPIHT was made avail-

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

304 Genealogy of Subband Coefficients

able by the authors, and SPIHT quickly became the yardstick by which
all image compression methods are measured.

7.1 GENEALOGY OF SUBBAND
COEFFICIENTS

The EZW algorithm was proposed for use with hierarchical subband
transforms as developed in Chapters 4 and 6. As discussed in those
chapters, the basic premise of all transform coding systems is that most
of the image energy is compacted into only a few transform coefficients.
For dyadic subband (or wavelet) transforms, the highest energy coeffi­
cients reside in the lowest frequency subbands. As can be seen in Figure
4.22, subband LL2 consists of coefficients having a large dynamic range
(in fact, LL2 looks a lot like the original image). As we look at higher
frequency subbands, we see that few coefficients differ significantly from
zero. l

In addition to the energy compaction property of transform coding,
zero-tree coding is founded on the premise that if a coefficient is small in
magnitude, then coefficients corresponding to the same spatial location
(in corresponding higher frequency subbands) will also tend to be small.
For example, examining subband HL2 of Figure 4.22, we see a large re­
gion of near-zero coefficients within the left portion of the bicycle wheel.
Examining subband HL1 shows a corresponding region of near-zero co­
efficients. Examining the LH and HH subbands reveals similar spatially
commensurate regions.
In an attempt to exploit the dependencies embodied in these "repli­

cated" regions of zeros, the EZW algorithm employs a parent-child rela­
tionship among the coefficients from subbands of the same orientation.
For example, each coefficient in subband HLd is considered to be the
parent of 4 children in subband HLd- 1. Parents and children are defined
similarly for the LH and HH orientations. These relationships hold for
each d = 2, ... ,D where D is the number of levels in the transform. The
coefficients at the highest frequency bands (d = 1) have no children. The
coefficients in the lowest frequency subband, LLD each have only 3 chil­
dren, comprised of the single coefficient at the same spatial location in
HLD, LHD, and HHD.
The "descendants" of a coefficient consist of all its children, grandchil­

dren, great-grandchildren, etc. In general, a coefficient in subband HLd ,

LHd' or HHd has 4 children, 16 grandchildren, 64 great-grandchildren,

1Note that for all subbands other than LL2 in Figure 4.22, zero is represented by a medium
shade of gray, while darker and lighter shades represent negative and positive coefficients,
respectively.

Chapter 7: Zero- Tree Coding 305

Figure 7.1. EZW descendant structure for one sample in the LL3 subband.

etc. Thus, each such coefficient has a total number of descendants given
by

2 d-l 4d
- 4

4+4 + ... +4 =-3-

Similarly, each coefficient in LLD has 3 children, 12 grandchildren, 48
great-grandchildren, etc., for a total of 4D - 1 descendants. All descen­
dants of the [0,0] coefficient of LLD are shown in Figure 7.1, for D = 3.

7.2 SIGNIFICANCE OF SUBBAND
COEFFICIENTS

In the EZW algorithm, the sample mean of all image samples is sub­
tracted from each sample prior to performing the wavelet transform.
This results in all subbands having a mean of zero. Since the high-pass
filter taps sum to zero, all subbands except LLD are zero-mean with or
without the subtraction. Once the level shifting has been performed, the
premise of zero-tree coding is that descendants of small coefficients tend
to also be small. This idea is made more precise in [132] by comparing
coefficients to a series of thresholds, Tk k = 0,1, ... ,K - 1.
Assuming an orthonormal transform, the zero-tree premise is that

coefficients that are less thann (in magnitude) tend to have descendants
that are less than Tk (in magnitude). In [132] only thresholds of the form
Tk = To2- k are considered, where To is chosen to satisfy

Iylmax < Tr < Iyl2 0 - max (7.1)

(7.2)

306 EZW

Here, Iylmax is taken as the maximum magnitude over all coefficients in
all subbands of the transformed image.
A particular coefficient y = y [i, j] is said to be significant with respect

to Tk if Iyl 2: Tk' or equivalently, if

~>~
TK - 1 - TK - 1

Noting that Tk/TK-l = 2K- k- 1 is an integer, we then have that y is
significant with respect to Tk if and only if

Iql ~ l~J 2: 2K
-

k
-

1

TK-l

Comparing equation (7.2) to equation (3.34), we see that Iql is the mag­
nitude of the index resulting from deadzone scalar quantization of y
using a step size of TK-l = 2-(K-l)To.
Furthermore, from the left hand side of equation (7.1), we see that

IT:~J = l2-(1~1)ToJ < 2
K

SO that K bits are sufficient to represent Iql. As in equation (3.36), we
let the binary representation of q be given by

q = s,qO,ql,··· ,qK-l (7.3)

From equation (7.2) we conclude that y is significant with respect to
Tk if and only if the magnitude of its quantization index is significant
with respect to 2K - k - 1 , or equivalently, if and only if at least one of
qo, ql , ... ,qk is 1.

In what follows, we will sometimes refer to q (or equivalently y) be­
coming significant in bit k'. By this, we mean that qk' = 1 and qk = 0
'Ilk < k'. We will sometimes call this first 1 bit (qk') the "significance
bit" of q. All bits following the significance bit (i.e., qk k > k') are
called "refinement bits."

7.3 EZW
Having established the equivalence of threshold comparisons to dead­

zone scalar quantization, we now describe the EZW algorithm as a form
of entropy coding applied to bit-planes of scalar quantizer indices. Al­
though this description is quite different from that in [132] it leads to
a more unified and cohesive discussion of related bit-plane coding tech­
niques.

Chapter 7: Zero- Tree Coding 307

Recall from Chapter 3, that for entropy coded scalar quantization at
high rates, uniform quantization is optimal, and incurs (for step size ,6.)
a MSE of ,6.2/12. Recall also from Chapter 5, that (at least for high
rates and perfectly decorrelated Gaussian data) each coefficient of an
orthonormal transform should contribute equally to overall image MSE.
Thus, for such transforms, the same step size should be employed for
every coefficient of every subband.2

For simplicity, we assume an original image of size N x N where N =
2n for some integer n 2 D. We assume that this image is transformed
with D levels of a dyadic tree-structured subband transform, normalized
to be (at least approximately) orthonormal.3 This transform yields 3D+
1 subbands of transform coefficients. Each of the coefficients is then
replaced by the index (in sign-magnitude form) resulting from uniform
deadzone quantization with step size TK -1 = To2-(K -1), where To is
selected to satisfy equation (7.1).
The resulting N x N array of (integer) indices is then "sliced" into

K + 1 binary arrays (or bit-planes). The first such bit-plane consists
of the sign bit of each index, denoted by s [i,j] i,j = 0,1, ... ,N - 1.
The next bit-plane consists of the MSBs of each magnitude, denoted by
qo [i,j] i,j = 0,1, ... ,N - 1. The next bit-plane contains q1 [i,j], and
so on, until the final bit-plane contains qK-1 [i,j] i,j = 0,1, ... ,N -1.
The EZW algorithm then codes all bits of qo [i, j] followed by all bits of
q1 [i, j], and so on. The sign bit of a particular index is coded together
with the significance bit of that index. That is, s [i, j] is coded together
with qk' [i, j], where qk' [i, j] = 1 and qk [i, j] =°Vk < k'.
The primary differences between zero-tree coding and previous bit­

plane coding schemes, are the order in which the bits within a plane are
coded, and the clever extension of "zero run" coding (see Section 2.4.3)
to zero-trees of wavelet coefficients.
Each of the K magnitude bit-planes is coded in two passes. The first

pass codes all refinement bits, while the second pass codes everything
else (all bits not coded in the first pass). More specifically, the first pass
(which we call the "refinement pass") codes a bit for each coefficient that
is significant (due to its significance bit having been coded in a previous
bit-plane). The second pass (which we call the "significance pass") codes
a bit for each coefficient that is not yet significant. The name refinement

2We note that many of the assumptions used to arrive at this conclusion do not necessarily
hold in real imagery. However, the result is simple, elegant, and works well in practice. More
sophisticated techniques are addressed in Chapter 5.
31[the transform is not orthonormal, then the step sizes (thresholds) should be adjusted via
the synthesis weights Gb as discussed in Section 5.3. Adjustments for HVS weights, Wb , can
also be performed if desired.

308 EZW

pass derives from the fact that all bits coded in this pass are refinement
bits as defined above. The name significance pass is derived from the
fact that a 1 coded in this pass indicates a coefficient becoming newly
significant. When the first bit-plane (i.e., qo = qo [".J) is coded, there are
no significant coefficients yet. Thus the refinement pass for qo is skipped
(it can also be thought of as being present, but empty).
In [132], the refinement pass was called the "subordinate pass," while

the significance pass was called the "dominant pass." This terminology
stemmed from the fact that the significance (dominant) pass is the first
to result in coded data, and determines which coefficients are visited in
the refinement (subordinate) pass of subsequent bit-planes.

7.3.1 THE SIGNIFICANCE PASS
In the significance pass, each insignificant coefficient is visited in raster

order (left-to-right, top-to-bottom), first within LLD, then within HLD,
then LHD, then HHD, then HLD-l, and so on, up to and including HH1.
Coding is accomplished via a 4-ary alphabet:

1. POS = Significant Positive. This symbol is equivalent to a 1 followed
immediately by a corresponding "positive" sign bit.

2. NEG = Significant Negative. This symbol is equivalent to a 1 followed
immediately by a corresponding "negative" sign bit.

3. ZTR = Zero Tree Root. This symbol indicates that the current bit
of a particular coefficient is 0, and that the corresponding bit in each
of its descendants is also O.

4. IZ = Isolated Zero. This symbol indicates that the bit is 0, but at
least one descendant has a corresponding 1 bit.

As mentioned previously, the three highest frequency subbands HL1,

LH1, and HH1 have no children. Thus, when coding bits from these
subbands, the ZTR and IZ symbols are replaced by the single symbol Z.
As the scan of insignificant coefficients progresses through subbands,

any bit known already to be zero (by virtue of inclusion in a zero-tree
from a previous subband) is not coded again. Also, for the purpose of
determining if a bit is a zero-tree root, only insignificant descendants are
examined. Equivalently, (refinement) bits of significant descendants are
treated as if 0 for the purpose of ZTR formation.

7.3.2 THE REFINEMENT PASS
In the refinement pass, a refinement bit is coded for each significant

coefficient. A coefficient is significant if it has been coded POS or NEG

Chapter 7: Zero- Tree Coding 309

63 -34 49 10 7 13 -12 7

-31 23 14 -13 3 4 6 -1

15 14 3 -12 5 -7 3 9

-9 -7 -14 8 4 -2 3 2

-5 9 -1 47 4 6 -2 2

3 0 -3 2 3 -2 0 4

2 -3 6 -4 3 6 3 6

5 11 5 6 0 3 -4 4

Figure 7.2. Three level dyadic subband decomposition of an 8 x 8 image.

in a previous bit-plane. Its current refinement bit is simply its corre­
sponding bit in the current bit-plane. The order in which significant
coefficients are visited during the refinement pass is: 1st by magnitude
(as best as can be determined by previously coded bits), 2nd by raster
within subbands in order LLD, HLD, LHD, HHD, HLD-l, ... ,HH1·
More specifically, when coding bit-plane qk = qk [".J, k magnitude bits

have been previously coded for each coefficient. Equivalently p = K - k
magnitude bits remain uncoded. Interpreting the k coded magnitude
bits as an unsigned integer Iq(p) [i, j] I, all coefficients having Iq(p) [i, j] I=
2k - 1 are visited in raster order by subband, followed by all coefficients
having Iq(p) [i, j] I = 2k - 2 in raster order by subband, and so on, until
all coefficients having Iq(p) [i, j] I = 1 are visited. Note that coefficients
with Iq(p) [i, jJi = 0 are not visited as they are still insignificant, and
thus will be coded during the significance pass. With this description,
the refinement pass can thus by thought of as 2k - 1 subpasses, or as a
single pass through a sorted list of significant coefficients.

Example 7.1 Consider the subband coefficients shown in Figure 7.2.
We choose a quantizer step size of ~ = TK - 1 = 1, so that the quan­
tizer indices are also as shown in this figure. This choice yields K = 6
magnitude bit-planes. The first three of these bit-planes (qO' ql, q2) are
shown along with the sign plane, s, in Figure 7.3.

Coding begins with a significance pass through qo. The single bit in
the LL3 subband of qo has a value of 1. Its corresponding sign is +, so
the first coded symbol is POS. Similarly, the single bit in HL3 of the qo
bit-plane is coded as NEG. The single bit in LH3 is coded as IZ, since it
is zero but has a non-zero descendant in LH1 of the qo bit-plane. The bit
in HH3 is coded as ZTR indicating that it and all its descendants are O.

310 EZW

r.b ++ ++ - +- + + - + + + -
+ + + - + - ++
- - - + + - ++
- + - + + + - +
+ + - + + - ++
+ - + - ++++
+ + ++ ++ - +

-Hi 1 0 o 0 0 0 1# I 0 o 0 0 0
~
o 1 o 1 1 0

o 0 00 o 0 0 0 1 I 00 o 0 0 0 1 0 1 1 o 0 0 0
o 0 00 o 0 0 0 o 0 00 o 0 0 0 1 1 o 1 o 0 0 1
o 0 00 00 0 0 o 0 00 o 0 00 1 0 I I o 0 0 0
o 0 0 1 o 0 0 0 o 0 00 o 0 0 0 o I 0 I o 0 0 0
o 0 00 o 0 0 0 o 0 00 o 0 0 0 o 0 00 o 0 0 0
o 0 00 o 0 0 0 o 0 00 o 0 0 0 o 0 00 o 0 0 0
o 0 00 o 0 0 0 o 0 00 o 0 0 0 o I 00 o 0 0 0

s

Figure 7.3. Sign plane and first three magnitude bitplanes for the quantized coeffi­
cients of Figure 7.2.

Note that no further coding of HH2 and HH1 will be done for bit-plane

qo·
Proceeding to HL2, the first bit is coded POS, while the remaining three

bits are coded with three ZTR symbols. Similarly, LH2 is coded as ZTR,
IZ, ZTR, ZTR. Again, HH2 has already been coded as "all zero," and is
skipped. Now in HL1, twelve of sixteen bits have already been coded as
zero, by virtue of zero-trees emanating from HL2 . The four remaining
bits are coded Z, Z, Z, Z. Similarly, there are only four uncoded bits
in LH1 which are coded Z, POS, Z, Z. Thus, the code symbols for the
significance pass of qo are given by

POS,NEG,IZ,ZTR,

POS,ZTR,ZTR,ZTR,ZTR,IZ,ZTR,ZTR,

Z,Z,Z,Z,Z,POS,Z,Z

The string of code symbols above is broken into three lines for clarity
of the text. The first line contains all symbols from LL3, HL3, LH3, and
HH3. The second line contains all symbols from HL2, LH2, and HH2.
Finally, the third line contains all symbols from HL1, LH1, and HH1.

By virtue of the qo significance pass, there are now four coefficients
known to be significant. Specifically, q [0, 0] ,q [0, 1] ,q [0, 2], and q [4, 3]
are significant. The q1 bit for each of these coefficients is coded in the
q1 refinement pass. Since only one bit-plane (of six) has been coded,
Iq(p) I= Iq(K -1) I= Iq(5) I= 1 for each of these four coefficients, and no
sorting is required. The code symbols for this pass are thus

q1 [0, 0], q1 [0,1], q1 [0,2], q1 [4,3] = 1, 0,1,0 (7.4)

Chapter 7: Zero- Tree Coding 311

The significance pass for ql then codes all remaining bits in the ql
bit-plane. The code symbols resulting from this pass are given by

NEG,POS,

ZTR, ZTR, ZTR, ZTR, ZTR,ZTR, ZTR,ZTR, ZTR, ZTR, ZTR,

Z,Z,Z,Z

As before, the code symbols are broken into three lines according to trans­
form level. Recall that when testing for the presence of zero-trees, sig­
nificant coefficients are treated as if 0 (whether they are or not). Thus,
LH2 would still be coded using four ZTR symbols even if the refinement
bit at ql [4,3] were 1.

The ql significance pass has added two more significant coefficients
(q [1,0] and q [1, 1]). One bit must be coded for each of the (now six) sig­
nificant coefficients during the q2 refinement pass. First, all coefficients
with Iq(4) I= 3 are visited, followed by those with jq(4) I= 2, and finally

by those with Iq(4) I = 1. The symbols coded in the refinement pass are
thus

q2 [0,0] ,q2 [0,2] , q2 [0,1] , q2 [4,3] , q2 [1,0] ,q2 [1, 1]
= 1,0,0,1,1,0 (7.5)

Coding continues with the q2 significance pass, the q3 refinement pass,
and so on.

7.3.3 ARITHMETIC CODING OF EZW
SYMBOLS

Context dependent arithmetic coding is used to losslessly compress
the sequences of symbols resulting from the procedures discussed above.
Shapiro employed the arithmetic coder from [171]. This arithmetic coder
codes lv'I-ary symbols directly (without binarization) and employs scaled
count probability model adaptation (Section 2.3.5). For a given context,
counts are maintained for each symbol. As each symbol is coded, its
corresponding counter is incremented. When the sum of the counters
for the context reaches a given maximum count value, each counter is
incremented and divided by 2.
EZW employs five contexts, each with a maximum count value of 255.

All counts in all contexts are initialized to 1. A single context is used in
the refinement pass, while four contexts are used in the significance pass.
Which of the four context labels is to be used for a particular coefficient
is determined by the significance states of two coefficients. These two
coefficients are the neighbor immediately previous in the nominal scan
order, and the parent coefficient.

312 EZW

Encoding can halt at any point. Reasonable stopping criteria include
achieved MSE, or achieved rate. Stopping via achieved rate is particu­
larly simple. For a desired encoding rate of R bits/sample, the algorithm
is halted when N 2R arithmetic coded bits have been produced. Simi­
larly, decoding can be halted when N 2R' bits have been consumed from
the compressed bit-stream for any R' :::; R. Also, the compressed bit­
stream can be "truncated" by discarding all but the first N 2R' bits,
to yield a compressed bit-stream at rate R' :::; R. Clearly, this trun­
cated bit-stream is identical to that as if encoding were halted at R'
bits/sample in the first place. In this way, the prefix of every EZW
bit-stream is an EZW bit-stream itself.
With such partial decoding, the number of bits available for inverse

quantization can vary coefficient-by-coefficient. For a coefficient with
k bits decoded (p = K - k bits missing), dequantization is performed
using equation (3.37). For example, consider decoding the bit-stream of
Example 7.1 to the end of the q1 refinement pass (equation (7.4)). The
four significant coefficients have each been decoded to a depth of 2 bits
to get

q(4) [0, 0] ,q(4) [0, 1] ,q(4) [0,2] ,q(4) [4,3] ,= 3, -2,3,2

respectively. These coefficients are dequantized using a step size of 24 =
16 to get4

y [0, 0] ,y [0, 1] ,y [0,2] ,y [4,3] ,
= 56, -40,56,40

respectively. All insignificant coefficients have all their decoded bits
equal to 0 and thus, dequantize to O. In this case, the MSE of the
dequantized coefficients is given by

MSE= ~2 LL(y[i,j] _y[i,j])2
i j

~ 68.6 (7.6)

As another example, consider decoding through the first half of the
q2 refinement pass. The first three significant coefficients (recall the
order of equation (7.5)) have k = 3 magnitude bits decoded, while the
remaining three have only k = 2 magnitude bits decoded. Thus the first
three coefficients are dequantized using a step size of 26- 3 = 8 to get 60,
52, and -36, respectively. The remaining three coefficients are decoded

4For simplicity, we let 6 = 1/2 in equation (3.37).

Chapter 7: Zero- Tree Coding 313

using a step size of 26- 2 = 16 to get 40, -24, and 24, respectively. As
before, all other coefficients dequantize to zero. We see that decoding an
extra pass and half has updated the estimates of five coefficients (Y [4,3]
remained unchanged). Also, the MSE of equation (7.6) has been lowered
to a value of 44.4.
In both cases, the inverse transform follows inverse quantization to

obtain the corresponding decompressed image x[', 1 Due to our as­
sumption of orthonormality, the MSEs of the decompressed images will
be the same as those computed for the transform coefficients above.
Specifically,

/vISE = ~2 L I)x [i,j] - x [i,j])2
i j

1
= N2 L L (y [i,j] - 11 [i,j])2

i j

7.4 SPIHT
As mentioned at the beginning of this chapter, the SPIRT algorithm

was motivated by, and has several features in common with, the EZW
algorithm. In this section, we employ many of the assumptions from the
previous section. Specifically, we describe the SPIRT algorithm in terms
of bit-plane coding of signed indices arising from deadzone SQ of subband
transform coefficients. As before, we assume an orthonormal transform,
and a single step size TK-l = To2-(K-l), with To satisfying equation
(7.1). We also assume D levels of a dyadic orthonormal transform are
applied to an N x N image. For simplicity we assume N = 2n for some
integer n ~ D + 1.
Although the SPIRT algorithm has many similarities to the EZW al­

gorithm, there are also several significant differences. In particular, the
order of the significance and refinement passes is reversed, the parent­
child relationship in the LLD subband is altered, there are two types of
zero-trees, the coding order is driven more by the significance of previ­
ously coded trees (i.e., SPIRT is less raster-based), more inter-bit-plane
memory is exploited (via sorted lists of trees), and all SPIRT output
symbols are binary.

7.4.1 THE GENEALOGY OF SPIHT
As mentioned above, the parent-child relationships for SPIRT are the

same as those for EZW except for the LLD subband. Specifically, each
coefficient in RLd,LHd' or HHd d = 2,3, ... ,D has 4 children, while each
coefficient in HL1,LR1, or HR1 has°children, as was the case for EZW.

314 SPIHT

Figure 7.4. Parent-child relationships in SPIRT.

However in SPIHT, one fourth of the coefficients in LLD have no children,
while the remaining coefficients each have four children. Specifically,
coefficients in LLD with even vertical and horizontal coordinates have no
children, while all other coefficients in LLD have four children. Figure 7.4
depicts this situation for a group of four coefficients in the LL2 subband.
The coefficient marked with an asterisk has no children.

7.4.2 ZERO-TREES IN SPIRT
In EZW, a zero-tree is defined by a "root" coefficient and its descen­

dants all having a value of 0 within a bit-plane. Such zero-trees are used
to signal the event that all insignificant coefficients (within the footprint
of the zero-tree) remain insignificant. SPIHT can be thought of as em­
ploying two types of zero-trees. The first type consists of a single root
coefficient having all descendants 0 within a given bit-plane. This differs
from the EZW zero-tree in that the root itself need not be zero. In fact,
although the zero-tree is specified by the coordinates of the root, the
root itself is not included in the tree. The second type of zero-tree is
similar but also excludes the four children of the root.
These two types of zero-trees are used to signal the continued existence

(bit-plane-by-bit-plane) of insignificant sets of coefficients of Type A
and Type B, respectively. Specifically, if all descendants of a given root
coefficient are insignificant, they comprise an insignificant set of Type A.
Type B insignificant sets are similar but do not contain the children of

Chapter 7: Zero- Tree Coding 315

the root. That is, Type B insignificant sets contain only grandchildren,
great grandchildren, etc. 5

7.4.3 LISTS IN SPIHT
SPIRT is best explained using three ordered lists:

1. List of significant coefficients.

2. List of insignificant coefficients.

3. List of insignificant sets of coefficients.

As the name suggests, the list of significant coefficients (LSC) contains
the coordinates of all coefficients that are significant. The li·st of insignif­
icant sets of coefficients (LIS) contains the coordinates of the roots of
insignificant sets of coefficients (of Type A, or Type B). Finally, the list
of insignificant coefficients (LIC) contains a list of the coordinates of all
coefficients that are insignificant, but do not reside within one of the two
types of insignificant sets.

7.4.4 THE CODING PASSES
As mentioned previously, the order of significance and refinement

passes are reversed from that of EZW. Thus, each bit-plane is coded by a
significance pass (called a sorting pass in [126]), followed by a refinement
pass. As in EZW, the refinement pass codes a refinement bit for each
coeffi~ient that was significant at the end of the previous bit-plane. In
particular, coefficients that became significant via the significance pass
of the current bit-plane are not refined until the next bit-plane.
Prior to the significance pass for bit-plane go, initialization begins

by adding each coefficient in LLD to the LIC. The coordinates of each
coefficient in LLD with descendants are then added to the LIS as roots
of insignificant sets of Type A. In this way, every coefficient in every
subband is initialized to the insignificant state.6 The LSC is initially
empty, but becomes populated as significant coefficients are identified.
The qo bit of each coefficient in the LIC is coded first. If any bit is

coded as 1, its corresponding sign bit is coded immediately thereafter,

5It is worth noting that a Type B set can be thought of as the union of four Type A sets.
This can be seen by noting that the root of a Type B set has four children each of which has
only insignificant descendants.
6Note that a Type A set indicates that all descendants of its root are insignificant. It says
nothing about the root itself. Thus, the root of a Type A set must belong to either the LIC
or LSC. Similarly, the root of a Type B set (and the four children of the root) must each
belong (individually) to either the LIC or LSC.

316 SPIHT

and the coefficient is moved to the LSC. Next, each set in the LIS is
examined, in order of appearance in the list.
For a given set in the LIS, the coding proceeds as follows. If each

coefficient in the set remains insignificant (all bits of qo in the appropriate
tree are zero), a single°is coded and processing proceeds to the next set
in the LIS. Otherwise, a 1 is coded. If this occurs, one of the following
procedures is executed: 1) If the set is of Type A, it is changed to Type
B and sent to the bottom of the LIS.7 The qo bit of each child is coded
(with any required sign bit). The child is then sent to the end of the
LIC or LSC, as appropriate; 2) If the set is of Type B, it is deleted from
the LIS, and each child is added to the end of the LIS as a set of Type
A.
Processing continues in this fashion until the end of the LIS is reached.

This specifically includes new entries added to the end of the LIS during
the current pass. In this way, a magnitude bit eventually gets coded (in
the current pass) for every coefficient of qo. At the completion of the
significance pass, the following refinement pass is empty (or skipped) as
there were no significant coefficients at the beginning of the qo bit-plane.
The significance pass for ql proceeds in the same fashion as the qo

significance pass, using the lists as they were at the end of the qo bit­
plane. This results in coding of the ql bits for all insignificant coefficients
(all coefficients indicated in the LIC and LIS). The ql refinement pass is
then executed using the LSC as it was at the end of the qo bit-plane. This
procedure is continued bit-plane-by-bit-plane until a target encoding rate
is achieved, or all magnitude bit-planes, qk k = 0, ... ,K - 1 have been
processed.

7.4.5 THE SPIHT ALGORITHM
The SPIRT algorithm can be described more precisely using the fol­

lowing notation. For a given coefficient at location [i, j] let C[i, j] be
the set of its children, let V [i, j] be the set of its descendants, and let
g [i,j] be the set of its grandchildren, great grandchildren, etc. (i.e.,
g [i,j] = V [i,j] - C [i,j]). Let Sd·) be a mapping from any set of co­
efficients to {O, I}. Specifically, if B is a set of coefficients, Sk (B) = °if
every coefficient in B has qk = 0. Otherwise, at least one coefficient in
B has qk = 1, and Sk (B) = 1. The SPIRT algorithm is then defined as
follows:

The SPIHT Algorithm

7If when changed t.o Type B, t.he set. is empt.y (i.e., t.he root. has no grandchildren), t.hen t.he
ent.ry is delet.ed fwm the list.

Chapter 7: Zero- Tree Coding 317

0) Initialization

• Set k = 0, LSC = cP, LIC = {all coordinates [i, j] of coefficients
in LLD}, LIS = {all coordinates of coefficients from LIC that
have children}. Set all entries of the LIS to Type A.

1) Significance Pass

• For each [i, j] ELIC, do:
- Output qk [i,j]. If qk [i,j] = 1, output s [i,j] and move [i,j]
to the end of the LSC.

• For each [i, j] in the LIS do:

- If the set is of Type A, output SdV [i,j]). If SdV [i,j]) =
1, then

* For each [I, m] E C [i,j], output qk [I, m]. If qk [I, m] = 0,
add [I, m] to the LIC. Else, output s [I, m] and add [I, m]
to the LSC.

* If 9 [i, j] i= cP, move [i, j] to the end of the LIS as a set
of Type B. Else delete [i,j] from the LIS.

- If the set isofTypeB, output Sk (Q[i,j]). IfSdg[i,j]) = 1,
then add each [I, m] E C [i,j] to the end of the LIS (as sets
of Type A) and delete [i,j] from the LIS.

2) Refinement Pass

• For each [i, j] ELSC, output qk [i, j]. For this step, the LSC as
it was before the most recent significance pass should be used.
That is, coefficients that were added to the LSC in the most
recent significance pass should not be refined.

3) Set k = k + 1 and go to Step 1).

As mentioned previously, Step 1) proceeds until all sets in the LIS
(including the new ones being added) have been processed.

Example 7.2 The sign plane and first three magnitude bit-planes for a
D = 2 level dyadic orthonormal transform are shown in Figure 7. 5. For
this case, the lists are initialized to

LSC LIC
[0,0]
[0,1]
[1,0]
[1,1]

LIS
[0,1] A
[1,0] A
[1,1] A

318 SPIHT

+ - ++ + - + + I I 00 o 0 0 0 I o 00 o 0 0 0 I I I 0 I 0 0 0
- + ++ + + + + o I 00 o 0 0 0 I o 0 I o 0 0 0 I I 00 o I 0 0
+ + ++ ++++ o 0 00 o 0 0 0 I o 00 o 0 0 0 0 o 00 o 0 0 I
+ + + - + + - + I 0 00 o 0 0 0 0 o 00 o 0 I 0 I o 0 I o 0 I 0
- + ++ ++++ o 0 00 o 0 0 0 0 o 00 o 0 0 0 0 o 00 o 0 0 0
+ - + + ++++ o 0 00 o 0 0 0 0 o 00 o 0 0 0 0 o 00 o 0 0 0
+ + ++ + + - + o 0 00 o 0 0 0 0 o 00 o 0 0 0 0 o 00 o 0 0 0
+ + ++ + + + - o 0 00 o 0 0 0 0 o 00 o 0 0 0 0 o 00 o 0 0 0

s

Figure 7.5. An example sign plane along with three magnitude bitplanes.

The qo significance pass begins by coding a bit (with signs, as appropri­
ate) for each coefficient in the LIC. Thus, qo [0,0] = 1 is output, followed
immediately by s [0,0] = +. Similarly, qo [0, 1] = 1 is output, followed by
s [0, 1] = -. Next qo [1,0] =°is output, followed by qo [1, 1] = 1, and its
sign, s [1, 1] = +. As a result of this coding, [0,0], [0, 1]' and [1,1] are
all moved to the LSC.

Processing then proceeds to the LIS. The descendants 01[0,1] comprise
all coefficients in HL2 and HL1 . A single °is coded to convey the fact
that all these coefficients have qo =°i.e., So (1) [0, 1]) = 0. On the other
hand [1,0] has a descendant with qo = 1. Thus, a 1 is output, followed
by a bit (with signs, as appropriate) for each coefficient in C[1, OJ =
{[2,0], [2,1],[3,0],[3, I]}. The resulting output values are 0,0,1,+,0,
respectively. [2, OJ, [2, IJ , and [3,1] are each added to the end of the LIC,
while [3,0] is added to the end of the LSC. [1,0] is moved to the end of
the LIS as an entry of Type B.

All descendants 01[1, IJ have qo = °i.e., So (V ([1, 1])) = 0, so a single°is output. The last remaining entry in the LIS at this point is [1, OJB.
A single °is output to denote that all grandchildren, great grandchildren,
etc., of [1,0] have qo = 0, i.e., So (Q [1,0]) = 0. The coded values up to
this point are

1, +, 1, -,0,1, +,0,1,0,0,1, +, 0, 0,°
and all values of qo [.,.] can be deduced from this string of symbols.s

As mentioned previously, the qo refinement pass is empty (as all val­
ues of qo have already been coded). Thus, processing proceeds to the ql
significance pass. The initial lists for this pass are the final lists from

8We note that {+, -} can be coded as {O, I} in a practical implementation. We leave them
as {+, -} here for clarity of the text.

Chapter 7: Zero-Tree Coding 319

the coding of the qo bit-plane. Specifically,

LSC LIC
[0,0] [1,0]
[0,1] [2,0]
[1,1] [2,1]
[3,0] [3,1]

LIS
[0,1] A
[1,1] A
[1,0] B

(7.7)

The coefficients from the LIC are coded as 1, -, 1, +, 0,°resulting in a
move of [1,0] and [2,0] to the LSC. Processing then proceeds to the LIS,
where 81 (V ([0,1])) = 1 is output. This is followed by 0,0,0,1,+ rerre­
senting the four children of [0,1]. The first three children {[O, 2] , [0,3] ,
[1,2]} are added to the LIC, while the fourth child [1,3] is added to the
LSC. [0,1] is then moved to the end of the LIS as an entry of Type B. The
next two output bits are 0,°to denote that 81 (V [1,1]) = 81 (Q [1,0]) =
0.

At this point the "last" entry at the bottom of the LIS is [O,l]B. A
1 is output, to indicate that 81 (Q [0, 1]) = 1. [0, 1] is removed from the
LIS, while its children {[O, 2] , [0,3] , [1, 2] , [1, 3]} are added to the LIS as
entries of Type A. The first three of these new entries result in outputs of
0,0,0. The last entry of [1,3] is coded as 1 followed by its children and
their signs as 0,0,1, -,0. Three of these children, {[2, 6], [2,7]' [3, 7]}
are added to the LIC while [3,6] is added to the LSC. Since [1,3] has
no grandchildren, i. e., 9 [1,3] = ¢, it is not changed to Type B, but is
deleted from the LIS. The resulting outputs of the q1 significance pass
are thus

1, -, 1,+, 0, 0,1,0,0,0,1, +, 0, 0,1,0,0,0,1,0,0,1, -,°
The q1 refinement pass outputs q1 [i, j] \:j [i, j] in the LSC as shown

above in equation (7.7) (i.e., at the beginning of the q1 significance pass)
This results in outputs given by

1,0,0,0

At this point, all bits in q1 have been coded and the lists are given by

LSC LIC
[0,0] [2,1]
[0,1] [3,1]
[1,1] [0,2]
[3,0] [0,3]
[1,0] [1,2]
[2,0] [2,6]
[1,3] [2,7]
[3,6] [3,7]

LIS
[1,1] A
[1,0] B
[0,2] A
[0,3] A
[1,2] A

320 Performance of Zero- Tree Compression

The reader is invited to verify that the q2 significance pass results in the
following outputs

0,0,1, +,0,0,0,1, +,0,1,0,0,0,1, -,0,1,1, +, 0, 0,1, +, 0, 0,°
7.4.6 ARITHMETIC CODING OF SPIHT

SYMBOLS
Arithmetic coding can be used to losslessly compress the output sym­

bols from SPIRT. Unlike EZW, the refinement bits are not arithmetically
coded. That is, the data resulting from refinement passes are deposited
into the final bit-stream "raw." Thus, in SPIRT, only symbols from
significance passes are arithmetically coded.
In an EZW significance pass, the sign information is lumped with

significance information in the form of the POS and NEG symbols. In
contrast, SPIRT significance passes contain the symbols°(coefficient or
set of coefficients remains insignificant), 1 (coefficient or set of coefficients
become significant), "+" (if it was a coefficient that became significant,
its sign is positive), and "-" (if it was a coefficient that became sig­
nificant, its sign is negative). Even in arithmetically coded SPIRT, the
signs are not lumped with significance information. They are not even
arithmetically coded, but deposited in the bit-stream raw. Thus, only °
(remains insignificant) and 1 (newly significant) are arithmetically coded
in SPIRT.
To this end, coordinates in the LIC and LIS are arithmetically coded

in 2 x 2 blocks. In this way, local (spatial) dependencies can be exploited.
Recall that only insignificant coefficients (or sets) are coded in the sig­
nificance pass. Thus, if any coordinate in a 2 x 2 block does not belong
to the LIC or LIS, it is not coded. The number of bits to be coded in
a 2 x 2 block is then b E {O, 1,2,3, or 4}. Of course no coding is done
when b = 0. Different coding contexts are employed depending on which
bits are to be coded. Using the appropriate context, a single index in
{O, 1, ... ,M - I} is coded (using M-ary arithmetic coding), to indicate
which of the M = 2b possible bit patterns is present in the block.
As in the case of EZW, SPIRT encoding can be halted when any

desired encoding rate (file size) has been achieved. Similarly, decoding
can be halted after any desired amount of compressed data has been
read (consumed). Similarly, a bit-stream can be truncated to yield a
bit-stream of lower rate. The bit-stream will be identical to the bit­
stream obtained if coding were performed to the lower rate in the first
place.

Chapter 7: Zero- Tree Coding 321

7.5 PERFORMANCE OF ZERO-TREE
COMPRESSION

Figure 7.6 shows the MSE performance of the SPIHT algorithm for a
512 x 512 portion of the "Goldhill" image (see Figure 4.5). The 512 x
512 portion used is grayscale with a bit depth of B = 8 bits/sample,
and is often employed for performance comparisons in the compression
literature. Such results are typically reported by plotting peak-signal­
to-noise ratio (PSNR) vs. encoding rate R. As defined in Chapter 1, for
an N I x N2 grayscale image of bit depth B,

(2 B _ 1)2
PSNR = 1010gI0 MSE

where

The results of Figure 7.6 are for B = 8, so that

(255)2 "J

PSNR = 1010gI0 MSE = 48.13 -lOloglOMSE dB

Each plot in Figure 7.6 represents PSNR vs. Encoding Rate, R, in
bits/sample (the equivalent compression ratio for a given R is 8/R). As
expected from the theoretical results presented in Chapters 3 and 5, each
plot becomes roughly linear as R gets large. Furthermore, the slope of
these linear segments quickly approaches 6 dB/bit.
The top and bottom plots in Figure 7.6 represent the performance of

the SPIHT algorithm with and without arithmetic coding. We refer to
these variants as SPIHT-AC and SPIHT-NC, respectively. Although not
shown, the results of EZW are somewhat lower than those for SPIHT­
NC. The performance gap between EZW and SPIHT-NC tends to be
similar to the gap between SPIHT-NC and SPIHT-AC. As a representa­
tive example, at R = 1 bit/sample, SPIHT-AC outperforms SPIHT-NC
by about 0.5 dB, while SPIHT-NC outperforms EZW by about 0.5 dB.
A thorough comparison of various embedded compression systems is

deferred until Chapter 8 (Table 8.5). In this chapter, it suffices to say
that the complexity of SPIHT-AC is roughly the same as that of EZW.
However, the complexity of SPIHT-NC is considerably lower, since arith­
metic coding is not employed. The small performance loss of SPIHT-

322 Quantifying the Parent-Child Coding Gain

42

21.5

•••••.• Transposed-AC

__SPIHT-AC

____ SPIHT-NC

0.5

~ ...
",'/'. ,

.'".' ,
.' /

" ,.,,,
" ,

-'.:'/
,"".,':'".' ,.. /

.~ ,.".. j'
..j'
.',

.'~....
.'/.,

,.;"
'1';:->.,

,;,

""I

40

38

36

iii"
~
II:: 34
z
I/)

D..

32

30

I)

1
28 ,

1

26

0

R (bits/sample)

Figure 7.6. MSE performance of SPIRT for the 512 x 512 "Goldhill" image.

NC with respect to SPIHT-AC is typical for a broad class of natural
imagery.9
On the other hand, significant differences can be observed between

SPIHT-AC and SPIHT-NC for "non-natural" imagery. For example,
Figure 7.7 represents the MSE performance of the two SPIHT variants
on the "Chart" image of Figure 8.24. This image contains continuous
tone (grayscale) regions, as well as computer generated graphics, and
text. For this image, differences are around 2.5 dB rising to as much as
6.0 dB at the lowest rates.

9This is in stark contrast to EZW, for which arithmetic coding is required to achieve good
performance.

Chapter 7: Zero- Tree Coding 323

55

50

45

30

25

__SPIHT-AC

____ SPIHT-NC

21.50.5
20 +-+-+-+--I--+--+-+-+-+--+--1---lI--.-+-+-+-+-+-+--I
o

R (bits/sample)

Figure 7.7. MSE performance of SPIRT for the "Chart" image.

7.6 QUANTIFYING THE PARENT-CHILD
CODING GAIN

Much has been said in the compression literature of the parent-child
dependency present in subband (wavelet) transforms. These dependen­
cies are generally credited for the excellent MSE performance of zero-tree
based compression algorithms such as EZW and SPIRT.
Recall the basic premise of zero-tree coding: children of insignificant

coefficients tend to be insignificant. Indeed, examination of subband co­
efficients (e.g., Figure 4.22) supports this premise. More careful analysis
however reveals that this is more a property of the energy compaction
property of good transforms, and less a property of specific image data
dependencies.

324 Quantifying the Parent-Child Coding Gain

In [132], it is acknowledged that wavelet coefficients are largely uncor­
related across bands. On the other hand, an experimentally measured
(estimated) correlation coefficient between parent and child magnitudes
is then quoted at approximately r = 0.35. This non-zero correlation is
then used as motivation for zero-tree coding.
We point out here, that if this amount of correlation were present

in a Gaussian Markov-1 process, the maximum benefit obtainable by
exploiting the resulting dependency would be given by the reciprocal of
the spectral flatness measure (or prediction gain Gp) given in Sections
3.1 and 3.3 by

Gp = l/'yx = 1OloglO 1 ~ r2 ~ 0.57 dB (7.8)

Of course, a Gaussian Markov-1 assumption for the parent-child mag­
nitude relationship is dubious at best. Even if the magnitudes did satisfy
this assumption, the rate-distortion theory of IX was not developed in
the context of magnitude only, and thus is not applicable. However, this
small predicted gain provides motivation to explore this issue further.

It is a simple matter to devise an experiment to remove the ability
of zero-tree coders to exploit the parent-child dependence. The third
(middle) curve of Figure 7.6 is the result of such an experiment.
Each of the three plots in Figure 7.6 were obtained by transforming

the 512 x 512 Goldhill image with the CDF 9/7 biorthogonal transform
of Section 6.3.2. In each case a dyadic pyramid of 6 levels was employed.
As discussed previously, the top and bottom plots were obtained by
applying SPIHT (with and without arithmetic coding) to the resulting
subband coefficients.
The middle plot was also obtained by applying SPIHT (with arith­

metic coding) to these same subband coefficients. However, subbands
HLi , LHi , and HHi i E {l, 3, 5}, were all transposed prior to cod­
ing. By transposing all subbands (in every other level) of the transform,
the parent-child dependencies in the tree structures are essentially de­
stroyed. Thus, the resulting compression performance must be largely
independent of parent-child relationships.
As can be seen in Figure 7.6, there is a definite gain in compression

performance due to parent-child dependencies. In what follows, we refer
to this gain as the parent-child coding gain, GPC. This gain is somewhat
rate dependent (more gain for higher rates), but in general, is rather
small. For natural images, GPC is typically less than 0.6 dB with an
average value of roughly 0.25 dB. These values are "within the ballpark"
of what is implied by equation (7.8).

Chapter 7: Zero- Tree Coding 325

21.5

--SPIHT-AC

____ SPIHT-NC

1
R (bits/sample)

0.5

,,~

I ,
./ '---,

I \
........, I ,

f \ I \
I \ I I! \ / \ I

\
/ , I

I I ~I \.,
I
I

t
~

0.5

0.45

0.4
l:

111
C) 0.35
Cl
l:

"8 iD 0.3
,,~

.c
0 0.25
..!.
l:

~
111 0.20..

0.15

0.1

0.05

0

0

Figure 7.8. Parent-child coding gain (G pc) for the Goldhill image.

The parent-child coding gain is plotted as a function of R (for the
Goldhill image) in Figure 7.8. Both SPIHT-AC and SPIHT-NC are
included there. All conditions used to generate this figure are the same
as described above. In fact, the SPIHT-AC plot of Figure 7.8 is just
the difference between the top two plots of Figure 7.6. As pointed out
above, Cpc is greater than zero, and in fact is non-trivial. However, it
is significantly smaller than what is widely believed at the time of this
writing.
As a concluding remark, we note that the SPIHT algorithm can be

used with reversible transforms as well. In [127], the S+P transform
(see Section 6.4.2) was introduced for this purpose. The resulting com­
pression algorithm is capable of progressive lossy to lossless compression
and decompression. If the transposition experiment is performed in this

326 Quantifying the Parent-Child Coding Gain

framework, the lossless file sizes are largely unchanged. For the 512 x 512
Goldhill image, the lossless encoding rates are 4.78 bits/sample and 4.83
bits/sample for "normal" and "transposed" coding, respectively. Similar
comparisons for the "Barbara" and "Lenna" images (see Figure 8.23) are
4.71 vs. 4.75, and 4.19 vs. 4.23 bits/sample, respectively. In each case,
the difference is roughly 1%.

Chapter 8

HIGHLY SCALABLE COMPRESSION
WITH EMBEDDED BLOCK CODING

8.1

8.1.1

EMBEDDING AND SCALABILITY
THE DISPERSION PRINCIPLE

Following the notation of Chapter 1, we write c for the compressed
bit-stream representing the source, x. An "elementary embedded bit­
stream" (or simply "embedded bit-stream"), c, has the property that
every L-bit prefix, CO:L, is itself an efficient compressed representation
of the source. The distortion, D(L), should be comparable to that which
might be expected from any practical compression scheme, embedded or
otherwise, producing a bit-stream with a similar length, L. A natural
and in fact inevitable tool for the construction of embedded bit-streams
is embedded quantization, as discussed in Sections 3.2.6 and 3.4.4.
The attraction of embedded bit-streams is that the desired level of

compression may be determined after the source has been compressed.
Rate control may be achieved simply by truncating the bit-stream to the
desired length. Embedded bit-streams have obvious appeal for remote
browsing applications, in which compressed images are interactively re­
trieved over a low bandwidth channel. In this case, the image quality
may be successively refined as the received prefix of the bit-stream grows.
An important consequence of embedding is that the information con­

tent from any given spatial region within the source must generally be
"dispersed" throughout the compressed representation. We demonstrate
this "dispersion principle" by considering the following counter-example.
Suppose that the compressor processes the source samples locally, say
from the top to the bottom of the image, appending its output to the
end of the bit-stream as it goes. Assuming that the underlying ran­
dom process is stationary, an L-bit prefix can be expected to contain a

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

328 Embedding and Scalability

,,,
,,
,

D(L) \::: j

\"" :

"""'------------ '
~ ..-..-...

..-.._--------- -.._--

L

Figure 8.1. Expected distortion due to truncation of a non-embedded bit-stream
(solid line), compared with the distortion-rate characteristic of the same compression
algorithm (dashed curve).

complete compressed representation of the initial approximately L / L max

fraction of the source!, where Lmax is the length of the complete bit­
stream. It follows that D(L) is approximately linearly dependent upon
L. By contrast, the distortion-rate function for a stationary random
process is known to be convex U [67, §9.8] and the same characteris­
tic is generally exhibited by practical compression systems. Thus, as
seen from Figure 8.1, no L-bit prefix of the bit-stream can be expected
to be an efficient compressed representation of the source, except when
L ~ L max .

The algorithms described in Chapter 7, based on zero-tree coding of
subband samples, provide excellent examples of embedded image com­
pression. Shapiro's original EZW algorithm [131] and the significant en­
hancements introduced by Said and Pearlman's SPIRT algorithm [126],
have received tremendous attention by the image and even the video
compression community. These algorithms provide clear evidence of the
dispersion principle mentioned above. Rather than processing the im­
age locally, the compressor passes through the subband samples multiple
times, halving the step size of the underlying deadzone quantizer on each
iteration. Moreover, the order in which samples are visited within each
pass is unpredictable a priori. For these algorithms, the dispersion prin­
ciple means that the compressor (and also the decompressor) must have
access to the entire image, usually through a random access buffer which

1The rcader may already have experienced the behaviour of the baseline JPEG compression
algorithm when the bit-stream is truncated to some fraction of its original length - only a
corrcsponding fraction of the image is typically decompressed.

Chapter 8: Highly Scalable Compression 329

Image
source

embedded
bit-stream

image
source

out-of-order
bit-stream

embedded
bit-stream

compress/oil

(a)
compressioll reorgalll=alloll

(b)

Figure 8.2. Two approaches to generating an embedded bit-stream: (a) in-order
generation of the bit-stream with random access to the source; and (b) out-of-order
generation of the bit-stream with local access to the source. Shading indicates the
processed portion of each data type at some point during the compression process,
with darker shading identifying a greater degree of completion.

contains all of the subband samples. For large images, the cost of such
a buffer may be prohibitive.

8.1.2 SCALABILITY AND ORDERING
The high buffering cost of embedded compression is unavoidable so

long as we insist on generating the embedded bit-stream in order. An
alternate approach, however, is to process the image or subband sam­
ples locally2 while producing the embedded bit-stream out of order. The
buffer required to hold the out-of-order bit-stream prior to a final reor­
ganization step can be significantly smaller than the image itself, as­
suming that compression is achieved. These two different approaches to
constructing embedded bit-streams are illustrated in Figure 8.2.
For some applications, the bit-stream is best left in its initial out­

of-order form so that the decompressor can also be implemented with
substantially local processing. In fact, manipulation of the order of the
compressed bit-stream is best viewed as a secondary task which is not
part of the compression process itself, but may be delayed until the most
appropriate order is known. We may think of the out-of-order bit-stream
as a "generalized embedded" representation.

2Note that subband and wavelet transforms are essentially filtering operations, which may
be performed incrementally using well established techniques for memory efficient two di­
mcnsional filtering. Thus, local proccssing within subbands is cssclltially cquivalent to local
processing of the source image. Neither the image, nOl' any quantity of comparable sir-e, nced
bc buffered.

330 Embedding and Scalability

Resolution level ~

Re olution level 'R,

Resolution level 'R,

Figure 8.3. Resolution levels within a dyadic tree-structured subband decomposition
with depth D = 3.

The important difference between generalized embeddings and an el­
ementary embedded bit-stream is the need for additional structural in­
formation to identify the location of the elements corresponding to suc­
cessively higher quality (lower distortion) versions of the original source.
The bit-streams produced by EZW and SPIRT contain no such struc­
tural information. In fact, the dependencies hardwired into their coding
schemes impose tight constraints on the order in which the bit-stream
must be presented and decompressed.

RESOLUTION AND DISTORTION SCALABILITY
Generalized embeddings are clearly more powerful than elementary

embedded bit-streams. Their application extends beyond the conser­
vation of implementation memory. To see this, we shall restrict our
attention to compression systems which are based upon multi-resolution
transforms such as the wavelet transform. In particular, we assume a
dyadic tree-structured filter bank of the form shown in Figure 4.20, with
D levels of decomposition and 3D + 1 subbands.
The tree structure and organization of the subbands into resolution

levels are revealed in Figure 8.3. As discussed in Section 4.2.5, the low­
est resolution level, Ro, consists only of the lowest frequency subband,

Chapter 8: Highly Scalable Compression 331

LLD; if the low-pass subband analysis filter is a good approximation to
the ideal half-band filter then this subband will contain a good low res­
olution rendition of the original image. The next lowest resolution level,
RI, contains the additional subbands required to synthesize LLD- I . In
general, levels Ro through R r together contain the subbands required
to synthesize the reduced resolution image, LLD-r, where the original
image is interpreted as LLo.

We say that a compressed bit-stream is "resolution scalable" if it con­
tains identifiable elements which represent the subbands in each resolu­
tion level, R r , without any dependence on the higher resolution levels,
Rr+i, i > O. Here and in the sequel, we use the term "identifiable
elements" to mean that the bit-stream contains sufficient auxiliary in­
formation for an application to readily extract the relevant elements.
This auxiliary information may involve marker codes, pointers stored
in a lookup table, or some less explicit mechanism. A resolution scal­
able bit-stream has the property that the compressed representation of
LLD - r may be obtained simply by discarding the elements correspond­
ing to R r +1 through RD. Moreover, this is exactly the same compressed
representation which one would have obtained if LLD-r were the image
that had been compressed in the first place.

We say that a compressed bit-stream is "distortion scalable" if it can
be reorganized into an embedded bit-stream, as defined above. Specifi­
cally, it must contain identifiable elements, which successively augment
the quality (reduce the distortion) of the compressed representation. We
shall call these elements quality layers and denote them Qo through
QA-I' Distortion scalability is inevitably connected with embedded
quantization. It is commonly called "SNR scalability" and sometimes
"quality scalability" or "rate scalability." A bit-stream which is both dis­
tortion and resolution scalable must contain identifiable elements which
successively reduce the distortion of the subbands in each resolution
level. This is illustrated stylistically in Figure 8.4, where the relevant
elements lie at the intersection of each quality layer with each resolution
level.

PROGRESSIONS

We use the term "progression" to identify the ordering of elements
within a scalable bit-stream. A "quality progressive" bit-stream (also
called "SNR progressive") is one in which the dominant ordering is based
on quality layers, as illustrated in Figure 8.4a. Similarly, a "resolution
progressive" bit-stream is one in which the dominant ordering is based
on resolution, as illustrated in Figure 8.4b.

332 Embedding and Scalability

~ ~ resolution levels RD

a)

~! ,
\ :
! \

l~~

resolution levels 1?v
b)

t. I t. I

\. \'

" ."'V"
" ")

I ~/'

"
.........~

't,.·

"
.,

'\,''"'
..'

~

~-II--''''''';;;;;;'''''''''i'~:=''''''=''''''='"'tl-·····:.:\:~·~
'"~
c-g
~~ ~ .

Q2 ~ .

Q ~:]OII>---+~-+---

~

Figure 8.4. Elements of a distortion and resolution scalable bit-stream, with a) qual­
ity progressive and b) resolution progressive orderings.

To enable local processing, a scalable bit-stream may also support
spatially oriented progressions. This in turn suggests further structuring
of the bit-stream into identifiable elements which correspond to spatial
regions (e.g., lines, stripes or blocks) within each quality layer of each
resolution level. The most appropriate progression is usually dependent
upon the target application.

In summary, the generalized embeddings suggested above are usually
known as "scalable" bit-streams. Multiple dimensions of scalability may
be supported simultaneously, despite the fact that a linear bit-stream
can have only one ordering known as its progression. The JPEG2000
image compression standard supports four dimensions of scalability and
defines five native progression schemes, with the ability to inter-mix
these progressions. Unlike elementary embeddings, scalable bit~streams

contain the necessary information to identify their various elements so
as to support reorganization into different progressions. The compressor
may utilize whichever progression minimizes its implementation com­
plexity, while external agents may reorder the bit-stream as necessary
to suit particular decompression applications.

CODING VERSUS ORDERING

The wavelet transform is an important tool in the construction of
resolution scalable bit-streams, while embedded quantization is central
to the construction of distortion scalable representations. It is impor­
tant to observe, however, that dependencies introduced whilst coding

Chapter 8: Highly Scalable Compression 333

the embedded quantization indices (e.g., bit-planes) can destroy one or
more degrees of scalability. For example, the zero-tree coding structure
employed by the EZW and SPIRT algorithms introduces downward de­
pendencies between resolution levels which interfere with resolution scal­
ability.
The arguments advanced above suggest that one should endeavour to

separate the process of efficiently coding quantization indices from the
process of ordering the compressed bit-stream. The extent to which this
is possible is limited by dependencies introduced during coding. Sources
of such dependencies include the use of conditional coding contexts, in­
divisible codes (e.g., vector, run-length or quad-tree codes) and adaptive
probability models. Coding efficiency demands that some or all of these
be present at least to some extent.
A number of compression schemes have been proposed based on bit­

plane coding of subband samples, which exhibit both resolution and dis­
tortion scalability in a single bit-stream. Examples include Taubman and
Zakhor's 3D subband video coder (also applied to images) [150], Zandi
et al.'s "CREW" (Compression with Reversible Embedded Wavelets)
algorithm [174], the TCQ based wavelet compression algorithm of Se­
mentilli et al. [128] and the low complexity embedded Golomb coding
scheme developed by Ordentlich et al. [113]. In each of these algorithms
the ordering of information within the final bit-stream is still heavily
influenced by dependencies introduced by the bit-plane coding process.
Of course, support for arbitrary reordering at the level of individual
quantization indices is both unwarranted and impractical, since the sig­
nalling overhead required to identify the relevant information within the
bit-stream would be quite unwieldly.
A natural compromise is to partition the subband samples into small

blocks and to code each block independently. The various dependen­
cies described above may exist within a block but not between different
blocks. The size of the blocks determines the degree to which one is
prepared to sacrifice coding efficiency in exchange for flexibility in the
ordering of information within the final compressed image representa­
tion.

8.1.3 THE EBCOT PARADIGM
INDEPENDENT EMBEDDED BLOCKS

The coding and ordering techniques adopted by JPEG2000 are based
on the concept of Embedded Block Coding with Optimal Truncation
(EBCOT), which is the subject of this chapter. Each subband is par­
titioned into relatively small blocks (e.g., 64 x 64 or 32 x 32 samples)

334 Embedding and Scalability

Code-block

Code-block

Resolution level~

Resolution level 'Rz

Resolution level 'R,

Resolution level 'R"

Figure 8.5. Division of subbands into code-blocks, having the same dimensions in
every subband. For illustrative purposes, all subbands are depicted with the size and
the code-blocks appear to have different sizes.

which we call "code-blocks." This is illustrated in Figure 8.5. Each code­
block, Hi, is coded independently, producing an elementary embedded
bit-stream, Ci. Although any prefix of length, L i , should represent an
efficient compression of the block's samples at the corresponding rate,
embedded coding algorithms inevitably possess a collection of natural
truncation points, L}Z) , at which the distortion, D}Z) , can be expected to
lie closest to the convex rate-distortion function for the relevant source.
This is discussed further in Section 8.3.3. In any event it is convenient to
restrict our attention to a finite number of allowable truncation points,

Zi + 1, for code-block Hi, having lengths, L}z), with

0= L(O) < L(l) < ... < L(Zi)
2 - 2 - - 2

In the present development we are not concerned with the details of the
embedded block coding algorithm; these are the subject of Section 8.3.
We assume that the overall reconstructed image distortion can be

represented as a sum of distortion contributions from each of the code­
blocks and let D}z) denote the distortion contributed by block Hi, if its

Chapter 8: Highly Scalable Compression 335

elementary embedded bit-stream is truncated to length L~z). Calcula­

tion or estimation of D}z) depends upon the subband to which block Bi

belongs; when necessary, we identify this subband with the label bi , For
most of the ensuing discussion, however, we may simply consider the
image as being composed of a collection of blocks, Bi , without regard
for the subbands to which their samples belong.
Since the code-blocks are compressed independently, we are free to

use any desired policy for truncating their embedded bit-streams. If the
overall length of the final compressed bit-stream is constrained by Lmax ,

we are free to select any set of truncation points, {zd, such that

"'" L (Zi) < L
~ t - max

i

Of course, the most attractive choice is that which minimizes the overall
distortion,

The selection of truncation points may be deferred until after all of the
code-blocks have been compressed at which point the available trunca­
tion lengths, L~z), and the associated distortions, D~z), should all be
known. For this reason, we refer to the optimal truncation strategy as
one of post-compression rate-distortion optimization (PCRD-opt). A
PCRD-opt algorithm is described in Section 8.2.
A chief disadvantage of independent block coding would appear to be

that it is unable to exploit redundancy between different blocks within a
subband or between different subbands. In fact, an important premise of
the zero-tree schemes described in Chapter 7 is that substantial redun­
dancy exists between "parent" and "child" samples within the subband
hierarchy. Somewhat surprisingly, these disadvantages are more than
compensated by the fact that the contributions of each code-block to
the final bit-stream may be independently optimized by the PCRD-opt
algorithm.
Exploiting parent-child relationships within the subband hierarchy

can indeed lead to small improvements in the coding efficiency within
a block. However, the conditional coding techniques required to exploit
this redundancy impose constraints on the allowable truncation points
for parent and child code-blocks. As it happens, these dependencies so
constrain the PCRD-opt algorithm that overall performance is usually
degraded, even though individual code-blocks are coded more efficiently.
Fortuitously, then, the simpler approach without inter-subband depen­
dencies generally yields superior compression efficiency.

336 Embedding and Scalability

~I Eo @j ~ I....·..·..···· ..·..·~@j ~ I······..·.. ······ ..·~
'-y---J '-y---J '-y---J

L{:o) L(:'} L(:')
o I I

Figure 8.6. A simple pack-stream formed by concatenating the optimally truncated
code-block bit-streams.

QUALITY LAYERS AND STRUCTURE
Since each code-block has its own embedded bit-stream, Ci, it is con­

venient to use a separate term to refer to the overall compressed bit­
stream, c. We shall call this a "pack-stream," because it is inevitably
constructed by packing contributions from the various code-block bit­
streams together in some fashion. The simplest pack-stream organiza­
tion consistent with the EBCOT paradigm is illustrated in Figure 8.6.
In this case, the optimally truncated block bit-streams are simply con­
catenated. Length tags are inserted to identify the contribution from
each code-block.
This simple pack-stream is resolution scalable, since each resolution

level consists of a well-defined collection of code-blocks, explicitly iden­
tified by the length tags. The pack-stream also possesses a degree of
spatial scalability. So long as the subband synthesis filters have finite
support, each code-block influences only a finite region in the recon­
structed image. Thus, given a spatial region of interest, the relevant
code-blocks may be identified and extracted from the pack-stream.
Interestingly, the simple pack-stream of Figure 8.6 is not distortion

scalable, even though its individual code-blocks have embedded repre­
sentations. The problem is that the pack-stream offers no information
to assist in the construction of a smaller pack-stream whose code-block
contributions, L~Zi), minimize the associated distortion.
Figure 8.7 illustrates the quality layer abstraction introduced by the

EBCOT algorithm [149] to resolve the above difficulty. The first quality
layer, Qo, contains optimized code-block contributions, having lengths
L~z?), which minimize the distortion, DO = L::i D~z?), subject to a length
constraint, L:i L~z?) ::; L~ax' Subsequent layers, Qz, contain additional

contributions from each code-block, having lengths L~zD - L~z:-l), which
minimize the distortion,

Chapter 8: Highly Scalable Compression 337

I

~Iayer truncated
t: j)
J

L(:i>
2

B2 BJ B4

code-blocks

Figure 8.7. Code block contributions to quality layers, indicating a quality progres­
sive pack-stream ordering and mid-layer truncation.

subject to a length constraint,

'" L(zD < L l
L.....J t - max

i

Although each quality layer notionally contains a contribution from
every code-block, we emphasize the fact that some or even all of these
contributions may be empty. A distortion scalable pack-stream may be
constructed by including sufficient information to identify the contribu­
tion made by each code-block to each quality layer. Moreover, quality
progressive organizations are clearly supported by ordering the informa­
tion in the manner suggested by the arrows in Figure 8.7.

If a quality progressive pack-stream is truncated at an arbitrary point
then the decoder can expect to receive some number of complete quality
layers, followed by some fraction of the blocks from the next layer, as
suggested by the figure. In this case, the received prefix will not be
strictly optimal in the PCRD-opt sense. However, this sub-optimality
may be rendered negligible by employing a large number of layers. On
the other hand, more layers implies a larger overhead to identify the
contributions made by each code-block to each layer. When a large
number of layers is involved, some care must be invested in efficiently

338 Embedding and Scalability

coding the auxiliary information which identifies the various code-block
contributions. These matters are discussed further in Section 8.4.

EBCOT ADVANTAGES

At this point, it is worth summarizing some of the benefits offered by
the EBCOT paradigm, which contributed to its adoption in JPEG2000.

Flexible organization: EBCOT pack-streams possess resolution scal­
ability, distortion scalability (so long as multiple quality layers are
used) and a degree of spatial scalability. When multiple image com­
ponents are compressed (e.g., colour components), these components
form a fourth dimension of scalability. Progressions along all four
dimensions are supported by the JPEG2000 standard.

Custom quality interpretations: Since each quality layer may con­
tain arbitrary contributions from each of the code-blocks, the notion
of quality is easily adapted to application specific measures of signif­
icance. By contrast with EZW, SPIRT and other embedded com­
pression algorithms, the EBCOT paradigm allows code-blocks to be
marginalized or entirely suppressed in lower quality layers when the
corresponding spatial regions or frequency bands are known to be less
significant for some application.

Local processing: Independent coding allows local processing of the
samples in each code-block, which is especially advantageous for hard­
ware implementations. Independent coding also introduces the possi­
bility of highly parallel implementations, where multiple code-blocks
are encoded or decoded simultaneously. For large images, spatially
oriented progressions of the pack-stream may be used in conjunc­
tion with incremental processing of the subband/wavelet transform
to facilitate "streaming." In this case, it is sufficient to buffer only
a local window into the pack-stream, the image and its subbands.
In this way, the implementation memory can be much smaller than
the image which is being compressed or decompressed. This same
property allows for efficient rotation and flipping of the image during
decompression.

Efficient compression: As noted above, the PCRD-opt algorithm can
more than compensate for the small efficiency losses arising from the
imposition of independent block coding. The algorithm is also able to
accommodate spatially varying and/or image dependent measures of
distortion. One interesting example arises in visual perception, where
local activity can mask the visibility of certain types of compression

Chapter 8: Highly Scalable Compression 339

artifacts. A masking-sensitive distortion measure and promising ex­
perimental results are provided in [149].

Error resilience: Errors encountered in any code-block's bit-stream
will clearly have no influence on the other blocks. This, together with
the natural prioritization of information induced by embedded block
coding and quality layers, allows for the construction of powerful
differential protection strategies for error prone environments.

8.2
8.2.1

OPTIMAL TRUNCATION
THE PCRD-OPT ALGORITHM

(8.1)

In this section we describe an algorithm which may be used to op­
timize the set of code-block truncation points, {Zi}, so as to minimize
the overall distortion, D, subject to an overall length constraint, Lmax .
The same algorithm may be used to minimize the overall length sub­
ject to a distortion constraint if desired. We refer to this optimization
strategy as post-compression rate-distortion optimization (PCRD-opt).
The algorithm is implemented by the compressor, which is expected to
compute or estimate length and distortion contributions, L~z) and D~z),
for each truncation point, Z = 0,1, ... ,Zi. This information will not
normally be explicitly included in the pack-stream. As a result, the al­
gorithm is not easily reapplied to a previously constructed pack-stream.
This need not be a substantial limitation, since the pack-stream may
contain many quality layers. Layers Qo through Qz together embody
a PCRD-optimized collection of code-block contributions with length
constraint L~ax, for each l = 0,1, .. , ,A - l.
To simplify the discussion, we shall temporarily ignore the overhead

required to identify the sizes of the code-block contributions themselves.
The length constraint is then simply

'""" (Zi)L = LLi :S Lmax

We also assume an additive distortion measure so that the overall dis­
tortion can be expressed as

(8.2)

This assumption is revisited in Section 8.3.5, where we also discuss the
computation of the D~Zi).
Let {Zi,A} be any set of truncation points which minimizes

D (A) + AL (A) = L (Dizi .>.) + AL~Zi'>'))
2

(8.3)

340 Optimal Truncation

for some A > O. It is easy to see that these truncation points are optimal
in the sense that the distortion, D, cannot be further reduced without
also increasing the length, L, or vice-versa. Thus, if we can find a value of
A such that the {Zi,A} which minimize equation (8.3) yield L (A) = Lmax ,
this set of truncation points must be a solution to our optimization
problem. Since the set of available truncation points is discrete, we
shall not generally be able to find such a A. Nevertheless, since the
code-blocks are relatively small and there are typically many truncation
points, it is sufficient in practice to find the smallest value of A such
that L (A) ~ Lmax . Note that the solution to this modified optimization
problem is not strictly guaranteed to minimize D subject to (8.1).
For any given A, minimization of equation (8.3) reduces to an inde­

pendent minimization task for each code-block. The following simple
algorithm finds the smallest Zi,A which minimizes D~Zi,>.) + AL~Zi,>.). The

algorithm can be seen as equivalent to testing D~z;) + AL~Zi) for each
Zi, as suggested by the discussion in Section 5.4. The indirect approach
adopted here, however, will prove helpful for subsequent refinements.

Optimization of Zi,A for given A

Initialize zopt = 0

For t = 1,2, ... , Zi
(t) (zoPt) (zoP') (t)

Set flL = L. - L. and flD = D. - D.
~ ~ ~ ~

(flL is the amount by which the length is increased and flD is the
amount by which distortion is decreased if we replace the current

value of zopt by t. We expect both to be non-negative, although it
can happen that distortion increases; that is, flD might occasionally
be negative.)

If flD / flL > A, replace zopt f- t
(zopt) (zopt) () ()

(This step guarantees that Di + ALi ~ Diz + ALiz for
all Z ~ t.)

Set Zi A = zopt,

Since the number of code-blocks may be very large and the algorithm
must be executed for many different values of A, it makes sense to pre­
compute as many quantities as possible. To this end, it is helpful to first
characterize the set of feasible truncation points, 'Hi, defined by

'Hi £ {Z IZ = Zi,A for some A > O}

This is the set of truncation points for code-block Hi which may be
produced by the above optimization algorithm for at least one A > O.

Chapter 8: Highly Scalable Compression 341

It is worth pointing out that given any particular A, there can be mul­
tiple Zi which minimize D~z;) + AL~zi). Our convention is to select only
the smallest such Zi for inclusion in 'Hi. Although multiple minimizing
solutions occur rarely in practice, our need to adopt a consistent con­
vention regarding such cases is responsible for a number of subtleties in
the ensuing development.

FEASIBLE TRUNCATION POINTS
We begin by defining a quantity, Ai (z), which will turn out to have

the interpretation of a "distortion-length slope." Specifically, we define

(8.4)

Lemma 8.1 Suppose Z = Zi,>.. is the optimal index determined by the
algorithm described above, for some A> O. Then Ai (z) > A.

Proof. Since Ai (0) = 00 we may restrict our attention to z > O. Denote by k 2: 0
the index stored in zopt immediately before it is replaced by z in step z of the above
algorithm. It follows that

(8.5)\It < z
n<k) _ n<z)

and (z) ('k) > A
L i -L i

Also, let 0 :S z' < z be any truncation point which achieves the minimum in equa­
tion (8.4) so that

D(Z') _D(z)
Ai (z) = L'(Z) _L(;'), ,

The first inequality in equation (8.5) applies to t = z' (this produces the first line in the
equation below). Then, assuming (for the purpose of contradiction) that Ai (z) :S A,
we obtain

O:S (D} z') + AL}z')) - (D;k) + AL;k»)

= (D}Z') _D;Z») _ (D;k) _D;Z») + A (L}Z') _L;Z») _A(L;k) _L;Z»)

< A (L;Z) - L}Z')) _A (LiZ) - L;k») +A (L}Z') - L;Z») _A(L;k) - L;Z)) = 0

This contradiction proves the assertion that Ai (z) > A. •

(8.6)

Theorem 8.2 Necessary and sufficient conditions for Z E 'Hi are that

D~z) _ D(t)

Adz) > 0 and Adz) > max (t) (t)
t>z L. _ L Z

t t

342 Optimal Truncation

Proof. (Sufficiency) Suppose equation (8.6) holds. Select A > 0 such that Ai (z) >
D(z)_D(<) .

A 2': maXt>z 1<) ('z)· In step t = z of the above algonthm we have zopt < z and
L-;, -L i

(zoPt) (z) D(.Zl) _ D(.z)D -D.
1::,.D/1::,.L = L(.Z) _ L(.zoP't) 2': min () ('I) = Ai (z) > A

, , Zl <z L/ - L/
The inequality here follows immediately from the fact that the minimization over all
z' < z includes the case z' = zopt. We conclude that the test 1::,.D/ 1::,.L > A must
succeed, causing the assignment zopt +- z. On the other hand, the same test must
fail in every subsequent step t > z, at which

(Necessity) Obviously z = 0 satisfies the conditions in equation (8.6), since Ai (0) =
00. Therefore, we need only consider the non-zero members of 11.i. That is, z > 0 and
z = Zi,>. for some A > O. From Lemma 8.1 we have Ai (z) > A. Noting that the value
of ZOpl in the above algorithm may not be changed in any step t > z, we conclude
that

D(z) _ D(t)
Ai (z) > A 2': max (t) <')

t>z Li -LiZ

This validates the conditions of equation (8.6).•

Corollary 8.3 Let 0 = h? < hI < h; <
truncation points, Z, in Hi. Then

be an enumeration of the

and

(8.8)

Proof. From equations (8.6) and (8.4) we have, for each h? > 0,

which validates equation (8.7). For equation (8.8) we must show that the inequality
on the right hand side of the above equation is actually an equality. Th.e proof is by
contradiction. Suppose the inequality is strict and set A= Ai (h?) so that

By Lemma 8.1 we must have Ai (Zi,>.) > A, from which we conclude that Zi,>. E

{h?, ht, ... ,h7- 1
}. Also, because A < Ai (h7- 1

) the test 1::,.D / 1::,.L > A must succeed

Chapter 8: Highly Scalable Compression 343

h}==4

slope == _J.,(h,3)

slope == -J..,(h,l)

(491,0,(0»
(t,'OI.o:'OI)

Figure 8.8. Convex hull formed by the feasible truncation points for code-block Bi .

in step t = h~-l of the optimization algorithm. Thus Zi,>. = h~-l, meaning that the

test t:,.D/ t:,.L > Amust fail in every step t > h~-l In step t = hf, however, we find
(h;'-I) (hi')

L!..D D. -D. h h h
that L!..L = L~hi) _dh7 I) > A, which contradicts t e ypot esis. •

CONVEX HULL INTERPRETATION
We may now assign the following interpretation to the set of feasible

truncation points, Hi. The length-distortion coordinates, (L;h) ,D;h») ,
taken over all h E Hi, define the vertices of a piecewise linear, convex
U function, ~ (L), as illustrated in Figure 8.8. The gradient of this

(hn
-

1
) (hn)

function is given by lL~ (L) = -Ai (h?) for Li ' < L :S Li ' .

Given any truncation point, Z, the point (L;Z) ,D;z») must lie above or

on the curve, ni (L). 3 We refer to ~ (L) as the "convex hull" of the
distortion-length characteristic for code-block Hi. We loosely say that

3To see this, consider any tangent to hi (L), say the tangent with slope Ai (h) at (L~h), D~h»).

If p < h, the definition of Ai 0 yields D~p) - D~h) ::::: Ai (h) (L~h) - L;P»). If p > h, equa­
tion (8.6) yields D~P) - D;h) > Ai (h) (L;h) - L;P»). Thus, each trunctation point lies above

or on every tangent to hi (L), meaning that it lies above or on the curve hi (L) itself.

344 Optimal Truncation

the feasible truncation points are those which lie on the convex hull and
we loosely refer to Ai (h) as the distortion-length "slope" at hE Hi.

It is worth remarking on two phenomena exhibited by Figure 8.8.
Truncation points z = 5, 8 and 10 in the figure violate our intuitive ex­
pectation that distortion should decrease as the size of the compressed
bit-stream increases. In fact, the effective quantization step size associ­
ated with any given sample in the code-block is a non-increasing function
of z. It does not seem reasonable that smaller quantization step sizes
should produce more distortion. It is true that the expected (ensemble
average) distortion should decrease as the step size decreases, subject to
appropriate dequantizer design. However, when averaging over a small
set of samples, the opposite behaviour is occasionally observed in prac­
tice.
Truncation point z = 6 in the figure actually lies on the convex hull,

but does not belong to the set Hi. When multiple truncation points
have the same slope, Ai (z), Theorem 8.2 tells us that only the largest of
these points, z, may belong to Hi. Oddly enough, this is quite consistent
with our convention that each z E Hi must be the smallest truncation
point which minimizes D}z) + AL~z) for some A.

A SIMPLE OPTIMIZATION ALGORITHM
Since an optimal truncation point, Zi, which minimizes D}Zi) + AL~Zi),

is guaranteed to belong to Hi, there is no harm in restricting the opti­
mization algorithm to just this set. Using Corollary 8.3, the algorithm
simplifies to a search for the largest h E Hi such that Ai (h) > A, as
follows.

Optimization of Zi,A over Hi = { h? < hI < ... < h~l7-{dl-l}

Initialize j = a

While j + 1 < IIHil1 and Ai (h{+l) > A

Increment j

Set Zi,A = h{

Note that the distortion-length "slopes," Ai (hf), are independent of
A. It is also now obvious that zi A must be a non-increasing function of,
A. Thus, as A decreases the overall length, L (A), must either increase or
stay the same. The global optimization problem may then be described

Chapter 8: Highly Scalable Compression 345

as

Aopt = min {A IL (A) :S Lmax }

. {\ ~ L(Zi,>.) < L }= mIn /\ L.: i_max

= min {A (2: L~Z)I) < Lmax} (8.9)
i t z=max{hEHiIAi(h»A} -

The fact that L (A) is monotonic in A means that the search for Aopt

is particularly simple. The well-known bisection method, for example,
may be used to successively halve a working interval, (Amin , Amax) , in
which Aopt is known to reside.

8.2.2 IMPLEMENTATION SUGGESTIONS
The characterization provided by Theorem 8.2 may be applied directly

to identify the elements of the set Hi and the distortion-length slopes,
Ai (hi)· The direct algorithm is as follows.

Direct Computation of Convex Hull and Slopes
Set Ai (0) +- 00
For z = 1,2, ... ,Zi
Initialize Ai (z) +- 00
For t = z - 1 down to 0
Set b..D +- D(t) - D(z) and b..L +- L(z) _ L(t)

1. 1. 1, t

If b..D < Ai (z) b..L
Set Ai (z) +- 1f (note that this could be -00)

Initialize Hi = 0 (the empty set)
For z = 0,1, ... , Zi
For t = z + 1, ... , Zi
Set b..D +- D(z) - D~t) and b..L +- L(t) _ L(z)

t t t t

If b..D ~ Adz) b..L
z ~ Hi, so break out of inner loop and go to next z

If Ai (z) > 0,
Update Hi +- Hi U {z}

This algorithm involves the computation of up to ~Zi (Zi + 1) quo­
tients, 1f, and Zi (Zi + 1) products, Ai (z) b..L. A significantly more
efficient algorithm may be realized on the basis of Corollary 8.3. Let
H~z) denote the convex hull set corresponding to the first z < Zi trun­
cation points. The more efficient algorithm incrementally constructs

346 Optimal Truncation

H~Z+l) from H~z). From Theorem 8.2 one easily deduces that H~z+l)
cannot possibly contain any truncation point, t :s; z, which does not
belong to H~z). The new set might contain the extra point, z + 1, and it
may exclude one or more of the elements from H~z). Theorem 8.2 tells

us that the points h E H~z) which must be excluded from H~Z+l) are
those for which

D(h) _ D(z+l)
A' (h) < t t (8 10)
t - (z+1) (h) .L. -L.

t t

Let h(z) = IIH~Z)11- 1 be the last element of H~z), and let !.lD =

D(h(Z» _ D(z+l) and !.lL = L(z+l) - L(h(Z» denote the changes in distor-
t t t t

tion and length between h(z) and z + 1. If !.lD :s; 0, then Ai (z + 1) :s; a
and z + 1 cannot belong to H~Z+1). Moreover, in this case no h E H~z)
will satisfy the exclusion condition of equation (8.10); we conclude that

H~Z+1) = H~z). Otherwise!.lD > 0, meaning that truncation point z + 1
yields a smaller distortion than any other point seen thus far. Then
Adz + 1) > a and z + 1 belongs to H~Z+1). We need not explicitly

test the exclusion condition of equation (8.10) for each h E H~z). From

equation (8.7), one easily deduces that h E H~z) can be excluded from

H~Z+l) only if all elements h' > h of H~z) are also excluded. Moreover,
the new slope value, A(z + 1), may be calculated in a single step, using
equation (8.8). The incremental construction approach is embodied by
the following algorithm.

Incremental Computation of Convex Hull and Slopes

Set Ai (0) f- 00, Hi f- {a} and h1ast f- a
For z = 1,2,ooo,Zi
Set !.lD f- D(h

1ast

) _ D\z) and !.lL f- L(z) _ L(h
1ast

)
t t t t

If !.lD > a
While !.lD 2: Ai (h1ast) !.lL

Set Hi f- Hi \ {h1ast } (exclude last element of current hull
set)

Set h1ast f- max Hi (get last element in new hull set)

Set !.lD f- D(h
1as,

) _ D(z) and !.lL f- L(z) _ L(h
1as,

)
t t t t

Set h1ast f- Z + 1
Set Hi f- Hi U {h1ast }
Set A(h1ast) f- 1f

Chapter 8: Highly Scalable Compression 347

The incremental algorithm computes at most Zi quotients, ~f. If the
convex hull set consists of all Zi truncation points, the exclusion condi­
tion must be tested only once for each point, requiring Zi multiplications,
Ai (hlast) !:lL. More generally, one additional multiplication is required
each time a truncation point is excluded from the evolving convex hull
set, Hi. We can exclude at most Zi points in total and so the algorithm
requires no more than 2Zi multiplications. The complexity of the al­
gorithm is thus linear in the number of truncation points, rather than
quadratic, as was the case for the direct implementation.

It is worth noting that the incremental construction algorithm given
above can be derived more directly from our original optimization pro­
cedure, given on Page 340. The approach adopted in this text, how­
ever, provides a more comprehensive characterization of Hi, including
its interpretation as the set of bounding points for the distortion-length
convex hull.

EFFICIENT REPRESENTATIONS
The convex hull and slope computation procedure described above

is generally executed immediately after each block has been coded, at
which point the relevant distortion and length quantities should be avail-

able. We need store only the lengths {L~h)hEHi' the slopes {Ai (h)}hEHi'
and the embedded bit-stream, Ci, until all code-blocks have been com­
pressed. At that point we may invoke the algorithm embodied by equa­
tion (8.9).
To minimize the amount of information which must be stored, it is

desirable to employ a logarithmic representation for the slope values,
Ai (h). This is justified by Figure 5.5 which indicates that on average, the
code length varies roughly linearly with the log of the distortion-length
slope. The PCRD-opt algorithm involves only the comparison of slopes,
which may equivalently be conducted in the log domain. Low precision
fixed point representations of log2 Ai (h) are quite sufficient to achieve all
the benefits of the PCRD-opt algorithm. Moreover, conversion to such
a representation is trivially implemented in hardware4 .
Logarithmic representation of Ai (h) has the additional advantage that

weighting factors for the distortion in any given code-block or subband
may be applied by simply adding appropriate offsets to the log-slope
values. Examples of such weighting factors are the subband energy gain

4The integer part of log2 Ai (h) is essentially the location of the most significant bit in a
fixed point representation of Ai (h), while the first 5 fraction bits of log2 Ai (h) may be accu­
rately estimated using a very small lookup table, indexed by the 5 or 6 bits below this most
significant bit position.

348 Embedded Block Coding

factors, Gb, introduced at the end of Section 4.3.2 and the contrast
sensitivity weights, Wbsf , introduced in Section 4.3.4.

ACCOUNTING FOR SIGNALLING OVERHEAD
Up to this point, we have deliberately ignored the overhead required

to signal code-block contributions within the pack-stream. While some­
what sub-optimal, a reasonable way to deal with this overhead is to
simply adjust the length constraint, L max , without recomputing the
distortion-length slope values. As each A is considered in the search
for Aopt, we may first determine the optimal truncation points, {Zi,A}'
in the absence of any signalling overhead; we then check whether the

sum of the corresponding code-block lengths, Liz;,>.), and the associated
signalling overhead exceeds L max . If so, we try a larger value of A; oth­
erwise, we try a smaller value of A. Notice that this approach works
even when the signalling overhead exhibits complex dependencies on the
ensemble of code-block contributions, which is often the case5 .
Before closing this section it is worth noting that for memory con­

strained applications the PCRD-opt algorithm may actually be executed
incrementally, before all code-block bit-streams have been generated. In
this case we must determine the best slope threshold, Aopt, to apply to
a collection of code-blocks, before the distortion and length information
for all code-blocks is available. If the image statistics are stable and the
number of code-block bit-streams which we can afford to buffer is mod­
erately large, this locally determined slope threshold can be close to the
globally optimal value and little will be lost by incrementally truncating
the code-blocks.

8.3 EMBEDDED BLOCK CODING
The purpose of this section is to make concrete the notion of indepen­

dent embedded block coding. To this end, we describe two broad classes
of embedded block coding techniques. The first is based on context­
adaptive coding, as introduced in Section 2.4.1, while the second is based
on an embedded extension to the quad-tree coding principles introduced
in Section 2.4.4. Both approaches have merits and both were investigated
during the development of the JPEG2000 image compression standard;
the context-adaptive approach was ultimately selected.

5 It is possible for complex dependencies introduced by coding the signalling overhead to
disturb the Ulonotonicity of L (A) in A. This possihility does not appear to have a detrimental
effect in practical applications of the algorithm.

8.3.1

Chapter 8: Highly Scalable Compression 349

BIT-PLANE CODING
Since each code-block is to be represented by an efficient embedded

bit-stream, prefixes of the bit-stream must correspond to successively
finer quantizations of the block's sample values. In fact, the underlying
quantizers are inevitably embedded [151, §4B]. In the ensuing discussion
we restrict our attention to the practically appealing case of embedded
deadzone quantization, as introduced in Section 3.2.7.
Recall that a deadzone quantizer with step size ~ produces quantiza­

tion indices

q=sign(y){ l~O+TJ ~+T>O (8.11)
otherwise

where y denotes a subband sample from the code-block and T is a pa­
rameter controlling the width of the central deadzone. When T = ~,
the quantizer is uniform, while T = 0 corresponds to the case in which
the deadzone width is 2~. The possibility of negative values for T has
already been discussed in connection with equation (3.31). The quanti-

zation intervals, denoted I~O), are illustrated in Figure 8.9.
Let X = sign (y) and v = Iql denote the sign and magnitude of q,

respectively6. Also, let

v(p) = l;pJ
denote the value formed by dropping p LSBs (Least Significant Bits)
from v = v(O). Employing the identity,

llabJJ --l-abJ ' Va E ~ and bEN (i.e., b a positive integer)

we see that X and v(p) are the sign and magnitude of the index, q(p),

obtained using the coarser quantizer

A+ T >0
2P~ 2P

otherwise

Figure 8.9 illustrates the corresponding quantization intervals, I~f;).
This family of deadzone quantizers has three notable characteristics:

1) the step sizes are given by ~(p) = 2P~; 2) the deadzone width pa­
rameters, T(P) = 2-PT, rapidly converge to 0 as p increases; and 3)

GStrict.ly speaking, when q = 0 the sign of q is indetenninate; this will he reflected in the fact
that it is not coded. It. is convenient here to associate X with the sign of the ori[';inal subband
sample, y, which is the same as that. of q whenever q i= O.

4

350 Embedded Block Coding

~

I,'" i ItJ Ii 'J I,.

!
4<'.(I-r/4) .!l

Figure 8.9. Family of embedded deadzone quantizers.

each quantization interval, I~f~), is embedded within a coarser interval,

I~fp~~~. In view of property (2), it makes sense to restrict our attention
to the case T = O. In this case, all quantizers have the same structure,
with a deadzone twice as wide as the other intervals. It is worth noting,
however, that the coding techniques described in this chapter are ap­
plicable to the more general case in which T -=1= O. In fact the JPEG2000
standard supports such general deadzone quantizers.
Let y [j] == Y [j1, 12] denote the sequence of subband samples belonging

to the relevant code-block, having height J1 and width h so that a :::;
]1 < J1 and a :::; 12 < h· Similarly, let X [j] and v(p) [j] denote the sign
and magnitude of the embedded quantization indices. Suppose that K
is a sufficient number of bits to represent any of the quantization index
magnitudes, meaning that v(K) [j] = 0 for all j. Finally, let v P [j] E {O, I}
be the LSB of v(p) [j], which is also bit p of v [j]. We say that bits v P [j]
from all samples in the code-block constitute "magnitude bit-plane" p.7
There are at most K non-trivial magnitude bit-planes.
An embedded bit-stream may be formed in the manner suggested by

Figure 8.10. The most significant magnitude bit-plane, vK - 1 [j], is coded
first, together with the sign, X [j], of any sample for which vK -1 [j] -=1= o.
If the bit-stream is truncated at this point, the decoder can reconstruct

7To avoid confusion, we point out that bit-planes were numbered in the opposite order for
the purpose of describing zero-tree coding principles ill Chapter 7.

Chapter 8: Highly Scalable Compression 351

coding
scan

q=-2 q=+ll q=O q=-23 q=+49 q=+3 q=-lO

z[j]

y~[j]

v~[j]

yJ[j]

y2[j]

yl[j]

y0[j]

Figure 8.10. Bit-plane coding procedure. Non-zero magnitude bits and negative
signs are identified by black boxes.

the coarsest quantization indices, q(K -1) [j]. The next most significant
magnitude bit-plane, vK - 2 [j], is then coded together with the sign of any
sample for which vK- 2 [j] = 1 and vCK- 1) [j] = O. The process continues
in this way for each magnitude bit-plane, p, including the sign of those
samples for which vP [j] is the most significant non-zero bit. We refer to
this process as bit-plane coding and we use the term "bit-plane" loosely
to refer to both the magnitude and the associated sign information. If
the bit-stream is truncated at the end of bit-plane p, the decoder can
reconstruct quantization indices, q(p) [j].
A variety of techniques may be employed to code the magnitude and

sign bits. An efficient bit-plane coder, however, should exploit the sub­
stantial redundancy which generally exists between successive bit-planes.
A straightforward application of the entropy expansion formula of equa­
tion (2.5) yields

H (QCP») = H (QCK-1), Q(K-2), ... , QCP») = H (QCK-1»)

+H(QCK-2) IQCK-1») +oo.+H(Q(P) IQCK-1),oo.,Q(P+1»)

=H(QCK-1») +H(QCK-2) IQCK-1») + ... +H(Q(P) I QCP+1»)

where QCp) is the random vector whose outcome represents the quanti­
zation indices, qCp) [j], for all samples in the code-block. Thus, so long as
we exploit all available information from the previous bit-planes when
coding the magnitude and sign information for a current bit-plane, the

352 Embedded Block Coding

total number of bits associated with the most significant K -p bit-planes
will be identical to the number of bits required to code the quantization
indices q(p) [j] directly.
In view of the preceding arguments, a natural set of truncation points

for the embedded bit-stream is the set of bit-plane end-points. If the
truncation lengths are measured in bits and the coding is efficient, then
this policy would yield Z = K non-zero truncation points with L(O) = 0
and L(z) ;::: H(Q(K-z)), z = 1,2, ... ,K. In practice, we shall find it
convenient to measure length in bytes rather than bits.
Early bit-plane coders [150, 174] processed the samples following a

deterministic scan (line by line) within each bit-plane. In this case,
the bit-plane end-points are the only natural truncation points for the
embedded bit-stream. To achieve a finer embedding with many more
useful truncation points, a data dependent processing order is called for,
in which we first code those bits which yield the largest reduction in
distortion relative to the increase in length [93, 113, 133, 149].
In the ensuing sub-sections we first discuss conditional coding tech­

niques, whereby each bit is efficiently coded by exploiting information
which has already been coded in the same or previous bit-planes. We
then turn our attention to the question of the order in which the infor­
mation bits should be coded. In particular, Section 8.3.2 describes the
bit-plane coding primitives adopted by JPEG2000, while Section 8.3.3
describes JPEG2000's data dependent scan. Section 8.3.4 describes an
alternative quad-tree coding approach which utilizes the list processing
techniques introduced by SPIRT to achieve an appropriate data depen­
dent processing order.

8.3.2 CONDITIONAL CODING OF
BIT-PLANES

In this section we describe the bit-plane coding primitives defined
by the JPEG2000 image compression standard. At any given sample
location, j, in any given bit-plane, p, we must code the value of vP [j]
and possibly also the sign, X [j], as suggested by Figure 8.10. These
are binary events and we employ an adaptive binary arithmetic coder.
The specific arithmetic coding variant employed by JPEG2000 is the
MQ coder whose details are deferred until Section 12.1. For our present
discussion it is sufficient to understand the arithmetic coder as a "ma­
chine" such as that illustrated in Figure 2.6, which efficiently represents
a sequence of binary outcomes subject to the provision of good probabil­
ityestimates. The adaptive probability models evolve within a number
of distinct contexts which depend upon information which has already
been coded. Any of the arithmetic coding procedures and probability

Chapter 8: Highly Scalable Compression 353

estimation techniques discussed in Section 2.3 would be appropriate and
should yield comparable compression efficiency.
Ideally, the coding of each binary decision should be conditioned upon

the sign and magnitude information which has already been coded for
both the sample at hand and all other samples in the code-block. In
practice, however, the number of distinct coding contexts must be re­
stricted for practical reasons. Perhaps even more importantly, each ad­
ditional coding context entails a learning penalty, as binary decisions are
coded inefficiently until sufficient information is available to form good
probability estimates. This problem is discussed in Section 2.3.5 and is
a particular concern in the present application since each code-block is
relatively small and is coded independently.
Image subband samples tend to exhibit distributions which are heav­

ily skewed toward small amplitudes. As a result, when V(p+l) [j] = 0,

meaning that y [j] E I6P+1
) , we can expect that y [j] is also very likely

to be found in the smaller deadzone, I6P). Equivalently, the conditional
PMF, f V PIV(P+l) (vP,O), is heavily skewed toward the outcome vP = O.
For this reason, an important element in the construction of efficient
coding contexts is the so-called "significance" of a sample, defined by

(p) [oJ _ {I if v(p) [j] > 0
(J J - 0 if v(p) [j] = 0

To help decouple our description of the coding operations from the order
in which they are applied, we introduce the notion of a binary "signif­
icance state," (J [j]. At any point in the coding process, (J [j] assumes
the value of (J(p) [j] where p is the most recent (least significant) bit for
which information concerning sample y [j] has been coded up to that
point. Equivalently, we initialize the significance state of all samples
in the code-block to 0 at the beginning of the coding process and then
toggle the state to (J [j] = 1 immediately after coding the first non-zero
magnitude bit for sample y [j].
Given the importance of the condition (J [j] = 0, we identify three

different types of primitive coding operations as follows. If (J [j] = 0 we
refer to the task of coding vP [j] as "significance coding," since vP [j] = 1
if and only if the significance state transitions to (J [j] = 1 in this coding
step. In the event that the sample does become significant, we must
invoke a "sign coding" primitive to identify X [j]. For samples which
are already significant, the value of vP [j] serves to refine the decoder's
knowledge of the non-zero sample magnitude. Accordingly, we invoke a
"magnitude refinement coding" primitive.

354 Embedded Block Coding

0 0 0

0

a"[jI'JI+1]

0

0 0

cr[jI+LJIJ

0 0 0 0 0

Figure 8.11. Formation of significance coding contexts ..

SIGNIFICANCE CODING (NORMAL MODE)
The significance coding primitive involves a normal mode and a run

mode. We describe the normal mode first. In this mode, one of 9
different contexts is used to code the significance (i.e., the value of vP [j])
of a sample which is currently insignificant (i.e., v(p+1) [j] = 0). Context
selection is based upon the significance of the sample's 8 immediate
neighbours, as shown in Figure 8.11. The context label, K,sig [j], is formed
from three intermediate quantities,

K,h [j] = (J' [jl,j2 - 1] + (J' [jl,j2 + 1]
K,v [j] = (J' [jl - 1,j2] + (J' [JI + 1,hl

K,d [j] = L L (J' [jl + k1 ,j2 + k2]

kl=±l k2=±1

Samples which lie beyond the boundaries of the relevant code-block
are regarded as insignificant for the purpose of constructing these three
quantities.
Table 8.1 shows how K,sig [j] is derived from the intermediate quantities,

K,h [j], K,v [j] and K,c1 [j]. The principles underlying this context design are
as follows. If the code-block belongs to an LH (vertically high-pass) sub­
band, the significant samples are most likely to arise from horizontally
oriented features in the image, as suggested by Figure 4.18. Accord­
ingly, significant horizontal neighbours are considered most indicative of
the current sample's significance. After the horizontal neighbours, ver­
tical neighbours are considered the next most important indicators of

Chapter 8: Highly Scalable Compression 355

Table 8.1. Assignment of context labels for significance coding.

~sig li] LL and LH blocks HL blocks HH blocks
~h [j] ~v li] ~d [j] ~h [j] ~v li] ~d [j] ~d [j] ~h li]+~v li]

8 2 x" x x 2 x 2:3 x
7 1 2: 1 x 2: 1 1 x 2 2:1
6 1 0 2: 1 0 1 2:1 2 0
5 1 0 0 0 1 0 1 2:2
4 0 2 x 2 0 x 1 1
3 0 1 x 1 0 x 1 0
2 0 0 2:2 0 0 2:2 0 2:2
1 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0

a"x" means "don't care."

significance. The more distant diagonal neighbours are of interest only
if at most one of the four most immediate neighbours is already signifi­
cant. Context formation for the HL (horizontally high-pass) subband is
analogous to that for the LH subband, with the roles of horizontal and
vertical neighbours interchanged. If the code-block belongs to an HH
(horizontally and vertically high-pass) subband, we expect to encounter
diagonally oriented regions of significance, as suggested by Figure 4.18.
For these code-blocks, diagonal neighbours are the most important in­
dicators of significance in the current sample.
Although the above arguments go some way to explaining the context

design rules given in Table 8.1, we hasten to point out that these rules
are actually the product of substantial empirical studies. They are also
motivated in part by the need for simple, regular constructions which
are amenable to efficient implementation strategies in both hardware
and software.

It is worth pointing out that the amount of information represented
by the significance of any of the eight neighbours in Figure 8.11 de­
pends upon the order in which the bits are coded. If each bit-plane,
p, is coded by visiting the samples in raster scan order, then the four
neighbours in the current sample's causal past will have their significance
determined by the deadzone interval, T6P) , while the significance state
of the remaining four neighbours will be determined in relation to the
larger deadzone, T6P+1

). That is, for each kEN = {(O, -1) ,(-1, -1) ,
(-1,0),(-1,1)}, o-[j+k] = o-(p) [j+k] ,while for each for k E -N,

356 Embedded Block Coding

(]" [j + k] = (]"(p+l) [j + k] . 'With the data dependent scanning order de­
scribed in Section 8.3.3, no such simple interpretation is possibles.

SIGNIFICANCE CODING (RUN MODE)
At moderate to high compression ratios, most of the subband samples

are insignificant in all of the bit-planes which are actually included in the
final pack-stream. To see why this must be so, observe that whenever a
sample becomes significant we must code the significance event (usually
with respect to a conditional PMF skewed heavily toward insignificance)
and also the sign. The combined cost of these two binary events is
unlikely to be less than 2 bits and is usually considerably more. Thus,
at a compressed bit-rate of 0.5 bits/sample (according to Table 1.1, this
is sufficient to achieve moderate image quality) we may conservatively
estimate that more than ~ of the samples are insignificant in all of the
available bit-planes. Empirical observations suggest that this estimate is
indeed very conservative. Also, even those samples which are eventually
coded as significant, may be insignificant for many of the initial bit­
planes.
Since code-block samples are expected to be predominantly insignifi­

cant, a run mode is introduced to dispatch multiple insignificant samples
with a single binary symbol. The run mode serves primarily to reduce
complexity, although very small improvements in compression perfor­
mance are also typical. The run mode is entered if and only if the
following three conditions hold simultaneously.

1. Four consecutive samples (following the scan shown in Figure 8.15)
must currently be insignificant. That is, (]" [jr] = 0 for 0 ~ r < 4,
where jo = j and jr is the r th position beyond j in the scan.

2. All four samples must currently have insignificant neighbourhoods.
That is, f\:sig [jr] = 0 for 0 ~ r < 4.

3. The group of four samples must be aligned on a four sample boundary
within the scan. As we shall see in Section 8.3.3, the scanning pattern
itself works column by column on stripes of four rows at a time. This
means that the samples must constitute a single stripe column, where
the stripe is required to have the full height of four sample rows.

8Considering only the horizontal neighbours, for example, it can happen that only the left
neighbour has already been coded in bit-plane p, but it can also happen that both of the
horizontal neighbours have already been coded in bit-plane p (this is possible in a cleanup
coding pass). It can even happen that neither of the hoi"izontal neighbours has been coded
in bit-plane p (this is possible in a significance propagation pass).

Chapter 8: Highly Scalable Compression 357

In run mode, a binary "run interruption" symbol is coded to indicate
whether or not all four samples remain insignificant in the current bit­
plane, p. Insignificance is identified by the symbol 0, while a value of 1
means that at least one of the four samples becomes significant. The run
interruption symbol is coded within its own context, denoted K:

run = 9.
If one or more of the four samples becomes significant during the cur­

rent bit-plane, p, the insignificant run length, r, must also be coded,
followed by the sign of the first significant sample, X [jr]. Experience
shows that the run length is nearly uniformly distributed, which is also
to be expected if samples transition to significance with very low proba­
bility. For this reason the 2-bit run-length, r, is coded one bit at a time,
starting with the most significant bit, using a non-adaptive uniform prob­
ability model. The MQ arithmetic coder employed by JPEG2000 has
a special non-adaptive state in its probability estimation state machine
(state 46 of Table 2.1), which is used for exactly this purpose. After
run interruption, the significance of the remaining samples is coded in
normal mode, until the conditions for run mode are encountered again.

It is worth pointing out that the restriction to appropriately aligned
groups of samples (condition (3) above) exists only to facilitate efficient
implementation. Studies leading to the introduction of the run mode
in [147] revealed that taking the samples in groups of four at a time
roughly minimizes the number of symbols which must be arithmetically
coded. The interested reader is also invited to consider parallels between
JPEG2000 and the run mode in JPEG-LS (see Section 20.3).

SIGN CODING

The sign coding primitive is invoked at most once for any sample,
y [j], immediately after the significance coding operation in which the
sample first becomes significant. Most algorithms proposed for coding
subband sample values, whether embedded or otherwise, treat the sign
as an independent, uniformly distributed random variable, devoting 1
bit to coding its outcome. It turns out, however, that the signs of neigh­
bouring sample values exhibit significant statistical redundancy. Some
arguments to suggest that this should be the case are presented in [149].
The early bit-plane coding algorithm described in [150] employed condi­
tional sign coding, with 81 contexts derived from the signs of significant
neighbours9 . Wu [173] advocates similar context modeling techniques
for the coding of sign bits.

9Details of the sign coding procedure did not appear in the paper itself. However, the use of
conditional sign coding is evident from the souree code which was publically released in mid­
1994 and is still available from ''http://www-video.eecs.berkeley.edu/download/scalable/'' .

358 Embedded Block Coding

In the interest of minimizing both complexity and the learning penalty,
JPEG2000's sign coding primitive employs a meagre 5 contexts. Con­
text design is based upon the relevant sample's immediate four neigh­
bours, each of which may be in one of three states: significant and
positive; significant and negative; or insignificant. There are thus 81
unique neighbourhood configurations. The following observations allow
us to dramatically reduce this number. Firstly, it is reasonable to expect
horizontal and vertical symmetry in the joint distribution of the signs.
Further, if the left and right neighbours of a sample are both significant
but with opposite signs then they offer no more indication as to the sign
of the current sample than a pair of insignificant neighbours. Similarly,
disagreeing vertical neighbours might as well be insignificant. Together,
these arguments suggest that most if not all of the useful neighbourhood
information should be embodied by the quantities

Xh [j] = X [jl,j2 - 1] (J [jl,j2 -1] + X [jl,h + 1] (J [jl,j2 + 1]
XV [j] = X [jl - 1,h] (J [jl - 1,h] + X [jl + 1,j2] (J [jl + 1,j2]

These quantities represent the "net sign bias" of the horizontal and ver­
tical neighbours, respectively. Both quantities lie in the range -2 ~

Xh [j] ,XV [j] ~ 2, resulting in 25 neighbourhood configurations.
It is also reasonable to assume that the conditional distribution of X [j]

given any particular neighbourhood, should be identical to the distribu­
tion of -X [j] given a neighbourhood in which the signs of all neighbours
are flipped. In this way we may identify r211 = 13 unique neighbour­
hood configurations, which are reduced to 5 by truncating the horizontal
and vertical sign biases to the range -1 through 1. Specifically, define
the truncated bias terms by

xh [j] = sign (xh [j]) min { 1, Ixh [j] I}
XV [j] = sign (xv [j]) min {1, Ixv [j] I}

The context label, f\;sign, and sign-flipping factor, Xflip , are then given
by Table 8.2. The single binary symbol which is coded with respect to
context f\;sign takes the value 0 if X [j] .Xflip = 1 and 1 if X [j] .Xflip = -1.

MAGNITUDE REFINEMENT CODING
The magnitude refinement primitive is used to code the next magni­

tude bit, vP [j], of a sample which is already significant; i.e., (J(p+l) [j] = 1.
This information refines the coarser quantization index, q(p+l) [j], to
the next finer index, q(p) [j]. As already noted, subband samples tend
to exhibit symmetric distributions, fy (y), which are heavily skewed

Chapter 8: Highly Scalable Compression 359

Table 8.2. Assignment of context labels and flipping factor for sign coding.

Xh [j] XV [j] K:
sign

X
flip

1 1 14 1
1 0 13 1
1 -1 12 1
0 1 11 1
0 0 10 1
0 -1 11 -1
-1 1 12 -1
-1 0 13 -1
-1 -1 14 -1

1 I(p+I)

I '
~

y

y

Figure 8.12. Typical subband sam&le PDF, fy, and its impact on the relative prob­
abilities of quantization intervals Iqf:+1/) and I~f~).

toward y = O. As suggested by Figure 8.12, the conditional PMF
!vPIQ(P+l) (vP Iq(p+l)) typically exhibits the following characteristics: 1)

it is independent of the sign of q(p+l); 2) !vPIQ(P+1}(O I q(p+l)) > ~ for

all q(p+l); and 3) !vPIQ(p+!l(O I q(p+l)) ~ ~ for large Jq(p+l)l. As a re­
sult, it is desirable to condition the coding of vP [j] upon the value of

360 Embedded Block Coding

Table 8.3. Assignment of context labels for magnitude refinement coding.

'Ii [j] x;sig [j] X;m .g

o 0 15
o > 0 16
1 x· 17

a"x" means "don't care."

V(p+l) [j] when v(p+l) [j] is small. We also find that it can be useful to
exploit redundancy between adjacent sample magnitudes when v(p+l) [j]
is small.
The above observations serve to justify the assignment of a magnitude

refinement coding context, fi:mag , according to the rules expressed in
Table 8.3. Here, d [j] denotes the value of the significance state variable,
(J [j], "delayed" by one bit-plane. Both (J [j] and d [j] are initialized to
0; when the sample first becomes significant, (J [j] is toggled to 1, but
d [j] remains zero until after the first magnitude refinement bit has been
coded. For subsequent refinement bits, d [j] = 1. In this way, d [j]
provides a crude indicator of the coarser index magnitude, v(p+l) [j],
when we come to code vP [j]. In particular, d [j] = 1 if and only if
v(p+l) [j] ::::: 2 (we already know that v(p+l) [j] > 0; otherwise, we would
be using the significance coding primitive to code vP [j]).

SUMMARY REMARKS
The bit-plane coding primitives described above involve arithmetic

coding with a total of 18 different contexts, identified by the unique
labels of fi:Rig , fi:l'un, fi:sign and fi:mag . Of course, the exact value of these
labels is immaterial. What is important is that there are sufficiently
few contexts for the states of all 18 probability models to be maintained
in high speed registers within a dedicated hardware implementation.
The bit-plane coding primitives which we have described are exactly
those of the JPEG2000 standard. However, it should be noted that
JPEG2000 permits several mode variations which may be employed to
increase parallelism or reduce complexity at high bit-rates. These various
modes are described carefully in Section 12.4.

8.3.3 DYNAMIC SCAN
FRACTIONAL BIT-PLANES
As mentioned previously, early bit-plane coders processed each bit­

plane following a deterministic (e.g., line by line) scan through the sub-

Chapter 8: Highly Scalable Compression 361

band samples. It is instructive to consider the rate-distortion character­
istic described by the resulting embedded bit-stream under truncation.
To this end, it is helpful to introduce temporary notation L~j and D~; to
denote the length and distortion which result when the least significant
p magnitude bit-planes are discarded from the embedded bit-stream.
Suppose now that we truncate the bit-stream at an arbitrary point, L,
between L~+l) and L~j. The truncated bit-stream represents a fraction,
p, of the samples down to bit-plane p while the remaining samples are
represented only down to bit-plane p + 1. Since the scan has no depen­
dence on the sample values themselves and the statistics are assumed
stationary over the code-block, the expected length and distortion are
given by

J-lL = pL~j + (1 - p) L~+l)

/I = pD(P) + (1 - p) D(p+l)
roD bp bp

Although the actual length and distortion will vary about these expected
values, the law of large numbers ensures that L :::::: J-lL and D :::::: J-lD for
sufficiently large code-blocks. Consequently the rate-distortion function
of a deterministically scanned bit-plane coder under truncation should
follow the piecewise-linear characteristic illustrated in Figure 8.13. This
is just the convex interpolation of the length and distortion values asso­
ciated with the bit-plane end-points.
Following the arguments at the end of Section 8.3.1, an efficient bit-

plane coder has the property that L~j and D~; are the length and distor­
tion which could be expected from an efficient non-embedded coding of
the same scalar quantization indices, q(p) [j]. Consequently, the bit-plane
end-point coordinates actually lie on the rate-distortion curve swept out
by an entropy coded deadzone scalar quantizer (ECDZQ) as the step size
is modulated. This is represented by the convex curve in Figure 8.13.
Although the bit-plane end-points are optimal with respect to ECDZQ,
truncation to intermediate lengths is necessarily sub-optimal since the
ECDZQ rate-distortion curve is convex. This is the same phenomenon
which accounts for the much more devastating loss of performance en­
countered when truncating a non-embedded bit-stream, as illustrated in
Figure 8.1.
In order to improve the rate-distortion performance of bit-plane cod­

ing under truncation, we should first code those bits which are likely
to result in the largest reduction in distortion relative to the increase
in code length. In particular, we employ the notion of "fractional bit­
plane" coding passes. JPEG2000 employs three coding passes for each
bit-plane, p, denoted p(p,O), p(p,l) and p(p,2). The sample locations

362 Embedded Block Coding

Bit-Plane Coding R-D curve
(truncation)

----------- ---------
L

Figure 8.13. Rate-distortion characteristic of deterministically scanned bit-plane
coding under truncation.

j E p(P,O) are expected to yield the largest reduction in distortion rela­
tive to the increase in code length, as quantization indices q(P+l) [j] are
refined to the finer indices, q(p) [j]. At the other extreme, p(p,2) contains
those sample locations whose distortion-length "slope" is expected to be
smallest.
Each sample location in the code-block appears in exactly one of the

three coding passes, p(p,O) through p(p,2) , which together represent all
information for bit-plane p. Accordingly, the distortion at the end of
coding pass p(p,2) should be exactly D~j. Also, since the combined in­
formation embodied by the three coding passes is identical to that which
is conveyed by coding bit-plane p line by line (or in any other order, for
that matter), we expect the code length at the end of pass p(p,2) to be

very close to L~~. This last point is contingent on the assumption that
the coding techniques are able to exploit most of the available statis­
tical redundancy, approaching the entropy of the quantization indices
which are coded, regardless of the order in which they are coded. In
practice, the order in which samples are coded has some effect upon the
interpretation of the limited conditional coding contexts described in
Section 8.3.2, as well as the evolution of the adaptive probability mod­
els used by the arithmetic coder. Nevertheless, our experience indicates
that the introduction of coding passes has very little impact at all on
the efficiency with which the information in each bit-plane is coded.

Chapter 8: Highly Scalable Compression 363

Fractional Bit-Plane R-D curve
(truncation)

Bit-Plane Coding R-D curve
(truncation)

Figure 8.14. Fractional bit-plane rate-distortion characteristic under truncation.

The samples belonging to each coding pass are visited in a determinis­
tic order, so that the rate-distortion characteristic offractional bit-plane
coding under truncation is obtained by convex interpolation of the length
and distortion values at the coding pass end-points. This is illustrated
in Figure 8.14. The key observation to make here is that it is possible to
get much closer to the convex rate-distortion characteristic of step size
modulated ECDZQ by separating the information in each bit-plane into
multiple coding passes with decreasing distortion-length slopes. The em­
bedding is substantially improved, even though coding efficiency at the
bit-plane end-points is substantially unaffected.

THE JPEG2000 CODING PASSES

We turn our attention now to the specific implementation of fractional
bit-planes in JPEG2000 and the deterministic scan followed within each
coding pass. For each of the three passes, the coder scans through the
samples of the code-block following the stripe-oriented scan shown in
Figure 8.15. Each stripe contains four sample rows, with the possible
exception of the last stripe in the block. Within each stripe, the samples
are visited column by column, from left to right.
Membership of each of the three coding passes is determined dynami­

cally, based upon the significance state of each sample's eight immediate
neighbours, as depicted in Figure 8.15. These are the same neighbours

364 Embedded Block Coding

t

o 0

o 0 0 0 0 0 0 0

>0 0 0 0

context window
......1------ code-block width, J] ---------il..~

Figure 8.15. Stripe-oriented scanning pattern followed within each coding pass.

which are used to determine the conditional coding contexts described
in Section 8.3.2.

Significance Propagation Pass: This is the first coding pass, pi(P,O) ,

in each bit-plane p.lO Sample location j belongs to this pass if it is
insignificant, but has a significant neighbourhood; that is, at least
one of its eight neighbours must be significant. Using the definition
of Ksig [j] in Table 8.1, membership in Pi(p,O) may be expressed by the
conditions (J [j] = 0 and Ksig [j] > O. These conditions are designed
to include those samples which are most likely to become significant
in bit-plane p. Moreover, for a broad class of probability models, the
samples in this coding pass are likely to yield the largest decrease in
distortion relative to the increase in code length [113].

Each sample in the pass is coded using the significance coding prim­
itive described in Section 8.3.2. Note that the conditions for run
mode will never be satisfied in this coding pass. The sign coding
primitive is invoked immediately after any significance coding step in
which the sample becomes significant; i.e., vP [j] = 1. It is worth not­
ing that samples which become significant in this pass may give rise
to waves of significance determination events which propagate along
connected image features such as edges. This is because membership
of the coding pass is assessed incrementally. Once a sample becomes
significant, the four neighbours which have not yet been visited in the

10Actually, the definitions of the first two coding passes leave them empty in the code-black's
most significant bit-plane, P = Ki - 1, which therefore has only one coding pass, p(Ki -1,2).

Chapter 8: Highly Scalable Compression 365

scan then also have significant neighbourhoods, and will be included

in p;p,O) unless they are already significant. We name this the "sig­
nificance propagation pass" to remind the reader that its members
are assessed dynamically.

Magnitude Refinement Pass: This is the second coding pass, Pi(P,l) ,

for bit-plane p of code-block Bi . In this coding pass, the magni­
tude refinement primitive is used to code magnitude bit vP [j] of any
sample which was already significant in the previous bit-plane; i.e.,
(j(p+l) [j] = 1. Equivalently, p;P,l) includes any sample whose signifi­

cance state is (j [j] = 1, which was not already included in p;p,O).

Cleanup Pass: This final coding pass, Pi(P,2), includes all samples for
which information has not already been coded in bit-plane p. From
the definitions of Pi(p,O) and Pi(P,l), we see that samples coded in this
pass must be insignificant. The significance coding primitive is used
to code vP [j] for all samples belonging to this pass. We note that the
conditions for run mode may occur only in this coding pass. As ex­
plained in Section 8.3.2, run mode is entered if an entire stripe column
contains insignificant samples with entirely insignificant neighbours.
The significance of all of these samples is coded in Pi(P,2) , using the
run mode to identify the first if any of the samples which becomes
significant in bit-plane p. Coding of any remaining samples in the
stripe column proceeds in normal mode. As always, the sign cod­
ing primitive is invoked for any sample which becomes significant,
immediately after its significance is coded.

Let Ki be a sufficient number of magnitude bit-planes to represent the
samples in Bi. As explained in Section 8.3.1, Ki is any integer satisfying

The selected value of K i is signalled separately, as part of the summary
information for each code-block, Bi ; this is discussed further in Sec­
tion 8.4. Then the first potentially non-empty coding pass is P

i
(K;-1,2) ,

while the last is Pi(O,2). The sequence of coding passes which constitutes
the embedded block bit-stream is indicated in Figure 8.16.
A natural set of truncation points for the embedded bit-stream is

formed by the coding pass end-points. Thus, the number of non-zero
truncation points for code-block Bi is

(8.12)

366 Embedded Block Coding

l------j'------'------'-----' u_~ I 'R(1.2) I -rr0'O) I 'RCO.I) I'R(O,2) I

Figure 8.16. Sequence of fractional bit-plane coding passes constituting the embed­
ded bit-stream for code-block Bi .

For each truncation point, z E {I, 2". , ,Zi}, the length, L~z), identifies
the smallest prefix of the embedded bit-stream which is sufficient to
correctly decode all symbols up to the end of coding pass Pi(p,k) , where
p, k and z are related through

z = 3 (Ki - p) + k - 4, 0 ~ p < K i , 0 ~ k < 3

These lengths are identified in Figure 8.16. The first truncation point,
z = 0, always corresponds to discarding the entire bit-stream so that
L~O) = O.
One way to assess the suitability of a particular set of definitions for

the fractional bit-plane coding passes, is to measure the frequency with
which each of the truncation points, z, belongs to the set Hi, introduced
in Section 8.2.1. Hi is the set of useful truncation points; it also defines
the convex hull of the length and distortion values corresponding to the
coding pass end-points. If the coding passes successfully sort the code­
block samples into subsets with decreasing distortion-length slopes, then
we expect most of their end-points to contribute to the convex hull,
as suggested by Figure 8.14. If the coding pass definitions are poor,
however, we expect Hi to consist primarily of the bit-plane end-points,
meaning that the set of useful truncation points would be no different
from that produced by a deterministically scanned bit-plane coder.
Figure 8.17 provides experimentally observed frequencies with which

each of the three types of coding pass, Pi(p,O) through P i(P,2) , yields a trun­
cation point in Hi. The results are obtained by applying the JPEG2000
algorithm to the three large natural images depicted in Figure 8.21,
using code-blocks of 64 x 64 samples each, with the CDF 9/7 wavelet
transform kernel in a 5 level DWT. Average convex hull occupancy over
all bit-planes and all three images is quoted as a function of the aver­
age compressed bit-rate. Experiments are run for various quantizer step
sizes, so as to cover the most interesting range of overall bit-rates, mea-

significance propagation

Chapter 8: Highly Scalable Compression 367

90,-----------------,
._----_...__._---_.......-------_...__...__.

:::: 80i-..::-'·~"""":::..----""O">" ____,_-----___l
l1 ~'----,________ cleanup

~ 70+----~=-=:..=-::-;,:-;,:-.:.;:,;~;:;:::;_~_::::_:__==~
~ -----
~ 60i-------:.,..,e."<-------------1
o magnitude refinement
~ 50i---I--+--------------1
~
40i-+.-----------------1

30.l-._-"-..,..-_,.,.,__.-.:-_----,,,....._....,.,..--_...J
mean bit-rate (bps)

Figure 8.17. Convex hull occupancy rates for each of the three types of fractional
bit-plane coding passes defined by JPEG2000.

sured in bits/sample (bps). The bit-plane end-points coincide with the

end-points of the cleanup pass, 'Pi(P,2) , and we note that these do lie on
the convex hull most frequently. The other two coding passes, however,
also contribute to the convex hull more often than not.
The results in Figure 8.17 also provide justification for the fact that

the magnitude refinement pass is best performed before the cleanup pass
in JPEG2000. The distortion-length slope in 'Pi(P,l) must be steeper than

that in 'Pi(p,2) whenever the former contributes to 'Hi (see Theorem 8.2).
Figure 8.17 indicates that this happens much more often than not, so
we may conclude that magnitude refinement coding usually exhibits a
steeper distortion-length slope than cleanup coding. If the two passes
were performed in the opposite order, the slope for the third pass would
usually be steeper than that for the second. In this case, the second pass
would rarely contribute to 'Hi and the embedding would be weakened.
This argument relies on the assumption that the distortion-length slopes
associated with magnitude refinement and cleanup coding operations are
not affected by their order, which is largely the casell .

IIThe magnitude refinement coding context, I\;m ag , does have some dependence upon the
significance of the sample's neighbours and hence the order in which the refinement and
cleanup passes are performed. It turns out, however, that this effect is usually quite small. In
any event., the effect tends to strengthen the present argument, since delaying the magnitude
refinement pass ensures t.hat more information is available for coding, so that its distortion­
rate slope can be even steeper.

368 Embedded Block Coding

OTHER VARIATIONS

The idea of sequencing bit-plane coding steps in accordance with their
anticipated distortion-length slope was conceived independently by Li
and Lei [93] and Ordentlich et al. [113]. It should be noted, however, that
the lists maintained by the SPIRT [126] algorithm serve a similar pur­
pose, representing one of its most significant innovations over Shapiro's
EZW algorithm [131]. In a separate work, Li et al. [92] proposed a
reordering of EZW's coding steps in accordance with their anticipated
distortion-length slopes.

The work of Li and Lei [93] is particularly interesting, if less practi­
cal, in that their coding passes are not confined to bit-plane boundaries.
The distortion-length slope is explicitly estimated for each neighbour­
hood context configuration, based on distortion models and probability
estimates available from the adaptive arithmetic coder. Each coding
pass is then composed of those samples which are expected to yield sim­
ilar slopes. In this way, an arbitrarily fine embedding may be supported
and it can happen that some particularly favourable samples are much
more finely quantized than others at any given point in the embedding.

Ordentlich et al. [113] explored fractional bit-plane coding passes
very similar to those defined above for JPEG2000, in the context of a
simple bit-plane coding scheme involving Golomb encoded run lengths.
They defined coding passes whose membership is based on information
available from previous bit-planes only. The ideas in [113] were combined
with conditional arithmetic coding of the bit-planes by Sheng et al. [133].

The above works were based on the coding of subbands as a whole.
Independent code-blocks and incremental assessment of membership in
the "significance propagation" pass were introduced by Taubman in
[148, 149]. That work also investigated more general fractional bit-plane
assignment rules. A four pass model incorporating a novel backward
scanning pass was found to yield superior embedding to the three pass
approach. Not only are there more truncation points, but these trun­
cation points also contribute to the convex hull (these are the useful
truncation points) with greater frequency than that observed in Fig­
ure 8.17. It is in this form that the EBCOT paradigm was first adopted
by the JPEG2000 committee. In most cases, however, the four pass
model was found to offer little improvement over the simpler three pass
approach described above. A careful study of this and other refinements
leading to the final form of the JPEG2000 algorithm may be found in
[101].

Chapter 8: Highly Scalable Compression 369

8.3.4 QUAD-TREE CODING APPROACHES
In this section we briefly describe an alternative class of embedded

block coding schemes, based on an embedded extension of the quad-tree
coding technique introduced in Section 2.4.4. The principles described
here are common to a number of proposed image compression strategies,
including [20, 80, 141, 94].

BIT-PLANE CODING WITH QUAD-TREES
The quad-tree provides a simple structure for efficiently representing

two dimensional binary sequences. As we shall see, the idea is read­
ily adapted to the coding of significance information, (J(p) [j], in each
bit-plane, p. Significance coding is the most important of the bit-plane
coding operations described in Section 8.3.2. Sign and magnitude re­
finement information are then easily incorporated into the quad-tree
coding process in a manner which naturally gives rise to an embedded
bit-stream.
Recall that a subband sample, y [j], is said to be insignificant in bit­

plane p ((J(p) [j] = 0) if the corresponding quantization index magni­
tude, v [j], is strictly less than 2P; otherwise the sample is significant
((J(p) [j] = 1). For simplicity, we assume that the code-block dimensions
are identical powers of 2; i.e., J1 = J2 = 2T for some T. We introduce the
notation, (J(p,t) [j], to identify significance at each level t = 0,1, ... ,T of
an induced quad-tree. Specifically, (J(p,t) [j] is defined recursively through
the relations

(J(p,O) [j] = (J(p) [j], a~ j1, i2 < 2T and

(J(p,t+1) [j] = max (J(p,t) [2j1 + k 1, 2j2 + k2] , a~ j1,j2 < 2T - t

k1 ,k2E{O,1}

The interpretation of (J(p,t) [j] = 1 is that at least one of the samples in
the jth "quad" of size 2t x 2t is significant in bit-plane p.
Equivalently, (J(p,t) [j] = 1 if and only if v(p,t) [j] > 0, where

and aVb denotes the integer formed by taking the bit-wise logical "OR"
of the binary representations of a and b. This suggests an efficient soft­
ware implementation strategy, in which the v(O,t) [j] are computed recur­
sively from the K-bit index magnitudes, v [j], using a total of 22T - 1
logical OR operations. The significance, (J(p,t) [j], of any node in the
tree in any given bit-plane, p, may be deduced as needed by testing the

370 Embedded Block Coding

Figure 8.18. Embedded quad-tree structure, shown for the two most significant mag­
nitude bit-planes, p = K - 1 (left) and p = K - 2 (right).

most significant K - p bits of v(O,t) [j]. Figure 8.18 provides a graphical
illustration of this quad-tree construction.
The binary significance map for the most significant bit-plane, p =

K - 1, may be efficiently represented by direct application of the quad­
tree coding algorithm described in Section 2.4.4. The same algorithm
may be used in each subsequent bit-plane, p = K - 2, ... ,0, provided
we are careful to avoid coding redundant information. In particular,
we know that (j(p,t) [j] ~ (j(p+1,t) [j], so the quad-tree coding step for
(j(p,t) [j] should be skipped whenever (j(P+l,t) [j] = 1. Introducing sign
and magnitude refinement information at the appropriate points, one
obtains the bit-plane coding algorithm described below. To simplify the
description, we define (j(p,T+1) [0] = 1 for all p.

Simple Quad-Tree Bit-Plane Coder

For p = K - 1, ... , 1, a
Significance Coding Pass
For t = T, ... , 1, a

For each j over a :::;)1,)2 < 2T - t

If v(p,t) [j] = 1
Emit a "I" (significant for first time in bit-plane p)
If t = 0, emit a sign bit to identify X [j]
else if v(p,t) [j] = a and (j(P,t+1) [lt J' l¥J] = 1
Emit a "a" (insignificant with significant parent)

Magnitude Refinement Pass

Chapter 8: Highly Scalable Compression 371

For each j over 0 :::;]1,12 < 2T

If v(p,O) [j] > 1
Emit the LSB of v(p,O) [j]

This simple algorithm exhibits two coding passes per bit-plane, where
the coding pass end-points are natural places to consider truncating
the embedded bit-stream. We will shortly consider alternate ways of
sequencing the quad-tree coding steps, so as to produce more finely
embedded bit-streams. Before doing so, however, we observe that the
quad-tree code contains some obvious redundancies. In particular, when­
ever (/(p,t+l) [j] = 1 we know that (/(p,t) [2j + k] = 1 for at least one
k E {O, I}2; this is how we defined (/(p,t+1) [j]. A convenient way to
exploit this redundancy, along with other statistical biases in the signif­
icance map, is to modify the algorithm so that the significance of the
four nodes which share the same parent are coded together.

Modified Quad-Tree Bit-Plane Coder

For p = K - 1, ... , 1,0
Significance Coding Pass

If v(p,T) [0] :::; 1
Emit the value of v(p,T) [0]

For t = T, ... , 1
For each j over 0 :::;]1,12 < 2T - t

If v(p,t) [j] = 1
code-together(v(p,t-l) [2j + k] over 0 ~ k1 , k2 < 2)
else if v(p,t) [j] =1= 0
For each k over 0 :::; k1 , k2 < 2

If v(p,t-l) [2j + k] :::; 1
Emit the value of v(p,t-l) [2j + k]

For each j over 0 :::;]1,]2 < 2T

If v(p,O) [j] = 1
Emit a sign bit to identify X [j]

Magnitude Refinement Pass

For each j over 0 :::;]1,12 < 2T

If v(p,O) [j] > 1
Emit the LSB of v(p,O) [j]

Joint coding of the four nodes is easiest and also most effective when
their parent first becomes significant. This is the condition under which
the code-together routine is invoked by the above algorithm. The four
values, v(p,t-l) [2j + k], 0 :::; k1, k2 < 2, supplied to code-together are

372 Embedded Block Coding

each either 0 or 1. Moreover, at least one of them must be non-zero.
Thus, 15 combinations are possible and a variable length code (VLC)
may be employed to exploit the redundancy. A reasonable VLC design
strategy is to assign the shortest four codewords (3 bits each) to the
singleton events; i.e., the events in which only one of the four nodes
becomes significant. The remaining 11 combinations are considered less
likely and assigned longer codewords.

ORDERING FOR EMBEDDING
In order to improve the embedding, we may split the significance cod­

ing pass in two, considering first those samples which are most likely to
become significant in the current bit-plane. These can be expected to
yield a steeper distortion-length slope. Natural candidates for the first
coding pass are individual samples whose parent was significant in the
previous bit-plane. The algorithm described above may be modified in a
straightforward manner to process these samples in a first pass. In this
way, we obtain three coding passes per bit-plane with similar interpre­
tations to the JPEG2000 coding passes described in Section 8.3.3.
Rather than explicitly passing through all nodes in the tree in each

coding pass, an attractive alternative is to maintain lists which iden­
tify those nodes for which information must be coded. The first list
identifies the individual samples which are insignificant themselves, but
have a significant parent. Accordingly, this list is called the LIC (List
of Insignificant Coefficients). A second list identifies individual samples
which were found to be significant in a previous bit-plane. This is the
magnitude refinement list, or LSC (List of Significant Coefficients). Fi­
nally, the LIS (List of Insignificant Sets) identifies the non-leaf nodes
whose significance must be coded during the current bit-plane, p. Each
such node represents a non-trivial block (or set) of insignificant samples.
Specifically, this list consists of the identifiers (t,j), such that t > 0,
(j(P+l,t) [j] = 0 and (j(p+l,t+l) [l¥J' l¥J] = 1. With these definitions,
one implementation of the embedded quad-tree coder would proceed as
follows.

List-Based Quad-Tree Bit-Plane Coder
Initialize LIC, LSC and TEMP to empty

Initialize LIS with the single element (T,O)
For p = K - 1, ... ,1,0

Primary Significance Coding Pass
For each j ELIC
Emit the value of v(p,O) [j] (must be lor 0)

Chapter 8: Highly Scalable Compression 373

If v(P,O) [j] = 1
Emit a sign bit to identify X [j]
Move j from LIe to TEMP (will move to LSC)

Secondary Significance Coding Pass

For each (t,j) ELIS
Emit the value of v(p,t) [j] (must be lor 0)
If v(p,t) [j] = 1

Remove (t,j) from LIS
code-together(v(p,t-l) [2j + k] over 0 :'S k1, k2 < 2)
For each k over 0 :'S k1, k2 < 2
process-significance(t - 1, 2j + k, p)

Magnitude Refinement Pass

For each j ELSe
Emit the LSB of v(p,O) [j]

Prepare for Next Bit-Plane

For each j ETEMP
Move j from TEMP to LSe

The routine, process-significance, manages the more complex task
of determining how to proceed with new nodes whose parent has just
become significant. The significance of the node passed to this routine
has already been coded by the code-together routine, but further cod­
ing steps may be required in the current bit-plane. The most natural
implementation is recursive, as follows.

process-significance(t,j, p)

If v(p,t) [j] = 0 (insignificant node goes to LIS or LIC)

If t > 0,
Add (t,j) to front of LIS
(prevents further processing in current bit-plane)

else add j to LIe

else (new significant node)
Ift>O

code-together(v(p,t-l) [2j + k] , over 0 :'S k1, k2 < 2)
For each k over 0 :'S k1, k2 < 2
process-significance(t - 1, 2j + k,p)

else (new significant sample)
Emit a sign bit to identify X [j]
Add j to TEMP (will move to LSC)

374 Embedded Block Coding

Although the list processing approach may be viewed simply as an
implementation strategy for quad-tree based bit-plane coding, it brings
a number of important benefits. Chief among these is the fact that the
amount of processing required is directly related to the number of bits
which are generated (encoded or decoded). This is because the lists
provide a means of skipping over all nodes in the tree for which nothing
will be coded. Ignoring the small improvements in efficiency which may
be introduced by the code-together routine, the algorithm emits at
least one bit for each node which is processed.
The list processing approach is also readily adapted to support dif­

ferent coding orders. In [94, SBRP], for example, the LIS is sorted so
as to ensure that nodes at lower levels, t, in the tree are processed first.
This improves the embedding within the secondary significance pass it­
self, since these are the nodes which are more likely to yield steeper
distortion-length slopes. This generalizes the idea of processing the in­
significant nodes at level t = °(these reside in the LIC) in a primary
significance pass.
The SPECK algorithm [80] introduces an interesting modification to

the quad-tree structure described here, where samples in each upper
left hand sub-block of size 2T'x2T ' reside within a tree of depth T', for
each T' = 0,1, ... ,T. This modification minimizes the number of bits
required to identify significant samples near the upper left hand corner
of the block, which improves coding efficiency when the entire wavelet
transform pyramid is packed into a single block in the manner suggested
by Figure 4.22. When applied to small code-blocks taken from distinct
subbands, this modified quad-tree structure imposes very little burden
on overall coding efficiency. This simple and versatile coding approach
was investigated during the JPEG2000 standardization activities.

WEAKNESSES OF QUAD-TREE CODING

For all of its advantages, quad-tree coding approaches do achieve less
compression than the conditional coding approach described in Sec­
tion 8.3.2. One reason for this is the use of very simple coding tech­
niques; magnitude refinement and sign bits, for example, are simply
moved directly to the bit-stream. Another important distinction is that
quad-tree coders can exploit redundancy only within quads with pre­
determined boundaries, while conditional coding uses a moving window
to exploit redundancy between neighbouring samples, unimpeded by ar­
tificial boundaries.
Quad boundaries also interfere with the identification of good candi­

dates for the first coding pass. As a result, the secondary significance
coding pass contains a mixture of coding steps which are likely to ex-

Chapter 8: Highly Scalable Compression 375

hibit large distortion-length slopes and those which are not. This has an
adverse impact on the embedding and also explains why the secondary
significance pass takes precedence over the magnitude refinement pass
in the quad-tree coding algorithm described above. From an implemen­
tation perspective, structured coding in quads is the primary appeal of
the quad-tree approach. From the perspective of compression efficiency
and adaptability to diverse sources, however, the quad structure is its
most fundamental deficiency.

Various quad-tree coding schemes tested by the JPEG2000 committee
yielded average compression losses of about 7% to 10% (about 0.5 to 1.0
dB in reconstructed MSE) relative to the conditional coding strategy
which was finally adopted. These averages were obtained with natural
photographic images such as those illustrated in Figures 8.21 and 8.22.
Much larger losses were observed with non-natural sources such as those
illustrated in Figure 8.24. On the other hand, careful software imple­
mentations of list based embedded quad-tree coding exhibited execution
speeds several times higher than that of the JPEG2000 block coder. We
conduct a comparison between the JPEG2000 algorithm and perhaps its
closest quad-tree based contender [94, SBRP] in Section 8.5.2.

8.3.5 DISTORTION COMPUTATION

As mentioned in Section 8.3.3, the candidate truncation points for
the embedded bit-stream representing each code-block, Bi , correspond
to the end-points of each of its coding passes. During compression we
must assess the number of bytes, L~z), required to represent all coded

symbols up to each truncation point, Z, as well as the distortion, D~z),
incurred by truncating the block bit-stream at that point. Actually,
distortion estimation is not strictly necessary to generate a meaningful
pack-stream, but it is important to the PCRD-opt algorithm described
in Section 8.2; this algorithm is used to obtain all of the JPEG2000
results reported in this text. The task of computing L~z) is discussed
thoroughly in Section 12.3. Our purpose here is to point out that the
distortion estimation task need not add substantial complexity to the
implementation of the compression system.

We begin by observing that the convex hull analysis and slope calcula­
tion algorithm described in Section 8.2.2 depends on distortion changes,
DYl) - D~Z2). Thus, it is sufficient and indeed preferable to determine

the amount, t1D~p,k), by which each coding pass, Pi(p,k) , reduces distor-

376 Embedded Block Coding

tion12 . As we shall see, this computation can be performed with the aid
of two small lookup tables which do not depend upon the coding pass,
bit-plane or subband involved.

In this brief discussion we restrict our attention to total squared error
(essentially MSE) as the measure of distortion. As shown at the end
of Section 4.3.2, we may model the reconstructed image distortion as a
linear combination of the squared error distortions from each subband
sample, so long as the transform is orthogonal or the quantization errors
are uncorrelated. In practice, neither of these requirements is satisfied
exactly: we use linear phase (symmetric) subband transforms, which
cannot be entirely orthogonal (see Theorem 6.5); and quantization er­
rors usually exhibit significant correlation at low bit-rates. Nevertheless,
we proceed on the assumption that at least one of the conditions is ap­
proximately valid.
Following equation (4.37), we model the distortion contributions from

code-block Hi as

(8.13)

Here bi identifies the subband to which code-block Hi belongs and Gbi is
the squared norm (energy) of the synthesis basis vectors for this subband.
Gbi is known as the energy gain factor for subband bi . Its value is
readily calculated using equations (4.39) and (4.40). If the objective
is to minimize more perceptually relevant measures of distortion than
MSE, additional weighting factors may be included such as the contrast
sensitivity weights, Wbisf , from Section 4.3.4.

The rather involved but convenient notation, P1z
) [j], refers to the

index of the bit-plane to which sample Yi [j] has been coded prior to
truncation point z. The dequantizer reconstructs Y1P) [j] from the quan­
tization index, q~p) [j]. Noting that all samples in coding pass p(p,k) are
refined from bit-plane p + 1 to bit-plane p, we have

!1D);,k) = Gbi L [(y~P+l) [j] - Yi [j]f - (y);) [j] - Yi [j]f] (8.14)
jEPfp

•
k

)

Although the decompressor is generally free to choose reconstruction
levels as it sees fit, the compressor must make some assumption concern-

12Note that although distortion will usually be reduced, it can sometimes be increased, in

which case LlD~P,k) will be a negative quantity. This does happen from time to time in
typical images. The corresponding truncation points will, of course, uever be included in Hi.

Chapter 8: Highly Scalable Compression 377

ing the dequantization policy in order to estimate distortion. JPEG2000
does not mandate any particular reconstruction policy, except in the case
of lossless compression. However, a mid-point reconstruction rule is rec­
ommended and we proceed on this assumption. Substituting 8 = ! into
equation (3.37) yields the dequantization formula

{

2P~. ((p) [0] 1) 'f (p) [0] 0
A(P) [0] _. (. [0]) t vi J + 2 I Vi J. >

Yi J - sIgn Yt J ()
o if v/ [j] = 0

Hence, the distortion attributable to sample, Yi [j], when coded down to
bit-plane p, is given by

Gbi' (y(p) [j] - Y [j]f

= Gbi . { (IYi [jJl- 2P~i (v~P) [j] +!)f 2
(IYi [j] 1)2 = (IYi [j] I- 2P~iV~P) [j])

if vf) [j] > 0

if v~p) [j] = 0
(8.15)

Let v~p) [j] denote the fraction part of the binary fraction representing
Ml Specifically
2P~i' ,

(8.16)

Substituting (8.16) and (8.15) into (8.14) yields

Here we have used the fact that v~p) [j] = 1 implies v~P+l) [j] = 0 and

v~p) [j] > 1 implies vf+l) [j] > O.

Now observe that vf) [j] is actually a function of v~P+l) [j]. This is
most easily seen from the fact that v~p) [j] is the fraction part of ~;~1

and so 2v~P+l) [j] is formed from the least significant integer bit and the

378 Embedded Block Coding

fraction part of the same quantity. Then

Also, when a sample first becomes significant in bit-plane p, we have

v}p) [j] = 1 and 2v}P+l) [j] ~ 1. The distortion contribution from coding
pass pi(P,k) may then be written as

where
Ts (v) = (2v)2 - (2v - ~)2 and

Tm (v)=(2v-1)2- (2v-l2v}P+l)[j]J -~r

The operators, Ts (v) and Tm (v), may be implemented as small lookup
tables, indexed by the first few fraction bits in the binary representation
of v E [0,1). The first table, Ts , is invoked whenever a sample becomes
significant during the significance propagation or cleanup pass, while the
second table, Tm , is employed by the magnitude refinement pass. The
relevant fraction bits can generally be made available to the bit-plane
coder with little or no overhead. For example, the explicit quantization
operation which assigns

may be replaced by

vdjj = l~~!~J
Then v}p) [j] is obtained by discarding the least significant p + 3 bits
from Vi [j] and the value v}P+l) [j], which must be passed to Ts or Tm to
compute distortion in bit-plane p, is well approximated by bit positions
p through p + 3 of Vi [j].
The table lookup approach is easily adapted to accommodate dequan­

tizer behaviour which differs from the simple mid-point reconstruction
policy described here. This is important when a reversible transform
(see Section 6.4.2) is used to produce a scalable lossless representation
of the image. In this case, the subband samples are integers, the step

Chapter 8: Highly Scalable Compression 379

~I l30 @J ~ I·· ·..···_····..~ ~ ~ I·· ~ -\
"-v---J "-v---J "-v---J_.J

L~) _...---.------ L~I) . .__. L~I) --.---.--.-.-----

.,...--..'-~~-"~"
(

\'.g:] l30 @:J ~ I ~ ~ ~ I..· · ~ --"\
"-v---J "-v---J "-v---J)42) - 41) L\2) - L\I) L~2) - L~')--·....- ..·---··_-

Figure 8.19. Deterministic interleaving of block coding passes as one means of ere·
ating a globally embedded representation from embedded block bit-streams.

size is D..i = 1, and samples for which all bit-planes are available are
reconstructed without error. In the final bit-plane then, the distortion
lookup tables should be modified to return the values

Ts (v) = (2v)2 and Tm (v) = (2v - 1)2

8.4
8.4.1

ABSTRACT QUALITY LAYERS
FROM BIT-PLANES TO LAYERS

It is important to appreciate the distinction between the local em­
bedding associated with each code-block's bit-stream, Ci, and the global
embedding of the final pack-stream, c. As pointed out in Section 8.1.3,
the pack-stream might not be embedded. Simply concatenating an op­
timally truncated set of code-block bit-streams, as in Figure 8.6, results
in a pack-stream whose distortion does not degrade gracefully as it is
truncated; entire blocks will be dropped one by one.
One way to construct a globally embedded representation of the im­

age is to interleave the coding passes from each code-block in some pre­
dictable fashion. Specifically, the pack-stream might be constructed by

including the first pass (LF) bytes) from every code-block, Bi , followed

by the second coding pass (L~2) - LF) bytes) from each block, and so
forth. This is illustrated in Figure 8.19. As the pack-stream is progres­
sively truncated, the distortion associated with each code-block should
degrade gracefully. On the other hand, deterministic pack-stream con­
struction rules of this form cannot generally be optimal at any bit-rate.
Nevertheless, deterministic interleaving of coding passes or bit-planes is
a natural approach, which has been followed by almost all embedded
image compression algorithms.

380 Abstract Quality Layers

At the opposite extreme, one might consider pack-streams in which
the code-block contributions are interleaved in a truly optimal fashion.
In this scenario, each contribution from code-block Hi should advance
that block's representation to the next point in the convex hull set, Hi,
and the contributing blocks should be globally sequenced according to
their distortion-length slopes. Specifically, let 0 = h? < h} < ... de­
note the elements of Hi and Ai (h7) the corresponding distortion-length
slopes, as defined in Section 8.2.1. At any given point in the construc­
tion of the pack-stream, we may identify the cumulative contribution
from each code-block, Hi, by an index, ki 2:: 0, into the elements of Hi,
such that h~i is the relevant truncation point for the block's embedded
bit-stream. The next contribution may come from any code-block, Hi,
whose distortion-length slope satisfies Ai (h~i+l) 2:: Aj (h~j+l) , Vj. A

pack-stream constructed in this fashion has the property that each pre­
fix corresponds to a rate-distortion optimal representation of the original
image.
This optimal sequencing strategy suffers from one very serious dis­

advantage: each code-block contribution must be accompanied by aux­
iliary information identifying the particular code-block from which the
contribution is drawn. The per-block cost of this signalling informa­
tion grows logarithmically with the number of code-blocks which must
be distinguished. This means that larger images cannot be compressed
as efficiently as smaller images! Interestingly, as the image dimensions
increase we are more likely to find a large number of code-blocks with
similar distortion-length slopes so that the benefit of strictly sequenc­
ing the code-block contributions according to their slope values becomes
negligible. In order to strike a compromise between the benefits and
the costs of optimal sequencing, it makes sense to collect the code-block
contributions into "bins" with similar slope values, sequencing the con­
tributions deterministically within each bin so as to avoid the overhead of
explicitly identifying the order. This is precisely the thinking which gave
rise to the concept of quality layers, which is fundamental to JPEG2000.
As defined previously, quality layers Qo through Ql together contain

the first Liz!) bytes from code-block Hi, where the truncation points, zf,
are selected to minimize the overall reconstructed image distortion,

Dl = LDi(z!)

subject to a length constraint,

"" L(z!) < Ll
L 2 - max

Chapter- 8: Highly Scalable Compr-ession 381

The PCRD-opt algorithm described in Section 8.2 may be used to select
these truncation points, in which case each quality layer, Ql, has an
associated slope threshold, A~in' and the truncation points are given by

z~ = max {hE Hi I Adh) > A~in}

In this way, the contributions contained in layer Ql, have distortion-rate
slopes in the range A~~ 2: Ai (zD > A~in and the quality layers are
exactly the "slope bins" mentioned above.

If the pack-stream is truncated to one of the lengths L~ax, the result­
ing representation will be optimal in the PCRD-opt sense. Truncation
to any intermediate length, L~a~ < L < L~ax, will not generally yield
an optimal representation. However, the degree of sub-optimality may
be controlled through the size of the slope bins, or equivalently through
the ratio L~ax/L~a~' The per-block overhead associated with quality
layer signalling depends on the number of layers, but not the size of the
image. The number of layers may then be selected to match the intended
application. The following three scenarios are of interest and guide the
experimental results reported in Section 8.5.

Single Layer Ifdistortion scalability is unimportant, only a single layer
is required and the pack-stream organization effectively reduces to
that depicted in Figure 8.6.

Targeted Layers In some applications there may be a small known
set of bit-rates at which the pack-stream is to be made available for
decompression. The quality layers may be targeted to these bit-rates.

Generic Ifdistortion scalability is important and nothing can be known
a priori concerning the length of the representation which will be
available for decompression, the pack-stream may be constructed
from a large number of quality layers, whose slope thresholds are ju­
diciously spaced so as to optimize the trade-off between sub-optimal
sequencing and signalling overhead. Experience shows that the range
of bit-rates from 0.05 through 2.0 bits per sample may be effectively
covered using approximately 50 quality layers when working with
large images and code-blocks of size 64 x 64. This number of layers
should be reduced somewhat when working with small images or with
smaller code-blocks.

It is worth noting that the contribution of each code-block to each
quality layer is explicitly signalled within the pack-stream. As a result,
there is no requirement that the contributions be sequenced in accor­
dance with rate-distortion criteria. In particular, there is nothing pre­
venting the compressor from reproducing the deterministic interleaving

382 Abstract Quality Layers

policy of Figure 8.19 by including one coding pass from each code-block
in each quality layer. As mentioned, the coding passes or bit-planes
provide a natural (though sub-optimal) ordering of the data into layers
corresponding to progressively higher overall image quality. The quality
layers employed by JPEG2000 introduce an extra level of abstraction,
which serves to separate the roles of coding and ordering of information.

8.4.2 MANAGING OVERHEAD
In this section we discuss more specifically the overhead information

which must be included in the pack-stream to identify code-block con­
tributions to each quality layer. We also describe mechanisms which
may be used to compress this information; these are the mechanisms
employed by the JPEG2000 image compression standard, which were
adopted directly from the EBCOT algorithm described in [149].

CODE-BLOCK TAGS

Every code-block notionally contributes to every quality layer, al­
though the contribution may be empty. The block signalling information
may be understood in terms of "tags." The information conveyed by the
tag for code-block Bi in quality layer Ql may be summarized as follows:

Inclusion The tag first identifies whether or not any information is
included from the code-block at all; i.e., whether or not zf > zi-1

. If
not, the tag is complete. Recall that zf denotes the truncation point
for code-block Bi in quality layer Ql.

Coding passes Depending upon the details of the block coding algo­
rithm, it mayor may not be necessary to identify both the number of
coding passes and the number of code bytes contributed to the layer,
since one may sometimes be deduced from the other. In JPEG2000,
the number of new coding passes, llzf = zf - zi- 1

, is identified ex­
plicitly.

Code bytes The number of new code bytes, llL~ = L[zi) - L[z:-l) , is
also identified explicitly. Some implementations of the block coding
algorithm could deduce this quantity during decoding. However, ex­
plicitly supplying the length of the contribution allows pack-stream
parsers to efficiently eliminate unwanted elements.

Missing MSBs As noted in Section 8.3.3, we must also signal the num­
ber of magnitude bit-planes, K i , used to represent the samples in
code-block Bi . The first coding pass, having truncation point z = 1,

Chapter 8: Highly Scalable Compression 383

Layer 0 ~ l\ ~ ~ I·........··...·...··..~ ~ I-~""'"
'-y---J '-v-' ~~
6t.:: LO

-- U DG;- 4 ,

Layer] ~ l\ §iI ~ I..........·...·..···~ ~ ~ I-~ \
'-y---J '-v-' '-y---J~

I
~... ~-- L\ 6L:--

\- 6::: (number of new passes)
I, t.z! > O? ---., ~ (number of new code bytes)

I z:-I= O? ~ K,"'" (missing MSB's)

Layer /

Figure 8.20. Code-block tag information.

codes the most significant of these K i magnitude bits. We may de­
fine a quantity, Kb,max, which denotes the maximum number of bits
required to represent quantization index magnitudes for any of the
subband samples in subband b. This quantity depends upon the
quantization step size, t:J. b , for the subband. The value of Ki may
then be signalled through Kfsbs ~ Kr::ax - Ki' where bi denotes the
subband containing code-block Hi. In the first quality layer to which
code-block Hi makes a non-empty contribution, Le., when zi-1 = 0
and zi i- 0, the value of Kfsbs is included in the block's tag.

Figure 8.20 illustrates the anatomy of a code-block tag. The figure
suggests that tags might be distributed throughout the pack-stream so
that each tag is immediately followed by the code bytes which are being
contributed. Indeed such an organization should maximize the recon­
structed image quality associated with an arbitrarily truncated pack­
stream. The JPEG2000 standard employs a slightly different organiza­
tion, in which collections of related code-block contributions are assem­
bled into so-called packets and all of the tags associated with a packet
appear together in the packet's header. This packet-based organization
has a number of practical advantages which are discussed further in
Section 12.5.

384 Abstract Quality Layers

TAG TREES

Since a pack-stream may involve many quality layers and there may
be many code-blocks within each quality layer, it is beneficial to devote
some effort to efficiently coding the tag information described above.
JPEG2000 employs an embedded structure known as a "tag tree" to
exploit residual redundancy between code-blocks. It is convenient to
describe tag tree coding first in general terms and later indicate how it
is used to code tag information.
Let w [n] == w [nI, n2] denote a two dimensional array of non-negative

integers whose values are to be coded progressively using the tag tree
algorithm. In our application, there is one number for each code-block
and the array includes all code-blocks whose tags are to be coded jointly.
In JPEG2000, this may be the set of all code-blocks in the image which
belong to the same subband; however, the coding may also be restricted
to smaller regions, known as "precincts." Coding proceeds progressively
by comparing w [n] against a sequence of thresholds, w = 1,2,3,
The tag tree coding process may be understood in terms of a procedure,
wene (w, n,W), whose objective is to efficiently code whether or not
w [n] 2 w, given the current state, W, of the tag tree. The procedure
produces only those code bits which are required to represent the binary
event w [n] 2 w, for the particular entry indexed by n. In order to
exploit redundancy within a variable length coding framework, some
such decisions will involve the generation of multiple code bits, while
others (hopefully most) will involve the production of no code bits at all.
This is possible because the state, W, reflects the information signalled
by previous invocations of the tag tree coding procedure.
Before describing the algorithm itself, it is worth providing a context

to motivate the tag tree concept. As we shall see, tag trees will be
used to code the quantity Kisbs (amongst other things), which is inter­
preted as the number of missing most significant magnitude bit-planes
for code-block Bi . In this case, we will define w [nil = KiIlSbs , where
ni is the location in the tag tree array corresponding to code-block Bi .

It is reasonable to expect substantial redundancy amongst neighbouring
elements in the w [nl array. However, the process of exploiting this re­
dundancy is somewhat complicated by the fact that we do not want to
code all of the values, w [nl, at once. Recall that KillSbs is to be coded
only in the quality layer to which code-block Bi contributes for the first
time, which may be different for each code-block. For this reason, we
need a procedure which generates code bits for only one code-block,
but is able to exploit redundancy through the state, W, produced by
previous coding operations, regardless of the order in which the coding
operations are performed.

Chapter 8: Highly Scalable Compression 385

Let T be the smallest integer such that the indices, n, of all coding
quantities, w [nl, are entirely contained within the range 0 ::; nl, n2 <
2T . Since the tag tree coding procedure is only invoked to code those
quantities, w [nl, which are of interest, there is no harm in defining the
tree over the entire 2T x 2T array, setting w [n] = 00 at any location in
this array for which original data is not available. At each tree level,
t, we construct an array of node values, w(t) [nl, as follows. The leaf
nodes in the tree are at level t = 0, where we define w(O) [n] = w [n]. At
subsequent levels in the tree, the node value is defined as the minimum
of its descendants' node values; Le.,

w(t) [n] = min w(t-l) [2n + k] (8.17)
O::;kI, k2<2

= min w [2tn + k], 0::; nl,n2 < 2T - t , 0::; t::; T
O::;kl,k2<2 t

Thus, the root of the tree is at level t = T, where w(T) [0] = minn w [n].
The state of the tag tree, W, consists of the node values, w(t) [nl,

and a set of corresponding thresholds, w(t) [n]. The interpretation of
these thresholds is that sufficient information has already been coded
to identify whether or not w(t) [n] ~ w for all w in the range 0 ::; w ::;

w(t) [n]. In particular, if w(t) [n] < w(t) [nl, sufficient information has
been coded to precisely identify the value of w(t) [n]. There is thus no
need to record values of w(t) [n] which are larger than w(t) [n] + 1 and it
is convenient to adhere to this limit. The tag tree is initialized by setting
w(t) [n] = 0, Vt, n. Since the node values are non-negative integers, this
is indeed the "zero information" state. The tag tree encoding procedure,
wene (w, n,W), is given by the following algorithm.

Tag Tree Encoding Procedure, wene (ill, n,W)

Initialize wmin = 0
(At each successive level t, this quantity will have the interpretation of
a lower bound on the relevant node threshold w(t) [n(t)] at that level,
based solely on the information coded at higher levels. The definition of

n(t) appears below. We will always have w(t) [n] ~ wmin .)

For t = T, ... ,1,0
Set n(t) - l.!!l.J n(t) - l!!2.J1 - 2t , 2 - 2t

(n(t) == [nit), n~t)] is the location of the relevant level t ancestor)

If w(t) [n(t)] < w min

Update w(t) [n(t)] f- wmin

While w(t) [n(t)] ~ w(t) [n(t)] and w(t) [n(t)] < w

386 Abstract Quality Layers

Increment w(t) [n(t)]
If w(t) [n(t)] ~ w(t) [n(t)]
emit-bit(O)

else
emit-bit(l)

Update wmin f- min {w(t) [n(t)] ,w(t) [n(t)]}

The corresponding decoding procedure, Wdec (w, n, W), may be im­
plemented using the following algorithm. Here, the tag tree state, W,
has the same interpretation as it does during encoding except that the
value stored as w(t) [n] is the minimum of the original value at the en­
coder and the current coding threshold, w(t) [n]. For decoding, the state
is initialized by setting w(t) [n] = w(t) [n] = 0, 'lit, n.

Tag Tree Decoding Procedure, Wdec (tv, n, W)

Initialize wmin = a
For t = T, ... ,1, a
Set n~t) = l:WJ, n~t) = l~J
If w(t) [n(t)] < wmin
Update w(t) [n(t)] f- wmin

Update w(t) [n(t)] f- wmin

While w(t) [n(t)] = w(t) [n(t)] and w(t) [n(t)] < w

Increment w(t) [n(t)]
If retrieve-bitO = a
Increment w(t) [n(t)]

Update wmin f- min {w(t) [n(t)] ,w(t) [n(t)]}

Example 8.1 To see how the tag tree coder can exploit redundancy,
consider a 4 x 4 array of identical values, w [n] = 2. Suppose now that
we wish to use the tag tree coder to encode the values of w [0, 0] and
w [1, 1], respectively. In this particular example, we will code w [0, 0] by
invoking w enc (w, [0, 0], W) repeatedlyforeachw E {1,2, ... ,w[0,0]+I}
and then do the same to code w [1,1].

Invoking w enc (1, [0, 0] ,W) yields the output

(0),0,0

Here, the code bits produced at each of the three levels in the tree are
delimited by parentheses and empty parentheses mean that no code-bits
were emitted at that level. The procedure updates the state variables

Chapter 8: Highly Scalable Compression 387

W(2) [0], W(l) [0], and w(O) [0] to 1. Invoking W enc (2, [0, 0] ,W) agam
yields the output

(0), 0,°
Finally, invoking wenc (3, [0, 0] ,W) yields the output,

(1) ,(1) ,(1)

at which point w(2) [0] =w(1) [0] = w(O) [0] = 3.
Proceeding to the next node of interest, we invoke w enc(l, [1, 1] ,W).

This yields no output whatsoever, but updates state variable w(O) [1,1]
from a to 2. wenc (2, [1, 1] ,W) produces no output and no change in
state. Finally, invoking w enc (3, [1, 1] ,W) produces

0,0,(1)

At this point the state variables, w(2) [0], w(l) [0], w(O) [0] and w(O) [1,1]
are all equal to 3 and the remaining 17 state variables are all still equal
to O.

In all, 6 bits have been used to code the two quantities. This is a
little less than the 8 bits which would be required to code the values sep­
arately using a comma code (see Example 2.5). Note that the tag tree
code reduces to a comma code when T = O. The reader should verify
that if we proceed to code all 16 of the w [n] values, a total of only 23
bits will be produced. This total number of code bits does not depend
on the order in which the samples are coded. It is also independent
of the order in which the individual invocations of the tag tree coding
procedure are issued. Thus, one might invoke w enc (1, [1, 1] ,W), fol­
lowed by w enc (1, [0,0], W), followed by w enc (2, [1, 1],W), followed by
wenc (2, [0,0] ,W), etc. The order of invocation affects the number of
bits used to code any particular outcome, but not the total number of bits
required to code all outcomes. Note, however, that the decoder must use
exactly the same order as the encoder.

TAG INFORMATION CODING
We are now in a position to describe the mechanisms employed by

JPEG2000 to code each of the four types of information which might be
found in the tag for code-block Bi in quality layer Ql.

Inclusion If Bi has not yet contributed to any quality layer, Le., zi-1 =
0, we use an inclusion tag tree to efficiently code whether or not
zi > O. The quantities coded through the inclusion tag tree are the
indices of the quality layer to which the code-block first makes a

388 Abstract Quality Layers

contribution. Specifically,

w [ni] = min {l I zi > 0}

where ni is the index of the element in the tag tree array which
corresponds to code-block Hi. We invoke the tag tree procedure
wene (l + 1, ni,W), which generates sufficient bits to indicate whether
or not w [nil ~ l + 1; i.e., whether or not zi = O. In this way, we
are able to exploit expected redundancy amongst the indices of the
layers in which neighbouring code-blocks first contribute to the pack­
stream.

If Hi has already contributed to at least one quality layer, i.e., zi-1 > 0,
we have less reason to expect significant redundancy between code­
blocks. Accordingly, we simply emit a "I" if zi > z~-l and a "0"
otherwise.

Missing MSBs If z~-l = 0 and zi > 0, we use another tag tree to
signal the number of magnitude bit-planes, K i . The quantities coded
through this tag tree are w [nil = KiDSbs , the number of missing MSBs
for the code-block. The information is coded by invoking the tag
tree procedure, wene (k, ni,W), for each successive k from 1 through
KiDSbs +1. The decoder invokes wdee (k, ni, W) with k = 1, 2, ... , un­
til wet) < wet); of course, this condition will occur when k = Kisbs+l.

It is worth noting that this particular use of tag trees effectively
extends the embedded coding of magnitude bit-planes from the code­
block to the entire subband. The important difference between low
level block coding and the higher level tag coding techniques is that
the order in which information is embedded in the pack-stream is not
constrained by the tag coding procedures. Instead, the order in which
code-blocks first contribute to the evolving pack-stream is explicitly
signalled through inclusion coding, as described above, and this same
order drives the embedding of information concerning the number of
bit-planes for each code-block.

Coding passes The number of new coding passes, ~zi = zi - z~-l > 0,
is represented using the variable length code defined in Table 8.4.

Code bytes The number of new code bytes, .6.L~, is signalled as an
unsigned integer with f3i + llog2 ~zU bits, where f3i is a state variable
unique to code-block Hi. The idea behind this representation is that
we expect the number of new code bytes to be roughly proportional
to the number of new coding passes, ~zi. The state variable, f3i,
is initialized to 3 prior to pack-stream construction. Before coding

Table 8.4.

1
2

3 through 5
6 through 36

37 through 164

Chapter 8: Highly Scalable Compression 389

Variable length code for signalling b.z;.

code word

o
10

11 00 through 11 10
1111 00000 through 1111 11110

"-v-' "-v-'
5-bits 5-bits

111111111 0000000 through 111111111 1111111
"-v-"' '-...--' "-v-"' '-...--'

9-bit prefix 7-bit suffix 9-bit prefix 7-bit suffi'x

.6.LL the value of {3i is updated as necessary using a comma code. In
particular, a "0" bit is emitted if the current value of {3i is sufficient
to represent the value of .6.L~. Otherwise, one or more "1" bits are
emitted prior to the "0" bit, where each "1" signals an increment of
{3i by 1. This strategy is motivated by the fact that the number of
code bytes generated in each coding pass is most often an increasing
function of the number of bit-planes which have been coded.

8.5
8.5.1

EXPERIMENTAL COMPARISON
JPEG2000 VERSUS SPIRT

In this section we provide a comparison of objective compression per­
formance between the SPIHT algorithm, introduced in Chapter 7, and
the JPEG2000 algorithm. In both cases, we employ the CDF 9/7 wavelet
transform kernel of Example 6.4, which is one of the two transforms de­
fined by JPEG2000. The dyadic wavelet decomposition has D = 5 levels
and hence 6 resolution levels, with the structure illustrated in Figure 8.3.
Code-blocks of size 64 x 64 are used throughout these experiments.
Whereas SPIRT produces a single embedded bit-stream, a JPEG2000

pack-stream may be endowed with varying degrees of distortion scal­
ability by controlling the number of quality layers. Accordingly, we
report JPEG2000 results for each of the three different application sce­
narios suggested in Section 8.4.1. In the "single layer" case, a separate
pack-stream must be generated for each of the tested bit-rates. In the
"targeted" case, a single pack-stream is constructed containing 6 qual­
ity layers, which are optimized for each of the tested bit-rates and the
additional rate of 0.0625 bps (bits per sample). In the "generic" case,
a pack-stream with approximately 50 layers is constructed, where the
rates of the various layers are randomly distributed over a logarithmic
scale from 0.05 bps to 2.0 bps; that is, they are not targeted to the

390 Experimental Comparison

Figure 8.21. High resolution ISO/lEC test images, representing natural photo­
graphic content. The original images form part of the Standard Color Image Data
(SCID) described in ISO 12640 [9].

specific bit-rates being tested. In these last two cases, the packets are
organized in a quality progressive sequence and each of the test bit-rates
is obtained simply by truncating the pack-stream to the appropriate
length.
Results are reported for 14 test images, averaged within each of five

image categories. The first category consists of the high resolution
ISO/lEC test images depicted in Figure 8.21. The second category con­
sists of lower resolution ISO/IEC test images depicted in Figure 8.22.
These first two categories represent natural image content. The third
category contains the 512 x 512 test images "Lenna" and "Barbara,"
which have been particularly popular for image compression research.
It is worth noting that colour sensor mis-registration is responsible for
abnormal attenuation of the high frequency details in the "Lenna" im­
agel3 . The fourth category consists of non-natural ISO/lEC test images,
as shown in Figure 8.24. An assortment of other test images appears
in the last group, depicted in Figure 8.25. All images are monochrome
with 8 bits per sample.
Table 8.5 compares the mean-squared reconstruction error (MSE) as­

sociated with the various algorithms and pack-stream organizations, in
terms of the Peak Signal to Noise Ratio (PSNR) measure. PSNR is in­
versely related to MSE through equation (1.2). Observe firstly that the

l:IThis image was scanncd frotn the ovemher 1972 edition of Playhoy lliagazine, at the
University of Southcru Califorllia. The mouochrome test imagc corrcspouds to thc lumillalH:e
(Y) component. in a YCIlCr repwsclltatiou of the original RGn dat.a.

Chapter 8: Highly Scalable Compression 391

Goldhill (76x720) II00ei (576x720) Tools (1201!x I 524)

Figure 8.22. Lower resolution ISO jlEC test images, representing natural photo­
graphic content. All three images were submitted by the UK National Body: "Gold­
hill" is a photograph of the village of Shaftesbury in Wiltshire, UK; "Hotel" is a scan
of a holiday brochure; and "Tools" was provided by Crosfield Electronics, UK.

Lcnna(512x512) Barbara (512x512)

Figure 8.23. Popular 512 X 512 test images.

overhead associated with the introduction of numerous quality layers is
relatively small. Even in the generic case, with about 50 quality layers
(more than the number of distinct coding passes), the tag coding tech­
niques described in Section 8.4.2 keep the overhead penalty to within
about 0.15 dB in most cases.
The reader should also observe that the objective compression perfor­

mance of JPEG2000 is marginally better than that of SPIRT with arith­
metic coding and significantly better than the uncoded version of SPIRT.
More significantly, the JPEG2000 coder is more robust to changes in
image type. In particular, the performance gap between SPIRT and
JPEG2000 is much larger for artificial image sources than it is for nat­
ural imagery.
Table 8.6 provides timing figures for software implementations of the

SPIRT and JPEG2000 algorithms. Only the decoding process is con­
sidered (not including the inverse DWT). This is due, in part, to the

--
.. _ ...__ fi __•• _ ... _I

------- -- ...- --.- ..-_ .. --
-~_ .._- -_ ..-

392 Experimental Compar'ison

('han (2347,16) ('mp<!1 (768,512) ('mpd2 (6624,5120)

Figure 8.24- Non-natural ISO/lEC test images. "Chart" is part of Standard Image
Set CD-03, put out by the US National Communications System; it was originally con­
tributed by Dennis Bodson. "Cmpdl" was produced by Majid Rabanni and Bhavan
Gandhi at Eastman Kodak Company. "Cmpd2" was contributed by Phil Marchand
at Xerox Corporation.

Figure 8.25. Miscellaneous ISO/IEC test images. "AeriaI2" is provided courtesy of
RECON/OPTICAL, INC., Barrington, Illinois. The "Cats" photograph was submit­
ted by Philip J. Fennessy. "Finger" was provided by Chris Brislawn at Los Alamos
ational Laboratory. This last is not one of the ISO test images.

fact that the encoding time for JPEG2000 depends upon the policy
used to determine the number of bit-planes which should actually be
encoded for each code-block. Ideally, one would estimate this quantity

Chapter 8: Highly Scalable Compression 393

Table 8.5. Comparison of reconstructed image PSNR for SPIHT (with and without
arithmetic coding) and the JPEG2000 algorithm (with various pack-stream organiza-
tions).

Category 0.125 bps 0.25 bps 0.5 bps 1.0 bps 2.0 bps

Natural Single 24.84 dB 27.61 dB 31.35 dB 36.22 dB 42.42 dB
(large) Targeted -0.02 dB -0.02 dB -0.03 dB -0.04 dB -0.03 dB

Generic -0.07 dB -0.09 dB -0.14 dB -0.16 dB -0.11 dB
SPIHT-AC -0.21 dB 0.24 dB -0.32 dB -0.32 dB -0.19 dB
SPIHT-NC -0.68 dB -0.80 dB -0.97 dB -1.02 dB -1.06 dB

Natural Single 26.11 dB 28.64 dB 32.05 dB 36.26 dB 41.74 dB
(small) Targeted -0.02 dB -0.03 dB -0.Q2 dB -0.04 dB -0.04 dB

Generic -0.12 dB -0.15 dB -0.14 dB -0.14 dB -0.14 dB
SPIHT-AC -0.43 dB -0.31 dB -0.32 dB -0.30 dB -0.18 dB
SPIHT-NC -4.12 dB -2.58 dB -2.04 dB -1.61 dB -1.55 dB

Popular Single 28.22 dB 31.27 dB 34.82 dB 38.81 dB 44.04 dB
Targeted -0.00 dB -om dB -0.06 dB -0.04 dB -0.03 dB
Generic -0.17 dB -0.11 dB -0.16 dB -0.17 dB -0.12 dB
SPIHT-AC -0.24 dB -0.41 dB -0.49 dB -0.37 dB -0.15 dB
SPIHT-NC -0.63 dB -0.80 dB -0.91 dB -0.83 dB -0.81 dB

Artificial Single 26.04 dB 29.98 dB 35.70 dB 43.32 dB 52.98 dB
Targeted -0.03 dB -0.05 dB -0.06 dB -0.10 dB -0.10 dB
Generic -0.17 dB -0.19 dB -0.29 dB -0.33 dB -0.21 dB
SPIHT-ACa -0.65 dB -0.74 dB -0.78 dB -0.87 dB -0.71 dB
SPIHT-NCa -4.01 dB -3.41 dB -3.54 dB -3.30 dB -2.93 dB

Misc. Single 27.57 dB 30.20 dB 33.53 dB 38.16 dB 45.45 dB
Targeted -0.00 dB -0.01 dB -0.02 dB -0.03 dB -0.04 dB
Generic -0.08 dB -0.06 dB -0.09 dB -0.15 dB -0.13 dB
SPIHT-AC -0.16 dB -0.23 dB -0.28 dB -0.36 dB -0.31 dB
SPIHT-NC -0.80 dB -0.82 dB -0.84 dB -1.07 dB -1.26 dB

aComparison performed using "Chart" and "Cmpd1" only; "Cmpd2" is too large

for the available computer memory.

with sufficient accuracy to avoid discarding most of the encoded data
during pack-stream formation. The Kakadu software supplied with this
text implements a conservative heuristic for incrementally estimating
the number of coding passes which are likely to be included in the final
pack-stream.
SPIRT has the advantage that the encoding process may be termi­

nated as soon as the desired bit-rate has been achieved. The price paid
for this, however, is that the encoding and decoding processes require
non-local access to the image transform coefficients. This, in turn, causes

394 Experimental Comparison

Table 8.6. Comparison of decoding CPU time (expressed as f-Ls per pixel with a 400
MHz Pentium II processor) for JPEG2000 and SPIHT (with and without arithmetic
coding). Actual CPU times are listed for the JPEG2000 algorithm, with SPIHT times
expressed in terms of multiplicative factors.

Category 0.125 bps 0.25 bps 0.5 bps 1.0 bps 2.0 bps

Natural Targeted 0.04 f-LS 0.06 f-LS 0.12 f-LS 0.22 f-LS 0.41 f-LS
(large) SPIHT-AC x 8.4 x 20.0 x 30.5 x 40.1 x 36.6

SPIHT~NC x 6.7 x 14.4 x 24.0 x 40.1 x 38.7

Natural Targeted 0.03 f-LS 0.06 f-LS 0.10 f-LS 0.20 f-LS 0.39 f-LS
(small) SPIHT-AC x 3.3 x 5.1 x 8.0 x 12.5 x 14.5

SPIHT-NC x 0.7 x 1.7 x 3.6 x 7.4 x 14.3

Popular Targeted 0.04 f-LS 0.05 f-LS 0.08 f-LS 0.19 f-LS 0.39 f-LS
SPIHT-AC x 1.5 x 3.1 x 3.9 x 3.7 x 5.8
SPIHT-NC x 0.8 x 1.2 x 1.4 x 1.7 x 4.6

Artificial Targeted 0.04 f-LS 0.07 f-LS 0.12 f-LS 0.23 f-LS 0.43 f-LS
SPIHT-ACa x 5.4 x 8.7 x 13.0 x 14.4 x 19.6
SPIHT-NCa x 0.8 x 2.7 x 5.5 x 12.8 x 15.2

Misc. Targeted 0.04 f-LS 0.06 f-LS 0.11 f-LS 0.20 f-LS 0.38 f-LS
SPIHT-AC x 6.2 x 13.8 x 21.7 x 25.6 x 30.4
SPIHT-NC x 4.8 x 11.1 x 18.9 x 25.1 x 32.0

aComparison performed using "Chart" and "Cmpd1" only.

a dramatic reduction in throughput as the image dimensions grow, since
the machine spends most of its time performing non-local memory ac­
cesses. Table 8.6 clearly demonstrates this sensitivity to image size.
Interestingly, the throughput of the JPEG2000 algorithm is competi­
tive with the uncoded version of SPIRT even when working with small
images14 .

8.5.2 JPEG2000 VERSUS SBHP
In Section 8.3.4, we described a second class of embedded block coding

algorithms which was carefully considered by the JPEG2000 committee
as an alternative to the context adaptive coding techniques described
in Section 8.3.2. These algorithms employ quad-tree coding techniques,

140f course, these results are somewhat dependent upon the efficiency of each implementa­
tion. The JPEG2000 implementation used here is the Kakadu software supplied with this
text. It has been heavily optimized for speed and memory nsage. The publically available
SPIRT implementation from ''http://www.rpi.edu'' has been used as a comparison.

Chapter 8: Highly Scalable Compression 395

Table 8.7. Comparison of reconstructed image PSNR and decoding CPU time for
JPEG2000 and SBHP. Cpu times obtained using a 400MHz Pentium II processor.

Category 0.125 bps 0.25 bps 0.5 bps 1.0 bps 2.0 bps

Natural J2K PSNR 24.83 dB 27.59 dB 31.32 dB 36.18 dB 42.39 dB
(large) SBHP -0.53 dB -0.64 dB -0.73 dB -0.71 dB -0.60 dB

J2K CPU 0.04 J-lS 0.06 J-lS 0.12 J-lS 0.22 J-lS 0.41 J-lS

SBHP x 0.19 x 0.26 x 0.28 x 0.32 x 0.34

Natural J2K PSNR 26.09 dB 28.62 dB 32.03 dB 36.23 dB 41.70 dB
(small) SBHP -0.81 dB -0.66 dB -0.72 dB -0.68 dB -0.71 dB

J2K CPU 0.03 J-lS 0.06 J-lS 0.10 J-lS 0.20 J-lS 0.39 J-lS
SBHP x 0.25 x 0.25 x 0.32 x 0.31 x 0.34

Popular J2K PSNR 28.22 dB 31.26 dB 34.76 dB 38.77 dB 44.01 dB
SBHP -0.96 dB -1.05 dB -0.92 dB -0.73 dB -0.62 dB
J2K CPU 0.04 J-lS 0.05 J-lS 0.08 J-lS 0.19 J-lS 0.39 J-lS
SBHP x 0.11 x 0.27 x 0.41 x 0.34 x 0.34

Artificial J2K PSNR 26.01 dB 29.94 dB 35.64 dB 43.22 dB 52.89 dB
SBHP -1.25 dB -1.59 dB -2.07 dB -2.18 dB -1.99 dB
J2K CPU 0.04 J-lS 0.07 J-lS 0.13 J-lS 0.24 J-lS 0.44 J-lS
SBHP x 0.23 x 0.22 x 0.27 x 0.27 x 0.30

Misc. J2K PSNR 27.56 dB 30.19 dB 33.51 dB 38.13 dB 45.41 dB
SBHP -0.47 dB -0.49 dB -0.46 dB -0.68 dB -0.77 dB
J2K CPU 0.04 J-lS 0.06 J-lS 0.11 J-lS 0.20 J-lS 0.38 J-lS
SBHP x 0.17 x 0.29 x 0.29 x 0.34 x 0.35

which are adapted from the set partitioning principles in SPIRT and
utilize only the simplest of variable length coding techniques.
Table 8.7 provides a comparison of objective compression and tim­

ing performance between the JPEG2000 algorithm and the SBRP algo­
rithm15 [94, SBRP], which was perhaps the closest contender amongst
the quad-tree coding approaches. Both algorithms employ the EBCOT
paradigm with 64 x 64 code-blocks and 6 targeted quality layers. As
in Table 8.6, CPU times refer to the block decoder only, not the full
decompression system.
While the SBRP algorithm typically loses about 0.7 dB in PSNR,

its elegant simplicity is also evident. Decoding CPU times for SBRP
are about 3 times smaller than those observed with the JPEG2000 algo­
rithm at moderate to high bit-rates. Of course, a full decompressor must

15The implementation of SBHP was kindly provided by Dr. Christos Chrysalis, then with
Hewlett-Packard Laboratories, Palo Alto, California.

396 Experimental Comparison

perform other tasks besides block decoding, notably the inverse DWT.
Consequently, one could not expect an SBRP-based decompressor to
execute a full three times faster than a JPEG2000 decompressor. Never­
theless, at high bit-rates the block coding process does dominate overall
complexity and an SBRP-based decompressor should execute substan­
tially faster than JPEG2000. Although we only provide decoding times
here, the SBRP encoder also executes faster than its JPEG2000 coun­
terpart by a somewhat smaller factor.
As with SPIRT, the performance of SBRP is much less robust to

variations in image type than JPEG2000. Average PSNR degrades by
about 2 dB for artificial imagery and performance differences of up to
6 dB are reported in [94] for certain ISOfIEC test images. This lack of
robustness to image type is perhaps the most significant concern which
prevented the adoption of quad-tree based techniques in the JPEG2000
standard.

II

THE JPEG2000 STANDARD

Chapter 9

INTRODUCTION TO JPEG2000

9.1 HISTORICAL PERSPECTIVE
At the time of this writing, JPEG2000 is the newest international

standard for still image compression. The JPEG acronym stands for
"Joint Photographic Experts Group." The "Joint" here signifies that
JPEG2000 is published as an ISO/IEC standard, as well as an ITU-T
Recommendation. The acronyms of the previous sentence stand for In­
ternational Organization for Standardization/International Electrotech­
nical Commission, and International Telecommunications Union-Termi­
nal Sector,! respectively. The Joint Bi-level Imagery Experts Group
(JBIG) has often worked closely together with the JPEG committee. In
fact, the two committees typically meet in the same venues.
Throughout the development of JPEG2000, the JPEG and JBIG

committees have functioned under the auspices of ISO/IEC JTC l/SC
29/WG 1, which denotes Working Group 1 of Study Committee 29 of
Joint Technical Committee 1 of ISO/IEC, hereinafter referred to as sim­
ply WG1. Before work commenced on JPEG2000, the study committee
and working group (SC/WG) structure for JPEG and JBIG changed
several times, including the merging of the JPEG and JBIG committees
under WG1. The history of the formation for these groups and changes
to their SC/WG structure is detailed in [119].
The JPEG and JBIG committees have been quite fruitful. Of course,

the JPEG committee produced the extremely successful JPEG standard,
which is published in four parts. Part 1 contains requirements and guide-

IThe ITU-T was known formerly as the "Consultative Committee of the International Tele­
phonc and Telcgraph" (CCITT).

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

400 Historical Perspective

lines for JPEG compression systems. This part contains the definition
of all four JPEG modes (sequential, progressive, hierarchical, and loss­
less), while Part 2 deals with compliance testing. These two parts are
the subject of the classic book by Pennebaker and Mitchell [119]. Parts
3 and 4 were completed after the publication of [119]. Part 3 deals with
extensions (adaptive quantization, composite tiling, file format, etc.),
while Part 4 deals with profiling and registration of profiles.
Also completed recently, is JPEG-LS which yields improved loss­

less and near-lossless compression, as compared to the lossless mode
of JPEG. The JPEG standard is discussed briefly in Chapter 19 of this
text, while JPEG-LS is the subject of Chapter 20.
The JBIG effort has produced two standards for the compression of

bi-level imagery. These standards are known as JBIG [7] and JBIG2 [10],
and are beyond the scope of this text. We do note however, that collab­
oration between JPEG and JBIG has been strong. This is evidenced by
the fact that the QM arithmetic coder, developed for use in JBIG, was
adopted as an option for entropy coding in JPEG. Similarly, the MQ
arithmetic coder, developed for use in JBIG2, was adopted as the only
approved entropy coder for JPEG2000. The MQ coder is discussed in
Chapter 12 of this text.
This chapter provides an overview of the JPEG2000 standard, its

feature set, and a brief history of the JPEG2000 standardization process.
The JPEG2000 standard will be published in six parts. For the purpose
of interchange it is important to have a standard with a limited number
of options, so that decoders in browsers, printers, cameras, or palm-top
computers can be counted on to implement all options. In this way,
an encoded image will be displayable by all devices.2 For this reason,
Part 1 describes the minimal decoder and code-stream syntax required
for JPEG2000, which should be used to provide maximum interchange.
Additionally, Part 1 describes an optional minimal file format.
There are many applications for image compression where interchange

is less important than other requirements (e.g., ability to handle a par­
ticular type of data). Thus, Part 2 consists of optional "value added"
extensions, that enhance compression performance and/or enable com­
pression of unusual data types. These extensions are not required of all
implementations. It should be noted then, that images encoded with

2 It is worth noting that the standard specifies only the decoder and code-stream syntax.
Although informative descriptions of some encoding functions are provided in the text of the
standard, there are no requirements that the encoder perform compression in any prescribed
manner. This leaves room for future innovations in encoder implementations.

Chapter 9: Introduction to JPEG2000 401

Part 2 technologies may not be decodable by Part 1 decoders. Part 2
also includes an enhanced file format.
Part 3 includes extensions for image sequences, and is known as "Mo­

tion JPEG2000.,,3 Part 4 includes information on compliance/conform­
ance, while Part 5 includes reference software.4 Finally, Part 6 includes
an additional file format tailored for compound documents.
At the time of this writing, only JPEG2000 Part 1 is finalized. Thus,

the primary focus of this book is JPEG2000 Part 1. That being said,
a high level treatment of Part 2 appears in Chapter 15. While we do
not discuss Part 5, the Kakadu software implementation of Part 1 is
provided on the compact disc accompanying this book.

9.1.1 THE JPEG2000 PROCESS
The JPEG2000 project was motivated by Ricoh's submission of the

CREW algorithm [174, 27] to an earlier standardization effort for loss­
less and near-lossless compression (now known as JPEG-LS). Although
LOCO-I [168] was ultimately selected as the basis for JPEG-LS, it was
recognized that CREW provided a rich set of features worthy of a new
standardization effort. Early in 1996, Dr. Daniel Lee of Hewlett-Packard
company was named as the WG1 Convener. He oversaw the develop­
ment of a proposal [1] (authored largely by Martin Boliek of Ricoh)
which resulted in the approval of JPEG2000 as a new WG1 work item.
Boliek was named as the JPEG2000 project editor at that time. Dr. Lee
continued to serve as convenor through the development of JPEG2000.
A Call for Technical Contributions was issued in March 1997 [2], re­

questing compression technologies be submitted to an evaluation during
the November 1997 WG1 meeting in Sydney, Australia. This call for
contributions included a copy of the original proposal [1] detailing the
desired feature set for JPEG2000. The most important of these de­
sired features are listed below. We note here that each of the desired
features has been achieved in JPEG2000, all within a single, tightly
integrated, compression architecture and code-stream syntax. The algo­
rithmic methods which enable these features are described in subsequent
chapters.

3We note that "Motion JPEG" has been a commonly used format for the purpose of video
editing (e.g., in production studios) even though never officially standardized.
4The JJ2000 group has produced a Java implementation of Part 1 for inclusion in Part 5.
This group consists of: Swiss Federal Institute of Technology - Ecole Polytechnique Federale
de Lausanne (EPFL); Canon Research Centre France (CRF); and Ericsson. The University
of British Columbia (UBC) and Image Power have produced a C implementation of Part I
for inclusion in Part 5.

402 Historical Perspective

In 1997, an ad hoc group on JPEG2000 requirements was established.
Touradj Ebrahimi (EPFL) was appointed to chair this group. This group
was tasked with the creation and maintenance of a JPEG2000 require­
ments document.

DESIRED FEATURES

• Superior low bit-rate performance: While superior performance
at all bit-rates was considered desirable, improved performance at low
bit-rates, with respect to JPEG, was considered to be an important
requirement for JPEG2000.

This requirement has been met. At high bit-rates, where artifacts
become just imperceptible, JPEG2000 has a compression advan­
tage over JPEG of roughly 20% on average. At lower bit-rates,
JPEG2000 has a much more significant advantage over certain
modes of JPEG (See, for example, Figure 4.30).

• Continuous-tone and bi-Ievel compression: Seamless compres­
sion of image components (e.g., R,G, or B), each from 1 to 16 bits
deep, was desired from one unified compression architecture.

JPEG2000 has met this goal, providing state-of-the-art compres­
sion performance for continuous-tone gray scale and color im­
agery. At the time of this writing, JPEG2000 is perhaps the only
standardized solution for 16+ bits per component-sample. At the
other extreme, the performance of JPEG2000 on bi-Ievel imagery
(1 bit per sample) is comparable to that of the ITU-T (CCITT)
G4 standard for facsimile compression [35].

• Progressive transmission by pixel accuracy and resolution:
Progressive transmission is highly desirable when receiving imagery
over slow communication links. Code-stream organizations which
are progressive by "pixel accuracy" (or by "quality," or by "SNR")
improve the quality of decoded imagery as more data are received.
Code-stream organizations which are progressive by "resolution" in­
crease the resolution, or size, of the decoded imagery as more data
are received.

This goal, and more, has been achieved in JPEG2000. In addition
to these two dimensions of progression, progression by spatial
location, and progression by image component are also supported.
These dimensions of progression can be "mixed and matched"
within a single compressed code-stream.

Chapter 9; Introduction to JPEG2000 403

• Lossless and lossy compression: Both lossless and lossy compres­
sion were desired, again from a single compression architecture. It
was desired to achieve lossless compression in the natural course of
progressive decoding.

Through the inclusion of a reversible (integer) wavelet trans­
form, this goal has been achieved. When this transform is em­
ployed, competitive lossy and lossless compression/decompression
are possible from a single compression algorithm. In fact, lossy
and lossless decompression are possible from a single compressed
code-stream. The lossless performance of JPEG2000 is within a
few percent of state-of-the-art.

• Random code-stream access and processing: Spatial random
access, as well as compressed domain processing were considered im­
portant features for JPEG2000.

JPEG2000 code-streams offer several mechanisms to support spa­
tial random access (or region of interest access) at varying degrees
of granularity. "Degree of interest" is also supported, whereby
the quality of the decompressed image may be adjusted for each
region of interest.

Compressed domain processing is also supported, including crop­
ping, rotation, flipping, translation, and scaling.

• Robustness to bit-errors: It was desired that JPEG2000 should
be robust to bit errors introduced by noisy communication channels
(e.g., wireless).

This goal has been met by the inclusion of resynchronization
markers, the coding of data in relatively small independent blocks,
and the provision of mechanisms to detect and conceal errors
within each block. The standard also supports code-stream orga­
nizations which can prove advantageous to applications requiring
substantial error resilience.

• Sequential build-up capability: The essence of this desired fea­
ture was to allow for encoding of an image from top to bottom in a
sequential fashion without the need to buffer an entire image. This is
very useful for low memory implementations in scan-based systems.

This requirement has been met by JPEG2000. It can be imple­
mented via tiling and/or progression by spatial location, as de­
scribed in subsequent sections and chapters.

404 Historical Perspective

THE SYDNEY EVALUATIONS

In addition to the call for contributions, WGI released a CD-ROM
containing 40 test images to be processed and submitted for evaluation.
For the evaluations, it was stipulated that compressed bit-streams and
decompressed imagery be submitted for six different bit-rates (ranging
from 0.0625 to 2.0 bits per sample) and for lossless encoding. Eastman
Kodak computed quantitative metrics for all images and bit-rates. They
also conducted a subjective evaluation involving 18 of the images at three
bit-rates using evaluators from among the Sydney meeting attendees.
The imagery from 24 algorithms was evaluated by ranking the perceived
image quality of hard-copy prints.

Although the performance of the top third of the submitted algorithms
was very good, the Wavelet/Trellis Coded Quantization (WTCQ) algo­
rithm, submitted by SAIC and the University of Arizona (SAIC/UA),
ranked first overall in both the subjective and objective evaluations. In
the subjective evaluation, WTCQ ranked first at 0.25 and 0.125 bits
per sample, and second at 0.0625 bits per sample. In terms of mean­
squared-error, averaged over all images, WTCQ ranked first at each of
the six bit-rates. Based on these results, WTCQ was selected as the
reference JPEG2000 algorithm at the conclusion of the meeting. It was
further decided that a series of "core experiments" would be conducted
to evaluate WTCQ and other techniques in terms of the JPEG2000 de­
sired features and in terms of algorithm complexity. Kathleen Rattell
(of Booz-Allen & Hamilton) was named to chair the core experiments
ad hoc group.

Results from the first round of core experiments were presented at the
March 1998 WGI meeting in Geneva, Switzerland. Based on these ex­
periments, it was decided to create a JPEG2000 Verification Model (VM)
which would lead to a reference implementation of JPEG2000. The VM
would be the software in which future rounds of core experiments would
be conducted. The VM would also be updated after each WGI meeting
based on the results of core experiments. Michael Marcellin (Univer­
sity of Arizona/SAIC) was appointed to head the VM ad hoc group,
with SAIC developing and maintaining the VM software. Eric Majani
(Canon-France) and Charis Christopoulos (Ericsson-Sweden) were also
named as coeditors of the standard at that time. Results from round 1
core experiments were selected to modify WTCQ into the first release
of the VM (VMO).

In the next few subsections, we describe briefly some of the technolo­
gies included in the various VMs. These technologies are described more
thoroughly in subsequent chapters.

Chapter 9: Introduction to JPEG2000 405

THE WTCQ ALGORITHM
The basic ingredients of the WTCQ algorithm are: the discrete wave­

let transform, TCQ [104, 86] (using step sizes chosen via Lagrangian
rate allocation), and binary arithmetic bit-plane coding of subbands.
The bit-plane coding operates on TCQ indices (trellis quantized wavelet
coefficients) in a way that enables successive refinement. This is accom­
plished by coding bit-planes in order from most to least significant. To
exploit dependencies within subbands, spatial context models are used.
In general, contexts can be chosen within a subband and across sub­

bands. The WTCQ bit-plane coder avoids the use of inter-subband
contexts to maximize flexibility in scalable decoding, and to facilitate
parallel implementation. The WTCQ bit-stream is scalable in both res­
olution and quality, although its best performance is obtained for the
single rate (reached at the end of progression) at which the Lagrangian
rate allocation is optimized. WTCQ also includes a "binary mode,"
and an adaptive classification of subband coefficients by blocks. A more
complete description of WTCQ can be found in [128].

VMO -VM2

Additions and modifications to VMO continued over two meeting cy­
cles, with refinements contributed by many WG1 members. VM2 sup­
ports user specified irreversible (real number) and reversible (integer)
wavelet transforms, as well as user specified decomposition structures.
As a simpler alternative to the Lagrangian rate allocation, a fixed quan­
tization table ("Q-table") is included. This is analogous to the current
JPEG standard [119]. When a Q-table is employed, precise rate control
can still be obtained by truncating the embedded bit-stream. In addition
to TCQ, scalar quantization is included in VM2.
For reversible wavelet transforms, scalar quantization with step size 1

is employed (i.e., no quantization), which allows progression to lossless
in the manner of CREW or SPIRT [127]. For lossless compression of
color imagery, the reversible color transform from CREW is included,
as well. Rate control for integer wavelet transforms is accomplished
by truncation of the embedded bit-stream, and lossless compression is
available naturally from the fully decoded bit-stream.
Other features were added to the VM, often from original contri­

butions to the Sydney meeting. Examples include, tiling, region of
interest coding/decoding (University of Maryland, Mitsubishi, Erics­
son), error resilience (Motorola, Texas Instruments, Sarnoff Corpora­
tion, UBC, Rockwell, University of Southern California (USC), Nor­
wegian University of Science and Technology), approximate and exact
wavelet transforms with low memory implementations (CRF, Motorola-

406 Historical Perspective

Australia, UBC, Hewlett-Packard, USC). For a more complete descrip­
tion of these technologies see [40].
Along with the additions described above, several refinements were

introduced to the bit-plane coder. The major changes were improve­
ments to the context modeling, and the de-interleaving of bit-planes
into "sub-bit-planes" or "coding passes." Within each bit-plane of each
subband, the bits are "de-interleaved" into three coding passes of the
following types: 1) bits likely to be newly "significant," 2) "magnitude
refinement" bits, and 3) bits likely to remain "insignificant" (i.e., all bits
not included in the first two passes). The idea of coding passes was first
presented in [113] for use with Golomb coding, and is motivated by rate­
distortion concerns [92, 93]. Such concerns imply that it is desirable to
have the bits with the steepest distortion-rate slopes appear first in an
embedded code-stream.
As in VMO, all coding was carried out using context dependent binary

arithmetic coding. The arithmetic coder employed up to and including
VM2 is described in [140]. The coding passes employed in VM2 were
adapted from [113] for use with arithmetic coding in [129][133]. The
VM2 bit-plane coder has no inter-subband dependencies such as those
used in [113] and in the zero-tree based schemes of [132][126].
VM2 also includes progressive visual weighting technology contributed

by Sharp Laboratories of America [91]. This allows for each spatial fre­
quency band to be weighted, or emphasized, differently at each trunca­
tion point within the same bit-stream. At low rates, or early truncation
points, the emphasis might be on preserving the low frequency bands
more accurately than the high frequency bands. At higher rates, or later
truncation points, all bands might be emphasized equally. The distribu­
tion of quantization errors amongst different spatial frequency bands is
then a function of the bit-rate associated with the truncated bit-stream
which is actually decompressed. When reversible wavelet transforms are
employed, progression to lossless is still possible, with very little change
in file size as compared to the non-weighted case.

VM3-VM5

At the November 1998 WG1 meeting in Los Angeles, David Taub­
man (then at Hewlett-Packard) presented EBCOT (Embedded Block
Coding with Optimized Truncation) [147, 149]. EBCOT includes the
idea of dividing each subband into rectangular blocks of coefficients and
performing the bit-plane coding independently on these "code-blocks,"
rather than on entire subbands as in previous VMs. This partitioning
reduces memory requirements in both hardware and software implemen­
tations, as well as providing a certain degree of spatial random access to

Chapter 9: Introduction to JPEG2000 407

the bit-stream. These ideas were motivated by similar concepts in [146].
EBCOT also includes an efficient syntax for forming the coding passes of
multiple code-blocks into "packets," which taken together form quality
"layers."
Tremendous flexibility in the formation of packets and layers is avail­

able to the implementer of an encoder. The default policy of the VM
encoder is to place in each layer, the coding passes (among all coding
passes not yet included in previous layers) with steepest distortion-rate
slope, as estimated in the encoder. This policy aims to minimize the
MSE at each point in the embedded bit-stream. Other policies are in­
cluded as well.
Progressive visual weighting is achieved by modulating the distortion­

rate slopes during layer formation. Another particularly interesting pol­
icy weights the distortion estimates of each block in a manner consistent
with masking properties of the human visual system [149]. Thus, code­
block contributions are de-emphasized in spatial regions where more
distortion can be tolerated, visually. Even when this masking policy
is employed, progressive transmission eventually results in lossless de­
compression, when reversible wavelet transforms are employed. As in
the visually weighted case, the policy has little effect on the ultimate
lossless file size, but can have dramatic impact on the visual quality for
partial decoding at lower rates..
EBCOT was adopted for inclusion in VM3 at the Los Angeles meeting.

Over the next three months, Taubman re-implemented the VM in an
object-oriented manner, took a faculty position at the University of New
South Wales (UNSW), and joined the VM maintenance team.
At the March 1999 WG1 meeting in Korea, the MQ coder [152] was

adopted as the arithmetic coder for JPEG2000. This coder is function­
ally similar to the QM coder used in JBIG (and as an option in JPEG).
The MQ coder has some useful bit-stream creation properties, and is
used in the JBIG2 standard. Also, the MQ coder is believed to be avail­
able on a royalty and fee free basis for ISO standards. In fact, most of
the companies involved in the JPEG2000 effort have generously agreed
to grant royalty and fee free licenses to their technologies as required for
implementation of JPEG2000.
At the July 1999 meeting in Vancouver, several changes and additions

were made to the bit-plane coding employed within the EBCOT code­
blocks [101]. These changes were made to reduce complexity, and to
increase hardware friendliness. For the default mode (see Chapter 12),
these changes have negligible effect on compression performance. Also
included at the July 1999 meeting was the ability to perform geometric
manipulations (e.g., rotation and/or flipping) of imagery [65].

408 Historical Perspective

At the same time as these changes were being made to the coding al­
gorithms, the code-stream syntax was developed by Ricoh. This syntax
is composed of markers and marker segments, compatible with those of
JPEG. Features were added (Ricoh, Aerospace Corporation) as appro­
priate for JPEG2000.
While the code-stream syntax provides all the data necessary for

decompression, applications often require additional information not
present in the code-stream. As mentioned previously, one annex of
JPEG2000 Part 1 contains an optional minimal file format. This file
format allows for the inclusion of information such as the color space
of the image samples, and intellectual property (copyright) information
for the image. This optional file format is extensible, and Part 2 of the
standard defines containers for many additional types of "metadata."

VM6-VM9

Most of the inclusions to VM6 through VM9 pertain to JPEG2000
Part 2. One notable exception is the canvas coordinate system (UNSW,
SAIC/UA, Ricoh, CRF) employed by all parts of JPEG2000. Another
exception is the addition of two dimensions of progressivity (component
and spatial location). Finally, significant changes were introduced to
support error detection and concealment within code-block bit-streams
(UNSW, HP).
Additions to the VM targeted to Part 2 include user selectable wavelet

filters (CRF, Los Alamos National Laboratories), user selectable decom­
position tree structures (SAIC/UA), and support for palettized imagery
(Sharp Labs of America). Also included are decorrelating techniques
for the third dimension in volumetric imagery (e.g., LANDSAT, SPOT,
CT, MRI, etc.). These techniques include general linear transforms,
inter-component prediction, and the wavelet transform. These technolo­
gies were contributed by Eastman Kodak, the Aerospace Corporation,
the University of Arizona, and Lockheed-Martin. Also included, are gen­
eralized level shift and generalized quantizer deadzone width (MITRE
Corporation) .

FILE FORMAT
File format development proceded in parallel with algorithm/code­

stream development. As mentioned previously, a basic file format is
specified in JPEG2000 Part 1, while more advanced file formats are pro­
vided by other parts. While file format writers and readers were not
implemented in the VM, several independent implementations exist. In
fact, the Kakadu software accompanying this text employs the Part 1 file
format. Contributions to file formats came from many organizations, in-

Chapter g; Introdltction to JPEG2000 409

eluding Adobe, Apple, Canon Information Systems Research Australia,
Elysium, Eastman-Kodak, Net Image, Picture Elements, and Xerox.

9.2 THE JPEG2000 FEATURE SET
Previous image compression systems and/or standards have been used

primarily as input-output filters within applications. That is, when an
image is written or read, it is compressed or decompressed largely as
a storage function. Additionally, decisions as to image quality and/or
compression ratio are made at compression time. At decompression time,
only the image quality, size, resolution, and spatial extent envisioned by
the compressor is available to the decompressor.
For example, with JPEG baseline (sequential mode), an image is com­

pressed using a particular quantization table. This essentially deter­
mines the quality that will be achieved at decompression time. Lower
(or higher) quality decompressions are not available to the decompressor.
Similarly, if the lossless mode of JPEG is employed, lossy decompression
is unavailable, and high compression ratios are not generally possible.
JPEG-LS provides superior lossless performance to lossless JPEG, while
also supporting lossy (near lossless) compression. However, all decisions
are still made at compression time, and only the image resolution and
quality envisioned at compression time is available to the decompressor.
Notable exceptions to these rigid structures exist. Many modern com­

pression systems allow for progressive and/or hierarchical decoding of
compressed image data. Such systems are discussed in Chapters 7 and
8. The original JPEG standard also allows for these features. Specif­
ically, JPEG has a "progressive mode," that allows decompression of
a code-stream at any lower quality than some maximum quality deter­
mined at compress time. Additionally, the code-stream is ordered so
that the "most important" bits appear earliest in the code-stream. This
is particularly useful for transmission of imagery over slow communi­
cation links. As the first few bytes of data are received, a low quality
rendition of the imagery can be decoded and displayed. As more bytes
are received, they can be combined with previously received bytes for
decoding and display of "progressively" higher quality renditions of the
imagery. Progressive JPEG has recently gained acceptance in web-based
applications.
Hierarchical JPEG is philosophically similar. However, rather than

improving quality, additional bytes are used to successively improve the
"resolution" (or size) of the decoded imagery. For example, as the first
few bytes are received and decoded, a small "thumbnail" image becomes
available. As more bytes are received, they are combined with previ­
ously received bytes and decoded to obtain successively larger and larger

410 The JPEG2000 Feature Set

"zoomed" images. Typically, each such image has twice as many samples
on each side as the previous image in the series.
As discussed above then, JPEG has four "modes" of operation: se­

quential, progressive, hierarchical, and lossless. Certain interactions be­
tween the modes are allowed according to the JPEG standard. For ex­
ample, hierarchical and progressive modes can be mixed within the same
code-stream. However, few if any implementations have exploited this
ability. Also, quite different technologies are employed for the lossless
and lossy modes. The lossless mode relies on predictive coding tech­
niques (see Chapters 2 and 3), while lossy compression relies on the
discrete cosine transform (Chapter 4).
A JPEG code-stream must be decoded in the fashion intended by

the compressor. For example if reduced resolution is desired at the
decompressor (when progressive mode was employed at the compres­
sor), the entire image must be decompressed and then downsampled.
Conversion of a code-stream from one mode to another can be diffi­
cult. Typically, such conversion must be accomplished via decompres­
sion/recompression, sometimes resulting in loss of image quality.
In what follows, we present an overview of the JPEG2000 feature

set, which overcomes the limitations described above. More detailed
discussions of the feature set, as well as the algorithmic details that
enable these features, are discussed in subsequent chapters.

9.2.1 COMPRESS ONCE: DECOMPRESS
MANY WAYS

JPEG2000 brings a new paradigm to image compression standards.
The benefits of all four JPEG modes are tightly integrated in JPEG2000.
The compressor decides maximum image quality, up to and including
lossless. Also chosen at compression time, is maximum resolution, or
size. Any image quality or size can be decompressed from the resulting
code-stream, up to and including the maximums chosen at encode time. 5

For example, suppose an image is compressed losslessly at full size.
Suppose further that the resulting file is of size Bo bytes. It is then
possible to extract B1 bytes from the file, (B1 < Bo) and decompress
those B1 bytes to obtain a lossy decompressed image. This image will
be identical to the image obtained if compression were performed to
B 1 bytes in the first place. Similarly, it is possible to extract B2 bytes

5We note that it is possible to construct code-streams that substantially limit the ability
of decoders to exploit the JPEG2000 feature set. While this may be necessary in certain
applications, implcmenters are encouraged to design encoders that produce feature-rich code­
streams.

Chapter 9: Introduction to JPEG2000 411

from the file and decompress to obtain a reduced resolution image. The
resulting image will be exactly the same as if the lower resolution version
of the image were compressed to B2 bytes in the first place.
In addition to the quality scalability and resolution scalability dis­

cussed above, JPEG2000 code-streams support spatial random access.
There are several mechanisms to retrieve and decompress data from the
code-stream corresponding to selected spatial regions of an image. The
different mechanisms yield different granularity of access, at varying lev­
els of difficulty. This is detailed in subsequent chapters. For now, we
note that each region so accessed can be decoded at a variety of different
resolutions and qualities.
Random access extends to components as well. For example, the

grayscale component can be extracted from a color image. Similarly,
overlay components containing text or graphics can be extracted, when
present. This can be done region by region with varying qualities and
resolutions.
It is important to note that in each case discussed above, it is possible

to locate, extract, and decode the bytes required for the desired image
product. It is not necessary to decode the entire code-stream and/or
image. In many cases, the bytes extracted and decoded are identical to
those that would be obtained if only the desired image products were
compressed in the first place.
Figure 9.1 shows examples of the image products discussed above.

The figure portrays an original (perhaps color) image being compressed
once to form a JPEG2000 code-stream. The code-stream can be decom­
pressed in many ways to obtain different image products. Included in the
figure are two reduced resolution images. These might be appropriate
for monitor display, or color printing, as hinted by the output devices
portrayed there. Also included is a high resolution version of a single
spatial region (the face). This is indicative of what might be displayed
as the user "zooms in" on the small display. Finally, the figure shows a
version of the image decompressed at full resolution. This might be a
grayscale image appropriate for high resolution black and white printers.

9.2.2 COMPRESSED DOMAIN IMAGE
PROCESSING/EDITING

Any of the image products discussed above can be extracted from a
JPEG2000 code-stream to create a new JPEG2000 code-stream. This
is not terribly surprising. Clearly, whatever can be decompressed and
displayed can be recompressed and stored. However, with JPEG2000,
the relevant compressed bytes can be extracted and reassembled into a
compliant code-stream without decompressing.

412 The JPEG2000 Feature Set

JPEG 2000
Compression

Figure 9.1. Multiple image products from a single compressed JPEG2000 code­
stream.

Specifically, reduced resolution and/or reduced quality compressed im­
agery can be produced without a decompress/recompress cycle. In ad­
dition to the elegance and computational savings afforded by this capa­
bility, compression noise "build-up" is avoided. Such build-up occurs in
most compression schemes when repetitive compress/decompress cycles
occur. 6

In addition to reduced quality and reduced resolution, compressed do­
main image cropping is possible. Cropping in the compressed domain is
accomplished by accessing the compressed data associated with a given
spatial region and rewriting it as a compliant code-stream. Some spe­
cial processing is required around the cropped image borders, however
decompression/recompression can be largely avoided.
Geometric manipulations are also supported in the (partially) com­

pressed domain. Image rotations of 90, 180, and 270 degrees are possible.
Image "mirroring" or "flipping" (top-to-bottom and/or left-to-right) can
also be performed. These procedures cannot be carried out entirely in
the compressed domain. Some transcoding of data is required, but the

(;It. is possiblc in SOlllC cascs to avoid noisc builclup in .JPEG2000 cvcn in the cvcnt. t.hat.
clccOlnprcss/rccolllprcss cycling; is performccl, cluc to t.hc lossless capabilit.y of JPEG2000.

Chapter 9; Introduction to JPEG2000 413

cycle of inverse and forward transformation is avoided, and only small
changes in distortion and bit-rate are incurred.
This idea can also be used to decode and render a flipped or rotated

version of an image in approximate raster fashion. This might be useful
for sending large images to low-memory scan-based printers.

9.2.3 PROGRESSION
Many types of progressive transmission are supported by JPEG2000.

As mentioned previously, progressive transmission is highly desirable
when receiving imagery over slow communication links. As more data
is received, the rendition of the displayed imagery improves in some
fashion. JPEG2000 supports progression in four dimensions: Quality,
Resolution, Spatial Location, and Component.
The first dimension of progressivity in JPEG2000 is quality. As more

data are received, image quality is improved. A JPEG2000 code-stream
ordered for quality progression corresponds roughly to a JPEG progres­
sive mode code-stream.

It should be noted that the image quality improves remarkably quickly
with JPEG2000. An image is typically recognizable after only about 0.05
bits/sample have been received. For a 320 x 240 sample image, this cor­
responds to only 480 bytes of received data. With only 0.25 bits/sample
(2,400 bytes) received, most major compression artifacts disappear. To
achieve quality corresponding to no visual distortion, between 0.75 and
1.0 bits per sample are usually required. Demanding applications may
require up to 2.0 bits/sample or even truly lossless decompression. We
remark here again, that any quality up to and including lossless may be
contained within a single compressed code-stream. Improving quality is
then a simple matter of decoding more bits.
The second dimension of progressivity in JPEG2000 is resolution. In

this type of progression, the first few bytes are used to represent a small
"thumbnail" of the image. As more bytes are received, the resolution
(or size) of the image increases by factors of 2 on each side. Eventually,
the full size image is obtained. A JPEG2000 code-stream ordered for
resolution progression corresponds roughly to a JPEG hierarchical mode
code-stream.
The third dimension of progressivity in JPEG2000 is spatial location.

With this type of progression, imagery can be received in approximately
raster fashion, from top-to-bottom. This type of progression is particu­
larly useful for memory constrained applications such as printers. It is
also useful for encoding. Low memory scanners can create spatially pro­
gressive code-streams "on-the-fly," without buffering either the image or
the compressed code-stream. A JPEG2000 code-stream ordered for pro-

414 The JPEG2000 Feature Set

gression by spatial location corresponds roughly to a JPEG sequential
mode code-stream.

The fourth and final dimension of progressivity is the component.
JPEG2000 supports images with up to 16384 components. Most im­
ages with more than 4 components are from scientific instruments (e.g.,
LANDSAT). More typically, images are 1 component (grayscale), 3 com­
ponents (e.g., RGB, YUV, etc.), or 4 components (CMYK). Overlay
components containing text or graphics are also common. Component
progression controls the order in which the data corresponding to dif­
ferent components is decoded. With progression by component, the
grayscale version of an image might first be decoded, followed by color
information, followed by overlaid annotations, text, etc. This type of
progression, in concert with the other progression types, can be used to
effect various component interleaving strategies.

The four dimensions of progressivity are very powerful and can be
"mixed-and-matched" within a single code-stream. That is, the pro­
gression type can be changed throughout the code-stream. For example,
the first few bytes transmitted might contain the information for a low
quality, grayscale, thumbnail image. The next few bytes might add qual­
ity, followed by color. The resolution of the thumbnail might then be
increased several times so that the size is appropriate for display on a
monitor. The quality could then be improved until visually lossless dis­
play is achieved. At this point, the viewer might desire to print the
image. The resolution could then be increased to that appropriate for
the particular printer. If the printer is black and white, the color com­
ponents can be omitted from the remaining transmitted data.

The main points to be understood from this discussion are that 1)
the imagery can be improved in many dimensions as more data are
received, and 2) only the data required by the viewer needs to be trans­
mitted. This can dramatically improve the latency experienced by an
image browsing application. Thus, the "effective compression ratio"
experienced by the client can be many times greater than the actual
compression ratio as measured from the file size at the server.

We conclude this section by noting that a code-stream is transmitted
to a user (or stored in a file) in one particular progression order, perhaps
the one discussed in the example above. However, an existing code­
stream can always be parsed and rewritten with a different progression
order, without actually decompressing the image. A smart server can
even construct the desired progression order on the fly in response to
user requests.

9.2.4

Chapter 9: Introduction to JPEG2000 415

LOW BIT-DEPTH IMAGERY
Binary valued components, (or binary valued tiles of components) can

be compressed using JPEG2000. Lossless compression of such binary
data can be accomplished via setting the bit depth to 1 and setting 0
levels of wavelet transform. The result of these settings is that no wavelet
transform is performed, and the binary image is treated as a single bit­
plane at a single resolution. This bit-plane is divided into code-blocks
and subjected to context dependent arithmetic coding. Unfortunately
however, scalability in quality and resolution are sacrificed. On the other
hand, spatial random access is preserved.

If the wavelet transform is employed for compressing binary imagery,
all the scalability and progression types discussed in the previous section
are present, but with some loss in compression efficiency over the "zero­
level" case. The quality of lossy decompressed binary imagery can vary
widely, depending on the image content and bit-rate chosen.
Graphic imagery containing a limited number of colors can also be

compressed with JPEG2000. A particularly effective approach treats
the image as a single palettized component. The sample values of this
component then specify image sample colors via a look-up-table (LUT).
Careful construction of the LUT often results in compression perfor­
mance comparable to that of JPEG-LS.

9.2.5 REGION OF INTEREST CODING
We close our discussion of the JPEG2000 feature set with a description

of "region of interest coding." In previous sections we mentioned the
possibility of varying quality by spatial region. Such variation can be
effected at encode time, or in subsequent parsing or decode operations.
This capability derives from the independence of code-blocks, and so the
code-block dimensions govern the granularity of the spatial regions that
can be targeted.
JPEG2000 also allows the encoder to select regions of arbitrary shape

and size for preferential treatment. In this case, the ROI (Region of In­
terest) must be chosen at encode time and is not easily altered via parsing
or decoding. For this form of ROI coding, wavelet coefficients that affect
image samples within the ROI are pre-emphasized (left shifted) prior to
bit-plane coding. The amount of pre-emphasis is written to the code­
stream, and is used to properly realign (right shift) the ROI coefficients
at decode time.

Chapter 10

SAMPLE DATA TRANSFORMATIONS

10.1 ARCHITECTURAL OVERVIEW
Part 1 of the JPEG2000 standard specifies a comparatively rigid set

of transformations which are applied to the image samples to produce
quantized subband sample indices; the quantization indices are then
passed to the block coder. The various transformations are identified
in Figure 10.1, which also indicates the major parameters which are
available to control the behaviour of each type of transformation.

'-------y-----­
quantization

quantization indices,
subband samples'---- _

~ "" ...

\."'-------.v__-~J

wavelet transform

Image samples

RCT
[RGB-).Y'ObOe?]

\."----..v__-~J

colour transform

Irreversible path:: \
:: '""'---r--:C""'T--' 'lrr-ev-e-rs-:":ib-"]e-O""'-WTC""CO., I ~

[RGB-).YCbCr?] [nUID levels, D]

To block coder ROI
[max-shift, U]

Figure 10.1. Sample data transformations.

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

418 Architectural Overview

The core operations in Figure 10.1 are those of the Discrete Wavelet
Transform (DWT) and Deadzone Scalar Quantization (DZQ). As such,
the compression system conforms to the common model of Figure 1.4.
The additional elements identified in Figure 10.1 serve the following
purposes.

Level offset: If the original B-bit image sample values are unsigned
(non-negative) quantities, an offset of _2B - 1 is added so that the
samples have a signed representation in the range

_2B - 1 :s x [n] < 2B - 1 (10.1)

If the data already conforms to this range, no adjustment is per­
formed. When multiple image components (e.g., colour components)
are being compressed together, the adjustment is made independently
to each of the components. Whether or not each component's range
is adjusted in this fashion is identified by a corresponding "signed"
flag in the global code-stream marker, SIZ.

The motivation for the offset is that alm?st all of the subband samples
produced by the DWT involve high-pass filtering and hence have a
symmetric distribution about O. Without the level offset, the LL
subband would present an exception, introducing some irregularity
into efficient implementations of the standard.

Evidently, the level offset is optional, since unsigned data in the range
o:s x [n] < 2B may be marked as "signed" with a bit-depth of B + 1
bits per sample. The risk, however, is that B + 1 may exceed the
bit-depth to which a decompressor implementation is able to comply
with the standard.

Colour transform: The colour transform is optional. It may be used
only when three or more colour components are available and only
when the first three components all have identical sizes and identical
bit-depths. The assumption is that these first three image compo­
nents contain the red, green and blue sample values of a colour image.
The transform converts the RGB data into an "opponent" colour rep­
resentation, with a luminance (or intensity) channel and two colour
difference channels. This has the effect of exploiting some of the
redundancy between the original colour components. In particular,
colour difference components commonly account for less than 20% of
the bits used to compress a colour image.

ROI (Region of Interest): JPEG2000 allows compressors to empha­
size arbitrary regions of interest in the image. This is achieved by

.te[-Hl

ICf
[RGB~YCbCr?]

Chapter 10: Sample Data Transformations 419

Image samples

Figure 10.2. Normalized interpretation of the irreversible path, in which transfor­
mation operators are applied to sample values with a nominal range of -~ to ~.

scaling up the quantization indices of more important subband sam­
ples, which effectively reduces their quantization step sizes.

10.1.1 PATHS AND NORMALIZATION
Figure 10.1 contains two transformation paths labeled "reversible"

and "irreversible." The reversible path maps the B-bit sample values,
x [n], to integer subband samples of similar precision, from which the
original image may be recovered exactly. In this case, there is no quan­
tization and the DWT must be implemented using the non-linear lifting
steps described in Section 6.4.2. The reversible colour transform involves
similar non-linearities. Lossless compression almost invariably requires
the reversible path.
Although the reversible path is useful for lossy as well as lossless com­

pression, the subtle non-linearities which are required for reversibility
tend to damage compression performance, particularly at high bit-rates.
The sample transformations associated with the irreversible path are
entirely linear (prior to quantization). The irreversible path also offers
the freedom to select arbitrary quantization parameters, which can be
advantageous in certain applications.
An important distinction between the reversible and irreversible paths

is that the sample transformations of the irreversible path are unaffected
by scaling the sample values. Specifically, if we multiply the image sam­
ple values by some factor and scale the quantization step sizes by the
same factor, the quantization indices delivered to the block coder will
be unaffected. This is an obvious consequence of the linearity of the
irreversible transformations.
The irreversible path is most easily described in terms of real-valued

samples which are normalized (through division by 2B) to the "unit
range"

1 1-- < x[n] <-2 - - 2

420 Colour Transforms

The colour transform and DWT operations may be normalized so that
all subband samples nominally retain this same unit range of -~ to
~. Quantization step sizes, D.b, are specified relative to this nominal
range. The concept of nominal range will be made more precise in
Section 10.4.1. Figure 10.2 depicts the normalized perspective which
we shall adopt for describing the elements of the irreversible path. We
point out that the standard itself [12] does not describe the irreversible
path from this normalized perspective; however, the description given
here is equivalent and more intuitive.

It should now be apparent that the irreversible path is essentially in­
dependent of the sample bit-depth, B. For example, a12-bit compressed
image may be decompressed as an 8-bit image simply by modifying the
bit-depth, B, specified in the global code-stream marker, BIZ. The 8
decompressed sample bits will be the 8 most significant bits of the 12
bit representation which would otherwise have been decompressed. Sim­
ilarly, an 8-bit image may be decompressed as though it were a 12-bit
Image.
Unfortunately, this bit-depth invariance property is not shared by

the reversible path l . Consequently, the reversible operations are best
described directly as mappings from integers to integers, while the irre­
versible operations are best described as transformations performed on
floating point numbers with a unit range of -~ to ~. It is worth noting,
however, that fixed point approximations to the irreversible operations
may be preferred in many implementations, in which case both paths
will involve closely related integer transformations.

10.2 COLOUR TRANSFORMS
As noted above, the colour transform is optional and is applied only to

the first three image components, denoted Xo [n] through X2 [n]. These
must have identical dimensions and bit-depths. They are interpreted
as the red, green and blue sample values of a colour image, respec­
tively. Note, however, that the JPEG2000 code-stream is notionally
colour blind so that the first three colour components need not necessar­
ily represent RGB data. The colour transform may be used to exploit
redundancy between any collection of three image components which
satisfy the conditions mentioned above. Matters of colour interpretation
are relegated to the optional file format described in Chapter 14.

1It is still possible to decompress a reversibly compressed image with a different bit-depth,
but the misalignment of non-linear rounding operations will introduce additional distortion.
This may be necessary if the bit-depth of the original image exceeds the numerical precision
of a decompressor, as suggested in Section 18.3.3.

10.2.1

Chapter 10: Sample Data Transformations 421

DEFINITION OF THE leT

(10.4)

(10.2)

(10.3)

The irreversible colour transform is a point-wise linear operator de­
scribed by weighting factors

QR ~ 0.299, QG ~ 0.587, QB ~ 0.114

and the relationships

Xy [n] ~ QRXR [n] + QGXG [n] + QBXB [n]

XCb [n] ~ 0.5 (XB [n] - Xy [n])
1- QB

XCr [n] ~ 0.5 (XR [n] - Xy [n])
1- QR

The above expressions are to be treated as exact. The relationship may
be equivalently expressed in terms of matrix-vector multiplication, as
follows

(

Xy [n]) (0.299 0.587 0.114) (XR [n])
XCb [n] = -0.168736 -0.331264 0.5 XG [n]
XCr [n] 0.5 -0.418688 -0.081312 XB [nJ.

Note, however, that the decimals used in the above matrix are only
approximate.
In accordance with Figure 10.2, we identify the inputs to the trans­

form, XR [n], XG [n] and XB [n], with the level-shifted and normalized
samples, XQ [n] ,Xl [n] ,X2 [n] E [-~,~], respectively. After application
of the transform, the new image components (we use the same symbols),
XQ [n] through X2 [n], are identified with Xy [n], XCb [n] and XCr [n], re­
spectively. The reader may verify that these again exhibit a unit range,
with Xk [n] E [-~,~] , Vk.
Observe that Xy is a weighted average of the red, green and blue

colour components. As such, it may be regarded as a measure of image
intensity (or luminance). The weights reflect the importance of informa­
tion in the green portion of the visible spectrum to visual perception of
detail. Observe also that XCb and XCr are weighted differences between
the blue (respectively, red) input and the luminance. These colour differ­
ences are commonly known as "chrominance components." The human
visual system is known to be substantially less sensitive to distortion in
the chrominance components than the luminance component. This is
especially true at higher spatial frequencies, since chrominance plays a
relatively minor role in the perception of edges and fine details. These
properties may be exploited through careful control of the quantiza­
tion step sizes and/or code-block truncation points associated with the

422 Colour Transforms

luminance and chrominance components. The reader is referred to Sec­
tion 16.1.2 for guidance in this matter.
During decompression, the transformation must be inverted using the

reciprocal relationship

(

XR [n]) (1 0 1.402) (Xy in])
XG [n] = 1 -0.344136 -0.714136 XCb [n]
XB in] 1 1.772 0 XCr in]

The decimals on the first and third rows of the matrix are exact. To
obtain more accurate expressions for the second row of the matrix, the
reader may directly invert equations (10.2), through (10.4).
Evidently, the inverse transform does not possess the range preserving

property exhibited by the forward transform. Also, since the subband
sample values are generally corrupted by quantization, there is no guar­
antee that the image components supplied to the inverse transform will
strictly conform to the nominal range of -! to !. In this way, the
reconstructed sample values might not lie within the interval [-!,!]
suggested by Figure 10.2.
Decompressors may deal with out of range sample values by clipping

them to the nearest representable value. In this case, the clipping is best
applied to RGB data after inverting any colour transform, since YCbCr
data which conforms to the nominal range bounds may still produce
out of range RGB samples. Note, however, that the standard does not
specify how a decoder should deal with out of range reconstructed sample
values.

10.2.2 DEFINITION OF THE ReT
The reversible colour transform is defined by the following non-linear

relations

[]~ lXR [nl + 2xG in] + XB [n]J
Xy' n -

4

XDb [n] £ XB in] - XG in]

XDr in] £ XR in] - XG [n]

Here lxJdenotes the "floor" function, which returns the largest integer
not exceeding x. Thus, all quantities are integers. In particular, the
inputs to the transform, XR in], XG [n] and XB [n], are identified with
the level shifted sample values, XQ [n] through X2 in], respectively, which
are B-bit signed integers in the range _2B - 1 to 2B - 1 - 1. After appli­
cation of the transform, the new image components (we use the same
symbols), XQ in] through X2 in], are identified with Xy' [n], XDb in] and

Chapter 10: Sample Data Transformations 423

XDr [nl, respectively. These are again integers. The luminance com­
ponent, Xo [n] = Xy' [nl, is another B-bit signed integer. The colour
difference components, however, are (B + I)-bit integers in the range
1 - 2B to 2B - 1. Implementations must be careful to accommodate
these larger precision integers.
The RCT has similar features to the YCbCr transform described

above. Xy' is approximately a weighted average of the red, green and
blue colour components, with the green channel weighted more heavily
than the others. Again, XDb and XDr are colour difference components.
The advantage of the RCT is that it can be exactly inverted. To see

this, observe that

lXDb [nl ; XDr [n] j = lXR [n] + XBIn]+ 2xc [n] - Xc [n]j

= Xy' [n] - Xc [n]

This allows us to reconstruct Xc [nl and hence xn [n] and XR [n]. Specif­
ically, we have the following relationships

[] [] lXDb [n] + XDr [n]jXc n = Xy' n -
4

XB [n] = XDb [n] + Xc [nl
XR [n] = XDr [n] + Xc [n]

10.3 WAVELET TRANSFORM BASICS
Subband and wavelet transform fundamentals are treated extensively

in Chapters 4 and 6 of this text. The purpose of this section is to provide
a concise, if rather mechanistic description of the two dimensional DWT
(Discrete Wavelet Transform). Here and in the following sections, we
borrow results directly from the earlier chapters. The present treatment
provides no insight into the design of suitable wavelet transforms; how­
ever, Part 1 of the standard offers little flexibility in this regard. The
reader whose primary interest is implementing the standard may find
the material presented here sufficient.

10.3.1 TWO CHANNEL BUILDING BLOCK
The two dimensional DWT is constructed from simple one dimen­

sional building blocks which convert a finite length input sequence, X [n],
into two subband sequences, Yo [n] and Yl [n]. The former is identified as
the low-pass subband and its construction may be understood in terms
of low-pass filtering followed by sub-sampling (discarding every second
sample). Similarly, Yl [n] is identified as the high-pass subband and its

424 Wavelet Transform Basics

x[n] x[n]
A. A

r "'\ r "'\
!

1:·1: I ~ ~I:I ~I 'I I' I I I 1 I I 1 1 I 1

I I I ' !

IYI[n] = y[2n+ 1] I I
YI[n] = y[2n+ 1]

I I II I
I

! !
:.

I
I

I I
!

Yo[n] = y[2n] I I i Yo[n] = y[2n]I I

.Ii i '-! .I
V I I v

I y[n] I i y[n]
i i

n=O £=4 F=13 n=O £=3 F= 12

Figure 10.3. Coordinate relationships between the input sequence, x [71.], the inter­
leaved subband sequence, y [71.], and the individual subband sequences, yo [71.] and
Yl [71.], for sequences with different regions of support.

construction may be understood in terms of high-pass filtering followed
by sub-sampling. Together, the two subband sequences contain the same
number of samples as x [n].
It is convenient to describe the subband transform as a mapping from

x [n] to the single sequence, Y[nJ, which is obtained by interleaving the
low- and high-pass subband samples according to

Y[2n] = Yo [n]
y[2n+1]=Ydn]

Both x [n] and y [n] are defined over the same interval, E ::; n < F,
so that each contains P - E samples. This means that the individual
subband sequences, Yo [n] and YI [n], are defined over the intervals EO ::;
n < pO and E 1 ::; n < pi, respectively, where

(10.5)

More compactly, we have

E b = rE ; b1, pb = rF ; b1, for b = 0, 1

These coordinate relationships are illustrated in Figure 10.3. For odd
length input sequences, the low-pass subband may have more or less
samples than the high-pass subband, depending on the parity of E.

Chapter 10: Sample Data Transformations 425

A few comments are in order concerning these general regions of sup­
port. A useful mnemonic for the notation used here is to regard E as the
"entry" point and F as the "finishing" point for both x [n] and y [n]. In
the simplest case, E = 0 and F is the length of the input sequence. Then,
either both subbands have the same length or the low-pass subband has
one more sample than the high-pass subband. Most wavelet-based im­
age compression algorithms which have been proposed in the literature
have adopted this convention. This is insufficient, however, to realize a
number of important features offered by the JPEG2000 standard. An
important example is efficient cropping of compressed images, which is
discussed further in Section 11.4. The idea of using arbitrary bound­
aries, E and F, to realize such capabilities was inspired by the use of
this method for global motion compensation in [150].
The mapping from x [n] to y [n] is most easily described in terms of

their symmetric extensions, x [n] and y [n]. The symmetric extension of
x [n] is the infinite length sequence, x[n], defined by the following three
relations.

x [n] = x [n], E:S; n < F

x [E - n] = x [E + n], tin E 7L
x[F - 1 - n] = x [F - 1+ n], tin E 7L

Notice that x[n] is identical to x [n] over its region of support and that
x[n] is symmetric about each of the end points, n = E and n = F - 1.
For sequences of length F - E 2:: 2, the symmetric extension algorithm
on Page 298 may be used to progressively construct the unique infinite
length sequence, x [n], which obeys these relations. For sequences of
length 1, these relations fail to define an extension; the behaviour in this
case is described separately for irreversible and reversible transforms in
Sections 10.4.1 and 10.4.2 below.
The relationship between y [n] and its symmetric extension, y [n], is

identical to that between x [n] and x [n]. The forward and reverse sub­
band transforms are defined on the extended sequences by the following
time-varying convolution expressions.

y [n] = L h~mod2 [i] x [n - i]
iEZ

(10.6a)

(1O.6b)x [n] =LY [i] gImod 2 [n - i]
iEZ

where h& [n] and hi [n] denote the low- and high-pass "translated" analy­
sis filter impulse responses and 95 [n] and gi [n] denote the low- and high­
pass "translated" synthesis filter impulse responses. The term "trans­
lated" is used to distinguish these from the analysis and synthesis filters

426 Wavelet Transform Basics

of a conventional filter bank. For simplicity, we shall henceforth refer
to the translated impulse responses as the "wavelet kernels." The re­
lationship between these wavelet kernels and the conventional filters is
given by equation (6.9) although we prefer to work exclusively with the
kernels when describing the standard.
The analysis kernels, hh [n] and hi [n], and the synthesis kernels, 96 [n]

and 9i [n], are odd length sequences, symmetric about n = O. That is,

hb [n] = hb [-n] , 9b [n] = 9b [-n] , for bE {O, 1}

These conditions are discussed extensively in Section 6.1.3. They also
ensure that the subband transform operations described above will pre­
serve the symmetry properties required of x [n] and y [n], as explained
in Section 6.5. While Part 2 of the JPEG2000 standard is also expected
to offer support for even length kernels, these entail a number of subtle
complications. The interested reader is referred to Section 15.6.2 for
more information on this topic.
Obviously the analysis and synthesis kernels are closely connected,

since the subband synthesis operation of equation (10.6b) must invert
the subband analysis operation of equation (10.6a). In fact, the analysis
and synthesis kernels must be connected through equation (6.10), which
we repeat here as

(10.7)

The gain factor, 0:, is given by

(10.8)

where hie and h~yq denote the gains of the relevant analysis filters at
DC and at the Nyquist frequency. Specifically,

n n

With these relationships in hand, it is sufficient to supply only the DWT
analysis kernels, hh [n] and hi [n], to completely define the forward and
reverse mappings between x [n] and y [n].
Following the notation developed in Section 6.1.3, let the low- and

high-pass analysis kernels have lengths 2Lo +1 and 2L1+1, respectively.
Exploiting symmetry, the analysis operation of equation (1O.6a) may be

x[n]
/1:.J 11:5 n:6 11:7

Chapter 10: Sample Data Transformations 427

n=4 n=5 11=6 n 7

11~.J 11-5 n=6 n=7

Forward transformation
Y[I1] n=4 n=5 11=6 n=7

Reverse transformation
y[n]

Figure 10.{ Forward and reverse subband transformations, illustrated for sequences,
x [n], supported on E = 4 ::; n < F = 8, and symmetric filter length parameters
Lo = 2 and L 1 = 1.

rewritten as

L nmod2

if [n] = L h~mod2 [i] x [n + i]
i=-Lnmod2

n+Lnmod2

L x[i] h~mod2 [i - n]
i=n-Lnmod2

(10.9)

In words, if [n] is obtained by shifting (delaying) the relevant analysis
kernel, h& or hi depending on n, so that its region of support is centered
about the location n; we then take the correlation (or dot product) of
this shifted version of the kernel and the extended input sequence, x [n].
Of course, we need only evaluate if in] and hence y [n] over the interval
E :::; n < F. Consequently, the forward transform requires access only
to extended input samples, x [n], in the range E - Lmax :::; n < F +Lmax ,
where Lmax = max{Lo, L1}.2 These forward transform operations are
depicted in Figure 10.4.

2Whilc this range of input samples is sufficient, a slightly smaller range may be possible, as
seen from the example in Figure 10.4.

428 Wavelet Transform Basics

-....--------r+-l"'·~·'F·_· I-----1Ir+

-------------------.y[n]y'[n]

..,

,.'

--- ..r-::o---=-=----_-.-__-_..., 1"1",.------, I D 2-cllonnef .--------,

-+-+'_'t--::o!...-t"='-'F- -------------- - -'I ' - ~~~band x/orm c+-r''T-+--lr-+,.' __ .__________ -"" I ' T-... .'"

_.------- - --- -"" '-
i"'" - __......... ------ .. - .. - ... - ---

•;~.2-cllollllel i~_- -----~~~~~~~~~i"'-=1F-1----:\;r+
l...- --' SlIbbond x/arm

x[n]

Figure 10.5. Two dimensional DWT stage implemented by separable application of
one dimensional subband transforms.

The synthesis operation of equation (1O.6b) may be interpreted as
follows. An array holding xin] is initialized to O. Then, for each i E Z,
we shift the relevant synthesis kernel, 96 in] or 9i in] depending on i, so
that its region of support is centered about the location i, multiplying
the shifted kernel by the value of the coefficient, if [il, and adding the
resulting sequence into the evolving array, x [n]. Of course, only those
samples, x [nl, having E ~ n < F need actually be manipulated. More­
over, these x [n] can be impacted only by those subband samples, if [il,
having E - L max ~ i < F + L max . These reverse transform operations
are depicted in Figure 10.4.

10.3.2 THE 2D DWT
We now describe the construction of a D level two dimensional DWT

from the one dimensional, two channel subband transforms described
above. A single "DWT stage" applies the subband transform separably
to the columns and then the rows of the two dimensional sequence (im­
age component), x [nl, yielding four subbands, Yo,o [n] through YI,1 [n].
Specifically, x [n] == x [nl' n2] is a finite sequence supported over the
region

E I ~ nl < FI , E2 ~ n2 < F2

where nl and n2 denote row and column indices, respectively. Let Y [n]
be the two dimensional sequence of interleaved subband samples, defined
by

Y [2nl + bl , 2n2+ b2] = Yb 1 ,b2 [nl,n2] , for b1,b2 E {O,l}

Then Y [n] has the same region of support as x in] and is obtained by
applying the one dimensional subband transform first to each column of
x [nl and then to each row of the result, as illustrated in Figure 10.5.
Similarly, the reverse transformation from Y [n] back to x [nl is obtained

Chapter 10: Sample Data Transformations 429

by applying the reverse one dimensional transform first to each row of
Y [n] and then to each column of the result.
The description provided above in terms of an interleaved subband

sequence, Y [n], is convenient because Y [n] has exactly the same region
of support as x [n]. However, it is important to bear in mind that there
are actually four distinct subbands. These may be understood as aris­
ing from the two dimensional filter bank illustrated in Figure 4.15. The
subband Yo,o [n] arises from the application of the low-pass analysis ker­
nel in both the horizontal and the vertical direction. Accordingly, we
refer to Yo,o as the LL subband. The subband YO,l [n] involves the ap­
plication of the low-pass analysis kernel in the vertical direction and the
high-pass analysis kernel in the horizontal direction. We refer to this
subband as the HL (horizontally high-pass) subband. The other sub­
bands, Yl,O [n] and Yl,l [n], are identified as LH (vertically high-pass)
and HH, respectively. The characteristics of these four subbands are
studied more carefully in Section 4.2.5. The region of support for any of
these four subbands, Ybl,b2 [n], is given by

Ef ::; nl < Fi' and E~ ::; nz < F~

where the bounds E b = E[bl,b2J and pb = p[b1 ,b2] are obtained by
't-t t-t'

straightforward generalization of equation (10.5) as

(10.10)

A D level DWT is obtained by applying D DWT stages in the manner
illustrated in Figure 10.6. That is, the LL subband produced by a first
DWT stage is subjected to a subsequent DWT stage and so on. The
subbands produced by the efh stage of the transform are labelled Y6~ [n],

(d) [] (d) [(d) . ' .Yo 1 n, YlO n] and Yll [n], or LLd, HLd, LHd and HHd, whIchever IS

m~st conv~nient. Not~ that Y6~ [n] (i.e., LLd) is an intermediate sub­
band for d < D, since it is further decomposed by subsequent DWT
stages. These intermediate subbands are not subjected to quantization
and coding.
The JPEG2000 standard supports values of D in the range 0 ::; D ::;

32. Typical values are in the range D = 4 through D = 8 with D = 5
sufficient to obtain near optimal compression performance for the full
resolution image. If the quantization and coding operations specified by
the standard are to be performed directly on the image sample values,
x [n], the DWT operation may be skipped by setting D = O. This can
be useful when compressing bi-level images or palettized colour images,

430 Wavelet Transform Basics

Fon,oro OWTSto", '1
,"""" OWT tog"

Resolution Ie el ~

rR""" OWTStog, ,

Re olution Ie el ~

Figure 10.6. Three level, two dimensional DWT.

as discussed in Section 16.3. Consequently, it is convenient to regard

the image itself as subband LLo; i.e., y~oJ [n] = x [n]. The region of

support for any particular subband, y~d)b in], may be found by iterative
1, 2

application of equation (10.10) as

(10.11)

10.3.3 RESOLUTIONS AND RESOLUTION
LEVELS

In the inverse transformation, each of the D DWT stages is inverted,
starting from the last DWT stage which was performed during the for­
ward transform. After inverting r DWT stages, the decompressor recov­
ers LLD-r = y~~-r) [n], which is a low-resolution version of the image.,
We refer to LLD-r as the r th resolution of the image, with r = 0 cor­
responding to the lowest available resolution and r = D corresponding
to the original image resolution. The region of support and hence the

Chapter 10: Sample Data Transformations 431

HL1
LH,

HH ,-I-+-+-+-t:+"" ",.,..,~""tm1i"'"

x[n]1/,

0 £: F;

0
"! 1/1

£1
LL1
HL:

1=;_
Figure 10.7. Interleaving of subband samples from a two level DWT.

dimensions of each image resolution, y~~-r) [n], may be found by sub­
stituting b1 = b2 = a into equation (10.1'1).
We refer to the collection of subbands which are required to augment

the image from resolution LLr - 1 to resolution LLr as "resolution level"
Rr. The relationship between DWT stages, subbands and resolution
levels is illustrated in Figure 10.6. Notice that there are always D + 1
distinct resolution levels and that Ro always has only one subband, LLD.
When no DWT is used, the image is available only at one resolution.

10.3.4 THE INTERLEAVED PERSPECTIVE
Recall that the four subbands produced by a single stage of the DWT

may be interleaved into a single sequence, call this yCl) [n]' according to

yCl) [2nl + b1, 2n2 + b2] = y~~:b2 [nl' n2] , for b1, b2 E {a, 1}

where y(l) [n] has the same region of support as x [n]. Since the second

stage of the DWT processes only y~~6 [n], corresponding to the even

indexed elements of y(1) [n], we may interleave the resulting subband
samples into the even indexed elements of the new sequence, y(2) [n],
leaving the remaining elements of y(2) [n] as they were in yCl) [n]. This is
illustrated in Figure 10.7. Clearly, y(2) [n] has the same region of support
as y(1) [n] and hence x [n].
Proceeding in this way, the dth DWT stage may be viewed as process­

ing only those elements of yCd-l) [n] whose indices, nl and n2, are both
divisible by 2d- 1 , producing the new interleaved sequence, yCd) [n]. Each
of the two dimensional interleaved sequences, y(d) [n], has the same re-

432 Wavelet Transform Basics

gion of support as x [n]; i.e., E I :::; nl < FI and E2 :s n2 < F2. Ul­
timately, all of the subbands produced by the D level DWT may be
found in a single interleaved sequence, yCD) [n], with the following index
assignments

yi~:b2 [nl' n2] = yCD) [2dnl + 2d- Ibl , 2dn2 + 2d- I b2] , bl , b2 E {O, I}

The perspective offered by this interleaving of the subband samples is
interesting for two reasons. Firstly, it suggests that every subband sam­
ple occupies a unique position in the original image's region of support.
The reader may verify that the individual subband supports given by
equation (10.11) may be derived directly by restricting the coordinates,
[2dnl +2d- Ibl , 2dn2 +2d- I b2], to lie within the region [EI , FI) x [E2, F2).
The fact that each subband sample conceptually occupies a unique po­
sition on the image grid forms the basis for all of the partitions defined
in Chapter 11.
The interleaved subband perspective also reveals an interesting prop­

erty of the DWT operator defined by JPEG2000. Specifically, let x' [n]
be the horizontal mirror image of x [n] obtained by setting

x' [nl' n2] = x [nl' -n2]

The support bounds for x' [n] and its interleaved subband sequence,
y'CD) [n], are given by

E~ = El, F{ = FI , E~ = - (F2 - 1) , F~ = - (E2 - 1)

Interestingly, y'CD) [n] is itself the horizontal mirror image of yCD) [nJ. To
see this, consider the one dimensional building block which maps x [nJ to
an interleaved subband sequence, y [nJ, through symmetric extension and
subband analysis. The symmetric extension operation clearly commutes
with the mirror imaging operation so that

x' [n] = x [-n]~ x' [nJ = x[-n]

The subband analysis operation of equation (10.6a) also commutes with
mirror imaging, since

if' [n] = Lh;mod2 [i] x' [n - i]
iEZ

= Lh;mod2 [i] x [i - nJ
iEZ

= Lh;mod2 [-iJ x[(-n) - iJ
iEZ

=y[-n]

Chapter 10: Sample Data Transformations 433

where we have used the fact that the wavelet kernels, hb [n] and hi [n], are
symmetric about n = O. The result is easily extended to two dimensions
and multiple DWT levels.
The above analysis obviously applies to the case of vertical mirror im­

ages as well. The fact that taking the mirror image of x [n] is equivalent
to taking the mirror image ofthe interleaved subband sequence, y(D) [n],
greatly facilitates some simple geometric manipulations of JPEG2000
compressed images, as described in Section 11.4.

10.4
10.4.1

WAVELET TRANSFORMS
THE IRREVERSIBLE DWT

Recall that our convention3 for the irreversible path is to normalize
all sample values to a unit nominal range of -! to !. To ensure that the
DWT preserves the nominal range of its input samples, we normalize
the DWT analysis kernels so that

Lo

hgc = L h6[n] = 1,
n=-Lo

L1

h?q = L (-It hUn] = 1
n=-L1

(10.12)

hi (z) =
0.557543526229

0.295635881557 [Zl + z- ll
0.028771763114 z2 + z-2

+ 0.045635881557 z3 + z-3

Zl + z-l
z2 + z-2

z3 + z-3

z4 + z-4

We think of hgc as the "nominal gain" of the low-pass subband filter,
while h~yq is interpreted as the nominal gain of the high-pass filter. By
selecting these nominal gains to be 1, we expect the nominal range of
the subband samples to be preserved. We refer only to a "nominal"
range, however, because unlikely combinations of input sample values
may conspire to produce isolated excursions beyond the nominal bounds.
Although Part 2 of the JPEG2000 standard is expected to support

irreversible transformations with a large class of wavelet kernels, Part 1
supports only the CDF 9/7 kernels. The low- and high-pass analysis
filters have lengths 9 and 7, respectively, and are given approximately
by

hh (z) =
0.602949018236

+ 0.266864118443
0.078223266529
0.016864118443

+ 0.026748757411
(10.13)

3The convention is useful for descriptive purposes. Floating point implementations might
choose to use this convention, while fixed point implementations will work with integers
which represent suitably scaled versions of the samples.

434 Wavelet Transforms

These kernels belong to the first member of the Cohen-Daubechies­
Feauveau family of odd-length linear phase wavelets with maximal reg­
ularity. Example 6.4 provides a derivation of these kernels, including
exact expressions which may be used if the precision of the numerical
approximations above proves insufficient.

Notice that h~yq = h~c = O. In fact, this is a necessary condition if
we insist that the DWT kernels belong to an underlying biorthogonal
wavelet transform. This fact is established in Theorem 6.6 and the
implications of the condition for image compression are discussed in
Section 6.3.3. Substituting into equation (10.8) we see that the gain
factor in equation (10.7) is a = ~. The synthesis kernels, 95 [n] and
9i [n], are then trivially deduced from the analysis kernels. We note,
however, that Part 2 of the standard supports custom wavelet kernels
which need not necessarily satisfy the condition hgyq = h~c = O. Thus,
in this more general setting, a, is not guaranteed to equal ~.

SEQUENCES OF UNIT LENGTH

Recall that the two channel subband transform described in Sec­
tion 10.3.1 is defined only for sequences of length F - E ~ 2. For
sequences of unit length (i.e., F - E = 1), we define the interleaved se­
quence of subband samples, y [n], to be equal to the input sequence, x [n].
That is, y [E] = x [E]. This policy is followed regardless of whether E
is even (y [E] is a low-pass subband sample) or odd (y [E] is a high-pass
subband sample).

LIFTING IMPLEMENTATIONS

The fundamental building block of the irreversible DvVT is the two
channel subband transform described in Section 10.3.1. The analysis and
synthesis procedures embodied by equations (10.6a) and (10.6b) may be
implemented directly. In many cases, however, it may be preferable to
employ the lifting procedure introduced in Section 6.4.1. Example 6.6
describes a lifting implementation of the CDF 9/7 kernels, complete with
lifting step coefficients. The reader is also referred to Section 6.5.3 for a
discussion of the interaction between symmetric extension and lifting.

One reason to prefer a lifting implementation is that lifting is the only
vehicle for implementing reversible transformations in the JPEG2000
standard. A common lifting framework for both the reversible and irre­
versible paths generally simplifies the task of implementing the standard
as a whole. A second reason to prefer lifting implementations is that
they may be designed to require less working memory and fewer arith­
metic computations than a direct implementation of equations (10.6a)

Chapter 10: Sample Data Transformations 435

and (10.6b). These implementation considerations are taken up again in
Chapter 17.

10.4.2 THE REVERSIBLE DWT
The reversible DWT is implemented within exactly the same frame­

work as the irreversible DWT, except that the analysis and synthesis
operations of equations (10.6a) and (1O.6b) are approximated by non­
linear operations which efficiently map integers to integers. Specifically,
we employ the modified lifting procedure developed in Section 6.4.2,
where linear lifting steps are replaced by their non-linear approxima­
tions, in accordance with equation (6.51), and the subband gain factors
are set to 1.
Although Part 2 of the standard is expected to support reversible

transformations with a large class of wavelet kernels, Part 1 defines only
one reversible DWT which is derived from the spline 5/3 transform.
Specifically, the analysis operation is defined by

ih [n] = y [2n + 1] = x[2n + 1] + l~ -~x [2n] - ~x [2n + 2]J (10.14)

~ x[2n + 1] - ~ (x [2n] + x[2n + 2])

Yo [n] = y [2n] = x [2n] + l~ + ~y [2n - 1] + ~y [2n + 1]J

~ x [2n] + ~ (y [2n - 1] +Y[2n + 1])

The above expressions are obtained by direct application of the approx­
imation embodied by equation (6.51) to the spline 5/3 lifting steps of
Example 6.5. Since all quantities are integers, equation (10.14) may
equivalently be expressed as

ydn] = x [2n + 1] -l~ (:r [2n] + x [2n + 2])J
which more clearly reveals the interpretation of the first lifting step as
"predicting" x [2n + 1] from its two neighbours. The synthesis operation
is defined by

x [2n] = y [2n] -l~ + ~y [2n - 1] + ~y [2n + 1]J

x[2n + 1] = Y[2n + 1] -l~ -~x [2n] - ~x [2n + 2]J

= Y[2n + 1] + l~ (x [2n] + x[2n + 2])J

(10.15)

436 Quantization and Ranging

The lifting steps described above are close approximations of the linear
lifting steps which implement the spline 5/3 transform as in Example 6.5,
except that the subband gain factors are all set to 1. The reader may
verify that the corresponding linear analysis kernels are

hb (z) = ho(z) = -tz-2 + ~z-l + ~ + ~z - tz2
hi (z) = z-lh1 (z) = _!z-l + 1 - !z

having nominal gains of

h3C = 1, h?q = 2 (10.16)

As noted in Section 10.1.1, preservation of nominal range is of inter­
est only in the irreversible path, while the important feature of the re­
versible path is that it should map integers to integers. Nevertheless,
the nominal gains may be used to guide ranging decisions, as discussed
in Section 10.5.

SEQUENCES OF UNIT LENGTH
As in the irreversible case, sequences of unit length (i.e., when F - E =

1) are treated differently. If E is even, so that y [n] is a low-pass subband
sample, we simply set y [n] = x [n]. If E is odd, meaning that y [n]
is a high-pass subband sample, we set y [n] = 2x [n]. Note that this
procedure is consistent with the nominal gains of the low- and high-pass
analysis kernels, as indicated by equation (10.16).

10.5 QUANTIZATION AND RANGING
Although this section is written to be as self-contained as possible,

the reader is strongly encouraged to review the principles of Embedded
Block Coding with Optimal Truncation (EBCOT) and bit-plane coding,
as expounded in Sections 8.1.3, and 8.3.1.
In the irreversible path, quantization is the process by which subband

samples are mapped to quantization indices for coding. Since non-trivial
quantization is inherently irreversible, the reversible path contains no
quantization. However, both the reversible and irreversible paths must
provide the block coder with consistent interpretations for the absolute
range of the integers which are to be coded; we call this "ranging." In
the irreversible path, ranging is connected to the choice of quantization
parameters. In the reversible path, ranging may be understood as a
separate task, as indicated in Figure 10.1.

10.5.1 IRREVERSIBLE PROCESSING
Part 1 of the JPEG2000 standard requires that subband samples be

subjected to deadzone scalar quantization, as described in Section 3.2.7.

Chapter 10: Sample Data Transformations 437

The central quantization interval (i.e., the deadzone) is twice as wide
as the other quantization intervals and the quantization operation is
defined by the step size parameter, L::.b' through

qdn] = sign (Yb [n]) lIY~~J1 J (10.17)

(10.19)

Here, Yb [n] denotes the samples of subband b, with a unit nominal range
of -! to !' while qb [n] denotes their quantization indices. A separate
step size, L::.b' may be selected for each subband. Since the block coder
is best described as operating on a sign magnitude representation of the
quantization indices, it is convenient to introduce the notation Xb [n] E
{-I, I} for sign (Yb [n]) and Vb [n] for Iqb [nJi. Then equation (10.17)
becomes

(10.18)

The step size for each subband is specified in terms of an exponent,
cb, and a mantissa, /-Lb, where

L::. = 2-C:b (1 +~)
b 211

Both Cb and /-Lb are non-negative integers with the following numerical
ranges,

(10.20)

RANGING

It is important for the encoder and decoder to agree on the number
of bits which will be sufficient to represent the quantization index mag­
nitudes, Vb [n], in each subband, b. vVe denote this quantity Kl:lax and
will see exactly how it is used in Chapter 12.
To allow for the fact that subband sample values may occasionally

violate our nominal range bounds, we introduce a parameter, G, and
insist that all subband samples conform to the less restrictive bounds

_2G- 1 < Yb [n] < 2G- 1, Vb (10.21)

The integer, G, is interpreted as the number of "guard bits." It is
explicitly identified through code-stream markers, QCD and QCC, and
may take values in the range 0 through 7. A value of 0 means that
Yb [n] E (-!,!) so that our nominal range bounds are never violated;
this is rarely sufficient. A more typical value is G = 1, and indeed this
value is sufficient to avoid violation of equation (10.21) when the CDF
9/7 wavelet kernels are used. For a proof that G need not exceed 1,

438 Quantization and Ranging

the reader is referred to Table 17.5 and the surrounding discussion in
Section 17.3.3.
Combining equations (10.19) and (10.21), we see that the index mag­

nitudes must satisfy

Accordingly, the number of magnitude bit-planes for subband b is defined
to be

Kr:ax ~ max {O,cb +G -I} (10.22)

TYPICAL STEP SIZES
The verification model which was developed in conjunction with the

JPEG2000 standard selects quantization step sizes in the following man­
ner. Let Gb denote the squared norm of the DWT synthesis basis vectors
for subband b. This quantity represents the energy (sum of squared sam­
ple values) in an image reconstructed from exactly one unit amplitude
sample in subband b (i.e., setting all other samples in subband b and all
samples in all other subbands to 0). Gb is thus an energy gain factor.
It is identical for all samples in subband bwhich are located sufficiently
far from the image boundaries to not be affected by the symmetric ex­
tension procedure. As explained in Chapter 5, the optima14 strategy is
to select quantization step sizes according to

(10.23)

where ~ is a "base step size" parameter, which may be adjusted to
achieve a desired overall compressed bit-rate or level of distortion.
The reader should note that the EBCOT (Embedded Block Coding

with Optimal Truncation) paradigm employed by JPEG2000 allows for
truncation of the embedded bit-streams representing each code-block.
This paradigm was introduced in Section 8.1.3 and forms the motivation
for the block coding mechanisms which are described in Chapter 12. As
a result, the effective step size associated with any particular sample,
Yi [j], within code-block Bi, may be written

(10.24)

1This result depends upon a variety of assumptions concerning the rate-distortion behaviour
of the quantizers in each subband and the independence of the quantization errors. Also, the
optimality criterion here is the MSE (Mean Squared Error) associated with the recolIstructed
image.

Chapter 10: Sample Data Transformations 439

where bi is the index of the subband which contains code-block Hi and
Pi [j] is the number of least significant bits which have been discarded
from the quantization index magnitude, Vi [j], as a result of truncating
the code-block's embedded representation. These concepts are explained
in Sections 3.2.7 and 8.3.1.
Since quantization may be effectively controlled by block truncation,

the selection of an appropriate step size, .0.b, is less critical than one
might imagine. The selection identified by equation (10.23) has the
property that optimal code-block truncation is likely to discard a similar
number of coding passes from every code-block. For distortion measures
other than reconstructed image MSE, however, this is less likely to be
the case.
The JPEG2000 code-stream syntax provides an abbreviated signalling

method for the step size parameters, Cb and /-lb, which is based upon
equation (10.23) together with the approximation

(10.25)

where db denotes the DWT level index for subband b. Thus, if b is the
subband HLz in Figure 10.6, then db = 2. In general, db is the number
of two dimensional DWT stages involved in the generation of subband
b. When using the abbreviated signalling method, code-stream markers
QCD and QCC supply explicit step size parameters only for the lowest
frequency subband, LLD . The quantization parameters for an arbitrary
subband, b, are then given by

Cb = cLLD + (db - D) , /-lb = /-lLLD (10.26)

The approximation of equation (10.25) is quite accurate for nearly
orthogonal transforms such as the CDF 9/7 transform. To see this, note
firstly that an orthonormal transform (one in which Gb = 1 for all b)
must satisfy the power complementary property of equation (6.5). As­
suming a Nyquist gain of 0 for the low-pass wavelet kernel, hb' this yields
hgc = J2. Similarly, an orthonormal transform must have h~yq = J2.
In our case, the wavelet kernels are normalized for unit nominal gain (see
equation (10.12)) so that hgc = h?q = 1. Thus, the one dimensional
wavelet analysis kernels are smaller than those of an orthonormal trans­
form by a factor J2 and the synthesis kernels are larger by the same
factor. Equation (10.25) follows from the fact that each two dimensional
DWT stage involves two one dimensional transforms and hence a scaling
factor of 2 in amplitude (4 in energy) relative to the orthonormal case.

440 Quantization and Ranging

DEQUANTIZATION
Suppose subband sample y has been assigned a quantization index,

q = X . v. The dequantization operation consists in assigning a recon­
struction value, fl, which lies somewhere in the corresponding quanti­
zation interval, I q . In the case of deadzone scalar quantization, the
reconstruction procedure is expressed in equation (3.35), which we write
as

(10.27)

Here, 8b,v = ~ corresponds to mid-point reconstruction.
A JPEG2000 decompressor is at liberty to select any value for 8b,v

in the interval [0,1). Normally, the selected value will depend at most
upon the relevant subband, b, and the quantization index magnitude,
Vb [n]. Ideally, 8b,v is chosen so that fl is the statistical centroid of I q ;

however, the decompressor does not usually have access to the underlying
statistics for each subband. Many decompressors are expected to adopt
the mid-point reconstruction rule, setting 8b,v = !. This is a safe choice
since the compressor is most likely to base its code-block truncation
policy upon this assumption (see Section 8.3.5). Experience indicates
that some small improvements can be obtained by selecting a slightly
smaller value (e.g., Db,v = i) when V is small, especially for the higher
frequency subbands.
The procedure described above is appropriate only when the original

quantization indices are available at the decoder. It frequently happens
that the embedded bit-streams corresponding to individual code-blocks
are truncated prior to decoding. Following the notation developed above,
let Pi [j] denote the number of least significant bits of the index magni­
tude, Vi [j], which were not decoded due to truncation of the embedded
bit-stream representing code-block Bi . Then the effective quantization
step size, ~i [j], is given by equation (10.24) and the decoder should
employ the modified reconstruction rule

11i UI = { Xi UI (l~j +8) ~djl

= { Xi [j] (Vi [j] ~ 2PiUJ8) ~bi

if vdj] = a
if vdj] # 0

ifvdj] = a
if vdj] # a (10.28)

Here, Vi [j] is the decoder's version of Vi [j], obtained by setting the Pi [j]
undecoded LSBs to O. Similarly, Xi [j] is the decoder's version of Xi [j],
the two being identical except possibly for samples whose decoded mag­
nitude is Vi [j] = O.

Chapter 10: Sample Data Transformations 441

10.5.2 REVERSIBLE PROCESSING
RANGING

In the reversible path, the quantization indices supplied to the block
coder are identical to the integer subband samples; i.e., qb [n] = Yb [n].
A nominal range for these integer sample values may be determined
from the original sample bit-depth, B, and the nominal gains of the
linearized wavelet analysis kernels, as given by equation (10.16). As in
the irreversible case, we add G extra guard bits to accommodate isolated
excursions beyond these nominal range bounds.
With a suitable choice of G, all of the subband samples satisfy

_2B -l+Xb+C < Yb [n] < 2B -l+Xb+C (10.29)

where X b is an extra term to account for the fact that the nominal gains
of the linearized analysis kernels are not both equal to 1; specifically,

XLLd = 0, XLHd = XHLd = 1, and XHH d = 2, Vd

A sufficient number of bits to represent the sample magnitudes, Vb [n],
of subband b is thus

(10.30)

As discussed above for the irreversible case, a typical value for G is G = 1
or, more conservatively, G = 2. Worst case bit-depth expansion in the
reversible processing path is analyzed more carefully in Section 17.3.2.
In particular, the entries in Table 17.4 identify lower bounds for the value
of Xb + G. These results indicate that G = 2 guard bits are required to
be guaranteed that equation (10.29) will not be violated.
The JPEG2000 standard defines Kr:ax in terms of parameters G and

Cb, using exactly the same expression (Le., equation (10.22)) as that used
for the irreversible path. In this way, the block coder sees a consistent
set of parameters whose interpretation does not depend upon whether
the sample transformations are reversible or irreversible. In the irre­
versible case, Cb is the quantization step size exponent. In the reversible
case, however, Cb is interpreted as a "ranging" parameter and it is the
encoder's responsibility to set Cb in such a way as to ensure that suffi­
cient bits are available to represent each subband's sample magnitudes.
Comparing equations (10.22) and (10.30), it is clear that a reasonable
policy for the encoder is to set

(10.31)

Note, however, that only the sum, cb+G, ultimately has any effect upon
the value of Kr:ax yielded by equation (10.22).

442 ROJ Adjustments

Before concluding our discussion of ranging, it is worth considering
the impact of the reversible colour transform (RCT) on the selection of
suitable ranging parameters, Cb. As discussed in Section 10.2.2, when the
first three image components are subjected to the RCT their original bit­
depths must be identical; i.e., Bo = B I = B2 = B. After application of
the RCT, the luminance component, Xo [n], again has bit-depth B, while
the two colour difference components, Xl [n] and X2 [n], have bit-depths
B + 1. This suggests that the compressor should replace B by B + 1 in
equation (10.31) when determining suitable ranging parameters for the
chrominance components. Ultimately, though, the compressor is free to
select the parameters, cb and G, in any manner which accommodates
the range of subband samples encountered in the application at hand.

DEQUANTIZATION
Although the reversible path involves no explicit quantization, the

embedded bit-streams corresponding to individual code-blocks may be
truncated prior to decoding and this is equivalent to quantization. As ex­
plained for the irreversible path, truncation of the embedded bit-stream
representing code-block Hi causes the decoder to receive modified sample
magnitudes, Vi [j], which agree with Vi [j] on all but the least significant
Pi [j] bits (these Pi [j] undecoded LSBs are all taken to be 0). Subband
sample Yi [j] is thus effectively subjected to deadzone scalar quantization
with a step size of ~i [j] = 2pdj1 .
Following equation (10.28), we see that the decompressor should re­

construct Yi [j] as

'[.] { 0 if vdj] = 0
Yi J = xdj] (vdj] + l2PiUJ <5J) if vdj] =f 0

where the decoded sign, Xi [j], may not agree with Xi [j] at samples whose
decoded magnitude is Vi [j] = O. The floor function, l J, is introduced
around the term, 2PiUJ 8, to ensure that the reconstructed values are
integers. This is important because the reversible path works only with
integers. As in the irreversible case, a mid-point reconstruction policy
is recommended, with <5 = ~'

10.6 ROJ ADJUSTMENTS
JPEG2000 provides mechanisms whereby the compressor may assign

higher priority to certain regions of the image. This is known as "region
of interest encoding," or simply ROt The EBCOT paradigm described
in Section 8.1.3 provides a crude RaJ capability, since code-block con­
tributions may be sequenced into the code-stream in a manner which
effectively elevates the priority of certain spatial regions. The standard

Chapter 10: Sample Data Transformations 443

provides a second mechanism which allows the compressor to adjust the
priority of an arbitrary set of subband samples, irrespective of code-block
boundaries. This mechanism allows ROI capabilities to be realized over
small regions with arbitrary shape. Unlike the crude method based on
code-blocks, however, this fine-grain ROI capability requires modifica­
tions to the sample data transformation pipeline. As such, the prior­
itization cannot later be adjusted simply by re-sequencing code-block
contributions.

10.6.1 PRIORITIZATION BY SCALING
The fine-grain ROI capability offered by JPEG2000 is realized by scal­

ing the more important subband samples by 2u for some non-negative
integer, U. More precisely, the quantization indices of the more impor­
tant subband samples are "up-shifted" by U before subjecting them to
the block coder. Of course, the decoder must reverse this scaling oper­
ation and so it must also have a means for determining which samples
have been scaled.
To see how scaling can introduce a prioritization of the subband sam­

ples, recall that the block coder produces an embedded bit-stream for
each code-block, Bi , and that the decoder generally receives a truncated
version of this embedded bit-stream. Following previously established
notation, let Pi [j] denote the number of least significant bits which are
missing from the quantization index for subband sample Yi [j], due to
truncation of the bit-stream representing code-block Bi . The effective
quantization step size for subband sample Yi [j] is then 2PiU]~bi (see
equation (10.24)). To allow for ROI adjustments, let Ui [j] denote the
up-shift for sample Yi [j], so that the block coder processes the shifted
index magnitudes,

'Vdj] = 2Ui [j] . vdj]

Let Pi [j] denote the number of least significant bits which are missing
from the shifted index magnitudes due to truncation of the bit-stream for
code-block Bi . The decompressor reconstructs Vi [j] from 'Vi [j] according
to

after which the number of missing magnitude LSBs is

and the effective quantization step size is

444 ROJ Adjustments

x,[j]
~ -~ • t\ ~.~ "l

~VI[j] ""\-+-- f-f:>
v7[j]C;:

~f:>-
v,'[j]C;: t/\
v,~[j]C::; -+-- T J 't.

~ .l. D

vi[j]~ 'lit. II "lit.. J \ r-t::>
v,2[j)<::

~

v,' [j)<::
::>

v~[j]<::

V,Ii) 2

p,[j]

o
3

2 o
3

2 2 2

Figure 10.8. Effect of ROI scaling on the number of magnitude bit-planes available
when a code-block bit-stream is truncated. Light shading identifies the magnitude bits
remaining after truncation. Medium shading is used to identify leading zeros in the
quantized sample magnitudes. Note that the scaling factor used here is incompatible
with the max-shift method described later in Section 10.6.2.

If the code-block bit-stream is not truncated, Pi [j] = 0, V'j and all
subband samples in the block have exactly the same effective step size,
~bi. Whenever Pi [j] > 0, though, the effective quantization step size
is smaller for the more important samples (i.e., those with larger Ui [j]).
Figure 10.8 illustrates the impact of the up-shift, Ui [j], on the number
of magnitude bits which are completely decoded for any given sample
when the code-black's bit-stream is truncated. The simple depiction in
this figure belies the fact that bit-planes are actually coded in multiple
passes following a data-dependent scanning pattern. Also, the figure
depicts only the case in which the block bit-stream is truncated at a bit­
plane end-point so that all samples in the block have the same number
of discarded LSBs, namely Pi [j] = 3. More generally, the Pi [j] may
differ by 1 from sample to sample within the block.
Although not obvious from Figure 10.8, the block coder treats all

subband samples in the same way, irrespective of their up-shifts. The
most significant magnitude bits of those samples which are not shifted
are coded as zero, while the least significant Ui [j] bits of sample Yi [j] are
also coded as zero. If the encoder and decoder were both aware of the

Chapter 10: Sample Data Transformations 445

up-shift factors, these redundant zero magnitude bits could be skipped,
improving coding efficiency at the expense of increased complexity.
In JPEG2000, code-blocks may be truncated for one of a variety of

reasons, all of which expose the prioritization introduced by up-shifts,
Ui [j]. Even in a single layer code-stream, the code-block bit-streams
are typically truncated as a means of controlling the overall compressed
bit-rate. When multiple quality layers are used to create a quality pro­
gressive code-stream, the lower quality layers generally contain heav­
ily truncated code-block representations; in these layers, we expect the
decompressor to recover non-zero quantization indices only from those
samples which have large up-shift factors, Ui [j]. As the number of re­
ceived quality layers increases, we expect the decompressed image to
resolve details first in those spatial regions which correspond to samples
with large up-shift factors. In the case of an image which is compressed
losslessly using the reversible path, the decompressor eventually receives
all quality layers, containing non-truncated representations of all code­
blocks.

10.6.2 THE MAX-SHIFT METHOD
While Part 2 of the JPEG2000 standard is expected to support the

specification of arbitrary up-shift factors with explicit region identifica­
tion, Part 1 of the standard supports only a specific instance of the ROI
scaling concept, known as the "max-shift" method. Let Fb denote the
set of more important (or "foreground") samples for subband b. In the
max-shift method, each sample in Fb has the same up-shift, U, while
the background samples have zero up-shift. Moreover, U is selected to
be sufficiently large that the foreground and background samples can
be distinguished based upon the decoded quantization indices alone. To
guarantee this, the compressor should select

U > max Kmax
- b b (10.32)

where Kbax is the number of bits used to represent quantization index
magnitudes, Vb [n], for subband b. Its value is given by equation (10.22).
The single value, U, is signalled in the code-stream marker segment,

RGN. The compressor implements

*Vb [n] = 2
Ub

[n] . Vb [n] = { 2UV~ l:ln] ~~::~:

The decompressor then implements

U [I {*Vb[n] if *Vb [n] < 2U
Vb[n] =2- b

n ·*Vb[n] = _ f-
2 U. vb[n] if *Vb [n] 2:: 2U

446 ROJ Adjustments

and

In this way, the decompressor implicitly recovers the foreground mem­
bership of every subband sample with a non-zero quantization index.
This works because background samples have

while non-zero foreground samples have ~b [n] ~ 2u. There is no need
to determine whether a zero-valued sample belongs to the foreground or
the background.
The advantage of the max-shift method is that there is no need to

send any side information to identify the locations of the foreground
samples. An obvious disadvantage, however, is that U must be so large
that the foreground quantization indices are entirely decoded before any
information is recovered for the background quantization indices. This
behaviour is explored further in Section 16.2; there we also discuss an
"implicit" ROI encoding strategy, which adjusts the relative contribu­
tions of different code-blocks instead of shifting individual samples.

10.6.3 IMPACT ON CODING
When U i= 0, the block coder processes the modified index magni­

tudes, ~b [nl, instead of Vb [n]. The number of magnitude bit-planes for
subband b is then

f-

K bax == K bax + U
= U +max {O,cb + G - I} (10.33)

This number may be quite large (e.g., 2: 30 bits) and may well exceed
the bit-depth available to the decoder for representing decoded index
magnitudes, ~b [n]. In this event, it is expected that the decoder will
process as many of the most significant bits of ~b [n] as possible, with
any remaining bit positions implicitly set to 0. Thus, the code-block
bit-streams may be effectively truncated due to limitations in the pre­
cision to which the decoder is able to represent quantization indices. In
fact, this may happen even in the absence of any up-shift factors if the
quantization/ranging parameter, Cb, is too large. In the extreme case,
the decoder may only be able to process the most significant U magni­
tude bit-planes and all of the background will be set to 0. Section 18.3.2

Chapter 10: Sample Data Transformations 447

describes exactly what is expected of a compliant JPEG2000 decoder in
regard to ROI processing.
As explained in Section 13.3.10, U may be as large as 255. However,

the largest value of any practical interest is 37. To see this, note that
the code-stream syntax restricts the number of guard bits to G ::; 7 and
Cb to the range given in equation (10.19). This means that Kbax cannot
exceed 37, so that equation (10.32) can always be satisfied by some
value of U ::; 37. Compressors are strongly encouraged to adhere to this
limit, which is likely to be enforced in all of the restricted code-stream
profiles, as suggested by Table 18.1. The limit ensures that the number
of coding passes in any given code-block can always be represented using
an 8-bit number. Other quantities of interest to the decoder can also be
comfortably represented using 8-bit numbers when U obeys this limit.

10.6.4 REGION MAPPING
The JPEG2000 standard imposes no restrictions on the way in which

the compressor determines which subband samples to include in the fore­
ground sets, Fb. However, it is expected that the capability will be used
to elevate the importance of specific spatial regions in the image. In this
section, we briefly show how the compressor may determine the subband
foreground sets, Fb , from an image foreground set, F. The assumption is
that the image samples, x [n], for which n E F, are of high priority and
all subband samples which are involved in their reconstruction should
belong to the respective foreground sets, Fb.
To determine the subband samples which are involved in the recon­

struction of the foreground region, F, the compressor must conceptually
trace each location in F back through the DWT reconstruction process
employed by the decompressor. This task is considerably simplified by
the structure of the DWT. As illustrated in Figure 10.6, the DWT is in­
verted in stages, where stage d reconstructs LLd-1 from subbands LLd'
HLd, LHd and HHd. Thus, starting from the final stage of the reconstruc­
tion, we 'can first determine the foreground sets, FLLI through FHHl'

representing samples from subbands LL1 through HH1 which contribute
to the reconstruction of samples in FLLo = F. Repeating the procedure
for d = 2,3, ... ,D, we may progressively determine the foreground sets,
FLLd through FHHd' representing subband samples which contribute to
the reconstruction of the samples in FLLd _ 1 .

Evidently, it is sufficient to solve the foreground mapping problem
for a single DWT stage. The problem is further simplified by observing
that the DWT stage is itself a separable operator, constructed from
the one dimensional building blocks described in Section 10.3.1. From
Figure 10.5 we see that our first task is to identify the foreground samples

448 ROJ Adjustments

in y' [nl, which contribute to the reconstruction offoreground samples in
x [n]. This reduces to a one dimensional foreground mapping problem,
conducted within each image column. The second task is to deduce the
foreground samples in y [nl, which contribute to the foreground samples
just identified for the intermediate sequence, y' [n]. Again, this reduces
to a one dimensional foreground mapping problem, conducted within
each row.
In this way, the foreground mapping problem reduces to a one di­

mensional problem in which we wish to determine the foreground sets,
Fo and F1 , containing the indices, n, of the low- and high-pass subband
samples, Yo [n] and Y1 [n], which contribute to the reconstruction of those
samples, x [n], for which n E F. It is clear from Figure 10.4 that

Fb = { n E [Eb,Fb) I (2n + b) + kEF, for at least one IkI :s L1- b}

Thus, Fb may be viewed as the result of a one dimensional morphological
dilation of the set F, followed by sub-sampling. Using the language of
mathematical morphology, we may write

where £0 and £1 are the so-called "structuring sets,"

Lb={nllnJ:SL1-d, forbE{O,l}

Chapter 11

SAMPLE DATA PARTITIONS

In Section 10.3.4 we showed how every subband sample may be asso­
ciated with a unique location in the original image. JPEG2000 defines a
variety of partitions and uses this association to map the partitions from
the image domain into each of its subbands. These partitions define the
scope within which the sample data transformations of Chapter 10 and
the block coding operations of Chapter 12 are to be performed.

When multiple image components (usually colour components) are
involved, each component may have different dimensions. JPEG2000
describes these different components using a single reference grid, which
we term the "canvas." Each sample in each subband of each image
component has a notional location on the canvas. This allows partitions
to be defined on the canvas and mapped into every subband of every
image component using a consistent set of region mapping rules.

The purpose of this chapter is to describe the various partitions which
are defined by JPEG2000 and to explain the region mapping rules. To­
gether, we refer to these partitions and mapping rules as the "canvas
coordinate system." The system serves to provide an organizational
structure for the sample data which is transformed and coded. Although
any number of organizational structures may be conceived (and many
were considered during the development of the standard), the canvas co­
ordinate system has unique properties which facilitate spatial manipula­
tion of compressed images. We allude to these properties at appropriate
points in the ensuing description, while Section 11.4 describes some of
the relevant manipulations in more detail.

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

450 Components on the Canvas

o

••••.A

•••••.A .A .A ••

0 0 0 0.... 0 0 0 0 0
..... 0 0 0 0 0
-. 0 0 0 0 0

Et = 1-.

F; = 3-.
Component c= J

F;< =4-.
Component c=o
E~=I Ft=5.. .

Canvas

-.. •0 A0 III []AEI III

0 0 0 0 0 0 0

A A A A A
0 0 G EJ [I 0 El

0 0 0 ,I 0 0 0
-.A A A A AF; = II

o

Figure 11.1. Notional placement of component samples on the canvas. Shading iden­
tifies the image region. Sub-sampling factors are Sr = 3 and sg = 2 for component
c = 0 and si = 5 and si = 3 for component c = 1.

11.1 COMPONENTS ON THE CANVAS
We use the notation Xc [n] == Xc [nI, n2] for the samples of image com­

ponent c, where 0 ::; c < C and C is the total number of image com­
ponents. Associated with each image component, C, are vertical and
horizontal sub-sampling (or spacing) factors, Sl and S2' These factors
describe the notional location of each component sample on the canvas.
Specifically, component sample Xc [nI' n2] is associated with the canvas
location [nISL n2S2]' This relationship is indicated in Figure 11.1.
All image components are bounded by the same region of support on

the canvas. This so-called "image region" is defined by

or, equivalently,
n E [EI,Fr) x [E2,F2)

The region bounds are all non-negative integers, which appear in the
global code-stream marker, BIZ. The image region may be mapped into
the domain of any given image component, c, by asserting that

whence we deduce the component's region bounds as

i = 1,2 (11.1)

Chapter 11: Sample Data Partitions 451

The reader is invited to verify these relationships for the particular ex­
ample illustrated in Figure 11.1.
As expected, the height, Ff- E1, of image component c is roughly

proportional to the reciprocal of its vertical spacing factor, Sl' How­
ever, the exact height of each image component also depends upon the
alignment of the upper and lower region bounds. Similar considerations
apply in the horizontal direction. JPEG2000 supports component sub­
sampling factors in the range 1 through 255. For small images, then,
virtually any collection of component dimensions may be supported by
appropriate selection of the sub-sampling factors and the canvas para­
meters. In most cases, however, the component sample spacings will be
related by simple factors such as 1, 2 or 4.
As we shall see, it is possible to efficiently crop a JPEG2000 com­

pressed image at any of its four boundaries. When this happens, any
or all of the individual image components' dimensions may be affected.
For example, if we crop the left hand column from the image region in
Figure 11.1, E2 becomes 4. From equation (11.1) or by inspection of
the figure, E2lc=o retains its value of 2, while E21c=1 changes from 1 to
2. Thus, only component c = 1 is actually cropped. Since none of the
sub-sampling factors need be 1, it can happen that cropping the image
region on the canvas has no impact whatsoever on any image component.
Before closing this section, it is worth noting that the notional align­

ment of image component samples on the canvas need not necessar­
ily reflect the physical sampling geometry of a multi-component image.
If possible, applications are recommended to select canvas parameters
which do accurately reflect the physical sampling geometry, since then
spatial manipulations such as cropping are guaranteed to have a direct
physical interpretation. When this is not possible, additional alignment
information may be recorded in the code-stream marker segment eRG
(Component Registration). However, applications are at liberty to ig­
nore this informative marker segment.

11.2 TILES ON THE CANVAS
JPEG2000 allows an image to be divided into smaller rectangular re­

gions known as "tiles," each of which is treated as a small independent
image for the purpose of compression. Moreover, the parameters which
control sample transformations and other aspects of the compression sys­
tem may adjusted on a tile-by-tile basis. One possible application of tiles
is in compressing so-called "compound documents." These are images
which may contain text, graphics and photographic material in different
regions. A tile which contains text or graphics might be quantized and
coded directly, without any wavelet transform at all (see Section 16.3),

452 Tiles on the Canvas

while tiles containing photographic content are best compressed using a
DWT with 5 or more levels.
Tiling is also an obvious mechanism for supporting region-of-interest

access into the compressed image, since the decompressor need only have
access to those tiles which overlap with its region of interest. Finally,
tiling provides a simple mechanism for controlling the amount of working
memory used to compress or decompress a large image.
Despite these attractions, the very fact that each tile is compressed

independently introduces the possibility that the tile boundaries will be
visible in the reconstructed image. This is a fundamental weakness of
the JPEG compression algorithm, whose 8 x 8 blocks are effectively small
tiles. The annoying appearance of block boundaries at moderate to high
compression ratios is evidenced by Figure 4.30.
Fortunately, with JPEG2000 most applications need not resort to

the use of tiling in order to bound implementation resources or sup­
port region-of-interest access. This is because these features are also
supported by the EBCOT paradigm, whereby small blocks of subband
samples are coded independently. We shall have more to say concerning
such matters in Chapters 16 and 17.

11.2.1 THE TILE PARTITION
The tile partition is defined on the canvas through four non-negative

integer parameters, TI , T2, Of and or, which appear in the global
code-stream marker, BIZ. They induce a partition which is anchored
at [Of, On (read "Omega" as "origin," with the super-script "T" for
"tiling"), with elements of size TI x T2, as illustrated in Figure 11.2. We
identify individual tiles by a pair of indices, [tl' t2J == t, where

Here, N[and Ni denote the number of tile rows and tile columns, re­
spectively, which are required to cover the image area. The tile partition
spans the region

which covers the image region, [EI,FI) x [E2,F2), so long as

o~ Of ~ EI and 0 ~ Or ~ E2

For efficiency of representation, the JPEG2000 standard requires not
only that the tiles cover the image region, but also that every tile has

o E2

Chapter 11: Sample Data Partitions 453

F.I

--+ -+

[0,0] [0,1] [0,2] [0,3] [0,4] [0,5]

(1,0] [1,1] [1,2] [1.3] [1,4] [1,5]

[2,0] [2,1] [2,2] [2,3] r.f [2,4] [2,5]

+-T2 - ~
[3,0] [3,1] [3,2] [3,3] [3,4] [3,5]

[4,0] [4,1] [4,2] [4,3] [4,4] [4,5]-
Figure 11.2. Tile partition on the canvas. Dark shading identifies the image region.

a non-empty intersection with the image region on the canvas. Thus,
the canvas parameters must satisfy

o::; E1 - Or < T1 and 0 ::; E2 - oi < T2

There are thus Nl x Ni tiles which intersect with the image region.
Interestingly, it can happen that some of these tiles are empty, in the
sense that they contain no samples from any image component (see the
discussion of Figure 11.3 in Section 11.2.2). Whether it is empty or not,
each tile is assigned a unique identifier,

(11.2)

which must appear within each of the tile's SOT (Start of Tile-Part)
marker segments, as explained in Section 13.3.
In many cases, the tile anchor point, [Or,ni], and the upper left

hand corner of the image region, [E1 , E2], will both lie at the origin of
the canvas coordinate system, [0,0]. The reader may wonder why the
standard supports non-zero coordinates for both [oLOi] and [E1 ,E2]'
To understand the need for this degree of generality, suppose that a
compressed image has its tile partition anchored at Or = ni = 0 and
consider the problem of cropping the first row of tiles from the image.
Since tiles are compressed independently, this should involve relatively
minor modifications to the compressed code-stream.
The image region is modified by setting EI to TI. To ensure that all

tiles intersect with the image region, we must also add T1 to nr. One

454 Tiles on the Canvas

III 1"- 1111 "- III

£
I-I -

1£ IA £ £ AV
----i~

I'l
!"- IA t.& .& '... -J

Tile partition

Image region

Component 0
sample

Component I
sample

~ I'" 111 1"- 111

LJ

A& 1.& ..

A & 1&

Figure 11.3. Weird tilings of a two component image. Shading identifies the image
region.

might then argue that TI could be subtracted from all vertical canvas
coordinates, Dr, E I and FI , to restore the tile anchor point to the origin.
However, this would alter the alignment of the image region on the
canvas. Amongst other devastating effects, the alignment shift could
alter the number of samples in each image component as determined by
equation (11.1). Thus, operations as simple as cropping tiles away from
an image cannot be supported if either [Dr,Di'] or [EI , E2] is forced to
coincide with the canvas origin.

11.2.2 TILE-COMPONENTS AND REGIONS
The tile at location t occupies a region, [Ef, Fj) x [E~, Fi), on the

canvas, with region bounds given by

This region may be mapped into each image component by treating it
as an image region and applying equation (11.1). The bounds for tile t
in image component c (we call this a "tile-component") may then be
expressed as

Ft,e = fFitl i = 1,2
t se'

t

(11.4)

It is easy to see from these expressions that the tile-components consti­
tute a partition of each component. Interestingly, though, this partition
need not be regular. Figure 11.3 provides two extreme examples of this
phenomenon for the two component image of Figure 11.1. In the ex­
ample on the left of the figure, the nominal tile height of 3 is less than
the vertical sub-sampling factor, Sf = 5, for component 1. As a result,

Chapter 11: Sample Data Partitions 455

that component does not contribute to every tile. In the example on
the right of the figure, each of the 2 x 2 tiles contains a sample from
either both components, one component or no components at all. This
is in spite of the fact that all tiles have a non-empty intersection with the
image region on the canvas. The reader is reminded that even those tiles
which contain no samples from any image component must each have a
unique tile identifier, according to equation (11.2), and these tiles may
contribute any number of tile-parts to the code-stream, all of which will
be empty.

11.2.3 SUBBANDS ON THE CANVAS
The DWT and all subsequent quantization and coding steps are ap­

plied independently within each tile-component. Consider the subband,
y~,c{d) [n], obtained by taking the DWT of tile t in component c. The
1, 2

indices, h, b2 E {a, I} identify the particular subband at DWT level d,
with [b l ,b2] = [0,0] for the LLd subband, [b l ,b2] = [0,1] for the HLd
(horizontally high-pass) subband, [b l ,b2] = [1,0] for the LHd (vertically
high-pass) subband and [bl, b2] = [1,1] for the HHd subband.
To find the subband's region of support we may apply equation (10.11)

to the region of support for the corresponding tile-component. Using the
readily verified identity,

rrt11 If;11 = rj~1, ViEZ, Vj,kEN (115)

we find the subband's region bounds to be

dE {I, 2, ... ,Dt,c}, i = 1,2 (11.6)

and, similarly,

Note that the code-stream syntax permits a different number of DWT
levels, Dt,c, to be specified for each tile-component.
Recall from Section 10.3.4 that each subband sample notionally occu­

pies a unique location in the image from which it was generated. In par-

456 Tiles on the Canvas

ticular, subband sample y~,cb(d) [nl' n2] is notionally co-located with im-
1, 2

age component sample Xc [2dnl + 2d- I bl , 2dn2 + 2d- I b2]. But Xc [nl' n2]
occupies a notional location, [SInl, Sin2], on the canvas. Combining
these two sets of coordinate correspondences, we find that subband sam­
ple y~,cb(d) [n] has a notional location on the canvas at

1, 2

[2dSIn l + 2d- I SIbl , 2dS2n2 + 2d- I S2b2]

This association of subband samples with locations on the canvas
provides an alternate and entirely equivalent mechanism for mapping
regions on the canvas into regions within any given subband. To see
this, observe that

[2dSlnl + 2d
-

1Slbl , 2dS2n2+ 2d
-

1S2b2] E [Ef, Fi) x [E;, Fn

if and only if

or, equivalently,

i = 1,2

These are exactly the same region bounds which we derived above for
subband yt,c,(d) [n].

bl,b2

11.2.4 RESOLUTIONS AND SCALING
Resolutions and resolution levels were introduced in Section 10.3.3.

Applying these notions to an individual tile-component, we identify the
r th resolution of tile t in component c with the intermediate subband,
LLbc _ == y~,~,(Dt,c-r) [n], which can be reconstructed by applying only

t,c r 1

r stages of the inverse DWT (see Figure 10.6). There are Dt,c + 1
resolutions available for the tile-component. The lowest-resolution, r =
0, corresponds to the actual subband LLbe . The highest resolution,

t,e

r = Dt,c, corresponds to the original tile-component, which may be
interpreted as subband LL~'c. Substituting bl = b2=°and d = Dt,c ­
r into equations (11.6) and (11.7) we find the region bounds for any
particular tile-component resolution as

r pt 1Ft,c,r _ i
i - 2(Dt ,e-r)Sf ' i = 1,2

(11.8)

Chapter 11: Sample Data Partitions 457

Again, following Section 10.3.3 we use the term "resolution level" n~'c
to refer collectively to all subbands required to reconstruct resolution r
from the lower resolution, r - 1, if any. Thus, n~'c consists of the sin-
gle subband, LLtD,c == yot'oc,(Dt,c) [n], while each subsequent resolution

t,c ,

level, ~,c, consists of the three subbands, HL~~,c+1-r' LH~~,c+l_r and

HH~~ c+1-r' The subbands belonging to each resolution level are iden­
tified'in Figure 10.6.

It is instructive to consider what happens if we discard the highest d
resolution levels from the DWT associated with every tile-component.
The remaining subbands in each tile-component may be used to recon­
struct resolution r = Dt,c - d, having region of support

r2~lf1~ nl < r2~if1, r2~li1~ n2 < r2~~i1
These regions partition a reduced resolution version of each image com­
ponent, C, whose region of support is

r2~~f1~ nl < r2~~f1, r2~~i1~ n2 < r2~~i1
The new reduced resolution image may be properly described within the
canvas coordinate system (as an image in its own right), after introducing
the following modifications.

• Multiply the component sub-sampling factors, Sf and Si, by 2d .

• Subtract d from the number of DWT levels, Dt,e, associated with
each tile-component.

• Remove any coding parameters which are specific to the discarded
subbands from their respective code-stream markers (see Chapter 13).

Unfortunately, the fact that component sub-sampling factors may not
exceed 255 imposes a limit on the degree to which resolution may be
scaled using this method. An alternate approach may be employed so
long as the tile dimensions T1 and T2 are both divisible by 2d or there is
only one tile. Then, exploiting the ceiling identities of equation (11.5),
we may rewrite equation (11.8) as

i f~11 <n < if#11 if~11 <n < if#l]se - 1 Se' Se - 2 Se
1 1 2 2

Multiplication of Sf and Si by 2d is thus equivalent to the following
steps.

458 Code-Blocks and Precincts

• Replace the image region bounds, E I , FI , E2 and F2, by the quanti­
ties, f2-dEll, f2- dFI1, f2- dE2l and f2- dF2l

• Replace the tile origin coordinates, Or and Or, by f2-dOn and

f2- dOil·
• Divide the tile dimensions, TI and T2, by 2d .

Of course, a combination of these coordinate transformation methods
may be employed to achieve large resolution scaling factors, when the
tile dimensions are not exact powers of 2.

11.3 CODE-BLOCKS AND PRECINCTS
In JPEG2000, the subbands of each tile-component are further par­

titioned into code-blocks, which are then coded independently. The
EBCOT paradigm described in Section 8.1.3, relies upon independent
coding of relatively small blocks of subband samples.
The code-block partition is defined by three sets of parameters: a

global anchor point, [Of, O~] (read "Omega" as "origin," with the
super-script "c" for "coding"); maximum height and width parame­
ters Jt,c and Jt,c. and "precinct" dimensions pt,c,r and p,t,c,r Note'I 2 , , I 2'

that the maximum code-block dimensions, J:'c and J~'c, may be differ­
ent for each tile-component, while the precinct dimensions may differ for
each resolution, r, of each tile-component. Both sets of dimensions are
restricted to exact powers of 2 and the coding anchor point coordinates,
of and O~, may only take values of 0 or 1.
We shall describe the role played by precincts shortly. For the mo­

ment, it is sufficient to understand that this role requires each precinct
to consist of a whole number of code-blocks. For this reason, the code­
block partition is subordinated by a precinct partition and the latter
must be described first.
The reader should note that the coding anchor point coordinates, of

and O~, are the subject of a proposed amendment to Part 1 of the
standard, whose fate will not be known until after publication of this
text. If the amendment is not accepted, the coding anchor points will
be forced to of = O~ = 0 for the purposes of Part 1 of the standard
and free to take on values of 1 or 0 only in Part 2 of the standard.

11.3.1 PRECINCT PARTITION
Each resolution of each tile-component is partitioned into precincts,

as shown in Figure 11.4. The precinct partition differs from the tile par­
tition in a number of important respects. Firstly, the precinct partition

-.+
1)

t
......Pz··c"......p"'c"I.

[0,0] [0,1] [0,2]

[1,0] [1,1] [l,2]

[2,0] [2,1] [2,2]

o
nCI
(Oor

£,,".,
I

F.I.<,'
1

o ni(Oorl)

Chapter 11: Sample Data Partitions 459

F.',C,'z

Figure 11.4. Division of a tile-component resolution into precincts.

has no impact on sample data transformations or coding, except in the
constraints which it imposes on the subordinate code-block partition,
described next. Tile dimensions are arbitrary positive integers, while
precinct dimensions must be exact powers of 2. Finally, whereas tile
boundaries are common to all components, resolutions and subbands,
this need not be true for precincts.
Each precinct is identified by a pair of indices, [PI, P2] == P, which

range over

0< < NP,t,c,T
- PI 1 and 0 ~ P2 < N~,t,c,r (11.9)

Here, Ni,t,c,T and N~,t,c,T identify the number of precinct rows and the
number of precinct columns, respectively, which are required to cover
tile t in component c at resolution r. These quantities may be found
from

r
pt,c,r _OC1

1 t

pt,c,r
•

o
lEt,c,r _OC J

1: t

pt,c,r
•

if p~,C,T > Et,C,T
~ ~

if pt,c,r = Et,C,T
~ ~

(11.10)

Notice that the value of N;,t,C,T must be explicitly forced to zero when
the relevant dimension of the tile-component resolution is zero (Fit,C,T =
E;,C,T).

460 Code-Blocks and Precincts

The region associated with precinct p is defined by the bounds

{ (lEt,c,r - nCJ)}Et,c,r,p = max Et,c,r nC + p~,c,r p' + i i
1 1 '1 1 1 pt,c,r

i

{ (lEt,c,r - nCJ)}Ft,c,r,p = min Ft,c,r nC + pt,c,r p' + 1 + 1 1
1 1 '1 1 1 pt,c,r

i

The reader may verify that each precinct region, [E~,c,r,p, F;,c,r,p) x

[E~,c,r,p, F~,c,r,p) , has a non-empty intersection with the region occupied

by tile t in image component c at resolution r.

11.3.2 SUBBAND PARTITIONS
INDUCED PRECINCT PARTITION OF SUBBANDS
The region occupied by any precinct of a particular tile-component

resolution may be mapped into each of the subbands belonging to the
corresponding resolution level. Following our now well-established region
mapping conventions, we obtain

r

Et,c,r,p - b'1 rFt,c,r,p - b'1Et,c,r,p,b = i 1 Ft,c,r,p,b = i 1

1 2Sr' 1 2 Sr

where the notation, Sr, identifies the number of two dimensional DWT
stages used to recover the r th image resolution from the subbands in
resolution level Rr. By inspection of Figure 10.6, we see that

{
0 if r = 0

S -
r- 1 ifr>O

In each subband, the precinct partition has dimensions 2-sr p;,c,r and
2- Sr p~,c,r, which are required to be integers to avoid irregularity in
the partitioning of subbands. In particular, JPEG2000 insists that the
precinct dimensions be exact powers of 2, no less than Sr' We express
this requirement as

Sr :s; log2 (pit,c,r) E Z, for i = 1,2 (11.11)

The reader may verify that the precinct partition of subband b ==
[bI,b2] in resolution level n;'c, is anchored at the location [n~,b, n~,b]

whose coordinates also take one of the values 0 or 1 and are given by

Chapter 11: Sample Data Partitions 461

f(F,'<' -1)/21

\ \
t \ P,"" 12 \P."" 12

'~

[0. OJ [O.IJ (0.2J \

[I. OJ {I, I) (l,l)

[2.OJ I!V) [2,1)

+ \ \
t \ PJ.I~' /2 \P"u /2'. {O.OJ -~ {O.I} {O.2J

{I.OJ {I, I) (l,l)

f2.0} [2,1) [l,l)

n; ...
(Oor I)

~

rF,"; -11

"'" r·F,;~1
rF".r, 120 0

0

HLI .C/) +1-,I.r

+
t p;u 12

P'" 12
'~

[0. OJ [O,IJ {O,2J

{I.O} (I,l) (l,l)

f2.0J (V) [1,1)

rF,"; -11

Figure 11.5. Induced precinct partitions for the three subbands in resolution level
R~,cJ for r > O.

Figure 11.5 illustrates this induced precinct partition for each subband
in resolution level n~'c, for r > O.

CODE-BLOCK PARTITION OF SUBBANDS

Within each subband, precincts are further sub-divided into code­

blocks. The code-block partition has the same anchor point [n~,b, n~,b]

as the precinct partition for the same subband. The elements of the code-
bl k .. h d' . Jt CT d Tt CT h' hoc partItIon ave ImenslOns 1" an J2'" w lC are exact powers
of 2 derived from code-stream parameters as follows

J t,C,T _ . {Jt,c 2-srpt,C,T}
1 - mIn l' 1 ,

Tt,C,T _ . {Tt,C 2-Sr nt,c,T}
J2 - mm J2' £2

The code-block partition is illustrated in Figure 11.6.
At one extreme, it can happen that J;'c 2: 2-Sr pi,C,T and Ji'c 2:

2-Sr Pi,C,T, in which case each precinct contains exactly one code-block
within each subband. When precincts are large, however, the dimensions
of the code-block partition are determined exclusively by the parameters,

(11.12)

462 Code-Blocks and Precincts

00123 12

r
FoI,·c.r - bll-RF=f=+==f==f=o+=tlob64,84+l:¥'51n!!¥=!7'¥!=:I=

14
bf!!!+-lx II 11UlU _~1:!~.8'~-l

2~ I

Figure 11.6. Code-block partition for subband b == [b1 ,b2] in resolution-level R~·c.

J;'C and Ji'c, whose base-2 logarithm is signalled using the code-stream
marker segments, COD and COc. In many cases, each resolution of
each tile-component contains only one precinct. When this happens, all
subbands of the relevant tile-component have code-blocks of the same
size (ignoring the impact of tile boundaries). The JPEG2000 standard
restricts the allowable values for J;'c and Ji'c so as to ensure that no
code-block may contain more than 212 = 4096 subband samples. In
particular, the constraints may be expressed as

22 < Jt,c Jt,c < 210 and Jt,cJt,c < 212
-1'2-' 12-
where J:'c and Ji'c are both powers of 2

Let N~,t,c,r,p,b and N~,t,c,r,p,b denote the number of code-blocks in
the vertical and horizontal directions, respectively, which cover precinct
p in subband b == [b 1, b2] of resolution level n;,c. These quantities may
be found from

{r
Ft,c,r.p.b-nC,bl lEt,c,r,p'b-nC.bJ
1 1 1 1.

NB,t,c,r,p,b = J:,c,r - J:.c,r
2

o

if Ft,c,r,p,b > Et,c,r,p,b
2 2

if Ft,c,r,p,b = Et,c,r,p,b
2 2

For the purpose of sequencing code-block contributions into packets, the
N B t c r p b NoB t c r p b d bl k . h" b d1 ' , , " X 2"'" co e- oc s WIt m precmct p, are num ere
from left to right and from top to bottom, as indicated in Figure 11.6.

Chapter 11: Sample Data Partitions 463

When the relevant resolution level contains multiple subbands (i.e., all
but Ro), the code-block contributions from the HL subband appear first
and those from the HH subband appear last.

It is important to note that one or more subbands may contribute no
code-blocks whatsoever to some precincts; that is, either N~,t,c,r,p,b = 0
or N~,t,c,r,p,b = O. This can happen only in precincts which lie on
the boundaries of the tile-component. In fact, it can happen that a
precinct is entirely empty, containing no code-blocks from any subband.
This is in spite of the fact that every precinct must have a non-empty
intersection with its tile-component at the relevant resolution. To see
this, consider a tile-component which consists of only a single sample
located at the origin of the canvas. Then E~,c,r = E~,c,r = 0 and F;,c,r =

Fi,c,r = 1 at all resolutions r. In this way, each resolution of the tile­
component contains exactly one precinct, but there is only one code­
block for the entire tile-component and this code~block belongs to the
LLbc subband in resolution level R~'c.

t,e

11.3.3 PRECINCTS AND PACKETS
At this point, the reader may wonder why the JPEG2000 commit­

tee found it necessary to introduce so many different partitions. The
code-block partition is fundamental to the EBCOT paradigm, which in
turn imparts many important features to the JPEG2000 compression
algorithm (see Section 8.1.3). The tile partition provides a mechanism
to divide images up into smaller independent pieces which can have a
number of uses (see Section 11.2). Unlike the tile and code-block parti­
tions, the precinct partition does not affect the transformation or coding
of sample data. Instead, the precinct partition plays an important role
in organizing compressed data within the code-stream.
The fundamental unit of code-stream organization is the "packet."

Each precinct contributes one packet to the code-stream for every qual­
ity layer, Ql (quality layers are described in Section 8.1.3). The packet
for quality layer Ql from precinct p of resolution level ~,c contains
the incremental contributions to that quality layer from all code-blocks
within the scope of the precinct. The number of these code-block con­
tributions is

~ NB,t,c,r,p,bNB,t,c,r,p,b
L 1 2

bER~,e

(11.13)

Note, however, that any or all of the contributions to any particular
quality layer may be empty. In the unlikely event that a precinct en­
compasses no code-blocks whatsoever (i.e., the above count is 0), its

464 Spatial Manipulations

empty packets must nevertheless appear within the code-stream. Con­
struction of packets is the subject of Section 12.5.
The number of quality layers in tile t is denoted At. Although the

number of quality layers is allowed to vary from tile to tile, compressors
would do well to use the same number of quality layers in every tile where
possible. This avoids ambiguity regarding the number of quality layers
which should be discarded from each tile when the code-stream must be
scaled down to a lower bit-rate. Since every precinct in tile t contributes
exactly At packets, the total number of packets in a JPEG2000 code­
stream is

Nl-I Ni -1 C-I Dt,c

num code-stream packets = L L L L AtNi,t,c,rNrt,c,r
tl =0 t2=0 c=O r=O

JPEG2000 provides a rich language for describing the sequence in
which these packets actually appear within the code-stream. This is
known as the packet progression sequence. A quality progressive code­
stream is constructed by sequencing all packets corresponding to qual­
ity layer Qo followed by all packets corresponding to layer QI and so
forth. A resolution progressive code-stream is constructed by sequenc­
ing all packets from precincts of resolution r = 0 prior to all packets of
resolution r = 1 and so forth. Such progressions may be realized with­
out partitioning each tile-component resolution into any more than one
precinct.
The standard also supports spatially oriented progressions, in which

packets from precincts representing the upper-left portion of the im­
age region are sequenced first, while packets representing the lower-right
portion of the image region appear last. For applications requiring a
spatially progressive code-stream, it is advantageous to employ rela­
tively small precincts. Packet progressions are described thoroughly in
Chapter 13.
The tag coding techniques described in Section 8.4.2, which efficiently

identify code-block contributions to each quality layer, are applied inde­
pendently within each precinct. This facilitates re-sequencing of packets
within the code-stream. It also means that the precinct partition pro­
vides a mechanism for controlling the extent of the dependencies intro­
duced by tag coding.

11.4 SPATIAL MANIPULATIONS
At the beginning of this chapter, we pointed out that the canvas coor­

dinate system has properties which facilitate the efficient manipulation
of compressed images. One such property is resolution scalability, which

Chapter 11: Sample Data Partitions 465

we discussed in Section 11.2.4. Indeed, an important factor in the adop­
tion of the canvas coordinate system by the JPEG2000 committee was
the desire to support resolution scalability in conjunction with arbitrary
tile sizes and component sub-sampling factors. The coordinate system
was also designed specifically with two other types of spatial manipu­
lation in mind: arbitrary cropping of compressed images; and simple
rotations.

11.4.1 ARBITRARY CROPPING
In Section 11.2.1 we motivated the existence of an explicit tiling an­

chor point, [Df, Di], by considering the problem of cropping tiles away
from a compressed image. This ought to be achievable in a simple man­
ner, since tiles are compressed independently. A more interesting prob­
lem is that of cropping an arbitrary number of rows or columns from
any boundary, without having to re-compress an entire row or column
of tiles. Two attributes of the JPEG2000 standard make this possible:
independent compression of each code-block; and arbitrary alignment of
the DWT and all associated partitions with respect to a global reference
point (the origin of the canvas).
From the coordinate perspective, cropping affects only the bounds,

E 1, E2 , Hand F2 , of the image region on the canvas. It has no effect on
the tiling anchor point, [Df, DiJ, or the coding anchor point, [Df, D~].
Cropping also has no effect upon subband samples which are located in
the interior of the image, away from any of the new boundaries. Fig­
ure 11.7 is helpful in understanding the effect of cropping on subband
samples and code-blocks. The figure illustrates only the horizontal di­
rection (e.g., the first row) of an image which is two tiles wide and is
compressed using a single level (D = 1) DWT. The image is cropped by
5 samples from the left and five samples from the right and the effect of
this cropping is illustrated on the subband samples of the first tile.
Notice that most of the subband samples and hence most of the code­

blocks are unaffected by cropping. Of the subband samples which re­
main after cropping, only those which are formed from samples in the
symmetrically extended portion of the cropped input image must be re­
calculated. In particular, if the image is cropped from the left, leaving a
new horizontal boundary, E2, the elements of the interleaved sequence of
subbands which must be recalculated are those with indices, n, satisfying

E2 :::; n < E2+ Ln mod 2

where 2Lo + 1 and 2L1 + 1 are the lengths of the symmetric low- and
high-pass wavelet analysis kernels, h& [n] and hi [n]. A similar relation­
ship applies for cropping at the opposite boundary. In the example of

466 Spatial Manipulations

F, =,:;1 =78.. /-1

£rtension

Tile 0

r. =39

l'=fr

B oc 0 B oc I B ock 2 Block 3 Block 4

£rtension

£, =£'.21 =10
• 100

£rtension iT-----' atension

£2 =£;l.o= 15 Tile 0 ,:;1 =£:1 = 4"i~/ Tile I Fz =F,'I =73
A

,-0 .,., A .. ,-I

'\. T2 -39 / 1-39A

.-J--, -'-. "\

74 Cropped Image""'",

~n=o

. Subbands
..I I k I k I

Figure 11.7. Effect of cropping on the interleaved sequence of subbands when D = 1.

Figure 11.7, 2Lo+I = 9 and 2L1 +1 = 7 are the lengths of the CDF 9/7
irreversible wavelet analysis kernels (see Section lOA.I) and the leftmost
4 subband samples (2 low-pass and 2 high-pass) of the cropped image
must be recomputed. The code-block width is 4 samples (maps to 8
samples in the interleaved subband sequence) and we see that the first
two code-blocks of the cropped image must be re-coded. The remaining
code-blocks of tile amay be taken from the original image as-is.
When the number of DWT levels is greater than 1, a somewhat larger

number of subband samples may be affected by cropping. This is because
lower frequency subband samples are formed from intermediate low-pass
subbands, which are themselves affected by cropping. Nevertheless, it
can be shown that within any given subband, the samples which are
affected by cropping must lie within a distance 8 of one of the cropped
boundaries, where

8 S max {Lo, LI}

That is, cropping has no impact on samples from subband Y:~~b~d) [n], for
which

i = 1,2

Chapter 11: Sample Data Partitions 467

transpose vertical nip

Figure 11.8. Simple rotations from transposition and flipping.

In most cases, cropping affects only those code-blocks which are adja­
cent to the cropped boundary. More important than the obvious compu­
tational savings for image editing applications is the fact that JPEG2000
compressed images may be repeatedly cropped from any boundary with­
out the accumulation of compression artifacts from multiple compress­
decompress cycles. By contrast, images compressed using the existing
JPEG standard may not be cropped from the top or the left by any­
thing other than a multiple of 8 samples (the DCT block size) without
complete recompression. Decompressing, shifting and re-compressing an
image generally involves the accumulation of quantization errors from
each compression cycle1 .

It is also worth noting that cropping may affect each image component
differently. For example, cropping the last row from the image region
in Figure 11.1 affects only component c = 1, leaving component c = a
unchanged.

11.4.2 ROTATION AND FLIPPING
In this section, we consider simple geometric transformations in which

the image is flipped about one of its axes, transposed or rotated by a
multiple of 90°. As illustrated in Figure 11.8, rotation may be achieved
by a combination of flipping and transposition. Accordingly, we restrict
our attention to these two operations, which are facilitated by the canvas

I This is because image transforms are inherently not shift invariant. Cropping from the left
or the top shifts the image in relation to the alignment of the non-stationary transform and so
the recompressed image involves different transform samples and hence different quantization
errors, largely uncorrelated with those introduced during the initial compression. Truncation
(or clippil1g) of out-of-range sample values is another source of compression noise "build-up"
from multiple compression cycles. JPEG2000 avoids these problems by allowing the image
regiol1 to be arbitrarily positioned relative to the canvas on which the transform is aligned.

468 Spatial Manipulations

coordinate system and the fact that subband samples are compressed
independently within each code-block.

TRANSPOSITION
From the description in Section 10.3.2, each two dimensional DWT

stage is a separable combination of one dimensional row and column
transformations. As such, the order in which the one dimensional oper­
ations are performed is irrelevant (at least for irreversible transforms).
We may apply the one dimensional analysis operations vertically along
each column and then horizontally along each row, as in Figure 10.5,
or horizontally first and then vertically. Continuing this reasoning for
all stages of the DWT, transposing the entire image may be seen to be
equivalent to transposing each subband individually and labelling the
HLd subbands as LHd and vice-versa.
The canvas parameters for the transposed image are obtained simply

by transposing the various dimensions and anchor point coordinates.
Since each individual subband is transposed and its code-block partition
is also transposed, the code-blocks of the transposed image are simply
transposed versions of the code-blocks of the original image. Unfor­
tunately, to transpose each code-block, it must be fully decoded and
re-coded after transposition (we call this "transcoding.") Finally, the
order in which code-block contributions appear within each packet and
the order of the packets themselves must be adjusted to the new geom­
etry.
Several comments are in order regarding the transcoding of each code­

block. First note that this is a local operation, requiring much less
working memory than decompression and recompression of the entire
image. Secondly, in some applications a non-standard decoder may be
available which is able to output decoded samples from each code-block
in transposed order. Such a capability might be provided in a print
engine to simplify rendering in "landscape" mode.

It is important to realize that transcoding does not generally preserve
the exact size (number of code bytes) or distortion associated with each
truncation point in the code-block's embedded bit-stream. Thus, as­
suming that the application does not change the assignment of block
truncation points to quality layers (see Section 8.1.3), both the size of
each code-block contribution and the distortion associated with each
quality layer will generally be affected by transposition. Nevertheless,
these effects may only be slight. Small changes in distortion can be ex­
pected because transposition generally alters the sets of samples which
are processed by each of the three bit-plane coding passes (see Sec­
tion 8.3.3). If a code-block's embedded bit-stream is truncated at the

Chapter 11: Sample Data Partitions 469

n T c1 F1-1 nJ+2T1-1 -(nJ+2T1-1) I-F10,....-+1_-+- +--+_...

Figure 11.9. Flipping of the image region and tile partition about the vertical axis.

end of the third coding pass of any given bit-plane then distortion for
that code-block will be unaffected by transposition.
Although the irreversible DWT is insensitive to the order in which

its one dimensional subband transforms are applied, this is not strictly
true for the reversible DWT due to the presence of non-linear round­
ing operations. As a result, losslessly compressed images will remain
lossless under transposition only if the DWT is completely inverted and
re-applied. Thus, for reversibly compressed images, transposition and
rotation are not possible without either complete recompression or the
introduction of small errors (these can be removed again upon restora­
tion of the original image geometry).

FLIPPING
Without loss of generality, we will restrict our attention to flipping the

image horizontally. Suppose firstly that we flip the image on the canvas
about the vertical axis, n2 = 0, as shown in Figure 11.9. Specifically,
each original location n == [nI' n2] on the canvas is mapped to its mirror
image location, ii == [nI' -n2]. This means that each image component,
Xc [n], is mapped to a flipped version, Xc [n], according to

Xc [nI' n2] = Xc [nI' -n2] , for 0 ~ c < C

and the bounds of the flipped image region, [EI'H) x [£2, F2) ,are given
by (see the figure)

Each component's region bounds map in the same way; i.e.,

£2 = 1 - F:f, F:f = 1 - E2, for 0 ~ c < C

470 Spatial Manipulations

One way to see this is by combining equation (11.1) with the fact that

If we also arrange for the tile partition to be flipped about the vertical
axis, then each tile-component in the flipped image is a mirror image of
a corresponding tile-component in the original image. That is,

E~'c = 1 - F;'c, f;,c = 1- E~'c, Vt,c

where t == [tI, -t2] represents the flipped tile indices. As suggested by
Figure 11.9, the new tile anchor point is given by

Now recall from Section 10.3.4 that flipping a tile-component about
the vertical axis, n2 = 0, is equivalent to flipping its interleaved sequence
of subbands about the same axis. We conclude that the subband samples
of the flipped image are identical to those of the original image, except
that each subband has been flipped horizontally. Finally, by adjusting
the coding anchor point according to

-c C
[22 = 1 - [22 E {O, I}

we ensure that the precinct and code-block partitions are all correctly
flipped2 . Then each code-block in the flipped image is simply the flipped
version of a corresponding code-block in the original image. A local
transcoding step is required to obtain the compressed representation of
each of the flipped code-blocks. Considerations for block transcoding are
identical to those discussed above for the case of image transposition.
Finally, the sequence of packets within the code-stream and the order of
the code-block contributions in each packet must be modified to reflect
the new geometry. It is worth noting that reversible transforms do not
cause any difficulties in the case of flipping, as opposed to transposition.
The operations described above fail to generate a legal set of canvas

coordinates, since all coordinates are required to be non-negative inte­
gers. This difficulty may be rectified, however, by shifting the image
region and tile anchor point to the right by some suitable integer, Z2.
That is,

2Note t.hat t.his manipulat.ion might. not. be supported by Part 1 of the JPEG2000 standard,
depenrIing 011 the success of a proposed amendment.

Chapter 11: Sample Data Partitions 471

Of course, not any Z2 will do, since arbitrary shifts of the canvas will
generally alter image component dimensions, DWT alignment and code­
block and precinct partitions. Any shift, Z2, which is divisible by
2Dt ,c-r s2pi,c,r for each tile, t, component, c, and resolution, r, is guar­
anteed to be acceptable, although other shifts can sometimes be accept­
able. For example, if resolution, r, of tile t, in component c, is not
divided into multiple precincts, it is sufficient for the shift to be divisible
by 2Dt,c-r+Sr S2J~'c; that is, the acceptability of the shift is determined
by the code-block dimensions, rather than the precinct dimensions3 .

3 In this case, one must be careful to ensure that the shift does not itself cause the resolution
to straddle a precinct boundary.

Chapter 12

SAMPLE DATA CODING

In this chapter we· describe the various coding operations which are
defined by the JPEG2000 standard. In particular, we describe the cre­
ation of embedded bit-streams to represent each code-block, and the
representation of code-block contributions to packets. The principles
and many of the details of these coding operations have already been
described in Chapters 2 and 8. Our primary goal in this chapter is to
equip the reader who is interested in implementing the standard or work­
ing closely with an existing implementation. The reader is assumed to be
familiar with the basic principles of the EBCOT paradigm, as described
in Section 8.1.3, but a thorough reading of Chapter 8 is not required.

12.1 THE MQ CODER

12.1.1 MQ CODER OVERVIEW

JPEG2000 creates an embedded representation for each code-block of
quantized subband samples by subjecting a sign-magnitude version of
the quantization indices to a bit-plane coding procedure. The bit-plane
coding procedure relies upon the availability of an underlying mechanism
for efficiently mapping binary symbols to compressed data bits. The
mechanism is that of arithmetic coding and the specific incarnation of
arithmetic coding is known as the MQ coder.

Substantial attention has already been devoted in Section 2.3 to an
exposition of the principles of practical arithmetic coding. In this sec­
tion, we describe in detail the particular variant known as MQ. While
the reader should find the earlier exposition enlightening, our current
treatment is largely self-contained.

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

474 The MQ Coder

symbol
x

context label
K

probability mappe

75(')

1:"""0,1:1,,,('), X.O
coder state

A,C, i.f, L

context states

ffilBrnm
\. I

Y
L bytes

Figure 12.1. MQ encoder.

The MQ encoder may be understood as a machine, illustrated in Fig­
ure 12.1, which maps a sequence of input symbols, Xn E {0,1}, and
associated context labels, Kn , to a single compressed codeword. Since
the compressed codeword may be only a portion of a larger compressed
bit-stream, we shall refer to it as an "MQ codeword segment." The
codeword segment represents anything from a single coding pass (see
Section 12.2) of a code-block to all coding passes for the code-block.
The codeword segment is generated incrementally as the symbol and
context pairs, (xn , Kn), arrive from the bit-plane coder. As suggested
by Figure 12.1, the incremental coding algorithm may be described in
terms of three components:

1. A set of "internal" state variables, A, C, l, T and L. We attach sub­
scripts, n, to these variables whenever we wish to identify the state
immediately after coding the first n symbols, XO,Xl, ... ,Xn-l. Here,
A and C denote the interval length and lower bound registers intro­
duced in Section 2.3, which are common to most implementations
of the arithmetic coding principle. L represents the number of code
bytes which have been generated so far. T is a temporary byte buffer
and l is a down-counter which identifies the point (l = 0) at which
partially generated code bits should be moved out of the C register
and into the temporary byte buffer, T.

2. A context state "file" with one pair of entries, (I:" , 8,,), for each pos­
sible context label, K. The single bit, 8" E {O, I}, identifies the MPS
(Most Probable Symbol) for the coding context labelled K. I:" is a
6-bit quantity in the range °through 46, which indirectly identifies
the MPS probability estimate for this coding context.

Since JPEG2000 defines only 19 contexts, the context state file might
be tightly integrated with the rest of the coder in a dedicated hard­
ware implementation (e.g., using high speed registers). Nevertheless,

Chapter 12: Sample Data Coding 475

symbol
x

context label
K

probability mappe

750
E"..,.O,E1",O, X,O

coder state

A.C, If. L

context states

'-~--~y-----~/

Lou. bytes

Figure 12.2. MQ decoder.

it is convenient to maintain a conceptual separation between context
states and the "internal" coder state variables described above.

3. A set of probability mapping rules which are used to interpret and
manipulate the context state, (l:II:' SII:), associated with the current
coding context. These probability mapping rules may be understood
in terms of four functions (lookup tables), which are defined by Ta­
ble 2.1. The function p (l:II:) embodies the relationship between the
state value, l:1I:' and the LPS probability estimate for context /\'. The
functions, ~mps (.) and ~lps 0 identify the new value for l:1I: depend­
ing on whether the coded symbol is an MPS (xn = SII:J or an LPS
(xn = l-slI:n), respectively. Thefunction,Xs 0, is invoked only after
coding an LPS; it indicates whether or not the MPS and LPS sym­
bols should be exchanged, i.e., whether or not 811: should be replaced
by 1- SII:'

The MQ decoder is illustrated in Figure 12.2. It may be understood
as a machine which accepts a sequence of context labels, "'n, from the
bit-plane decoder and returns decoded symbols, X n E {a, I}. Again,
the decoder is implemented incrementallyl, consuming bytes from the
compressed codeword segment only as necessary. As suggested by the
figure, the encoder and decoder state machines possess many elements
III common.

It is important to note that the codeword segment .available to the
decoder is not generally identical to that produced by the encoder. This
is because the embedded representation of any given code-block is of­
ten truncated. When the decoder requires code bytes from beyond the

lThe decoder must necessarily be implemented incrcmentally, since the decoded symbol, X n ,

must gcnerally be recovcred beforc the next context label, II:n+l, can be determined. The
same is Ilot truc for the cllcodcr.

476 The MQ Coder

end of the codeword segment, it is expected to substitute the value, FFh

(i.e., 255). The encoder determines the length, Lz , of each allowable
truncation point, z, based on the assumption that the decoder will fol­
low this policy. We discuss the length computation task separately in
Section 12.3.
We say that the MQ coder is "byte oriented," because codeword seg­

ments must consist of a whole number of bytes and certain operations
are performed only when a full byte of compressed data has been pro­
duced. In particular, the MQ coder adopts a "bit stuffing" approach to
avoid the need for full carry resolution (see Section 2.3.1). Bit stuffing
occurs whenever an FFh byte2 is output to the byte buffer. It inserts
an extra (redundant) bit into the evolving codeword, which ensures that
carry bits arising from arithmetic operations on the C register cannot
propagate into bytes which have already been despatched to the byte
buffer. We shall see exactly how this works in Section 12.1.2.
Since bit stuffing adds one redundant bit (one ~ of a byte) to the

evolving codeword whenever an FFh byte is placed in the byte buffer,
the cost to overall coding efficiency is one part in 8 . 256 = 211 (i.e.,
about 0.05%). Clearly, some combinations of code bytes cannot arise.
In particular, the precise implementation of bit stuffing in the MQ coder
is such that the byte following an FFh must be in the range OOh through

8Fh.3 The JPEG2000 standard takes advantage of this property by as­
signing values in the range FF90h through FFFFh to important delimiting
code-stream markers. Examples include the SOT (Start Of Tile-Part)
and SOP (Start Of Packet) markers which have values of FF90h and
FF91h, respectively. The provisions of the standard ensure that these
markers should never occur within the compressed data itself, so they
may be used to recover synchronization in the event of an error.
The MQ coder is a descendant of the multiplier-free Q coder algorithm

[118]. Significant enhancements are the conditional exchange mechanism
described in Section 2.3.4 and the "start up" portion of the probability
estimation state machine. It is closely related to the QM coder, another
descendant of the Q coder, which is specified by the JBIG standard
[7] and as an option for the JPEG standard. Unlike the QM coder
[119], which uses full carry resolution in conjunction with byte stuffing
for error resilience, the MQ coder employs the original Q coder's bit

2We use hexadecimal notation to identify the values of 8-bit bytes and 16-bit marker codes.
:lThe reader might expect that this range should be FFOO through FF7F. A full bit of re­
dundancy is indeed introduced by the MQ coder's bit stuffing policy. However, since carry
propagation is bounded, some of the redund>lnt codesp>lce manifests itself in the form of un­
reachable sequences of code bytes prior to the FF which prompted the bit stuffing operation.

Chapter 12: Sample Data Coding 477

Carry bit. CC"'Y I
Spacer bits 1-"...L-L......L----L-....I..-L-..L--+-....I..-L......L----L-...L-L......L-i

Cm<bs ~

~--..v --....r-----
Partial code byte. CP'M'>! Active region. C'C1""

Figure 12.3. Interpretation of MQ encoder registers.

A

c

stuffing policy, as mentioned above. It is worth noting that the JBIG2
standard [10] for bi-level image compression also adopts the MQ coder.

12.1.2 ENCODING PROCEDURES
In this section we describe the actual encoding procedures followed by

the MQ coder. The algorithm is substantially similar to the conditional
exchange encoder on Page 70, the most important difference being that
full carry resolution is replaced by the bit stuffing policy mentioned
above. The A register has a 16-bit representation and so the active
portion of the C register also involves 16 bits. To avoid moving bits out of
the C register whenever a renormalization shift occurs, it is convenient to
work with the 28-bit representation for C, which is shown in Figure 12.3.
As explained in Section 2.3, An holds a normalized version of the

length of the current coding interval, [en, en + an) ~ [0,1). Specifically,
let bn be the number of bits which have been shifted left out of the active
region of the C register as a result of coding symbols Xo through Xn -1.

Then an = 2-bn (2- 16 An), with 2-16An E [!,1). The active region of
Cn represents the 16 fraction bits of the normalized interval lower bound,
2bnen. When bn reaches the value 11, the partial code byte identified in
Figure 12.3 is full and its contents are transferred to the temporary byte
buffer, T.
Following the arithmetic coding procedures described in Section 2.3,

one would expect to initialize the MQ coder with (note that bo = 0)
Ao = 216 (representing ao = 1), Co = a and to = 11 (the number
of left shifts before a partial code byte needs to be transferred out of
C). The only problem with this initialization is that the value A = 216

requires a 17-bit representation for the A register; this is wasteful, since
all subsequent values for A are guaranteed to lie in the range 215 ::; A <
216 . The MQ coder avoids this difficulty by initializing Ao = 215 , with
an assumed value of bo = -1, so that the initial interval length is still
ao = 1. It follows that the condition, bn = 11, associated with the first

478 The MQ Coder

transfer of data out of C, corresponds to 12 left shifts, so we initialize
to = 12. We summarize the initialization procedure as follows.

MQ Encoder Initialization

A f- 8000111 C f- 0, t f- 12, T f- 0
L f- -1 (avoid transferring T to the byte buffer before it is first filled)

The main encoding procedure below is invoked to encode a single
symbol x with context label /'i,.

MQ-Encode Procedure
Set s = SK. and p = p (~K.)

Af-A-p

If A < p,
Sf-I - S (conditional exchange of MPS and LPS)

If x = S,

C f- C +P (assign MPS the upper sub-interval)
else

A f- P (assign LPS the lower sub-interval)
If A < 215 ,

If x = sK., (the symbol was a real MPS)
~K. f- ~mps (~K.)

else (the symbol was a real LPS)
SK. f- SK. EEl X s (~K.) (i.e., switch MPS/LPS if X s (~K.) = 1)
~K. f- ~lps (~K.)

While A < 215 , (perform renormalization shift)
A f- 2A, C f- 2C, t f- t - 1

Ift=O
Transfer-Byte(T, C, L, l)

Notes:

• Although conditional exchange may swap the roles of the MPS and
LPS for the purpose of sub-interval assignment, it has no impact on
the operation of the probability estimation state machine, which is
invoked whenever one or more renormalization shifts are required.

• More efficient implementations of the encoding algorithm (and the
decoding algorithm) may be deduced by observing that conditional
exchange must always be accompanied by renormalization (see equa­
tion (2.20)). Together with a reorganization of the algorithm, this

Chapter 12: Sample Data Coding 479

fact may be used to reduce the number of tests which are performed
(see Section 17.1.1).

The Transfer-Byte procedure transfers data out of the partial code
byte portion of the C register, pushing the contents of the temporary
byte buffer, T, to the output byte buffer. It implements the MQ coder's
bit stuffing policy.

Transfer-Byte Procedure (encoder)

If T =FFlu (can't propagate any carry past T; need bit stuff)
Put-Byte(T, L)
T f- Cmsbs , Cmsbs f- 0, [f- 7 (transfer 7 bits plus carry)

else
T f- T + ccal'l'Y (propagate any carry bit from C into T)
ccal'l'Y f- °(reset the carry bit)
Put-Byte(T, L)
If T =FFh' (decoder will see this as a bit stuff; need to act accordingly)

T f- Cmsbs , Cmsbs f- 0, [f- 7 (transfer 7 bits plus carry)
else

T f- cpartial, cpartial f- 0, [f- 8 (transfer full byte)

The Put-Byte procedure simply writes the contents of T to the out­
put byte buffer, except on the first occasion that data is transferred out
of the C register, when T contains no information; this event is identified
by the fact that L = -1.

Put-Byte Procedure
If L 2: 0,

BL f-T
Lf-L+l

BIT STUFFING AND SPACER BITS

At this point it is worth making a few additional comments concerning
the bit stuffing procedure and the role of the spacer bits identified in
Figure 12.3. Arithmetic operations on the C register may produce a
carry bit which needs to be propagated into the code bytes which have
already been transferred out of the C register. This carry bit must be
added into the last transferred byte, which is stored in T. To prevent the
carry from propagating any further, we first check to see if T = FFh. If
so, we introduce an extra redundant bit into the evolving MQ codeword,

480 The MQ Coder

transferring only the most significant 7 bits of the partial code byte out of
C, which allows any carry bit to occupy the most significant bit position
in the new T value.
Of course, the decoder must be able to undo the effects of the bit

stuffing operation. To do so, the decoder looks for FFh'S in the codeword
segment. If one is discovered, the decoder effectively applies a left shift
to all remaining code bits and adds them into its working version of the
interval lower bound register, C. The decoder is able to do this with­
out risk of carry propagation, because it works with an offset version of
the encoder's C register, representing the difference between the final
codeword and the current interval lower bound. This approach, com­
mon to virtually all arithmetic decoder implementations, is described in
Section 2.3.2. To see how the decoder manages to effect the left shift,
the reader should carefully review the decoding algorithm presented in
Section 12.1.3.
Since the decoder expects a bit stuff following any FFh in the codeword

segment, the encoder must also employ the bit stuffing procedure when
a carry bit from C promotes an FEh value in T to FFh' even though
further carry propagation is not possible in this case. This explains the
second test for T =FFh in the Renormalize-Once procedure above.
We may deduce an upper bound for the code byte which follows any

FFh by considering the maximum value for the most significant byte of
C (i.e., Cmsbs), allowing for the propagation of carry bits from future
coding steps. Each transfer from the C register leaves O's in the most
significant t + 1 bits. Letting 5 denote the number of spacer bits (5 = 3
in Figure 12.3), the C register has a 16+5+9 bit representation. Letting
ctrans denote the value of C immediately after a transfer, we then have

ctrans < 216+S +9-([+1) = 224+S-[

In the final codeword, the value, cfinal , represented by these same bit
positions is constrained by the coding interval; i.e.,

Left shifting by t, and taking only the most significant 8 bits of the 25+5
bit C register leaves us with

l2[Cfinal j 224+S + 216+[
C lllsbs = < = 27 + 2[-1-S < 27 + 27- S

225+S-8 2 17+S -

Evidently, the spacer bits play an important role in bounding the value
of the byte which follows any FFh in an MQ codeword. In fact, this is

Chapter 12: Sample Data Coding 481

A

c
--v--

Active region, em,,'.

Figure 12.4. Interpretation of MQ decoder registers.

their only function. With the specific choice S = 3 as in Figure 12.3,
the non-inclusive upper bound is 27 + 27- 3 =90h. As mentioned earlier,
JPEG2000 defines important delimiting marker codes in the range FF90h

through FFFFh' which must not occur within any MQ codeword segment.
Interestingly, the value of S has no impact on the decoding algorithm,
except that the decoder is required to treat codes in the range FF90h

through FFFFh as terminating markers (see below). As a result, there is
nothing to prevent an encoder implementation from using more than 3
spacer bits, further restricting the range of byte values which may follow
an FFh.

TERMINATION
The encoding procedure described above is invoked repeatedly until

all symbols for the relevant codeword segment have been encoded. At
that point, we may flush the contents of the internal state registers, C
and T, to the output byte buffer. However, not all of the bits in these
registers are required to construct a codeword segment which uniquely
identifies the coded symbols. There are a variety of algorithms which
may be employed to efficiently terminate an MQ codeword segment and
so we defer discussion of termination until Section 12.3.

12.1.3 DECODING PROCEDURES
The MQ decoder is substantially similar to the conditional exchange

decoding algorithm given on Page 71, the main difference being the need
to undo the effects of bit stuffing in the encoder. The algorithm may
be implemented using 16-bit representations for the C and A registers.
However, to avoid transferring bits one-by-one from the codeword buffer
to the C register, it is advantageous to work with a 24-bit representation
for C, as shown in Figure 12.4. The counter, l, is used to identify the
number of code bits in the least significant byte of C, which have yet to
be shifted into the active region. The counter is decremented each time

482 The MQ Coder

C is shifted left during renormalization; when t = 0, a new code byte is
loaded into the C register.
Prior to decoding any particular symbol, X n , the length of the coding

interval is given by an = 2-bn (2-16An), where bn is the number of
renormalization shifts which have been applied to the C and A registers.
We are obliged to initialize Ao = 215 , with the interpretation that bo =
-1, as we did for the encoder. Accordingly, we must initialize the C
register in such a way as to ensure that its active region holds the most
significant 16+bo = 15 bits of the codeword. The following initialization
procedure accomplishes this goal.

MQ-Decoder Initialization

T f- 0, L f- 0, C f- °
Fill-LSBs(c, T, t, L)
C f- C· 2[(i.e., left shift Cby tpositions; we can be sure that t = 8)

Fill-LSBs(c, T, t, L)
C f- C· 27

tf-t-7

A f-8000h

The Fill-LSBs procedure usually loads the next codeword byte into
the least significant byte of C, making t = 8 bits available for transfer
into the active portion of the register. In the event that the most recently
loaded codeword byte was an FFh' however, the next codeword byte is
left shifted before adding it into C. This fills only 7 bit positions in
the least significant byte of C. Accordingly, we set t = 7 so that a new
codeword byte will be loaded after only 7 renormalization shifts. In this
way, all subsequent codeword contributions are effectively left shifted,
compensating for bit stuffing by the encoder.

Fill-LSBs Procedure
tf-8
If (L = Lmax) or (T =FFh and BL >8Fh),

C f- C+FFh (codeword exhausted; fill C with 1's from now on)

else
If T =FFlll

t f-7

T f- BL, L f- L + 1
C f- C +T . 28-[

Chapter 12: Sample Data Coding 483

Notes:

• Once the codeword segment is exhausted, the Fill-LSBs procedure
is expected to fill the C register with l's indefinitely, thereby syn­
thesizing the largest possible codeword which is consistent with the
available data. Termination and length computation algorithms im­
plemented by the encoder depend upon the fact that the decoder will
behave in this way (see Section 12.3).

• The codeword segment is considered exhausted if all Lmax bytes are
read or if any marker code in the range FF90h through FFFFh is en­
countered. The most efficient compressed representations will not
contain such terminating marker codes; however, the JPEG2000 stan­
dard does not forbid their appearance within a legal codeword seg­
ment. Since a standard decoder will not read past a terminating
marker code, the remainder of the codeword segment may contain
private or application-specific data. As an example, the compres­
sor might insert error correction codes after an explicit terminating
marker. The delimiting marker codes, FF90 (SOT), FF91 (SOP),
FF92 (EPH), FF93 (SOD) and FFD9 (EOG), should generally be
avoided, since their appearance within an MQ codeword segment may
interfere with resynchronization logic in error resilient decompressors.

The main decoding procedure is shown below.

MQ Decode Procedure (returns x)
Set s = SK. and p = p (BK.)
Af-A-p
If A < p,

S f- 1 - s (conditional exchange of MPS and LPS)

If Cactive < - (" f C)P, compare actIve regIOn 0
Output X = 1 - S

Af-p
else
Output x = S

cactive f- cactive _ p

If A < 215

If x = SK., (the symbol was a real MPS)
BK. f- Bmps (BK.)

else (the symbol was a real LPS)
SK. f- SK. EEl X s (BII;) (i.e., switch MPS/LPS if X s (BK.) = 1)
BII; f- Blps (BK.)

484 Embedded Block Coding

While A < 215 ,
Renormalize-Once (A, C, l, t, L)

The Renormalize-Once procedure may be described as follows.

Renormalize-Once Procedure (decoder)

If l = 0,
Fill-LSBs(c, t, l, L)

A ~ 2A, C ~ 2C, t ~ l - 1

12.2 EMBEDDED BLOCK CODING
The embedded block coding algorithm adopted by JPEG2000 has al­

ready been described in Chapter 8. Specifically, the bit-plane coding
primitives are detailed in Section 8.3.2, while the fractional bit-plane
scanning pattern is the subject of Section 8.3.3. Our goal here is to
provide an algorithmic description of the coding procedures. The reader
should refer to the earlier development for an explanation of the moti­
vation behind these procedures. The JPEG2000 coder also supports a
number of mode variations. These are described later in Section 12.4.

12.2.1 OVERVIEW
The block coder may be understood as a machine which processes a

single code-block of quantized subband samples,having height J1 and
width h, producing an embedded bit-stream which consists of a whole
number of bytes. In the elementary mode described here, the embedded
bit-stream constitutes a single MQ codeword segment. The maximum
number of samples in any block and the individual block dimensions
must satisfy

Figure 12.5 provides a high level view of the block coding machine.
Let y [j1, j2] == y [j] denote the J1 x h array of subband samples

which constitute the code-block. Also let the corresponding quantiza­
tion indices be represented in sign-magnitude form, with the sign de­
noted X [j] E {-I, I} and the magnitude denoted v [j] ~ O. The quan­
tization procedure which produces these sign and magnitude values is
described in Section 10.5. When necessary, we attach a subscript i to
these quantities so as to identify the particular code-block Bi under con­
sideration. The quantized magnitudes have a Kbax-bit representation,

Code-block
data

vU].xU]

Figure 12.5.

Chapter 12: Sample Data Coding 485

Embedded bit-stream

Block Encoder

'-----.--r----'~~ -

~ Lt') L(2) LIZ) Ltzl2 Tag

information

Embedded block encoder high level perspective.

where b identifies the subband to which the code-block belongs and the
value of Kr;nax is given by equation (10.22). This value depends upon
quantization and ranging parameters which may be different for each
subband of each tile-component.
We point out that the notation used here agrees with that of Chap­

ter 10 only in the absence of ROI adjustments. For consistency with the
discussion of ROI adjustments in Section 10.6, the magnitude indices
processed by the block coder should actually be denoted 'V [j], with the

f-

number of magnitude bits denoted K bax and given by equation (10.33).
We prefer to avoid this notational clutter for the present description.
The block coder first determines the number of bits, K ::; Kr;nax, which

are actually required to represent the quantized magnitudes, v [j]. That
is v [j] must be less than 2K for all j E [0,1I) x [0, J2)' Ideally, the
encoder finds the smallest such K, but any K ::; KJ:laX is acceptable.
The difference,

K lllSbs = Kr;nax - K

represents the number of most significant magnitude bits which the de­
coder will take to be zero for all samples. The remaining K magnitude
bits must be explicitly coded. As suggested by Figure 12.5, the value of
K lllSbs is explicitly signalled as part of the code-block's tag information
(see Section 12.5).
Coding proceeds incrementally through the K magnitude bit-planes

of the quantization indices, starting with the most significant bit-plane,
p = K - 1, and working down to the least significant bit-plane, p = O.
More specifically, the coding proceeds via a number of passes through
the entire code-block. We use the labels z and p to identify coding
pass and bit-plane indices, respectively. The first coding pass, z = 1,
represents the most significant magnitude bit-plane, p = K - 1, for all
samples in the code-block. Thereafter, three coding passes are used to
represent each successive bit-plane, so that the total number of coding
passes is Z = 3K - 2. The binary symbols used to represent these coding

486 Embedded Block Coding

pass I pass2 pass:: =3(K - I - p) - I passZ =3K-2

x::=::
bit-plane K-f bit-plane K-2

~
bit-planep

~
bit-plane 0

Figure 12.6. Relationship between coding passes and bit-planes.

passes are delivered to the MQ coder, which incrementally constructs the
embedded bit-stream. For each coding pass, z, the coder determines the
length in bytes, L(z), of a prefix which is sufficient to decode all of the
symbols used to represent the first z coding passes. The lengths, L(z),

define the allowable truncation points for the code-block's embedded bit­
stream. As suggested by Figure 12.5, some or all of these lengths may be
signalled in packet headers as part of the code-block's tag information
(see Section 12.5).
Following the notation developed in Section 8.3, let v(p) [j] denote the

value formed by discarding p LSBs (Least Significant Bits) from v [j],
i.e.,

v(p) [j] = lv2~]J
Also, let vP [j] denote the binary digit in bit position p of v [j]; this is the
LSB of v(p) [j]. The three coding passes for bit-plane p together represent
the magnitude bit, vP [j], for every sample in the block, together with
the sign, X [j], of any sample for which vP [j] is the most significant non­
zero magnitude bit (i.e., v P [j] = 1 and v(p-l) [j] = 0). Each of the J1h
samples is processed in exactly one of these three coding passes. The
samples processed in the first coding pass of bit-plane p are identified by
the set p(p,O). Those processed in the second and third coding passes are
identified by the sets p(p,l) and p(p,2), respectively. Figure 12.6 depicts
the relationship between coding passes and bit-planes.
Decoding also proceeds incrementally, working from the first coding

pass, z = 1 (most significant bit-plane, p = K - 1) through to the
last available coding pass, Z ~ Z. It is important to realize that the
embedded bit-stream passed to the decoder may be truncated to some

length, L(z), which is sufficient to represent the binary symbols coded up
to and including the corresponding coding pass, Z. The decoder deduces
both the length, L(z), and the number of available coding passes, Z,
from information signalled in packet headers (see Section 12.5).

Chapter 12: Sample Data Coding 487

Embedded bit-stream Code-block
data

v[j].iUl.p[jJ

Figure 12.7. Embedded block decoder high level perspective.

If Z corresponds to the final pass, p(p,2) , of some bit-plane, P, then
all samples have p [j] = p missing LSBs. More generally, if coding pass
Z corresponds to p(p,i), the number of missing LSBs at sample location
j is given by

["] = { p if j E p(p,k) for some k :::; i
P J P + 1 otherwise

As indicated by Figure 12.7, the output of the block decoder consists of
the reconstructed sign and magnitude values, X[j] and v[j], together with
the number of undecoded LSBs, p [j], for each sample in the code-block.
The decoded magnitude, v[j], agrees with the encoded value, v [j], except
possibly in its least significant p [j] bit positions; these undecoded bits
are set to O. The decoded sign, X[j], agrees with X [j], except possibly
when the decoded magnitude is v[j] = O. These three quantities are
employed by the dequantization procedure described in Section 10.5.

12.2.2 STATE INFORMATION
In addition to the internal state registers used by the MQ coder (see

Section 12.1), the embedded block coder maintains four different types
of state information, as shown in Figure 12.8. Although specific im­
plementations of the encoder and decoder might employ different state
variables, we find those identified in the figure to be convenient both for
description and implementation.
Binary symbols are coded in one of 19 contexts whose labels, "", are

used to index the context state file. Any permutation of the labels
used in the present description is acceptable, since they are used only to
distinguish between contexts. Table 12.1 identifies the states with which
each of the 19 contexts should be initialized. The last column in the
table indicates the conditional probability estimates (for the LPS, x = 1)
implied by these initial states. These values are taken directly from
Table 2.1. It is worth noting that the last context label, ""uni = 18, has

488 Embedded Block Coding

Code-block Significance Delayed First pass
sample array state significance membership IContext state filel
v[j], xU] a[j] cr[j] 1![j] (LA-,SK)

I
~i ~i ~i ~i

I Context Adaptive
x

MQCoder I Embedded

"'
Bit-Plane Coder K IState registers I bit-stream

Figure 12.8. Block diagram of the embedded block coder.

Table 12.1. MQ context state initialization.

K, designation I:K 5 K Ix (1)

0 K.,sig 4 0 ~ 0.0283
1-8 /\,sig 0 0 ~ 0.475
9 K

fun 3 0 ~ 0.0593
10 -14 fl,sign 0 0 ~ 0.475
15 -17 K.,mag 0 0 ~ 0.475
18 ",uIIi 46 0 ~ 0.475

a special non-adaptive state. According to the state transition rules of
Table 2.1, neither L:18 nor S18 may transition to anything other than their
initial values, since L:18 = 46. For this reason, some implementations
might choose not to allocate storage for this context.
At each sample location, j, the embedded block coder maintains three

binary state variables, (J [j], d [j] and 1f [j]. The value of (J [j] is initial­
ized to 0 and transitions to 1 when the first non-zero magnitude bit is
coded for the sample. We say that the sample becomes "significant" at
this point and refer to (J [j] as the sample's significance state. d [j] holds
a delayed version of (J [j]. Specifically, d [j] is initialized to 0 and tran­
sitions to 1 after the first magnitude refinement coding step at location
j. This occurs in the bit-plane following that in which the sample first
became significant. The value of 1f [j] is set during the first coding pass,
p(p,O), of each bit-plane, p. If the sample is processed in that coding
pass (i.e., j E p(p,O»), 1f [j] is set to 1. Otherwise, 1f [j] is set to O. This
assists in the determination of coding pass membership for subsequent
coding passes.
The decoder maintains an identical set of state variables to the en­

coder. Moreover, the decoding procedures ensure that these state vari­
ables hold identical values to their encoder counterparts after each coding
step.

Chapter 12: Sample Data Coding 489

t

context window
....41------ code-block width, J] ------t~~

Figure 12.9. Stripe-oriented scanning pattern followed within each coding pass. This
is identical to Figure 8.15, reproduced here for convenience.

12.2.3 SCAN AND NEIGHBOURHOODS
In each of its 3K - 2 coding passes, the block coder follows a stripe­

oriented scan through the code-block samples, as illustrated in Fig­
ure 12.9. Each stripe represents four rows of code-block samples, with
the possible exception of the last stripe in the block. Note that stripes
are always aligned with the top of the code-block, without regard for the
positioning of the block within the canvas coordinate system.
Although each coding pass conceptually involves a scan through all

samples in the code-block, information for any given sample location, j,
is coded only in one of the three coding passes for each bit-plane. Coding
pass membership and the coding context labels, r;" are determined on
the basis of state and sign information within a 3 x 3 neighbourhood.
This neighbourhood is known as the context window and is illustrated in
Figure 12.9. To facilitate the description of encoding and decoding pro­
cedures, it is convenient to define several functions on the neighbourhood
quantities as follows.

Significance functions: The following functions are defined in terms
of the significance state variables. For the purpose of these definitions,
as well as the sign functions below, the value of (J" [j] should be taken
as 0 (insignificant) at any location, j, which falls outside the block
boundaries.

r;,h [j] ~ (J" [jl,j2 - 1] + (J" [jl,h + 1]
r;,V [j] ~ (J [jl - 1,j2] + (J [jl + 1,]2]
r;,d [j] ~ l: (J" [jl + k1,h + k2]

kl,k2E{-1,l}

(12.1)

490 Embedded Block Coding

Table 8.1 defines a significance coding context label, K;sig [j], as a
function of K;h [j], K;V [j] and K;d [j]. Importantly, K;sig [j] = 0 if and only
if all 8 neighbouring samples are insignificant.

Sign functions: We first define horizontal and vertical sign bias func­
tions according to

Xh [j] ~ X []l,h - 1] (j [jl,]2 - 1] + X []l,h + 1] (j [jl,]2 + 1]
XV [j] ~ X [jl - 1,]2] (j []l - 1,]2] + X [jl + 1,]2] (j [jl + 1,]2] (12.2)

These are then truncated to the range -1 through 1 to form the
modified quantities

xh [j] ~ sign (Xh [j]) min { 1, Ixh [j] I}

XV [j] ~ sign (Xv [j]) min {I, Ixv [j]l}

Apart from the neighbourhood functions defined above, all encoding
and decoding operations for the sample at location j depend only on the
state, sign and magnitude bits for that location.

12.2.4 ENCODING PROCEDURES
We are now in a position to provide a functional description of the

embedded block coder.

Embedded Block Encoder
Initialize the MQ encoder
Initialize the context states according to Table 12.1
Set vtmp +-- 0

For each j E [0, Jt} x [0, h),
Initialize (j [j] +-- 0, d [j] +-- 0 and 7r [j] +-- 0
vtmp +-- v tmp V V [j] (note that V means "inclusive or")

+--
Set K +-- Kbax (use Kbax if there are ROI adjustments)

While K > aand 2K - 1 > vtmp ,
K+--K-l

For p = K - 1, ... , 1,0,
If p < K -1,

Perform Encoder-PassO (i.e., p(p,O))

Perform Encoder-Pass! (i.e., p(p,l))

Perform Encoder-Pass2 (i.e., p(p,2))

Chapter 12: Sample Data Coding 491

Coding pass p(p,O) is known as the "significance propagation pass."
It processes those samples which are not currently significant (0' [j] = 0),
but have a significant neighbourhood (K:sig [j] =1= 0). In each of the fol­
lowing pseudo-code fragments, K:sig [j] is to be understood as a function
which is evaluated whenever it is required, based on the prevailing signif­
icance states, 0' [j], together with Table 8.1 and equation (12.1). Similar
considerations apply to the modified sign bias functions, Xh [j] and XV [j].

Encoder-PassO Procedure (significance propagation)

For each location, j, following the stripe-based scan of Figure 12.9,
If 0' [j] = °and K:

sig [j] > 0,
MQ-Encode(x = vP [jj ,K: = K:sig [j])
If vP [j] = 1,

0' [j] f- 1
Encode-Sign(x [j] ,Xh [j] ,Xv [j])

7f [j] f- 1
else

7f [j] f- °
The sign coding primitive may be implemented as follows.

Encode-Sign Procedure

Determine K:sign and Xflip from Xh [j] and XV [j] using Table 8.2
If X [j] . Xflip = 1,
MQ-Encode(x = 0, K: = K:sign)

else
MQ-Encode(x = 1, K: = K:sign)

Coding pass p(p,l) is known as the "magnitude refinement pass." It
includes those samples which first became significant in a previous bit­
plane; i.e., those samples which are significant (0' [j] = 1) and were not
coded in the significance propagation pass (7f [j] = 0).

Encoder-Pass! Procedure (magnitude refinement)

For each location, j, following the stripe-based scan of Figure 12.9,
If 0' [j] = 1 and 7f [j] = 0,
Find K:lIlag from d [j] and K:sig [j] using Table 8.3
MQ-Encode(x = vP [j] ,K: = K:lIlag)

0=- [j] f- 0' [j]

492 Embedded Block Coding

The final coding pass in each bit-plane, p(P,2), is the "cleanup pass."
It includes all samples which were passed over by p(p,O) and p(p,l). Since
each such sample must currently be insignificant, the coding procedures
used here are similar to those of the first pass, p(P,O). However, a run
mode is introduced to reduce the total number of symbols which must be
coded. For a more complete discussion of the run mode, see Section 8.3.2.

Encoder-Pass2 Procedure (cleanup)

For each location, j, following the stripe-based scan of Figure 12.9,
If j1 mod 4 = 0 and j1 :S J1 - 4, (entering a full stripe column)

r +- -1 (signifies not using run mode)
If ~sig [j1 + i,h] = 0 for all i E {O, 1, 2,3}, (enter run mode)

r+-O
While r < 4 and vP[j1 + r,h] = 0,

r+-r+1
If r = 4,

MQ-Encode(x = 0, ~ = ~run)

else (run interruption)
MQ-Encode(x = 1, ~ = ~run)

MQ-Encode(x = l~J ,~= ~uni)

MQ-Encode(x = rmod2,~ = ~uni)

If () [j] = 0 and 1l' [j] = 0,
If r ~ 0,

r +- r - 1 (no need to code significance)
else

MQ-Encode(x = vP [j], ~ = ~sig [j])
If vP [j] = 1,

() [j] +- 1
Encode-Sign(x [j] ,Xh [j] ,Xv [j])

It is worth noting that the algorithmic steps presented above do not
represent the most efficient implementation of the cleanup coding pass
in software. The Kakadu implementation provided with this text, for
example, avoids a number of the conditional statements suggested by
the description given here.

12.2.5 DECODING PROCEDURES
A suitable set of decoding procedures may be readily derived from the

encoding procedures described above. The outer processing loop differs
from that of the encoder in that there is no need to compute K. This is
deduced from the value of K lIlSbs , recovered from the appropriate packet

Chapter 12: Sample Data Coding 493

header. We are also obliged to initialize the output quantities, v[j] and
p [j], to reflect the fact that nothing has yet been decoded. Finally, we
must be careful to decode only those passes for which compressed data
is available.

Embedded Block Decoder
Initialize the MQ decoder
Initialize the context states according to Table 12.1

For each j E [0, J1) x [0, h),
Initialize (J" [j] f- 0, d [j] f- 0, 7f [j] f- 0, V [j] f- aand p [j] f- K

For p = K -1, ... ,1, 0,
z = 3(K -1 - p) - 1
If p < K -1,

If z :s Z,
Perform Decoder-PassO (i.e., p(p,O))

If z + 1 :s Z,
Perform Decoder-Pass! (i.e., p(p,l))

If z+2:S Z,
Perform Decoder-Pass2 (i.e., p(p,2))

The significance propagation pass may be decoded as follows.

Decoder-PassO Procedure (significance propagation)

For each location, j, following the stripe-based scan of Figure 12.9,
If (J" [j] = 0 and K;sig [j] > 0,

p [j] f- P
vP [j] f- MQ-Decode (K; = K;sig [j])
If vP [j] =1,

(J" [j] f- 1
X[j] f- Decode-Sign(xh [j] ,Xv [j])

7f [j] f- 1
else

7f [j] f- a

Sign decoding may be implemented as follows.

Decode-Sign Procedure (returns X)

Determine K;sign and Xftip from Xh [j] and XV [j] using Table 8.2
x f-MQ-Decode(K; = K;sign)
If x = 0,

494 MQ Codeword Termination

else

X f- _Xtlip

For the magnitude refinement pass we have the following.

Decoder-Pass! Procedure (magnitude refinement)

For each location, j, following the stripe-based scan of Figure 12.9,

If (j [j] = 1 and 7f [j] = 0,
prj] f- p
Find Kmag from d [j] and Ksig [j] using Table 8.3
f)P [j] f- MQ-Decode(K = Kmag)
d [j] f- (j [j]

Finally, the cleanup pass may be decoded as follows.

Decoder-Pass2 Procedure (cleanup)

For each location, j, following the stripe-based scan of Figure 12.9,

If j1 mod 4 = °and j1 :::; J1 - 4, (entering a full stripe column)
r f- -1 (signifies not using run mode)
If Ksig [j1 + i,j2] = °for all i E {O, 1,2, 3}, (enter run mode)

X f-MQ-Decode(K = Krull)
If X = 0,

rf-4
else (run interruption)

r f-MQ-Decode(K = KUlli)

r f- 2r+MQ-Decode(K = KUlli)
f)P [j1 + r, j2] f- 1

If (j [j] =°and 7f [j] = 0,
prj] f- p
If r 2: 0,

r f- r - 1 (no need to decode significance)
else

f)P [j] f- MQ-Decode(K = Ksig [jJ)
If f)P [j] = 1,

(j [j] f- 1
X[j] f- Decode-Sign (Xh [j] ,Xv [j])

12.3

Chapter 12: Sample Data Coding 495

MQ CODEWORD TERMINATION

As suggested by Figure 12.5, the embedded block coder is required to
determine a set of truncation lengths, L(z), such that an L(zLbyte prefix
of the code-block's embedded bit-stream is sufficient to recover all sym­
bols associated with coding passes 1 through z. A closely related problem
is that of terminating MQ codeword segments. In particular, suppose we
have a means of terminating MQ codeword segments, such that all sym­
bols may be correctly decoded from the resulting bit-stream. We may
then apply an algorithm which computes optimal truncation lengths to
determine the shortest prefix of the terminated codeword segment which
still allows correct decoding. For this reason, we begin in Section 12.3.1
by describing a simple and generally sub-optimal algorithm for correctly
terminating MQ codeword segments. We then devote most of our effort
to the problem of computing optimal truncation lengths, L(z).

The JPEG2000 standard places one important restriction on the ter­
mination and truncation length computation strategies which may be
adopted by a compressor. Specifically, no code-block contribution to any
packet may terminate with an FFh. This restriction ensures that none
of the code-stream's delimiting marker codes (these all lie in the range
FF90h through FFFFh) can appear as a side effect of concatenating code­
block contributions to form packets. To satisfy this requirement, the
length computation algorithm should make sure that code byte BL(z)_l

does not equal FFh for any z E {I, 2, ... ,Z}. This does not present a
practical limitation, since the MQ decoder effectively appends an FFh
to the end of the available codeword segment. Thus, in the event that
BL(z)_l =FFh, the value of L(z) may simply be decremented.

12.3.1 EASY TERMINATION

In Section 12.1.2, we described initialization and step by step encoding
procedures for the MQ encoder. Once all symbols have been coded using
these procedures, the L register holds the total number of bytes which
have been output to the byte buffer (see Figure 12.1); however, the
temporary byte buffer, T, and the C register both hold partial codeword
products, some of which must be flushed out to the byte buffer in order
to construct a suitable codeword segment. In this section, we describe
a simple algorithm for accomplishing this task. A key problem is that
of determining the number of bits which actually need to be flushed out
to the byte buffer for correct decoding. The algorithm presented here
does not generally find the minimum possible code length. If desired,
the algorithm described in Section 12.3.2 may be invoked later to find

496 MQ Codeword Termination

the smallest prefix of the terminated code-stream which is sufficient for
correct decoding.
Our approach is based on the general discussion of length-indicated

arithmetic codeword termination in Section 2.3.3. Recall that the code­
word is essentially the binary fraction representation of the interval lower
bound, e, where the final coding interval is [e, e+ a) ~ [0,1) and e and a
are related to the MQ coder's internal state variables as follows. Writing
b for the number of renormalization shifts which have been applied to
the coder's C and A registers, we have 2-16A = 2ba. Also, the least
significant 16 bits of C (the active region shown in Figure 12.3) are the
fraction bits in the binary fraction representation of 2be. As shown in
Section 2.3.3, it is sufficient for the arithmetic codeword to include all of
the non-fraction bits of 2be, plus one bit to the right of the binary point.
Since the decoder appends l's indefinitely to the codeword bits which it
receives, this is guaranteed to produce a quantity which lies within the
coding interval.
From the above discussion, we conclude that it is sufficient to flush the

contents of the temporary byte buffer, T, and all but the least significant
15 bits of the C register out to the terminated codeword. There is no
harm in including additional bits from C in the terminated codeword
segment, and this is usually necessary to produce a whole number of
bytes. Observing the register organization conventions of Figure 12.3,
the following algorithm generates the terminated codeword segment.

Easy MQ Codeword Termination

nbits +- 27 - 15 - [(the number of bits we need to flush out of C)

C +- 2t . C (move the next 8 available bits into the partial byte)

While nbits > 0,
Transfer-Byte(T, C, L, f)
n bits +- n bits - [(new value of [is the number of bits just transferred)

C +- 2t . C (move bits into available positions for next transfer)
Transfer-Byte(T, C, L, f) (flush the byte buffer, T)

Although generally sub-optimal, this algorithm does have the desirable
property that the terminated codeword segment has length L = 0 if no
symbols were coded. To see this, observe that the MQ coder is initialized
with [= 12 and L = -1. Thus nbits = 0 and Transfer-Byte is invoked
only once. The resulting call to Put-Byte produces no output since
L =-1.
The termination algorithm described above may produce a codeword

segment whose last byte, BL - 1 , is an FFh. As mentioned above, this

Chapter 12: Sample Data Coding 497

MQ codeword segment
r------.A.-------.......

Internal stat
snap-shots

r I ,~ = ~~ z I
e ~I'cnl ,4", Cn" A", Cn"

tn, ' T", ' L", tn, ' T", L", tn, T"" Ln,

Figure 12.10. Complete MQ codeword segment and internal state snap-shots from
which truncation lengths, L(z), are determined.

is illegal and the encoder is obliged to decrement L. The previous byte
cannot also be an FFh because the MQ coder's bit stuffing policy ensures
that any FFh must be followed by a byte in the range OOh through 8Fh (see
Section 12.1.2). If the length computation algorithm described below
is to be used to find an optimal truncation point for the terminated
codeword segment, there is no need to prune terminal FFh'S at this stage.

12.3.2 TRUNCATION LENGTHS
In this section we consider the problem of finding the smallest prefix

of a terminated MQ codeword segment which will allow the decoder to
correctly recover all symbols from coding passes 1 through z. We denote
the length (in bytes) of this prefix by L(z). The resulting algorithm is
usually invoked for each z in the range 1 through Z, where Z is the
total number of coding passes (see Figure 12.6). We refer to the L(z) as
truncation lengths.
For convenience, we assume that a complete, terminated MQ code­

word segment is generated first and the truncation lengths are generated
as a post-processing step. Note, however, that it is possible to compute
truncation lengths incrementally as the bit-stream is being generated;
the Kakadu software supplied with this text does just that. We also
assume that a "snap shot" of the MQ coder's internal state variables is
taken at the end of each coding pass.
Let nz denote the number of symbols processed by the MQ coder

up to and including the end of coding pass z. The recorded MQ state
variables are A nz ' Onz ' tnz ' Tnz and L nz . The information available for
length computation is illustrated in Figure 12.10. Note that the number
of bytes in the terminated codeword segment is usually a little larger
than the number of bytes, Lnz ' which had been written' to the byte
buffer by the time the last symbol was coded.

498 MQ Codeword Termination

LAZY LENGTH COMPUTATION

We begin by describing a remarkably simple and also very conserv­
ative algorithm for determining suitable truncation lengths, L(z). The
algorithm usually produces lengths which are 1 or 2 bytes longer than
they need be. Our main purpose in presenting this algorithm is to derive
a simple upper bound for the set of acceptable truncation lengths. We
use this upper bound in deriving an algorithm for computing optimal
truncation lengths below.
The behaviour of the MQ decoder depends only upon those code bits

which lie within the active region of its C register. Moreover, the tight
synchronization of the encoder and decoder is such that the active re­
gions of both coders' C registers occupy identical positions in the code­
word. It follows that correct decoding of the symbols in passes 1 through
z is assured provided the codeword is truncated beyond the last bit po­
sition in Cnz . There are 27 - t nz relevant bits in Cnz ' plus the 8 bits
of the temporary byte buffer, Tnz . These must be added to the L nz
bytes already in the output buffer by the end of coding pass z, before
we can be certain that the truncated codeword segment will contain all
information relevant to the decoding of symbols coded up to that point.
The encoder usually transfers 8 bits out of the C register on each call

to the Transfer-Byte routine; however, it may occasionally transfer
only 7 bits. Since transfers of 7 bits follow the generation of an FFh byte
and this may occur at most on every second transfer, the total number
of byte transfers required to output the contents of Tnz plus the 27 - fnz
bits of C nz is bounded by

pmax _ 1 {3 if (27 - tnJ ~ 22
nz - + 4 if (27 - tnJ > 22

We conclude that it is sufficient to set

L(Z)=Lnz+F~ax, z=1,2, ... ,Z

(12.3)

bearing in mind that if B L (z)_l =FFh the value of L(z) should be decre­
mented.

OPTIMAL LENGTH COMPUTATION
The principle behind truncation length optimization is that the bit­

stream synthesized by the decoder must represent a binary fraction, c,
whose value lies within the coding interval, [cnz , anz + Cnz) ~ [0, 1). The
quantities anz and Cnz may be related to the MQ coder's state variables,
Anz and Cnz . Letting bnz denote the number of renormalization shifts of
the A and C register up to the end of coding pass z, we have 2-16Anz =

Chapter 12: Sample Data Coding 499

anz2bnz. The active region of Onz (i.e., its least significant 16 bits) holds
the fraction bits of the binary fraction representing Cnz 2bnz .

It is convenient to divide the problem of truncation length optimiza­
tion into two phases. Since L nz bytes have already been written to the
byte buffer by the end of coding pass z, and these are unaffected by any
of the coding steps performed by future coding passes, our first phase
will involve the determination of the smallest integer F 2': °such that
Lnz +F bytes of the final codeword segment are sufficient for correct de­
coding of the first z coding passes. We denote this minimum F by F:;:'in.
Of course F::;in will not exceed the value F::;ax given by equation (12.3).
If F::;in = 0, it may even be possible to truncate the codeword segment
further to some number of bytes smaller than Lnz . We consider this in
a second phase of the truncation length optimization procedure.
Subtracting the binary fraction represented by the first Lnz code bytes

from Cnz and scaling the resulting coding interval by 2bnz -(19-fnz) leaves
us with the "remainder" interval, [Cr,ar + Cr). Let TF denote the quan­
tity obtained by applying the same subtraction and scaling operations
to the binary fraction represented by the final codeword segment, as­
suming that it is truncated after Lnz + F bytes. The condition required
for correct decoding then becomes

(12.4)

and the interval bounds may be expressed in terms of our "snap-shot"
variables as

r = 2-81', + 2-8 . 2-(27-tnz)C
'""'1' nz nz

a
r

= 2-8 . 2-(27-tnz)A
nz

The quantity TF may be computed from the final buffered code bytes,
BLnz through BLnz+F-l, by following exactly the same procedure as
the MQ decoder in undoing the effects of bit stuffing. An algorithm for
computing TF is given below.

Partial Remainder Calculation
TF ~ 0, SF ~ 0, S ~ 8

For i =°to F - 1
SF ~ SF + S

TF ~ TF + 2-SF BLnz+i

If BLnz+i = FFh
s~7

else

500 MQ Codeword Termination

Sf-8

rF f- rF + 2-SF x 0.1111111···

Note that rF is an infinite binary fraction, even though F is finite,
since the decoder's policy is to append 1's indefinitely to the truncated
codeword segment. Only the first SF bits of rF are affected by the F
code bytes. These first SF bits are identified by the finite binary fraction,
rF. The remaining bits of rF are all 1'so

It is convenient to multiply all quantities by 235 so that the interval
bounds in equation (12.4) become non-negative integers. Specifically,
define the integer quantities Cr and Ar by

Cr ~ 235Cr = 227Tnz + 2tnz Cnz

A r ~ 235ar = 2tnz Anz

Our objective then, is find the smallest F 2: a such that

Cr ::; (235rF + 235- SF x 0.1111111 ...) < Cr + Ar

or, equivalently,

Cr ::; l235
rF + 235

- SF x 0.1111111··· J< Cr + A r

The above condition may be simplified by observing that F~in ::; F~ax ::;
5. Thus, there is no need to explicitly test the condition for values of
F larger than 4. Subject to this restriction, we have SF ::; 32 and
RF ~ 235rF is an integer. The testing condition may now be expressed
entirely in terms of integer quantities as

A complete algorithm for determining F~in is given below.

Determination of F~in

C f- 227t. + 2tnzC A f- 2tnz Ar nz nz , r nz

RF f- 0, Sf- 8, SF f- 35 (note: SF = 35 - SF)

F f- a
While F < 5 and (RF + 2SF -1 < Cr or RF + 2SF -1 2: Cr + Ar),

Ff-F+l
If F ::; 4, (otherwise, no further tests will be performed)

SF f- SF - S
RF f- RF + 2SF BLnz+F-l

Chapter 12: Sample Data Coding 501

If BLnz+F-1 = FFh
s+-7

else
s+-8

pmin +- F
n z

Since this algorithm involves 35-bit quantities, it may need to be im­
plemented somewhat differently on platforms which support only lower
precision arithmetic. Various approaches may be adopted, which we will
not develop here. The Kakadu software supplied with this text demon­
strates one useful implementation strategy.
As mentioned above, it may occasionally be possible to find truncated

codeword segments which are actually smaller than L nz . The decoder's
policy of appending 1's indefinitely to the received codeword segment
effectively appends an alternating pattern of FFh'S and 7Fh'S beyond the
truncation point. Thus, if the Lnz + F~in-byte prefix, already found
to be sufficient for correct decoding, terminates with such an alternat­
ing pattern of FFh'S and 7Fh'S, these bytes may be safely removed. In
fact, truncation lengths smaller than Lnz are acceptable only when the
discarded bytes will be re-synthesized by the decoder. Any other form
of truncation must alter the binary fraction represented by these Lnz
code bytes. To see why this is unacceptable, we consider separately the
possibility of a decrease and the possibility of an increase in this binary
fraction value.
Due to the effects of bit-stuffing, truncation may actually cause the

value represented by the binary fraction to decrease. For example, plac­
ing the truncation point immediately prior to an FF80h will cause the
decoder to synthesize FF7Fh' FF7Fh' ... In such cases, the binary frac­
tion, c, synthesized by the decoder must be strictly less than the interval
lower bound, Cnz ' so that one or more symbols will be incorrectly de­
coded. Otherwise (this is the more likely case), truncating to lengths less
than L nz ' in any manner which is inconsistent with re-synthesis of the
discarded bytes at the decoder, must increase the value represented by
the binary fraction, c, by at least 2-bnz+19-tnz.4 This increase is much
larger than the size of the coding interval, anz < 2-bnz , so incorrect
decoding is again assured. We conclude that truncation lengths smaller
than Lnz are achievable only when the Lnz +F~in-byte codeword prefix
terminates with an alternating pattern of FFh'S and 7Ft/s. The follow-

4There are 19 - tnz bit positions between the active regions of An. and en. and the least
significant bit of B Ln. -1'

502 Mode Variations

ing code fragment uses this fact to find the minimum possible truncation
length, L(z).

Truncation Length Minimization

L(z) f- L + F minnz nz

If L(z) ~ 1 and BL(z)_l =FFh'
L(z) f- L(z) - 1

While L(z) ~ 2 and B L (z)_2 =FFh and BL(z)_l =7Fh'
L(z) f- L(z) - 2

Note that the first test for a terminating FFh is required for compliance
with the standard. The additional tests for trailing FF7Fh'S may be
skipped, with negligible impact on the expected compression efficiency.

12.4 MODE VARIATIONS
The preceding sections describe what may be termed the "default"

mode for the JPEG2000 embedded block coder. This default mode
processes the Z = 3K - 2 coding passes one by one, producing a single
MQ codeword segment which may be truncated to various lengths, L(z),

corresponding to the end of each successive coding pass, Z = 1 through
Z. The JPEG2000 standard defines several variations on this default
mode. The variations are sufficiently minor that all modes may be ef­
ficiently supported within a single decoder implementation. The mode
variations generally represent some sacrifice in compression efficiency
(often small) in exchange for additional capabilities.
Mode variations are controlled by a collection of six binary flags which

appear in the COD and COC code-stream marker segments (see Sec­
tion 13.3). Each flag is a switch which turns on or off some particular
attribute of the coder. Any combination of the six mode switches is per­
mitted, although certain combinations are of particular significance. In
particular, the intent is to provide support for the following three capa­
bilities: 1) parallel encoding/decoding of the coding passes; 2) reduced
complexity at high bit-rates (when K is large); and 3) enhanced error
resilience.

12.4.1 INDIVIDUAL MODE SWITCHES
Table 12.4.1 identifies the six mode switches, along with their flag bits.

In this section, we describe the implications of each mode switch on the
behavior of the block coder. Some useful combinations are discussed
later in Sections 12.4.2 and 12.4.3.

Chapter 12: Sample Data Coding 503

Table 12.2. Mode switches and associated flag bits for the embedded block coder.

Switch

BYPASS
RESET
RESTART
CAUSAL
ERTERM
SEGMARK

Flag bit Description

01" Selective MQ coder bypass
02" Reset context states
04" Terminate and restart MQ coder
08" Stripe-causal context formation
10" Predictable termination
20" Segmentation marker

THE "RESET" MODE SWITCH
When the RESET mode is used, the 19 context states, ~I\; and 81\;,

are reset to the values identified in Table 12.1 at the beginning of each
coding pass. Otherwise, the context states are initialized only once,
prior to the first coding pass. Forced reset of the context states at each
and every coding pass usually reduces coding efficiency somewhat, but
helps to decouple the coding passes. Together with the RESTART and
CA USAL switches, this enables parallel implementation of the coding
passes.

THE "RESTART" MODE SWITCH
When the RESTART mode is used, the MQ coder is restarted at the

beginning of each coding pass. In this case, each coding pass has its own
MQ codeword segment. At the end of each coding pass, the codeword
segment for that pass is appropriately terminated (see Section 12.3) and
the coder is re-initialized in preparation for the next coding pass. Note
that MQ coder initialization does not entail resetting of the context
states; this is controlled by the RESET switch. It is important to re­
alize that the length of each MQ codeword segment must be explicitly
signalled in the relevant packet headers. This is discussed further in
Section 12.5.4.

THE "CAUSAL" MODE SWITCH
Recall that each coding pass follows a stripe-oriented scan with stripes

of height 4. The CA USAL mode switch introduces subtle modifications
in the process used to form context labels for bit-plane coding. We
say that the modified context formation process is "stripe-causal." The
idea is to ensure that the samples within a given stripe may be coded
without any dependence on samples from future stripes. By default,
coding contexts are formed using the 3 x 3 context window shown in

504 Mode Variations

Figure 12.9, which is affected by the coding of samples from the following
row of code-block samples in previous coding passes.
The impact of the CA USAL mode switch is that samples from future

stripes are treated as insignificant for the purpose of forming context
labels. That is, at sample locations j, belonging to the fourth row of any
stripe, the significance states (J" [jl + 1, i], are regarded as 0 for all i, for
the purpose of evaluating the significance functions, K,v [j] and K,d [j], and
the sign coding function, XV [j], using equations (12.1) and (12.2).

THE "BYPASS" MODE SWITCH
The MQ coder achieves compression only when the probability esti­

mates associated with the binary symbols being coded are highly skewed.
In the most significant bit-planes of any given code-block, most symbols
tend to exhibit significantly skewed probabilities. In the less significant
bit-planes, however, this is less likely to be true. In particular, the sym­
bols coded in the significance propagation and magnitude refinement
passes, p(p,O) and p(p,l) , usually exhibit nearly uniform distributions
when p is small. In such cases, use of the MQ arithmetic coder is of
little or no benefit. The BYPASS mode switch causes the MQ coder to
be bypassed during these passes, for each p < K - 4.
The BYPASS mode is provided to allow reduced encoding and decod­

ing complexity at high bit-rates, with little or no loss in compression ef­
ficiency. It should be noted, however, that loss of compression efficiency
can be significant when compressing some types of artificial imagery,
including text, graphics or compound documents. The BYPASS mode
may also cause significant degradation of compression performance when
used in conjunction with ROI adjustments (see Section 10.6).
In order to bypass the MQ coder in a particular pass, the current MQ

codeword segment must be terminated and a raw (uncoded) segment
must be introduced. This fragments the embedded bit-stream into al­
ternate MQ and raw codeword segments, as indicated in Figure 12.11.
In the event that the RESTART switch is also used, each and every
coding pass must be terminated, creating a separate codeword segment
(MQ or raw, as appropriate) for every pass. The length of every ter­
minated codeword segment must be explicitly signalled in the relevant
packet headers, as discussed in Section 12.5.4.
In raw segments the binary symbols emitted by the bit-plane coder are

assembled into bytes and written directly to the segment's byte buffer.
A simple bit stuffing procedure is employed to prevent the appearance
of delimiting marker codes in the range FF90h (actually FF80h here)
through FFFFh. Immediately after assembling an FFh byte, a redundant
o is inserted in the most significant bit position of the next byte. The

Chapter 12: Sample Data Coding 505

.................>

Raw MQ Raw MQ
S S

MQ egmenl
egment~ egment~

~ 0.: ~ ~ 0.: ~ ~

0.: ~ ~ 0- ~ ~ 0- ~ NN. N N N N

T N C'i N" M M M '"
.; ",. .,; .,; .,; -0 -0 '0.

I , I 1 I 1 I 1 1 , I
~ I ,I 1 I

l< ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ "<: ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 8l 8l 8l 8l ~

Termination points (light shading applies only when used with RESTARTmode)

Figure 12.11. Alternate MQ and raw segments of the embedded bit-stream produced
in BYPASS mode.

Emit-Raw-Symbol procedure below may be used to perform these
tasks. This procedure accepts binary symbols, x E {O, I}, and employs
state variables, T, t and L. The state variables have similar interpreta­
tions to their MQ coder counterparts and are initialized to f' = 0, t = 8
and L = °at the commencement of the raw codeword segment.
Emit-Raw-Symbol

tf-t-l
f' f- f' + 2f x

If t = 0,
BL f- f', L f- L + 1
tf-8
If l' = FFh'
[f-7

f'f-O

The Emit-Raw-Symbol procedure replaces MQ-Encode in the sig­
nificance propagation and magnitude refinement passes described in Sec­
tion 12.2.4. Context labels are ignored and so need not be formed in the
coding passes affected by the BYPASS mode. The Emit-Raw-Symbol
procedure also replaces Encode-Sign in all affected significance prop­
agation coding passes; X [j] = 1 is represented by the symbol 0, while
X [j] = -1 is represented by the symbol 1. The terms Xh [j] and XV [j]
are ignored and need not be generated.
During raw segments, the decoding procedures are modified in the

obvious way, replacing MQ-Decode and Decode-Sign with the Get­
Raw-Symbol procedure below. This procedure undoes the effects of
bit stuffing. It also mimics the MQ decoder's policy of returning l's
once all available bytes are exhausted. Here, L max denotes the number

506 Mode Variations

of available bytes for the segment and the state variables, T, t and L,
are all initialized to O.

Get-Raw-Symbol (returns x E {O, 1})

Ift=O
tf-8

If L = Lmax ,

T f- FFh

else

If T = FFh'
t f-7

T f- BL, L f- L + 1
tf-t-1

x f-l~ Jmod2

The encoder is free to terminate raw segments in any manner which
will result in correct decoding, so long as no segment concludes with an
FFh. The reason for this restriction has already been explained in con­
nection with MQ codeword termination (see Section 12.3). As for MQ
coded segments, encoders may discard any terminating string of consec­
utive FF7Fh'S from a raw segment, since these bytes will be synthesized
by the decoder's Get-Raw-Symbol procedure. Additional bytes may
also be appended, whose interpretation is not described by JPEG2000.
Raw codeword segments may represent two coding passes and the

embedded bit-stream may be truncated at the end of the first of these
passes. As for MQ codeword segments, the compressor is free to select
truncation lengths, L(z), in any manner which is consistent with correct
decoding of the relevant passes, subject only to the restriction that no
truncation point may be preceded by an FFh. This restriction is easily
satisfied by decrementing L(z) whenever B L(Z)-l =FFh; the FFh will be
synthesized by the decoder's Get-Raw-Symbol procedure.

THE "ERTERM" MODE SWITCH
The ERTERM (Error Resilient Termination) mode switch is unique

in that it need not have any impact on the behavior of a compliant de­
coder. Instead, it represents a guarantee by the encoder to implement a
very specific termination procedure for MQ and raw codeword segments.
While encoder's are generally free to terminate both MQ and raw seg­
ments in any manner which is consistent with correct decoding, subject
to the restriction that no segment conclude with an FFh' this freedom is

Chapter 12: Sample Data Coding 507

surrendered if the ERTERM mode switch is turned on. In this case, a
predictable termination policy must be employed.

If a predictable termination policy is employed by the encoder, it is
possible for decoders to exploit the properties of this termination pol­
icy to detect errors which may have been introduced into either the
bit-stream or the length values in packet headers. This can lead to sub­
stantial improvements in error resilience. When predictable termination
is used, decoders can identify the MQ or raw codeword segment inwhich
an error first occurs with remarkable reliability. Upon detection, the cor­
rupt codeword segment and all subsequent segments should normally be
discarded, thereby concealing the visual artifacts which would otherwise
result from such corruption. Error resilient decoding is described fur­
ther in Section 12.4.3. Our purpose here is to describe the predictable
termination procedures for MQ and raw segments.

The predictable termination policy for MQ codeword segments is ex­
actly the "easy termination" method described in Section 12.3.1. After
invoking the algorithm given on Page 496, any trailing FFh must be dis­
carded. However, the segment may not be further truncated in any way.
Such optional post-processing steps would violate the predictability of
the termination procedure.

Predictable termination of raw segments is also quite simple. Once
all symbols have been emitted using the Emit-Raw-Symbol procedure
described above, the byte buffer, t, may be partially full (t < 8). In this
case, t is written out as the last byte of the terminated segment after
first filling the remaining bits with an alternating sequence of O's and
1'so The most significant fill bit must be a O. An interesting situation
occurs when the last symbol emitted to the raw segment completes an
FFh byte. In this case, it is not clear whether the procedure should emit
an extra byte containing the stuffing bit and termination pattern (the
value of such a byte would be 2Ah) or whether it should discard the FFh.
The JPEG2000 standard does not clearly resolve this ambiguity, so error
resilient decoders should be prepared to accept both possibilities.

THE "SEGMARK" MODE SWITCH

If the SEGMARK switch is turned on, a string of four binary symbols
must be encoded at the end of each bit-plane. Specifically, the symbol
string "1010" must be delivered to the MQ coder using the context
label, K

Ulli (this is the unique non-adaptive context for coding uniformly
distributed symbols). These symbols complete the third coding pass
(i.e., the cleanup pass, p(p,2)) in each bit-plane, p. The decoder must
be careful to consume these four symbols before proceeding to the next

508 Mode Variations

bit-plane5 . An error resilient implementation of the decoder may use
SEGMARK symbols to detect the presence of errors and take measures
to conceal the effects of these errors, as discussed in Section 12.4.3.

12.4.2 MODES FOR CODER PARALLELISM
Since code-blocks are encoded and decoded independently, implemen­

tations are at liberty to process multiple blocks in parallel for enhanced
throughput. We refer to this as "macroscopic parallelism," since it does
not require tight synchronization between the parallel processing steps.
An obvious drawback of macroscopic parallelism is that each parallel
processor must maintain a separate copy of the coder state variables,
including the arrays, (J' [j], d [j] and 1f [j]. In many cases, each parallel
processor must also have access to a separate code-block sample buffer.
Opportunities for parallel implementation are enhanced by the RE­

SET, RESTART and CAUSAL mode switches. If all three switches are
turned on, encoder and decoder implementations may process any or all
of the coding passes within a code-block in parallel. We refer to this
as "microscopic parallelism," since it requires tight synchronization be­
tween the coding pass processors. In one possible implementation, each
"clock6" advances all processors by one position in the stripe-oriented
code-block scanning pattern, with the processor for coding pass z main­
taining a position two stripe columns behind the processor for coding
pass z - 1. This is illustrated in Figure 12.12.
Parallel implementation is possible because the state information used

in coding pass z is unaffected by the coding steps in pass z - 1 which
occur more than 5 samples ahead in the scanning pattern. This is a
consequence of the CA USAL mode switch. In the default, non-causal
mode, parallel coding passes must be separated by h +2 stripe columns,
which substantially increases implementation complexity7. Also essen­
tial to parallel processing of the coding passes is the fact that arithmetic
coding and adaptive probability estimation proceed independently in
each coding pass. These properties are introduced by the RESTART
and RESET mode switches, respectively.

5The decoder lllay get away with ignoring the SEGMARK mode switch if the RESTART
mode is effective, since then every coding pass is individually terminated.
6Here, we are thinking of a synchronous digital circuit, whose state transitions occur on the
rising edge (or falling edge) of a master clock signal.
7It is actually possible for an encoder to implement all coding passes entirely independently,
without specific synchronization constraints. This is because it has access to all bits of the
code-block samples which determine coding contexts and coding pass membership. This
possibility is not available to the decoder.

Chapter 12: Sample Data Coding 509

Stripe context window for pass 1
Stripe context window for pass 2

Stripe context window for pass 3
Stripe context window for pass 4

Q)

0..
'C­til

Figure 12.12. Parallel processing of coding passes with the RESET, RESTART and
CA USAL mode switches. The stripe context window is the union of the coding context
windows for all samples in a single stripe column.

An additional benefit arising from the implementation of all coding
passes in parallel is that there may be no need to maintain complete
representations of the state arrays, (J [j], d [j] and 7f [j]. However, this
benefit can be realized only if sufficient resources are available to imple­
ment all Z passes simultaneously. Since the number of passes can differ
substantially from block to block, many of the coding pass processors
may be idle most of the time. Also, since each sample is processed in
only one of the three coding passes in each bit-plane, at least two thirds
of the processors can be expected to be idle in each clock period. These
are consequences of the tight synchronization required for microscopic
parallelism. To alleviate these concerns somewhat, it is advantageous
to employ the BYPASS mode as well. This substantially reduces (by
nearly a factor of 3) the number of parallel MQ coders which must be
implemented to achieve guaranteed "sample-per-clock" throughput.

12.4.3 MODES FOR ERROR RESILIENCE
Since code-blocks are coded independently, errors may not propagate

beyond the code-block whose bit-stream is corrupted. Nevertheless, a
corrupted code-block bit-stream usually leads to objectionable artifacts
in the decompressed image. Generally speaking, once an error occurs,
the remainder of the embedded bit-stream is useless and subsequent
decoding steps are likely to produce erroneous results. This is certainly
true in arithmetically coded segments of the bit-stream, since a single
bit error destroys synchronization between the encoder and the decoder.
However, arithmetic coding is not the only source of dependencies. Even

510 Mode Variations

segmark segmark segmark

bit error
usable passes I corrupt

~

predictable termination

Figure 12.13. Effect of SEGMARK (left) and ERTERM with RESTART (right) on
error resilience.

in raw segments a single symbol error in the significance propagation pass
may corrupt the (J [j] and 1r [j] state arrays, rendering the remainder of
the bit-stream unusable.
The SEGMARK and ERTERM switches provide quite different mech­

anisms to enhance error resilience. Suppose firstly that the SEGMARK
option has been used to insert the special four symbol code, "1010,"
at the end of each cleanup pass, p(p,2). This scenario is illustrated on
the left in Figure 12.13. A single error in bit-plane p, is likely to cor­
rupt at least one of the four symbols at the end of pass p(p,2). Upon
detecting the corruption, an error resilient decoder should attempt to
discard those coding passes which it suspects may contain errors. In
the simplest case, the truncated bit-stream is then decoded over again
from scratch. The result will be a lower quality rendition of the relevant
subband samples, but less objectionable than the visual artifacts usually
produced by decoding a corrupted bit-stream. Since the decoder has no
way of knowing which of the three passes p(p,O) through p(p,2) contained
the error, it must discard them all.
An attractive alternative is to use the ERTERM and RESTART op­

tions to create a separate predictably terminated codeword segment for
each coding pass. Any error in the bit-stream is likely to leave the coder
in a state which is inconsistent with the predictable termination policy.
An error resilient decoder may detect this condition at the end of the
coding pass in which the error occurred, using methods which we de­
scribe below. In this way, the decoder discards only those coding passes
which are affected by the error. This scenario is illustrated on the right
in Figure 12.13. It is worth mentioning that the RESTART mode need
not be accompanied by RESET, since error detection has no dependence
on the states of the probability estimation machinery.
Although the ERTERM and RESTART options provide superior er­

ror resilience to that offered by the SEGMARK mechanism, the overhead
introduced by terminating each coding pass and explicitly signalling

Chapter 12: Sample Data Coding 511

their lengths is larger than the cost of the four SEGMARK symbols
per bit-plane. Both mechanisms may be used together if desired.

DETECTION OF TERMINATION INCONSISTENCIES
The following procedure may be used to detect termination incon­

sistencies in a predictably terminated raw codeword segment (these are
generated only in BYPASS mode). It is invoked once all symbols have
been retrieved from the segment.

Termination Consistency Check (Raw)

x +-55h (alternating string of O's and l's)

If L < L max and T =FFh and t = 0, (last byte created by bit stuffing)
T +- BL, L +- L + 1, t +- 8, x +-2Ah

If L :f: L max or (T mod 2f) :f: l28X- t J'
ERTERM-Error

We turn our attention now to predictably terminated MQ codeword
segments. Predictable termination must be performed using the "easy
termination" algorithm of Section 12.3.1, which outputs sufficient bytes
only to ensure that the most significant bit of the active region of C
(see Figure 12.3) is included in the final codeword byte. Let k 2: 0 be
the number of less significant bit positions which are included in this
final codeword byte and let Cmsbs be the value represented by the least
significant k+ 1 bits of this byte. Thus, Cmsbs is also the value represented
by the most significant k+ 1 bits of C;~Zive. Figure 12.14 illustrates these
relationships, along with those developed below.
Once all symbols have been correctly decoded, the bits in the active

portion of the decoder's C register, Cd~~ive, are aligned with the corre­
sponding bits in C:;~Zive. Now Cd~~ive always holds the difference between
the value represented by the codeword bits and the value represented by
the symbols decoded so far. Since all symbols have been decoded and
the decoder's policy is to fill missing codeword bit positions with 1's, we
must have

Cactive (1111 1) cactive
dec = ~~ - enc

k+l bits 15-k bits

It follows that, unless an error has occurred, the most significant k + 1
bits of Cd~~ive must all be o. These are also the most significant k + 1
bits of C, as illustrated in Figure 12.4. This is the principle observation
underlying the decoder's error detection strategy.

512 Mode Variations

caClivc
cnc

r_-----.A...----_"

--------_.~

'--------. ~-~f__-

Figure 12.14. Relationships used to derive error detection conditions for predictably
terminated MQ codeword segments.

Let 8 denote the number of FFh'S synthesized by the Fill-LSBs pro­
cedure after all L max bytes are exhausted (see Page 482). Assuming that
the final byte output by the predictable termination algorithm was not
an FFh, one of the following must be true of an uncorrupted bit-stream.

• If t = 0, the C register contains 16 codeword bits (including appended
l's), so exactly one FFh must have been synthesized (5 = 1) and the
entire most significant byte of C must be 0.

• Otherwise, 1 ~ t ~ 7. In this case, the C register contains 16 + t
codeword bits (including appended l's), so two FFh'S must have been
synthesized (8 = 2) and the t most significant bits of C must all be
0.

If the terminal byte output by the easy termination algorithm was an FFh
it must have been discarded. In this case, the scenarios described above
apply with 8 = 2 and 8 = 3, respectively. The following algorithm uses
these principles to test for termination inconsistencies.

Termination Consistency Check (MQ)

If t = 0,
5 f- 8 + 1, t f- 8

If 5 < 2 or 8 > 3 or l22?-t J =1= 0,
ERTERM-Error

It is worth clarifying the process by which 8 is determined for use in
this algorithm. We may view 8 as a state variable which is initialized

Chapter 12: Sample Data Coding 513

to aand incremented whenever the Fill-LSBs procedure on Page 482
synthesizes an FFh (this happens on line 3 of the procedure). Note that
a predictably terminated MQ codeword segment should never contain
a termination marker code (i.e., a two byte code in the range FF90h
through FFFFh), so that L = L max is the only legitimate condition which
should cause Fill-LSBs to synthesize an FFh.

12.5
12.5.1

PACKET CONSTRUCTION
PACK-STREAM STRUCTURE

Following the EBCOT paradigm introduced in Section 8.1.3, each
code-block's embedded bit-stream is distributed across a number of qual­
ity layers, Ql, where layer indices, I, run from a through A - 1. We
referred to this distributed representation as a "pack-stream," since it is
formed by packing individual code-block contributions together in some
fashion.
The umbrella term "code-stream" refers to both the coded data and

the various markers and marker segments which are used to locate and
describe coding parameters and auxiliary information. Associated with
each tile is a single pack-stream. In the simplest case, the pack-streams
for each successive tile (there may be only one) appear one after the
other in the code-stream, separated by appropriate markers. However,
pack-streams may be segmented into so-called "tile-parts" and then in­
terleaved within the final code-stream. For a thorough discussion of
code-stream syntax, the reader is referred to Chapter 13. For the re­
mainder of this discussion we restrict our attention to a single tile and
hence a single pack-stream.
We write z! for the number of coding passes for code~block Hi which

may be decoded from quality layers Qo through Ql. Code-block Hi

contributes a total of L~zD code bytes to these layers. Its incremental

contribution to any particular layer, Ql, thus consists of L~zD _ L~z;-l)
code bytes and represents z! - zi- 1 coding passes. Empty contributions
(i.e., z! = zi-1

) are permitted and can occur frequently in practice.

Methods for calculating the truncation lengths, L~z), are discussed in
Section 12.3.2, while Section 8.2 describes methods for optimizing the
truncation points, zL across all code-blocks, Hi, and quality layers, Ql.
The fundamental organizational unit for pack-streams is the "packet."

Each packetS (or grouping), Qc,r,p,l, contains the code-block contribu-

8There is no intentional connection between JPEG2000 packets and the packets used in
network communications.

514 Packet Construction

tions to one quality layer, Ql, from one image component, c, at a single
DWT resolution level, R r , within the bounds of a single precinct, p.
Resolution level indices range from 0 to D, where D is the number of
DWT levels for the relevant tile9 . Resolution level Ro, consists of the
single subband LLD, while each subsequent level, Rr , consists of three
subbands HLD-r+l, LHD- r+1 and HHD-r+l (see Figure 10.6). Precinct
indices, p == [Pl,P2], range over the grid defined by equations (11.9)
and (11.10). For a discussion of the role played by precincts, the reader
is referred to Chapter 11.
In the simplest case, with only one image component and one precinct,

each element (solid dot) in Figures 8.4a and 8.4b corresponds to a single
packet. These figures illustrate quality progressive and resolution pro­
gressive packet orderings, respectively. With multiple components and
multiple precincts, other interesting progressions may be supported, as
discussed in Chapter 13.

12.5.2 ANATOMY OF A PACKET
Within each packet, gc,r,p,l, the code-block contributions are ordered

in a deterministic fashion, first by subband (HL, LH then HH) within
resolution level R r , and then in raster scan fashion within precinct p
of each subband. There is a nominal contribution from each code-block
within the packet scope; that is, each code-block within the scope of
precinct p in resolution level Rr of component c. However, any or all of
these nominal contributions may be empty. The total number of code­
blocks within the packet scope is given by equation (11.13). Note that
this number can actually be 0, in which case the packet must still be
represented in the code-stream.
The very first bit of the packet, identifed as ec,r,p,l, plays a special role

as an "empty header" indicator. If ec,r,p,l = 0, packet gc,r,p,l is taken to
be empty, meaning that no code-block makes any contribution to it. In
this case, the entire packet consists of a single byte, whose least signif­
icant 7 bits are undefined. If ec,r,p,l = 1, the size and other attributes
of each code-block contribution are identified explicitly by code-block
"tag" bits. It is still possible that the packet is empty, with no contri­
butions from any code-block, but this must be explicitly identified by
tag bits in the packet header. The empty header bit and the tag bits
for all code-blocks within the packet scope are concatenated to form a
single "packet header," which is padded to a byte boundary. The order

9The number of DWT levels may actually be different for each image component within each
tile. We deliberately avoid the notational clutter associated with explicitly identifying such
dependencies here.

Chapter 12: Sample Data Coding 515

byte aligned byte aligned

:E 1packe~eader 1 pac~ody
... (\ r --------.~

~~.'~~"-- ~~~.~~~~*~~~~~] i~~" IUI~11~1
.0 '---y--J'---y--J \, ~\, ~ \, ~

E HL LH HH HL LH HH
Q) tags tags tags code bytes code bytes code bytes

Figure 12.15. Packet structure.

of code-block tag bits in the packet header is identical to the order of
the contributed code bytes which follow in the packet body. This orga­
nization is illustrated in Figure 12.15. In the example of Figure 12.15,
the packet scope includes 4 code-blocks from each of the three subbands
(all resolution levels except Ro have three subbands). In general, how­
ever, the number of code-blocks may vary somewhat from subband to
subband (see Section 11.3.2).

COMMENTS ON PACKET EMPTINESS
It is worth noting that the term "empty" may be used in three different

ways when refering to JPEG2000 packets. The type of "emptiness"
associated with the empty header bit refers to the lack of tag bits in the
packet header. That is, a packet having ec,r,p,l = 0 contains no further
header bits or body bytes.
A second type of "emptiness" refers to the lack of body bytes. This

occurs when none of the code-blocks in the packet's scope contribute any
code bytes; i.e., their nominal contributions are all empty. This mayor
may not be signalled by setting the empty header bit to ec,r,p,l = O. As
we shall see, setting ec,r,p,l = 0 can sometimes be an inefficient means of
signalling this type of emptiness.
A third type of packet "emptiness" occurs when the packet's precinct
contains no code-blocks whatsoever. As explained in Section 11.3.3,
it can happen that a precinct has a non-empty intersection with the
relevant tile-component resolution, yet contains no code-blocks. In this
case, the precinct still has packets and these packets must be represented
in the pack-stream. The empty header bit may be set to either ec,r,p,l = 1
or ec,r,p,l = O. If it is set to 0 (empty header), the empty packet will
have a one byte representation. If set to 1, the header is nominally non­
empty, but the packet scope includes no code-blocks and so there will be
no further header bits. Since the least significant 7 bits of the first byte

516 Packet Construction

are undefined, the compressor may choose to fill them with 1'so In this
case, the bit stuffing procedure described below will force the inclusion
of a second byte, whose most significant bit is O. Somewhat surprisingly
then, packets whose precincts encompass no code-blocks whatsoever may
be represented with as many as 2 bytes.

12.5.3 PACKET HEADER
The tag bits associated with the contribution of code-block Bi to qual­

ity layer Ql signal the following three quantities as necessary.

!J.zl £ zl - zl-l (with z:-l £ 0)
~ ~ ~ ~

!J.L1 £ L(zD _ L(z;-l)
~ ~ ~

t--

K Insbs ~ K Inax - K·i - bi ~

The number of contributed code bytes, !J.LL need not be signalled unless
the number of contributed coding passes, !J.zi, is non-zero. The number
of missing MSBs, K:usbs , is signalled only in the first layer (equivalently,
the first packet) to which Bi makes a non-empty contribution (!J.zi > 0).

t--

Note that bi is the subband to which block Bi belongs and Kbax may
be found from equation (10.33).
The techniques used to code this tag information have already been

described in Section 8.4.2. Here we provide a procedural description of
the packet header construction process. A bit stuffing procedure is used
to pack tag bits into the packet header, so as to ensure that the packet
will not contain any of the code-stream's delimiting marker codes (these
all lie in the range FF90h through FFFFh). The bit stuffing procedure
employs a temporary byte buffer, T, and associated counter, t, which
are initialized to 0 and 8, respectively.

Emit-Tag-Bit Procedure (packs tag bit x)
tt--t-1
T t-- T + 2f x
If t = 0,

Output-Header-Byte(T)
tt--8
If T = FFh,

tt--7
Tt--O

Once all tag bits for the header have been delivered to this procedure,
the partial byte T is output as the last header byte, unless t = 8. The

Chapter 12: Sample Data Coding 517

standard does not restrict the values of the t < 8 unused bits in this
partial byte, except that the byte value may not be FFh.

The header for packet Qe,r,p,l is constructed using the procedure given
below. We use the symbol ni to identify the location of code-block
Hi within the array of code-blocks belonging to subband bi in precinct
p. For each subband, b, the array of code-blocks has height N~,e,r,p,b

and width N~,e,r,p,b, as discussed in Section 11.3.2. Two tag trees (see
Section 8.4.2) are defined on each such array of code-blocks.
The first tag tree Winclusion is used to efficiently code the index zmin, erpb ' 't ,

of the quality layer to which each code-block in the subband precinct first
makes a non-empty contribution. Its nodes are initialized according to

Winclusion [nil = zmin ~ min {Z Izl > O}e,r,p,b, t t

The second tag tree, W~~:'~~b' is initialized according to

w lTIsbs [nil = K ITIsbs
e,r,p,bi t

(12.5)

(12.6)

Note that the tag trees are shared by all A packets associated with a given
component, resolution level and precinct. The headers of these packets
must be coded in order, starting with layer index Z = °and finishing
with layer index Z = A - 1. Conceptually, the tag tree node values are
initialized in accordance with equations (12.5) and (12.6) before coding
the first packet header, although in practice incremental initialization is
both possible and desirable (see below).

Encode-Packet-Header Procedure

Emit-Tag-Bit(ee,r,p,l) (empty header bit)

If ee,r,p,l = 0,
Stop encoding

For each Hi in the scope of Qe,r,p,l, in the order of Figure 12.15,
If zi-1 = 0, (Hi has not yet contributed to any packet)

welle (Z + 1, ni, W~l~lpu~on) (effectively codes whether z~ > 0)
" 1 t

If zl >° (need to code K ITIsbs
)t' t

For k = 1,2, ... ,KillSbs + 1,
wene (k n· W ITIsbs)

, t, e,r,p,bi

.else
Emit-Tag-Bit (x = min {1, ~zi}) (codes whether ~zi > 0)

If ~z~ > 0,
Code ~z~ using VLC Table 8.4

518 Packet Construction

(note that this may invoke Emit-Tag-Bit multiple times)

Encode-Lengths(Bi , Qc,r,p,l)

We shall describe the Encode-Lengths procedure shortly. Before
doing so, however, we present a suitable header decoding procedure.

Decode-Packet-Header Procedure

ec,r,p,l f-Get-Tag-Bit
If ec,r,p,l = 0, (empty header)
Stop decoding

For each Bi in the scope of Qc,r,p,l, in the order of Figure 12.15,

llz! f- °
If zl-l = °t ,

Wdec (I + 1 n· Winclusion)
, t, c,r,p,bi

If winclusion [n·] < I
c r p b· t - ,

~zi :-- 1 (decode actual value later)
While WlIlsbs [n·] = W

lIlsbs [n·]c,r,p,bi t c,r,p,bi t,

W dec (wlIlSbS [n·] + 1 n' WlIlsbs
)c,r,p,bi t ,t, c,r,p,bi

K IIlSbs f- WlIlsbs [nilt c,r,p,bi
else

llz! f-Get-Tag-Bit (decode actual value later)
If llz! > 0,
Decode llz! using VLC Table 8.4

(note that this may invoke Get-Tag-Bit multiple times)
zl f- zl-l + llzl
t t t

Decode-Lengths(Bi , Qc,r,p,l)

INCREMENTAL TAG TREE INITIALIZATION

As mentioned above, the tag tree node values associated with any
precinct are conceptually initialized prior to coding any of its packet
headers. Leaf nodes are assigned in accordance with equations (12.5)
and (12.6). The values at other tag tree nodes are defined following
equation (8.17) to hold the minimum of their descendants' node values.
In many cases, the code-block inclusion information is discovered incre­
mentally, as quality layers are generated one-by-one using a PCRD-opt
algorithm (see Section 8.2).
Fortunately, the tag tree node values can also be initialized incre­

mentally as inclusion information becomes available. To see this, recall

Chapter 12: Sample Data Coding 519

that the tag tree coding procedure wenc(1 + 1 n' winclusion) encodes, , t, c,r,p,b; ,

whether or not Ijin > w for each wE {1, 2, ... , I+ 1}. Neither the code
bits nor the state of the tag tree are altered in any way if we initialize
the nodes with the modified values,

Winclusion [n·] = min {Imin I + 1}c,r,p,b; t t ,

prior to coding packet headers for quality layer Ql. Thus, to correctly
code packet headers for layer Ql, we need only know Ijin for those code­
blocks which actually contribute to the first I quality layers. This means
that it is possible to update the tag tree node values incrementally prior
to coding each packet, modifying only those nodes which depend on
code-blocks contributing for the first time in that layer.

MORE ON EMPTY PACKETS
At this point, it is helpful to consider some subtleties of the interac­

tion between tag tree coding and empty headers. As stated, the inclusion
tag tree codes the index, Ijin, of the quality layer to which code-block
Bi first makes a non-empty contribution. Suppose that the first packet
(layer I = 0) containing this code-block has its empty header bit set to
O. Since no header bits are generated, the state of the inclusion tag tree
is not updated until the next packet (layer I = 1). The header for this
second packet contains the tag tree code bits required to indicate first
that Ijin > 0 and then whether or not Ijin = 1. The first condition is
redundant since emptiness of the first packet implies that no code-block
can contribute until the second quality layer, i.e., lfin 2: 1. Unfortu­
nately, this redundancy is not exploited by the packet header coding
rules outlined above. This was actually an oversight in the development
of the standard, which was realized too late to justify correcting the
algorithm lO .

The inclusion of redundant information, as described above, occurs
whenever a non-empty packet follows one with an empty header. This
has a number of unfortunate consequences. A tempting method for rese­
quencing information in an existing code-stream is to add extra quality
layers and use the empty header bit to selectively disperse the original
packets through the larger number of quality layers. Unfortunately, in­
troducing empty packets between original packets alters the Ijin values
and hence the tag tree code. This means that the original packet headers
must be fully decoded and re-encoded, often requiring more bytes.

to A simple way t.o avoid t.his redundancy would have been t.o set. t.he node values of t.he
inclusion t.ag t.ree equal t.o t.he number of init.ial packet.s t.o which t.he relevant code-block
makes no cont.ribution, skipping t.hose packet.s whose headers are explicitly marked as empt.y.

520 Packet Construction

Another adverse consequence of redundant inclusion information is
the possible appearance of inconsistent states. Returning to our exam­
ple, suppose that the second packet contained tag tree code bits iden­
tifying the value of Ifill as O. This is meaningless, since no code-block
could have contributed to the empty first packet. Nevertheless, such a
condition might occur if a valid code-stream were corrupted, or if the
subtle interactions described above were not fully appreciated by an
implementor. The standard does not define the behaviour expected of
a compliant decompressor when presented with such illegal conditions.
The algorithm presented on Page 518 will implicitly convert these illegal
outcomes from the inclusion tag tree decoder to the smallest legal value
for Ifill.
When a large number of quality layers are employed it is common

to find that precincts in the higher resolution levels have a significant
number of initial empty packets. Interestingly, it is actually inefficient to
use the empty header mechanism to identify these empty packets. To see
this, observe that each initial empty packet, 9c,r,p,l, may be represented
either by setting ec,r,p,l = 0 (empty header), or by setting ec,r,p,l = 1
and following it with three zero-valued bits, corresponding to the root
nodes of each subband's inclusion tag treell . In either case, only one
byte is consumed by each initial empty packet. The problem with the
former approach is that the three inclusion tag tree bits from each initial
empty packet are simply deferred until the first packet with a non-empty
header, increasing its size accordingly.
The empty header bit provides a convenient and efficient signalling

method only when one or more of the final packets for a precinct are
empty. This is the simplest and most effective means of selectively re­
ducing the number of quality layers contributed by individual precincts
from an existing code-stream. Network transcoders might perform such
an operation routinely.

12.5.4 LENGTH CODING
The Encode-Lengths procedure is responsible for coding the value

of ~LL representing the number of code bytes contributed by code­
block Hi to quality layer Ql. In some cases, however, additional length
information must be coded by this procedure. Let z1 be the set of
coding pass indices, z, in the range zi- 1 < z :::; z}, such that z is either
the last contributed coding pass (z = zD or the last coding pass of a

11 To simplify the description, we are ignoring the lowest resolution level, Ro, which contains
only the LLD subband.

Chapter 12: Sample Data Coding 521

terminated MQ or raw codeword segment in the embedded block bit­
stream. Codeword segments are terminated after every coding pass when
the RESTART mode is in force, while the BYPASS mode requires the
termination points indicated in Figure 12.11. Let zi 1 < zi 2 < '" <
z~,IIZ~ II denote the elements of z1, where z~,IIZ~ II = z(For c~nvenience,
define zi 0 = z~-l. The Encode-Lengths procedure encodes the length
differenc'es,

AL(Z;) ~ L(z;J _ L(zL-l) 1 2 IIZll1
U t t t ,j=, , ... , i

using an integer state variable, {3i, which is unique to each code-block.
For the interpretation of this state variable, the reader is referred to the
end of Section 8.4.2. Its initial value (prior to any header coding) is 3.
It is instructive to consider the length decoding procedure.

Decode-Lengths Procedure
While Get-Tag-BitO = 1,

{3i f- {3i + 1

For j = 1,2, ... , IIZill,
{3 f- {3i + llog2 (zL - ZL-l)J (number of bits to signal ~L~z;))
~L(zL) f- 0

t

For n = (3 - 1, ... ,1,0,

~L~zL) f- ~L~zL) + 2n.Get-Tag-BitO

The encoding procedure has the additional task of determining a suf­

ficiently large value for {3i such that {3 = {3i + llog2 (zL - ZL-l)J bits
is sufficient to represent the value of ~L~zLj) for each j. The standard
does not prevent the encoder from selecting unnecessarily large values
for {3i.

Chapter 13

CODE-STREAM SYNTAX

In this chapter, we describe the JPEG2000 code-stream syntax. Only
JPEG2000 Part 1 syntax is discussed here. When applicable, Part 2
extensions are discussed in Chapter 15. This syntax provides all the
information necessary for decompression of a JPEG2000 code-stream.
The syntax specifies such fundamental quantities as image size, tile size,
number of components, and their associated sub-sampling factors. It
also specifies all parameters related to quantization and coding such as
step sizes, code-block sizes, precinct sizes, as well as the transform kernel
employed. All features present in the code-stream are signalled via the
syntax, including the number of quality layers, the number of resolutions,
progression orders, region of interest information, and whether or not
error resilient encoding has been performed. Most coding parameters
can be chosen on a tile-by-tile basis.

The syntax items mentioned above form only a partial list. We defer
an exhaustive accounting of all syntax elements and parameters until
after a high level discussion of the code-stream organization.

13.1 CODE-STREAM ORGANIZATION
In the simplest case, a JPEG2000 code-stream is structured as a main

header followed by a sequence of tile-streams. The code-stream is termi­
nated by a two byte marker, EGG (end of code-stream). This is depicted
graphically in Figure 13.1.

The main header contains global information necessary for decom­
pression of the entire code-stream. Each tile-stream consists of a tile
header followed by the compressed pack-stream data for a single tile.
Each tile header contains the information necessary for decompressing

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

524 Code-Stream Organization

Ipacket I

}-{ tile
header Ipacket I
pack- }-• stream• •

• ••

Ipacket I

Figure 13.1. The JPEG2000 code-stream.

the pack-stream of its associated tile. Finally, the pack-stream of a tile
consists of a sequence of packets as defined in Chapters 8 and 11.

13.1.1 PROGRESSION
As discussed in Chapter 9, progression enables increasing quality, res­

olution, spatial extent, and/or color components as more bytes are de­
coded sequentially from the beginning of a compressed code-stream. The
type of progression present in a JPEG2000 code-stream is governed by
the order in which packets appear within tile-streams. As such, progres­
sion can be defined independently on a tile-by-tile basis. Accordingly,
we limit our initial discussion to a single tile. We will see later that
tile-streams can actually be broken at any packet boundary to form
multiple tile-parts. Each tile-part has its own header and the tile-parts
from different tiles can be interleaved within the code-stream.
As discussed in Section 12.5, a packet from a particular tile t is indexed

by component c, resolution r, precinct p, and quality layer l. In what
follows, we denote such a packet by 9t,c,r,p,l' From Chapter 11, we have
t = [tl, t2] and p = [PI,P2] with

o:S tl < N!; O:S t2 < N',J;
o :S c < C; O:S r < Dt,c + 1;

0< < NP,t,c,r. 0 < < NP,t,c,r.- PI 1 , - P2 2 ,
o:S l < At

and
(13.1)

Chapter 13: Code-Stream Syntax 525

In these expressions,Nl andNi are the numbers of rows and columns
of tiles in the image, while C is the number of image components. Also,
Dt,c + 1 is the number of resolutions for component c of tile t. Equiv­
alently, Dt,c is the number of transform levels. Finally, Ni't,c,r and
Nf't,c,r are the numbers of rows and columns of precincts at resolution
r of component c of tile t, as given by equation (11.10).
For the purposes of this section, it is useful to think of a packet as
"one quality increment (layer) of one spatial location (precinct) of one
resolution of one component of one tile." Thus, the order in which
packets appear in a tile-stream governs which aspects of the tile are
decoded earliest. That is, the ordering of packets within a tile-stream
governs the progression properties of its associated tile.
For a given tile, the ordering of packets can be specified by a collection

of nested loops. Notionally, the indices employed in these loops are c, r,
p, and I, with the hierarchy of nesting governing the progression. There
are five different progression orders supported in JPEG2000. These pro­
gression orders are presented notionally here, followed below by a more
rigorous definition of each:
0: Layer-Resolution-Component-Position Progression (LRCP)
for each I

for each r

for each c
for each p

include gt,c,r,p,l

This progression is primarily "progressive by quality." Since the
layer index is in the outermost loop, all layer 0 packets (quality
increments) appear in the code-stream for every resolution, compo­
nent, and precinct before any layer 1 packets. The quality improves
across the entire tile each time the layer index is incremented. l

1: Resolution-Layer-Component-Position Progression (RLCP)
for each r

for each I
for each c
for each p

include gt,c,r,p,l

This progression is primarily "progressive by resolution." Since the
resolution index is in the outermost loop, resolution 0 is brought

1This qualit.y increment. need not. be 'l/,'I/;ifonn across an ent.ire tile, component., resolut.ion,
or even precinct.. Indeed, each codeblock wit.hin each precinct may contribut.e a different.
number of coding passes t.o its corresponding layer.

526 Code-Stream Organization

to full quality (all layers included) in each component and precinct
before any packets from resolution 1 are included.

2: Resolution-Position-Component-Layer Progression (RPCL)
for each r

for each p

for each c

for each l

include f;h,c,r,p,l

This progression is also "progressive by resolution." In Progression
1, the progression "within a given resolution" is by layer. Here, the
progression within a resolution is by position.

3: Position-Component-Resolution-Layer Progression (PCRL)
for each p

for each c

for each r

for each l

include gt,c,r,p,l

This progression is primarily "progressive by position," or "spatially
progressive." For appropriately chosen precinct dimensions, the
code-stream progresses from the top of the tile to the bottom of
the tile. This progression is particularly useful for compressed data
streaming in low memory scan-based systems, especially when tiling
is not employed.

4: Component-Position-Resolution-Layer Progression (CPRL)
for each c

for each p

for each r

for each l

include gt,c,r,p,l

This progression is primarily "progressive by component," as all
packets from component 0 precede all packets from component 1,
etc. When one of the color transforms of Section 10.2 is employed,
component 0 is the luminance component, and all packets contain­
ing grayscale information appear before any packets containing color
information.
As mentioned in Chapter 9, the progression order can be changed

within a tile-stream. For now, we treat only the case when a single
progression order is used in a given tile. Accordingly, each index is
incremented through its entire range, as given in equation (13.1).

Chapter 13: Code-Stream Syntax 527

LRCP PROGRESSION

Each tile-component of an image can have a different number of
wavelet transform levels. Thus, in what follows, we define

Dt max = max {Dt c}, c '

The LRCP progression can then be defined more precisely by the fol­
lowing pseudo-code:

for I = 0,1, ... ,At - 1
for r = 0,1, ... , Dt,max
for e = 0,1, ... ,C - 1
if (r ::; Dt,c)

i.' 0 1 NP,t,c,r 1lor PI = , , ... , 1 -

i.' 0 1 N P,t,c,r 1lor P2 = , , ... , 2 -

include Qt,c,r,p,l

It is worth noting that the alignment of resolutions within a tile­
stream is with respect to resolution 0 in each component. Specifically,
for a given layer I, every resolution 0 packet of every component appears
in the tile-stream before any resolution 1 packet of any component, and
so on. This becomes important when the number of resolutions (number
of transform levels) differs across components. In this case, at least one
component, say e' , will have Dt,c' < Dt,max' Such components will
contribute no packets to the tile-stream when r > Dt,c" as indicated by
the "if-statement" in the pseudo-code above.

RLCP PROGRESSION
This progression employs Dt,max as defined above to yield the follow­

ing pseudo-code for creation of the tile-stream for tile t:

for r = 0,1, ... ,Dt,max
for I = 0,1, ... ,At - 1
for e = 0,1, ... ,C - 1
if (r ::; Dt,c)

i.' - 0 1 NP,t,c,r 1lor PI - , , ... , 1 -

i.' 0 1 NP,t,c,r 1lor P2 = , , ... , 2 -

include Qt,c,r,p,l

The previous comments regarding alignment of resolutions between
components apply to this progression as well.

528 Code-Stream Organization

RPCL PROGRESSION
As discussed in Section 11.2.2, tile t occupies the region [Ef, Fn x

[E~, Fn on the canvas, with E; and Fit as given in equation (11.3).
Through the sub-sampling process of Section 11.2.4, this tile maps to

h '1 1 . . h . [Et e rFt e r)t e tl e-component reso utIOn occupymg t e regIOn l' " 1" X

[Et e r F.t e r) Th . . . f 'I 1 '2' " 2"· e precmct partItIOn 0 a tl e-component reso utIOn

. f' pt e r Pot erd' h d t [nC t n C t]IS 0 sIze 1" X 2" an IS anc ore a ~ '1' '~'2' ,

Due to differing sub-sampling factors, differing numbers of transform
levels, and differing precinct sizes by component and/or resolution, it is
convenient to define the next three progressions with respect to canvas
coordinates. This choice facilitates correct spatial registration of all tile­
component resolutions during the packet sequencing process,
For the same reason, it is also convenient to define separate precinct

counters for each tile-component resolution in the loops that define each

progression. Specifically, let pt,e,r = [p~,e,r, p~,e,r] be the two dimen­

sional precinct counter for resolution r of component c, and define the
following procedure which advances pt,e,r through the precincts in raster
order from left-to-right and top-to-bottom.

Advance-Counter Procedure
t,e,r t,e,r + 1

P2 +--- P2
'f t,e,r NP,t,e,r
1 P2 = 2

t,e,r °P2 +---

t,e,r t,e,r + 1
PI +--- PI

Finally define pt,e,r = se . 2(Dt ,c-r) . pt,e,r From the discussion in, z z z '

Section 11.3, p:,e,r and p~,e,r can be seen as the precinct dimensions

P t e r d Pot e r . d h d' S' '1 11" an 2" proJecte up to t e canvas coor mate system. Iml ar y,
£;,e,r = Sf. 2(Dt ,c-r) . E;,e,r can be seen as the projection of the upper
left corner coordinates of a tile-component resolution onto the canvas.
With these definitions, the RPCL progression is defined as:

pt,e,r +--- 0 'ic, r

for r = 0,1, ... ,D t , max

for nl = Ef, Ef + 1, , Ff - 1

for n2 = E~, E~ + 1, ,F~ - 1
for C = 0,1, ... ,C - 1

Chapter 13: Code-Stream Syntax 529

if (r :::; Dt,c)

'f i nCt . d' . 'bl b ptCT}1 nI-HI' IS IVISI e y 1" or

(nI = Et) and

(E:,C,T _ nf,t is not divisible by p:,C,T) }

'f i nCt . d' . 'bl b ptCT}1 n2 - H2' IS IVISI e y 2" or

(n2 = E~) and

(E~,c,r _ n~,t is not divisible by p~,c,r) }

if (Ni't,c,r .Nf't,c,r =J 0)

for l = 0,1, ... , At - 1
include gt,c,r,p,l

Advance-Counter(pt,c,T)

The specification for this progression as given above is provided for
clarity and conciseness. It actually makes for a very inefficient imple­
mentation, as it scans through every canvas location within the tile,
performing complicated conditional testing. Fortunately, much more ef­
ficient implementations are possible when 81and 82are restricted to be
powers of two. Accordingly, this power of two restriction is required by
JPEG2000 for this progression as well as the next progression described
below.
To explore the nature of efficient implementations, we first examine

the nature of the "if-statements" in the pseudocode above. To this end,
we define the projection of the precinct partition from resolution r of
component c onto the canvas. The anchor point for this partition is

[n
Ct nC t] d h . . If' pt c r pt c r Th'~GI' ,~G2' ,an t e partItIon eements are 0 sIze 1" X 2". IS

projected partition is shown in Figure 13.2. The reader should verify
that the usual downsampling process, when applied to this partition,
yields the precinct partition as defined in Section 11.3.
We can now see that the first portion of the if-statements, which test

if ni - n~,t is divisible by pi,c,r, are simply identifying upper left hand
corners of projected partition elements on the canvas. As mentioned
previously, the reason such identification is performed at the canvas level
is to ensure correct spatial registration of all tile-component resolutions
during the packet sequencing process.
The second portion of the if-statements provide for special treatment

of "partial precincts" which may occur along the top or left of the tile­
component resolution as shown in Figure 11.4. Clearly, the test for

530 Code-Stream Organization

&1,C,r
2

Projection of
precinct partition

o 0;,1 (0 or I) EI F'2 2

0-.+ I-
O~,I- ...t- -"l-I- - - - - - -1-- --
Oor I) 1 'Po"c,r 1 ~1'2"c~ ~ r--

1 I 1 1 - _I1_ - ...1_ 1_ -- --
E' 1

I
1r . I

:- - - -1- -- -- r:-- I
1

1 I I I 1
1 I 1 I I- _I1- - - -,- -- -1- - - -I-- 1
1 1 1 1 1

F,' 1I ----------------

&',C,
I Tile

Figure 13,2, Projection of a precinct partition onto the canvas.

ni = E; addresses this issue. What may not be clear is the purpose of
the last portion of the test. This is explained in the following paragraphs.

It can happen that the original tile, relative to the projected precinct
partition, gives the impression that partial precincts exist along the top
and/or left, when in fact, there are none, This occurs when the "mis­
leading" samples get sub-sampled away during the process of moving
from tile to tile-component resolution,

For example, let the tile have [Et, E~] = [12,15]' [n~,t, n~,t] = [0,0],

[Sf, 52] = [1,1], and precincts of size 4 x 4 at resolution °in a one-level
transform. The projection of these precincts to the canvas are then
of size p:,c,r x p;,c,r = 8 x 8, The second column of these projected
precincts then intersects the tile region, as shown in Figure 13.2,
This situation might lead us to believe that the second column of

precincts contain samples within the tile-component resolution. On
the other hand, the tile-component resolution has upper left corner at
[f 1221 ' f1251J = [6,8], while all coordinates within the second column of
precincts have 4 ::; n2 < 8, Thus, no samples of the tile-component res­
olution lie within the second column of precincts, This fact can also be
deduced by noting that the projected upper left hand corner of the tile-

component resolution lies at [£:,c,r, £~,c,r] = [12,16]. Thus the left edge

of the projected tile-component resolution lies on a projected precinct
boundary, as shown in Figure 13.2, In general, this condition can be
detected by testing for £it,c,r = mp;,c,r + n?,t, The last portion of the

Chapter 13: Code-Stream Syntax 531

'f '1' t h' d" b 'th c t c r n C t '1-statement IS ru mg ou t IS con 1tlon y ensurmg at "i" - ~Gi' IS

d ' "bl b pt crnot 1V1S1 e y i",
The last item in the pseudocode for this progression that merits men-
, 'h h h NP t c r NP t c r ° A d' d' Chtlon, IS t e test w et er 1"" 2'" = , s 1scusse m apter
11, it is possible for a tile of non-zero size to be sub-sampled entirely
away so that E:,c,r = Fit,c,r. In this case, the tile-component resolution
has no samples, the number of precincts is zero, and no packets should
be sequenced for this tile-component-resolution,
An efficient implementation of this progression can now be devised

by noting that all projected precinct partitions have [nf,t, n~,t] as
their common anchor point on the canvas. Further, since the precinct
dimensions Pit,c,r are powers of two, and the Sf are restricted to be
powers of two for this progression, the projected precinct dimensions
p;,c,r must also be powers of two, It is then easy to see that p;,min =

min {p;,c,r} will be the greatest common division of all p;,c,r, Thus
c,r
all projected precinct partition elements will "line up" on the canvas,
Furthermore, with the exception of the special treatment required at
the top and left tile boundaries, only canvas coordinates of the form

[Pt min nCt pt min n Ct] d b 'd d £' hml l' +HI' ,m2 2' +H2' nee e cons1 ere lor t e purpose

of packet sequencing, This situation is illustrated in Figure 13.3, To
avoid clutter, only two tile-component resolutions are considered there,

peRL PROGRESSION
As in the previous progression, 81and 82are restricted to be powers

of two for each component c. Using the notation established above, the
pseudocode for this progression can be written as:

pt,c,r +-- 0 '<:fc, r

for nl = EL E~ + 1, ... ,Ff - 1
for n2 = E~, E~ + 1, . , . ,Fi - 1
for c = 0,1, ... ,C -1

for r = 0,1, ... ,Dt,max

if (r ~ Dt,c)

l'f ~ nCt, d' . 'bl b ptcr}nl - HI' IS IVISI e y 1" or

I

n1 = E~) and
c t c r nCt . d' , 'bl b pt c r) }"1" - ~Gl' IS not IVISI e y 1"

532 Code-Stream Organization

o n;·l (0 or!)

(Oor

-++
I

~-~--
I T r

I) ~_.J__ __ -.J__ __L_
i ! ! !
r I I I

~_...l__
~-~----l-- --1--

I I I I

I
T I I
I I I1--,--1--,--~--,---i--

I i i i
1 I I I1-_..1__

~--+-- I---~-- ...--l--
! I I I

Figure 13.3. Precinct partitions from two tile-component resolutions as projected on
the canvas. All such projected partitions are forced to "line up" by virtue of the
common anchor point, and the power of two partition element sizes. The dashed lines
denote partition elements of size p;.min.

if {n2 - o~,t is divisible by pi,c,r} or

{ ~n2 = E~) and
tere t t c r) }£2" - O2 ' IS not dIvIsIble by P2' ,

if (Ni't,c,r .Nf't,c,r =1= 0)

for l = 0,1, ... ,At - 1

include gt,c,r,p,l
Advance-Counter(pt,c,r)

The discussion from the previous progression regarding the purpose of
the conditional statements and efficient implementations applies to this
progression as well. It is worth noting that since the "resolution" loop
lies inside the "component" loop, there is really no need for Dt,max and
the test for (r ::; Dt,c). These could be replaced by the simpler version

for r = 0,1, ... ,Dt,c

We retain the more complicated version as it simplifies the discussion of
progression order changes in Section 13.3.11.

Chapter 13: Code-Stream Syntax 533

CPRL PROGRESSION

The procedure for packet sequencing under CPRL progression is re­
flected in the following pseudocode. Since the "position loop" lies within
the "component loop," Sf and S2 are not restricted to be powers of two

pt,c,r +-- 0 Ve, r

for e = 0,1, ... ,C - 1
for ni = Ef, Ef + 1, ,F[- 1
for n2 = E~, E~ + 1, ,Fi - 1
for r = 0,1, ... , Dt,max

if (r ~ Dt,c)

if {ni - o~,t is divisible by p:,c,r} or

{tni = Ef) and
t cr Ct· . .. t cr) }£1" - 0 1 ' IS not dIvISIble by PI' ,

if {n2 - o~,t is divisible by p~,c,r} or

{ ~n2 = E~) and
ct,c,r nC,t I'S not dI'VI'sI'ble by pt,c,r) }"'2 - H2 2

if (Ni,t,c,r .Nf't,c,r =I- 0)

for I = 0,1, ... ,At - 1
include ~h,c,r,p,l

Advance-Counter(pt,c,r)

13.2 HEADERS
As discussed in Section 13.1, every JPEG2000 code-stream begins

with a main header. Similarly, every tile-stream begins with a tile
header. Each of these headers consists of a sequence of markers and
marker segments. A marker is a two byte quantity of the form FFXXh.

That is, the first byte of every marker is hexadecimal FF, while the sec­
ond byte specifies the particular marker employed. For example, the
end of code-stream marker mentioned previously is EGe = FFD9h. A
comprehensive list of markers employed in JPEG2000 Part 1 is given in
Table 13.4.
A marker segment consists of a marker followed by a parameter list.

Every parameter list must contain a whole number of bytes. The first
element of the parameter list is a two byte quantity that specifies the

534 Headers

length of the parameter list, in bytes. This length includes the two bytes
used for the length field itself, but not the two bytes used for the marker.
All values in a marker segment are big endian. That is, for multi-byte
quantities, the most significant byte appears in the code-stream first.

13.2.1 THE MAIN HEADER
The main header begins with an SOC (start of code-stream) marker.

This marker is followed immediately by the SIZ (image and tile size)
marker segment which specifies global information such as image size, tile
size, number of components, etc. There are two more required marker
segments in the main header, in addition to several optional marker
segments that are allowed to appear in the main header. These required
and optional marker segments can appear in any order, after the SIZ
marker segment.

The required marker segments are COD (coding style default) and
QCD (quantization default), which provide default coding and quanti­
zation parameters, respectively. For example, the COD marker segment
contains information such as the number of transform levels, the code­
block and precinct sizes, the progression order, and so forth, while the
QCD marker segment contains quantization step size information. The
optional marker segments include COC (coding style component) and
QCC (quantization component), which provide the ability to override
the default values specified in the COD and QCD marker segments on
a component by component basis.

The remaining optional marker segments include RGN (region of in­
terest), which provides information for region of interest coding, as de­
scribed in Section 10.6. The POC (progression order change) marker
segment provides the ability to change progression orders within the
code-stream. The PPM (packed packet headers: main header) marker
segment can be used to move all packet headers to the main header.
The PLM (packet lengths: main header) and TLM (tile-part lengths:
main header) marker segments can be used to record the lengths of com­
pressed packets and tile-parts in the main header, respectively. These
latter three markers may be useful for fast random access into the code­
stream.

The last two marker segments that can appear in a main header are
considered informative in that they are not needed to correctly decode
image component samples. The CRG (component registration) marker
segment can provide information about spatial registration of compo­
nents, while the COM (comment) marker segment can contain arbitrary
unstructured data.

Chapter 13: Code-Stream Syntax 535

Required

Optional

May appear
in any order

Figure 13.4. JPEG2000 main header. Shading indicates optional marker segments.

Table 13.1. Main header markers/marker segments.

Mnemonic Value Marker Name

SOC FF4Fh Start of code-stream
SIZ FF5!h Image and tile size

COD FF52h Coding style default
QCD FF5Ch Quantization default
COC FF53h Coding style component
QCC FF5Dh Quantization component
RGN FF5Eh Region of interest
POC FF5Fh Progression order change
PPM FF60h Packed packet headers: main header
PLM FF57t. Packet lengths: main header
TLM FF55h Tile-part lengths: main header
CRG FF63h Component registration
COM FF64h Comment

The organization of a JPEG2000 main header as described above, is
summarized in Figure 13.4 and Table 13.1. In the figure, all but the first
two markers/marker segments can appear in any order, and the shaded
marker segments are all optional. Complete descriptions of all markers
and marker segments appear in Section 13.3.

536 Headers

Figure 13.5. JPEG2000 tile header. Shaded marker segments are optional and can
appear in any order.

Table 13.2. Tile header markers/marker segments.

Mnemonic Value Marker Name

SOT FF90h Start of tile
SOD FF93h Start of data
COD FF52h Coding style default
QCD FF5Ch Quantization default
COC FF53h Coding style component
QCC FF5Dh Quantization component
RGN FF5Eh Region of interest
POC FF5Fh Progression order change
PPT FF61h Packed packet headers: tile-part
PLT FF58h Packet lengths: tile-part
COM FF64h Comment

13.2.2 TILE HEADERS
The structure of a JPEG2000 tile header is shown in Figure 13.5 and

Table 13.2. Each tile header begins with an SOT (start of tile) marker
segment, and ends with an SOD (start of data) marker. There are no
other required markers or marker segments in a JPEG2000 tile header.
Optional marker segments can appear between SOT and SOD marker

segments in any order. As in the main header, unstructured comment
data can be included in a COM marker segment. Other optional markers
segments include COD, QCD, COC, QCC, RGN, and POc. Each of
these has been discussed briefly with respect to the main header in the
previous subsection. When these marker segments are used in a tile

Chapter 13: Code-Stream Syntax 537

Table 13.3. Tile-part header markers/marker segments.

Mnemonic Value Marker Name

SOT FF90h Start of tile
SOD FF93h Start of data
POC FF5Fh Progression order change
PPT FF61h Packed packet headers: tile-part
PLT FF58h Packet lengths: tile-part
COM FF64h Comment

header, they override corresponding marker segments that may appear
in the main header. The scope of this override is restricted to the tile in
which the marker segment appears.
There are two other optional marker segments that can appear in a

tile header. Their associated markers are PPT (packed packet headers:
tile-part) and PLT (packet lengths: tile-part). These marker segments
are "tile specific" versions of the main header marker segments PPM and
PLM. They are used for collecting packet headers together for placement
within the tile header, and for recording packets lengths within the tile
header, respectively. As with PPM and PLM, the PPT and PLT marker
segments are useful for fast random access into the code-stream.

13.2.3 TILE-PART HEADERS
As mentioned previously, tile-streams can be broken at any packet

boundary to create multiple tile-parts. We denote the number of tile­
parts of a given tile t by NTP,t. As shown in Figure 13.6, when multiple
tile-parts are present, tile-part 0 has a tile header, while all subsequent
tile-parts have tile-part headers. A tile-part header is constructed in
exactly the same way as a tile header, except only a restricted set of
marker segments are allowed. The only marker segments that may ap­
pear within a tile-part header are POC, PPT, PLT, and COM, as shown
in Figure 13.7 and Table 13.3.
The following points should be stressed with regard to the remainder

of this chapter. When the number of tile-parts of a particular tile t
is NTP,t = 1, "tile-stream" and "tile-part 0" are synonymous for that
tile. When we refer to the tile header, we are implicitly referring to
the header of tile-part O. When we refer to a tile-part header, we are
implicitly referring to the header of a tile-part other than tile-part o.
Unless explicitly stated otherwise, any statement made regarding a tile­
part applies to any tile-part, including tile-part O.

538 Headers

I~I
I~ketol

I~k~il

I~k~jl

Ipack~ kl
···Ipack~ II

I~ketml

Tile-stream t _

Ih~r I
Ipacket 0I
·••

Ipacket iI
Itile-partI
header

B

Itil~part I
header

I~ket/l
··•

lpack~ml

Tile-part 0

Tile-part I

Tile-part NTP.I -I

Figure 13.6. A tile-stream broken into multiple tile-parts.

SOT I
POC I
PPT I
PLT I
COM I
SOD I

Figure 13.7. JPEG2000 tile-part header. Shaded marker segments are optional and
can appear in any order.

From Section 13.1.1, we know that progression is defined at the level of
a tile. Tile-parts are the mechanism by which the concept of progression
is extended to the level of the entire image. This is accomplished by the
interleaving of tile-parts from different tiles. As an example, consider
forming the tile-stream for each tile using LRCP progression. Each tile­
stream might then be broken into tile-parts with each tile-part containing

Chapter 13: Code-Stream Syntax 539

all packets from a single layer. Specifically, for each tile t, tile-part 0
might contain all layer 0 packets, tile-part 1 might contain all layer
1 packets, and so on. A quality progressive code-stream for the entire
image could then be formed by including tile-part 0 for each tile, followed
by tile-part 1 for each tile, and so on.
Tile-parts can be useful even when tiling is not employed; i.e., the

image is comprised of a single tile. Tile-parts can be used to effect pro­
gression order changes in mid-code-stream, via inclusion of POG marker
segments in their respective tile-part headers. Tile-parts are also useful
for collecting length information, and/or packet headers into PLT and
PPT marker segments, respectively. Finally, the code-stream of a very
large un-tiled image may require multiple tile-parts due to certain length
constraints, such as the maximum tile-part length of 232 - 1.

13.2.4 PACKET HEADERS
As detailed in Section 12.5.2, a packet consists of a packet header

followed by a packet body. For the purpose of error resilient decoding,
the code-stream syntax allows the optional inclusion of an SOP (start of
packet) marker segment before some or all packets. Also, an EPH (end
of packet header) marker can be included after each packet header.
In addition to their usefulness for error resilient decoding, SOP marker

segments and EPH markers can be useful for locating packets and/or
packet headers. From Section 12.1, we know that an FFh byte can never
be followed by a byte having a value greater than 8Fh within compressed
pack-stream data. Thus, SOP = FF91h and EPH = FF92h can be lo­
cated within the code-stream, when present. Care must be exercised
when searching for such markers however, because values within main,
tile, and tile-part headers can take on any value, including values be­
tween FF90h and FFFFh.

13.3 MARKERS AND MARKER SEGMENTS
In this section, we describe each marker and marker segment in detail.

As described previously, a marker segment consists of a marker followed
by a parameter list. Only SOG, EOG, SOD, and EPH appear as isolated
markers. All other markers appear only as part of marker segments. A
listing of all markers, grouped by function and location within the code­
stream, is given in Table 13.4. The following subsections describe each
marker/marker segment in the order shown in this table.
Due to the progressive nature of JPEG2000 code-streams, it may be

tempting to truncate a code-stream by simply discarding packets from
the end. A robust decoder would do well to anticipate such behavior.

540 Markers and Marker Segments

Table 13.4. Code-stream markers employed by JPEG2000. Markers that appear in
isolation (not as part of a marker segment) are denoted by *. Markers having values
in excess of FF8Fh are denoted by t. Locations where a marker can occur are denoted
by M: main header, T: tile header, P: tile-part header, S: in pack-stream, E: end of
code-stream.

Delimiting Markers

Mnemonic Value Marker Name Location Required

SOC* FF4Fh Start of code-stream M Y
SOTt FF90h Start of tile T,P Y
SODh FF93h Start of data T,P Y
Each FFD9h End of code-stream E Y

Principle Markers

SIZ FF5 1h Image and tile size M Y
COD FF52h Coding style default M,T Y
COC FF53h Coding style component M,T N
QCD FF5Ch Quantization default M,T Y
QCC FF5Dh Quantization component M,T N
RGN FF5Eh Region of interest M,T N
pac FF5Fh Progression order change M,T,P N

Pointer Markers

TLM FF55h Tile-part lengths: main header M N
PLM FF5h Packet lengths: main header M N
PLT FF58h Packet lengths: tile-part T,P N
PPM FF60h Packed packet headers: main header M N
PPT FF61h Packed packet headers: tile-part T,P N

In Pack-Stream Markers

sopt FF91t. Start of packet S N
EPHh FF92h End of packet header S N

Informative Markers

CRG FF63h Component registration M N
COM FF64h Comment M,T,P N

However, a valid JPEG2000 code-stream must contain correct parame­
ter information in all marker segments. Thus, care should be taken to
update all marker segments during code-stream editing operations.

13.3.1 START OF CODE-STREAM (SOC)
The SOC marker appears as an isolated marker, rather than as part

of a marker segment. The SOC marker appears at the beginning of the

Chapter 13: Code-Stream Syntax 541

L-_S_O_T L_S_O,_f i_T_--L L_TP ----JEE]
Figure 13.8. The SOT marker segment.

main header, and comprises the first two bytes in a JPEG2000 code­
stream.

13.3.2 START OF TILE (SOT)
Every tile header or tile-part header begins with an SOT marker seg­

ment, The SOT marker segment is shown graphically in Figure 13.8.
This figure shows the order and size of all SOT marker segment pa­
rameters. The size of each parameter (number of bytes the parameter
occupies in the code-stream) is indicated by the width of the rectangle
in which it appears. The narrowest rectangles indicate one byte parame­
ters, while the medium width rectangles indicate two byte parameters.
Finally, parameters that occupy four bytes in the code-stream are indi­
cated by the widest rectangles in the figure.
Consistent with previous discussions, the SOT marker itself comprises

two bytes. Similarly, the LsoT parameter is a two byte, unsigned, big
endian integer that specifies the length of the SOT parameter list, in
bytes. This length includes the two bytes for LSOT, but not the two
bytes for the SOT marker itself. From the figure, it should be clear that
LSOT = 10.

TILE INDEX
The iT parameter is a two byte unsigned integer that specifies the

tile index, or tile number, for the tile to which the SOT marker segment
belongs. This tile index reflects a numbering of tiles on the canvas in
raster order from left-to-right and top-to-bottom, starting from iT = O.
From the discussion of Section 13.1.1, it should be clear that the tile
index for tile t = [tl' t2] is given by

and that

The maximum allowable number of tiles is N;r .NI = GSS3S and thus,
iT will not exceed GGG:H.

542 Markers and Marker Segments

NUMBER OF TILE-PARTS
NTP,t is a one byte unsigned integer taking values from 0 to 255,

inclusive. A non-zero value signals the number of tile-parts present in
the code-stream for the tile t to which the SOT marker segment belongs.
A value of 0 indicates that the number of tile-parts is not specified in
this tile-part. NTP,t is allowed to be zero in any or all tile-parts of a
given tile. However, all non-zero values for tile-parts of the same tile
must hold exactly the same value - the total number of tile-parts for the
tile. Encoders would do well to include a non-zero NTP,t field in at least
one tile-part of each tile, to facilitate memory efficient decompression.
The number of tile-parts need not be consistent across tiles. Fur­

thermore, it is allowable to completely omit the tile-stream of any given
tile2.

TILE-PART INDEX
The iTP parameter is a one byte unsigned integer denoting the tile­

part index or tile-part number for the tile-part to which this SOT marker
segment belongs. As shown in Figure 13.6, tile-part 0 (iTP = 0) is the
only tile-part with a tile header. All subsequent tile-parts (iTP > 0)
have tile-part headers. If NTP,t > 0, then 0 ::; iTP < NTP,t. In any
event, iTP ::; 254.
When multiple tiles and tile-parts are present in the same code-stream,

the tile-parts of different tiles may be interleaved. The only requirement
is that tile-parts of a given tile must appear in order, possibly separated
by tile-parts from other tiles. Specifically, tile-part iTP from tile t must
appear in the code-stream before tile-part iTP + 1 from tile t.

TILE-PART LENGTH
The LTP parameter is a four byte unsigned integer that specifies the

length of the tile-part to which the SOT marker segment belongs. We
emphasize that this length is all-inclusive. That is, the length includes
all bytes in the tile-part from the beginning of the tile header (or tile­
part header), to the last byte of the last packet in the tile part, irany.3
Specifically, it includes the two bytes of the SOT marker itself. LTP

can range from 14 to 232 - 1, inclusive. For the last tile-part of a code-

lThis fact is not entirely clear in the standard document itself.
~As noted above, a tile-part with no packets is perfectly legal. Such a tile-part would consist
exclusively of a tile header (tile-part 0) or tile-part header (subsequent tile-parts). The length
of such a tile-part is simply the total length of the header itself. The shortest possible tile­
part then consists of only a SOT marker segment followed by a SOD marker for a total of
LTP == 14 bytes.

Chapter 13: Code-Stream Syntax 543

SIZ I LSIZ CA I
F2 F1

E2 E 1

T2 T1

nI nI

C 1B
O1sg sr1B1 I si I sf ... IBe-II sf-1 Isf- 1 I

Figure 13.9. The SIZ marker segment.

stream, LTP = 0 is also acceptable, meaning that the length of the
tile-part is unspecified. This tile-part must then contain all data up to,
but not including, the EOG marker. This exception is allowed to enable
streaming compression of un-tiled imagery, in which case the compressor
may begin to output the code-stream before compression is complete.

13.3.3 START OF DATA (SOD)
Every tile header or tile-part header ends with the SOD marker.

13.3.4 END OF CODE-STREAM (EOC)
The last two bytes in a JPEG2000 code-stream comprise the end of

code-stream marker, EOG.

13.3.5 IMAGE AND TILE SIZE (SIZ)
The BIZ marker segment is required to be the first marker segment

in the main header. It immediately follows the SOG marker. Only one
SIZ marker segment may appear in a JPEG2000 code-stream. The SIZ
marker segment is shown graphically in Figure 13.9. As was the case
for the SOT marker segment, the figure shows the order and size of all
parameters in a graphical fashion.
The order in which these marker segment parameters appear in the

code-stream is from left-to-right, top-to-bottom in the figure. The only
reason the marker segment is shown in multiple rows, is for economy of
space in the text. Ideally, the marker segment would be shown as one
contiguous sequence of bytes, from left-to-right.

544 Markers and Marker Segments

As discussed previously, the BIZ marker itself occupies two bytes.
Also, LSIZ is a two byte unsigned integer denoting the length of the
marker segment parameter list, which includes the two bytes for LSIZ,

but not the two bytes for the BIZ marker.

CAPABILITIES
In Figure 13.9, CA is a two byte parameter which specifies extended

code-stream capabilities for JPEG2000 Part 2, and beyond. In JPEG­
2000 Part 1, its value is restricted to be CA = OOOOh.

IMAGE SIZE AND TILING PARAMETERS
The next eight parameters are each four byte unsigned integers. As

discussed in Chapter 11, [EI,E2] and [PI -1,F2 -1] are the upper-left,
and lower-right coordinates of the image region in the canvas coordinate
system. Similarly, the tile size and tile partition anchor point are given
by T I xT2 and [Dr, Dr], respectively. Legal values for these parameters
satisfy

COMPONENTS
Also from Chapter 11, are the number of components C, and the

vertical and horizontal sub-sampling factors for each component 51, S~,
c = 0,1, ... ,C -1. As indicated in Figure 13.9, C is a two byte quantity.
More specifically, C is an unsigned integer satisfying 1 ::; C ::; 16384.
Similarly, the Sf are unsigned one byte integers, satisfying 1 ::; Sf ::; 255,
i = 1,2.
Finally, the one byte parameters BC, C = 0,1, ... ,C - 1 specify the

bit-depth of the image components. The most significant bit of BC
specifies whether component c is signed or unsigned, with 0 indicat­
ing "unsigned" and 1 indicating "signed." The remaining 7 bits are
treated as an unsigned integer specifying the value of B-1 as defined
in Section 10.1. Specifically, unsigned components have samples satis­
fying 0 ::; x [n] < 2B , while signed components have samples satisfying
_2B - I ::; x [n] < 2B - I . For example, BC =Oh denotes an unsigned
component with samples ranging from 0 to 255, while BC =87h denotes
a signed component with samples ranging from -128 to 127. Legal values
of B range from 1 to 38, inclusive; i.e., 0 ::; B-1::; 37.

Chapter 13: Code-Stream Syntax 545

COD LeoD CS Op At MC

D t .c IE~B EfB IMS WT E~ E~ I··· EDt,c
p

Figure 13.10. The COD marker segment.

MARKER SEGMENT LENGTH
We conclude this section by noting that for a single component image
(0 = 1), the parameter list will contain Ls1z = 41 bytes. For an image
with 16384 components, LSIZ = 49190. More generally, LeoD = 38+30.

13.3.6 CODING STYLE DEFAULT (COD)
The COD marker segment is required in the main header. It can

appear anywhere within that header after the SIZ marker segment. The
COD marker segment can also appear in a tile header. No more than
one COD marker segment can appear in any given header. The COD
marker segment is part of a hierarchy which includes the CDC marker
segment.
As mentioned previously, the COD marker segment provides default

coding style parameters. When it appears in the main header, the COD
marker segment provides such parameters for all components of all tiles.
These parameters can be overridden for all tiles of a single component
using a main header CDC marker segment. When appearing in a tile
header, a COD marker segment overrides all main header COD and
CDC marker segments for all components of its respective tile. Finally
a CDC marker segment in a tile header overrides all other COD or CDC
marker segments for the relevant component of its respective tile. This
hierarchy can be denoted by

main COD < main CDC < tile COD < tile CDC

where < denotes "is overridden by."
The COD marker segment is shown graphically in Figure 13.10. Each

parameter in the COD parameter list is discussed below.

CODING STYLE
The OS parameter indicates whether SOP marker segments and/or

EPH markers may be employed within the scope of the COD marker

segment. It also specifies the coding anchor point [n?,t, n~,t], and
indicates whether maximal, or user specified precinct sizes are employed.

546 Markers and Marker Segments

As shown by Figure 13.10, C5 is a one byte parameter. We label its
eight bits as C57, C56, ... ,C50 from most significant to least significant.
C50 = 0 then specifies that all precincts are of maximal size. Specifically,
p~,c,r = p~,c,r = 215 for all r = 0,1, ... ,Dt,c. This applies for all t, C
within the scope of the COD marker segment. Specifically the tiles
and components within the scope of the marker segment are determined
by the COD / COC and main/tile header hierarchy as discussed above.
C50 = 1 indicates that precinct sizes are defined by the Epparameters
appearing later in the COD marker segment, as discussed below.

C51 identifies the possible usage of SOP marker segments within the
scope of the COD marker segment. C51 = 0 indicates that no SOP
marker segments are present. C51 = 1 indicates that SOP marker
segments may be present. This is discussed further in Section 13.3.17.

C52 = 0 indicates that no EPH markers are present within the scope
of the COD marker segment. C52 = 1 indicates that EPH markers
immediately follow every packet header within the scope of the COD
marker segment. This is discussed further in Section 13.3.18.

C53 and C54 specify the coding anchor point [nf'\ n~,t]. Specifi-
cally nf,t = C54 and n~,t = C53 for all tiles within the scope of the
COD marker segment. At the time of this writing, JPEG2000 Part 1

restricts this anchor point to be [nf,t, n~,t] = [0,0]. An amendment to

JPEG2000 Part 1 has been proposed to allow any anchor point

It is unclear whether or not this amendment will be approved.
The remaining bits in C5 must be set to 0 in JPEG2000 Part l.

Specifically, C55 = C56 = C57 = O.

PROGRESSION ORDER
The Op parameter of the COD marker segment is a one byte unsigned

integer. Op specifies which of the five progression orders is employed
within the scope of the COD marker segment. Legal values of Op range
from 0 to 4 inclusive. The progression order indicated by each such value
is given by:
0: Layer-Resolution-Component-Position (LRCP)
1: Resolution-Layer-Component-Position (RLCP)
2: Resolution-Position-Component-Layer (RPCL)
3: Position-Component-Resolution-Layer (PCRL)
4: Component-Position-Resolution-Layer (CPRL)

In each case, the full index ranges of equation (13.1) apply.

Chapter 13: Code-Stream Syntax 547

LAYERS
The At parameter of the COD marker segment is a two byte unsigned

integer. At can range from 1 to 65535 inclusive, and indicates the number
of quality layers for all tiles within the scope of the COD marker segment.
Every precinct within this scope must contribute exactly At packets to
the code-stream

MULTI-COMPONENT TRANSFORM
The MC parameter is a one byte unsigned integer. Legal values are 0

and 1. MC = 0 indicates that no color transform is employed within the
scope of the COD marker segment. MC = 1 indicates that one of the
color transforms from Section 10.2 is employed on components c = 0,1,
and 2. As discussed in that section, when MC = 1, all three of these
components must have identical bit-depths and sub-sampling factors.
The particular transform employed depends on the wavelet transform

used. If the irreversible wavelet transform is indicated in the WT pa­
rameter (described below), then the irreversible color transform (lCT)
is employed. Else, if the reversible wavelet transform is indicated, then
the reversible color transform (RCT) is employed.

TRANSFORM LEVELS
The Dt,c parameter specifies the number of transform levels employed

for each tile-component within the scope of the COD marker segment.
Dt,c is an unsigned byte with legal values from 0 to 32 inclusive. A value
of zero indicates that no wavelet transform is performed.

CODE-BLOCK SIZES
The E~B and EfB parameters are unsigned bytes, and are used to

specify the nominal size (Ji'c x Ji'c) of all code-blocks within the scope
of the COD marker segment. More specifically, these parameters are
code-block size exponents. The code-block sizes themselves are com­
puted by

t E CB t ECBJ/ = 4·2 1 J2'C = 4·2 2

The constraints given in equation (11.12) indicate that legal values for
EfB and E~B must satisfy

o< E CB < 8 and 0 < ECB + E CB < 8-~ - -1 2-

MODE SWITCHES
The M S parameter is a one byte quantity that specifies which mode

variations are employed in the bit-plane coding process. This parameter

548 Markers and Marker Segments

applies to all code-blocks within the scope of the COD marker segment.
Each mode switch discussed in Section 12.4 can be identified with a bit
in the MS parameter. Denoting the bits ofMS by lVIS7, lVIS6, ... , MSo
from most to least significant, the modes are associated with the M Si
as follows:

lVISo = BYPASS mode switch

MS1 = RESET mode switch

lVIS2 = RESTART mode switch

M S3 = CA USAL mode switch

M S4 = ERTERM mode switch

lVIS5 = SEGMARK mode switch
In each case, M Si = 0 indicates that the option is not employed, while
MSi = 1 indicates that the option is employed. MS6 and MS7 are
unused in JPEG2000 Part 1 and must be set to zero.

WAVELET TRANSFORM
The WT parameter indicates which wavelet transform is employed

within the scope of the COD marker segment. WT is a one byte un­
signed integer, with legal values of 0 and 1. WT = 0 denotes the 9/7
irreversible transform, while WT = 1 denotes the 5/3 reversible trans­
form. These transforms are discussed at length in Section 10.4.
As a final note, we point out that one of these transforms must always

be selected. If no transform is desired for a particular encoding function,
then zero levels of transform (Dt,c = 0) can be selected.

PRECINCT SIZES
From the discussion of Coding Style flags above, if GSa = °then

all precincts within the scope of the COD marker segment are of size
215 x 215 . In this case, no E pparameters are present in the COD marker
segment. If G So = 1, then the Ep,r = 0, 1, ... ,Dt,c are each single
byte parameter.s, used to specify precinct sizes. Accordingly, the COD
parameter list length is given by

LeOD = 12 + GSo' (Dt,c + 1)

which satisfies 12 ::s; LeoD ::s; 45.
As discussed above, each tile-component within the scope of the COD

marker segment has Dt,c transform levels. Equivalently, each tile-com­
ponent has Dt,c + 1 resolutions, r = 0,1, ... ,Dt,c. The Ep parameters
specify the exponents of the precinct sizes for each of these resolutions.
Denoting the most significant four bits of Ep by Ep,l' and the least

Chapter 13: Code-Stream Syntax 549

COC LeGe c cst

Dt,c IEi B EfB IMS WT I E3 Ej1 ... IE~t,cl

Figure 13.11. The COC marker segment.

significant four bits by Ep2' the precincts of resolution r have heights
and widths computed by ,

P t,c,r _ 2Ep 1
1 - , Pot,c,r _ 2Ep 2

2 - ,

For example, if Ep= 8Ah, then the precincts of resolution r are of size
256 x 1024 for all tile-components within the scope of the COD marker
segment.
Legal values for the Epi i = 1,2 range from 0 to 15, inclusive.

However, Epi = 0 implies ~ precinct height or width of 1, and is only
allowed for r~solution r = O. All other resolutions r = 1,2, .. , ,Dt,c must
have Epi ?: 1, i = 1,2.,

13.3.7 CODING STYLE COMPONENT (COC)
The COC marker segment is shown in Figure 13.11, and bears a strik­

ing resemblance to the COD marker segment of Figure 13.10. In fact,
the COC marker segment is identical to the COD marker segment, with
two exceptions. First, certain parameters appear in the COD marker
segment, but are absent from the COC marker segment. These parame­
ters correspond to features and elements that JPEG2000 does not allow
to vary on a component by component basis. Second, the COC marker
segment contains a parameter, c, that specifies to which component it
applies.
Recall that exactly one COD marker segment is required in the main

header, and no more than one COD marker segment may appear in any
tile header. On the other hand, COC marker segments are optional
in every case, and multiple COC marker segments can appear in the
main header and/or any given tile header, up to and including one per
component. Each COC marker segment applies to only one component
within its scope.
As discussed previously, a main header COC marker segment over­

rides the main header COD marker segment for all tiles of a specific com­
ponent. A tile header COD marker segment overrides all main header
COD and COC marker segments for all components within its tile. Fi­
nally, a tile header COC marker segment overrides all other COD / COC

550 Markers and Marker Segments

marker segments for one specific tile-component. As before, this is de­
noted by

main COD < main CDC < tile COD < tile CDC

COMPONENT NUMBER
Each CDC marker segment contains a parameter that specifies a com­

ponent number to which the CDC marker segment applies. If the num­
ber of components e, as specified in the BIZ marker segment, satisfies
e > 256, then c is a two byte unsigned integer representing a compo­
nent number c E {O, 1, ... ,16383}. On the other hand, if e ::; 256,
then c is a one byte unsigned integer representing a component number
c E {O, 1, ... , 255}. The fact that c may occupy either one or two bytes
within the code-stream is denoted in Figure 13.11 by the "extra" hori­
zontallines above and below c in its graphical "parameter rectangle."

CODING STYLE
The es' parameter is a stripped down version of the es parameter

as discussed for the COD marker segment. Precinct sizes are the only
parameters from es that JPEG2000 allows to vary component by com­
ponent. Thus, es' is a single byte taking values of°and 1 only. This is
equivalent to eBb E {O, I}. eSb = °indicates maximal precincts, while
eSb = 1 indicates that precinct sizes are defined by the Ep parameters,
appearing later in the CDC marker segment.

REMAINING PARAMETERS
All other parameters in the CDC marker segment, from Dt,c to E~t,c

have already been described with reference to the COD marker seg­
ment. Their usage and restrictions are identical to those described in
that context.
We close our discussion of the CDC maker segment by noting that

the length of its parameter list is

LeGe = 8+eSb· (Dt,c + 1) +Lc

which satisfies 9 ::; LeGe::; 43. In this expression,

L = {I e::; 256
c 2 e> 256

is the number of bytes used to represent the parameter c.

(13.2)

Chapter 13: Code-Stream Syntax 551

QCD LQCD QS I
STo STI ... I STNB-l I

Figure 13.12. The QCD marker segment.

13.3.8 QUANTIZATION DEFAULT (QeD)
The QCD marker segment is required in the main header. It can

appear anywhere within this header, after the BIZ marker segment. The
QCD marker segment can also appear in a tile header. No more than
one QCD marker segment can appear in any given header. The QCD
marker segment is part of a hierarchy of marker segments including the
QCC marker segment.
The scoping rules for QCD / QCC marker segments are identical to

those of COD / COC marker segments. Specifically, the main header
QCD marker segment applies to all tile-components of the entire image,
while a tile header QCD marker segment applies only to tile-components
within its respective tile. A main header QCC marker segment applies to
all tile-components of a single component across the entire image, while a
tile header QCC marker segment applies to only a single tile-component
of its respective tile.
A main header QCC marker segment overrides the main header QCD

marker segment for one particular component, while a tile header QCD
marker segment overrides both types of main header marker segments
for all tile-components within its tile. Finally, a tile header QCC marker
segment overrides all three other types of marker segments for its respec­
tive tile-component. This hierarchy is denoted by:

main QCD < main QCC < tile QCD < tile QCC

The QCD marker segment is shown in Figure 13.12. This marker
segment provides quantization parameters for all subbands within its
scope. As discussed in Section 10.5, there are three parameters related
to quantization in JPEG2000. First is the number of guard bits G used
to protect against nominal range violations in the subband samples.
Second is Cb, which is interpreted as the exponent of the quantization
step size when irreversible transforms are employed. The interpretation
of Cb is as a "ranging" parameter when the reversible wavelet transform
is employed. Finally, fLb is the quantization step size mantissa, and is
only relevant for irreversible transforms.

552 Markers and Marker Segments

Also discussed in Section 10.5 are two polices for signalling step sizes
in the irreversible case. One policy is to explicitly signal a step size
for each subband. The other policy is to signal a step size only for the
lowest frequency subband, LLD and then derive step sizes for all other
subbands according to equation (10.26).

QUANTIZATION STYLE
The QS parameter occupies one byte, and indicates which style is

used to signal quantization step sizes. It also indicates the number of
guard bits, G. The two least significant bits QSIQSO, have legal values
of 00,01, and 10. Taking Q = QSIQSO as an unsigned two bit integer,
legal values are then Q = 0,1, and 2. These values specify signalling of
step size information as:
0: Cb signalled for each subband (reversible transform only)

1: (cb' /-lb) signalled for LLD (irreversible transform only)

2: (cb' /-lb) signalled for each subband (irreversible transform only)
It is worth noting that reversible or irreversible transformation can be
specified on a tile-component by tile-component basis via COD/CDC
marker segments. Accordingly, the compressor must take care to provide
QCD/QCC marker segments in an appropriate manner.
The three most significant bits of the quantization style parameter,

QS7QS6QS5, taken as an unsigned integer, specify the number of guard
bits, G E {O, 1, ... ,7}. The remaining bits are restricted to be zero.
Specifically, QS4 = QS3 = QS2 = O.

STEP SIZES
The STn parameters are used to signal step size information. As was

the case for the c parameter in the CDC marker segment, the horizontal
lines in the STn rectangles of Figure 13.12 indicate that these parameters
are of variable length.
When Q = 1, only STo is present. This parameter comprises two

bytes which signal a single step size pair (cb,/-lb)' The most significant
five bits of STo represent the value of Cb. The least significant eleven
bits of STo represent the value of /-lb, As an example, STo =2C13h has
binary representation

STo = 0010110000010011

The first five bits yield Cb = 5, while the remaining eleven bits yield
/-lb = 1043.
When Q = 2, there are multiple STn parameters. Each such para­

meter comprises two bytes and signals an (cb' /-lb) pair, in the fashion

Chapter 13: Code-Stream Syntax 553

discussed in the previous paragraph. When Q = 0, there are also mul­
tiple STn parameters, however each is only one byte in length. Each
such STn signals an Cb. Specifically, the most significant five bits (bit
7 through bit 3) of STn are taken as an unsigned integer to specify an
cb E {0,1, ... ,31}.
In the case of either Q = 2 or Q = 0, the number of STn parameters
(denoted NB) must be at least as large as the largest number of subbands
within any tile-component in the scope of the QCD marker segment.
Specifically, let D max be the maximum of Dt,c over all t, c within this
scope. Then, the number of STn parameters must satisfy

NB 2: 3 .Dmax + 1 (13.3)

For each tile-component within the scope of the QCD marker segment,
the STn parameters, n = 0,1, ... are applied, in order, to the subbands
LLDt e' HLDt 0-1, LHDt e-l, HHDt 0-1, ... , HL1, LH1, HH1 · That is, STo
appli~s to LLDt,e, STl 'applies to'HLDt,o-l, and so on. The condition
given in equation (13.3) guarantees that there are enough step sizes to
accommodate the subbands of each tile-component. If NB > 3·Dmax +1,
then there are actually more STn than required for any tile-component
within scope. If this occurs, the extra parameters are to be ignored by
a decoder. For this reason, it may be possible to neglect updating QCD
marker segments during code-stream editing operations.
Defining

T = {O, Q =° (reversible transform)
1, else (irreversible transform)

the QCD marker segment length and NB are then related by

LQCD = 3+ (1 +T) NB

As discussed above, when Q = 1, (derived step sizes for irreversible
transforms), we have NB = 1. Otherwise, NB must satisfy equation
(13.3). NB is signalled implicitly via LQCD. Legal values of LQCD range
from 4 to 197, inclusive.

13.3.9 QUANTIZATION COMPONENT (QCC)
The QCC marker segment is shown in Figure 13.13. The QCC marker

segment is identical to the QCD marker segment, except for the inser­
tion of the c parameter to identify the component affected by the QCC
marker segment. As was the case for the COC marker segment, if the
number of components satisfies C ~ 256, then c occupies a single byte.
On the other hand, if C > 256, then c occupies two bytes. All discus­
sion in the previous subsection regarding the QCD marker segment is

554 Markers and Marker Segments

QCC LQCC c QS I
STo ST1 ... STNB -1 I

Figure 13.13. The QCC marker segment.

directly relevant to the QCC marker segment. Of course, the expression
for LQcc is slightly different, and is given by

LQcc = 3+ (1 +T) NB + L c

where L c is the number of bytes used to represent c, as given by equation
(13.2).

13.3.10 REGION OF INTEREST (RGN)
The RGN marker segment is used to signal the "upshift" value U for

the max-shift method of region of interest coding as described in Section
10.6. Perhaps a better mnemonic for this marker might be RGC since
it follows scoping rules similar to those of the CDC and QCC marker
segments, as described previously. There is no "default" version of the
RGN marker segment (which might have been called RGD).
Multiple RGN marker segments can appear in the main header and/or

any tile header. Each RGN marker segment applies to one specific com­
ponent. A main header RGN marker segment applies to all tiles of that
particular component, while a tile header RGN marker segment applies
only to one specific tile-component. A tile header RGN marker segment
overrides any main header RGN marker segment for its particular tile
and component. That is

main RGN < tile RGN

Any tile-component not falling within the scope of any RGN marker
segment is assigned an upshift value of U = O.
The RGN marker segment is shown in Figure 13.14. As discussed for

CDC and QCC marker segments, if the number of components satisfies
C ::; 256, C is a one byte unsigned value between 0 and 255, inclusive.
If C > 256, then C is a two byte unsigned parameter between 0 and
16383, inclusive. In either case, C specifies the component number to
which this RGN marker segment applies. In JPEG2000 Part 1, RS is
one byte and is restricted to be O. Finally, U is an unsigned one byte
integer specifying the region of interest upshift parameter from Section
10.6. Legal values of U range from 0 to 255 inclusive.

13.3.11

Chapter 13: Code-Stream Syntax 555

__R_G_N_--,-__L_RG_N__====C====EG
Figure 13.14. The RGN marker segment.

The length of the RGN parameter list is given by

LRGN=4+Lc

where Lc is the number of bytes used to represent c, as given by equation
(13.2).

PROGRESSION ORDER CHANGE
(POC)

The poe marker segment provides for changing the progression order
mid-code-stream. In the absence of any poe marker segments, the loop
counters that define packet sequencing for each tile run over their full
ranges for a single progression order as described in Section 13.1.1. This
single progression order is specified for each tile in a main or tile header
COD marker segment.

If a poe marker segment appears in the main header, it overrides
the progression specified in the main header COD marker segment. It
also overrides every progression specified in any tile header COD marker
segment. A tile header poe marker segment overrides the progression
specified in the main header COD marker segment, any tile header COD
marker segment for its respective tile, as well as any main header poe
marker segment that may be present. This override hierarchy is denoted
by

main COD < tile COD < main poe < tile poe
poe is one of the few marker segments that can occur in a tile­

part header. No more than one poe marker segment may appear in
any header, but multiple progressions can be specified in a single poe
marker segment. If one or more tile-part header poe marker segments
are present, there must be a poe marker segment in the corresponding
tile header. Tile-part poe marker segments do not override the tile
header poe marker segment. Progressions found in tile-part headers
are treated as if they were actually included, in order, at the end of the
list of progressions in the tile header. Not every tile-part must contain
a poe marker segment, even when tile-part poe marker segments are
present. But, any tile-part poe marker segment must appear in the
code-stream before any packet it affects.

556 Markers and Marker Segments

poe I Lpoc I
r~ c~ l~ r~ c~ O~

r1 c1 lk rk ck o~

__I_~_-l__~I===c=~=-l==::la

Figure 13.15. The poe marker segment.

The set of progressions within a given scope must be inclusive of all
packets of that same scope. Specifically, every packet Qt,c,r,p,l for the en­
tire image must eventually be sequenced by the collection of progressions
in a main header poe marker segment. Similarly, every packet for a
given tile must eventually be sequenced by the collection of progressions
from that tile's tile header and tile-part header poe marker segments.
The poe marker segment is shown in Figure 13.15. The form of this

marker segment is identical regardless of whether it appears in the main
header, a tile header, or a tile-part header. As in all marker segments,
the length parameter directly follows the poe marker itself. The length
of the poe parameter list is given by

Lpoc = 2+ (5 + 2Lc) N

where N is the number of progressions specified in the marker segment,
and L c is the number of bytes used to specify a component index, as
given in equation (13.2). The number of progressions in a poe marker
segment is signalled implicitly by the length Lpoc.

STARTING AND ENDING INDICES
Each row, n = 0,1, ... ,N - 1, in the figure specifies one progression.

Each such progression consists of one progression order, and the ranges
of packet indices over which it applies. Specifically, Op is a one byte
unsigned integer from 0 to 4, identifying one of the five progression
orders described in Section 13.1.1.
The one byte unsigned integers rs and r'E specify starting (inclusive)

and ending (exclusive) resolutions to be used with progression order
Op. Specifically, the "resolution loops" in the progression definitions of

Chapter 13: Code-Stream Syntax 557

Section 13.1.1 become

for r = rs, rs + 1, ... ,re - 1
rather than the nominal version

for r = 0,1, ... ,Dt max,

given in that section. These parameters must satisfy 0 ::; rS < re::; 33.
Similarly, Cs and cespecify starting and ending components for use

with progression Op. The "component loops" in the progression defini­
tions of Section 13.1.1 become

for C = cs, Cs + 1, ... ,ce - 1
rather than the nominal version

for C = 0,1, ... ,C - 1

given there.
As for other marker segments, component numbers are represented

using L c bytes, where L c is defined by equation (13.2). In the one byte
case, 0 ::; Cs ::; 255, while in the two byte case, 0 ::; Cs ::; 16383. The
treatment of ceis slightly more complicated. In the one byte case, we
must have either 1 ::; ce ::; 255, or ce= O. A value of ce= 0 is to
be interpreted as ce= 256. The two byte case is similar, with either
1 ::; ce~ 16384 or ce= O. Here, a value of ce= 0 is interpreted as
ce= 16384. It is worth noting that in the two byte case, there are two
ways to signal ce= 16384.
The Final Draft International Standard of JPEG2000 Part 1 contains

an error with respect to the treatment of CEo This has been corrected in
a subsequent defect report [4J.
Finally, the two byte unsigned integer le is the ending layer index

to be used with progression order Op. The starting index is always O.
Thus, the "layer loops" in the progression definitions of Section 13.1.1
become

for l = 0,1, ... , lE - 1

Legal values of le satisfy 1 ::; le ::; 65535.
It is worth noting that there is no mechanism for specifying starting

and ending precinct indices. These always run over the full range 0 ::;
Pi < NT,t,c,r i = 1,2, as discussed in Section 13.1.1.

In what follows, we restrict our attention once more to a single tile.
We emphasize that even when poe marker segments are present, pro­
gression orders are still implemented (i.e., packets are still sequenced)
on a tile by tile basis to create tile-streams which can be divided into
tile-parts. Of course, the progressions employed for a given tile are based
on the COD / POC and main/tile hierarchy.

558 Markers and Marker Segments

I

--.
--.

r

Figure 13.16. Progression volumes for the poe of Figure 13.17.

PROGRESSION VOLUMES
For a specific tile t, we define a "progression volume" as the set of

packets implied by a single progression (a row in Figure 13.15). Specifi­
cally,

Vol~ = {
Qt,c,r,p,l : Cs~ c < cEl rs~ r < rE, }

o< . < NP,t,c,r 0 < I < In- P~ ~ ,- E

It is not required that the progression volumes n = 0,1, ... 1 N - 1 be
disjoint. That is, the same packet may appear in multiple progression
volumes. However, even in this case, packets are not repeated in the
tile-stream.
As an example, consider a tile having only one component. Assume

this tile is compressed using 3 layers, 3 levels of wavelet transform,
and one precinct per resolution. The resulting tile-stream will have
(Dt,c + 1) At = 12 packets. These packets are shown notionally as the
rectangular regions in Figure 13.16. Since c = PI = P2 = 0 for all
packets of this example, the progression volume can be depicted in two
dimensions, indexed by r and I, as shown in the figure.
Consider now, the poe marker segment of Figure 13.17. This poe

marker segment contains three progressions. The first progression is
ordered RLCP, with 0 ~ r < 2 and 0 ~ I < 2. The second progression
is also ordered RLCP, but with 3 ~ r < 4 and 0 ~ I < 3. The third
and final progression is ordered LRCP, with 0 ~ r < 4 and 0 ~ I < 3.
Note that in every case 0 ~ c < 1, consistent with the single component
present in our example.
The progression volumes for the first two progressions are indicated

by the shaded regions in Figure 13.16. It should be noted that these
volumes are disjoint. On the other hand, the third progression vol-

Chapter 13: Code-Stream Syntax 559

poe 0017h

OOh OOh 0002h 02h Oih Oi"

03h OOh 0003" 04h 011. 011.

00" OOh 0003h 04h Oih OOh

Figure 13.17. Example of a poe marker segment with three different progressions.

ume encompasses all of the figure, with the first two volumes entirely
contained in the third. As discussed previously, all packets must be
contained in at least one progression volume. This demonstrates one
method to guarantee this requirement is met.
Also as discussed previously, when the progression volumes are not

disjoint, packets are not repeated. That is, packets are sequenced only
in the first progression volume in which they appear. Thus, the twelve
packets of this example are sequenced in the following order:

~h,o,o,o,o; Qt,O,O,O,l; Qt,O,l,O,O; Qt,O,l,O,l;

Qt,O,3,O,O; Qt,O,3,0,1; Qt,O,3,O,2;

Qt,O,2,O,O; Qt,O,2,O,1; Qt,O,O,O,2; Qt,O,1,O,2; Qt,O,2,O,2

(13.4)

These progressions are indicated graphically by the arrows in Figure
13.16.

It is worth noting that the poe marker segment of our example could
be divided into as many as three poe marker segments, one for each
progression order. The first such marker segment must appear in the tile
header. The second such marker segment could appear in any tile-part
header (for this tile) that precedes the packet Qt,O,3,O,O. Finally, the third
marker segment must appear before Qt,O,2,O,O. Conversely, poe marker
segments from multiple tile-part headers can be deleted (moving their
contents to the tile header poe marker segment), with no effect on the
packet sequencing for that tile.
We close our discussion of poe marker segments with a few words

about index bounds. It is desirable, and sometimes necessary, to allow
a poe marker segment to specify index bounds outside the appropriate
range for some (or all) tile-components within its scope. The necessity
of this follows from the fact that there is no tile specific version of the
poe marker segment, and that the number of resolutions and/or layers
can differ tile-component by tile-component.

560 Markers and Marker Segments

TLM I LTLM iTLM I L

·0 I Lh I ·1 L}P I·N-l I L N - 1 I21' 21' . . . 21'
1'P

Figure 13.18. The TLM marker segment.

Clearly, no packets should be sequenced for "out of bound" indices.
As an example, changing the second progression of Figure 13.16 to range
over 3 ~ r < 9 and 0 ~ l < 5 would not change the sequencing of packets
in equation (13.4).

13.3.12 TILE-PART LENGTHS: MAIN
HEADER (TLM)

TLM marker segments may be used to specify the tile-index and
tile-part length of every compressed tile-part, in the order in which they
appear within the code-stream. This information is useful for random ac­
cess into the code-stream. For example, every tile-part of a given tile can
be located and extracted from the code-stream using only information
provided by TLM marker segments. Conceptually, this information is
provided as a contiguous sequence of (tile-index, tile-part length) pairs.
In practice, this sequence can be divided over multiple TLM marker
segments. This division is always allowable, and sometimes may be nec­
essary, since the full sequence may not fit within the maximum length
of a single marker segment.4

TLM INDEX AND PARAMETER LENGTHS
As shown in Figure 13.18, each TLM marker segment has a one byte

unsigned index iTLM indicating its TLM marker segment index. These
marker segment indices indicate the order in which the data from mul­
tiple TLM marker segments are concatenated to form the contiguous
sequence of (tile-index, tile-part length) pairs. Legal values of iTLM

range from 0 to 255, inclusive. This iTLM parameter is necessary since
multiple TLM marker segments can appear in any order within the main
header.
The iTLM parameter is followed by the L parameter, which indicates

the number of bytes used to represent each of the remaining parameters
within the TLM marker segment. Labeling the bits of Las L7 , L6,· .. ,Lo

4 Marker segments are limited by their length parameter LTLM :::; 65535.

Chapter 13: Code-Stream Syntax 561

from most significant to least significant, L5 and L4 indicate the size of
the iT parameters, while L6 indicates the size of the LTp parameters.
Specifically, L5L4 , taken together as an unsigned two bit integer, specify
the number of bytes, LiT' used for each iT parameter. Legal values for
this quantity are 0 :S LiT :S 2. L6 = 0 indicates that each LTp parameter
is of length LLTP = 2 bytes, while L6 = 1 indicates that four bytes are
used for each LTp parameter; i.e., LLTP = 4. The L parameters need
not be consistent across multiple TLM marker segments. The remaining
bits of L are all required to be zero; i.e., L7 = L3 = L2 = L1 = Lo = O.
The length of a TLM marker segment is then given by

TILE INDICES AND TILE-PART LENGTHS
For a given TLM marker segment, N is the number of (iT' LTP)

pairs, and can be determined by a decoder from LTLM. As discussed
above, when multiple TLM marker segments are present, their contents
should be concatenated in order of iTLM, to get the complete sequence
of (iT'LTP)pairs. The total number of such pairs is then the sum of the
N over all TLM marker segments. In what follows, we assume that this
concatenation has been done, and the total number of pairs is given by
Nt. Clearly, the discussion below would be unchanged if there were only
a single TLM marker segment containing Nt pairs. Note that the total
number of tile-parts present in the code-stream must be Nt in either
case.
The (iT' LTP)pairs provide information about tile-parts in their order

of appearance within the code-stream. iT is the tile index or tile number
of the nth such tile-part, while LTp is its length, in bytes. This length
includes all markers and marker segments within the tile-part. This tile
index and length must agree with the corresponding values that appear
in its SOT marker segment.
Legal ranges of the iT and LTp parameters are dependent upon the

L parameter in the TLM marker segment from which they came. If
L specifies that 0 bytes are used for iT' then these parameters are not
present. If 1 or 2 bytes are used for the iT' then 0 :S iT :S 254 or
o :S iT :S 65534, respectively. If L specifies two bytes for LTp , then
14 :S LTp :S 65535. Similarly, for four bytes, 14 :S LTp :S (232

- 1). We
recall here from Section 13.3.2, that the minimum possible length of a
tile-part is 14 bytes.
We conclude our discussion of the TLM marker segment by noting

that 0 bytes for each iT is only a legal choice when there is only one

562 Markers and Marker Segments

PLM I LPLM i PLM \

LO I LO I L
1

L~ I ... ILN
-

1
1

LN - 1 IP P

Figure 13.19. The PLM marker segment.

tile-part per tile (tile-part 0). Furthermore, all tile-streams must appear
in order, iT = 0,1, ... ,N(.Ni - 1, within the code-stream.

13.3.13 PACKET LENGTHS: MAIN HEADER
(PLM)

The PLM marker segment may be used to record the lengths of all
packets. These lengths must include SOP marker segments, if present.
By providing packet length information within the main header, this
marker segment can be useful for random access into the code-stream at
a finer granularity than that provided by TLM marker segments. The
price of this finer granularity is paid in higher overhead (larger com­
pressed file size). As in the case of TLM marker segments, the informa­
tion provided by PLM marker segments can be distributed over several
marker segments which must be concatenated to retrieve the complete
list of packet lengths. This concatenated list provides the length of every
packet in the code-stream. The list is grouped by tile-part in the same
order as they appear in the code-stream.
The PLM marker segment is shown in Figure 13.19. The ipLM para­

meter is a one byte unsigned integer representing the index of the PLM
marker segment relative to other PLM marker segments. These ipLM

parameters provide the order for concatenation of multiple PLM marker
segments. Legal values are °:::; ipLM :::; 255, indicating that there can
be up to 256 PLM marker segments in the main header. These PLM
marker segments can occur in any order. In what follows, we assume that
all PLM information has been concatenated to yield a list of (Ln,Lp)
pairs n = 0,1, ... ,Nt - 1, where Nt is the sum of the N from all PLM
marker segments.

PACKET LENGTHS
Each (Ln , Lp) pair provides length information for all packets within

the nth tile-part, in order of appearance within the code-stream. The
tile index iT of this tile-part can be found in several ways. The easiest
way is via TLM marker segments, if present.

Chapter 13: Code-Stream Syntax 563

Figure 13.20. Example Lp parameter from a PLM marker segment. For this exam­
ple, L n = 4.

The Ln parameter is one unsigned byte satisfying 0 S Ln S 255. L n

indicates the length of Lp, in bytes. As in previous marker segments, the
variable length nature of Lp is indicated by the horizontal lines above
and below. The Lpparameter itself is a sequence of bytes that provides
packet lengths for all packets in the nth tile-part using a punctuated
code. The MSB of each byte in Lp is either a comma (1), or a period
(0). A period indicates that a packet length is complete, while a comma
indicates that it is not. The seven LSBs of all bytes, up to and in­
cluding a byte containing a period, are concatenated to form an integer
representing the length of a packet.
As an example, consider the Lpparameter of length Ln = 4, as given

in Figure 13.20. This Lp represents a tile-part with 3 packets having
lengths 12, 4066, and 124 bytes, respectively. The first byte, OCh has an
MSB of 0 indicating that this is the last (in this case only) byte in a
packet length. The seven LSBs then give the length of the first packet
as

0001100 = 12

The next byte, 9Fh' has an MSB of 1 indicating it is not the last byte of
a packet length. However the following byte 62h does terminate a length
since its MSB is 0. The 7 least significant bits from each of these two
bytes are concatenated to yield the length of the second packet as

,...--"'--.. ,...--"'--..
00111111100010 = 4066

Finally, the last byte 7Ch has an MSB of 0, and yields the third packet
length of

1111100 = 124

If a tile-part contains no packets, its Ln = 0 and no Lp is present.
The length of a PLM marker segment must satisfy 4 S L pLM S 65535.
The lower bound occurs when N = 1, and LO = O.
For the purpose of breaking the full list of parameters into multiple

PLM marker segments, the sequence may be broken after any whole
number of packet lengths (possibly zero). For example, in Figure 13.20,
a "seam" between concatenated PLM marker segments may occur after
OCI!> 621!> or 7Ch. A seam may also occur before OClu but not after 9Fh.

564 Markers and Marker Segments

Due to this policy, the first parameter following ipLM may not be an
La parameter when iPLM > O. Rather, it may be the continuation of
the L~-l parameter from the previous PLM marker segment, having
index iPLM - 1. In this case, the LN - 1 from the previous PLM marker
segment takes into account the bytes of such continuation. Figure 13.19
is not strictly applicable in this case.

LIMITATIONS

It is possible to construct a tile-part that exceeds the capabilities of the
PLM marker segment to record its packet lengths. If one or more such
tile-parts are present in the code-stream, PLM marker segments shall
not be used. As an example of such a tile-part, consider any tile-part
with more than 255 packets. Since each packet length requires at least
one byte in Lp, the value of Ln would exceed 255 in this example. This
is not possible since Ln occupies only a single byte in the code-stream.

As a final note, we comment on the interaction between PLM, PLT,
PPM, and PPT marker segments. As explained in the following sub­
section, the PLT marker segment is a tile specific version of the PLM
marker segment. PLM and PLT marker segments may appear in the
same code-stream. PPM and PPT marker segments are discussed in
subsequent subsections. Briefly, when either PPM or PPT marker seg­
ments are present, some or all packet headers are relocated from their
respective pack-streams to main, tile, or tile-part headers. For such
packets, the lengths specified in the corresponding Lp parameters do
not include packet headers. Since the packet headers of such packets are
not present in the pack-stream, only the lengths of the packet bodies are
reported in the Lp.

13.3.14 PACKET LENGTHS: TILE-PART
(PLT)

The PLTmarker segment is a tile specific version of the PLM marker
segment. Both PLM and PLT marker segments are optional and can
both appear in the same code-stream. The packet length information
for a given tile can be distributed across multiple PLT marker segments.
These multiple PLT marker segments can be distributed among multiple
tile-parts. Specifically the PLT marker segments of a tile can be distrib­
uted between the tile header and all tile-part headers of the respective
tile-stream. When a PLT marker segment occurs in a tile-part header,
it has the same effect as if it appeared in the tile header. Each PLT
marker segment must appear in the code-stream prior to any packet for
which it contains length information.

PLT

Chapter 13: Code-Stream Syntax 565

LnT l~t:===L=P===

13.3.15

Figure 13.21. The PLT marker segment.

Allowing PLT marker segments to be distributed among tile-parts
allows for a certain amount of interactive code-stream construction in
client-server applications. It also allows for more efficient progressive
transmission by providing packet length information on a more "as
needed" basis. This is in contrast to the PLM marker segment where all
packet length information must occur "up front," in the main header.
The PLT marker segment is shown in Figure 13.21. The iPLT is a one

byte parameter satisfying a ::; iPLT ::; 255 representing the index for the
current PLT marker segment. This index specifies the order in which Lp
parameters from multiple PLT marker segments are concatenated. The
L p parameter contains a sequence of packet lengths specified using the
punctuated code described for the PLM marker segment. The complete
concatenated list of lengths specifies the lengths of all packets in the tile­
stream of the relevant tile. "Seams" in the concatenated Lp parameters
may occur at the end of any "complete" packet length; i.e., after any
byte having an MSB of O.
The lengths reported in the PLT marker segment must be consistent

with those of the PLM marker segment, if present. If any packet header
is relocated to a PPM or PPT marker segment, its length as reported
in a PLT marker segment must be that of its packet body. As for the
PLM marker segment, the length of a PLT marker segment satisfies
4 ::; LPLT ::; 65535.

PACKED PACKET HEADERS: MAIN
HEADER (PPM)

The PPM marker segment is optional and can be used to relocate
packet headers from their respective pack-streams to the main header.
This can be useful for certain types of random access, and for the design
of error resilient communication formats. Correct decoding of a given
packet header is critical to decoding not only its associated packet, but
also to all subsequent packets within the same precinct. In certain sce­
narios, it may be beneficial to collect packet headers into the main header
where they may be easier to protect. In terms of progression, the cost
of this feature can be significant, since all packet headers appear in the
code-stream before any compressed bit-stream data.

566 Markers and Marker Segments

PPM I LpPM i PPM !

LO PHo L 1 PHI

... . .. L N - 1 PHN - 1

Figure 13.22. The PPM marker segment.

If PPM marker segments are employed, the headers of all packets are
relocated to the main header. No packet headers remain in any com­
pressed pack-stream data, and PPT marker segments are not allowed.
The packet headers can be distributed across multiple PPM marker
segments. The concatenation of parameters from all such PPM marker
segments contains the packet headers, grouped by tile-part, in order of
their appearance within the code-stream.

PACKET HEADERS
The PPM marker segment is shown in Figure 13.22. The iPPM para­

meter is a one byte index satisfying 0 S; ipPM S; 255. This index specifies
the order of concatenation of multiple PPM marker segments. After con­
catenation, the complete list of (Ln , P H n) pairs has N' elements, where
N' is the sum of the N from all PPM marker segments. The (Ln,PHn)
pair contains packet headers for all packets in the nth tile-part, in order
of appearance within the code-stream. The length of P H n is given by
the four byte parameter Ln, which satisfies 0 S; Ln S; 232 -1. The PHn

parameter is a concatenation of all packet headers of tile-part n.
The number of headers present in P H n , and their individual lengths,

can be determined from EPH markers, if present. We note however,
that the packet headers can be decoded sequentially without such prior
knowledge.
The concatenation seam between multiple PPM marker segments can

occur immediately before or after an L n or at any packet header bound­
ary. Thus, a PPM marker segment may contain any whole number
(possibly zero) of complete packet headers. This allows for the continu­
ation of PHN - 1 data from the previous PPM marker segments to follow
iPPM, whenever iPPM > O. In this case, L N - 1 from the previous PPM
marker segment takes into account these continued bytes, and Figure
13.22 is not strictly applicable.
The length of a PPM marker segment satisfies 4 S; LpPM S; 65535.

The lower bound of LpPM = 4 can occur when ipPM > 1 and the PPM

Chapter 13: Code-Stream Syntax 567

marker segment contains only a single packet header, of length one byte,
continued from the previous PPM marker segment.
The Final Draft International Standard of JPEG2000 Part 1 indicates

that 7 ::; LpPM ::; 65535. At the time of this writing, this discrepancy
has been noted by the JPEG committee, but has not been captured in a
defect report. Encoders would do well to avoid generating PPM marker
segments of length less than 7, while decoders would do well to expect
lengths as small as 4.
As discussed in Section 13.3.18, each packet header may be followed

by an EPH marker. When packet headers are relocated to PPM or
PPT marker segments, their corresponding EPH markers, if any, are
relocated as well. Since the presence of EPH can be signalled tile-by­
tile in COD, it may not be possible for a decoder to know a priori which
PHn , if any, contain EPH markers. On the other hand, these markers
are easily detectable since EPH exceeds FF8Fh and cannot appear within
compressed packet header data.5

13.3.16 PACKED PACKET HEADERS:
TILE-PART (PPT)

The PPT marker segment is a tile specific version of the PPM marker
segment. PPT marker segments are not permitted when PPM marker
segments are employed. In the absence of PPM marker segments, PPT
marker segments may be used or not used on a tile by tile basis. In any
tile where PPT marker segments are present, all packet headers for that
tile are relocated to PPT marker segments, and no packet headers are
left within their associated pack-stream data.
The PPT marker segment is shown in Figure 13.23. The PPT marker

segment index satisfies 0 ::; i PPT ::; 255, and specifies the order in which
PH parameters from multiple PPT marker segments are to be concate­
nated. The concatenated PH parameters comprise the concatenation of
all packet headers from the relevant tile, in order, as their corresponding
packets appear in the tile-stream. The multiple PPT marker segments
of a particular tile can be distributed among its tile and tile-part head­
ers in arbitrary fashion. The only restriction is that each PPT marker
segment must occur prior to any packets for which it contains headers.
Any whole number of packet headers can occur in a PPT marker

segment. The Final Draft International Standard of JPEG2000 Part 1
specifies 4 ::; LpPT ::; 65535. As discussed in Section 13.3.2, it is possible

5In fact, compressed packet header data (as opposed to packet body data) cannot contain
two consecutive bytes in the range FF80h to FFFFh'

568 Markers and Marker Segments

PPT Lppr EJe:==P=H====

Figure 13.23. The PPT marker segment.

for a tile to contain no packets. In this case, LpPT = 3 would occur.
However, such a PPT marker segment serves no purpose and encoders
should avoid generating such marker segments. On the other hand, a
robust decoder would do well to handle such PPT marker segments
appropriately.
As in the case of PPM marker segments, when EPH markers are

present, they are relocated to PPT marker segments together with their
respective packet headers. In this case, it is possible for a decoder to
know a priori if EPH markers are present by checking both main and
tile header COD marker segments.

13.3.17 START OF PACKET (SOP)
The SOP marker segment is optional and may appear immediately

before each packet when indicated in a COD marker segment. When in­
dicated in a main header COD marker segment, an SOP marker segment
may appear before each packet in the code-stream. When indicated in a
tile header COD marker segment, an SOP marker segment may appear
before each packet in the relevant tile-stream.
The SOP marker segment may be useful for code-stream parsing

and/or error resilient decoding. As discussed previously, the SOP mark­
er code exceeds FF8Fh' the maximum possible value of any two consec­
utive bytes of compressed pack-stream data. SOP markers can thus be
used to detect errors arising while parsing packet headers. Upon de­
tection of such errors, the presence of subsequent SOP marker segments
enables resynchronization at a well-defined packet boundary, from which
processing can resume.
The SOP marker segment is shown in Figure 13.24. isop is a two byte

counter satisfying 0 ~ isop ~ 65535. Each tile has its own isop counter,
even when SOP is signalled via the main header COD marker segment.
The isop counter for each tile is initialized to 0 at the beginning of the
code-stream. After each packet is sequenced, the isop counter for its
tile is incremented, modulo 65536. That is, the result of incrementing
65535 is O.

SOP marker segments are only allowed when indicated by a COD
marker segment. Even when the relevant COD marker segment has its
OS! flag set to 1, SOP marker segments are still optional on a packet

Chapter 13: Code-Stream Syntax 569

SOP Lso? isop

Figure 13.24. The SOP marker segment.

by packet basis. However, if SOP marker segments are omitted for one
or more packets, the corresponding isop must still be incremented for
each such packet.
Encoders generating error resilient code-streams would do well to not

omit any SOP marker segments. Omission of SOP marker segments re­
duces opportunities for error detection and resynchronization. It also in­
creases the buffering requirements of error resilient decoders. Of course,
decoders are not required to make use of SOP marker segments in any
case. The designer of a decoder may ignore SOP marker segments alto­
gether, only attempt to exploit SOP marker segments when present for
every packet, or anywhere in between these two extremes.
When PPM or PPT marker segments are employed, any SOP marker

segments remain in the pack-stream with their corresponding packet
bodies. When PLM or PLT marker segments are employed, the packet
lengths contained therein must include the lengths of any SOP marker
segments that may be present.

13.3.18 END OF PACKET HEADER (EPH)
End of packet header markers, EPH, appear as isolated markers.

When indicated in a COD marker segment, every packet header within
the scope of the COD marker segment must be immediately followed
by an EPH marker. This is true for packet headers within PPM or
PPT marker segments, as well as packet headers appearing in their
compressed pack-streams. It is even true for packets whose precincts
contain no code-block samples at all (see Section 11.3.3). EPH exceeds
FF8Fh and is "searchable" within compressed pack-stream data. Thus,
EPH markers are useful for code-stream parsing and/or error resilient
decoding.
We note that the Final Draft International Standard of JPEG2000

Part 1 listed EPH markers as optional, when allowed by a COD marker
segment. This was corrected in [4] to require EPH markers after every
packet header within the scope of the indicating COD marker segment.

13.3.19

570 Markers and Marker Segments

CRG LCRG

og Or o~ ot

... of- 1 OC-1
1

Figure 13.25. The CRG marker segment.

COMPONENT REGISTRATION
(CRG)

The CRG marker segment is informative in nature. A single CRG
marker segment may appear in the main header only. Component sam­
ples can always be decompressed correctly without the aid of this marker
segment. However, this marker segment may be useful for rendering or
display of decompressed image components.
The CRG marker segment is shown in Figure 13.25. The length of

this marker segment is clearly

LCRG = 2+4·C

where C is the number of components present in the image. 0 1 and
O~, 0 ~ c < C, indicate vertical and horizontal offsets that can be
used for spatial registration of component c. Each offset is a two byte
unsigned integer ranging between 0 and 65535, inclusive. These offsets
are converted to canvas units as

oe = T 16 . se. oe i = 1,2
~ ~ ~

where Sl and S2 are the vertical and horizontal sub-sampling factors
for component c. Clearly then, registration with accuracy finer than the
grid spacing of the canvas is possible.
The offset pair [01,O~] should be applied to the coordinates of each

sample of component c. As an example, consider a three component
YCbCr image with 4:2:0 format, as defined in JFIF, H.261, and MPEGl.
One choice for the purpose of compression/decompression is to set E1 =
E2 = 0, S~ = sg = 2 and Sf = Si = Sf = S~ = 4 as shown in Figure
13.26a. In this figure, the locations of Y samples (component 0) are
shown as circles, while the locations of Cb and Cr samples (components 1
and 2) are shown by squares. A CRG marker segment with O~ = O~ = 0
and Of = O~ = Or = O~ = 16384 specifies component registration (for
the purpose of display) as shown in Figure 13.26b.

Chapter 13: Code-Stream Syntax 571

- ~ ~ ~ ~ ~

El · El · El ·
~ . 0 0 0 0 0 ~ . 0 0 · 0 0 0

~ . 0 t:1 0 [:2 0 0 0 · 0 0 0
El · El El ·

D • 0 0 0 0 0 ~ . 0 0 · 0 0 0

~ . 0 [:2 0 [:2 0 . 0 0 · 0 0 0
El · . El · El · .

D • 0 0 0 0 0 0 . 0 · 0 0 0

· ·
a) b)

Figure 13.26. Example of the CRG marker segment: a) Component samples as reg­
istered on the canvas for the purposes of compression and decompression. b) Com­
ponent registration as prefered for display according to the CRG marker segment.
Shading indicates the image area of the canvas coordinate system.

0 0 0 0 0 0 0 0

0 t:1 0 [:2 0 0 0 0. Gl . Gl
0 0 0 0 0 0 0 0.
0 [:l 0 [:l 0 0 0 0

G G

a) b)

Figure 13.27. Second Example of the CRG marker segment: a) Component samples
as registered on the canvas for the purposes of compression and decompression. b)
Component registration as prefered for display according to the CRG marker segment.
Shading indicates the image area of the canvas coordinate system.

Figure 13.27 shows another example with the same sub-sampling fac­
tors as above. In this case however, the upper left hand corner of the
image area is set to E I = E2 = 1. Additionally, the lower right hand
corner is set to FI = F2 = 9 (rather than 12, as in the previous fig­
ure). Figure 13.27a shows the location of component samples for the
purpose of compression/decompression, while Figure 13.27b shows the
component sample locations for the purpose of display.

572 Markers and Marker Segments

COM LeOM TY Comment Data

Figure 13.28. The COM marker segment.

The undesirable behavior demonstrated by the second example can
be avoid by judicious choice of canvas parameters. Specifically, let 81
be the LCM (least common multiple) of the Sf, c = 0,1, ... ,C - 1.
Similarly, let 82 be the LCM of the S~. The problem demonstrated in
Figure 13.27 can then be avoided by choosing Ei and Fi to be integer
multiples of 8i , i = 1,2, respectively.

13.3.20 COMMENT (COM)
The COM marker segment provides a facility for including unstruc­

tured comment information in the code-stream. The COM marker seg­
ment is shown in Figure 13.28. The TY parameter is a two byte un­
signed integer. TY = 1 indicates that the Comment Data comprises a
sequence of bytes in the form of IS 8859-15:1999 (Latin) character data
[15]. TY = 0 indicates general binary Comment Data. No other values
for TY are allowed in JPEG2000 Part 1. The COM marker segment
length satisfies 5 S; LCOM S; 65535.

Chapter 14

FILE FORMAT

As discussed in Chapter 13, all information necessary for decompress­
ing all image component samples is specified by the JPEG2000 syntax.
In this sense, a JPEG2000 code-stream is entirely self-contained. On the
other hand, many applications may find certain other information use­
ful. Such information might include color spaces, color palettes, capture
resolution, display resolution, and copyright. All of these things may
be included with a JPEG2000 code-stream via a JPEG2000 file format.
Vendor specific information may also be included via UUIDs (Universal
Unique Identifiers) and XML (eXtensible Markup Language).
As mentioned in Chapter 9, three JPEG2000 file formats are de­

fined. These file formats may be viewed as wrappers for JPEG2000
code-streams. JPEG2000 Part 1 includes a minimal file format, while
Part 2 includes compatible extensions to the Part 1 file format. Part 6
specifies a file format targeted toward document imaging. The Part 1
and Part 2 file formats are known as JP2 and JPX, respectively. The
Part 6 file format is known as JPM. All three file formats are optional.
Specifically, a JPEG2000 code-stream may stand alone, may be wrapped
by one of the three JPEG2000 file formats, or may be contained in some
other standard or proprietary file.!
This chapter deals exclusively with the Part 1 file format, JP2. The

other file formats are beyond our scope. In file systems that employ
file name extensions, '.jp2' should be used to denote JP2 files. For
Macintosh files systems, JP2 files should have the type code C jp2 '. JP2
file readers should not be case sensitive with regard to file extensions.

1Motion JPEG2000 (Part 3) is csscntially a filc format.

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

574 File Format Organization

I JPEG2000 Signature box

Required I File Type box

I JP2 Header box

IContiguous Code-Stream box May appear in any

I
order, except that

IPR box the JP2 Header box

I XML boxes must appear before
Optional

I UUlD boxes
the Contiguous
Code-Stream box

I UUID Info boxes

Figure 14.1. JP2 file format structure. Shading indicates optional boxes.

14.1 FILE FORMAT ORGANIZATION
The JP2 file format is organized as a sequence of "boxes," as depicted

in Figure 14.1. In this figure, each rectangle represents a box. As dis­
cussed in subsequent sections, each box has an identifier, a length, and
contents. Boxes playa role in the file format similar to that of marker
segments in the code-stream syntax.
Boxes appear consecutively in the file. There is no punctuation or any

other type of data between boxes. As noted in the figure, there are four
required boxes. The JPEG2000 Signature box is required as the first box
in the JP2 file. The File Type box must follow immediately thereafter.
The remaining two required boxes may appear anywhere after the File
Type box, with the restriction that the JP2 Header box must appear
prior to the Contiguous Code-Stream box. The IPR, XML, UUID, and
UUID Info boxes are all optional and may appear in any order, anywhere
after the File Type box. There may be multiple instances of the latter
three boxes.
The JPEG2000 Signature box identifies the file as belonging to the

JPEG2000 family of file formats. The File Type box identifies the file
specifically as a JP2 file. The JP2 Header box contains information
such as image size, bit-depth, resolution, and color space. The Contigu­
ous Code-Stream box contains a single valid JPEG2000 code-stream.
The IPR box contains Intellectual Property Rights information. XML
boxes provide for the inclusion of additional structured information,
while UUID and UUID Info boxes provide a mechanism for defining
vendor specific extensions. Each of these boxes is discussed in more
detail in subsequent sections.

L I
XL

Chapter 14: File Format 575

T

14.1.1

c 1

Figure 14.2. Structure of a JP2 box.

THE STRUCTURE OF A BOX
Similar to the handling of marker segments in Chapter 13, we depict

a box graphically as a sequence of rectangles. Each parameter in a box
is contained in a field denoted by one of these rectangles. The width of
a rectangle indicates the number of bytes occupied by its corresponding
parameter within the file. A generic box is shown in Figure 14.2. In this
figure, the Box Type is denoted by T. The box type serves a role in the
file format similar to that of a marker in the syntax. Specifically, the
box type indicates the function and format of the box. Unlike a marker
however, the box type appears second within the box and occupies four
bytes.
The box type is interpretable as a four character ISO 646 character

string [14]. Throughout the chapter, we provide the text string sur­
rounded in single quotes, as well as its hexadecimal equivalent. As an
example, the box type for the JP2 Header box is 'jp2h' = 6A703268h.
Specifically, the character codes for lower case j and pare 6Ah and 70h,
while the numeral 2 and lower case h are coded as 32h and 68h, respec­
tively.
The length of a box is its first parameter, and is denoted by L in Figure

14.2. This length parameter is an unsigned, big endian integer occupying
four bytes in the file. Legal values are L = 0,1, or 8 :::; L < 232 . A value
of L ~ 8 indicates the total length of the box, including the eight bytes
of Land T.

If L = 1, then the length of the box is given by the XL parameter,
which is an 8 byte unsigned big endian integer. Legal values satisfy
16 :::; XL < 264 , and include the sixteen bytes for L, T, and XL. If
L =I- 1, the XL parameter is not present.

If L = 0, the length of the box was not known at the time the file was
written. This is only allowable for the last box in the file. In this case,
all remaining bytes, up to and including the last byte in the file, belong
to this box.

576 JP2 Boxes

1

BOX 0 _

. I Box 1 I Box 2
\.~_~ __~A~_~ ~ J

Y Y

~ L~l_ ~--L---=2'-------..J
Y

La

Figure 14·3. Boxes within a box. If L2 = 0, then Lo must also be O. L 1 = 0 is not
allowed.

The contents of the box, if any, are denoted by C in Figure 14.2. As
in Chapter 13, the extra horizontal lines in the C rectangle indicate that
this parameter is of variable length. The number of bytes in C can be
determined from L and/or XL. The format of C varies depending on the
box type. This will be described in more detail in the following sections.
Before moving on to those discussions, we note that one or more

boxes may be included in the contents of another box. In this case,
the "outer box" will be referred to as a superbox. All superboxes must
follow the rules for construction of a box. In particular, the length of a
superbox must convey its full length including any boxes that may be
contained within. If a box has L = 0 then its superbox, if any, must
also have L = O. Furthermore, the "inner" box with L = 0 must appear
last within the contents of its superbox. This situation is illustrated in
Figure 14.3.

14.2 JP2 BOXES
This section provides detailed descriptions of each JP2 box depicted

in Figure 14.1. These boxes are summarized in Table 14.1. In the table,
two boxes are identified as superboxes. The boxes contained within these
superboxes are described in the sections pertaining to the superboxes
themselves.

14.2.1 THE JPEG2000 SIGNATURE BOX
As discussed above, the JPEG2000 Signature box must be the first

box in a JP2 file. Only one JPEG2000 Signature box is allowed. This
box identifies the file as belonging to the JPEG2000 family of file formats.
The box type is T = 'jP '= 6A502020h. The box length is L = 12,
and the XL parameter is not present. The contents of the box comprise

Chapter 14: File Format 577

Table 14.1. JP2 Boxes. Boxes that appear within the JP2 Header and UUID Info
superboxes are introduced in subsequent sections.

Box Type Hexadecimal Box Name
Equivalent

Required Superbox

'jP ,

'ftyp'
, jp2h'
, jp2c'

'jp2i'
'xm1 '
'uuid'
'uinf'

6A502020h

66747970h

6A703268h

6A703263h

6A703269h

786D6C20h

75756964h

75696E66h

JPEG2000 Signature Yes
File Type Yes
JP2 Header Yes
Contiguous Code-Stream Yes
IPR No
XML No
UUID No
UUID Info No

No
No
Yes
No
No
No
No
Yes

the four bytes ODOA870Ah. These bytes provide for detection of common
file transmission errors. When interpreted as characters, ODh = <CR>
and OAh = <LF>. Thus, the common error of substituting <CR><LF>
for <LF>, or vice versa, is easily detected. Similarly, the third byte 87h

has its most significant bit set, so the common error of dearing the most
significant bit during file transmission can also be detected.

14.2.2 THE FILE TYPE BOX
The File Type box must be the second box in a JP2 file. Only one File

Type box shall be present in a JP2 file. Among the JPEG2000 family of
file formats, the File Type box specifies the particular format to which
a file belongs. The box type for this box is T = 'ftyp' = 66747970h.
The structure of the File Type box is shown in Figure 14.4. In the in­

terest of space, the L, T, and XL parameters are omitted from the figure.
Only the contents, C, are shown. This practice is followed throughout
the remainder of this chapter.
As indicated by the figure, each parameter in the File Type box oc­

cupies four bytes. The Br parameter is the "Brand," and defines the
specific file format employed. For JP2, Br = 'jp2 ' = 6A703220h. The
MV parameter defines the Minor Version number for the brand. This
parameter is a big endian unsigned integer. At the time of this writing,
the only legal value is MV = O. Conforming JP2 readers should attempt
to interpret the file even when MV is not as expected.
The CLi parameters specify a "Compatibility List" of standards to

which the file conforms. In the case when Br =1= 'jp2 " but one of
the CLi parameters is given as 'jp2 ',the file is not a JP2 file, but is
interpretable by JP2 readers in some fashion as intended by its creator.

578 JP2 Boxes

Br MV

Figure 14.4. Contents of the File Type box.

JP2 readers are required to interpret such files. This, and similar issues
are discussed further in Section 14.3.
Of course, a JP2 file must have Br = C jp2 '. Additionally, a JP2 file

must have at least one CLi parameter taking the value CLi = C jp2 '.
The number of CLi parameters, N, can be determined from Land/or
XL.

14.2.3 THE JP2 HEADER BOX
The JP2 Header box specifies information about the image. The box

type of the JP2 Header box is T = C jp2h' = 6A703268h. As mentioned
previously with respect to Figure 14.1, the JP2 Header box may appear
anywhere after the File Type box. The only restriction is that it must
appear before the Contiguous Code-Stream box. There must be one and
only one JP2 Header box in a JP2 file.
The JP2 Header box is actually a superbox. It contains only other

boxes. The structure of the JP2 Header box is shown in Figure 14.5.
As in the previous section, we omit L, T, and XL, and show only the
contents, C. As indicated by Figure 14.5, the Image Header box must
appear first. All other boxes may appear in any order. Also, the Image
Header box, the Bits Per Component box, and the Color Specification
box are required. All other boxes are optional. Finally, we note that the
Resolution box is a superbox. We discuss the boxes within the Resolution
box in the subsection that describes the Resolution box itself.
The boxes contained within the JP2 Header box are summarized in

Table 14.2, and are discussed in detail below.

THE IMAGE HEADER BOX
The Image Header box contains the height and width of the image,

the number and depth of its components, as well as compression type,
color space, and intellectual property information. The box type for
the Image Header box is T = C ihdr' = 69686472h. The length of the
Image Header box is L = 22 bytes and no XL parameter is present.
The contents of the Image Header box are shown in Figure 14.6.

Chapter 14: File Format 579

{

Image Header box

Required =;::B;::i;::ts;::P;::e;::r=C;::o;::m:::p;::o;::n;::e;::n;::t;::b;::ox==

Color Specification box

Optional

Palette box

Component Mapping box

Channel Definition box

Resolution box

May appear
in any order

Figure 14.5. Contents of the lP2 Header box.

Table 14.2. Boxes within the lP2 Header superbox. Boxes that appear within the
Resolution superbox are introduced in subsequent sections.

Box Type Hexadecimal Box Name Required Superbox
Equivalent

'ihdr' 69686472h Image Header Yes No
'bpee' 62706363h Bits Per Component Yes* No
'eolr' 636F6C72h Color Specification Yes No
'peIr' 70636C72h Palette No No
'emap' 636D617Oh Component Mapping No No
'edef' 63646566h Channel Definition No No
'res ' 72657320.. Resolution No Yes

*If all components have the same bit depth, then the Bits Per Component
box shall not be present.

The Hand W parameters are unsigned four byte integers that specify
the height and width of the image region on the canvas, as discussed in
Chapter 11. Specifically, with [E1 , E2] and [F1 - 1, F2 - 1] denoting the
upper left and lower right corner of the image region, we then have
H = F1 - E1 and W = F2 - E2, respectively.
The number of image components is given by C, which is a two byte

unsigned integer. If all components have the same bit-depth, then the
one byte parameter B specifies this common bit-depth and no Bits Per
Component box shall be present. In this case, the interpretation of B
is as described in Section 13.3.5. If the components do not all have the
same bit-depth, then B = FFh and the Bits Per Component box must be
present to specify the bit-depth component-by-component, as discussed
in the next subsection.

580 JP2 Boxes

f---c-----.hEkEj----
Figure 14.6. Contents of the Image Header box.

We note that the information provided by H, W, C, and B is redun­
dant with information provided in the code-stream (see Section 13.3.5).
Similarly, the bit-depths in the Bits Per Component box, when present,
are also redundant with information provided in the code-stream. In a
valid JP2 file, these redundant values must be consistent. However, a
robust application may well attempt to decompress even in the case of
inconsistencies. In such a situation, the values contained in the code­
stream should be employed.
The CT (Compression Type) parameter is a one byte unsigned integer

that specifies the algorithm used to compress the image. The only legal
value in JP2 is CT = 7. The UC (Unknown Color space) parameter
is also a one byte unsigned integer, and indicates whether the image
color space is known or not. If the color space is known, and correctly
specified in the Color Specification box (described below), then UC = O.
If the color space is unknown, then UC = 1. Other values for UC are
not allowed in JP2. Even when UC = 1, a color space must be provided
in the Color Specification box. The decompressed image components
should be interpreted using this color space.
The I P parameter indicates whether or not Intellectual Property

rights information is included in the file. This parameter is a one byte
unsigned integer taking values of 0 or 1. I P = 0 indicates that no in­
tellectual property rights information is present. Conversely, IP = 1
indicates that intellectual property rights information is present. Ac­
cordingly, an IPR box is present in the file if and only if I P = 1.

THE BITS PER COMPONENT BOX
As mentioned above, the Bits Per Component box specifies the bit­

depth of each image component within the code-stream. The box type
for the Bits Per Component box is T = 'bpcc' = 62706363h. The con­
tents of this box are shown in Figure 14.7. Each BC parameter occupies
one byte and specifies the bit-depth of component c, c = 0,1, ... ,C - 1.
The interpretation of BC is as described in Section 13.3.5. As mentioned
previously, the values of BC included in this box must be consistent

Chapter 14: File Format 581

Figure 14.7. Contents of the Bits Per Component box.

~,-- E_C_S =======I=C=P=======

Figure 14.8. Contents of the Color Specification box.

with those specified in the code-stream. If the Be are identical for all
c = 0, 1, ... , C - 1, this box shall not be present in the file.

THE COLOR SPECIFICATION BOX

The Color Specification box specifies the color space of the image.
This color space applies to the "completely" decompressed image com­
ponents. Specifically, the RCT or ICT (Section 10.2) are considered
to be part of the compression/decompression process. Thus, the color
space applies to the components obtained after the inverse RCT or ICT
process, when present.
The Color Specification box has T = Ccolr' = 636F6C72h . The

contents of this box are shown in Figure 14.8. The M parameter is a one
byte unsigned integer taking values of 1 or 2, and specifies the Method
by which the color space is signalled. A value of M = 1 indicates that
the color space is signalled via the ECS parameter. In this case, the
ICP parameter is not present. On the other hand, a value of M = 2
indicates that the color space is signalled via the ICP parameter. In
this case, the ECS parameter is not present. JP2 readers must correctly
interpret the color space regardless of which method is employed.
The P (precedence) and A (approximation accuracy) parameters are

one byte parameters that should be set to zero in JP2. JP2 readers
should ignore these parameters, whether zero or not.

Enumerated Color Spaces. The ECS (Enumerated Color Space)
parameter is a four byte unsigned big endian integer used to select a
color space. In JP2, only two enumerated color spaces are supported.
At the time of this writing however, an amendment is in progress to add
a third. The two approved color spaces are the sRGB color space, and
a monochrome color space. A value of ECS = 16 indicates the sRGB
space, while ECS = 17 indicates the monochrome space. The proposed

(14.1)

582 JP2 Boxes

third color space is a YCbCr color space. This color space is indicated
by ECS = 22.
The sRGB color space is a non-linear, gamma corrected RGB space.

Gamma correction is discussed in Section 1.1.2, while the sRGB color
space itself is defined in [79]. A complete description of this color space
is beyond the scope of this text. However, as mentioned in Section 1.1.2,
the sRGB color space is related to a linear RGB space via

{
12.92VJin, VJin ::; 0.0031308

V,RGB = 1.055Vlf~/2.4) - 0.055, VJin > 0.0031308

where VJin is an R, G, or B value in linear RGB space, and V,RGB is the
corresponding R, G, or B value in the sRGB color space. In equation
(14.1), both VJin and V,RGB have a normalized range of 0.0 to 1.0.
Similarly, the monochrome color space is non-linear and related to a

linear space via the sRGB non-linearity given above. Specifically equa­
tion (14.1) is applicable with VJin representing a linear luminance, Ylin ,
and V,RGB representing a non-linear luminance, YsRGB·
Typically, the sRGB and monochrome color spaces are reasonable

choices for legacy imagery when the exact color space is unknown. In
such cases, the UC parameter in the Image Header box should be set to
1, as discussed previously.
The YCbCr color space is called sYCC and is related to the sRGB

color space via the ICT, as defined in Section 10.2. When the sYCC
color space is selected, the three color components in the code-stream
must be unsigned. For a bit-depth of B (i.e., B = B-1), the Y values
range from 0 to 2B - 1, inclusive. The Cb and Cr values range from
_2B - 1 to 2B - 1 -1, but are represented with an offset of 2B - 1 to ensure
non-negativity.
The assumption in this case, is that the original image samples were

acquired in the sYCC color space,2 then compressed and decompressed
via JPEG2000 without the use of the ICT or RCT. Thus, the three
component sub-sampling factors (Section 11.1) need not be identical.

Restricted ICC Profiles. When N1 = 2, the color space of the image
is signalled via the ICP parameter of Figure 14.8. The ICP parameter
must then contain a valid ICC Profile. ICC profiles were adopted by the
International Color Consortium for the specification of color spaces. A
thorough discussion of ICC profiles is beyond the scope of this text. A
brief description of the profiles relevant to JP2 is included below. ICC
profiles are fully defined in [78].

2This may be desirable in some cases, as the gamut of sYCC is larger that that of sRGB.

Chapter 14: File Format 583

Only a restricted set of ICC profiles is supported in JP2. Specifically,
only the Monochrome Input profiles and the Three-Component Matrix­
Based Input profiles are supported. These profiles are defined in Clauses
6.3.1.1 and 6.3.1.2 of [78]. Briefly, the Three-Component Matrix-Based
Input profiles provide necessary information to transform decompressed
three-component sample data to a standardized color space. This color
space is known as the Profile Connection Space (PCS). The PCS is a
linear XYZ color space, known as PCSXYz . Specifically, PCSXYZ rep­
resents color in terms of the tri-stimulus responses, X, Y, and Z, which
should be expected from an ideal reflective print of the image, viewed
under the CIE daylight illuminant "D50."
The three-component matrix-based profiles can be used with any color

space which can be related to PCSXYZ through point-wise non-linearities
and a linear 3 x 3 matrix transform. Since the decompressed image
samples will often belong to some type of RGB color space, we shall
refer to them as R, G, and B for the purpose of this discussion. Note,
however, that it is possible to describe color spaces whose channels are
not properly interpreted as red, green, and blue components.
The point-wise non-linearities are known as Tone Reproduction Cur­

ves (TRC). There is one TRC for each of the three color channels and
each TRC may be specified via a power law exponent or via a lookup
table. Thus the Ie? parameter of Figure 14.8 will contain a description
of TRCR, TRCG, and TRCB , as well as a 3x 3 matrix, A. The processing
required to map the decompressed image samples into PCSXYZ is given
by

Rlin = TRCR(R)

G1in = TRCG (G)
B lin = TRCB(B)

followed by

[X] [Rlin]Y = A Gl~n
Z Blm

The purpose of the PCS is to connect two profiles: an input profile,
which describes the color properties of the decompressed sample values;
and a display (or output) profile, which describes the color properties of
the display or printing device. The connection is implemented, at least
conceptually, by mapping the decompressed sample values to PCSXYZ
and then mapping the X, Y, and Z values to the display or rendering
space.
Printer output spaces typically involve CMY or CMYK type repre­

sentations, often involving complex multi-dimensional lookup tables and

584 JP2 Boxes

multiple TRC's. For monitor display, sRGB is a reasonable display pro­
file, although one could hope to do better with a carefully calibrated
monitor. A reasonable approximate transformation from PCSXYZ to
sRGB may be accomplished by applying

[
Rl~n] _[3.1337 -1.6173 -0.4907] [X]
Ghn - -0.9785 1.9162 0.0334 Y
Blin 0.0720 -0.2290 1.4056 Z

followed by the point-wise non-linearity (gamma function) expressed in
equation (14.1).
Conforming JP2 readers are expected to interpret any Three-Compo­

nent Matrix-Based Input profile and supply the mapping to an appropri­
ate rendering space through PCSXYz . For more information regarding
ICC profiles, the specification [78] may be downloaded from the ICC
Home Page at http://www.color.org.
The ICC Monochrome Input profiles are similar to those described

above, except that monochrome profiles contain only a single TRC and
no matrix. Application of the TRC brings the decompressed image com­
ponent to the linear monochrome space, Y.
We conclude this discussion by noting that if any "private" ICC pro­

file tags appear in the lOP parameter of Figure 14.8, they shall not
alter the appearance of the resulting image. We also note that a decom­
pressed R, G, or B sample may be outside the valid input range of its
respective TRC. In this case, such sample values should be clipped prior
to processing. Finally, we note that since JP2 restricts ICC profiles to
use the XYZ connection space, the Profile Connection Space field in the
ICC profile header must be 'XYZ ' = 58595A20h (see [78], Clause 6.1:
Header Description).

THE PALETTE BOX

The Palette box is used to signal a color LUT (Look Up Table). This
LUT is used to convert a single decompressed component into multiple
color components. These components are then interpreted according to
the color space specified in the Color Specification box. If a Palette box
is present, then a Component Mapping box must also be present. Es­
sentially, a Component Mapping box provides for a renumbering of the
components. This renumbering accommodates the increased number of
components produced by the LUT, as compared to the number of com­
ponents decompressed from the code-stream. The Component Mapping
box is discussed further in the next section.
The box type of the Palette box is T = 'pclr' = 70636C72h. The

contents of the Palette box are shown in Figure 14.9. The N E parameter

Chapter 14: File Format 585

NE NC I B
O Bl I ... BNC-i

Po,o PO,l ... PO,NC-l

Pl,O Pl,l ... Pl,NC-l

PNE-l,O I PNE-l,l 1 -.JIt:p=NE=-=l,=NC=-=ll

Figure 14.9. Contents of the Palette box.

is a two byte unsigned integer that defines the Number of Entries in the
LUT. Legal values of this parameter satisfy

1 :s; N E :s; 1024

The NC parameter is a one byte unsigned integer that signals the Num­
ber of Color components produced by application of the LUT. Equiva­
lently, NC is the number of output values contained in each entry of the
LUT. The legal range for NC is given by

1 :s; NC :s; 255

The Bj are single byte parameters that signal the bit-depths of the out­
put components, j = 0,1, ... ,NC - 1. The interpretation of Bj is as
described in Section 13.3.5.
As an example, consider the case of a 6-bit palettized representation

of a 24-bit RGB (8 bits/color) image. For this case, we would have
N E = 64, NC = 3, BO = B1 = B2 = 7.
The i th row of parameters, Pi,j j = 0,1, ... ,NC - 1 specifies the

NC-tuple of output samples produced by the LUT in response to an
input sample with value i. Each parameter of the lh column, Pi,j i =
0, 1, ... ,NE - 1 is stored as a signed integer using Bj bits. As discussed
in Section 13.3.5, Bj = (Bj AND 7Fh) + 1. If Bj is not a multiple
of 8, the value of Pi,j is zero-extended to fill the minimum number of
whole bytes. For example, if Bj = 89h, then the Pi,j are lO-bit signed
quantities. Furthermore, Pi,j = -1 would be represented using two
bytes as 03FFh. This is the lO-bit twos complement representation of
-1, extended with 6 zeros. Robust JP2 readers would do well to ignore
any such extension bits. In this way, the correct interpretation will be
obtained even if a JP2 writer unwittingly uses sign-extension rather than
zero-extension.

586 JP2 Boxes

CO I TO I jO c1 T
1 l

... CN - 1 T N - 1 jN-1

Figure 14.10. Contents of the Component Mapping box.

THE COMPONENT MAPPING BOX
As mentioned above, the component mapping box provides for renum­

bering of components to accommodate the "extra" components gener­
ated via the Palette box LUT. A Component Mapping box is present if
and only if a Palette box is present. To avoid confusion, the word "com­
ponent" will continue to refer to an image component as decompressed
from the code-stream. The word "channel" will refer to a component
resulting from the application of the Palette box LUT and Component
Mapping box.
The Component Mapping box has box type T = 'cmap' = 636D6170h.

The contents of this box are shown in Figure 14.10. Each set of ck , T k , yk
parameters, k = 0,1, ... ,N - 1, corresponds to one channel. The num­
ber of channels N can be determined from the length of the box. The
parameter ck is a two byte unsigned integer, and indicates the compo­
nent to be used in the creation of channel k. Of course, legal values for
ck satisfy°::; ck ::; C -1, where C is the number of components present
in the code-stream.
The T k parameter is a one byte unsigned integer that specifies the

Type of mapping used to obtain channel k from component ck . T k may
take values of °and 1. A value of T k = °specifies that component
k should be used directly. That is, channel k is equal to component
ck . If T k = 1, then channel k is obtained via the Palette box LUT.
Specifically, channel k is obtained using column yk of the lookup table
portion of Figure 14.9. For example, if jk = 2, then a sample from
component ck with value i maps to a sample in channel k with value Pi,2

(more generally, ~,jk).
If T k = 0, then yk must be 0. On the other hand, if T k = 11. then yk E

{O, 1, ... ,NC -I}. In this expression, NC is the number of components
produced by the Palette box LUT, as described in the previous section.
Accordingly, each yk parameter is a one byte unsigned integer.
It is worth noting that the JP2 specification does not require every

LUT column to be referenced by the Component Mapping box. That is

Chapter 14: File Format 587

M

kO Tyo Aso

k l Tyl Asl

Figure 14.11. Contents of the Channel Definition box.

and equality need not hold. Also, there is no restriction against using the
same LUT column more than once. That is, it is acceptable for II = l2
when k1 =I- k2· Effectively then, the NO columns of the Palette box LUT
can be used as NO independent LUTs. From this, we conclude that any
"column LUT" may be applied to any unsigned image component to
create an image channel. Furthermore, each component and/or column
LUT can be so employed zero or more times.

THE CHANNEL DEFINITION BOX
The Channel Definition box provides one or more descriptions of each

image channel. A Channel Definition box may be present, even when
no Component Mapping box is present. In this case, components are
mapped to channels in the obvious way. Specifically, channel k is set to
equal to component k, k = 0,1, ... ,0 - 1.
The Channel Definition box has box type T = 'cdef' = 63646566h.

The contents of this box are depicted in Figure 14.11. Each ki ,Tyi, Asi

parameter set, i = 0,1, ... ,M - 1, is comprised of three two-byte un­
signed integers, and provides a description of a single channel. The
number of channel descriptions, lVI, is a two byte unsigned integer sat­
isfying°:s M < 216 . The k i parameter specifies the channel number to
which the i th description applies.

Channel Types. The Tyi parameter specifies the "type" of channel
ki . Legal values of Tyi are 0,1,2, and 216 - 1. Specifically, Tyi = °
indicates that channel k i is a color channel. The particular color of
channel ki is indicated via Asi as described below. A value of Tyi = 1
indicates that channel k i is an opacity channel to be applied to a color
channel. The applicable color channel is indicated via the Asi parameter.

588 JP2 Boxes

Opacity channels are required to be unsigned. The samples of an
opacity channel with bit-depth Bo are interpreted in the following way.
An opacity sample with value a indicates that its corresponding color
sample is fully transparent. Conversely an opacity sample with value
2Bo - 1 indicates that its corresponding color sample is fully opaque.
When Tyi = 2, channel ki is a premultiplied opacity channel. In this

case, channel k i is an opacity channel as described above. However, the
color channel to which it applies, via Asi , has been premultiplied by
channel ki . Specifically, let 0 be a sample from the premultiplied opac­
ity channel, and let x be the corresponding sample from the "original"
color channel. The premultiplied value, xp, then contained in the color
channel indicated by Asi, is given by

x p = (2 BOO_ 1) x

Finally, Tyi = 216 - 1 indicates that the channel type is unspecified.

Channel Associations. As mentioned above, the Asi parameter indi­
cates the color associated with channel k i . Legal values of this parameter
are 0,1,2,3, and 216 -1. When Tyi = 0, Asi specifies the color of chan­
nel ki itself. When Tyi E {1,2}, channel ki is an opacity channel, and
Asi specifies to which color the opacity channel applies.
For RGB color spaces, Asi values of 1,2, and 3 indicate the colors red,

green, and blue respectively. In monochrome spaces, Asi = 1 indicates
the luminance component. Similarly, in YCbCr spaces, Asi values of
1, 2, and 3 indicate Y, Cb, and Cr, respectively. Finally, Asi = a
indicates that channel k i is associated with the image as a whole, while
Asi = 216 - 1 indicates that channel k i is not associated with any color.
As an example, consider an RGB image with R, G, and B channels

numbered 0, 1, and 2, respectively. Consider also two opacity channels
numbered 3 and 4. Let channel 3 apply to the red and green channels,
and channel 4 apply to the blue channel. For this example, the following
[ki ,Tyi, Asi] parameter sets would be present in the Channel Definition
box: [0,0,1], [1,0,2]' [2,0,3], [3,1,1], [3,1,2]' [4,1,3].
As shown in the example above, the same channel can appear in the

Channel Definition box more than once.3 In such cases, a given channel
must always have the same type, Ty. On the other hand, even for two
different channels, the same [Ty, As] pair may not appear more than
once (unless both are 216 - 1). For example, adding a channel 5 to

3 It should he clear then, that the number of channel descriptions may be greater than the
number of channels (i.e., M 2:: N).

One or {I
both may I
be present

Chapter 14: File Format 589

Capture Resolution box I} May appear

Default Display Resolution box I in any order

Figure 14.12. Contents of the Resolution box. Shading indicates optional boxes.

Table 14-3. Boxes within the Resolution superbox.

Box Type Hexadecimal Box Name Required Superbox
Equivalent

'resc' 7265736311 Capture Resolution No No
'resd' 7265736411 Default Display Resolution No No

the previous example and adding [5,0,3] to the Channel Definition box
would indicate both channels 2 and 5 as the blue color channel, which
is not allowed.
In the previous paragraph, we noted that a given channel must only

have one type, Ty. It is interesting to note however, that this does not
imply that a given component may only be used for one purpose. As
mentioned above, any component may be used zero or more times with
any Palette box "column LUT" to create multiple channels. In this way,
it is straightforward to define two or more channels each having exactly
the same samples as one of the decompressed image components. Each of
these channels may then be assigned a different type, effectively assigning
multiple types (e.g., color, opacity, premultiplied opacity) to the same
component. For this reason, there is currently some discussion on simply
removing the restriction that a channel may have only one type. Thus,
it would be prudent for a reader to expect JP2 files that do not respect
the restriction of "one type per channel."

THE RESOLUTION BOX
The box type of the Resolution box is T = 'res ' = 72657320h. As

shown in Figure 14.12, the Resolution box contains only other boxes. It
may contain either one or both of the boxes summarized in Table 14.3.
Specifically, it may contain a Capture Resolution box and/or a Default
Display Resolution box.

The Capture Resolution Box. The Capture Resolution box has
box type T = 'resc' = 72657363h, and specifies the capture resolution
of the image. The contents of the Capture Resolution box are shown

(14.2)

590 JP2 Boxes

'---_R_N_l R_D_l_-,-_R_N_2_--,-__R_D_2__I~

Figure 14.13. Contents of the Capture Resolution and Default Display Resolution
boxes.

in Figure 14.13. The RNi and RDi parameters are unsigned two byte
integers representing "Resolution Numerators" and "Resolution Denom­
inators," respectively. The REi parameters are one byte signed integers,
representing "Resolution Exponents." Given these values, the vertical
capture resolution (VCR) is computed as

VCR = RN1 x lOREl
RD1

while the horizontal capture resolution (HCR) is computed as

HCR = RN2 x lORE2

RD2
(14.3)

The units of VCR and HCR are "canvas coordinate grid points per
meter." The canvas coordinate system is discussed in Chapter 11. Note
that since VCR and HCR are specified independently, canvas grid points
need not be square in device space. This is irrespective of any sub­
sampling that mayor may not be present (via the S1 and S2 parameters
of Section 11.1). If no Capture Resolution box is present, then the canvas
grid points are assumed to be square.

The Default Display Resolution Box. The Default Display Reso­
lution box specifies a desired display resolution. The application is not
required to honor the values specified in this box. The box type of this
box is T = 'resd' = 72657364h. The structure of the Default Display
Resolution box is identical to that of the Capture Resolution box, as
shown in Figure 14.13. Similar to equations (14.2) and (14.3), the ver­
tical and horizontal default display resolutions (VDR and H DR) are
given by

and
H DR = RN2 x lORE2

RD2

respectively. The units of both quantities are canvas grid points per
meter.

Chapter 14: File Format 591

uum

DATA

Figure 14.14. Contents of the UUID box. Due to its extreme width, the uum
parameter rectangle is not to scale.

We note that a JP2 writer may like to specify dimensions for the
Default Display Resolution box even when it has no preference for display
resolution. In this way, it may (indirectly) specify the image aspect ratio
in an unambiguous manner.

14.2.4 THE CONTIGUOUS CODE-STREAM
BOX

The box type of the Contiguous Code-Stream box is T = 'jp2c' =
6A703263h' The contents of this box comprise a valid JPEG2000 code­
stream as described in Chapter 13.

14.2.5 THE IPR BOX
The IPR (Intellectual Property Rights) box has box type T = 'jp2i'

= 6A703269h. The contents of this box are defined in JPEG2000 Part
2 and beyond. The IPR box may be included in a JP2 file to make the
reader aware that intellectual property rights information is associated
with the image content. Interpretation of this information is beyond the
scope of JP2. This box is optional.

14.2.6 XML BOXES
Zero or more XML boxes may be included in a JP2 file. The box

type of an XML box is T = 'xml ' = 786D6C20h. The contents of
an XML box may consist of any information whatsoever, provided that
it complies to the XML (eXtensible Markup Language) format. Such
information shall not affect the decoding or visual appearance of the
image. A discussion of XML is beyond the scope of this text. The
interested reader is referred to [122] for a complete definition.

14.2.7 UUID BOXES
Zero or more UUID boxes may also be included in a JP2 file. The box

type of the UUID box is T = 'uuid' = 75756964h. The contents of the
UUID box are shown in Figure 14.14. The UUID parameter occupies

592 lP2 Boxes

Required
{

1~==U=U='1=D=L=iS=tb=O=X=='} May appear
I Data Entry URL box I in any order

Figure J4.15. Contents of the UUID Info box.

Table 14.4. Boxes within the UUID Info box.

Box Type Hexadecimal Box Name
Equivalent

Required Superbox

'ulst'
'urI '

756C7374h
75726C20h

UUID List Yes
Data Entry URL Yes

No
No

16 bytes, and is a Universal Unique Identifier (UUID) as defined in [8].
A detailed discussion of such identifiers is beyond the scope of this text.
Briefly however, [8] describes a procedure for generating a unique 128­
bit identifier via computer, without the need of any type of registration
authority. The procedure employs the hardware address of the computer
network card, a time stamp, and a pseudo-random component to ensure
uniqueness.
The DATA parameter of the UUID box is of variable length, and may

contain vendor specific information in proprietary formats. The contents
of a UUID box shall not affect the decoding or visual appearance of the
image.

14.2.8 UUID INFO BOXES
UUID Info boxes provide a mechanism to acquire additional infor­

mation about the contents and format of UUID boxes. The UUID Info
box has T = 'uinf' = 75696E66h. Zero or more UUID Info boxes may
be present in a JP2 file. A UUID Info box is a superbox. It contains
only other boxes. As shown in Figure 14.15, a UUID Info box must
contain a UUID List box and a Data Entry URL box. These boxes are
summarized in Table 14.4.
As detailed below, the UUID List box contains a list of UUIDs cor­

responding to UUID boxes for which information can be obtained. The
Data Entry URL box contains a single URL (Uniform Resource Loca­
tor). This URL can be used to acquire information applicable to all
entries of its corresponding UUID List box.

Chapter 14: File Format 593

NU 1

UUIDNU- 1

Figure 14.16. Contents of the UUID List box. Due to their extreme width, the
UUID i parameter rectangles are not to scale.

~L... F_l t:======U=R=L=======

Figure 14.17. Contents of the Data Entry URL box,

THE UUID LIST BOX
The box type of the UUID List box is T = 'ulst' = 756C7374h. The

contents of the UUID List box are depicted. in Figure 14.16. The NU
parameter is a two byte unsigned integer and specifies the number of
UUIDs in the box. Each UUIDi parameter, i = 0,1, ... ,NU -1, is a 16
byte UUID. There is no required correspondence between UUIDs found
in UUID boxes, and UUIDs found in one or more UUID List boxes.
Specifically, some, none, or all UUIDs from UUID boxes may be found
among the UUIDs in UUID List boxes. Also, multiple UUID List boxes
may reference the same UUID, whether it is found in UUID boxes or
not.

THE DATA ENTRY URL BOX
The Data Entry URL box pertains to the UUID List box within its

UUID Info superbox. The box type of the Data Entry URL is T =
'urI ' = 75726C20h. The contents of this box are shown in Figure
14.17. The V (version) and PI (flags) parameters occupy one and three
bytes, respectively. In JP2, both parameters are set to zero.
The URL (Uniform Resource Locator) parameter is of variable length

and is encoded as a null terminated UTF-8 character string [13J. The
URL must specify a service which deliver's a file (e.g., http, ftp, file,
etc.). Relative URLs are allowed, in which case they are relative to

594 Discussion

the file containing the Data Entry URL box. The file delivered by this
service provides information about certain UUID boxes. The specific
UUID boxes covered are those with UUIDs included in the relevant
UUID List box. As mentioned above, not every UUID box must be so
covered. Also, coverage may be provided for UUIDs not present in the
JP2 file.

14.3 DISCUSSION
Conforming JP2 readers must interpret all required boxes as shown

in Figure 14.1. Specifically, the JPEG2000 Signature, File Type, JP2
Header, and Contiguous Code-Stream boxes must all be interpreted cor­
rectly. A conforming reader has the option to ignore the remaining boxes
in Figure 14.1 (IPR, XML, UUID, UUID Info). As discussed in Section
14.2.3, the JP2 Header box is a superbox. Thus, all optional and non­
optional boxes described in that section must be interpreted correctly,
as well.

If a conforming JP2 reader encounters boxes not defined in JP2, these
boxes should be ignored. This behavior is particularly relevant when
reading a "JP2 Compatible" file. As discussed in Section 14.2.2, such a
file is not a JP2 file, but contains' jp2 ' in the compatibility list of its
File Type box. JP2 compatible files may contain boxes not understood
by a JP2 reader. Such boxes may be independent, or may be contained
within superboxes.4 By ignoring unknown boxes, these files are inter­
pretable by a JP2 reader in some fashion as intended by the creator of
the file.
Similarly, JP2 compatible files may contain multiple instances of cer­

tain boxes. In cases where JP2 files should contain only one such box,
the first occurrence of the box in the file should be used. Subsequent
occurrences should be ignored.
Although not mentioned previously, JP2 files are allowed to contain

multiple Contiguous Code-Stream boxes, and multiple Color Specifica­
tion boxes. JP2 specifies that if multiple Color Specification boxes are
present, they must appear contiguously. That is, they must appear one
after the other within the JP2 Header box, with no intervening boxes.
Multiple Color Specification boxes must all specify the same color

space. However, different specification methods may be employed. For
example, the sRGB color space might be indicated twice using two Color
Specification boxes. The first box might specify sRGB using ECS = 16,

4The superbox itself, as well as any other "known boxes" within the superbox must still be
interpreted correctly.

Chapter 14: File Format 595

while the second box may employ an ICC profile giving the conversion
from sRGB to XYZ.
Consistent with the discussion above, JP2 specifies that if multiple

Contiguous Code-Stream boxes or multiple Color Specification boxes are
present, only the first instance of each should be interpreted.

III

WORKING WITH JPEG2000

Chapter 15

PART 2 EXTENSIONS

As discussed in Chapter 9, JPEG2000 Part 1 specifies the core JPEG­
2000 coding system, together with a minimal file format. Although the
primary focus of this book is JPEG2000 Part 1, the purpose of the
current chapter is to provide a high level overview of JPEG2000 Part 2.
Part 2 specifies certain extensions to the core coding system, as well as
a more extensive file format.
At the time of this writing, JPEG2000 Part 2 has not been finalized.

However, most key technologies appear to have been selected. The work
required to complete Part 2 lies largely in the writing and editing of
the standard document itself.· As such, enough is known to provide the
flavor, if not the details, of JPEG2000 Part 2.
Part 2 contains extensions to allow variable level offsets and point non­

linearities, both as pre/post-processing steps. It also provides for flexible
deadzone sizes in scalar quantization, as well as the ability to employ
trellis coded quantization. Visual masking can be employed with either
scalar quantization or trellis coded quantization to obtain substantial
improvements in visual quality.
Several extensions are supported with respect to the wavelet transform

as applied to tile-components. Significant flexibility is available to choose
the wavelet kernels employed in compression/decompression. Both odd
and even length kernels (whole-sample symmetric and half-sample sym­
metric) are supported. The tree structure of the wavelet decomposition
can also be chosen with a great deal of flexibility. Finally, the wavelet
transform may be applied to overlapping "cells" and/or tiles. This lat­
ter feature allows block-based processing to be performed without the
occurrence of the severe block artifacts commonly associated with such
processing (see Figure 4.30).

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

598 Variable Level Offset

Extended decorrelating transforms for multiple component imagery
are also included in JPEG2000 Part 2. In addition to the ICT and RCT
of Section 10.2, Part 2 supports general linear transforms, predictive
transforms, and wavelet transforms for the decorrelation of components.
Enhanced region of interest support is also provided. In addition

to the max-shift method of Section 10.6, Part 2 provides for arbitrary
up-shifts, with explicit signalling of the regions to be shifted. These
shifts can be applied to arbitrary rectangular and/or elliptical regions of
interest.
Finally, JPEG2000 specifies an extended file format known as JPX.

JPX is backward compatible with JP2 and contains many enhancements.
Such enhancements include more flexibility in color space specification,
opacity information, and metadata. Also included is the ability to com­
bine multiple code-streams to obtain compositing or animation from a
single JPX file. In addition to contiguous code-streams, as required by
JP2 (Section 14.1), JPX allows for the inclusion of fragmented code­
streams. This feature can be useful for image editing applications.
Each of the extensions outlined above are discussed briefly in the

following sections. The presence of one or more of these extensions is
signalled via a 1 in the most significant bit of the CA parameter in the
BIZ marker segment (Section 13.3.5).

15.1 VARIABLE LEVEL OFFSET
As discussed in Section 10.1, the first processing step in JPEG2000

Part 1 is a "level offset." In this step, each unsigned component with
bit-depth B is offset by subtracting 2B - 1 from each sample so that its
nominal range becomes

In Part 2, an arbitrary offset may be selected at encode time and sig­
nalled via a new marker segment, known as DCa (DC Offset). Both
integer and floating-point offsets are supported and may be applied to
unsigned as well as signed components. Such offsets may be selected on
a tile-by-tile and/or component-by-component basis.
This variable level offset extension may serve to improve compression

performance for certain images having skewed histograms. It is also
helpful for transcoding images from other code-stream formats that em­
ploy variable offsets. The FBI fingerprint compression standard [155] is
an example of such a format.
The presence of this particular extension is signalled via the existence

of the DCa marker segment, as well as a 1 in the LSB of the CA
parameter of the BIZ marker segment, (i.e., CAo = 1). The variable

Chapter 15: Part 2 Extensions 599

level offset extension may not be used in conjunction with the multiple
component transform extension discussed later in Section 15.7.

15.2 NON-LINEAR POINT TRANSFORM

As discussed in Section 1.1.2, gamma correction is often useful for the
display of linear color space data via non-linear display devices. Also
discussed in that section, are certain perceptual advantages of gamma
correction. Although most "original" images are already in gamma cor­
rected form, some imagery is available in linear form. For such images,
it may be desirable to perform forward (inverse) gamma correction as a
part of the compression (decompression) process.

JPEG2000 Part 2 provides this capability via the NLT (Non-Linear
point Transformation) marker segment. Bit 8 of the BIZ marker segment
CA parameter is set (i.e., CAs = 1) to indicate the presence of this
marker segment. The NLT marker segment can be used to specify point
transforms on a tile-by-tile and/or component-by-component basis.

Two types of transforms are supported. The first type is a gamma­
style non-linearity, as discussed previously. The gamma, gradient, and
breakpoint parameters can all be signalled via the syntax of the NLT
marker segment. The second type of non-linearity supported by this
marker segment is an arbitrary point transform, signalled by way of a
look-up table (LUT). This LUT specifies a list of input/output pairs.
Each sample from a decompressed image component is then a LUT in­
put. The resulting LUT outputs are the samples of the inverse (point)
transformed image component.

15.3 VARIABLE QUANTIZATION
DEADZONES

As discussed in Section 10.5, JPEG2000 Part 1 employs deadzone
scalar quantization. For such a quantizer with step size ~, the width of
the deadzone, or central quantization bin, is 2~. As discussed in Sections
3.2.4 and 8.3.1, more general deadzone widths are possible. Specifically,
a deadzone of width 2 (1 - 0 ~ may be obtained via equation (3.31).
Clearly then, JPEG2000 Part 1 requires ~ = a(7 = ain equation (8.11)).
On the other hand, JPEG2000 Part 2 allows any ~ E [-1,1) to be
employed. The choice of ~ can vary subband-by-subband, tile-by-tile,
and component-by-component. The signalling of the chosen ~ values is
accomplished via extended versions of the QCD and/or QCC marker
segments. The presence of such extended marker segments is signalled
via bit 1 of the BIZ marker segment CA parameter (CAl)'

600 Trellis Coded Quantization

Variable deadzone sizes can be used to improve the visual quality
and/or mean-squared-error performance in certain types of imagery. Ad­
ditionally, this feature can aid in transcoding code-streams from com­
pression systems that employ ~ =f. 0 (e.g., [155]).

15.4 TRELLIS CODED QUANTIZATION
JPEG2000 Part 2 allows for the use of trellis coded quantization

(TCQ) as a replacement for scalar quantization. In JPEG2000, the
theoretical MSE advantage of TCQ (Section 3.5) is often seen only at
high encoding rates (~ 2 bits/sample). However, significant improve­
ments in perceptual quality are usually present across the entire gamut
of encoding rates.
The particular version of TCQ employed in JPEG2000 Part 2 is de­

scribed in Section 3.5.6. Each JPEG2000 code-block is quantized inde­
pendently using the same scan order as the bit-plane coder, as shown in
Figure 12.9. No additional marker segments are required for the TCQ
option. Indication that TCQ decoding should be employed is signalled
via bit 2 of the BIZ marker segment CA parameter (i.e., CA2 = 1).
The step sizes employed by TCQ are signalled via the QCD and/or

QCC marker segments. It is worth noting that the values signalled in
these marker segments are actually twice the TCQ step sizes employed
by the encoder. Thus, TCQ decoders should divide these values by
two before executing inverse TCQ processing. The reason for signalling
twice the "correct" step size is to allow "non-TCQ" decompressors to
decode TCQ code-streams in some reasonable fashion. Comparison of
equations (3.37) and (3.46) reveals that inverse embedded scalar quan­
tization using 2~ is equivalent to approximate inverse embedded TCQ
using~. Thus, a JPEG2000 decompressor that blindly applies inverse
scalar quantization using the step sizes signalled in QCD and/or QCC
will produce a reasonable decoding.
The discussion of the previous paragraph is actually only applicable if

there are p ~ 1 missing LSBs. Clearly, if there are p = 0 missing LSBs,
the full inverse TCQ should be employed rather than the approximate
inverse of equation (3.46). If no inverse TCQ processor is available, it is
actually preferable to discard the LSB prior to application of equation
(3.46). This is because the state dependent sign flipping of Section 3.5.6
will make the LSBs appear to be corrupted if used in equation (3.46).
On a related note, it is worth commenting on layering in the presence

of TCQ. Recall from Chapters 8 and 12 that each bit-plane is coded
in three passes. Recall also that each code-block may contribute an
arbitrary number of coding passes to each layer. In general, a non­
connected subset of LSBs is useless for the purpose of inverse TCQ.

(15.1)

Chapter 15: Part 2 Extensions 601

All LSBs of a code-block must be available before full inverse TCQ
processing may occur.
For this reason, the three LSB coding passes of a given code-block

should all be placed in the same packet. If rate-distortion optimization
is used to drive the formation of layers (Chapter 8), the desired result
may be obtained by setting the estimated distortion reduction to zero
in the first two coding passes of the least significant bit-plane of each
code-block.

15.5 VISUAL MASKING
The visual masking extension provides a facility for a spatially vary­

ing nonlinearity to be applied to wavelet samples prior to quantization.
This nonlinearity preserves the sign of each coefficient, but modifies its
magnitude according to

Iz [j] I= ------:..:...ly..::.,:[j]c:....!/----;;-(3

1+ N
1UI I: !abYL [k] I

kEKUI

Using this expression, each wavelet coefficient y [j], at location j of a
given subband b, is replaced by its processed version z [j].. Equation
(15.1) is valid when the wavelet transform is normalized according to
equation (10.12). For other normalizations, y [j] should be normalized
to satisfy equation (10.12), with z [j] then denormalized accordingly.
The ih [k] are locally quantized/dequantized versions of the y [k] using

L bits of magnitude precision. The value of ab is chosen to normalize
out the effect of component bit-depth on the nominal range of the YL [k].

K [j] is a neighborhood around j including only points to the left and
above, while N [j] is the number of points included in K [j]. The neigh­
borhood always contracts to obey subband boundaries. Optionally, it
may also contract to obey code-block boundaries. The nature of K [j] is
such that the decompressor may invert the nonlinearity via

[

(3] lit
Iy [jJl = Iz [jJl 1+ N

1
[.] L labYL [kJl
J kEKUI

(15.2)

in left-to-right and top-to-bottom raster order.
This parameter, as well as the nominal size of the neighborhood K [j]

are signalled in the code-stream via the VMS (Visual MaSking) marker
segment. The presence of this marker segment is indicated via CA3 = 1
in the SIZ marker segment. The VMS marker segment also signals

602 Visual Masking

whether or not the neighborhood respects code-block boundaries. Fi­
nally, " (3, and dmax are signalled, where dmax is the maximum trans­
form level at which visual masking is applied. The subbands processed
by visual masking are then LHd , HLd, and HHd d = 1,2, ... ,dmax ' The
LLD subband is never subjected to visual masking.

15.5.1 DISCUSSION
The nonlinearity and its inverse, given by equations (15.1) and (15.2),

form an identity. Evidently, y [j] maps to z [j] then back to y [j]. However,
uniform quantization of z [j] is equivalent to non-uniform quantization
of y [j]. This behavior is caused by the gamma-style nonlinearity in the
numerator of equation (15.1). The value of, is constrained to lie within
(0,1), with, = 0.7 being typical.
Ignoring for the moment the denominator of equation (15.1), we see

that the non-linearity in the numerator magnifies small values of y [j],
while attenuating large values of y [j]. Thus, after quantization larger
values of y [j] tend to have larger errors, while smaller values of y [j] tend
to have smaller errors. This effect can lead to perceptual quality im­
provements. We may think of the wavelet transform as a crude approx­
imation to one of the cortical transforms which are commonly used to
model visual masking effects (see Figure 4.28). The non-uniform quan­
tization induced by choosing , < 1 then closely parallels the explicit
non-linear quantization of cortical subband samples which was proposed
by Watson [167]. Watson's method is briefly described in Section 4.3.4.
We now turn our attention to the denominator of equation (15.1).

This portion of the expression attempts to exploit visual masking more
fully, by taking into account the influence of neighboring samples on the
perception of quantization artifacts. In "busy" regions of the image, the
denominator tends to be larger, which attentuates z [j], effectively in­
creasing the quantization step size in these regions. Figure 4.29 provides
a demonstration of the fact that spatial activity can suppress (mask) the
visibility of quantization artifacts in the same band.
Section 16.1.4 proposes an appropriate model for the neighborhood

masking phenomenon, for use in connection with masking sensitive cost
functions for rate control. In the present setting, however, only causal
neighbors of y [j] may be used to determine masking thresholds and the
decoder may have relatively few decoded bits for these neighbors (at
most L are used to form the ih [k] values). For this reason, a com­
bination of the "self masking" effect represented by the numerator in
equation (15.1) and the neighborhood masking effect represented by the
denominator has been found to yield the greatest improvements in re­
constructed image quality [176].

Chapter 15: Part 2 Extensions 603

For a given encoding rate, use of the visual masking extension tends
to increase the overall mean squared error of the decompressed imagery.
At the same time, perceptual quality as gauged by human viewers, is
often substantially improved.
It is worth noting that when too few bit-planes have been decoded,

the accuracy of the decoded z [j] is poor. In turn, the accuracy of y [j]
is poor, affecting the accuracy of ih [k], which further deteriorates the
accuracy of y [j] after application of equation (15.2). However, when
sufficient bit-planes are decoded, the YL [k] are well preserved and this
problem is averted. The number of bit-planes required for this condition
to be attained is governed by L.

15.6 WAVELET TRANSFORM EXTENSIONS
The Part 2 extensions to the wavelet transform are discussed in the

three subsections that follow. The first subsection deals with extended
decomposition structures. These structures are generalizations of the
two dimensional dyadic tree structure described in Section 4.2.5. The
presenceof this functionality is signalled via CAs = 1 in the BIZ marker
segment. The second subsection describes the addition of user definable
wavelet kernels. This facility provides for the use of wavelet transforms
other than the irreversible 9/7 and reversible 5/3 wavelet transforms
discussed in Section 10.4. The presence of such transforms is indi­
cated by CA6 = 1. Finally, the third subsection defines a block-based
wavelet transform. This transform employs overlapping blocks to avoid
the strong artifacts produced by certain other block transforms. This
transform is indicated by CA4 = 1.

15.6.1 WAVELET DECOMPOSITION
STRUCTURES

As discussed in Sections 4.2.5 and 10.3.2, iterative application of the
separable, two dimensional wavelet transform yields a series of reduced
resolution images. Specifically, for a D-Ievel transform the original image
is defined as subband LLo, which is also known as resolution D. A one
dimensional wavelet transform is applied to each column of LLo. A one
dimensional wavelet transform is then applied to each row of the result.
The final result is then four subbands LL1, LH1, HL1 , and HH1 as shown
in Figure 15.1.

Applying the same procedure to LL1 yields the four subbands LL2,
LH2, HL2, and HH2. Iterating in this fashion eventually yields 3D +
1 subbands LLD, LHd, HLd, HHd d = D, D - 1, ... ,1. The D + 1
image resolutions available for decompression from a JPEG2000 code-

604 Wavelet Transform Extensions

Figure 15.1. Four subbands resulting from one level of 2-D dyadic transformation.

stream are easily synthesized by inverting this process. Specifically, the
resolution r image is given by LLD - r r = 0,1, ... ,D. With respect to
the original full resolution image, the resolution r image is reduced in
size by a factor of 2D - r in both width and height.

REDUCED RESOLUTION IN JPEG2000 PART 2
In JPEG2000 Part 2, this process is generalized to allow a richer class

of decomposition tree structures. As in Part 1, a D level transform
results in D + 1 resolutions. However, the transformation of rows or
columns may be selectively omitted at each level. Such omissions result
in unequal size reductions in the horizontal and vertical dimensions of
the reduced resolution imagery. These differing size reductions impart
corresponding differences in the aspect ratios of the reduced resolution
images, as depicted in Figure 15.2.
As in Part 1, we begin with the original full resolution image defined

as LLo. Also as in Part 1, a compressor may choose to transform all
columns followed by all rows to yield the four subbands LLI, LHI , HLI,
and HHI, as depicted in Figure 15.1. On the other hand, the compressor
may choose to transform just the columns. This results in only two
subbands labeled by XLI and XHI. Here, the X denotes the fact that
no transform was performed on the rows. Clearly, given XLI and XHI,
inverse transformation of the columns can be performed to obtain the
original image LLo.
The subband XLI is a reduced resolution version of the original im­

age. Unlike LLI, it is reduced in resolution (size) only in the vertical
dimension. Similarly, the compressor may choose to transform only the
rows of LLo to obtain the subbands LXI and HXI. Figure 15.2 shows
the results of these processes. In Figure 15.2a, only column transforms
are applied to yield XLI and XHI. In this case, the resolution D - 1
image is given by subband XLI. Similarly, Figure 15.2b shows the LXI
and HXI subbands that result from row only wavelet transformation. In
this case, the resolution D - 1 image is given by subband LXI. As in
Part 1, the transformation process is iterated on the reduced resolution

Chapter 15: Part 2 Extensions 605

XH1

a) b)

Figure 15.2. Subbands resulting from one level of one dimensional transformation.
a) Transformation of columns only. b) Transformation of rows only.

XL3

HL2
XH3

HX,

LH2 HH2

Figure 15.3. Subbands resulting from an example of a three-level non-dyadic trans­
formation.

images to yield D + 1 resolutions. The choice of whether to transform
rows, columns, or both can be made level-by-Ievel.
As an example, consider a 512 x 512 original image. Consider further

aD = 3 level transform,with only row transforms at the first level, both
column and row transforms at second level, and only column transforms
at the third level. The first level decomposes the original image LLo
into LXI and HXI, each of size 512 x 256. The second level decomposes
LXI into LLz, LHz, HLz, and HHz each of size 256 x 128. Finally, the
third level decomposes LLz into XL3 and XH3 each of size 128 x 128.
The complete set of subbands from this process are depicted in Figure
15.3. The D + 1 = 4 resolutions are XL3, LLz, LXI, and LLo of sizes
128 x 128, 256 x 128, 512 x 256, and 512 x 512, respectively.
The number of transform levels is signalled via the COD and CDC

marker segments as described in Sections 13.3.6 and 13.3.7. This is
unchanged from JPEG2000 Part 1. The type of transform (rows only,
columns only, or both) performed at each level is signalled via a new

606 Wavelet Transform Extensions

marker segment called DFS (Downsampling Factor Styles). This marker
segment contains a sequence of two-bit integers that specify the trans­
form operations performed at each level. Specifically, 2 = row transforms
only, 3 = column transforms only, and 1 = both.
The DFS marker segment can be used to select a different decom­

position tree structure component-by-component, but not tile-by-tile.
Specifically, all tile-components of a given component must share the
same DFS decomposition structure. In this way, the reduced resolution
tile-components are consistent across tiles.

FURTHER TRANSFORMATION OF SUBBANDS
JPEG2000 Part 2 supports further transformation of the subbands

arising from the procedures discussed above. Such processing is allowed
for all subbands except those required to recreate the resolution 1 image.
For example, in Figure 15.3, all subbands other than XL3 and XH3 may
be transformed further.
Four different transformation options are legal for each subband. The

transformations to be applied are signalled via two-bit integers in the
ADS marker segment (Arbitrary Decomposition Styles). As in the DFS
marker segment, 1 = transform both rows and columns, 2 = transform
only rows, and 3 = transform only columns. Additionally, the ADS
marker segment uses 0 = transform neither rows nor columns. If 1,
2, or 3 is applied, this process may be repeated (one time only) on
the resulting subbands. The ADS marker decomposition style can be
changed component-by-component, as well as tile-by-tile.
As a simple example, consider the decomposition employed in the FBI

fingerprint standard, as depicted in Figure 15.4. This decomposition is
obtained by first performing a five level dyadic decomposition, signalled1

via a DFS string 11111. One round of further transformation is then
applied to the LH1, HL1, and HH1 subbands. Each has both rows and
columns transformed, which is signalled by three 1's in the ADS marker
segment. At the next level, two rounds of transformation are applied
to each of the LH2 and HL2 subbands, while neither the rows nor the
columns of HH2 are transformed. This is signalled by ten 1's followed
by a single O. Two 1's indicate the first round of row and column trans­
formations applied to each of LH2 and HL2; eight 1's identify the second
round of row and column transformations applied to each of the resulting
subbands; and the 0 signals the lack of any further transformation for
HH2. One round of further transform is applied to LH3, HL3, and HH3.

1Actually this string of l's may be abreviated by a single O. Since we do not discuss the
syntax in detail, we give the conceptually simple description of five l's.

15.6.2

Chapter 15: Part 2 Extensions 607

+

Figure 15.4. Decompostion structure employed in the FBI fingerprint compression
standard.

Three 1's are included in the ADS marker segment to indicate that both
row and column transforms are applied in each case. Although allowed,
no further transformation is applied to LH4 , HL4 , and HH4 .
We close this section by noting that the simple dyadic structure al­

lowed by JPEG2000 Part 1 is adequate for many applications. On the
other hand, the more general structures of Part 2 have advantages for
certain types of imagery such as fingerprints and synthetic aperture
radar. For such imagery, these decompositions can provide significant
improvements in compression performance. The availability of these
structures also allows for easy transcoding of compressed imagery from
other compression formats.

USER DEFINABLE WAVELET
KERNELS

As discussed in Section 10.4, JPEG2000 Part 1 has two options for
the wavelet transform. Specifically, either the irreversible 9/7 or the
reversible 5/3 transform may be employed. In JPEG2000 Part 2, a rich
family of wavelet transforms is available. Either even or odd length
kernels may be selected, as well as reversible or irreversible processing.
It is also intended that non-symmetric (as well as symmetric) kernels
will be supported. As kernel symmetry is an important property for the
compression of image components, non-symmetric kernels will be allowed
only for the purpose of multi-component transformation (Section 15.7).

608 Wavelet Transform Extensions

As discussed in Chapter 6, irreversible transforms may be imple­
mented via convolution or lifting, while reversible transforms are only
conveniently implemented via lifting. For this reason, JPEG2000 Part
2 allows the definition of alternate transforms exclusively through their
lifting parameters.
Equation (6.48) gives the lifting implementation of an irreversible

transform. This equation is repeated here as

where

{I} {I-I}
YI-p(l) [n] = YI-p(l) [n]

{I} [_ {I-I} ",. {I-I} .
Yp(l) n] - Yp(l) [n] + L.J Al [z] YI-p(l) [n - z] (15.3)

([) = {O [even
p 1 [odd

y~l} [n] and yil} [n] are the results of the [th lifting step [= 1,2, ... ,L.

The initial conditions to this iteration are y~O} [n] = x [2n] which com­
prise the even indexed input samples, and yiO} [n] = x [2n + 1] which
comprise the odd indexed input samples. The final results, y~L} [n] and
yiL} [n], are scaled by the gains K0 and K I to yield the low and high-pass
wavelet samples, respectively.
As shown in Figure 6.9, this procedure can be seen as alternately

filtering the even (resp. odd) indexed samples and adding the result to
the odd (resp. even) indexed samples. These operations are collectively
known as high-pass (resp. low-pass) lifting steps. From the summation
in equation (15.3), we see that impulse response used for filtering in the
[th lifting step is given by Al [n].
The reversible case is nearly identical to the irreversible case. As given

by equation (6.51), the second line of equation (15.3) is modified to be

{I} _ {I-I} l1 '" . {I-I} . j
Yp(l) [n] - Yp(l) [n] + 2+L: Al [z] YI-p(l) [n - z] (15.4)

We see that here, the result of the filtering steps are rounded to the
nearest integer. The only other difference between the reversible and
irreversible transforms is that scaling by K o and K I is omitted in the
reversible case. That is y~L} [n] and yi

L
} [n] are directly used as the low

and high-pass wavelet samples.
JPEG2000 Part 2 allows encoders to specify the parameters of equa­

tions (15.3) and (15.4). These parameters are signalled via the ATK

Chapter 15: Part 2 Extensions 609

marker segment (Arbitrary Transform Kernels). The number of lift­
ing steps L is signalled and must be in the range 0 ::; L ::; 255. The
ATK marker segment also identifies whether the transform is reversible
or irreversible, and whether it corresponds to an even symmetric, odd
symmetric, or non-symmetric kernel.
For the [th lifting step, [= 1,2, . .. , L, the filter impulses response val­

ues, Al [n], are signalled as either floating point values, or rational values
having power of two denominators. The number of impulse response
values per lifting step can range from 0 to 255, and is specified inde­
pendently for each lifting step. For irreversible transforms a single gain
factor, K, is signalled. The subband gain factors, Ko and K 1 , of Fig­
ure 6.9 may be deduced from K by setting K o = I/K and K 1 = K/2. 2

Equations (15.3) and (15.4), as well as Figure 6.9 indicate that high­
pass and low-pass lifting steps alternate with a high-pass step occurring
first. Furthermore equation (15.4) includes a rounding factor of 1/2
within the floor function. In JPEG2000 Part 2, more flexibility is af­
forded in both regards. Specifically, the lifting steps are performed in
order [= 1,2, . .. , L, but each may be independently specified as being
a low-pass step or a high-pass step. Also, the rounding factor employed
in equation (15.4) may be signalled as a rational number with power of
two denominator.

BOUNDARY HANDLING
We conclude our discussion of arbitrary kernel definitions with a word

on boundary handling in JPEG2000 Part 2. As discussed in Section
10.3.1, boundary handling in JPEG2000 Part 1 is accomplished via
"whole-sample" symmetric extension of the samples prior to perform­
ing the wavelet transform. In whole-sample symmetric extension, the
boundary sample is not repeated at either end of the data sequence.
This is illustrated in Figure 15.Sa. For simplicity, only the first few
extension samples are shown at each boundary.
The key feature of such an extension policy is that the symmetry

survives the transformation process. The interleaved sequence of trans­
formed samples may thus be viewed as being symmetrically extended it­
self. For the purpose of compression and storage, only the non-extended

2We note that the standard document indicates an assignment of Kl = K instead of Kl =
K/2, which is a consequence of the fact that the standard document consistently adopts a
different normalization convention for the wavelet transform kernels and consequently for the
quantization step sizes. The conventions used here have a number of convenient properties
for description, interpretation and implementation, which we have exploiteel in various places.

610 Wavelet Transform Extensions

Original
Extension amples Extension

~

~
a)

Original
Extension amples Extension

~

~
b)

Figure 15.5. Symmetric extension policies. a) Whole sample symmetry: the bound­
ary samples are not repeated. b) Half sample symmetry; the boundary sample is
repeated at each end.

transformed samples need be maintained. In this case, the number of
relevant samples is the same before and after transformation.
Another property of whole-sample symmetric extension can be noted

by examining the even and odd indexed subsequences. These two sub­
sequences are differentiated by shading in Figure I5.5a. In the whole­
sample symmetric case, the extended samples of each such subsequence
come from the relevant subsequence itself. This property is particu­
larly appealing in lifting implementations, where processing is performed
on the odd and even indexed subsequences. In this case, a version of
symmetric extension can be used within the lifting steps themselves to
achieve the same effect as if the original samples were extended. For a
more thorough development of these concepts, the reader is referred to
Section 6.5.3.
The discussion above pertains only to odd length symmetric wavelet

kernels. As mentioned in Section 6.5.2, even length kernels do not work
out quite so nicely. In addition to the problems discussed there, the even
and odd indexed subsequences are not extended using samples from the
relevant subsequence itself. This is because the extension type that re­
sults in some type of symmetry surviving transformation is the so called
half sample symmetric extension. This type of extension repeats the
sample at each boundary as shown in Figure I5.5b. As before, shading
indicates the even and odd subsequences. Unfortunately, the shaded

Chapter 15: Part 2 Extensions 611

subsequence is extended with samples from the unshaded subsequence,
and vice versa.
To overcome the issues surrounding even length kernels, a fairly tor­

tured procedure involving many special cases was slated for inclusion in
Part 2. The special cases were based on whether the number of samples
is even or odd and whether the first sample index is even or odd. In some
cases, post processing was required to "move" a low-pass sample to the
high-pass subband. This latter processing was employed to preserve the
resolution scalability properties of the canvas system of Chapter 11.
Just prior to this writing, a new proposal was brought forward [31J.

This proposal advocates always performing boundary handling within
the lifting steps (with no extension of the original samples themselves).
This idea is discussed in Section 6.5.3. The resulting transformation is
invertible and produces the same number of samples both pre- and post­
transformation. It also preserves resolution scalability in a clean manner.
It is worth noting however, that for even length symmetric kernels, the
wavelet samples obtained via this procedure are not identical to those
that would have been obtained by symmetric extension of the original
samples. For odd length symmetric kernels, the samples can be made
identical under the two methods.

It appears likely that this proposal will be adopted for JPEG2000
Part 2. In addition to its benefits for even length symmetric kernels,
boundary handling via lifting steps is the only reasonable approach for
general (non-symmetric) kernels.

15.6.3 SINGLE SAMPLE OVERLAP
TRANSFORMS

In Chapter 11, we discussed the transformation of tile-components.
Each tile-component is transformed independently of all other tile-com­
ponents. Such tile-based processing provides a simple method for con­
taining implementation memory requirements and a certain degree of
spatial random access. On the other hand, tile-based processing can
result in objectionable block artifacts in decompressed imagery. To re­
tain the desirable properties of tiles while combatting block artifacts,
JPEG2000 Part 2 allows the use of certain overlapping block-based trans­
forms.

OVERLAPPING TILES

One option for overlapped block-based processing allows for transfor­
mation of overlapping tiles. In this option, tiles of size T1 x T2 are placed
on a tile grid with inter-tile distance (Tl - 1) X (T2 - 1). This situation

612 Wavelet Tmnsform Extensions

r---T---""---
I I I
I I I

~---t!r--

~---+=J---
I I I
I I Ir---T---i----
• • I

Figure 15.6. Overlapping tiles. The tile grid is shown using dashed lines. The
t = [1,1] tile is shown via shading. It contains 1 row and column of samples from
neighboring tiles.

is illustrated in Figure 15.6. Tile t = [tl,t2] = [1,1] is shaded in the
figure. Each T1 x T2 tile is transformed and compressed as discussed in
previous chapters. All overlap techniques discussed here are restricted
to transforms corresponding to odd length symmetric kernels.
Upon decompression, the "interior" samples of each tile are uniquely

determined, while border samples may have multiple decompressed ver­
sions. For instance, at least two versions of each sample in the first and
last column and row are available (four versions of each corner sample
are available). In the lossless case, all versions will be identical. In the
lossy case, the various versions will differ, and JPEG2000 Part 2 speci­
fies which version to keep based on the tile and coding partition anchor
points (Chapter 11).
The height and width of the tile partition elements for this option

are constrained to be powers of two. The size of the tiles themselves
is then of the form T1 x T2 = (211 + 1) x (212 + 1). The tile partition
anchor point is also constrained to be of the form [n1211 ,n2212]. Finally,
the sub-sampling factors of all components must be Sf = 1, i = 1,2,
c=O,l, ... ,C-l.
With these restrictions, the first and last samples of each row and

column of every (overlapping) tile-component have even indices. The
canvas conventions then result in the first and last sample of each row
and column corresponding to a low-pass sample after transformation. It
follows that every tile-component resolution also possesses this property.
It has been shown empirically that this attribute substantially reduces
quantization induced errors at tile boundaries. In this way, significant
block artifact reduction is achieved.

Chapter 15: Part 2 Extensions 613

The price of artifact reduction is paid in compression efficiency. The
number of image samples compressed via this method is increased by a
factor of T1T2/ (T1 - 1) (T2 - 1). As the tile size increases, this factor
becomes insignificant. However, some memory efficiency and ease of
spatial random access is then lost.
For the purpose of overlapping block transforms, JPEG2000 Part 2

actually defines an alternate boundary extension policy known as "880­
DWT extension." While similar to regular symmetric extension, 880­
DWT extension has the important property that the boundary samples
pass directly into the relevant low-pass subbands without modification.
This is achieved by replacing the low-pass lifting steps which would mod­
ify these samples with point-wise scaling operations, where the scaling
factors are selected to preserve the DC gain characteristics of the trans­
form. As noted below, this modified extension policy is mandatory when
the transform is used with overlapping cells. When used with overlap­
ping tiles, the standard permits both regular symmetric extension and
880-DWT extension at the tile boundaries.

OVERLAPPING CELLS WITHIN TILES

A modified version of the idea discussed above may be employed on
small blocks within tiles. As before, only transforms corresponding to
odd length symmetric kernels are allowed. To avoid confusion with other
block structures in JPEG2000, these blocks are referred to as "cells." For
this option, a tile-component is partitioned by a "cell" grid with elements
of size C1 x C2 where Cl and C2 are both powers of two. The cell grid
anchor point is always the origin of the canvas. From this, we see that
the upper left hand corner of each cell is of the form [n1C1, n2C2] =
[n1211 ,n2212].
The samples of a cell are augmented by one row and column of samples

from the bottom and right to obtain an array of size (C1 + 1) X (C2 + 1).
Such arrays overlap in the fashion of the tiles of Figure 15.6. These
arrays are independently transformed exactly as though they were tiles,
with the following two exceptions: 1) 880-DWT boundary extension
must be used instead of regular symmetric extension; and 2) only the
wavelet samples corresponding to points within the cell are retained.
The additional C1 +C2 + 1 wavelet samples are discarded.
Conceptually, after the first level of transformation, the LL subbands

of all cells are placed on a cell grid with elements of size CI/2 x C2/2.
In this way a "pseudo-subband" of nominal size TI/2 x T2/2 is formed.
This process is repeated for the HL, LH, and HH subbands.
The resulting pseudo-subbands look very much like the subbands that

would have been obtained via the usual wavelet transform of the full

614 Multi-component Processing

tile. In fact, the wavelet samples in the interior of the C1/2 x C2/2 cells
are identical to those that would have been obtained from the full tile­
component transform. Only near the borders of the cell are there small
differences between the transformed cell samples and the transformed
tile samples. Even these differences are smaller than might be expected
due to the same considerations discussed in the overlapped tile case.
Specifically, the restrictions on the cell partition anchor point and cell
sizes guarantee that all first and last rows and columns of the overlapping
arrays correspond to locations of low-pass samples.
It is worth emphasizing that this procedure does not suffer from the

data expansion of the tile based technique. This is due to the fact that
the "extra" wavelet samples are discarded. On the other hand, cells can
not then be inverse transformed independently. One row and column
of wavelet samples must be "borrowed" from neighboring cells before
inverse transformation to get (C1 + 1) X (C2 + 1) samples.
Recall that the SSO-DWT extension prevents the transform from

modifying any of the samples on the overlapping cell boundaries. For
this reason, wavelet samples which the inverse transform borrows from
the first column of the neighboring cell to the right are identical to the
samples which were discarded from the last column of the current cell.
Similarly, samples borrowed from the first row of a cell's bottom neigh­
bor are identical to those which were discarded from the last row of the
current cell. After inverse transformation, the last row and column are
discarded to obtain the C1 x C2 inverse transformed cell samples. In
the absence of quantization errors, this process is entirely invertible. In
particular, when reversible transforms are employed, lossless compres­
sion/decompression is supported.
We discussed above the conceptual process of concatenating cell sub­

bands to obtain tile-component pseudo-$ubbands. In practice however,
an implementation need not accumulate entire pseudo-subbands. As­
suming a dyadic decomposition tree, the LH, HL, and HH subband
samples may be coded and discarded as code-blocks are filled. Simi­
larly, the LL cells may be further transformed as soon as neighboring
cells become available to contribute a "borrowed" row/column. This
process can be facilitated by judicious choice of tile partition and coding
partition anchor points, [Df, DJ] and [Df, D~] (Chapter 11). In this
way, code-blocks can be forced to line up advantageously with cells so
that minimal transformed cell buffering is required to fill code-blocks.

15.7 MULTI-COMPONENT PROCESSING
In Chapter 10, we discussed the irreversible and reversible color trans­

forms (ICTfRCT). Each of these transforms is applied independently

Chapter 15: Part 2 Extensions 615

at each sample location to exploit inter-component correlation in RGB
color images. Such transforms, that operate across multiple image com­
ponents on a point-by-point basis, are known as point transforms. JPEG
2000 Part 2 supports three types of point transforms in addition to the
ICT and RCT of Part 1. These three types of point transforms are: lin­
ear block transforms, dependency transforms, and wavelet transforms.3

When one of these three methods are employed, bit 7 of the BIZ marker
segment CA parameter is set (i.e., CA7 = 1).
As with the ICT and RCT, the goal of such transforms is to ex­

ploit inter-component correlation. Although the transforms described in
this section are applicable to RGB color imagery, they are more typi­
cally intended for other types of multi-component imagery. For example,
CMYK and/or LANDSAT imagery may be efficiently compressed using
these methods. LANDSAT imagery typically comprises seven compo­
nents, six of which are highly correlated. Certain types of hyperspec­
tral and medical imagery may also be efficiently compressed via these
transforms. Such imagery may comprise hundreds of highly correlated
components.
JPEG2000 Part 2 allows the grouping of arbitrary subsets of compo­

nents into "component collections." Any of the three transform types
may be selected for each such collection. In some cases, multiple trans­
forms may be performed sequentially on the same component collection.
As with the ICT and RCT, the components resulting from point trans­
formation are compressed and decompressed using the two dimensional
spatial wavelet transform. The resulting spatially reconstructed compo­
nents are then processed via the appropriate inverse point transform(s)
to obtain the final decompressed components.
In the following subsections, we provide a brief overview of the three

types of multi-component transforms. In each case, we assume that
the relevant transform is applied to a component collection with Co
components, having samples at location n, denoted by XQ [nl, Xl [nl, ... ,
XCo-l [n]. We use the shorthand notation

x[n] =

XQ [n]
Xl [n]

3Strictly spcaking, thc non-linear transform of Scction 15.2 is also a point transform. How­
cvcr, t.he non-linear t.ransform operates on one sample of onc componcnt. at a timc, anel is
not. applicablc t.o exploitation of int.er-component correlation.

616 Multi-component Processing

to denote the Co-vector obtained by taking one sample (at location n)
from each component. The relevant point transform is then performed
on x [n] to obtain the vector y [n]. This process is carried out indepen­
dently at each sample location n.
As described below, the size of the y [n] vectors need not necessarily

be the same as that of the x [n] vectors. We denote the size of the y [n]
vectors by Ct. Thus, each y [n] is of the form

y[n] =

Yo [n]
Y1 [n]

Application of the point transform at each n results in Ct "transformed"
components. These components have samples at location n denoted by
Yo [n], Y1 [n], ... , YCt-1 [n]. These transformed components are com­
pressed and decompressed to yield components with samples Yo [n] ,
Y1 [n] , ... , YCt-1 [n]. Finally, each vector

y[n] =

is "inverse" transformed to get

z[n] =

(

yO [n])
Y1 [n]

YCt~l [n]

(

zo [n])
Zl [n]

ZCf~l [n]
which comprise the samples of Cf "final" reconstructed components.
As mentioned in Chapter 9 and elsewhere, the JPEG2000 standard

really specifies only the decompressor and code-stream syntax. This
allows compressors room to innovate with confidence that decompressors
will behave as expected. This idea is highlighted in the case of multi­
component processing by the fact that Cf and Ct may differ from Co'
We will have more to say on this below.

15.7.1 LINEAR BLOCK TRANSFORMS
The linear block transform can be most easily described in terms of

matrix multiplication. As an example, the lCT of Section 10.2 is a linear

Chapter 15: Part 2 Extensions 617

block transform. Specifically,

y [n] = Atx [n] (15.5)

where y [n] = (xy [n] ,XCb [n] ,XCr[n]/ , x [n] = (XR [n] ,XG [n] ,XB [n])t
and At is a 3 x 3 matrix. The operation of the inverse transform is given
by

z [n] = Sy [n] (15.6)

where y [n] is the compressed/decompressed version of y [n] and S is
also a 3 x 3 matrix. The particular matrices At and S for the ICT are
given in Section 10.2, and satisfy

(15.7)

where I is the 3 x 3 identity. In the absence of quantization or rounding
errors, z [n] = x [n]. In any event, z [n] can serve as an approximation
to x[n].
The linear block transform employed in the multi-component option of

JPEG2000 Part 2 is described by equations (15.5) and (15.6). In general
however, At is of dimension Ct x Co, while S is of dimension Cf xCt. It is
not necessary that equation (15.7) be satisfied. The encoder must signal
the values of the S matrix to the decoder. This is accomplished via
the MGT marker segment (multi-component Transform). The decoder
has knowledge of neither At nor Co' It knows only Ct,Cf' and S, and
dutifully carries out equation (15.6).
Examples indicative of the utility of such flexibility are described now.

Suppose that the encoder chooses to perform the KLT (Chapter 4) on the
x [n] vectors. Suppose further that the encoder decides apriori that the
last l transformed components will be discarded (Zonal Coding, Section
5.1). There is then no sense in computing and compressing these l
components. This observation can be effected by simply deleting the
last l rows of the Co x Co KLT transform matrix K t to obtain the
matrix At of size Ct x Co, where Ct = Co -l.
The appropriate transform for application at the decoder would then

be obtained by deleting the last l columns of the inverse KLT matrix K.
The resulting matrix S is of size Cf x Ct where Cf = Co and Ct = Co -l,
as above.
As another example, the compressor might employ the full KLT with

At = K t and Ct = Co. The transform signalled for use at the decoder
might consist also of the entire inverse KLT matrix K, but augmented
with m additional rows at the bottom. This would yield S of size Cf x Ct
where C t = Co, but Cf = Co +m.
The first Co reconstructed components would then correspond to the

Co original components at the compressor. If the bottom m rows of S

618 Multi-component Processing

are linear combinations of the rows of K, then the last m reconstructed
components correspond to linear combinations of the original compo­
nents. This might be employed to force the decoder to create panchro­
matic components and/or R, G, and B pseudo-color components from
compressed LANDSAT data when no such components were present at
compression time.
Although ignored in the discussion above, the linear block transform

procedure for multi-component processing allows for the addition of a
constant vector to the final inverse transformed vectors. That is, equa­
tion (15.6) should be replaced by

z[n] = Sy[n] + b (15.8)

Of course a corresponding subtraction may be carried out in the com­
pressor.
The vector b is of dimension Of x 1 and is signalled via the MGT

marker segment. The functionality provided by the addition of b is
essentially the same as that provided by the variable DC offset of Section
15.1.
As a closing comment, we note that reversible versions of block trans­

forms are also likely to be supported in JPEG2000 Part 2. Such trans­
forms are analogous to the RCT of Section 10.2.

15.7.2 DEPENDENCY TRANSFORMS
From a decompressor point of view, the dependency transform is sim­

ilar to the linear block transform. Notable differences however, are that
the offset b is added prior to the transform, the matrix S must be lower
triangular and square, and the inverse transform process is recursive.
Specifically, the inverse dependency transform process is given by

z [n] = Sz [n] + (y [n] + b) (15.9)

It may seem odd that the final reconstructed component data, z [n],
appears on both sides of the equality. However, as mentioned above, Sis
restricted to be square and lower triangular. Furthermore, S must have
zeros on its diagonal. As a consequence, z [n] is recursively computable

ChapteT 15: Part 2 Extensions 619

in the following way:

ZO [n] = Yo [n] + bo
ZI [n] = SI,OZO [n] +YI [n] + bl

Cf -2

zCf-1 [n] = L SCf-l,jZj [n] +YCf-1 [n] + bCrl
j=O

We have already stated that S must be square. That is, Ct = Cf. For
simplicity, we also assume that Co = Cf and that the final reconstructed
components will serve as decompressed approximations of the original
components. To emphasize this, we introduce the alternate notation,
Xi [n] = Zi [n] i = 0,1, ... ,Cf -1 and write

i-I

Xi [n] = L Si,jXj [n] +Yi [n] + bi

j=O

Referring to Figure 3.7, we note that

i-I

J-Li [n] = L Si,jXj [n] + bi

j=O

can be interpreted as a prediction of Xi [nl, and that Yi [n] can be inter­
preted as the prediction error, after compression and decompression. In
this way, the dependency transform can support DPCM style coding of
components.
As with the block transform discussed above, it is likely that both

irreversible and reversible versions of the dependency transform will be
supported.

15.7.3 WAVELET TRANSFORMS
Wavelet transforms will also be allowed as point transforms in JPEG­

2000 Part 2. Little is currently settled in this regard. It is likely however,
that the encoder will be allowed to signal a kernel to be used as described
in Section 15.6.2. Both irreversible and reversible transforms will be
supported, as well as odd length symmetric, even length symmetric,
and non-symmetric kernels. Since point transforms are inherently one
dimensional, all such wavelet transforms will also be one dimensional.
At a minimum, D levels of dyadic decomposition will be supported in
this regard. It is unclear if more general structures (Section 15.6.1) will
be allowed.

620 File Format

15.8 REGION OF INTEREST CODING
In Section 10.6, we discussed the scaling method of ROI (Region of

Interest) coding. In that discussion, the quantization index at location
j in code-block i is denoted by Yi Uj. Prior to coding of the quantization
indices, each Yi [j] is scaled by 2u:U. Equivalently, Yi [j] is "left-shifted,"
or "up-shifted," by Ui [j] bit positions. Clearly, the decoder must know
the value of Ui [j] for each i,j in order to properly realign the quantization
indices as part of decompression.
As discussed in Section 10.6, JPEG2000 Part 1 solves this problem by

signalling a single value U in the code-stream. This value satisfies

U > maxKb- b

where Kb is the number of bits used to represent quantization indices in
subband b. This makes U so large that the LSB of the up-shifted indices
occupy a higher bit position than the MSB of the non-up-shifted indices.
Thus, the up-shifted indices are easily identified and down-shifted in the
decoder.
In JPEG2000 Part 2, more flexibility is allowed in the choice of Ui [j].

Specifically, the location and sizes of multiple rectangular and/or ellipti­
cal regior;ts of interest (ROI) may be signalled via an extended version of
the RGN marker segment. A separate up-shift value is also signalled for
each such ROI. Multiple regions may be specified independently within
each component. The presence of this feature is indicated via GAg = 1
in the BIZ marker segment.
Given an ROI in a specific component, the quantization indices to be

up-shifted are identified via the "region mapping" procedure discussed
in Section 10.6. If a given index belongs to multiple ROls in a given
component, the largest applicable up-shift value is used.
By application of this procedure, multiple ROIs in multiple compo­

nents may all be emphasized by different amounts. If eventually all cod­
ing passes are decoded, the resulting decompressed image will be as if
no ROI processing were used. However, if bit-stream truncation occurs,
the ROIs with larger up-shift values will be decompressed with higher
fidelity than ROIs with smaller up-shift values. The "background" con­
sists of all values not up-shifted, Ui UJ = 0, corresponding to the lowest
decompressed image quality.

15.9 FILE FORMAT
As mentioned in Chapter 14, JPEG2000 Part 2 includes an extended

file format. This file format is known as JPX. The JPX file format
is flexible and powerful, and adds many capabilities to JP2. A full

Chapter 15: Part 2 Extensions 621

description of JPX is beyond the scope of this text. We provide only a
brief overview of JPX extensions here.4

JPX files employ the extension ".jpx" (Macintosh file systems employ
the type code C jpx '). On the other hand, for a JPX file containing
C jp2 ' in its compatibility list, it is legal to use the ".jp2" extension.
Such (mis)labeling may encourage JP2 readers to interpret such files,
within the limits of their capabilities. Of course, the "true" file type
may still be determined via the Br field of the file type box (Section
14.2.2). For JPX files, Br = C jpx '.
JP2 allows two methods for describing color spaces: enumeration and

restricted ICC profiles. JPX adds to the list of enumerated color spaces,
and includes the capability for future registration of additional enumer­
ated color spaces. JPX also allows the use of general (non-restricted)
ICC profiles.
In JP2, only a single contiguous code-stream is allowed.5 JPX allows

multiple code-streams in the same file. The inclusion of multiple code­
streams allows, for example, opacity and color channel information to be
stored as separate code-streams. This might ease the inclusion or mod­
ification of opacity information during file editing operations. JPX also
specifies several tools for combining multiple code-streams within a JPX
file. These tools are very powerful and include support for compositing
as well as animation.
In JPX, code-streams may be fragmented and spread across multiple

boxes. This may facilitate ease of code-stream editing. For example,
single tiles may be edited without the need to rewrite the entire file.
Fragmented code-streams may also be useful in the creation of scalable
files. Different users may receive different subsets of code-stream frag­
ments corresponding to different image qualities and/or resolutions.
Finally, JPX defines specific methods for the inclusion of metadata

relating to creation/revision history, intellectual property rights, and
descriptions of the image content.

4The description of JPX occupies more than 50% of the JPEG2000 Part 2 committee draft.
5More accurately, only the first contiguous code-stream is required to be read/interpreted.

Chapter 16

PERFORMANCE GUIDELINES

16.1 VISUAL OPTIMIZATIONS
16.1.1 CSF BASED OPTIMIZATIONS

In Section 4.3.4, we discussed weighted MSE (WMSE) based on the
human visual system Contrast Sensitivity Function (CSF). We argued
that in many cases, this WMSE is a more accurate gauge of perceptual
quality than the more usual MSE. In Section 5.2, we discussed the tradi­
tional method for minimizing WMSE via rate allocation. The discussion
there was based primarily on the assumption of non-scalable compres­
sion, where only "single quality" decoding is possible.

In Section 7.3, we noted that CSF weighting may also be incorporated
into embedded compression schemes such as EZW or SPIRT. This is
most easily accomplished by adjusting the quantization step size for
each band b, in accordance with the contrast sensitivity in that band.
Rather than targeting MSE by using the same step size ~ in each band
(see equation (7.2)), WMSE may be targeted by multiplying each band's
step size by some kind of "average" detection contrast for the band, Tb'sf.
Specifically, we may assign step sizes ~b using

A -lr-"csf A ~
Ub = a .Lb U =

JWb'Sf

In the expression above, b = 0,1, ... ,B-1 where B is the number
of transform bands, a is an arbitrary positive constant, and Wb'sf is
the energy weighting factor introduced in equation (4.43). It is usually
convenient to select a so that max {Wb'sf} = 1.

b
Although effective, this approach is limited in two fundamental ways.

First, even when reversible transforms are employed, lossless coding will

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

626 Visual Optimizations

not generally be possible unless the values of JWI;Sf are restricted to

powers of 2. Second, the weighting employed is static, meaning that
it cannot be later modified to meet the needs of different applications
consuming the same compressed bit-stream in a scalable manner.
Both of these limitations are easy to circumvent using JPEG2000.

This can be accomplished simply and effectively by replacing MSE with
WMSE as the cost function which drives the formation of quality layers.
Specifically, the coding pass distortion contributions, D~z), used by the
PCRD-opt algorithm of Section 8.2 may be computed using the following
modified form of equation (8.13).

D~Z) = Wl;isfGbi L (Yi [j] - Yi [j])2
jEBi

(16.1)

Here, bi denotes the subband to which code-block Bi belongs, Gb is the
energy gain factor associated with the synthesis waveforms in band b,
and Yi [j] is the dequantized representation of subband sample Yi [j], as­
suming that only the first z coding passes for the block are decoded.
For simplicity, we have dropped the more explicit notation used in equa­
tion (8.13) to express the dependence of Yi [j] on z.
By modifying only the distortion values used to construct quality

layers, neither the transformed samples nor the quantization step sizes
need be altered. In the remainder of this discussion, we will identify the
weights in equation (16.1) as Wb instead ofWl;sf, since the specialization
to CSF-based weighting factors is not of fundamental importance. If all
bit-planes are encoded and subsequently decoded, identical images will
be obtained, regardless of whether the cost function is MSE or WMSE,
provided only that all Wb are non-zero.
Ignoring differences in the packet header overhead, code-streams based

on MSE and WMSE differ only in the order in which compressed coding
passes are included. Compared with an MSE optimized code-stream, a
WMSE optimized code-stream will include coding passes from subbands
with larger Wb earlier. Conversely, bands with smaller Wb values con­
tribute their code-blocks' coding passes relatively later. Of course MSE
is the special case of WMSE when all Wb are equal.

It should be clear from the discussion above that when reversible
transforms are employed, lossless compression and decompression are
supported regardless of the distortion measure used to create quality

Chapter 16: Performance Guidelines 627

layers. Furthermore, weighting has no significant impact on the lossless
file size.
The difference between MSE and WMSE code-streams becomes ap­

parent, in both the reversible and irreversible cases, when decoding is
halted prior to decoding all coding passes or when not all coding passes
are included in the code-stream. When this occurs, relatively more cod­
ing passes will be decoded from bands with larger Wb, realizing lower
distortion for these bands, in accordance with the weighting criteria.

VISUAL PROGRESSIVE WEIGHTING
The idea of visual progressive weighting (VIP) was introduced by

Sharp Labs [91]. The motivation behind VIP is that early in the de­
coding of an embedded code-stream, visual quality may be substantially
improved by imposing a fairly aggressive visual weighting strategy. How­
ever, as decoding proceeds and quality improves, less aggressive weight­
ing may be appropriate. In fact, in the high quality regime, unweighted
MSE (i.e., Wb = 1 Vb) is typically preferred. VIP is then best thought
of as a strategy that allows the weighting to change as a function of
embedded encoding rate.
VIP was initially proposed in the context of single pass bit-plane cod­

ing of entire bands. A small amount of overhead was periodically in­
cluded in the code-stream to signal the current set of weights. From
these weights, the encoder and decoder can calculate which band is
"most visually significant." This calculation is performed after each
bit-plane is coded. The result is used to select the band from which the
next bit-plane will be coded.
This idea was modified by Sharp Labs and SAIC/VA [144] to allow

arbitrary ordering of multiple bit-plane coding passes within whole sub­
bands. Again, some overhead is required to explicitly identify the order­
ing of coding passes. Ultimately, the process was extended to multiple
coding passes of code-blocks by Taubman in VM3 (see Section 9.1.1).
This final version enjoys the distinct advantage that it does not require
any additional signalling mechanisms to identify the ordering informa­
tion. This is because the quality layer mechanism in JPEG2000 already
supports arbitrary ordering of the coding passes from different code­
blocks.
In JPEG2000, VIP may be implemented by progressively adjusting

the weights, Wb, used to define the code-block distortion contributions,
D~z). The PCRD-opt algorithm of Section 8.2, depends only on the
distortion-length slopes, Ai (z), defined by equation (8.4). The effect of
Wbi is simply to scale the Ai (z), having no impact on the convex hull
set, 'Hi, which defines the candidate truncation points for code-block

628 Visual Optimizations

Hi. For this reason, the weights need not be introduced until the point
where each quality layer is actually formed, using the algorithm given
on Page 344. The Wb may be changed from layer to layer following
any desired strategy, without compromising the legality of the resulting
code-stream.

16.1.2 WEIGHTS FOR COLOR IMAGERY
The JPEG2000 Part 1 document contains recommended values for

normalized contrast sensitivity, jWbSf, for use with color imagery. More
precisely, the Final Draft International Standard contains a set of tables
for monochrome imagery. The color tables were inadvertently omitted
but will be included in the standard by means of a corrigendum. In what
follows, we provide only the color tables, since the luminance values in
these tables are suitable for use with monochrome imagery.
The color tables were first reported in [38] and are derived from CSF

curves for Y, Cb, and Cr color components. These CSF curves were
obtained experimentally according to the procedures described in [109],

and are shown in Figure 16.1. Before the computation of the jWbsf as
described below, each curve was normalized to have a maximum sensi­
tivity of 1.0. As can be seen from this figure, the luminance curve has
the same general shape as that in Figure 4.25.

It is common for the contrast sensitivity to vary significantly over the
range of spatial frequencies occupied by a single subband. To determine

a single value,jwbsf , for the entire band one might simply take the
average sensitivity over the relevant frequencies. A more conservative
approach would be to select the peak CSF value over the frequency
band. The recommended color tables described here are derived using
a procedure which may be loosely understood as a combination of these
two strategies. Rather than using the luminance curve directly, the
sensitivity at low frequencies (below the frequency at which the curve
peaks) is set to the peak value, i.e., 1.0. After making this modification,
a separable CSF approximation is used to form the following simple
average

f
high fhigh

J b.verl. 1 dlf J b,hor 1 dlf

R flOW Tcsf (f) pow Tcsf (f)wcsf = b,verl X,....b:.:;,I:.;.lo::..-r ,-

b ({high {lOW) ({high flow)
J b,vert - J b,vert J b,hor - b,hor

Here, f.blowe.t and f.bhight denote the low and high vertical cut-off frequen-,v 1 ,ver

cies for band b, while fb°hor and f~l~O~ denote the low and high horizontal
cut-off frequencies.' ,

Chapter 16: Performance Guidelines 629

1000

8
y

-irCb
___ Cr

?;o
'>
~ 100
c..
Ul

321684

Cycles per degree

2

10 +---+---+---+-----''!''<------''~+_\~____1

0.5

Figure 16.1. CSF curves for YCbCr color imagery.

As discussed in Section 4.3.4, the location of the peak in a CSF curve
varies according to the distance between the observer and the imagery.
"Filling in the valley" to the left of this peak makes the match between
assumed and actual viewing distance less critical. This modification of
the CSF curve results in "extra bits" being coded at low frequencies.
However, the pyramidal structure of the wavelet transform ensures that
the fraction of samples receiving such extra bits is small. Generally then,
the impact on compression efficiency is minor.
There will be three sets of tables given in the standard, corresponding

to three assumed viewing distances. These viewing distances are 1000,
1700, and 3000 samples, respectively. For example, on a 100 sample per
inch display, the 1700 tables are appropriate for a viewing distance of 17
inches. The relevant weights are included here in the form of Tables 16.1,

16.2, and 16.3. Each of these tables provide JWbSf values for the bands

of a 5 level dyadic wavelet transform. If fewer transform levels are used,
the lower frequency subband weights may simply be discarded. These
appear in columns to the left of each table. If more transform levels are
used, the additional low frequency subbands may be assigned weights of

630 Visual Optimizations

Table 16.1. CSF weights, JWb'sf, for a viewing distance of 1000 samples. The LL
subbands (not shown) should be assigned a weight of 1.

Level
5 4 3 2 1

HL 1.000000 1.000000 1.000000 0.998276 0.756353
Y LH 1.000000 1.000000 1.000000 0.998276 0.756353
HH 1.000000 1.000000 1.000000 0.996555 0.573057

HL 0.883196 0.793487 0.650482 0.450739 0.230503
Cb LH 0.883196 0.793487 0.650482 0.450739 0.230503

HH 0.833582 0.712295 0.531700 0.309177 0.113786

HL 0.910877 0.841032 0.725657 0.552901 0.336166
Cr LH 0.910877 0.841032 0.725657 0.552901 0.336166

HH 0.872378 0.776180 0.625103 0.418938 0.200507

Table 16.2. CSF weights, yiWb'sf, for a viewing distance of 1700 samples. The LL
subbands (not shown) should be assigned a weight of 1.

Level
5 4 3 2 1

HL 1.000000 1.000000 1.000000 0.861593 0.307191
y LH 1.000000 1.000000 1.000000 0.861593 0.307191
HH 1.000000 1.000000 1.000000 0.742342 0.108920

HL 0.818766 0.689404 0.501652 0.280068 0.097816
Cb LH 0.818766 0.689404 0.501652 0.280068 0.097816

HH 0.745875 0.579220 0.362279 0.152290 0.031179

HL 0.860885 0.757626 0.598537 0.388492 0.177435
Cr LH 0.860885 0.757626 0.598537 0.388492 0.177435

HH 0.803172 0.665951 0.470893 0.248566 0.077130

1. Regardless of the number of transform levels, the DC subband, LLD,
should be assigned a weight of 1 in each component.

SUB-SAMPLING IN JPEG2000
Up to this point, we have not mentioned sub-sampling of the Cb and

Cr components. DCT based compression systems (e.g., JPEG, H.261,
MPEG) typically employ 2:1 sub-sampling of Cb and Cr, in both the hor­
izontal and the vertical directions. Although allowed, such sub-sampling
is not recommended for use with JPEG2000. Superior visual perfor­
mance is generally obtained without sub-sampling. This should not

16.1.3

Chapter 16: Performance Guidelines 631

Table 16.3. CSF weights, ylWb"f, for a viewing distance of 3000 samples. The LL
subbands (not shown) should be assigned a weight of 1.

Level
5 4 3 2 1

HL 1.000000 1.000000 0.921045 0.410628 0.038487
Y LH 1.000000 1.000000 0.921045 0.410628 0.038487
HH 1.000000 1.000000 0.848324 0.182760 0.003075

HL 0.717086 0.539437 0.319773 0.124021 0.023308
Cb LH 0.717086 0.539437 0.319773 0.124021 0.023308

HH 0.613777 0.403353 0.185609 0.044711 0.003413

HL 0.780091 0.631632 0.428659 0.211871 0.060277
Cr LH 0.780091 0.631632 0.428659 0.211871 0.060277

HH 0.695128 0.509729 0.287593 0.100658 0.014977

be surprising, since the "hard sub-sampling" employed in DCT based
schemes can be seen as a special case of CSF weighting, with weights
WHLl' W LH1 and WHHI all equal to O. It follows that the weighting fac­
tors recommended for JPEG2000 represent a sort of "soft sub-sampling."
Examining Tables 16.1, 16.2, and 16.3, we see that the weights for Cb
and Cr are generally smaller than those for Y. At larger viewing dis­
tances, the trend is toward "hard sub-sampling." In fact, at a viewing
distance of 3000 samples, the recommended values for JWHLl' JWLH1
and JWHHI are very small in all three components.

SUBJECTIVE COMPARISON OF
JPEG2000 WITH JPEG

The CSF weighting tables of the previous section have been employed
in visual tests conducted by Fujifilm California and Eastman Kodak [37J.
These tests compared the visual quality of JPEG2000 to that of JPEG.
The JPEG2000 imagery for these tests was generated using the CDF

9/7 irreversible transform. The JPEG imagery was generated using the
Independent JPEG Group implementation, cjpeg.1 The default mode of
cjpeg was employed (i.e., baseline sequential mode, see Chapter 19) and
optimized Huffman tables were used. All visual comparisons were made
using 24-bit color prints at 300 dpi.
The tests were conducted using six 24-bit color images with natural

photographic content. The luminance components for two of these im-

1Source code for this implementation is available at http)jwww.ijg.org.

632 Visual Optimizations

ages, bike and woman, are shown in Figure 8.21. Ten "reference" JPEG
images were created for each of the six original images. These reference
images were created by compressing and decompressing to precise rates
of 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, and 1.4. All rates were in units
of bits per color sample. For example, a rate of 0.5 bits/sample corre­
sponds to a compression ratio of 48:1. Four JPEG2000 "test" images
were also created for each original image. These test images were com­
pressed/decompressed to rates of 0.25, 0.50, 0.75, and 1.00 bits/sample.
Visual quality testing was then carried out by six observers.2 For a

given original image, the JPEG reference prints were placed on a table
in order of lowest to highest rate. Each observer was given a JPEG2000
test image, and asked to find the JPEG reference image of comparable
quality. This process was repeated for each JPEG2000 rate and each
original image. In this way, the rate required for JPEG to achieve the
same visual quality as JPEG2000 was determined.
The average of these results over the six observers is shown in Figure

16.2. Two of the curves in this figure show results for the bike and
woman images individually. The third curve shows the results averaged
over all original images. Each of these three curves represents the rate
required by JPEG to achieve comparable perceptual quality to that of
JPEG2000. For ease of comparison, the forth curve indicates the rate
required by JPEG2000 (to achieve the quality of JPEG2000). Of course
this latter curve is the identity and corresponds to a straight line of slope
1.
From the figure, we see that in the case of the bike image, JPEG2000

provides a decrease in rate ranging from 14% to 47% over that of JPEG.
Equivalently, JPEG requires an increase in rate between 16% and 88%
to achieve equivalent visual quality to that of JPEG2000. The results for
the woman image are similar, with the savings achieved by JPEG2000
ranging from 12% to 52%. Finally, we see that on average, JPEG2000
provides a reduction in required rate between 11% and 53%.
In each case, the largest improvements occur at the lower rates. This

is not surprising since at low rates, the "blocking" artifacts of JPEG tend
to be significantly more annoying than the "smoothing" of JPEG2000,
as demonstrated in Figure 4.30. In fact, a general observation reported
in [37] was that JPEG imagery tends to be "sharper" than JPEG2000
imagery at all encoding rates. Furthermore, the sharpness of JPEG
increases more quickly than that of JPEG2000 as encoding rate is in-

2Subsequent testing at Fujifihn Software California using more observers yielded similar re­
sults (private communication: Troy Chinen).

Chapter 16: Performance Guidelines 633

1.25

Q;'
Q.
E.,
~
e 0.75

~­CG>
~
':; 0.5
C'
w

~
':;
C'

~ 025

__ Bike (JPEG)

-e-Woman (JPEG)

-t<- Al.erage (JPEG)

___ JPEG2000

1.250.25 0.5 0.75

JPEG2000 Rate (bits/sample)

O+----+-------r-----r--,-----r------1
o

Figure 16.2. Rate required to achieve visual quality equivalent to that of JPEG2000.

creased. On the other hand, the JPEG sharpness advantage is more
than overcome by the absence of blocking artifacts in JPEG2000.

16.1.4 EXPLOITING VISUAL MASKING
As noted in Section 4.3.4, CSF data measures only the detectability

of sinusoidal patterns against a uniform background. For image com­
pression, however, we are interested in the detectability of quantization
artifacts when they are superimposed on the original image. Image ac­
tivity tends to mask the visibility of quantization artifacts. An example
of this masking phenomenon is given in Figure 4.29. The figure provides
evidence for the fact that artifacts produced by quantization errors in
one subband are masked most strongly by image content from the same
subband. This is known as intra-band masking and we shall henceforth
consider only this effect.

634 Visual Optimizations

MASKING SENSITIVE DISTORTION MEASURES
We saw above that CSF effects may be readily incorporated into

JPEG2000 code-streams by scaling the coding pass distortion estimates,

D~z), which are used to form quality layers. In particular, CSF modified
distortion estimates may be found using equation (16.1). To account for
the effects of visual masking, these distortion estimates may be further
divided by the square of the relevant threshold elevation factor, tb (p),
as given by equation (4.45). tb (p) represents the amount by which the
detection threshold (amplitude) for an artifact in band b at location p
is increased by masking, relative to the CSF detection threshold, Tbsf .

For our purposes here, it is convenient to replace equation (4.45) with
the almost identical formula

tb (p) = VI + (mb (p))2p

so that the modified distortion estimates become

D(Z) = VV;csfC . '" (Yi [j] - Yi [j]) 2
t bi b, 6 t. [0]

jEl3i t J

= VV;csfC . '" (Yi [j] - Yi [j])2
bi b, ~El3' 1+ (mi [j])2p

J. ,

(16.2)

In these equations, ti [j] denotes the threshold elevation factor at the
location corresponding to subband sample j in code-block Hi and mi [j]
denotes the normalized masking contrast for the same location in the
same band. In particular, mi [j] is defined as the absolute masking con­
trast, Mi [j], divided by the CSF detection threshold, Tbisf .

In what follows, we use the fact that the contrast (amplitude) of in­
band signals is roughly preserved by the wavelet transform. As a result,
Mi [j] may be directly measured from the amplitudes of subband samples
in the neighbourhood of location Yi [j]. This property is a consequence
of the normalization convention expressed in equation (10.12), which
sets the nominal gains of all wavelet analysis filters to 1. If the trans­
form is implemented using a different convention, the differences must
be reconciled through appropriate scaling of the Yi [j] prior to comput­
ing the masking contrast, Mi [j]. This is particularly relevant when the
reversible transform is employed, since its linearized high-pass analysis
filters have a nominal gain of 2, rather than 1 (see equation (10.16)). Our
discussion here is based on the unit nominal range convention outlined in
Section 10.1.1, whereby the image and hence all subband samples have a
unit nominal dynamic range, from -! to !. The CSF detection thresh­
olds, Tbsf , are expressed with regard to this same normalization. To

Chapter 16: Performance Guidelines 635

compute the masking elevation factors, ti [j], for reversibly transformed
images, all quantities must be appropriately rescaled.
Introduction of visual masking effects into the code-block distortion

estimates used for PCRD-opt rate control was first proposed in [149]. In
that work, Mi [j] is estimated as

1

M i til ~ (lI~jll k~j IYdkll')' (16.3)

where JCj is a local neighbourhood of samples about the location j, and
IIJCj II is the number of samples in this neighbourhood. Since the exponent
p is typically less than 1, this type of local average tends to emphasize
the influence of neighbouring samples with smaller amplitudes. As such,
it bears some resemblance to a geometric mean. Subjective experiments
leading to the selection of this measure found the "p-mean" in equa­
tion (16.3) to yield more consistent visual quality than an arithmetic
mean of the neighbouring sample amplitudes.
Substituting equation (16.3) into equation (16.2) and noting that

mi [j] = Mi [j] /Tbi
sf , we obtain the following distortion estimates.

(16.4)

Here, we have used the fact that Tbsf and Wbsf are related through
equation (4.43), with a an arbitrary (irrelevant) constant.
An important observation concerning equation (16.4) is that the mask­

ing sensitive distortion measure is substantially less sensitive to exact
knowledge of the contrast sensitivity thresholds, Tbsf , than the CSF­
based distortion measure of equation (16.1). This is because the term
(Tb:~fr2P inside the summation partially cancels the term (Tbi

Sf)2 out­
side the summation. Almost perfect cancellation is obtained at high
masking levels and with exponents, p, close to 1. This property is most
convenient, since in many applications we may have little knowledge con­
cerning the viewing conditions and hence the contrast sensitivity thresh­
olds. Notable among such applications are those in which the viewer is
permitted to interactively "zoom" into or out of the image.

636 Visual Optimizations

Equation (16.4) was first used in [149] with the CSF detection con­
trasts, Tbsf , all set to a small constant, thereby avoiding any explicit
dependence on viewing distance at all. Visual experiments leading to
this work suggested an exponent of p = ~. This is a little lower than
the range of 0.6 to 1.0 suggested by the discussion of visual masking
in Section 4.3.4. Some promising visual improvements were obtained
in this work, particularly with photographic images containing human
portraits. These observations were supported by separate visual experi­
ments performed by Sharp Labs of America [3]. It is worth noting that
in all of these experiments, the local averages of equation (16.3), are
actually computed over disjoint sub-blocks of size 8 x 8 and the neigh­
bourhood, Kj, is identified with the particular sub-block which contains
location j. This modification substantially reduces the computational
complexity of the procedure.

ALTERNATIVE APPROACHES

An obvious limitation of visual optimization schemes which operate
on the distortion values used by the PCRD-opt algorithm, is that it
is only possible to alter the number of coding passes contributed by
whole code-blocks to any given quality layer. As a result, the use of
smaller code-blocks can often yield superior image quality, with 32 x 32
being a preferred size for masking-sensitive distortion measures. Even
then, a 32 x 32 code-block in the LH1 , HL1 or HH1 subbands occupies
roughly 64 x 64 samples in the relevant image component, while code­
blocks in lower resolution subbands occupy much larger regions. For
this reason, masking-sensitive distortion measures are largely ineffective
when applied to images which are small, or contain many small regions
with differing statistics.
These problems may be avoided by using masking attributes to di­

rectly modulate the quantization of individual samples. One such scheme
is proposed by Hontsch and Karam [76], in which the masking contrast
is estimated from a causal neighbourhood of previously quantized and
coded subband samples. The masking contrast must be estimated at
both the encoder and the decoder. Unfortunately, in a scalable setting,
the encoder cannot know ahead of time how many bit-planes will ac­
tually be available to the decoder, for use in estimating the masking
contrast. Also, the masking contrast may only be computed from causal
neighbours.
These difficulties are partially addressed by the visual masking ex­

tension mechanisms supported by JPEG2000 Part 2, as explained in
Section 15.5. This extension was conceived in light of the observations
made above concerning distortion-based masking optimizations [3]. The

Chapter 16: Performance Guidelines 637

reader should note the close resemblance between the denominators of
equations (15.1) and (16.4). The reader should also note that the Part 2
extension requires the decoder to explicitly compute masking contrasts.
On the other hand, distortion-based masking optimizations affect only
the encoder and are fully compatible with Part 1 decoders. Neverthe­
less, the Part 2 masking extension can offer significant improvements in
visual performance over distortion-based masking alone, particularly at
higher bit-rates or with smaller images.

16.2 REGION OF INTEREST ENCODING

In some applications, an image region of particular interest can be
identified at the point when the image is encoded, where this region is
to be assigned higher priority in the encoding process. As an example,
a radiologist might identify regions of interest within X-ray images of
a patient, requesting that these regions be encoded losslessly when the
image is compressed and transferred to a pathologist. More generally,
it is expected that the identified regions of interest should have smaller
distortion than the image as a whole. When the code-stream possesses
multiple quality layers, it is expected that this property should hold for
each of the reduced bit-rate streams obtained by discarding one ormore
of the final quality layers. In particular, when a quality progressive code­
stream is transmitted incrementally to a client (e.g., the pathologist),
the image quality is expected to improve most rapidly within the region
of interest. Once the entire code-stream has been received, the client
may be able to reconstruct a lossless representation of entire image, but
lossless reconstruction of the region of interest should be possible at an
earlier stage, when only part of the code-stream has been received.

JPEG2000 Part 1 provides two quite different mechanisms for assign­
ing higher priority to regions of interest at encode time. We refer to
these mechanisms collectively as ROI encoding schemes and we refer to
the regions of interest themselves as the "foreground," with the remain­
der of the image identified as "background." The first ROI encoding
mechanism is the max-shift method described in Section 10.6.2. A sec­
ond ROI encoding mechanism may be constructed by modulating the
cost function which drives the construction of quality layers. We refer
to this second method as "implicit" ROI encoding, since there is no ex­
plicit information in the code-stream to suggest that the encoder has
treated any region of the image differently to another. JPEG2000 Part
2 provides more comprehensive support for ROI encoding, as explained
in Section 15.8.

638 Region of Interest Encoding

16.2.1 MAX-SHIFT ROI ENCODING
JPEG2000· provides an "explicit" mechanism for assigning higher pri­

ority to arbitrary regions of an image. This explicit mechanism is known
as the "max-shift" method and is described in detail in Section 10.6.2.
The encoder scales up those subband samples which are involved in re­
constructing the foreground region. The scale factor must be a power of
2 so that the scaling process is equivalent to left shifting the magnitude
bit-planes by a single quantity U (up-shift), which is signalled using the
RGN marker segment. All compliant decoders are expected to restore
the scaled subband samples to their correct levels, which effectively re­
duces the quantization step size associated with those samples by 2-u .
As a result, the foreground region is reconstructed with higher fidelity
than the image as a whole.
In JPEG2000 Part 1 the shift, U, must be sufficiently large that the

decoder can distinguish between scaled and unscaled subband samples
solely on the basis of their coded magnitude bits. The relevant condi­
tions are explained in Section 10.6.2. For our purpose here, it is sufficient
to appreciate that U must generally be at least as large as the number
of magnitude bit-planes in any subband (see equation (10.32)). As an
example, consider reversible compression of 8-bit colour imagery, using
the RCT (Reversible Colour Transform). Under these conditions, the
number of magnitude bit-planes in the HHd bands of the chrominance
components may need to be as large as 12 to avoid any risk of numer­
ical overflow or underflow problems (see Table 17.4 and the surround­
ing discussion). Consequently, the up-shift must also satisfy U 2:: 12.
This rrieans that the effective quantization step size associated with the
foreground is at least 4096 times smaller than that for the background
samples!
Although the max-shift method elegantly circumvents any need to ex­

plicitly describe the shape of the foreground region, the price payed for
this convenience is the "all-or-nothing" effect demonstrated by the solid
curve in Figure 16.3. In the example of Figure 16.3, the monochrome
8-bit image Cafe (Figure 8.21) is losslessly compressed in a quality pro­
gressive code-stream, using 30 quality layers and an up-shift of U = 12.
A single rectangular region of interest occupies one quarter of the image
area and is centred in the middle of the image. As quality layers are
decompressed one by one, the quality (PSNR) of the reconstructed im­
age is calculated separately for the foreground region and the image as
a whole. As expected, the foreground quality improves rapidly, with lit­
tle change in the background, until all foreground information has been
received. In this example, the foreground is recovered losslessly at an
overall bit-rate of 1.73 bits/sample.

Chapter 16: Performance Guidelines 639

...............

~.::;;;;.:::::=r---.

60 dB r-------.-----..,------....,..,----~!;---------.--! ----,
PSNR without.any ROJ encodi~g

!
l
!
!

Figure 16.3. Rate-distortion characteristics for the foreground and for the whole
image, with both the max-shift (solid line) and implicit (dashed and dotted lines)
ROJ encoding strategies.

If the background is of any interest at all, this behaviour may be too
extreme. The client must wait to receive a very large number of com­
pressed bytes before the background even becomes recognizable. An­
other drawback of the max-shift method is that the decoder must be
capable of processing a large number of bit-planes if the background
is to be fully decoded. As explained in Section 18.3.4, decompressors
whose capabilities extend only to Compliance Class-O may not be able
to recover any information from the background whatsoever.

16.2.2 IMPLICIT ROI ENCODING
The EBCOT paradigm at the heart of JPEG2000 provides an alterna­

tive approach to ROI encoding. As explained in Sections 8.1.3 and 12.5,
each quality layer in the code-stream comprises an arbitrary contribu­
tion from the embedded bit-stream of each code-block of each subband.
One way to increase the quality associated with a region of interest is
to include relatively larger contributions from the code-blocks which are
involved in its reconstruction. This may be achieved by increasing the
coding pass distortion estimates, D;z), which drive the PCRD-opt algo­
rithm of Section 8.2, for every code-block Bi whose samples contribute to
the reconstruction of the foreground. We refer to this as "implicit" ROI
encoding, since code-streams constructed in this way contain no explicit
indication that ROI encoding has taken place. In the discussion which
follows, we use the term "foreground block" to refer to any code-block
whose distortion values are scaled to reflect its role in reconstructing the
region of interest.

640 Region of Interest Encoding

Implicit ROI encoding has both advantages and disadvantages relative
to the max-shift method described above. One key advantage is that
the scaling of foreground block distortion estimates may be adjusted
to match the "degree of interest." In this way, the foreground region
need not be given absolute priority over the background, avoiding the
"all-or-nothing" behaviour which accompanies the max-shift method.
This is illustrated in Figure 16.3, where the dashed and dotted curves
correspond to two different distortion scaling factors. The dotted curves
are generated by scaling the MSE distortion of all foreground blocks by
64. The dashed curves correspond to an MSE scaling factor of 4096.
The effect of these MSE scaling factors is similar to shifting the mag­

nitude bit-planes by 3 and 6 bit positions, respectively, which may be
compared with the U = 12 bit shift required by the max-shift method.
Figure 16.3 clearly reveals the effect of these different scaling factors on
the ratio between foreground and background quality. In each case, the
background becomes recognizable at much lower bit-rates than it does
with the max-shift method. On the other hand, lossless reconstruction
of the foreground is achieved at correspondingly higher bit-rates: 2.41
and 3.91 bits/sample for the dashed and dotted curves respectively.
Another advantage of implicit ROI encoding is that it has no impact

on the number of bit-planes which must be processed for complete de­
coding of the image. In particular, even Class-D decompressors should be
capable of fully decoding an appropriately constructed, losslessly com­
pressed 8-bit image.
One significant disadvantage of implicit ROI encoding is that adjust­

ments may be made only on a block by block basis. This is exactly
the same limitation which confounds the visual masking optimizations
described in Section 16.1.4. As in that case, we find here that the pre­
ferred code-block size for implicit ROI encoding is 32 x 32, rather than
the maximum size of 64 x 64 supported by the standard. The dashed and
dotted curves in Figure 16.3 were both generated using 32 x 32 blocks,
while the solid curve (max-shift method) was generated using 64 x 64
code-blocks. The reduced code-block size has a slight detrimental effect
on the final lossless compressed bit-rate, which is 0.08 bits/sample larger
than that obtained with the max-shift method.

It should be noted that the example of Figure 16.3 involves particu­
larly simple geometry, with a single large rectangular region of interest.
The superior foreground/background discrimination offered by the max­
shift method may become more significant when working·with smaller
and/or more complex foreground regions. In any event, the mechanism
of choice for ROI encoding is clearly very much dependent on the re­
quirements of the application. The interested reader is recommended to

Chapter 16: Performance Guidelines 641

the Kakadu software supplied with this text, which implements both of
the ROI encoding strategies described here and permits the specification
of arbitrary foreground regions through an auxiliary "mask" image.

16.3 BI-LEVEL IMAGERY
As mentioned in Section 9.1.1, one of the desired features for JPEG­

2000 was efficient compression of both bi-Ievel and continuous tone im­
agery, using a single algorithm. In practice, compression of continuous
tone images has been the principle focus driving the development of
JPEG2000. Nevertheless, subject to appropriate selection of the coding
parameters, JPEG2000 is able to efficiently compress bi-level images, as
well as other types of low bit-depth imagery. In this section, we pro­
vide some indications and suggestions in regard to this capability. We
specifically consider only the case of bi-level images here. However, we
note that JPEG2000 has been found to yield comparable performance
to JPEG-LS and substantially better performance than GIF when loss­
lessly compressing low bit-depth (e.g., 2 or 4 bits per sample) palettized
images, after suitable re-arrangement of the palette indices [177].
Bi-level images have sample values x [n] E {O, I}. As such, they have

an unsigned B = 1 bit representation, which must be level adjusted to
conform to equation (10.1). This means that an input value of x [n] = 0
is transformed to -1 prior to coding, while an input value of x [n] = 1
becomes O. This subtlety is easily overlooked when implementing the
JPEG2000 standard.
Since we are interested in comparing bi-level compression efficiency

with that of JBIG, it is worth noting that both algorithms are based
on binary arithmetic coding. For raw coding efficiency, JPEG2000 is
best used without any wavelet transform, setting the number of DWT
levels to D = O. In this case, the principle differences between JBIG
and JPEG2000 lie in the structure and number of distinct probability
modeling contexts used by the two algorithms. Figure 2.13 illustrates the
two fixed context neighbourhood models defined by the JBIG standard.
In each case, 10 neighbouring sample values are used to index into a table
of 1024 separate adaptive probability models which drive the arithmetic
coding procedure.
JPEG2000's embedded block coding algorithm codes bi-level image

data using exactly Z = 1 coding pass3 , a "cleanup pass." All of the
information is coded using the significance coding primitive, whose 8­
sample context neighbourhood is illustrated in Figure 8.11. Following

3This follows from equation (8.12), noting that the number of magnitude bit-planes is K = 1.

642 Bi-Level Imagery

the stripe-oriented scan of Figure 8.15, four of these 8 neighbours are
guaranteed to be insignificant and one may deduce that the significance
coding context label, ,..sig [j], may take on only 7 of the values described
by Table 8.1. One additional coding context arises in connection with
the run mode, for a total of only 9 different adaptive probability models.
Unlike JBIG, the probability models are also reset at the beginning of
each new code-block.
These limitations are principally responsible for the somewhat poorer

performance of JPEG2000 in comparison with JBIG. The JPEG2000
block coder must also code the sign of every significant sample. These
are the samples whose original value was x in] = 0, which were level ad­
justed to -1; their sign is invariably negative. The deterministic nature
of the sign information is rapidly learned by the adaptive probability es­
timation machinery, but the learning penalty described in Section 2.3.5
may be incurred within each of the 5 sign coding contexts which can
actually occur4 . This overhead may be minimized by assigning x in] = 1
to the more prevalent (background) samples and x in] = 0 to the less
prevalent (foreground) samples. The same policy tends to increase the
frequency and length of insignificance runs and hence the efficiency of
the significance coding primitive's run-mode.
The effect of this somewhat unnatural policy5 is revealed by the first

column of compression ratios reported in Table 16.4. These results are
based on eight CCITT facsimile test charts6 ; in each case, the back­
ground is white so that higher compression is achieved by assigning black
and white samples the values 0 and 1, respectively. The performance
of JPEG2000 is very similar to that of the CCITT facsimile compres­
sion standard G4 [35]. The reader will notice that JBIG outperforms
JPEG2000, producing files which are about 30% smaller at lower resolu­
tions and about 37% smaller at higher resolutions, when raw compression
efficiency alone is of interest. The algorithms have roughly similar levels
of complexity, although it could be argued that the much smaller num­
ber of coding contexts llsed by JPEG2000 make it more amenable to
hardware implementation7 . Applications which require compressed do-

4The sign coding contexts which can occur are those for which xh UI ,xv UI E {O, -I} in
Table 8.2.
5It is arguably more natural to assign x [oj = 0 to the background samples and x [oj = 1 to
the foreground.
6These are documents 1 through 8 from the Standard Image Set CD-03, put out by the US
National Communications System.
7 JPEG2000 ostensibly requires the buffering of an entire row of code-blocks when used with
applications which supply or consume image data in line by line fashion. However, since only
one coding pass is involved, the stripe-oriented scanning pattern used by JPEG2000's block

Chapter 16: Performance Guidelines 643

Table 16.4. Average compression ratios for JBIG and JPEG2000 compression of
eight CCITT facsimile test charts scanned at various resolutions. Image dimensions
are 2339 x 1728, 4677 x 3456 and 7016 x 5184 at 200, 400 and 600 dpi, respectively.
B/W means that 0 is assigned to black and 1 is assigned to white. W/B means that
ois assigned to white and 1 to black.

Resolution Method Number of Resolution Levels
1 2 3 4 5 6

200 dpi JBIG 21.2 20.4 19.6 19.2 19.0 18.8
J2K B/W 14.8 9.2 7.8 7.6 7.5 7.5
J2K W/B 12.5 8.5 7.5 7.2 7.1 7.0

400 dpi JBIG 41.2 42.1 41.0 39.9 39.4 39.1
J2K B/W 25.8 16.2 13.8 12.9 12.8 12.7
J2K W/B 20.4 15.3 13.2 12.5 12.3 12.2

600 dpi JBIG 53.9 56.5 56.2 55.0 54.2 53.9
J2K B/W 33.9 21.4 18.4 17.3 17.0 16.9
J2K W/B 25.8 20.3 18.0 17.1 16.7 16.6

main rotation, flipping or cropping can take advantage of the fact that
JPEG2000 codes the image in independent blocks.
The last five columns in Table 16.4 report the degradation in compres­

sion efficiency suffered by JBIG and JPEG2000 as resolution scalability
is introduced. Both JBIG and JPEG2000 allow the image to be coded as
a multi-resolution hierarchy. JBIG's multi-resolution transform is care­
fully matched to the bi-level image compression task, so that compression
efficiency is hardly affected by the introduction of resolution scalability.
In JPEG2000 Part 1, resolution scalability may be introduced through
use of the reversible 5/3 wavelet transform, which is designed primarily
for efficient compression of continuous tone imagery. Evidently, the use
of this transform has a significant adverse impact on the compression of
bi-Ievel images.

coder allows efficient implementations to work with as little as four buffered image lines,
rendering its memory requirements similar to those of JBIG.

Chapter 17

IMPLEMENTATION CONSIDERATIONS

17.1 BLOCK CODING: SOFTWARE
Chapter 12 contains a complete procedural description of the em­

bedded block coding algorithm, which may be implemented directly in
software with relatively little effort. In this section, we describe non­
obvious implementation techniques which may be used to substantially
improve execution speed in comparison with a direct implementation of
the coding procedures.
These techniques are important because block coding is the most

computationally demanding task in an efficient implementation of the
JPEG2000 standard. The Kakadu implementation supplied with this
text relies heavily upon the techniques described here, supplementing
them with a variety of other optimization strategies.

17.1.1 MQ CODER TRICKS
In Section 12.1.2, we mentioned that the MQ encoder algorithm on

Page 478 could be modified so as to reduce the number of comparisons
("If" statements). This is important for software implementations, since
conditional branches tend to disrupt the CPU's execution pipeline!. The
key to reducing the number of comparisons is to observe that condi­
tional exchange must always be accompanied by renormalization (see
equation (2.20)). The MQ encoder can then be implemented as follows.

MQ-Encode Procedure
Set p = p (~,\;)

IThe degree to which this is true depellds 011 the CPU architecture.

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

646 Block Coding: Software

Af-A-p

If X = SK" (coding an MPS)

If A 2: 215 , (no renormalization and hence no conditional exchange)
Cf-C+p

else
If A < p, (conditional exchange)

Af-p
else

Cf-C+p
~K, f- ~mps (~K,)

Do, (perform renormalization shift)
A f- 2A, C f- 2C, [f- f - 1
If [= 0, Transfer-Byte(T, C, L, l)

while A < 215

else (coding an LPS; renormalization is inevitable)
If A < p, (conditional exchange)

Cf-C+p
else

Af-p
SK, f- SK, EI1 X s (~K,), ~K, f- ~lps (~K,)

Do, (perform renormalization shift)
A f- 2A, C f- 2C, f f- f - 1
If [= 0, Transfer-Byte(T, C, L, l)

while A < 215

As it turns out, most symbols which are coded have highly skewed
probabilities so that p is small and renormalization is required relatively
infrequently. As a result, only the first two "If" statements in the above
algorithm are likely to be executed frequently. The same observation
allows us to modify the MQ decoding procedure on Page 483 as follows.

MQ Decode Procedure (returns x)
Set p = p (~K,)

X f- SK, (set to MPS for now, since this is most likely)

Af-A-p
If cactive 2: p, (upper sub-interval selected)

cactive f- cactive _ p
If A < 215 , (need renormalization and perhaps conditional exchange)

If A < p, (conditional exchange, LPS decoded)
x f- 1 - SK,

SK, f- SK, EI1 X s (~I\;), ~K, f- ~lps (~I\;)

Chapter 17: Implementation Considerations 647

else (MPS decoded)
~,.. +- ~mps (~,..)

Do, Renormalize-Once(A,C,I,'t,L) , while A < 215
else (lower sub-interval selected; renormalization is inevitable)

If A < p, (conditional exchange, MPS decoded)
~,.. +- ~mps (~,..)

else (LPS decoded)
x+- 1 - s,..
S,.. +- S,.. EB X s (~,..), ~,.. +- ~lps (~,..)

A+-p
Do, Renormalize-Once (A, C,t, 't, L), while A < 215

As mentioned above we expect p to be small and renormalization
events to be rare most of the time. For most symbols then, the test for
cactive ~ p succeeds and the test for A < 215 fails. We use the term
CDP (Common Decoding Path) to refer to this common scenario.
The number of tests associated with the CDP may be further reduced

from two to one. To see this, observe that cactive and A are both decre­
mented by pwithin the CDP. Now define a new state variable, D, to be
the minimum of A - 215 and cactive. The CDP symbols are those which
leave D non-negative after subtraction of p and so we have only to test
D. In fact, there is no need to explicitly decrement A, C and D all by
p when a CDP symbol occurs. The algorithm below defers adjustments
to A and C until the next non-CDP symbol. Notice that CDP symbols
require only one table lookup, one subtraction and one comparison!

MQ Decode Procedure (one test CDP) (returns x)
Set p = p (~,..)

X +- S,.. (set to MPS for now, since this is most likely)

D+-D-p

If D < 0, (non-CDP decoding)
A+-A+D
cactive +- cactive + D

If cactive ~ 0, (upper sub-interval selected, must have A < 215)
If A < p, (conditional exchange, LPS decoded)

x+- 1 - s,..
S,.. +- S,.. EB X s (~,..), ~,.. +- ~lps (~,..)

else (MPS decoded)
~,.. +- ~mps (~,..)

Do, Renormalize-Once(A,C,t,'t,L) , while A < 215
else (lower sub-interval selected; renormalization is inevitable)

648 Block Coding: Softwar'e

caetivc r- cactive + p
If A < ii, (conditional exchange, MPS decoded)

Ell: r- Emps (Ell:)
else (LPS decoded)

X r- 1 - 811:

811: r- 811: E9 X s (Ell:) , Ell: r- E1ps (Ell:)
Ar-p
Do, Renormalize-Once(A, C, l, T, L), while A < 215

Dr-min {cactive, A _ 215 }

A r- A - D (we will add D back again at the next non-CDP symbol)

cactive r- cactive - D

Similar methods may be employed to reduce the number of CDP
comparisons to 1 during encoding, as well as decoding. The Kakadu
software supplied with this text demonstrates such techniques.

17.1.2 STATE BROADCASTING
The bit-plane coding procedures described in Section 12.2 require con­

struction of a context label, Ksig [j], at every sample location, j, in both
the significance propagation pass and the cleanup coding pass. Ksig [j] is
a function of the significance states associated with the location's eight
neighbours. A direct implementation might require 8 memory accesses,
plus a variety of logical operations and tests to construct each label,
Ksig [j].
Fortunately, it is possible to dramatically reduce the complexity of

these operations by observing that the value of Ksig [j] can only change
when one of the location's eight neighbours becomes significant. At
overall bit-rates of 1 bit per sample or less, most samples never become
significant (this is argued at the end of Section 4.3.1). As a result,
it is much more efficient to "broadcast" the effect of significance state
transitions to each of the affected neighbours (8 broadcasts, once per
significant sample) than to access the state of every neighbour in every
individual coding step of the significance propagation and cleanup passes
(8 accesses, twice per bit-plane, at every location).
An additional advantage of the state broadcasting approach is that

the sign of a newly significant sample can often be broadcast to the eight
neighbouring locations without any additional cost in CPU instructions.
This greatly simplifies the construction of sign coding context labels,
Ksig ll [j], when they are needed.

Chapter 17: Implementation Considerations 649

M N 0K
sign
LUT index_

----.A------_.c :0 :Or ,:0 -.c .c :0
,......., ,......., ,....., ,.....,,....., ,....., ,......., ,......., ,....., ,....., ,......., ,.......,
'+ T '+ T'+ T .~ .~ +' - .~ .~I

.~ .~ .~,....., ,....., r--->
.~

N

:f T
.... N

~ T
.....,

'-',,,, '....,'--' '--' '+ '+ T T~ b Ib :5 :5,:::; ...::; ...::; ...;;; 2::l'--' '---' '--' '---' ...;;; '-., ...;;; '-.,
(~ (~ (~ (~ b b b b '---' '--'

b b b b
'------- ------./"Y'

K
sig
LUT index

context word
c[j]

Figure 17.1. I5-bit context word for simple state broadcasting.

SIMPLE BROADCASTING

In a simple incarnation of the state broadcasting principle, each lo­
cation j is assigned a separate "context word," c [j], containing 15 state
bits. Two of these bits represent the location's own state variables, (J" [j]
and 7f [j], whose interpretation is defined in Section 12.2. The remaining
bits of the context word maintain replicas of the significance states for all
eight neighbours, together with sign information from the horizontal and
vertical neighbours. One appropriate organization for the context word
is illustrated in Figure 17.1. Note that X[j] is a "sign state variable,"
which holds 1 if the sample at location j is both significant ((J" [j] = 1) and
negative. Otherwise, it holds O. This information is available to both
the encoder and decoder, unlike the actual sign, X [j], which is encoded
only for significant samples.
When information is coded at some particular sample location, only

that sample's context word need be updated, except when the sample
becomes significant. This happens at most once per sample (usually
much less often) and involves setting the relevant significance bit (and
possibly the sign bit) in each of the significant sample's neighbours. Now
observe that Ksig [j] is a function of the least significant 8 bits (bit posi­
tions a through 7) of the context word, c [j]. Also, Ksigll [j] is a function
of bit positions 4 through 11. Each function may thus be implemented
using a 256 byte lookup table (LUT).

ENHANCEMENTS

The number of memory accesses may be significantly reduced by keep­
ing the state bits for multiple sample locations in a single context word.
In fact, it is possible to represent the most important state information
for an entire stripe column (i.e., four sample locations) within a single

650 Block Coding: Software

aU,-I,lz+l)

a[j"lz+ l)

aU,+I,lz+l)

I a[j,+2,12+1)

aU.+3,12+1)

aU,+4,12+1]

bit 2

bit 5

bit 8

bit I

bit 14

bil17

a[jt- l,lz]

a[j.,12]

a[j,+I,lz]

a(j,+2,lz]

a(j,+3,lz)

aU,+4,lz)

bit I

bit4

bit 7

bit 10

bit 13

bil16

bit 20 ,£lUI'12) bit 21 ;r[jI')2]

bit 23 ,uU,+1,12] bit 24 ;r(j,+1,12)

bit 26 ,u(j,+2,12] bit 27 ;r[j,+2,)z]

bit 29 ,u[j,+3,)z) bit 30 ;r[j1+3,lz)

a[jt-l,lz-I]

a[j"lz-l)

a[jt+l,lz-l]

a(jl+2,lz-l)

aU.+3,lz- l]

aU.+4,lz- l)

j[j.-I,lz]

jUt,lz)

jUI+I,lz]

jU,+2,lz)

jU.+3,lz)

1 jU,+4,lz)

bit 18

bit 19

bit 22

bil25

bit 28

bit 3

bitO

bit 3

bit6

bit 9

bit 12

bit 15

Figure 17.2. Context word, c UJ, used to store state information for coding all four
samples in a stripe column, where j is the location of the first sample in the column.

32-bit context word. This is accomplished by sharing common state bits,
as shown in the example of Figure 17.2. The figure depicts the particular
organization employed by the Kakadu software supplied with this text.
Context word c [j] is used for all samples in the stripe column whose first
sample is at location j; that is, j1 must be a multiple of 4. The first 18
bits of the context word hold the significance state of the stripe column's
samples and their immediate neighbours. The context label, I);sig [j], is a
function of the least significant 9 bits of c [j]; the function is implemented
using a 512 byte LUT. More generally, the context label, I);sig [h + i,j2],
for any i E {O, 1,2, 3}, may be obtained after downshifting c [j] by 3i bit
positions and using the least significant 9 bits of the result to index the
LUT.
Unfortunately, it is not possible to maintain the sign bits for all rel­

evant neighbours within a single 32-bit context word. Nevertheless, the
sign coding context labels, I);Sigll [j1 + 0, j2] through I);sign [j1 + 3,12], may
be constructed with relatively few CPU instructions, using c [j] together
with c [j1,j2 ± 1] to index a 256 byte LUT. For details of this construc­
tion, the reader is referred to the Kakadu source code. Note that sign
coding context labels must be formed only when a sample becomes sig­
nificant, which happens at most once and often not at all.
The delayed significance state, 'ci [j], described in Section 12.2 is con­

spicuously absent from Figure 17.2. There is little or no benefit in ex­
plicitly storing this state variable for software implementations. This

Chapter 17: Implementation Considerations 651

Table 17.1. Coding pass membership tests and state initialization.

1l'U] JlUl erUl xU] ",sig U]

Initialize (j in block) 0 0 0 0 0
Initialize (j out of bounds) 0 0 0 1 0

Membership test, j E p(p,O) x' x 0 0 >0
Membership test, j E p(p,l) x 1 x x x
Membership test, j E p(p,2) 0 x 0 0 x

a"x" means "don't care."

is because a software implementation generally has access to all of the
previously coded (or decoded) magnitude bits, from which d [j] may
be deduced directly (see Page 360). By contrast, access to the previ­
ous magnitude bits is either very costly or impossible in certain efficient
hardware implementations (see Section 17.2).
The context word structure in Figure 17.2 is carefully designed to

allow coding pass membership to be determined with remarkably few
instructions. This is accomplished via the two state variables, 1f [j] and
J.L [j]. As defined in Section 12.2, 1f [j] indicates whether or not j has
been found to belong to the significance propagation pass, p(p,O), of the
current bit-plane, p. The new state variable, J.L [j], indicates whether or
not j belongs to the magnitude refinement pass, p(p,2).

It is worth explaining exactly how these state variables are updated
and used to determine coding pass membership. At the start of each
bit-plane p (equivalently, upon completion of bit-plane p - 1), we set
J.L [j] equal to a [j]. This marks all samples which became significant in
a previous bit-plane as members of the magnitude refinement pass for
the current bit-plane and all subsequent bit-planes. At the same time,
we reset 1f [j] to O. 1f [j] is set to 1 in the significance propagation pass,
p(p,O) , if and only if location j is found to belong to that pass.
Conditions used to test for membership in each of the coding passes

are given in Table 17.1. These tests may be accomplished with simple
masking (logical "and") and testing operations on the 32-bit context
word for the relevant stripe column. It is also possible to perform the
tests simultaneously across all samples in the stripe column, using only
one or two CPU instructions. This can be advantageous for the signif­
icance propagation and magnitude refinement passes, p(p,O) and p(p,l) ,

which are often only sparsely occupied. For example, if c [j] = 0, none
of the four samples in the stripe column starting at location j belongs
to p(p,O). Similarly, if bits 20, 23, 26 and 29 of c [j] are all zero, none of
the four samples in the stripe column belongs to p(p,l).

652 Block Coding: Software

The appearance of the sign state bit, X[j], in Table 17.1 may seem
unnecessary. In particular, if j E p(p,O) or j E p(p,2) then (J [j] must
be 0 (insignificant) and so X[j] must still be O. The inclusion of the
condition, X[j] = 0, in the membership tests for these coding passes
provides an efficient mechanism (no cost in CPU instructions) for skip­
ping over locations which lie outside the code-block boundaries. It can
happen that the last stripe of the code-block contains less than 4 rows.
Rather than explicitly testing for these few "out of bounds" samples
(this would incur a significant penalty in CPU resources), the samples
are simply excluded from membership in any of the three coding passes.
This is accomplished by initializing out of bounds locations with the
otherwise impossible state configuration identified in Table 17.1.

The use of a single context word for the entire stripe column has
many advantages. The context word may be kept in a register which is
loaded from memory only once per stripe column. Often, the state bits
for multiple samples may be manipulated simultaneously. As explained
above, an entire stripe column may be efficiently skipped when none of
its samples belong to the relevant coding pass. Finally, the test for run
mode in the cleanup coding pass, p(p,2), may be implemented simply by
checking whether or not c [j] = O. For a greater appreciation of these
advantages, the reader should consult the Kakadu source code supplied
with this text.

17.1.3 DEQUANTIZATION SIGNALLING
According to the description provided in Section 12.2.5, the embedded

block decoder produces decoded magnitude and sign bits, v [j] and X[j],
along with an indicator, p [j], of the number of least significant magni­
tude bits which were not decoded. These quantities are supplied to the
dequantization procedure described by equation (10.28).

There is a convenient way to simplify the dequantization process while
also avoiding the need to maintain a separate array, p [j]. Specifically,
the Kakadu software supplied with this text employs the modified sign­
magnitude representation shown in Figure 17.3. The sign bit, X[j], is the
most significant bit in the word. Any word size may be used, but 16 and
32 bit integers are obvious choices. Kr:ax is the maximum number of
magnitude bits required to represent the quantization index associated
with any sample in subband b. The value of Kr:ax is given by equa­
tion (10.22). If ROI adjustments are used, Kr:ax should be replaced by
+--
K bax , whose value is given by equation (10.33).

The quantized sample magnitudes are stored in the most significant
Kr:ax bits of the word, after the sign bit. The least significant p [j] of

Chapter 11: Implementation Considerations 653

Kmb' bits
~

sign, xU]

\. /
V .

partial magnitude, v(PhlJ[j}

~

Kb""" bits

least significant
possible marker position

marker bit

Figure 11.3. Modified sign-magnitude representation for signalling partially decoded
quantization indices together with the number of undecoded LSBs, p Ul.

these bits are not decoded. Rather than setting these undecoded bits
to 0, however, the decoder can be modified2 to set the most significant
undecoded magnitude bit to 1 whenever v[j] -=f. 0. This is identified
as the "marker bit" in Figure 17.3. The marker bit holds 1 unless
v[j] = 0, in which case it holds 0. If all of the originally encoded bit­
planes are decoded, p [j] = °and the marker bit appears immediately
after the Kr;ax magnitude bits. To accommodate the least significant
possible marker position, a word size of at least 2+Kr;ax bits is required
f-

(2 + Kbax bits if there are ROI adjustments). It may occasionally be
necessary to discard some of the encoded bit-planes in order to satisfy
this condition.
The marker bit serves to implicitly identify the value of p [j] whenever

v [j] -=f. 0 - there is no need to recover p [j] if v [j] = O. If desired, the
dequantizer may recover p [j] by finding the least significant non-zero bit
position in the word, ignoring the "spare bits" shown in the figure. This
may be accomplished quite efficiently with the aid of a small lookup
table. On the other hand, if mid-point reconstruction is desired (8 = !),
the word already holds a binary fraction representation of the quantity
v [j] +2PUJ8 required by equation (10.28). In this case, all that is required
for dequantization is to multiply the value by an appropriate step size
parameter.

17.2 BLOCK CODING: HARDWARE
Our purpose in this section is to suggest design strategies and to indi­

cate some potential trade-offs between complexity and throughput. We

2The modificat.ion need have no effect. on t.he number of CPU inst.ruct.ions execut.ed by t.he
decoder.

Stripe Column Logic

- Context label formation
- - Coding pass membership teslS

- State variable update values

654 Block Coding: Hardware

II
~

1
~

r T I '--19-'M-7'b-!-:-:-,:~-rS-la-te-i~
Register File

.17 --€:'-­

.1 -:r.-Q'" ~
- - J> ~ : Da'" memory I

.1 7" --€:'- ilK.4-b" SRAM

.1 7" ~ '" IC==::J
-

Figure 17.4. Embedded block encoder architecture. Decoder architecture is almost
identical, with appropriate data flows reversed.

consider the block coder (encoder or decoder) in isolation. Its interac­
tion with other elements in a complete system (most notably the DWT)
is considered in Section 17.5.

17.2.1 EXAMPLE ARCHITECTURE
To provide a context for our discussion of hardware complexity, we

must first describe a sample block coding architecture. One possible ar­
chitecture is depicted in Figure 17.4. The general approach is suitable
for both encoding and decoding, except that the flow of sign and mag­
nitude bit-plane information must be reversed for decoding, along with
the flow of compressed code bytes. In the discussion which follows, state
variables (J [j], 1r [j] and d [j] all have exactly the same interpretation as
in Section 12.2.2.

Chapter 17: Implementation Considerations 655

STATE AND DATA MEMORIES

For encoding, we assume that the quantized subband samples for a
single code-block are all available in sign-magnitude form and that they
may be accessed bit-plane by bit-plane. The sign bits and the most
significant magnitude bit-plane are first loaded into internal memories
(data memories 1 and 2). These memories are sized to support the
maximum legal code-block area for JPEG2000 (4096 samples). The
coder processes the first bit-plane, p = K - 1, in coding pass p(K-l,2),

while loading the next magnitude bit-plane into data memory 2. It
processes this next bit-plane, p = K - 2, in coding passes p(K-2,O)

through p(K-2,2), while loading magnitude bit-plane K - 3 into data
memory 2 and so forth.

Whenever a sample becomes significant, its sign bit, X [j], is coded
and written to the sign state variable, X[j]. It is not strictly necessary
to maintain two distinct copies of the sign information for encoding;
however, this helps to unify the encoding and decoding architectures.
Using this approach, all state variables which are used to form coding
contexts and determine coding pass membership are stored in private
memories (state memories 1 and 2), which are not directly loaded with
code-block sample data. These state memories hold exactly the same
quantities during encoding and decoding.

For decoding, the process is reversed. Magnitude bit-planes are gen­
erated one by one as the embedded bit-stream is decoded. These mag­
nitude bit-planes are written out through the double buffered bit-plane
store (data memory 2) once they become available. Whenever a sample
becomes significant, its sign is decoded and stored in the relevant sign
state bit, X[j]. Once decoding is complete, the sign state bits are trans­
ferred from state memory 1 to data memory 1, whence they are written
out. Alternatively, the sign state bits are copied to data memory 1 dur­
ing each coding pass (or just the last coding pass), so that the memory
is ready to be written out as soon as decoding is complete.

Recall that the decoder is responsible for informing the dequantizer
of the number of undecoded bit-planes, p [j], for each code-block sample
location, j. This information may be deduced from the contents of the
two state memories. In particular, if the last decoded pass was p(p,O) ,

then p [j] = p + 1 - 1f [j], since state variable 1f [j] holds 1 if j E p(p,O).

If the last decoded pass was p(p,l), then p [j] = p + 1 - (0' [j] 11f [j]).
Otherwise, the last decoded pass was p(P,2) and p [j] = p for all j. There
are any number of ways of signalling this information to the dequantizer.
One appealing approach is to use the marker bit technique described in
Section 17.1.3.

656 Block Coding: Hardware

STRIPE ORIENTED PROCESSING
The sample architecture sketched in Figure 17.4 is heavily influenced

by the stripe oriented scanning pattern of Figure 12.9. Data and state
information are transferred to and from the relevant memories, one stripe
column at a time. State memory 1 maintains those state variables which
must be accessed in spatial neighbourhoods; i.e., (J [j] and X[j]. The
spatial neighbourhood for a single stripe column is 6 rows high and 3
columns wide3.
To minimize memory accesses, we maintain the 6 x 3 neighbourhood

of significance and sign state bits in a kind of shift register. When the
stripe column advances one position to the right, 6 new significance bits
and 6 new sign bits are pushed into the shift register from state memory
1, via an intermediate 12-bit buffer. At the same time, the 4 significance
bits and 4 sign bits of the current stripe column which "pop out" the
end of the shift register must be saved back to state memory 1. Any or
all of these state bits may have been changed.
In order to load the 12-bit buffer' from which the 6 x 3 neighbourhood

shift register is filled, three separate 8-bit words must be accessed from
state memory 1. This is because each 8-bit word holds the significance
and sign state bits for a single stripe column and the 6 x 3 neighbourhood
includes parts of three stripe columns. An additional access is required
to write back the state bits which may have been modified4 . Thus,
assuming that the memory can be accessed once per clock cycle, we
cannot process a stripe column in less than 4 clock cycles. This is quite
sufficient for the simple timing model described below. Enhancements
for higher throughput are described in Section 17.2.2.
The remaining state bits, 1f [j] and d [j], are maintained by a second

state memory and are also moved through a kind of shift register one
stripe column at a time. There is no reason why the two state mem­
ories cannot be merged into a single 1Kx 16-bit memory. This has the
advantage of simplifying the control circuitry. On the other hand, the
quantities in state memory 2 require less buffering and only half the
memory access bandwidth of those in state memory 1. This is because
no spatial neighbourhoods are involved. By merging the memories, the
cost in buffering and increased memory bandwidth (and hence power
consumption) may outweigh the benefits of simplified control.

3Actually, the sign state bits, XUJ, are not required at the corners of this 6 x 3 window.
4This may be skipped in the magnitude refinement pass if desired.

Chapter 17: Implementation Considerations 657

SIMPLE TIMING
The architecture in Figure 17.4 represents a synchronous circuit. The

lightly shaded boxes are D flip-flops (in most cases, each box stands for
two flip-flops), whose inputs are transferred to their outputs on the rising
(or falling) edge of every clock. The inputs are controlled by multiplex­
ers. The multiplexers labeled "S" are used to control the shift register
function, advancing the current stripe column one position to the right.
Of course, at the start of each stripe, some additional clock cycles will
be required to load the various flip-flops and buffers in preparation for
processing the first column of that stripe. The multiplexers labeled "A,"
"B," "C" and "D" are used to update state variables while processing
the stripe column.

In the most straightforward design, a single sample is processed in each
clock cycle so that the stripe column advances once every four clocks.
When processing the first sample in a stripe column, multiplexers "A"
are used to update the state variables for that sample alone. Similarly,
multiplexers "B" are used to update the state variables associated with
the second row of each stripe and so forth.
The block labeled "stripe column logic" in Figure 17.4 determines

context labels, /,\:sig [j], /,\:sign [j], and /,\:mag [j], for the relevant stripe column
sample, following the rules identified in Tables 8.1, 8.2 and 8.3. It also
implements the logic to determine whether or not each sample belongs to
the current coding pass and, in the cleanup pass, to identify and process
the run mode. These logic operations are quite simple and should incur
relatively little latency.
For samples which belong to the current coding pass, the relevant con­

text labels and symbols are sent to the MQ coder, which incrementally
generates and outputs code bytes for the current codeword segment.
Logic for the MQ coder is also relatively simple and most symbols can
be coded in a single clock cycle without any difficulty. When a highly
improbable symbol is coded (of course, this can happen only rarely),
the MQ coder may require a large number of renormalization shifts. If
renormalization is implemented serially (rather than through a costly
barrel shifting circuit), such symbols may require multiple clock cycles
to code. For this and potentially other reasons, the coding logic may
need to be prepared to wait for one or more clock cycles until the MQ
coder has completed its task. When a sample first becomes significant,
an additional symbol is sent to the MQ coder, representing the sam­
ple's sign. Again, this may be the cause of a "wait state." Fortunately,
neither of these events occur frequently.

It is worth noting that the MQ encoder need not be tightly synchro­
nized with the bit-plane coding logic. Symbol and context label pairs,

658 Block Coding: Hardware

context label logic
Ksig • K·ign •K mo8

ne\ slale values

Figure 17.5. State update dependencies for the embedded block decoder, showing
the critical path (dotted outline) which limits the maximum achievable clock rate.

(Xn , Kn), may be temporarily queued prior to processing by the MQ
coder (see Section 12.1.1). Such a queue may be used to absorb varia­
tions in the rate of symbol production, thereby reducing the likelihood of
wait states. Information for any given sample location is coded in only
one of the three bit-plane coding passes. Consequently, the MQ coder is
only required to sustain an average throughput of about 1 symbol per
3 clock cycles. In this way, symbol queuing introduces the possibility of
simplified MQ coder designs which might be allowed a full 2 clock cycles
to process each symbol.
Timing considerations for decoding are similar to those for encoding,

with one very important difference: the MQ decoder must be tightly
synchronized with the bit-plane coding logic. In particular, the context
label required to correctly decode the next symbol depends upon state
bits which may not be valid until the completion of the previous decoding
step. Figure 17.5 illustrates the relevant dependencies.
The maximum achievable clock rate is limited by signal propagation

delay through the critical path (dotted line) shown in the Figure 17.5.
This critical path includes the MQ decoding logic. By contrast, the
corresponding critical state update path for the encoder does not include
the MQ encoder at all. The extra latency for decoding is essentially the
propagation delay through a 16-bit subtractor, plus the time required
to address the relevant context state register. If very high clock rates
are to be supported, an extra clock cycle might need to be allocated for
symbol decoding.

17.2.2 THROUGHPUT ENHANCEMENTS
The simple timing model described above requires approximately four

clock cycles to process each stripe column in each coding pass. The max­
imum average throughput for such an implementation is thus l/Zavg im-

Chapter 17: Implementation Considerations 659

Table 17.2. Useful statistics for estimating the throughput of block encoding and de­
coding hardware. Results obtained using artificial imagery are shown in parentheses.

Bit-rate

0.125 bps
0.25 bps
0.5 bps
1.0 bps
2.0 bps
lossless

Zmax

17 (17)
22 (22)
22 (25)
25 (28)
28 (28)
28 (28)

Zavg

1.3 (1.9)
2.5 (3.6)
4.5 (6.2)
7.3 (10.7)
11.1 (16.1)
18.4 (18.5)

Rsym

0.26 (0.35)
0.50 (0.65)
0.93 (1.18)
1.66 (2.14)
2.89 (3.61)
5.77 (4.38)

!?empty

0.17 (0.22)
0.33 (0.45)
0.59 (0.82)
0.94 (1.42)
1.40 (2.11)
2.24 (2.41)

age samples per clock cycle, where Zavg is the average number of coding
passes per code-block. To achieve this average throughput, the block
coder (or decoder) needs to be kept continuously active. We address
this concern in Section 17.5.
Table 17.2 provides actual values for Zavg, as a function of the overall

code-stream bit-rate. The results in the table are obtained from two
ensembles of test images. Entries without parentheses are obtained by
averaging individual results from the three large photographic test im­
ages shown in Figure 8.21. The entries in parentheses are obtained in the
same manner, but with the artificial image sources shown in Figure 8.24.
In each case, a quality progressive lossless code-stream is truncated to the
bit-rate of interest and the average number of coding passes remaining
for each code-block is determined. While the results are oriented toward
decoding they are also useful for predicting encoding performance. The
table suggests that a high quality compressed image, having a bit-rate of
1 bit/sample, could be processed with a throughput of perhaps 7 to 11
clock cycles per sample, while truly lossless compression is about twice
as demanding.
Table 17.2 contains a number of additional statistics which should

be of interest to implementors of the standard. The second column
indicates the maximum number of coding passes, Zmax, taken over all
code.,blocks and all test images in the relevant ensemble (natural or arti­
ficial imagery). The worst case block coder throughput is 1/Zmax image
samples per clock cycle. This may be taken as a pessimistic estimate of
the overall throughput for systems which demand that subband samples
be processed at a constant rate. To avoid such pessimistic through­
puts, most systems should provide at least some buffering to absorb
variations in the code-block processing rate. We consider this further
in Section 17.5. The remaining columns in Table 17.2 provide statistics
which are relevant to the throughput enhancements suggested below.

660 Block Coding: Hardware

CONCURRENT MEMBERSHIP TESTING
The simple timing model described in Section 17.2.1 devotes at least

one clock cycle to each sample location in each coding pass; an extra
clock cycle is usually required to process the sign bit of newly significant
samples. On average then, nearly ~ of the clock cycles are wasted in the
sense that nothing is encoded or decoded. Also note that the cleanup
pass contains a run mode which can code all four samples in a stripe
column with a single symbol. For this reason, more than ~ of the clock
cycles are usually wasted.

If we were able to eliminate all of these wasted clock cycles then the
block coder would only need to devote one clock cycle to each binary
symbol actually coded (or decoded). The fourth column of Table 17.2
provides observed statistics for the average number of MQ coder symbols
per image sample, Rsym. The conditions used to generate these results
have already been explained above. Notice that Rsym is four or five times
smaller than Zavg at most bit-rates of interest. This suggests that we
should be able to substantially improve the block coding throughput.
Coding pass membership tests for any given sample location involve

only a few logic gates. Multiple tests can be performed concurrently to
identify the next member location, at least within a single stripe column.
In this way, each clock cycle can process the next unprocessed sample
location which actually belongs to the current coding pass, so long as the
stripe column contains such a location. With this approach, the memory
architecture of Figure 17.4 must be modified slightly to allow the stripe
column position to advance once per clock cycle if necessary5. In this
case, a clock cycle need only be wasted when a stripe column is "empty,"
meaning that none of its sample locations belong to the current coding
pass.
The fifth column in Table 17.2 provides observed statistics for the

average number of empty stripe columns, .Rempty, expressed as a fraction
of the number of image samples. An enhanced implementation of the
form described above should be able to achieve an average throughput of
1/(Rsyrn+.Rempty) image samples per clock cycle. Consider, for example,
a high quality compressed image with a bit-rate of 1 bit/sample. The
average throughput for photographic images at this bit-rate should be
about 0.4 samples per clock cycle, which is approximately 3 times higher

5The worst case memory transaction bandwidth of 4 bytes per clock cycle for state memory
1 could be accommodated with extra buffering and a larger memory word size. Specifically,
state memory 1 might be changed from a 1K x8 format to a 256 x 32 format. Similarly,
the worst case memory bandwidth of 2 bytes per clock cycle for state memory 2 could be
accommodated by changing from a 1K x8 format to a 512 x 16 format. Such changes typically
increase the chip area occupied by the memories.

Chapter 17: Implementation Considerations 661

than the throughput achieved with the simple timing approach. For
truly lossless compression or decompression, an average throughput of
~ sample/clock appears to be achievable.
The impact of Rempty on these throughput figures may be reduced if

we are prepared to further modify the implementation to process multi­
ple stripe columns simultaneously. It is not currently clear whether the
additional complexity of such modifications can be justified in practice.

CONCURRENT SAMPLE ENCODING

Recall that there is no need to tightly synchronize the bit-plane cod­
ing and MQ symbol coding activities for encoding. This fact may be
exploited to realize further throughput improvements. The bit-plane
coding operations themselves produce a string of symbol and context
pairs, (xn , Kn), which may be queued for processing by the MQ encoder.
The stripe column logic block in Figure 17.4 could perform all of the
bit-plane coding operations for a single stripe column concurrently, gen­
erating anywhere from 0 to 10 symbols in a single clock cycle. The
extreme case of 10 symbols occurs only in the cleanup pass where the
run mode is used and immediately interrupted by four significant sam­
ples.
Comparing the third and fourth columns of Table 17.2, we see that

each coding pass contributes approximately one symbol for every four
samples (i.e., one symbol per stripe column) on average. Thus, a more
realistic implementation of the concurrent processing idea might limit
the number of symbols which can be generated in a single clock cycle to 2
or 3, with little penalty to the overall throughput. For the purpose of this
discussion, we will assume that the MQ encoder is able to consistently
process one symbol per clock cycle; a barrel shifting renormalization
network would be required to guarantee this. If the symbol queue is
sufficiently long, overall block coding throughput will be determined by
the minimum of the symbol processing rate and the bit-plane coding
rate. The first bound gives a throughput of 1/Rsym samples per clock
cycle, while the second bound gives a throughput of 4/Zavg samples per
clock cycle.
From Table 17.2 we see that the symbol processing bound tends to

dominate at high bit-rates, where speed is most important. Evidently, an
implementation based on concurrent symbol processing should be able
to operate approximately I! times faster than one which relies only on
concurrent membership testing. Note, however, that the symbol queue
may need to be quite large in order to realize this performance. We
have not specifically explored the interaction between queue length and
processing throughput.

662 Block Coding: Hardware

CONCURRENT MQ SYMBOL PROCESSING
The concurrent sample processing techniques described above are

available only to block encoders. This is because bit-plane decoding
and MQ decoding operations cannot be decoupled, as indicated by Fig­
ure 17.5. Concurrent sample decoding is possible only if multiple MQ
symbols can be decoded within a single clock cycle. The possibility of
concurrent MQ symbol processing is also of interest for improving en­
coder throughput.
Arithmetic coding is generally considered to be an inherently sequen­

tialoperation. It turns out, however, that the structure of the MQ coder
admits the possibility of encoding or decoding C symbols concurrently,
provided the first C - 1 of these symbols do not induce a renormalization
event6 (A < 215).
We consider concurrent encoding first. Let Xn through Xn+c-1 be the

C symbols to be processed concurrently. The first c - 1 of these symbols
must all be MPS's, since every LPS induces a renormalization event.
Write Dn ,c-1 for the cumulative impact of the first c - 1 symbols on the
A and C registers, i.e.,

c-2

Dn ,c-1 = LV (I;l\;n+J
i=O

The idea is to construct a logic network which finds the largest value of
c> 0 such that An - Dn ,c-1 2:: 215 and Xn+i = Sl\;n+i for 0 :::; i < c-1 (i.e.,
the first c - 1 symbols are MPS's). To encode c symbols concurrently,
we subtract Dn ,c-1 from A and add Dn ,c-1 to Cactive as precursors to
the processing of the cth symbol, Xn+c-1' All of this might be done in
a single clock cycle, bearing in mind that there will be a practical limit,
Cmax , to the number of symbols which can be processed concurrently. In
fact, the concurrent symbol coder must be able to simultaneously access
c entries from the context state register file, in order to discover I;l\;n+i

and the MPS identity, Sl\;n+i' for each i. For this reason a realistic value
for Cmax might be only 2 or 3.
Table 17.3 indicates the average concurrency available for MQ en­

coding in JPEG2000. Specifically, for various values of the practical
concurrency limit, Cmax , the table identifies the average number of sym­
bols which may be coded concurrently, as a function of the overall code-

6Most of the more complex MQ coder operations occur only in the event of a renonnaliza­
tion. Most notably, state transitions for the probability estimation machinery are driven by
renormalization events. The contents of the context state register file remain stable between
renormalization events and this is the key property required for practical implementations of
concurrent symbol processing.

Chapter 17: Implementation Considerations 663

Table 17.3. Average symbol encoding concurrency, subject to a constraint, Cmax , on
the maximum number of concurrently processed symbols. Results in parentheses are
obtained using artificial imagery.

Bit-rate Cmax = 2 Cmax = 3 Cmax = 4 Cmax = 00

0.125 bps 1.63 (1.72) 2.01 (2.24) 2.26 (2.63) 3.06 (4.28)
0.25 bps 1.61 (1.71) 1.98 (2.21) 2.21 (2.56) 2.93 (3.99)
0.5 bps 1.58 (1.67) 1.92 (2.12) 2.11 (2.42) 2.67 (3.48)
1.0 bps 1.53 (1.62) 1.81 (2.00) 1.96 (2.25) 2.33 (3.05)
2.0 bps 1.46 (1.54) 1.66 (1.82) 1.76 (1.98) 1.97 (2.47)
lossless 1.34 (1.51) 1.44 (1.77) 1.48 (1.91) 1.56 (2.33)

stream bit-rate. Results are obtained under the same conditions as those
used to generate Table 17.2. We are most interested in the amount of
concurrency available at high bit-rates, where speed is most important,
and with small values of Cmax , where logic complexity may be accept­
able. The tabulated figures suggest that concurrency factors between 1.5
and 2 might be achieved. These improvements may be used to increase
the rate at which a symbol queue is cleared, allowing for smaller queues
and/or higher overall throughput.
Concurrent symbol decoding follows essentially the same principles as

concurrent encoding. So long as An - Dn ,c-1 2: 215 and e~ctive - Dn ,c-1 2:
0, the first c-1 symbols must all be MPS's. Provided these c-1 symbols
do not represent sign information or cause an insignificant sample to
become significant7 , the C symbols from Xn to Xn+c-l can all be decoded
concurrently. The impact of the first C - 1 symbols is simply to subtract
Dn ,c-1 from both A and eactive.
Unfortunately, it is difficult to take advantage of concurrent symbol

processing within the tight synchronization constraints of the block de­
coder. If the block decoding logic is confined to work with a single stripe
column, as has generally been assumed, concurrent decoding techniques
cannot improve the average throughput by more than about 15%. The
reason for this disappointing result is that the average number of symbols
per stripe column is close to 1, leaving little opportunity for concurrency
within a single stripe column. If the decoding logic is able to process
stripe columns in pairs, larger gains are possible. However, the corre­
sponding increase in logic complexity may be hard to justify. In fact,
increased logic latency may limit the clock rate so as to adversely affect

7Sign decoding and significance transitions are the only events which can alter thc context
labels associated with neighbouring samples. We need to know the context labels of all c
concurrcntly decoded samplcs ahead of time.

664 Block Coding: Hardware

overall performance. Nevertheless, our experience shows that concurrent
symbol decoding techniques can be advantageously deployed at least in
software implementations, such as that embodied by the Kakadu tools
supplied with this text.

17.2.3 OPPORTUNITIES FOR PARALLELISM

From the foregoing discussion, we may conclude that the average
throughput which can be expected for an efficient block coding imple­
mentation at high bit-rates (e.g., 2 bps to lossless) is in the range :t to k
subband samples per clock cycle. To achieve higher throughputs, multi­
ple block coders may be deployed in parallel. Following the architecture
of Figure 17.4, each block coder (encoder or decoder) consumes 3.5 kB of
on-chip memory, in addition to the coding and control logic. Of course,
the memories in Figure 17.4 are sized for the maximum possible code­
block area of 4096 samples (1024 stripe columns). While encoders are
at liberty to select a smaller block size so as to reduce on-chip memory
requirements, decoders must be prepared to handle the maximum code­
block size. This may possibly be restricted to 32 x 32 for the purpose of
a restricted "Profile-a," as explained in Section 18.2.

An alternative form of parallelism is supported when the RESET,
RESTART and CA USAL mode switches are asserted, as discussed in
Section 12.4.2. In this case, it is possible to implement multiple coding
passes in parallel. The principle advantage of this is that parallelism
can be achieved without duplication of the internal memory resources.
On the other hand, tight synchronization between parallel coding pass
processors (see Section 12.4.2) can prevent exploitation of the various
throughput enhancements described in Section 17.2.2. For this reason,
coding pass parallelism is not likely to be worthwhile unless a large num­
ber of coding pass processors are implemented in parallel. At this stage,
we have not performed a thorough comparison of the implementation
costs associated with the two different forms of parallelism described
here.

Coding pass parallelism is particularly interesting for applications
which require hard throughput guarantees (e.g., one sample per clock
cycle). This is especially important where lossless performance is also
required, since an encoder or decoder not encumbered by the lossless
requirement can always discard coding passes to satisfy hard through­
put constraints. Unfortunately, to provide such guarantees a very large
number of coding pass processors must be implemented, most of which
will be idle most of the time.

17.2.4

Chapter 17: Implementation Considerations 665

DISTORTION ESTIMATION

One of the benefits of independent block coding is that each code­
block's embedded bit-stream may be independently truncated in accor­
dance with the importance of its contents. Each coding pass, p(p,k), of
each code-block, Hi, reduces some measure of the reconstructed image
distortion by some amount, ~Dip,k), in exchange for some increase in

the length of the embedded bit-stream, ~L~P,k). These quantities may
be used to drive the PCRD-opt (Post Compression Rate-Distortion op­
timization) algorithm developed in Section 8.2.!.

When the distortion measure is based on MSE, the quantities ~D~p,k)
may be computed using the techniques described in Section 8.3.5. In
particular, ~D}P,k) may be computed incrementally as the coding pass
p(p,k) proceeds, with the aid of two small lookup tables (e.g., 16 elements
each) and access to several magnitude bit-planes below (less significant
than) the current bit-plane, p. To accommodate these extra bit-planes,
an additional 3 data memories might be added to the architecture shown
in Figure 17.4, increasing the total on-chip memory from 3.5 kB to 5 kB.
The extra bit-planes allow the quantization error in each sample to be
estimated before and after each coding pass, which should be equally
important for other distortion measures, not necessarily based on MSE.

As an alternative to explicit computation of the distortion change in
each coding pass, various estimation techniques may be employed. For
example, the block coder might simply count the number of samples
which become significant in each of the significance propagation and
cleanup coding passes. Subsequently, these counts could be multiplied
by the mean distortion reduction expected for a newly significant sample.
Similarly, in the magnitude refinement pass the coder would count the
number of member samples and multiply by an expected per sample
distortion reduction. This approach avoids the need for any additional
on-chip memory.

The expected distortion changes mentioned above may be deduced
from the probability distribution of the relevant subband samples, if it is
available. In a sophisticated implementation, probability distributions
might be adaptively estimated, either from the output of the wavelet
transform or from the counts themselves. In this last approach, the
counts output by the block coder for all coding passes can be used to
fit a parametric probability model (e.g., generalized Gaussian). Most
systems with this level of complexity include an embedded CPU which
could be used to perform these estimation functions.

666 DWT Numerics

17.3 DWT NUMERICS
Without a doubt, the two most substantial elements in any imple­

mentation of the JPEG2000 compression standard are the embedded
block coder and the DWT (Discrete Wavelet Transform). This is the
first of two sections which focus specifically on implementation consid­
erations for the DWT. The focus of this first section is on numerical
representations for the subband sample values and various intermedi­
ate results. In particular, we consider the numerical precision required
to implement reversible transforms and we also consider efficient fixed
point approximations for irreversible transforms. Section 17.4 is con­
cerned with implementation structures which efficiently utilize critical
memory resources: memory size; and memory transaction bandwidth.

17.3.1 BIBO ANALYSIS GAIN
We begin our study of numerical implementation requirements by ex­

amining the ElBO (Bounded Input Bounded Output) gain of the DWT
analysis system. The BIBO gain of a linear operator is the ratio between
the maximum absolute value of the output samples and the maximum
absolute value of the input samples. For the purpose of this analysis, we
shall ignore the modifications introduced by symmetric extension at the
boundaries of the image. We shall also ignore the small non-linearities
introduced by the integer rounding steps in reversible transforms. Each
subband sample may then be expressed as a linear combination of the
image sample values, x [n], with

y~d) [q] = LX [n] a~d) [n - 2dq]
n

Here, d = 1,2, ... ,D is the DWT level index and b == rbI, b2] is the
subband identifier; [0,0] is the LL subband, [0, 1] is the HL (horizontally
high-pass) subband, [1,0] is the LH (vertically high-pass) subband and
[1,1] is the HH subband. We refer to a~) [n] == a~d) as the analysis vector
(or sequence) for subband b in level d. The BIBO analysis gain for this
subband is given by

l3~d) ~ L la~d) [n]1
n

(17.1)

The two dimensional DWT structures supported by JPEG2000 all
involve separable analysis sequences,

(17.2)

where the one dimensional DWT sequences, aid) [n], may be found from
the low- and high-pass analysis filter impulse responses, ho [n] and hI [n],

Chapter 17: Implementation Considerations 667

using the following relations:

a~l) [n] = hb[-n]
(d)] "\' (d-l) [] []ab [n = LJk ab k ho 2k - n , d>1

b = 0,1 (17.3)

This construction is analogous to that of the corresponding synthesis
sequences in equation (4.39). From equations (17.1) and (17.2), it follows
that the two dimensional ElBO analysis gains may be expressed as the
product of the relevant one dimensional BIBO gains, i.e.,

17.3.2

f3~d) =L la~~) [nl] I· L la~~) [n2] I= f3~~) . f3~:)
nl n2

REVERSIBLE TRANSFORMS

(17.4)

Reversible transforms map integers to integers. As discussed in Sec­
tion 6.4.2, such transforms are necessarily non-linear. However, the re­
versible transforms used by JPEG2000 are very closely related to linear
wavelet transforms. The non-linear rounding in each lifting step consti­
tutes a small perturbation of the linear subband samples.

If the original image sample values are B-bit integers in the range
_2B - 1 ::; x [n] < 2B - 1, the subband samples in band b of DWT level d
are also signed integers, bounded by

Iy~d) [q] I ::; f3~d)2B-l + E~d)

where .B~d) is the BIBO analysis gain for the linearized wavelet trans­

form, and E~d) bounds the effect of the non-linear rounding used in each
lifting step. For brevity, we shall not explicitly model this non-linear
perturbation, but note that it has negligible impact on the number of
bits required to represent the subband sample values, except when the
original image bit-depth is very small (e.g., bi-Ievel imagery). Thus, we

may take flog2 f3~d)l as a worst-case bit-depth expansion for the subband
samples, relative to the original image samples.
Part 1 of the JPEG2000 standard defines only one reversible DWT,

whose lifting steps are given in Section 10.4.2. This transform is derived
from the spline 5/3 wavelet kernels; its linearized analysis filters are
given in equation (10.15). Using these in equations (17.4) and (17.3),
we obtain the bit-depth expansion figures shown in Table 17.4.
Evidently, if the original image samples are B-bit integers, (B +4)-bit

integers are sufficient to represent the reversibly transformed subband
samples without risk of numerical overflow or underflow. Thus, for ex­
ample, 16-bit integers are sufficient to represent reversibly transformed

668 DWT Numerics

Table 17.4. Bit-depth expansion figures (not rounded) for each subband in the 2D
reversible DWT, based on the Spline 5/3 wavelet kernels.

DWT level, d (d) f3(d) (d) (d)
log2 f3Ll~ log2 LH = log2 f3HL log2 f3HH

1 1.170 bits 1.585 bits 2.000 bits
2 1.401 bits 2.022 bits 2.644 bits
3 1.510 bits 2.214 bits 2.919 bits
4 1.525 bits 2.250 bits 2.976 bits
5 1.542 bits 2.267 bits 2.991 bits
15 1.557 bits 2.298 bits 3.039 bits

images with as many as 12 bits per sample. If the RCT (Reversible
Colour Transform) is also used, the bit-depth of the two chrominance
channels is expanded by exactly 1 bit prior to the reversible DWT. In
this case, reversible transformation of 12 bit per sample colour image
data would require a 17-bit representation for the HH subbands of the
chrominance channels, at DWT levels beyond d = 5.

NOTE ON CONVERGENCE OF BIBO GAINS AS D -+ 00
The fact that the entries in each column of Table 17.4 appear to con­

verge to limiting values may be understood as an inevitable consequence
of the fact that the linearized transform is a true wavelet transform with
compact support. As explained in Section 6.3.1, the analysis kernels of
a biorthogonal wavelet transform generate the dual wavelet and scal­
ing functions when iterated indefinitely. In fact, the analysis sequence,
a6d) [n]' is directly related to a bandlimited approximation, d<jJ (t), of the
dual scaling function, <jJ (t), having bandwidth 2d1f. Specifically,

This may easily be seen from the close connection between the recursive
relations in equation (17.3) and those developed in the proof of Theo­
rem 6.6.
Since d<jJ (t) converges to <jJ (t), the regularity of wavelet scaling func­

tions and their duals ensures that

The integral on the right hand side of the above equation is guaranteed
to exist, since all square integrable functions with compact support (non­
zero over only a finite interval) are also absolutely integrable. A similar

Chapter 17: Implementation Considerations 669

relationship exists between Ln laid) [n] I and the dual wavelet function,
;j; (t).

SYNTHESIS CONSIDERATIONS
In the foregoing discussion, we have considered only the forward DWT

analysis transform. If the code-stream contains a truly lossless represen­
tation of the subband samples, the synthesis steps will exactly invert the
analysis steps. On the other hand, if embedded code-block bit-streams
have been truncated, the subband samples are effectively quantized and
these quantization effects will propagate through the synthesis system.
It is conceivable that quantization effects would be so large as to cause
unexpected overflow in the numerical representation selected for the in­
termediate LL subbands (see Figure 10.6).
Fortunately, the LL subbands exhibit the smallest bit-depth expan­

sion. Without quantization, Table 17.4 suggests that (B + 2) bits are
more than sufficient to represent all intermediate LL subband samples.
Consequently, an implementation which allocates (B + 4) bits for the
representation of all subband samples would be highly unlikely to expe­
rience numerical overflow. Nevertheless, we note that JPEG2000 does
not restrict the truncation of code-block bit-streams. We have not made
a careful study of the potential for truncation-induced overflow in the
implementation of reversible DWT synthesis.

17.3.3 FIXED POINT IRREVERSIBLE
TRANSFORMS

In the previous section we exploited the fact that reversible trans­
forms map integers to integers to determine the number of precision bits
required to implement the transform exactly. Irreversible transforms do
not have this property and cannot generally be implemented exactly. In
particular, the CDF 9/7 transform has irrational coefficients. Irreversible
transforms are sometimes called "floating point" transforms, because
floating point arithmetic is a natural choice for their implementation. In
resource critical applications, however, fixed point implementations are
usually more desirable. This can be true for both hardware and software
implementations. The Kakadu software supplied with this text provides
a working demonstration of an efficient fixed point implementation of
the irreversible DWT.
The fixed point representation (approximation) of a real-valued quan­

tity, x, is written

670 DWT Numerics

where i; is an R-bit integer and F may be interpreted as the number
of fraction bits of x which are preserved by the representation. Equiv­
alently, F is the position of the "binary point" in the fixed point rep­
resentation. The value of F is fixed; i.e., it does not depend upon the
value being represented. It is desirable to choose F as large as possible,
while avoiding the possibility of overflow or underflow. Assuming signed
quantities, this condition may be expressed as

_2R - 1 < 2F X < 2R- 1 VX- ,

Equivalently, for a given representation precision, R, we wish to minimize
the number of integer bits8 , R - F, subject to the constraint

2R-
F > 21xl, Vx

In Chapter 10 we adopted the convention that the irreversible process­
ing path in JPEG2000 would be described in terms of real-valued quan­
tities, consistently normalized to lie within a "unit nominal range" of
-~ to ~. To this end, the low- and high-pass DWT analysis kernels are
normalized so as to have unit gain at DC and the Nyquist frequency,
respectively. These normalization conventions are expressed in equa­
tion (10.12). Although the nominal range bounds are rarely exceeded,
unlikely combinations of image sample values can conspire to create tem­
porary excursions. In particular, subband samples in band b of DWT
level d may range over the interval,

_~(3(d) < y(d) [n] < ~(3(d)
2 b - b -2 b

where (3~d) is the BIBO gain of the relevant DWT analysis sequence. It
follows that the fixed point representation for this subband must satisfy

R - F > log2 (3~d)

These absolute bounds are given in Table 17.5, for the specific case
of the CDF 9/7 analysis kernels. The entries in the table are obtained
by substituting the analysis filter taps from equation (10.13) into equa­
tions (17.4) and (17.3). Notice that there is little variation between
the subbands, so a single fixed point representation is appropriate for
all subbands. Also notice that subband sample values never exceed the
nominal range bounds by as much as one bit (a factor of 2), so represen­
tations involving one integer bit9 and F = R - 1 fraction bits may be

"We may iuterpret the most significant R - F bits of x as holding the integer part of x.
9 Recall that the integer part of the representatiou conveys both maguitude aud sign iufor­
Illation, so this one integer bit is actually the sign bit.

Chapter 17: Implementation Considerations 671

Table 17.5. Unrounded bound on the number of integer bits, R - F, required for
fixed point representation of subband samples generated using the CDF 9/7 wavelet
kernels.

DWT level, d (d) (d) (d) (d)
IOg2,6LL log2 ,6LH = log2,6HL log2,6HH

1 0.930 bits 0.841 bits 0.752 bits
2 0.829 bits 0.807 bits 0.785 bits
3 0.772 bits 0.737 bits 0.703 bits
4 0.763 bits 0.686 bits 0.609 bits
5 0.757 bits 0.679 bits 0.600 bits
15 0.755 bits 0.674 bits 0.592 bits

used. These results also demonstrate that G = 1 is a sufficient number
of quantization guard bits to avoid violation of equation (10.21).

It is worth noting that the irreversible colour transform has a BIBO
analysis gain of 1, so that its presence has no effect on the number
of integer bits required by fixed point representations of the subband
samples.

CONSIDERATIONS FOR LIFTING IMPLEMENTATIONS
Up to this point, we have considered only the representation of the

subband samples themselves. In a complete implementation, intermedi­
ate quantities may be formed and their representation is also important.
Lifting implementations are particularly interesting, because they help
to unify the reversible and irreversible processing paths. The lifting
framework is also helpful in realizing memory efficient implementations
of the DWT, as we shall see in Section 17.4. In particular, these im­
plementations require the outputs of some lifting steps to be stored in
memory for later use. In this section, we provide some results to assist
implementors in selecting appropriate representations for these interme­
diate quantities.
Since every lifting step is a linear operator, the outputs of each lift­

ing step may be expressed as linear combinations of the original image

sample values and the BIBO gain may be evaluated. Let a~~~p_l [n] de­
note the linear operator mapping an input sequence to the output of
the [th lifting step, in the cf'h level of a one dimensional DWT. Also, let
a~d) [n] and a~) [n] denote the linear operators associated with the low­
and high-pass subbands at level d. Table 17.6 provides ElBO gains for
these one dimensional operators.
We assume that each 2D DWT stage is implemented by performing

first the vertical analysis operations and then the horizontal analysis

672 DWT Numerics

Table 17.6. Unrounded bounds on the number of integer bits, R - F, required at
the output of each analysis lifting step and each subband in a ID irreversible DWT,
using the CDF 9/7 wavelet kernels.

d (d) (d) (d) (d) log f3(d) (d)
log2 f3step.l log2 f3ster-2 log2 f3step.3 log2 f3step.4 2 L log2 f3H

1 2.061 bits 0.528 bits 1.077 bits 0.764 bits 0.465 bits 0.376 bits
2 2.197 bits 0.879 bits 1.094 bits 0.713 bits 0.415 bits 0.392 bits
3 2.198 bits 0.814 bits 1.052 bits 0.685 bits 0.386 bits 0.351 bits
4 2.166 bits 0.800 bits 1.006 bits 0.681 bits 0.382 bits 0.305 bits
5 2.152 bits 0.787 bits 1.001 bits 0.678 bits 0.379 bits 0.300 bits
15 2.150 bits 0.784 bits 0.997 bits 0.677 bits 0.378 bits 0.296 bits

operations, as described in Section 10.3.2. This sequence of operations
is mandatory for reversible transforms, so it is also the most natural
choice for irreversible transforms. Synthesis is performed in the reverse
order. Following this convention, the linear operator corresponding to
the output of the [th vertical analysis lifting step at DWT level d may
be expressed as

Note that the lifting procedure generates vertically low- and high-pass
subbands together. These vertical subbands are then each subjected to
horizontal lifting steps. The linear operators associated with the output
of each horizontal lifting step, when processing the vertically low- and
high-pass subbands at DWT level d, are given by

and
(d)hor.v.high (d) (d)

astep-l [nl' n2] = a H [nl]' astep-l [n2]

Since the two dimensional linear operators are all separable, their
BlBO gains are the products of the relevant one dimensional BlBO gains,
as supplied in Table 17.6. Table 17.7 provides a convenient summary of
the two dimensional BlBO analysis gains to the output of each different
type of lifting step. Specifically, the entries in the table correspond to

(d)max _ {(d)vert (d)hor.v.low (d)hor,v'high}
f3step-l - max f3step-l' f3step-l , fJ.~tep-l

From the table, we may conclude thatR-F = 3 integer bits are sufficient
to avoid overflow, when using a single fixed point representation for the

Chapter 17: Implementation Considerations 673

Table 17.7. Unrounded bounds on the number of maximum number of integer bits,
R - P, required at the output of each type of lifting step in a 2D irreversible DWT,
using the CDP 9/7 wavelet kernels.

DWT level, d
(d)max (d)max (d)max (d)max

log2 {3step.l log2 {3step.2 log2 {3step.3 log2 {3step.4

1 2.526 bits 0.993 bits 1.542 bits 1.229 bits
2 2.662 bits 1.344 bits 1.559 bits 1.178 bits
3 2.613 bits 1.228 bits 1.467 bits 1.099 bits
4 2.552 bits 1.186 bits 1.392 bits 1.067 bits
5 2.534 bits 1.169 bits 1.383 bits 1.059 bits
15 2.527 bits 1.161 bits 1.375 bits 1.054 bits

image samples, the subband samples and all intermediate lifting step
outputslO .

SELECTING THE NUMBER OF FRACTION BITS
Fixed point representations may be understood as uniformly quan­

tizing the subband sample values, where the relevant quantization step
size is 2-F . One way to measure the significance of these quantization
effects is to map the quantization (approximation) errors into the image
domain and measure the resulting MSE (Mean Squared Error). Other
error measures may be considered, but we shall confine our attention to
MSE here.
For large P, the variance of the error in any given subband sample

is well approximated by l22-2F (see equation (3.27)). For sufficiently
large P, it is also reasonable to assume that the approximation errors
are uncorrelated. Following equation (4.37), the equivalent image MSE,
O'gx, may then be expressed as

(17.5)

Here, Gbd is the squared norm of the synthesis vectors associated with
subband b of DWT level d. We have already encountered these Gbd
factors in connection with distortion estimation for rate control (see

lONote that intermediate results involved in the implementation of each individual lifting
step may require larger precision again, although such considerations are highly dependent
upon the implementation structure selected. The reader should find it instructive to examine
the fixed point processing paths provided by the Kakadu software supplied with this text;
the software uses two different processing conventions for fixed point operations, depending
on the machine architecture.

674 DWT Numerics

Table 17.8. Equivalent image MSE (expressed in terms of PSNR) associated with
the fixed point representation of subband sample values, having a unit nominal range
and F fraction bits.

DWT levels, D F=lO F=l1 F= 12 F= 13 F= 14 F = 15
1 64.9 dB 70.9 dB 76.9 dB 82.9 dB 89.0 dB 95.0 dB
2 61.9 dB 67.9 dB 74.0 dB 80.0 dB 86.0 dB 92.0 dB
3 60.0 dB 66.1 dB 72.1 dB 78.1 dB 84.1 dB 90.1 dB
4 58.7 dB 64.7 dB 70.7 dB 76.8 dB 82.8 dB 88.8 dB
5 57.6 dB 63.7 dB 69.7 dB 75.7 dB 81.7 dB 87.8 dB
15 52.7 dB 58.7 dB 64.7 dB 70.7 dB 76.8 dB 82.8 dB

Section 8.3.5) and their computation is the subject of equations (4.39)
and (4.40). The factors 2-2d in equation (17.5) arise from the fact that
each subband in level d of the two dimensional DWT has 2-2d times as
many samples as the original image.
Note that equation (17.5) includes the effects of representing the inter­

mediate LLd subbands using the same F-bit fixed point representation.
In most implementations, there will be additional intermediate results
which are also approximated using a fixed point representation. These
effects could be incorporated into the formula, together with appropri­
ate synthesis weighting factors, yielding MSE values several times larger
than those predicted by equation (17.5). In this brief treatment, how­
ever, our purpose is only to provide a rough indication of the dependence
of O'Jx on the number of fraction bits, F, and the number of DWT levels,
D.
Table 17.8 provides computed values for O'Jx, using the CDF 9/7

wavelet kernels defined by Part 1 of the JPEG2000 standard. The MSE
values are expressed in terms of PSNR (Peak Signal to Noise Ratio).
Since we are working with normalized image samples in the range -~ ::;
x < ~, the PSNR is given by

PSNR 0 I (xmax - Xmin)2 10 I 2
= 1 ogIO 2 = - oglQ 0'8X

0'8X

The dependence of O'Jx on D may be understood from the fact that
Gbd ;::;:;; 22d .11 Substituting into equation (17.5) we see that O'Jx grows
approximately linearly with D, meaning that the equivalent image PSNR
should decrease roughly as 10 logIO D. This is readily confirmed by in­
specting the entries in the table.

11 See equation (10.25) and the associated discussion.

Chapter 17: Implementation Considerations 675

The entries in Table 17.8 may be compared with typical PSNR's expe­
rienced in lossy image compression (see Table 8.5, for example). Experi­
ence with 8-bit imagery shows that visually lossless compression usually
occurs with PSNR's of about 40 dB, although this can be quite depen­
dent on image content and viewing conditions and may not be sufficient
for the most demanding applications. Accordingly, it is reasonable to
suppose that implementations involving R = 16 or even fewer precision
bits should usually be quite sufficient to render the approximation error
negligible, even when the additional errors associated with fixed point
representation of intermediate quantities are taken into account.

17.4 DWT STRUCTURES
In this section, we consider implementation structures for the DWT

which are able to efficiently utilize memory resources. Our focus is on
applications involving very large images, where memory size must be
carefully managed. We are also concerned with applications demanding
high throughput so that memory transaction bandwidth becomes a crit­
ical resource which must be managed. It is convenient for the moment
to consider the DWT in isolation. Its interaction with the block coder
in a complete system is a matter of great interest, which we defer to
Section 17.5.

17.4.1 PIPELINING OF DWT STAGES
The two dimensional DWT is most easily described in terms of the

iterative application of individual DWT stages. Each DWT stage is
responsible for transforming a two dimensional array of image samples
into four subband images, denoted LL (low-pass), HL (horizontally high­
pass), LH (vertically high-pass) and HH. Each of these subbands has
essentially half the height and half the width of the input image.
The complete transform is obtained by repeatedly passing the LL

subband produced by each DWT stage into a further DWT stage. This
DWT structure is illustrated in Figure 10.6. A D level DWT involves a
total of D DWT stages and produces a total of 3D + 1 subbands. The
subbands produced by the etth DWT stage are denoted LLd through HHd
and the input to the dth stage is LLd-l' The LLd are all intermediate
subbands, except for the final LLD subband. It is convenient to think
of the original image as a oth level intermediate subband, LLo, since it
is the input to the pt DWT stage.
For a sequential stage by stage implementation of the DWT, suffi­

cient memory must be available to buffer the output of each DWT stage
before moving on to the next. This may be acceptable for applications

676 DWT Structures

g
c Image area.. need nol
~ g actually be buffered

E.~ -.. er stn

~8:
~~

'"
OWT Stage I Processor

Internal window
into source, stripe

Embedded
Block
Coder

OWT Stage 2 Processor
LL,

Internal window
into source stripe

Figure 17.6. DWT pipeline. Dark shading identifies sample data buffered in external
memory. Patterned shading identifies regions mapped into internal processor memory.

which already have sufficient memory to buffer the entire input image.
In many cases, however, the image samples arrive incrementally from
a file or scanner, with insufficient resources to buffer the image or its
subbands. A dual problem exists during decompression, where the ap­
plication consumes the decompressed image samples incrementally (e.g.,
for printing or writing to a file) without sufficient resources to buffer the
image or its subbands.
Fortunately, there is no need to implement the DWT stages one at a

time. Each DWT stage is essentially a type of filtering operation and
may be implemented incrementally by advancing a "moving window"
through the two dimensional image sample array. The DWT stages
may then be pipelined, with the Ifh stage incrementally consuming the
samples of subband LLd-l, as they appear at the output of the preceding
stage. A DWT pipeline is illustrated in Figure 17.6. A similar pipeline
may be used to invert the DWT during decompression. In this case, the
Ifh inverse DWT stage incrementally produces the samples of subband
LLd , which are consumed by stage d - 1.
We use the term "pipeline" somewhat loosely here to refer to any im­

plementation in which all of the DWT stages are active simultaneously
or at least intermittently. We do not insist that each DWT stage have
its own distinct processing hardware. In fact, most practical implemen­
tations will share one or two processing engines amongst the stages. The
advantage of pipelining is that the intermediate subbands, LLd' need not
be fully buffered in memory. Instead, the system need only provide suffi­
cient resources to satisfy the demands of the moving window processing
in each DWT stage. We shall analyze these memory resources more
carefully in Section 17.4.2.

Chapter 17: Implementation Considerations 677

Also important to the success of DWT pipelining is the fact that the
completed subbands can be quantized and coded incrementally. Once
sufficient subband samples have been produced to form code-blocks,
these samples may be delivered to the embedded block coding engine.
The system must provide sufficient memory to buffer subband samples
until complete code-blocks can be formed.

APPLICATIONS REQUIRING PIPELINING
We have already mentioned some applications for which pipelining is

important. Scanners output the image samples in a line by line fashion ..
Similarly, most printers consume image samples line by line. We refer
to these as line-based applications. Some printers may print in vertical
strips from left to right. We view these devices also as line-based appli­
cations, since the implementation techniques described in this chapter
may easily be applied column-wise, rather than line by line.
Pipelining is important whenever the entire image cannot be buffered

in memory. Many satellite imaging systems employ a linear sensor which
scans the earth's surface as the satellite revolves about the earth. The re­
sulting images can be enormous, with a vertical dimension (the scanning
dimension) which is potentially unbounded. Pipelining of some form is
unavoidable12 in this case, since no amount of memory can suffice to
buffer the entire image.
More generally, pipelining is an essential tool for applying the DWT

to any data set with one unbounded dimension. Examples include the
application of the one dimensional DWT to audio waveforms and appli­
cation of the three dimensional DWT to video sequences. Incremental
processing and pipelining were used by Taubman and Zakhor in their
work on 3D wavelet video compression [150]. In that work pipelining
is applied in the temporal dimension (this is the scanning direction for
video). An analysis of the latency and memory requirements of the
pipelined DWT may be found in [146, pp. 184-187].13

17.4.2 MEMORY AND BANDWIDTH
In this section, we consider the incremental processing performed

within each DWT stage. We are most interested in the impact of differ-

12 Recall that we are using the term "pipelining" rather loosly, referring to any system in
which the DWT stages are active simultaneously or intermittently. There are many ways to
realize this.
13The analysis in [146J is performed only for 2 tap Haar filters. Longer wavelet filters were
also implemented and investigated for temporal video transformation by both Ohm and
Taubman, as noted in [110] and [150].

678 DWT Structures

•
o

o

•
o

•
o

vertica/transform

~ Line of LL" subband samples --+'0 /lexl .\loge IlIIe huffer

~ Line of HLd subband smnples --+ /0 block coder

vertical low-pass line
horizonta/transform

verticailligh-pass line

~ Line of HHrl sllbband 5.1mplcs --+10 block co<ler

~ Line of LHu subband smnples --+10 block coder

Figure 17.7. Incremental DWT analysis processing.

ent processing strategies on two physical resources: memory and memory
bandwidth. We develop the concept of an M-line DWT implementation
and show how the parameter M may be used to establish a trade-off
between the total amount of memory which must be provided by the
system and the I/O bandwidth which this memory must support.
In a complete system, the subband samples produced by the DWT

must usually be buffered in memory until complete code-blocks can be
formed and delivered to the coder. Similarly, the output of a block
decoder must usually be buffered prior to consumption by the inverse
DWT. We regard this buffering of subband samples as a matter of system
integration and defer further discussion of it until Section 17.5. In the
present section, we completely ignore the costs associated with buffering
subband samples for coding.

DWT ANALYSIS

Figure 17.7 illustrates the buffering required for a direct implementa­
tion of the dth DWT analysis stage, using the CDF 9/7 wavelet kernels
for the purpose of example. By "direct," we mean that each one dimen­
sional transform stage generates each of its subband samples directly
from its input samples, as in the inner product formulation of equa­
tion (10.6a). The number of input samples required to form a single
subband sample is equal to the region of support of the relevant wavelet
kernel. By contrast, we shall later consider implementations based on
lifting, which must allocate resources to buffer the results from interme­
diate lifting steps.
The vertical analysis processing is performed first, producing one line

of vertical low-pass subband samples and one line of vertical high-pass
subband samples. These lines are further subjected to horizontal analy­
sis, generating a single line for each of the subbands LLd through HHd·

Chapter 17: Implementation Considerations 679

In this example the low-pass filter has 9 taps, so the DWT stage
requires access to 9 lines from LLd-1 in order to produce a single line
of vertical low-pass subband samples. As indicated in the figure, this 9
line buffer is also sufficient to generate a new line from the vertical high­
pass subband. These relationships may be deduced directly from the
description of the one dimensional DWT given in Section 10.3.1. More
generally, for any set of odd length symmetric DWT kernels, 2Lmax + 1
lines of LLd-1 are sufficient to produce one new line for each of the level
d subbands, LLd through HHd . Here Lmax = max{Lo, Ld and 2Lo + 1
and 2L1 + 1 are the lengths of the low- and high-pass DWT kernels,
hb [n] and hi [n].
There is no need to actually store the vertical subband lines in mem­

ory. Instead, the vertical subband samples may be immediately sub­
jected to horizontal subband transformation. The implementation might
maintain a small (horizontal) window into each of the two vertical sub­
band lines which are being generated. Such on-chip processing resources
are considered more carefully in Section 17.4.3.
We are now in a position to determine the amount of memory required

by the entire DWT processing system. We assume that the implemen­
tation involves a single processing engine, which is used to implement
each DWT stage in turn. Each application of the engine at DWT stage
d processes a swath of 2Lmax + 1 lines from LLd-1, producing one new
line for each of subbands LLd through HHd . The 2Lmax + 1 line buffer
for subband LLd-1 is then advanced by two line positions. To fill the
two new empty line positions, the engine must be invoked twice at DWT
stage d - 1. This requires 4 invocations at stage d - 2 and so forth.
Since we do not count any memory required to buffer subband samples

for coding, we need only consider the 2Lmax + 1 line buffers for each of
the intermediate subbands, LLd, d = 0,1, ... ,D - 1. Each line of LLd
contains 2-d N2 samples, where N2 is the width of the original image.
For simplicity, we assume that the original image samples have an 8-bit
representation and that a 16-bit representation is sufficient for all other
intermediate subband samples. The analysis conducted in Section 17.3
suggests that this is a somewhat conservative assumption. The buffer
size is then given by

S&'1T = (2Lm~ + 1) (1+ 2~ Z-d) N, :s [3 (2Lm~ + 1) IN, bytes

While memory size is important, in many cases an even more impor­
tant resource is memory bandwidth. We assume that the DWT process­
ing engine mentioned above is implemented on a silicon chip (e.g., an
ASIC or an FPGA) which is connected to an external memory (e.g., a

680 DWT Structures

C Jlincs DWT Stage Processing Chip0-
E~
G>;2

vertical horizontal~Cl I.L,tllines
ell ~ transform r- transfonnr:: •
... OJ) '1G> G> LL"lincs><:-

CJ.l

to block
coder

Figure 17.8. Communication between DWT stage processing and external memory.

DRAM). We further assume that the input image is sufficiently large to
render on-chip buffering of whole image lines impractical. Image and in­
termediate subband line buffers are stored in the external memory, which
must be at least S£VVT bytes in size. This configuration is illustrated in
Figure 17.8.
We measure memory bandwidth in terms of the average number of

byte transactions per original image sample. One byte transaction is
required to write each original image sample into the portion of the
buffer assigned to LLo. Once each new pair of image lines has arrived,
2Lmax + 1 lines of LLo are read by the DWT engine. It follows that
one write and ! (2Lmax + 1) reads are performed for each LLo sample.
Each of the intermediate LLd subbands has only 2-2d times as many
samples as the original image, for each of which we also have one write
and ! (2Lmax + 1) reads. Since each of these subbands is represented
with 2 bytes per sample, the total memory bandwidth is given by

() (

D-1)(1) 3 -2d
BDWT = Lmax + 2' . 1 + 2 i; 2

:s ~ (L max + ~) byte transactions/sample

As it stands, this rather high memory bandwidth may be a cause of
concern for many applications. To address this concern, we may mod­
ify the implementation to produce M lines of each of the LLd through
HHd subbands at once, while reading from a moving window containing
2.!VI +2Lmax -1 lines in LLd-1. The implementation considered hitherto
corresponds to the case .!VI = 1, having the minimum memory size and
the maximum memory bandwidth. For general.!VI, the memory size and

Chapter 17: Implementation Considerations 681

o e 0

l:l 3 0 ~-'+----f l:l'"
~ ...J cl--+l+~ U
V'l 0httt--{=..i...--i

e

e\'en and odd Ime,.
(rom "'oge d+ I

from blo<:k
decoder

(rom block
. decoder

~ !.~

from blo<:k
decoder

next odd line
ofLL".1

next even line
ofLL".,

Figure 17.9. Incremental DWT synthesis processing.

bandwidth are easily shown to satisfy

(17.6)
(M) ()8DWT ;S 3 2M + 2Lmax - 1 N2 bytes

B(M) < § (2 + 2Lmax-l) byte transactions/sampleDWT rv 3 2M

As an example, using the CDF 9/7 wavelet kernels (Lmax = 4), the
minimum memory case, M = 1, yields a memory bandwidth of 9.2 byte
transactions per sample; this may be reduced to 4.1 byte transactions per
sample by selecting M = 8. At the same time, the memory size grows
by a factor of about 2~, from 27N 2 bytes to 69N2 bytes. Evidently, the
parameter M allows us to trade memory size for memory bandwidth.
In the limit as M becomes very large, the bandwidth approaches an
absolute lower bound of 3k byte transactions per sample. Of course, the
complexity of the processing engine (the chip) also grows with M. This
is examined in Section 17.4.3.

DWT SYNTHESIS
Figure 17.9 illustrates the buffering required for a direct implemen­

tation of the £fit DWT synthesis stage. Buffer sizes shown in the figure
are selected to match the requirements of the CDF 9/7 transform. We
assume that DWT synthesis stages are also implemented by a single
"engine" (or chip) interacting with an external memory, which buffers
subband and image lines as necessary. The operation of the engine par­
allels that used for DWT analysis.
When applied to DWT stage d, the synthesis engine produces two

new lines of LLd-l samples. To do so, it requires access to a small
moving window into each of the four subbands, LLd through HHd. In
the specific case of the CDF 9/7 transform, 4 lines from the vertically

682 DWT Structures

low-pass subbands, LLd and HLd' and 5 lines from the vertically high­
pass subbands, LHd and HHd' are required to synthesize two new lines
for LLd-1' Note that a 5 line buffer must be maintained into the LLd
subband to accommodate the arrival of two lines at a time from the
synthesis engine at stage d + 1.
Horizontal subband synthesis is performed incrementally on each pair

of corresponding lines from the LLd and HLd subbands and each pair
of corresponding lines from the LHd and HHd subbands. The resulting
vertical subband lines are supplied to the vertical synthesis engine as
soon as they are generated; the vertical synthesis engine then outputs
two new LLd- 1 lines in sample by sample fashion.
As for DWT analysis, the synthesis implementation may easily be

generalized to consume M new lines from each of subbands LLd through
HHd , producing 2lVI lines of subband LLd-1 in each pass across the
image. The total number of lines required from the two horizontal high­
pass subbands HLd and HHd, when taken together, is 2M +2Lmax _1. 14

Since each subband's moving window is advanced M lines after each
pass, the first 2Lmax - 1 lines of this 2M + 2Lmax - 1 line window must
overlap between passes. Similarly, the total number of lines which must
be read from subbands LLd and LHd together is also 2M + 2Lmax - 1,
of which 2Lmax - 1 overlap between passes. The overlapping lines are
identified by darker shading in Figure 17.9. The total number of samples
associated with these overlapping lines is 21-d(2Lmax - 1)N2 .
Recall that we generally regard the buffering of decoded subband sam­

ples prior to DWT synthesis as a system integration cost. This cost is
estimated in Section 17.5. However, the system integration cost does not
include the cost of storing (memory size) and accessing (reading a sec­
ond time) the overlapping lines. We ascribe these to the DWT synthesis
engine. Assuming a 2 byte representation for each subband sample, the
memory bandwidth associated with reading the overlapping lines at level
dis

(2L - 1)21- d ·2-d

2 max lVI byte transactions per image sample

In addition to overlapping lines, we must provide storage for 2M lines
of each of the intermediate subbands LLd- 1, since this is the number of
lines which are generated by each pass of the synthesis engine at stage

14The actual distribution of these 2M +2Lmax -1 lines between the HLd and HH d subbands
depends upon the lengths of the low- and high-pass synthesis filters. To simplify the analysis
it is convenient to consider the memory resources associated with the vertically low- and
high-pass subbands together.

Chapter 17: Implementation Considerations 683

d. The DWT engine is responsible for reading and writing each non­
overlapping LLd-l sample once, including the image samples in LLo.
Based on these considerations, we obtain the following resource bounds
for DWT synthesis.

SI~T ;S [6M + 4(2Lmax - 1)] N2 bytes

B(M) < Q (2 + 2Lmax-l) + 2Lmax-l byte transactions/sampleIDWT rv 3 2M 2M
(17.7)

Both the memory size and the memory bandwidth requirements ap­
pear to be slightly larger for the inverse transform than the forward
transform, although these differences become negligible as M becomes
large. We hasten to point out, however, that our assumption that 2
bytes are required to buffer each subband sample is extremely conserv­
ative. This is because the samples of all coded subbands (i.e., not the
intermediate LL subbands) may be efficiently stored in quantized form.
The actual number of bits which must be stored in external memory for
each coded subband sample is analyzed more carefully in Section 17.5.2.
Table 17.11 indicates that we need only store an average of 6 bits per
subband sample, assuming that lossless performance is required, while
many fewer bits are required for lossy compressed images. Using this bit
depth for the coded subband samples, the memory bandwidth becomes

(M) 5(2Lmax -1) 12Lmax -l
B IDWT ;S '3 2+ 2M - 4 2M byte transactions/sample

which is marginally better than that for the forward transform.

LIFTING IMPLEMENTATIONS
Our discussion of DWT implementation structures to this point has

been based on the direct implementation described in Section 10.3. Re­
versible transforms require a subtle non-linear modification to the simple
inner product expression of equation (10.9), which is best understood
and implemented in the context of lifting. Lifting is described briefly
in Section 10.4.2 and more extensively in Section 6.4. Lifting and re­
versibility have no impact on the spatial regions of support associated
with the vertical and horizontal transform operators. Consequently, the
buffering techniques and memory resource analyses above may be ap­
plied to both reversible and irreversible transforms. Nevertheless, it is
interesting to consider what benefits might be derived by exploiting the
lifting framework more directly in designing the memory structure of the
transform.
For simplicity, we shall restrict our discussion here to the lifting analy­

sis and synthesis state machines depicted in Figures 6.13 and 6.14. As

684 DWT Structures

shown in Section 6.4.4, these state machines are suitable for imple­
menting any set of symmetric wavelet kernels with odd, least dissimilar
lengths. The CDF 9/7 and spline 5/3 kernels described by Part 1 of
the JPEG2000 standard both conform to this model. As explained in
Section 6.5.3, symmetric extension at the image boundaries may also
be understood in a particularly simple and elegant manner within the
context of these lifting state machines.

The one dimensional operator implemented by the analysis machine
of Figure 6.13 involves L max lifting steps, with one state variable, ~z,

for each step. The figure depicts L max = 4 lifting steps, which is the
number required to implement the CDF 9/7 transforms. The lifting
step filters (darkly shaded boxes in the figure) add their two inputs and
multiply the result by some constant, Az. For reversible transforms, the
result must also be rounded to an integer. In some cases, such as the
spline 5/3 transform, the multipliers are trivial powers of 2. The lifting
state machine in Figure 6.13 does not include the subband normalization
factors, Ko and K 1, which appear in the more general lifting structure
of Figure 6.9. These factors are only required for irreversible transforms,
where they may be conveniently folded into the subband quantization
step sizes.

Figure 6.13 suggests an alternate strategy for implementing the ver­
tical transform, in which the Lmax state variables for each column are
themselves buffered in external memory. In this case, the total number of
line buffers required for the d!h stage of DWT analysis is Lmax + 2. Two
line buffers correspond to the next two unprocessed image lines from the
LLd-l subband, while the remaining Lmax line buffers are used to store
state information. This is illustrated in Figure 17.10. As with direct im­
plementations, the vertically low- and high-pass subband lines produced
by the vertical analysis machinery need not actually be buffered in mem­
ory. Instead, they are immediately subjected to horizontal analysis. This
may be performed using a similar lifting state machine.

Evidently, the lifting implementation of Figure 17.10 requires fewer
line buffers (Lmax + 2) than the direct implementation of Figure 17.7
(2Lmax + 1). Memory savings are reduced somewhat by the fact that
some of the state line buffers must be maintained with higher numeric
precision than the original image samples. This can also have an adverse
impact on memory bandwidth, since the state buffers must be both read
and written during each pass of the processing engine. Fortunately, the
first state variable (or line buffer) L:1 , is somewhat different to the others
in that it is not affected by the processing. Thus, only Lmax - 1 state
buffers require a higher precision representation than the image samples

Chapter 17: Implementation Considerations 685

vertical low-pass line

vertical high-pass line

horizontal analysis

horizontal analysis

Lma< slale line buffers
------------"-------------....

(o coder

Figure 17.10. Incremental DWT analysis using the lifting state machine of Fig­
ure 6.13.

and only these buffers must be written during each pass of the DWT
processing engine, while all Lmax buffers must be read.
In keeping with the conventions adopted in Section 17.4.2, let us as­

sume that all sample values are assigned a 2 byte representation, except­
ing only the original image samples, which have a 1 byte representation.
We may then evaluate the overall memory size and bandwidth resources
required by a lifting implementation of the M-line processing paradigm.
We find that

S~~T_lift :s [6M + 4Lmax - 1] N2 bytes

B(M) . < Q (2 + 2Lmax-l) + Lmax-l bytes/sample
DWT-hft '" 3 2M M

(17.8)

Notice that the memory size is slightly reduced, while the memory band­
width is slightly increased, relative to the direct implementation strategy
described previously (see equation (17.6)).
Perhaps the most important benefit of the lifting approach is that

DWT synthesis and analysis operations are almost identical. The close
relationship between DWT analysis and synthesis may be appreciated
by comparing the corresponding state machines shown in Figures 6.13
and 6.14. Lifting implementations of the analysis and synthesis systems
have identical memory organizations and identical memory bandwidth
requirements. By contrast, the memory organizations associated with
the direct implementations shown in Figures 17.7 and 17.9 are quite
different.

686 DWT Structures

MULTI-STAGE IMPLEMENTATIONS
Up to this point our memory and bandwidth calculations have been

based. on the assumption that the wavelet transform is implemented
using a single-stage processor. This processor is applied to each of the D
stages using an appropriate schedule. With this approach, intermediate
LL subband samples must be buffered in external memory, which has a
significant impact on memory size and bandwidth. As an alternative,
we may consider implementing two or more DWT stages in parallel,
tightly synchronized so that the intermediate LL samples output by the
first stage may be consumed by the second stage without intermediate
buffering.
There is probably little to be gained by implementing more than

two stages in parallel. Consequently, we shall assume that the DWT
processing engine processes stages 2d - 1 and 2d together, for each
d = 1,2, ... , rD /21. Again, we may describe a family of such implemen­
tations known as M-line dual-stage transforms, which "simultaneously"
produce (or consume) M lines of each of the lowest frequency subbands,
LL2d through HH2d , and 2M lines of each of the intermediate frequency
subbands, HL2d-l, LH2d-l and HH2d-l.
We begin by considering the dual-stage generalization of the direct

analysis implementation shown in Figure 17.7. When applied to stages
2d - 1 and 2d, the dual-stage DWT engine reads from a moving window
consisting of 4M + 2Lmax - 1 lines of LL2d-2 samples. This allows it to
produce 2M lines for each of subbands LL2d-l through HH2d-l. In order
to produce the !VI lines required for each of the four lowest frequency
subbands, the engine requires access to 2M +2Lmax - 1 lines of LL2d-l.
The last 2M of these lines are being produced by the first stage and
need not be buffered. Thus, only 2Lmax - 1 lines must be buffered
for subbands LL2d-l, while 4M + 2Lmax - 1 lines must be buffered for
subbands LL2d- 2, d = 1,2,.... After some algebra, we find that the
total memory size is bounded by

(M) [2]SDWT-2 .:s 63M + 3 (2Lmax - 1) N2 bytes

To determine the memory bandwidth, observe that the engine per­
forms one pass through stages 2d - 1 and 2d, for every 22d!VI image
lines. In the process, it reads 4M + 2Lmax - 1 lines from LL2d-2,
writes M lines to LL2d' reads 2Lmax - 1 lines from LL2d-l and writes
min{2M, 2Lmax - I} lines back to LL2d-l. Putting this all together and
being careful to account for the cost of the application writing image

Chapter 17: Implementation Considerations 687

Table 17.9. External memory size and bandwidth for single- and dual-stage direct
implementations of the forward DWT. The inverse DWT is similar, with slightly
larger values for memory size and bandwidth.

M S(M)
DWT

(M)BDWT
(M)

SDWT-2
(M)BDWT _2

1 27N2 bytes 9.2 bytes/sample 28N2 bytes 6.65 bytes/sample
2 33N2 bytes 6.3 bytes/sample 34N2 bytes 4.7 bytes/sample
4 45N2 bytes 4.8 bytes/sample 48N2 bytes 3.7 bytes/sample
8 69N2 bytes 4.1 bytes/sample 74N2 bytes 3.0 bytes/sample
16 117N2 bytes 3.7 bytes/sample 128N2 bytes 2.6 bytes/sample

samples into the LLo buffer, we deduce that

(M) 4 1 .
BDWT-2 :s 215 + 60M [33 (2Lmax -1) + 16mm{2M, 2Lmax -I}]

4 1 (19 49) .:s 215 + M 130Lmax - 60 byte transactIOns/sample

Table 17.9 compares the external memory sizes and bandwidths asso­
ciated with single- and dual-stage direct implementations of the DWT
analysis operations, with various values for the parameter M. The CDF
9/7 transform is assumed in these calculations so that Lmax = 4. Notice
that the dual-stage transform significantly reduces memory bandwidth
with very little cost in memory size. On the other hand, the internal
implementation of the DWT processing engine is significantly more com­
plex, requiring two separate DWT stage processors, the first of which
must be sized to process 4M lines together. We emphasize the fact that
our memory bandwidth figures all include the cost of initially writing
the image samples into the buffer for processing.
The lifting structure of Figure 17.10 may of course also be generalized

to process multiple DWT stages together. The memory and bandwidth
requirements associated with a dual-stage M-line lifting implementation
can be shown to satisfy

S~T-2-1ift :s [6~M + 4Lmax - 1] N2 bytes

B (M) < 4 1 (2 L 47) b . / IDWT-2-1ift rv 215 + M 215 max - 60 yte transactIOns samp e

When Lmax = 4 this represents a saving of 8 line buffers, at a cost of 2~l
byte transactions/sample relative to the dual-stage implementation de­
scribed above. Again, the most significant benefit of the lifting structure
is that analysis and synthesis implementations are virtually identical.

688 DWT Structures

Horizontal BulTerl (SRAM)
~b(8+2L.-·I)xI6-bil.

Horizontal BulTe<2 (SRAM)
M.'(8+2L...... ljx l6-biu

Figure 17.11. Single-stage DWT analysis engine.

17.4.3 ON-CHIP RESOURCES
The purpose of this section is to provide some preliminary assessment

of the complexity of an M-line single-stage DWT analysis engine. This is
the circuit which implements the vertical and horizontal transformations
shown in Figure 17.8. The synthesis engine and lifting implementations
have similar levels of complexity and will not be explicitly discussed
here. We confine our discussion of complexity to on-chip buffering re­
quirements.
Figure 17.11 indicates an appropriate structure for the M-line process­

ing engine. When applied to the lfh DWT stage, the engine reads
buffered samples from the intermediate LLd-l subband into an inter­
nal vertical buffer. The buffered samples are then used to feed a vertical
shift register, which supplies the (2Lmax + 1) sample window actually
required to produce new low- and high-pass vertical subband samples.
In the example of Figure 17.11, the internal vertical buffer memory is
divided into two banks, one of which is filled with LLd- 1 samples while
the other is being read into the vertical shift register.
The LLd-l samples could conceptually be read directly from external

memory into the vertical shift register; however, this would unduly con­
strain external memory access patterns for most practical applications.
We have chosen to size the vertical buffer memories so that they do not
dramatically affect the total on-chip memory cost, while providing sub­
stantial flexibility in regard to external memory access patterns. In this
example, each of the two vertical buffer memories can hold 8 columns
from the 2M + 2Lmax - 1 buffered lines of subband LLd-l. This per-

Chapter 17: Implementation Considerations 689

Table 17.10. On-chip memory estimates for single- and dual-stage implementations
of the forward DWT. The inverse DWT is similar.

M single-stage engine dual-stage engine

1 350 bytes 820 bytes
2 470 bytes 1.2 x 103 bytes
4 720 bytes 1.9 x 103 bytes
8 1.2 x 103 bytes 3.4 x 103 bytes
16 2.2 x 103 bytes 6.4 x 103 bytes

mits multiple contiguous external memory accesses15 . A line-interleaved
memory organization may be used to further improve memory access
locality.
The remainder of the circuit is reasonably straightforward. A second

double buffered memory system maintains horizontal windows of 8 +
2Lmax - 1 samples into each of the 2M vertical subband lines which are
being produced by the engine. The first M lines are written into the
first memory, while the second M lines are being read out of the second
memory into a horizontal shift register. The horizontal shift register
feeds the horizontal subband analysis blocks. Note that a horizontal
buffer size of 8+ 2Lmax - 1 is sufficient to process 8 new columns from
each of the vertical subband lines, which is exactly the number of new
columns available from the vertical buffer memory.
For a complete implementation, some internal buffering should also

be provided for the generated subband samples, to decouple the inter­
nal processing from external memory access patterns. Subband sample
buffering is considered separately in Section 17.5.l.
Table 17.10 indicates the total amount of on-chip memory required

by the DWT engine for different values of the parameter M. The last
column of the table provides a rough estimate of the memory required
to implement a dual-stage processing engine. The benefit of dual-stage
implementations is a significant reduction in the external memory band­
width, as discussed at the end of Section 17.4.2. We base these estimates
on the fact that an M-line dual-stage processor is basically the cascade
of two single-stage processors, generating 2M and M lines of their re­
spective subbands in each pass across the image.
As noted previously, reversible transforms may be implemented using

essentially the same structure, since reversibility does not alter the spa-

15Non-contiguous memory accesses can significantly reduce the bandwidth achieved when
working with DRAM technology.

690 System Considerations

tial support of the horizontal and vertical analysis operators. On the
other hand, the lifting framework suggests a number of potential modi­
fications to the internal machinery depicted in Figure 17.11. The lifting
state machine of Figure 6.13 may be used to replace the shift registers
and analysis blocks shown in the figure, with obvious benefits: instead
of a 9 sample shift register and two quite complex blocks of arithmetic
logic, one needs only 4 state variables, 8 adders and 4 multipliers. More­
over, reversible and irreversible transforms may both be implemented
with essentially the same circuit. If the external memory structure as­
sociated with the vertical transform is based on this same lifting state
machine, as in Figure 17.10, the internal structure of the DWT engine
must be modified accordingly. Again, the most significant advantage of
lifting implementations is their ability to unify the designs of the forward
and the inverse transform.

17.5 SYSTEM CONSIDERATIONS

The purpose of this section is to unify our discussions of block cod­
ing and DWT implementations in Sections 17.2 and 17.4. In particu­
lar, we must account for the resources required to interface these two
sub-systems. To simplify matters, we ignore the storage and I/O re­
quirements of the compressed data itself. When significant compression
is achieved, input and output of the code-block bit-streams should not
substantially impact memory bandwidth consumption. This is less likely
to be the case at very high bit-rates or when truly lossless compression
is expected. In many applications, the embedded code-block bit-streams
might be completely buffered in memory. However, JPEG2000 also pro­
vides progression orders which support compressed data streaming (see
Section 13.1.1). With these progression orders, the total amount of mem­
ory required to buffer code-block bit-streams can be small in comparison
to that required to implement the rest of the system.

17.5.1 CODED DATA BUFFERING

The incremental DWT implementations described in Section 17.4 pro­
duce subband samples M lines at a time. On the other hand, the
block coder consumes these subband samples in blocks, whose maximum
height is described by the parameter, JFax . Likewise, block decoding
produces samples in blocks, which must subsequently be consumed lYI
lines at a time for DWT synthesis. Typical values for JFax are 32 or
64, although some memory constrained compressors might select a much
smaller value such as JFax = 8.

Chapter 17: Implementation Considerations 691

External Memory (e.g., DRAM)
r----------, ,-----------------,
Tntem1cdiatc
LL subbands

Buffered subband samples

LL/) and HLJ,LH••HHJ,d =1.2, ...•D

Processing Chip

Image samples Embedded block bit-streams

Figure 17.12. Loosely synchronized JPEG2000 compressor.

For some applications, it may be possible to arrange for M to be a mul­
tiple of Jfa!(, in which case the subband samples can be quantized and
delivered directly to a collection of block coders as they emerge from the
DWT processing engine. Unfortunately, this requires tight synchroniza­
tion between the block coding and wavelet transform implementations.
Tight synchronization may in turn prevent block coders from realizing
the average throughputs suggested in Section 17.2.2. The amount of on­
chip and external memory required to implement an M-line transform
with M 2:: Jfa!(may also prove prohibitive.
For these reasons, we shall restrict our attention to loosely synchro­

nized implementations, in which quantized subband samples are buffered
in external memory. A pool of block coders (or decoders) processes the
buffered subband samples. The number of block coders which are actu­
ally implemented may be tailored to suit the application's throughput
requirements. Such an arrangement is illustrated in Figure 17.12.
In the system of Figure 17.12, subband samples generated by the

DWT analysis engine are quantized immediately. The quantization in­
dices are temporarily buffered in on-chip memory and written out in
sign-magnitude form, bit-plane by bit-plane. This is important, since
the block coders expect to read the quantization indices bit-plane by
bit-plane, rather than sample by sample (see Section 17.2.1).
As an example, the "bit-plane resequencer" block in Figure 17.12

might collect 64 quantization indices16 from each of the subbands being
generated by the DWT analysis engine. The 64 sign bits would then be

16We could pick any number here, instead of 64. Larger values impose a larger internal
buffering cost, while smaller values reduce the regularity of external memory transactions.

(17.9)

692 System Considerations

written out in 8 contiguous bytes, followed by each of the magnitude bit­
planes in turn. Allowing for double buffering and up to 16 bits for each
quantization index, such a resequencer would require 256 bytes of on-chip
memory for each subband. If a single-stage DWT engine is employed,
three subbands are generated together and the resequencer requires 768
bytes. The resequencer for a dual-stage DWT engine would consume 1.5
kB of on-chip memory. In some cases, even larger resequencing buffers
might be used to improve external memory access patterns.
Assuming that M < Jiax , quantized samples for a full row of code­

blocks must be accumulated in external memory for each subband before
they can be coded. It follows that storage must be allocated for

[t 2-d
. 3Jiax + T DJiax] N2 ;S [3Jiax] N2 samples

d=1

In practice, the external memory must be able to accommodate at least
twice this number of samples so as to partially decouple the block coding
and DWT analysis operations from one another. This is important if
the average block coding throughputs suggested in Section 17.2.2 are to
be realized.
The required subband buffer memory depends on the number of bits

needed to represent each quantized subband sample. If we wish to ac­
commodate entirely lossless compression with 8-bit/sample images, a
12-bit representation is sufficient for all subband samples produced by
the reversible DWT (see Table 17.4). This leads to the following "worst
case" estimates of the memory size and bandwidth required to buffer
subband samples for coding (or after decoding). The memory size figure
is based on double buffering, while the bandwidth figure is based on the
assumption that all 12 bits of each sample must be written to and read
from external memory.

S~&r ~ 6JiaxN2 . Ii = [9Jiax] N2 bytes

B~&r = 2 x Ii = 3 byte transactions/sample

The resources required for lossy compression can be significantly smaller
than these worst case figures, depending upon the quantization step sizes
involved.

17.5.2 BANDWIDTH REDUCTION
Memory bandwidth may be substantially reduced by restricting ex­

ternal memory transfers to only those bit-planes which are actually sig­
nificant. To see how this may be accomplished, recall that the bit-plane

Chapter 17: Implementation Considerations 693

Table 17.11. Average number of bits for each quantized subband sample which must
be buffered in external memory, assuming 8 X8 blocking by the bit-plane resequencer ..

bit-rate:

bits/sample:
Beoder (bytes/sample):

0.25 bps 0.5 bps

0.79 1.43
0.20 0.36

1.0 bps

2.46
0.61

2.0 bps lossless

3.79 5.99
0.95 1.50

resequencer buffers groups of quantized subband samples - 64 in our
example. Now suppose that the resequencer determines the number of
magnitude bit-planes, K, required to represent this group of 64 sam­
ples, storing the value of K to external memory, along with the sign
bits (unless K = 0) and the K significant magnitude bit-planes. The
relevant block coder later retrieves the value of K and reads only the
necessary bit-planes. Schemes of this form are possible precisely because
the quantized subband samples are stored bit-plane by bit-plane rather
than sample by sample. The K values also allow the block coder to
efficiently determine the first bit-plane at which to start coding.
The same approach may be used to conserve bandwidth during de­

compression, in which case a suitable value for K is readily deduced
on-the-fly by the block decoder. The decoder has the opportunity to
save additional bandwidth, since there is no need for it to write out
any undecoded least significant bit-planes. It is common for code-block
bit-streams to be truncated prior to decompression, leaving one or more
undecoded least significant bit-planes. In a simple implementation, the
block decoder would signal the number of undecoded bit-planes, U, in
addition to the value of K, for each group of samples - 64 samples in our
example. The bit-plane resequencer for the DWT synthesis engine need
only retrieve those bit-planes which have been decoded. Unfortunately,
when the last decoded coding pass is not a cleanup pass, p(p,2), the de­
coder must also write a marker bit for each sample to indicate whether
or not that sample was coded in the last bit-plane. See Section 17.1.3
for a description of the marker bit method.
To demonstrate the effectiveness of these techniques, we count the

number of bit-planes which must actually be buffered in external mem­
ory for each 8 x 8 block of subband samples. The results reported in
Table 17.11 are obtained during decompression of the three high reso­
lution test images shown in Figure 8.21. In each case, the code-stream
contains a quality progressive lossless representation of the image, which
is truncated to various bit-rates of interest. Although these results ap­
ply specifically to decompression, the lossless result applies equally to
compression, since there are no undecoded bit-planes and there is no

694 System Considerations

need for marker bits in this case. For convenience, we report the mem­
ory bandwidth, Bcoder, required to read and write each of the buffered
bit-planes. Notice that this figure is much smaller than the worst case
estimate, B~d~r' given in equation (17.9).

17.5.3 PUTTING IT ALL TOGETHER

We conclude this chapter by selecting one particular system configu­
ration and calculating its resource requirements and throughput expec­
tations. We assume maximum code-block dimensions of J1ax = J!fax =
32, which might be the limits set for "Profile-O" code-streams (see Ta­
ble 18.1). We select a dual-stage M-line implementation of the DWT
with M = 8, and a pool of 4 block coders executing in parallel. We
allow for the most complex wavelet kernels supported by Part 1 of the
JPEG2000 standard, having Lmax = 4. External buffering of subband
samples is provided with twice the minimum amount of memory so as to
substantially decouple the DWT analysis and block coding sub-systems.
We also allow for double buffering of the image samples supplied by the
application; this adds 4MN2 bytes to the size of the LLo buffer, since
the dual-stage DWT engine processes 4M image lines together.

The on-chip memory requirements consist of 4 x 345 kB for the block
coders (32 x 32 code-blocks require i the on-chip memory shown in Fig­
ure 17.4), 3.4 kB for the DWT engine (from Table 17.10) and 1.5 kB
for bit-plane resequencing: a total of 8.4 kB. External memory must
be sized to accommodate 74N2 bytes for the DWT (from Table 17.9),
284N2 bytes for subband sample buffering (from equation (17.9)), and
32N2 bytes for double buffering of image samples. This generous ex­
ternal memory allowance is equivalent to 390 original image lines. The
external memory bandwidth consists of 3.0 bytes/sample for the DWT
(from Table 17.9) and at most 1.5 bytes/sample for the intermediate
buffering of quantized subband samples (from Table 17.11): a total of
4.5 byte transactions/sample. Finally, a lossless throughput of about one
sample every two clock cycles could be expected; this is based on the
realistic assumption that the 4 block coders perform concurrent mem­
bership testing, but none of the more advanced techniques discussed
in Section 17.2.2. Of course, higher throughputs could be achieved by
including more parallel block coders on the chip.

It is worth noting that the estimated external memory bandwidth of
4.5 byte transactions/sample includes the cost of writing every image
sample to the LLo buffer and subsequently retrieving it. If the applica­
tion is able to supply image samples on demand, in groups of 4lVI lines
at a time (recall that we are using a dual-stage .!VI-line transform), the

Chapter 17: Implementation Considerations 695

external memory bandwidth may be reduced to about 2.5 byte transac­
tions/ sampIe.
Decompressors can generally achieve somewhat lower memory band­

width and significantly higher throughput when truly lossless perfor­
mance is not required. This is because code-block bit-steams are of­
ten truncated between compression and decompression. Moreover, de­
compressors may judiciously discard coding passes in order to satisfy
throughput or memory bandwidth constraints.
Throughout this chapter, we have consistently ignored the possible

existence of tiles. Although tiles may be treated as independent images,
it might not always be appropriate to process tiles sequentially. For
line-based applications this would require sufficient memory to buffer
an entire row of tiles, which might not be possible if the tile height is
too large. It is possible to incrementally decompress an entire row of
tiles together. However, substantial resources may be spent "thrashing"
between the tiles if they are too narrow. Ideally then, if tiles are used
at all they should not be tall and narrow. If the application is column­
based rather than line-based, tiles which are short and wide will be the
worst offenders. Sensitive to these concerns, JPEG2000 defines profiles
which restrict the allowable tile dimensions. If tiles are used (otherwise,
the entire image is one tile), Profile-O requires them to be square, with
dimensions no larger than 128. Profile-l also insists on square tiles,
with a less restrictive size, if the image is to be tiled at all. Code-stream
profiles are discussed further in Section 18.2.

17.6 AVAILABLE HARDWARE
At the time of this writing, a number of companies are known to be

developing JPEG2000 chip sets. However, to the best of our knowl­
edge, preliminary technical data has been released only for the ADV­
JP2000 chip [19] by Analog Devices Inc. This chip implements both the
DWT and the block coding algorithm. Each of these sub-systems sup­
ports both forward (compression) and reverse (decompression) process­
ing. Other, less computationally intensive aspects of the JPEG2000
algorithm are expected to be implemented as software, in an embed­
ded or general purpose processor which communicates with the ADV­
JP2000 chip. These include layer formation, collecting code-blocks into
precincts, packet header coding, packet sequencing and marker segment
generation. Such a hybrid hardware/software model is eminently rea­
sonable and likely to be adopted by other implementations.
This first chip from Analog Devices does not implement all of the

features required of a compliant JPEG2000 decompressor. Amongst
various less significant limitations, the chip is only capable of processing

696 Available Hardware

images in tiles, having a maximum size of 256 x 256. As explained in
Section 18.2, all conforming decompressors must support untiled images.
Nevertheless, as a compressor, the chip may be used to generate con­
forming JPEG2000 code-streams and, as a decompressor, it is able to
reconstruct its own compressed images. This behaviour may be quite
sufficient for a number of applications, including digital still and video
cameras.
The ADV-JP2000 implements a single block coding/decoding engine,

which supports the full 64 x 64 block size. There is thus plenty of
room for future throughput enhancements, through parallel process­
ing of multiple code-blocks. Nevertheless, the chip boasts a typical
throughput of about 10 Megapixels/second for lossless compression of
4:2:2 sub-sampled colour imagery, at an internal clock rate of 150 MHz.
Throughput for lossy compression/decompression can be significantly
higher. These throughput figures are consistent with the predictions
offered in Section 17.2.2 for block coder implementations which employ
concurrent membership testing on a stripe-column basis17 ; we have been
led to believe that the ADV-JP2000 is based on similar principles.

17 Since 4:2:2 sub-sampled colour images have a total of 2 samples per pixel, a throughput
of 10 Megapixelsjsecond at 150 MHz means 7.5 clock cycles per sample, which is almost
identical to the Rsym + Rempty = 8 clock cycles predicted for lossless compression of natural
imagery using Table 17.2.

Chapter 18

COMPLIANCE

Perhaps the most distinctive feature of JPEG2000 is its emphasis on
and support for scalability. An existing code-stream may be accessed at
a reduced resolution, a reduced level of quality (higher compression), a
reduced number of components and even over a reduced spatial region.
Moreover, the standard supports a rich family of information progression
sequences. Information may be reordered without introducing additional
distortion, thereby enabling a single compressed representation to serve
the needs of a diverse range of applications.
To exploit the scalability of JPEG2000, it is expected that decom­

pressors will often not decode all of the information which was originally
incorporated into the code-stream by the compressor. In fact, it is desir­
able to allow decompressor implementations to ignore information which
is not of interest to their target application. While this flexibility is one
of the strengths of JPEG2000, it also renders inappropriate some of the
conventional compliance testing methodologies which have been applied
to non-scalable or less scalable compression standards.
At one extreme, decompressor implementations might be allowed to

decode any portion of the code-stream which is of interest to them.
At the other extreme, they might be required to correctly decode the
entire code-stream. The first of these extreme approaches offers con­
tent providers and consumers no guarantee concerning the quality of
the resulting imagery. The other approach is also inappropriate, for two
reasons: 1) it offers the implementor no guarantee concerning the re­
sources which may be required; and 2) in many cases the code-stream
may contain information which is of no interest to the application.
At the time of this writing, compliance definitions and testing proce­

dures have not been finalized. In this chapter we summarize the philoso-

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

698 A System of Guarantees

phy and testing methodologies which are expected to underpin Part 4 of
the standard; Part 4 is concerned with compliance testing. The material
presented here is based on a new working document for Part 4, which
was created at the March 2001 WG1 meeting in Singapore.

18.1 A SYSTEM OF GUARANTEES
Compliant implementations of the decompressor are not obliged to

decode the entire code-stream with which they are presented. They are,
however, required to guarantee performance up to one of a number of so­
called "compliance classes." The relevant guarantees are connected with
key resources required by an implementation. They may be interpreted
as a contract by the implementation to recover, decode and transform
a well-defined minimal subset of the information contained in the code­
stream. This contract is described in a manner which scales with the
maximum output image size to which the decompressor claims compli­
ance. The contract may be exploited by content providers to optimize
recovered image quality over a family of decompressors, according to
their compliance classes. The decompressor guarantees which constitute
these classes are described more carefully in Section 18.3.
Unfortunately, legal JPEG2000 code-streams may involve adverse pa­

rameter choices, which could prevent a reasonable resource constrained
decompressor from recovering any useful information whatsoever. To
encourage the deployment of cost effective implementations, the stan­
dard defines a number of profiles which explicitly restrict such adverse
choices. These profiles may be understood as offering guarantees to the
implementor of a compliant decompressor, concerning the "nastiness" of
the code-stream which may be presented to them. The role of profiles in
JPEG2000 is limited only to restricting parameter choices which might
completely "break" a resource limited implementation. Decompressors
are not generally obliged to process all of the information in the code­
stream with which they are presented; their obligations extend only to
the guarantees which they themselves are offering to content providers,
as embodied by the relevant compliance class. Code-stream profiles are
the subject of Section 18.2 below.
By and large, the JPEG2000 standard places few restrictions on how a

compressor should use the flexibility offered by legal code-streams. Nev­
ertheless, there are a number of guarantees which compressors might
be expected to offer their respective applications. Certainly, a compli­
ant compressor is obliged to create legal code-streams, as described in
Chapter 13. It may also be required to create code-streams conforming
to one or another of the restricted profiles described below. If lossless
performance is claimed, the compressor must be capable of losslessly

Chapter 18: Compliance 699

compressing images of a given size, bit-depth and number of image com­
ponents. If error resilience is required, the compressor must also be ca­
pable of implementing the error resilient termination procedures for MQ
and/or raw codeword segments, exactly as described in Section 12.4.I.
Together, this system of inter-working guarantees serves to protect de­

compressors from malicious code-streams, to protect content providers
from uncooperative or inadequate decompressors, and to preserve the
flexibility and scalability of JPEG2000 code-streams. Conformance to
the various guarantees is externally testable, so that it is possible to
identify the non-compliant element in a system which does not behave
as expected. At the same time, content providers are free to include
information in the compressed code-stream, which most compliant de­
compressors will not be obliged to reconstruct. By encouraging this
practice, JPEG2000 code-streams should be able to serve the needs of a
wide range of applications.

18.2 CODE-STREAM PROFILES
Code-stream profiles represent restricted subsets of the JPEG2000

syntax. The reader may be familiar with the notion of profiles, as used
in the various MPEG video compression standards, where they playa
substantial role. In JPEG2000, however, profiles playa much less sig­
nificant role, since compliant decompressors are not required to recover
all of the information in the code-stream. JPEG2000 profiles exist only
to ensure that reasonable implementations will be able to recover at
least some of the information in the code-stream. Hard restrictions of
any form on the JPEG2000 code-stream syntax have the potential to
jeopardize scalability and/or inter-operability. For this reason, profiles
have been the subject of much debate and the material presented in this
section may be subject to some further revision.
Although profiles may be understood as part of the compliance regime,

they are unlikely to be described in Part 4 of the standard. Instead, the
WG1 committee opted to include profiles as an amendment [66J to Part
1, primarily for reasons of expediency. Table 18.1 summarizes the restric­
tions embodied in this amendment, with a number of minor modifica­
tions which are quite likely to be adopted. Notice that only two profiles
are defined: a "Profile-O;" and a "Profile-I." Code-streams conforming
only to the unrestricted JPEG2000 syntax described in Chapter 13 may
be identified as "Profile-2."
Decoders may determine in advance whether the code-stream con­

forms to one of the restricted profiles by inspecting the capabilities
word, CA, in the BIZ marker segment (see Section 13.3.5). A value
of 000lh for this 16-bit quantity indicates that the code-stream con-

700 Code-Stream Profiles

Table 18.1. Restricted code-stream profiles.

Type of restriction Profile-O Profile-l

Code-block dimensions ·Option A:
Option B:
Option C:

J:'C, J;'c = 32
J:'c, J;'c = 64
J:'c, J;'c S; 64

Coder mode switches

Tile dimensions

Sub-sampling factors

Canvas coordinates

LLD subband size

PPM / PPT markers
COD / COC markers
QCD / QCC markers

RGN up-shift parameter

Disallowed (except ERTERM)

T1 = T2 E {64,128}
or no tiling, i.e.,

OJ +Ti ~ Pi, i = 1,2
Sf, S2 E {I, 2}

OS; Ei , Pi, Ti ,OJ < 231

r..fl..l- r~l < 1202 Dc 2 Dc-

r~l - r18Ll< 1602 Dc 2 Dc-

for c = 0,1,2

Disallowed
Main header only
Main header only

US; 37

No restriction

T1 = T2 S; 1024
or no tiling, i.e.,

OJ + Ti ~ Pi, i = 1, 2
No restriction

r..fl..l- r~l < 1202Dc 2 Dc-

r~l- r18Ll < 1602 Dc 2 Dc-

for c = 0,1,2

No restriction
No restriction
No restriction

US; 37

*Three options are still being considered for code-block dimensions in Profile-O.

forms to Profile-O, while a value of 0002h indicates that the code-stream
conforms to Profile-I. The value OOOOh, means that any legitimate Part
1 code-stream may follow.

EXPLANATION OF PROFILES
Some justification for the restrictions on tile dimensions has already

been given in Section 17.5.3. As noted in Table 18.1, restrictions on
code-block dimensions for Profile-O are still under consideration. Larger
code-blocks yield somewhat higher coding efficiency, while offering less
flexibility for rate control and spatial access to the image. Following
the discussion in Sections 17.2.3 and 17.5.3, larger code-blocks have ad­
verse implications for on- and off-chip memory requirements. On the
other hand, larger code-blocks reduce the amount of memory required
for managing state information for each block. This is of particular
interest during compression, where the lengths and distortion contribu­
tions for each coding pass may need to be stored. Since many of these
trade-offs are highly dependent on implementation strategies and appli-

Chapter 18: Compliance 701

cation requirements, the weaker conditions associated with Option Care
appealing from the perspective of maximizing inter-operability. In that
case, Profile-O and Profile-l would be fully compatible at the code-block
level.

It is worth noting that any lower bound imposed on the nominal code­
block dimensions, J:'c and J~'c, may be overridden by the selection of
sufficiently small precinct dimensions, to which no restriction currently
applies. Similarly, although Profile-O and Profile-l both restrict tile di­
mensions to be square (if the image is tiled), there is no requirement
that component sub-sampling factors be identical in both directions.
Consequently, when mapped into any particular image component, the
elements of the tile partition might no longer be square.
The LLD (DC subband) size restriction prescribed by both Profile-O

and Profile-l should not be understood as limiting the size of the com­
pressed image. The requirement can always be satisfied by employing
a sufficiently large number of DWT levels, D. The notation, Dc, intro­
duced in Table 18.1 refers to the minimum number of DWT levels in any
tile of component c, i.e.,

Dc ~ minDtc
t '

The LLD size restriction ensures that a decompressor will be able to
reconstruct a low resolution version (thumbnail) of any or all of the first
three image components, whose height is no larger than 120 samples and
whose width is no larger than 160 samples. Compressors would do well
to respect this constraint even when not targeting Profile-O or Profile-I.
The reader may wonder why the two profiles identified in Table 18.1

restrict the various canvas coordinates to 31-bit unsigned integers, while
the BIZ marker signals these quantities as 32-bit unsigned quantities.
This minor restriction should have no impact on most practical uses of
the standard, but may simplify the reliable representation and manipula­
tion of canvas coordinates using 32-bit integer arithmetic. Signed integer
representations of the canvas coordinates are particularly appealing for
implementations which support geometric manipulation of the image,
as it is being decompressed. Capabilities such as this are offered by the
Kakadu software supplied with this text.
For an explanation of the restriction of the RGN marker segment's

up-shift parameter to the range U S 37, the reader is referred to Sec­
tion 10.6.3.

IMPACT ON JPEG2000 FEATURES
The profile restrictions appearing in Table 18.1 have relatively little

impact on the key features offered by JPEG2000. Perhaps the most

702 Decompressor Guarantees

significant exception to this is the disabling in Profile-O of all block
coder mode switches: BYPASS, RESET, RESTART, CAUSAL, and
SEGMARK. As explained in Section 12.4.3, error detection and con­
cealment during block decoding relies on either the SEGMARK mode
or, preferably, the combination of both ERTERM and RESTART mode
switches. Neither of these constructions is compatible with Profile-O as
it currently stands.
Profile-1 should be sufficient to meet the needs of the vast majority

of applications. To maximize inter-operability, therefore, all software
implementations are strongly encouraged to support at least Profile­
1. Hardware decompressors should also aim to support Profile-1 code­
streams unless the cost proves prohibitive. Fortunately lossless or near­
lossless transcoding between profiles is often possible. For example, a
Profile-1 code-stream which uses 64 x 64 code-blocks may be transcoded
into one which uses 32 x 32 code-blocks, with negligible or no additional
distortion l . Block coder mode switches may also be added or removed
without incurring distortion, except in the case of the CA USAL switch.
On the other hand, tile dimensions cannot generally be changed without
introducing more significant levels of distortion. Inter-operability across
profiles can usually be improved by avoiding tiling, since all profiles must
support untiled images.

18.3 DECOMPRESSOR GUARANTEES
Decompressor guarantees are made in connection only with one or

more of the code-stream profiles discussed in Section 18.2. The guar­
antees are expressed in relation to image dimensions, H (height) and
W (width), and a number of components, 0, at which the implementa­
tion claims compliance. The values, H, Wand 0 are not dependent in
any way on the code-stream which is actually being decompressed. Nor
do they impose restrictions of any form on the code-streams which the
implementation must be able to process in a compliant manner. They
refer only to the claimed capabilities of the decompressor. The dimen­
sions H, Wand 0 at which compliance claims may be made and tested
are identified as "compliance levels," as outlined in Section 18.3.4.
The guarantees (or obligations) expected of a compliant decompressor

are described in three categories, each of which is loosely associated with
one of the sub-systems which might be found in a typical implementa­
tion. The categories are as follows.

1 Coding pass membership may be altered for samples 011 the boundaries of the 32 x 32 code­
blocks and the effects may propagate to some interior samples, leading to a small illCl'ease in
distortion when the code-block terminates with anythillg other thall a cleanup pass.

Chapter 18: Compliance 703

Parsing obligations: Implementations are expected to be able to re­
cover all of the code-block contributions from the code-stream which
are relevant to their claimed resolution, H xW, and number of com­
ponents, C. They are released from this obligation only in the event
that a so-called "parser quit" condition is encountered. This condi­
tion is developed further in Section 18.3.1 below.

Block decoding obligations: Except as described below, decompres­
sors are expected to decode all of the compressed bits which are avail­
able for code-blocks belonging to their claimed resolution, H x W,
and number of components, C. Specifically, these are the code-blocks
which belong to any resolution r, of any tile t, in any image compo­
nent c, such that

c<C, r F) 1 r E] 1':5:H2Dt,c- r sr - 2Dt ,c- r sr
(18.1)

and r Fz 1 r Ez 1':5:W2Dt,c-r s~ - 2Dt ,c- r s~

The reader is referred to Chapter 11 for a thorough explanation of
the notation used here.

Decoders are not obliged to decode compressed bits representing any­
thing other than the most significant K min magnitude bit-planes of
any code-block. This is explained further in Section 18.3.2 below. Of
course, there is also no need to decode compressed bits which are not
recovered from the code-stream as a result of the "parser quit" con­
dition being reached. Apart from these two exceptions, all relevant
compressed bits must be correctly decoded.

Sample transformation obligations: Decompressors are obliged to
implement both the reversible spline 5/3 transform and the irre­
versible CDF 9/7 transform to a prescribed level of accuracy. They
are also obliged to implement dequantization and colour transforma­
tion to a prescribed level of accuracy. These accuracies are expressed
in terms of two quantities, pmin (irreversible precision) and B min (re­
versible bit-depth), as developed in Section 18.3.3 below. Note that
the accuracy with which sample data transformations are performed
is only partially responsible for the final reconstructed image quality,
since compressed data may be lost during both parsing and decoding.
This is true even for losslessly compressed images.

704 Decompressor Guarantees

.-0
- >0._

.;::; en
:3'"_0
0
",cl}
00

tX5.-

Il.l
>.....-

o ~
>'0
<Il
...Jcl}o....

0..

_----A----_r

Figure 18.1. Impact of resolution and layer progressive packet sequences on parsing
resources.

18.3.1 PARSING OBLIGATIONS
BACKGROUND: PARSING RESOURCES

In order to recover compressed bits from the code-stream it is neces­
sary to parse packet headers. The relevant packets are those belonging
to tile-component resolutions which satisfy equation (18.1). Unfortu­
nately, the resources required to locate and recover all relevant packets
from the code-stream can depend upon the number and positions of any
irrelevant packets encountered while searching for relevant ones. The
reason for defining a "parser quit" condition is to bound the resources
which implementations must commit to parsing over irrelevant packets
in the code-stream. Once these bounds are exceeded compliant decom­
pressors are at liberty to discard information from the code-stream, re­
gardless of its relevance. Knowing these bounds, content providers may
anticipate the minimum quality which will be achieved by a compliant
decompressor and use this information to construct code-streams which
are appropriate for the intended range of applications.
To appreciate the parsing problem, it is instructive to consider reso­

lution and layer progressive packet sequences of a single code-stream, as
illustrated in Figure 18.1. This simple example involves only one image
component, c = 0, with two quality layers, l = 0,1, four resolution lev­
els (D = 3 DWT levels), and one precinct, P = 0, per resolution. We

Chapter 18: Compliance 705

assume the image dimensions are such that only the first two resolution
levels contain relevant information, in accordance with equation (18.1).
The four relevant packets are identified by darker shading in the figure,
while irrelevant packets are shaded lightly.
Figure 18.1 identifies two different types of memory resources which

may be associated with parsing. Precinct state memory maintains the
state of tag tree nodes and various other quantities, which are specific
to each precinct. Storage for this state information is required from
the point at which the first packet of the precinct is encountered, until
the last packet of the precinct has been parsed. It is helpful to think
of the parser "opening a file" on the precinct2 when its first packet is
encountered and "closing the file" when the last packet has been parsed.
The cost of maintaining this open "file" is the precinct state memory.
In the absence of SOP, PLM or PLT marker segments, files must be
opened on all precincts, whether relevant or not, up until the point at
which the last relevant packet has been parsed from the code-stream.
This is because the only guaranteed way to determine the length of a
packet and hence find the start of the next packet is by fully parsing its
header.
The second type of memory resource identified in Figure 18.1 is that

required to store the compressed code bytes recovered from packet bod­
ies. Although it may sometimes be possible to decompress and discard
code bytes as they appear, it will usually be necessary to buffer most or
all of the compressed data in memory before decompression of the image
can commence. Of course, there is no need to preserve compressed data
from the irrelevant packets.

PRECINCT STATE MEMORY
Evidently, some code-stream organizations require less parsing re­

sources than others. As seen in Figure 18.1, resolution progressive or­
ganizations are generally preferable to layer progressive organizations,
since decompressors with lower target resolutions need not allocate state
memory for the higher resolution precincts, in which they have no inter­
est. On the other hand, layer progressive organizations have incremental
refinement properties which are desirable for some applications. In or­
der to support a wide range of applications, while enabling cost effective
compliant implementations, a "parser quit" condition is defined, which
roughly reflects the buffering resources which might be required. Specif­
ically, let x denote any particular location in the code-stream and let

2The analogy here is with files stored in a filing cabinet; once the file is closed, it might be
discarded from the filing cabinet.

706 Decompressor Guarantees

II)

>....-
II)lIl

>.~"'ltlllo...
0.

Figure 18.2. Evolution of Ncb (x) with parser location x, showing the packets at
which Ncb (x) increases and a hypothetical "quit" point.

Ncb (x) denote the total number of code-blocks whose precincts have
been opened prior to location x. Compliant implementations are not
obliged to parse beyond any point x at which Ncb (x) exceeds a defined
threshold, Nluit

. The obligation is the same regardless of whether the
code-stream contains SOP, PLM or PLT marker segments, although
some implementations might be able to take advantage of them to re­
duce memory consumption.
Figure 18.2 illustrates the evolution of Ncb (x) as the parser advances

through the code-stream, identifying those packets in which the value
of Ncb (x) increases; these are the packets which open new precincts.
For the example shown in this figure, we use the same two code-stream
organizations and the same set of relevant packets as in Figure 18.1. The
full resolution image in this case has dimensions 256 x 256 and the code­
block dimensions are J1 = h = 32, so that the subbands at DWT levels
d = 1, 2 and 3 each consist of 16, 4 and 1 code-blocks, respectively. For
convenience, Figure 18.2 explicitly identifies the number of code-blocks
represented by each packet, i.e., those belonging to the packet's precinct.
IfN: it < 64, the decompressor will not be obliged to parse past the first
two packets of the layer progressive code-stream, skipping the second
quality layer altogether. Recall that only the first two resolution levels
are considered relevant to the parser in this example.
At this point, it is helpful to consider the relationship between Ncb

and precinct state memory resources. When a precinct p is first opened
(first packet is encountered), having N~) code-blocks, memory may be
required to store the following quantities.

Chapter 18: Compliance 707

Inclusion tag tree state: The tag tree has one leaf node for each
code-block. The number of additional nodes at higher levels in the
tree is typically about kN{b' but is guaranteed to be strictly less than
N{b' This upper bound corresponds to the case where the precinct is
much narrower than it is tall, or vice-versa. Each node must maintain
a 16-bit state variable, w(t)[n], which eventually (after everything has
been decoded) represents the index of the first quality layer to which
any subordinate code-block contributes. The tag tree decoding algo­
rithm on Page 386 identifies a second 16-bit state variable, w(t) [n],
for each node. However, since w(t) [n] and w(t) [n] never differ by
more than 1, the total cost per node may be reduced to as little as
17 bits. The overall cost may thus be bounded by 34N{b bits.

Missing MSBs tag tree state: Similar considerations apply here to
those for the inclusion tag tree, with two exceptions. Firstly, the
number of missing MSBs, Kbnsbs, for any code-block Bb, may not ex­
ceed 37 unless ROJ adjustments are involved, in which case it may
not exceed 292 (74 if the restriction U :s 37 appearing Table 18.1
applies)3. Secondly, persistent state information need not be main­
tained for the leaf nodes of the tree, since all decoding steps for KbllSbs
are executed in the first packet to which block Bb contributes. We
conclude that the state memory may be bounded by 9N{b bits (7N{b
if the restriction U :s 37 applies).

Length signalling state: As described in Section 12.5.4, the number
of bytes associated with non-empty code-block contributions is sig­
nalled using a state machine, having state variable {3b, which is unique
to each code-block Bb. Assuming at most 5 bits to represent this state
variable, the total cost becomes 5Ntb bits.

Number of included coding passes: If the BYPASS mode switch
is used without RESTART, the number of lengths which must be
signalled in the packet header for each contributing code-block de­
pends upon the number of coding passes which have already been
contributed by that code-block in previous packets. Details of the
length signalling algorithm are described in Section 12.5.4. It is suf­
ficient here to note that length signalling depends upon the identity
of the most recently contributed coding pass (significance propaga­
tion, magnitude refinement, or cleanup) and whether the bit-plane

3The limit of 37 may be deduced from equation (10.22), noting that the maximum value of G
(guard bits) is 7 and E (quantization exponent or reversible ranging parameter) is 31. When
ROI adjustments are involved, the limit may be deduced from equation (10.33), noting that
the maximum value of U (upshift) is 255 (37 for Profile-O and Profile-I) code-streams.

708 Decompressor Guarantees

to which that pass belongs is p = K - 1, p = K - 2, p = K - 3
or p :s K - 4 (see Figure 12.11). In all, this information can be
represented using only 4 bits, for a total cost of 4N[b bits.

Each of these quantities grows linearly with the number of code-blocks
in the precinct. A highly efficient implementation may be able to expend
as little as 7 bytes per code-block, although many implementations will
require somewhat more memory. While this is usually small compared
with the size of the compressed code bytes themselves, the precinct state
memory cost can easily become burdensome when the image contains
many irrelevant precincts, especially when these correspond to higher
resolutions than those targeted by the implementation.

It is worth noting that Ncb (x) is a non-decreasing function of x. It is
augmented whenever a new precinct is opened, but not decreased when
the precinct is closed. This deliberate simplification is introduced so as
not to force compliant decoders to efficiently reuse memory allocated for
precincts which have since been closed. Such reuse might cause memory
fragmentation and interfere with the behaviour of some implementa­
tions. The cursory memory analysis presented above is intended only to
illustrate the reasoning underlying the development of the parser quit
condition. Practical implementations may require much more memory
and may need to store values not explicitly considered here. In partic­
ular, we have not considered the additional quantities which must be
preserved for those code-blocks which are actually relevant.
Before moving on, we point out that there is actually no need to
"open" a precinct until its first non-empty packet has been encountered.
By "non-empty," we mean a packet which contains one or more body
bytes. Empty packets include those whose first header bit is 0 (empty
header) as well as those containing valid header bits which identify the
body of the packet as empty. Packet emptiness is discussed thoroughly
in Section 12.5.3. From that discussion, we may deduce that the first
non-empty packet for any precinct with resolution r > 0 is the first
packet, if any, whose first header byte exceeds 8Fh. For precincts with
resolution r = 0, the first non-empty packet is that whose first header
byte exceeds BFh. The value of Ncb (x) is incremented only when the
first non-empty packet of a new precinct is encountered.
The importance of this "empty packet" condition should not be under­

estimated by content providers or neglected by compliant decoders. As
mentioned above, if Nluit < 64 in Figure 18.2, a compliant lower reso­
lution decoder might only be able to recover the first quality layer from
the layer progressive code-stream. On the other hand, if packet 90,3,0,0
were empty, the parser quit condition would not be reached until after
all relevant packets had been recovered. Empty packets are commonly

Chapter 18: Compliance 709

encountered in the higher resolution levels of a layer progressive code­
stream and compressors would do well to deliberately introduce such
structure, so as to exploit the limited resources offered by compliant
decompressors with lower resolution capabilities.

PARSER QUIT CONDITION
In the preceding discussion, we have been concerned only with the

precinct state memory. The complete parser quit condition is formu­
lated to bound both the precinct state memory and the compressed data
memory associated with relevant code-blocks. To this end, let L!wdy (x)
denote the total number of relevant packet body bytes which have been
encountered prior to location x in the code-stream. Again, a packet
is deemed to be relevant if its precinct belongs to any tile-component
resolution satisfying equation (18.1). A compliant implementation is
permitted to "quit" once either of the following two conditions occurs.

Quit condition 1: Ncb (x) > N~\:lit

Q ' d" 2 L () LCjllitUlt con ItlOn : body X > body

If either of these conditions occurs, the decompressor is released from
its obligation to continue parsing the code-stream. Whether it does so
or not, all packet body bytes recovered from the code-stream up until
such a point must be processed by the block decoder, subject to the
obligations described below. It is up to the content provider (i.e., the
compressor) to ensure that the more important code bytes appear early
in the code-stream.
Actual values for NJ~it and L~~~y depend upon the compliance class

and level (H, Wand C) at which compliance is claimed, as described in
Section 18.3.4.

18.3.2 BLOCK DECODING OBLIGATIONS
The block decoder is obliged to decode all of the packet body bytes

recovered while parsing the code-stream, in accordance with the obliga­
tions described above. This requirement is limited to the most significant
K min magnitude bit-planes of each code-block. The actual value of K min

depends upon the compliance class at which compliance is claimed, as
identified in Table 18.2. More specifically, the block decoder must cor­
rectly decode the first

(18.2)

coding passes, if available, of any relevant code-block, Bb. Here, Kb"sbs

is the number of missing most significant bit-planes signalled in the

710 Decompressor Guarantees

appropriate packet header, as explained in Section 12.5.3. The relevant
code-blocks are those belonging to any tile-component resolution which
satisfies equation (18.1).
The decoder is free to decode any number of additional coding passes,

but it is only obliged to decode the first Zbin passes. All decoded infor­
mation must be correctly processed by subsequent dequantization and
transformation operations, subject to the obligations outlined in Sec­
tion 18.3.3 below.
Compliance testing procedures will involve code-streams with at most

K min magnitude bit-planes in any code-block. By constructing these
code-streams in such a way as to avoid any limitations associated with
the "parser quit" condition or sample data transformations4 , the imple­
mentation's ability to decode all K min bit-planes may be probed from
the outside.

IMPLICATIONS FOR CONTENT PROVIDERS
According to equation (18.2), the number of coding passes which a

content provider can expect to be processed by a compliant decompressor
depends upon the number of missing MSBs, KbDsbs. This in turn, de­
pends upon the number of guard bits, G, selected by the compressor. To
make optimal use of the decompressor's declared capabilities, compres­
sors should generally select the smallest value of G which is consistent
with the absolute bounds of equation (10.21). For reversible processing,
compressors should select the smallest value ofG+Eb which is consistent
with equations (10.29) and (10.31). Appropriate choices are discussed
in Section 10.5.
If the "max-shift" method is used to encode user-defined regions of

interest, the number of bit-planes required to represent the quantized
subband samples may be increased by U, the up-shift value signalled
in the RGN marker segment. This is explained in Section 10.6.3. The
most significant Kbax magnitude bit-planes of each code-block in sub­
band b represent foreground information (Le., the region of interest). Of
the remaining U magnitude bit-planes, only the least significant Kbax
can possibly contain any information concerning the background sam­
ples. Accordingly, compliant decoders can only be expected to recover
information from the background region in subband b if

4 As an example, the DWT might not be used (D = 0), dequantization might be avoided by
selecting the reversible processing path, and colour transformations might also be avoided.

Chapter 18: Compliance 711

Using equation (10.32) we conclude that no background information will
be decoded unless

K
min > max K

max
b b

In practice, K min will need to be at least 2 or 3 bits larger than the
largest Kbax value if a recognizable reconstruction of the background
region is to be required.
In view of these considerations, content providers interested in ROI

capabilities should endeavour to minimize the largest K bax value. If
reversible transformation is selected, this largest Kbax is largely inde­
pendent of the number of DWT levels. A bound of B + 3 bits may be
deduced from Table 17.4, where B is the image bit-depth. If the irre­
versible 9/7 transform is used, rate-distortion optimal quantization step
sizes roughly halve with each additional DWT level. Accordingly, the
maximum Kbax grows linearly with the number of DWT levels, D. This
suggests that content providers interested in ROI capabilities should use
the reversible transform, unless the number of DWT levels is small - in
that case, quantization step sizes should be selected as large as possible5 .

18.3.3 TRANSFORMATION OBLIGATIONS
REVERSIBLE PROCESSING
Compliant decompressors are obliged to implement the reversible 5/3

DWT exactly, for bit-depths of B min bits/sample or less. The actual
value of B min depends upon the compliance class at which compliance
is claimed, as identified in Table 18.2. If the reversible colour transform
(RCT) has been employed, the implementation must be able to perform
both the inverse DWT and the inverse RCT exactly, for bit-depths of
B min bits/sample or less. As shown in Section 17.3.2, internal represen­
tations involving B min + 5 bits (Bmin +4 if the RCT is not used) should
be sufficient to satisfy these reversible processing obligations, regardless
of the number of DWT levels, D.
When presented with code-streams which require reversible process­

ing to bit-depths in excess of B min bits per sample, it is not currently
clear what a compliant implementation mayor may not be obliged to
do. One reasonable policy would be to treat the image as though it
had a lower bit-depth, discarding any block coding passes which are in­
consistent with the lower bit-depth. The reconstructed image samples
would then approximate a scaled (down-shifted) version of the original
image samples. The approximation could be improved by working with

OWe riote that very large compressed images which satisfy the LLv size requirements of
Profile-O and Profile-l (see Table 18.1) may need a large number of DWT levels.

712 Decompressor Guarantees

linearized versions of the reversible DWT and colour transformation op­
erators whenever the bit-depth exceeds the implementation's capacity
for exact reversible processing.

IRREVERSIBLE PROCESSING
As in Chapter 10, it is convenient to regard irreversible processing in

terms of real-valued sample values, normalized to a nominal range of 0 to
1 (or -~ to ~). The irreversible processing steps include dequantization,
the inverse CDF 9/7 DWT and the irreversible colour transform, if used.
For any particular set of decoded quantization indices for the subband
samples, let x~ef [n] denote reference reconstructed sample values for im­
age component c. These reference samples are obtained by applying the
relevant irreversible processing steps using infinite precision arithmetic.
Dequantization is performed using the mid-point reconstruction rule,
i.e., setting 8 = ~ in equation (10.27).
For the purpose of compliance testing, decompressors must be capa­

ble of performing dequantization using the mid-point reconstruction rule,
even though other dequantization policies are allowed by the standard.
Let Xc [n] denote the actual image sample values recovered by the imple­
mentation using this dequantization policy. Compliance is assessed with
respect to the error, 8xc in], between Xc [n] and x~ef in]' both of which are
understood as real-valued quantities, having the normalized representa­
tion mentioned above, with unit nominal range. The actual means used
by the implementation to represent Xc [n] is not specified; reasonable
candidates include both floating point and fixed point representations.
In any event, x~ef [n] is a real-valued quantity, so approximations associ­
ated with the representation of Xc [n] do contribute to the error, 8xc [n].
As explained in Section 10.1.1, the irreversible processing path is actu­
ally independent of the bit-depth B, specified in the BIZ marker.
At the time of this writing, it is not clear exactly how bounds on the

irreversible processing error 8xc [n], will be specified. In the remainder
of this section we indicate one possible approach, based on the MSE
(Mean Squared Error),

As shown in Section 17.3.3 (see Table 17.8), fixed point implementa­
tions can be expected to exhibit approximation errors whose MSE grows
roughly linearly with the number of DWT levels, D. This suggests that
compliance for the irreversible DWT should also be defined in terms of
an MSE bound which is proportional to D.

Chapter 18: Compliance 713

To accommodate approximations introduced by any irreversible colour
transform, as well as finite precision representation of the decompressed
sample values Xc [n], some error must be tolerated even when D = O. A
simple formulation might be

2 2 D 2
(J"6X ::; (J"fixed + max(J"var

where (J"~xed allows for colour transformation and representation errors,
(J";ar allows for DWT errors and Dmax denotes the maximum number
of DWT levels in any tile-component of the image. The condition may
equivalently be formulated as a bound on PSNR, with

PSNR = -10 10glO (J"lx
2: pmin - 10 10glO (Dmax + Dofr)

where pmin may be interpreted as the minimum "PSNR per DWT level"
and Doff is a level offset term, defined by

2
D ~ (J"fixed

off - -2-
(J"var

In this way, compliance can be defined in terms of the two quantities,
pmin and Doff,

Possible values for pmin and Doff are listed in Table 18.2. It is in­
structive to consider how these values were derived. Class-O, for ex­
ample, is intended to serve the needs of typical 8-bit image compres­
sion applications. In this case, many implementations will represent the
decompressed sample values using 8-bit quantities, as assumed in Sec­
tion 17.4.2, even if the BIZ marker specifies a much larger bit-depth.
The representation of real-valued quantities in the range 0 to 1 (or -~
to ~) using 8 bits is analogous to uniform quantization and incurs an
MSE of about 112 .2-

16 . The value of (J"~xed must be somewhat larger to
accommodate approximation errors in the implementation of any inverse
colour transform. The numbers in Table 18.2 are obtained by setting

2 1 -16
(J"fixed = 2 x 12 . 2

which gives us

and 2 1 2
(J"var = "5 (J"fixed

Doff = 5 and pmin = 63 dB

Before leaving this section, it is worth noting that it is possible to
independently test the accuracy with which irreversible transforms are
implemented. In particular, such tests can be conducted by supplying
test code-streams with a resolution progressive organization (so that the

714 Decompressor Guarantees

Table 18.2. Compliance class definitions.

Parameter Class-O Class-1 Class-2

N:I~JiI (code-blocks) (~~ + 128) C (~5~ + 128) C (~5~ + 128) C

L~~~y (bytes) H (high) HWC ~HWC 3HWC2

L~~~y (bytes) T (typical) ~HWC i HWC lHWC
2

L~~~y (bytes) S (sequential) NjA NjA NjA

K min (bit-planes) 12 16 30

Bmin (reversible bit-depth) 8 12 16

pmin (PSNR per DWT level) 63 dB 87 dB 100 dB

Doff (irreversible level offset) 5 5 5

parser quit condition is not encountered) and with no more than K min

magnitude bit-planes in any code-block (so that all coding passes must
be fully decoded). It is also worth noting that compliance tests based
on statistical measures such as MSE are only meaningful in the context
of well defined test streams.

18.3.4 COMPLIANCE CLASSES
CLASSES AND LEVELS
As mentioned previously, Part 4 of the JPEG2000 standard is still

under development at the time of this writing. The material presented
in this chapter is based upon a new working document adopted for this
standardization effort, but is by no means set in stone. Implementors
should consult the standard itself, once available, to be certain of the
exact conditions which govern compliance.
Table 18.2 summarizes the parameters associated with each ofthree

compliance classes, denoted Class-O, Class-l and Class-2. These parame­
ters are themselves defined in terms of dimensions, H, Wand C, which
should be interpreted as the maximum image dimensions and number
of components which the implementation is prepared to support. To
facilitate testing, compliance may be claimed only at one of the specific
sets of dimensions specified in Table 18.3. These dimensions constitute
what we might consider "levels" of compliance, within any given class.
Of course, an implementation claiming compliance at one level, must
also be compliant at all lower levels. Notice that compliance must be
claimed for C = 4 image components, except at the lowest spatial reso­
lution where it is acceptable to claim only monochrome processing.

Chapter 18: Compliance 715

Table 18.3. Levels (dimensions) at which compliance may be claimed within each
class.

Level H W C

Level-O 120 160 1
Level-1 120 160 4
Level-2 240 320 4
Level-3 480 640 4
Level-4 960 1280 4

INTERPRETATION OF COMPLIANCE CLASSES
The minimum compliance class, Class-O ensures sufficient resources

to allow truly lossless performance to a bit-depth of at least 8 bits per
sample6. This does not mean that lossless performance will be achieved,
even if the code-stream contains a lossless representation of the image.
It might not be achieved if the code-stream contains a large amount
of irrelevant information (e.g., extra image components, which are not
targeted by the particular decompressor under consideration), so that
the parser quit condition, Ncb (x) > N:it

, occurs before all relevant
information has been recovered.
Again, lossless decompression might not be achieved, even if the code­

stream contains a lossless representation of 8-bit imagery, if the compres­
sor employed an unnecessarily large number of guard bits, G, or unneces­
sarily large ranging parameters, Cb, for some subbands, or if ROI adjust­
ments are involved. The compressor is at liberty to make such choices
and their potential impact on Class-O decompressors is well-defined.
Class-1 guarantees sufficient resources for truly lossless performance to

a bit-depth of at least 12 bits, while Class-2 guarantees resources which
might be reasonable to expect from a typical software implementation.
In particular, Class-2 decompressors should be able to fully decompress
both foreground and background regions when ROI adjustments are ap­
plied to 8-bit imagery. Again, the image quality which is actually real­
ized depends upon numerous choices which the compressor is at liberty
to make.

6As explained in Section 17.3.2, B + 5 bits are sufficient to represent the subband samples
associated' with reversible transformation of B-bit image samples, even when the RCT is
employed. Since all quantities are signed integers, the number of magnitude bits need not
exceed B + 4. This is why Class-O defines Bmin = 8 and Kmin = 12,

716 Decompressor Guarantees

INTERPRETATION OF H, T AND S MODIFIERS
To fully specify a decompressor's compliance class, one of the modi­

fiers, H (high), T (typical) or S (sequential) must be given. As indicated
in Table 18.2, Class-O-T guarantees sufficient resources to decompress
an image compressed to 1 bit per sample (8:1 compression for 8-bit
imagery). Again, this represents a commitment on the part of the de­
compressor, which mayor may not be exploited by the compressor which
generates the code-stream. If the code-stream contains a representation
of the image (or the subbands which are relevant to the decompressor
in question) whose bit-rate exceeds 1 bit/sample, the decompressor is
at liberty to discard the excess bits. The quality of the resulting image
will depend on the organization of the code-stream. Specifically, a layer
progressive organization may yield superior image quality to a resolution
progressive organization if the quit condition, L~~~y, is exceeded.
The H modifier guarantees more than sufficient resources to achieve

lossless decompression under most circumstances. As always, it is the
content provider's responsibility to use these resources in the manner
which is most appropriate to its objectives.
The S modifier is reserved for implementations which are designed

specifically to work with spatially progressive (sequential) code-stream
organizations. Spatially progressive organizations are those which uti­
lize one of the PCRL, CPRL or RPCL packet sequences described in
Section 13.1.1. When processing very large images, spatially progressive
code-streams can significantly reduce the resources required to buffer
compressed data. However, this is only possible if the particular pro­
gression sequence matches the order in which the application consumes
decompressed data. Implementations which are designed to benefit from
spatially progressive code-streams may be considered compliant without
being obliged to commit to buffer a well-defined portion of the relevant
compressed data. On the other hand, decompressors which claim com­
pliance only at Class-O-S, Class-1-S or Class-2-S are not general purpose
implementations of the standard.

IV

OTHER STANDARDS

Chapter 19

JPEG

19.1 OVERVIEW

JPEG is an acronym for "Joint Photographic Experts Group," the
popular name for working group WG1 of the ISO/IEC Joint Technical
Committee 1, Study Committee 9 (ISO/IEC JTCl/SC29/WGl in full).
The WGI committee has produced several international standards for
image compression. The first and most well known of these is what we
call the JPEG compression standard [5]. More particularly, the baseline
algorithm described in [5] is the most widely known system for lossy
image compression. Less well known is the fact that the JPEG standard
actually describes a family of lossy image compression algorithms, along
with a lossless compression algorithm.

The lossless JPEG compression algorithm has not been widely ac­
cepted. Indeed, the WG1 committee has produced a completely new
lossless compression standard known as JPEG-LS. The JPEG-LS stan­
dard is discussed in Chapter 20. Other standards developed within WG1
are the advanced bi-level image compression standard known as JBIG2
[10] and the JPEG2000 standard, which is the principle focus of this
text.

Work on the JPEG standard began in the mid-1980's, culminating
with the release of a draft international standard in 1991. During the
1990's, the JPEG standard has become established as the primary vehi­
cle for storing and communicating compressed images. Although the
standard was developed primarily to facilitate the exchange of com­
pressed digital images, it is also commonly used for other purposes.
Scanners and printers, for example, commonly employ JPEG compres­
sion as a means of saving internal memory resources. So-called "motion

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

720 Overview

DC quantization
indices

Image samples

Figure 19.1. Elements of the basic JPEG algorithm.

Quallli::atioll
tables

DC Huffman
tables

Bit-Slream

AC Huffman
tables

Bit-Slream

JPEGl" has long been a defacto "standard" for communicating, storing
and editing digital video sequences.

BASIC ALGORITHM
Many implementations of the JPEG standard support only a basic

lossy compression algorithm.. The elements of this algorithm are illus­
trated in Figure 19.1. Unsigned image sample values are first offset to
obtain a signed representation. These samples are collected into 8 x 8
blocks and subjected to the DCT (Discrete Cosine Transform). The
transform coefficients are individually quantized and then coded using
variable length codes (also called Huffman codes). Various other tech­
niques, such as DPCM and run-length coding are used to improve the
compression efficiency.

In Section 19.2, we describe these processes in detail. For the mo­
ment, however, we note that the quantization and coding processes are
controlled by parameter tables, which the compressor may choose to
optimize for the image or application at hand. The tables must be ex­
plicitly recorded in the code-stream, regardless of whether any attempt
is made to optimize these parameters. Interestingly, many JPEG com­
pressors simply use the example tables described in the standard, with
no attempt at customization.
For multiple component images (e.g., colour images), each component

is processed in an identical fashion and the resulting bit-streams are usu­
ally interleaved. The interleaving is discussed further in Section 19.2.5.

1Motion JPEG is essentially identical to the baseline JPEG algorithm, with the exception that
quantization and Huffman tables are not sent explicitly with the code-stream. Instead, motion
JPEG adopts the tables which were originally given as examples in the JPEG standard.

Chapter 19; JPEG 721

VARIATIONS ON THE THEME

The JPEG standard supports a number of variations on the basic
algorithm in Figure 19.1. Variable length coding (or Huffman coding)
may be replaced by an adaptive arithmetic coder, known as the QM
coder, for enhanced coding efficiency. The simple scalar quantizer may
be replaced by a successive approximation quantizer, which allows image
quality to be incrementally refined as the compressed data arrive. A re­
lated technique known as "spectral selection" allows the DCT coefficients
to be dispersed through the code-stream. An hierarchical compression
paradigm is also supported for embedding successively higher resolution
versions of the image within a single file.
Part 3 of the JPEG standard [6] describes a number of extensions

which can be useful to specific applications. One such extension pro­
vides support for modulating quantization step size parameters while
the image is being coded. This allows the compressor to implement a
single pass rate-control strategy. Another extension allows individual
spatial regions to be selectively refined as the compressed data arrive.
In the brief description which follows, we make no attempt to cover

all aspects of the JPEG standard. We first describe the elements of the
basic algorithm more carefully. This provides a practical demonstration
of a number of the fundamental techniques introduced in Chapters 2
and 4. Then, in Section 19.3 we provide a brief overview of the meth­
ods provided to construct resolution and/or distortion scalable JPEG
code-streams. This is important, since one of the principle goals of
the JPEG2000 standard is to offer superior scalability over that avail­
able with JPEG. For a much more comprehensive treatment of these
and other topics, the reader is referred to the book by Pennebaker and
Mitchell [119].

19.2 BASELINE JPEG
A "baseline JPEG" decompressor is one which supports a minimal

set of features. In particular, it must be able to decompress images
compressed using the basic algorithm described here. Formally, this al­
gorithm is known as the "sequential DCT-based" mode. All lossy JPEG
compression modes are based on the DCT. We will not describe the loss­
less algorithm here, since it is superceded by JPEG-LS (see Chapter 20).

19.2.1 SAMPLE TRANSFORMATIONS
The JPEG standard supports images with sample bit-depths of either

B = 8 or B = 12. Strictly speaking, for baseline compression the bit­
depth must be B = 8; however, it is convenient to describe the more

722 Baseline JPEG

imagc width

tf---+-I-I' _8_'I-IL :8-+_I---+-1H;::~ padding for right boundary blocks
~ ~
.§ %t
ll---+-+--+-+--+-t-i~

.n"-H HiI:!,~!~t% H~% H:.iH H~!% H~;;-, \ .
padding for lower boundary blocks

Figure 19.2. Image partition into 8 x 8 blocks for JPEG compression.

general case here. The image samples are assumed to be unsigned quan­
tities in the range 0 to 2B - 1. The "level offset" block in Figure 19.1
subtracts 2B - 1 from every sample value so as to produce signed quan­
tities in the range _2B - 1 to 2B - 1 - 1. The purpose of this is to ensure
that all of the DCT coefficients will be signed quantities with a similar
dynamic range.
The image is partitioned into blocks of size 8 x 8. Each block is

then independently transformed using the 8 x 8 DCT described in Sec­
tion 4.1.3. If the image dimensions are not exact multiples of 8, the
blocks on the lower and right hand boundaries may be only partially
occupied. These boundary blocks must be padded to the full 8 x 8 block
size and processed in an identical fashion to every other block. This is
illustrated in Figure 19.2. The compressor is free to select the values
used to pad partial boundary blocks. Of course, some choices will al­
low more effective compression than others. One reasonable approach
is to replicate the final row or column of actual image samples into the
missing locations.
Let Xb [j] == Xb [jl' j2] denote the array of level shifted sample values

for the bth block. Also, let Yb [k] == Yb [k1 , k2] denote the 8 x 8 array
of DCT coefficients formed from these samples. The indices k1 and
k2 represent vertical and horizontal frequency respectively. Yb [0] is the
"DC" coefficient for block b. The reader may verify that

1
77

Yb [0] = 8L L Xb [j]
h=Oh=O

so that B + 3 bits are required to represent the integer part of the DC
coefficients. The remaining 63 coefficients in each block are called "AC"
coefficients. It can be shown that B+3 bits are also sufficient to represent
the integer part of each of these AC coefficients.

Chapter 19: JPEG 723

The index b identifies the sequence in which DCT blocks are processed.
For the moment, we consider only one image component (i.e., a mono­
chrome image). In this case, blocks are processed in raster order, from
left to right and from top to bottom. The presence of multiple image
components (e.g., colour images) can affect the scanning order, as de­
scribed in Section 19.2.5. Regardless of such considerations, the first
block, b = 0, is always located at the upper left hand corner of the
image.
Each DCT coefficient is subjected to uniform scalar quantization. The

quantization indices, qb [k], are given by

qb [k] = \ Y~~]), 0::; k1, k2 < 8

where (-) denotes rounding to the nearest integer. Notice that a dif­
ferent step size, ~k, may be used for each spatial frequency, k. The
quantization step sizes, ~k, are collected in an 8 x 8 array known as a
"quantization table," or "Q-table." The same Q-table is used for every
DCT block. When multiple image components are involved, each may
have its own Q-table. The Q-table entries must be integers in the range
1 to 255. The decompressor uses a mid-point reconstruction rule to re­
cover approximate versions of the original DCT coefficients. Specifically,
the reconstructed DCT coefficients are given by

At low bit-rates, most of the AC coefficients must be quantized to
0, since every non-zero coefficient requires at least 2 bits to code (usu­
ally much more). For this reason, the compression performance at low
bit-rates is significantly affected by the efficiency with which the DC co­
efficients are coded. JPEG uses a simple DPCM scheme to exploit some
of the redundancy between the DC coefficients of adjacent blocks. The
quantity which is actually coded for block b is the difference, Db, between
qb [0] and qb-1 [0]. Specifically,

D = { qb [0] - %-1 [0] if b >°
b qo [0] if b = °

Figure 19.3 illustrates the processing of DC coefficients, Yb [0], at the
compressor and decompressor. According to the description given above,
DPCM is a lossless tool for efficiently coding the quantization indices
(see Section 2.4.2). Accordingly, the quantizer is not included inside the
DPCM feedback loop.
Interestingly, the processing of DC coefficients may also be understood

in terms of the lossy DPCM structure introduced in Section 3.3, where

724 Baseline JPEG

Figure 19.3. DPCM with quantizer outside the feedback loop.

Figure 19.4. DPCM with quantizer inside the feedback loop.

the quantizer is included inside the feedback loop. This structure is
illustrated in Figure 19.4. The equivalence of these two quite different
descriptions arises from the fact that the quantizer is uniform. The
in-loop quantization structure of Figure 19.4 has the property that

So long as the DPCM loop is initialized with f)-I [0] = 0, we find that

It follows that
b

qb [0] = \y~[~]) = ~Di

meaning that Db = qb [0] -qb-I [0]. We conclude that the out-of-Ioop and
in-loop configurations shown in Figures 19.3 and 19.4 are equivalent in
JPEG.

19.2.2 CATEGORY CODES
As suggested by Figure 19.1, the difference symbols, Db, which rep-­

resent the DC coefficients are to be coded using a variable length code

Chapter 19; JPEG 725

(VLC). Huffman's algorithm allows us to deduce a set of codewords
which minimizes the overall bit-rate, as described in Section 2.2.1. Un­
fortunately, it is not practical to code bb directly with an optimal VLC,
since the number of possible symbols can be very large. This is because
the integer part of the DC coefficients are B + 3 bit quantities and the
smallest quantization step size is 1. More precisely, it can be shown that
the range of possible values for the magnitude, Ibbl, is

(19.1)

so that there are approximately 2B+4 possible difference symbols, bb.
The same problem occurs when coding quantization indices for the

AC coefficients, in which case the total number of possible symbols is
approximately 2B +3. In both cases, JPEG addresses the problem by
mapping the symbol to be coded, say s, to an ordered pair, (c, u), which
we call a "category code." The "size category," c, is subjected to vari­
able length coding, while u contains exactly c remainder bits, which are
simply appended to the VLC for c without coding. The size category, c,
is defined to be the smallest integer such that lsi::; 2c - 1. That is,

Evidently, when c = 0, s must be zero and there is no need for any
remainder bits, u. In general, c represents the minimum number of
bits required to hold the binary representation for lsi without overflow.
When c =1= 0, the most significant of these bits must be a 1 and so u must
carry only the remaining c - 1 bits. When c =1= 0, u must also convey
the sign of s. In all, then, the remainder portion of the category code,
u, contains exactly c bits.
The representation adopted for u is designed to simplify certain im­

plementations. When s > 0, u contains a 1 followed by the c - 1 least
significant bits of lsi; equivalently, u is the c LSBs of lsi- When s< 0,
however, u consists of a 0, followed by the one's complement (bit-wise
negation) of the least significant c - 1 bits of lsi; equivalently, u holds
the c LSBs of the one's complement of lsi-
Table 19.1 identifies the 2c different symbols, s, associated with each

size category, c. Category coding is efficient so long as these 2C symbols
all have similar probabilities so that little is lost by leaving them un­
coded. On the other hand, the size categories can be expected to have
a highly non-uniform PMF.
When category coding is applied to DC difference symbols, B + 4 size

categories are required, in the range °::; c ::; B + 3. This is because
Ibbl + 1 cannot exceed 2B +3 (see equation (19.1)). When applied to AC

726 Baseline JPEG

Table 19.1. Symbols, s, associated with each size category, c. These symbols are
distinguished by the c-bit uncoded remainder, u.

size category, c symbols, s

o 0
1 -1, +1
2 -3, -2, +2,+3
3 -7, -6, -5, -4, +4, +5, +6, +7

quantization indices, B + 3 size categories are sufficient. Recall that B
is the image sample bit-depth, which is either 8 or 12.

19.2.3 RUN-VALUE CODING
Since variable length coding techniques cannot represent a symbol

with less than 1 bit, JPEG must resort to symbol aggregation in or­
der to achieve compressed image bit-rates below 1 bit/sample. This is
done through run-length coding of the AC coefficients. The most likely
outcome for the AC quantization indices is 0. As previously explained,
at moderate to low bit-rates (e.g., below 1 bit/sample), most of the
AC coefficients must necessarily be quantized to 0, since each non-zero
coefficient will cost several bits to code.
As noted in Section 2.4.3, there are good reasons to jointly code the

length of each run of zeros, together with the non-zero value which in­
terrupts the run. We call this run-value coding. In the JPEG standard,
run-value coding of the AC quantization indices is performed as follows.
First, a one dimensional scan through the 63 AC coefficients of each DCT
block is obtained by following the zig-zag scan shown in Figure 19.5. As
noted in Section 4.1.3, this progression from low to high spatial frequen­
cies tends to rank the DCT coefficients in order of decreasing variance.
This in turn, tends to minimize the number of run-value pairs which
must be coded.
Let q [z] denote the sequence of AC quantization indices belonging to

some DCT block, following the zig-zag scan of Figure 19.5. Thus, q [0] =
q [0, 1] and q [63] = q [7, 7]. This sequence of 63 quantization indices is
replaced by a variable length sequence of run-value pairs, (r [i] ,v [iJ),
where the i th pair signifies a run of r [i] zeros, followed by value, v [i].
Runs are confined to the range °::; r [i] ::; 15, so that a run of 16 zeros

Chapter 19: lPEG 727

Figure 19.5. Zig-zag scan of the AC quantization indices used for run-length coding
in JPEG. Numerical values are used in Example 19.1.

would be represented by the pair (15,0). Run-value pairs with v [i] = °
and r [i] < 15 are obviously inefficient. In fact, such combinations are all
illegal, with the exception of the combination (0,0). This combination
is interpreted as an EOB (End of Block) marker, indicating that all
remaining coefficients in the current DCT block are zero.
Each run-value pair, (r [i] ,v [iD, is converted into a triplet, (r [i] , c [i] ,

u[iD, where (c[i] ,u[iD is the category code for v[i]. Both r[i] and
c [i] have 4-bit representations and can be packed into an 8-bit word.
This word is subjected to variable length coding, while the uncoded bits
of u [i] are appended to the codeword for (r [i] , c [i]). Since there are
B + 3 possible size categories, 16 possible run-lengths, and 14 illegal
combinations (1,0) through (14,0), the total number of possible VLC
codewords is 16 (B + 3) - 14. Thus, for 8-bit images there may be as
many as 162 codewords, while for 12-bit images there are up to 226
distinct codewords.

Example 19.1 The AC quantization indices shown in Figure 19.5 are
represented using the following sequence of run-value pairs

(0, -9), (0, +7), (2, -2), (3, -1), (15,0), (1, +1), EOB

Note that the run Qf 17 zeros cannot be represented with a single run­
value pair. The run-value pairs are converted into the following run-

728 Baseline JPEG

category-remainder triplets

(0,4), 0110,
"--v-" "'-v-"

(r,c) U

(3,1), 0,
"--v-" "'--v-'

(r,c) U

(0,3), 111, (2,2), 01 ,
"--v-" "'--v-' "--v-" "'--v-'

(r,c) U (r,c) U

(15,0), empty, (1,1), 1 ,
'-v-" '-v-' "--v-" "'--v-'

(r,c) U (r,c) U

(0, 0), empty
"--v-" '-v-'
EOB U

19.2.4 VARIABLE LENGTH CODING
We have already mentioned the use of variable length coding for the

size category, c, associated with each DC difference symbol and for the
run-category pairs, (r [i] ,c [iJ), in the run-value representation of AC
coefficients. In the former case, there are at most B +4 codewords, while
in the second case there may be as many as 16 (B + 3) - 14 codewords.
The codewords for these two cases are represented in two separate tables,
known as the "DC Huffman table" and the "AC Huffman table." These
tables are identified in Figure 19.1. When multiple image components
are involved, each may have its own set of Huffman tables.
JPEG imposes two restrictions on the VLC codewords, which prevent

Huffman's algorithm from being used directly to optimize the tables.
The first restriction is that no codeword may exceed 16 bits in length.
While this imposes no practical constraint on the DC Huffman table,
the longest codeword in an optimal set of AC Huffman codewords could
have as many as 16 (B + 3) -13 bits. The impact of very long codewords
on the behaviour of fast decoding algorithms has already been noted
in Section 2.2.1. To satisfy the JPEG restriction, length-constrained
Huffman codes must be generated using an algorithm such as that due
to Voorhis [165].
The second restriction imposed by JPEG is somewhat more subtle.

Let is denote the number of bits in the codeword for symbol s. Recall
that the codeword lengths for any uniquely decodable VLC must satisfy
the McMillan inequality of equation (2.11). That is, 2":s 2-[5 ::; 1, where
s ranges over all of the codewords in the AC or DC Huffman table, as
appropriate. A direct application of Huffman's optimization procedure
is guaranteed to yield :Ls 2-[5 = 1. On the other hand, the JPEG
standard insists that the inequality should be strict. That is, 2":s 2-[5 <
1. More specifically, the all 1's codeword is reserved for use as a prefix for
extension codes. Part 3 of the JPEG standard [6] defines extension codes
of this form for modifying the quantization parameters in mid-scan.

19.2.5

Chapter 19: lPEG 729

COMPONENTS AND SCANS
A JPEG code-stream contains one or more sequential scans through

the image. Each scan may represent from 1 to 4 image components, so
most colour images require only one scan. Within a scan, the bit-streams
from multiple components are interleaved in a predetermined fashion. To
describe this interleaving, we must first consider the effect of component
sub-sampling. Moreover, to motivate component sub-sampling, we will
consider colour images.
Unlike JPEG2000, the JPEG standard does not actually define any

colour transform2. Instead, it is usually expected that colour images will
have a YCbCr representation. This representation of colour is described
in Section 10.2.1. The first component should contain the luminance
(Y) sample values in the range 0 to 2B - 1. The second and third
components should contain the chrominance (Cb and Cr) sample values,
offset by 2B - 1 so that they also lie in the range 0 to 2B - 1. After the
level offset block in Figure 19.1, all components will then have a signed
representation, centred about O.
The human visual system is less sensitive to spatial details in the

chrominance components than the luminance component. For this rea­
son, the chrominance components are usually sub-sampled by a factor of
2 in each direction. JPEG supports su~sampling in a somewhat indirect
fashion by defining vertical and horizontal resolution scaling factors, FI
and F~, for each image component, i. The actual height and width, Nt
and N~, for image component i, must satisfy the following relations

where Flax and F2ax represent the maxima of the respective vertical
and horizontal resolution factors, taken over all components in the image.
The image dimensions, N 1 and N2 , are specified in the JPEG code­
stream together with each component's resolution factors, FI and F~.

As an example, consider a 512 x 512 colour image, whose chrominance
components have been sub-sampled by 2 in each direction. Then N1 =
N2 = 512, FP = F~ = 2 and FI =Ff = Fi = Fi = 1. Note that FI and
F~ are not sub-sampling factors; instead, they play quite the opposite
role, with larger factors for higher resolution image components.
JPEG scans are identified as either interleaved or non-interleaved. A

non-interleaved scan represents only a single image component, whose
DCT blocks are visited in raster order. Interleaved scans are based

2The colour representation may sometimes be specified explicitly by a containing file format.

730 Scalability in JPEG

Component 0 (Y)

ftQj"'·tblt~j"'tZJl~··'tu]" !
1[I][1Ji(!J[2JI~~1
r·@····if2]·r·~····~·r·till····till·1

!~~!~IWI~~I
t···_·······_·······t·················_··-r············ .

Component f (Cb)
,···········)········_·.···········1

!lIJ!IIQ]!~!
i i i i

!~!~!IHI!
~ ~ ~ ~

Component 2 (CI)

Figure 19.6. Scanning sequence for a multi-component image. Numbers indicate the
position of each DCT block within the scan. The example shows a YCbCr image with
chrominance components decimated by 2 in each direction. MCU's are delimited by
dotted lines.

around the concept of an MCU (Minimum Coded Unit). Each MCU
consists of an array of F{ x F~ DCT blocks from each component, i, to
be included in the scan. Within the scan, MCU's are visited in raster
order from top to bottom and left to right. Within each MCU, the
FP x F~ blocks of component 0 are visited first, followed by the Fl x Fi
blocks of component 1 and so on. This is illustrated in Figure 19.6. The
coded bits for each DCT block are interleaved in this same order. When
differentially coding the DC coefficients of each DCT block, the previous
DC coefficient from the same component within the scan is used as the
reference.
The JPEG standard restricts the number of components in any scan

to at most 4 and it also restricts the maximum number of DCT blocks
in an MCU to at most 10. These restrictions serve to limit the resources
required to decode a scan. They may also prevent some multi-component
images from being compressed in a single scan. When this happens,
multiple scans must be employed and the decompressor may need to
buffer the entire decompressed image from a first scan until subsequent
scans have been processed. As we shall see, multiple scans may also be
used to implement various forms of scalability in JPEG.

19.3 SCALABILITY IN JPEG
Up to this point we have described what is known as JPEG's "sequen­

tial mode" of operation. This terminology comes from the fact that one
or more image components are interleaved and compressed sequentially
in an approximately raster scan order. Applications which supply or

Chapter 19: lPEG 731

consume image samples in raster order need only buffer a small num­
ber of image lines, comparable to the height of an MCU. The term
"JPEG baseline" refers to this sequential mode, restricted to 8-bit im­
age samples and Huffman coding only. As mentioned previously, the
standard also supports 12-bit imagery and optional arithmetic coding of
the quantization indices, although the arithmetic coding option is rarely
implemented.
The JPEG standard defines two additional modes, which are collec­

tively known as "progressive JPEG." The two progressive modes each
allow some property of the compressed image to be incrementally refined
through multiple scans. The modes may be intermixed to obtain more
interesting progressions, although this is not often done.
In addition to the progressive modes, JPEG provides a hierarchical

refinement capability, whereby successively higher resolution versions of
the image are compressed in a sequence of "frames." For each non-initial
frame, a prediction is first formed based on the preceding frame and only
the prediction residual is actually compressed. Hierarchical refinement
introduces a multi-resolution capability.

19.3.1 SUCCESSIVE APPROXIMATION
Recall that the DCT coefficients are represented by quantization in­

dices, qb [k]. With successive approximation, the binary representations
of these indices are successively refined over two or more scans using a
type of bit-plane coding. The scan essentially drops some number of least
significant bits, p, from the representations of these quantization indices.
This is roughly equivalent to multiplying the quantization step sizes by
2P. Subsequent scans then each add one extra bit to the representation,
roughly halving the quantization step sizes. It is worth providing some
additional details of this process so as to draw appropriate connections
with the bit-plane coding used by JPEG2000.
DC coefficients are treated somewhat differently from AC coefficients.

For DC coefficients, the first scan codes all but the least significant p bits
of qb [0]. This is equivalent to using the modified quantization indices,

llYbIOJ+!LlOJ j l 1 J
(p) [0] = lqb [O]j = Llo = Yb [0] + 2~O

qb 2P 2P 2P~o

Evidently, these modified indices represent a uniform quantization of
the DC coefficients, with step size 2P~o, and some level adjustment of
the coefficient values. The modified quantization indices are coded us­
ing exactly the same techniques (DPCM, category codes, Huffman or

732 Scalability in JPEG

arithmetic coding) as in the sequential mode. There are exactly p addi­
tional scans, each of which supplies one additional LSB for all of the DC
coefficients, thereby halving the effective quantization step size. These
additional bits are not coded at all, leading to some loss in compression
efficiency if p is large.
Successive approximation of the AC coefficients is most easily ex­

plained when the quantization indices are represented in sign-magnitude
form as

qb [k] = sign (qb [k]) .Vb [k]
where

Vb [k] = Iqb [k]1 = llYb [k]1 + ~J
~k 2

The first scan codes all but the least significant p bits of the magnitude,
Vb [k], together with the sign of all coefficients for which the coded magni­
tude is non-zero. Equivalently, this scan codes the modified quantization
indices,

q~p) [k] = sign (qb [k]) ·lVb [k1J
. 2P

= sign (Yb [k]) ·l'Ydkl , +~ . ~J
2P~k 2P 2

Comparing with equation (8.11), we recognize this as a deadzone quan­
tizer with step size 2P~k and a central bin (the deadzone) which is 2-2-P

step sizes wide.
The second scan codes exactly one additional magnitude bit-plane

from every quantization index, together with the sign of any coefficient
which first becomes non-zero during this scan. After the second scan,
only p - 1 magnitude bits are missing and the effective deadzone quan­
tizer has a step size of 2P-l~k and a deadzone width of 2 - 2-(p-l) step
sizes.
As for DC coefficients, the total number of AC coefficient scans is

p + 1. The DC and AC coefficients are required to appear in separate
scans and multiple components may only be interleaved within the DC
scans. This same requirement applies also to the spectral selection mode
described below.
The successive approximation scans represent a family of embedded

deadzone quantizers of the form indicated in Figure 8.9. JPEG2000 also
uses such a family of embedded deadzone quantizers. The key differences
between JPEG2000 and JPEG in this regard are as follows.

• In JPEG2000, coding is always embedded so that any number of
least significant magnitude bit-planes may be discarded simply by

Chapter 19: JPEG 733

truncating each embedded code-block bit-stream at an appropriate
point. In JPEG, multiple bit-planes are usually coded in the first
scan and successive approximation is often not used at all .

• In JPEG2000, the embedded quantizers all have a deadzone which
is twice as wide as their step size3 . In this way, truncating the rel­
evant code-block's embedded bit-stream to a bit-plane boundary is
equivalent to scaling the quantization step size by a power of 2. By
contrast, the family of embedded quantizers induced by successive
approximation in JPEG all have different relative deadzone sizes. As
a result, a simple baseline decoder cannot correctly decompress even
the first AC coefficient scan, despite the fact that it uses exactly the
same coding techniques as the sequential mode.

• In JPEG, all DCT coefficients of all image components must be re­
fined together, bit-plane by bit-plane. By contrast, JPEG2000 pro­
vides a much finer embedding of the information, together with an
efficient mechanism for controlling the rate at which information is
refined in each spatial region, frequency band and image component.

We have not yet said anything about how JPEG codes AC coeffi­
cient information in the successive approximation mode. The first scan
is straightforward, using exactly the same coding techniques as the se­
quential mode (run-length coding, category codes, Huffman or arith­
metic coding), but applying them to the modified quantization indices,
q~p) [k]. In subsequent scans, the coding processes are significantly mod­
ified in an attempt to efficiently code the new bit-planes one at a time.
For details of these processes, the reader is referred to [119]. It suffices
to say here that splitting the coding of quantization indices across many
scans tends to significantly reduce overall coding efficiency, except in the
event that the arithmetic coding option is used.

19.3.2 SPECTRAL SELECTION
Spectral selection is the simplest of JPEG's progressive modes to un­

derstand and implement. In this case, the DCT coefficients themselves
are partitioned into successive scans. The first scan codes the DC co­
efficient of each block. The second scan codes one or more AC coef­
ficients of each block. Specifically, a range of AC coefficient positions,
Zl S; Z S; Z2 is specified, where z represents the position of a coefficient
within the zig-zag scanning order shown in Figure 19.5. Subsequent

:jPart 2 of the standard is expected to provide support for different deadzone widths.

734 Scalability in JPEG

scans code additional AC coefficients until all of the AC coefficients
have been processed. Typically, the scans are set up to code succes­
sively higher frequency coefficients. In this way, successive scans provide
progressively higher spatial frequency information.
Spectral selection may be viewed as a method for progressively re­

fining the image resolution, since each scan adds new spatial details.
However, the type of refinement involved here does not agree well with
commonly accepted notions of resolution. Rather than a blurred (Le.,
low-pass filtered) rendition of the image, the initial scans yield a "blocky"
structure with substantial aliasing. By contrast, JPEG2000 provides a
natural family of successively lower resolution images through its use of
the DWT (Discrete Wavelet Transform). The images in this family are
related through the anti-aliasing and downsampling operations shown
in Figure 4.16, which are the most widely accepted tools for resolution
reduction.
Spectral selection has relatively little impact on the coding techniques

employed, except that a set of EOB run codes is introduced to mitigate
against efficiency losses. For more details, the reader is referred to [119].

19.3.3 HIERARCHICAL REFINEMENT
Whereas JPEG's progressive modes successively refine a single image

through multiple scans, hierarchical refinement is achieved by compress­
ing multiple images. JPEG calls these multiple images "frames" and we
denote them II through iN. The frames usually represent successively
higher resolution (Le., larger) versions of the image, although this is not
required. Each frame may be compressed using the sequential mode or
any combination of the progressive modes, with its own set of Q-tables
and Huffman tables. The first frame is compressed in the usual way.
For each non-initial frame, in, the compression procedures are modified
in several ways. A decompressed and suitably interpolated version of
the previous frame is used to form a predictor, i~, for frame in. The
prediction residual, in - i~, is compressed instead of in. The level offset
and DPCM operations are also skipped for non-initial frames.
Figure 19.7 illustrates the steps involved in hierarchical compression

and decompression. The blocks marked "reduce" and "expand" usually
implement resolution reduction and expansion by 2 in each direction.
However, it is possible to preserve the horizontal and/or vertical resolu­
tion between frames. The processing performed in the "reduce" block
is not specified by the standard, while that of the "expand" block is
specified.
Notice that the hierarchical compressor implements a predictive feed­

back system, which is conceptually similar to DPCM. In particular, the

Chapter 19: JPEG 735

decompressed image

Frame 3 +
bit-stream decompreSSI--~>fH

Frame 2 + +-....:....:......
bit-stream decompressI-~offi

+

mput image copy of decompressed Image

t

Frame I

'--------_-..,,--_--------' bit-stream '-~----.."V~----./

hierarchical compressor hierarchical decompressor

Figure 19.7. Hierarchical refinement in JPEG. Blocks shown with a patterned back­
ground need not be implemented.

compressor must determine the decompressed version, in, of frame in in
order to construct the same predictor, i~+1' as the decompressor. One
unfortunate implication of this predictive structure is that the bit-stream
representing frame in must be completely decompressed before any in­
formation can be reconstructed for the next (usually higher resolution)
frame, in+l.
The principle motivation behind hierarchical refinement is to provide

support for multi-resolution image representations. Unfortunately, this
support comes at a significant cost in compression efficiency, since the
total number of image samples which must be compressed is expanded
by a factor of approximately 1. Experimental results reported in [119]
indicate that the overall compressed bit-rate can also expand by about
33%.

19.3.4 COMPARISON WITH JPEG2000
JPEG and JPEG2000 differ in numerous respects, including compres­

sion efficiency, complexity, scalability and "universality." Some discus­
sion of these differences appears in Section 9.2. A subjective comparison
of JPEG2000 image quality with that of JPEG appears in Section 16.1.3.
In this section, we restrict our attention to those differences which are
intimately connected with scalability.

736 Scalability in JPEG

Unlike JPEG2000, scalability does not come naturally to JPEG. Scal­
able modes are frequently not utilized, partly because they attract penal­
ties in compression performance, complexity or both. More significantly,
a resource constrained JPEG decompressor cannot generally expect to
be able to recover a reduced resolution image by decompressing only a
subset of the available code-stream. This is only likely to be possible
if hierarchical refinement has been used. In that case, however, a more
capable decompressor will not be able to decompress the full resolution
image sequentially. This is unfortunate, because many applications only
have sufficient memory to decompress very large images sequentially.
By contrast, the JPEG2000 standard allows and even encourages the

construction of code-streams with very rich content: high resolution;
high bit-rates, up to lossless; large bit-depths; many image components;
etc. This is reasonable, since a resource constrained decompressor can
always choose to decompress a suitable subset of the code-stream. Simi­
larly, a bandwidth constrained communication service can always choose
to deliver only a subset of the code-stream.
A key consideration in the development of the JPEG2000 standard

is the separation of coding and ordering aspects of the compression sys­
tem. The importance of such a separation is argued in Section 8.1.2. By
contrast, the various options offered by JPEG in support of scalability
have a significant impact on coding procedures and coding dependen­
cies. If the code-stream is to support progressive refinement capabilities
then it must involve multiple scans through the entire image. These
scans cannot simply be collapsed back into a sequential organization
for decompressors with limited memory resources. Another significant
limitation is that the progressive modes cannot be used to successively
improve image quality across the multiple resolutions provided by hier­
archical refinement.
Finally, JPEG2000 exploits the local, fine embedding of individual

code-blocks inside individual frequency bands to provide a number of
interesting capabilities. Quantization can effectively be changed from
block to block in order to reflect variations in the significance of differ­
ent spatial regions or frequency bands and efficient rate control can be
achieved in a single compression pass through the image. JPEG is able
to replicate some of these capabilities in a limited fashion by resorting to
the selective refinement options defined in Part 3 [6]. It is not currently
clear how widely these options will be implemented.

Chapter 20

JPEG-LS

20.1 OVERVIEW
As discussed in Chapter 19, the JPEG image compression standard is

actually a family of compression algorithms, of which the lossy baseline
system is the most well-known. The family also includes an algorithm for
lossless image compression, which is based on a collection of simple linear
predictors, together with Huffman coding of the prediction residuals. By
contrast with lossy JPEG, the lossless algorithm has not been widely
adopted.

Lossless compression is important for a variety of applications, par­
ticularly those involving medical imagery or non-natural image content
such as graphics and text. In recognition of the importance of these
applications and the poor adoption of the original JPEG lossless algo­
rithm, ISO/IEC working group JTC1/SC29/WG1 (commonly known
as the "Joint Photographic Experts Group" or JPEG) began work on
a new lossless image compression standard in 1995. Part 1 of the so­
called JPEG-LS standard targets improved compression performance
with minimal complexity. A primary objective is suitability for cost­
effective hardware implementation. The algorithm draws heavily from
the LOCO-I (LOw COmplexity COmpression of Images) scheme pro­
posed by Weinberger et al. [168]. In addition to lossless compression,
Part 1 also incorporates a lossy mode, termed "near lossless" compres­
sion, which is particularly suitable for applications which can tolerate a
known maximum error in any given sample value.

Part 1 of the JPEG-LS standard is already complete; it is designated
ISO/IEC 14495-1 [11]. Part 2 of the standard, designated ISO/IEC
14495-2, will provide mechanisms to support further improvements in

D.S. Taubman et al., JPEG2000 Image Compression Fundamentals, Standards and Practice
© Springer Science+Business Media New York 2002

738 Overview

compression performance with certain types of imagery, at the expense
of increased complexity. It will also support enhanced near lossless com­
pression capabilities. This second part of the standard is currently near­
ing completion.
The purpose of the brief exposition in this chapter is to familiarize the

reader with the practice of lossless image compression. The information
provided hereis insufficient to implement the standard in full; for that,
we would need to provide a detailed description of the marker syntax,
constraints on legal parameters and so forth. Nevertheless, it should be
possible to deduce the detailed structure of an implementation and hence
the complexity and appropriateness of the JPEG-LS standard for appli­
cations of interest. JPEG-LS also provides a practical demonstration
of a number of the coding techniques introduced in Chapter 2. No­
table among these are Golomb coding (Section 2.2.2), predictive coding
(Section 2.4.2), context adaptive coding (Section 2.4.1) and run-length
coding (Section 2.4.3). Although not strictly necessary, the reader may
find it useful to review the material in those sections.

20.1.1 CONTEXT NEIGHBOURHOOD
JPEG-LS relies upon the predictive coding techniques introduced in

Section 2.4.2, together with context adaptive coding of the prediction
residuals, as introduced in Section 2.4.1. Both predictive coding and
context adaptive coding involve the concept of a causal neighbourhood.
The neighbourhood is a collection of previously coded samples which are
used to construct the prediction or coding context for the current sample
value. The causal neighbourhood employed by JPEG-LS is illustrated
in Figure 20.1. The image samples are coded one by one in raster order,
starting from the top left sample in the image and working toward the
bottom right. When coding any given sample, x [nl' n2J == x [n], the
neighbourhood consists of the samples,

xa [nJ = x[nl,n2 -lJ
Xb [nJ = x [nl - 1, n2]

Xc [nJ = x [nl - 1, n2 - 1J
Xd [nJ = x[nl -1,n2 + 1]

For convenience, we shall frequently refer to the current sample and its
neighbours simply as x and x a , Xb, xc, Xd, respectively.

20.1.2 NORMAL AND RUN MODES
Figure 20.2 identifies the major functional elements in the JPEG-LS

encoder. In the normal mode, a prediction, {lx, is formed using three

columns

Chapter 20: JPEG-LS 739

n2------------------....~.~.~.~.~.~.~.
.._---...-. ~,,~~.~.V~

codmg context~_ --

N+n "'~.--,7> x n 0 0 0
• ~:c[n]

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

Figure 20.1. Context neighbourhood for JPEG-LS.

Figure 20.2. JPEG-LS coding system.

causal neighbours, Xa, Xb and Xc' Since the decoder can form exactly
the same prediction, it is sufficient to encode the residual, ex = X - J.1.x,
in place of the image sample, x. In practice, an additional bias term,
f3x, is estimated and the residual is expressed as

(20.1)

where Sx E {I, -I} is a sign reversal term. The decoder reconstructs x
using

x = sx(ex + f3x) + J.ix (20.2)

The role of the bias, f3x, is to adjust the distribution of the residuals
so as to maximize the efficiency with which they are subsequently coded.
The role of the sign reversal term, Sx, is to halve the number of cod­
ing contexts. An adaptive Golomb code is employed to code ex, where
the Golomb parameter, m = 2k , is adapted separately within each of

740 Overview

365 different contexts. The relevant context is identified by a context
reduction function,). (~I, ~2, ~3), which depends upon the gradients,

~I = Xd - Xb

~2 = Xb - Xc

~3 = Xc - X a

(20.3)

Adaptive Golomb coding and context reduction have already been in­
troduced in Sections 2.2.2 and 2.4.1, respectively.
Good prediction and efficient residual coding are sufficient to achieve

competitive compression performance with most natural image sources.
Artificial imagery such as text and graphics, however, often contains ex­
tensive homogeneous regions. To capture the substantial redundancy in
such images, the JPEG-LS coder provides a run mode. The coder enters
this run mode whenever the neighbourhood samples are all identical;
i.e., ~I = ~2 = ~3 = 0. In run mode, the value of the current sample,
X [nl' n2], is coded implicitly through a run length which identifies the
number of consecutive samples, X [nl' n2 + i], i = 0,1, , which are all
identical to a reference value, Xref. The reference value is Xref = X a ­

Through run-length coding it is possible to represent a large number of
samples using relative few code bits, whereas the normal coding mode
requires at least one bit to represent each sample value. Run mode also
improves the execution speed of software implementations when com­
pressing images containing substantial homogeneous regions.

20.1.3 NEAR LOSSLESS COMPRESSION
JPEG-LS supports near lossless compression, controlled through an

integer-valued threshold, 8. Specifically, 8 is the maximum permissible
absolute difference between each original image sample value and its
decompressed representation. When 8 > 0, the algorithm is modified
in a number of ways. In normal mode, the algorithm codes a quantized
version of the prediction error,

e = / ex) = / Sx (x - J-Lx) - f3x)
x \ 28 + 1 \ 28 + 1

where () denotes rounding to the nearest integer. The decoder recon­
structs

which satisfies the maximum error constraint, since

Chapter 20: lPEG-LS 741

In run mode, the run length corresponds to the number of consecutive
samples, x [nl' n2 + i], i = 0,1, ... , which differ from a reference value,
Xref, by no more than 8. The predictor, J-Lx, the gradients, 6.j and the
run mode reference, Xref, are all formed using the reconstructed versions
of the relevant causal neighbours; i.e., xa, Xb, Xc and Xd - these are
the values available to the decoder. In short, with 8 > 0, the JPEG­
LS algorithm becomes a DPCM coding scheme, in which the prediction
residual is uniformly quantized using a quantizer step size of 28 + 1.
The lossless compression algorithm is obtained when 8 = O.
The lossy JPEG compression standard also involves a DPCM loop

with uniform quantization of the prediction residuals. The DPCM loop
in JPEG is used to compress the DC coefficients from successive DCT
blocks. As discussed in Section 19.2.1, the uniform quantizer may be
moved outside the DPCM loop, meaning that we may first quantize
the sample values and then losslessly encode the quantization indices.
This is possible in the simple DPCM loop used by JPEG, because the
reconstructed DC coefficients and hence the predictor, J-Lx, are always
integer multiples of the step size.
By contrast, the JPEG-LS predictor incorporates a context dependent

bias term, /3x, which is not generally a multiple of 28 + 1. As a result,
near lossless compression in JPEG-LS is not equivalent to uniformly
quantizing the original image sample values and losslessly compressing
the resulting quantization indices. In normal mode, "thrashing" between
the numerous coding contexts tends to randomize the bias applied to the
predictor. This avoids visually disturbing contours associated with direct
scalar quantization of the image sample values and reduces correlation
between the reconstruction error and the image.
Henceforth, we restrict our attention to the case of pure lossless com­

pression, with the understanding that the near lossless algorithm may
be obtained by introducing the modifications described above.

20.2

20.2.1

NORMAL MODE CODING
PREDICTION

JPEG-LS incorporates a simple yet effective non-linear predictor, J-Lx,
which is a function of the three neighbours Xa, Xb and xc' The predictor
incorporates an "edge detecting" heuristic which selects between one of
three predictors, as illustrated in Figure 20.3. If Xc = max {xa, Xb, xc}
then the current sample, x, is assumed to belong to the dark side of a
horizontal or vertical edge and the predictor is set to /-lx = min {xa , Xb}
accordingly. Similarly, if Xc = min {xa, Xb, xc} then x is assumed to
belong to the bright side of a horizontal or vertical edge and the predictor

742 Normal Mode Coding

x =max{xo'xD,Xc }

r~----A--_----..""

Xc = min{xo,xb,xJ
r~----A--------..""

Pr=min{xo,xb} Pr=min{xo'xD} Pr=max{xo xb} Pr=max{xo,xb} Pr =Xo+Xb-Xc

=XD =Xn =XD =Xo

Figure 20.3. JPEG-LS prediction.

is set to /-Lx = max {xa, Xb}. Theseedge models are most appropriate for
thresholded or computer generated imagery, where samples belonging
to the same side of an edge are likely to have identical values. If Xc is
strictly greater than the smallest and strictly less than the largest of the
three causal neighbours, the predictor is set to

/-Lx = Xa + Xb - Xc

= ~ (xa + Xb) + (~ (xa + Xb) - xc)

This predictor may be interpreted in terms of a plane passing through the
3D locations having coordinates (nl,n2-1,xa[nJ), (nl-1,n2,xb[nJ)
and (nl - 1, n2 - 1, Xc [nJ). The predictor is then the third coordinate
(height) of the plane at location (nl, n2).

20.2.2 GOLOMB CODING OF RESIDUALS
In the absence of any bias, prediction residuals can often be approx­

imately modeled by a symmetric, two-sided geometric distribution of
the form lEx (ex) = i~pp'ex'. This is illustrated in Figure 20.4. Re­
call that the residual which we actually code in, JPEG-LS is given by
ex = Sx (x - /-Lx) - 13x. The bias compensating term, 13x, serves two roles.
It adaptively compensates for any bias introduced by the non-linear pre­
dictor. It also serves to introduce a controlled bias which facilitates effi­
cient coding of the residuals. In particular, 13x E Z is adjusted adaptively
so that the mean value of the residual satisfies

Figures 20.5a and 20.5b illustrate the biased distributions corresponding
to E [Ex] < -~ and E [Ex] > -~, respectively.

Chapter 20: JPEG-LS 743

o 2

Figure 20.4. Distribution of unbiased prediction residuals.

-2 -I 0 I

a)
-2 -I 0

b)

Figure 20.5. Distribution of biased prediction residuals where a) E [Ex] > -~ and
b) E [Ex] < -~.

The JPEG-LS algorithm maintains four non-negative counters, AA'
B A, CA and N A, for each of the 365 coding contexts, A. We shall de­
scribe the update procedures for these counters shortly. For the moment,
however, it is sufficient to accept that the following interpretations hold:

• ~ ~ E [lEx II A] models the mean absolute prediction residual within
coding context A.

• ~ ~ E [Ex IA] models the mean prediction residual within coding
context A.

• C).. is the bias correction term, f3x, for any sample, x, coded in context
A.

744 Nor-mal Mode Coding

The prediction residual, ex, is mapped to a non-negative quantity, ex,
according to

(20.4)

where neg 0 is defined by

neg (y) = {0
1
if Y ~ 0
ify < 0

The mapped residuals, ex, are identified in Figures 20.5a and 20.5b which
correspond to the cases ~AX > -~ and ~AX :s; --21 , respectively. Notice

AX AX
that in both cases the positive and negative prediction residuals are
interleaved in such a way that the PMF is a monotonically decreasing
function of ex.
In JPEG-LS, the mapped residuals are represented using an adaptive

Golomb code. The mapping described above was first used by Rice and
its combination with Golomb coding of the mapped residuals is often
referred to as "Golomb/Rice coding." Although ex does not exactly
follow a geometric distribution, after discarding one or more of its LSBs,
we do recover an approximately geometric distribution. Thus, the use of
Golomb coding is justified at least for Golomb parameters m = 2k with
k ~ 1. In practice, the underlying distribution is not known precisely and
Golomb coding is justified primarily on the basis of its simplicity and the
fact that only a single coding parameter need be adapted, using simple
indicators of the source statistics. In the remainder of this section, we
describe the context selection, Golomb coding and parameter estimation
details of the coding algorithm.

CONTEXT SELECTION
As noted earlier, residual coding is context adaptive, where the con­

text used for the current sample is identified by a context reduction
function, A(~1,~2,~3). Each of the local gradients, ~j, defined by
equation (20.3) is first quantized to obtain one of 9 quantization indices,
Qj, according to

o if ~j = 0
1 if 0 < I~jl < Tl

Qj = sign (~j) . 2 if T1 ~ I~jl < T2
3 ifT2 ~ I~jl < T3
4 if I~jl ~ T3

(20.5)

Chapter 20: JPEG-LS 745

Here, T1, T2 and T3 are non-negative thresholds which may be signalled
explicitly in the JP.EG-LS code-stream1. Default values for 8-bit image
sources are

Tl = 3, T2 = 7, T3 = 21

Without further context merging we have a total of 93 = 729 distinct
contexts after quantization. This number is reduced to 365 by identifying
the sign symmetric triplets, (Ql,Q2,Q3) and (-Ql,-Q2,-Q3), with a
single context model, subject to sign reversal of the prediction residual.
This merging of contexts is based on the reasonable assumption that the
joint statistics of the two dimensional source process, {X [nl}, are likely
to be identical to those of the amplitude flipped process, {xmax - X [nl}.
The following algorithm may be used to implement the context labeling
function. It generates a context label, Ax, in the range 0 ::; Ax < 365,
to be used in coding the current sample, x. Other implementations are
possible, so long as a unique label is generated for each pair of sign
symmetric quantized gradient triplets.

JPEG-LS Context Labeling
Compute the local gradients, tl j , from equations (20.3)
Compute Qj from tl j for j = 1,2,3, using equation (20.5)

If Ql < 0 or (Ql = 0 and Q2 < 0) or (Ql = Q2 = 0 and Q3 < 0)
Set Ql = -Ql, Q2 = -Q2 and Q3 = -Q3.
Set Sx = -1

else
Set Sx = +1

Set Ax = 81Ql + 9Q2 + Q3

LENGTH-CONSTRAINED GOLOMB CODING
The mapped prediction residual, ex, is represented using a Golomb

code with parameter mx = 2kx . The algorithm for determining kx is
described shortly. The basic Golomb code represents ex by appending
the least significant kx bits of ex to a comma code which identifies the
remaining most significant bits. Specifically, the code consists of hx =

1Any selection of the form 1 < Tl < T2 < T3 allows each of the quantized gradients to take
011 all 9 possible values. In some cases, particularly with small images, it can be desirable to
reduce the total number of contexts and hence the adaptive learning penalty of the coder.
To this end, empty quantization bins may be created. For example, selecting T3 :::; T2
immediately reduces the total number of distinct quantization bins to 7. The convenient
expression in equation (20.5) is not strictly correct for non-increasing thresholds.

746 Normal Mode Coding

l2-kx exJ "0" s, followed by a "1" (the comma), followed by the least
significant kx bits of ex·
The Golomb code is particularly sensitive to the choice of kx . In

particular, very long code words can be produced if the comma coded
portion, hx, is large. This value may be as large as emax , the maxi­
mum allowable value for ex. JPEG-LS employs.a modified Golomb code
which provides an escape mechanism to avoid excessively long code­
words. Given a maximum codeword length, L, the regular Golomb cod­
ing procedure is employed so long as hx < L- pog2 emax1-1. Otherwise,
an escape code is delivered, consisting of a string of L - flog2 emax1- 1
"O"s, followed by a "1". The escape code is followed by the direct binary
representation of the value ex - 1, using pog2 emax1bits.
In JPEG-LS, all image sample values are unsigned integers lying in the

range 0 :::; x :::; X max , where the value of X max is explicitly signalled in the
JPEG-LS code-stream. The system ensures that the signed prediction
residual, ex, satisfies2

_lXmax + IJ < rxmax + 112 - ex < 2

from which we may deduce that emax = X max + 1. Also, the codeword
length limit, L, is set to

L = 2 (max {2, pog2 (xmax + 1)1} +max {8, flog2 (xmax + 1)1})

PARAMETER ESTIMATION
As mentioned previously, the JPEG-LS coder maintains counters, A,\,

B,\, C,\ and N A, for each of the 365 distinct coding contexts, A. To code
the current sample, the context label, Ax, is determined following the
procedure described above, after which the context-dependent bias term,
f3x, is obtained as f3x = CAx ' This enables formation of the prediction
residual, ex. Its conversion to ex depends upon an estimate of the mean
of the prediction residual, given by the ratio N

BAx
. The relevant mapping

Ax

appears in equation (20.4). Finally, the Golomb coding parameter, kx ,

is obtained from an estimate of the mean absolute prediction residual,

2The logic for this is omitted from the preceding description, so as to avoid unnecessary con­
fusion. Excessively large prediction residuals are reduced immediately before the formation
of ex. This is done by adding an integer multiple of X max + 1 to the value of ex produced by
equation (20.1), so as to force it into the specified range. This does not prevent the decoder
from reconstructing correct sample values. In particular, to recover recover the correct value,
x, in the range 0 to X max , the decoder has only to add an appropriate integer multiple of
X max + 1 to the value recovered from equat.ion (20.2).

Chapter 20: JPEG-LS 747

given by the ratio N
AAX

• Specifically,
AX

so that

kx~ log2 E [IExll Ax] ~ log2 E [~x I AX]

Evidently, the JPEG-LS parameter adaptation strategy is closely related
to that derived in Section 2.2.2 for one-sided geometric distributions.

It is worth noting that the ratios N
BAX and N

AAX need never explicitly
AX AX

be formed. For residual mapping we are interested only in determining
whether or not 2B>"x ::; - N>..x, while for Golomb parameter estimation
we have only to find the smallest k such that 2k N>"x 2: A>..x·
After the current sample has been coded, the counters for the relevant

coding context are updated. Firstly, A>..x' B>..x and N>..x are updated
according to the following procedure.

Update of Counters for Local Mean Estimation
Update A>..x +- A>..x + lexl and B>..x +- B>..x + ex
If N>..x = Nmax (scale counters)

Update A>..x +-lA>"x/2j, B>..x +-lB>"x/2j, N>..x +-IN>''x/2j
Update N>..x +- N>..x + 1

The renormalization point, Nmax , is a programmable parameter which is
signalled through the JPEG-LS code-stream. It may be used to control
the trade-off between stable parameter estimates and responsiveness to
non-stationary statistics.

If ~AX lies in the range -1 < ~AX ::; 0, the update procedure is
AX AX

complete. Otherwise, the bias value stored in C>..x is updated so as to
restore the expected prediction residual to the desired interval, (-1,0].
The bias value is allowed to change by at most ±1 in each coding step,
leading to the following update procedure.

Bias Update Procedure

If ~~: ::; -1 (decrease bias by 1)
If C>..x > Cmin, update C>..x +- C>..x - 1
Update B>..x +- max {B>..x + N>..x' 1 - N>..x}

else if ~AX > 0 (increase bias by 1)
AX

If C>..x < Cmax , update C>..x +- C>..x + 1

748 Run Mode Coding

The bounds, Gmin and Gmax , are equal to -128 and 127 respectively,
so that the bias parameters, G>., can always be stored as 8-bit quanti­
ties. The adjustment of B>.x up or down by N>.x in the above algorithm
may be seen to preserve the interpretation of ~AX as the mean of the

AX
bias-corrected residuals. The max and min operators in the update re-
lationships for B>.x ensure that ~~: always lies in the interval, (-1,0].
This tends to reduce the impact of large transient changes in the esti­
mated mean on the value of the value of the bias parameter.

20.3
20.3.1

RUN MODE CODING
GOLOMB CODING OF RUNS

As mentioned in Section 20.1.2, the coder enters its run mode when­
ever all four causal neighbours, X a [n] through Xd [n], of the current sam­
ple, x [n], are identical. The assumption is that x [n] and possibly a large
number of consecutive samples are all likely to have the same value as
X a [n]. This value serves as the reference, Xref for the duration of the
run mode. Let r [n] denote the run length. Specifically, r [nI' n2] is the
smallest value of r 2: °such that x [nI, n2 + r] i- Xref or n2 + r = N2,
where N2 is the width of the image. Note carefully that the run is termi­
nated either by a sample value which is not equal to Xref (interruption)
or by the end of the current image row (exhaustion), whichever comes
first. In the former case (interruption), both the run length and the
interrupting sample value must be coded before leaving run mode. The
process of interruption sample coding is discussed in Section 20.3.2. In
the latter case (exhaustion), run mode terminates after the run length
has been coded.
Ignoring the possibility of exhaustion, the run-lengths of an IID ran­

dom process, {X [n]}, possess a one-sided geometric distribution. To
see this, suppose that Ix (Xref) = p. Since the elements of the random
process are assumed independent, we must have

In this case, the most appropriate variable length coding strategy is
Golomb coding. In fact, the method was originally proposed by Golomb
precisely for this purpose [71]. Although images typically contain sub­
stantial inter-sample redundancy, the IID assumption may be locally

Chapter 20: JPEG-LS 749

valid within the smooth regions where the run mode is important. In
scanned document applications, for example, the dominant source of
run interruption might be uncorrelated random noise from the scanning
process. In any event, Golomb coding is attractive for its simplicity and
because it lends itself to adaptive schemes. The complexity of Golomb
coding is also insensitive to the size of the alphabet.
A conventional adaptive Golomb code would adjust the parameter

only after coding each run, as discussed in Section 2.2.2. If the source
statistics are entirely unknown a priori and subject to change frequently,
superior performance may be obtained using a modified form of the
Golomb code in which the parameter, m, is adapted within the run
after the emission of each bit of the comma code. In JPEG-LS, the roles
played by the binary digits "0" and "I" in the comma code are reversed
so that "0" serves as the comma. A "I" then has the interpretation of
a "hit" - the remaining run length is at least as long as m. Similarly,
the terminating "0" of the comma code indicates a "miss" - the value
of the Golomb parameter, m, is longer than the remaining run length.
In the simple case where we constrain m to be an exact power of 2,
namely m = 2k , a miss is followed by the k-bit binary representation of
the remaining run length.
Recall from Section 2.2.2 that an optimal value for the parameter,

m = 2k
, is a little over half the mean run length, E [R]. Thus, a "typical"

run should be coded with a single hit, followed by a miss and the k-bit
remainder. This suggests an adaptive state machine in which equilibrium
is achieved when there is one hit for every miss. Each hit increments
the state index, while each miss decrements the state index, where k is
a non-decreasing function of the state index. In this way, the machine
adapts the value of the Golomb parameter, m = 2k , after every bit of the
underlying comma code. These ideas are embodied by the following run
length coding algorithm. The scheme is known as a "block MELCODE,,3
[112] and was first inspired by [111].

MELCODE Run Coding Procedure
Set k = T [lmed and m = 2k

While r 2 m
Output a "I" (hit)
Update remaining run length, r r- r - m
Update state index, lmel r- min {Imax,Imel + I}
Set k = T[Imed and m = 2k

:lTo the best of our knowledge, the name "MELCODE" is derived from "Mitsnbishi Electric
Company," where the code was first conceived.

750 Run Mode Coding

If run interrupted (run terminates prior to end of line)
Process the terminating miss
Output a "0" (miss)
Output the k-bit binary code for r
Update state index, f mel ~ max {O, f mel - I}

else (run continues for the rest of the line)
Ifr>O
Output a "I" (pseudo-hit)

The MELCODE state machine in JPEG-LS contains 32 states so that
f max = 31. The state index is initialized to fmel = 0 at the beginning of
a scan, and the fixed parameter table is

{
lf / 4J if 0 '5. f < 16

T[f] = If/2J - 4 if 16 '5. f < 24
f - 16 if 24 '5. f < 32

Notice the special processing for runs which are terminated by the end
of the line, in which case there is no need to explicitly signal the exact
run length.

20.3.2 INTERRUPTION SAMPLE CODING
When a run is interrupted by a new sample value, xi- Xref, the inter­

rupting sample value must be coded. Although the interrupting sample
could be coded using the methods of the regular mode, its statistics are
generally quite different to those encountered in regular mode. In par­
ticular, we know a priori that x i- Xa' Since there are comparatively few
run interruption samples, a much smaller number of coding contexts is
called for. In fact there are only two interruption coding contexts and
only two causal neighbours are used, X a and Xb, where Xb is the sample
immediately above the interrupting sample, x, as in Figure 20.1. The
single gradient, .6. = Xb - X a is quantized into three regions which are
then merged into two contexts using the same sign-symmetry properties
as in normal mode. Thus, the sign-reversal flag is set to Sx = sign (.6.)
and the context label is given by Ax = min {I, 1.6.1} E {0,1}.4 The pre­
dictor is simply /-lx = Xb and no bias correction is employed; i.e., f3x = O.
Coding of the prediction residual proceeds in the usual way by map-­

ping the prediction residual, ex = Sx (x - /-lx), into a non-negative quan­
tity, ex, and applying the adaptive Golomb code, with parameter m x =

4These context labels are not to be confused with those used in regular mode. The 365
contexts of regular mode are distinct from the 2 interruption coding contexts of run mode.

Chapter 20: JPEG-LS 751

2kx derived from counters A.~x and N>..x as in normal mode. There are,
however, a number of important differences from the procedure used
in normal mode. These stem from the fact that no bias correction is
employed and ex must be non-zero in context Ax = O. Each of the
two contexts maintains a scaled count, N;, of the number of negative
prediction residuals which have been coded in that context. In this
way, the ratio N; /N>.. is indicative of whether the prediction residual is
more likely to be positive or negative. This information, together with
knowledge of whether or not ex can be zero, is used to choose between
one of two schemes for mapping ex to ex prior to Golomb coding. For
a detailed description of these variations, the reader is referred to the
standard itself [11].

20.4 TYPICAL PERFORMANCE
In this section, we indicate the compression performance of the JPEG­

LS system, using the reference implementation for Part 1 of the standard,
with all parameters set to their recommended defaults5 . Our goal is to
indicate the degree of compression which can be expected for a variety
of different image types. We examine both the lossless and near-Iossless
modes, with a variety of error thresholds, e. As described in Section
20.1.3, near-Iossless mode involves embedding a uniform quantizer within
the DPCM feedback loop. The thresholds, e = 0, 1, 3, 15 and 31, for
which results are reported in Table 20.1, correspond to quantizer step
sizes of .6. = 2n - 1 for n = 1 (lossless) 2, 3, 5 and 6.
The various test images are collected into five groups. The first group

consists of the high resolution ISO/IEC test images, "Bike," "Cafe" and
"Woman," representing natural photographic content; the original im­
ages are depicted in Figure 8.21. The second group consists of lower
resolution ISO/IEC test images, "Goldhill," "Hotel" and "Tools," also
representing natural photographic content; the original images are de­
picted in Figure 8.22. The third group consists of the popular 512 x 512
test images, "Lenna" and "Barbara," which are depicted in Figure 8.23.
The fourth group consists of non-natural ISO/IEC test images shown
in Figure 8.24. An assortment of other test images appears in the last
group; they are depicted in Figure 8.25. All images are monochrome
with 8 bits per sample.
One of the most important observations from Table 20.1 is that most

image sources yield lossless compression ratios of only about 1.7 : 1. The
exceptions are the non-natural image sources, "Cmpd1" and "Cmpd2,"

5A copy of this implementation may be obtained via http://'W'W'W.h.pl.hp.com/loco.

752 Typical Performance

Table 20.1. JPEG2000 (lossless) and JPEG-LS compression results over a range of
image types. Compressed bit-rates are expressed in bits per sample (bps).

Image JPEG2000 8=0 8= 1 8 =3 8 = 15 8 = 31

Bike
4.54 bps 4.36 bps 2.85 bps 1.85 bps 0.73bps 0.42 bps
00 00 49.97 dB 42.46 dB 30.53dB 25.06dB

Cafe
5.36 bps 5.09 bps 3.56 bps 2.51 bps 1.16 bps 0.79bps
00 00 49.95dB 42.32dB 30.01 dB 24.17dB

Woman
4.52 bps 4.45 bps 2.92 bps 1.95 bps 0.71 bps 0.43 bps
00 00 49.91 dB 42.30dB 30.73 dB 24.80dB

Goldhill
4.61 bps 4.48 bps 3.00 bps 1.94 bps 0.74 bps 0.37 bps
00 00 49.89dB 42.23dB 30.17 dB 24.66 dB

Hotel
4.60bps 4.38 bps 2.87 bps 1.88 bps 0.73 bps 0.47 bps
00 00 49.90dB 42.27dB 30.35 dB 24.55dB

Tools
5.47 bps 5.31 bps 3.74 bps 2.62 bps 1.10 bps 0.65 bps
00 00 49.93dB 42.21dB 30.lOdB 24.58dB

Lenna
4.32 bps 4.24 bps 2.71 bps 1.76 bps 0.74 bps 0.45 bps
00 00 49.89dB 42.22dB 30.15dB 24.13dB

Barbara
4.80 bps 4.86 bps 3.31 bps 2.28 bps 1.06 bps 0.72 bps
00 00 49.89dB 42.19dB 29.86 dB 23.91 dB

Chart
3.09 bps 2.84 bps 1.84 bps 1.23 bps 0.55 bps 0.37 bps
00 00 50.67dB 43.05dB 30.30dB 24.14dB

Cmpdl
2.14 bps 1.24 bps 0.87 bps 0.65 bps 0.36 bps 0.28 bps
00 00 55.77dB 40.08dB 31.43 dB 29.77 dB

Cmpd2
2.56 bps 1.44 bps 1.11 bps 0.79 bps 0.38 bps 0.27 bps
00 00 50.63dB 42.57dB 30.50dB 24.55dB

Aerial2
5.45 bps 5.29 bps 3.74 bps 2.61 bps 1.11 bps 0.58 bps
00 00 49.95dB 42.18dB 29.60dB 24.25dB

Cats
2.53 bps 2.57 bps 1.80 bps 1.25 bps 0.58 bps 0.36 bps
00 00 51.81 dB 43.87dB 31.32dB 25.46 dB

Finger
4.622 bps 4.623 bps 3.096 bps 2.163 bps 0.973 bps 0.669 bps
00 00 49.89dB 42.16dB 29.93 dB 24.43 dB

which are representative of compound document imagery. For such
sources, larger compression ratios are possible. The table also includes
reference lossless compression results for JPEG2000, which are obtained
using the Kakadu software implementation supplied with this text. The
lossless JPEG2000 code-streams use the reversible 5/3 wavelet trans­
form with 5 levels of decomposition, with a layer progressive code-stream
having 7 quality layers. Evidently, JPEG-LS outperforms JPEG2000 on
most images, although the performance gap is not large. Again, the
exceptional images are "Cmpdl" and "Cmpd2," where JPEG-LS signif­
icantly outperforms JPEG2000. We hasten to point out that JPEG2000

Chapter 20: JPEG-LS 753

offers fundamentally different features to JPEG-LS. JPEG2000 supports
highly scalable code-streams, embedding efficient lossy and lossless rep­
resentations within the same stream. JPEG2000 also supports reso­
lution scalability, spatial random access, compressed domain cropping
and many other features not offered by JPEG-LS. At the same time,
JPEG2000 is a great deal more complex than JPEG-LS.
To achieve greater compression, the near-Iossless compression mode

is attractive. For this case, Table 20.1 reports both the compressed bit
rate and the PSNR of the reconstructed images, for ease of comparison
with similar results reported for JPEG2000 (see Table 8.5). At lower bit
rates, neither the PSNR nor the visual appearance of the near-Iossless
compressed images is competitive with popular lossy compression alter­
natives. Nevertheless, the relative simplicity of the JPEG-LS algorithm
renders its near-Iossless compression mode attractive at high bit rates
and in applications which demand a specified bound on the maximum
error in any sample.

References

[1] New work item proposal: JPEG2000 image coding system. Technical Report
N390, ISO/IEC JTCl/SC29/WGl, June 1996.

[2] Call for contributions for JPEG 2000 (JTC 1.29.14, 15444): Image coding
system. Technical Report N505, ISO/IEC JTCl/SC29/WGl, March 1997.

[31 Report on CE VI: Exploitation of visual masking through control of individual
block contributions. Technical Report N1303, ISO/IEC JTCl/SC29/WGl,
June 1999.

[4] JPEG2000 Part 1 defect report. Technical Report N1980, ISO/IEC
JTCl/SC29/WGl, January 2001.

[5] ISO/IEC 10918-1 and ITU-T Recommendation T.81. Information technology
- digital compression and coding of continuous-tone still images: Requirements
and guidelines, 1994.

[6] ISO/IEC 10918-3 and ITU-T Recommendation T.84. Information technology
- digital compression and coding of continuous-tone still images: Extensions,
1996.

[7] ISO/IEC 11544 and ITU-T Recommendation T.82. JBIG bi-level image com­
pression standard, 1993.

[8) ISO/IEC 11578. Information technology - open systems interconnection ­
remote procedure call, 1996.

[9] ISO 12640. Graphic technology·· prepress digital data exchange - standard
color image data (scid), 1995.

[10] ISO/IEC 14492 and ITU-T Recommendation T.88. JBIG2 bi-level image com­
pression standard, 2000.

[11] ISO/IEC 14495-1 and ITU-T Recommendation T.87. Information technology
- lossless and near-lossless compression of continuous-tone still images, 1999.

[12] ISO/IEC 15444-1. JPEG2000 image coding system, 2000.

[13] IETF RFC 2279. UTF-8, a transformation format ofISO 10646, January 1998.

[14] ISO/IEC 646. Information technology - ISO 7-bit coded character set for
information interchange, 1991.

756

[15] IS 8859-15. Information technology - 8-bit single-byte coded graphic character
sets - Parts 15: Latin alphabet number 9, 1999.

[16] G.P. Abousleman, M.W. Marcellin, and B.R Hunt. Hyperspectral image com­
pression using entropy-constrained predictive trellis coded quantization. IEEE
Trans. Image Proc., 6:566-573, April 1997.

[17] N.M. Abramson. Information Theory and Coding. McGraw-Hill, New York,
1963.

[18] N. Ahmed, T. Natarajan, and K. Rao. Discrete cosine transform. IEEE Trans.
Computers, 23:88-93, January 1974.

[19] Analog Devices. ADV-JP2000 JPEG2000 Co-Processor: Preliminary Techni­
cal Data, May 2001.

[20] J. Andrew. A simple and efficient hierarchical image coder. Proc. IEEE Int.
Conf. Image Proc., 3:658-661, October 1997.

[21] S. Arimoto. An algorithm for calculating the capacity of an arbitrary discrete
memoryless channel. IEEE Trans. Inf. Theory, 18:14-20, January 1972.

[22] RB. Babat and T.E.S. Raghavan. Nonnegative Matrices and Applications.
Cambridge University Press, 1997.

[23] R Bellman. Dynamic Programming. Princeton University Press, Princeton,
N.J., 1957.

[24] T. Berger. Rate Distortion Theory. Prentice-Hall, NJ, 1971.

[25] A. Bilgin, P.J. Sementilli, and M.W. Marcellin. Progressive image coding using
trellis coded quantization. IEEE Trans. Image Proc., 8:1638-1643, November
1999.

[26] RE. Blahut. Computation of channel capacity and rate-distortion functions.
IEEE Trans. Inf. Theory, 18:460-473, July 1972.

[27] M. Boliek, M. Gormish, E.L. Schwartz, and A.F. Keith. Decoding compres­
sion with reversible embedded wavelets (CREW) codestreams. Journal of
Electronic Imaging, 7:402-409, July 1998.

[28] L. Bottou, P.G. Howard, and Y. Bengio. The z-coder adaptive binary coder.
Proc. IEEE Data Compression Conf. (Snowbird), pages 13-22, 1998.

[29] L. Breiman. The individual ergodic theorem of information theory. Ann. Math.
Stat., 28:809-811, 1957.

[30] 1. Breiman. A correction to 'the individual ergodic theorem of information
theory'. Ann. Math. Stat., 31:809-810,1960.

[31] C. Brislawn and B. Wohlberg. Boundary extensions and reversible imple­
mentation for half-sample symmetric filter banks. Technical Report N2119,
ISO/IEC JTCl/SC29/WG1, March 2001.

[32] B. Buchberger. Introduction to groebner bases. In H. Schwichtenberg, edi­
tor, Logic of Computation. Proc. Nato Advanced Study Institute, pages 35-66.
Springer-Verlag, 1997.

[33] R Calderbank, I. Daubechies, W. Sweldens, and B. Yeo. Wavelet transforms
that map integers to integers. Applied and Computational Harmonic Analysis,
5(3):332--369, July 1998_ -

References 757

[34) F.W. Campbell and J.G. Robson. Application of fourier analysis to the visi­
bility of gratings. Journal of Physiology (London), 197:551-566, 1968.

[35] CCITT. Facsimile Coding Schemes and Coding Control Functions for Group
4 Facsimile Apparatus, 1984. Recommendation T.6.

[36] W.H. Chen and C.H. Smith. Adaptive coding of monochrome and color images.
IEEE Trans. Commun., 25:1285-1292, November 1977.

[37] T. Chinen and A. Chien. Visual evaluation of JPEG2000 color image com­
pression performance. Technical Report N1583, ISO/IEC JTCI /SC29/WG1,
March 2000.

[38] T. Chinen, M. Nadenau, J. Reichel, and W. Zeng. Report on CE C03
(optimizing color image compression). Technical Report N1587, ISO/IEC
JTC1/SC29/WG1, March 2000.

[39] P.A. Chou, T. Lookabaugh, and R.M. Gray. Entropy-constrained vector quan­
tization. IEEE Trans. Acoust. Speech and Sig. Proc., 37:31-42, January 1989.

[40] C. Christopoulos. JPEG2000 verification model 2.0 (technical description).
Technical Report N988, ISO/IEC JTC1/SC29/WG1, October 1998.

[41] A. Cohen, 1. Daubechies, and J.-C. Feauveau. Biorthogonal bases of compactly
supported wavelets. Communications on Pure and Appl. Math., 45(5):485-560,
June 1992.

[42] J.H. Conway and N.J.A. Sloane. A lower bound on the average error of vector
quantizers. IEEE Trans. Inf. Theory, 31:106-109, January 1985.

[43] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley, New
York, 1991.

[44] A. Croisier, D. Esteban, and C. Galand. Perfect channel splitting by use of
interpolation/decimation/tree decomposition techniques. Int. Conf. on Infor­
mation Sciences and Systems, pages 443-446, August 1976.

[451 A. Croisier, D. Esteban, and C. Galand. Application of quadrature mirror
filters to split band voice coding systems. Proc. Int. Conf. Acoust. Speech and
Sig. Proc., pages 191-195, 1977.

[46] S. Daly. The visible differences predictor: An algorithm for the assessment
of image fidelity. Proc. SPIE (Human Vision, Visual Processing and Digital
Display III, San Jose), 1666:2-15, February 1992.

[47] 1. Daubechies. Ten Lectures on Wavelets. SIAM, Philadelphia, PA, 1992.

[48] 1. Daubechies. Orthonormal bases of compactly supported wavelets. Commu­
nications on Pure and Appl. Math., 41:909-996, November 1998.

[49] R.L. DeValois, D.G. Albrecht, and L.G. Thorell. Spatial frequency selectivity
of cells in the macaque visual cortex. Vision Research, 22:545-559, 1982.

[50] R.L. DeValois, E.W. Yund, and H. Hepler. The orientation and direction
selectivity of cells in macaque visual cortex. Vision Research, 22:531-544,
1982.

[51] Y. Du. Ein spharisch invariants Verbunddichtemodell fur Bildsignale. Archiv
fur Elektronik und Ubertragungstechnik, 45:148-159, May 1991.

[52] P. Duhamel and M. Vetterli. Fast fourier transforms: A tutorial review and a
state of the art. Signal Proc., 19(4):259-299, April 1990.

758

[53] D.L. Duttweiler and C. Chamzas. Probability estimation in arithmetic and
adaptive-huffman entropy coders. IEEE Trans. Image Proc., 4(3):237-246,
March 1995.

[54] H. Everett. Generalized lagrange multiplier method for solving problems of
optimum allocation of resources. Operation Res., 11:399-417, 1963.

[55] N. Farvardin and J.W. Modestino. Optimum quantizer performance for a class
of non-Gaussian memoryless sources. IEEE Trans. Inf. Theory, 30:485-497,
May 1984.

[56] W.A. Finamore and W.A. Pearlman. Optimal encoding of discrete-time
continuous-amplitude memoryless sources with finite output alphabets. IEEE
Trans. Inf. Theory, 26:144-155, March 1980.

[57] T.R. Fischer. Geometric source coding and vector quantization. IEEE Trans.
Inf. Theory, 35:137-145, January 1989.

[58] T.R. Fischer. On the rate-distortion efficiency of subband coding. IEEE Trans.
Inf. Theory, 38(2) :426-428, March 1992.

[59] T.R. Fischer, M.W. Marcellin, and M. Wang. Trellis-coded vector quantization.
IEEE Trans. Inf. Theory, 37:1551-1566, November 1991.

[60] T.R. Fischer and M. Wang. Entropy-constrained trellis-coded quantization.
IEEE Trans. Inf. Theory, 38:415-426, March 1992.

[61] P.E. Fleischer. Sufficient conditions for achieving minimum distortion in a
quantizer. IEEE Int. Conv. Rec., 1:104-11I; 1964.

[62] J.M. Foley and G.E. Legge. Contrast detection and near-threshold discrimi­
nation in human vision. Vision Research, 21:1041-1053, 1981.

[63] G.D. Forney, Jr. Convolutional codes I: Algebraic structure. IEEE Trans. Inf.
Theory, 16:720-738, November 1970.

[64] G.D. Forney, Jr. The Viterbi algorithm. Proc. IEEE, 61:268-278, March 1973.
(Invited Paper).

[65] Canon Research Centre France. Report on core experiment CodEff2:
compressed image manipulation. Technical Report N1304, ISO/IEC
JTC1/SC29/WG1, July 1999.

[66] T. (Editor) Fukuhara and N. (Co-Editor) Yasuyuki. Proposed FPDAM-1 to
15444-1. Technical Report N2091, ISO/IEC JTC1/SC29/WG1, March 2001.

[67] R.G. Gallager. Information Theory and Reliable Communication. Wiley, 1968.

[68] R.G. Gallager and D.V. Voorhis. Optimal source codes for geometrically dis­
tributed integer alphabets. IEEE Trans. Inf. Theory, 21:228-·230, March 1975.

[69] A. Gersho and R.M. Gray. Vector Quantization and Signal Compression.
Kluwer, Boston, 1992.

[70] H. Gish and J.N. Pierce. Asymptotically efficient quantizing. IEEE Trans.
Inf. Theory, 14:676-683, September 1968.

[71] S.W. Golomb. Run-length encodings. IEEE Trans. Inf. Theory, 12:399-401,
July 1966.

[72] I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and Products.
Academic Press, New York, 1980.

References 759

[73] R.M. Gray. Time-invariant trellis encoding of ergodic discrete-time sources
with a fidelity criterion. IEEE Trans. Inf. Theory, 23:71-83, January 1977.

[74] R.M. Gray. Entropy and Information Theory. Springer-Verlag, 1990.

[75] V.K. Heer and H.-E. Reinfelder. A comparison of reversible methods for data
compression. Proc. SPIE conference, 'Medical Imaging IV', 1233:354~365,

1990.

[76] 1. Hontsch and L. Karam. APIC: Adaptive perceptual image coding based
on subband decomposition with locally adaptive perceptual weighting. Proc.
IEEE Int. Conf. Image Proc., 1:37-40, 1997.

[77] D.A. Huffman. A method for the construction of minimum redundancy codes.
Pmc. IRE, 40:1098~1101, 1952.

[78] International Color Consortium (ICC). ICC profile format specification 1:1998­
09, 1998.

[79] IEC TCI00/61966-2.l. Colour management ~ default RGB colour space ­
sRGB,1999.

[80] A. Islam and W.A. Pearlman. An embedded and efficient low-complexity
hierarchical image coder. Proc. SPIE Conf. Visual Comm. and Image Proc.
(San Jose), January 1999.

[81] A.K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, Engle­
wood Cliffs, N.J., 1989.

[82] N.S. Jayant and P. Noll. Digital Coding of Waveforms. Prentice-Hall, Engle­
wood Cliffs, N.J., 1984.

[83] J.D. Johnston. A filter family designed for use in quadrature mirror filter
banks. Proc. Int. Conf. Acoust. Speech and Sig. Pmc., pages 291-294, 1980.

[84] R.L. Joshi, V.J. Crump, and T.R. Fischer. Image subband coding using arith­
metic coded trellis coded quantization. IEEE Trans. Circuits Syst. Video Tech­
nol., 5:515-523, December 1995.

[85] R.L. Joshi, H. Jafarkhani, J.H. Kasner, T.R. Fischer, N. Farvardin, M.W.
Marcellin, and R.H. Bamberger. Comparison of different methods of classifi­
cation in subband coding of images. IEEE Trans. Image Pmc., 6:1473-1486,
November 1997.

[86] J.H. Kasner, M.W. Marcellin, and B.R. Hunt. Universal trellis coded quanti­
zation. IEEE Trans. Image Proc., 8:1677-1687, December 1999.

[871 R.D. Koilpillai and P.P. Vaidyanathan. Cosine-modulated FIR filter banks
satisfying perfect reconstruction. IEEE Trans. Sig. Proc., 40(4):770~783, April
1992.

[881 G. Langdon. Probabilistic and q-coder algorithms for binary source adaptation.
Pmc. IEEE Data Compression Conf. (Snowbird), pages 13-22, 1991.

[89] G. Langdon and J. Rissanen. Compression of black-white images with arith­
metic coding. IEEE Trans. Commun., 29(6):858-867, June 1981.

[90] G.E. Legge. A power law for contrast discrimination. Vision Research, 21:457~
467,198l.

[91] J. Li. Visual progressive coding. Technical Report N758, ISO/IEC
JTC1/SC29/WGl, March 1998.

760

[92] J. Li, P. Cheng, and C.-C. J. Kuo. On the improvements of embedded zerotree
wavelet (EZW) coding. Proc. SPIE: Visual Comm. and Image Proc. (Taipei),
2601:1490-1501, May 1995.

[93] J. Li and S. Lei. Rate-distortion optimized embedding. Proc. Picture Coding
Symposium, Berlin, pages 201--206, September 1997.

[94] J. Liang, W.A. Pearlman, A. Islam, F. Wheeler, J. Andrew, C. Chui, J. Spring,
C. Chrysafis, A. Said, and A. Drukarev. Low complexity entropy coding with
set partitioning. Technical Report N1313, ISO/IEC JTC1/SC29/WG1, June
1999.

[95] J. Lim. Two-Dimensional Signal and Image Processing. Prentice-Hall, 1990.

[96] Y. Linde, A. Buzo, and RM. Gray. An algorithm for vector quantizer design.
IEEE Trans. Commun., 28:84-95, January 1980.

[97] S.P. Lloyd. Least squares quantization in PCM. IEEE Trans. Inf. Theory,
28:129-137,1982. Also, unpublished memorandum, Bell Laboratories, 1957.

[98] S. Mallat. A theory for multiresolution signal decomposition; the wavelet
representation. IEEE Trans. Patt. Anal. and Math. Intell., 11(7):674-693,
1989.

[99] H.S. Malvar. Modulated QMF filter banks with perfect reconstruction. Elec­
tronic Letters, 26:906-907, June 1990.

[100] H.S. Malvar. Signal Processing with Lapped Transforms. Artech House, Nor­
wood, Massachusetts, 1992.

[101] M. Marcellin, T. Flohr, A. Bilgin, D. Taubman, E. Ordentlich, M. Wein­
berger, G. Seroussi, C. Chrysalis, T. Fisher, B. Banister, M. Rabbani, and
R Joshi. Reduced complexity entropy coding. Technical Report N1312,
ISO/IEC JTC1/SC29/WG1, June 1999.

[102] M.W. Marcellin. On entropy-constrained trellis coded quantization. IEEE
Trans. Commun., pages 14-16, January 1994.

[103] M.W. Marcellin and T.R Fischer. Generalized predictive TCQ of speech.
Communications of the ACM, 33:11-19, January 1990.

[104] M.W. Marcellin and T.R. Fischer. Trellis coded quantization of memoryless
and Gauss-Markov sources. IEEE Trans. Commun., 38:82-93, January 1990.

[105] J. Max. Quantizing for minimum distortion. IRE Trans. Inform. Theory,
6:7-12, March 1960.

[106] RJ. McEIiece. The Theory of Information and Coding. Addison-Wesley, 1977.

[107] B. McMillan. The basic theorems of information theory. Ann. Math. Stat.,
24:196-219, 1953.

[108] F. Mintzer. Filters for distortion-free two-band multirate filter banks. IEEE
Trans. Acoust. Speech and Sig. Proc., 33(3):626-630, June 1985.

[109] M. Nadenau and J. Reichel. Opponent color, human vision and wavelets for
image compression. Proceedings of the Seventh Color Imaging Conference,
pages 237-242, 1999.

[110] J. Ohm. Advanced packet-video coding based on layered VQ and SBC tech­
niques. IEEE Trans. Circ. Syst. for Video Tech., 3(3):208--221, June 1993.

References 761

[1111 R. Ohnishi, Y. Ueno, and F. Ono. The efficient coding scheme for binary
sources. IECE of Japan, 60-A:1114-1121, December 1977. (In Japanese).

[112] F. Ono, S. Kino, M. Yoshida, and T. Kimura. Bi-level image coding with
MELCODE - comparison of block type and arithmetic type code. Pmc. Globe­
com'89, pages 225-260, November 1989.

[113] E. Ordentlich, M. Weinberger, and G. Seroussi. A low-complexity modeling
approach for embedded coding of wavelet coefficients. Pmc. IEEE Data Com­
pression Conf. (Snowbird), pages 408-417, March 1998.

[114] P.F. Panter and W. Dite. Quantization distortion in pulse count modulation
with nonuniform spacing of levels. Proc. IRE, pages 44-48, January 1951.

[115] A. Papoulis. Pmbability, Random Variables, and Stochastic Processes.
McGraw-Hill, New York, 3rd edition, 1991.

[116] R. Pasco. Source Coding Algorithms for Fast Data Compression. PhD thesis,
Stanford University, 1976.

[117] W. Pearlman. Performance bounds for subband coding. In John Woods, editor,
Subband Image Coding, pages 1-41. Kluwer, 1991.

[118] W. Pennebaker, J. Mitchell, G. Langdon, and R. Arps. An overview of the
basic principles of the q-coder adaptive binary arithmetic coder. IBM J. Res.
Develop., 32(6):717-726, November 1988.

[119] W.B. Pennebaker and J.1. Mitchell. JPEG: Still Image Data Compression
Standard. Van Nostrand Reinhold, New York, 1992.

[120] J.P. Princen and A.B. Bradley. Analysis/synthesis filter bank design based on
time domain aliasing cancellation. IEEE Trans. Acoust. Speech and Sig. Pmc.,
34(5):1153-1161, October 1986.

[121] M. Rabbani and P.W. Jones. Digital Image Compression Techniques. SPIE,
Bellingham, WA, 1991.

[122] WC3 Recommendation. Extensible markup language (XML) 1.0, February
1998. (Second Edition October 2000).

[123] R.C. Reininger and J.D. Gibson. Distributions of the two-dimensional DCT
coefficients. IEEE Trans. Commun., 31:835-839, June 1983.

[124] O. Rioul. Simple regularity criteria for subdivision schemes. SIAM J. Math.
Anal., 23:1544-1576, November 1992.

[125] J. Rissanen. Generalized kraft inequality and arithmetic coding. IBM J. Res.
Develop., 20:198-203, May 1976.

[126] A. Said and W. Pearlman. A new, fast and efficient image codec based on
set partitioning in hierarchical trees. IEEE Trans. Circ. Syst. for Video Tech.,
pages 243-250, June 1996.

[127] A. Said and W.A. Pearlman. An image multiresolution representation for
lossless and lossy image compression. IEEE Trans. Image Proc., 5(9):1303­
1310, May 1996.

[128] P.J. Sementilli, A. Bilgin, J.H. Kasner, and M.W. Marcellin. Wavelet TCQ:
submission to JPEG-2000. Proc.. SPIE, Appl. of Digital Proc. (San Diego),
pages 2-12, July 1998.

762

[129] P.J. Sementilli and M.W. Marcellin. Scalability core experiment results. Tech­
nical Report N774, ISO/IEC JTC1/SC29/WG1, March 1998.

[130J C.E. Shannon. A mathematical theory of communication. Bell Sys. Tech.
Journal, 27:379-423 (Part I), 623-656 (Part II), 1948. Reprinted in book form
with postscript by W. Weaver, University of Illinois Press, Urbana, 1949.

[131] J.M. Shapiro. An embedded hierarchical image coder using zerotrees of wavelet
coefficients. Proc. IEEE Data Compression Conf. (Snowbird), pages 214-223,
1993.

[132] J.M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients.
IEEE Trans. Sig. Proc., 41:3445-3462, December 1993.

[133] F. Sheng, A. Bilgin, P.J. Sementilli, and M.W. Marcellin. Lossy and lossless
image compression using reversible integer wavelet transforms. Proc. IEEE
Int. Conf. Image Proc., pages 876-880, October 1998.

[134] Y. Shoham and A. Gersho. Efficient bit allocation for an arbitrary set of quan­
tizers. IEEE Trans. Acoust. Speech and Sig. Proc., 36:1445-1453, September
1988.

[1351 E.P. Simoncelli and E.H. Adelson. Subband transforms. In John Woods, editor,
Subband Image Coding, chapter Subband transforms, pages 143-192. Kluwer,
1991.

[136] M.J.T. Smith and III Barnwell, T.P. A procedure for designing exact recon­
struction filter banks for tree-structured subband coders. Proc. Int. Conf.
Acoust. Speech and Sig. Proc., 2:27.1.1-27.1.4, 1984.

[137] M.J.T. Smith and T.P. III Barnwell. Exact reconstruction techniques for
tree structured subband coders. IEEE Trans. Acoust. Speech and Sig. Proc.,
34:434-441, June 1986.

[138] M.J.T. Smith and S.L. Eddins. Analysis-synthesis techniques for subband im­
age coding. IEEE Tr~ns. Acoust. Speech and Sig. Proc., 38:1446-1456, August
1990.

[139] R.A. Smith and D.J. Swift. Spatial-frequency masking and birdsall's theorem.
Journal of the Optical Society of America A, 2:1593-1599, 1985.

[140] D. Speck. New options in radix-255 arithmetic coder. Technical Report N482R,
ISO/IEC JTC1/SC29/WG1, March 1997.

[141] J. Spring, J. Andrew, and F. Chebil. Nested quadratic splitting. Technical
Report N1191, ISO/IEC JTC1/SC29/WG1, March 1999.

[142] L.C. Stewart, R.M. Gray, and Y. Linde. The design of trellis waveform coders.
IEEE Trans. Commun., 30:702-710, February 1982.

[143] G. Strang and T. Nguyen. Wavelets and Filter Banks. Wellesley-Cambridge
Press, Wellesley, Massachusetts, 1996.

[144] Scalability Core Experiment Sub-Group. Scalability sub-group combined re­
sults. Technical Report N846, ISO/IEC JTC1/SC29/WG1, June 1998.

[145] W. Sweldens. The lifting scheme: A custom-design construction of biorthogonal
wavelets. Applied and Computational Harmonic Analysis, 3(2):186-200, April
996.

References 763

[146] D.S. Taubman. Directionality and Scalability in Image and Video Compression.
PhD thesis, University of California, Berkeley, 1994.

[147] D.S. Taubman. EBCOT: Embedded block coding with optimized truncation.
Technical Report N1020R, ISO/IEC JTC1/SC29/WG1, October 1998.

[148] D.S. Taubman. Embedded, independent block-based coding of subband data.
Technical Report N871R, ISO/IEC JTC1/SC29/WG1, July 1998.

[149] D.S. Taubman. High performance scalable image compression with EBCOT.
IEEE Trans. Image Proc., 9(7):1158-1170, July 2000.

[150] D.S. Taubman and A. Zakhor. Multi-rate 3-d subband coding of video. IEEE
Trans. Image Proc., 3(5):572-588, September 1994.

[151] D.S. Taubman and A. Zakhor. A common framework for rate and distortion
based scaling of highly scalable compressed video. IEEE Trans. Circ. Syst. for
Video Tech., 6(4):329-354, August 1996.

[152] 1. Ueno, F. Ono, T. Yanagiya, and T. Kimura. Report on core experiment
CodEff03: Arithmetic coding experiment. Technical Report N1199R, ISO/IEC
JTC1/SC29/WG1, March 1999.

[153] G. Ungerboeck. Channel coding with multilevel/phase signals. IEEE Trans.
Inf. Theory, 28:55-67, January 1982.

[154] G. Ungerboeck. Trellis-coded modulation with redundant signal sets - Part II:
State of the art. IEEE Commun. Mag., 25:12-21, February 1987.

[155] United States Federal Bureau of Investigation. Wavelet scalar quantizer WSQ
gray-scale fingerprint image compression specifications, February 1993. Docu­
ment IAFIS-IC-0110v2.

[156] M. Unser. On the approximation of the discrete karhunen-Ioeve transform for
stationary processes. Signal Proc., 5(3):229-240, May 1983.

[157] P.P. Vaidyanathan. Theory and design of m-channel maximally desimated
quadrature mirror filters with arbitrary m, having the perfect reconstruction
property. IEEE Trans. Acoust. Speech and Sig. Proc., 35(4):476-492, April
1987.

[158] P.P. Vaidyanathan. Multirate digital filters, filter banks, polyphase networks,
and applications: A tutorial. Proc. IEEE, 78(1):56-93, January 1990.

[1591 P.P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice-Hall, Engle­
wood Cliffs, NJ, 1993.

[160] P.P. Vaidyanathan, T.Q. Nguyen, Z. Doganata, and T. Saramaki. Improved
technique for design of perfect reconstruction FIR QMF banks with lossless
polyphase matrices. IEEE Trans. Acoust. Speech and Sig. Proc., 37(7):1042­
1056, July 1989.

[161] M. Vetterli. Filter banks allowing perfect reconstruction. Signal Proc.,
10(3):219-244, April 1986.

[162] M. Vetterli and J. Kovacevic. Wavelets and Subband Coding. Prentice-Hall,
New Jersey, 1995.

[163] M. Vetterli and D. Le Gall. Perfect reconstruction FIR filter banks: Some
properties and factorizations. IEEE Trans. Acoust. Speech and Sig. Proc.,
37(7):1057-1071, July 1989.

764

[164) A.J. Viterbi and J.K. Omura. Trellis encoding of memoryless discrete-time
sources with a fidelity criterion. IEEE Trans. Inf. Theory, 20:325-332, May
1974.

[165J D.V. Voorhis. Constructing codes with bounded codeword lengths. IEEE
Trans. Inf. Theory, 20:288-290, 1974.

[166] D.S. Watkins. Fundamentals of Matrix Computations. John Wiley and Sons,
New York, 1991.

[167] A.B. Watson. Efficiency of a model human image code. Journal of the Optical
Society of America A, 4(12):2401-2417, December 1987.

[168] M.J. Weinberger, G. Seroussi, and G. Sapiro. LOCO-I: A low complexity,
context-based, lossless image compression algorithm. Proc. IEEE Data Com­
pression Conf. (Snowbird), pages 140~149, April 1996.

[169] S.G. Wilson and D.W. Lytle. Trellis encoding of continuous-amplitude mem­
oryless sources. IEEE Trans. Inf. Theory, 23:404-409, May 1977.

[170] W.D. Withers. A rapid entropy-coding algorithm. Dr. Dobb's Journal, 264:38­
44, 1997.

[171] I.H. Witten, R.M. Neal, and J.G. Cleary. Arithmetic coding for data compres­
sion. Communications of the ACM, 30:520-540, June 1987.

[172] P. Wong. Rate distortion efficiency of subband coding with crossband predic­
tion. IEEE Trans. Inf. Theory, 43(1):352-356, January 1997.

[173] X. Wu. High order context modeling and embedded conditional entropy coding
of wavelet coefficients for image compression. pages 1378-1382, November
1997.

[174] A. Zandi, J.D. Allen, E.L. Schwartz, and M. Boliek. CREW: Compression with
reversible embedded wavelets. Proc. IEEE Data Compression Conf. (Snow­
bird), pages 212-221, March 1995.

[175] A. Zandi and G. Langdon. Bayesian approach to a family of fast attack priors
for binary adaptive coding. Proc. IEEE Data Compression Conf. (Snowbird),
April 1992.

[176] Daly S. Zeng, W. and S. Lei. Point-wise extended visual masking for JPEG­
2000 image compression. Proc. IEEE Int. Conf. Image Proc., 1:657-660, Sep­
tember 2000.

[177] W. Zeng, J. Li, and S. Lei. An efficient color re-indexing scheme for palette­
based compression. Proc. IEEE Int. Conf. Image Proc., 3:476-479, September
2000.

Index

5/3 transform, see reversible 5/3 trans­
form

9/7 transform, see irreversible 9/7 trans­
form

AC energy, 228
AEP theorem, 36, 118
aliasing, 166
alphabet, 24
analysis

filters, 164
kernels, 426
matrix, 144, 162
vector, 144, 168

arithmetic coding, 56
carry resolution, 58
Elias coding, 36
in JPEG2000, 473
multiplier-free, 65
termination, 64

arithmetic meau, 185
average distortion, 88

bi-level image, 79, 429, 641
BIBO gain

convergence, 668
DWT analysis gain, 666
lifting step analysis gain, 671

big endian, 534
binary fraction, 39
biorthogonal

block transform, 151
subband transform, 175, 244
wavelet bases, 261
wavelet transform, 259

bisection, 218
bit stuffing

in MQ coder, 476, 479
in packet header, 516

bit-depth, 544

bit-plane, 307, 351
fractional, 360
pass, see codiug pass

bit-plane coding, 307, 349
bit-rate, 8
bits per component box, see box
block coder

BYPASS mode, 504, 521, 548, 702,
707

CAUSAL mode, 503, 548, 702
concurrent processing, 660, 661
context word, 650
critical delay path, 658
decoding procedures, 492
encoding proccdures, 490
error detection, 511
ERTERM mode, 506, 548
hardware architecture, 654
parallelism, 508, 664
RESET mode, 503, 548, 702
RESTART mode, 503, 521, 548, 702
SEGMARK mode, 507, 548, 702
software tricks, 648
throughput (hardware), 658
throughput (software), 394

blocking artifacts, 207
boundary handling, 295

arbitrary extensions, 299
in JPEG2000 Part 2, 609
periodic extension, 297
SSO-DWT extension, 613
symmetric extcnsion, 297

box length, 575
box type, 575
box, file format, 574

bits per component box, 580
capture resolution box, 589
channel definition box, 587
color specification box, 581
component mapping box, 586

766 Index

contiguous code-stream box, 591
data entry URL box, 593
default display resolution box, 590
file type box, 577
image header box, 578
IPR box, 580, 591
.1P2 header box, 578
.1PEG2000 signature hox, 576
palette box, 584
resolution box, 589
uum box, 591
uum info box, 592
uum list hox, 593
XML box, 591

brand, 577
BYPASS mode, see block coder

canvas coordinate system, 449, 544, 590
acceptable shifts, 471

capture resolution hox, see hox
carry resolution, 477
category code, 725
CAUSAL mode, see block coder
CCITT,399
CDF 9/7 transform, 277
CDP (Common Decoding Path), 647
cells, 613
centroid dequantization, 99
channel, 586

colour, 587
opacity, 587
premultiplied opacity, 588

channel definition box, see hox
children, 304
chrominance, 11, 421
classification gain, see coding gain
cleanup pass, see coding pass
COC marker, see markers
COD marker, see markers
code-block, 334

anchor point, 461
contribution, 336, 382, 463, 513
length signalling, 521

maximum dimensions, 462
number of, 462
partition, 461
sequencing, 462
size, 547

code-stream, 513
profile, see compliance
syntax, 523

codeword segment, 474
length signalling, 521
raw segment, 504
t.erminal FFh, 495
termination, 495

coding anchor point, 458, 470, 545

cod ing gain
classification, 228
DPCM,114
for transforms, 187, 215
parent-child, 324
prediction, 114

coding pass, 308, 361, 485
cleanup, 365, 492
dominant, 308
magnitude refinement., 365, 491
membership testing, 651
parallelism, 664
refinement, 308, 315
significance, 308, 315
significance propagation, 364, 491
subordinate, 308

colour, 4
sRGB,7
sub-samplilig, 11,630
visual weights, 628

colour channel, 587
colour space

enumerated, 581
ICC profile, 582
monochrome, 581
PCS, 583
sRGB,581
sYCC,582
XYZ,583
YCbCr,582

colour specification box, see box
colour transform

irreversible, 421, 547
reversible, 422, 547

COM marker, see markers
comma code, 44, 53, 563
compatibility list, 577
compliance

block decoding, 709
class, 714
irreversible processing, 712
level, 702, 714
parser quit condition, 709
profile, 698, 699
reversible processing, 711
ROI processing, 710

component collections, 615
component mapping box, see hox
component, of image, 450
components, number of, 544
compound docnment, 5, 451
compression ratio, 8
conditional coding, 77, 352
conditional exchange, 70
cones, in the HVS, 200
cont.ext., 42, 72

cont.ext. stat.e file, 474, 487

labelillg fUllctioll, 72
lloll-adaptive, 488
reduction function, 80

context adaptive coding, 77, 352, 738
contiguous code-stream box, see box
contrast sellsitivity weight, 201, 348, 376
convener, 401
convex hull, 343

incremental construction, 346
occupancy rate, 367

convolutional ellcoders, 129
convolutional transform, 161
core experiments, 404
cortex transform, 203
cortical band, see cortex transform
cosine modulated filter bank, 174
counter, SOP, 568
covariallce matrix, 151
CREW coder, 333, 401
CRG marker, see markers
cropping, 451, 465
CSF (Contrast Sensitivity Function), 199,

625, 635

data elltry URL box, see box
Daubechies wavelets, 274
DCT (Discrete Cosine Transform), 155,

174,722
deadzone quantizeI', see quantization
default display resolution box, see box
delay normalized filter bank, 237
delayed significance state, 360, 488
dependency transforms, 615
descendants, 304
detection contrast, in the HVS, 199, 201,

625
DFT (Discrete Fourier Transform), 145
differelltial entropy, see entropy
distortion computation, 375, 665
distortion estimation, 665
distortion measure, 88
distortion models, 216
distortion-length slope, 341

efficient representation, 347
distortion-rate slope, 221
distribution

conditional, 25
Gaussian, 153
generalized Gaussian, 217
geometric, 53, 744
jOillt,25
Laplaciall, 217
marginal, 25
two-sided geometfic, 742

dominant pass, see coding pass
DPCM, 113, 199, 723, 741
DTFT (Discrete Time Fourier Trans­

form), 165

Index 767

dual
bases, 261
scaling function, 266
wavelet, 266

DWT (Discrete Wavelet Transform), 247,
256,548

5/3, see reversible 5/3 transform
9/7, see irreversible 9/7 transform
analysis gain, see BIBO gain
arbitrary kernels, 607
arbitrary tree structures, 603
bit-depth expansion, 667
dual-stage implementation, 686
fixed point representatioll, 669
irreversible path, 433
M-line implementation, 680, 688
memory requirements, 679, 688
numerical properties, 666
on tile-components, 455
pipelining, 676
reversible path, 435
SSO (Single Sample Overlap), 611
stage, 429, 675
unit length sequences, '434, 436

dyadic
fraction, 276, 289
subband transform, 182, 191

dynamic programming, 132

EBCOT, 333, 368, 406
Elias coding, 36

termination, 39
embedded quad-tree code, 372
embedding

elementary, 327
embedded quantization, 109, 349
embedded TCQ, 141
embedded VQ, 127
generalized, 329
of block bit-stream, 334
zero- tree coding, 303

empty code-block contribution, 513
empty header bit, 514
empty packet, 464
empty precinct, 463, 515
empty tile, 453
energy compaction, 185
energy gain factor, 193, 348, 376, 438
entropy, 28

conditional, 30
differential, 91
joint, 30
mt.h order, 32
rate, 32

entropy coded quantization, see quantiza­
tion

entropy power, 95

768 Index

Cllumcrated color space, 581
EOC marker, see markers
EPH marker, see markers
ergodic, see ralldom process
error resilience, 339, 509
ERTERM mode, see block coder
expectatioll, 26
EZW coder, see zero-tree coding

FBI standard, 598
file format, 573, 620
file format box, see box
file type box, see box
fixed point representation, 669

approximation error, 673
f1ippillg, 338, 469
Fourier transform, 248
fractional bit-plane

pass, see coding pass

gamma
gamma correction, 6
gamma function, 7

Gaussian, see distribution
genealogy, 304
generalized Gaussian, see distribution
geometric distribution, see distribution
geometric mean, 185, 214
GIF, 641
Golomb code, 52, 368, 742

in run-length coding, 748
length-constrained, 745
parameter estimation, 54, 746

guard bits, 437, 441, 551

Haar wavelet, 264
hardware implementations, 653, 695
header

main, see main header
packet, see packet header
tile, see tile header
tile-part, see tile-part header

header box, see box
Huffman code, 47

length-constrained, 52, 728
HVS (Human Visual System), 199

ICC profiles, 582
monochrome input profiles, 583
three-component matrix-based in­

put profiles, 583
ICT (Irreversible Colour Transform), 421,

547
IEC,399
lID, see random process
image header box, see box
image region, 450, 544

image size, 544
inclusion tag tree, 387, 517
independence

conditional, 27
statistical, 25

inner product
of finite vectors, 149
of functions, 248
sequences, 168

interleaved subbands, 239, 431
intermediate subband, 429
IPR box, see box
irreversible 9/7 transform, 433, 548
irreversible path, 419
ISO, 399
isolated zero, 308
ITU-T,399

JBIG, 79, 641
JBIG2, 477, 719
JP2, 573
JP2 header box, see box
JPEG, 399, 631, 719

baseline, 721
example tables, 720
hierarchical refinement, 734
MCU (Minimum Coded Unit), 730
Part 3 extensions, 721
scalability, 730
scans, 729
spectral selection, 733
successive approximation, 731

JPEG-LS, 737
edge detecting predictor, 741
near lossless compression, 740
with palettized colour, 641

JPEG2000
motion JPEG2000, 401, 573
Part 2 extensions, 597
Parts 1 through 6, 400, 573

JPEG2000 signature box, see box
JPX, 573, 620

Kakadu, 393, 394,492, 497,641,648, 650,
652, 664, 669, 701

KLT (Karhunen-Loeve Transform), 151,
196

1:-2 (lR), 248
1:-2 (lR2), 261
e2 (Z), 168
Lagrange multipliers, method of, 104, 188,

213
Laplacian, see distribution
Laurent polynomial, 266
layer, see quality layer
lazy wavelet, 281
learning penalty, 72, 353

least dissimilar length, 276, 294, 684
length computation, see truncation point
length signalling (in packet header), 520
level offset, 418, 598
LIC (List of Insignificant Coefficients),

315,372
lifting

and regularity, 286
and reversibility, 286
boundary handling, 299
CDF 9/7 transform, 285
dual-stage implementation, 687
factorization, 289
in JPEG2000 Part 2, 608
inversion, 283
M-line implementation, 685
memory requirements, 685
odd length filters, 293
procedure, 282
spline 5/3 transform, 283
state machine, 294, 683
step, 282

linear phase
filter, 241
filter bank, 241

LIS (List of Insignificant Sets), 315, 372
Lloyd algorithm, 100, 101, 123
LOCO-I, 401, 737
lossless compression, 5, 419, 719, 737

JPEG-LS vs. JPEG2000, 751
lossy compression, 5
LOT (Lapped Orthogonal Transform),

171
LPS (Least Probable Symbol), 67
LSC (List of Significant Coefficients), 315,

372
luminance, 11,421
LUT (Look Up Table), 584

magnitude bit-plane, 307, 350
magnitude bit-planes

number of, 438, 446
magnitude refinement

coding, 358
pass, see coding pass

main header, 523, 534
marker bit, 653
marker segments, 533, 539
markers, 533, 539

COC (Coding Style Component),
549

COD (Coding Style Default), 545
COM (Comment), 572
CRG (Component Registration),

570
EOC (End Of Code-stream), 543
EPH (End of Packet Header), 545,

569

Index 769

PLM (Packet Lengths: Main), 562
PLT (Packet Lengths: Tile-part),

564
POC (Progression Order Change),

555
PPM (Packed Packet headers: Main

header),565
PPT (Packed Packet headers: Tile­

part),567
QCC (Quantization Component),

553
QCD (Quantization Default), 551
RGN (Region of Interest), 554
SIZ (image and tile size), 543
SOC (Start Of Code-stream), 540
SOD (Start Of Data), 543
SOP (Start of Packet), 545, 568
SOT (Start Of Tile), 541
TLM (Tile-part Lengths: Main

header),560
Markov, see random process
masking, see visual masking
masking contrast, 205, 634
Max algorithm, 100
MELCODE,749
memory requirements

bandwidth reduction, 692
coded data buffering, 690
external memory, 677
on-chip buffering, 688
parsing resources, 705
precinct state memory, 705

mid-point dequantization, 440, 442, 712
minor version number, 577
missing LSBs, see undecoded LSBs
missing MSBs, 382

tag tree, 388, 517
mode switches, see block coder
monochrome, see colour space
monochrome input profiles, 583
mother wavelet, 248
motion JPEG, 720
motion JPEG2000, 401, 573
MPEG,18
MPS (Most Probable Symbol), 67
MQ coder, 77, 473

bit stuffing, 476, 479
common decoding path, 647
concurrent processilig, 662
decoding procedures, 481
encoding procedures, 477
software tricks, 645
spacer bi ts, 479
termination marker, 483

MSE,6
MTF (Modulation Transfer Function),

200

770 Index

multi-component transforms, 614
multi-resolution

analysis, 252
transform, 178, 330

multi-scale analysis, 252
mutual information, 89, 92

natural image, 4
near lossless compression, 737
nearest neighbor quantization, 99
noiseless coding theorem, 34
nominal range, 420, 441, 670, 712
non-linear point transform, 599
Nyquist gain, 238

opacity channel, 587
orthonormal

expansion, 150, 169
subband transform, 240
transform, 150, 169

pack-stream, 336, 513, 524
packet, 383, 463

body, 515
empty body, 515
empty header, 515, 519
empty packet, 464, 708
empty precinct, 515
header, 514, 539
header decoding, 518
header encoding, 517
number of, 464
sequencing, 525, 528

palette box, see box
palettized image, 429
paraunitary, 244
parent-child coding gain, see coding gain
parent-child relationship, 304
parser quit condition, 704, see compliance
Parts 1 through 6, JPEG2000, 400, 573
PCM,187
PCRD-opt, 335, 339

with CSF weights, 626
with ROI weighting, 639
with visual masking, 635

PCS (Profile Connection Space), 583
perfect reconstruction, 231
PLM marker, see markers
PLT marker, see markers
PMF (Probability Mass Function), 24
POC marker, see markers
polyphase

components (analysis), 163
components (synthesis), 165
factorization, 244, 290
matrix, 161

power density spectrum, 186, 191, 196

PPM marker, see markers
PPT marker, see markers
precinct

empty precinct, 463, 515
number of, 459
partition, 458
projected, 529
size, 548

prediction gain, see coding gain
prediction residual, 81, 113
predictive coding, 81, 738
prefix code, 45
premultiplied opacity channel, 588
principle components, 154
probability estimation, 71

finite state machine, 74
learning penalty, 72
renol"lnalization-driven, 76
scaled count estimator, 73

product form expansion, 262
profile, see compliance
progression, 524, 546

by component, 526, 533
by position, 464, 526, 531
by quality, 331, 337, 464, 525, 527
by resolution, 331, 464, 525-528
CPRL, 526, 533
LRCP, 525, 527
PCRL, 526, 531
progression volume, 558
progressive JPEG, 731
RLCP, 525, 527
RPCL, 526, 528

PSNR, 6, 390

Q coder, 77
QCC marker, see markers
QCD marker, see markers
QM coder, 77
QMF filter bank

alternate definition, 234
classical definition, 233

quad-tree coding, 83, 369
quality layer, 331, 336, 379, 463

number of, 547
quality progressive, see progression
quantization

centroid dequantization, 99
deadzone, 107, 349, 436, 599
embedded SQ, 109, 349, 732
embedded TCQ, 141
embedded VQ, 127
entropy coded SQ, 102
entropy coded TCQ, 139
Lloyd-Max, 98
nearest neighbor, 99
predictive TCQ, 142
SQ (Scalar Quantization), 97

TCQ (Trellis Coded Quantization),
128, 600

TSVQ (Tree-Structured VQ), 125
VQ (Vector Quantization), 115

random process, 26
ergodic, 27
lID, 27
Markov, 27
stationary, 26

random variable, 24
random vector, 24
ranging, 437, 441
rate allocation, 209

adaptive, 227
integer rates, 219
iterative encoding, 227
non-negativity, 218
optimal, 212
PCRD, see PCRD-opt
threshold coding, 212
zonal coding, 212

rate control, see rate allocation
rate-distortion function, 87, 89, 92
RCT (Reversible Colour Transform), 422,

442,547,668
redundancy, 9
refinement pass, see coding pass
region of interest, see ROI
regularity, 268

importance of, 281
RESET mode, see block coder
resolution box, see box
resolution level, 182,330,431,457
resolution progressive, see progression
resolution scaling, 456
resolutions

alignment, 527
division into precincts, 458
in JPEG2000 Part 2, 604
number of, 547
of image, 430
of tile-component, 456

RESTART mode, see block coder
reversible 5/3 transform, 435, 548
reversible path, 419
reversible transform, 286
RGB,420
RGN marker, see markers
ROI

adjustments, 442
arbitrary up-shift, 620
demonstration, 639
guidelines, 637, 711
implicit encoding, 639
max-shift method, 445, 554
region mapping, 447

Index 771

RGN marker, see markers
scaling method, 443
up-shift, 445, 554

rotation, 338, 467
run interruption, 357
run mode, 356, 748
run-length coding, 82
run-value coding, 726

S transform, 287
S+P transform, 288, 325
SBHP coder, 395
scalable

distortion scalable, 331
quality scalable, 331
rate scalable, 331
resolution scalable, 182, 331
SNR scalable, 331
spatial scalability, 338

scalar quantization, see quantization
scaling function, 252
SEGMARK mode, see block coder
separable

transform, 147
Shannon lower bound, 93
sign coding, 357, 491
sign flipping, 358
sign magnitude representation, 437
sign state bit, 649
signature box, see box
significance, 306, 353

coding, 354
state variable, 353, 488

.significance propagation, see coding pass
significant negative, 308
significant positive, 308
SIZ marker, see markers
SOC marker, see markers
SOD marker, see markers
SOP counter, 568
SOP marker, see markers
SOT marker, see markers
source code, 87
source coding theorem, 90
spacer bits, 479
spatial registration, 529, 570
spatially progressive, see progression
SPECK coder, 374
spectral factorization, 273
spectral flatness, 197
spectral flatness measure, 97
SPIHT coder, see zero-tree coding
spline

5/3 transform, 276
B-spline, 276

sRGB, see colour space
SSO-DWT, see DWT
stationary, see random process

772 Index

step size, 216, 551
step size exponent, 437, 551
step size mantissa, 437, 551
step size selection, 438
streaming, 338, 526
stripe-oriented scan, 363, 489
sub-bit-plane, see coding pass
sub-sampling factor, 450, 544
sub-sampling, 4:2:0, 570
sub-sampling, of colour images, 630
subband, 165, 455

division into precincts, 461
subordinate pass, see coding pass
subsets, 133
superbox, 576
survivor path, 134
SVD (Singular Value Decomposition), 152
sYCC colour space, see colour space
symmetric extension, 297, 425
syntax, 523
synthesis

filters, 164
kernels, 426
matrix, 144, 162
vector, 144, 168

system exampie
external memory, 694
memory bandwidth, 694
on-chip memory, 694
throughput, 694

tag tree coding, 384
incremental initialization, 518

TCQ, see quantization
termination

Elias termination, 39
length-indicated, 64
MQ coder, 495
predictable, 507
raw segments, 506

three-component matrix-based input pro-
files, 583

threshold coding, 212
threshold elevation, in the HVS, 205, 634
tile

anchor point, 452, 544
empty tile, 453
header, 523, 536
implementation considerations, 695
index, 541
number of, 452
partition, 452, 544
unique identifier, 453

tile, of image, 451
tile-component, 454
tile-part, 524, 537

header, 537

index, 542
length, 542
number of, 542
tile-part 0, 537

tile-stream, 523
time-sharing, 219
TLM marker, see markers
training data, 101
transcoding, 468, 598, 702
transform levels

number of, 547
translated impulse responses, 237
TRC (Tone Reproducation Curve), 583
tree-structured transform, 179, 257
tree-structured VQ, see quantization
trellis coding, 128
trigonometric polynomial, 266
truncation point, 334, 365

feasible points, 340
length computation, 497
lazy, 498
optimal, 498

TS transform, 288
two-scale equation, 259
Type A sets, 314
Type B sets, 314
typical region, 117

uncorrelated, 151
undecoded LSBs, 440, 442, 487

signalling with a marker bit, 653
URL (Uniform Resource Locator), 592
UUID box, see box
uum info box, see box
UUID list box, see box

variable length code, 43
huffman code, 47

visual masking, 202, 339, 601, 633
visual optimizations

colour weighting, 628
CSF weighting, 625
masking, 601, 633
progressive weighting, 627

visual testing, 631
Viterbi algorithm, 134
VM (verification model), 404
Voronoi regions, II5
VQ (Vector Quantization), see quantiza­

tion

water filling, 96
wavelet kernels, 426
wavelet transform, see DWT
Weber's law, 8, 203
WGl, 399, 719
WMSE (Weighted MSE), 201, 626
WTCQ,404

XML box, see box
XYZ, see colour space

YCbCr colour space, see colour space
YCbCr transform, 11,422

zero tree root, 308

Index 773

zero-bin, 107
zero- tree coding, 303

EZW coder, 306, 328

SPIRT coder, 313, 328, 389
zig-zag scan, 157, 726
zonal coding, 212

KAKADU v2.2 SOFTWARE LICENSE AGREEMENT FOR OWNERS OF THE BOOK

"JPEG2000: IMAGE COMPRESSION FUNDAMENTALS, STANDARDS AND PRACTICE,"

BY TAUBMAN AND MARCELLIN, KLUWER ACADEMIC PUBLISHERS, 2002

Permission to use the Kakadu V2.2 software is eonditional upon you, an owner of the book "JPEG2000:
Image Compression Fundamentals, Standards and Practice" by Taubman and Marcellin (hereinafter
known as the "Book"), agreeing to the terms and conditions set out below.

This agreement covers only Version 2.2 of the Kakadu software tools (including the sub-version, V2.2.3).
Access to future releases is not automatically granted by this license. Do not install Kakadu V2.2 software
until you have read and accepted all the terms of the licence.

BREAKING THE SEAL OF THE COMPACT DISC ACCOMPANYING THE BOOK IS DEEMED TO BE YOUR
ACCEPTANCE OF THE FOLLOWING TERMS. ONCE YOU HAVE BROKEN THE SEAL, YOU ARE BOUND BY THESE
TERMS.

LICENSE GRANT. As copyright owner of the Kakadu software tools, Unisearch Limited ("Unisearch")
hereby grants to the Licensee a nonexclusive license to install and use the Kakadu software, Version 2.2,
and all accompanying Documentation, as provided herein. The licensed Kakadu V2.2 software shall at all
times remain the property of Unisearch. The Licensee shall have no right, title, or interest therein, except
as expressly set forth in this Agreement.

NOTE TO LIBRARIES: This agreement docs not entitle borrowers of the Book to copy the contents of the
compact disc. However, provisions are being put in place to enable universities whose libraries purchase
one or more copies of the Book to obtain a site license to the Kakadu software tools. To find out how such
a license may be obtained or to determine whether or not your university currently has such a license,
please consult the following URL: http://maestro.ec.unsw.edu.auHaubman/kakadu/libraries

I. DEFINITIONS.

1. I Reusable Code: For the purposes of this agreement, reusable code refers to the original Kakadu V2.2
source code, as distributed with this license, with or without modifications and exclusions. Reusable
code also includes any intermediate compiled form, such as dynamically or statically linked
libraries, which provides means of exploiting the functionality of the Kakadu V2.2 tools in new
Applications.

1.2 Application: Compiled code generated using the Kakadu V2.2 source code or Reusable Code
derived from the Kakadu V2.2 source code, or any part thereof. No part of an application is reusable
code.

1.3 Individual: The person licensed under this agreement.

1.4 Non-Commercial Use: The distribution of one or more Applications. not for financial return.

2. The Licensee shall have the right to the Non-Commercial Use of the KAKADU V2.2 software. All
copies of Applications shall contain notification that they were developed using the Kakadu V2.2
software.

3. The Licensee shall have the right to personal use of the KAKADU V2.2 software.

4. The Licensee shall have the right to distribute Reusable Code to a Third Party, provided the Third
Party possesses a license to use the Kakadu V2.2 software (or any later version of the software), and
provided such distribution is not for financial return. All copies of such distributed code shall
contain all copyright and propriety notices from the original source code.

5. The Licensee shall have the right to usc the Kakadu V2.2 source code indefinitely, subject to the
TERMINATION provisions in this Agreement.

6. Uniseareh may terminate this license grant, by written notice to the Licensee if the Licensee
breaches any material term of this license.

7. Absent appropriate exemption eertifieate(s), the Licensee shall pay all taxes, duties, or customs,
except for taxes based on Uniscareh net income.

8. The Licensee shall not usc the name, trade names or trademarks of Uniseareh or any of its Affiliates
in any advertising, promotional literature or any other material, whether in written, electronic, or
other form, distributed to any Third Party, except in the form provided by Uniseareh, and then solely
for purposes of identifying Uniseareh software.

9. This license is not transferable to a Third Party.

10. The Kakadu V2.2 source code is a collection of sofWare tools, some of which may not be
appropriate for the intended purpose. Uniseareh shall have no liability for any indirect or
consequential loss (whether foreseeable or otherwise and ineluding loss of profits, loss of business,
loss of opportunity, and loss of usc of any computer hardware or software) resulting from the usc of
these tools.

The Kakadu V2.2 source code should not be relied on as the sole basis to solve a problem whose
incorrect solution could result in injury to person or property. If the software is employed in such a
manner, it is at the Licensee's own risk and Uniseareh explicitly disclaims all liability for such
misuse to the extent allowed by law.

Uniseareh's liability for death or personal injury resulting from negligence or for any other matter in
relation to which liability by law cannot be excluded or limited shall not be excluded or limited.
Except as aforesaid, any other liability of Uniseareh (whether in relation to breach of contract,
negligence or otherwise) shall not in total exceed the amount paid to Unisearch under this
agreement, for the software with respect to which the liability in question arises, as installed on any
designated eomputer(s) or designated server(s) for which usc of the software is licensed hereunder.

Some international jurisdictions do not allow the exclusion or limitation of incidental or
consequential damages, so the above exclusion or limitation may not apply to the Licensee.

11. To the extent any law, treaty, or regulation is in conflict with this Agreement, the conflicting terms
of this Agreement shall be superseded only to the extent necessary by such law, treaty, or regulation.
If any provision of this Agreement shall be otherwise unlawful, void, or otherwise unenforceable,
that provision shall be enforced to the maximum extent permissible. In either case, the remainder of
this Agreement shall not be affected.

12. This Agreement contains the entire understanding of the parties and may not be modified or
amended except by written instrument, executed by authorized representatives of Uniseareh and the
Licensee.

