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Introduction

This book has been drafted with a unique approach. The second edition 

focuses on the practicality of the topics within deep learning that help the 

reader to embrace modern tools with the right mathematical foundations. 

The first edition focused on introducing a meaningful foundation for 

the subject, while limiting the depth of the practical implementations. 

While we explored a breadth of technical frameworks for deep learning 

(Theano, TensorFlow, Keras, and PyTorch), we limited the depth of 

the implementation details. The idea was to distill the mathematical 

foundations while focusing briefly on the practical tools used for 

implementation.

A lot has changed over the past three years. The deep learning 

fraternity is now stronger than ever, and the frameworks have evolved 

in size and adoption. Theano is now deprecated (ceased development); 

TensorFlow saw huge adoption in the industry and academia; and Keras 

became more popular among beginners and deep learning enthusiasts. 

However, PyTorch has emerged recently as a widely popular choice 

for academia as well as industry. The growing number of research 

publications that recently have used PyTorch over TensorFlow is a 

testament to its growth within deep learning.

On the same note, we felt the need to revise the book with a focus 

on engaging readers with hands-on exercises to aid a more meaningful 

understanding of the subject. In this book, we have struck the perfect 

balance, with mathematical foundations as well as hands-on exercises, to 

embrace practical implementation exclusively on PyTorch. Each exercise is 

supplemented with the required explanations of PyTorch’s functionalities 

and required abstractions for programming complexities.



xvi

Part I serves as a brief introduction to machine learning, deep learning, 

and PyTorch. We explore the evolution of the field, from early rule-based 

systems to the present-day sophisticated algorithms, in an accelerated 

fashion.

Part II explores the essential deep learning building blocks. Chapter 3  

introduces a simple feed-forward neural network. Incrementally and 

logically, we uncover the various building blocks that constitute a neural 

network and which can be reused in building any other network. Though 

foundational, Chapter 3 focuses on building a baby neural network with 

the required framework that helps to construct and train networks of 

all kinds and complexities. In Chapter 4, we explore the core idea that 

enabled the possibility of training large networks through backpropagation 

using automatic differentiation and chain rule. We explore PyTorch’s 

Autograd module with a small example to understand how the solution 

works programmatically. In Chapter 5, we look at orchestrating all the 

building blocks discussed through so far, along with the performance 

metrics of deep learning models and the artifacts required to enable an 

improved means for training—i.e., regularization, hyperparameter tuning, 

overfitting, underfitting, and model capacity. Finally, we leverage all this 

content to develop a deep neural network for a real-life dataset using 

PyTorch. In this exercise, we also explore additional PyTorch constructs 

that help in the orchestration of various deep learning building blocks.

Part III covers three important topics within deep learning. Chapter 6  

explores convolutional neural networks and introduces the field of 

computer vision. We explore the core topics within convolutional neural 

networks, including how they learn and how they are distinguished from 

other networks. We also leverage a few hands-on exercises—using a small 

MNIST dataset as well as the popular Cats and Dogs dataset—to study the 

practical implementation of a convolutional neural network. In Chapter 7, 

we study recurrent neural networks and enter the field of natural language 

processing. Similar to Chapter 6, we incrementally build an intuition 
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around the fundamentals and later explore practical exercises with real-life 

datasets. Chapter 8 concludes the book by looking at some of the recent 

trends within deep learning. This chapter is only a cursory introduction 

and does not include any implementation details. The objective is to 

highlight some advances in the research and the possible next steps for 

advanced topics.

Overall, we have put in great efforts to write a structured, concise, 

exercise-rich book that balances the coverage between the mathematical 

foundations and the practical implementation.

Introduction
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CHAPTER 1

Introduction to 
Machine Learning 
and Deep Learning
The subject of deep learning has gained immense popularity recently, 

and, in the process, has given rise to several terminologies that make 

distinguishing them fairly complex. One might find the task of neatly 

separating each field overwhelming, with the sheer volume of overlap 

between the topics.

This chapter introduces the subject of deep learning by discussing 

its historical context and how the field evolved into its present-day form. 

Later, we will introduce machine learning by covering the foundational 

topics in brief. To start with deep learning, we will leverage the constructs 

gained from machine learning using basic Python. Chapter 2 begins the 

practical implementation using PyTorch.

�Defining Deep Learning
Deep learning is a subfield within machine learning that deals with the 

algorithms that closely resemble an over-simplified version of the human 

brain that solves a vast category of modern-day machine intelligence. 

Many common examples can be found within the smartphone’s app 

https://doi.org/10.1007/978-1-4842-5364-9_1#DOI
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ecosystem (iOS and Android): face detection on the camera, auto-correct 

and predictive text on keyboards, AI-enhanced beautification apps, 

smart assistants like Siri/Alexa/Google Assistant, Face-ID (face unlock on 

iPhones), video suggestions on YouTube, friend suggestions on Facebook, 

cat filters on Snapchat are all products that were made the state-of-the-

art only for deep learning. Essentially, deep learning is ubiquitous in the 

today’s digital life.

Truth be told, it can be complicated to define deep learning without 

navigating some historical context.

�A Brief History
The journey of artificial intelligence (AI) to its present day can be broadly 

divided into four parts: viz. rule-based systems, knowledge-based systems, 

machine, and deep learning. Although the granular transitions in the 

journey can be mapped into several important milestones, we will cover 

a more simplistic overview. The entire evolution is encompassed into the 

larger idea of “artificial intelligence.” Let’s take a step-by-step approach to 

tackle this broad term.

Figure 1-1.  The AI landscape
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The journey of Deep Learning starts with the field of artificial 

intelligence, the rightful parent of the field, and has a rich history going 

back to the 1950s. The field of artificial intelligence can be defined in 

simple terms as the ability of machines to think and learn. In more 

layman words, we would define it as the process of aiding machines with 

intelligence in some form so that they can execute a task better than 

before. The above Figure 1-1 showcases a simplified landscape of AI with 

the various aforementioned fields showcased a subset. We will explore 

each of these subsets in more detail in the section below.

�Rule-Based Systems

The intelligence we induce into a machine may not necessarily be a 

sophisticated process or ability; something as simple as a set of rules can 

be defined as intelligence. The first-generation AI products were simply 

rule-based systems, wherein a comprehensive set of rules were guided to 

the machine to map the exhaustive possibilities. A machine that executes 

a task based on defined rules would result in a more appealing outcome 

than a rigid machine (one without intelligence).

A more layman example for the modern-day equivalent would be an 

ATM that dispenses cash. Once authenticated, users enter the amount 

they want and the machine, based on the existing combination of notes 

in-store, dispenses the correct amount with the least number of bills. The 

logic (intelligence) for the machine to solve the problem is explicitly coded 

(designed). The designer of the machine carefully thought through the 

comprehensive list of possibilities and designed a system that can solve 

the task programmatically with finite time and resources.

Most of the early day’s success in artificial intelligence was fairly 

simple. Such tasks can be easily described formally, like the game 

of checkers or chess. This notion of being able to easily describe the 

task formally is at the heart of what can or cannot be done easily by 

a computer program. For instance, consider the game of chess. The 
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formal description of the game of chess would be the representation of 

the board, a description of how each of the pieces moves, the starting 

configuration, and a description of the configuration wherein the game 

terminates. With these notions formalized, it is relatively easy to model a 

chess-playing AI program as a search, and, given sufficient computational 

resources, it’s possible to produce relatively good chess-playing AI.

The first era of AI focused on such tasks with a fair amount of success. 

At the heart of the methodology were a symbolic representation of the 

domain and the manipulation of the symbols based on given rules (with 

increasingly sophisticated algorithms for searching the solution space to 

arrive at a solution).

It must be noted that the formal definitions of such rules were done 

manually. However, such early AI systems were fairly general-purpose 

task/problem solvers in the sense that any problem that could be 

described formally could be solved with the generic approach.

The key limitation of such systems is that the game of chess is a 

relatively easy problem for AI simply because the problem set is relatively 

simple and can be easily formalized. This is not the case with many of the 

problems human beings solve on a day-to-day basis (natural intelligence). 

For instance, consider diagnosing a disease or transcribing human speech 

to text. These tasks, which human beings can do but which are hard to 

describe formally, presented as a challenge in the early days of AI.

�Knowledge-Based Systems

The challenge of addressing natural intelligence to solve day-to-day 

problems evolved the landscape of AI into an approach akin to human-

beings—i.e., by leveraging a large amount of knowledge about the task/

problem domain. Given this observation, subsequent AI systems relied on 

large knowledge bases that captured the knowledge about the problem/

task domain. Note that the term used here is knowledge, not information 

or data. By knowledge, we simply mean data/information that a program/

algorithm can reason about. An example could be a graph representation 
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of a map with edges labeled with distances and about of traffic (which 

is being constantly updated), allowing a program to reason about the 

shortest path between points.

Such knowledge-based systems, wherein the knowledge was compiled 

by experts and represented in a way that allowed algorithms/programs 

to reason about it, represented the second generation of AI. At the heart 

of such approaches were increasingly sophisticated approaches for 

representing and reasoning about knowledge to solve tasks/problems that 

required such knowledge. Examples of such sophistication include the use 

of first-order logic to encode knowledge and probabilistic representations 

to capture and reason where uncertainty is inherent to the domain.

One of the key challenges that such systems faced, and addressed 

to some extent, was the uncertainty inherent in many domains. Human 

beings are relatively good at reasoning in environments with unknowns 

and uncertainty. One key observation here is that even the knowledge 

we hold about a domain is not black or white but grey. A lot of progress 

was made in this era on representing and reasoning about unknowns and 

uncertainty. There were some limited successes in tasks like diagnosing a 

disease that relied on leveraging and reasoning using a knowledge base in 

the presence of unknowns and uncertainty.

The key limitation of such systems was the need to hand-compile the 

knowledge about the domain from experts. Collecting, compiling, and 

maintaining such knowledge bases rendered such systems impractical. 

In certain domains, it was extremely hard to even collect and compile 

such knowledge—for example, transcribing speech to text or translating 

documents from one language to another. While human beings can easily 

learn to do such tasks, it’s extremely challenging to hand-compile and 

encode the knowledge related to the tasks—for instance, the knowledge of 

the English language and grammar, accents, and subject matter. To address 

these challenges, machine learning is the way forward.

Chapter 1  Introduction to Machine Learning and Deep Learning
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�Machine Learning

In formal terms, we define machine learning as the field within AI where 

intelligence is added without explicit programming. Human beings 

acquire knowledge for any task through learning. Given this observation, 

the focus of subsequent work in AI shifted over a decade or two to 

algorithms that improved their performance based on data provided to 

them. The focus of this subfield was to develop algorithms that acquired 

relevant knowledge for a task/problem domain given data. It is important 

to note that this knowledge acquisition relied on labeled data and a 

suitable representation of labeled data as defined by a human being.

Consider, for example, the problem of diagnosing a disease. For such 

a task, a human expert would collect a lot of cases where a patient had 

and did not have the disease in question. Then, the human expert would 

identify a number of features that would aid in making the prediction—

for example, the age and gender of the patient, and the results from a 

number of diagnostic tests, such as blood pressure, blood sugar, etc. The 

human expert would compile all this data and represent it in a suitable 

form—for example, by scaling/normalizing the data, etc. Once this data 

were prepared, a machine learning algorithm could learn how to infer 

whether the patient has the disease or not by generalizing from the labeled 

data. Note that the labeled data consisted of patients that both have and 

do not have the disease. So, in essence, the underlying machine language 

algorithm is essentially doing the job of finding a mathematical function 

that can produce the right outcome (disease or no disease) given the 

inputs (features like age, gender, data from diagnostic tests, and so forth). 

Finding the simplest mathematical function that predicts the outputs 

with the required level of accuracy is at the heart of the field of machine 

learning. For example, questions related to the number of examples 

required to learn a task or the time complexity of an algorithm are specific 

areas for which the field of ML has provided answers with theoretical 

justification. The field has matured to a point where, given enough data, 
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compute resources, and human resources to engineer features, a large 

class of problems are solvable.

The key limitation of mainstream machine language algorithms is 

that applying them to a new problem domain requires a massive amount 

of feature engineering. For instance, consider the problem of recognizing 

objects in images. Using traditional machine language techniques, such a 

problem would require a massive feature-engineering effort wherein experts 

identify and generate features that would be used by the machine language 

algorithm. In a sense, true intelligence is in the identification of features; 

the machine language algorithm is simply learning how to combine these 

features to arrive at the correct answer. This identification of features or the 

representation of data that domain experts do before machine language 

algorithms are applied is both a conceptual and practical bottleneck in AI.

It’s a conceptual bottleneck because if features are being identified by 

domain experts and the machine language algorithm is simply learning to 

combine and draw conclusions from this, is this really AI? It’s a practical 

bottleneck because the process of building models via traditional machine 

language is bottlenecked by the amount of feature engineering required. 

There are limits to how much human effort can be thrown at the problem.

�Deep Learning

The major bottleneck in machine learning systems was solved with deep 

learning. Here, we essentially took the intelligence one step further, where 

the machine develops relevant features for the task in an automated way 

instead of hand-crafting. Human beings learn concepts starting from 

raw data. For instance, a child shown with a few examples of a particular 

animal (say, cats) will soon learn to identify the animal. The learning 

process does not involve a parent identifying a cat’s features, such as its 

whiskers, fur, or tail. Human learning goes from raw data to a conclusion 

without the explicit step where features are identified and provided to the 

learner. In a sense, human beings learn the appropriate representation 

Chapter 1  Introduction to Machine Learning and Deep Learning



8

of data from the data itself. Furthermore, they organize concepts as a 

hierarchy where complicated concepts are expressed using primitive 

concepts.

The field of deep learning has its primary focus on learning 

appropriate representations of data such that these could be used to 

conclude. The word “deep” in “deep learning” refers to the idea of learning 

the hierarchy of concepts directly from raw data. A more technically 

appropriate term for deep learning would be representation learning, and a 

more practical term for the same would be automated feature engineering.

�Advances in Related Fields
It is important to note the advances in other fields like compute power, 

storage cost, etc. that have played a key role in the recent interest and 

success of deep learning. Consider the following, for example:

•	 The ability to collect, store and process large amounts 

of data has greatly advanced over the last decade (for 

instance, the Apache Hadoop ecosystem).

•	 The ability to generate supervised training data (data 

with labels—for example, pictures annotated with 

the objects in the picture) has improved a lot with the 

availability of crowd-sourcing services (like Amazon 

Mechanical Turk).

•	 The massive improvements in computational 

horsepower brought about by graphical processing units 

(GPUs) enabled parallel computing to new heights.

•	 The advances in both the theory and software 

implementation of automatic differentiation (such 

as PyTorch or Theano) accelerated the speed of 

development and research for deep learning.
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Although these advancements are peripheral to deep learning, they 

have played a big role in enabling advances in deep learning.

�Prerequisites
The key prerequisites for reading this book include a working knowledge of 

Python and some coursework in linear algebra, calculus, and probability. 

Readers should refer to the following in case they need to cover these 

prerequisites.

•	 Dive Into Python, by Mark Pilgrim - Apress Publications (2004)

•	 Introduction to Linear Algebra (Fifth Edition), by 

Gilbert Strang - Wellesley-Cambridge Press

•	 Calculus, by Gilbert Strang - Wellesley-Cambridge 

Press

•	 All of Statistics (Section 1, chapters 1-5), by Larry 

Wasserman - Springer (2010)

�The Approach Ahead
This book focuses on the key concepts of deep learning and its practical 

implementation using PyTorch. In order to use PyTorch, you should 

possess a basic understanding of Python programming. Chapter 2 

introduces PyTorch, and the subsequent chapters discuss additional 

important constructs within PyTorch.

Before delving into deep learning, we need to discuss the basic 

constructs of machine learning. In the remainder of this chapter, we will 

explore the baby steps of machine learning with a dummy example. To 

implement the constructs, we will use Python and again implement the 

same using PyTorch.
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�Installing the Required Libraries
You need to install a number of libraries in order to run the source code for 

the examples in this book. We recommend installing the Anaconda Python 

distribution (https://www.anaconda.com/products/individual), which 

simplifies the process of installing the required packages (using either 

conda or pip). The list of packages you need include NumPy, matplotlib, 

scikit-learn, and PyTorch.

PyTorch is not installed as a part of the Anaconda distribution. 

You should install PyTorch, torchtext, and torchvision, along with the 

Anaconda environment.

Note that Python 3.6 (and above) is recommended for the exercises in 

this book. We highly recommend creating a new Python environment after 

installing the Anaconda distribution.

Create a new environment with Python 3.6 (use Terminal in Linux/

Mac or the Command Prompt in Windows), and then install the additional 

necessary packages, as follows:

conda create -n testenvironment python=3.6

conda activate testenvironment

pip install pytorch torchvision torchtext

For additional help with PyTorch, please refer to the Get Started guide 

at https://pytorch.org/get-started/locally/.

�The Concept of Machine Learning
As human beings, we are intuitively aware of the concept of learning. It 

simply means to get better at a task over time. The task could be physical, 

such as learning to drive a car, or intellectual, such as learning a new 

language. The subject of machine learning focuses on the development of 

algorithms that can learn as humans learn; that is, they get better at a task 
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over a period over time and with experience—thus inducing intelligence 

without explicit programming.

The first question to ask is why we would be interested in the 

development of algorithms that improve their performance over time, with 

experience. After all, many algorithms are developed and implemented to 

solve real-world problems that don’t improve over time; they simply are 

developed by humans, implemented in software, and get the job done. 

From banking to ecommerce and from navigation systems in our cars 

to landing a spacecraft on the moon, algorithms are everywhere, and, 

a majority of them do not improve over time. These algorithms simply 

perform the task they are intended to perform, with some maintenance 

required from time to time. Why do we need machine learning?

The answer to this question is that for certain tasks it is easier to develop 

an algorithm that learns/improves its performance with experience than 

to develop an algorithm manually. Although this might seem unintuitive to 

the reader at this point, we will build intuition for this during this chapter.

Machine learning can be broadly classified as supervised learning, 

where training data with labels is provided for the model to learn, and 

unsupervised learning, where the training data lacks labels. We also 

have semi-supervised learning and reinforcement learning, but for now, 

we would limit our scope to supervised machine learning. Supervised 

learning can again be classified into two areas: classification, for discrete 

outcomes, and regression, for continuous outcomes.

�Binary Classification
In order to further discuss the matter at hand, we need to be precise about 

some of the terms we have been intuitively using, such as task, learning, 

experience, and improvement. We will start with the task of binary 

classification.

Chapter 1  Introduction to Machine Learning and Deep Learning
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Consider an abstract problem domain where we have data of the form

	
D x y x y x yn n� � � � � �� �� �1 1 2 2

, , , , , 	

where x ∈ ℝn and y =  ± 1.

We do not have access to all such data but only a subset S ∈ D. Using 

S, our task is to generate a computational procedure that implements the 

function f : x → y such that we can use f to make predictions over unseen 

data (xi, yi) ∉ S that are correct, f(xi) = yi. Let’s denote U ∈ D as the set of 

unseen data—that is, (xi, yi) ∉ S and (xi, yi) ∈ U.

We measure performance over this task as the error over unseen data

	
E f D U

f x y

U
x y U i i
i i, , 
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.
	

We now have a precise definition of the task, which is to categorize 

data into one of two categories (y =  ± 1) based on some seen data S by 

generating  f. We measure performance (and improvement in performance) 

using the error E( f, D, U) over unseen data U. The size of the seen data 

|S| is the conceptual equivalent of experience. In this context, we want to 

develop algorithms that generate such functions f (which are commonly 

referred to as a model). In general, the field of machine learning studies the 

development of such algorithms that produce models that make predictions 

over unseen data for such, and, other formal tasks. (We introduce multiple 

such tasks later in the chapter.) Note that the x is commonly referred to as 

the input/input variable and y is referred to as the output/output variable.

As with any other discipline in computer science, the computational 

characteristics of such algorithms are an important facet; however, in 

addition to that, we also would like to have a model f that achieves a lower 

error E( f, D, U) with as small a ∣S∣ as possible.

Let’s now relate this abstract but precise definition to a real-world 

problem so that our abstractions are grounded. Suppose that an 

ecommerce website wants to customize its landing page for registered 

Chapter 1  Introduction to Machine Learning and Deep Learning



13

users to show the products they might be interested in buying. The website 

has historical data on users and would like to implement this as a feature 

to increase sales. Let’s now see how this real-world problem maps on to 

the abstract problem of binary classification we described earlier.

The first thing that one might notice is that given a particular user and 

a particular product, one would want to predict whether the user will buy 

the product. Since this is the value to be predicted, it maps on to y =  ± 1, 

where we will let the value of y =  + 1 denote the prediction that the user 

will buy the product and the value of y =  − 1 denote the prediction that 

the user will not buy the product. Note that there is no particular reason 

for picking these values; we could have swapped this (let y =  + 1 denote 

the does not buy case and y =  − 1 denote the buy case), and there would 

be no difference. We just use y =  ± 1 to denote the two classes of interest 

to categorize data. Next, let’s assume that we can represent the attributes 

of the product and the users buying and browsing history as x ∈ ℝn. This 

step is referred to as feature engineering in machine learning and we will 

cover it later in the chapter. For now, it suffices to say that we are able to 

generate such a mapping. Thus, we have historical data of what the users 

browsed and bought, attributes of a product, and whether the user bought 

the product or not mapped on to {(x1, y1), (x2, y2), …(xn, yn)}. Now, based on 

this data, we would like to generate a function or a model f : x → y, which we 

can use to determine which products a particular user will buy, and use this 

to populate the landing page for users. We can measure how well the model 

is doing on unseen data by populating the landing page for users, seeing 

whether they buy the products or not, and evaluating the error E( f, D, U).

�Regression
This section introduces another task: regression. Here, we have data of the 

form D = {(x1, y1), (x2, y2), …(xn, yn)}, where x ∈ ℝn and y ∈ ℝ, and our task 

is to generate a computational procedure that implements the function 
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f : x → y. Note that instead of the prediction being a binary class label 

y =  ± 1, like in binary classification, we have real valued prediction. We 

measure performance over this task as the root-mean-square error (RMSE) 

over unseen data

	

E f D U
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Note that the RMSE is simply taking the difference between the 
predicted and actual value, squaring it so as to account for both 
positive and negative differences, taking the mean so as to aggregate 
over all the unseen data, and, finally, taking the square root so as to 
counterbalance the square operation.

A real-world problem that corresponds to the abstract task of 

regression is to predict the credit score for an individual based on their 

financial history, which can be used by a credit card company to extend 

the line of credit.

�Generalization
Let’s now cover what is the single most important intuition in machine 

leaning, which is that we want to develop/generate models that have 

good performance over unseen data. In order to do that, first will we 

introduce a toy data set for a regression task. Later, we will develop three 

different models using the same dataset with varying levels of complexity 

and study how the results differ to understand intuitively the concept of 

generalization.
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In Listing 1-1, we generate the toy dataset by generating 100 values 

equidistantly between -1 and 1 as the input variable (x). We generate the 

output variable (y) based on y = 2 + x + 2x2 + ϵ, where ε ~ .N 0 0 1,� �  is noise 

(random variation) from a normal distribution, with 0 being the mean 

and 0.1 being the standard deviation. The code for this is presented in 

Listing 1-1, and the data is plotted in Figure 1-2. In order to simulate seen 

and unseen data, we use the first 80 data points as seen data and treat the 

rest as unseen data. That is, we build the model using only the first 80 data 

points and use the rest for evaluating the model.

Listing 1-1.  Generalization vs. Rote Learning

#import packages

import matplotlib.pyplot as plt

import numpy as np

#Generate a toy dataset

x = np.linspace(-1,1,100)

signal = 2 + x + 2 * x * x

noise = numpy.random.normal(0, 0.1, 100)

y = signal + noise

plt.plot(signal,'b');

plt.plot(y,'g')

plt.plot(noise, 'r')

plt.xlabel("x")

plt.ylabel("y")

plt.legend(["Without Noise", "With Noise", "Noise"], loc = 2)

plt.show()

#Extract training from the toy dataset

x_train = x[0:80]

y_train = y[0:80]

print("Shape of x_train:",x_train.shape)

print("Shape of y_train:",y_train.shape)
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Output[]

Shape of x_train: (80,)

Shape of y_train: (80,)

Next, we use a very simple algorithm to generate a model, 

commonly referred to as least squares. Given a data set of the form 

D = {(x1, y1), (x2, y2), …(xn, yn)}, where x ∈ ℝn and y ∈ ℝ, the least squares 

model takes the form y = βx, where β is a vector such that X y� �
2

2
 is 

minimized. Here, X is a matrix wherein each row is an x (thus, X ∈ ℝm × n 

with m being the number of examples—in our case, 80). The value of β can 

be derived using the closed form β = (XTX)−1XTy. We are glossing over a lot 

of important details of the least squares method, but those are secondary 

to the current discussion. The more pertinent detail is how we transform 

the input variable to a suitable form. In our first model, we will transform 

x to be a vector of values [x0, x1, x2 ]. That is, if x = 2, it will be transformed to 

[1, 2, 4]. After this transformation, we can generate a least squares model 

β using the formula described previously. What is happening under the 

hood is that we are approximating the given data with a second order 

polynomial (degree = 2) equation, and the least squares algorithm is 

simply curve fitting or generating the coefficients for each of [x0, x1, x2 ].

Figure 1-2.  Toy dataset
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We can evaluate the model on the unseen data using the RMSE metric. 

We can also compute the RMSE metric on the training data. Figure 1-3 

plots the actual and predicted values, and Listing 1-2 shows the source 

code for generating the model.

Listing 1-2.  Function to build model with parameterized number of 

co-efficients

#Create a function to build a regression model with 

parameterized degree of independent coefficients

def create_model(x_train,degree):

    degree+=1

    �X_train = np.column_stack([np.power(x_train,i) for i in 

range(0,degree)])

    �model = np.dot(np.dot(np.linalg.inv(np.dot(X_train.

transpose(),X_train)),X_train.transpose()),y_train)

    plt.plot(x,y,'g')

    plt.xlabel("x")

    plt.ylabel("y")

    �predicted = np.dot(model, [np.power(x,i) for i in 

range(0,degree)])

    plt.plot(x, predicted,'r')

    plt.legend(["Actual", "Predicted"], loc = 2)

    plt.title("Model with degree =3")

    �train_rmse1 = np.sqrt(np.sum(np.dot(y[0:80] - 

predicted[0:80], y_train - predicted[0:80])))

    �test_rmse1 = np.sqrt(np.sum(np.dot(y[80:] - predicted[80:], 

y[80:] - predicted[80:])))

    �print("Train RMSE(Degree = "+str(degree)+"):", round(train_

rmse1,2))

    �print("Test RMSE (Degree = "+str(degree)+"):", round(test_

rmse1,2))

    plt.show()
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#Create a model with degree = 1 using the function

create_model(x_train,1)

Output[]

Train RMSE(Degree = 1): 3.55

Test RMSE (Degree = 1): 7.56

Similarly, Listing 1-3 and Figure 1-4 repeat the exercise for a model 

with degree =2.

Listing 1-3.  Creating a model with degree=2

#Create a model with degree=2

create_model(x_train,2)

Output[]

Train RMSE (Degree = 3) 1.01

Test RMSE (Degree = 3) 0.43

Figure 1-3.  Actual and predicted values for model with degree = 1
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Next, as shown in Listing 1-4, we generate another model 

with the least squares algorithm, but we will transform x to 

[x0, x1, x2, x3, x4, x5, x6, x7, x8]. That is, we are approximating the given data 

with a polynomial with degree = 8.

Listing 1-4.  Model with degree=8

#Create a model with degree=8

create_model(x_train,8)

Output[]

Train RMSE(Degree = 8): 0.84

Test RMSE (Degree = 8): 35.44

Figure 1-4.  Actual and predicted values for model with degree = 2
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The actual and predicted values are plotted in Figure 1-3, Figure 1-4,  

and Figure 1-5. The source-code (function) for creating the model is 

available in Listing 1-2.

We now have all the details in place to discuss the core concept of 

generalization. The key question to ask is which is the better model—the 

one with degree = 2, the one with degree = 8, or the one with degree = 1? 

Let’s start by making a few observations about the three models. The model 

with degree = 1 performs poorly on both the seen as well as unseen data 

as compared to all other two models. The model with degree = 8 performs 

better on seen data as compared to model with degree = 2. The model with 

degree = 2 performs better then model with degree = 8 on unseen data. 

Table 1-1 should help to clarify the interpretation of the models.

Table 1-1.  Comparing the Performance of the Three Models

-

Figure 1-5.  Actual and predicted values for model with degree = 8
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We now consider the important concept of model capacity, which 

corresponds to the degree of the polynomial in this example. The data we 

generated was using a second order polynomial (degree = 2) with some 

noise. Then, we tried to approximate the data using three models (of degrees 

1, 2, and 8, respectively). The higher the degree, the more expressive is 

the model—that is, it can accommodate more variation. This ability to 

accommodate variation corresponds to the notion of model capacity. That is, 

we say that the model with degree = 8 has a higher capacity than the model 

with degree = 2, which, in turn, has a higher capacity than the model with 

degree = 1. Isn’t having higher capacity always a good thing? It turns out that 

it is not, when we consider that all real-world datasets contain some noise 

and a higher capacity model will end up in just fitting the noise in addition 

to the signal in the data. This is why we observe that the model with degree = 

2 does better on the unseen data as compared to the model with degree = 8. 

In this example, we knew how the data was generated (with a second order 

polynomial (degree = 2) with some noise); hence, this observation is quite 

trivial. However, in the real world, we don’t know the underlying mechanism 

by which the data is generated. This leads us to the fundamental challenge in 

machine learning: does the model truly generalize? And the only true test for 

that is the performance over unseen data.

In a sense, the concept of capacity corresponds to the simplicity or 

parsimony of the model. A model with high capacity can approximate 

more complex data. This is how many how many free variables/

coefficients the model has. In our example, the model with degree = 1 does 

not have capacity sufficient to approximate the data. This is commonly 

referred to as underfitting. Correspondingly, the model with degree = 8 has 

extra capacity and overfits the data.

As a thought experiment, consider what would happen if we had 

a model with degree = 80. Given that we had 80 data points as training 

data, we would have an 80-degree polynomial that would perfectly 

approximate the data. This is the ultimate pathological case where in 

there is no learning at all. The model has 80 coefficients and can simply 
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memorize the data. This is referred to as rote learning, the logical extreme 

of overfitting. This is why the capacity of the model needs to be tuned with 

respect to the amount of training data we have. If the dataset is small, we 

are better off training models with lower capacity.

�Regularization
Building on the ideas of model capacity, generalization, overfitting, and 

underfitting, this section discusses regularization. The key idea here is to 

penalize the complexity of the model. A regularized version of least squares 

takes the form y = βx, where β is a vector such that X y� � �� �
2

2

2

2
 is 

minimized and λ is a user-defined parameter that controls the complexity. 

Here, by introducing the term ��
2

2
, we are penalizing complex models. 

To see why this is the case, consider fitting a least squares model using a 

polynomial of degree 10, but the values in the vector β have eight zeros and 

two non-zeros. As against this, consider the case where all values in the 

vector β are non-zeros. For all practical purposes, the former model is a 

model with degree = 2 and has a lower value of ��
2

2
. The λ term enables 

us to balance accuracy over the training data with the complexity of the 

model. Lower values of λ imply a simpler model. Tuning the value of λ, we 

can improve model performance over unseen data by balancing overfitting 

and underfitting.

Listing 1-5 demonstrates how the model performance on unseen data 

changes while keeping the model coefficients constant but increasing λ 

values.

Listing 1-5.  Regularization

import matplotlib.pyplot as plt

import numpy as np

#Setting seed for reproducibility

np.random.seed(20)
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#Create random data

x = np.linspace(-1,1,100)

signal = 2 + x + 2 * x * x

noise = np.random.normal(0, 0.1, 100)

y = signal + noise

x_train = x[0:80]

y_train = y[0:80]

train_rmse = []

test_rmse = []

degree = 80

#Define a range of values for lambda

lambda_reg_values = np.linspace(0.01,0.99,100)

for lambda_reg in lambda_reg_values: #For each value of lambda, 

compute build model and compute performance for lambda_reg in 

lambda_reg_values:

    �X_train = np.column_stack([np.power(x_train,i) for i in 

range(0,degree)])

    �model = np.dot(np.dot(np.linalg.inv(np.dot(X_train.

transpose(),X_train) + lambda_reg * np.identity(degree)), 

X_train.transpose()),y_train)

    �predicted = np.dot(model, [np.power(x,i) for i in 

range(0,degree)])

    �train_rmse.append(np.sqrt(np.sum(np.dot(y[0:80] - 

predicted[0:80], y_train - predicted[0:80]))))

    �test_rmse.append(np.sqrt(np.sum(np.dot(y[80:] - 

predicted[80:], y[80:] - predicted[80:]))))

#Plot the performance over train and test dataset.

plt.plot(lambda_reg_values, train_rmse)

plt.plot(lambda_reg_values, test_rmse)
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plt.xlabel(r"$\lambda$")

plt.ylabel("RMSE")

plt.legend(["Train", "Test"], loc = 2)

plt.show()

We can compute the value of β using the closed form 

β = (XTX − λI)−1XTy. We illustrate keeping the degree fixed at value of 80 and 

varying the value of λ in Listing 1-5. The training RMSE (seen data) and test 

RMSE (unseen data) is plotted in Figure 1-6.

We see that the test RMSE reduces gradually to the minimum and 

then gradually increases as the model capacity increases, resulting in 

overfitting.

�Summary
This chapter covered a brief history of deep learning and introduced 

the foundations of machine learning, including examples of supervised 

learning (classification and regression). The key points for this chapter 

Figure 1-6.  Regularization

Chapter 1  Introduction to Machine Learning and Deep Learning



25

are the concepts of generalizing over unseen examples, overfitting and 

underfitting the training data, the capacity of the model, and the notion 

of regularization. Readers are encouraged to try out the examples in the 

source code listings. In the next chapter, we will explore PyTorch as a 

foundational framework to develop deep learning models
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CHAPTER 2

Introduction 
to PyTorch
The recent years have witnessed major releases of frameworks and tools 

to democratize deep learning to the masses. Today, we have a plethora 

of options at our disposal. This chapter aims to provide an overview of 

PyTorch. We will be using PyTorch extensively throughout the book for 

implementing deep learning examples. Note that this chapter is not a 

comprehensive guide for PyTorch, so you should consult the additional 

materials suggested in the chapter for a deeper understanding of the 

framework. A basic overview will be offered and the necessary additions to 

the topic will be provided in the course of the examples implemented later 

in the book.

With no further ado, let’s get started by reviewing some of the broader 

questions you may have when considering PyTorch.

�Why Do We Need a Deep Learning 
Framework?
Developing a deep neural network and preparing it to solve today’s 

problems is quite a herculean task. There are too many pieces to connect 

and orchestrate in a systematic flow to achieve the objectives we desire 
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with deep learning. To enable easier, accelerated, and quality solutions for 

experiments in research and products, enterprises require a large amount 

of abstraction that can do the heavy lifting for ground tasks. This would 

help researchers and developers focus on the tasks that matter, rather 

than investing the bulk of their time on basic operations. Deep learning 

frameworks and platforms provide a fair abstraction on the ground 

complex tasks with simple functions that can be used as tools for solving 

larger problems by researchers and developers. A few popular choices are 

Keras, PyTorch, TensorFlow, MXNet, Caffe, Microsoft’s CNTK, etc.

�What Is PyTorch?
PyTorch is an open source machine learning and deep learning library 

developed by Facebook, Inc. It is Python-based, as its name suggests, and 

aims to provide a faster alternative/replacement to NumPy (used in this 

chapter’s examples) by providing a seamless use of GPUs and a platform 

for deep learning that provides maximum flexibility and speed.

�Why PyTorch?
Recommending PyTorch is easy. It provides an extremely easy to use, 

extend, develop, and debug framework. Because it is Pythonic, it is easy 

for the software engineering community to embrace. It is equally easy for 

researchers and developers to get tasks done. PyTorch also makes it easy 

for deep learning models to be productionized. It is equipped with a high-

performance C++ runtime that developers can leverage for production 

environments while avoiding inference via Python. For most users who 

are familiar with Python’s NumPy package, PyTorch will be even easier 

to transition to. Overall, PyTorch provides an excellent framework and 

platform for researchers and developers to work on cutting-edge deep 
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learning problems while focusing on the tasks that matter and be able to 

easily debug, experiment, and deploy.

For the aforementioned reasons, PyTorch has seen wider adoption in 

enterprises. If you follow the media around deep learning, you might have 

read articles that mention a new large organization adopting PyTorch. 

Yann Lecun, a profound researcher in deep learning, Professor at NYU, 

and Chief Scientist at Facebook (at the time this writing) tweeted the 

following in Nov 2019:

“Over 69% of NeurIPS'19 papers that mention using a deep 
learning framework mention PyTorch. PyTorch is dominant 
in deep learning research (ML/CV/NLP conferences) by a 
wide margin.”

With enough reasons to justify PyTorch as a worthy choice for deep 

learning, let’s get started.

�It All Starts with a Tensor
In general, a task in deep learning would revolve around processing an 

image, text, or tabular data (cross-sectional as well as time-series) to 

generate an outcome that is a number, label, more text, another image, or 

a combination of these. Simple examples include classifying an image as a 

dog or cat, predicting the next word in a sentence, generating captions for 

an image, or transforming an image with a new style (say, the Prisma app 

on iOS/Android). Each of these tasks would need the underlying data to be 

stored in a specific structure. Processing and developing these solutions 

will have several intermediate stages, which will also need a specific 

structure (for example, the weights of a neural network). A common 

structure that could be universally used for storing, representing, and 

transforming is a tensor.
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A tensor is nothing but a multi-dimensional array of objects of 

the same type (usually floating-point numbers). Although a bit of an 

oversimplification, it’s fair to say that at a lower level of abstraction, all 

computation in PyTorch is tensors and operations over tensors. Thus, in 

order for you to be fluent with PyTorch, it is essential that you develop an 

intuitive understanding of tensors and the operations over them. It must 

also be noted that this introduction to tensors and their operations is by 

no means complete; you should refer to the PyTorch documentation for 

specific use cases. However, it’s also essential to point out that this chapter 

covers all the conceptual aspects of tensors and their operations. You 

should try out the examples in this section in a Python terminal. (Jupyter 

Notebook is recommended.) The best way to internalize this material is to 

read about the concept, type out the source code, and see it execute.

A tensor is a generalized way of representing a scalar, vector, and 

matrices. A tensor can be defined as an n-dimensional matrix. A 

0-dimensional tensor (i.e., a single number) is called a scalar (Figure 2-1); 

a 1-dimensional tensor is called a vector; a 2-dimensional tensor is called a 

matrix; 3-dimensional tensor is also called a cube; etc. The dimension of a 

matrix is also called the rank of a tensor.

Figure 2-1.  0-n dimensional tensor
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PyTorch is a very rich library that provides numerous functions that 

enable building blocks for deep learning. This chapter looks briefly at 

some of the functionalities PyTorch provides for creating tensors and 

performing data munging operations, linear algebra, and mathematical 

operations.

To begin, let’s explore the multitude of ways to construct tensors. 

The most basic way is to construct a tensor using lists in Python. The 

following exercise will demonstrate an array of tensor operations that 

are commonly used in building deep learning applications. To help you 

engage the flow better, the codes and output have been maintained the 

Notebook style (interactive flow: input ➤ output ➤ next input ➤ next 

output ➤ and so on).

�Creating Tensors
In Listing 2-1, we have constructed a 2-dimensional tensor using nested 

lists. We store this tensor as a variable and then look at its shape.

Listing 2-1.  Creating a 2-Dimensional Tensor

In [1]: import torch

           torch.tensor([[0.1, 0.2],[0.3, 0.4]])

Out[1]:

tensor([[0.1000, 0.2000],

            [0.3000, 0.4000]])

The shape indicates the dimensions of the tensor and the total 

number of dimensions that would be used to infer the rank of the tensor. 

In Listing 2-2, dimension [2,2] would be inferred as rank 2.

Listing 2-2 explores the shape of a tensor.
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Listing 2-2.  The Shape of a Tensor

In [1]: a = torch.tensor([[0.1, 0.2],[0.3, 0.4]])

In [2]: a.shape

Out[2]: torch.Size([2, 2])

In [3]: a

Out[3]:

tensor([[0.1000, 0.2000],

              [0.3000, 0.4000]])

We can try out more examples with different shapes. Listing 2-3 

explores tensors with different shapes.

Listing 2-3.  The shape of a tensor (continued)

In [1]: b = torch.tensor([[0.1, 0.2],[0.3, 0.4],[0.5, 0.6]])

In [2]: b

Out[2]:

tensor([[0.1000, 0.2000],

        [0.3000, 0.4000],

        [0.5000, 0.6000]])

In [3]: b.shape

Out[3]: torch.Size([3, 2])

Also note that we can have tensors of arbitrary dimensions, not just 

two (as in the previous examples). Listing 2-4 shows the creation of tensors 

with three dimensions.

Chapter 2  Introduction to PyTorch



33

Listing 2-4.  Creating Tensors with Arbitrary Dimensions

In [1]: c = torch.tensor([[[0.1],[0.2]],[[0.3],[0.4]]])

In [2]: c.shape

Out[2]: torch.Size([2, 2, 1])

In [3]: c

Out[3]:

tensor([[[0.1000],

         [0.2000]],

         [[0.3000],

         [0.4000]]])

Just as we can build tensors with Python lists, we can build tensors 

with NumPy arrays. This functionality can come in most handy when 

interfacing NumPy code with PyTorch. Listing 2-5 demonstrates creating 

tensors using NumPy.

Listing 2-5.  Creating Tensors with NumPy

In [1]: a = torch.tensor(numpy.array([[0.1, 0.2],[0.3, 0.4]]))

In [2]: a

Out[2]:

tensor([[0.1000, 0.2000],

        [0.3000, 0.4000]], dtype=torch.float64)

In [3]: a.shape

Out[3]: torch.Size([2, 2])

We can also create a tensor from an existing NumPy n-dimensional 

array using the from_numpy function. Listing 2-6 demonstrates the creation 

of tensors using PyTorch’s built-in function from_numpy to create tensors 

from NumPy.
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Listing 2-6.  Creating Tensors from NumPy

import numpy as np

a = np.array([1, 2, 3, 4, 5])

tensor_a = torch.from_numpy(a)

tensor_a

Output[]

tensor([1, 2, 3, 4, 5])

As we mentioned in the introduction, tensors are multi-dimensional 

arrays of the same type. We can specify the type when we construct a 

tensor. In the following examples, we initialize the tensor with 32-bit 

floating point numbers, 64-bit floating-point numbers, and 16-bit floating 

point numbers. PyTorch defines a total of eight types. (Consult the PyTorch 

documentation for more details.) Listing 2-7 demonstrates constructing 

tensors with few of the popular datatypes available in PyTorch.

Listing 2-7.  Defining Tensor Datatypes

In [1]: a = torch.tensor([[0.1, 0.2],[0.3, 0.4]], dtype=torch.

float32)

In [2]: a

Out[2]:

tensor([[0.1000, 0.2000],

        [0.3000, 0.4000]])

In [3]: a = torch.tensor([[0.1, 0.2],[0.3, 0.4]], dtype=torch.

float64)

In [4]: a

Out[4]:

tensor([[0.1000, 0.2000],

        [0.3000, 0.4000]], dtype=torch.float64)
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In [5]: a = torch.tensor([[0.1, 0.2],[0.3, 0.4]], dtype=torch.

float16)

In [6]: a

Out[6]:

tensor([[0.1000, 0.2000],

        [0.3000, 0.3999]], dtype=torch.float16)

Table 2-1 shows the different datatypes and their PyTorch equivalents.

Table 2-1.  Datatypes and Their PyTorch Equivalents

Data Type PyTorch Equivalent

32-bit floating point torch.float32 or torch.float

64-bit floating point torch.float64 or torch.double

16-bit floating point torch.float16 or torch.half

8-bit integer (unsigned) torch.uint8

8-bit integer (signed) torch.int8

16-bit integer (signed) torch.int16 or torch.short

32-bit integer (signed) torch.int32 or torch.int

64-bit integer (signed) torch.int64 or torch.long

Boolean torch.bool

Let’s now look at other ways in which tensors can be constructed. A 

common requirement is to construct a tensor filled with random values. 

Listing 2-8 demonstrates the creation of a tensor with a defined shape 

having random values.
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Listing 2-8.  Creating a Tensor with Random Values

In [1]: r = torch.rand(2,2,2)

In [2]: r

Out[2]:

tensor([[[0.7993, 0.5940],

         [0.3994, 0.7134]],

         [[0.3102, 0.5175],

         [0.6510, 0.7272]]])

In [3]: r.shape

Out[3]: torch.Size([2, 2, 2])

Another common requirement is to construct a tensor of zeros. 

Listing 2-9 demonstrates the creation of a tensor with a defined shape 

having all zeros.

Listing 2-9.  Creating a Tensor Having All Zeros

In [1]: zeros = torch.zeros(2,2,3)

In [2]: zeros

Out[2]:

tensor([[[0., 0., 0.],

         [0., 0., 0.]],

         [[0., 0., 0.],

         [0., 0., 0.]]])

In [3]: zeros.shape

Out[3]: torch.Size([2, 2, 3])

Similarly, we can construct a tensor of ones. Listing 2-10 demonstrates 

the creation of a tensor with a defined shape having all ones.
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Listing 2-10.  Creating a Tensor Having All Ones

In [1]: ones = torch.ones(2,2,3)

In [2]: ones

Out[2]:

tensor([[[1., 1., 1.],

         [1., 1., 1.]],

         [[1., 1., 1.],

         [1., 1., 1.]]])

In [3]: ones.shape

Out[3]: torch.Size([2, 2, 3])

Another common requirement is the construction of identity matrices 

(tensors). Listing 2-11 demonstrates the creation of an identity matrix 

tensor (i.e., all diagonal elements as 1).

Listing 2-11.  Creating an Identity Matix Tensor

In [1] i = torch.eye(3)

In [2]: i

Out[2]:

tensor([[1., 0., 0.],

        [0., 1., 0.],

        [0., 0., 1.]])

In [3]: i.shape

Out[3]: torch.Size([3, 3])

We can also construct a tensor of an arbitrary shape filled with an 

arbitrary value. Listing 2-12 demonstrates the creation of a tensor with an 

arbitrary value.
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Listing 2-12.  Creating a Tensor Filled with an Arbitrary Value

In [1]: f = torch.full((3,3), 0.42)

In [2]: f

Out[2]:

tensor([[0.4200, 0.4200, 0.4200],

        [0.4200, 0.4200, 0.4200],

        [0.4200, 0.4200, 0.4200]])

In [3]: f.shape

Out[3]: torch.Size([3, 3])

A common use case is also to build tensors with linearly spaced 

floating-point numbers. Listing 2-13 demonstrates the creation of a tensor 

with linearly spaced floating-point numbers.

Listing 2-13.  Creating a Tensor with Linearly Spaced Floating-Point 

Numbers

In [1]: lin = torch.linspace(0, 20, steps=5)

In [2]: lin

Out[2]: tensor([ 0.,  5., 10., 15., 20.])

Similarly, Listing 2-14 shows building a tensor with logarithmically 

spaced floating-point numbers.

Listing 2-14.  Creating a Tensor with Logarithmically Spaced 

Floating-Point Numbers

In [1]: log = torch.logspace(-3, 3, steps=4)

In [2]: log

Out[2]: tensor([1.0000e-03, 1.0000e-01, 1.0000e+01, 

1.0000e+03])
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Sometimes we need to create tensors with dimensions similar to 

existing tensors. The example in Listing 2-15 illustrates this.

Listing 2-15.  Creating a Tensor with Dimensions Similar to Another 

Tensor

In [1]: a = torch.tensor([[0.5, 0.5],[0.5, 0.5]])

In [2]: b = torch.zeros_like(a)

In [3]: b

Out[3]:

tensor([[0., 0.],

        [0., 0.]])

In [4]: c = torch.ones_like(a)

In [5]: c

Out[5]:

tensor([[1., 1.],

        [1., 1.]])

So far, we have considered only floating-point numbers. PyTorch tensors, 

however, are not limited to floating-point numbers. Here are a few examples 

of constructing tensors with integers and longs. As a side note, notice that 

the dtype functions can be used to find the type of the objects the tensor 

comprises. Listing 2-16 demonstrates creating a tensor with integer datatypes.

Listing 2-16.  Creating a Tensor with Integer Datatypes

In [1]: i = torch.tensor([[1,2],[3,4]])

In [2]: i

Out[2]:

tensor([[1, 2],

        [3, 4]])
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In [3]: i.dtype

Out[3]: torch.int64

In [4]: i = torch.tensor([[1,2],[3,4]], dtype=torch.int)

In [5]: i

Out[5]:

tensor([[1, 2],

        [3, 4]], dtype=torch.int32)

Similarly, Listing 2-17 shows the construction of a tensor with a range 

of integers.

Listing 2-17.  Creating a Tensor with a Range of Integers

In [1]: a = torch.arange(1,10, step=2)

In [2]: a

Out[2]: tensor([1, 3, 5, 7, 9])

Similarly, we can construct a random permutation of integers. In 

Listing 2-18, we create a tensor with a random permutation of integers.

Listing 2-18.  Creating a Tensor with a Random Permutation of 

Integers

In [1]: r = torch.randperm(10)

In [2]: r

Out[2]: tensor([5, 3, 0, 2, 8, 1, 7, 4, 6, 9])
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�Tensor Munging Operations
Having looked at tensors and tensor construction operations, let’s now 

dive deeper into operations with tensors. We will start by looking at 

accessing individual elements of a tensor. The following example should 

be familiar, as it is identical to the list indexing operator in Python. Listing 

2.19 demonstrates accessing individual members of a tensor.

Listing 2-19.  Accessing Individual Members of a Tensor

In [1]: a = torch.tensor([[1,2],[3,4]])

In [2]: a

Out[2]:

tensor([[1, 2],

        [3, 4]])

In [3]: a[0][0]

Out[3]: tensor(1)

In [4]: a[0][1]

Out[4]: tensor(2)

In [5]: a[1][0]

Out[5]: tensor(3)

In [6]: a[1][1]

Out[6]: tensor(4)

In [7]: a.shape

Out[7]: torch.Size([2, 2])

To extract the data in a tensor containing only a single value, the item 

method should be used. Listing 2-20 demonstrates accessing a single value 

from a tensor.
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Listing 2-20.  Accessing a Single Value from a Tensor 

In [1]: a = torch.tensor([[[0.42]]])

In [2]: a

Out[2]: tensor([[[0.4200]]])

In [3]: a.shape

Out[3]: torch.Size([1, 1, 1])

In [4]: a.item()

Out[4]: 0.41999998688697815

The view method provides an easy way to reshape a tensor. Essentially, 

the values in a tensor are allocated in contiguous blocks of memory. 

The PyTorch tensor is essentially just a view over this continuous block. 

Multiple indexes can refer to the same storage and represent the tensor in 

different shapes. Listing 2-21 demonstrates a simple example of reshaping 

a tensor.

Listing 2-21.  Reshaping a Tensor

In [1]: a = torch.zeros(10)

In [2]: a

Out[2]: tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

In [3]: a.shape

Out[3]: torch.Size([10])

In [4]: b = a.view(2,5)

In [5]: b

Out[5]:

tensor([[0., 0., 0., 0., 0.],

            [0., 0., 0., 0., 0.]])
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In [6]: b.shape

Out[6]: torch.Size([2, 5])

It is important to note how (the order in which the elements are 

placed) the view method reshapes the tensor. Listing 2-22 demonstrates 

verifying the size of a tensor after reshaping with the ‘view’ method.

Listing 2-22.  Verifying the Size of a Tensor After Reshaping with 

view

In [1]: a = torch.arange(1,10)

In [2]: a

Out[2]: tensor([1, 2, 3, 4, 5, 6, 7, 8, 9])

In [3]: a.shape

Out[3]: torch.Size([9])

In [4]: b = a.view(3,3)

In [5]: b

Out[5]:

tensor([[1, 2, 3],

        [4, 5, 6],

        [7, 8, 9]])

In [6]: b.shape

Out[6]: torch.Size([3, 3])

The cat operation allows you to concatenate a list of tensors along a 

given dimension. Note that the cat operation takes two parameters: the list 

of tensors to concatenate and the dimension along which to perform this 

operation. Listing 2-23 explores the concatenation of two tensors.
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Listing 2-23.  Concatenating Two Tensors

In [1]: a = torch.zeros(2,2)

In [2]: a

Out[2]:

tensor([[0., 0.],

        [0., 0.]])

In [3]: a.shape

Out[3]: torch.Size([2, 2])

In [4]: b = torch.cat([a,a,a],0)

In [5]: b

Out[5]:

tensor([[0., 0.],

        [0., 0.],

        [0., 0.],

        [0., 0.],

        [0., 0.],

        [0., 0.]])

In [6]: b.shape

Out[6]: torch.Size([6, 2])

In [7]: c = torch.cat([a,a,a],1)

In [8]: c

Out[8]:

tensor([[0., 0., 0., 0., 0., 0.],

        [0., 0., 0., 0., 0., 0.]])

In [9]: c.shape

Out[9]: torch.Size([2, 6])
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The stack operation allows you to construct a tensor by stacking a list 

of tensors along a dimension. The resultant tensor will have its dimension 

increased by one. Listing 2-24 shows how the stacking operation 

operates along each dimension. Note that the stack operation takes two 

parameters: the list of tensors and the stacking dimension. The range of 

dimension is equal to the range of the tensors to be stacked.

Listing 2-24.  Stacking Tensors

In [1]: a = torch.zeros(2,1)

In [2]: a

Out[2]:

tensor([[0.],

        [0.]])

In [3]: a.shape

Out[3]: torch.Size([2, 1])

In [4]: b = torch.stack([a,a,a], 0)

In [5]: b

Out[5]:

tensor([[[0.],

         [0.]],

         [[0.],

         [0.]],

         [[0.],

         [0.]]])

In [6]: b.shape

Out[6]: torch.Size([3, 2, 1])

In [7]: c = torch.stack([a,a,a], 1)
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In [8]: c

Out[8]:

tensor([[[0.],

         [0.],

         [0.]],

         [[0.],

         [0.],

         [0.]]])

In [9]: c.shape

Out[9]: torch.Size([2, 3, 1])

In [10]: d = torch.stack([a,a,a], 2)

In [11]: d

Out[11]:

tensor([[[0., 0., 0.]],

        [[0., 0., 0.]]])

In [12]: d.shape

Out[12]: torch.Size([2, 1, 3])

The chunk operation chops up a tensor into the given number of parts 

along a given direction. Note that the first parameter is the tensor; the second 

parameter is the number of parts; and the third parameter is the direction 

along which to partition. Listing 2-25 demonstrates chunking tensors.

Listing 2-25.  Chunking Tensors

In [1]: a = torch.zeros(10, 1)

In [2]: a

Out[2]:
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tensor([[0.],

        [0.],

        [0.],

        [0.],

        [0.],

        [0.],

        [0.],

        [0.],

        [0.],

        [0.]])

In [3]: a.shape

Out[3]: torch.Size([10, 1])

In [4]: b = torch.chunk(a, 5, 0)

In [5]: b

Out[5]:

(tensor([[0.], [0.]]),

 tensor([[0.], [0.]]),

 tensor([[0.], [0.]]),

 tensor([[0.], [0.]]),

 tensor([[0.], [0.]]))

Note that when the length of the tensor along the dimension on 
which partitioning is being performed is not a multiple of the part 
size, the last part has fewer elements than the part size. Listing 2-26 
illustrates additional examples of chunking/chopping of tensors.
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Listing 2-26.  Chunking Tensors (continued)

In [1]: d = torch.chunk(a, 3, 0)

In [2]: d

Out[2]:

(tensor([[0.],

         [0.],

         [0.],

         [0.]]),

 tensor([[0.],

         [0.],

         [0.],

         [0.]]),

 tensor([[0.],

         [0.]]))

Just as the chunk method enables you to split a tensor into the given 

number of parts, the split method does the same operation but given 

the size of the part. Note the difference. Basically, the chunk method takes 

the number of parts, whereas the split method takes the size of the part. 

Listing 2-27 illustrates splitting tensors.

Listing 2-27.  Splitting Tensors

In [1]: a = torch.zeros(10,1)

In [2]: a

Out[2]:

tensor([[0.],

        [0.],

        [0.],

        [0.],

        [0.],
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        [0.],

        [0.],

        [0.],

        [0.],

        [0.]])

In [3]: a.shape

Out[3]: torch.Size([10, 1])

In [4]: b = torch.split(a,2,0)

In [5]: b

Out[5]:

(tensor([[0.],[0.]]),

 tensor([[0.],[0.]]),

 tensor([[0.],[0.]]),

 tensor([[0.],[0.]]),

 tensor([[0.],[0.]]))

The index_select method allows you to extract parts of a tensor along 

a given dimension. Note that the method takes three arguments: the tensor 

to operate on, the dimension along which to extract data, and the tensor 

containing the indices. In Listing 2-28, we construct a 3x3 tensor, and then 

extract data along each of the two dimensions.

Listing 2-28.  Extracting Parts of Tensors Using index_select

In [1]: a = torch.FloatTensor([[1 ,2, 3],[4, 5, 6], [7, 8, 9]])

In [2]: a

Out[2]:

tensor([[1., 2., 3.],

        [4., 5., 6.],

        [7., 8., 9.]])
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In [3]: a.shape

Out[3]: torch.Size([3, 3])

In [4]: index = torch.LongTensor([0, 1])

In [5]: b = torch.index_select(a, 0, index)

In [6]: b

Out[6]:

tensor([[1., 2., 3.],

        [4., 5., 6.]])

In [7]: b.shape

Out[7]: torch.Size([2, 3])

In [8]: c = torch.index_select(a, 1, index)

In [9]: c

Out[9]:

tensor([[1., 2.],

        [4., 5.],

        [7., 8.]])

In [10]: c.shape

Out[10]: torch.Size([3, 2])

The masked_select method, illustrated in Listing 2-29, allows you to 

select elements given a Boolean mask.

Listing 2-29.  Selecting Elements from a Tensor Using masked_

select

In [1]: a = torch.FloatTensor([[1 ,2, 3],[4, 5, 6], [7, 8, 9]])

In [2]: a

Out[2]:

tensor([[1., 2., 3.],
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        [4., 5., 6.],

        [7., 8., 9.]])

In [3]: a.shape

Out[3]: torch.Size([3, 3])

In [4]: mask = torch.ByteTensor([[0, 1, 0],[1, 1, 1],[0, 1, 0]])

In [5]: mask

Out[5]:

tensor([[0, 1, 0],

[1, 1, 1],

[0, 1, 0]], dtype=torch.uint8)

In [6]: mask.shape

Out[6]: torch.Size([3, 3])

In [7]: b = torch.masked_select(a, mask)

In [8]: b

Out[8]: tensor([2., 4., 5., 6., 8.])

In [9]: b.shape

Out[9]: torch.Size([5])

The squeeze method removes all dimensions with a value of one, as 

illustrated in Listing 2-30.

Listing 2-30.  Reshaping a Tensor with the squeeze Method

In [1]: a = torch.zeros(2,2,1)

In [2]: a

Out[2]:

tensor([[[0.],

         [0.]],
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         [[0.],

          [0.]]])

In [3]: a.shape

Out[3]: torch.Size([2, 2, 1])

In [4]: b = a.squeeze()

In [5]: b

Out[5]:

tensor([[0., 0.],

        [0., 0.]])

In [6]: b.shape

Out[6]: torch.Size([2, 2])

Similarly, the unsqueeze method adds a new dimension with a value of 

one, as illustrated in Listing 2-31. Note how the extra dimension could be 

added at three different positions.

Listing 2-31.  Reshaping a Tensor with the unsqueeze Method

In [1]: a = torch.zeros(2,2)

In [2]: a

Out[2]:

tensor([[0., 0.],

        [0., 0.]])

In [3]: a.shape

Out[3]: torch.Size([2, 2])

In [4]: b = torch.unsqueeze(a, 0)

In [5]: b

Out[5]:
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tensor([[[0., 0.],

         [0., 0.]]])

In [6]: b.shape

Out[6]: torch.Size([1, 2, 2])

In [7]: c = torch.unsqueeze(a, 1)

In [8]: c

Out[8]:

tensor([[[0., 0.]],

        [[0., 0.]]])

In [9]: c.shape

Out[9]: torch.Size([2, 1, 2])

In [10]: d = torch.unsqueeze(a, 2)

In [11]: d

Out[11]:

tensor([[[0.],

         [0.]],

        [[0.],

        [0.]]])

In [12]: d.shape

Out[12]: torch.Size([2, 2, 1])

The unbind function breaks up a given tensor into separate tensors 

along a given dimension. Listing 2-32 illustrates extracting parts of a tensor 

using unbind. A 3x3 tensor is broken along the first and second dimension. 

Note that the resultant tensors are returned as a tuple.
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Listing 2-32.  Extracting Parts of a Tensor using unbind

In [1]: a

Out[1]:

tensor([[1, 2, 3],

        [4, 5, 6],

        [7, 8, 9]])

In [2]: a.shape

Out[2]: torch.Size([3, 3])

In [3]: torch.unbind(a, 0)

Out[3]: (tensor([1, 2, 3]), tensor([4, 5, 6]), tensor([7, 8, 9]))

In [4]: torch.unbind(a, 1)

Out[4]: (tensor([1, 4, 7]), tensor([2, 5, 8]), tensor([3, 6, 9]))

Listing 2-33 illustrates a creating a tensor from an existing tensor using 

the where method.

Listing 2-33.  Constructing a Tensor from an Existing Tensor Using 

the where Method

In [1]: a = torch.zeros(3,3)

In [2]: a

Out[2]:

tensor([[0., 0., 0.],

        [0., 0., 0.],

        [0., 0., 0.]])

In [3]: a.shape

Out[3]: torch.Size([3, 3])

In [4]: b = torch.ones(3,3)
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In [5]: b

Out[5]:

tensor([[1., 1., 1.],

        [1., 1., 1.],

        [1., 1., 1.]])

In [6]: b.shape

Out[6]: torch.Size([3, 3])

In [7]: c = torch.rand(3,3)

In [8]: c

Out[8]:

tensor([[0.8452, 0.8095, 0.5903],

        [0.7766, 0.6845, 0.4232],

        [0.1080, 0.1946, 0.7541]])

In [9]: c.shape

Out[9]: torch.Size([3, 3])

In [10]: d = torch.where(c > 0.5, a, b)

In [11]: d

Out[11]:

tensor([[0., 0., 0.],

        [0., 0., 1.],

        [1., 1., 0.]])

In [12]: d.shape

Out[12]: torch.Size([3, 3])

The any and all methods, illustrated in Listing 2-34, enable you to 

check whether a given condition is true in any or all cases, respectively.
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Listing 2-34.  Conducting Logical Operations on Tensors Using the 

any and all Methods

In [1]: a = torch.rand(3,3)

In [2]: a

Out[2]:

tensor([[0.3447, 0.4243, 0.6950],

        [0.8801, 0.8502, 0.7759],

        [0.6685, 0.9172, 0.4557]])

In [3]: a.shape

Out[3]: torch.Size([3, 3])

In [4]: torch.any(a > 0)

Out[4]: tensor(1, dtype=torch.uint8)

In [5]: torch.any(a > 1.0)

Out[5]: tensor(0, dtype=torch.uint8)

In [6]: torch.all(a > 0)

Out[6]: tensor(1, dtype=torch.uint8)

In [7]: torch.all(a > 1.0)

Out[7]: tensor(0, dtype=torch.uint8)

The view method allows you to reshape tensors. Listing 2-35 illustrates 

reshaping tensors. Note that using -1 as the size along some dimension 

implies that this is to be inferred based on the other sizes.

Listing 2-35.  Reshaping tensors

In [1]: a = torch.arange(1,10)

In [2]: a

Out[2]: tensor([1, 2, 3, 4, 5, 6, 7, 8, 9])

In [3]: b = a.view(3,3)
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In [4]: b

Out[4]:

tensor([[1, 2, 3],

        [4, 5, 6],

        [7, 8, 9]])

In [5]: b.shape

Out[5]: torch.Size([3, 3])

In [6]: c = a.view(3,-1)

In [7]: c

Out[7]:

tensor([[1, 2, 3],

        [4, 5, 6],

        [7, 8, 9]])

In [8]: c.shape

Out[8]: torch.Size([3, 3])

The flatten method can be used to collapse the dimensions of a given 

tensor starting with a particular dimension. Listing 2-36 demonstrates 

collapsing the dimensions of a tensor using flatten.

Listing 2-36.  Collapsing the Dimensions of a Tensor Using the 

flatten Method

In [1]: a

Out[1]:

tensor([[[[1., 1.],

          [1., 1.]],

          [[1., 1.],

          [1., 1.]]],
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           [[[1., 1.],

           [1., 1.]],

           [[1., 1.],

           [1., 1.]]]])

In [2]: a.shape

Out[2]: torch.Size([2, 2, 2, 2])

In [3]: b = torch.flatten(a)

In [4]: b

Out[4]: tensor([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 

1., 1., 1., 1.])

In [5]: b.shape

Out[5]: torch.Size([16])

In [6]: c = torch.flatten(a, start_dim=0)

In [7]: c

Out[7]: tensor([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 

1., 1., 1., 1.])

In [8]: c.shape

Out[8]: torch.Size([16])

In [9]: d = torch.flatten(a, start_dim=1)

In [10]: d

Out[10]:

tensor([[1., 1., 1., 1., 1., 1., 1., 1.],

[1., 1., 1., 1., 1., 1., 1., 1.]])

In [11]: d.shape

Out[11]: torch.Size([2, 8])
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In [12]: e = torch.flatten(a, start_dim=2)

In [13]: e

Out[13]:

tensor([[[1., 1., 1., 1.],

         [1., 1., 1., 1.]],

         [[1., 1., 1., 1.],

          [1., 1., 1., 1.]]])

In [14]: e.shape

Out[14]: torch.Size([2, 2, 4])

In [15]: f = torch.flatten(a, start_dim=3)

In [16]: f

Out[16]:

tensor([[[[1., 1.],

          [1., 1.]],

          [[1., 1.],

           [1., 1.]]],

           [[[1., 1.],

            [1., 1.]],

           [[1., 1.],

           [1., 1.]]]])

In [17]: f.shape

Out[17]: torch.Size([2, 2, 2, 2])

The gather method allows us to extract values from a tensor along 

a given dimension at given positions. Listing 2-37 illustrates extracting 

values from a tensor using gather.
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Listing 2-37.  Extracting Values from a Tensor Using the gather 

Method

In [1]: a = torch.rand(4,4)

In [2]: a

Out[2]:

tensor([[0.6212, 0.7720, 0.8867, 0.4805],

        [0.0323, 0.7763, 0.2295, 0.8778],

        [0.5836, 0.3244, 0.3011, 0.5630],

        [0.6748, 0.4487, 0.7052, 0.7185]])

In [3]: a.shape

Out[3]: torch.Size([4, 4])

In [4]: b = torch.LongTensor([[0,1,2,3]])

In [5]: b

Out[5]: tensor([[0, 1, 2, 3]])

In [6]: b.shape

Out[6]: torch.Size([1, 4])

In [7]: c = a.gather(0,b)

In [8]: c

Out[8]: tensor([[0.6212, 0.7763, 0.3011, 0.7185]])

In [9]: c.shape

Out[9]: torch.Size([1, 4])

In [10]: d = torch.LongTensor([[0],[1],[2],[3]])

In [11]: d

Out[11]:
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tensor([[0],

        [1],

        [2],

        [3]])

In [12]: d.shape

Out[12]: torch.Size([4, 1])

In [13]: e = a.gather(1,d)

In [14]: e

Out[14]:

tensor([[0.6212],

        [0.7763],

        [0.3011],

        [0.7185]])

In [15]: e.shape

Out[15]: torch.Size([4, 1])

Similarly, the scatter method can be used to put values into a tensor 

along a given dimensions at given positions. Listing 2-38 illustrates 

augmenting a tensor’s values with scatter.

Listing 2-38.  Augmenting a Tensor’s Values Using the scatter 

Method

In [1]: a = torch.rand(4,4)

In [2]: a

Out[2]:

tensor([[0.7159, 0.4922, 0.2732, 0.5839],

        [0.0961, 0.9103, 0.9450, 0.6140],

        [0.9439, 0.3156, 0.3493, 0.3125],

        [0.1578, 0.1555, 0.6266, 0.4961]])
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In [3]: a.shape

Out[3]: torch.Size([4, 4])

In [4]: index = torch.LongTensor([[0,1,2,3]])

In [5]: index

Out[5]: tensor([[0, 1, 2, 3]])

In [6]: index.shape

Out[6]: torch.Size([1, 4])

In [7]: values = torch.zeros(1,4)

In [8]: values

Out[8]: tensor([[0., 0., 0., 0.]])

In [9]: values.shape

Out[9]: torch.Size([1, 4])

In [10]: result = a.scatter(0, index, values)

In [11]: result

Out[11]:

tensor([[0.0000, 0.4922, 0.2732, 0.5839],

       [0.0961, 0.0000, 0.9450, 0.6140],

       [0.9439, 0.3156, 0.0000, 0.3125],

       [0.1578, 0.1555, 0.6266, 0.0000]])

In [12]: result.shape

Out[12]: torch.Size([4, 4])

In [13]: a

Out[13]:

tensor([[0.7159, 0.4922, 0.2732, 0.5839],

        [0.0961, 0.9103, 0.9450, 0.6140],

        [0.9439, 0.3156, 0.3493, 0.3125],

        [0.1578, 0.1555, 0.6266, 0.4961]])
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�Mathematical Operations
The allclose method allows us to check whether the values in two tensors 

are the same given an absolute or relative tolerance level. The method, 

which helps us to compare two tensors based on a margin of error, can 

come in quite handy while writing unit tests. Listing 2-39 illustrates 

validating tensors within a tolerance level.

Listing 2-39.  Validating Whether Given Tensors Are Within a 

Tolerance Level

In [1]: a = torch.rand(3,3)

In [2]: a

Out[2]:

tensor([[0.9854, 0.2305, 0.1023],

        [0.2054, 0.7064, 0.6115],

        [0.6231, 0.0024, 0.8337]])

In [3]: b = a + a * 1e-3

In [4]: b

Out[4]:

tensor([[0.9864, 0.2307, 0.1024],

        [0.2056, 0.7071, 0.6121],

        [0.6237, 0.0024, 0.8345]])

In [5]: torch.allclose(a,b,rtol=1e-1)

Out[5]: True

In [6]: torch.allclose(a,b,rtol=1e-2)

Out[6]: True

In [7]: torch.allclose(a,b,rtol=1e-3)

Out[7]: True
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In [8]: torch.allclose(a,b,rtol=1e-4)

Out[8]: False

In [9]: torch.allclose(a,b,atol=1e-1)

Out[9]: True

In [10]: torch.allclose(a,b,atol=1e-2)

Out[10]: True

In [11]: torch.allclose(a,b,atol=1e-3)

Out[11]: True

In [12]: torch.allclose(a,b,atol=1e-4)

Out[12]: False

The argmax and argmin methods allow you to get the index of the 

maximum and minimum value along a given dimension. Listing 2-40 

illustrates extracting dimensions of minimum and maximum values in a 

tensor.

Listing 2-40.  Extracting Dimensions of Minimum and Maximum 

Values in a Given Tensor

In [1]: a = torch.rand(3,3)

In [2]: a

Out[2]:

tensor([[0.6295, 0.0995, 0.9350],

        [0.7498, 0.7338, 0.2076],

        [0.2302, 0.7524, 0.1993]])

In [3]: a.shape

Out[3]: torch.Size([3, 3])

In [4]: torch.argmax(a, dim=0)

Out[4]: tensor([1, 2, 0])
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In [5]: torch.argmax(a, dim=1)

Out[5]: tensor([2, 0, 1])

In [6]: torch.argmin(a, dim=0)

Out[6]: tensor([2, 0, 2])

In [7]: torch.argmin(a, dim=1)

Out[7]: tensor([1, 2, 2])

Similarly, the argsort function, illustrated in Listing 2-41, gives the 

indices of sorted values along a given dimension.

Listing 2-41.  Extracting the Indices of Sorted Values of a Tensor

In [1]: a = torch.rand(3,3)

In [2]: a

Out[2]:

tensor([[0.8380, 0.0738, 0.1025],

        [0.7930, 0.5986, 0.9059],

        [0.2777, 0.9390, 0.0700]])

In [3]: a.shape

Out[3]: torch.Size([3, 3])

In [4]: torch.argsort(a, dim=0)

Out[4]:

tensor([[2, 0, 2],

        [1, 1, 0],

        [0, 2, 1]])

In [5]: torch.argsort(a, dim=1)

Out[5]:

tensor([[1, 2, 0],

        [1, 0, 2],

        [2, 0, 1]])
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The cumsum method, illustrated in Listing 2-42, allows you to compute 

the cumulative sum along a given dimension.

Listing 2-42.  Computing the Cumulative Sum Along a Dimension 

of the Tensor

In [1]: a = torch.rand(3,3)

In [2]: a

Out[2]:

tensor([[0.2221, 0.7963, 0.5464],

        [0.9116, 0.3773, 0.5860],

        [0.5363, 0.7378, 0.3079]])

In [3]: a.shape

Out[3]: torch.Size([3, 3])

In [4]: b = torch.cumsum(a, dim=0)

In [5]: b

Out[5]:

tensor([[0.2221, 0.7963, 0.5464],

        [1.1337, 1.1736, 1.1324],

        [1.6700, 1.9113, 1.4403]])

In [6]: b.shape

Out[6]: torch.Size([3, 3])

In [7]: c = torch.cumsum(a, dim=1)

In [8]: c

Out[8]:

tensor([[0.2221, 1.0183, 1.5647],

        [0.9116, 1.2889, 1.8749],

        [0.5363, 1.2741, 1.5820]])
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In [9]: c.shape

Out[9]: torch.Size([3, 3])

Similarly, the cumprod method allows you to compute the cumulative 

product along a given dimension. Listing 2-43 illustrates the computation 

of the cumulative product.

Listing 2-43.  Computing the Cumulative Product Along a 

Dimension of the Tensor

In [1]: a = torch.rand(3,3)

In [2]: a

Out[2]:

tensor([[0.6971, 0.0358, 0.4075],

        [0.2239, 0.2938, 0.3418],

        [0.2482, 0.2108, 0.0709]])

In [3]: a.shape

Out[3]: torch.Size([3, 3])

In [4]: b = torch.cumprod(a, dim=0)

In [5]: b

Out[5]:

tensor([[0.6971, 0.0358, 0.4075],

        [0.1561, 0.0105, 0.1393],

        [0.0388, 0.0022, 0.0099]])

In [6]: b.shape

Out[6]: torch.Size([3, 3])

In [7]: c = torch.cumprod(a, dim=1)

In [8]: c

Out[8]:
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tensor([[0.6971, 0.0250, 0.0102],

        [0.2239, 0.0658, 0.0225],

        [0.2482, 0.0523, 0.0037]])

In [9]: c.shape

Out[9]: torch.Size([3, 3])

The abs method allows you to compute the absolute value of the 

elements of a given tensor. Listing 2-44 illustrates computing absolute 

value of the elements of a tensor.

Listing 2-44.  Computing the Absolute Value of the elements of a 

Tensor

In [1]: a = torch.tensor([[1,-1,1],[1,-1,1],[1,-1,1]])

In [2]: a

Out[2]:

tensor([[ 1, -1,  1],

        [ 1, -1,  1],

        [ 1, -1,  1]])

In [3]: b = torch.abs(a)

In [4]: b

Out[4]:

tensor([[1, 1, 1],

        [1, 1, 1],

        [1, 1, 1]])

The clamp function allows you to restrict elements between a given 

minimum and maximum. Listing 2-45 illustrates clamping values within a 

tensor.
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Listing 2-45.  Clamping Values Within a Tensor

In [1]: a = torch.rand(3,3)

In [2]: a

Out[2]:

tensor([[0.1181, 0.2922, 0.6639],

        [0.9170, 0.1552, 0.3636],

        [0.8511, 0.9194, 0.4650]])

In [3]: b = torch.clamp(a, min=0.25, max=0.50)

In [4]: b

Out[4]:

tensor([[0.2500, 0.2922, 0.5000],

        [0.5000, 0.2500, 0.3636],

        [0.5000, 0.5000, 0.4650]])

The ceil and floor functions allow you to round-up or round-down 

the elements of a given tensor, as illustrated in Listing 2-46.

Listing 2-46.  Ceil and floor operations within a tensor

In [1]: a = torch.rand(3,3) * 100

In [2]: a

Out[2]:

tensor([[18.6809, 56.6616, 10.2362],

        [74.1378, 87.3797, 62.9137],

        [42.4275, 82.0347, 96.2187]])

In [3]: b = torch.floor(a)

In [4]: b

Out[4]:

tensor([[18., 56., 10.],
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        [74., 87., 62.],

        [42., 82., 96.]])

In [5]: c = torch.ceil(a)

In [6]: c

Out[6]:

tensor([[19., 57., 11.],

        [75., 88., 63.],

        [43., 83., 97.]])

�Element-Wise Mathematical Operations
Let us now take a look at a number of element-wise mathematical 

operations. These operations are called element-wise mathematical 

operations because an identical operation being performed on each of the 

elements of the tensor.

The mul function allows you to perform element-wise multiplication, 

as illustrated in Listing 2-47.

Listing 2-47.  Element-Wise Multiplication

In [1]: a = torch.rand(3,3)

In [2]: a

Out[2]:

tensor([[0.6589, 0.9292, 0.0315],

        [0.6033, 0.1030, 0.1090],

        [0.4076, 0.7149, 0.8323]])

In [3]: b = torch.FloatTensor([[0, 1, 0],[1,1,1],[0,1,0]])

In [4]: b

Out[4]:
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tensor([[0., 1., 0.],

        [1., 1., 1.],

        [0., 1., 0.]])

In [5]: c = torch.mul(a,b)

In [6]: c

Out[6]:

tensor([[0.0000, 0.9292, 0.0000],

        [0.6033, 0.1030, 0.1090],

        [0.0000, 0.7149, 0.0000]])

Similarly, we have the div method for element-wise division.  

Listing 2-48 demonstrates element-wise division for tensors.

Listing 2-48.  Element-Wise Division

In [1]: a = torch.rand(3,3)

In [2]: a

Out[2]:

tensor([[0.9209, 0.8241, 0.6200],

        [0.2758, 0.8846, 0.5146],

        [0.1822, 0.2511, 0.3807]])

In [3]: b = torch.FloatTensor([[1, 2, 1],[2,2,2],[1,2,1]])

In [4]: b

Out[4]:

tensor([[1., 2., 1.],

        [2., 2., 2.],

        [1., 2., 1.]])

In [5]: c = torch.div(a,b)
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In [6]: c

Out[6]:

tensor([[0.9209, 0.4121, 0.6200],

        [0.1379, 0.4423, 0.2573],

        [0.1822, 0.1256, 0.3807]])

�Trigonometric Operations in Tensors
Within deep learning, we will also perform several trigonometric 

operations over tensors in the process of training them. In this section, 

we will take a brief look at few important functions frequently used in 

PyTorch. Listing 2-49 illustrates the basic trigonometric operations.

Listing 2-49.  Basic Trigonometric Operations for Tensors

In [1]: a = torch.linspace(-1.0, 1.0, steps=10)

In [2]: a

Out[2]:

tensor([-1.0000, -0.7778, -0.5556, -0.3333, -0.1111, 0.1111, 

0.3333,  0.5556,  0.7778,  1.0000])

In [3]: torch.sin(a)

Out[3]:

tensor([-0.8415, -0.7017, -0.5274, -0.3272, -0.1109, 0.1109, 

0.3272,  0.5274,  0.7017,  0.8415])

In [4]: torch.cos(a)

Out[4]:

tensor([0.5403, 0.7125, 0.8496, 0.9450, 0.9938, 0.9938, 0.9450, 

0.8496, 0.7125, 0.5403])
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In [5]: torch.tan(a)

Out[5]:

tensor([-1.5574, -0.9849, -0.6208, -0.3463, -0.1116, 0.1116, 

0.3463,  0.6208,  0.9849,  1.5574])

In [6]: torch.asin(a)

Out[6]:

tensor([-1.5708, -0.8911, -0.5890, -0.3398, -0.1113, 0.1113, 

0.3398,  0.5890,  0.8911,  1.5708])

In [7]: torch.acos(a)

Out[7]:

tensor([3.1416, 2.4619, 2.1598, 1.9106, 1.6821, 1.4595, 1.2310, 

0.9818, 0.6797, 0.0000])

In [8]: torch.atan(a)

Out[8]:

tensor([-0.7854, -0.6610, -0.5071, -0.3218, -0.1107, 0.1107, 

0.3218,  0.5071,  0.6610,  0.7854])

Listing 2-50 illustrates a few functions that are frequently used in 

machine learning—namely, sigmoid, tanh, log1p (which computes  

y = log(1+x)), erf (Gaussian error function), and erfinv (inverse Gaussian 

error function).

Listing 2-50.  Additional Trigonometric Operations for Tensors

In [1]: a = torch.linspace(-1.0, 1.0, steps=10)

In [2]: a

Out[2]:

tensor([-1.0000, -0.7778, -0.5556, -0.3333, -0.1111, 0.1111, 

0.3333,  0.5556,  0.7778,  1.0000])
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In [3]: torch.sigmoid(a)

Out[3]:

tensor([0.2689, 0.3148, 0.3646, 0.4174, 0.4723, 0.5277, 0.5826, 

0.6354, 0.6852, 0.7311])

In [4]: torch.tanh(a)

Out[4]:

tensor([-0.7616, -0.6514, -0.5047, -0.3215, -0.1107, 0.1107, 

0.3215,  0.5047,  0.6514,  0.7616])

In [5]: torch.log1p(a)

Out[5]:

tensor([   -inf, -1.5041, -0.8109, -0.4055, -0.1178, 0.1054, 

0.2877,  0.4418,  0.5754,  0.6931])

In [6]: torch.erf(a)

Out[6]:

tensor([-0.8427, -0.7286, -0.5679, -0.3626, -0.1249, 0.1249, 

0.3626,  0.5679,  0.7286,  0.8427])

In [7]: torch.erfinv(a)

Out[7]:

tensor([   -inf, -0.8631, -0.5407, -0.3046, -0.0988, 0.0988, 

0.3046,  0.5407, 0.8631,     inf])

�Comparison Operations for Tensors
Let’s now consider some operations that allow us to compare elements of 

the tensor—namely, ge (greater than or equal), le (lesser than or equal), eq 

(equal) and ne (not equal). Listing 2-51 illustrates comparison operations 

for tensors.
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Listing 2-51.  Comparison Operations for Tensors

In [1]: a = torch.rand(3,3)

In [2]: a

Out[2]:

tensor([[0.3340, 0.6635, 0.9417],

        [0.2229, 0.6039, 0.9349],

                [0.1783, 0.6485, 0.0172]])

In [3]: b = torch.rand(3,3)

In [4]: b

Out[4]:

tensor([[0.3854, 0.0581, 0.2514],

[0.0510, 0.8652, 0.0233],

[0.0191, 0.8724, 0.0364]])

In [5]: torch.ge(a,b)

Out[5]:

tensor([[0, 1, 1],

        [1, 0, 1],

        [1, 0, 0]], dtype=torch.uint8)

In [6]: torch.le(a,b)

Out[6]:

tensor([[1, 0, 0],

        [0, 1, 0],

        [0, 1, 1]], dtype=torch.uint8)

In [7]: torch.eq(a,b)

Out[7]:

tensor([[0, 0, 0],

        [0, 0, 0],

        [0, 0, 0]], dtype=torch.uint8)
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In [8]: torch.ne(a,b)

Out[8]:

tensor([[1, 1, 1],

        [1, 1, 1],

        [1, 1, 1]], dtype=torch.uint8)

�Linear Algebraic Operations
We will now dive deeper into a number of linear algebraic operations using 

PyTorch tensors.

The matmul function allows you to multiply two tensors. Listing 2-52 

demonstrates matrix multiplication for tensors.

Listing 2-52.  Matrix Multiplication Operations for Tensors

In [1]: a = torch.ones(2,3)

In [2]: a

Out[2]:

tensor([[1., 1., 1.],

        [1., 1., 1.]])

In [3]: a.shape

Out[3]: torch.Size([2, 3])

In [4]: b = torch.ones(3,2)

In [5]: b

Out[5]:

tensor([[1., 1.],

        [1., 1.],

        [1., 1.]])
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In [6]: b.shape

Out[6]: torch.Size([3, 2])

In [7]: torch.matmul(a,b)

Out[7]:

tensor([[3., 3.],

        [3., 3.]])

In [8]: c.shape

Out[8]: torch.Size([3, 5])

The addbmm function (where bmm stands for batch matrix-matrix 

product) allows you to perform the computation p * m + q * [a1 * b1 + a2 

* b2 + ...], where p and q are scalars, and m, a1, b1, a2, and b2 are tensors. 

Note that the addbmm function takes parameters p and q with default values 

equal to one and that tensors such as a1 and a2 are provided by stacking 

them along the first dimension. Listing 2-53 illustrates batch matrix-matrix 

addition of tensors.

Listing 2-53.  Batch Matrix-Matrix Addition of Tensors

In [1]: a = torch.ones(2, 2, 3)

In [2]: a

Out[2]:

tensor([[[1., 1., 1.],

         [1., 1., 1.]],

         [[1., 1., 1.],

          [1., 1., 1.]]])

In [3]: a.shape

Out[3]: torch.Size([2, 2, 3])
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In [4]: b = torch.ones(2, 3, 2)

In [5]: b

Out[5]:

tensor([[[1., 1.],

         [1., 1.],

         [1., 1.]],

        [[1., 1.],

         [1., 1.],

         [1., 1.]]])

In [6]: b.shape

Out[6]: torch.Size([2, 3, 2])

In [7]: m = torch.ones(2,2)

In [8]: m

Out[8]:

tensor([[1., 1.],

        [1., 1.]])

In [9]: m.shape

Out[9]: torch.Size([2, 2])

In [10]: torch.addbmm(2, m, 3, a, b)

Out[10]:

tensor([[20., 20.],

        [20., 20.]])

In [11]: torch.addbmm(1, m, 1, a, b)

Out[11]:

tensor([[7., 7.],

        [7., 7.]])
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In [12]: torch.addbmm(m, a, b)

Out[12]:

tensor([[7., 7.],

        [7., 7.]])

The addmm function is a non-batch version of addbmm that allows you to 

perform the computation p * m + q * a * b, where p and q are scalars, and 

m, a, and b are tensors. Note that the addmm function takes parameters p 

and q with default values equal to one. Listing 2-54 illustrates non-batch 

matrix—matrix addition of tensors.

Listing 2-54.  Non Batch Matrix-Matrix Addition of Tensors

In [1]: a = torch.ones(2, 3)

In [2]: a

Out[2]:

tensor([[1., 1., 1.],

        [1., 1., 1.]])

In [3]: a.shape

Out[3]: torch.Size([2, 3])

In [4]: b = torch.ones(3, 2)

In [5]: b

Out[5]:

tensor([[1., 1.],

        [1., 1.],

        [1., 1.]])

In [6]: b.shape

Out[6]: torch.Size([3, 2])
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In [7]: m = torch.ones(2,2)

In [8]: m

Out[8]:

tensor([[1., 1.],

        [1., 1.]])

In [9]: m.shape

Out[9]: torch.Size([2, 2])

In [10]: torch.addmm(m, a, b)

Out[10]:

tensor([[4., 4.],

        [4., 4.]])

In [11]: torch.addmm(2, m, 3, a, b)

Out[11]:

tensor([[11., 11.],

        [11., 11.]])

In [12]: torch.addmm(1, m, 1, a, b)

Out[12]:

tensor([[4., 4.],

        [4., 4.]])

The addmv function (matrix-vector) allows you to perform the 

computation p * m + q * a * b, where p and q are scalars, m and a are 

matrices, and b is a vector. Note that addmv takes parameters p and q with 

default values equal to one. Listing 2-55 illustrates matrix vector addition 

for tensors.
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Listing 2-55.  Matrix Vector Addition of Tensors

In [1]: a = torch.ones(2, 3)

In [2]: a

Out[2]:

tensor([[1., 1., 1.],

        [1., 1., 1.]])

In [3]: a.shape

Out[3]: torch.Size([2, 3])

In [4]: b = torch.ones(3)

In [5]: b

Out[5]: tensor([1., 1., 1.])

In [6]: b.shape

Out[6]: torch.Size([3])

In [7]: m = torch.ones(2)

In [8]: m

Out[8]: tensor([1., 1.])

In [9]: m.shape

Out[9]: torch.Size([2])

In [10]: torch.addmv(2,m,3,a,b)

Out[10]: tensor([11., 11.])

In [11]: torch.addmv(1,m,1,a,b)

Out[11]: tensor([4., 4.])

In [12]: torch.addmv(m,a,b)

Out[12]: tensor([4., 4.])

Chapter 2  Introduction to PyTorch



82

The addr function allows you to perform an outer product of two 

vectors and add it to a given matrix. The outer product of two vectors 

in linear algebra is a matrix. For example, if you have a vector V with 

m elements (1 dimension) and another vector U with n elements (1 

dimension), then the outer product of V and U will be a matrix with m × n 

shape.

V= [v1, v2, v3..., vm]

U = [u1, u2, ......un]

V ⊕ U = A

A = [   v1u1, v1u2, .... , v1um,

        v2u1, v2,u2,.......v2um,

        .....

        vnu1, vnu2, .......vnum]

In PyTorch, the function expects the first argument as the matrix to 

which we need to add the resultant outer product, followed by the vectors 

for which the outer product needs to be computed. In Listing 2-56, we 

create two vectors (a and b) with three elements each, and perform an 

outer product to create a 3 × 3 matrix, which is then added to another 

matrix (m).

Listing 2-56.  Outer Product of Vectors

In [1]: a = torch.tensor([1.0, 2.0, 3.0])

In [2]: a

Out[2]: tensor([1., 2., 3.])

In [3]: a.shape

Out[3]: torch.Size([3])

In [4]: b = a

In [5]: m = torch.ones(3,3)
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In [6]: m

Out[6]:

tensor([[1., 1., 1.],

        [1., 1., 1.],

        [1., 1., 1.]])

In [7]: m.shape

Out[7]: torch.Size([3, 3])

In [8]: torch.addr(m,a,b)

Out[8]:

tensor([[ 2.,  3.,  4.],

        [ 3.,  5.,  7.],

        [ 4.,  7., 10.]])

In [9]: m = torch.zeros(3,3)

In [10]: m

Out[10]:

tensor([[0., 0., 0.],

        [0., 0., 0.],

        [0., 0., 0.]])

In [11]: torch.addr(m,a,b)

Out[11]:

tensor([[1., 2., 3.],

        [2., 4., 6.],

        [3., 6., 9.]])

The baddbmm function allows you to perform the computation p1 * m 

+ q * [a1 * b1], p2 * m + q * [a2 * b2], ..., where p and q are scalars, and m, 

p1, a1, b1, p2, a2, and b2 are tensors. Note that baddbmm takes parameters p 
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and q with default values equal to one, and that tensors such as p1, a1, and 

a2 are provided by stacking them along the first dimension. Listing 2-27 

illustrates the use of baddbmm function.

Listing 2-57.  The baddbmm Function

In [1]: a = torch.ones(2,2,3)

In [2]: a

Out[2]:

tensor([[[1., 1., 1.],

         [1., 1., 1.]],

         [[1., 1., 1.],

          [1., 1., 1.]]])

In [3]: a.shape

Out[3]: torch.Size([2, 2, 3])

In [4]: b = torch.ones(2,3,2)

In [5]: b

Out[5]:

tensor([[[1., 1.],

         [1., 1.],

         [1., 1.]],

        [[1., 1.],

         [1., 1.],

         [1., 1.]]])

In [6]: b.shape

Out[6]: torch.Size([2, 3, 2])

In [7]: m = torch.ones(2, 2, 2)
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In [8]: m

Out[8]:

tensor([[[1., 1.],

         [1., 1.]],

         [[1., 1.],

          [1., 1.]]])

In [9]: m.shape

Out[9]: torch.Size([2, 2, 2])

In [10]: torch.baddbmm(1,m,1,a,b)

Out[10]:

tensor([[[4., 4.],

         [4., 4.]],

         [[4., 4.],

          [4., 4.]]])

In [11]: torch.baddbmm(2,m,1,a,b)

Out[11]:

tensor([[[5., 5.],

         [5., 5.]],

         [[5., 5.],

          [5., 5.]]])

In [12]: torch.baddbmm(1,m,2,a,b)

Out[12]:

tensor([[[7., 7.],

         [7., 7.]],

         [[7., 7.],

          [7., 7.]]])
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The bmm function allows you perform batch-wise matrix multiplication 

for tensors, as illustrated in Listing 2-58.

Listing 2-58.  Batch-Wise Matrix Multiplication

In [1]: a = torch.ones(2,2,3)

In [2]: a

Out[2]:

tensor([[[1., 1., 1.],

         [1., 1., 1.]],

         [[1., 1., 1.],

          [1., 1., 1.]]])

In [3]: a.shape

Out[3]: torch.Size([2, 2, 3])

In [4]: b = torch.ones(2,3,2)

In [5]: b

Out[5]:

tensor([[[1., 1.],

         [1., 1.],

         [1., 1.]],

        [[1., 1.],

         [1., 1.],

         [1., 1.]]])

In [6]: b.shape

Out[6]: torch.Size([2, 3, 2])
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In [7]: torch.bmm(a,b)

Out[7]:

tensor([[[3., 3.],

         [3., 3.]],

        [[3., 3.],

         [3., 3.]]])

The dot function allows you to compute the dot product of tensors, as 

illustrated in Listing 2-59.

Listing 2-59.  Computing the Dot Product of Tensors

In [1]: a = torch.rand(3)

In [2]: a

Out[2]: tensor([0.3998, 0.6383, 0.1169])

In [3]: b = torch.rand(3)

In [4]: b

Out[4]: tensor([0.9743, 0.2473, 0.7826])

In [5]: torch.dot(a,b)

Out[5]: tensor(0.6389)

The eig function allows you to compute eigenvalues and eigenvectors of 

a given matrix. Listing 2-60 demonstrates computing eigenvalues for a tensor. 

We first compute the eigenvalues and then confirm that the results match. 

Note the use of the mm function, which allows you to multiply two matrices.
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Listing 2-60.  Computing Eigenvalues for a Tensor

In [1]: a = torch.rand(3,3)

In [2]: a

Out[2]:

tensor([[0.1090, 0.2947, 0.5896],

        [0.6438, 0.2429, 0.7332],

        [0.5636, 0.9291, 0.3909]])

In [3]: values, vectors = torch.eig(a, eigenvectors=True)

In [4]: values

Out[4]:

tensor([[ 1.5308,  0.0000],

        [-0.3940,  0.1086],

        [-0.3940, -0.1086]])

In [5]: vectors

Out[5]:

tensor([[-0.4097, -0.6717,  0.0000],

        [-0.5973, -0.0767,  0.3048],

        [-0.6894,  0.6114, -0.2761]])

In [6]: values[0,0] * vectors[:,0].reshape(3,1)

Out[6]:

tensor([[-0.6272],

        [-0.9144],

        [-1.0554]])

In [7]: torch.mm(a, vectors[:,0].reshape(3,1))

Out[7]:

tensor([[-0.6272],

        [-0.9144],

        [-1.0554]])
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The cross function, illustrated in Listing 2-61, allows you to compute 

the cross product of two tensors.

Listing 2-61.  Computing the Cross Product of Two Tensors

In [1]: a = torch.rand(3)

In [2]: b = torch.rand(3)

In [3]: a

Out[3]: tensor([0.3308, 0.2168, 0.0932])

In [4]: b

Out[4]: tensor([0.3471, 0.2871, 0.6141])

In [5]: torch.cross(a,b)

Out[5]: tensor([ 0.1064, -0.1708,  0.0197])

As shown in Listing 2-62, the norm function allows you to compute the 

norm of the given tensor.

Listing 2-62.  Computing the Norm of a Tensor

In [1]: a = torch.ones(4)

In [2]: a

Out[2]: tensor([1., 1., 1., 1.])

In [3]: torch.norm(a,1)

Out[3]: tensor(4.)

In [4]: torch.norm(a,2)

Out[4]: tensor(2.)

In [5]: torch.norm(a,3)

Out[5]: tensor(1.5874)
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In [6]: torch.norm(a,4)

Out[6]: tensor(1.4142)

In [7]: torch.norm(a,5)

Out[7]: tensor(1.3195)

In [8]: torch.norm(a,float('inf'))

Out[8]: tensor(1.)

The renorm function allows you to normalize a vector by dividing it by 

the norm. Listing 2-63 demonstrates normalizing operation on a tensor.

Listing 2-63.  Normalizing a Tensor

In [1]: a = torch.FloatTensor([[1,2,3,4]])

In [2]: a

Out[2]: tensor([[1., 2., 3., 4.]])

In [3]: torch.renorm(a, dim=0, p=2, maxnorm=1)

Out[3]: tensor([[0.1826, 0.3651, 0.5477, 0.7303]])

�Summary
This chapter offered a brief introduction to PyTorch with a focus on 

tensors and tensor operations. Several of the tensor operations discussed 

in this chapter will come handy in the next few chapters. You should 

spend quality time with tensors to improve you PyTorch skills. This will 

be immensely valuable for customizing deep learning networks and 

debugging the flow easily in the advent of an unaccounted error.

Common tensor operations include view (to reshape tensors), size (to 

print the shape/size of the tensor), item (to extract data from a single value 

tensor), squeeze (to reshape tensors), and cat (to concatenate tensors). 

Moreover, PyTorch has two separate packages (torchvision and torchtext) 
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that provide a comprehensive set of functions for handling images 

(computer vision) and text (natural language processing) datasets.  

We will explore the essential utilities from these packages in Chapter 6,  

“Convolutional Neural Networks,” and Chapter 7, “Recurrent Neural 

Networks.”

As a library, PyTorch provides an excellent means for researchers and 

practitioners to develop and train deep learning experiments at scale 

while providing a neat abstraction for several building blocks yet being 

flexible for deep customization. In the next few chapters, while practically 

implementing deep learning models, you will see how PyTorch takes cares 

of so many things in the background and thus equips the user with the 

speed and required agility for accelerated experiments at scale.

The next chapter will focus on the foundations for a basic feed-forward 

network—the first step towards deep learning.
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CHAPTER 3

Feed-Forward Neural 
Networks
Feed-forward neural networks were the earliest implementations within 

deep learning. These networks are called feed-forward because the 

information within them moves only in one direction (forward)—that is, 

from the input nodes (units) towards the output units. In this chapter, we 

will cover some key concepts around feed-forward neural networks that 

serve as a foundation for various topics within deep learning. We will start 

by looking at the structure of a neural network, followed by how they are 

trained and used for making predictions. We will also take a brief look at 

the loss functions that should be used in different settings, the activation 

functions used within a neuron, and the different types of optimizers that 

could be used for training. Finally, we will stitch together each of these 

smaller components into a full-fledged feed-forward neural network with 

PyTorch.

Let’s get started.

�What Is a Neural Network?
At an abstract level, a neural network can be thought of as a function

	 f x y� : � 	

https://doi.org/10.1007/978-1-4842-5364-9_3#DOI
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which takes an input x ∈ Rn and produces an output y ∈ Rm, and the 

behavior of which is parameterized by θ ∈ Rp. So, for instance, fθ could be 

simply y = fθ(x) = θ · x.

Figure 3-1 shows the architecture of a neuron (or a unit within a neural 

network).

�Unit
A unit (also known as node or neuron) is the basic building block of a 

neural network, refer to Figure 3-1 and Figure 3-2.

A unit/node/neuron is a function that takes as input a vector x ∈ Rn 

and produces a scalar. A unit is parameterized by a weight vector w ∈ Rn 

and a bias term denoted by b.

The output of the unit can be described as

	
f x w b
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�
� �
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�
�

�

�
�
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·
	

Figure 3-1.  A unit in feed-forward network
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where f : R → R is referred to as an activation function.

Although a variety of activation functions can be used, as we shall see 

later in the chapter, a non-linear function is generally used.

Figure 3-2 shows a detailed look at the unit.

�The Overall Structure of a Neural Network
Neural networks are constructed using the unit as a basic building block. 

These units are organized as layers, with every layer containing one or more 

units. The last layer is referred to as the output layer. All layers before the 

output layers are referred to as hidden layers. The first layer, usually referred 

as the 0th layer, is the input layer. Each layer connects to the next successive 

layer with weights, which are trained/updated in an iterative way.

Figure 3-2.  A unit in a neural network
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The number of units in a layer is referred to as the width of the layer. 

The width of each layer need not be the same, but the dimension should 

be aligned, as we shall see later in the chapter.

The number of layers is referred to as the depth of the network. This is 

where the notion of “deep” (as in “deep learning”) comes from.

Every layer takes as input the output produced by the previous layer, 

except for the first layer, which consumes the input. The output of the last 

layer is the output of the network and is the prediction generated based on 

the input.

As previously mentioned, a neural network can be seen as a function 

fθ : x → y, which takes as input x ∈ Rn and produces as output y ∈ Rm, and 

the behavior of which is parameterized by θ ∈ Rp. We can now be more 

precise about θ. It is simply a collection of all the weights w for all the units 

in the network.

Designing a neural network involves, among other things, defining the 

overall structure of the network, including the number of layers (depth) 

and the width of these layers. Figure 3-3 shows the overall structure of a 

neural network.
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�Expressing a Neural Network in Vector Form
Let’s take a look at the layers of a neural network and their dimensions in 

a bit more detail (refer to Figure 3-3). If we assume that the dimensionality 

of the input is x ∈ Rn and the first layer has p1 units, then each unit has 

Figure 3-3.  The structure of a neural network
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w ∈ Rn weights associated with it. That is, the weights associated with the 

first layer are a matrix of the form w Rn p
1

1� � . While this is not shown in the 

Figure 3-3, each p1 unit also has a bias term associated with it.

The first layer produces an output o Rp
1

1∈  where o f x w bi
k

n

k k i� �
�

�
�

�

�
�

�
�

1

· .  

Note that the index k corresponds to each of the inputs/weights (going 

from 1…n), and the index i corresponds to the units in the first layer (going 

from 1. . p1).

Let’s now look at the output of first layer in a vectorized notation. By 

vectorized notation, we simply mean linear algebraic operations, such as 

vector matrix multiplications and computation of the activation function 

on a vector producing a vector (rather than scalar to scalar). The output of 

the first layer can be represented as f (x · w1 + b1).

Here, we are treating the input x ∈ Rn to be of dimensionality 1 × n, the 

weight matrix w1 to be of dimensionality n × p1, and the bias term to be 

a vector of dimensionality 1 × p1. Notice, then, that x · w1 + b produces a 

vector of dimensionality 1 × p1, and the function f simply transforms each 

element of the vector to produce o Rp
1

1∈ .

A similar process follows for the second layer that goes from o Rp
1

1∈  

to o Rp
2

2∈ . This can be written in vectorized form as f (o1 · w2 + b2). We 

can also write the entire computation up to layer 2 in vectorized form as 

f ( f (x · w1 + b1) · w2 + b2). Figure 3-4 illustrates a neural network in a vector 

form.
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�Evaluating the Output of a Neural Network
Now that we have looked at the structure of a neural network, let’s look at 

how the output of a neural network can be evaluated against labeled data. 

Refer to Figure 3-5.

Figure 3-4.  A neural network in vector form
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For a single data point, we can compute the output of a neural 

network, which we denote as ŷ. Now we need to compute how good the 

prediction of our neural network ŷ  is as compared to y. Here comes the 

notion of a loss function.

A loss function measures the disagreement between ŷ  and y, which 

we denote by l. A number of loss functions are appropriate for the task at 

hand, say binary classification, multi-class classification, or regression 

which we shall cover later in the chapter (typically derived using maximum 

likelihood, a probabilistic framework that aims to increase the likelihood of 

finding the probability distribution that best explains the data).

A loss function typically computes the disagreement between ŷ  and 

y over a number of data points rather than a single data point. Figure 3-5 

demonstrates the flow for computing the disagreement between ŷ  and y.

Figure 3-5.  Loss/cost function and the computation of cost/loss
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�Training a Neural Network
Let’s now look at how a neural network is trained. Figure 3-6 illustrates 

training a neural network.

Assuming the same notation as earlier, we denote by θ the collection 

of all the weights and bias terms of all the layers of the network. Let us 

assume that θ has been initialized with random values. We denote by fNN 

the overall function representing the neural network.

As previously mentioned, we can take a single data point and 

compute the output of the neural network as ŷ. We can also compute the 

disagreement with the actual output y using the loss function ( ),ˆ  l y y  that 

is, l( fNN(x, θ), y).

Let’s now compute the gradient of this loss function and denote it by 

𝛻l( fNN(x, θ), y).

We can now update θ using steepest descent as 

θs = θs − 1 − α · l( fNN(x, θ), y), where s denotes a single step. Note that we can 

take many such steps over different data points in our training set over and 

over again until we have a reasonably good value for l( fNN(x, θ), y).

Note  For now, we will stay away from the computation of gradients 
of loss functions 𝛻l(fNN(x, θ), y). These can be generated using 
automatic differentiation (covered elsewhere in the book) quite easily 
(even for arbitrary complicated loss functions) and need not be 
derived manually. 
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�Deriving Cost Functions Using Maximum 
Likelihood
As discussed earlier, the cost functions (aka loss functions) help to 

determine the disagreement between the predictions and the actual 

targets with a quantified metric. Based on a specific use case and the 

nature of the target variable, there are several ways to define a loss 

function. A loss function is derived by leveraging a framework (say, 

maximum likelihood) where we maximize or minimize a set of parameters 

for an outcome of interest. The quantified value of disagreement is 

calculated using the loss function. Therefore, it gives the model’s training 

framework a tangible way to estimate the level of disagreement and 

Figure 3-6.  Training a neural network
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thereby update the weight parameters so as to reduce the disagreement 

and thus improve model performance.

We will now look into how various loss functions are derived using 

maximum likelihood. Specifically, we will see how commonly used loss 

functions in deep learning—such as binary cross-entropy, cross-entropy 

(for non-binary outcomes), and squared error—can be derived using the 

maximum likelihood principle.

�Binary Cross-Entropy
Binary cross-entropy, or log loss, measures the performance of 

classification models where the outcomes are binary and is represented in 

the forms of probability value between 0 and 1. The log loss value increases 

as the model performance tarnishes and produces predictions away from 

the desired value. The ideal model would have a binary cross-entropy 

value of 0.

Let’s consider a simple example to understand the concept of binary 

cross entropy and also get a fundamental intuition of maximum likelihood. 

We have some data consisting of D = {(x1, y1), (x2, y2), …(xn, yn)}, where x ∈ Rn 

and y ∈ {0, 1} which is the target of interest also known as the criterion 

variable.

Let’s assume that we have generated a model that predicts the 

probability of y given x. We denote this model by f (x, θ), where θ represents 

the parameters of the model. The idea behind maximum likelihood is to 

find a θ that maximizes P(D| θ). Assuming a Bernoulli distribution, and 

given that each of the examples {(x1, y1), (x2, y2), …(xn, yn)} is independent, 

we have the following expression:

	
P f x f x
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n

i
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We can take a logarithm operation on both sides to arrive at the 

following:

	
log P log f x f x

i

n

i
y

i
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which simplifies to the following expression:

	
log P y log f x y log f x
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Instead of maximizing the RHS, we minimize its negative value as 

follows:

	
P y log f x y log f x
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This leads us to the following binary cross-entropy function:
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Thus, the idea of maximum likelihood enables us to derive the binary 

cross-entropy function, which can be used as a loss function in the context 

of binary classification.

�Cross-Entropy
Building on the idea of binary cross-entropy, let’s now consider deriving 

the cross-entropy loss function to be used in the context of multi-

classification. Let’s assume that y ∈ {0, 1, .. k}, where {0, 1, .. k} are the 

classes. We also denote n1, n2⋯nk to be the observed counts of each of the 

k classes. Observe that 
i

k

in n
�
� �

1

. In this case, too, let us assume that we 
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have somehow generated a model that predicts the probability of y given x. 

We denote this model by f (x, θ), where θ represents the parameters of the 

model. Let us again use the idea behind maximum likelihood, which is to 

find a θ that maximizes P(D| θ). Assuming a multinomial distribution, and 

given that each example {(x1, y1), (x2, y2), …(xn, yn)} is independent, we have 

the following expression:

	
P n
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We can take a logarithm operation on both sides to arrive at the 

following:

	
log P log n log n n n log f xk
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This can be simplified to the following:

	
log P log n log n n n y log f xk
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The terms log n! and log n1 !  · n2 ! ⋯nk! are not parameterized by θ and 

can be safely ignored as we try to find a θ that maximizes P(D| θ). Thus, we 

have the following:

	
log P y log f x
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As before, instead of maximizing the RHS, we minimize its negative 

value, as follows:
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This leads to the following binary cross-entropy function:
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Thus, the idea of maximum likelihood enables us to derive the cross-

entropy function, which can be used as a loss function in the context of 

multi-classification.

�Squared Error
Let us now discuss deriving the squared error to be used in the context of 

regression using maximum likelihood. Let us assume that y ∈ R. Unlike 

the previous cases, where we assumed that we had a model that predicted 

a probability, we will assume that we have a model that predicts the value 

of y. To apply the maximum likelihood idea, we assume that the difference 

between the actual y and the predicted ŷ  has a Gaussian distribution with 

a zero mean and a variance of σ2. Then, it can be shown that minimizing

	
( )2
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leads to the minimization of P(θ) .

�Summary of Loss Functions
We now summarize three key points with respect to loss functions and the 

appropriateness of a particular loss function given the problem at hand.

	 1.	 The binary cross-entropy given by the expression
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is the recommended loss function for binary 

classification. This loss function should typically be 

used when the neural network is designed to predict 

the probability of the outcome. In such cases, the 

output layer has a single unit with a suitable sigmoid 

as the activation function.

	 2.	 The cross-entropy function given by the expression

	
� � �
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n

i iy log f x
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is the recommended loss function for multi-

classification. This loss function should typically be 

used with the neural network designed to predict 

the probability of the outcomes of each of the 

classes. In such cases, the output layer has softmax 

units (one for each class).

	 3.	 The squared loss function given by

	
( )2

1

ˆ
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n
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should be used for regression problems. The output 

layer in this case will have a single unit.

Several other loss functions could be used for classification and 

regression; covering the exhaustive list would be beyond the scope of the 

chapter. A few notable loss functions are Huber loss (regression) and Hinge 

Loss (classification).
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�Types of Activation Functions
We will now look at a number of activation functions commonly used for 

neural networks.

Let’s start by enumerating a few properties of interest for activation 

functions.

•	 In theory, when an activation function is non-linear, 

a two-layer neural network can approximate any 

function (given a sufficient number of units in the 

hidden layer). Therefore, we would always use non-

linear activation functions for solving problems within 

the realm of deep learning.

•	 A function that is continuously differentiable allows for 

gradients to be computed and gradient-based methods 

(optimizers) to be used for finding the parameters that 

minimize our loss function over the data. If a function is 

not continuously differentiable, gradient-based methods 

would make no progress in the training of a network.

•	 With gradient-based methods, we can achieve stable 

performance from a function the range of which is 

finite (as opposed to infinite).

•	 Smooth functions are preferred (empirical evidence) 

and monolithic functions for a single layer lead 

to convex error surfaces. (This is typically not a 

consideration regarding deep learning.)

•	 Also, we prefer activation functions that are mostly 

expected to be symmetric around the origin and 

behave like identity functions near the origin ().

With that, let’s take a brief look at notable options within activation 

functions.
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�Linear Unit
The linear unit is simplest unit that transforms the input as y = w. x + b. As 

the name indicates, the unit does not have a non-linear behavior and is 

typically used to generate the mean of a conditional Gaussian distribution.

Linear units make gradient-based learning a fairly straightforward task 

(Figure 3-7).

�Sigmoid Activation
The sigmoid activation transforms the input as follows:

	
y

e wx b�
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1

1

.
	

The underlying activation function (Figure 3-8) is given by

	
f x

e x� � �
� �

1

1
. 	

Figure 3-7.  Linear unit in a neural network
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Sigmoid units can be used in the output layer in conjunction with binary 

cross-entropy for binary classification problems. The output of this unit can 

model a Bernoulli distribution over the output y conditioned over x.

�Softmax Activation
The softmax layer is typically used only within the output layer for multi-

classification tasks in conjunction with the cross-entropy loss function. 

Refer to Figure 3-9. The softmax layer normalizes outputs of the previous 

layer so that they sum up to one. Typically, the units of the previous layer 

model an unnormalized score of how likely the input is to belong to a 

particular class. The softmax layer normalized this so that the output 

represents the probability for every class.

Figure 3-8.  Sigmoid function
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�Rectified Linear Unit
A rectified linear unit (ReLU) used in conjunction with a linear 

transformation transforms the input as

	 f x wx b� � � �� �max 0, 	

The underlying activation function is f (x) =  max (0, x). Recently, the 

ReLU is more commonly used as a hidden unit. Results show that ReLUs 

lead to large and consistent gradients, which helps gradient-based learning 

(Figure 3-10). Although a ReLU looks like a linear unit, it has a derivative 

function and thus allows for computing the gradient of the losses. In recent 

times, the ReLU has been the most popular choice for hidden network 

activation. In most cases, a ReLU can be a default choice that would lead 

into desirable results within a timely manner.

Figure 3-9.  Softmax layer
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There are a few disadvantages with ReLU, however. When inputs 

approach near zero, the gradient of the function becomes zero and thus 

gets stuck within the training steps with no progress in the training. This is 

commonly known as the dying ReLU problem.

�Hyperbolic Tangent
The Hyperbolic Tangent unit transforms the input (used in conjunction 

with a linear transformation) as follows:

	 y tanh wx b� �� �. 	

The underlying activation function (Figure 3-11) is given by

	 f x tanh x� � � � �. 	

The hyperbolic tangent unit is also commonly used as a hidden unit.

Figure 3-11 covers only a handful of the available options in activation 

functions for deep learning.

Figure 3-10.  Rectified linear unit
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There are many more that can be used for tailored benefits in a 

specified setting or use case. Notable examples include Leaky ReLU, 

Parametric ReLU, and Swish. A good starting point to explore additional 

activation functions is https://pytorch.org/docs/stable/nn.html#non-

linear-activations-weighted-sum-nonlinearity.

�Backpropagation
The most fundamental building block of deep learning is backpropagation, 

short for backward propagation of errors, an algorithm used for training 

neural networks in supervised learning. Though backpropagation was 

invented in 1970s, it was popularized several years later, in 1989, by 

Rumelhart, Hinton, and Williams in their paper “Learning representations 

by back-propagating errors.”

Earlier, we studied loss functions that measure the disagreement 

between the predicted output and the actuals. The weights of the 

network are at first randomly initialized. In order for the network to learn 

(train), the next logical step would be to align the weights such that the 

Figure 3-11.  The tanh activation function
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disagreement would be the least (ideally, zero). This is where we interface 

with backpropagation, an intuitive algorithm that enables the computation 

of gradients of the loss with respect to the weights using chain rule.

In the forward pass, the network computes the prediction for a given 

input sample, and the loss function measures the disagreement between 

the actual target value and network’s prediction. Backpropagation 

computes the gradient of the loss with respect to the weights and biases 

and thus provides us with a fair overall picture of how a small change in 

the weight impacts the overall loss. We would then need to update the 

weights iteratively and with small increments (in the opposite direction of 

the gradient) to reach the local minima. This process is called the gradient 

descent—i.e., reducing the loss function to reach the minimum. The 

network therefore learns (iterative and incremental updates on weights) 

the patterns that can correctly predict for a given input sample with the 

least disagreement.

There are several variants to update the weights in gradient descent 

for neural networks. The next section explores a few of them. In the next 

chapter, we will take a brief look at automatic differentiation that enables 

the idea of backpropagation programmatically.

�Gradient Descent Variants
There are primarily three variants of gradient descent techniques. Each 

of them differs in its approach by the amount of data used to compute the 

gradient of the loss. Depending on the amount of data used, we make a 

trade-off between the accuracy of the parameter update and the time it 

takes to perform an update. Below, we discuss three different variants used 

in training deep learning networks and later (in the following section) we 

study few popular gradient descent optimization algorithms.
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�Batch Gradient Descent

The original gradient descent is referred to as the batch gradient descent 

(BGD) technique. The name is derived from the amount of data used to 

compute the gradient—in this case, the entire batch. The BGD technique 

essentially leverages the entire dataset available to compute the gradient 

of the cost function with respect to the parameters (weights). This results 

in inherently slow and, in most cases, a non-viable option, as we might 

run out of memory to load the entire batch. In most common scenarios, 

we would mostly tend to avoid the BGD approach, sparring small datasets 

(which is a rare phenomenon in deep learning).

�Stochastic Gradient Descent

To overcome the issues from BGD, we have stochastic gradient descent 

(SGD). With SGD, we compute the gradient and update the weights for 

each sample in the dataset. This process results in far less use of memory 

in the deep learning hardware and achieves results faster. However, the 

updates are far more frequent than desired. With more frequent updates to 

the weights, the cost function fluctuates heavily.

SGD, however, results in bigger problems when the goal is to converge 

the updates towards the exact minima. Given the far more frequent 

updates, the possibility of overshooting an update is very high. To 

overcome these tradeoffs, we might need to slowly reduce the learning 

rate over a period of time in order to help the network converge to local or 

global minima.

�Mini-Batch Gradient Descent

Mini-batch gradient descent (MBGD) combines the best of SGD and 

BGD. Instead of using the entire dataset (batch) or just a single sample 

from the dataset to compute the gradient of the cost function with 

respect to the parameters, MBGD leverages a smaller batch, which 
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is greater than 1 but smaller than the entire dataset. Common batch 

sizes are 16/32/64/…1024, etc. A number in the range of powers of 2 is 

recommended (but not necessary), as it suits best from a computation 

perspective.

With MBGD, the updates are less frequent than SGD but more frequent 

than BGD, and leverage a small batch instead of individual samples or the 

entire dataset. In this way, the variance reduces to a greater extent and we 

achieve a better trade-off on the speed.

�Gradient-Based Optimization Techniques
In the following section, we will discuss in brief few popular optimization 

techniques commonly used in deep learning. The details of the math used 

in each technique are beyond the scope of this book.

�Gradient Descent with Momentum

The problems we discussed earlier between SGD and BGD are fairly 

smoothed using MBGD. However, even with the use of MBGD, the 

direction of the update still fluctuates (though less than with SGD but more 

than with MGD). Gradient descent with momentum leverages the past 

gradients to calculate an exponentially weighted average of the gradients 

to further smoothen the parameter updates.

Figure 3-12 illustrates the update process.

Figure 3-12.  Gradient descent with momentum
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The update process can be simplified using the following equations. 

First, we compute an exponentially weighted average of the past gradients 

as νt, where νt = γνt − 1 + η∇ΘJ(Θ) and Θ = Θ - νt.

The γ here is a hyperparameter that takes values between 0 and 1. 

Next, we use this exponentially weighted average in the updates of weights 

instead of the gradients directly.

By leveraging the exponentially weighted averages of the gradients, 

instead of directly using the gradients, the incremental steps are smoother and 

faster and thus overcome the problems with oscillating around the minima.

�RMSprop

RMSprop is an unpublished optimization algorithm proposed by Geoffry 

Hinton in lecture 6 of the online course “Neural Networks for Machine 

Learning” on Coursera. At the core, RMSprop computes the moving 

average of the squared gradients for each weight and divides the gradient 

by the square root of the mean square. This complex process should help 

in decoding the name root mean square prop. Leveraging exponential 

average here helps in giving recent updates more preferences than less 

recent ones.

The RMSprop can be represented as follows:

For each weight w in Θ, we have

	 � �� �t t tg� � �� ���1
2

1 	

and

� � �
��

w t
t

�
� * gt

To update the weight

	 w wt t t� � � �
1

w 	
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where η – is a hyperparameter that defines the initial learning rate, and 

gt is the gradient at time t for a parameter/weight w in Θ. We add ∈ to the 

denominator to avoid divide by zero situations.

�Adam

A simplified name for adaptive moment estimation, Adam is the most 

popular choice recently for optimizers in deep learning. In a simple way, 

Adam combines the best of RMSprop and stochastic gradient descent 

with momentum. From RMSprop, it borrows the idea of using squared 

gradients to scale the learning rate, and it takes the idea of moving 

averages of the gradient instead of directly using the gradient when 

compared to SGD with momentum.

Here, for each weight w in Θ, we have

	 � � � �t t tg� � �� ���1 1 11 	

and

	 s s gt t t� � �� ���� �
2 1 2

2
1 	

which then is used to compute

� � �
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w t
t

ts
� �

* gt

And, finally, the weight is updated as

	 w wt t t� � � �
1

w 	

The preceding three types of optimization algorithms represent just a 

few from the breadth of available options for different types of use cases 

within deep learning. We have definitely not covered the detailed depths 

and math in each of these topics, so readers are highly recommended to 
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explore the preceding optimization techniques, and others, in greater detail. 

AdaGrad and AdaDelta are popular and highly recommended choices.

�Practical Implementation with PyTorch
So far, we have provided a brief overview of the essential topics of a feed-

forward neural network. We will now implement a simple network using 

PyTorch. The idea of introducing all the building blocks necessary for the 

first network makes the process of lazy learning (learning constructs as 

and when necessary) in PyTorch more effective.

Listing 3-1 imports the essential Python packages for the exercise.

Listing 3-1.  Importing the Necessary Python Packages

#Import required libraries

import torch as tch

import torch.nn as nn

import numpy as np

from sklearn.datasets import make_blobs

from matplotlib import pyplot

We will need Torch and its Neural Network module, along with 

NumPy, matplotlib (for visualization) and sklearn (for creating dummy 

datasets). Although there are a million ways to create dummy datasets, we 

will leverage a simple function provided within sklearn.

Note  In this book, we are using a couple of popular Python 
packages relevant to machine learning. Most of these packages 
come installed with an Anaconda distribution. Additional packages, if 
required, will be specifically called out.
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Next, let’s create a dummy dataset for our neural network. Listing 3-2 

illustrates the creation of a toy (dummy) dataset for the exercise.

Listing 3-2.  Creating a Toy Dataset

samples = 5000

#Let's divide the toy dataset into training (80%) and rest for 

validation.

train_split = int(samples*0.8)

#Create a dummy classification dataset

X, y = make_blobs(n_samples=samples, centers=2, n_features=64, 

cluster_std=10, random_state=2020)

y = y.reshape(-1,1)

#Convert the numpy datasets to Torch Tensors

X,y = tch.from_numpy(X),tch.from_numpy(y)

X,y =X.float(),y.float()

#Split the datasets inot train and test(validation)

X_train, x_test = X[:train_split], X[train_split:]

Y_train, y_test = y[:train_split], y[train_split:]

#Print shapes of each dataset

print("X_train.shape:",X_train.shape)

print("x_test.shape:",x_test.shape)

print("Y_train.shape:",Y_train.shape)

print("y_test.shape:",y_test.shape)

print("X.dtype",X.dtype)

print("y.dtype",y.dtype)

Output[]

X_train.shape: torch.Size([4000, 64])

x_test.shape: torch.Size([1000, 64])
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Y_train.shape: torch.Size([4000, 1])

y_test.shape: torch.Size([1000, 1])

X.dtype torch.float32

y.dtype torch.float32

The toy dataset, with 5,000 samples each having 32 features, is divided 

into 80% train and 20% test. Let’s create a class that defines the neural 

network using PyTorch’s NN module. Listing 3-3 defines the creation of a 

neural network for the purpose of this exercise.

Listing 3-3.  Defining a Feed Forward Neural Network

#Define a neural network with 3 hidden layers and 1 output layer

#Hidden Layers will have 64,256 and 1024 neurons

#Output layers will have 1 neuron

class NeuralNetwork(nn.Module):

    def __init__(self):

        super().__init__()

        tch.manual_seed(2020)

        self.fc1 = nn.Linear(64, 256)

        self.relu1 = nn.ReLU()

        self.fc2 = nn.Linear(256, 1024)

        self.relu2 = nn.ReLU()

        self.out = nn.Linear(1024, 1)

        self.final = nn.Sigmoid()

    def forward(self, x):

        op = self.fc1(x)

        op = self.relu1(op)

        op = self.fc2(op)

        op = self.relu2(op)
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        op = self.out(op)

        y = self.final(op)

        return y

The torch.nn module provides the essential means to define and train 

neural networks. It contains all the necessary building blocks for creating 

neural networks of various kinds, sizes, and complexity. We will create 

a class for our neural network by inheriting this module and create an 

initializing method as well as a forward pass method.

The __init__ method creates the different pieces of the network 

and keeps it ready for us every time we create an object with this class. 

Essentially, we used the initialization method to create the hidden layers, 

the output layer, and the activation for each layer. The nn.Linear(64,256) 

function creates a layer with 64 input features and 256 output features. 

The next layer, naturally, will have 256 input features, and so on. The nn.

ReLU() and nn.Sigmoid() functions add the activation function when 

connected to a layer. Each of the individual components created within the 

initialization function is connected in the forward() method.

In the forward method, we connect the individual components of 

the neural network. The first hidden layer, fc1, accepts input data and 

produces 256 outputs for the next layer. The fc1 layer is passed to the 

relu1 activation layer, which then passes the activated output to the next 

layer, fc2, which repeats the same process, to create the final output layer, 

which has the sigmoid activation function (since our toy dataset is crafted 

for binary classification).

On creating an object of the class NeuralNetwork, and calling the 

forward method, we get outputs from the network, which are computed 

by multiplying the input matrix with a randomly initialized weight matrix 

passed through an activation function and repeated for the number of 

hidden layers until the final output layer. At first, the network would 

obviously generate junk outputs—i.e., predictions (which would add no 

value to our classification problem, at least not now).

Chapter 3  Feed-Forward Neural Networks



123

To get more accurate predictions for our given problem, we would 

need to train the network—i.e., to backpropagate the loss and update the 

weights with respect to the loss function. Fortunately, PyTorch provides 

these essential building blocks in an extremely easy to use and intuitive 

way. Listing 3-4, illustrates defining the loss, optimizer, and training loop 

for the neural network.

Listing 3-4.  Defining the Loss, Optimizer, and Training Function for 

the Neural Network

#Define function for training a network

def train_network(model,optimizer,loss_function \

                  ,num_epochs,batch_size,X_train,Y_train):

    #Explicitly start model training

    model.train()

    loss_across_epochs = []

    for epoch in range(num_epochs):

        train_loss= 0.0

        for i in range(0,X_train.shape[0],batch_size):

            #Extract train batch from X and Y

            �input_data = X_train[i:min(X_train.

shape[0],i+batch_size)]

            �labels = Y_train[i:min(X_train.shape[0],i+batch_

size)]

            �#set the gradients to zero before starting to do 

backpropragation

            optimizer.zero_grad()

            #Forward pass

            output_data  = model(input_data)
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            #Caculate loss

            loss = loss_function(output_data, labels)

            #Backpropogate

            loss.backward()

            #Update weights

            optimizer.step()

            train_loss += loss.item() * batch_size

        �print("Epoch: {} - Loss:{:.4f}".format(epoch+1,train_

loss ))

        loss_across_epochs.extend([train_loss])

    #Predict

    y_test_pred = model(x_test)

    a =np.where(y_test_pred>0.5,1,0)

    return(loss_across_epochs)

###------------END OF FUNCTION--------------

#Create an object of the Neural Network class

model = NeuralNetwork()

#Define loss function

loss_function = nn.BCELoss()  #Binary Crosss Entropy Loss

#Define Optimizer

adam_optimizer = tch.optim.Adam(model.parameters(),lr= 0.001)

#Define epochs and batch size

num_epochs = 10

batch_size=16

#Calling the function for training and pass model, optimizer, 

loss and related paramters
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adam_loss = train_network(model,adam_optimizer \

                             �,loss_function,num_epochs,batch_

size,X_train,Y_train)

Before we get into the specifics of Listing 3-4, let’s look at the individual 

components we defined leveraging PyTorch’s readily provided building 

blocks. We need to define a loss function that will be used to measure 

the difference between our predictions and actual labels. PyTorch 

provides a comprehensive list of loss functions for different outcomes. 

These loss functions are available under torch.nn.*. Examples include 

MSELoss (mean squared error loss), CrossEntropyLoss (for multi-class 

classification), and BCELoss (binary cross-entropy loss), which is used 

for binary classification. For our use case, we will leverage binary cross-

entropy loss.

This is defined as loss_function = torch.nn.BCELoss().

Next, we define an optimizer for our network. Earlier in the chapter, 

we explored the SGD, Adam, and RMSProp optimizers. Pytorch provides 

a comprehensive list of optimizers that can be used for building various 

kinds of neural networks. All optimizers are organized under torch.

optim.* (e.g., torch.optim.SGD, for SGD optimizer). For our use case, 

we are using the Adam optimizer (the most recommended optimizer for 

the majority of use cases). While defining the optimizer, we also need 

to define the parameters for which the gradient needs to be computed 

during backpropagation. For the neural network, this list would be all 

the weights in the feed-forward network. We can easily denote the entire 

list of model weights to the optimizer by using model.parameters() 

within the definition of the optimizer. We can then additionally define 

hyperparameters for the selected optimizer. By default, PyTorch provides 

fairly good values for all necessary hyperparameters. However, we can 

further override them to tailor optimizers for our use case.

adam_optimizer = tch.optim.Adam(model.parameters(),lr= 0.001)
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Lastly, we need to define the batch size and the number of epochs 

required to train our model. Batch size refers to the number of samples 

within a batch in a mini-batch update. One forward and backward pass 

for all the batches that cover all samples once is called an epoch. Finally, 

we pass all these constructs to our function to train our model. Let’s take a 

detailed look at the constructs within the function.

In our training function, we define a structure to train our network with 

the provided optimizer, loss function, model object, and training data over 

batches for the defined number of epochs. First, we initiate our model for 

training mode with model.train(). Setting the model object to train mode 

explicitly is essential; the same would be essential while leveraging the 

model for evaluation—i.e., explicitly setting the model to evaluate mode 

with model.eval(). This ensures that the model is aware of the time when 

it is expected to update the parameters and when to not. In the preceding 

example, we did not add the evaluation loop because it is a tiny toy dataset. 

In later examples with large datasets, however, we will use a separate 

function for evaluation.

We will train the network over mini-batches. The for loop divides the 

training data into batches with our defined size. The training data, along 

with the corresponding labels, is extracted for a batch using the following 

code:

input_data = X_train[i:min(X_train.shape[0],i+batch_size)]

labels = Y_train[i:min(X_train.shape[0],i+batch_size)]

We then need to set the gradients to zero before starting to do 

backpropagation using optimizer.zero_grad(). Missing this step will 

accumulate the gradients on subsequent backward passes and lead to 

undesirable effects. This behavior is by design in PyTorch. Then, we 

calculate the forward pass using output_data = model(input_data). 

The forward pass is the execution of the forward() function in our class 

definition. It connects the different layers we defined for the network, 

which finally outputs the prediction for each sample. Once we have the 
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predictions, we can calculate its deviation from the actual label using the 

loss function—i.e., loss = loss_function(output_data, labels).

To backpropagate our loss, PyTorch provides a built-in module that 

does the heavy lifting for computing gradients for the loss with respect to 

the weights. We simply call the loss.backward() method, and the entire 

backpropagation is taken care of. Chapter 4, “Automatic Differentiation 

in Deep Learning,” explores the Autograd module, which takes care 

of backpropagation in PyTorch, in more detail. Once the gradients are 

computed, it is time to update our model weights. This is done in the step 

optimizer.step(). The optimizer step is aware of the parameters that 

need to be updated with the gradient, as we provided them while defining 

our optimizer. Calling the optimizer.step() function updates the weights 

for the network, automatically taking into account the hyperparameters 

defined within the optimizer—in our case, the learning rate.

We repeat this process over batches for the entire training sample. The 

training process is repeated for multiple epochs, and with each iteration 

we expect the losses to reduce and the weights to align in order to achieve 

better accuracy for predictions.

Listing 3-5 uses different optimizers to illustrate the training process 

for the preceding neural network. Since the network was trained for a toy 

dataset, we will plot the total losses after each epoch for different optimizers, 

instead of plotting the validation accuracy. We can study the outputs i.e. loss 

across epochs for each optimization variant showcased in Figure 3-13.

Listing 3-5.  Training Model with Various Optimizers

#Define loss function

loss_function = nn.BCELoss()  #Binary Crosss Entropy Loss

num_epochs = 10

batch_size=16

#Define a model object from the class defined earlier

model = NeuralNetwork()
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#Train network using RMSProp optimizer

rmsprp_optimizer = tch.optim.RMSprop(model.parameters()

, lr=0.01, alpha=0.9

, eps=1e-08, weight_decay=0.1

, momentum=0.1, centered=True)

print("RMSProp...")

rmsprop_loss = train_network(model,rmsprp_optimizer,loss_

function

,num_epochs,batch_size,X_train,Y_train)

#Train network using Adam optimizer

model = NeuralNetwork()

adam_optimizer = tch.optim.Adam(model.parameters(),lr= 0.001)

print("Adam...")

adam_loss = train_network(model,adam_optimizer,loss_function

,num_epochs,batch_size,X_train,Y_train)

#Train network using SGD optimizer

model = NeuralNetwork()

sgd_optimizer = tch.optim.SGD(model.parameters(), lr=0.01, 

momentum=0.9)

print("SGD...")

sgd_loss = train_network(model,sgd_optimizer,loss_function

,num_epochs,batch_size,X_train,Y_train)

#Plot the losses for each optimizer across epochs

import matplotlib.pyplot as plt

%matplotlib inline

epochs = range(0,10)
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ax = plt.subplot(111)

ax.plot(adam_loss,label="ADAM")

ax.plot(sgd_loss,label="SGD")

ax.plot(rmsprop_loss,label="RMSProp")

ax.legend()

plt.xlabel("Epochs")

plt.ylabel("Overall Loss")

plt.title("Loss across epochs for different optimizers")

plt.show()

Output[]

RMSProp...

Epoch: 1 - Loss:5794.6734

Epoch: 2 - Loss:1680.3092

Epoch: 3 - Loss:1169.5457

Epoch: 4 - Loss:1518.7088

Epoch: 5 - Loss:1727.5753

Epoch: 6 - Loss:661.7122

Epoch: 7 - Loss:532.6023

Epoch: 8 - Loss:2613.1597

Epoch: 9 - Loss:283.5713

Epoch: 10 - Loss:1058.1581

Adam...

Epoch: 1 - Loss:106.7566

Epoch: 2 - Loss:11.5689

Epoch: 3 - Loss:7.8169

Epoch: 4 - Loss:0.2327

Epoch: 5 - Loss:0.0313

Epoch: 6 - Loss:0.0034

Epoch: 7 - Loss:0.0019
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Epoch: 8 - Loss:0.0012

Epoch: 9 - Loss:0.0009

Epoch: 10 - Loss:0.0007

SGD...

Epoch: 1 - Loss:801.0526

Epoch: 2 - Loss:131.7263

Epoch: 3 - Loss:296.2784

Epoch: 4 - Loss:240.0572

Epoch: 5 - Loss:248.2811

Epoch: 6 - Loss:248.2784

Epoch: 7 - Loss:248.2759

Epoch: 8 - Loss:248.2733

Epoch: 9 - Loss:248.2708

Epoch: 10 - Loss:248.2684

Figure 3-13.  Distribution loss across epochs for the network
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�Summary
The content in this chapter about feed-forward neural networks will serve 

as the conceptual foundation for the remainder of the book. The key 

concepts we covered were the overall structure of the neural network, the 

input, hidden, and output layers, and cost functions and their basis on the 

principle of maximum likelihood. We also explored PyTorch as a means 

for practically implementing a neural network. In the last exercise, we 

experimented with training the network with various optimizers over a toy 

dataset in order to study how the losses reduced over epochs.

In the next chapter, we will explore automatic differentiation in deep 

learning.
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CHAPTER 4

Automatic 
Differentiation 
in Deep Learning
While exploring stochastic gradient descent in Chapter 3, we treated the 

computation of gradients of the loss function 𝛻xL(x) as a black box. In 

this chapter, we open the black box and cover the theory and practice of 

automatic differentiation, as well as explore PyTorch’s Autograd module 

that implements the same. Automatic differentiation is a mature method 

that allows for the effortless and efficient computation of gradients of 

arbitrarily complicated loss functions. This is critical when it comes to 

minimizing loss functions of interest; at the heart of building any deep 

learning model lies an optimization problem that is invariably solved 

using stochastic gradient descent, which, in turn, requires one to compute 

gradients.

Automatic differentiation is distinct from both numerical and symbolic 

differentiation. We start by covering enough about both of these so that 

distinction becomes clear. For the purposes of illustration, assume that 

our function of interest is f : R → R and we intend to find the derivative of f, 

denoted by f ′(x).

https://doi.org/10.1007/978-1-4842-5364-9_4#DOI
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�Numerical Differentiation
Numerical differentiation, in its basic form, follows from the definition of 

derivative/gradient. It used to estimate the derivative of a mathematical 

function. A derivate of y with respect to x more specifically defines the rate 

of change of y with respect to x. A simple way would be to compute the 

slope of the function through the line x, f(x) and x+h, f(x+h).

So, given that

	
�� � � �

�� � � � �f x df
dx

f x x f x
x

�
� 	

we can compute the f ′(x) using the forward difference method as

	
�� � � � � � �� � � � �

�f x D h
f x h f x

h 	

setting a suitably small value for h. Similarly, we can compute f ′(x) 

using the backward difference method as

	
�� � � � � � � � � �� �f x D h

f x f x h
h

_ 	

again, by setting a suitably small value for h.

A more symmetric form is the central difference approach, which 

computes f ′ as

	
�� � � � � � �� � � �� �f x D h

f x h f x h
h0

2 	

Extrapolation is a process of using known values to project a value 

outside of the intended existing known range. Richardson extrapolation 

Chapter 4  Automatic Differentiation in Deep Learning



135

is a technique that helps in achieving for estimating very high order 

integration using only a few series of values.

	
�� � � � � � � �f x

D h D h4 2

3

0 0

	

The approximation errors for forward and backward differences are 

in the order of h, that is, O(h)—whereas those for central difference and 

Richardson extrapolation are O(h2) and O(h4), respectively.

The key problems with numerical differentiation are the 

computational costs, which grow with the number of parameters in 

the loss function, the truncation errors, and the round off errors. The 

truncation error is the inaccuracy we have in the computation of f ′(x) 

due to h not being zero. The round off error is inherent to using floating-

point numbers and floating-point arithmetic (as opposed to using infinite 

precision numbers, which would be prohibitively expensive).

Numerical differentiation is thus not a feasible approach for computing 

gradients while building deep learning models. The only place where 

numerical differentiation comes in handy is quickly checking whether 

gradients are being computed correctly. This is highly recommended 

when you have computed gradients manually or with a new/unknown 

automatic differentiation library. Ideally, this check should be put in as an 

automated check/assertion before starting SGD.

Note N umerical differentiation is implemented in a Python package 
called Scipy. We do not cover it here, as it is not directly relevant to 
deep learning.
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�Symbolic Differentiation
Symbolic differentiation in its basic form is a set of symbol rewriting rules 

applied to the loss function to arrive at the derivatives/gradients. Consider 

two of such simple rules

	

d
dx

f x g x d
dx

f x d
dx

g x� � � � �� � � � � � � � 	

and

	

d
dx

x nxn n� �� �1

	

Given a function such as f (x) = 2x3 + x2, we can successively apply the 

the symbol writing rules to first arrive at

	
�� � � � � � � �f x d

dx
x d

dx
x2

3 2

	

by applying the first rewriting rule, and

	
�� � � �f x x x6 2

2 	

by applying the second rule.

Symbolic differentiation is thus automating what we do when we 

derive gradients manually. Of course, the number of such rules can 

be large, and more sophisticated algorithms can be leveraged to make 

this symbol rewriting more efficient. In its essence, however, symbolic 

differentiation is simply the application of a set of symbol rewriting 

rules. The key advantage of symbolic differentiation is that it generates a 

legible mathematical expression for the derivative/gradient that can be 

understood and analyzed.

The key problem with symbolic differentiation is that it is limited to 

the symbolic differentiation rules already defined, which can cause us 

to hit roadblocks when trying to minimize complicated loss functions. 
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An example of this is when your loss function involves an if-else clause 

or a for/while loop. In a sense, symbolic differentiation is differentiating 

a (closed form) mathematical expression; it is not differentiating a given 

computational procedure.

Another problem with symbolic differentiation is that a naïve 

application of symbol rewriting rules, in some cases, can lead to an 

explosion of symbolic terms (expression swell) and make the process 

computationally unfeasible. Typically, a fair amount of compute effort 

is required to simplify such expressions and produce a closed form 

expression of the derivative.

Note  Symbolic differentiation is implemented in a Python package 
called SymPy. We do not cover it here, as it is not directly relevant to 
deep learning.

�Automatic Differentiation Fundamentals
The first key intuition behind automatic differentiation is that all functions 

of interest (which we intend to differentiate) can be expressed as 

compositions of elementary functions for which corresponding derivative 

functions are known. Composite functions thus can be differentiated by 

applying the chain rule for derivatives. This intuition is also at the basis of 

symbolic differentiation.

The second key intuition behind automatic differentiation is that 

rather than storing and manipulating intermediate symbolic forms of 

derivatives of primitive functions, we can simply evaluate them (for a 

specific set of input values) and thus address the issue of expression swell. 

Because intermediate symbolic forms are being evaluated, we do not have 

the burden of simplifying the expression. Note that this prevents us from 
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getting a closed form mathematical expression of the derivate like the one 

symbolic differentiation gives us; what we get via automatic differentiation 

is the evaluation of the derivative for a given set of values.

The third key intuition behind automatic differentiation is that because 

we are evaluating derivatives of primitive forms, we can deal with arbitrary 

computational procedures and not just closed form mathematical 

expressions. That is, our function can contain if-else statements, for loops, 

or even recursion. The way automatic differentiation deals with any 

computational procedure is to treat a single evaluation of the procedure 

(for a given set of inputs) as a finite list of elementary function evaluations 

over the input variables to produce one or more output variables. Although 

there might be control flow statements (if-else statements, for loops, etc.), 

ultimately, there is a specific list of function evaluations that transform the 

given input to the output. Such a list/evaluation trace is referred to as a 

Wengert list.

To understand how automatic differentiation specifically works for a 

deep learning use case, let’s take a simple function, which we will compute 

manually using chain rule, and also look at the PyTorch equivalent of 

implementing the same.

In deep learning networks, the entire flow is represented using a 

computational graph, which is a directed graph where nodes represent 

mathematical operations. This provide an easy to evaluate mathematical 

expression. Computational graphs can be translated into a data structure 

to programmatically approach the problem using computer programming 

languages, thereby making solving larger problems more intuitive.

We will use a relatively small and easy to compute function to work 

through our example.

Assume that f(x, y, z) = (x + y)*z and that we have values for the three 

variables as x=1, y =-2 and z =3.

We can represent this function using a computational graph, as shown 

in Figure 4-1.
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Along with the input variables (x, y, and z), we will see the variable a, 

which is an intermediate variable that stores the computed value of (x + y), 

and the variable f, which stores the final value of (x + y)z—i.e., a*z.

In the forward pass, we will substitute the values and arrive at the final 

value as

x = 1, y =-2, z= 3

Then,

(x + y )z = (1 - 2)3 = -3

Therefore,

f = -3

We can visualize this using the computational graph shown in 

Figure 4-2.

Figure 4-1.  A computational graph
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Now, with automatic differentiation, we would want to find the 

gradients of f with regard to the input variables (x, y, and z) represented as 

∂
∂
f
x

,
∂
∂
f
y

 and 
∂
∂
f
z

.

In the feed-forward network, essentially, we find the gradients of the 

loss function with respect to the weights. To solve this, we can use the 

chain rule.

Let’s find the partial derivatives for the above equation.

We know that a = (x + y), z = a * x and thus f = az.

Therefore,

�
�

�
� � �
�

�
f
z

az
z

a  = (x + y) = (1 – 2) = -1

and

	

�
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If we go one step further, we can find the partial derivatives of a with 

regard to x and y.

�
�
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�
�

a
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x y
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1, and 
�
�
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�
�

a
y

x y
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Figure 4-2.  A computational graph with computed values
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Now, coming to our end objective, to find the gradients of  f with regard 

to x, y and z. We already have computed the required gradient with regard 

to z. For x and y, we can leverage the previously computed values in chain 

rule as
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�
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f
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We now have computed all the values required.

�
�

�
�
�

f
x

f
y

3,
 = 3 and 

∂
∂
f
z

 = -1

Essentially, what a network would infer is that x and y positively 

influence the outcome, whereas z negatively influences it (Figure 4-3). 

This information is useful to reduce the loss and updates the weights of the 

network incrementally to reach the minima.

Figure 4-3.  A computational graph with partial derivatives
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�Implementing Automatic Differentiation
Let’s now consider how automatic differentiation is implemented within 

PyTorch. The preceding example was very simple; things would be really 

complicated as we explore the approach on paper for large functions 

(i.e., deep learning functions). In most common networks, the number 

of parameters that would be involved is very high, making manually 

programming the computation of gradients a herculean task.

PyTorch provides the Autograd package, which essentially simplifies 

the entire process for us. Recall the loss.backward() function that we 

leveraged in Chapter 3 for the toy neural network. The network computes 

all the necessary gradients for the loss with respect to the weights. Let’s 

explore this further.

�What Is Autograd?

The Autograd package within PyTorch provides automatic differentiation 

for all operations on tensors. It performs the necessary computations 

within backpropagation for our neural network. When the backward() 

function is called, the module computes all the backpropagation gradients 

automatically. We can also access individual gradients through a variable’s 

grad attribute. 

The Autograd module provides ready to use tools (functions/classes) 

for implementing automatic differentiation of arbitrary scalar valued 

functions. To enable gradients to be computed for a variable, we need only 

to set the value as True for the keyword requires_grad.

Let’s replicate the same example we used to manually implement 

automatic differentiation but using PyTorch (Listing 4-1).
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Listing 4-1.  Implementing Automatic Differentition (Autograd) in 

PyTorch

#Import required libraries

import torch

#Define ensors

x = torch.Tensor([1])

y = torch.Tensor([-2])

z= torch.Tensor([3])

print("Default value for requires_grad for x:",x.requires_grad)

#Set the keyword requires_grad as True (default is False)

x.requires_grad=True

y.requires_grad=True

z.requires_grad=True

print("Updated  value for requires_grad for x:",x.requires_

grad)

#Compute a

a = x + y

#Finally define the function f

f = z * a

print("Final value for Function f = ",f)

#Compute gradients

f.backward()

#Print the gradient value

print("Gradient value for x:",x.grad)

print("Gradient value for y:",y.grad)

print("Gradient value for z:",z.grad)
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Output[]

Default value for requires_grad for x: False

Updated value for requires_grad for x: True

Final value for Function f = tensor([-3.], grad_

fn=<MulBackward0>)

Gradient value for x: tensor([3.])

Gradient value for y: tensor([3.])

Gradient value for z: tensor([-1.])

The gradient values here match exactly with what we computed 

manually earlier.

In the preceding example, we first created a tensor and then assigned 

the keyword for requires_grad as True. We can also combine this along 

with our definition.

x = torch.autograd.Variable(torch.Tensor([1]),requires_

grad=True)

While we define a network in PyTorch, a lot of these details are taken 

care of. When we define a network layer, with nn.Linear(64, 256) (refer 

to the Chapter 3 example), PyTorch creates the weight and bias tensor with 

the necessary values (setting requires_grad as True). The input tensors 

did not need the gradients; hence, we never set them in our example and 

used the default (i.e., False).

�Summary
This chapter covered the basics of automatic differentiation. 

Backpropagation is a special case of automatic differentiation used 

in training deep neural networks. In modern deep learning literature, 

automatic differentiation is analogous to backpropagation, as it a more 
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generalized term. The key takeaway from this chapter is that automatic 

differentiation enables the computation of gradients for arbitrarily 

complex loss functions and is one of the key enabling technologies 

for deep learning. You should internalize the concepts of automatic 

differentiation and how it differs from both symbolic and numerical 

differentiation.

In the next chapter, we will study some additional topics related to 

deep learning in more detail, including performance metrics and model 

evaluation, analyzing overfitting and underfitting, regularization, and 

hyperparameter tuning. Finally, we will combine all the foundational bits 

about deep learning we’ve covered so far into a practical example that 

implements feed-forward neural networks for a real-world dataset.
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CHAPTER 5

Training Deep 
Leaning Models
So far, we have leveraged toy datasets to provide an overview of the 

earliest implementations of deep learning models. In this chapter, we 

will explore a few additional important topics around deep learning and 

implement them in a practical example. We will delve into the specifics of 

model performance and study the details of overfitting and underfitting, 

hyperparameter tuning, and regularization. Finally, we will combine what 

we’ve discussed so far with a real dataset to illustrate a practical example 

using PyTorch.

�Performance Metrics
In Chapter 3, when we designed our toy neural network, we defined loss 

functions that would measure the disagreement between the prediction 

and the actual label. Let’s explore this topic in a more meaningful way. 

Based on the type of target variable (continuous or discrete), we would 

need different types of performance metrics. The upcoming sections 

discuss the metrics within each category.

https://doi.org/10.1007/978-1-4842-5364-9_5#DOI
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�Classification Metrics
The model development process typically starts by formulating a clear 

problem definition. This basically involves defining the input and the 

output of the model and the impact (usefulness) such a model can deliver. 

An example of such a problem definition is the categorization of product 

images into product categories—the input to such a model being product 

images and the output being product categories. Such a model might aid 

the automated categorization of products in an ecommerce or online 

marketplace setting.

Having defined the problem definition, the next task is to define the 

performance metrics. The key purpose of performance metrics is to tell 

us how well our model is doing. A simple metric of performance may 

be accuracy (or, equivalently, the error), which simply measures the 

disagreements between the expected output and the output produced by 

the model. Accuracy, however, can be a poor measure of performance. 

The two main reasons are class imbalance and unequal misclassification 

costs. Let’s look at the class imbalance problem with an example. As a sub-

problem of the problem in our previous example of product classification, 

consider the case of distinguishing between mobile phones and their 

accessories. The number of examples for classes of mobile phones is a lot 

smaller that the classes of mobile phone accessories. If, for example, 95% 

of the examples are mobile phone accessories and 5% are mobile phones, 

an accuracy of 95% can be simply acquired by predicting the majority 

class. Thus, accuracy is a poor choice of a metric in this example.

Let’s now understand the problem of unequal misclassification 

costs, again by considering an example related to the problem of product 

classification. Consider the error associated with categorizing food 

products that are allergen-free (not containing the eight top allergens—

namely, milk, eggs, fish, crustacean shellfish, tree nuts, peanuts, wheat, 

and soybean) versus the rest (non-allergen-free). From a buyer’s point 

of view, as well as a business point of view, the error associated with 
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categorizing a non-allergen-free product as an allergen-free product is 

significantly more as compared to categorizing an allergen-free product 

as a non-allergen-free product. Accuracy does not capture this and hence 

would be a poor choice in this case.

An alternative set of metrics is precision and recall, which measure the 

fraction of predictions in the predicted class that were correctly recovered, 

and the fraction of the predicted class that were reported, respectively (see 

Figure 5-1). Together, precision and recall are robust with respect to class 

imbalance.

Figure 5-1.  Precision and recall
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Precision and recall are often visualized using a PR curve, which 

plots precision on the Y axis and recall on the X axis (see Figure 5-2). 

Different values of precision and recall can be obtained by varying the 

decision threshold on the score or the probability the model produces—for 

instance, 0 implying class A, and 1 implying class B, with a higher value on 

one side indicating a particular class. This curve can be used to trade off 

precision for recall by varying the threshold.

The F-score, defined as 
2pr
p r+

, where p denotes precision and r denotes 

recall, can be used to summarize the PR curve.

The receiver operating characteristic (ROC) curve is useful in cases 

of class imbalance and unequal misclassification costs. In this setting, 

examples are said to belong to two classes: positive and negative.

Figure 5-2.  PR curve
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The true positive rate measures the fraction of true positives with respect 

to the actual positives, and the true negative rate measures the fraction of 

true negatives with respect to the actual negatives (see Figure 5-3). The 

ROC curve plots the true positive rate on the X axis and the false positive 

rate on the Y axis (see Figure 5-4). The area under the curve (AUC) is used to 

summarize the ROC curve.

In many cases, standard metrics like accuracy, precision, recall, etc. 

do not allow us to truly capture model performance for the business 

use case at hand. In such cases, metrics appropriate to the business use 

case need to be formulated, keeping in mind the nature of the problem, 

the class imbalance, and the misclassification costs. For instance, in our 

running example of product categorization, we may choose to not use 

predictions with low confidence and have them categorized manually. 

There is a cost associated with having examples manually categorized, 

and there is a different cost associated with showing wrong products in the 

wrong category on an ecommerce site. The cost of misclassifying a popular 

product is also different (typically higher) from the cost of misclassifying a 

rarely bought product. In such a case, we might choose to use only the high 

confidence predictions from the model. A possible choice of metrics to use 

would be the number of examples misclassified (with high confidence) 

and the coverage (the number of examples covered with high confidence). 

One may also factor in the misclassification cost in this setting by taking a 

weighted average of the two. (Appropriate weights may be chosen based 

on the misclassification costs.)

Metric definition is a critical step of the model-building process in an 

industry setting. Practitioners should deeply analyze the business domain, 

to understand the misclassification costs, and the data, to understand the 

class distributions, and design performance metrics accordingly. A badly 

defined metric can lead a project down an incorrect path.
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Figure 5-3.  True Positive and False Positive Rates
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�Regression Metrics
Performance metrics for regression are fairly straightforward when compared 

to metrics for classification. The most common metric that can be universally 

applied to most use cases is the mean squared error (MSE). Depending on 

the use case, a few other metrics could be used for more favorable outcomes. 

Consider the problem of predicting the monthly sales for a given store, where 

store sales could range from $5,000 to $50,000 across months.

The following sections explore a few popular choices.

�Mean Squared Error

We have already explored the mean squared error (MSE) in Chapter 3,  

“Feed-Forward Neural Networks.” As the name suggests, the MSE is 

the mean of the squared differences between the actual values and the 

Figure 5-4.  ROC Curve
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predicted values. The end result is a positive number, as we take a square 

of the disagreement. Essentially, the square operation is valuable because 

larger differences are penalized more. In use cases where you wouldn’t 

want the model to penalize a large difference more heavily, MSE would not 

be the ideal choice. The lower the MSE for a given model, the better the 

performance for the model.

Mathematically, we can define MSE as
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�Mean Absolute Error

The mean absolute error (MAE) computes the mean of the absolute 

difference between predictions and target. The outcome, which is always 

positive, is a much more interpretable performance metric than MSE 

for regression use cases. The lower the MAE for a model the better the 

performance.

Mathematically, we can define MAE as
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�Mean Absolute Percentage Error

The mean absolute percentage error (MAPE) is the percentage equivalent 

of the MAE. Given its relative nature, it is by far the most interpretable 

performance metric for regression. The lower the MAPE for a model, the 

better the performance for the model.
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Mathematically, we can define MAPE as
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While being highly interpretable, MAPE suffers when dealing with 

small differences. The percentage differences of small deviations often 

result in a large MAPE, which could lead to misleading results. Suppose, 

for example, that we are predicting the number of days sales will be 

observed for a given store and the target values range from 0 to 60. When 

the actual value is 2 and the predicted value is 6, the MAPE is 400%, 

whereas when the actual value is 10 and the predicted value is 12, the 

MAPE is 20%.

�Data Procurement
Data procurement is the process of collecting data for building a model 

according to a problem statement. Data procurement can involve 

collecting old (already generated) data from production systems, collecting 

live data from production systems, and, in many cases, collecting data 

labeled by human operators (via crowdsourcing or internal operations 

teams). In our running example of product categorization, product titles, 

images, descriptions, etc. would need to be collected from a company 

catalogue, and labeled data could be generated using crowdsourcing. We 

might also want to collect click data and sales to determine the popular 

products. (Misclassification in these cases would be costly.)

Data procurement typically happens in conjunction with the process of 

defining the problem statement and success metrics. It is imperative that a 

practitioner play an active role in the data procurement process. Typically, 

in an industry setting, data procurement is a fairly time-consuming and 

painful process. Subtle errors in data procurement can derail a project at a 

later stage.
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�Splitting Data for Training, Validation, 
and Testing
Once the data for building the model has been procured, it needs to 

be split into data for training, parameter tuning, and go-live testing. 

Conceptually, the available data is to be used for three distinct purposes. 

The first purpose is to train the model—that is, the model will try to fit this 

data. The second purpose is to determine whether the model is overfitting 

the data; this dataset is called the validation set. This data will not be used 

for training but will drive the decision-making on hyperparameter tuning, 

regularization techniques, etc. (We will discuss these topics in greater 

detail later in this chapter.) The third purpose of the data is to determine 

whether the model is really good enough to take to production/go-live 

(referred to as the test set).

The first key concept to internalize is that data cannot be shared for 

these three purposes; a distinct portion of the data is required for each 

purpose. If a certain portion of the data has been used to train the model, 

it cannot be used to tune the hyperparameters of the model or serve as the 

final performance gate (production/go-live). Similarly, if a certain portion 

of the data has been used for tuning parameters, it cannot serve as the test 

data for production/go-live. Thus, a practitioner needs to split data into 

three parts: training, parameter tuning and go-live. While the idea that 

training data should be distinct from data used for parameter tuning is 

intuitive, the reasoning behind having a distinct go-live set is not. The key 

point to internalize is that if the model has seen the data or the modeler 

has seen the data, then this data has fundamentally driven some decision-

making around the model and cannot be used for final go-live testing if we 

need the test to be truly blind. Truly blind implies never looking at the data 

(and the labels) or never using it for making any decision that goes into 

building the model. One must not tune the model any further by looking at 

the results on the go-live testing set.
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The second key point to internalize is that each of the three sets—

training, hyperparameter tuning, and go-live testing—need to be a 

true representative of the underlying population of data. Splitting the 

datasets should take this into consideration. For example, the distribution 

of examples across the classes should be the same as the underlying 

population. If the data is not a true representation (that is, if the data 

is biased in any way), then the performance of the model will not be 

achieved once the model goes to production.

The third key point to internalize is that more data is always better 

for any of the three purposes. Because the datasets cannot overlap and 

the overall dataset is limited, a practitioner needs to carefully choose the 

fraction of the data used of each purpose. A 50/25/25 split or a 60/20/20 

split across training, validation, and testing are reasonable choices.

�Establishing the Achievable Limit 
on the Error Rate
Having defined the problem and performance metrics, and having 

procured and split the data into a training, parameter tuning, and go-

live test set, the next step is to establish the achievable limit on the error 

rate. Conceptually, this is the error rate one can hope to achieve given an 

infinite supply of data and is referred to as the Bayes error. Establishing the 

limit on the error rate in AI tasks is typically done via a proxy-like human 

labelling or variations on the theme appropriate to the business use case. 

Variations may include using an expert on the subject to label the data, a 

panel of human beings, or a panel of experts. Establishing this limit is quite 

valuable and well worth the expenditure of human/expert help. First, it 

establishes the best possible results that can be achieved, which, in certain 

cases, might not be good enough to satisfy the business use case (in which 

case the problem formulation needs to be rethought). Second, it tells us 

how far our current model is from the best achievable results.
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�Establishing the Baseline with Standard 
Choices
The best place to start the modelling process is with a baseline model with 

standard choices (based on literature or part experience) of architecture 

and algorithms—for instance, using convolutional neural networks 

(CNNs) for images or long short-term memory (LSTM) networks for 

sequences. (Both topics will be covered in upcoming chapters.) Using 

rectified linear units (ReLUs) as activation units and batch stochastic 

gradient descent (SGD) are also good choices to start with. Basically, the 

baseline model establishes a straw man on which to improve based on an 

analysis of the shortcomings.

�Building an Automated, End-to-End Pipeline
Having decided upon a baseline model, it is of critical importance to build 

an end-to-end, fully automated pipeline that includes training the model 

on the training set, making predictions on the parameter tuning set, and 

computing the metrics on both sets. Automation is extremely important, 

as it enables the practitioner to iterate quickly on new models by tweaking 

the model architecture and hyperparameters.

�Orchestration for Visibility
While building the end-to-end pipeline, it’s also a good idea to put in the 

orchestration to visualize histograms of activations, gradients, metrics 

on training and validation sets, etc. Visibility into the model training, 

weights, and performance can be quite useful when it comes to debugging 

unexpected behavior. The key point is to build the automation and 

orchestration for visibility to begin with. This will save a lot of time and 

energy in the future.
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�Analysis of Overfitting and Underfitting
The ideal goal of the iterative cycle of model improvement is to develop a 

model where the performance over the training set and validation set is 

nearly equal to the established performance limit (proxy for Bayes error). 

Figure 5-5 illustrates this final destination of the model improvement 

process. While iteratively developing new models, however, the practitioner 

will encounter underfitting and overfitting. Underfitting occurs when the 

model’s performance over the training and validation set is nearly equal 

but the performance is below the desired level. This is an outcome of a 

poorly developed model in which the parameters have not appropriately 

captured the patterns within the training data. On the other hand, overfitting 

occurs when the model performance over the validation set is significantly 

lower than its performance over the training set. This is a direct outcome 

of a model that has learned far too many complicated patterns that should 

have ideally been considered as noise. Such a model (which accounted for 

noise in the data as valid patterns) delivers top performance on the training 

(seen) data but performs poorly on unseen data. Underfitting and overfitting 

are not mutually exclusive. In a scenario where a model is underfitting, we 

more formally define this situation as a model with high bias. Similarly, 

when a model that has learned several complex patterns from noise delivers 

highly inconsistent performance on unseen data, we say the model has high 

variance. Ideally, we would need a model that has low bias and low variance.

Detecting whether the model is overfitting or underfitting is the first 

step after a new model is trained. In the case of underfitting, the key step 

is to increase the effective capacity of the model, which is typically done 

by modifying the architecture (increasing layers, widths, and so forth). 

In the case of overfitting, the key steps are either regularization methods 

(covered later in this chapter) or increasing the dataset size. An important 

visualization is learning curves, which plot performance metrics on the Y 

axis and the training data made available to the model on the x axis. This 

is quite useful in determining whether an investment in procuring more 

labelled data makes sense.
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�Hyperparameter Tuning
Tuning the hyperparameters of the model (such as learning rate or 

momentum) can be done manually, via a grid search (where in a grid 

is defined over a small set of values), or via a random search (where the 

values of hyperparameters are drawn at random from a distribution 

defined by the user).

In a grid search, the practitioner has to create a small subset 

of potential values (since compute resources are finite) for each 

hyperparameter in the network. The training process essentially loops 

Figure 5-5.  Overfitting and Underfitting
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through each possible combination, and the combination of the 

hyperparameters with the best performance is the final choice. With a grid 

search, there is a possibility of not having the best possible combination of 

hyperparameters, as the permutations are limited to the provided grid or 

are computationally very expensive, if a large number of choices are added 

to the grid.

A random search usually tends to fair better with hyperparameter 

tuning. With a random search, the possibilities of having the best 

combination of hyperparameters for the model are higher with a fairly 

lower number of combinations (though not guaranteed).

Tuning hyperparameters is often iterative and experimental.

�Model Capacity
Let’s briefly revisit the notions of model capacity, overfitting, and 

underfitting. We will use the previous example of fitting a regression model 

(refer to Chapter 1).

We have data of the form D = {(x1, y1), (x2, y2), …(xn, yn)}, where x ∈ Rn 

and y ∈ R, and our task is to generate a computational procedure that 

implements the function f : x → y. We measure performance over this task 

as the root mean squared error (RMSE) over unseen data, as follows:
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Given a dataset of the form D = {(x1, y1), (x2, y2), …(xn, yn)}, where x ∈ Rn 

and y ∈ R, we use the least squares model, which takes the form y = βx, 

where β is a vector such that X y� �
2

2
 is minimized. Here, X is a matrix 

where each row is an x. The value of β can be derived using the closed form 

β = (XTX)−1XTy.
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We can transform x to be a vector of values [x0, x1, x2 ]. That is, if x = 2, 

it will be transformed to [1, 2, 4]. Following this transformation, we can 

generate a least squares model β using the preceding formula. Under the 

hood, we are approximating the given data with a second order polynomial 

(degree = 2) equation, and the least squares algorithm is simply curve 

fitting or generating the coefficients for each of [x0, x1, x2 ].

Similarly, we can generate another model with the least squares 

algorithm, but we will transform x to [x0, x1, x2, x3, x4, x5, x6, x7, x8]. That is, we 

are approximating the given data with a polynomial with degree = 8. By 

increasing the degree of the polynomial, we can fit arbitrary data. It is easy 

to see that if we have n data points, a polynomial of degree n can perfectly 

fit the data. It is also easy to see that such a model is simply memorizing 

the data. We can use this example to develop a perspective on model 

capacity, overfitting, and underfitting. The degree of the polynomial we 

use to fit the data is basically a proxy for the capacity of the model. The 

greater the degree, the higher is the capacity of the model.

Let us assume that the data were generated using a polynomial of 

degree 5 with some noise. Also, note that while fitting the data, we do 

not know anything about the process that generated the data. We have to 

produce a model that best fits the data. Essentially, we do not know how 

much of the data is the pattern and how much of the data is noise.

On such a dataset, if we use models with high enough capacity (degree 

of the polynomial greater than 5, in the worst case equal to the number of 

data points), we can get a perfect model when evaluated on the training 

data; however, this model will do very poorly on unseen data, because it 

has essentially fit the noise. This is overfitting. If we use a model with low 

capacity (less than 5), it will fit neither the training data nor the unseen 

data well. This is underfitting.
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�Regularizing the Model
From the previous example, is easy to see that while fitting models, a 

central problem is to get the capacity of the model exactly right so that 

one neither overfits nor underfits the data. Regularization can be simply 

seen as any modification to the model (or its training process) that intends 

to improve the error on the unseen data (at the cost of the error on the 

training data) by systematically limiting the capacity of the model. This of 

process systematically limiting or regulating the capacity of the model is 

guided by a portion of the labelled data that is not used of training. This 

data is commonly referred to as the validation set.

In our running example, a regularized version of least squares takes the 

form y = βx, where β is a vector such that X y� � �� �
2

2

2

2
 is minimized, 

and λ is a user-defined parameter that controls the complexity. Here, by 

introducing the term � �
2

2
, we are penalizing models with extra capacity. 

To see why this is the case, consider fitting a least squares model using a 

polynomial of degree 10, but the values in the vector β have 8 zeros and 

2 non-zeros. As opposed to this, consider the case where all values in the 

vector β are non-zeros. For all practical purposes, the former model is a 

model with degree = 2 and a lower value of � �
2

2
. The λ term allows us to 

balance accuracy over the training data with the complexity of the model. 

Lower values of λ imply a model with lower capacity.

One natural question to ask is why we do not simply use the validation 

set as a guide and increase the degree of the polynomial in the previous 

example. Since the degree of the polynomial is a proxy for the capacity 

of the model, why can’t we use that to tune the model capacity? Why do 

we need to introduce the change in the model ( X y� � �� �
2

2

2

2
 instead 

of X y� �
2

2
 previously)? The answer is that we want to systematically 

limit the capacity of the model for which we need a fine-grained control. 

Changing the model capacity by varying the degree of the model is a very 

coarse-grained, discrete knob, while varying λ is very fine grained.
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�Early Stopping
One of the simplest techniques for regularization in deep learning is early 

stopping. Given a training set and a validation set and a network with 

sufficient capacity, we observe that with increasing training steps, first 

both the error on the training set and validation set decreases, then the 

error of the training set continues to decrease while the error in validation 

increases (see Figure 5-6).

The key idea with early stopping is to keep track of the model 

parameters/weights that give the best performance over the validation 

set, and then to stop the training after this best performance so far over 

the validation set does not improve over a predefined number of training 

steps.

Early stopping acts as a regularizer by restricting the values the 

parameters/weights of the model can take (see Figure 5-7). Early stopping 

limits w to a neighborhood around the starting values (around w0). So, if 

we stop at ws, the values of ws + 1 are not possible. This essentially restricts 

the capacity of the model.

Figure 5-6.  Early stopping
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Early stopping is quite non-invasive, in the sense that it does not 

require any changes to the model. It is also inexpensive, as it only requires 

storing the parameters of the model (the best so far on the validation set). 

It can also be combined easily with other regularization techniques.

�Norm Penalties
Norm penalties are a common form of regularization in deep learning 

(and machine learning in general). The idea is simply to add a term r(θ) 

to the loss function of a neural network (refer to Chapter 3), where r 

typically represents either the L1 norm or the L2 norm and θ represents the 

parameters/weights of the network. Thus, the regularized loss function 

becomes l( fNN(x, θ), y) + α · r(θ) instead of just l( fNN(x, θ), y). Note that the α 

term is the regularization parameter.

Figure 5-7.  Early stopping restricts w
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Note I n general, an Lp norm is defined as ‖x‖p = ( Σi |x i |p)1/p. 
Accordingly, the L1 norm is defined as ‖x‖1 = (Σi |xi |1)1/1 = Σi |x i|. 
Similarly, the L2 norm is defined as ‖x‖2 = (Σi |x i |2)1/2 = (Σi (xi )2)1/2.

Let’s dive deeper into the regularized loss function 

l( fNN(x, θ), y) + α · r(θ). The following points are to be noted:

	 1.	 As we attempt to minimize the overall loss function 

l( fNN(x, θ), y) + α · r(θ), we attempt to reduce the 

contribution of the l( fNN(x, θ), y) term as well as the 

regularization term given by α · r(θ).

	 2.	 It follows that for two sets of parameters, θa and θb,  

if l( fNN(x, θa), y) = l( fNN(x, θb), y), then the 

optimization algorithm will choose θa if r(θa) < r(θb) 

and θb if r(θa) > r(θb).

	 3.	 Thus, the role of the regularization term is to direct 

the optimization in the direction of the θ that  

lowers r(θ).

	 4.	 It is easy to see that lower values of r(θ) when 

r corresponds to L1 regularization will lead to a 

sparser θ, hence reducing the effective capacity.

	 5.	 It is easy to see that lower values of r(θ) when 

r corresponds to L2 regularization will lead to a θ 

closer to 0, hence reducing the effective capacity 

(see Figure 5-8).

	 6.	 The α term is used to control how much emphasis 

we place on l( fNN(x, θ), y) versus r(θ). Higher 

values of α mean more emphasis is placed on 

regularization.
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It must be noted that norm penalties are applied to the weight vectors, 

not the bias terms. The reasoning behind this is that any regularization is 

a tradeoff between overfitting and underfitting, and regularizing the bias 

term leads to a bad tradeoff due to too much underfitting. While training 

deep learning networks, different values of α can be used for different 

layers and the appropriate value of α is determined via an experiment 

using the validation set as a guide.

�Dropout
Dropout is essentially a computational cheap alternative of a model 

ensemble/averaging. Let us first consider the key concept of model 

ensemble/averaging. While individual models with sufficient capacity can 

overfit, if we average or take majority voting on the predictions of multiple 

models (trained over subsets of data, or different weight initializations or 

different hyper parameters), we can address overfitting. Model ensemble/

averaging is an extremely useful form of regularization that helps us 

deal with overfitting. However, it is quite computationally expensive, 

Figure 5-8.  L2 norm leads to θ closer to zero. θa is picked by the 
optimization algorithms because of regularization; without it, θb 
would be picked
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given that we have to train multiple models and make predictions on 

multiple models (and then combine them via voting or averaging). This 

computational expense is particularly high with deep learning models with 

multiple layers. Dropout provides a cheap alternative.

The key idea of dropout is to drop units and their connections 

randomly while training the network with probability p and then to 

multiply the learned weights with p at prediction time (see Figure 5-9). 

Let us make this idea precise in the form of mathematical expressions. A 

standard neural network layer can be expressed as y = f (w · x + b), where 

y is the output, x is the input, f is the activation function, and w and b are 

the weight vector and bias terms, respectively. A dropout layer at training 

time can be expressed as y = f (w(x ⨀ r ) + b), where r~Bernoulli(p) and the 

symbol ⨀ denotes pointwise multiplication of two vectors (if a = [1, 1, 2] 

and b = [0.5,0.5,0.5], then a ⨀ b = [0.5,0.5,1]. At prediction time, the 

dropout layer can be represented as y = f ((p · w · x) + b).

It is easy to see that the dropout layer, while training, actually trains 

multiple networks, as for every distinct r, we have a different network. It is 

also easy to see that at prediction time, we are averaging over the multiple 

networks, as y = f ((p · w · x) + b).

While training with dropout with batch stochastic gradient, a 

single value of r is used over the entire batch. In relevant literature, the 

recommended values for p are 0.8 for input units and 0.5 for hidden 

units. A norm regularization found useful with dropout is max-norm 

regularization, where w is constrained as ‖w‖2 < c, where c is a user-

defined parameter.
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�A Practical Implementation in PyTorch
We will now explore the topics we’ve discussed so far with a practical 

example. For the purpose of this exercise, we will use a Bank Telemarketing 

dataset hosted at https://www.kaggle.com/janiobachmann/bank-

marketing-dataset. The original dataset was sourced from UCI Machine 

Learning Repository and was contributed by [Moro et al., 2014]. The subset 

hosted on Kaggle is a balanced dataset (similar number of positive and 

negatives samples) when compared to the original and makes the purpose 

of the exercise easier.

Figure 5-9.  Dropout
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So far, we have explored toy datasets crafted using Python, and thus 

we barely explored the idea of data processing and data engineering that 

is essential before building deep learning models. This would hold true for 

all forms of data visualization—tabular, images, text, audio/video/speech, 

etc. In this exercise, we will a look at few basic data processing steps. 

Although extensive data processing is beyond the scope of this book, the 

objective here is to give you an idea of the kind of processing that might be 

required for real-life use cases.

Let’s get started. Before downloading the aforementioned dataset, 

you first need to register and create an account at www.kaggle.com. In 

Listing 5-1, we import the essential Python packages for our exercise.

Listing 5-1.  Importing the Required Libraries

#Import required libraries

import torch.nn as nn

import torch as tch

import numpy as np, pandas as pd

from sklearn.metrics import confusion_matrix, accuracy_score

from sklearn.metrics import precision_score, recall_score,roc_

curve, auc, roc_auc_score

from sklearn.model_selection import train_test_split

from sklearn.utils import shuffle

import matplotlib.pyplot as plt

Sklearn is a machine learning library within Python that provides a 

comprehensive list of algorithms, metrics, data processing tools, and other 

utility functions. We use the Metrics module within sklearn for handy 

functions that help in computing model performance—metrics such as 

precision, recall, accuracy, etc. Similarly, Pandas is a great Python package 

that provides a comprehensive means to process, manipulate, and explore 

tabular dataframes. We will use Pandas to read and explore the dataset for 

our exercise, as well as leverage a few functions within Pandas to tailor the 
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dataset to our needs within PyTorch. Listing 5-2 illustrates loading data 

into memory using Pandas.

Listing 5-2.  Loading Data into Memory

#Load data into memory using pandas

df = pd.read_csv("/Users/Downloads/dataset.csv")

print("DF Shape:",df.shape)

df.head()

Out[]

DF Shape: (11162, 17)

 

Using Pandas with Jupyter notebooks provides an elegant means to 

explore data iteratively. The preceding output is the result of the df.head() 

command, which prints the first five rows of the dataset; the df.shape 

command presents the shape of the dataset as [rows x columns].

In this dataset, we are provided with the details of a bank telemarketing 

activity. The dataset captures the details of the customer targeted and 

some details about the previous and current marketing call, along with 

the success outcome deposit. Customer attributes include age, job, marital 

status (marital), education, whether they have defaulted on payments 

(default), current bank balances (balance), and indicators for housing 

loan and personal loan. Campaign attributes include the type of contact 

(contact), the time of the contact (day/month) and the duration (duration), 

the number of contacts performed by the agent (campaign), the number of 

days before the previous contact (pdays), the number of previous contacts 

(previous), and the previous outcome (poutcome).
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For a detailed note on the attributes within the dataset, visit https://

archive.ics.uci.edu/ml/datasets/Bank+Marketing.

Our objective is to build a deep learning model that correctly classifies 

the outcome (deposit) for a given customer and campaign combination. 

Let’s first look at the distribution of the target column in our dataset. 

Listing 5-3 demonstrates exploring the distribution of the target values.

Listing 5-3.  Distributing the Target Values

print("Distribution of Target Values in Dataset -")

df.deposit.value_counts()

Out[]:

Distribution of Target Values in Dataset -

no     5873

yes    5289

Name: deposit, dtype: int64

We can see that we have roughly similar distribution between yes and 

no in our dataset. Listing 5-4 explores the distribution of the null values in 

the dataset.

Listing 5-4.  Distributing the NA (Null) Values in the Dataset

#Check if we have 'na' values within the dataset

df.isna().sum()

Out[]:

age          0

job          0

marital      0

education    0

default      0

balance      0
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housing      0

loan         0

contact      0

day          0

month        0

duration     0

campaign     0

pdays        0

previous     0

poutcome     0

deposit      0

dtype: int64

The dataset does not have any NA or missing values. In most real-

life datasets, this might not hold true. Researchers and data engineers 

spend a significant amount of time treating missing values or outliers. 

The following are additional checks that you should experiment with 

independently:

•	 Check for outliers.

•	 Identify strategies to treat outliers within data.

•	 Impute with mean.

•	 Impute with mode.

•	 Impute with median.

•	 Use other advanced techniques (cluster-based 

imputation of regression techniques to treat 

values).
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•	 Check for missing values.

•	 Identify strategies to treat missing values.

•	 Drop records (if the number of missing records  

<= 3%).

•	 Impute records with approaches similar to outliers.

Next, let’s explore the different datatypes within the dataset. Deep 

learning models only understand numbers. PyTorch, more specifically, 

only handles 32-bit floating-point numbers. We would need to transform 

our dataset into a suitable form that can be ready to use with PyTorch. 

Listing 5-5 explores the distribution of distinct datatypes.

Listing 5-5.  Distributing the Distinct Datatypes

#Check the distinct datatypes within the dataset

df.dtypes.value_counts()

Out[]:

int64     11

object     6

dtype: int64

We have six object (string) datatype-based columns, which we would 

need to convert into numeric flags before building models. We would 

convert categorical columns into one-hot encoded forms where each 

category value is represented as a binary flag. Before doing that, however, 

let’s manually convert columns that have yes/no binary categories 

into a single column and leverage a Pandas-based function to convert 

the remainder set of categorical columns automatically. Listing 5-6 

demonstrates extracting categorical columns from the dataset.
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Listing 5-6.  Extracting Categorical Columns from the Dataset

#Extract categorical columns from dataset

categorical_columns = df.select_dtypes(include="object").

columns

print("Categorical cols:",list(categorical_columns))

#For each categorical column if values in (Yes/No) convert into 

a 1/0 Flag

for col in categorical_columns:

    if df[col].nunique() == 2:

        df[col] = np.where(df[col]=="yes",1,0)

df.head()

 

We can see that our target column deposit and few other columns, 

including load, default, and housing, have been converted to binary 

flag (manually). For the remaining set of columns that have non-binary 

categorical values, we can leverage Pandas get_dummies function to 

automatically process the same. Listing 5-7 performs one-hot encoding for 

the categorical variables within the dataset.

Listing 5-7.  One-Hot Encoding for the Remaining Non-Binary 

Categorical Variables

#For the remaining cateogrical variables;

#create one-hot encoded version of the dataset

new_df = pd.get_dummies(df)

#Define target and predictors for the model
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target = "deposit"

predictors = set(new_df.columns) - set([target])

print("new_df.shape:",new_df.shape)

new_df[predictors].head()

Out[]:

new_df.shape: (11162, 49)

 

We have now defined a list of predictors that contain all independent 

predictor column names, and a target that contains our y—i.e., deposit 

column name.

The new_df dataframe has all categorical columns processed as one-

hot encoded forms by the get_dummies function in Pandas. The preceding 

output for Listing 5-7 limits the view of columns to the first few; we can see 

that contact is now transformed as contact_unknown, contact_cellular, etc. 

The dataset now has only numeric columns.

Finally, before designing our neural network, we would need to 

convert all the columns to float32 datatype and split into training and 

validation datasets, and then convert to PyTorch tensors. Listing 5-8 

prepares the dataset for training and validation.

Listing 5-8.  Preparing the Dataset for Training and Validation

#Convert all datatypes within pandas dataframe to Float32

#(Compatibility with PyTorch tensors)

new_df = new_df.astype(np.float32)

#Split dataset into Train/Test [80:20]
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X_train,x_test, Y_train,y_test = train_test_split(new_

df[predictors],new_df[target],test_size= 0.2)

#Convert Pandas dataframe, first to numpy and then to Torch 

Tensors

X_train = tch.from_numpy(X_train.values)

x_test  = tch.from_numpy(x_test.values)

Y_train = tch.from_numpy(Y_train.values).reshape(-1,1)

y_test  = tch.from_numpy(y_test.values).reshape(-1,1)

#Print the dataset size to verify

print("X_train.shape:",X_train.shape)

print("x_test.shape:",x_test.shape)

print("Y_train.shape:",Y_train.shape)

print("y_test.shape:",y_test.shape)

Out[]:

X_train.shape: torch.Size([8929, 48])

x_test.shape: torch.Size([2233, 48])

Y_train.shape: torch.Size([8929, 1])

y_test.shape: torch.Size([2233, 1])

We now have the dataset ready for our deep learning experiments. 

Before designing our network, let’s put in place a few essential building 

blocks that can be reused for our experiments. Listing 5-9 demonstrates 

the boilerplate code for training a model in PyTorch.

Note I n the exercises in the book, we will always divide the dataset 
into 80% training and 20% validation (as opposed to dividing it into 
training, validation, and testing, as discussed previously. In real-life 
production experiments, we recommend readers have a separate 
test dataset that can fulfill the required checks before going live in 
production systems.
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Listing 5-9.  Defining the Function to Train the Model

#Define function to train the network

def train_network(model,optimizer,loss_function,num_epochs, 

batch_size,X_train,Y_train,lambda_L1=0.0):

    loss_across_epochs = []

    for epoch in range(num_epochs):

        train_loss= 0.0

        #Explicitly start model training

        model.train()

        for i in range(0,X_train.shape[0],batch_size):

            #Extract train batch from X and Y

            �input_data = X_train[i:min(X_train.

shape[0],i+batch_size)]

            �labels = Y_train[i:min(X_train.shape[0],i+batch_

size)]

            �#set the gradients to zero before starting to do 

backpropragation

            optimizer.zero_grad()

            #Forward pass

            output_data  = model(input_data)

            #Caculate loss

            loss = loss_function(output_data, labels)

            L1_loss = 0
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            #Compute L1 penalty to be added with loss

            for p in model.parameters():

                L1_loss = L1_loss + p.abs().sum()

            #Add L1 penalty to loss

            loss = loss + lambda_L1 * L1_loss

            #Backpropogate

            loss.backward()

            #Update weights

            optimizer.step()

            train_loss += loss.item() * input_data.size(0)

        loss_across_epochs.append(train_loss/X_train.size(0))

        if epoch%500 == 0:

            �print("Epoch: {} - Loss:{:.4f}".format(epoch, 

train_loss/X_train.size(0) ))

    return(loss_across_epochs)

The preceding function loops over batches for the defined number of 

epochs and trains our neural network. You are already familiar with this 

function (refer to Chapter 3); the only new addition to the function is the 

calculation of an L1 penalty when we use L1 regularization. The lambda_L1 

variable is a hyperparameter that we can tune to control the effect if the L1 

regularizer.

Let’s now define a function that can be used to plot the loss over 

epochs, ROC curve for the training and validation datasets, and evaluate 

the model for key metrics of interest. Because this is a classification 

use case, we will compute accuracy, precision, and recall using the 

functions we imported earlier from sklearn. Listing 5-10 demonstrates the 

boilerplate code for evaluating a model.
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Listing 5-10.  Defining the Function to Evaluate the Model Performance

#Define function for evaluating NN

def evaluate_model(model,x_test,y_test,X_train,Y_train,loss_list):

    model.eval() #Explicitly set to evaluate mode

    #Predict on Train and Validation Datasets

    y_test_prob = model(x_test)

    y_test_pred =np.where(y_test_prob>0.5,1,0)

    Y_train_prob = model(X_train)

    Y_train_pred =np.where(Y_train_prob>0.5,1,0)

    #Compute Training and Validation Metrics

    print("\n Model Performance -")

    �print("Training Accuracy-",round(accuracy_score(Y_train, 

Y_train_pred),3))

    �print("Training Precision-",round(precision_score 

(Y_train,Y_train_pred),3))

    �print("Training Recall-",round(recall_score(Y_train, 

Y_train_pred),3))

    print("Training ROCAUC", round(roc_auc_score(Y_train

                                   �,Y_train_prob.detach().

numpy()),3))

    �print("Validation Accuracy-",round(accuracy_score(y_test, 

y_test_pred),3))

    �print("Validation Precision-",round(precision_score(y_test, 

y_test_pred),3))

    �print("Validation Recall-",round(recall_score(y_test, 

y_test_pred),3))

    print("Validation ROCAUC", round(roc_auc_score(y_test

                                     �,y_test_prob.detach().

numpy()),3))

    print("\n")
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    #Plot the Loss curve and ROC Curve

    plt.figure(figsize=(20,5))

    plt.subplot(1, 2, 1)

    plt.plot(loss_list)

    plt.title('Loss across epochs')

    plt.ylabel('Loss')

    plt.xlabel('Epochs')

    plt.subplot(1, 2, 2)

    #Validation

    �fpr_v, tpr_v, _ = roc_curve(y_test, y_test_prob.detach().

numpy())

    roc_auc_v = auc(fpr_v, tpr_v)

    #Training

    �fpr_t, tpr_t, _ = roc_curve(Y_train, Y_train_prob.detach().

numpy())

    roc_auc_t = auc(fpr_t, tpr_t)

    plt.title('Receiver Operating Characteristic:Validation')

    �plt.plot(fpr_v, tpr_v, 'b', label = 'Validation AUC = 

%0.2f' % roc_auc_v)

    �plt.plot(fpr_t, tpr_t, 'r', label = 'Training AUC = %0.2f' 

% roc_auc_t)

    plt.legend(loc = 'lower right')

    plt.plot([0, 1], [0, 1],'r--')

    plt.xlim([0, 1])

    plt.ylim([0, 1])

    plt.ylabel('True Positive Rate')

    plt.xlabel('False Positive Rate')

    plt.show()
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Finally, with all the necessary building blocks in place, it is time to 

define our neural network and leverage the preceding helper functions to 

train and evaluate the deep learning model. We will begin with a vanilla 

neural network with no regularizers; we will later experiment by adding 

L1, L2, and dropout to study the effect, and take the best one to make 

predictions. Listing 5-11 defines the structure of our neural network.

Listing 5-11.  Defining the Structure of the Neural Network

#Define Neural Network

class NeuralNetwork(nn.Module):

    def __init__(self):

        super().__init__()

        tch.manual_seed(2020)

        self.fc1 = nn.Linear(48, 96)

        self.fc2 = nn.Linear(96, 192)

        self.fc3 = nn.Linear(192, 384)

        self.out = nn.Linear(384, 1)

        self.relu = nn.ReLU()

        self.final = nn.Sigmoid()

    def forward(self, x):

        op = self.fc1(x)

        op = self.relu(op)

        op = self.fc2(op)

        op = self.relu(op)

        op = self.fc3(op)

        op = self.relu(op)

        op = self.out(op)

        y = self.final(op)

        return y
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#Define training variables

num_epochs = 500

batch_size= 128

loss_function = nn.BCELoss()  #Binary Crosss Entropy Loss

#Hyperparameters

weight_decay=0.0 #set to 0; no L2 Regularizer; passed into the 

Optimizer

lambda_L1=0.0    #Set to 0; no L1 reg; manually added in loss 

(train_network)

#Create a model instance

model = NeuralNetwork()

#Define optimizer

adam_optimizer = tch.optim.Adam(model.parameters(), lr= 0.001, 

weight_decay=weight_decay)

#Train model

adam_loss = train_network(model,adam_optimizer,loss_function

                                    �,num_epochs,batch_size, 

X_train,Y_train,lambda_

                                         L1=0.0)

#Evaluate model

evaluate_model(model,x_test,y_test,X_train,Y_train,adam_loss)

Out[]:

Epoch: 0 - Loss:1.7305

Epoch: 100 - Loss:0.3219

Epoch: 200 - Loss:0.2470

Epoch: 300 - Loss:0.1910

Epoch: 400 - Loss:0.1431
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Model Performance -

Training Accuracy- 0.922

Training Precision- 0.89

Training Recall- 0.957

Training ROCAUC 0.981

Validation Accuracy- 0.801

Validation Precision- 0.757

Validation Recall- 0.827

Validation ROCAUC 0.869

 

We defined the number of epochs as 500 and the batch size as 128, 

while keeping weight_decay=0 and lambda_L1=0.0 (which essentially 

removes the effect of the L1 and L2 regularizers; we will experiment with 

these values soon). As in Chapter 3, we used the Adam optimizer with 

BCELoss() for our network. Our network has three hidden layers, with 96, 

192, and 384 neurons, respectively. We can play around with different sizes 

of units within the neural network architecture.

If we take a closer look at the results between the training and 

validation datasets, we can see a huge gap. A single metric that helps in 

capturing this difference is ROC AUC (area under curve); we have AUC 

as 98%, as opposed to 87% for training and validation. This gap is huge. 

Essentially, we are facing the overfitting problem. To overcome overfitting, 

we would need to add regularizers that would add a penalty to the model’s 

loss, cueing the model to learn simpler patterns. Ideally, we would want to 

see similar results between training as well as validation.
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Let’s start with L1 regularization. We added a small snippet of code 

within the train_network() function that computes the sum of absolute 

values of parameters and adds to the loss computed after multiplying with 

Lambda (hyperparameter). To enable L1 regularization, we would need to 

pass a non-zero value to the lambda_L1 variable. Listing 5-12 demonstrates 

L1 regularization for the network.

Listing 5-12.  L1 Regularization

#L1 Regularization

num_epochs = 500

batch_size= 128

weight_decay=0.0   #Set to 0; no L2 reg

lambda_L1 = 0.0001 #Enables L1 Regularization

model = NeuralNetwork()

loss_function = nn.BCELoss()  #Binary Crosss Entropy Loss

adam_optimizer = tch.optim.Adam(model.parameters(),lr= 0.001 

,weight_decay=weight_decay)

#Define hyperparater for L1 Regularization

#Train network

adam_loss = train_network(model,adam_optimizer,loss_function, 

num_epochs,batch_size,X_train,Y_train,lambda_L1=lambda_L1)

#Evaluate model

evaluate_model(model,x_test,y_test,X_train,Y_train,adam_loss)
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Out[]:

Epoch: 0   - Loss:2.0634

Epoch: 100 – Loss:0.4042

Epoch: 200 – Loss:0.3852

Epoch: 300 – Loss:0.3668

Epoch: 400 – Loss:0.3616

Model Performance –

Training Accuracy- 0.84

Training Precision- 0.77

Training Recall- 0.949

Training ROCAUC 0.93

Validation Accuracy- 0.813

Validation Precision- 0.732

Validation Recall- 0.928

Validation ROCAUC 0.894

 

Similarly, let’s try L2 regularization. By default, PyTorch provides a 

means to enable L2 regularization directly through a parameter within the 

optimizer. Within Adam optimization, we can add this using the weight_

decay variable.

Listing 5-13 demonstrates L2 regularization for the network.
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Listing 5-13.  L2 Regularization

#L2 Regularization

num_epochs = 500

batch_size= 128

weight_decay=0.001 #Enables L2 Regularization

lambda_L1 = 0.00    #Set to 0; no L1 reg

model = NeuralNetwork()

loss_function = nn.BCELoss()  #Binary Crosss Entropy Loss

adam_optimizer = tch.optim.Adam(model.parameters(),lr= 0.001, 

weight_decay=weight_decay)

#Train Network

adam_loss = train_network(model,adam_optimizer,loss_function, 

num_epochs,batch_size,X_train,Y_train,lambda_L1=lambda_L1)

#Evaluate model

evaluate_model(model,x_test,y_test,X_train,Y_train,adam_loss)

Out[]:

Epoch: 0 – Loss:1.8140

Epoch: 100 – Loss:0.3927

Epoch: 200 – Loss:0.3658

Epoch: 300 – Loss:0.3604

Epoch: 400 – Loss:0.3414

Model Performance –

Training Accuracy- 0.862

Training Precision- 0.822

Training Recall- 0.909

Training ROCAUC 0.935
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Validation Accuracy- 0.82

Validation Precision- 0.77

Validation Recall- 0.861

Validation ROCAUC 0.9

 

Similar to L1, we see somewhat better results with L2 than without 

regularization. The gap reduced and the validation AUC increased by a 

small fraction.

With L1 and L2 regularization (individually), we saw the gap between 

training and validation performance reduced as well as reduced 

overfitting. We now have favorable results for our use case. Before 

finalizing the results, let’s add dropout layers. Listing 5-14 adds a dropout 

layer to randomly drop 10% of the input neurons during the learning. We 

add the dropout layer to the input layer as well as the hidden layers.

Listing 5-14.  Dropout Regularization

#Define Network with Dropout Layers

class NeuralNetwork(nn.Module):

    �#Adding dropout layers within Neural Network to reduce 

overfitting

    def __init__(self):

        super().__init__()

        tch.manual_seed(2020)

        self.fc1 = nn.Linear(48, 96)

        self.fc2 = nn.Linear(96, 192)

        self.fc3 = nn.Linear(192, 384)
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        self.relu = nn.ReLU()

        self.out = nn.Linear(384, 1)

        self.final = nn.Sigmoid()

        self.drop = nn.Dropout(0.1)  #Dropout Layer

    def forward(self, x):

        op = self.drop(x)  #Dropout for input layer

        op = self.fc1(op)

        op = self.relu(op)

        op = self.drop(op) #Dropout for hidden layer 1

        op = self.fc2(op)

        op = self.relu(op)

        op = self.drop(op) #Dropout for hidden layer 2

        op = self.fc3(op)

        op = self.relu(op)

        op = self.drop(op) #Dropout for hidden layer 3

        op = self.out(op)

        y = self.final(op)

        return y

num_epochs = 500

batch_size= 128

weight_decay=0.0 #Set to 0; no L2 reg

lambda_L1 = 0.0  #Set to 0; no L1 reg

model = NeuralNetwork()

loss_function = nn.BCELoss()  #Binary Crosss Entropy Loss

adam_optimizer = tch.optim.Adam(model.parameters(),lr= 0.001

,weight_decay=weight_decay)

#Train model
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adam_loss = train_network(model,adam_optimizer,loss_function, 

num_epochs

,batch_size,X_train,Y_train

,lambda_L1= lambda_L1)

#Evaluate model

evaluate_model(model,x_test,y_test,X_train,Y_train,adam_loss)

Out[]:

Epoch: 0 - Loss:1.9511

Epoch: 100 - Loss:0.4087

Epoch: 200 - Loss:0.3961

Epoch: 300 - Loss:0.3798

Epoch: 400 - Loss:0.3789

Model Performance -

Training Accuracy  - 0.816

Training Precision - 0.766

Training Recall    - 0.885

Training ROCAUC    - 0.899

Validation Accuracy  - 0.802

Validation Precision - 0.74

Validation Recall    - 0.867

Validation ROCAUC    - 0.882
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The gap between training and validation performance has reduced; we 

can see similar performance across both datasets.

Finally, let’s combine all three types of regularizers and study the effect 

on model performance. Listing 5-15 demonstrates L1, L2, and dropout 

regularization.

Listing 5-15.  L1, L2, and Dropout Regularization

#Create a network with Dropout layer

class NeuralNetwork(nn.Module):

    def __init__(self):

        super().__init__()

        tch.manual_seed(2020)

        self.fc1 = nn.Linear(48, 96)

        self.fc2 = nn.Linear(96, 192)

        self.fc3 = nn.Linear(192, 384)

        self.relu = nn.ReLU()

        self.out = nn.Linear(384, 1)

        self.final = nn.Sigmoid()

        self.drop = nn.Dropout(0.1)  #Dropout Layer

    def forward(self, x):

        op = self.drop(x)  #Dropout for input layer

        op = self.fc1(op)

        op = self.relu(op)

        op = self.drop(op) #Dropout for hidden layer 1

        op = self.fc2(op)

        op = self.relu(op)

        op = self.drop(op) #Dropout for hidden layer 2

        op = self.fc3(op)

        op = self.relu(op)

        op = self.drop(op) #Dropout for hidden layer 3

        op = self.out(op)
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        y = self.final(op)

        return y

num_epochs = 500

batch_size= 128

lambda_L1    = 0.0001  #Enabled L1

weight_decay =0.001    #Enabled L2

model = NeuralNetwork()

loss_function = nn.BCELoss()

adam_optimizer = tch.optim.Adam(model.parameters(),lr= 0.001 

,weight_decay=weight_decay)

adam_loss = train_network(model,adam_optimizer,loss_function 

,num_epochs,batch_size,X_train,Y_train,lambda_L1=lambda_L1)

evaluate_model(model,x_test,y_test,X_train,Y_train,adam_loss)

Epoch: 0 - Loss:2.2951

Epoch: 100 - Loss:0.4887

Epoch: 200 - Loss:0.4865

Epoch: 300 - Loss:0.4617

Epoch: 400 - Loss:0.4647

Model Performance -

Training Accuracy- 0.794

Training Precision- 0.764

Training Recall- 0.826

Training ROCAUC 0.873

Validation Accuracy- 0.807

Validation Precision- 0.758

Validation Recall- 0.843

Validation ROCAUC 0.884
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Overall, we see similar performance in the above three scenarios. In an 

ideal experiment, there are no defined benchmarks that we could use for 

selecting the type of regularization that would work better. We would need 

to experiment with different types of regularizers as well as different values 

for the hyperparameters: lambda regularization and with hyperparameter 

values of (0.0001,0.001,0.005,0.01), dropout layer with values (0.05, 0.1,0.2, 

0.3, etc.). With results from all the experiments in place, we would be more 

informed about which type of regularization works best for the data.

�Interpreting the Business Outcomes for Deep 
Learning
The results are fairly good. We see a small gap between training and 

validation performance. (Refer to the gap between red and blue line within 

the ROC plot.)

Overall, we have 80% accuracy on the validation dataset, with 

precision at 76% and recall at 84%. These results are very encouraging. Out 

of 10 predictions made as “yes” for a marketing campaign outcome, we are 

7.6 times correct while covering 84% of all customers who would positively 

respond to the campaign.

Chapter 5  Training Deep Leaning Models



194

Let’s take a moment to understand these results better. We started 

with a dataset that had roughly 50-50% positive and negative outcomes. 

Considering a business problem, this would translate (considering the 

effort from marketing team) as a huge effort lost in targeting 50% of the 

customers with a negative outcome. Assume that we have 100 customers 

in total (therefore, 50 positive outcomes and 50 negative outcomes). 

Targeting each customer, we have 100 effort units (for 100 calls) and we 

have 50 successful deposits at the end.

However, with ~76% precision and 84% recall, we have the filtered list 

of customers whom we can target with reduced efforts.

Thus, instead of targeting all 100 customers, we now target just the 

ones we predicted positively, which also includes false-positives. If we 

have 50 positive outcomes in all, then with the preceding model having 

84% recall and 76% precision, we will have predicted (x * 0.84)/0.76 (with 

x = 50). Thus, we have a total of ~55 positive predictions, with 12 false 

positives and 43 true positives (for every 100 predictions).

Comparing this with the earlier scenario, for 100 attempts, we have 50 

successful deposits. In the deep learning model, for 55 attempts (outcomes 

predicted as 1), we have 43 successful deposits.

Although there is a tradeoff of losing seven positive deposits from the 

campaign, we have significantly reduced the effort required to achieve 

an almost equivalent success criteria. These metrics can further be tuned 

based on business requirements to suit more favorable outcomes.

Note  We have not covered a similar (elaborate) use case for 
regression. Readers are encouraged to experiment independently for 
regression use cases, where the target variable is continuous. The 
approach and formulation of the problem remains the same, although 
the selection of loss function, the activation for the output layer, and 
the performance metrics would need to be based on the use case.  
A sample regression dataset that we recommend experimenting with 
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is the Santander Group’s Value Prediction Challenge (https://www.
kaggle.com/c/santander-value-prediction-challenge/). 
A good choice of loss function would be RMSE; the activation for the 
output layer would be linear; and the performance metrics choice can 
be RMSE or MSE.

�Summary
This chapter covered the process of model training. We also described 

a number of critical steps and analyses that should be systematically 

performed in order to improve the model. We also covered regularization 

techniques commonly used in deep learning—namely, norm penalties 

and dropout. There are several other advanced/domain-specific 

techniques found in literature that must be mentioned. So far, we have 

covered feed-forward neural networks and all the essential bits around 

deep learning using a toy dataset and a practical dataset, as well as a 

combination of the two with a business use—case. You should now have 

a much more intuitive understanding of formulating a use case, defining 

relevant metrics to benchmark models, evaluating model performance, 

and evaluating the business viability. In the next chapter, we will explore 

one of the most important topics within deep learning—convolutional 

neural networks—and embrace the field of computer vision.
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CHAPTER 6

Convolutional Neural 
Networks
A convolutional neural network (CNN) is essentially a neural network 

that employs the convolution operation (instead of a fully connected 

layer) as one of its layers. CNNs are an incredibly successful technology 

that has been applied to problems where in the input data on which 

predictions are to be made has a known grid-like topology, like a time 

series (a 1-D grid) or an image (a 2-D grid). CNNs ushered deep learning 

into modern times, solving one of the most crucial computational 

problems in the digital era of computer vision. With the popularity of 

CNNs, a surge in the research for deep learning was witnessed that 

continues today.

This chapter takes a brief look at the core concepts of CNNs 

and explores a simple example in PyTorch to study their practical 

implementation. We will also explore transfer learning, where we leverage 

a previously trained network for our use case.

Let’s start with the basics.

https://doi.org/10.1007/978-1-4842-5364-9_6#DOI
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�Convolution Operation
Let’s start by looking at the convolution operation in one dimension. Given 

an input I(t) and a kernel K(a), the convolution operation is given by

	
s t I a K t a

a

� � � � � �� �� ·
	

An equivalent form of this operation, given the commutativity of the 

convolution operation, is as follows:

	
s t I t a K a

a

� � � �� � � �� ·
	

Furthermore, the negative sign (flipping) can be replaced to get  

cross-correlation, as follows:

	
s t I t a K a

a

� � � �� � � �� ·
	

Deep learning literature and software implementations use the 

terms convolution and cross-correlation interchangeably. The essence 

of the operation is that the kernel is a much shorter set of data points as 

compared to the input, and the output of the convolution operation is 

higher when the input is similar to the kernel. Figure 6-1 and Figure 6-2 

illustrate this key idea. We take an arbitrary input and an arbitrary kernel, 

and perform the convolution operation. The highest value is achieved 

when the kernel is similar to a particular portion of the input.
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Figure 6-1.  A simplified overview of Convolution operation
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The following points should be noted:

	 1.	 The input is an arbitrary and large set of data points.

	 2.	 The kernel is a set of data points smaller in number 

to the input.

Figure 6-2.  Convolution operation—one dimension
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	 3.	 The convolution operation, in a sense, slides the 

kernel over the input and computes how similar the 

kernel is with the portion of the input.

	 4.	 The convolution operation produces the highest 

value where the kernel is most similar with a portion 

of the input.

The convolution operation can be extended to two dimensions. Given 

an input I(m, n) and a kernel K(a, b), the convolution operation is given by

	
s t I a b K m a n b

a b

� � � � � � �� ��� , ,·
	

An equivalent form of this operation, given the commutativity of the 

convolution operation, is as follows:

	
s t I m a n b K a b

a b

� � � � �� � � ��� , ,·
	

Furthermore, the negative sign (flipping) can be replaced to get cross-

correlation, given as follows:

	
s t I m a n b K a b

a b

� � � � �� � � ��� , ,·
	

Figure 6-3 illustrates the convolution operation in two dimensions. 

Note that this is simply extending the idea of convolution to two 

dimensions.
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Having introduced the convolution operation, we can now dive deeper 

into the key constituent parts of a CNN, where a convolutional layer is used 

instead of a fully connected layer, which involves a matrix multiplication.

Figure 6-3.  Convolution operation—two dimensions

Chapter 6  Convolutional Neural Networks



203

A fully connected layer can be described as y = f (x · w), where x 

is the input vector, y is the output vector, w is a set of weights, and f is 

the activation function. Correspondingly, a convolutional layer can be 

described as y = f (s(x · w)), where s denotes the convolution operation 

between the input and the weights.

Let’s now contrast the fully connected layer with the convolutional 

layer. Figure 6-4 illustrates a fully connected layer, and Figure 6-5 illustrates 

a convolutional layer, schematically. Figure 6-6 illustrates parameter 

sharing in the convolutional layer and the lack of it in the fully connected 

layer. The following points should be noted:

•	 For the same number of inputs and outputs, the fully 

connected layer has a lot more connections and 

correspondingly weights than a convolutional layer.

•	 The interactions among inputs to produce outputs 

are fewer in convolutional layers as compared to a 

fully connected layer. This is referred to as sparse 

interactions.

•	 Parameters/weights are shared across the 

convolutional layer, given that the kernel is much 

smaller than the input and the kernel slides across the 

input. Thus, there are a lot fewer unique parameters/

weights in a convolutional layer.
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Figure 6-4.  Dense interactions in fully connected layers
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Figure 6-5.  Sparse interactions in convolutional layers

Figure 6-6.  Parameter sharing weights
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�Pooling Operation
Let us now look at the pooling operation, which is almost always used 

in CNNs in conjunction with convolution. The idea behind the pooling 

operation is that the exact location of the feature is not a concern if in 

fact it has been discovered. It simply provides translation invariance. For 

instance, assume that the task is to learn to detect faces in photographs. 

Also assume that the faces in the photographs are tilted (as they generally 

are) and that we have a convolutional layer that detects the eyes. We 

would like to abstract the location of the eyes in the photograph from 

their orientation. The pooling operation achieves this and is an important 

constituent of CNNs.

Figure 6-7 illustrates the pooling operation for a 2-dimensional input. 

The following points are to be noted:

•	 The function f is commonly the max operation (leading 

to max pooling), but other variants, such as average or 

L2 norm, can be used as an alternative.

•	 For a 2-dimensional input, this is a rectangular portion.

•	 The output produced as a result of pooling is much 

smaller in dimensionality as compared to the input.
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�Convolution-Detector-Pooling Building 
Block
Let us now look at the convolution-detector-pooling block, which can be 

thought of a building block of the CNN, and see how all the operations we 

have covered earlier work in conjunction. Refer to Figure 6-8 and Figure 6-9.  

The following points are to be noted.

•	 The detector stage is simply a non-linear activation 

function.

Figure 6-7.  Pooling, or subsampling
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•	 The convolution, detector, and pooling operations 

are applied in sequence to transform the input to the 

output. The output is referred to as a feature map.

•	 The output typically is passed on to other layers 

(convolutional or fully connected).

•	 Multiple convolution-detector-pooling blocks can be 

applied in parallel, consuming the same input and 

producing multiple outputs or feature maps.

Figure 6-8.  Convolution followed by detector stage and pooling
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If the image input consists of three channels, a separate convolution 

operation is applied to each channel, and then the outputs are added up 

after the convolution (see Figure 6-10).

Figure 6-9.  Multiple filters/kernels giving multiple feature maps
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Having covered all the constituent elements of CNNs, we can now look 

at an example CNN in its entirety (see Figure 6-11). The CNN consists of 

two stages of convolution-detector-pooling blocks, with multiple filters/

kernels at each stage producing multiple feature maps. Following these two 

stages, we have a fully connected layer that produces the output. In general, 

a CNN may have multiple stages of convolution-detector-pooling blocks 

(employing multiple filters), typically followed by a fully connected layer.

Figure 6-10.  Convolution with multiple channels
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In addition to these basic constructs, we will explore few additional 

topics that are relevant in the context of convolutional layers.

�Stride
Stride can be defined as the amount by which a filter/kernel shifts. When 

discussing the sliding of the filter over the input image, we assumed 

that the movement was just one unit in the intended direction. We can, 

however, control the sliding movement with a number of our choice 

Figure 6-11.  A complete CNN architecture
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(though it is common to use one). Based on the use case, we can choose 

a more appropriate number. Larger strides often help in reducing 

computation, generalizing learning of features, etc.

�Padding
We also saw that applying convolution reduces the size of the feature map 

when compared to the size of the input image. Zero-padding is a generic 

way to control the shrinkage of the dimension after applying filters larger 

than 1x1 and avoiding information loss at the boundaries.

�Batch Normalization
Batch normalization is a technique that helps to train very deep neural 

networks by standardizing the inputs to a layer for each mini-batch. 

Standardizing the inputs helps to stabilize the learning process and 

thereby dramatically reduces the number of training epochs required 

to train deep networks. The batch normalization layer is added after 

the convolutional layer and usually is a part of a standard block of 

convolutional operation. That is, a combination of convolutional layer, 

batch normalization layer, activation, and max pooling operation together 

in the same sequence is defined as a convolutional unit. We typically add 

several such units in a CNN.

�Filter
Filters are analogous to kernels. In recent implementations (including 

PyTorch) and academia, the term filter is more common than kernel. In 

general, for convolution operations, we use filters of size 3×3 and 5×5. 

Earlier implementations also favored 7×7 filters.
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�Filter Depth
Filter depth usually refers to the depth corresponding to the number of 

color channels in the input image. For the filters in the later layers, the 

depth corresponds to the number of filters in the previous layers. For a 

regular image with three color channels (i.e., R, G, and B), we use a filter 

with a depth of 3.

�Number of Filters
Filters act as a feature extractor; hence, it is common to have several filters 

within each convolutional block of the network. A sample arrangement 

would be a convolutional block with 32 filters of size 3×3 (and of depth 3) 

followed by activation/batch normalization and pooling blocks, followed 

by another block with 64 filters (now having a depth of 32), and so on.

Summarizing key learnings from CNNs
So far, we have covered the key constituent concepts behind a CNN: the 

convolution operation and the pooling operation, and how they are used 

in conjunction. Let’s now take a step back to internalize the ideas behind 

CNNs using these building blocks.

•	 The first idea to consider is the capacity of CNNs. CNNs 

that replace at least one of fully connected layers of a 

neural network with the convolution operation have 

less capacity than that of a fully connected network. 

That is, there exists datasets that a fully connected 

network will be able to model that a CNN will not be 

able to. So, the first point to note is that CNNs achieve 

more by limiting the capacity and hence making the 

training efficient.
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•	 The second idea to consider is that learning the filters 

driving the convolution operation is, in a sense, 

representation learning. For instance, the learned 

filters might learn to detect edges, shapes, etc. The 

important point to consider here is that we are not 

manually describing the features to be extracted from 

the input data; rather, we are describing an architecture 

that learns to engineer the features/representations.

•	 The third idea to consider is the location invariance 

introduced by the pooling operation. The pooling 

operation separates the location of the feature from the 

fact that it is detected. A filter that detects straight lines 

might detect this feature in any portion of the image, 

but the pooling operation picks the fact that the feature 

is detected (max pooling).

•	 The fourth idea is that of hierarchy. A CNN can have 

multiple convolutional and pooling layers stacked up, 

followed by a fully connected network. This allows the 

CNN to build a hierarchy of concepts wherein more 

abstract concepts are based on simpler concepts (refer 

to Chapter 1).

•	 The final idea relates to the presence of a fully connected 

layer at the end of a series of convolutional and pooling 

layers. The series of convolutional and pooling layers 

generates the features, and a standard neural network 

learns the final classification/regression function. It is 

important to distinguish this aspect of the CNN from 

traditional machine learning. In traditional machine 

learning, an expert would hand-engineer features and 

feed them to a neural network. In CNNs, these features/

representations are being learned from data.
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Implementing a basic CNN using PyTorch
The modern deep learning frameworks take care of the heavy lifting for a 

bulk of the operations and constructs we need to develop a CNN. Let’s use 

a simple example to illustrate how PyTorch can be used to define, train, 

and evaluate a CNN.

We will start with an MNIST example that hosts a collection of 

handwritten digit images. Our task is to classify a given image as the digit 

between 0 and 9.

#Note

Computer vision tasks are very compute-intensive and usually require 
high-end hardware for training and evaluating large robust networks. 
The MNIST example we explore is a miniature dataset that should be 
fairly easy for readers to reproduce in commodity hardware. For more 
intensive examples in the chapter, we would recommend a free, web-
based, GPU-enabled compute instance, like Kaggle, or Google Colab. 
Both versions provide a standard compute instance with ~16GB RAM 
and 16GB GPU memory, with monthly quotas. For experimentation 
purposes, these are great resources. For more intensive experiments, 
readers would need to explore deep learning instances on the cloud 
(AWS/GCP/Azure) or custom hardware.

To start, download the dataset available from https://www.kaggle.

com/c/digit-recognizer/data.

We will only use the training dataset that has the labels provided. The 

training dataset will be further divided into training and validation. Now 

that we have the data ready, let’s begin the implementation by importing 

the required packages (Listing 6-1).
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Listing 6-1.  Importing the Required Packages

#pytorch utility imports

import torch

from torch.utils.data import DataLoader, TensorDataset

#neural net imports

import torch.nn as nn, torch.nn.functional as F, torch.optim  

as optim

from torch.autograd import Variable

#import external libraries

import pandas as pd,numpy as np,matplotlib.pyplot as plt, os

from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion_matrix, accuracy_score

%matplotlib inline

#Set device to GPU or CPU based on availability

if torch.cuda.is_available():

    device = torch.device('cuda')

else:

    device = torch.device('cpu')

We will now load the dataset using Pandas (similar to Chapter 5) and 

separate the label and pixel values. Note that most image datasets are 

stored in simple image formats (.jpeg or .png) in a simple folder structure 

that is suitable for PyTorch. For the simplicity of this example, however, 

we use a dataset wherein pixel values are stored as cross-sectional data in 

a .csv file. We will then split the dataset into training and test, and plot few 

samples. In the next example, we will use a dataset that would be stored in 

the traditional folder structure.

In this example, we will use TensorDataset, a wrapper provided by 

PyTorch to combine labels and tensors into a unified dataset. Listing 6-2 

demonstrates loading the dataset into memory.

Chapter 6  Convolutional Neural Networks



217

Listing 6-2.  Loading the Dataset into Memory

input_folder_path = "/input/data/MNIST/"

#The CSV contains a flat file of images,

#i.e. each 28*28 image is flattened into a row of 784 colums

#(1 column represents a pixel value)

#For CNN, we would need to reshape this to our desired shape

train_df = pd.read_csv(input_folder_path+"train.csv")

#First column is the target/label

train_labels = train_df['label'].values

#Pixels values start from the 2nd column

train_images = (train_df.iloc[:,1:].values).astype('float32')

#Training and Validation Split

train_images, val_images, train_labels, val_labels =

                                         train_test_split(

                                             train_images

                                             ,train_labels

                                             ,random_state=2020

                                             ,test_size=0.2)

#Here we reshape the flat row into [#images,#Channels,#Width, 

#Height]

#Given this a simple grayscale image, we will have just 1 channel

train_images = train_images.reshape(train_images.shape[0],1,28, 28)

val_images = val_images.reshape(val_images.shape[0],1,28, 28)

#Also, let's plot few samples

for i in range(0, 6):

    plt.subplot(160 + (i+1))

    �plt.imshow(train_images[i].reshape(28,28), cmap=plt.get_

cmap('gray'))

    plt.title(train_labels[i])
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Next, we will normalize the pixel values and convert the dataset into a 

PyTorch tensor for training (Listing 6-3).

Listing 6-3.  Normalizing the Data and Preparing the Training/

Validation Datasets

#Covert Train Images from pandas/numpy to tensor and normalize 

the values

train_images_tensor = torch.tensor(train_images)/255.0

train_images_tensor = train_images_tensor.view(-1,1,28,28)

train_labels_tensor = torch.tensor(train_labels)

#Create a train TensorDataset

train_tensor = TensorDataset(train_images_tensor, train_labels_

tensor)

#Covert Validation Images from pandas/numpy to tensor and 

normalize the values

val_images_tensor = torch.tensor(val_images)/255.0

val_images_tensor = val_images_tensor.view(-1,1,28,28)

val_labels_tensor = torch.tensor(val_labels)

#Create a Validation TensorDataset

val_tensor = TensorDataset(val_images_tensor, val_labels_

tensor)
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print("Train Labels Shape:",train_labels_tensor.shape)

print("Train Images Shape:",train_images_tensor.shape)

print("Validation Labels Shape:",val_labels_tensor.shape)

print("Validation Images Shape:",val_images_tensor.shape)

#Load Train and Validation TensorDatasets into the data 

generator for Training

train_loader = DataLoader(train_tensor, batch_size=64

                          , num_workers=2, shuffle=True)

val_loader = DataLoader(val_tensor, batch_size=64,  

num_workers=2, shuffle=True)

Output[]

Train Labels Shape: torch.Size([33600])

Train Images Shape: torch.Size([33600, 1, 28, 28])

Validation Labels Shape: torch.Size([8400])

Validation Images Shape: torch.Size([8400, 1, 28, 28])

With the training and validation datasets ready, let’s define the next 

important aspects for the network. This includes the CNN itself, the 

functions for training, as well as evaluating and making predictions. Most 

of these constructs are borrowed from our previous example in Chapter 5. 

We will tackle few new code constructs here.

In our CNN, we need to define a convolutional unit, as discussed 

previously. Each unit combines a convolutional layer followed by 

batch normalization (optional), activation, and max-pooling layers. An 

important aspect to consider is the size of resultant image after each unit 

of convolution.

In this example, our original image is of the size 28×28. When we pass 

this through the first unit of convolution, the image size shrinks based 

on our defined kernel size. Given that we have added a single unit of 

padding to the input using ‘padding=1’, the original size remains same after 

convolution. However, with the max pooling operation, the size is reduced 
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by half (as we want it to be). Therefore, the resultant image, which was 

originally 28×28, will be transformed into a tensor of size 14×14×16 (where 

16 is the number of filters we defined). With each additional convolutional 

unit, we will see the number being shrunk by half (as a result of the max 

pooling operation).

Thus, after three consecutive convolutional units, the final size would 

be 7 (i.e., 28 -> 14 -> 7).

The fully connected layer, fc1, has input nodes as 7×7×32 (where 32 is  

the number of kernels in the preceding convolutional unit). The forward 

function connects these convolutional units sequentially with the fully 

connected layers. The last layer will have 10 output nodes as we have 

multi-class classification problem here: i.e. classifying a digit as 0, 1, 2, 3,  

… 9. The softmax function in the last layer tailors the output into neat set of 

probability scores for our multi-class use case.

In Listing 6-4, we define the structure of our CNN and the helper 

functions to evaluate the model’s performance and generate predictions.

Listing 6-4.  Defining the CNN and the Helper Functions

#Define conv-net

class ConvNet(nn.Module):

    def __init__(self, num_classes=10):

        super(ConvNet, self).__init__()

        #First unit of convolution

        self.conv_unit_1 = nn.Sequential(

            �nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1),

            nn.BatchNorm2d(16),

            nn.ReLU(),

            nn.MaxPool2d(kernel_size=2, stride=2))

        #Second unit of convolution

        self.conv_unit_2 = nn.Sequential(

            �nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1),
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            nn.BatchNorm2d(32),

            nn.ReLU(),

            nn.MaxPool2d(kernel_size=2, stride=2))

        #Fully connected layers

        self.fc1 = nn.Linear(7*7*32, 128)

        self.fc2 = nn.Linear(128, 10)

    #Connect the units

    def forward(self, x):

        out = self.conv_unit_1(x)

        out = self.conv_unit_2(out)

        out = out.view(out.size(0), -1)

        out = self.fc1(out)

        out = self.fc2(out)

        out = F.log_softmax(out,dim=1)

        return out

#Define Functions for Model Evaluation and generating Predictions

def make_predictions(data_loader):

    #Explcitly set the model to eval mode

    model.eval()

    test_preds = torch.LongTensor()

    actual = torch.LongTensor()

    for data, target in data_loader:

        if torch.cuda.is_available():

            data = data.cuda()

        output = model(data)

        �#Predict output/Take the index of the output with  

max value

        preds = output.cpu().data.max(1, keepdim=True)[1]
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        #Combine tensors from each batch

        test_preds = torch.cat((test_preds, preds), dim=0)

        actual  = torch.cat((actual,target),dim=0)

    return actual,test_preds

#Evalute model

def evaluate(data_loader):

    model.eval()

    loss = 0

    correct = 0

    for data, target in data_loader:

        if torch.cuda.is_available():

            data = data.cuda()

            target = target.cuda()

        output = model(data)

        �loss += F.cross_entropy(output, target, size_

average=False).data.item()

        predicted = output.data.max(1, keepdim=True)[1]

        �correct += (target.reshape(-1,1) == predicted.

reshape(-1,1)).float().sum()

    loss /= len(data_loader.dataset)

    �print('\nAverage Val Loss: {:.4f}, Val Accuracy: {}/{} 

({:.3f}%)\n'.format(

        loss, correct, len(data_loader.dataset),

        100. * correct / len(data_loader.dataset)))

With the important constructs in place, we can now create an 

instance of the model and define our criterion function and optimizer, as 

demonstrated in Listing 6-5.
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Listing 6-5.  Creating a Model Instance and Defining the Loss 

Function and Optimizer

#Create Model  instance

model = ConvNet(10).to(device)

#Define Loss and optimizer

criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

print(model)

Output[]

Listing 6-6 demonstrates training a CNN model for a defined number 

of epochs—in this case, five.

Listing 6-6.  Training a CNN Model

num_epochs = 5

# Train the model

total_step = len(train_loader)

for epoch in range(num_epochs):

    for i, (images, labels) in enumerate(train_loader):

        images = images.to(device)

        labels = labels.to(device)
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        # Forward pass

        outputs = model(images)

        loss = criterion(outputs, labels)

        # Backward and optimize

        optimizer.zero_grad()

        loss.backward()

        optimizer.step()

    �#After each epoch print Train loss and validation loss + 

accuracy

    �print ('Epoch [{}/{}], Loss: {:.4f}' .format(epoch+1,  

num_epochs, loss.item()))

    evaluate(val_loader)

Output[]

Epoch [1/5], Loss: 0.0564

Average Val Loss: 0.0700, Val Accuracy: 8196.0/8400 (97.571%)

Epoch [2/5], Loss: 0.0096

Average Val Loss: 0.0481, Val Accuracy: 8279.0/8400 (98.560%)

Epoch [3/5], Loss: 0.0088

Average Val Loss: 0.0474, Val Accuracy: 8273.0/8400 (98.488%)

Epoch [4/5], Loss: 0.0362

Average Val Loss: 0.0520, Val Accuracy: 8243.0/8400 (98.131%)

Epoch [5/5], Loss: 0.0013

Average Val Loss: 0.0458, Val Accuracy: 8277.0/8400 (98.536%)

We can see that the model has achieved fairly positive results on the 

validation dataset. With 98.5% accuracy (within five epochs), we can 

conclude our model has good performance.
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Let’s make predictions on the validation dataset and visualize the 

confusion matrix (see Listing 6-7).

Listing 6-7.  Making Predictions

#Make Predictions on Validation Dataset

actual, predicted = make_predictions(val_loader)

actual,predicted = np.array(actual).reshape(-1,1)

                            ,np.array(predicted).reshape(-1,1)

print("Validation Accuracy-",round(accuracy_score(actual, 

predicted),4)*100)

print("\n Confusion Matrix\n",confusion_matrix(actual,predicted))

Output[]

Implementing a larger CNN in PyTorch
So, that was our first sample CNN. Given the small dataset, we could 

comfortably train our network on our personal computer (commodity 

hardware) and still achieve favorable results. Let’s explore a similar 

example but with more complicated images. A good example in this 

category would be the Cats and Dogs dataset. Here, our objective is to 

classify the dataset as Cats or Dogs based on a given image.
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This dataset was originally published by Microsoft Research and was 

later made available through Kaggle, at https://www.kaggle.com/c/ 

dogs-vs-cats/data.

The dataset is hosted as a simple folder with filenames representing 

the label, so we might have to reorganize the dataset before we can use it.

PyTorch provides a neat abstraction for images with ImageFolder and 

DataLoader. PyTorch expects that data is stored in the following folder 

structure:

Root/label_1/*

Root/label_2/*

Root/label_N/*

For our use case, this would be the following:

/input/train/cats/*

/input/train/dogs/*

/input/test/cats/*

/input/test/dogs/*

To simplify the process, we have provided an organized structure, with 

images suitable for PyTorch experiments, at https://www.kaggle.com/

jojomoolayil/catsvsdogs.

We recommend using a Kaggle Notebook with a GPU accelerator for 

this experiment. The settings on the right sidebar show the training data 

folder structure, along with the accelerator (see Figure 6-12). We have 

turned on the Internet option and set the accelerator to GPU.
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Let’s start with a fresh import of the required packages. Listing 6-8 

demonstrates importing the packages for this exercise.

Listing 6-8.  Importing the Packages for This Exercise

# Import required libraries

import torch

import torchvision.transforms as transforms

import torchvision.datasets as datasets

import torchvision.models as models

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

from PIL import Image

import matplotlib.pyplot as plt

Figure 6-12.  The Environment settings in Kaggle Notebook
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import glob,os

import matplotlib.image as mpimg

new_path = "/kaggle/input/catsvsdogs/"

Ensure that you have turned on the Internet option and selected 

the accelerator as GPU. We confirm that the GPU is available using the 

command illustrated in Listing 6-9.

Listing 6-9.  Enabling the GPU (If Available) in the Kernel

#Check if GPU is available

if torch.cuda.is_available():

    device = torch.device('cuda')

else:

    device = torch.device('cpu')

print("Device:",device)

Output[]

Device: cuda

Note that it is recommended to use only a GPU, not a mandate. 

Using a CPU, however, will be painstakingly slower for computer vision 

experiments.

We can now explore a random set of images of cats and dogs.  

Listing 6-10 randomly plots sample images from the training dataset.

Listing 6-10.  Plotting Sample Images from the Training Dataset

%matplotlib inline

images = []

#Collect Cat images

for img_path in glob.glob(os.path.join(new_path,"train","cat", 

"*.jpg"))[:5]:

    images.append(mpimg.imread(img_path))
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#Collect Dog images

for img_path in glob.glob(os.path.join(new_path,"train","dog", 

"*.jpg"))[:5]:

    images.append(mpimg.imread(img_path))

#Plot a grid of cats and Dogs

plt.figure(figsize=(20,10))

columns = 5

for i, image in enumerate(images):

    plt.subplot(len(images) / columns + 1, columns, i + 1)

    plt.imshow(image)

For computer vision experiments, we would always apply numerous 

transformations on the raw dataset. A core reason for this is that most 

images used in an experiment would be of different sizes. Also, at times, 

we might need to add more training samples by augmenting the existing 

samples. Some examples would include augmenting more training 

samples with random rotations, cropping images from center, flipping 

across axis, standardizing pixel values, etc. PyTorch provides a handy 

functionality to compose several such transformations and orchestrate 

them on training and validation samples. In Listing 6-11, we compose 

Plots of random images from the training set
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a transformations object that will sequentially resize all images into 

255×255, crop them from center to 224×224, convert them to tensors, and 

normalize their pixel values.

Listing 6-11.  Transforming the Data and Creating the Training and 

Validation Sets

#Compose sequence of transformations for image

transformations = transforms.Compose([

    transforms.Resize(255),

    transforms.CenterCrop(224),

    transforms.ToTensor(),

    �transforms.Normalize(mean=[0.485, 0.456, 0.406], 

std=[0.229, 0.224, 0.225])

])

# Load in each dataset and apply transformations using

# the torchvision.datasets as datasets library

train_set = datasets.ImageFolder(os.path.join(new_path,"train")

                                 , transform = transformations)

val_set = datasets.ImageFolder(os.path.join(new_path,"test")

                               , transform = transformations)

# Put into a Dataloader using torch library

train_loader = torch.utils.data.DataLoader(train_set

                                 , batch_size=32, shuffle=True)

val_loader = torch.utils.data.DataLoader(val_set, batch_size =32,  

shuffle=True)

Note that train_loader and val_loader are objects that take care of 

shuffling and creating mini-batches of images with labels for our training 

loop. Before creating mini-batches, the transformations object ensures 

the augmentations are appropriately applied on all images.

Next, Listing 6-12 defines our CNN.
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Listing 6-12.  Defining the CNN

#Define Convolutional network

class ConvNet(nn.Module):

    def __init__(self, num_classes=2):

        super(ConvNet, self).__init__()

        #First unit of convolution

        self.conv_unit_1 = nn.Sequential(

            nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1),

            nn.ReLU(),

            nn.MaxPool2d(kernel_size=2, stride=2)) #112

        #Second unit of convolution

        self.conv_unit_2 = nn.Sequential(

            nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1),

            nn.ReLU(),

            nn.MaxPool2d(kernel_size=2, stride=2)) #56

        #Third unit of convolution

        self.conv_unit_3 = nn.Sequential(

            nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),

            nn.ReLU(),

            nn.MaxPool2d(kernel_size=2, stride=2)) #28

        #Fourth unit of convolution

        self.conv_unit_4 = nn.Sequential(

            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),

            nn.ReLU(),

            nn.MaxPool2d(kernel_size=2, stride=2)) #14

        #Fully connected layers

        self.fc1 = nn.Linear(14*14*128, 128)

        self.fc2 = nn.Linear(128, 1)

        self.final = nn.Sigmoid()
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    def forward(self, x):

        out = self.conv_unit_1(x)

        out = self.conv_unit_2(out)

        out = self.conv_unit_3(out)

        out = self.conv_unit_4(out)

        #Reshape the output

        out = out.view(out.size(0),-1)

        out = self.fc1(out)

        out = self.fc2(out)

        out  = self.final(out)

        return(out)

Similar to the MNIST example, the fully connected layer needs the 

number of input dimensions, which would be different here based on the 

convolutional units. Because we applied four convolutional units in the 

original sample, the size of the image would shrink, as ([original] 224 -> 

[first] 112 -> [second] 56 -> [third] 28 -> [fourth] 14. Therefore, the fully 

connected layer would have 14×14×128 input dimensions, with 128 being 

the number of kernels in the preceding unit.

Listing 6-13 defines a function for evaluating our new network.

Listing 6-13.  Defining the Evaluation Function

def evaluate(model,data_loader):

    loss = []

    correct = 0

    with torch.no_grad():

            for images, labels in data_loader:

                images = images.to(device)

                labels = labels.to(device)

                model.eval()
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                output = model(images)

                predicted = output > 0.5

                �correct += (labels.reshape(-1,1) == predicted.

reshape(-1,1)).float().sum()

                #Clear memory

                del([images,labels])

                if device == "cuda":

                    torch.cuda.empty_cache()

    print('\nVal Accuracy: {}/{} ({:.3f}%)\n'.format(

        correct, len(data_loader.dataset),

        100. * correct / len(data_loader.dataset)))

With that being in place, let’s define and create a model instance and 

train our network for 10 epochs. Listing 6-14 demonstrates defining the 

loss function and optimizer, creating a model instance, and training for a 

defined number of epochs.

Listing 6-14.  Defining the Loss Function and Optimizer, Creating 

the Model Instance, and Training for a Defined Number of Epochs

num_epochs = 10

loss_function = nn.BCELoss()  #Binary Crosss Entropy Loss

model = ConvNet()

model.cuda()

adam_optimizer = torch.optim.Adam(model.parameters(), lr= 0.001)

# Train the model

total_step = len(train_loader)

print("Total Batches:",total_step)
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for epoch in range(num_epochs):

    model.train()

    train_loss = 0

    for i, (images, labels) in enumerate(train_loader):

        images = images.to(device)

        labels = labels.to(device)

        # Forward pass

        outputs = model(images)

        �loss = loss_function(outputs.float(), labels.float().

view(-1,1))

        # Backward and optimize

        adam_optimizer.zero_grad()

        loss.backward()

        adam_optimizer.step()

        train_loss += loss.item()* labels.size(0)

        �#After each epoch print Train loss and validation loss 

+ accuracy

    �print ('Epoch [{}/{}], Loss: {:.4f}' .format(epoch+1,  

num_epochs, loss.item()))

    #Evaluate model after each training epoch

    evaluate(model,val_loader)

Output[]

Total Batches: 625

Epoch [1/10], Loss: 0.6990

Val Accuracy: 3768.0/5000 (75.360%)

Epoch [2/10], Loss: 0.4914

Val Accuracy: 3885.0/5000 (77.700%)
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Epoch [3/10], Loss: 0.2088

Val Accuracy: 4141.0/5000 (82.820%)

Epoch [4/10], Loss: 0.2832

Val Accuracy: 4219.0/5000 (84.380%)

Epoch [5/10], Loss: 0.1797

Val Accuracy: 4271.0/5000 (85.420%)

Epoch [6/10], Loss: 0.3226

Val Accuracy: 4248.0/5000 (84.960%)

Epoch [7/10], Loss: 0.2027

Val Accuracy: 4250.0/5000 (85.000%)

Epoch [8/10], Loss: 0.2660

Val Accuracy: 4137.0/5000 (82.740%)

Epoch [9/10], Loss: 0.1867

Val Accuracy: 4286.0/5000 (85.720%)

Epoch [10/10], Loss: 0.1286

Val Accuracy: 4271.0/5000 (85.420%)

After 10 epochs, the performance is roughly 85%. The performance 

would definitely improve after several more epochs; however, the time 

required to train such a network is expensive. One question we might 

wonder is whether there is a faster and easier alternative to speed this up. 

As it turns out, transfer learning is available for our resource. The amazing 

news about CNNs is that once a layer is trained, it can essentially be reused 

for another task. The lower-level features—for example, curves, edges, and 

circles—and several higher-level features are always common or similar 

for most computer vision tasks. We might, however, need to retrain the 

last few layers to tailor the network specifically for our use case. Still, that 

brings a huge relief when training a large network.
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Today, we have plenty of pretrained networks that were trained for 

several hours on a large corpus of datasets that almost represent most 

common objects we come across. A large number of these networks are 

readily available under PyTorch. We can directly leverage them instead of 

training our own network from scratch.

For more information about the available list of pretrained models, 

visit https://pytorch.org/docs/stable/torchvision/models.html.

For our use case, let’s use VGGNet. Listing 6-15 demonstrates 

downloading and leveraging VGGNet for transfer learning.

Listing 6-15.  Downloading and Initializing the Pretrained Model

#Download the model (pretrained)

from torchvision import models

new_model = models.vgg16(pretrained=True)

# Freeze model weights

for param in new_model.parameters():

    param.requires_grad = False

print(new_model.classifier)

Output[]

Sequential(

  (0): Linear(in_features=25088, out_features=4096, bias=True)

  (1): ReLU(inplace=True)

  (2): Dropout(p=0.5, inplace=False)

  (3): Linear(in_features=4096, out_features=4096, bias=True)

  (4): ReLU(inplace=True)

  (5): Dropout(p=0.5, inplace=False)

  (6): Linear(in_features=4096, out_features=1000, bias=True)

)
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The pretrained network has six layers. The original network was used 

to classify 1,000 distinct objects; hence, the last layer has 1,000 output 

connections. However, our use case is a simple binary classification 

exercise; therefore, we need to replace the final layer to suit our use case. 

Listing 6-16 replaces the last layer in the pretrained network with a custom 

layer that outputs a single unit with sigmoid activation.

Listing 6-16.  Replacing the Last Layer with Our Custom Layer

#Define our custom model last layer

new_model.classifier[6] = nn.Sequential(

                      �nn.Linear(new_model.classifier[6]. 

in_features, 256),

                      nn.ReLU(),

                      nn.Dropout(0.4),

                      nn.Linear(256, 1),

                      nn.Sigmoid())

# Find total parameters and trainable parameters

total_params = sum(p.numel() for p in new_model.parameters())

print(f'{total_params:,} total parameters.')

total_trainable_params = sum(

    �p.numel() for p in new_model.parameters()  

if p.requires_grad)

print(f'{total_trainable_params:,} training parameters.')

Output[]

135,309,633 total parameters.

1,049,089 training parameters.

Here, we have leveraged the existing layers of the VGG pretrained 

model and added a new, fully connected layer towards the end to tailor 

the network structure for our binary use case. All the layers, apart from 

Chapter 6  Convolutional Neural Networks



238

the ones we added, have their weights frozen—that is, the model weights 

will not be updated during the training process, except for the last fully 

connected layer.

Let’s now train the new model for our dataset for 10 epochs. All 

components remain similar to the previous example. Listing 6-17 

demonstrates training the pretrained network for our use case.

Listing 6-17.  Training the Pretrained Model for the Defined Use 

Case

#Define epochs, optimizer and loss function

num_epochs = 10

loss_function = nn.BCELoss()  #Binary Crosss Entropy Loss

new_model.cuda()

adam_optimizer = torch.optim.Adam(new_model.parameters(),  

lr= 0.001)

# Train the model

total_step = len(train_loader)

print("Total Batches:",total_step)

for epoch in range(num_epochs):

    new_model.train()

    train_loss = 0

    for i, (images, labels) in enumerate(train_loader):

        images = images.to(device)

        labels = labels.to(device)

        # Forward pass

        outputs = new_model(images)

        �loss = loss_function(outputs.float(), labels.float().

view(-1,1))
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        # Backward and optimize

        adam_optimizer.zero_grad()

        loss.backward()

        adam_optimizer.step()

        train_loss += loss.item()* labels.size(0)

    �#After each epoch print Train loss and validation loss + 

accuracy

    �print ('Epoch [{}/{}], Loss: {:.4f}' .format(epoch+1,  

num_epochs, loss.item()))

    #After each epoch evaluate model

    evaluate(new_model,val_loader)

Output[]

Total Batches: 625

Epoch [1/10], Loss: 0.0140

Val Accuracy: 4933.0/5000 (98.660%)

Epoch [2/10], Loss: 0.0411

Val Accuracy: 4931.0/5000 (98.620%)

Epoch [3/10], Loss: 0.0054

Val Accuracy: 4933.0/5000 (98.660%)

Epoch [4/10], Loss: 0.0017

Val Accuracy: 4937.0/5000 (98.740%)

Epoch [5/10], Loss: 0.0285

Val Accuracy: 4935.0/5000 (98.700%)

Epoch [6/10], Loss: 0.0070

Val Accuracy: 4935.0/5000 (98.700%)

Epoch [7/10], Loss: 0.0310

Val Accuracy: 4940.0/5000 (98.800%)
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Epoch [8/10], Loss: 0.0091

Val Accuracy: 4922.0/5000 (98.440%)

Epoch [9/10], Loss: 0.0116

Val Accuracy: 4937.0/5000 (98.740%)

Epoch [10/10], Loss: 0.0442

Val Accuracy: 4930.0/5000 (98.600%)

With just 10 epochs, we can see that our pretrained model gives ~98% 

accuracy over the validation dataset. Compared to our original model 

(trained from scratch), that performance improvement is significant.

�CNN Thumb Rules
For computer vision tasks, we can delineate a few rules that can be good 

starting points for most experiments.

•	 The starting point for any given computer vision task 

should be leveraging a pretrained network. Training a 

network from scratch is always possible, but the huge 

compute effort, when results are already available, 

would be a futile task.

•	 In scenarios where the model performance achieved 

is not up to your benchmarks, experiment with several 

other pretrained networks, not only one. PyTorch offers 

several ready-to-use pretrained models.

•	 When your image classification task includes a very 

diverse set of images, the pretrained networks might 

not give you the best performance. In such cases, it 

is recommended to unfreeze a few more top layers 

incrementally. The idea is to experiment with what 

level of feature representation makes sense for your 
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use case. In the worst-case scenario, you might have 

to train the entire network from the ground up. In 

most cases, however, you are quite likely to be able to 

save compute efforts with few or more layers from the 

pretrained networks.

•	 Using dropout is always a good idea.

•	 For most use cases, ReLUs can be blindly be used as the 

de-facto activation function.

•	 For fairly acceptable performance, ensure that each 

class has 6,000 or more training samples. The more, the 

better.

•	 The batch size should be as large as the GPU or 

CPU can handle. Optimizing the batch size helps to 

accelerate the training process.

•	 A GPU is always recommended. GPU performance is 

almost 50× or above for most common use cases. The 

cost of acquiring a GPU-based instance has come down 

significantly. All major cloud players provide ready-to-

use deep learning images or virtual machines that can 

be provisioned on demand with a suitable compute 

and GPU. The entire heavy-lifting task (i.e., installing 

the required dependencies, packages, and drivers, 

and configuring deep learning, the Python framework, 

workspace, etc.) is abstracted with a single click. The 

cost has also come down to provide an affordable 

means to train a few experiments. Today, you can 

provision powerful machines with a GPU that fair well 

with most research projects for ~1 USD/hour.
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•	 Many resources are available for free. Google Colab and 

Kaggle provide excellent places to start experimenting 

with deep learning.

�Summary
This chapter covered the basics of CNNs. The key takeaways are the 

convolution operation, the pooling operation, how they are used in 

conjunction, and how features are not hand-engineered but learned. 

CNNs are the most successful application of deep learning and embody 

the idea of learning features/representations rather than hand-engineering 

them. The exercises in this chapter explored CNNs using both a fairly 

simple dataset and a moderately large dataset with training from scratch. 

We also leveraged pretrained networks and saw the performance boost 

achieved as a result.

In the next chapter, we will explore recurrent neural networks, which 

are widely used in the field of natural language processing and speech 

recognition.
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CHAPTER 7

Recurrent Neural  
Networks
The field of natural language processing (NLP) has witnessed phenomenal 

growth with the advent of deep learning. A lot of this movement can be 

credited to recurrent neural networks (RNNs) and their variants. Voice-

based AI assistants, auto-completion of text in smartphone keyboards, 

and text-based reviews classified based on sentiments are all problems 

effectively solved by RNNs.

This chapter begins by exploring the foundational concepts involved 

with RNNs. We then explore a few variations of the vanilla RNN model that 

are more suitable for modern computational tasks. Finally, we will study 

the practical implementation of an RNN using PyTorch on a real-world 

dataset borrowed from our favorite platform, Kaggle.

Let’s get started.

�Introduction to RNNs
Recurrent neural networks (RNNs) are essentially neural networks that 

employ recurrence, which is using information from a previous forward 

pass over the neural network. Essentially, all RNNs can be described as 

a recurrence relationship. RNNs are suited for, and have been incredibly 

successful when applied to, problems wherein the input data on which the 
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predictions are to be made is in the form of a sequence (series of entities 

where the order is important). Examples of sequence data include time-

series, natural language processing, speech analysis, etc.

Figure 7-1 demonstrates how a regular RNN unfolds (across time) to 

form a recurrent neural network. In the following section, we will explore 

the basics of an RNN leveraging.

Let’s start by describing the moving parts of an RNN. First, we 

introduce some notation. We will assume that the input consists of a 

sequence of entities x(1), x(2), …, x(τ). Corresponding to this input, we need 

to produce either a sequence y(1), y(2), …, y(τ) or just one output for the 

entire input sequence y, (or a sequence with a different length). An RNN 

of a different architecture would provide a solution to a different use case. 

Figure 7-2 demonstrates the types of RNN based on the input and output 

length.

Figure 7-1.  A regular RNN unfolded (Source – Deep Learning  
www.deeplearningbook.org/contents/rnn.html)
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When we have an RNN that does not leverage information from 

the previous state, we have a traditional neural net. With recurrence, 

however, we have several new possibilities. Today’s most common use 

cases in NLP revolve around many-to-one and many-to-many models. 

Examples include named-entity recognition and machine translation (e.g., 

translating a document from French to English). This chapter explores 

a few simple examples, but discussing each variant in depth is beyond 

the scope of this book. Readers are strongly recommended to explore 

named-entity recognition, machine translation (and, optionally, music 

generation) independently.

Let’s start with the basics.

To distinguish between what the RNN produces (i.e. predictions) 

and what it is ideally expected to produce (i.e. actuals), we denote the 

predictions by ( ) ( ) ( )1 2, , ,ˆ ˆ ˆ τ…y y y or ŷ  the output the RNN produces.

Similarly, we will denote the ground truth i.e. actual values that RNN 

should ideally produce, denoted by y(1), y(2), …, y(τ). Figure 7-3 shows the 

outputs (predictions) generated by the RNN as ( ) ( ) ( )1 2, , ,ˆ ˆ ˆ τ…y y y . To compute 

disagreement with actuals, we would compare these outputs generated 

with the actual values represented as y(1), y(2), …, y(τ).

Figure 7-2.  RNN types based on input and output length
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RNNs produce either an output for every entity in the input sequence 

(many-to-many) or a single output for the entire sequence (many-to-one), 

as shown Figure 7-2. Let’s consider an RNN that produces one output 

for every entity in the input (essentially referring to the unrolled network 

shown in Figure 7-1).

The RNN can be described using the following equations:

	
h tanh Ux Wh bt t t� � � � �� �� � �� �1

	

	
( ) ( )( )ˆ = +t ty softmax Vh c 	

U is the weight to the input to the network, V is the weight to the output 

from the activation function, and W is the weight matrix for the current 

hidden state.

The following points about the RNN equations should be noted:

	 1.	 The RNN computation involves computing the 

hidden state for an entity in the sequence. This is 

denoted by h(t).

	 2.	 The computation of h(t) uses the corresponding input at 

entity x(t) and the previous hidden state h(t − 1).

Figure 7-3.  An unrolled RNN (many-to-many), representing a part of 
Figure 7-1
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	 3.	 The output ( )ˆ ty  is computed using the hidden  

state h(t).

	 4.	 While the current hidden state is being computed, a 

set of Weights are associated with the input and the 

previous hidden state. This is denoted by U and W, 

respectively. There is also a bias term, denoted by b.

	 5.	 Similarly, while computing the output, a set of 

Weights are also associated with the current hidden 

state. This is denoted by V. There is also a bias term, 

denoted by c.

	 6.	 Also, while computing the hidden state, the tanh 

activation function (introduced in earlier chapters) 

is used.

	 7.	 The softmax activation function is used in the 

computation of the output.

	 8.	 The RNN, as described by the equations, can 

process an arbitrarily large input sequence.

	 9.	 The parameters of the RNN—U, W, V, b, c, etc.—

are shared across the computation of the hidden 

layer and output value (for each of entities in the 

sequence).

Figure 7-4 illustrates the RNN. Note the recurrence relationship with 

the self-loop at the hidden state.
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Figure 7-4 also depicts a loss function associated with each output 

associated with each input. We will refer back to it when discuss how RNNs 

are trained.

It is essential to internalize how an RNN is different from all the feed-

forward neural networks (including convolutional networks) we discussed 

earlier. The key difference is the hidden state, which represents a summary 

of the entities seen in the past (for the same sequence).

Ignoring for the time being how RNNs are trained, it should be clear 

how a trained RNN could be used. For a given sequence of inputs, an RNN 

would produce an output for each entity in the input.

Let’s now consider a variation in the RNN where instead of the 

recurrence using the hidden state, we have recurrence using the output 

produced in the previous state (Figure 7-5).

Figure 7-4.  RNN (recurrence using the previous hidden state)
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The equations describing such an RNN are as follows:

	
( ) ( ) ( )( )1ˆ −= + +t t th tanh Ux W y b 	

	
( ) ( )( )ˆ = +t ty softmax Vh c 	

The following points are to be noted:

	 1.	 The RNN computation involves computing the 

hidden state for an entity in the sequence. This is 

denoted by h(t).

	 2.	 The computation of h(t) uses the corresponding 

input at entity x(t) and the previous output ( )1ˆ .−ty

	 3.	 The output ( )ˆ ty  is computed using the hidden  

state h(t).

	 4.	 While computing the current hidden sate, a set 

of Weights are associated with the input and the 

previous output. This is denoted by U and W, 

respectively. There is also a bias term, denoted by c.

Figure 7-5.  RNN (recurrence using the previous output)
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	 5.	 Weights are associated with the hidden state while 

computing the output. This is denoted by V. There is 

also a bias term, denoted by c.

	 6.	 The tanh activation function is used in the 

computation of the hidden state.

	 7.	 The softmax activation function is used in the 

computation of the output.

Let’s now consider a variation of the RNN where only a single output is 

produced for the entire sequence (Figure 7-6). Such an RNN is described 

using the following equations:

	
( ) ( ) ( )( )1ˆ −= + +t t th tanh Ux W y b 	

	
( )( )ˆ τ= +y softmax Vh c 	

Figure 7-6.  RNN (producing a single output for the entire input 
sequence)

Chapter 7  Recurrent Neural Networks 



251

The following points are to be noted:

	 1.	 The RNN computation involves computing the 

hidden state for an entity in the sequence. This is 

denoted by h(t).

	 2.	 The computation of h(t) uses the corresponding input 

at entity x(t) and the previous hidden state h(t − 1).

	 3.	 The computation of h(t) is done for each entity in the 

input sequence x(1), x(2), …, x(τ).

	 4.	 The output ŷ  is computed using only the last 

hidden state h(τ).

	 5.	 While computing the current hidden state, a set 

of Weights are associated with the input and the 

previous hidden. This is denoted by U and W, 

respectively. There is also a bias term, denoted by b.

	 6.	 Weights are associated with the hidden state while 

computing the output. This is denoted by V. There is 

also a bias term, denoted by c.

	 7.	 The tanh activation function is used in the 

computation of the hidden state.

	 8.	 The softmax activation function is used in the 

computation of the output.

�Training RNNs
This section describes how RNNS are trained. We first need to look at how 

the RNN looks when we unroll the recurrence relationship, which is at the 

heart of the RNN. Unrolling the recurrence relationship corresponding 

to RNN is simply writing out the equations by recursively substituting the 

value on which recurrence relationship is defined.
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In the case of the RNN in Figure 7-1 this is h(t). That is, the value of h(t) is 

defined in terms of h(t − 1), which in turn is defined in terms of h(t − 2) and so on 

till h(0). We will assume that h(0) is either predefined by the user, set to zero 

or learned as another parameter/weight (learned like W, V, or b). Unrolling 

simply means writing out the equations that describe the RNN in terms of 

h(0). In order to do so, of course, we need fix what the length of the sequence, 

which is denoted by τ. In this section, we will explore unrolling the few 

different RNNs we explored above. We will start with unrolling the RNN 

where the previous hidden state was used for recurrence (demonstrated in 

Figure 7-3). Later, we will also explore the same for RNN having recurrence 

using previous output and finally unrolling a RNN with single output.

Figure 7-7 illustrates the unrolled RNN corresponding to the RNN in 

Figure 7-4, assuming an input sequence of size 4. Similarly, Figure 7-8 and 

Figure 7-9 illustrate the unrolled RNNs corresponding to the RNNs shown 

in Figure 7-5 and Figure 7-6, respectively.

Figure 7-7.  Unrolling the RNN corresponding to Figure 7-4
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Figure 7-7 unrolls the recurrent network shown in Figure 7-4—that is, 

the recurrence unit is added from the previous hidden state. We can note 

this by referring to h0 being passed to h1 the hidden state for x(1). Similarly, 

the hidden state h3 is passed to h4, the final step in this illustration. The 

weight W and bias b are shared across the recurrent units.

Figure 7-8 unrolls the recurrent network shown in Figure 7-5—that is, 

the recurrence unit is added from the previous output state. We can note 

this by referring to ŷ (0) being passed to h1 i.e. the hidden state for x(1).  

Similarly, the output state ŷ (3) is passed to h4, the final step in this 

illustration. The weight W and bias b are shared across the recurrent units.

Figure 7-8.  Unrolling the RNN corresponding to Figure 7-5
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The unrolling process operates on the assumption that the length of 

the input sequence is known beforehand and based on that the recurrence 

is unrolled. Once the RNN is unrolled, we essentially have a non-recurrent 

neural network.

The parameters to be learned—U, W, V, b, c etc. (denoted in dark in 

Figure 7-9)—are shared across the computation of the hidden layer and 

output value. We have seen such parameter sharing earlier in the context 

of convolutional neural networks.

Given an input and output of a given size (for example, τ, which is 

assumed to be 4 in Figures 7-7 through 7-9), we can unroll an RNN and 

compute gradients for the parameters to be learned with respect to a loss 

function (as described in earlier chapters).

Thus, training an RNN is simply first unrolling the RNN for a given size 

of input and corresponding expected output, and then training the unrolled 

RNN by computing the gradients and using stochastic gradient descent.

Figure 7-9.  Unrolling the RNN corresponding to Figure 7-6 (single 
output)
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As previously mentioned, RNNs can deal with arbitrarily long inputs; 

correspondingly, they need to be trained on arbitrarily long inputs. 

Figures 7-10 through 7-12 illustrate how an RNN is unrolled for different 

sizes of inputs. Note that once the RNN is unrolled, the process of training 

the RNN is identical to training a regular neural network, as covered 

in earlier chapters. In the Figure 7-10.1-7-11.1.3 the RNN described in 

Figure 7-4 is unrolled for input sizes of 1, 2, 3, and 4.

Figure 7-10 demonstrates step 1 and step 2—i.e., unrolling for input 

sequences x(1) and x(2), sequentially. In step 1, given that we have no previous 

hidden state, we pass h(0) to the current hidden state. In Figure 7-10, we limit 

the time sequences to unroll i.e. τ = 4; therefore, the network is unrolled to 

4 steps. Figure 7-11 and Figure 7-12 demonstrate the incremental unrolling 

steps sequentially.

Figure 7-10.  Unrolling the RNN corresponding to Figure 7-4 (step 1 
and step 2)
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Here, we have the third input sequence connected to the unrolled 

network. The weights U, W, and V are shared across the network. In the 

next, and final, step, we can see that the unrolled network is identical to the 

network shown in Figure 7-7 (i.e., unrolled for four input sequences).

Figure 7-11.  Unrolling the RNN corresponding to Figure 7-4 
(step 3)
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Given that the dataset to be trained on consists of sequences of varying 

sizes, the input sequences are grouped so that the sequences of the same 

size fall into one group. Then, for a group, we can unroll the RNN for the 

sequence length and train it. Training for a different group will require the 

RNN to be unrolled for a different sequence length. Thus, it is possible to 

train the RNN on inputs of varying sizes by unrolling and training it with 

the unrolling done based on the sequence length.

It must be noted that training the unrolled RNN illustrated in Figure 7-4 

is essentially a sequential process, as the hidden states are dependent on 

each other. In the case of RNNs where in the recurrence is over the output 

instead of the hidden state (Figure 7-5), it is possible to use a technique 

Figure 7-12.  Unrolling the RNN corresponding to Figure 7-4 (step 4) | 
Identical to Figure 7-7
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called teacher forcing, as illustrated in Figure 5-9. The key idea here is to 

use y(t − 1) instead of ( )1ˆ −ty  in the computation of h(t) while training. While 

making predictions (when the model is deployed for usage) however, ( )1ˆ −ty  

is used.

�Bidirectional RNNs
Let’s now look at another variation on RNNs, the bidirectional RNN. The 

key idea behind a bidirectional RNN is to use the entities that lie further 

in the sequence to make a prediction for the current entity. For all the 

RNNs we have considered so far, we have been using the previous entities 

(captured by the hidden state) and the current entity in the sequence 

to make the prediction. However, we have not been using information 

concerning the entities that lie further in the sequence to make 

predictions. A bidirectional RNN leverages this information and can give 

improved predictive accuracy in many cases (Figure 7-13).

Consider the following simple example, borrowed from Andrew Ng’s 

Coursera lecture :

Sentence 1 - He said, “Teddy bears are beautiful 

toys.”

Sentence 2 - He said, “Teddy Roosevelt, the 

President of United States.”

In these sentences, considering a classic case of NLP (predicting the 

next word), there is no means to correctly predict the word after “Teddy” 

(assuming a unidirectional forward RNN). The context that comes from 

the right side essentially sheds light on an accurate prediction for the next 

word. Consider a sentiment analysis task where a model is trying to classify 

sentences as positive or negative. With the left and right context building 

in the network, bidirectional models can effectively “look forward” in the 

sentence to see if “future” tokens may influence the current decision. In 
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the case of sentiment classification (many-to-one RNN), there are sarcastic 

comments where the words following after a positive negate the presence 

of the positive word—for example, “I loved the movie, biggest joke ever!” 

Here, the context on the right side nullifies the presence of the word 

“loved.”

A bidirectional RNN can be described using the following equations:

	
h tanh U x W h bf

t
f

t
f

t
f

� � � � �� �� � �� �1
	

	
h tanh U x W h bb

t
b

t
b

t
b

� � � � �� �� � �� �1
	

	
( ) ( ) ( )( )ˆ = + +t t t

b b f fy softmax V h V h c 	

The RNN computation involves computing the forward hidden 

state and backward hidden state for an entity in the sequence. This is 

denoted by hf
t� �  and hb

t� � , respectively. The computation of hf
t� �  uses the 

corresponding input at entity x(t) and the previous hidden state hf
t�� �1

.  The 

computation of hb
t� �  uses the corresponding input at entity x(t) and the 

previous hidden state hb
t�� �1

.

The output ( )ˆ ty  is computed using the hidden state hf
t� �  and hb

t� � .  

While computing the current hidden state, a set of weights are associated 

with the input and the previous hidden state. This is denoted by Uf , Wf , Ub, 

and Wb, respectively. There are also bias terms, denoted by bf and bb.

Similarly, while computing the output, a set of weights are associated 

with the hidden state while computing the output. This is denoted by Vb 

and Vf. There is also a bias term, denoted by c. The tanh activation function 

is used in the computation of the hidden state. The softmax activation 

function is used in the computation of the output.

The RNN, as described by the equations, can process an arbitrarily 

large input sequence. The parameters of the RNN—Uf , Ub, Wf , Wb, Vb, Vf , 

bf , bb, c, etc.—are shared across the computation of the hidden layer and 

output value (for each of entities in the sequence).

Chapter 7  Recurrent Neural Networks 



260

�Vanishing and Exploding Gradients
Training RNNs can be challenging due to vanishing and exploding 

gradients (Figure 7-14). Vanishing gradients means that when the 

gradients are computed on the unrolled RNNs, the value of the gradients 

can drop to a very small number (close to zero). Similarly, the gradients 

can increase to a very high value, which is referred to as the exploding 

gradient problem. In both cases, training the RNN is a challenge. Vanishing 

or exploding gradients are usually a result of the inappropriate or 

undesired values set for the network hyperparameters and parameters. 

Therefore, the network takes an unusually long time to move out of the 

slope with each incremental weight updates and learn the best weights for 

the use case.

Figure 7-13.  Bidirectional RNN
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Let’s look again at the equations that describe the RNN.

	
h tanh Ux Wh bt t t� � � � �� �� � �� �1

	

	
( ) ( )( )ˆ = +t ty softmax Vh c 	

We can derive the expression for 
∂
∂
L
W

 by applying the chain rule. This 

is illustrated in Figure 7-10.
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Let’s now focus on the part of the expression 
k j t

j

j

h
h� � �

�� �

� �� �
�1

1

, which 

involves a repeated matrix multiplication of W, which contributes to both 

the vanishing and exploding gradient problems. Intuitively, this is similar 

to multiplying a real valued number over and over again, which might lead 

to the product shrinking to zero or exploding to infinity.

�Gradient Clipping
A simple technique to deal with exploding gradients is to rescale the 

norm of the gradients whenever they go over a user-defined threshold. 

Specifically, if the gradient is denoted by ˆ ∂
=
∂

Lg
W

, and if ˆ >g c‖ ‖ , then 

we set ˆ ˆ
ˆ

=
cg g
g‖ ‖

. This technique is both simple and computationally 

efficient, but it does introduce an extra hyperparameter.

Without gradient clipping, the parameters take a huge descent step 

and flow out of the desired region. With clipping, the descent step size is 

restricted and the parameters stay in the desired region. Gradient clipping 

will “clip” the gradients, or cap them to a threshold value to prevent 
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them from getting too large. In Figure 7-14 the gradient is clipped from 

overshooting and the cost function follows the dotted values rather than its 

original trajectory outside the desired region.

�Long Short-Term Memory
Let’s take a look at another variation on RNNs, the long short-term 

memory (LSTM) network (see Figure 7-15). The vanilla RNN had 

several trade-offs that led to poor performing networks in learning 

long dependencies between sequences. In general, the RNN is more 

prone towards noise and easily overfits while training. They are also 

computationally very expensive to train.

LSTMs fit in perfectly to solve these problems by using a more intuitive 

approach. They are generally more robust to noise and capture short- as 

well long-term dependencies more accurately, while being easy to tune 

and train, as compared to RNNs. LSTMs also have faster computation 

speeds than RNNs. LSTMs have the gates that equip the handy functions 

that help the network remember long-term dependencies as well forget 

Figure 7-14.  Gradient clipping
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dependencies that do not matter. In RNNs, the previous hidden state is the 

only previous memory the network remembers. With LSTMs, in addition 

to the previous hidden state, the cell state is also remembered by the 

network.

The core concepts within LSTM networks are the cell state and gates 

(input, output, and forget gates). These gates and the cell state include 

several operations, such as sigmoid and tanh activation, pointwise 

multiplication and addition, and vector concatenation. These operations 

help the cell state and gates to train the network to forget or propagate 

important information through the network. Cell states connect 

information throughout the network and thus help in passing long 

dependencies between sequences as and when needed.

An LSTM can be described with the following set of equations. Note 

that the ⨀ symbol denotes pointwise multiplication of two vectors—that 

is, if a = [1, 1, 2] and b = [0.5,0.5,0.5], then a ⨀ b = [0.5,0.5,1]. The functions 

σ,  g,and h are non-linear activation functions; W and R are weight 

matrices; and the b terms are bias terms.

	
( ) ( ) ( )( )1ˆ −= + +t t t

z z zz g W x R y b 	
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The following points are to be noted:

	 1.	 The most important element of the LSTM is the cell 

state, denoted by c (t) = i (t) ⨀ z (t) + f (t) ⨀ c (t − 1) . The 

cell state is updated based on the block input z (t) 

and the previous cell state c (t − 1). The input gate i (t) 

determines which fraction of the block input makes 

it into the cell state (hence, called a gate). The forget 

gate f (t) determines how much of the previous cell 

state to retain.

	 2.	 The output ( )ˆ ty  is determined based on the cell state 

c(t) and the output gate o(t), which determines how 

much the cell state affects the output.

	 3.	 The z(t) term, referred to as the block input, produces 

a value based on the current input and the previous 

output.

	 4.	 The i(t) term, referred to as the input gate, 

determines how much of the input to retain in the 

cell state c(t).

	 5.	 All the p terms are peephole connections that 

allow for a faction of the cell state to factor into the 

computation of the term in question.

	 6.	 The computation of the cell state c(i) does not 

encounter the issue of the vanishing gradient. 

(This is referred to as the constant error carousal.) 

However, LSTMs are affected by exploding 

gradients, and gradient clipping is used while 

training.
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�Practical Implementation
This section describes a practical implementation of an RNN and LSTM 

with PyTorch. We will divide the exercise into two parts. First, we will use 

just the vanilla RNN network with no additional processing (from the 

universe of NLP) and train the network over a sentiment classification 

dataset. We would expect this vanilla network to perform poorly. Second, 

we will make significant improvements to the network. We will leverage 

LSTM layers instead of RNN layers and make the network bidirectional 

with dropout regularization. Such a network will perform much better on 

our dataset.

We will the TorchText package, which consists of data processing 

utilities and popular datasets for NLP. We will leverage the dataset hosted 

on Kaggle at https://www.kaggle.com/columbine/imdb-dataset-

sentiment-analysis-in-csv-format.

Figure 7-15.  A long short-term memory network
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We recommend leveraging a Kaggle Notebook for the exercise (with 

the Internet option turned on and the GPU accelerator enabled).

Let’s get started by importing the essential packages (Listing 7-1).

Listing 7-1.  Importing the Packages for the RNN

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g. 

pd.read_csv)

import torch

from torch import nn,optim

import torchtext

from torchtext import data

#Check if we have GPU enabled

if torch.cuda.is_available():

    device = "cuda"

else:

    device = "cpu"

print("Device =",device)

input_data_path = "/kaggle/input/imdb-dataset-sentiment-

analysis-in-csv-format/"

First, let’s explore the dataset at a high-level using Pandas. The 

objective here is to just have a glimpse of the dataset. For the remainder of 

the exercise, we will use a TorchText-based wrapper for handling training 

and validation datasets within the realm of NLP. Listing 7-2 reads the data 

for our use case into memory.
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Listing 7-2.  Reading Data into Memory

#Read the csv dataset using pandas

df = pd.read_csv("/input/imdb-dataset-sentiment-analysis-in-

csv-format/Train.csv")

print("DF.shape :\n",df.shape)

print("df.label = ",df.label.value_counts())

df.head()

Output[]

DF.shape :  (40000, 2)

df.label =  0    20019

            1    19981

Name: label, dtype: int64

We have only two columns in the dataset: “text,” which contains the 

actual comment, and “label,” which contains the values 0 (negative) and 1 

(positive). The distribution between positive and negative is fairly even.

Next, we will use the TorchText dataset wrappers that will help us 

to create an iterator-based dataset that streamlines the data processing 

tasks we need. As illustrated in Listing 7-3, we begin by defining the raw 

datatypes required to define our train and validation dataset.
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Listing 7-3.  Defining the Tokenizer, Fields, and Dataset for Training 

and Validation

#Define a custom tokenizer

my_tokenizer  = lambda x:str(x).split()

#Define fields for our input dataset

TEXT = data.Field(sequential=True, lower= True,tokenize =  

my_tokenizer,use_vocab=True)

LABEL  = data.Field(sequential = False,use_vocab = False)

#Define inut fields as a list of tuples of fields

trainval_fields = [("text",TEXT),("label",LABEL)]

#Contruct dataset

train_data, val_data = data.TabularDataset.splits(path = 

input_data_path, train = "Train.csv", validation = "Valid.csv", 

format = "csv", skip_header = True, fields = trainval_fields)

#Build vocabulary

MAX_VOCAB_SIZE = 25000

TEXT.build_vocab(train_data, max_size = MAX_VOCAB_SIZE)

#Define iterators for  train and validation

train_iterator  = data.BucketIterator(train_data, device = device

                             , batch_size = 32

                             , sort_key = lambda x:len(x.text)

                             ,sort_within_batch = False

                             ,repeat = False)
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val_iterator = data.BucketIterator(val_data, device = device,

                             batch_size= 32

                             , sort_key = lambda x:len(x.text)

                             , sort_within_batch = False

                             , repeat = False)

print(TEXT.vocab.freqs.most_common()[:10])

Output[]

[('the', 511112), ('a', 253702), ('and', 251397), ('of', 

229381), ('to', 211883)

, ('is', 164005), ('in', 143530), ('i', 113576), ('this', 

110892), ('that', 104153)]

In Listing 7-3, we processed a couple of things that are necessary 

for our network. For NLP use cases, we would need to tokenize and 

then numericalize the data as a part of the text processing before using 

the data for the network training. As you might have already guessed, 

neural networks process only numeric data. Both of the aforementioned 

operations are neatly handled by PyTorch internally. We can provide an 

existing tokenizer—for example, SpaCy (an open source advanced NLP 

library)—and PyTorch does the rest. In this example, we use a custom 

simple one. Next, we define the necessary fields (raw data) for our dataset. 

The Field class models common text-processing datatypes that can be 

represented by tensors. Also, it holds a Vocab object that defines the vectors 

hosting the numerical representations of all words that would occur in the 

field. Our dataset has two columns, “text” and “label,” the former being the 

plain English comments and the latter being a numeric label (0/1). Thus, we 

define TEXT and LABEL as two individual fields that represent our columns. 

We add the parameter to define the tokenizing function that would be 

necessary on this field, a Boolean flag to convert the text to lowercase, and a 

Boolean flag to indicate that the data within this field is sequential. For the 

LABEL field, we do not have sequential data; hence, we set it to False.
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Next, we define our data fields list that would be required while 

creating the dataset. This list represents each column within the dataset. If 

we plan to not use a particular column within this dataset, we would need 

to assign “None” to the column name when defining the list of columns. 

We assign this list to the trainval_fields variable. We then create a 

TabularDataset object with the streamlined list of operations necessary 

on the data columns. Note that the splits() function does not actually 

split an existing dataset. It should be used only when we already have 

individually separated datasets in the path.

Next, we need to build the vocabulary (a numericized representation 

of the unique words that appear in our field text). This step is very 

important and has several means of execution. We can use a pretrained 

word embedding to create vocabulary or we can custom-train one. Using a 

pretrained one is simple, so we will use this in our next example. We set the 

maximum number of vocabularies to 25,000. The function will also create 

two additional words, taking the total to 25,002—one for all the unknown 

tokens (for example, new words) and the other for padding (used to make 

sentences of equal length).

Finally, we create the iterator objects. The sort_within_batch 

parameter sorts the data within each mini-batch in decreasing order 

according to the sort_key. This is necessary when we want to use pack_

padded_sequence with the padded sequence data and convert the padded 

sequence tensor to a PackedSequence object. We will not leverage this 

feature in our first exercise, but we will use it in the next exercise, where we 

improve our model. Essentially, PyTorch adds padding to the sequences 

such that all sequences are of equal length. The process is made efficient 

by sorting the data in the decreasing order of the key, and ensures that the 

network does not learn the pads. The last line prints the most frequent 

words in the vocab and returns the index associated with each word in the 

vector (embedding).

With the data ready to be processed, we will construct our RNN class, 

as shown in Listing 7-4.
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Listing 7-4.  Defining the RNN Class

class RNNModel(nn.Module):

    �def __init__(self,embedding_dim,input_dim,hidden_dim, 

output_dim):

        super().__init__()

        self.Embedding  = nn.Embedding(input_dim,embedding_dim)

        self.rnn  = nn.RNN(embedding_dim,hidden_dim)

        self.fc  = nn.Linear(hidden_dim,output_dim)

    def forward(self,text):

        embed = self.Embedding(text)

        output, hidden = self.rnn(embed)

        out  = self.fc(hidden.squeeze(0))

        return(out)

#Define model

INPUT_DIM = len(TEXT.vocab)

EMBEDDING_DIM = 100

HIDDEN_DIM = 256

OUTPUT_DIM = 1

#Create model instance

model = RNNModel(EMBEDDING_DIM, INPUT_DIM,HIDDEN_DIM,  

OUTPUT_DIM)

A significant portion of this code is very comparable to our 

experiments in Chapters 5 and 6. The new additions here are the 

Embedding layer and the RNN layer. The RNN layer returns the output 

as well as the hidden layer computation (unlike the other layers we’ve 

explored so far). The input dimension is the length of our vocab list. The 

embedding dimension is a value that we decide would best represent a 

word numerically. We use 100 here, but it could be 200, 300, or higher.  
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A higher number will not always be valuable, and it increases computation 

load significantly. Also, we select 256 dimensions for our hidden layer and 

1 (since the outcome is binary) dimension for our output layer.

Next, in Listing 7-5, we define two functions that will wrap the training 

step and evaluation step for a given epoch. Later, we orchestrate the 

training step and evaluation step for each epoch through another function.

Listing 7-5.  Defining the Training and Evaluation Step

#Define training step

def train(model, data_iterator,optimizer,loss_function):

    epoch_loss,epoch_acc,epoch_denom = 0,0,0

    model.train()    #Explicitly set model to train mode

    for i, batch in enumerate(data_iterator):

        optimizer.zero_grad()

        predictions = model(batch.text)

        �loss = loss_function(predictions.reshape(-1,1), batch.

label.float().reshape(-1,1))

        �acc = accuracy(predictions.reshape(-1,1), batch.label.

reshape(-1,1))

        loss.backward()

        optimizer.step()

        epoch_loss += loss.item()

        epoch_acc += acc.item()

        epoch_denom += len(batch)

    return epoch_loss/epoch_denom,epoch_acc, epoch_denom

#Define evaluation step

def evaluate(model, data_iterator,loss_function):

    epoch_loss,epoch_acc,epoch_denom = 0,0,0
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    model.eval()     #Explcitly set model to eval mode

    for i, batch in enumerate(data_iterator):

        with torch.no_grad():

            predictions = model(batch.text)

            �loss = loss_function(predictions.reshape(-1,1), 

batch.label.float().reshape(-1,1))

            �acc = accuracy(predictions.reshape(-1,1), batch.

label.reshape(-1,1))

            epoch_loss += loss.item()

            epoch_acc += acc.item()

            epoch_denom += len(batch)

    return epoch_loss/epoch_denom, epoch_acc, epoch_denom

Here, the contents are similar to the previous experiments. We create 

the necessary boilerplate code for our training loop. Note that we need a 

helper function within the evaluate function that would compute accuracy 

(binary outcomes, in our case). This part is not a mandate, but it helps to 

view intermediate results in accuracy after each epoch. Listing 7-6 defines 

the function and the necessary bits for our network.

Listing 7-6.  Defining the Accuracy Function, Loss Function, and 

Optimizer, and Instantiating the Model

#Compute binary accuracy

def accuracy(preds, y):

    rounded_preds = torch.round(torch.sigmoid(preds))

    #Count the number of correctly predicted outcomes

    correct = (rounded_preds == y).float()

    acc = correct.sum()

    return acc
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#Define optimizer, loss function

optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

criterion = nn.BCEWithLogitsLoss()

#Transfer components to GPU, if available.

Model = model.to(device)

criterion = criterion.to(device)

Finally, in Listing 7-7, we train the model instantiated above with the 

define loss functions and optimizer in a loop for five epochs. We define 5 

here for illustration purposes only; for practical examples we recommend 

increasing the number of epochs based on the size of data and complexity 

of the network.

Listing 7-7.  Training the Model for Five Epochs

n_epochs = 5

for epoch in range(n_epochs):

    #Train and evaluate

    �train_loss, train_acc,train_num = train(model, train_

iterator, optimizer, criterion)

    �valid_loss, valid_acc,val_num = evaluate(model, val_

iterator,criterion)

    print("Epoch-",epoch)

    �print(f'\tTrain  Loss: {train_loss: .3f} | Train Predicted 

Correct : {train_acc}

                                   | Train Denom: {train_num} |

                          PercAccuracy: {train_acc/train_num}')

    �print(f'\tValid  Loss: {valid_loss: .3f} | Valid Predicted 

Correct: {valid_acc}

                                        | Val Denom: {val_num}|

                          PercAccuracy: {train_acc/train_num}')
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Output[]
Epoch -0
Train  Loss:  0.022 | Train Predicted Correct : 20149.0 | Train 
Denom: 40000 | PercAccuracy: 0.503725
Valid  Loss:  0.022 | Valid Predicted Correct: 2537.0 | Val 
Denom: 5000| PercAccuracy: 0.503725

Epoch -1
Train  Loss:  0.022 | Train Predicted Correct : 20048.0 | Train 
Denom: 40000 | PercAccuracy: 0.5012
Valid  Loss:  0.022 | Valid Predicted Correct: 2497.0 | Val 
Denom: 5000| PercAccuracy: 0.5012

Epoch -2
Train  Loss:  0.022 | Train Predicted Correct : 20023.0 | Train 
Denom: 40000 | PercAccuracy: 0.500575
Valid  Loss:  0.022 | Valid Predicted Correct: 2507.0 | Val 
Denom: 5000| PercAccuracy: 0.500575

Epoch -3
Train  Loss:  0.022 | Train Predicted Correct : 20143.0 | Train 
Denom: 40000 | PercAccuracy: 0.503575
Valid  Loss:  0.022 | Valid Predicted Correct: 2556.0 | Val 
Denom: 5000| PercAccuracy: 0.503575

Epoch -4
Train  Loss:  0.022 | Train Predicted Correct : 19996.0 | Train 
Denom: 40000 | PercAccuracy: 0.4999
Valid  Loss:  0.022 | Valid Predicted Correct: 2492.0 | Val 
Denom: 5000| PercAccuracy: 0.4999

We can see that model barely improved in performance. Although 

five epochs are actually too few, we should have seen small changes. 

The overall accuracy hasn’t really added any value from the model. The 

performance is poor. To improve our results, we will take a more holistic 

approach in our second experiment.
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In our second experiment, we will leverage a tokenizer from 

Spacy (rather than using our custom tokenizer) and a pretrained word 

embedding (instead of training one from scratch), and add bidirectional 

LSTM layers (instead of unidirectional RNN layers). We will also add 

dropout to reduce overfitting.

We actually need to start fresh, rather than continuing with the same 

code base (though the changes are minimal).

As usual, we begin by importing the required packages, as shown in 

Listing 7-8.

Listing 7-8.  Importing the Required Packages

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g. 

pd.read_csv)

import torch,torchtext

from torch import nn, optim

from torch.optim import Adam

from torchtext import data

if torch.cuda.is_available():

    device = "cuda"

else:

    device = "cpu"

print("Device =",device)

input_data_path = " /input/imdb-dataset-sentiment-analysis-in-

csv-format/"

#Define fields for our input dataset

TEXT = data.Field(sequential=True, lower= True,tokenize = 

'spacy', include_lengths = True)

LABEL  = data.Field(sequential = False,use_vocab = False)
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#Define a list of tuples of fields

trainval_fields = [("text",TEXT),("label",LABEL)]

#Contruct dataset

train_data, val_data = data.TabularDataset.splits(path = 

input_data_path, train = "Train.csv", validation = "Valid.csv", 

format = "csv", skip_header = True, fields = trainval_fields)

#Build Vocab using pretrained

MAX_VOCAB_SIZE = 25000

TEXT.build_vocab(train_data, max_size = MAX_VOCAB_

SIZE,   vectors = 'fasttext.simple.300d')

BATCH_SIZE = 64

train_iterator, val_iterator =  data.BucketIterator.splits(

                              (train_data, val_data),

                              batch_size = BATCH_SIZE,

                              sort_key  = lambda x:len(x.text),

                              sort_within_batch = True,

                              device = device)

We will focus only on the changes in the preceding code snippet. While 

defining our data fields, we used the tokenizer from Spacy. Using the string 

spacy for the tokenize parameter suffices; PyTorch manages the necessary 

heavy lifting in the backend. We also added the include_length parameter 

as true. This is necessary, as we would add padding and sort the samples 

within a batch later. To leverage this, we now need to pass the length of 

the sample along with the text to the forward function in our RNN model’s 

class definition.

Chapter 7  Recurrent Neural Networks 



278

While building the vocabulary, we use vectors = 'fasttext.

simple.300d' to tell PyTorch to download the pretrained fasttext vector 

and create an embedding vector for the words in our text field. (If you 

are using Kaggle kernel, the Internet option should be turned on in 

the Notebook environment settings). This pretrained vector has 300 

dimensions. We need to note this change while creating the network 

instance. This step might actually take a while, depending on your Internet 

speeds. Finally, we also enabled sorting and defined the sort key. PyTorch 

downloads the defined pretrained vectors (usually 300MN or more) and 

creates a subset for our use case based on the 25,000 tokens.

Let’s now define our improved sequence model, as demonstrated in 

Listing 7-9.

Listing 7-9.  Defining the (Improved) RNN Class

class ImprovedRNN(nn.Module):

    �def __init__(self, vocab_size, embedding_dim, hidden_dim, 

output_dim, n_layers, bidirectional, dropout, pad_idx):

        super().__init__()

        �self.embedding = nn.Embedding(vocab_size, embedding_dim, 

padding_idx = pad_idx)

        self.lstm = nn.LSTM(embedding_dim,

                           hidden_dim,

                           num_layers=n_layers,

                           bidirectional=bidirectional,

                           dropout=dropout)

        self.fc = nn.Linear(hidden_dim * 2, output_dim)

        self.dropout = nn.Dropout(dropout)
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    def forward(self, text, text_lengths):

        embedded = self.dropout(self.embedding(text))

        #pack sequence

        �packed_embedded = nn.utils.rnn.pack_padded_

sequence(embedded, text_lengths)

        �packed_output, (hidden, cell) = self.lstm(packed_

embedded)

        #unpack sequence

        �output, output_lengths = nn.utils.rnn.pad_packed_

sequence(packed_output)

        �hidden = self.dropout(torch.cat((hidden[-2,:,:], 

hidden[-1,:,:]), dim = 1))

        return self.fc(hidden)

Notice that we have made quite a few additions here. We now have an 

LSTM layer instead of the vanilla RNN. When the bidirectional flag is 

set to True, it enables us to capture the forward as well backward context. 

The dimensions of the linear layer would be now twice the original layer, 

as we have both a forward and backward network functioning in tandem. 

We initially added include_lengths=True while defining our original 

FIELD; therefore, our forward function will now take one extra parameter. 

This information is necessary while packing and unpacking the data after 

receiving from the embedding output and before passing it to the linear 

layer. The hidden layer now concatenates the output from the forward as 

well as the backward network before passing it to the next layer. Listing 7-10  

defines the model properties and copies the pretrained weights.
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Listing 7-10.  Defining the Model Properties and Copying the 

Pretrained Weights

#Define model input parameters

INPUT_DIM = len(TEXT.vocab)

EMBEDDING_DIM = 300

HIDDEN_DIM = 256

OUTPUT_DIM = 1

N_LAYERS = 2

BIDIRECTIONAL = True

DROPOUT = 0.5

#Create model instance

model = ImprovedRNN(INPUT_DIM,

            EMBEDDING_DIM,

            HIDDEN_DIM,

            OUTPUT_DIM,

            N_LAYERS,

            BIDIRECTIONAL,

            DROPOUT,

            PAD_IDX)

#Copy pretrained vector weights

model.embedding.weight.data.copy_(pretrained_embeddings)

#Initialize the embedding with 0 for pad as well as unknown 

tokens

UNK_IDX = TEXT.vocab.stoi[TEXT.unk_token]

model.embedding.weight.data[UNK_IDX] = torch.zeros(EMBEDDING_DIM)

PAD_IDX = TEXT.vocab.stoi[TEXT.pad_token]

model.embedding.weight.data[PAD_IDX] = torch.zeros(EMBEDDING_DIM)

print(model.embedding.weight.data)
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Output []

torch.Size([25002, 300])

Next, we define the train and evaluate functions, similar to our previous 

exercise. The only difference is that we need to handle text_lengths as an 

additional parameter in the model. We will also define the accuracy function 

required to compute the binary accuracy and define the model’s loss function, 

optimizer and load the model and the loss function on the GPU, if available. 

These steps are identical to our previous exercise. In Listing 7-11, we train our 

improved model definition.

Listing 7-11.  Training the Improved Model

#Define train step

def train(model, iterator, optimizer, criterion):

    epoch_loss,epoch_acc,epoch_denom = 0,0,0

    model.train()

    for batch in iterator:

        optimizer.zero_grad()

        text, text_lengths = batch.text

        predictions = model(text, text_lengths).squeeze(1)

        �loss = criterion(predictions.reshape(-1,1), batch.

label.float().reshape(-1,1))

        acc = accuracy(predictions, batch.label)

        loss.backward()

        optimizer.step()

        epoch_loss += loss.item()

        epoch_acc += acc.item()

        epoch_denom += len(batch)

    return epoch_loss/epoch_denom, epoch_acc, epoch_denom
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#Define evaluate step

def evaluate(model, iterator, criterion):

    epoch_loss,epoch_acc,epoch_denom = 0,0,0

    model.eval()

    with torch.no_grad():

        for batch in iterator:

            text, text_lengths = batch.text

            predictions = model(text, text_lengths).squeeze(1)

            loss = criterion(predictions, batch.label.float())

            acc = accuracy(predictions, batch.label)

            epoch_loss += loss.item()

            epoch_acc += acc.item()

            epoch_denom += len(batch)

    return epoch_loss/epoch_denom, epoch_acc, epoch_denom

#Define optimizer, loss funciton and load to GPU

optimizer = optim.Adam(model.parameters())

criterion = nn.BCEWithLogitsLoss()

model = model.to(device)

criterion = criterion.to(device)

#similar to previous exercise, we deifne our accuracy function

def accuracy(preds, y):

    rounded_preds = torch.round(torch.sigmoid(preds))

    correct = (rounded_preds == y).float()

    acc = correct.sum()

    return acc
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#Finally lets train our model for 5 epochs

N_EPOCHS = 5

for epoch in range(N_EPOCHS):

    �train_loss, train_acc,train_num = train(model, train_

iterator, optimizer, criterion)

    �valid_loss, valid_acc,val_num = evaluate(model, val_

iterator, criterion)

    print("Epoch-",epoch)

    �print(f'\tTrain  Loss: {train_loss: .3f} | Train Predicted 

Correct : {train_acc}

                                   | Train Denom: {train_num} |

                          PercAccuracy: {train_acc/train_num}')

    �print(f'\tValid  Loss: {valid_loss: .3f} | Valid Predicted 

Correct: {valid_acc}

                                       | Val Denom: {val_num}|

                          PercAccuracy: {train_acc/train_num}')

Output[]

     �Train  Loss:  0.005 | Train Predicted Correct : 34911.0 | 

Train Denom: 40000 | PercAccuracy: 0.872775

     �Valid  Loss:  0.003 | Valid Predicted Correct: 4558.0 | 

Val Denom: 5000| PercAccuracy: 0.872775

Epoch- 1

     �Train  Loss:  0.003 | Train Predicted Correct : 37193.0 | 

Train Denom: 40000 | PercAccuracy: 0.929825

     �Valid  Loss:  0.004 | Valid Predicted Correct: 4557.0 | 

Val Denom: 5000| PercAccuracy: 0.929825
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Epoch- 2

     �Train  Loss:  0.002 | Train Predicted Correct : 38079.0 | 

Train Denom: 40000 | PercAccuracy: 0.951975

     �Valid  Loss:  0.003 | Valid Predicted Correct: 4591.0 | 

Val Denom: 5000| PercAccuracy: 0.951975

Epoch- 3

     �Train  Loss:  0.002 | Train Predicted Correct : 38659.0 | 

Train Denom: 40000 | PercAccuracy: 0.966475

     �Valid  Loss:  0.004 | Valid Predicted Correct: 4569.0 | 

Val Denom: 5000| PercAccuracy: 0.966475

Epoch- 4

     �Train  Loss:  0.001 | Train Predicted Correct : 39030.0 | 

Train Denom: 40000 | PercAccuracy: 0.97575

     �Valid  Loss:  0.004 | Valid Predicted Correct: 4564.0 | 

Val Denom: 5000| PercAccuracy: 0.97575

As you can see, the performance has improved a lot. We trained the 

network for only five epochs, yet the results are impressive. Readers 

are recommended to experiment by making changes to the network. 

Experiments could include changing the pretrained vectors (probably 

glove instead of fasttext), processing more NLP-related actions on the 

input data, adding more aggressive dropouts, adding more epochs, etc.

This concludes our second exercise, in which we tried to improve the 

performance of our sequence model. We used the vanilla RNN networks, 

LSTM networks, and bidirectional networks. We also leveraged pretrained 

embeddings for numericized representations of words. (This is highly 

recommended for almost all NLP-related tasks.) There also exists gated 

recurrent units (GRUs), which are very similar to LSTMs but which are 

slightly on the faster end of computation, as they have fewer operations. 

When it comes to performance, however, most researchers have found 

both LSTMs and GRUs to be very similar. In NLP experiments, it is very 
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common to iterate using LSTMs and GRUs, and take the best. You can read 

more about this research at https://arxiv.org/abs/1412.3555.

Discussing the details of GRUs is beyond the scope of this chapter. 

Readers are encouraged to explore this topic further on their own.

�Summary
In this chapter, we covered the basics of recurrent neural networks (RNNs). 

The key takeaway points from this chapter are the notion of the hidden 

state, training RNNs via unrolling (backpropagation through time), the 

problem of vanishing and exploding gradients, and long short-term 

memory (LSTM) networks. It is important to internalize how RNNs contain 

internal/hidden state that allow them to make predictions on a sequence 

of inputs—an ability that goes beyond conventional neural networks.
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CHAPTER 8

Recent Advances 
in Deep Learning
So far, this book has discussed important topics in the realm of deep 

learning: feed-forward networks, convolutional neural networks, and 

recurrent neural networks. We described their practical aspects, including 

implementation, training, validation, and tuning models for improvement 

with PyTorch. Although we covered a lot of ground on the foundational 

aspects, there are still vast areas that remain untouched. The field of deep 

learning recently has witnessed a huge spike in research, contributors, and 

adoption in the industry for cutting-edge solutions. The sheer velocity of 

updates and changes (both incremental and groundbreaking) is colossal. 

Even since you have been reading this book, there might have been several 

groundbreaking research papers published that tailor the next course in 

the field of deep learning.

In this concluding chapter, we introduce some additional topics 

relevant to deep learning that should help you study the topic in a more 

meaningful way. This chapter serves only as a brief introduction and 

does not dive into any implementation details. You are recommended to 

explore additional resources related to these topics to strengthen the area 

that interests your academic, personal, and industry career.

Let’s get started.

https://doi.org/10.1007/978-1-4842-5364-9_8#DOI
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�Going Beyond Classification in 
Computer Vision
In Chapter 5, we studied computer vision problems within deep learning 

that are solved using convolutional neural networks. This idea was 

novel and groundbreaking. Chapter 5 focused on only one key area—

classification. We studied the classic example of MNIST handwritten digits 

wherein we classified a given image as digits between 0-9 [10 classes]. In 

another exercise, we looked at a binary classification between cats and 

dogs. Although the ability to classify an image into a meaningful label 

using computational techniques is indeed valuable, going a step further 

opens up several use cases that are of profound value to modern-day use 

cases.

This section explores a few possibilities that open by extending the 

ideas within convolutional neural networks further.

�Object Detection
Object detection, a technology related to computer vision, attempts to 

distinguish one or more objects within an image or video. For example, in 

the classification exercise of cats vs. dogs, object detection would go one 

step further and predict a rectangular bounding box that best captures the 

object of interest. In a more sophisticated use case, object detection could 

be used to detect several objects within an image/video.

Figure 8-1 shows a sophisticated object detection algorithm in action. 

There are bounding boxes against each identified object to distinguish 

them from one another.
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The bounding boxes against each person (multiple people are 

identified) are outcomes from object detection.

Real-life use cases for object detection include identifying cars from 

a CCTV video stream, thereby tracking traffic on important routes, using 

face-detection on a smartphone so that the auto-focus can precisely focus 

on important objects for improved pictures, and so forth.

�Image Segmentation
The next logical step in computer vision, after object detection, is image 

segmentation. Image segmentation is a type of labeling where a given 

image is partitioned into segments (a group of pixels) that more precisely 

define the object. The difference between image segmentation and 

object detection is the more precise definition of the object identified in 

Figure 8-1.  Object detection in computer vision Image Source - 
https://github.com/facebookresearch/Detectron2
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the image under image segmentation. That is, instead of a rectangular 

bounding box, as in object detection, we would have the actual pixel 

outline of the object (see Figure 8-2).

Instead of the bounding box, we now have more granular outlines 

capturing the actual object. Practical applications of image segmentation 

include traffic surveillance, medical imaging, portrait mode in smartphone 

cameras (digital mimicking of the bokeh effect—identifying the person to 

blur the background).

Modern day smartphones implement semantic image segmentation—

identifying objects within the image and further processing them based on 

the type of object identified. For example, a face would be processed for 

beauty (smoothing blemishes/shadow/etc.); a sky would be less focused 

with the addition of a blur effect; nature would be color-processed to have 

a vibrant feel; and so on.

Figure 8-2.  Image segmentation in computer vision Image Source - 
https://github.com/facebookresearch/Detectron2
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To learn more about semantic image segmentation, visit https://

developer.apple.com/videos/play/wwdc2019/225/.

�Pose Estimation
Pose estimation is a computer vision technique that predicts and tracks 

the location of a person or object. Essentially, pose estimation predicts the 

body part or joint positions of a person from an image or a video using at a 

combination of the pose and the orientation of a given person/object.

A more sophisticated version of pose estimation—and a more difficult 

computer vision problem to solve—is multi-person pose estimation (see 

Figure 8-3).

Figure 8-3.  Multi-person pose estimation Image Source - https://
github.com/facebookresearch/Detectron2
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The practical applications of pose estimation are similar to image 

segmentation and object detection, although the applications for pose 

estimation are more meaningful and targeted—for example, tracking the 

activity of a person, such as running, cycling, etc. Activity tracking enables 

security surveillance to be taken to the next level. Another important 

application of pose estimation is related to the field of motion cinema 

and augmented reality. Translating a motion capture from a human into 

a 3-dimensional graphical character, where the movements are precisely 

captured and translated (called VFX, or VFX), is used often in motion cinema.

To learn more about pose estimation, visit http://neuralvfx.com/

tag/facial-pose-estimation/.

�Generative Computer Vision
Beyond classification, object detection, image segmentation, and pose 

estimation, we also have another hot field within computer vision—

generative adversarial networks (GANs). Generative models in computer 

vision first learn the distribution of the training set and then generate some 

new samples with a small variation. These new images are synthetically 

generated by the model using random noise and previously learned model 

weights in a supervised setting. Figure 8-4 shows an example of image 

samples generated by GAN models.
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The majority of the images look fairly realistic and identifiable—for 

example, horse, ship, car, etc. Training GANs has been a difficult problem 

and often requires large computing resources. Producing larger size 

images increases the complexity even further. Nonetheless, however, GANs 

have been one of the biggest developments in computer vision in recent 

times. The ACM Turing Aware Laureate Yann LeCun described them as 

“the most interesting idea in the last 10 years in machine learning”.

The practical applications of GANs are limitless. The easiest 

application would be a product that renders images based on textual 

descriptions. For example, typing “design an image with busy street during 

day time with more people than cars on road” would result in an image 

showing these things. The reverse is also true—i.e., inputting an image 

and receiving a text-based natural language description about the image. 

The technology company Baidu designed a prototype device that aids 

Figure 8-4.  GAN-generated sample images
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the blind with a camera that describes surroundings in natural language. 

To learn more about the prototype, visit https://www.youtube.com/

watch?v=Xe5RcJ1JY3c.

Several emerging ecommerce enterprises are leveraging GANs to 

design graphic tees. For example, Prisma, a popular photo-editing app, 

and FaceApp, a controversial yet intuitive app that can turn your existing 

photos into your older or younger self, took the Internet by storm in 2019.

Deepfake videos are now (or soon will be) a major problem on the 

Internet. Deepfakes could produce almost realistic videos of celebrities 

speaking your input content with realistic speech and gestures.

�Natural Language Processing with Deep 
Learning
Chapter 7 discussed recurrent neural networks (RNNs) and long short-

term memory (LSTM) networks, which can be used to solve modern 

natural language processing (NLP) problems. Sequence models have also 

been very effective in speech recognition and related tasks within natural 

language processing. Recent years have seen phenomenal improvement 

with voice digital assistants, such as Apple’s Siri and Amazon’s Alexa. 

These assistants can now understand more languages and speech with 

regional influences and various accents, and respond with a very realistic 

voice. They also understand and distinguish your voice from someone 

else’s voice, although issues with accuracy still exist, of course. In the early 

days, these improvements were through LSTM and gated recurrent units 

(GRUs), another variant similar to LSTM.

LSTM and GRU models still have limitations. They are computationally 

very expensive and process inputs sequentially. The long-term dependencies 

problem still exists, though it is far better than with a vanilla RNN.
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�Transformer Models
In late 2017, Google published its findings about the Transformer network, 

a groundbreaking deep learning model for NLP. The paper “Attention Is All 

You Need” (https://arxiv.org/pdf/1706.03762.pdf) shed light to a new 

shift in the research community for language models.

For a while, RNNs were the best choice to process sequential data. 

However, the sequential processing and comparatively poor performance 

on long-term dependencies brought various challenges to large NLP tasks. 

The Transformer network plays a vital role in outperforming in such use 

cases. Transformer networks can train in parallel, reducing the compute 

time by a huge margin. They are based on a self-attention mechanism and 

dispense the recurrence and convolutions entirely (thus, a faster compute).

The Transformer model achieves a 28.4 bilingual evaluation 

understudy (BLEU) score on the WMT 2014 English to-German translation 

task, improving over the existing best results, including ensembles, by 

more than two BLEU.

�Bidirectional Encoder Representations 
from Transformers
In 2018, a year after publishing Transformer networks, researchers 

at Google AI Language open sourced a new technique for NLP called 

Bidirectional Encoder Representations from Transformers (BERT).

BERT relies on a Transformer, but with some variations. A vanilla 

Transformer consists of an encoder and decoder architecture; the encoder 

reads the text input, while the decoder produces the prediction. BERT, 

however, leverages only the encoder part. Because BERT’s goal is to 

generate a language representation model, this is ideal. One of unique 

differentiators of BERT is its semi-supervised setting. In this setting, 

the process first focuses on pretraining (unsupervised), where a large 
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corpus of text data (largely available over the Internet) is used for training 

language representation models. Next, the model is trained and fine-tuned 

in a supervised fashion for the specific use case of interest. An example 

would the sentiment classification use case we explored in Chapter 7.

You can find more details about BERT at https://ai.googleblog.

com/2018/11/open-sourcing-bert-state-of-art-pre.html.

BERT uses two strategies for training: Masked Language Modeling and 

Next Sentence Prediction. For Masked Language Modeling, while feeding 

word sequences into BERT, roughly 15% of the words in each sequence 

are replaced with a [MASK] token. The model then attempts to predict the 

original value of the masked words based on the context provided by the 

other, non-masked, words in the sequence.

AllenNLP has released a fun tool that uses BERT in the backend 

(see https://demo.allennlp.org/masked-lm). Figure 8-5 shows a 

simple demo; the model predicted the word in [MASK] as car with 72% 

probability.

Figure 8-5.  AllenNLP demo
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�GrokNet
The computer vision topics we have explored so far are all related to 

single-task learning. That is, we specifically design a network with one 

loss function and a desired outcome—classifying an image into n distinct 

categories. Modern problems in the digital age have more complex 

requirements that need a more holistic approach. Consider an ecommerce 

marketplace. When a user uploads a picture to list a product for sale, 

they might not add a detailed and comprehensive description about the 

product. In most cases, the uploader would add a one-line description and 

a broad category for the product (which might not be exactly true).

To understand the problem better, consider a sample product listing 

for a chair: “nice sturdy chair for sale, just 1 year old and condition like 

new.” This user-drafted description lacks a lot of information that might be 

ideal for a buyer to make a more informed decision. Informative attributes 

that would have been ideal for the buyer (as well as the marketplace) 

would include the color of the chair, the chair’s make and model, the year 

of manufacture, etc. From an engineering point of view, ranking such a 

product listing against a user-based search query for the feed would be a 

difficult task, as it might not match most of the relevant information fields.

A solution to this problem would be augmenting additional 

information through several individual computer vision tasks—for 

example, one task to classify the image into a broad category (furniture/

tools/vehicles/books/etc.), and then another model to classify with more 

specificity within a vertical (make and model year), and so on. There 

might also arise a need to cater individual models for each vertical of 

products—for example, apparels, furniture, books, etc. Considering the 

wide range of possibilities, we might often face the challenge of building 

and maintaining hundreds of distinct models.

Considering the Facebook Marketplace as a problem, the company 

released GrokNet, a single, unified model with full coverage across all 

products. With a unified model, the company has been able to reduce 
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maintenance and computational cost and improve coverage by removing 

the need for a separate model for each vertical application. GrokNet 

leverages a multi-task learning approach to train a single computer vision 

trunk. The model was trained over 7 distinct datasets across several 

commerce verticals, using 80 categorical loss functions and 3 embedding 

losses.

The final model predicts the following for a given image:

•	 Object category: “bar stool,” “scarf,” “area rug,” etc.

•	 Home attributes: object color, material, decor style, etc.

•	 Fashion attributes: style, color, material,  

sleeve length, etc.

•	 Vehicle attributes: make, model, external color,  

decade, etc.

•	 Search queries: text phrases likely used by users to find 

the product on Marketplace Search

•	 Image embedding: a 256-bit hash used to recognize 

exact products, find and rank similar products, and 

improve search quality

With such a rich prediction for a given image, a marketplace feed for 

a given user’s search results can be tailored and customized with highly 

relevant results. The image embedding predicted can be further used to 

present similar product listings so that a user can make a more informed 

decision. Moreover, this entire augmentation task is performed by a single 

model rather than a collection of models.

For more information about GrokNet, visit https://ai.facebook.com/

research/publications/groknet-unified-computer-vision-model-

trunk-and-embeddings-for-commerce/.
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�Additional Noteworthy Research
This section describes a few research publications relevant to the field of 

deep learning that are really exciting for folks to explore independently as 

next steps to advance in the field. Discussing any details for the research 

is beyond the scope of this book, so readers are encouraged to explore the 

following research papers independently:

	 1.	 Jukebox: A Generative Model for Music

Jukebox is a neural network that generates music, 

including rudimentary singing, as raw audio in a 

variety of genres and artist styles. OpenAI released 

the model’s weights and code, along with a tool to 

explore the generated samples.

Paper: https://arxiv.org/abs/2005.00341

Code: https://github.com/openai/jukebox/

	 2.	 Image GPT – Generate Coherent Image 
Completions

A Transformer-based model trained on language 

can generate coherent text. The same model trained 

on pixel sequences can generate coherent image 

completions and samples.

Paper: https://cdn.openai.com/papers/

Generative_Pretraining_from_Pixels_V2.pdf

Code: https://github.com/openai/image-gpt

	 3.	 A Universal Music Translation Network

A deep learning based method for translating 

music across musical instruments and styles. The 

technique is based on unsupervised training of a 
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multi-domain WaveNet autoencoder, with a shared 

encoder and a domain-independent latent space 

that is trained end-to-end on waveforms.

Paper: https://arxiv.org/abs/1805.07848

	 4.	 Live Face De-Identification in Video

This method enables face de-identification in 

a fully automatic setting for live videos at high 

frame rates using feed-forward encoder-decoder 

network architecture, conditioned on the high-level 

representation of a person’s facial image.

Paper: https://arxiv.org/abs/1911.08348

�Concluding Thoughts
We would like you to thank you, the reader, for the time and interest 

you’ve taken to study the subject of deep learning by reading this book. We 

sincerely appreciate your efforts invested in this book and hope that we 

have been able to deliver up to your expectations.

The subject of deep learning is so vast and dynamic that one would 

need to conduct continued research to keep up with the pace of the 

innovations. Our focus with this book has been to deliver a healthy 

combination of abstract yet intuitive information on the subject (with 

minimal math operations; apologies if the equations were overwhelming), 

while blending the much-needed practical implementations with real-life 

datasets using the leading tool in industry and academia (PyTorch).

We would appreciate your thoughts and feedback!
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