
Image processing and data analysis

The multiscale approach

Jean-Luc Starck

Centre d’Études de Saclay

Fionn Murtagh

University of Ulster

Albert Bijaoui

Observatoire de la Côte d’Azur
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Preface

There is a very large literature on the theoretical underpinnings of the
wavelet transform. However, theory must be complemented with a sig-
nificant amount of practical work. Selection of method, implementation,
validation of results, comparison with alternatives – these are all centrally
important for the applied scientist or engineer. Turning theory into prac-
tice is the theme of this book. Various applications have benefited from the
wavelet and other multiscale transforms. In this book, we describe many
such applications, and in this way illustrate the theory and practice of such
transforms. We describe an ‘embedded systems’ approach to wavelets and
multiscale transforms in this book, in that we introduce and appraise ap-
propriate multiscale methods for use in a wide range of application areas.

Astronomy provides an illustrative background for many of the exam-
ples used in this book. Chapters 5 and 6 cover problems in remote sensing.
Chapter 3, dealing with noise in images, includes discussion on problems of
wide relevance. At the time of writing, the authors are applying these meth-
ods to other fields: medical image analysis (radiology, for mammography;
echocardiology), plasma physics response signals, and others.

Chapter 1 provides an extensive review of the theory and practice of the
wavelet transform. This chapter then considers other multiscale transforms,
offering possible advantages in regard to robustness. The reader wishing
early ‘action’ may wish to read parts of Chapter 1 at first, and dip into it
again later, for discussion of particular methods.

In Chapter 2, an important property of images – noise – is investigated.
Application of the lessons learned in regard to noise is then illustrated.
Chapter 3 describes deconvolution, or image sharpening and/or restoration.
This includes drawing various links with entropy-based smoothness criteria.
Chapter 4 covers (i) spectral analysis and (ii) general themes in multivari-
ate data analysis. It is shown how the wavelet transform can be integrated
seamlessly into various multivariate data analysis methods. Chapter 5 covers
image registration, in remote sensing and in astronomy. Chapter 6 deals with
stereo image processing in remote sensing. Chapter 7 describes highly effec-
tive image compression procedures based on multiscale transforms. Chapter
8 deals with object detection in images and also with point pattern cluster-
ing. The concluding chapter, Chapter 9, covers object recognition in images.
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This chapter is oriented towards image interpretation and understanding. A
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Chapter 1

The wavelet transform

1.1 Multiscale methods

A range of very different ideas have been used to formulate the human
ability to view and comprehend phenomena on different scales. Wavelet and
other multiscale transforms are treated in this book. Just a few alternative
approaches are surveyed in this section. In this section also, various terms
are introduced in passing, which will reappear many times in later chapters.

Data classification may be carried out using hierarchical classification
(Murtagh, 1985). A sequence of agglomerative steps is used, merging data
objects into a new cluster at each step. There is a fixed number of total
operations in this case. Such an approach is bottom-up, starting with the
set of data objects, considered independently. Spatial and other constraints
may be incorporated, to provide segmentation or regionalization methods.
This approach is combinatorial since neither continuous data values, nor
stochasticity, are presupposed. For alternative combinatorial methods, see
Breiman et al. (1984) and Preparata and Shamos (1985). For image data,
split-and-merge approaches are introduced in Schalkoff (1989).

Let us now consider two-dimensional (or other) images. An image rep-
resents an important class of data structures. Data objects may be taken as
pixels, but it is more meaningful for image interpretation if we try, in some
appropriate way, to take regions of the image as the data objects. Such re-
gions may be approximate. One approach is to recursively divide the image
into smaller regions. Such regions may be square or rectangular, to facili-
tate general implementation. Decomposition halts whenever a node meets
a homogeneity criterion, based on the pixel values or gray-levels within the
corresponding image region. This tree data structure, associated with an
image, is a quadtree (Samet, 1984).

A pyramid is a set of successively smoothed and downsampled versions
of the original image. Usually the amount of data decreases two-fold at each
successive step. One sees then that the total storage required is bounded by

1



2 CHAPTER 1. THE WAVELET TRANSFORM

the storage required for the original data.

A wavelet is a localized function of mean zero. Wavelet transforms of-
ten incorporate a pyramidal representation of the result. We will also see
examples later of cases where a set of successively smoother versions of an
image are not downsampled. Wavelet transforms are computationally effi-
cient, and part of the reason for this is that the scaling or wavelet function
used is often of compact support, i.e. defined on a limited and finite domain.
Wavelets also usually allow exact reconstitution of the original data. A suf-
ficient condition for this in the case of the continuous wavelet transform is
that the wavelet coefficients, which allow reconstitution, are of zero mean.
Wavelet functions are often wave-like but clipped to a finite domain, which
is why they are so named.

A different idea is that of scale-space filtering (Lindeberg, 1994). In
this method, the image is smoothed by convolving with a Gaussian kernel
(usually), of successively increasing width at successive scales. The Gaussian
function has been shown to be of most interest for this purpose, since it
fulfils the conditions necessary for no new structure to be introduced at any
scale. The idea is that all structure should be present in the input signal,
and structure should not be added by the convolutions. Zero-crossings are
examined in the context of this approach. These are extrema, defined using
the second derivative of the signal or its increasingly smoothed versions.

Compared to other methods described here, the wavelet transform can
be determined very efficiently. Unlike scale-space filtering, it can introduce
artifacts. To limit the retrograde impact of these, we may wish to develop
other similar multiscale methods, with specific desirable properties. The
choice of method to apply in practice is a function of the problem, and quite
often of the properties of the signal.

Some expository introductions to the wavelet transform include: Graps
(1995), Nason and Silverman (1994), Vidaković and Müller (1995), Bentley
and McDonnnell (1994), and Stollnitz, DeRose and Salesin (1995). Later
chapters in many instances offer new reworkings of these concepts and meth-
ods, and focus strongly on applications. Our aim is to describe the theo-
retical underpinnings and to illustrate the broad utility and importance of
wavelets and other related multiscale transforms.

1.1.1 Some perspectives on the wavelet transform

Wavelets can be introduced in different ways. In the following we can
think of our input data as a time-varying signal. If discretely sampled,
this amounts to considering an input vector of values. The input data
may be sampled at discrete wavelength values, yielding a spectrum, or one-
dimensional image. A two-dimensional, or more complicated input image,
can be fed to the analysis engine as a rasterized data stream. Analysis of
such a two-dimensional image may be carried out independently on each di-
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mension. Without undue loss of generality, we will now consider each input
to be a continuous signal or a discrete vector of values.

• In the continuous wavelet transform, the input signal is correlated with
an analyzing continuous wavelet. The latter is a function of two pa-
rameters, scale and position. An admissibility condition is required,
so that the original signal can be reconstituted from its wavelet trans-
form. In practice, some discrete version of this continuous transform
will be used. A later section will give definitions and will examine the
continuous wavelet transform in more detail.

• The widely-used Fourier transform maps the input data into a new
space, the basis functions of which are sines and cosines. Such basis
functions extend to +∞ and −∞, which suggests that Fourier analysis
is appropriate for signals which are similarly defined on this infinite
range, or which can be assumed to be periodic. The wavelet transform
maps the input data into a new space, the basis functions of which are
quite localized in space. They are usually of compact support.

The term ‘wavelet’ arose as a localized wave-like function. Wavelets
are localized in frequency as well as space, i.e. their rate of variation
is restricted. Fourier analysis is not local in space, but is local in
frequency.

Fourier analysis is unique, but wavelet analysis is not: there are many
possible sets of wavelets which one can choose. One trade-off be-
tween different wavelet sets is between their compactness versus their
smoothness.

Compactness has implications for computational complexity: while the
Fast Fourier Transform (FFT) has computational complexityO(n logn)
for n-valued inputs, the wavelet transform is often more efficient, O(n).

• Another point of view on the wavelet transform is by means of filter
banks. The filtering of the input signal is some transformation of it,
e.g. a low-pass filter, or convolution with a smoothing function. Low-
pass and high-pass filters are both considered in the wavelet transform,
and their complementary use provides signal analysis and synthesis.

We will continue with a short account of the wavelet transform, as de-
scribed from the point of view of filtering the data using a cascade of filters.

The following example uses a Haar wavelet transform. Basis functions
of a space indicated by Vj are defined from a scaling function φ as follows:

φj,i(x) = φ(2−jx−i) i = 0, . . . , 2j−1 with φ(x) =

{
1 for 0 ≤ x < 1
0 otherwise

(1.1)
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Note the dimensionality of space Vj , which directly leads to what is
called a dyadic analysis. The functions φ are all box functions, defined on
the interval [0, 1) and are piecewise constant on 2j subintervals. We can
approximate any function in spaces Vj associated with basis functions φj ,
clearly in a very fine manner for V0 (all values!), more crudely for Vj+1 and
so on. We consider the nesting of spaces, . . . Vj+1 ⊂ Vj ⊂ Vj−1 . . . ⊂ V0.

Next we consider the orthogonal complement of Vj+1 in Vj , and call it
Wj+1. The basis functions for Wj are derived from the Haar wavelet. We
find

ψj,i(x) = ψ(2−jx− i) i = 0, . . . , 2j − 1 with ψ(x) =





1 0 ≤ x < 1
2

−1 1
2 ≤ x < 1

0 otherwise

(1.2)

This leads to the basis for Vj as being equal to the basis for Vj+1 together
with the basis for Wj+1. In practice we use this finding like this: we write a
given function in terms of basis functions in Vj ; then we rewrite in terms of
basis functions in Vj+1 and Wj+1; and then we rewrite the former to yield,
overall, an expression in terms of basis functions in Vj+2, Wj+2 and Wj+1.
The wavelet parts provide the detail part, and the space Vj+2 provides the
smooth part.

For the definitions of scaling function and wavelet function in the case
of the Haar wavelet transform, proceeding from the given signal, the spaces
Vj are formed by averaging of pairs of adjacent values, and the spaces Wj

are formed by differencing of pairs of adjacent values. Proceeding in this
direction, from the given signal, we see that application of the scaling or
wavelet functions involves downsampling of the data.

The low-pass filter is a moving average. The high-pass filter is a moving
difference. Other low- and high-pass filters could alternatively be used, to
yield other wavelet transforms. We see that an input signal has been split
into frequency bands, by means of application of low-pass and high-pass
filters. Signal splitting of this type is termed subband coding. The collection
of filters is termed an analysis bank or a filter bank. The subsignals thus
constructed can be compressed more efficiently, compared to the original
signal. They have storage and transfer advantages.

A filter is a linear, time-invariant operator. We can therefore write the
low-pass filtering as the matrix product Hx, and the high-pass filtering as
Gx. The analysis bank can make use of the following matrix:

[
H
G

]
(1.3)
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Reconstituting the original data involves inversion. Subject to orthogonality,
we have:

[
H
G

]−1

=
[
HTGT

]
(1.4)

where T is the transpose. For exact reconstitution with such an orthogonal
filter bank, we have

[
HTGT

] [ H
G

]
= HTH +GTG = I (1.5)

where I is the identity matrix. The term ‘conjugate mirror filters’ is also used
for H and G above. We have taken the filter bank as orthogonal here, but
other properties related to other wavelet transforms have also been studied:
biorthogonality (H orthogonal to G, H and G independently orthogonal),
semi-orthogonality (H and G orthogonal but spaces associated with H and
G are not individually orthogonal), non-orthogonal schemes (e.g. for G). An
example of a non-orthogonal wavelet transform is the à trous wavelet trans-
form which will be used extensively in this book. With regard to orthogonal
filter banks, it was once thought that the Haar wavelet transform was the
sole compact representative. However Daubechies found what has become a
well-known family of orthogonal, compact filters satisfying certain regularity
assumptions.

A very readable introductory text on the wavelet transform from the
filter bank perspective is Strang and Nguyen (1996). Other books include
Chui (1992), Daubechies (1988), Meyer (1993), Meyer, Jaffard and Rioul
(1987), and Ruskai et al. (1992).

1.1.2 The wavelet transform and the Fourier transform

In the early 1980s, the wavelet transform was studied theoretically in geo-
physics and mathematics by Morlet, Grossman and Meyer. In the late 1980s,
links with digital signal processing were pursued by Daubechies and Mallat,
thereby putting wavelets firmly into the application domain.

The Fourier transform is a tool widely used for many scientific purposes,
and it will serve as a basis for another introduction to the wavelet transform.
For the present, we assume a time-varying signal. Generalization to any
x as independent variable, or image pixels (x, y), in the place of time t,
is immediate. The Fourier transform is well suited only to the study of
stationary signals where all frequencies have an infinite coherence time, or –
otherwise expressed – the signal’s statistical properties do not change over
time. Fourier analysis is based on global information which is not adequate
for the study of compact or local patterns.
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As is well-known, Fourier analysis uses basis functions consisting of sine
and cosine functions. These are time-independent. Hence the description of
the signal provided by Fourier analysis is purely in the frequency domain.
Music, or the voice, however, impart information in both the time and the
frequency domain. The windowed Fourier transform, and the wavelet trans-
form, aim at an analysis of both time and frequency. A short, informal
introduction to these different methods can be found in Bentley and Mc-
Donnell (1994) and further material is covered in Chui (1992).

For non-stationary analysis, a windowed Fourier transform (STFT, short-
time Fourier transform) can be used. Gabor (1946) introduced a local
Fourier analysis, taking into account a sliding Gaussian window. Such ap-
proaches provide tools for investigating time as well as frequency. Station-
arity is assumed within the window. The smaller the window size, the
better the time-resolution. However the smaller the window size also, the
more the number of discrete frequencies which can be represented in the
frequency domain will be reduced, and therefore the more weakened will be
the discrimination-potential among frequencies. The choice of window thus
leads to an uncertainty trade-off.

The STFT transform, for a signal s(t), a window g around time-point τ ,
and frequency ω, is

STFT(τ, ω) =

∫ +∞

−∞

s(t)g(t− τ)e−jωtdt (1.6)

Considering
kτ,ω(t) = g(t− τ)e−jωt (1.7)

as a new basis, and rewriting this with window size a, inversely proportional
to the frequency ω, and with positional parameter b replacing τ , as follows:

kb,a(t) =
1√
a
ψ∗

(
t− b
a

)
(1.8)

yields the continuous wavelet transform (CWT). In the STFT, the basis
functions are windowed sinusoids, whereas in the CWT, they are scaled
versions of a so-called mother function (ψ, where ψ∗ is the conjugate).

A wavelet mother function can take many forms, subject to some admis-
sibility constraints: see Freeman (1993) for an informal discussion. The best
choice of mother function for a particular application is not given a priori.

From the basic wavelet formulation, one can distinguish (see Daubechies,
1992) between: (i) the continuous wavelet transform, described above; (ii)
the discrete wavelet transform, which discretizes the continuous transform,
but which does not in general have an exact analytical reconstruction for-
mula; and within discrete transforms, distinction can be made between (iii)
redundant versus non-redundant (e.g. pyramidal) transforms; and (iv) or-
thonormal versus other bases of wavelets.
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Among points made in Graps (1995) in favor of the wavelet transform are
the following. ‘Choppy’ data are better handled by the wavelet transform,
and periodic or other non-local phenomena by the Fourier transform. To
‘choppy’ data we could add edge-related phenomena in two-dimensional im-
agery, or local scale-related features. Many additional application-oriented
examples will be considered in the following chapters. The wavelet trans-
form provides a decomposition of the original data, allowing operations to
be performed on the wavelet coefficients and then the data reconstituted.

1.1.3 Applications of the wavelet transform

We briefly introduce the varied applications which will be discussed in the
following chapters.

The human visual interpretation system does a good job at taking scales
of a phenomenon or scene into account simultaneously. A wavelet or other
multiscale transform may help us with visualizing image or other data. A
decomposition into different resolution scales may open up, or lay bare, faint
phenomena which are part of what is under investigation.

In capturing a view of multilayered reality in an image, we are also
picking up noise at different levels. Therefore, in trying to specify what is
noise in an image, we may find it effective to look for noise in a range of
resolution levels. Such a strategy has proven quite successful in practice.

Noise of course is pivotal for the effective operation of, or even selection
of, analysis methods. Image deblurring, or deconvolution or restoration,
would be trivially solved, were it not for the difficulties posed by noise.
Image compression would also be easy, were it not for the presence of what
is by definition non-compressible, i.e. noise.

Image or data filtering may take different forms. For instance, we may
wish to prioritize the high-frequency (rapidly-varying) parts of the image,
and de-emphasize the low-frequency (smoother) parts of the image. Or,
alternatively, we may wish to separate noise as far as possible from real
image signal. In the latter case, we may wish to ‘protect’ important parts
of the image from the slightest alteration.

An image may contain smooth and sharp features. We may need to
consider a trade-off in quality between results obtained for such types of
features. Introducing an entropy constraint in the image analysis procedure
is one way to do this. This comes under the general heading of regularization.

An image analysis often is directed towards particular objects, or object
classes, contained in the image. Template matching is the seeking of patterns
which match a query pattern. A catalog or inventory of all objects may be
used to facilitate later querying. Content-based queries may need to be
supported, based on an image database.

Image registration involves matching parts of images taken with different
detectors, or taken at different times. A top-down approach to this problem
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is offered by a multiscale approach: the crudest, most evident, features are
matched first; followed by increasingly better resolved features.

In the analysis of multivariate data, we integrate the wavelet transform
with methods such as cluster analysis, neural networks and (supervised and
unsupervised) pattern recognition.

In all of these applications, efficiency and effectiveness (or quality of the
result) are important. Varied application fields come immediately to mind:
astronomy, remote sensing, medicine, industrial vision, and so on.

All told, there are many and varied applications for the methods de-
scribed in this book. Based on the description of many applications, we aim
to arm the reader well for tackling other similar applications. Clearly this
objective holds too for tackling new and challenging applications.

We proceed now to look at the main features of various wavelet trans-
forms, and also at closely related strategies for applying them.

1.2 The continuous wavelet transform

1.2.1 Definition

The Morlet-Grossmann definition (Grossmann and Morlet, 1984) of the con-
tinuous wavelet transform for a 1-dimensional signal f(x) ∈ L2(R), the space
of all square integrable functions, is:

W (a, b) =
1√
a

∫ +∞

−∞

f(x)ψ∗

(
x− b
a

)
dx (1.9)

where:

• W (a, b) is the wavelet coefficient of the function f(x)

• ψ(x) is the analyzing wavelet

• a (> 0) is the scale parameter

• b is the position parameter

In Fourier space, we have:

Ŵ (a, ν) =
√
af̂(ν)ψ̂∗(aν) (1.10)

When the scale a varies, the filter ψ̂∗(aν) is only reduced or dilated while
keeping the same pattern.

1.2.2 Properties

The continuous wavelet transform (CWT) is characterized by the following
three properties:
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1. CWT is a linear transformation:

• if f(x) = f1(x) + f2(x) then Wf (a, b) = Wf1(a, b) +Wf2(a, b)

• if f(x) = kf1(x)) then Wf (a, b) = kWf1(a, b)

2. CWT is covariant under translation:

if f0(x) = f(x− x0) then Wf0(a, b) = Wf (a, b− x0)

3. CWT is covariant under dilation:

if fs(x) = f(sx) then Wfs
(a, b) =

1

s
1
2

Wf (sa, sb)

The last property makes the wavelet transform very suitable for ana-
lyzing hierarchical structures. It is like a mathematical microscope with
properties that do not depend on the magnification.

1.2.3 The inverse transform

Consider now a function W (a, b) which is the wavelet transform of a given
function f(x). It has been shown (Grossmann and Morlet, 1984; Holschnei-
der et al., 1989) that f(x) can be restored using the formula:

f(x) =
1

Cχ

∫ +∞

0

∫ +∞

−∞

1√
a
W (a, b)χ

(
x− b
a

)
da db

a2
(1.11)

where:

Cχ =

∫ +∞

0

ψ̂∗(ν)χ̂(ν)

ν
dν =

∫ 0

−∞

ψ̂∗(ν)χ̂(ν)

ν
dν (1.12)

Generally χ(x) = ψ(x), but other choices can enhance certain features for
some applications.

Reconstruction is only possible if Cχ is defined (admissibility condition).

In the case of χ(x) = ψ(x), this condition implies ψ̂(0) = 0, i.e. the mean
of the wavelet function is 0.

1.3 Examples of wavelet functions

1.3.1 Morlet’s wavelet

The wavelet defined by Morlet (Coupinot et al., 1992; Goupillaud, Gross-
mann and Morlet, 1985) is:

ĝ(ν) = e−2π2(ν−ν0)2 (1.13)
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This is a complex wavelet which can be decomposed into two parts, one for
the real part, and the other for the imaginary part:

gr(x) =
1√
2π
e−x

2/2 cos(2πν0x)

gi(x) =
1√
2π
e−x

2/2 sin(2πν0x)

where ν0 is a constant. Morlet’s transform is not admissible. For ν0 greater
than approximately 0.8 the mean of the wavelet function is very small, so
that approximate reconstruction is satisfactory. Figure 1.1 shows these two
functions.

-4 -2 0 2 4 -4 -2 0 2 4

Figure 1.1: Morlet’s wavelet: real part on left and imaginary part on right.

1.3.2 Mexican hat

The Mexican hat used e.g. Murenzi (1988) or Slezak, Bijaoui and Mars
(1990) is in one dimension:

g(x) = (1− x2)e−x
2/2 (1.14)

This is the second derivative of a Gaussian (see Fig. 1.2).

1.3.3 Haar wavelet

Parametrizing the continuous wavelet transform by scale and location, and
relating the choice of a and b to fixed a0 and b0 (and requiring b to be
proportional to a), we have (Daubechies, 1992):
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Figure 1.2: Mexican hat function.

ψm,n(x) = a
−m/2
0 ψ(a−m0 (x− nb0am0 )) (1.15)

The Haar wavelet transform is given by a0 = 2 and b0 = 1. The compact
support of ψm,n is then [2mn, 2m(n+ 1)].

As far back as 1910, Haar described the following function as providing
an orthonormal basis. The analyzing wavelet of a continuous variable is a
step function (Fig. 1.3).

ψ(x) = 1 if 0 ≤ x < 1
2

ψ(x) = −1 if 1
2 ≤ x < 1

ψ(x) = 0 otherwise

The Haar wavelet constitutes an orthonormal basis. Two Haar wavelets
of the same scale (i.e. value of m) never overlap, so we have scalar product
〈ψm,n, ψm,n′〉 = δn,n′ . Overlapping supports are possible if the two wavelets
have different scales, e.g. ψ1,1 and ψ3,0 (see Daubechies, 1992, pp. 10–11).
However, if m < m′, then the support of ψm,n lies wholly in the region
where ψm′,n′ is constant. It follows that 〈ψm,n, ψm′,n′〉 is proportional to the
integral of ψm,n, i.e. zero.

Application of this transform to data smoothing and periodicity detec-
tion is considered in Scargle (1993), and to turbulence in fluid mechanics
in Meneveau (1991). A clear introduction to the Haar wavelet transform is
provided in particular in the first part of the two-part survey in Stollnitz et
al. (1995).
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Figure 1.3: Haar wavelet.

Relative to other orthonormal wavelet transforms, the Haar basis lacks
smoothness; and although the Haar basis is compact in physical space, it
decays slowly in Fourier space.

1.4 The discrete wavelet transform

In the discrete case, the wavelet function is sampled at discrete mesh-points
using not δ functions but rather a smoothing function, φ. Correlations can
be performed in physical space or in Fourier space, the former in preference
when the support of the wavelet function is small (i.e. it is non-zero on a
limited number of grid-points).

For processing classical (regularly pixelated) signals, sampling is carried
out in accordance with Shannon’s (1948) well-known theorem. The discrete
wavelet transform (DWT) can be derived from this theorem if we process a
signal which has a cut-off frequency. If we are considering images, we can
note that the frequency band is always limited by the size of the camera
aperture.

A digital analysis is made possible by the discretization of eqn. (1.9),
with some simple considerations given to the modification of the wavelet
pattern due to dilation. Usually the wavelet function ψ(x) has no cut-off
frequency and it is necessary to suppress the values outside the frequency
band in order to avoid aliasing effects. It is possible to work in Fourier space,
computing the transform scale-by-scale. The number of elements for a scale



1.4. THE DISCRETE WAVELET TRANSFORM 13

can be reduced, if the frequency bandwidth is also reduced. This is possible
only for a wavelet which also has a cut-off frequency. The decomposition
proposed by Littlewood and Paley (1931) provides a very nice illustration of
the scale-by-scale reduction of elements. This decomposition is based on an
iterative dichotomy of the frequency band. The associated wavelet is well
localized in Fourier space where a reasonable analysis is possible. This is not
the case, however, in the original space. The search for a discrete transform
which is well localized in both spaces leads to multiresolution analysis.

1.4.1 Multiresolution analysis

Multiresolution analysis (Mallat, 1989) results from the embedded subsets
generated by interpolations at different scales.

In formula (1.9), a = 2j for increasing integer values of j. From the
function, f(x), a ladder of approximation spaces is constructed with

. . . ⊂ V3 ⊂ V2 ⊂ V1 ⊂ V0 . . . (1.16)

such that, if f(x) ∈ Vj then f(2x) ∈ Vj+1.
The function f(x) is projected at each step j onto the subset Vj . This

projection is defined by cj(k), the scalar product of f(x) with the scaling
function φ(x) which is dilated and translated:

cj(k) = 〈f(x), 2−jφ(2−jx− k)〉 (1.17)

As φ(x) is a scaling function which has the property:

1

2
φ

(
x

2

)
=
∑

n

h(n)φ(x− n) (1.18)

or

φ̂(2ν) = ĥ(ν)φ̂(ν) (1.19)

where ĥ(ν) is the Fourier transform of the function
∑
n h(n)δ(x−n), we get:

ĥ(ν) =
∑

n

h(n)e−2πinν (1.20)

Equation (1.18) permits the direct computation of the set cj+1(k) from cj(k).
If we start from the set c0(k) we compute all the sets cj(k), with j > 0,
without directly computing any other scalar product:

cj+1(k) =
∑

n

h(n− 2k)cj(n) (1.21)

At each step, the number of scalar products is divided by 2. Step-by-step
the signal is smoothed and information is lost. The remaining information
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can be restored using the complementary orthogonal subspace Wj+1 of Vj+1

in Vj . This subspace can be generated by a suitable wavelet function ψ(x)
with translation and dilation.

1

2
ψ

(
x

2

)
=
∑

n

g(n)φ(x− n) (1.22)

or

ψ̂(2ν) = ĝ(ν)φ̂(ν) (1.23)

The scalar products 〈f(x), 2−(j+1)ψ(2−(j+1)x− k)〉 are computed with:

wj+1(k) =
∑

n

g(n− 2k)cj(n) (1.24)

With this analysis, we have built the first part of a filter bank (Smith
and Barnwell, 1988). In order to restore the original data, Mallat uses the
properties of orthogonal wavelets, but the theory has been generalized to
a large class of filters (Cohen, Daubechies and Feauveau, 1992) by intro-
ducing two other filters h̃ and g̃, defined to be conjugate to h and g. The
reconstruction of the signal is performed with:

cj(k) = 2
∑

l

[cj+1(l)h̃(k + 2l) + wj+1(l)g̃(k + 2l)] (1.25)

In order to get an exact reconstruction, two conditions are required for
the conjugate filters:

• Dealiasing condition:

ĥ

(
ν +

1

2

)
ˆ̃
h(ν) + ĝ

(
ν +

1

2

)
ˆ̃g(ν) = 0 (1.26)

• Exact restoration:

ĥ(ν)
ˆ̃
h(ν) + ĝ(ν)ˆ̃g(ν) = 1 (1.27)

In the decomposition, the function is successively convolved with the
filters h (low frequencies) and g (high frequencies). Each resulting function
is decimated by suppression of one sample out of two. The high frequency
signal is left, and we iterate with the low frequency signal (upper part of
Fig. 1.4). In the reconstruction, we restore the sampling by inserting a 0
between each sample, then we convolve with the conjugate filters h̃ and g̃,
we add the resulting functions and we multiply the result by 2. We iterate
up to the smallest scale (lower part of Fig. 1.4).



1.4. THE DISCRETE WAVELET TRANSFORM 15

2H 2H2H

G

2

2 22

2 2 2

H H H

G G G

2 Keep one sample out of two X Convolution with the filter X

2 Put one zero between each sample

G

2

G

2

Figure 1.4: A filter bank associated with multiresolution analysis.

Orthogonal wavelets correspond to the restricted case where:

ĝ(ν) = e−2πiν ĥ∗
(
ν +

1

2

)
(1.28)

ˆ̃
h(ν) = ĥ∗(ν) (1.29)

ˆ̃g(ν) = ĝ∗(ν) (1.30)

and

| ĥ(ν) |2 + | ĥ
(
ν +

1

2

)
|2 = 1 (1.31)

It can be seen that this set satisfies the two basic relations (1.26) and
(1.27). Daubechies wavelets are the only compact solutions. For biorthogo-
nal wavelets (Cohen et al., 1992; Meyer, 1993, p. 59) we have the relations:

ĝ(ν) = e−2πiν ˆ̃h
∗
(
ν +

1

2

)
(1.32)

ˆ̃g(ν) = e2πiν ĥ∗
(
ν +

1

2

)
(1.33)

and

ĥ(ν)
ˆ̃
h(ν) + ĥ∗

(
ν +

1

2

)
ˆ̃
h
∗
(
ν +

1

2

)
= 1 (1.34)



16 CHAPTER 1. THE WAVELET TRANSFORM

This satisfies also relations (1.26) and (1.27). A large class of compact
wavelet functions can be derived. Many sets of filters have been proposed,
especially for coding. It has been shown (Daubechies, 1988) that the choice
of these filters must be guided by the regularity of the scaling and the
wavelet functions. The computational complexity is proportional to N for
an N -length input signal. This algorithm, involving decimation, provides a
pyramid of the N elements.

Vertical Details

j = 0
Diagonal Details

j = 0

Horizontal Details

j = 0
Vert. Det.

j = 1 j = 1

Diag. Det.

Horiz. Det.
V.D.

j=2

D.D.

j=2

H.D.

j=2
f

(2)

j = 1

Figure 1.5: Mallat’s wavelet transform representation of an image.

1.4.2 Mallat’s horizontal and vertical analyses

This two-dimensional algorithm is based on separate variables leading to
prioritizing of x and y directions (see Fig. 1.5). The scaling function is
defined by:

φ(x, y) = φ(x)φ(y) (1.35)

The passage from one resolution to the next is achieved by:

cj+1(kx, ky) =
+∞∑

lx=−∞

+∞∑

ly=−∞

h(lx − 2kx)h(ly − 2ky)fj(lx, ly) (1.36)

The detail signal is obtained from three wavelets:

• vertical wavelet :
ψ1(x, y) = φ(x)ψ(y)

• horizontal wavelet:
ψ2(x, y) = ψ(x)φ(y)
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• diagonal wavelet:
ψ3(x, y) = ψ(x)ψ(y)

which leads to three subimages:

w1
j+1(kx, ky) =

+∞∑

lx=−∞

+∞∑

ly=−∞

g(lx − 2kx)h(ly − 2ky)fj(lx, ly)

w2
j+1(kx, ky) =

+∞∑

lx=−∞

+∞∑

ly=−∞

h(lx − 2kx)g(ly − 2ky)fj(lx, ly)

w3
j+1(kx, ky) =

+∞∑

lx=−∞

+∞∑

ly=−∞

g(lx − 2kx)g(ly − 2ky)fj(lx, ly)

The wavelet transform can be interpreted as frequency decomposition,
with each set having a spatial orientation.

Figures 1.7 and 1.9 show the wavelet transform of a galaxy, Fig. 1.6
(NGC 2997), and a commonly-used test image (Lena), Fig. 1.8. For better
visualization, we represent the normalized absolute values of the wavelet co-
efficients. We chose a look-up table (LUT) such that zero values were white,
and the maximal value was black. We notice that this algorithm allows
contours in the Lena image to be detected. However, with an astronomical
image where we do not have contours, it is not easy to analyze the wavelet
coefficients.
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Figure 1.6: Galaxy NGC 2997.
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Figure 1.7: Wavelet transform of NGC 2997 by Mallat’s algorithm.
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Figure 1.8: A widely-used test image, ‘Lena’.
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Figure 1.9: Wavelet transform of Lena by Mallat’s algorithm.
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1.4.3 Non-dyadic resolution factor

Feauveau (1990) introduced quincunx analysis, based on Adelson’s work
(Adelson, Simoncelli and Hingorani, 1987). This analysis is not dyadic and
allows an image decomposition with a resolution factor equal to

√
2.

Wavelet
coefficients

1/2

Wavelet
coefficients

W 1

3/2W

W 2

Smoothed
image

C 2

W

Figure 1.10: Feauveau’s wavelet transform representation of an image.

The advantage is that only one wavelet is needed. At each step, the
image is undersampled by two in one direction (x and y, alternatively).
This undersampling is made by keeping one pixel out of two, alternatively
even and odd. The following conditions must be satisfied by the filters:

ĥ

(
u+

1

2
, v +

1

2

)
ˆ̃
h(u, v) + ĝ

(
u+

1

2
, v +

1

2

)
ˆ̃g(u, v) = 0 (1.37)

ĥ(u, v)
ˆ̃
h(u, v) + ĝ(u, v)ˆ̃g(u, v) = 1 (1.38)



1.4. THE DISCRETE WAVELET TRANSFORM 21

a

f b f

j g c g c

f g i d i g f
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a

h h̃

a 0.001671 –
b −0.002108 −0.005704
c −0.019555 −0.007192
d 0.139756 0.164931
e 0.687859 0.586315
f 0.006687 –
g −0.006324 −0.017113
i −0.052486 −0.014385
j 0.010030 –

Figure 1.11: Coefficients of the two-dimensional filters.

Using this method, we have only one wavelet image at each scale, and not
three like the previous method. Figure 1.10 shows the organization of the
wavelet subimages and the smoothed image. For more effectively visualizing
the entire transformation, coefficients are reorganized in a compact way.
Figure 1.12 shows this reorganization. At points denoted by ‘x’, we center
the low-pass filter h which furnishes the image at the lower resolution, and
at the points ‘o’ we center the high-pass filter g which allows the wavelet
coefficients to be obtained. The shift due to the filter g is made when we
undersample.

Figure 1.11 shows the non-null coefficients of the two-dimensional fil-
ters. Figure 1.12 shows the overall schema of the multiresolution algorithm.
Figure 1.13 shows the wavelet transform of the test image, Fig. 1.8.
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Numerical filters
h and g for computing
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Numerical filters
h and g for computing
coefficients:

C and W1 1

Figure 1.12: Feauveau multiresolution algorithm schema.



1.4. THE DISCRETE WAVELET TRANSFORM 23

1 256

1
25

6

Figure 1.13: Wavelet transform of Lena by Feauveau’s algorithm.
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1.4.4 The à trous algorithm

A wavelet transform for discrete data is provided by the particular ver-
sion known as the à trous (with holes) algorithm (Holschneider et al., 1989;
Shensa, 1992). This is a ‘stationary’ or redundant transform, i.e. decimation
is not carried out.

One assumes that the sampled data {c0(k)} are the scalar products, at
pixels k of the function f(x), with a scaling function φ(x) which corresponds
to a low-pass filter.

If the wavelet function ψ(x) obeys the dilation equation:

1

2
ψ

(
x

2

)
=
∑

l

g(l)φ(x− l) (1.39)

We compute the scalar products 1
2j 〈f(x), ψ(x−k

2j )〉, i.e. the discrete wavelet
coefficients, with:

wj(k) =
∑

l

g(l)cj−1(k + 2j−1l) (1.40)

Generally, the wavelet resulting from the difference between two succes-
sive approximations is applied:

wj(k) = cj−1(k)− cj(k) (1.41)

The first filtering is then performed by a twice-magnified scale leading
to the {c1(k)} set. The signal difference {c0(k)} − {c1(k)} contains the
information between these two scales and is the discrete set associated with
the wavelet transform corresponding to φ(x). The associated wavelet is
ψ(x).

1

2
ψ

(
x

2

)
= φ(x)− 1

2
φ

(
x

2

)
(1.42)

The distance between samples increasing by a factor 2 (see Fig. 1.14)
from scale (j − 1) (j > 0) to the next, cj(k), is given by:

cj(k) =
∑

l

h(l)cj−1(k + 2j−1l) (1.43)

The coefficients {h(k)} derive from the scaling function φ(x):

1

2
φ

(
x

2

)
=
∑

l

h(l)φ(x− l) (1.44)

The algorithm allowing us to rebuild the data-frame is immediate: the
last smoothed array cnp is added to all the differences, wj .

c0(k) = cnp(k) +

np∑

j=1

wj(k) (1.45)
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 h(−2)    h(−1)  h(0)    h(1)      h(2)

C
0 1 2 3 4−1−2−3−4

0

C1

C2

h(−2)            h(−1)               h(0)              h(1)                h(2)

0 1 2 3 4−1−2−3−4

0 1 2 3 4−1−2−3−4

Figure 1.14: Passage from c0 to c1, and from c1 to c2.

Choosing the triangle function as the scaling function φ (see Fig. 1.15)
leads to piecewise linear interpolation:

φ(x) = 1− | x | if x ∈ [−1, 1]
φ(x) = 0 if x 6∈ [−1, 1]

We have:

1

2
φ

(
x

2

)
=

1

4
φ(x+ 1) +

1

2
φ(x) +

1

4
φ(x− 1) (1.46)

c1 is obtained from:

c1(k) =
1

4
c0(k − 1) +

1

2
c0(k) +

1

4
c0(k + 1) (1.47)

and cj+1 is obtained from cj by:

cj+1(k) =
1

4
cj(k − 2j) +

1

2
cj(k) +

1

4
cj(k + 2j) (1.48)

Figure 1.16 shows the wavelet associated with the scaling function. The
wavelet coefficients at scale j are:

wj+1(k) = −1

4
cj(k − 2j) +

1

2
cj(k)−

1

4
cj(k + 2j) (1.49)

The above à trous algorithm is easily extended to two-dimensional space.
This leads to a convolution with a mask of 3 × 3 pixels for the wavelet
associated with linear interpolation. The coefficients of the mask are:

(
1/4 1/2 1/4

)
⊗




1/4
1/2
1/4



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Figure 1.15: Triangle function φ.

where ⊗ is the Kronecker product.
At each scale j, we obtain a set {wj(k, l)} which we will call a wavelet

plane in the following. A wavelet plane has the same number of pixels as
the image.

Spline functions, piecewise polynomials, have data approximation prop-
erties which are highly-regarded (Strang and Nguyen, 1996). If we choose a
B3-spline for the scaling function, the coefficients of the convolution mask
in one dimension are ( 1

16 ,
1
4 ,

3
8 ,

1
4 ,

1
16), and in two dimensions:

(
1/16 1/4 3/8 1/4 1/16

)
⊗




1/16
1/4
3/8
1/4
1/16




To facilitate computation, a simplification of this wavelet is to assume sepa-
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Figure 1.16: Wavelet ψ.

rability in the two-dimensional case. In the case of the B3-spline, this leads
to a row-by-row convolution with ( 1

16 ,
1
4 ,

3
8 ,

1
4 ,

1
16); followed by column-by-

column convolution.

The most general way to handle the boundaries is to consider that c(k+
N) = c(N −k) (mirror). But other methods can be used such as periodicity
(c(k +N) = c(k)), or continuity (c(k +N) = c(N)).

Figure 1.17 shows the à trous transform of the galaxy NGC 2997. Three
wavelet scales are shown (upper left, upper right, lower left) and the final
smoothed plane (lower right). The original image is given exactly by the
sum of these four images.

Figure 1.18 shows the same sequence of images for the Lena image.

Figure 1.19 shows each scale as a perspective plot. Figure 1.20 is the
same, with stacked plots. Figure 1.21 shows the first scale of the wavelet
transform of NGC 2997 as a gray-level image; as an isophot plot; as a
perspective plot; and the associated histogram of wavelet coefficients.
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In Fig. 1.22, each scale is replaced with a contour level, and the contours
of all scales are shown together. The net effect is to show an aspect of
each resolution level at the same time. This representation is an example of
the multiresolution support, a data structure which will be introduced and
discussed in the next chapter.

Figures 1.23 and 1.24 show the nebula NGC 40 and its wavelet transform.
This last figure shows each scale displayed as a contour plot, and the inter-
scale connections clearly show the hierarchy of structure in the scales.

1 512

1
51

2

Figure 1.17: Wavelet transform of NGC 2997 by the à trous algorithm.
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Figure 1.18: Wavelet transform of Lena by the à trous algorithm.
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Figure 1.19: 3D visualization of NGC 2997 wavelet transform (à trous algo-
rithm).
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Figure 1.20: Superposition of NGC 2997 wavelet scales.
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Figure 1.21: Visualization of one wavelet scale in gray level, isophot, per-
spective plot, and histogram.
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Figure 1.22: NGC 2997: one contour per scale is plotted.

Figure 1.23: Nebula NGC 40.
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Figure 1.24: NGC 40 wavelet coefficients.
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1.4.5 Pyramidal algorithm

The Laplacian pyramid.

The Laplacian pyramid was developed by Burt and Adelson in 1981 (Burt
and Adelson, 1983) in order to compress images. The term Laplacian was
applied by Burt to the difference between two successive levels in a pyramid,
defined itself in turn by repeatedly applying a low-pass (smoothing) filtering
operation. After the filtering, only one sample out of two is kept. The
number of pixels decreases by a factor 2 at each scale. The difference between
images is obtained by expanding (or interpolating) one of the pair of images
in the sequence associated with the pyramid.

The convolution is carried out with the filter h by keeping one sample
out of two (see Fig. 1.25):

cj+1(k) =
∑

l

h(l − 2k)cj(l) (1.50)

 h(−2)    h(−1)  h(0)    h(1)      h(2)

C
0 1 2 3 4−1−2−3−4

0

C1

0 1 2−1−2

0 12

C2
h(−2)            h(−1)               h(0)              h(1)                h(2)

Figure 1.25: Passage from c0 to c1, and from c1 to c2.

To reconstruct cj from cj+1, we need to calculate the difference signal
wj+1:

wj+1(k) = cj(k)− c̃j(k) (1.51)

where c̃j is the signal reconstructed by the following operation (see Fig.
1.26):

c̃j(k) = 2
∑

l

h(k − 2l)cj(k) (1.52)

In two dimensions, the method is similar. The convolution is carried out
by keeping one sample out of two in the two directions. We have:

cj+1(n,m) =
∑

k,l

h(k − 2n, l − 2m)cj(k, l) (1.53)
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C

0 1 2 3 4−1−2−3

0

C1

0 1 2−1−2

 h(−2)    h(−1)  h(0)    h(1)      h(2)

Figure 1.26: Passage from c1 to c0.

and c̃j is:

c̃j(n,m) = 2
∑

k,l

h(n− 2l,m− 2l)cj+1(k, l) (1.54)

The number of samples is divided by four. If the image size is N × N ,
then the pyramid size is 4

3N
2. We get a pyramidal structure (see Fig. 1.27).

The Laplacian pyramid leads to an analysis with four wavelets (Bijaoui,
1991) and there is no invariance to translation.

Pyramidal algorithm with one wavelet.

To modify the previous algorithm in order to have an isotropic wavelet
transform, we compute the difference signal by:

wj+1(k) = cj(k)− c̃j(k) (1.55)

but c̃j is computed without reducing the number of samples:

c̃j(k) =
∑

l

h(k − l)cj(k) (1.56)

and cj+1 is obtained by:

cj+1(k) =
∑

l

h(l − 2k)cj(l) (1.57)

The reconstruction method is the same as with the Laplacian pyramid,
but the reconstruction is not exact. However, the exact reconstruction can
be performed by an iterative algorithm. If P0 represents the wavelet coeffi-
cient pyramid, we look for an image such that the wavelet transform of this
image gives P0. Van Cittert’s iterative algorithm (1931) gives:

Pn+1 = P0 + Pn −R(Pn) (1.58)

where
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Figure 1.27: Pyramidal structure.

• P0 is the pyramid to be reconstructed

• Pn is the pyramid after n iterations

• R is an operator which consists of a reconstruction followed by a
wavelet transform.

The solution is obtained by reconstructing the pyramid Pn.
Normally, we need no more than seven or eight iterations to converge.

Another way to have a pyramidal wavelet transform with an isotropic wavelet
is to use a scaling function with a cut-off frequency.
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Figure 1.28: Lena pyramidal coefficients.
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Figure 1.29: NGC 2997 pyramidal coefficients.
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1.4.6 Scaling functions with a frequency cut-off

Wavelet transform using the Fourier transform.

We start with the set of scalar products c0(k) = 〈f(x), φ(x − k)〉. If φ(x)
has a cut-off frequency νc ≤ 1

2 (Starck, 1992; Starck and Bijaoui, 1994a,b;
Starck et al., 1994), the data are correctly sampled. The data at resolution
j = 1 are:

c1(k) = 〈f(x),
1

2
φ

(
x

2
− k

)
〉 (1.59)

and we can compute the set c1(k) from c0(k) with a discrete filter ĥ(ν):

ĥ(ν) =





φ̂(2ν)

φ̂(ν)
if | ν |< νc

0 if νc ≤| ν |< 1
2

(1.60)

and

∀ν,∀n ĥ(ν + n) = ĥ(ν) (1.61)

where n is an integer. So:

ĉj+1(ν) = ĉj(ν)ĥ(2
jν) (1.62)

The cut-off frequency is reduced by a factor 2 at each step, allowing a re-
duction of the number of samples by this factor.

The wavelet coefficients at scale j + 1 are:

wj+1(k) = 〈f(x), 2−(j+1)ψ(2−(j+1)x− k)〉 (1.63)

and they can be computed directly from cj(k) by:

ŵj+1(ν) = ĉj(ν)ĝ(2
jν) (1.64)

where g is the following discrete filter:

ĝ(ν) =





ψ̂(2ν)

φ̂(ν)
if | ν |< νc

1 if νc ≤| ν |< 1
2

(1.65)

and

∀ν,∀n ĝ(ν + n) = ĝ(ν) (1.66)

The frequency band is also reduced by a factor 2 at each step. Applying
the sampling theorem, we can build a pyramid of N + N

2 + . . . + 1 = 2N
elements. For an image analysis the number of elements is 4

3N
2. The overde-

termination is not very high.
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The B-spline functions are compact in direct space. They correspond to
the autoconvolution of a square function. In Fourier space we have:

B̂l(ν) =

(
sinπν

πν

)l+1

(1.67)

B3(x) is a set of four polynomials of degree 3. We choose the scaling function
φ(ν) which has a B3(x) profile in Fourier space:

φ̂(ν) =
3

2
B3(4ν) (1.68)

In direct space we get:

φ(x) =
3

8

[
sin πx

4
πx
4

]4

(1.69)

This function is quite similar to a Gaussian and converges rapidly to 0. For
two dimensions the scaling function is defined by φ̂(u, v) = 3

2B3(4r), with

r =
√
u2 + v2. This is an isotropic function.

The wavelet transform algorithm with np scales is the following:

1. Start with a B3-spline scaling function and derive ψ, h and g numeri-
cally.

2. Compute the corresponding FFT image. Name the resulting complex
array T0.

3. Set j to 0. Iterate:

4. Multiply Tj by ĝ(2ju, 2jv). We get the complex array Wj+1. The
inverse FFT gives the wavelet coefficients at scale 2j ;

5. Multiply Tj by ĥ(2ju, 2jv). We get the array Tj+1. Its inverse FFT
gives the image at scale 2j+1. The frequency band is reduced by a
factor 2.

6. Increment j.

7. If j ≤ np, go back to step 4.

8. The set {w1, w2, . . . , wnp , cnp} describes the wavelet transform.

If the wavelet is the difference between two resolutions, i.e.

ψ̂(2ν) = φ̂(ν)− φ̂(2ν) (1.70)

and:

ĝ(ν) = 1− ĥ(ν) (1.71)

then the wavelet coefficients ŵj(ν) can be computed by ĉj−1(ν)− ĉj(ν).
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Reconstruction.

If the wavelet is the difference between two resolutions, an evident recon-
struction for a wavelet transform W = {w1, . . . , wnp , cnp} is:

ĉ0(ν) = ĉnp(ν) +
∑

j

ŵj(ν) (1.72)

But this is a particular case, and other alternative wavelet functions can
be chosen. The reconstruction can be made step-by-step, starting from the
lowest resolution. At each scale, we have the relations:

ĉj+1 = ĥ(2jν)ĉj(ν) (1.73)

ŵj+1 = ĝ(2jν)ĉj(ν) (1.74)

We look for cj knowing cj+1, wj+1, h and g. We restore ĉj(ν) based on a
least mean square estimator:

p̂h(2
jν) | ĉj+1(ν)− ĥ(2jν)ĉj(ν) |2 +

p̂g(2
jν) | ŵj+1(ν)− ĝ(2jν)ĉj(ν) |2 (1.75)

is to be minimum. The weight functions p̂h(ν) and p̂g(ν) permit a general
solution to the restoration of ĉj(ν). From the derivation of ĉj(ν) we get:

ĉj(ν) = ĉj+1(ν)
ˆ̃
h(2jν) + ŵj+1(ν)ˆ̃g(2

jν) (1.76)

where the conjugate filters have the expression:

ˆ̃
h(ν) =

[
p̂h(ν)ĥ

∗(ν)
]
/
[
p̂h(ν) | ĥ(ν) |2 +p̂g(ν) | ĝ(ν) |2

]
(1.77)

ˆ̃g(ν) = [p̂g(ν)ĝ
∗(ν)] /

[
p̂h(ν) | ĥ(ν) |2 +p̂g(ν) | ĝ(ν) |2

]
(1.78)

It is easy to see that these filters satisfy the exact reconstruction eqn. (1.27).
In fact, eqns. (1.77) and (1.78) give the general solution to this equation.
In this analysis, the Shannon sampling condition is always respected. No
aliasing exists, so that the dealiasing condition (1.26) is not necessary.

The denominator is reduced if we choose:

ĝ(ν) =
√

1− | ĥ(ν) |2

This corresponds to the case where the wavelet is the difference between the
square of two resolutions:

| ψ̂(2ν) |2 = | φ̂(ν) |2 − | φ̂(2ν) |2 (1.79)

In Fig. 1.30 the chosen scaling function derived from a B-spline of degree
3, and its resulting wavelet function, are plotted in frequency space. Their
conjugate functions are plotted in Fig. 1.31.

The reconstruction algorithm is:
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Figure 1.30: On the left, the interpolation function φ̂ and, on the right, the
wavelet ψ̂.

1. Compute the FFT of the image at the low resolution.

2. Set j to np. Iterate:

3. Compute the FFT of the wavelet coefficients at scale j.

4. Multiply the wavelet coefficients ŵj by ˆ̃g.

5. Multiply the image at the lower resolution ĉj by
ˆ̃
h.

6. The inverse Fourier transform of the addition of ŵj ˆ̃g and ĉj
ˆ̃
h gives the

image cj−1.

7. Set j = j − 1 and return to step 3.

The use of a scaling function with a cut-off frequency allows a reduction
of sampling at each scale, and limits the computing time and the memory
size.
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Figure 1.31: On the left, the filter
ˆ̃
h, and on the right the filter ˆ̃g.

1.4.7 Discussion of the wavelet transform

We will look at limitations of the wavelet transform. This will justify the
additional consideration in subsequent chapters of other similar multireso-
lution transforms.

Anisotropic wavelet.

The two-dimensional extension of Mallat’s algorithm leads to a wavelet
transform with three wavelet functions (we have at each scale three wavelet
coefficient subimages) which does not simplify the analysis and the inter-
pretation of the wavelet coefficients. An isotropic wavelet seems more ap-
propriate in astronomical imaging and in other domains where objects are
often isotropic (e.g. stars).

Invariance by translation.

Mallat’s and Feauveau’s methods provide a remarkable framework to code a
signal, and especially an image, with a pyramidal set of values. But contrary
to the continuous wavelet transform, these analyses are not covariant under
translation. At a given scale, we derive a decimated number of wavelet
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coefficients. We cannot restore the intermediary values without using the
approximation at this scale and the wavelet coefficients at smaller scales.
Since the multiresolution analysis is based on scaling functions without cut-
off frequency, the application of the Shannon interpolation theorem is not
possible. The interpolation of the wavelet coefficients can only be carried out
after reconstruction and shift. This has no importance for a signal coding
which does not modify the data, but the situation is not the same in a
strategy in which we want to analyze or restore an image.

Scale separation.

If the image I we want to analyze is the convolution product of an object
O by a point spread function (PSF), I = P ∗O, we have:

ŵ(I)(a, u, v) =
√
aψ̂∗(au, av)Î(u, v) (1.80)

where w(z) are the wavelet coefficients of z, and a is the scale parameter.
We deduce:

ŵ(I)(a, u, v) =
√
aψ̂∗(au, av)P̂ (u, v)Ô(u, v) (1.81)

= Ô(u, v)ŵ(P )(a, u, v) (1.82)

Then we can directly analyze the object from the wavelet coefficients
of the image. But due to decimation effects in Mallat’s, Feauveau’s, and
pyramidal methods, this equation becomes false. The wavelet transform
using the FFT (which decimates using Shannon’s theorem) and the à trous
algorithm (which does not decimate) are the only ones that respect the scale
separation property.

Negative values (bumps).

By definition, the wavelet coefficient mean is null. Every time we have a
positive structure at a scale, we have negative values surrounding it. These
negative values often create artifacts during the restoration process, or com-
plicate the analysis. For instance, if we threshold small values (noise, non-
significant structures, etc.) in the wavelet transform, and if we reconstruct
the image at full resolution, the structure’s flux will be modified.

Furthermore, if an object is very high in intensity, the negative values
will be large and will lead to detection of false structure.

Point objects.

We often have bright point objects in astronomical imaging (stars, cosmic
ray hits, etc.), and the convolution of a Dirac function by the wavelet func-
tion is equal to the wavelet function. Then, at each scale, and at each point
source, we will have the wavelet. Therefore, cosmic rays for instance can
pollute all the scales of the wavelet transform.
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Multiresolution transforms.

There is no ideal wavelet transform algorithm, and the selected one will
depend on the application. Issues such as negative wavelet coefficient val-
ues, and the presence of spurious point objects, cannot be solved with the
wavelet transform. These issues lead us to investigate and to develop other
multiresolution tools which we now present.

1.5 Multiresolution based on the median trans-

form

1.5.1 Multiresolution median transform

The search for new multiresolution tools has been motivated so far by prob-
lems related to the wavelet transform. It would be more desirable for a point
structure (represented in one pixel in the image) to be present only at the
first scale. It would also be desirable for a positive structure in the image
to not create negative values in the multiresolution space. We will see how
such an algorithm can be arrived at, using morphological filters such as the
median filter.

The median transform is nonlinear, and offers advantages for robust
smoothing (i.e. the effects of outlier pixel values are mitigated). Define the
median transform of image f , with square kernel of dimensions n × n, as
med(f, n). Let n = 2s + 1; initially s = 1. The iteration counter will be
denoted by j, and S is the user-specified number of resolution scales.

1. Let cj = f with j = 1.

2. Determine cj+1 = med(f, 2s+ 1).

3. The multiresolution coefficients wj+1 are defined as: wj+1 = cj− cj+1.

4. Let j ←− j + 1; s←− 2s. Return to step 2 if j < S.

A straightforward expansion formula for the original image is given by:

f = cp +
∑

j

wj (1.83)

where cp is the residual image.
In step 4, the set of resolution levels associated with s lead to a dyadic

analysis. Other possibilities involving intermediate scales (e.g. s ←−
√

2 s)
can also be considered.

The multiresolution coefficient values, wj , are evidently not necessarily
of zero mean, and so the potential artifact-creation difficulties related to this
aspect of wavelet transforms do not arise. Note of course that values of w
can be negative.
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For input integer image values, this transform can be carried out in
integer arithmetic only, which may lead to computational savings.

Computational requirements are high, and these can be mitigated to
some extent by decimation: one pixel out of two is retained at each scale.
Here the transform kernel does not change from one iteration to the next,
but the image on which this transform is applied does.

1.5.2 Pyramidal median transform

The Pyramidal Median Transform (PMT) is obtained by:

1. Let cj = f with j = 1.

2. Determine c∗j+1 = med(cj , 2s+ 1) with s = 1.

3. The pyramidal multiresolution coefficients wj+1 are defined as:

wj+1 = cj − c∗j+1

4. Let cj+1 = dec(c∗j+1) (where the decimation operation, dec, entails 1
pixel replacing each 2× 2 subimage).

5. Let j ←− j + 1. Return to step 2 iff j < S.

Here the kernel or mask of dimensions (2s + 1) × (2s + 1) remains the
same during the iterations. The image itself, to which this kernel is applied,
becomes smaller.

While this algorithm aids computationally, the reconstruction formula
(eqn. (1.83) above) is no longer valid. Instead we use the following algorithm
based on B-spline interpolation:

1. Take the lowest scale image, cp.

2. Interpolate cp to determine the next resolution image (of twice the
dimensionality in x and y). Call the interpolated image c′p.

3. Calculate cp−1 ←− c′p + wp.

4. Set p←− p− 1. Go to step 2 if p > 0.

This reconstruction procedure takes account of the pyramidal sequence
of images containing the multiresolution coefficients, wj . It presupposes,
though, that high-quality reconstruction is possible. We ensure that by use
of the following refined version of the Pyramidal Multi-Median Transform.

Using iteration, the definition of the coefficients, wj+1 = cj − cj+1, is
improved vis-à-vis their potential for reconstructing the input image.
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1.5.3 Iterative pyramidal median transform

An iterative scheme can be proposed for reconstructing an image, based
on pyramidal multi-median transform coefficients. Alternatively, the PMT
algorithm, itself, can be enhanced to allow for better estimates of coefficient
values. The following is an iterative algorithm for this objective:

1. i←− 0. Initialize f i with the given image, f . Initialize the multireso-
lution coefficients at each scale j, wfj , to 0.

2. Using the Pyramidal Multi-Median Transform, determine the set of
transform coefficients, wfi

j .

3. wfj ←− w
f
j + wfi

j .

4. Reconstruct image fi+1 from wfj (using the interpolation algorithm
described in the previous section).

5. Determine the image component which is still not reconstructible from
the wavelet coefficients: fi+1 ←− f − fi+1.

6. Set i←− i+ 1, and return to step 2.

The number of iterations is governed by when fi+1 in step 5 approaches
a null image. Normally four or five iterations suffice. Note that the addi-
tivity of the multiresolution coefficients in step 3 is justified by the image
decomposition in step 5 and the reconstruction formula used in step 4, both
of which are based on additive operations.

1.5.4 Non-iterative pyramidal transform with exact recon-

struction

A non-iterative version of the pyramidal median transform can be performed
by decimating and interpolating the median images during the transform:

1. Let cj = f with j = 1.

2. Determine cj+1 = dec[med(cj , 2s+ 1)].

3. Determine c∗j+1 = interpolation of cj+1 to size of cj .

4. The pyramidal multiresolution coefficients wj+1 are defined as:

wj+1 = cj − c∗j+1

5. Let j ←− j + 1. Return to step 2 iff j < S.
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This saves computation time in two ways. First, there is no need to
iterate. Secondly, in step 2 one does not really calculate the median for all
pixels and then decimate it; rather, one just calculates the median for the
pixels to be left after decimation. Thus the medians are four times fewer.
This algorithm is very close to the Laplacian pyramid developed by Burt
and Adelson (1983). The reconstruction algorithm is the same as before,
but the reconstructed image has no error. In the following, we will mean
this version when referring to PMT.

1.5.5 Conclusion on multiscale median transforms

The multiscale median transform is well-suited to all applications where an
image reconstruction from a subset of coefficients is needed (e.g. restoration,
compression, partial reconstruction). The suppression of subsets of coeffi-
cients leads to fewer artifacts in the reconstructed image, because often the
visual artifacts are due to the shape of the wavelet function (the negative
ring, in particular, surrounding objects). For data analysis, the median
transform is interesting because the shapes of structures in the scales are
closer to those in the input image than would be the case with a wavelet
transform. This is due to the non-linearity of the median filter. We will see
later (Chapter 8) how such a transform can be used for object detection.

Other morphological tools can be used to perform a similar transform
such as opening (N erosions followed by N dilations). However results were
found to be better with the median filter. In the median-based transform,
coefficients can be positive or negative. For some applications, it would be
useful to have a decomposition into multiresolution coefficients which are all
positive. This can be provided by mathematical morphology.

1.6 Multiresolution and mathematical morphology

Mathematical morphology has been surveyed e.g. in Serra (1982). The usual
operators for gray-level images are (see Haralick, Sternberg and Xinhua
Zhuang, 1987; Maragos and Shaffer, 1990):

• erosion which consists of replacing each pixel of an image by the min-
imum of its neighbors.

• dilation which consists of replacing each pixel of an image by the max-
imum of its neighbors.

• opening which consists of doing N erosions followed by N dilations.

• closing which consists of doing N dilations followed by N erosions.

Morphology processing was first introduced in astronomy by Lea (Lea
and Keller, 1989) and by Huang (Huang and Bijaoui, 1991). A survey of
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multiresolution analysis using a scale-space approach is to be found in Jack-
way and Deriche (1996); and further multiresolution approaches in Liang
and Wong (1993).

1.6.1 Multiresolution

Detail structure of a given size of objects can be obtained by taking the
difference between the original image and its opening of order N , N being
the parameter which characterizes detail sizes. A possible multiresolution
algorithm is:

1. Define the neighborhood of a pixel (generally the 8 closest neighbors
are chosen).

2. Initialize j to 0, and start from data c0 = f .

3. openN being the function which gives an opening of order N , we com-
pute cj+1 = openN (cj) and the coefficients at scale j by:

wj+1 = cj − cj+1 (1.84)

4. Double the opening order: N = 2 ∗N .

5. j = j + 1.

6. if j is less than the number of resolution levels we need, return to step
3.

Using this algorithm, we have a positive multiresolution transform. This
was the strategy chosen by Appleton (Appleton, Siqueira and Basart, 1993)
for cirrus (due to intergalactic dust phenomena) filtering in infrared images.

An undersampling or decimation can be introduced, just as for the me-
dian transform, which leads to a pyramidal algorithm.

1.6.2 Pyramidal morphological transform

The goal of this transform is to allow the decomposition of an image I into
a sum of components with different sizes (similarly to the pyramidal median
transform), each of these components being positive.

The algorithm performing this is:

1. Define the neighborhood of a pixel (generally the 8 closest neighbors).

2. Initialize j to 0, and start from data c0 = f .

3. open1 is the function which gives an opening of order 1, and mj+1 =
open1(cj) is computed, with the coefficients at scale j given by the
following:

wj+1 = cj −mj+1 (1.85)
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4. Undersample mj+1 in order to obtain cj+1.

5. j = j + 1.

6. If j is less than the number of resolution levels needed, return to step
3.

The reconstruction is not exact. To make it so, we need to modify cj+1

in the following way:

1. Initialize the error image E(0) to f : E(0) = f .

2. n = 0.

3. Compute the coefficients c
(n)
j of E(n) by the previous algorithm.

4. Reconstruct f̃ (n).

5. E(n) = f − f̃ (n).

6. If ‖ E(n) ‖> ǫ, then return to step 3.

Thus we obtain a set of positive coefficients, and the reconstruction is
exact.

1.6.3 Conclusions on non-wavelet multiresolution approaches

Nonlinear multiresolution transforms are complementary to the wavelet trans-
form. According to the application, one or other may be used.

We note in passing one particularly interesting use of the PMT: the
final scale often provides a good estimate of the image background. This is
especially so for images containing small structures, e.g. astronomical wide-
field images.



Chapter 2

Multiresolution support and

filtering

2.1 Noise modeling

2.1.1 Definition of significant coefficients

Images generally contain noise. Hence the wavelet coefficients are noisy too.
In most applications, it is necessary to know if a coefficient is due to signal
(i.e. it is significant) or to noise. Generally noise in astronomical images fol-
lows a Gaussian or a Poisson distribution, or a combination of both. So we
consider these three possibilities, in some depth, in the following. We con-
sider separately the Poisson distribution case where we have a small number
of counts or photons (less than 20 per pixel). We define the multiresolution
support of an image and how we can derive it from our noise modeling.
Finally we consider various other cases relating to non-stationary noise.

The wavelet transform yields a set of resolution-related views of the
input image. A wavelet image scale at level j has coefficients given by
wj(x, y). If we obtain the distribution of the coefficient wj(x, y) for each
plane, based on the noise, we can introduce a statistical significance test for
this coefficient. The procedure is the classical significance-testing one. Let
H′ be the hypothesis that the image is locally constant at scale j. Rejection
of hypothesis H′ depends (for a positive coefficient value) on:

P = Prob(WN > wj(x, y)) (2.1)

and if the coefficient value is negative

P = Prob(WN < wj(x, y)) (2.2)

Given a threshold, ǫ, if P > ǫ the null hypothesis is not excluded. Although
non-null, the value of the coefficient could be due to noise. On the other
hand, if P < ǫ, the coefficient value cannot be due only to the noise alone,
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and so the null hypothesis is rejected. In this case, a significant coefficient
has been detected.

2.1.2 Gaussian noise

Significant level.

If the distribution of wj(x, y) is Gaussian, with zero mean and standard
deviation σj , we have the probability density

p(wj(x, y)) =
1√

2πσj
e−wj(x,y)

2/2σ2
j (2.3)

Rejection of hypothesis H′ depends (for a positive coefficient value) on:

P = Prob(wj(x, y) > W ) =
1√

2πσj

∫ +∞

wj(x,y)
e−W

2/2σ2
j dW (2.4)

and if the coefficient value is negative, it depends on

P = Prob(wj(x, y) < W ) =
1√

2πσj

∫ wj(x,y)

−∞

e−W
2/2σ2

j dW (2.5)

Given stationary Gaussian noise, it suffices to compare wj(x, y) to kσj .
Often k is chosen as 3, which corresponds approximately to ǫ (cf. the previous
subsection) = 0.002. If wj(x, y) is small, it is not significant and could be
due to noise. If wj(x, y) is large, it is significant:

if | wj | ≥ kσj then wj is significant
if | wj | < kσj then wj is not significant

(2.6)

So we need to estimate, in the case of Gaussian noise models, the noise
standard deviation at each scale. These standard deviations can be deter-
mined analytically in the case of some transforms, including the à trous
transform, but the calculations can become complicated.

Estimation of noise standard deviation at each scale.

The appropriate value of σj in the succession of wavelet planes is assessed
from the standard deviation of the noise σI in the original image I, and from
study of the noise in the wavelet space. This study consists of simulating an
image containing Gaussian noise with a standard deviation equal to 1, and
taking the wavelet transform of this image. Then we compute the standard
deviation σej at each scale. We get a curve σej as a function of j, giving
the behavior of the noise in the wavelet space. (Note that if we had used
an orthogonal wavelet transform, this curve would be linear.) Due to the
properties of the wavelet transform, we have σj = σIσ

e
j . The standard
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deviation of the noise at a scale j of the image is equal to the standard
deviation of the noise of the image multiplied by the standard deviation of
the noise of scale j of the wavelet transform.

An alternative, here, would be to estimate the standard deviation of
the noise σ1 of the first plane from the histogram of w1. The values of the
wavelet image w1 are due mainly to the noise. A histogram shows a Gaussian
peak around 0. A 3-sigma clipping (i.e. robust estimation of the variance by
defining it on the basis only of values within 3 standard deviations of the
mean) is then used to reject pixels where the signal is significantly large.
The standard deviation of the noise σj is estimated from σ1. This is based
on the study of noise variation between two scales, as described above.

A final alternative (Lee, 1983) to be mentioned here relates to multiple
images of the same scene. In this case, a pixel-dependent specification of
the noise threshold is used, rather than one that is just level-dependent. A
wavelet transform of each of the N images is determined. Thus we have
N wavelet coefficients at each position, (x, y), and at each scale, j. From
the N values, wj(x, y), the standard deviation, σj(x, y), is calculated. The
significance threshold is then defined by:

kσj(x, y)/
√
N (2.7)

(the denominator is explained by the error of the mean of N Gaussian values
varying as 1/

√
N).

Automatic noise estimation in an image.

There are different ways to estimate the standard deviation of Gaussian
noise in an image (Bracho and Sanderson, 1985; Lee, 1981; Lee and Hoppel,
1989; Mastin, 1985; Meer, Jolian and Rosenfeld, 1990; Vorhees and Poggio,
1987). Olson (1993) made an evaluation of six methods and showed that the
average method was best, and this is also the simplest method. This method
consists of filtering the image I with the average filter and subtracting the
filtered image from I. Then a measure of the noise at each pixel is computed.

To keep image edges from contributing to the estimate, the noise mea-
sure is disregarded if the magnitude of the intensity gradient is larger than
some threshold T . The threshold value may be found from the accumulated
histogram of the magnitude of the intensity gradient. An alternative is to
apply a k-sigma clipping.

2.1.3 Poisson noise

If the noise in the data I is Poisson, the Anscombe transform

t(I(x, y)) = 2

√
I(x, y) +

3

8
(2.8)
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Figure 2.1: Parts (a) and (b) show, respectively, the variance of a se-
ries of Poisson-distributed data sets, and the variance of the Anscombe-
transformed data sets. Part (c) shows the bias of this transformation.

acts as if the data arose from a Gaussian white noise model(Anscombe,
1948), with σ = 1, under the assumption that the mean value of I is large.

It is useful to show just how large the mean value of I must be, for the
above transformation to be valid. For each integer i between 1 and 100,
we generated 100 Poisson values with parameter (i.e. mean) i. Figure 2.1a
shows the variance of these Poisson sets. Figure 2.1b shows the variance
of the corresponding Anscombe-transformed sets. Figure 2.1b shows no
noticeable degradation as the Poisson parameter becomes small. Oscillation
around a value of 1, over the entire range of Poisson parameter values (i.e.
mean value of I ranging from 100 down to 1), is clear. The range of variation
(in Fig. 2.1b, roughly from a high of 1.5, and a low of 0.6) is unnoticeable
when plotted on the vertical scale used in Fig. 2.1a. Anscombe (1948, eqn.
(2.9)) gives an approximate formula for the variance where it is seen to be
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roughly constant even for very small values of the Poisson parameter. We
conclude that the variance of the stabilized Poisson data is, from a practical
point of view, equal to 1 irrespective of the mean value of I.

Figure 2.1c examines bias (see Anscombe, 1948, eqn. (2.10)). Figure 2.1c
shows mean values estimated from the stabilized Poisson data, with each
such value divided by the mean value of the original Poisson data. Thus, for
a mean value mi of the Poisson variates generated with parameter i, and for
a mean value m∗

i of these transformed Poisson variates, the corresponding
point on this graph is ((m∗

i /2)2 − 3/8)/mi. We can see practical identity of
both means from around a Poisson parameter value of 30 upwards.

For Poisson parameter values between about 10 and 30, the curve shown
in Fig. 2.1c could be used to correct the image restoration results. We would
simply correct, in a multiplicative manner, for the consistent underestimate
of results in this range of intensity values, as evidenced by Fig. 2.1c. Such
situations may be particularly relevant for the outlying parts of extended
objects where intensity values are close to low background values. We expect
the centers of extended astronomical objects, or point sources (respectively
galaxies and stars, for instance), to have sufficient associated counts such
that a bias correction is not needed.

For Poisson parameter values under about 10, the Anscombe transfor-
mation looses control over the bias. In this case, an alternative approach
to variance stabilization is needed. An approach for very small numbers of
counts, including frequent zero cases, has been described in Bijaoui, Bury
and Slezak (1994b), Bury (1995) and Slezak, de Lapparent and Bijaoui
(1993), and will be described in subsection 2.1.5 below. Small numbers of
detector counts will most likely be associated with the image background.
Note that errors related to small values carry the risk of removing real
objects, but not of amplifying noise. This is seen in Fig. 2.1c, where at
increasingly low values, the pixel value is increasingly underestimated.

2.1.4 Gaussian and Poisson noise

Variance stabilization.

The arrival of photons, and their expression by electron counts, on CCD
detectors may be modeled by a Poisson distribution. In addition, there
is additive Gaussian read-out noise. The Anscombe transformation (eqn.
(2.8)) has been extended (Bijaoui, 1994) to take this combined noise into
account: see Appendix 1. As an approximation, consider the signal’s value,
I(x, y), as a sum of a Gaussian variable, γ, of mean g and standard-deviation
σ; and a Poisson variable, n, of mean m0: we set I(x, y) = γ + αn where α
is the gain.

The generalization of the variance stabilizing Anscombe formula, which
also generalizes a transformation due to Bartlett (1936), is derived in Ap-
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pendix 1 as:

t =
2

α

√
αI(x, y) +

3

8
α2 + σ2 − αg (2.9)

With appropriate values of α, σ and g, this reduces to Anscombe’s trans-
formation (eqn. (2.8)).

Figure 2.2 shows an update of Fig. 2.1 for the combined Poisson and
Gaussian case. Values were generated as I = αn+ γ where α is the gain, n
the Poisson-distributed component, and γ the Gaussian-distributed compo-
nent. The gain was taken as 7.5 e−/DN. The mean and standard deviation
of the Gaussian read-out noise were taken respectively as 0.0 and 13 e− (or
1.733 DN). For each value of the Poisson component’s parameter (shown on
the horizontal axes in Fig. 2.2), 100 realizations were made of the signal, x.
Figure 2.2a shows the variance of I(x, y) as a function of the Poisson param-
eter. Figure 2.2b shows the variance, following the generalized Anscombe
transformation (eqn. (2.9)). We can see that this variance oscillates around
1. Figure 2.2c shows the bias which, as in the purely Poisson case, indicates
that there is no underestimation of transformed values, from a signal value
of around 20–30 upwards.

Automatic estimation of standard deviation of read-out noise.

If the sigma (standard deviation) of the read-out noise is not known, we
can use the variance stabilization transform to estimate it. This is achieved
by finding the transformation t such that the standard deviation of t(I) is
equal to 1. The algorithm is:

1. Set n to 0, Smin to 0, and Smax to σ(I).

2. Set rn to (Smin + Smax)/2.

3. Compute the transform of I with a standard deviation read-out noise
equal to rn.

4. Estimate the standard deviation of the noise σS in t(I) by the average
method described in subsection 2.1.2 above.

5. If σS < 1 then Smin = rn else Smax = rn .

6. If Smax − Smin > ǫ then n = n+ 1 and go to step 2.

7. rn = (Smin + Smax)/2 is a good estimation of the standard deviation
of the read-out noise.

The same method can be applied if it is the gain which is not known, and
the standard deviation of the read-out noise is known.
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Figure 2.2: Similarly to previous figure, noise with combined Poisson and
Gaussian components is analyzed. Parts (a) and (b) show, respectively, the
variance of a series of data sets, and the variance of this data following use
of the generalized Anscombe transformation. Part (c) shows the bias of this
transformation.

2.1.5 Poisson noise with few photons or counts

A wavelet coefficient at a given position and at a given scale j is

wj(x, y) =
∑

k∈K

nkψ

(
xk − x

2j
,
yk − y

2j

)
(2.10)

where K is the support of the wavelet function ψ and nk is the number of
events which contribute to the calculation of wj(x, y) (i.e. the number of
photons included in the support of the dilated wavelet centered at (x,y)).

If a wavelet coefficient wj(x, y) is due to the noise, it can be considered
as a realization of the sum

∑
k∈K nk of independent random variables with

the same distribution as that of the wavelet function (nk being the number
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of photons or events used for the calculation of wj(x, y)). Then we compare
the wavelet coefficient of the data to the values which can be taken by the
sum of n independent variables.

The distribution of one event in the wavelet space is directly given by
the histogram H1 of the wavelet ψ. Since independent events are considered,
the distribution of the random variable Wn (to be associated with a wavelet
coefficient) related to n events is given by n autoconvolutions of H1

Hn = H1 ⊗H1 ⊗ ...⊗H1 (2.11)

Figure 2.3 shows the shape of a set of Hn. For a large number of events, Hn

converges to a Gaussian.
In order to facilitate the comparisons, the variable Wn of distribution

Hn is reduced by

c =
Wn − E(Wn)

σ(Wn)
(2.12)

and the cumulative distribution function is

Fn(c) =

∫ c

−∞

Hn(u)du (2.13)

From Fn, we derive cmin and cmax such that F (cmin) = ǫ and F (cmax) =
1− ǫ.

Therefore a reduced wavelet coefficient wrj (x, y), calculated from wj(x, y),
and resulting from n photons or counts is significant if:

F (wr) > cmax (2.14)

or

F (wr) < cmin (2.15)

and wrj (x, y) is obtained by

wrj (x, y) =
wj(x, y)√
nσψj

(2.16)

=
wj(x, y)√
nσψ

4j (2.17)

where σψ is the standard deviation of the wavelet function, and σψj
is the

standard deviation of the dilated wavelet function (σψj
= σψ/4

j).
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Figure 2.3: Autoconvolution histograms for the wavelet associated with a
B3 spline scaling function for one and 2 events (top left), 4 to 64 events (top
right), 128 to 2048 (bottom left), and 4096 (bottom right).

2.1.6 Other types of noise

For any type of noise, an analogous study can be carried out in order to
find the detection level at each scale and at each position. The types of
noise considered so far in this chapter correspond to the general cases in
astronomical imagery. We now describe briefly methods which can be used
for non-uniform and multiplicative noise.
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Additive non-uniform noise.

If the noise is additive, but non-uniform, we cannot estimate a standard
deviation for the whole image. However, we can often assume that the noise
is locally Gaussian, and we can compute a local standard deviation of the
noise for each pixel. In this way, we obtain a standard deviation map of the
noise, Iσ(x, y). A given wavelet coefficient wj(x, y) is calculated from the
pixels of the input image I in the range I(x−l . . . x+l, y−l . . . y+l) where l is
dependent on the wavelet transform algorithm, the wavelet function, and the
scale j. An upper limit uj(x, y) for the noise associated with wj(x, y) is found
by just considering the maximum value in Iσ(x− l . . . x+ l, y− l . . . y+ l) and
by multiplying this value by the constant σej which was defined in subsection
2.1.2 (‘Estimation of noise standard deviation at each scale’).

uj(x, y) = max(Iσ(x− l . . . x+ l, y − l . . . y + l))σej (2.18)

The detection level is not constant over each scale.

Multiplicative noise.

If the noise is multiplicative, the image can be transformed by taking its
logarithm. In the resulting image, the noise is additive, and a hypothesis of
Gaussian noise can be used in order to find the detection level at each scale.

Multiplicative non-uniform noise.

In this case, we take the logarithm of the image, and the resulting image is
treated as for additive non-uniform noise above.

Unknown noise.

If the noise does not follow any known distribution, we can consider as sig-
nificant only wavelet coefficients which are greater than their local standard
deviation multiplied by a constant: wj(x, y) is significant if

| wj(x, y) | > kσ(wj(x− l . . . x+ l, y − l . . . y + l)) (2.19)

2.2 Multiresolution support

2.2.1 Definition

The multiresolution support (Starck, Murtagh and Bijaoui, 1995) of an im-
age describes in a logical or boolean way whether an image I contains infor-
mation at a given scale j and at a given position (x, y). If M (I)(j, x, y) = 1
(or true), then I contains information at scale j and at the position (x, y).
M depends on several parameters:
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• The input image.

• The algorithm used for the multiresolution decomposition.

• The noise.

• All constraints we want the support additionally to satisfy.

Such a support results from the data, the treatment (noise estimation, etc.),
and from knowledge on our part of the objects contained in the data (size
of objects, alignment, etc.). In the most general case, a priori information
is not available to us.

2.2.2 Multiresolution support from the wavelet transform

The wavelet transform of an image by an algorithm such as the à trous one
produces a set {wj} at each scale j. This has the same number of pixels
as the image. The original image c0 can be expressed as the sum of all the
wavelet planes and the smoothed array cp

c0 = cp +
p∑

j=1

wj (2.20)

and a pixel at position x, y can be expressed also as the sum over all the
wavelet coefficients at this position, plus the smoothed array:

c0(x, y) = cp(x, y) +
p∑

j=1

wj(x, y) (2.21)

The multiresolution support will be obtained by detecting at each scale
the significant coefficients. The multiresolution support is defined by:

M(j, x, y) =

{
1 if wj(x, y) is significant
0 if wj(x, y) is not significant

(2.22)

2.2.3 Algorithm

The algorithm to create the multiresolution support is as follows:

1. We compute the wavelet transform of the image.

2. We estimate the noise standard deviation at each scale. We deduce
the statistically significant level at each scale.

3. The binarization of each scale leads to the multiresolution support.

4. Modification using a priori knowledge (if desired).
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Step 4 is optional. A typical use of a priori knowledge is the suppression of
isolated pixels in the multiresolution support in the case where the image is
obtained with a point spread function (PSF) of more than one pixel. Then
we can be sure that isolated pixels are residual noise which has been detected
as significant coefficients. If we use a pyramidal algorithm or a nonlinear
multiresolution transform, the same method can be used.

In order to visualize the support, we can create an image S defined by:

S(x, y) =
p∑

j=1

2jM(j, x, y) (2.23)

Figure 2.4 shows such a multiresolution support visualization of an image
of galaxy NGC 2997.

1
25

6

Figure 2.4: Multiresolution support representation of a spiral galaxy.
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2.2.4 Gaussian noise estimation from the multiresolution sup-

port

In subsection 2.1.2 (‘Automatic noise estimation in an image’) it was shown
how a Gaussian noise σI can be estimated automatically in an image I. This
estimation is very important because all the noise standard deviations σj at
scales j are derived from σI . Thus an error in σI will introduce an error in
all of σj . This measure of σI can be refined by the use of the multiresolution
support. Indeed, if we consider the set of pixels S in the image which are due
only to the noise, and if we take the standard deviation of them, we should
find the same value σI . This set is easily obtained from the multiresolution
support. We say that a pixel (x, y) belongs to the noise if M(j, x, y) = 0 for
all j (i.e. there is no significant coefficient at any scale). The new estimation
of σI is then computed by the following iterative algorithm:

1. Estimate the standard deviation of the noise in I: we have σ
(0)
I .

2. Compute the wavelet transform (à trous algorithm) of the image I
with p scales: we have

I(x, y) = cp(x, y) +
p∑

j=1

wj(x, y)

where wj are the wavelet scales, and cp is the low frequency part of I.
The noise in cp is negligible.

3. Set n to 0.

4. Compute the multiresolution support M which is derived from the

wavelet coefficient and from σ
(n)
I .

5. Select the pixels which belong to the set S: if M(j, x, y) = 0 for all j
in 1 . . . p, then the pixel (x, y) ∈ S.

6. For all the selected pixels (x, y), compute the values I(x, y)− cp(x, y)
and compute the standard deviation σ

(n+1)
I of these values (the differ-

ence between I and cp is computed in order not to take the background
into account in the noise estimation).

7. n = n+ 1.

8. If (| σ(n)
I − σ(n−1)

I |)/σ(n)
I > ǫ then go to step 4.

This method converges in a few iterations, and allows the noise estimate to
be improved.

Figure 2.5 shows a simulated image mostly of galaxies, as used by Caulet
and Freudling (1993; Freudling and Caulet, 1993). Gaussian noise is added,
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leading to varying signal-to-noise ratios (SNR, defined as 10× log10(σ(input
image)/σ(added noise)). Figure 2.6 shows an image with SNR −0.002. This
image was produced by adding noise of standard deviation arbitrarily cho-
sen to be equal to the overall standard deviation of the original image.
For varying SNRs, the following three methods were assessed. Firstly, a
median-smoothed version of the image (providing a crude estimate of the
image background) is subtracted, and the noise is estimated from this dif-
ference image. This noise estimate is made more robust by 3-sigma clipping.
Secondly, the multiresolution support approach described above was used,
where the specification of the multiresolution support was iteratively refined.
Thirdly, the noise statistics in a running block or square window are used,
and the averages of these values are returned.

Table 2.1 gives results obtained. The excellent estimation capability of
the iterative multiresolution support method can be seen.

Figure 2.5: Simulated image of galaxies.

2.2.5 Concluding remarks on the multiresolution support

and noise

The multiresolution support allows us to integrate, in a visualizable manner,
and in a way which is very suitable for ancillary image alteration, informa-
tion coming from data, knowledge, and processing. We will see in the next
section how we can use this in image filtering and, in a later chapter, in
image restoration. The multiresolution support depends completely on the
noise.
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Figure 2.6: Simulated image of galaxies with Gaussian noise (sigma 582.5)
added.

Figure 2.7 summarizes how the multiresolution support is derived from
the data and our noise-modeling. The first step consists of estimating if the
noise follows a Gaussian distribution, a Poisson distribution, a combination
of both, or some other distribution. This step can be carried out automati-
cally based on a Hough transform of a local mean-squared versus standard
deviation diagram (Lee and Hoppel, 1989). Astronomers generally know
which kind of noise they have in the data and this point is not critical. If
the noise follows a pure Poisson distribution, and if the number of photons

Table 2.1: Noise added (standard deviation) followed by automatic noise
estimates. The SNR associated with the added noise is also given.

Noise Med3 Multres Block SNR

24.1356 23.9787 24.4685 21.6591 13.824573646
291.2640 282.3600 293.9950 244.7540 3.008286548
582.5280 561.9350 585.3710 490.8740 −0.002013409

1165.0600 1126.9600 1171.5200 979.6810 −3.012328276
2330.1100 2250.4300 2339.1500 1949.1300 −6.022609594
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threshold table
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Figure 2.7: Determination of multiresolution support from noise modeling.



2.3. FILTERING 67

per pixel is low, then the method described in subsection 2.1.5 above, has
to be employed. In other cases (Poisson, or Gaussian plus Poisson, with
sufficient counts per pixel), the variance stabilization method is convenient.
If we have the Gaussian plus Poisson case, and if we do not know exactly the
standard deviation of the Gaussian component, this can be automatically
computed. In the case of pure Gaussian noise, the standard deviation can
be automatically estimated too by a large number of methods. The wavelet
transform and multiresolution support help to refine the estimation.

2.3 Filtering

The suppression of noise is one of the most important tasks in astronomical
image processing. Frequently, linear techniques are used because linear fil-
ters are easy to implement and design (Sucher, 1995). But these methods
modify the morphology of the structures in the images. To overcome these
shortcomings, a large number of nonlinear methods have been presented in
the literature. The most popular is the median filter, which is computation-
ally efficient and has proved extremely successful for removing noise of an
impulsive (shot) nature. Clearly, it suffers from the fact that with increasing
window size the signal detail becomes blurred. Therefore, many generaliza-
tions have been developed, e.g. order statistic filters and filters based on
threshold decomposition (see Pitas and Venetsanopoulos, 1990, for a list
of references). We describe in this section how the modeling of the noise,
developed previously, can be used for filtering purposes.

2.3.1 Convolution using the continuous wavelet transform

We will examine here the computation of a convolution by using the con-
tinuous wavelet transform in order to get a framework for linear smoothing.
Let us consider the convolution product of two functions:

h(x) =

∫ +∞

−∞

f(u)g(x− u)dx (2.24)

We introduce two real wavelet functions ψ(x) and χ(x) such that:

C =

∫ +∞

0

ψ̂∗(ν)χ̂(ν)

ν
dν (2.25)

is defined. Wg(a, b) denotes the wavelet transform of g with the wavelet
function ψ(x):

Wg(a, b) =
1√
a

∫ +∞

−∞

g(x)ψ∗

(
x− b
a

)
dx (2.26)
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We restore g(x) with the wavelet function χ(x):

g(x) =
1

C

∫ +∞

0

∫ +∞

−∞

1√
a
Wg(a, b)χ

(
x− b
a

)
da db

a2
(2.27)

The convolution product can be written as:

h(x) =
1

C

∫ +∞

0

da

a
5
2

∫ +∞

−∞

Wg(a, b)db

∫ +∞

−∞

f(u)χ

(
x− u− b

a

)
du (2.28)

Let us denote χ̃(x) = χ(−x). The wavelet transform Wf (a, b) of f(x) with
the wavelet χ̃(x) is:

W̃f (a, b) =
1√
a

∫ +∞

−∞

f(x)χ̃

(
x− b
a

)
dx (2.29)

This leads to:

h(x) =
1

C

∫ +∞

0

da

a2

∫ +∞

−∞

W̃f (a, x− b)Wg(a, b)db (2.30)

We get the final result:

h(x) =
1

C

∫ +∞

0
W̃f (a, x)⊗Wg(a, x)

da

a2
(2.31)

In order to compute a convolution with the continuous wavelet transform:

• We compute the wavelet transform W̃f (a, b) of the function f(x) with
the wavelet function χ̃(x).

• We compute the wavelet transform Wg(a, b) of the function g(x) with
the wavelet function ψ(x).

• We sum the convolution product of the wavelet transforms, scale by
scale.

The wavelet transform permits us to perform any linear filtering. Its ef-
ficiency depends on the number of terms in the wavelet transform associated
with g(x) for a given signal f(x). If we have a filter where the number of
significant coefficients is small for each scale, the complexity of the algorithm
is proportional to N . For classical convolution, the complexity is also pro-
portional to N , but the number of operations is proportional to the length
of the convolution mask. The main advantage of the present technique lies
in the possibility of having a filter with long scale terms without computing
the convolution in a large window. If we carry out the convolution with the
FFT algorithm, the complexity is of order N log2N . The computing time
is greater than that obtained with the wavelet transform if we concentrate
the energy in a very small number of coefficients.
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2.3.2 Wiener-like filtering in wavelet space

Let us consider a wavelet coefficient wj at the scale j. We assume that its
value, at a given scale and a given position, results from a noisy process,
based on a Gaussian distribution with mathematical expectation Wj , and a
standard deviation Bj :

P (wj |Wj) =
1√

2πBj
exp

(
−(wj −Wj)

2

2B2
j

)
(2.32)

Now, we assume that the set of coefficients Wj for a given scale also follow
a Gaussian distribution, with zero mean and standard deviation Sj :

P (Wj) =
1√

2πSj
exp

(
−
W 2
j

2S2
j

)
(2.33)

The null mean value results from the wavelet property:

∫ +∞

−∞

ψ∗(x)dx = 0 (2.34)

We want to get an estimate of Wj knowing wj . Bayes’ theorem gives:

P (Wj | wj) =
P (Wj)P (wj |Wj)

P (wj)
(2.35)

We get:

P (Wj | wj) =
1√

2πβj
exp

(
−(Wj − αjwj)2

2β2
j

)
(2.36)

where:

αj =
S2
j

S2
j +B2

j

(2.37)

The probability P (Wj | wj) follows a Gaussian distribution with mean:

m = αjwj (2.38)

and variance:

β2
j =

S2
jB

2
j

S2
j +B2

j

(2.39)

The mathematical expectation of Wj is αjwj .
With a simple multiplication of the coefficients by the constant αj , we

get a linear filter. The algorithm is:
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1. Compute the wavelet transform of the data. We get wj .

2. Estimate the standard deviation of the noise B0 of the first plane from
the histogram of w0. As we process oversampled images, the values of
the wavelet image corresponding to the first scale (w0) are due mainly
to the noise. The histogram shows a Gaussian peak around 0. We
compute the standard deviation of this Gaussian function, with a 3-
sigma clipping, rejecting pixels where the signal could be significant.

3. Set i to 0.

4. Estimate the standard deviation of the noise Bj from B0. This is
achieved from study of the variation of the noise between two scales,
with the hypothesis of a white Gaussian noise.

5. S2
j = s2j −B2

j where s2j is the variance of wj .

6. αj =
S2

j

S2
j
+B2

j

.

7. Wj = αjwj .

8. Assign i+ 1 to i and go to step 4.

9. Reconstruct the image from Wj .

2.3.3 Hierarchical Wiener filtering

In the above process, we do not use the information between the wavelet
coefficients at different scales. We modify the previous algorithm by in-
troducing a prediction wh of the wavelet coefficient from the upper scale.
This prediction could be determined from the regression (Antonini, 1991)
between the two scales but better results are obtained when we only set
wh to Wj+1. Between the expectation coefficient Wj and the prediction, a
dispersion exists which we assume to follow a Gaussian distribution:

P (Wj | wh) =
1√

2πTj
e
−

(Wj−wh)2

2T2
j (2.40)

The relation which gives the coefficient Wj knowing wj and wh is:

P (Wj | wj and wh) =
1√

2πβj
e
−

(Wj−αjwj)2

2β2
j

1√
2πTj

e
−

(Wj−wh)2

2T2
j (2.41)

with:

β2
j =

S2
jB

2
j

S2 +B2
j

(2.42)
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and:

αj =
S2
j

S2
j +B2

j

(2.43)

This follows a Gaussian distribution with a mathematical expectation:

Wj =
T 2
j

B2
j + T 2

j +Q2
j

wj +
B2
j

B2
j + T 2

j +Q2
j

wh (2.44)

with:

Q2
j =

T 2
j B

2
j

S2
j

(2.45)

Wj is the barycenter (center of gravity) of the three values wj , wh, 0 with
the weights T 2

j , B2
j , Q

2
j . The particular cases are:

• If the noise is large (Sj ≪ Bj) and even if the correlation between the
two scales is good (Tj is low), we get Wj → 0.

• If Bj ≪ Sj ≪ T then Wj → wj .

• If Bj ≪ Tj ≪ S then Wj → wj .

• If Tj ≪ Bj ≪ S then Wj → wh.

At each scale, by changing all the wavelet coefficients wj of the plane by
the estimate value Wj , we get a Hierarchical Wiener Filter. The algorithm
is:

1. Compute the wavelet transform of the data. We get wj .

2. Estimate the standard deviation of the noise B0 of the first plane from
the histogram of w0.

3. Set j to the index associated with the last plane: j = n.

4. Estimate the standard deviation of the noise Bj from B0.

5. S2
j = s2j −B2

j where s2j is the variance of wj .

6. Set wh to Wj+1 and compute the standard deviation Tj of wj − wh.

7. Wj =
T 2

j

B2
j
+T 2

j
+Q2

j

wj +
B2

j

B2
j
+T 2

j
+Q2

j

wh

8. j = j − 1. If i > 0 go to step 4.

9. Reconstruct the image.
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2.3.4 Adaptive filtering

Filtering from significant coefficients.

In the preceding algorithm we have assumed the properties of the signal and
the noise to be stationary. The wavelet transform was first used to obtain
an algorithm which is faster than classical Wiener filtering. Subsequently
we took into account the correlation between two different scales. In this
way we got a filtering with stationary properties. In fact, these hypotheses
were too simple, because in general the signal may not arise from a Gaus-
sian stochastic process. Knowing the noise distribution, we can determine
the statistically significant level at each scale of the measured wavelet coef-
ficients. If wj(x) is very weak, this level is not significant and could be due
to noise. Then the hypothesis that the value Wj(x) is null is not ruled out.
In the opposite case where wj(x) is significant, we keep its value.

It has been seen in section 2.1 how significant wavelet coefficients are de-
tected in an image. Reconstruction, after setting non-significant coefficients
to zero, at full resolution leads to adaptive filtering (Starck and Bijaoui,
1994a). The restored image is

Ĩ(x, y) = cp(x, y) +
p∑

j=1

M(j, x, y)wj(x, y) (2.46)

where M is as defined in eqn. (2.22).
This noise-related thresholding may be compared with Donoho’s work

(Donoho and Johnstone, 1993). A difference between this approach and
our’s is the wavelet transform used; the use of the à trous algorithm allows
artifacts to be suppressed, which would arise due to decimation related to
orthogonal wavelet transforms.

Iterative filtering from significant coefficients.

In the method just described, we obtain an image Ĩ by reconstructing the
thresholded coefficients. A satisfactory filtering implies that the error image
E = I − Ĩ, obtained as the difference between the original image and the
filtered image, contains only noise and no ‘structure’. Such is not the case
in practice with the approach described. However, we can easily arrive at
this objective by iterating a few times:

1. n← 0.

2. Initialize the solution, I(0), to zero.

3. Estimate the significance level (e.g. 3-sigma) at each scale.

4. Determine the error, E(n) = I − I(n) (where I is the input image, to
be filtered).
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5. Determine the wavelet transform of E(n).

6. Threshold: only retain the significant coefficients.

7. Reconstruct the thresholded error image. This yields the image Ẽ(n)

containing the significant residuals of the error image.

8. Add this residual to the solution: I(n) ← I(n) + Ẽ(n).

9. If | (σE(n−1) − σE(n))/σE(n) | > ǫ then n← n+ 1 and go to step 4.

10. I(n) contains the filtered image, and I − I(n) is our estimation of the
noise.

At each iteration, we extract the residual image of significant structures
and we introduce them into the solution. We generally used between 6
and 10 iterations. On termination, we are certain that there are no further
significant structures in the residual images.

If the noise justifies it, variance stabilization or an analogous transfor-
mation may be used as appropriate.

Iterative filtering from a multiresolution support.

From the iterative algorithm described in the preceding section, we recon-
struct a filtered image Ĩ such that, for all pixels, we have

| I(x, y)− Ĩ(x, y) | < kσI (2.47)

where σI is the standard deviation of the noise contained in the image. This
filtering is effective, but does not always correspond to what is wanted. In
astronomy, for example, we would prefer not to touch a pixel if it generates a
significant coefficient at any one scale. In general, we say that if a multires-

olution coefficient of the original image is significant (i.e. | w(I)
j (x, y) | > K,

where K is the significance threshold), then the multiresolution coefficient

of the error image (i.e. w
(E(n))
j ) must satisfy the following exactly:

w
(E(n))
j (x, y) = 0 if | w(I)

j (x, y) | > K (2.48)

To arrive at this objective, we use the multiresolution support of the image,
and the algorithm becomes:

1. n← 0.

2. Initialize the solution, I(0), to zero.

3. Determine the multiresolution support of the image.

4. Estimate the significance level (e.g. 3-sigma) at each scale.
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5. Determine the error, E(n) = I − I(n) (where I is the input image, to
be filtered).

6. Determine the multiresolution transform of E(n).

7. Threshold: only retain the coefficients which belong to the support.

8. Reconstruct the thresholded error image. This yields the image Ẽ(n)

containing the significant residuals of the error image.

9. Add this residual to the solution: I(n) ← I(n) + Ẽ(n).

10. If | (σE(n−1) − σE(n))/σE(n) | > ǫ then n← n+ 1 and go to step 4.

Thus the regions of the image which contain significant structures at
any level are not modified by the filtering. The residual will contain the
value zero over all of these regions. The support can also be enriched by any
available a priori knowledge. For example, if artifacts exist around objects, a
simple morphological opening of the support can be used to eliminate them.

When the noise associated with image I is Poisson, we can apply Anscombe’s
transformation and this is discussed in the next subsection. It typifies what
we need to do to handle other types of image noise properties.

Filtering based on Poisson noise.

If the noise associated with image I is Poisson, the following transformation
acts as if the data came from a Gaussian process with a noise of standard
deviation 1, subject to a sufficiently large mean value of image I:

T (I(x, y)) = 2
√
I(x, y) + 3/8 (2.49)

Therefore the noise contained in e(n) = T (I)−T (I(n)) can be suppressed
using the same principle as the suppression of noise in E(n) = I − I(n).
Image e(n) is decomposed into multiresolution coefficients (in the case of
the multiresolution strategy), and only the significant coefficients, or the
coefficients associated with the multiresolution support, are retained. The
support is, of course, determined from T (I) and not from I. Reconstruction
then gives ẽ(n). We have the following relations:

e(n)(x, y) = T (I(x, y))− T (I(n)(x, y))

E(n)(x, y) = I(x, y)− I(n)(x, y)

Hence we have

[T (I(x, y))]2 = [e(n)(x, y) + T (I(n)(x, y))]2

= (e(n)(x, y))2 + 4

(
I(n)(x, y) +

3

8

)
+ 4e(n)(x, y)

√
I(n)(x, y) +

3

8
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and

[T (I(x, y))]2 = 4

(
I(x, y) +

3

8

)

From these two equations, we deduce that I(x, y) can be expressed by:

I(x, y) =

1

4

[
(e(n)(x, y))2 + 4

(
I(n)(x, y) +

3

8

)
+ 4e(n)(x, y)

√
I(n)(x, y) +

3

8

]
− 3

8

Now, replacing I by its expression in E(n) = I(x, y)−I(n)(x, y), we have:

E(n)(x, y) = e(n)(x, y)

[
e(n)(x, y)

4
+

√
I(n)(x, y) +

3

8

]

Filtering e(n) by thresholding non-significant coefficients, or coefficients
which are not contained in the support, we obtain ẽ(n), and we then have

Ẽ(n)(x, y) = ẽ(n)(x, y)

[
ẽ(n)(x, y)

4
+

√
I(n)(x, y) +

3

8

]

While this section deals with Poisson noise, the case of combined Poisson
and Gaussian noise is handled in a similar way and we have

Ẽ(n)(x, y) = ẽ(n)(x, y)

[
αẽ(n)(x, y)

4
+

√
αI(n)(x, y) +

3

8
α2 + σ2 − αg

]

where α is the gain, and g and σ are respectively the mean and the standard-
deviation of the Gaussian component of the noise.

2.3.5 Examples

Simulation 1: image with Gaussian noise.

A simulated image containing stars and galaxies is shown in Fig. 2.8 (top
left). The simulated noisy image, the filtered image and the residual image
are respectively shown in Fig. 2.8 top right, bottom left, and bottom right.
We can see that there is no structure in the residual image. The filtering
was carried out using the multiresolution support.

Simulation 2: image with Poisson noise.

Figure 2.9 shows a simulated image of a galaxy cluster. Two point sources
are superimposed (on the left of the cluster), a cooling flow is at the center,
a substructure on its left, and a group of galaxies at the top. From this
image, two ‘noisy’ images are created, which correspond to two different
signal-to-noise ratios (see Fig. 2.10 top). In both cases, the background
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Figure 2.8: Simulated image (top left), simulated image and Gaussian noise
(top right), filtered image (bottom left), and residual image (bottom right).

level corresponds to 0.1 events per pixel. This corresponds typically to X-
ray cluster observations. In the first noisy image, the maximum is equal to
23 events, and in the second, the maximum is 7. The background is not
very relevant. The problem in this kind of image is the weak number of
photons per object. It is really difficult to extract any information from
them. Figure 2.10, bottom left and right, shows the filtering of images
shown, top left and right respectively. Even if the two point sources could
not have been distinguished by eye in the noisy image, they were detected
in the first case and correctly restored. In the second, the signal-to-noise
was too faint and they have not been restored. But all other important
structures are quite well restored.
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Figure 2.9: Simulated image.

Mammography image filtering.

Figure 2.11 shows a radiological image used in testing for microcalcifica-
tions as symptoms of breast cancer. Information was not available on the
image’s noise characteristics, and in addition the wispy structures associated
with faint tissue provided clutter which made more difficult the process of
finding the small local (possibly grouped) points of greater intensity. For
these reasons we assumed additive non-homogeneous noise. The pyramidal
median transform was used in this case. This was motivated by its robust
properties, designed to counteract rather than to faithfully reproduce the
faint image features associated with multiple levels of tissue. The iterative
multiresolution thresholding approach described in this chapter was used,
to refine the initial estimate of the noise. The noise-filtered output image is
shown in Fig. 2.12. Smoother structures are evident, as are also the greatly
improved candidate set of microcalcifications.
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Figure 2.10: Simulated images (top left and right) with two different signal-
to-noise ratios, and filtered images (bottom left and right).

Spectrum filtering.

Fig. 2.13 shows a noisy spectrum (upper left, repeated lower right). For
the astronomer, the spectral lines – here mainly absorption lines extending
downwards – are of interest. The continuum may also be of interest, i.e.
the overall spectral tendency. The spectral lines are unchanged in the fil-
tered version (upper center, and upper right). To illustrate the damage that
can result from another wavelet transform, and another noise suppression
policy, the lower center (and lower right) version shows the result of apply-
ing Daubechies’ (19988) coefficient 8, a compactly-supported orthonormal
wavelet. This was followed by thresholding based on estimated variance of
the coefficients (Donoho and Johnstone, 1993), but not taking into account
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Figure 2.11: Mammographic image.

the image’s noise properties as we have done (see Nason and Silverman,
1994). One sees immediately that a problem- (or image-) driven choice of
wavelet and filtering strategy is indispensable.
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Figure 2.12: Noise-filtered mammographic image.
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Figure 2.13: Top row: original noisy spectrum; filtered spectrum; both
superimposed. Bottom row: original; filtered (using Daubechies coefficient
8, and Donoho and Johnstone ‘universal’ thresholding); both superimposed.
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2.4 Image comparison using a multiresolution qual-

ity criterion

In this section, we will briefly explore one application of multiresolution. It
is sometimes useful, as in image restoration (or deblurring: see Chapter 3)
where we want to evaluate the quality of the restoration, to compare images
with an objective comparison criterion.

The correlation between the original image I(i, j) and the restored one
Ĩ(i, j) provides a classical criterion. The correlation coefficient is:

ρ =

∑N
i=1

∑N
j=1 I(i, j)Ĩ(i, j)√∑N

i=1

∑N
j=1 I

2(i, j)
∑N
i=1

∑N
j=1 Ĩ

2(i, j)
(2.50)

The correlation is 1 if the images are identical, and less if some differences
exist. Another way to compare two pictures is to determine the mean square
error:

E2
ms =

1

N2

N∑

i=1

N∑

j=1

(I(i, j)− Ĩ(i, j))2 (2.51)

E2
ms can be normalized by:

E2
nms =

∑N
i=1

∑N
j=1(I(i, j)− Ĩ(i, j))2∑N
i=1

∑N
j=1 I

2(i, j)
(2.52)

The signal-to-noise ratio (SNR) corresponding to the above error is:

SNRdB = 10 log10

1

E2
nms

(2.53)

in units of decibels (dB).
These criteria are of limited use since they give no information on the

resulting resolution. A more comprehensive criterion must take resolution
into account. We can compute for each dyadic scale the correlation coeffi-
cient and the quadratic error between the wavelet transforms of the original
and the restored images. Hence we can compare, for each resolution, the
quality of the restoration.

Figures 2.14 and 2.15 show the comparison of three images with a ref-
erence image. Data20 is a simulated noisy image, median and wave are the
output images after respectively applying a median filter, and a threshold-
ing in the wavelet space. These curves show that the thresholding in the
wavelet space is better than the median at all scales.
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Figure 2.14: Correlation.

Figure 2.15: Signal-to-noise ratio.
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Chapter 3

Deconvolution

3.1 Introduction to deconvolution

Consider an image characterized by its intensity distribution (the ‘data’)
I(x, y), corresponding to the observation of a ‘real image’ O(x, y) through
an optical system. If the imaging system is linear and shift-invariant, the
relation between the data and the image in the same coordinate frame is a
convolution:

I(x, y) = (O ∗ P )(x, y) +N(x, y) (3.1)

where P (x, y) is the point spread function (PSF) of the imaging system,
and N(x, y) is additive noise. In practice O ∗P is subject to non-stationary
noise which one can tackle by simultaneous object estimation and restora-
tion (Katsaggelos, 1991). The issue of more extensive statistical modeling
will not be further addressed here (see Llacer and Núñez, 1990; Lorenz and
Richter, 1993; Molina, 1994), beyond noting that multiresolution frequently
represents a useful framework, allowing the user to introduce a priori knowl-
edge of objects of interest.

In Fourier space we have:

Î(u, v) = Ô(u, v)P̂ (u, v) + N̂(u, v) (3.2)

We want to determine O(x, y) knowing I(x, y) and P (x, y). This inverse
problem has led to a large amount of work, the main difficulties being the
existence of: (i) a cut-off frequency of the point spread function, and (ii) the
additive noise (see for example Cornwell, 1989).

Equation (3.1) is usually in practice an ill-posed problem. This means
that there is not a unique solution. If the noise is modeled as a Gaussian or
Poisson process, then an iterative approach for computing maximum likeli-
hood estimates may be used. Van Cittert (1931) restoration involves:

O(n+1)(x, y) = O(n)(x, y) + α(I(x, y)− (P ∗O(n))(x, y)) (3.3)

85
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where α is a convergence parameter generally taken as 1. In this equation,
the object distribution is modified by adding a term proportional to the
residual. The algorithm generally diverges in the presence of noise.

The one-step gradient method is provided by the minimization of the
norm ‖ I(x, y)− (P ∗O)(x, y) ‖ (Landweber, 1951) and leads to:

O(n+1)(x, y) = O(n)(x, y) + αP ∗(x, y) ∗ [I(x, y)− (P ∗O(n))(x, y)] (3.4)

where P ∗(x, y) = P (−x,−y). P ∗ is the transpose of the point spread func-
tion, and O(n) is the current estimate of the desired ‘real image’.

This method is more robust than Van Cittert’s. The conjugate gradient
method provides a faster way to minimize this norm with a somewhat more
complex algorithm.

The Richardson-Lucy method (Lucy, 1974; Richardson, 1972; see also
Adorf, 1992; Katsaggelos, 1991) can be derived from Bayes’ theorem on
conditional probabilities. Given additive Poisson noise, Shepp and Vardi
(1982) showed that a maximum likelihood solution was obtained, by use of
an expectation-maximization algorithm. Richardson-Lucy image restoration
leads to:

O(n+1) ←− O(n)[(I/I(n)) ∗ P ∗]

I(n) ←− P ∗O(n) (3.5)

This method is commonly used in astronomy. Flux is preserved and the so-
lution is always positive. The positivity of the solution can be obtained too
with Van Cittert’s and the one-step gradient methods by thresholding nega-
tive values in O(n) at each iteration. However all these methods have a severe
drawback: noise amplification, which prevents the detection of weak objects,
and leads to false detections. To resolve these problems, some constraints
must be added to the solution (positivity is already one such constraint, but
it is not enough). The addition of such constraints is called regularization.
Several regularization methods exist: Tikhonov’s regularization (Tikhonov
et al., 1987) consists of minimizing the term:

‖ I(x, y)− (P ∗O)(x, y) ‖ +λ ‖ H ∗O ‖ (3.6)

where H corresponds to a high-pass filter. This criterion contains two terms.
The first, ‖ I(x, y)−P (x, y)∗O(x, y) ‖, expresses fidelity to the data I(x, y),
and the second, λ ‖ H ∗O ‖, expresses smoothness of the restored image. λ
is the regularization parameter and represents the trade-off between fidelity
to the data and the smoothness of the restored image. Finding the opti-
mal value λ necessitates use of numeric techniques such as cross-validation
(Galatsanos and Katsaggelos, 1992; Golub, Heath and Wahba, 1979). This
method works well, but computationally it is relatively lengthy and pro-
duces smoothed images. This second point can be a real problem when we
seek compact structures such as is the case in astronomical imaging. Other
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methods have been proposed. The most popular is certainly the maximum
entropy method. It generally produces images which are overly smooth, but
some recent work seems to show that this drawback can be avoided.

In the first part of this chapter we present a way to regularize the classic
iterative methods such as Van Cittert, one-step gradient, or Richardson-
Lucy, by applying a multiresolution support constraint to the solution. We
show that this constraint is strong enough to regularize the deconvolution of
images dominated by the noise, even if the deconvolution method normally
diverges (i.e. Van Cittert). The method consists of searching for informa-
tion only at positions and at scales where signal has been detected in the
data, or in the residual. A range of examples illustrates the powerfulness of
the method. In the second part of the chapter, we show that the wavelet
transform can enter into the framework of entropic methods, and permits
estimation of the different parameters (α, model, etc.). Furthermore by
introducing the multiresolution support in the definition of the entropy, sig-
nificant features can be preserved from the regularization. In the last part
of the chapter, the special case of deconvolution in aperture synthesis is an-
alyzed, and in particular the CLEAN method and its use in wavelet space.

3.2 Regularization using the multiresolution sup-

port

3.2.1 Noise suppression based on the wavelet transform

We have noted how, in using an iterative deconvolution algorithm such as
Van Cittert or Richardson-Lucy, we define R(n)(x, y), the residual at itera-
tion n:

R(n)(x, y) = I(x, y)− (P ∗O(n))(x, y) (3.7)

By using the à trous wavelet transform algorithm (Bijaoui, Starck and
Murtagh, 1994b; Starck, 1992, 1993), R(n) can be defined as the sum of its
p wavelet scales and the last smooth array:

R(n)(x, y) = cp(x, y) +
p∑

j=1

wj(x, y) (3.8)

where the first term on the right is the last smoothed array, and w denotes
a wavelet scale.

The wavelet coefficients provide a mechanism to extract only the signif-
icant structures from the residuals at each iteration. Normally, a large part
of these residuals is statistically non-significant. The significant residual
(Murtagh and Starck, 1994; Starck and Murtagh, 1994) is then:

R̄(n)(x, y) = cp(x, y) +
p∑

j=1

T (wj(x, y))wj(x, y) (3.9)
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T is a function which is defined by:

T (w) =

{
1 if w is significant
0 if w is non-significant

(3.10)

Assuming that the noise follows a given distribution, methods discussed
in Chapter 2 allow us to define if w is significant.

3.2.2 Noise suppression based on the multiresolution sup-

port

In the approach presented in the preceding section, a wavelet coefficient is
significant if it is above a threshold. Therefore a coefficient which is less
than this threshold is not considered, even if a significant coefficient had
been found at the same scale as this coefficient during previous iterations;
and consequently we were justified in thinking that we had found signal at
this scale, and at this position. Arising out of this approach, it follows that
the wavelet coefficients of the residual image could contain signal, above the
set threshold, which is ignored.

In order to conserve such signal, we use the notion of multiresolution
support. Whenever we find signal at a scale j and at a position (x, y), we will
consider that this position in the wavelet space belongs to the multiresolution
support of the image.

Equation (3.9) becomes:

R̄(n)(x, y) = cp(x, y) +
p∑

j=1

M(j, x, y) wj(x, y) (3.11)

An alternative approach was outlined in Murtagh, Starck and Bijaoui
(1995) and Starck et al. (1995): the support was initialized to zero, and
built up at each iteration of the restoration algorithm. Thus in eqn. (3.11)
above, M(j, x, y) was additionally indexed by n, the iteration number. In
this case, the support was specified in terms of significant pixels at each
scale, j; and in addition pixels could become significant as the iterations
proceeded, but could not be made non-significant. In practice, we have
found both of these strategies to be equally acceptable.

3.2.3 Regularization of Van Cittert’s algorithm

Van Cittert’s iteration (1931) is:

O(n+1)(x, y) = O(n)(x, y) + αR(n)(x, y) (3.12)

with R(n)(x, y) = I(n)(x, y) − (P ∗ O(n))(x, y). Regularization using signifi-
cant structures leads to:

O(n+1)(x, y) = O(n)(x, y) + αR̄(n)(x, y) (3.13)
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The basic idea of our method consists of detecting, at each scale, structures
of a given size in the residual R(n)(x, y) and putting them in the restored
image O(n)(x, y). The process finishes when no more structures are detected.
Then, we have separated the image I(x, y) into two images Õ(x, y) and
R(x, y). Õ is the restored image, which ought not to contain any noise, and
R(x, y) is the final residual which ought not to contain any structure. R is
our estimate of the noise N(x, y).

3.2.4 Regularization of the one-step gradient method

The one-step gradient iteration is:

O(n+1)(x, y) = O(n)(x, y) + P (−x,−y) ∗R(n)(x, y) (3.14)

with R(n)(x, y) = I(x, y) − (P ∗ O(n))(x, y). Regularization by significant
structures leads to:

O(n+1)(x, y) = O(n)(x, y) + P (−x,−y) ∗ R̄(n)(x, y) (3.15)

3.2.5 Regularization of the Richardson-Lucy algorithm

From eqn. (3.1), we have I(n)(x, y) = (P ∗ O(n))(x, y). Then R(n)(x, y) =
I(x, y)− I(n)(x, y), and hence I(x, y) = I(n)(x, y) +R(n)(x, y).
The Richardson-Lucy equation is:

O(n+1)(x, y) = O(n)(x, y)

[
I(n)(x, y) +R(n)(x, y)

I(n)(x, y)
∗ P (−x,−y)

]
(3.16)

and regularization leads to:

O(n+1)(x, y) = O(n)(x, y)

[
I(n)(x, y) + R̄(n)(x, y)

I(n)(x, y)
∗ P (−x,−y)

]
(3.17)

3.2.6 Convergence

The standard deviation of the residual decreases until no more significant
structures are found. Convergence can be estimated from the residual. The
algorithm stops when a user-specified threshold is reached:

(σR(n−1) − σR(n))/(σR(n)) < ǫ (3.18)

3.2.7 Examples from astronomy

Application 1: wide-field digitized photograph.

Figure 3.1 shows a digitized photographic wide-field image. The upper left
is the original; the upper right shows a restored image following 5 accel-
erated iterations of the Richardson-Lucy method; the lower left shows a



90 CHAPTER 3. DECONVOLUTION

restored image following 10 accelerated Richardson-Lucy iterations; and the
lower right shows the result of applying the method described in this ar-
ticle. One notices a much more noise-free outcome, which can be helpful
for subsequent object detection. It may be noted that low-valued ‘moats’
are created around bright objects: this could be prevented by dilating the
multiresolution support.

0 511

0
51

1

Figure 3.1: Digitized photographic wide-field image. Upper left: origi-
nal. Upper right, and lower left: 5 and 10 accelerated iterations of the
Richardson-Lucy method, respectively. Lower right: cosmic ray hits re-
moved by median smoothing, followed by Richardson-Lucy restoration with
noise suppression.

Application 2: simulated Hubble Space Telescope image.

A simulated Hubble Space Telescope Wide Field Camera image of a distant
cluster of galaxies was used to assess how well the suppression of noise,
inherent in the wavelet-based method, aids object detection (Fig. 3.2). The
image used was one of a number described in Caulet and Freudling (1993)
and Freudling and Caulet (1993). A spatially invariant point spread function
was used. This is an approximation to the known spatially varying point
spread function, but is not of great importance given the limited image
dimensions, 256 × 256. The simulated image allowed us to bypass certain
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problems, such as cosmic ray hits and charge-coupled device (CCD) detector
faults, and to concentrate on the general benefits of regularization.

Figure 3.2: Simulated Hubble Space Telescope Wide Field Camera image of
a distant cluster of galaxies. Four quadrants. Upper left: original, unaber-
rated and noise-free. Upper right: input, aberrated, noise added. Lower
left: restoration, Richardson-Lucy method with noise suppression, 28 iter-
ations. Lower right: restoration, Richardson-Lucy method without noise
suppression, 40 iterations. Intensities logarithmically transformed.

The procedure followed was to detect objects in the simulated image, and
also in the images restored by the wavelet-based (or regularized) Richardson-
Lucy method, and the basic Richardson-Lucy method. The INVENTORY
package in MIDAS (Munich Image Data Analysis System, a large image
processing system, developed at the European Southern Observatory) was
used for this. INVENTORY detects objects by means of a local background
threshold, which was varied.

A set of 122 objects was found, using INVENTORY, in the original,
unaberrated, noise-free image (upper left, Fig. 3.2). This agrees well with
the fact that 124 objects were used in the simulation (121 galaxies, 3 stars).
With a somewhat different threshold in the case of the wavelet-based Richardson-
Lucy method, 165 objects were obtained. With a very much raised threshold



92 CHAPTER 3. DECONVOLUTION

(to exclude noise peaks) in the case of the basic Richardson-Lucy method,
159 objects were obtained.

Detections of spurious objects were made in the case of both restorations.
Given that we have ‘ground truth’ in this case, we simply selected the real
objects among them. This was done by seeking good matches (less than
1 pixel separation) between objects found in the restored images, and the
objects found in the original, unaberrated noise-free image. This led to 69
close matches, in the case of the wavelet-based Richardson-Lucy method;
and to 53 close matches, in the case of the basic Richardson-Lucy method.

There was thus a greater number of object detections obtained with the
wavelet-based Richardson-Lucy method. These were also more accurate:
the mean square error was 0.349 pixel units as against 0.379 for the smaller
number of detections obtained from the basic Richardson-Lucy method. For
bright objects, photometric plots using aperture magnitudes were relatively
similar in both cases; and for fainter objects neither was good. While the
wavelet-based Richardson-Lucy method acquited itself well in these respects,
its regularization property is clearly advantageous for object detection.

Application 3: Hubble Space Telescope distant galaxy image.

Figure 3.3 (left) shows the distant galaxy 4C41.17, scarcely visible with
this gray scale look-up table, left of the center, as imaged by the Hubble
Space Telescope Wide Field Camera. A 256 × 256 image was taken, and
roughly cleaned of cosmic ray hits. The image suffers from a significant
background due to a nearby very bright star. The wavelet-based Richardson-
Lucy method does not need to cater for a varying background, since it
decides on object significance using differences of transformed images. It
thus escapes an error-prone background estimation stage in the analysis.
A restoration (40 unaccelerated iterations of the wavelet-based Richardson-
Lucy method) is shown in the right panel of Fig. 3.3. The faint structures
around the galaxy, with some variability, appear in the restored versions of
a number of other, different images of the same object. This would seem to
substantiate the fact that these faint structures are not noise-related (since
noise-related artifacts appear differently in the different restorations). The
faint structures around the galaxy appear to be consistent with radio images
of this object.
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Figure 3.3: Left: Hubble Space Telescope Wide Field Camera image of
galaxy 4C41.17; right: subimage, restoration, Richardson-Lucy method with
noise suppression, 40 iterations.

Application 4: point sources.

We examine a simulated globular cluster (see short description in Hanisch
(1993), corresponding to the pre-refurbished (before end 1993) Hubble Space
Telescope Wide Field/Planetary Camera (WF/PC-1) image. The number
of point sources used in the simulation was 467. Their centers are located
at sub-pixel locations, which potentially complicates the analysis.

Figure 3.4 (upper left) shows the image following addition of noise and
blurring due to the point spread function. Figure 3.4 (upper right) shows
the result using multiresolution-based regularization and the generalized
Anscombe (Poisson and Gaussian noise) formula. The regularized result
following the assumption of Gaussian noise was visually much worse than
the regularized result following the assumption of Poisson noise, and the
latter is shown in Fig. 3.4 (lower left). Figure 3.4 (lower right) shows the
Richardson-Lucy result with noise ignored. In these figures, the contours
used were 4, 12, 20 and 28 (and note that the central regions of stars have
been purposely omitted). The number of iterations used in all cases was
100. For regularization, a 3σ noise threshold was applied, and 4 levels were
used in the à trous wavelet transform. Initialization of the support image
also took the known object central positions into account (the practical use-
fulness of taking central positions, only, was thwarted by the spread of the
objects).

The known 467 ‘truth’ locations were used to carry out aperture pho-
tometry on these results. A concentric circular aperture of 3 pixels in diam-
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Figure 3.4: Top left: globular cluster, blurred and noisy image. Top right:
regularized Richardson-Lucy restoration with Poisson + Gaussian noise.
Bottom left: regularized Richardson-Lucy restoration with Poisson noise
assumed. Bottom right: unregularized Richardson-Lucy restoration.

eter was used. The INVENTORY package in the MIDAS image processing
system was used for this and the results are shown in Fig. 3.5. The ‘Noise
ignored’ case corresponds to the unregularized Richardson-Lucy restoration.
In Fig. 3.5, an arbitrary zero magnitude correction was applied to the dif-
ferences between derived aperture magnitudes, and the input magnitudes
(vertical axes). Also, the horizontal line was drawn by eye in all cases.

The known point source positions were used to carry out aperture pho-
tometry. From the 467 objects, there was some loss due to unrecoverable
faint objects. A further check on these objects’ positions was subsequently
made so that they corresponded to the real input information. The num-
bers of objects found, on which the photometry had been carried out, was
respectively for the Poisson/Gauss, Noise ignored, Gaussian, and Poisson
cases: 283, 288, 296, 285.

Clearly in Fig. 3.5, removing certain outlying objects would lead to a
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Figure 3.5: Linearity tests, using aperture photometry, for three different
noise assumptions and for the unregularized (‘noise ignored’) Richardson-
Lucy restoration. Zero lines are arbitrarily drawn.

better linear fit in many instances; and there is no certain way to stop
peeling away more and more outlying points. This implies that only a robust
regression is appropriate for judging the best fit. We carried out a least
median of squares linear regression (Rousseeuw and Leroy, 1987) on the set
of input magnitudes versus obtained magnitudes, in all four cases. The usual
least squares regression determines a linear fit which minimizes the sum of
the squared residuals; the robust method used here minimizes the median
of the squared residuals. It has a high breakpoint of almost 50%, i.e. almost
half the data can be corrupted in an arbitrary fashion and the regression
still follows the majority of the data. The robust version of the correlation
coefficient between fitted line of best fit, and the data, was respectively for
the Poisson/Gaussian, Noise ignored, Gaussian and Poisson cases: 0.986,
0.959, 0.966 and 0.982. Therefore the Poisson/Gaussian linearity performed
best.

An investigation of object detectability now follows. Figure 3.4 gives a
visual impression of how difficult it is to determine point source objects in
either the unregularized case, or the case which assumes Gaussian noise. In
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Table 3.1: Numbers of objects detected (hits), and numbers of these which
were correct, for different noise models.

Poiss.+Gauss. Poisson Gaussian Unreg.
Threshold Hits Corr. Hits Corr. Hits Corr. Hits Corr.

30 62 56 52 42 88 80 52 41
20 77 63 58 44 131 87 71 49
10 103 81 90 66 182 76 110 60
5 174 145 147 118 272 191 183 83
2 264 192 223 176 402 231 366 64
1 351 219 304 197 498 219 449 65

0.5 416 226 356 221 559 231 482 17

both of these case, high intensity objects can be found, but as the intensity
detection threshold is lowered, noise spikes are increasingly obtained.

Table 3.1 shows results obtained by varying the detection threshold.
Other software package parameters (e.g. limits on closeness of detections,
limits on proximity to image boundary) were not varied. The object de-
tection package, INVENTORY, in the MIDAS image analysis system was
used. To determine correct objects, the ‘ground truth’ coordinates of 467
point sources were matched against the object center positions found. For
this, the translation and small rotation between every pair of ground-truth-
coordinates and coordinates-found was determined, and the modal value of
the translation vector and rotation matrix was determined. The bad results
of the unregularized method (cf. last two columns of Table 3.1 – in particu-
lar, note the counter-intuitive decreases in the number of objects found to be
correct) are indicative of noise confusion in finding ground truth coordinates
among the obtained coordinates.

Figure 3.6 presents a particular summarization of Table 3.1 (models used:
‘P+G’: Poisson plus Gaussian; ‘G’: Gaussian; ‘P’: Poisson; ‘Unreg’: unreg-
ularized). The clear distinction between the ‘P+G’ and ‘P’ cases, on the
one hand, and the ‘G’ and ‘Unreg’ cases, on the other, can be seen. The
results of ‘P+G’ and ‘P’ are relatively very similar: ‘P+G’ is found to have a
higher hit rate, at low detection thresholds, leading to both a higher number
of correct objects, and a higher false alarm rate.

Application 5: extended object.

We used the simulated elliptical galaxy available in the test image suite at
anonymous ftp address stsci.edu: /software/stsdas/testdata/restore. This
image is referred to there as ‘Galaxy Number 2’. It has a simple ellipti-
cal shape. The brightness profile includes both bulge and exponential disk
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Figure 3.6: Plots of false alarms/non-detections for different noise models.
See text for details.

components. It has additional distortions introduced in isophote center, el-
lipticity and position angle. This image was convolved with a Hubble Space
Telescope Wide Field Camera point spread function, and Poisson and read-
out noise were added.

Under the assumption that the readout noise was small, we used a Pois-
son model for all noise in the image. We set negative values in the blurred,
noisy input image to zero. This was the case in the background only, and
was necessitated by the variance stabilizing algorithm used.

Figure 3.7 (left) shows contours formed in the truth image, overplotted
with contours yielded by the regularized Richardson-Lucy method. Note
that the truth image was not the one used as input for restoration; rather,
it was the image on the basis of which the blurred, noisy input image was cre-
ated. For the regularized restoration, a Poisson model was used for clipping
wavelet coefficients. A 3σ threshold was chosen, above which (in wavelet
space) a value was taken as significant. The multiresolution support algo-
rithm was used, in order to prevent any untoward alteration to the galaxy.
The plot shown in Fig. 3.7 (left) corresponds to just 5 iterations (unaccel-
erated) of the regularized Richardson-Lucy restoration method. Figure 3.7
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(right) shows the same isophotes for the truth image, and those obtained
by restoration following 5 iterations of the unregularized Richardson-Lucy
method. Allowing further iterations (to convergence in the case of the regu-
larized Richardson-Lucy method) yielded quite similar results in the case of
the regularized restoration; but in the case of the unregularized restoration,
the fitting of a point spread function to every noise spike made for a very
unsmooth image.

Figure 3.7: Isophotal contours corresponding to (left) ‘truth image’, and
regularized Richardson-Lucy restoration; and (right) ‘truth image’, and un-
regularized Richardson-Lucy restoration.

3.2.8 Conclusion on regularization using the multiresolution

support

The use of a multiresolution support has led to a versatile and powerful
tool for such image processing tasks as restoration. As a byproduct, it also
helps in object detection. The multiresolution support data structure is an
important image processing tool.

The wavelet transform used could be replaced with some other mul-
tiresolution algorithm. However the à trous algorithm has acquitted itself
well. The experimental results demonstrate the usefulness of this broad
framework.

The regularized Richardson-Lucy method performed well on the restora-
tion of point sources, and extended objects. The requirement that the user
specify input parameters – e.g. a regularizing parameter – is avoided. The
coherent framework, based on a stochastic multiresolution image model, is
one which the astronomer is familiar with. He/she is asked only to decide on
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the appropriateness of Gaussian or Poisson assumptions for the analysis of
a given image; and the level of the (smoothing-related) threshold, in terms
of the standard deviation.

3.3 Multiscale entropy and image restoration

In the field of image deconvolution, one of the most popular techniques is
the maximum entropy method (MEM) introduced initially by Burg (1967)
and Ables (1974) for spectral analysis. Subsequently it was reformalized
and improved to provide an efficient technique for deconvolution by Skilling
and Gull (1984), and Skilling and Bryan (1984). This algorithm is based on
the idea that a given realization of a random variable (a non-deterministic
signal for instance) carries a certain amount of information quantifiable by
the entropy (Jaynes, 1957; Shannon, 1948). Thus, when trying to invert an
ill-posed problem like the deconvolution of a signal, with the ill-posedness
inherent in the presence of additive noise which is characteristic of an exper-
imental signal, the entropy is used as a regularizing functional to constrain
the solution, and give the simplest (in the sense of the amount of information
contained) possible solution, which is compatible with the data.

However classical maximum entropy deconvolution gives rise to tech-
nical problems such as finding an optimal value of α, the relative weight
between the goodness-of-fit and the entropy. It has been observed also
that a ‘low’ value of α favors high frequency reconstructions, but gives a
poorly regularized result, while a ‘high’ α leads to a restored image with
good regularization, but in which the high frequency structures are under-
reconstructed. Therefore Bontekoe, Koper and Kester (1994) introduced the
concept of Pyramid Maximum Entropy reconstruction which is a special ap-
plication of multi-channel maximum entropy image reconstruction (Gull and
Skilling, 1991). They consider an image f as a weighted sum of a visible
space pyramid of resolution f =

∑
i fi, i = 1 . . .K, which corresponds via

a set of intrinsic correlation functions (ICFs) to a hidden-space pyramid
hi, i = 1 . . .K on which the constraint of maximum entropy is applied. A
major difficulty arises when making the last operation. The channels must
be summed, using an arbitrary weight for each. Another difficulty encoun-
tered lies in the choice of the default constant (model) in each channel. In
order to circumvent these difficulties, we reformulated this idea, using the
appropriate mathematical tool to decompose a signal into channels of spec-
tral bands, the wavelet transform. We show that the default value (model)
at each wavelet scale is linked physically to the standard deviation of the
noise present at this scale. Introducing the concept of multiscale entropy,
we show that we minimize a functional, dependent on the desired solution,
regularized by minimizing the total amount of information contained at each
resolution. We also use the concept of multiresolution support (Starck et al.,
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1995) which leads to a fixed α for all types of images, removing the problem
of its determination. Finally, we show that this method is very simple to
use since there is no parameter to be determined by the user. We give ex-
amples of deconvolution of blurred astronomical images showing the power
of the method, especially for reconstructing weak and strong structures at
the same time. We point out that one can derive a very efficient filtering
method from this approach.

3.3.1 Image restoration using the maximum entropy method

The data-image relation is

I(x, y) = (O ∗ P )(x, y) +N(x, y) (3.19)

where P (x, y) is the point spread function of the imaging system, andN(x, y)
is additive noise. We want to determine O(x, y) knowing I(x, y) and P (x, y).
For this chapter, we consider Gaussian noise but in the case of Poisson, or
Poisson plus Gaussian, we can reduce the problem to the Gaussian case
using the Anscombe transform and its generalization (see Chapter 2). This
inverse problem is ill-posed because of the noise, making the previous system
of equations lack a unique solution. The maximum entropy method (MEM)
which is a stochastic approach to the problem was initially proposed by
Jaynes (1957). Among an infinite number of solutions to eqn. (3.19), it helps
to choose the one which maximizes its entropy i.e. minimizes the amount of
information contained in the solution. In other words, it is often said that
this method gives the simplest solution compatible with the data, I.

Using Bayes’ theorem to evaluate the probability of the realization of
the original image O, knowing the data I, we have

Prob(O|I) =
Prob(I|O).Prob(O)

Prob(I)
(3.20)

Prob(I|O) is the conditional probability of getting the data I given an
original image O, i.e. it represents the distribution of the noise. It is given,
in the case of uncorrelated Gaussian noise with variance σ2

I , by:

Prob(I|O) = exp


−

∑

pixels

(I − P ∗O)2

2σI2


 (3.21)

The eqn. (3.21) denominator is independent of O and is considered as a con-
stant. Prob(O) is the a priori distribution of the solution O. In the absence
of any information on the solution O except its positivity, the maximum
entropy principle suggests we take

Prob(O) = exp(αS(O)) (3.22)
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where S(O) denotes the entropy of the image O.
Given the data, the most probable image is obtained by maximizing

Prob(O|I), or equivalently by maximizing the product of the two previous
equations. Taking the logarithm, we thus need to maximize

ln(Prob(O|I)) = αS(O)−
∑

pixels

(I − P ∗O)2

2σI2
(3.23)

which is a linear combination of two terms: the entropy of the image, and a
quantity corresponding to χ2 in statistics measuring the discrepancy between
the data and the predictions of the model.

The solution is found by minimizing

J(O) =
∑

pixels

(I − P ∗O)2

2σI2
− αS(O) =

χ2

2
− αS(O) (3.24)

where α is a parameter that can be seen alternatively as a Lagrangian pa-
rameter or a value fixing the relative weight between the goodness-of-fit and
the entropy S. Several entropy definitions have been proposed:

• Burg (1978):

Sb = −
∑

pixels

ln(O) (3.25)

• Frieden (1975):

Sf = −
∑

pixels

O ln(O) (3.26)

• Gull and Skilling (1991):

Sg =
∑

pixels

O −m−O ln(O/m) (3.27)

The last definition of the entropy has the advantage of having a zero maxi-
mum when O equals m, but requires the concept of a model, m, which is in
practice the value of the background. The determination of the α param-
eter is not an easy task and in fact it is a very serious problem facing the
maximum entropy method. In the historic MAXENT algorithm of Skilling
and Gull, the choice of α is such that it must satisfy the ad hoc constraint
χ2 = N when the deconvolution is achieved, N being the number of degrees
of freedom of the system, i.e. the number of pixels in image deconvolution
problems. But this choice systematically leads to an under-fitting of the
data (Titterington, 1985) which is clearly apparent for imaging problems
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with little blurring. In reality, the χ2 statistic is expected to vary in the
range N ±

√
2N from one data realization to another. In the Quantified

Maximum Entropy point of view (Skilling, 1989), the optimum value of α is
determined by including its probability P (α) in Bayes’ equation and then by
maximizing the marginal probability of having α, knowing the data and the
model m. In practice, a value of α that is too large gives a resulting image
which is too regularized with a large loss of resolution. A value that is too
small leads to a poorly regularized solution showing unacceptable artifacts.
Taking a flat model of the prior image softens the discontinuities, which
may appear unacceptable for astronomical images, as these often contain
stars and other point-like objects. Therefore the basic maximum entropy
method appears to be not very appropriate for this kind of image which
contains high and low spatial frequencies at the same time. Another point
to be noted is a ringing effect of the maximum entropy method algorithm,
producing artifacts around bright sources.

To solve these problems while still using the maximum entropy concept,
some enhancements of the maximum entropy method have been proposed.
Noticing that neighboring pixels of reconstructed images with MAXENT
could have values differing a lot in expected flat regions (Charter, 1990),
Gull and Skilling introduced the concepts of hidden image h and intrinsic
correlation function, ICF, C (Gaussian or cubic spline-like) in the Preblur
MAXENT algorithm.

The ICF describes a minimum scale length of correlation in the desired
image O which is achieved by assuming that

O = C ∗ h (3.28)

This corresponds to imposing a minimum resolution on the solution O. Since
the hidden space image h is not spatially correlated, this can be regularized
by the entropy Sg(h) =

∑
h−m− h ln( hm).

Since in astronomical images many scale lengths are present, the Multi-
channel Maximum Entropy Method, developed by Weir (1991, 1992), uses
a set of ICFs having different scale lengths, each defining a channel. The
visible-space image is now formed by a weighted sum of the visible-space
image channels Oj :

O =
K∑

j=1

pjOj (3.29)

where K is the number of channels. As in Preblur MAXENT, each solution
Oj is supposed to be the result of the convolution between a hidden image
hj with a low-pass filter (ICF) Cj :

Oj = Cj ∗ hj (3.30)

But such a method has several drawbacks:
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1. The solution depends on the width of the ICFs (Bontekoe et al., 1994).

2. There is no rigorous way to fix the weights pj (Bontekoe et al., 1994).

3. The computation time increases linearly with the number of pixels.

4. The solution obtained depends on the choice of the models mj (j =
1 . . .K) which were chosen independently of the channel.

In 1993, Bontekoe et al. (1994) used a special application of this method
which they called Pyramid Maximum Entropy on infrared image data. The
pyramidal approach allows the user to have constant ICF width, and the
computation time is reduced. They demonstrated that all weights can be
fixed (pj = 1 for each channel).

This method eliminates the first three drawbacks, and gives better re-
construction of the sharp and smooth structures. But in addition to the
two last drawbacks, a new one is added: as the images Oj have different
sizes (due to the pyramidal approach), the solution O is built by duplicating
the pixels of the subimages Oj of each channel. This procedure is known
to produce artifacts due to the appearance of high frequencies which are
incompatible with the real spectrum of the true image Ô.

However this problem can be easily overcome by duplicating the pixels
before convolving with the ICF, or expanding the channels using linear in-
terpolation. Thus the introduction of the ‘pyramid of resolution’ has solved
some problems and brought lots of improvements to the classic maximum
entropy method, but has also raised other questions. In the following, we
propose another way to use the information at different scales of resolu-
tion using the mathematical tool, the wavelet transform. We show that the
problems encountered by Bontekoe et al. are overcome with this approach,
especially the reconstruction of the object O which becomes natural. Fur-
thermore, the wavelet transform gives a good framework for noise model-
ing. This modeling allows significant wavelet coefficients (i.e. not due to
the noise) to be preserved during regularization. Regularization becomes
adaptive, dependent on both position in the image and scale.

3.3.2 Formalism of maximum entropy multiresolution

Multiscale entropy.

The concept of entropy following Shannon’s or Skilling and Gull’s definition
is a global quantity calculated on the whole image O. It is not appropriate
for quantifying the distribution of the information at different scales of res-
olution. Therefore we propose the concept of multiscale entropy of a set of
wavelet coefficients {wj}:
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Sm(O) =
1

σ2
I

∑

scales j

∑

pixels

σj

(
wj(x, y)−mj − |wj(x, y)| ln

|wj(x, y)|
mj

)

(3.31)
The multiscale entropy is the sum of the entropy at each scale.

The coefficients wj are wavelet coefficients, and we take the absolute
value of wj in this definition because the values of wj can be positive or neg-
ative, and a negative signal contains also some information in the wavelet
transform. The advantage of such a definition of entropy is the fact we can
use previous work concerning the wavelet transform and image restoration
(Murtagh et al., 1995; Starck and Bijaoui, 1994a; Starck et al., 1995). The
noise behavior has already been studied in the wavelet transform (see Chap-
ter 2) and we can estimate the standard deviation of the noise σj at scale j.
These estimates can be naturally introduced in our models mj

mj = kmσj (3.32)

The model mj at scale j represents the value taken by a wavelet coefficient in
the absence of any relevant signal and, in practice, it must be a small value
compared to any significant signal value. Following the Gull and Skilling
procedure, we take mj as a fraction of the noise because the value of σj
can be considered as a sort of physical limit under which a signal cannot be
distinguished from the noise (km = 1

100).

The term σj can be considered as a scale-dependent renormalization
coefficient.

Multiscale entropy and multiresolution support.

If the definition (3.31) is used for the multiscale entropy, the regularization
acts on the whole image. We want to fully reconstruct significant struc-
tures, without imposing strong regularization, while efficiently eliminating
the noise. Thus the introduction of the multiresolution support in another
definition of the multiscale entropy leads to a functional that answers these
requirements:

Sms(O) =
1

σ2
I

∑

scales j

∑

pixels

A(j, x, y)σj (3.33)

×
(
wj(x, y)−mj − |wj(x, y)| ln

|wj(x, y)|
mj

)

The A function of the scale j and the pixels (x, y) is A(j, x, y) = 1 −
M(j, x, y), i.e. the reciprocal of the multiresolution support M . In order to
avoid discontinuities in the A function created by such a coarse threshold
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of 3σj , one may possibly impose some smoothness by convolving it with a
B-spline function with a full-width at half maximum (FWHM) varying with
the scale j.

The degree of regularization will be determined at each scale j, and at
each location (x, y), by the value of the function A(j, x, y). If A(j, x, y) has
a value near 1 then we have strong regularization; and it is weak when A is
around 0.

The entropy Sms measures the amount of information only at scales and
in areas where we have a low signal-to-noise ratio. We will show in the next
section how these notions can be tied together to yield efficient methods for
filtering and image deconvolution.

3.3.3 Deconvolution using multiscale entropy

Method.

We assume that the blurring process of an image is linear. In our tests, the
point spread function was space invariant but the method can be extended
to space-variant point spread functions.

As in the maximum entropy method, we will minimize a functional of
O, but considering an image as a pyramid of different resolution scales in
which we try to maximize its contribution to the multiscale entropy. The
functional to minimize is

J(O) =
∑

pixels

(I − P ∗O)2

2σ2
I

− αSms(O) (3.34)

Then the final difficulty lies in finding an algorithm to minimize the func-
tional J(O). We use the iterative ‘one-step gradient’ method due to its
simplicity.

The solution is found by computing the gradient

∇(J(O)) = −P ∗ ∗ (I − P ∗O)

σ2
I

(3.35)

+α
1

σ2
I

∑

scale j


A(j)σj sgn(w

(O)
j ) ln


 | w

(O)
j |
mj




 ∗ ψ∗

j

and performing the following iterative schema

On+1 = On − γ∇(J(On)) (3.36)

Note that the second part of eqn. (3.36) has always a zero mean value
due to the fact that each scale is convolved with ψ∗

j (and ψ∗
j has a zero mean
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value due to the admissibility condition of the wavelet function). Thus the
flux is not modified in the object O when applying the iterative scheme (eqn.
(3.36)).

The positivity of the restored image can be assured during the iterative
process of functional minimization by applying a simple positivity constraint
(threshold) to the intermediate solution On. The iterative process is stopped
when the standard deviation of the residuals shows no significant change
(relative variation ≤ 10−3), and we check that the χ2 value is in the range
N ±

√
2N (this was always the case in experiments carried out; otherwise it

would mean that the σI value is wrong).

Choice of the α parameter.

In the classic maximum entropy method, the α parameter quantifies the
relative weight between the goodness-of-fit, or χ2 value, and the degree of
smoothness introduced by the entropy. This parameter is generally con-
stant over the whole image and therefore depends on the data (signal+noise).
In our case, the degree of regularization applied to the non-significant struc-
tures at each wavelet scale j is controlled by the term α

σI
A(j, x, y), and

depends therefore on both the scale j and the location (x, y). Regulariza-
tion is performed only at scales and positions where no signal is detected
(A(j, x, y) = 1). Note that the α parameter does not have the same impor-
tance as in the classical maximum entropy method: α has only to be high
enough to regularize the solution at positions and scales where no signal has
been detected. We found experimentally that

α = 0.5 max(PSF) (3.37)

(PSF is the point spread function) produces good results, and for any kind
of image.

3.3.4 Experiments

We tested our algorithm with simulated data. The simulated image
contains an extended object, and several smaller sources (Fig. 3.8, upper
left). It was convolved with a Gaussian point spread function (σ = 2), and
Gaussian noise was added (Fig. 3.8, upper right). The ratio between the
maximum in the convolved image and the standard deviation of the noise
is 50. The results of the deconvolution by the maximum entropy method,
and multiresolution maximum entropy, are shown in Fig. 3.8, lower left
and right. The multiresolution maximum entropy method leads to better
regularization, and the final resolution in the deconvolved image is better.

In order to give quantitative results on the possibilities of the multiscale
maximum entropy method, we carried out tests on a simulated image of the
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Figure 3.8: Simulated object (upper left), blurred image (upper right), de-
convolved image by MEM (lower left), and deconvolved image by MEM
multiresolution (lower right).

ISOCAM mid-infrared camera on the infrared satellite ISO. The simulation
consists of a faint extended object (galaxy, integrated flux = 1 Jy) near a
bright star (point-like: 10 Jy): Fig. 3.9, upper left. This was blurred using
the field of view point spread function, and noise was added (Fig. 3.9, upper
right): the two objects are overlapping and the galaxy is barely detectable.
After deconvolution using the multiscale maximum entropy method (see
Fig. 3.9, bottom right), the two objects are separated. The restored star
has a flux of 10.04 Jy, and the SNR of the reconstructed image is 22.4 dB
(SNR = 10 log10(σ

2
Signal/σ

2
Residuals)). These results show that multiscale

maximum entropy is very effective when we compare it to other methods (see
Table 3.2), and prove the reliability of the photometry after deconvolution.
It is clear in this example that photometric measurements cannot always be
made directly on the data, and a deconvolution is often necessary, especially
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Figure 3.9: Simulated ISOCAM image (upper left), blurred image using the
1.5 arcsec pixel field of view point spread function (upper right), the de-
convolved image by MEM (lower left), and deconvolved image by multiscale
MEM (lower right).

Table 3.2: Quantitative results extracted from three images deconvolved
by Lucy’s method, maximum entropy, and multiscale maximum entropy.
The first row gives the flux of the star. The second, the integrated flux
in the extended object, and the last row, the signal-to-noise ratio of the
deconvolved images. Since the two objects are mixed in the degraded image,
it is impossible to attribute a photometric measure to each.

Orig. image Data Lucy MEM M. MEM

star flux (Jy) 10 4.27 14.1 10.04

ext. obj. flux (Jy) 1 0.33 1.33 0.94

SNR (dB) ∞ 1.03 4.51 4.45 22.4
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when objets are overlapping.

Figure 3.10: Beta Pictoris: raw image (upper left) and deconvolved images
using: Richardson-Lucy’s method (upper right), classical maximum entropy
(lower left), and multiscale maximum entropy (lower right).

We tested our deconvolution method on astronomical 64 × 64 pixel im-
ages obtained with an mid-infrared camera, TIMMI, placed on the 3.6 ESO
telescope (La Silla, Chile). The object studied is the β Pictoris dust disk.
The image was obtained by integrating 5 hours on-source. The raw image
has a peak signal-to-noise ratio of 80. It is strongly blurred by a combination
of seeing, diffraction (0.7 arcsec on a 3m class telescope) and additive Gaus-
sian noise. The initial disk shape in the original image has been lost after
the convolution with the point spread function. Thus we need to deconvolve
such an image to get the best information on this object, i.e. the exact pro-
file and thickness of the disk, and subsequently to compare the results to
models of thermal dust emission (Lagage and Pantin, 1994). We used the
multiscale maximum entropy method to deconvolve this image. The algo-
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rithm took about thirty iterations to converge. The deconvolved image (Fig.
3.10) shows that the disk is extended at 10 µm and asymmetrical (the right
side is more extended than the left side). We compared our method to the
standard Richardson-Lucy algorithm which shows poor regularization (see
Fig. 3.10, upper right) and an inability to restore faint structures; and also
to the classical maximum entropy method. The deconvolved image using the
multiscale maximum entropy method proves to be more effective for regular-
izing than the other standard methods, and leads to a good reconstruction
of the faintest structures of the dust disk.

3.3.5 Another application of multiscale entropy: filtering

Multiscale entropy filtering.

Filtering using multiscale entropy leads to the minimization of:

J(Ĩ) =
∑

pixels

(I − Ĩ)2
2σ2

I

− αSms(Ĩ) (3.38)

where I and Ĩ are the noisy and filtered image, α fixed experimentally to
0.5, and σI the standard deviation of the noise in the data I.

Then the gradient of the functional with respect to Ĩ must be calculated:

∇(J(Ĩ)) = −(I − Ĩ)
σ2
I

+ (3.39)

α

σ2
I

∑

scales j


A(j)σjsgn(w

(Ĩ)
j ) log


 | w

(Ĩ)
j |
mj




 ∗ ψ∗

j

where ψj(x, y) = 1
2jψ( x

2j ,
y
2j ), and ψ is the wavelet function corresponding

to the à trous algorithm.

The ‘one-step gradient’ algorithm gives the iterative scheme:

Ĩn+1 = Ĩn − γ∇(J(Ĩn)) (3.40)

where γ is the step.

Experiments.

We tested our filtering method on a mid-infrared image of the β Pictoris
dust disk described above in the section on deconvolution experiments, but
obtained with only one hour of integration time (see Fig. 3.11). The peak
signal-to-noise ratio is around 30. After filtering, the disk appears clearly.
For detection of faint structures (the disk here), one can calculate that the
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Figure 3.11: β Pictoris dust disk: Raw image (left) and filtered image (right)
using multiscale maximum entropy.

application of such a filtering method on this image provides a gain of ob-
serving time of a factor of around 60 (in the case of Gaussian additive noise
leading to a signal-to-noise ratio varying like the square root of the integra-
tion time).

Fig. 3.12 shows a profile of the object (crosses). The profiles of the
filtered images of the dust disk using multiscale maximum entropy filter-
ing (plain line) and Wiener filtering (dots) are superimposed. Contrary to
the Wiener filtering, the multiscale maximum entropy algorithm does not
degrade the resolution, while carrying out the filtering effectively.

3.3.6 Conclusion on multiscale entropy and restoration

In the field of signal deconvolution, the maximum entropy method provided
an attractive approach to regularization, and considerably improved on ex-
isting techniques. However several difficulties remained: the most important
is perhaps the inability to find an optimal regularizing parameter (α) to re-
construct effectively the high and low spatial frequencies at the same time,
while having good regularization.

Compared to classical maximum entropy, our method has a fixed α pa-
rameter and there is no need to determine it: it is the same for every image
with normalized (σ=1) Gaussian noise. Furthermore this new method is
flux-conservative and thus reliable photometry can be done on the decon-
volved image. In Bontekoe et al. (1994), it was noticed that the ‘models’ in
multi-channel maximum entropy deconvolution should be linked to a physi-
cal quantity. We have shown here that this is the case since it is a fraction of
the standard deviation of the noise at a given scale of resolution. Bontekoe
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Figure 3.12: Raw image profile of β Pictoris dust disk (crosses). The profiles
of the filtered images using multiscale maximum entropy filtering (plain line)
and Wiener filtering (dots) are superimposed.

et al. opened up a new way of thinking in terms of multiresolution decompo-
sition, but they did not use the appropriate mathematical tool which is the
wavelet decomposition. Using such an approach, we have proven that many
problems they encountered are naturally solved. The result is an effective
‘easy to use’ algorithm since the user has no parameter to supply.

3.4 Image restoration for aperture synthesis

3.4.1 Introduction to deconvolution in aperture synthesis

Frequency holes.

The principle of imaging by aperture synthesis lies in the determination of
fringe contrasts and phases from different configurations (Labeyrie, 1978).
The number of spatial frequencies after observations would be ideally the
same as the number of independent pixels in the restored images. This is
difficult to achieve with radio interferometers, and this cannot be seriously
imagined today for optical interferometers (Beckers, 1991). Frequency holes
are the consequence of this incomplete coverage. The point spread function,
the inverse Fourier transform of the transfer function, is an irregular function
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with large rings and wings.

The relation between the object and the image in the same coordinate
frame is a convolution:

I(x, y) =

∫ +∞

−∞

O(X,Y )P (x−X, y − Y )dXdY (3.41)

where P (x, y) is the point spread function of the imaging system. We want to
determine O(X,Y ) knowing I(x, y) and P (x, y). With the Fourier transform
we get the relation:

Î(u, v) = Ô(u, v)P̂ (u, v) (3.42)

This equation can be solved only if |P̂ (u, v)| 6= 0. Evidently this is not the
case for aperture synthesis, so a perfect solution does not exist.

An image restoration is needed to fill the frequency holes. This operation
is not available from a classical linear operation (Frieden, 1975). Image
superresolution, which generalizes this problem, has been examined for many
years (Fried, 1992; Harris, 1964; etc.). One of the most popular methods
used in radio-interferometric imaging is the CLEAN algorithm (Högbom,
1974).

CLEAN.

This approach assumes the object is composed of point sources. It tries to
decompose the image (called the dirty map), obtained by inverse Fourier
transform of the calibrated uv data, into a set of δ-functions. This is done
iteratively by finding the point with the largest absolute brightness and
subtracting the point spread function (dirty beam) scaled with the product
of the loop gain and the intensity at that point. The resulting residual
map is then used to repeat the process. The process is stopped when some
prespecified limit is reached. The convolution of the δ-functions with an
ideal point spread function (clean beam) plus the residual equals the restored
image (clean map). This solution is only possible if the image does not
contain large-scale structures. The algorithm is:

1. Compute the dirty map I(0)(x, y) and the dirty beam A(x, y).

2. Find the maximum value, and the coordinate (xmax, ymax) of the
corresponding pixel in I(i)(x, y).

3. Compute I(i+1)(x, y) = I(i)(x, y) − γImaxAm(x, y) with Am(x, y) =
A(x− xmax, y − ymax) and the loop gain γ inside [0,1].

4. If the residual map is at the noise level, then go to step 5.
Else i←− i+ 1 and go to step 2.
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5. The clean map is the convolution of the list of maxima with the clean
beam (which is generally a Gaussian).

6. Addition of the clean map and the residual map produces the decon-
volved image.

Multiresolution CLEAN.

The CLEAN solution is only available if the image does not contain large-
scale structures. Wakker and Schwarz (1988) introduced the concept of Mul-
tiresolution CLEAN (MRC) in order to alleviate the difficulties occurring in
CLEAN for extended sources. The MRC approach consists of building two
intermediate images, the first one (called the smooth map) by smoothing
the data to a lower resolution with a Gaussian function, and the second
one (called the difference map) by subtracting the smoothed image from the
original data. Both these images are then processed separately. By using a
standard CLEAN algorithm on them, the smoothed clean map and differ-
ence clean map are obtained. The recombination of these two maps gives
the clean map at the full resolution.

In order to describe how the clean map at the full resolution is obtained
from the smoothed and difference clean map, a number of symbols must be
defined:

• G = the normalized (
∫
G(x)dx = 1) smoothing function; the width

of the function is chosen such that the full-width at half maximum of
the smoothed dirty beam is f times larger than the full-width at half
maximum of the original dirty beam.

• A = dirty beam

• D = dirty map

• δ = δ-functions

• R = residual after using CLEAN on the map

• B = clean beam with peak value 1

• C = clean map

• s = the scale factor of the dirty beam needed to rescale the smooth
dirty beam back to a peak value 1

• r = the scale factor of the dirty beam needed to rescale the smooth
clean beam back to a peak value 1

• As = normalized smooth dirty beam = sA ∗G

• Ad = normalized difference dirty beam = 1/(1− 1
s )(A−

As
s )
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• Bs = normalized smooth clean beam = rB ∗G

• Bd = normalized difference clean beam = 1/(1− 1
r )(B −

Bs
r )

From the δ-functions found by the CLEAN algorithm, one can restore
the dirty map by convolving with the dirty beam and adding the residuals:

D = Ds +Dd = δs ∗As +Rs + δd ∗Ad +Rd (3.43)

which can be written also as:

D =

[
sδs ∗G+

s

s− 1
δd ∗ (1−G)

]
∗A+Rs +Rd (3.44)

If we replace the dirty beam by the clean beam, we obtain the clean map:

C =
s

r
δs ∗Bs +

s(r − 1)

r(s− 1)
δd ∗Bd +Rs +Rd (3.45)

The MRC algorithm needs three parameters. The first fixes the smooth-
ing function G, and the other two are the loop gain and the extra loop
gain which are used by CLEAN respectively on the smooth dirty map and
difference dirty map.

This algorithm may be viewed as an artificial recipe, but we have shown
(Starck and Bijaoui, 1991, 1992) that it is linked to multiresolution analysis
as defined by Mallat (1989). Mallat’s theory provides a new representation
where a function is a sum of detail structures obtained with the same pattern,
the wavelet, with suitable translations and dilations. Wavelet analysis leads
to a generalization of MRC from a set of scales.

Our approach allows MRC algorithms to be harmonized with the classi-
cal theory of deconvolution.

3.4.2 CLEAN and wavelets

The wavelet transform chosen.

We have seen that there are many wavelet transforms. For interferometric
deconvolution, we choose the wavelet transform based on the FFT for the
following reasons:

• The convolution product is kept at each scale.

• The data are already in Fourier space, so this decomposition is natural.

• There is a pyramidal implementation available which does not take
much memory.

Hence until the end of this chapter, we will consider the use of the pyramidal
transform based on the FFT.
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Deconvolution by CLEAN in wavelet space.

If w
(I)
j are the wavelet coefficients of the image I at the scale j, we get:

ŵ
(I)
j (u, v) = ŵ

(P )
j Ô(u, v) (3.46)

where w
(P )
j are the wavelet coefficients of the point spread function at the

scale j. The wavelet coefficients of the image I are the convolution product
of the object O by the wavelet coefficients of the point spread function.

At each scale j, the wavelet plane w
(I)
j can be decomposed by CLEAN

(w
(I)
j represents the dirty map and w

(P )
j the dirty beam) into a set, noted

δj , of weighted δ-functions.

δj = {Aj,1δ(x− xj,1, y − yj,1), Aj,2δ(x− xj,2, y − yj,2), . . . , (3.47)

Aj,nj
δ(x− xj,nj

, y − yj,nj
)}

where nj is the number of δ-functions at the scale j and Aj,k represents the
height of the peak k at the scale j.

By repeating this operation at each scale, we get a set Wδ composed of
weighted δ-functions found by CLEAN (Wδ = {δ1, δ2, . . .}). If B is the ideal
point spread function (clean beam), the estimation of the wavelet coefficients
of the object at the scale j is given by:

w
(E)
j (x, y) = δj ∗ w(B)

j (x, y) + w
(R)
j (x, y) (3.48)

=
∑

k

Aj,kw
(B)
j (x− xj,k, y − yj,k) + w

(R)
j (x, y)

where w
(R)
j is the residual map. The clean map at the full resolution is

obtained by the reconstruction algorithm. If we take a Gaussian function
as the scaling function, and the difference between two resolutions as the
wavelet (1

2ψ(x2 ,
y
2 ) = φ(x, y)− 1

2φ(x2 ,
y
2 )), we find the algorithm proposed by

Wakker and Schwarz (1988). The MRC algorithm in the wavelet space is:

1. We compute the wavelet transforms of the dirty map, the dirty beam
and the clean beam.

2. For each scale j, we decompose by CLEAN the wavelet coefficients of
the dirty map into a list of weighted δ-functions δj .

3. For each scale j, we convolve δj by the wavelet coefficients of the clean

beam and we add the residual map w
(R)
j to the result in order to obtain

the wavelet coefficients of the clean map.

4. We compute the clean map at the full resolution by using the recon-
struction algorithm.
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Figure 3.13: Restoration of two point sources on an extended background.
(a) The original object. (b) The simulated image obtained by convolving
(a) with a Gaussian point spread function of full-width at half maximum
equal to 3 pixels and adding noise. (c), (d), (e), (f) Restorations obtained by
maximum entropy method, Richardson-Lucy, CLEAN, and multiresolution
CLEAN with regularization.

In Fig. 3.13a, we can see a simulated object containing two point sources
lying on top of an extended Gaussian. Such a source is notoriously difficult
to restore using classical deconvolution methods. Figures 3.13c, 3.13d, 3.13e,
3.13f show the results of restoring using respectively the method of maximum
entropy (MEM) (Frieden, 1975), Lucy (1974), CLEAN (Högbom, 1974) and
Multiresolution CLEAN (MRC). For this kind of image, the MRC method
is very effective and the point sources are well detected. The difficulties
occurring in CLEAN for extended sources are resolved by the multiresolution
approach.

Improvements to multiresolution CLEAN.

We apply CLEAN to each plane of the wavelet transform. This allows us to
detect at each scale the significant structure. The reconstructed image gives
the estimation Õ found by MRC of the object. But MRC does not assume
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that this estimation is compatible with the measured visibilities. We want:

| ˆ̃O(u, v)− Vm(u, v) | < ∆m(u, v) (3.49)

where ∆m(u, v) is the error associated with the measure Vm.

Figure 3.14: Example of detection of peaks by CLEAN at each scale.

To achieve this, we use the position of the peaks determined by the
MRC algorithm. We have seen that after the use of CLEAN, we get a list of
positions δj on each plane j, with approximate heights Aj . In fact, we get
a nice description of the significant structures in the wavelet space (see Fig.
3.14). The height values are not sufficiently accurate, but CLEAN enhances
these structures. So we have to determine heights which reduce the error.
We do so using Van Cittert’s algorithm (1931) which converges, even in
the presence of noise, because our system is well regularized. Then, heights
of the peaks contained in Wδ will be modified by the following iterative
algorithm:

1. Set n = 0 and W(0)
δ =Wδ.

2. Compute A
(n+1)
j,l = A

(n)
j,l +Qj,l.W(n)

δ so that we then have:

δ
(n+1)
j = {A(n+1)

j,1 δ(x− xj,1, y − yj,1),

and:

W(n+1)
δ = {δ(n+1)

1 , δ
(n+1)
2 , . . .}
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3. n = n+ 1 and go to step 1.

Q is the operator that:

• computes the wavelet coefficients of the clean map w(C) by convolving

at each scale δ
(n)
j by the clean beam wavelet w

(B)
j

w
(C)
j = δ

(n)
j ∗ w(B)

j

• reconstructs the estimated object O(n) at full resolution from w(C)

• thresholds the negative values of O(n)

• computes the residual r(n) by:

r̂(n) = p(V − Ô(n))

where p is a weight function which depends on the quality of the
measurement V (error bars). A possible choice for p is:

– p(u, v) = 0 if we do not have any information at this frequency
(i.e. a frequency hole).

– p(u, v) = 1 − 2∆m(u,v)
Vm(0,0) if ∆m(u, v) is the error associated with

the measurement Vm(u, v).

• computes the wavelet transform w(r(n)) of r(n)

• extracts the wavelet coefficient of w(r(n)) which is at the position of
the peak Aj,lδ(x− xl, y − yl).

The final deconvolution algorithm is:

1. Convolution of the dirty map and the dirty beam by the scaling func-
tion.

2. Computation of the wavelet transform of the dirty map which yields
w(I).

3. Computation of the wavelet transform of the dirty beam which yields
w(D).

4. Estimation of the standard deviation of the noise N0 of the first plane
from the histogram of w0. Since we process oversampled images, the

values of the wavelet image corresponding to the first scale (w
(I)
0 ) are

nearly always due to the noise. The histogram shows a Gaussian peak
around 0. We compute the standard deviation of this Gaussian func-
tion, with a 3-sigma clipping, rejecting pixels where the signal could
be significant.
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5. Computation of the wavelet transform of the clean beam. We get w(B).

If the clean beam is a Dirac delta, then ŵ
(B)
j (u, v) = ψ(2ju,2jv)

φ(u,v) .

6. Set j to 0.

7. Estimation of the standard deviation of the noise Nj from N0. This is
done from the study of the variation of the noise between two scales,
with the hypothesis of a white Gaussian noise.

8. Detection of significant structures by CLEAN: we get δj from w
(I)
j

and w
(D)
j . The CLEAN algorithm is very sensitive to the noise. Step

1 of this algorithm offers more robustness. CLEAN can be modified
in order to optimize the detection.

9. j = j + 1 and go to step 7.

10. Reconstruction of the clean map from Wδ = {δ1, δ2, · · ·} by the itera-
tive algorithm using Van Cittert’s method.

The limited support constraint is implicit because we put information
only at the position of the peaks, and the positivity constraint is introduced
in the iterative algorithm. We have made the hypothesis that MRC, by
providing the coordinates of the peaks, gives the exact position of the infor-
mation in the wavelet space and we limited the deconvolution problem by
looking for the height of the peaks which give the best results. It is a very
strong limited support constraint which allows our problem to be regular-
ized. CLEAN is not used as a deconvolution algorithm, but only as a tool
to detect the position of structures.

3.4.3 Experiment

In Fig. 3.15, we can see on the left a simulated object containing a point
source with an envelope and, on the right, the Fourier space or uv plane,
coverage used in the simulation of an interferometric image.

Figure 3.16 (left) shows the simulated image, computed from 271 vis-
ibilities with a precision of 5%, and at right the restored image by our
algorithm. In spite of the power coverage, the envelope of the star has been
found. Before iterating, 108 visibilities were outside the error bars, and after
50 iterations, only five visibilities.

By our method, the images of two evolved stars surrounded by dust shells
have been reconstructed from speckle interferometry observations (Starck et
al., 1994).
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Figure 3.15: Simulated object and uv plane coverage.

3.4.4 Observations of two evolved stars

Presentation of the sources.

We observed the two sources OH 26.5+0.6 and Hen 1379 in the course of a
high angular resolution study by using speckle interferometry. OH 26.5+0.6
is a typical OH/IR star. It exhibits a strong OH maser emission at 1612
MHz associated with a luminous infrared source. The OH/IR stars belong
to an evolved stellar population located on the Asymptotic Giant Branch of
the Hertzsprung-Russell diagram. Most of these sources appear to be very
long period variables and their mass loss rate is the highest known for late
type stars. In particular, OH 26.5+0.6 has a period of about 1600 days and
a mass loss rate of 5.10−5 solar masses per year (Le Bertre, 1984). This
object had already been observed by speckle interferometry (Perrier, 1982).
High resolution imaging of the OH emission shows that the structure of its
circumstellar shell is spherical (Herman et al., 1985).

Hen 1379 is a post Asymptotic Giant Branch star in a phase of intense
mass loss (Le Bertre et al., 1989). The circumstellar dust distribution for
post-AGB stars generally departs from spherical geometry. This is the case
for Hen 1379, the high polarization measured at visible and near-infrared
wavelengths indicating that the envelope is strongly non-spherical (Le Bertre
et al., 1989).

Both kinds of stars, OH 26.5+0.6 and Hen 1379, contribute significantly
to the enrichment of the interstellar medium in refractory material formed
from the gas and dust expelled. Since dust forms in the shells of these stars,
it absorbs visible and near-infrared light from the star photosphere and then
reradiates it at longer wavelengths. These stars are by nature strong infrared
sources.
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Figure 3.16: Restoration of a simulated object.

High spatial resolution near-infrared observations are sensitive to dust
emission coming primarily from the inner region of the shell where grain
temperature is of the order of 500 − 1000 K. Resolving the circumstellar
shell geometry is of importance for understanding the physical mechanisms
responsible for mass loss. In practice, mass loss rates are generally com-
puted under the assumption of spherical symmetry while shell structure can
be strongly different. Accurate mass loss rates should be determined only
by considering the shell geometry as revealed by means of high resolution
observations.

Speckle interferometry observations.

The high angular resolution observations of these sources were performed us-
ing the ESO one-dimensional (1D) slit-scanning near-infrared specklegraph
attached to the ESO 3.6m telescope Cassegrain focus. The instrument makes
use of the telescope wobbling secondary f/35 mirror operated in a saw-
tooth mode (Perrier, 1986). Rotating the secondary mirror mount together
with the Cassegrain instrumental flange allows the scanning direction to be
changed. This direction defines the actual position angle (PA) of the direc-
tion of exploration, counted counter-clockwise with a zero point correspond-
ing to a scan vector going from South to North. A measurement consists of
taking a series of typically a few thousand scans, temporally short enough
to freeze the atmospheric turbulence, alternately on the source and a nearby
point-like source (IRC-10450 for OH 26.5+0.6 and SRS 14119 for Hen 1379)
providing the average modulated transfer function reference. The technique
of fast alternated acquisition on the two objects aims at minimizing the
discrepancies between seeing histograms that could otherwise prevent the
calibration of the atmospheric average modulated transfer function at low
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spatial frequencies (Perrier, 1989).
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Figure 3.17: Example of visibility curves of Hen 1379 in two directions at
band L (3.6 µm).

A classical speckle 1D data treatment, using the power spectrum den-
sities, was applied to provide the 1D visibility modulus V (u) of the source
in each band, defined as the 1D Fourier transform modulus of the spatial
energy distribution of the object O(α, β) integrated along the slit direction
(see Figs. 3.17 and 3.18):

V (u) =

∣∣∣∣∣

∫
α

∫
β O(α, β)e−2πiuαdβdα
∫
α

∫
β O(α, β)dβdα

∣∣∣∣∣ (3.50)

V (u) is the cut, along the axis u parallel to the scan direction, of the two-
dimensional Fourier transform of O(α, β):

V (u) =
∣∣∣Õ(u, v = 0)

∣∣∣ (3.51)

with:

Õ(u, v) =

∫
α

∫
β O(α, β)e−2πi(uα+vβ)dβdα
∫
α

∫
β O(α, β)dβdα

(3.52)
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Figure 3.18: Example of visibility curves of OH 26.5+0.6 in two directions
at band L (3.6 µm).

Here α and β are angular coordinates on the sky and u, v their conjugates
in Fourier space. The vertical lines | | represent the modulus of the complex
function.

∫
α

∫
β O(α, β)dβ dα is the normalization factor taken as the flux

received in the spectral band. The fact that our 1D measurements yield a
cut of the 2D visibility theoretically allows a full recovery of the 2D object
distribution O(α, β) by sampling the uv space with enough scan directions,
a technique referred to as tomographic imaging. These multi-position angle
observations aim at studying the structure of the circumstellar envelopes.

We obtained measurements at K (2.2 µm), L (3.6 µm) and M (5.0 µm)
bands. At L, the circumstellar envelopes are resolved for the two sources
which were observed at 8 different position angles. The theoretical cut-off
frequency of the telescope is 4.9 arcsec−1 at this wavelength. Due to atmo-
spheric turbulence, the effective cut-off is slightly lower than the telescope
diffraction limit. This effective cut-off is variable from one visibility curve
to another due to temporal evolution of seeing conditions. As each visibility
curve samples the modulus of the two-dimensional Fourier transform of the
source, and the phase is unavailable, only the autocorrelation of the images
of OH 26.5+0.6 and Hen 1379 can be reconstructed.
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Image reconstruction.

Figures 3.19 and 3.20 show the uv plane coverage and the reconstruction of
the stars Hen 1379 and OH 26.5+0.6 by the wavelet transform.

Figure 3.19: The uv plane coverage of Hen 1379 and reconstructed image.
The ratio point-source to the maximum amplitude of the envelope is 290.
Contour levels are 12, 24, 36. . . , 96% of the maximum amplitude of the
envelope.

The reconstructed images give us information on the shell structure of
the two sources. But they must be analyzed with care:

1. Only the modulus of the Fourier transform of the sources is available
from the visibility information. The deconvolution algorithm there-
fore leads to the restoration of the autocorrelation of the object, i.e. a
symmetrical form of OH 26.5+0.6 and Hen 1379 actual object distri-
bution.

2. The images must be interpreted with the help of the visibility curves.
The most complete visibility function is the one of Hen 1379. The
shell is clearly resolved up to the plateau attributed to the stellar
component. Moreover a second inverted lobe is seen on the curves.
This could be created by the inner boundary of the Hen 1379 dust shell
which clearly appears on the reconstructed frames. As the plateau of
the stellar component is present, the flux ratio of dust shell emission
to stellar radiation is known. Through the deconvolution process, this
ratio constrains the relative flux level between the circumstellar shell
and the non-resolved central star in the image (see Fig. 3.21).
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Figure 3.20: The uv plane coverage of OH 26.5+0.6 and reconstructed im-
age. The ratio point-source to the maximum amplitude of the envelope is
165. Contour levels are 20, 40. . . , 100% of the maximum amplitude of the
envelope.

Obviously this is not the case of OH 26.5+0.6 which has a smaller angular
size. The dust shell is partially resolved on visibility functions. Although
the flux level between shell and star is undetermined, the deconvolution
algorithm gives an image solution which is not constrained by the magnitude
of the ratio. The relative level of the dust shell flux and the non-resolved
central star flux is therefore not relevant in the reconstruction of the image
of OH 26.5+0.6.

3.4.5 Conclusion on interferometric data deconvolution

Our approach using the MRC algorithm corresponds to a scheme in which
the image is a set of atomic objects (Meyer, 1993). There are many ways
of decomposing a signal into independent atoms. The orthogonal wavelet
transform belongs to this class of linear decomposition. In our method, the
deconvolution problem is reduced to a pattern recognition one: we search for
the minimum atoms which permit the building up of an image, in agreement
with the observation.

The classical CLEAN algorithm is a pattern recognition method, where
the model is the simplest one: the image is a set of Dirac peaks convolved
with the point spread function. Taking into account the clean beam, the
atoms are Gaussian peaks. If the Fourier space is correctly sampled in
a limited frequency band, the natural atoms are sine cardinal functions
(resulting from the sampling theorem). In the case of a frequency hole, we
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Figure 3.21: Intensity profile I of the star Hen 1379 for a position angle of
180 degrees normalized to the stellar intensity I∗.

cannot have duality between the frequency coverage and the sampled sine
cardinals. We have to limit the number of significant peaks in order to get
an equivalence between the number of visibilities and the number of peaks
(Schwarz, 1978). If the image is too rich in structural elements, artifacts
appear during the restoration process. We need a method to reduce the
number of atoms without reducing the covered image. This is exactly what
is provided by the wavelet transform. A set of close peaks is reduced to
fewer wavelet peaks. This reduction of the number of atoms leads to a
regularization of the restoration method. The best choice is the one which
permits the use of all visibilities in an optimal manner. This is the case
for the CLEAN algorithm for which each visibility contributes equally for
each peak. If large structures are present, CLEAN fails and we cannot use
all the visibilities for each atom. In our method, we decompose the Fourier
space into rings having a radius reduced by a factor 2 from one step to the
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following one. Other atoms could be possible, if we want to use a priori
information on the structure of the image in a better manner.

Our method is model- and parameter-free, and this is an essential ad-
vantage for a quick-look tool. The choice of the wavelet function plays an
important part. We can constrain it:

• to be compact in Fourier space, in order to have a readily-available
pyramidal algorithm using the FFT;

• to be as compact as possible in the direct space.

Compactness in Fourier space prevents compactness in the direct space, and
that leads to rings in the direct space. The intensity of these rings is reduced
if the wavelet function has a high degree of regularity. Then the wavelet must
be:

• Unimodal in the Fourier space. Rings in Fourier space would lead to
artificial high frequency patterns.

• Quite unimodal in the direct space.

• Isotropic in order to avoid any favored axis.

A nice choice lies in B-spline functions in Fourier space. We use a cubic
function. The 5th degree B-spline is similar to a Gaussian. Other compact
regular functions can be built (Jaffard, 1989).

An important characteristic of our restoring procedure lies in the pos-
sibility to compute the probability for each atom to be real using classical
statistical theory. This is an important feature which keeps the restoration
close to the needs of astrophysical interpretation.

Speckle interferometry observations providing an incomplete Fourier plane
coverage were successfully processed and the method appears to be well-
adapted to the analysis of future long baseline interferometry data which
are expected to fill the Fourier plane irregularly.



Chapter 4

1D signals and Euclidean

data analysis

4.1 Analysis of 1D signals: spectral analysis

4.1.1 Spectral analysis

We present an application of the wavelet transform to the analysis of spectra.
The wavelet transform of a signal by the à trous algorithm produces at each
scale j a set {wj}. The original signal S can be expressed as the sum of all
the wavelet scales and the smoothed array cp:

S(λ) = cp(λ) +
p∑

j=1

wj(λ)

4.1.2 Noise determination and detection criteria

The appropriate value of the noise σj in the succession of wavelet scales is
difficult to estimate because the noise is varying with wavelength. To resolve
this problem, we use the fact that often the final spectrum is obtained from
several individual scans. We compute the root mean square error (RMS)
for each wavelength, which gives a good estimation of the noise N(λ) at
the particular wavelength λ. We now generate Gaussian noise with σ = 1,
take its wavelet transform, and compute the standard deviation σj of each
scale j. As i wavelengths have been used to calculate the coefficient wj(λ)
(S(λ−i/2), ..., S(λ), ..., S(λ+i/2)), the upper limit of the standard deviation
of the noise at scale j and at position λ is computed by:

Nj(λ) = σj ·max{N(λ− i/2), ..., N(λ), ..., N(λ+ i/2)} (4.1)

If it is not possible to determine an RMS at each λ, that is, if only one
scan is available, N(λ) is obtained as follows: we consider that the noise

129
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is locally constant, and define N(λ) as the local standard deviation around
S(λ).

Note that this approach is most conservative, Nj being an upper limit
while the actual noise is lower.

An emission band is detected if wj(λ) > kNj(λ), and an absorption is
detected if wj(λ) < −kNj(λ). As is the case in more conventional methods,
a value of k = 3 implies a confidence level for the detection greater than
99.9%. Considering uncertainties in the noise estimation, and calibration
problems etc., k = 5 is more robust. For constant noise, this corresponds to
a 5σ detection.

Two important points should be stressed. Firstly, the only a priori knowl-
edge we need is information about the width of the bands we want to detect.
If we do not use this information, all the scales should be analyzed. Secondly,
the detection criterion is independent of the actual shape of the continuum.
This point is particularly important. Indeed, the continuum is often esti-
mated ‘by hand’ or by fitting a low order polynomial. Furthermore, the fit
is sometimes done without taking into account all the data. But it is clear
that fitting by excluding data, where we assume we have an emission or
an absorption line, is equivalent to introducing a priori information on the
wavelength where we have signal. If the emission or absorption bands are
weak, then this a priori information could force a detection at this wave-
length. In other words, excluding data at a given wavelength from the fit
could lead us to find a detected line at this wavelength. This continuum esti-
mation method should be used with great care, and only for cases where the
detection is clear, without any ambiguity. In the wavelet method, no a priori
information is added, and the detection results only from the comparison
between a wavelet coefficient and the noise.

4.1.3 Simulations

Simulation 1: featureless continuum with noise.

In order to illustrate our new method and the detection criteria adopted,
we present a few examples using simulated spectra. In the first case shown
in Fig. 4.1a, variable Gaussian noise is superimposed on a smooth contin-
uum, represented by the dashed line. All wavelet scales 1–5 are shown in
Figs. 4.1b–f, respectively, together with the corresponding noise levels given
by the dashed lines. None of the wavelet scales indicates the presence of an
absorption or an emission band, as expected.

Simulation 2: continuum with noise and a strong emission band.

We now add a strong emission band at 3.50 µm to the simulated spectrum
of Fig. 4.1 (top), with a maximum of five times the local noise standard
deviation and a width of FWHM = 0.01 µm. Figure 4.2 (top) contains the
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Figure 4.1: (a) Simulated spectrum with Gaussian noise (full line) and con-
tinuum (dashed line). (b) Wavelet scale 1 (full line) with 3σ detection limit
(dashed line), and similar plots for (c) wavelet scale 2, (d) wavelet scale 3,
(e) wavelet scale 4, (f) wavelet scale 5.

simulated spectrum. Figure 4.2 (bottom) shows wavelet scale 4 and the 3σ
noise limits, indicated by the two dashed lines. It can be seen that at 3.50
µm, the wavelet exceeds the 3σ noise level. The wavelet analysis results in
the detection of an emission band at 3.50 µm above 3σ.

Simulation 3: continuum with noise and a weak absorption band.

A third example is shown in Fig. 4.3 (top), where a weak absorption band
at 3.50 µm is superimposed on the featureless continuum given in Fig. 4.1
(top). The minimum of the absorption band is twice the local noise standard
deviation, and its width is FWHM = 0.015 µm.

Figure 4.3 (top) shows the original simulated spectrum, and Fig. 4.3
(bottom) shows scale 5, and the 3σ limit. As we can see, the band is
undetectable in the original simulated spectrum, but it is detected at scale
5 using the 3σ criterion. It must be clear that the standard deviation at
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Figure 4.2: Top: simulated spectrum. Bottom: wavelet scale 4 (full line)
and 3σ detection limits (dashed).

scale 5 is not equal to the standard deviation in the original spectrum (see
section 4.1.2). In practice, the larger the band, then the better we can
detect it, even if the maximum of the band is low compared to the standard
deviation of the noise in the original spectrum. What is important is the
level of the noise at the detection scale, and this level is decreasing with
scale.

4.1.4 Problems related to detection using the wavelet trans-

form

Border problems.

The most general way to handle the boundaries is to consider that S(k +
N) = S(N − k), where S represents our data, N is the number of samples
(or pixels), and k is a positive integer value. Other methods can be used
such as periodicity (S(k+N) = S(k)), or continuity (c(k+N) = c(N)). We
used the first method. Choosing one of these methods has little influence
on our general analysis strategy. But all detections on the border should be
checked carefully because they are obtained from wavelet coefficients which
are calculated from extrapolated data.
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Figure 4.3: Top: simulated spectrum. Bottom: wavelet scale 5 (full line)
and 3σ detection limits (dashed).

Bump problems (and simulation 4).

Each scale corresponds to the convolution of the input signal with the (di-
lated) wavelet function. This means that if the signal contains a Dirac
function (or sharp jump at a point), we will find this at each scale of the
wavelet function. In the case of the à trous wavelet transform algorithm, the
wavelet function is derived from a B3-spline, and looks like the difference
between two Gaussians (the second having a FWHM twice the value of the
first). Then, the wavelet has a positive main beam, and two negative parts
around it. Hence if a structure is very strong, it is possible that we detect
not only the structure, but also the bumps around it.

To illustrate this problem, we have added to the simulated spectrum of
Fig. 4.1 (top) a strong emission band at 3.5 µm, with a maximum equal to
ten times the local noise standard deviation, and with a width (FWHM)
equal to 0.02 µm.

Figure 4.4 contains the simulated spectrum and the wavelet scale 5. The
wavelet analysis detects an emission band at 3.50 µm above 3σ (3σ noise
given by the dashed lines). Also detected at 3σ are two absorption bands at
3.47 µm and 3.53 µm. These two bands are not contained in the simulated
spectrum of Fig. 4.4 (top) and are artifacts of the wavelet transform analysis.
Every time there is a very strong detection of an emission (absorption) band,
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Figure 4.4: Top: simulated spectrum. Bottom: wavelet scale 5 (full line)
and 3σ detection limits (dashed).

detections of weaker absorption (emission) bands symmetrically centered
around the main peak may be found which ought to be investigated carefully.
This problem can be resolved by subtraction of the strong band from the
original signal.

4.1.5 Band extraction

Once a band is detected in the wavelet space, the determination of pa-
rameters such as its position, its FWHM, or its optical depth, requires the
reconstruction of the band. This is because the wavelet coefficients are the
result of the convolution of the signal by the wavelet function. The problem
of reconstruction (Bijaoui and Rué, 1995) consists of searching for a signal B
such that its wavelet coefficients are the same as those of the detected band.
By denoting T as the wavelet transform operator, and Pb the projection
operator in the subspace of the detected coefficients (i.e. all coefficients set
to zero at scales and positions where nothing was detected), the solution is
found by minimization of

J(B) = ‖W − (Pb ◦ T )B ‖ (4.2)

where W represents the detected wavelet coefficients of the signal S.
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Figure 4.5: Top: reconstructed simulated band (full line) and original band
(dashed line). Bottom: simulated spectrum minus the reconstructed band.

A description of algorithms for minimization of such a functional are
discussed in Chapter 9 and also later in this chapter (section 4.2 onwards).

Figure 4.5 (top) shows the reconstruction of the detected band in the
simulated spectrum presented in Section 4.1.4 (see Fig. 4.4). The real feature
is over-plotted as a dashed line. Fig. 4.5 (bottom) contains the original
simulation shown in Fig. 4.5 with the reconstructed band subtracted. It can
be seen that there are no strong residuals near the location of the band,
which indicates that the band is well reconstructed. The center position of
the band, its FWHM, and its maximum, are then estimated via a Gaussian
fit. The results obtained in the three simulations are presented in Table 4.1.

4.1.6 Continuum estimation

The continuum is the ‘background’ component of the spectrum. The deter-
mination of the shape of the local continuum in noisy astronomical spectra
is generally a difficult task. Often, polynomials of low degree are fit to deter-
mine its shape, or it is determined by smoothing the spectrum using a broad
band-pass. The wavelet transform provides a powerful tool to extract the
shape of the continuum. The smoothed array cp introduced above is a good
representation of the continuum, because it contains all the information at
a very low spectral resolution. It is equivalent to what we get by convolving
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Table 4.1: Parameter estimation of the simulated detected bands.

Position Maximum σ FWHM Flux

Simulation 2
Simulated band 3.5 5 4.3e−3 0.01 40.00
Reconstructed 3.501 4.587 3.9e−3 0.009 31.84
Error (%) 0.026 3.17 9.18 9.18 20.38

Simulation 3
Simulated band 3.5 −2 6.4e−3 0.015 24.00
Reconstructed 3.498 −2.68 6.3e−3 0.0148 31.89
Error (%) 0.059 34.00 1.07 1.07 32.88

Simulation 4
Simulated band 3.5 10 8.5e−3 0.02 160.00
Reconstructed 3.499 10.31 9.1e−3 0.021 165.50
Error (%) 0.011 3.18 6.59 6.59 3.44

the data with a wide filter.

Continuum: C(λ) = cp(λ).

The only decision that has to be made concerns the scale p, which requires a
priori knowledge that we can have either after looking at the wavelet scales
of the signal, or by fixing the maximum width of the features we expect in
our spectra.

The signal S̃(λ) = S(λ) − C(λ) corresponds to our data without any
continuum. This means that S̃ should not contain any information after the
scale p. This is not completely true in practice due to border problems when
we compute the wavelet transform. The estimate of the continuum can be
improved by the following iterative algorithm:

1. Set C(λ) to 0, i to 0, and S̃ to S.

2. Compute the wavelet transform of S̃.
cp(λ) is the last scale (smoothed array).

3. The new continuum estimation is: C(λ) = C(λ) + cp(λ).

4. Recompute S̃ by: S̃(λ) = S(λ)− C(λ).

5. i = i+ 1, and i < N go to step 2.

N represents the number of iterations. In practice, the algorithm converges
quickly, and only a few iterations are needed (3 or 4).

Figure 4.6 shows the result of this algorithm applied on real data. We see
the original spectrum (upper left), the estimated continuum (upper right),
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Figure 4.6: Example of continuum estimation. Upper left: spectrum. Upper
right: estimated continuum. Bottom left: spectrum (full line) and contin-
uum (dashed line). Bottom right: spectrum minus continuum.

spectrum (full line) and continuum overplotted (bottom left), and the spec-
trum minus the continuum (upper right). The only parameter used for this
continuum estimation is the p parameter, and it was fixed at 7.

Because the continuum estimation involves a convolution of the signal
with a very wide filter, very strong emission or absorption bands may cause
problems. In such a case it is generally better to first extract the bands
and then determine the location of the continuum. This is illustrated in
Fig. 4.7a, which contains a spectrum with strong absorption features. Figure
4.7b shows the result after the absorption bands have been extracted using
the method described in subsection 4.1.5. The continuum is now estimated
from this spectrum with the result shown in Fig. 4.7c, where the continuum
is represented by the dashed line. A second continuum, represented by the
dotted line, is also plotted in Fig. 4.7c. The second continuum is obtained
from the original spectrum, without extracting the bands in the first place.
The strong spectral features influence the location of the continuum and
produce a continuum level that is not correct.



138 CHAPTER 4. 1D SIGNALS AND EUCLIDEAN DATA ANALYSIS

Figure 4.7: (a) Simulated spectrum, (b) simulated spectrum minus the ex-
tracted bands, (c) simulated spectrum and continuum over-plotted, before
band extraction (dotted line), and after (dashed line).

4.1.7 Optical depth

The optical depth τ defines the flux absorbed by a medium. Once the
continuum C(λ) is estimated, the optical depth τs is calculated by:

τs(λ) = − ln(S(λ)/C(λ)) (4.3)

As the data S are noisy, τs is noisy too. A smoother version τb of τs can be
obtained using the extracted bands B(λ):

τb(λ) = − ln((C(λ) +B(λ))/C(λ)) (4.4)

and the column density of an element can be determined from the optical
depth (Allamandola et al., 1993) by

N =
∆ντmax

A
(4.5)

where ∆ν is the FWHM of the band (in cm−1), τmax is the peak opti-
cal depth, and A is the integrated absorption cross-section per molecule
(cm mol−1).

Figure 4.8 shows the comparison between the true optical depth of the
simulated spectrum of Fig. 4.2, and the calculated one by eqns. (4.3) and
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Figure 4.8: Top: true optical depth in the simulated spectrum. Middle:
optical depth calculated from the signal (full line), and from the extracted
bands (dashed line). Bottom: difference between the true and the calculated
optical depth by the two methods. Note that the difference between both
methods is within the noise.

(4.4). The upper curve diagram contains the true optical depth, the mid-
dle diagram is the calculated optical depth using eqn. (4.3) (full line) and
eqn. (4.4) (dashed line), and the bottom diagram shows the difference be-
tween the true and the calculated optical depth, with the full line represent-
ing τ obtained from eqn. (4.3), and the dashed line representing τ obtained
from eqn. (4.4). The results obtained from the simulation of the weak ab-
sorption band (Fig. 4.3) are given in Fig. 4.9. The two figures demonstrate
the reliability of the method. The residuals between the true and the calcu-
lated optical depths (cf. Fig. 4.8 and Fig. 4.9) contain only noise.

We may want to compare our new analyzing technique with strategies
employed elsewhere. As an example, we have processed the data on the
protostar GL2136, recently obtained by Schutte (1995) using the European
Southern Observatory near infrared spectrograph IRSPEC. In order to em-
phasize the weaker absorption features, Schutte et al. (1996) fit a baseline
in the log(S(λ))− λ plane and subtract it from the original spectrum. The
authors note that their procedure does not represent the ‘true’ continuum
of the source. The fit was done in the log(S(λ))−λ plane rather than in the
S(λ) − λ plane to avoid spurious features in the optical depth plots. Their
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Figure 4.9: Top: true optical depth in the simulated spectrum. Middle:
optical depth calculated from the signal (full line), and from the extracted
bands (dashed line). Bottom: difference between the true and the calculated
optical depth by the two methods. Note that the difference between both
methods is within the noise limit.

analysis resulted in the detection of an absorption band at 3.54 µm.

Figure 4.10 (up) contains the spectrum of Schutte et al. (1996) which
was kindly provided by the authors, together with the continuum deter-
mined here. The corresponding optical depth is given below, together with
a smoothed version (see eqn. (4.4)). A feature is detected near 3.54 µm with
a maximum of the optical depth of 0.047. Schutte et al. (1996) derived an
optical depth of 0.037 µm for the absorption band near 3.54 µm. It can
be seen that there are some differences in the derived optical depth. In the
wavelet transform method, the determination of the continuum is done fully
automatically, and no assumption is made about the position or the wave-
length of the bands we are searching for. The only parameter that has to
be fixed is the expected width of the bands.

4.1.8 The multiresolution spectral analysis algorithm

The previous sections have shown that absorption or emission bands can
be extracted from the spectrum without continuum estimation. For strong
bands, the continuum estimation is better done by extracting the bands first.
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Figure 4.10: Results from GL2136 (Schutte et al., 1996). Top: spectrum
and continuum. Bottom: optical depth (full line) and its smooth version
(dashed).

This approach may however fail if the continuum has a strong curvature.
In this case, the band extraction may cause problems because of border
problems. In such a case, it is generally better to subtract the continuum
first. This leads to the following iterative spectral analysis technique:

1. Set i to 0, and estimate the continuum Ci.

2. Compute the difference between the signal and the continuum: di(λ) =
S(λ)− Ci(λ).

3. Extract the bands in di. We obtain Bi(λ).

4. Suppress the bands in the data ni(λ) = S(λ)−Bi(λ).

5. Estimate the continuum Ci+1 from ni.

6. Iterate steps 2–5.

7. Compute the optical depth from Bi(λ) and Ci+1, and the parameters
relative to the bands.

A few iterations (2–3) should normally suffice. The procedure aims to
suppress false detections which may occur near the border by subtracting a
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continuum first. The continuum is then determined again from the spectrum
once the bands have been detected and extracted.

4.2 Wedding the wavelet transform and multivari-

ate data analysis

In this and the following sections of this chapter, we turn our attention to
the processing of 1D data in the form of time series or spectra or vectors.
The objective is data exploration – e.g. clustering – or in later sections time
series prediction. For descriptive data analysis, we will switch attention to
use of an orthogonal wavelet transform. For prediction, we will return to
use of the à trous method.

Data analysis, for exploratory purposes, or prediction, is usually pre-
ceded by various data transformations and recoding. In fact, we would guess
that 90% of the work involved in analyzing data lies in this initial stage of
data preprocessing. This includes: problem demarcation and data capture;
selecting non-missing data of fairly homogeneous quality; data coding; and
a range of preliminary data transformations.

The wavelet transform offers a particularly appealing data transforma-
tion, as a preliminary to data analysis. It offers additionally the possibility
of close integration into the analysis procedure. The wavelet transform may
be used to ‘open up’ the data to de-noising, smoothing, etc., in a natural
and integrated way.

4.2.1 Wavelet regression in multivariate data analysis

Our task is to consider the approximation of a vector x at finer and finer
scales. The finest scale provides the original data, xN = x, and the approx-
imation at scale m is xm where usually m = 20, 21, . . . 2N . The incremental
detail added in going from xm to xm+1, the detail signal, is yielded by the
wavelet transform. If ξm is this detail signal, then the following holds:

xm+1 = HT (m)xm +GT (m)ξm (4.6)

where G(m) and H(m) are matrices (linear transformations) depending on
the wavelet chosen, and T denotes transpose (adjoint). This description is
similar to that used in Strang (1989) and Bhatia, Karl and Willsky (1996).

An intermediate approximation of the original signal is immediately pos-
sible by setting detail components ξm′ to zero for m′ ≥ m (thus, for example,
to obtain x2, we use only x0, ξ0 and ξ1). Alternatively we can de-noise the
detail signals before reconstituting x and this has been termed wavelet re-
gression (Bruce and Gao, 1994).

Define ξ as the row-wise juxtaposition of all detail components, {ξm},
and the final smoothed signal, x0, and consider the wavelet transform T
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given by

T x = ξ =




ξN−1

.

.
ξ0
x0




(4.7)

Taking T TT = I (the identity matrix) is a strong condition for exact re-
construction of the input data, and is satisfied by the orthogonal wavelet
transform. This permits use of the ‘prism’ (or decomposition in terms of
scale and location) of the wavelet transform.

Examples of these orthogonal wavelets, i.e. the operators G and H, are
the Daubechies family, and the Haar wavelet transform (Daubechies, 1992;
Press et al., 1992). For the Daubechies D4 wavelet transform, H is given by

(0.482 962 913, 0.836 516 304, 0.224 143 868,−0.129 409 523)

and G is given by

(−0.129 409 523,−0.224 143 868, 0.836 516 304,−0.482 962 913).

Implementation is by decimating the signal by two at each level and con-
volving with G and H: therefore the number of operations is proportional
to n+ n/2 + n/4 + . . . = O(n). Wrap-around (or ‘mirroring’) is used by the
convolution at the extremities of the signal.

We consider the wavelet transform of x, T x. Consider two vectors, x and
y. The squared Euclidean distance between these is ‖x−y‖2 = (x−y)T (x−
y). The squared Euclidean distance between the wavelet transformed vectors
is ‖T x − T y‖2 = (x − y)TT TT (x − y), and hence identical to the distance
squared between the original vectors. For use of the Euclidean distance, the
wavelet transform can replace the original data in the data analysis. The
analysis can be carried out in wavelet space rather than in direct space.
This in turn allows us to directly manipulate the wavelet transform values,
using any of the approaches found useful in other areas. The results based
on the orthogonal wavelet transform exclusively imply use of the Euclidean
metric, which nonetheless covers a considerable area of current data analysis
practice. Future work will investigate extensions to other metrics.

Note that the wavelet basis is an orthogonal one, but is not a prin-
cipal axis one (which is orthogonal, but also optimal in terms of least
squares projections). Wickerhauser (1994) proposed a method to find an
approximate principal component basis by determining a large number of
(efficiently-calculated) wavelet bases, and keeping the one closest to the de-
sired Karhunen-Loève basis. If we keep, say, an approximate representation
allowing reconstitution of the original n components by n′ components (due
to the dyadic analysis, n′ ∈ {n/2, n/4, . . .}), then we see that the space
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spanned by these n′ components will not be the same as that spanned by
the n′ first principal components.

Filtering or nonlinear regression of the data can be carried out by delet-
ing insignificant wavelet coefficients at each resolution level (noise filtering),
or by ‘shrinking’ them (data smoothing). Reconstitution of the data then
provides a cleaned data set. A practical overview of such approaches to data
filtering (arising from work by Donoho and Johnstone at Stanford Univer-
sity) can be found in Bruce and Gao (1994, chapter 7).

4.2.2 Degradation of distance through wavelet approxima-

tion

The input data vector of most interest to us in this chapter is associated
with an ordered set of values: e.g. a time series, or a spectrum ordered by the
wavelength at which the flux value was observed. But nothing prevents us
taking any arbitrary vector as an ordered sequence. This just implies that,
if we wavelet-filter such a vector, an equally valid result could have been
obtained on the basis of a different sequence of the input values. Subject to
such non-uniqueness, there is nothing wrong with analyzing unordered input
vectors in this way and we will in fact begin with such an investigation.

An example is shown in Figs. 4.11–4.13. A 64-point, 64-dimensional data
set was simulated to contain some structure and additive Gaussian noise.
(This was carried out by creating a 2D Gaussian shape, and superimpos-
ing lower-level noise; and then reading off each row as a separate vector.)
Figure 4.11 shows a principal coordinates (metric multidimensional scaling;
Torgerson, 1958) plot of the original data, projected onto the plane. The
principal coordinates analysis was carried out on Euclidean pairwise dis-
tances between the 64 vectors (as was done for Figs. 4.12 and 4.13 also).
A D4 Daubechies wavelet transform was made of this same dataset and a
principal coordinate plot constructed (not shown here). This principal co-
ordinate plot of the wavelet transformed data gave (for reasons explained in
previous sections) an identical result to the principal coordinate analysis of
the original data.

Figure 4.12 shows a similar principal coordinate planar projection output
following suppression of wavelet transform coefficients which were less than
0.1 times the overall standard deviation. In this way, 12.2% of the coefficients
were set to zero. The result (Fig. 4.12) is extremely similar to the result
on the original data (Fig. 4.11). Therefore ‘cleaning’ the data by removing
12.2% of the values had an imperceptible effect.
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Figure 4.11: Planar projection of original data (64 points).
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Figure 4.12: Planar projection of filtered data.
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Figure 4.13: Planar projection of filtered data.

Increasing the suppression of wavelet coefficient values to one standard
deviation (Fig. 4.13) leads to appreciable change in the points’ positions.
Bear in mind, of course, that the figures show planar projections of (in
principle) a 64-dimensional input space. With the wavelet thresholding used
for Fig. 4.13, 78.5% of the values were set to zero.

Setting wavelet coefficients to zero, as has been stated, amounts to ‘clean-
ing’ the data. This can be furthered also by data quantization. This in turn
can lead to economies of storage, and of calculation of distances. Jacobs,
Finkelstein and Salesin (1995) discuss the use of the Haar wavelet transform,
wavelet coefficient clipping, and then quantization of remaining wavelet co-
efficients to −1 and +1. They proceed to discuss a very efficient dissimilarity
calculation method.

4.2.3 Degradation of first eigenvalue through wavelet filter-

ing

Linearity of data plays an important role in a number of areas such as re-
gression and using local linearity for pattern recognition (an example of the
latter is Banfield and Raftery, 1993). Zeroing wavelet coefficients and then
reconstituting the data help to clean it. We checked in a number of cases
what effect this had on the first few eigenvalues. The data clouds consisted of



4.3. THE KOHONEN MAP IN WAVELET SPACE 147

•
•

•

•
• •

•

•

•

Percentage of wavelet coefficients set to zero

Fi
rs

t e
ig

en
va

lu
e 

(%
 v

ar
ia

nc
e)

0 20 40 60 80

0
10

20
30

40
50

•
• •

•
•

• • • •

Symmetrical cloud

Asymmetrical cloud

Figure 4.14: First eigenvalue (percentage of variance) as a function of zeroing
of wavelet coefficient values.

150 points in 64D space. The ‘symmetric cloud’ consisted of eight Gaussian
(mean 4, standard deviation 4) subclouds each in 8D spaces. The ‘asymmet-
ric cloud’ was constructed similarly but had standard deviations of 2 or 4,
and means of 4, 6, or 8 (in the different 8D subspaces). For varying thresh-
olds, wavelet coefficients were set to zero. The data was then reconstituted
from these ‘cleaned’ wavelet coefficients. Figure 4.14 shows the outcome,
when the eigenvalues were determined on the cleaned and original (i.e. cor-
responding to no cleaning: the zero point on the horizontal axis) data. We
see that, with up to 75% of the wavelet coefficients zeroed, the change in
first eigenvector is not very large.

4.3 The Kohonen self-organizing map in wavelet

space

We now turn attention to a small sample of real data. We will look at
clustering and dimensionality reduction methods, in direct and in wavelet
space. We begin with a method which combines both of these goals.

The Kohonen self-organizing feature map (SOFM) with a regular grid
output representational or display space, involves determining vectors wk,
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such that inputs xi are parsimoniously summarized (clustering objective);
and in addition the vectors wk are positioned in representational space so
that similar vectors are close (low-dimensional projection objective) in rep-
resentation space: k, k′, k

′′ ∈ {(r, s) | r = 1, . . . , R; s = 1 . . . , S}.

Clustering: Associate each xi with some one wk such that
k = argmin ‖ xi − wk ‖

Low-Dimensional projection: ‖ wk −w′
k ‖ < ‖ wk −w

′′

k ‖ =⇒ ‖ k− k′ ‖
≤ ‖ k − k′′ ‖

By way of example, R = S = 10 and the output representation grid is a
regular, square one. The metric chosen for norm ‖ . ‖ is usually Euclidean,
and this will be assumed here. Without loss of generality, we can consider
the squared Euclidean distance whenever this is useful to us. Evidently xi ∈
Rm and wk ∈ Rm for some dimensionality, or cardinality of attribute-set,
m.

Iterative algorithms for clustering are widely used, requiring an initial
random choice of values for wk to be updated on the basis of presentation
of input vectors, xi. At each such update, the low-dimensional projection
objective is catered for by updating not just the so-called winner wk, but
also neighbors of wk with respect to the representational space. The neigh-
borhood is initially chosen to be quite large (e.g. a 4 × 4 zone) and as the
epochs proceed, is reduced to 1 × 1 (i.e. no neighborhood). An epoch is
the term used for a complete set of presentations, and consequent updates,
of the N input vectors. The result obtained by the SOFM algorithm is
sub-optimal, as also is the case usually for clustering algorithms of this sort
(k-means, partitioning) and quite often for dimensionality-reduction meth-
ods (Kruskal, 1964; Sammon, 1969). A range of studies showing how well
the SOFM method performs compared to these methods can be found in
Murtagh and Hernández-Pajares (1995).

We have seen that ‖ xi − wk ‖2 = ‖ T xi − T wk ‖2 where T is an
orthogonal wavelet transform. Thus the idea presents itself to (i) transform
the xis with linear computational cost to the T xis; and (ii) use the SOFM
iterative training method to determine the T wks. In doing this, we expect (i)
the final assignments of each xi to a ‘winner’ wk to provide the same results
as heretofore; and (ii) if required, the final values of T wk to be inverse-
transformable to provide the values of wk. Performing the SOFM in direct
or in wavelet space are equivalent since either (i) definitions and operations
are identical, or (ii) all relevant update operations can be expressed in terms
of the Euclidean metric. Differences between the two analyses can arise only
due to the different starting conditions, i.e. the random initial values of all
wk. Clearly, stable, robust convergence to a quasi-optimal solution precludes
such differences.
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4.3.1 Example of SOFM in direct and in wavelet spaces

We used a set of 45 astronomical spectra of the object examined in Mit-
taz, Penston and Snijders (1990). These were of the complex AGN (active
galactic nucleus) object, NGC 4151, and were taken with the small but very
successful IUE (International Ultraviolet Explorer) satellite which ceased
observing in 1996 after nearly two decades of operation. We chose a set
of 45 spectra observed with the SWP spectral camera, with wavelengths
from 1191.2 Å to approximately 1794.4 Å, with values at 512 interval steps.
There were some minor discrepancies in the wavelength values, which we
discounted: an alternative would have been to interpolate flux values (verti-
cal axis, y) in order to have values at identical wavelength values (horizontal
axis, x), but we did not do this since the infrequent discrepancies were frac-
tional parts of the most common regular interval widths. Figure 4.15 shows
a sample of 20 of these spectra. A wavelet transform (Daubechies 4 wavelet
used) version of these spectra was generated, with a number of scales gener-
ated which was allowed by dyadic decomposition. An overall 0.1σ (standard
deviation, calculated on all wavelet coefficients) was used as a threshold, and
coefficient values below this were set to zero. Spectra which were apparently
more noisy had relatively few coefficient values set to zero, e.g. 31%. More
smooth spectra had up to over 91% of their coefficients set to zero. On
average, 76% of the wavelet coefficients were zeroed in this way. Figure
4.16 shows the relatively high quality spectra re-formed, following zeroing
of wavelet coefficient values.

Figures 4.17 and 4.18 show SOFM outputs using 5 × 6 output repre-
sentational grids. When a number of spectra were associated with a rep-
resentational node, one of these is shown here, together with an indication
of how many spectra are clustered at this node. Hatched nodes indicate no
assignment of a spectrum. Each spectrum was normalized to unit maximum
value. While some differences can be noted between Figs. 4.17 and 4.18, it is
clear that Fig. 4.18 (based on 76% zeroing of wavelet coefficients, and then
reconstitution of the data) is very similar to Fig. 4.17.

We then constructed the SOFM on the wavelet coefficients (following
zeroing of 76% of them). The assignments of the 45 spectra were identical
to the assignments associated with Fig. 4.18. The values associated with
output representational nodes were, in this case, the values T wk, which can
be converted back to wk values (with linear computational cost).

This approach to SOFM construction leads to the following possibilities:

1. Efficient implementation: a good approximation can be obtained by
zeroing most wavelet coefficients, which opens the way to more ap-
propriate storage (e.g. offsets of non-zero values) and distance calcula-
tions (e.g. implementation loops driven by the stored non-zero values).
Similarly, compression of large datasets can be carried out. Finally,
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calculations in a high-dimensional space, Rm, can be carried out more
efficiently since, as seen above, the number of non-zero coefficients may
well be m

′′

<< m with very little loss of useful information.

2. Data ‘cleaning’ or filtering is a much more integral part of the data
analysis processing. If a noise model is available for the input data,
then the data can be de-noised at multiple scales. By suppressing
wavelet coefficients at certain scales, high-frequency (perhaps stochas-
tic or instrumental noise) or low-frequency (perhaps ‘background’) in-
formation can be removed. Part of the data coding phase, prior to the
analysis phase, can be dealt with more naturally in this new integrated
approach.

This powerful, integrated wavelet transform and neural network method
allows some major questions relating to input data pre-treatment (filtering,
coding, preliminary transformation) to be addressed. The various uses of
the wavelet transform can be availed of.

Separately, there may be a considerable computational gain. If 75% of
the input data (let us take this as n m-valued vectors as in the example
above) is set to zero, we can note that m/4 offset values are required to
indicate the m/4 non-zero values on average in each vector. Thus there
are m/2 values to be considered in each such vector. The scalar product,
or Euclidean distance, is then ‘driven’ by these values. This implies m/2
calculations of Euclidean metric-related components. Thus we have, in this
case, a potential two-fold computational gain immediately. The greater the
value of m, the more interest we have in using this result.

The integrated wavelet/neural net approach proposed is of clear practical
relevance, in different application fields.

4.3.2 K-means and principal components analysis in wavelet

space

We used the set of 45 spectra which were ‘cleaned’ in wavelet space, by
putting 76% of the coefficients to zero (cf. above). This was therefore a set
of cleaned wavelet-transformed vectors. We also reconstructed these cleaned
spectra using the inverse wavelet transform. Due to design, therefore, we
had an input data array of dimensions 45×512, with 76% of values equal to
zero; and an input data array of dimensions 45×512, with no values exactly
equal to zero.

A number of runs of the k-means partitioning algorithm were made. The
exchange method, described in Späth (1985) was used. Four, or two, clusters
were requested. Identical results were obtained for both data sets, which is
not surprising given that this partitioning method is based on the Euclidean
distance. For the 4-cluster, and 2-cluster, solutions we obtained respectively
these assignments:
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Figure 4.15: Sample of 20 spectra (from 45 used) with original flux mea-
surements plotted on the y-axis.
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Figure 4.16: Sample of 20 spectra (as in previous figure), each normalized
to unit maximum value, then wavelet transformed, approximately 75% of
wavelet coefficients set to zero, and reconstituted.
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The case of principal components analysis (PCA) was very interesting.
We know that the basic PCA method uses Euclidean scalar products to
define the new set of axes. Often PCA is used on a variance-covariance
input matrix (i.e. the input vectors are centered); or on a correlation input
matrix (i.e. the input vectors are rescaled to zero mean and unit variance).
These two transformations destroy the Euclidean metric properties vis-à-vis
the raw data. Therefore we used PCA on the unprocessed input data. We
obtained identical eigenvalues and eigenvectors for the two input data sets.

The eigenvalues are similar up to numerical precision:

1911.217 210.355 92.042 13.909 7.482 2.722 2.305

1911.221 210.355 92.042 13.909 7.482 2.722 2.305

The eigenvectors are similarly identical. The actual projection values
are entirely different. This is simply due to the fact that the principal
components in wavelet space are themselves inverse-transformable to provide
principal components of the initial data.

Various aspects of this relationship between original and wavelet space
remain to be investigated. We have argued for the importance of this, in the
framework of data coding and preliminary processing. We have also noted
that if most values can be set to zero with limited (and maybe beneficial)
effect, then there is considerable scope for computational gain also. The
processing of sparse data can be based on an ‘inverted file’ data-structure
which maps non-zero data entries to their values. The inverted file data-
structure is then used to drive the distance and other calculations. Murtagh
(1985, pp. 51–54 in particular) discusses various algorithms of this sort.

4.4 Multiresolution regression and forecasting

4.4.1 Meteorological prediction using the à trous method

We used a set of 96 monthly values of the jetstream (m s−1), measured over
central Chile. We used p = 5 wavelet resolution levels. Figure 4.19 shows (i)
the original data – the most volatile of the curves to be seen in this figure;
(ii) the curve yielded by c5 + w5 + w4 + w3; and (iii) the near-‘background’
curve yielded by c5 + w5.

For predictability, we used a one-step-ahead ‘carbon-copy’ approach (the
simplest autoregressive approach: for example, predictor of c0(k) = c0(k −
1)). The MSE (mean square error) predictions for c5, c5 +w5, c5 +w5 +w4,
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Figure 4.19: Ninety-six monthly values of jetstream, overplotted with two
smoothed versions, provided by the à trous wavelet transform.

. . ., c0, were respectively: 0.01, 0.03, 0.03, 9.0, 18.0, 149.3, 235.3. Not sur-
prisingly the more coarse the approximation to the original data, the greater
the ease of making a good forecast. The wavelet transform data-structure
provides a disciplined output – an ordered set of increasingly smoothed ver-
sions of the input data.

Although one-step-ahead forecasts were carried out, it must be noted in
this case that the ‘future’ values of the data did go into the making of the
wavelet coefficients at the various resolution scales. This was not the case in
a further set of forecasting experiments, in which the predictions were made
on entirely withheld data.

Figure 4.20 shows the jetstream values and a set of 90 consecutive values.
The lower part of this figure, and Fig. 4.21, show the wavelet transform. The
wavelet coefficients, plus the residual, can be added to reconstruct the input
data. The residual shows an interesting secular trend.

Forecasts were carried out on the input 90-valued data; and on each
wavelet resolution level, with the sum of values being used to give an over-
all prediction. Six time-steps ahead were used in all cases. The withheld
values were of course available, for comparison with the forecasts. A simple
autoregressive forecast was carried out, which was sufficient for this study.
For an autoregressive forecast using a parameter of 12 (plausible, based on
a 12-month period) the mean square error of the 6 time-step prediction us-
ing the given data was 1240.17. The mean square error of the 6 time-step
prediction using the cumulated multiple scale predictions was 584.49.
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Figure 4.20: Upper left: ninety-six monthly values of jetstream. Upper
right: ninety values used for forecasting. Lower left and right: first two sets
of wavelet coefficients.

Figure 4.21: Upper left and right: third and fourth sets of wavelet coeffi-
cients. Lower left: fifth set of wavelet coefficients. Lower right: residual.



158 CHAPTER 4. 1D SIGNALS AND EUCLIDEAN DATA ANALYSIS

4.4.2 Sunspot prediction using à trous and neural networks

The sunspot series was the first time series studied with autoregressive mod-
els (Priestley, 1981; Tong, 1990; Yule, 1927), and thus has served as a bench-
mark in the forecasting literature. The sunspots are dark blotches on the
sun that can be related to other solar activities such as the magnetic field
cycles, which in turn influence, by indirect and intangible means, the mete-
orological conditions on earth. The solar cycle with which sunspots occur
varies over a 7 to 15 year period. Although the data exhibit strong regulari-
ties, attempts to understand the underlying features of the series have failed
because the amount of available data was insufficient. Thus the sunspots
provide an interesting data-set to test our wavelet decomposition method.

Consistent with previous appraisals (Tong, 1990; Weigend, Rumelhart
and Huberman, 1990), we use range-normalized yearly averages of the sunspot
data tabulated from 1720 to 1979. Since quantitative performance measures
are expressed in terms of one-step ahead errors in the literature, the latter
is used as a performance criterion. The single-step prediction error is moni-
tored on the 59 withheld sunspot values ranging from 1921 to 1979, while the
remaining data is used for training. The performance measure is expressed
in terms of one-step ahead normalized mean square errors

∑
j(xj−x̂j)2/Nσ2

where the sum is taken over the N patterns in the test set, xj denotes the
true value of the sequence, x̂j is the forecast, and σ2 is the variance of the
true sequence.

4.4.3 Dynamic recurrent neural network architecture

A very general class of neural network was investigated. This was a dynamic
recurrent neural network (DRNN), a fully connected connectionist network
with N nodes which, when solved, obeys the following:

vk = g(
D∑

d=0

Wd
k
T
vk−d) + ik (4.8)

where k is a time-point, d is a delay, i is a clamped (fixed) input vector, D
is the maximum connection delay, g is a sigmoid function, W are weights,
and v is an m-dimensional vector. Relative to the more traditional neural
network models, here each synaptic weight is replaced by a finite impulse
response (FIR) filter. The DRNN method is studied in detail in Aussem
(1995) and Aussem, Murtagh and Sarazin (1995).

A natural manner to assess the performance of the wavelet-based strat-
egy is to take a given network architecture and compare the mean square
error obtained by the direct prediction with the error obtained by the de-
composition method.

With this in mind, it is wise to select an efficient architecture which
balances pure performance against complexity, given some constraints on
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the topology, the number of neurons and synaptic connections. For the sake
of simplicity, we restrict ourselves to a network having one input unit, two
hidden units fully connected with FIR filters of order 2, and one output unit:
see Fig. 4.22. Both input and output units are connected with static links
so that the memory of the system is purposely confined to the core of the
model. In particular, a single sunspot number is presented to the input and
the network is trained to output the next value, thus forcing the DRNN to
encode some past information on the sequence. A time lagged vector is no
longer required thanks to the internal dynamics of the model.

2 2

0

0

0

0
OutputInput

Figure 4.22: Schematic representation of DRNN model used for prediction.
The figures associated with the arrows indicate the order of the FIR filter
used to model the synaptic link. The first layer has 1 input unit; the second
layer has 2 hidden units; and the output layer has 1 unit.

The network was trained up to complete convergence. This tiny architec-
ture yielded quite acceptable performance. The resulting normalized mean
square error for single step predictions over the prediction set is 0.154. Of
course, better performance is achieved for larger networks but the aim of
this experiment was not to achieve pure performance but instead to compare
two methodologies.

4.4.4 Combining neural network outputs

The same DRNN configuration was used to forecast each wavelet resolu-
tion. Each network was fed with the prior series value for the series wj(t),
at some time t, to provide an estimate of the next value for wj(t + 1). So
the prediction engine was called into operation 6 times, here, entirely in-
dependently. Once the univariate predictions were obtained for the series
wj(t) for j between 1 and 6, the error was afterwards compared to other
indexes of performance, namely the MLP (multilayer perceptron, more on
which below) and a very basic index which we term the ‘carbon-copy’ error,
i.e. the error based on the most simple autoregressive forecast. This carbon-
copy error was more favorable for the last coefficient and the residual (w5

and res in Table 4.2). Note that these are the more smoothly-varying se-
ries resulting from the wavelet decomposition. This led us to benefit from
improved performance of this simple autoregressive forecaster: we retained
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predictions by it, for w5 and res; and we retained predictions by the very
much more sophisticated and long-memory DRNN for w1, w2, w3 and w4.

To illustrate the predictive ability of such a small DRNN model, an MLP
of size (6 × 5 × 1) having 41 weights including bias and fed with the delay
vector [wi(t−1), wi(t−2), . . . , wi(t−6)] for j between 1 and 5, was trained to
provide comparative predictions. Selection of these dimensions was based
mostly on trial and error. We remark that the MLP has twice as many
parameters as the DRNN although better predictions are obtained for all
wavelet scales with the DRNN as can be seen in Table 4.2.

The ability of the network to capture dynamical behavior over higher
resolution levels deteriorates quite fast. This is intuitively clear in view of
the plots in Fig. 4.23. The higher the order of the resolution scale, the
smoother the curve, and thus the less information the network can retrieve.
This is also the reason why we stopped the wavelet decomposition process
at order 6. From lag 5 onwards, the network outputs were replaced by the
carbon-copy estimates in these cases. The individual resolution coefficient
predictions were afterwards summed together to form an estimate of the
sunspot value, x(t+1). The resulting normalized mean square error for sin-
gle step predictions over the prediction set is 0.123 with the hybrid DRNN
and carbon-copy method, instead of 0.209 with the hybrid MLP and carbon
copy (Table 4.3). Finally, this compares with 0.154 with use of the di-
rect DRNN approach on the original time series (not wavelet-decomposed).
Consequently, the combination of the DRNN on the wavelet decomposition
provides improvement of the prediction accuracy.

Table 4.2: Single-step prediction errors on the test set. The more negative
the outcome, the more accurate the prediction.

Model w1 w2 w3 w4 w5 res

DRNN −0.55 −1.04 −1.46 −0.65 −1.03 −1.24
MLP −0.38 −1.00 −0.95 −0.38 −0.66 −1.12
Carbon copy +0.06 −0.13 −0.21 −0.49 −1.12 −1.66

Table 4.3: Single-step prediction errors on the test set.

Model data type nMSE

DRNN 1× 2× 1 with 0 :2 :0 order filters coarse data 0.154
Hybrid MLP 6× 5× 1 + Carbon copy wavelet coeff. 0.209

Hybrid DRNN + Carbon copy wavelet coeff. 0.123
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Figure 4.23: Single step prediction with several DRNNs over the whole
data set (training + test sets). Top left: original and predicted sunspot
series overplotted; the prediction was obtained from the combination of the
individual wavelet resolution scale forecasts wi for i = 1, . . . , 5 and the
residual. The wi are shown from the top right to the bottom. The dashed
curve corresponds to the actual series and the plain curve is the prediction.



162 CHAPTER 4. 1D SIGNALS AND EUCLIDEAN DATA ANALYSIS



Chapter 5

Geometric registration

Image registration of remotely sensed data is a procedure that determines
the best spatial fit between two or more images that overlap the same scene,
acquired at the same time or at different times, by identical or different
sensors. This is an important step, as it is frequently necessary to compare
data taken at different times on a point-to-point basis, for many applications
such as the study of temporal changes for example. Therefore we need to
obtain a new dataset in such a way that its image under an appropriate
transform is registered, geometrically, with previous datasets.

The inventory of natural resources and the management of the envi-
ronment requires appropriate and complex perception of the objects to be
studied. Often a multiresolution approach is essential for the identification
of the phenomena studied, as well as for the understanding of the dynamical
processes underlying them. In this case, the processing of data taken with
different ground resolutions by different or identical sensors is necessary.

Another important situation where the need for different images acquired
with a different ground resolution sensor arises is when the generalization
to larger surface areas of an identification or an interpretation model, based
on small areas, is required (Achard and Blasco, 1990). This is the case for
studies on a continental scale. Examples of this application can be found
in Justice and Hiernaux (1986), Hiernaux and Justice (1986) and Prince,
Tucker and Justice (1986). Therefore, the data must be geometrically reg-
istered with the best possible accuracy.

Several digital techniques have been used for automatic registration of
images such as cross-correlation, normal cross-correlation and minimum dis-
tance criteria; e.g. Barneau and Silverman (1972), Jeansoulin (1982) and
Pratt (1978). After a brief description of these methods, we will present
a procedure for automatic registration of remotely sensed data based on
multiresolution decomposition of the data with the use of the wavelet trans-
form. The advantage of the wavelet transform is that it produces both
spatial and frequency domain information which allows the study of the im-

163
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age by frequency band. We will illustrate this study with different sets of
data obtained with identical sensors as well as with different sensors. In par-
ticular, we will illustrate registration from among the registration of SPOT
versus SPOT data, MSS versus MSS data, SPOT versus MSS data, and
SPOT versus TM data.

5.1 Image distortions

Images acquired by on-board satellite sensors are affected by a number of
distortions which, if left uncorrected, would affect the accuracy of the in-
formation extracted and thereby reduce the usefulness of the data. These
distortions can be characterized globally by two categories: geometrical dis-
tortions; and radiometrical distortions.

5.1.1 Geometrical distortions

Geometrical distortions can be separated into two groups: systematic or
predictable, and random or non-predictable. Each of these groups can also
be separated into two types:

• Internal distortions: these are sensor-related distortions, systematic
and stationary and can be corrected by calibration.

• External distortions: these are due to platform perturbations and to
the scene characteristics and are variable by nature. These distortions
can be determined from a model of the altitude and in some cases
from a digital terrain model (DTM) or from control points taken on
the images.

The effect of these errors have been characterized in Silverman and Bernstein
(1971) and are shown in Fig. 5.1.

5.1.2 Radiometrical distortions

Radiometric distortions are characterized by incorrect intensity distribu-
tion, spatial frequency filtering of the scene data, blemishes in the imagery,
banding of the image data, etc. These distortions are caused by camera or
scanner shading effects, detector gain variations, atmospheric and sensor in-
duced filtering, sensor imperfections, sensor detector gain errors, etc. They
can also be separated into two types: systematic or predictable, and random
or non-predictable (Lillesand and Kiefer, 1987). As in the case of geometric
distortions, each of these groups can be separated into internal and external
(Berstein, 1975, 1976).
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Scale distortion
Aspect angle distortion Altitude effect

Figure 5.1: Typical external sensor distortions.
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5.2 Geometrical image registration

Geometrical image registration is a procedure to determine the best spa-
tial fit between two images of the same scene. It consists of geometrically
matching two or more images from the same scene acquired with the same
or different sensors and with or without the same ground resolution, at the
same or at different times.

Let us define some of the terminology used. We shall call input image
the image to be registered or warped, output image or working image the
corrected or registered image, and reference image the image to which all the
others will be registered (Castleman, 1979; Djamdji, 1993; Niblack, 1986).

The output image is then generated by defining a spatial transforma-
tion, which is a mapping function that establishes a spatial correspondence
between all points of coordinates (X,Y ) of the reference image and the
coordinates (x, y) of the input image.

We can consider two kinds of transformation: global, which will be ap-
plied on the whole image, and local, which can take into account specific
local deformations in particular areas. The latter will be discussed in the
next chapter.

Global transformations impose a single mapping function on the whole
image. They often do not account for local geometric distortions such as
scene elevations, atmospheric turbulence and sensor nonlinearity. All the
control points are considered in order to derive the unknown coefficients
of the mapping function. Generally, coefficients computed from a global
method will remain fixed across the entire image, i.e. the same transforma-
tion is applied over each pixel. Furthermore, the least squares technique
used for the determination of coefficients averages a local geometric differ-
ence over the whole image independently of the position of the difference.
As a result, local distortions cannot be handled as they instead contribute
to errors at distant locations. In the case of polynomial functions, we may
instead interpolate the surface with a global mapping by increasing the de-
gree of the polynomial to match the number of control points. However the
resulting polynomial is likely to exhibit excessive spatial undulations and
thereby introduces further artifacts.

We can consider two major cases for the mapping: forward and inverse.

• Forward Mapping: Forward or input-to-output mapping consists of
transferring the gray level of the input image onto the output im-
age. The latter is constructed gradually from the input image in the
following. For each pixel (x, y) of the input image we look for its
corresponding (X,Y ) in the output image by applying the following
mappings: X = f(x, y) and Y = g(x, y), and the value of the pixel in
(x, y) will be given to the pixel in (X,Y ). Notice that the set of input
pixels are mapped from a set of integers to a set of real numbers.
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However, despite the fact that this method is the most intuitive or
natural one, it gives rise to two major problems: holes and overlaps.
Holes, or patches of undefined pixels, come about when there is an out-
put pixel onto which no input pixel is mapped. Overlaps occur when
several input pixels map onto one single output pixel. An alternative
is to use inverse or output-to-input mapping.

• Inverse Mapping: Inverse or output-to-input mapping projects each
output coordinate pixel into the input image by the following mapping
functions: x = Q(X,Y ) and y = R(X,Y ). The value of the data
input sample at (x, y) is copied onto the output pixel at (X,Y ). All
the pixels of the output image will then have a value, and holes are
avoided. For this reason, this method is the most practical one for
general use (Castleman, 1979) and the most widely used. We will
therefore use this method for registration.

The main steps.

The main steps of the geometrical correction are usually (Pratt, 1978):

• We measure a set of well-defined ground control points (GCPs), which
are well-located features both in the input image and in the reference
image.

• We determine the warping or deformation model, by specifying a math-
ematical deformation model defining the relation between the coordi-
nates (x, y) and (X,Y ) in the reference and input image respectively.

• We construct the corrected image by output-to-input mapping.

The main difficulty lies in the automated localization of the correspond-
ing GCPs, since the accuracy of their determination will affect the overall
quality of the registration. In fact, there are always ambiguities in matching
two sets of points, as a given point corresponds to a small region D, which
takes into account the prior geometric uncertainty between the two images
and many objects could be contained in this region.

One property of the wavelet transform is having a sampling step propor-
tional to the scale. When we compare the images in the wavelet transform
space, we can choose a scale corresponding to the size of the region D, so
that no more than one object can be detected in this area, and the matching
is done automatically.

5.2.1 Deformation model

Geometric correction requires a spatial transformation to invert an unknown
distortion function. A general model for characterizing misregistration be-
tween two sets of remotely sensed data is a pair of bivariate polynomials of
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the form:

xi =
N∑

p=0

N−p∑

q=0

apqX
p
i Y

q
i = Q(Xi, Yj) (5.1)

yi =
N∑

p=0

N−p∑

q=0

bpqX
p
i Y

q
i = R(Xi, Yj) (5.2)

where (Xi, Yi) are the coordinates of the ith GCP in the reference image,
(xi, yi) the corresponding GCP in the input image and N is the degree of
the polynomial. Usually, for images taken under the same imaging direction,
polynomials of degree one or two are sufficient as they can model most of
the usual deformations like shift, scale, skew, perspective and rotation (see
Table 5.1). We then compute the unknown parameters ((N + 1)(N + 2)/2
for each polynomial) using the least mean square estimator.

Table 5.1: Some common deformations.

Shift x = a0 +X
y = b0 + Y

Scale x = a1X
y = b2Y

Skew x = X + a2Y
y = Y

Perspective x = a3XY
y = Y

Rotation x = cos θX + sin θY
x = − sin θX + cos θY

5.2.2 Image correction

Image correction is considered as follows. One may consider three cases for
geometric registration (Djamdji, Bijaoui and Manière, 1993a):

1. The registration of images acquired with the same sensor and having
the same ground resolution and imaging direction. The registration is
then done in the pixel space.
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2. The registration of images taken by different sensors and having dif-
ferent ground resolutions. The registration is then done in the real
coordinate space.

3. The registration of images taken with the same sensors and having
different imaging directions. This will be discussed in the next chapter.

We now look at pixel space. Once the coefficients of the polynomials
have been determined, Q(i, j) and R(i, j) are computed, and the output
image is generated as follows:

• For each output pixel location (i, j), we compute (k, l), k = Q(i, j)
and l = R(i, j), record the pixel value at location (k, l) and assign it
to the output pixel at (i, j). The process is iterated over the entire
image and the image output is thus generated.

• The pixel values (k, l) are generally not integers, so an interpolation
must be carried out to calculate the intensity value for the output
pixel. Nearest-neighbors, bilinear or bicubic spline interpolations are
the most widely used.

The real space is handled in the following way. We transform the co-
ordinates of the GCPs from the pixel space (i, j) to the real space (ir, jr)
and then compute the coefficients of the polynomials Q(ir, jr) and R(ir, jr).
The output image is then generated as follows:

• Each pixel location (i, j) is transformed into its real coordinate value
(ir, jr). Then (kr = Q(ir, jr) , lr = R(ir, jr)) is computed. These
values are transformed back into their pixel space value (k, l). We
then record the pixel value at (k, l) and assign it to the output pixel at
(i, j) as in the pixel space case. The image output is then generated.

• As in the pixel space case, the pixel values (k, l) are generally not
integers, so an interpolation must be carried out.

5.3 Ground control points

A GCP or tiepoint is a physical feature detectable in a scene, whose char-
acteristics (location and elevation) are known precisely (Berstein, 1976).
Typical GCPs are airports, highway intersections, land-water interfaces, ge-
ological and field patterns and so on. Three fundamental methods of GCP
selection may be distinguished (Niblack, 1986): manual; semi-automatic;
and automatic.

Manual methods consist of locating and selecting manually the GCPs
with the help of an operator. This is usually done interactively, the operator
identifying the points on the image using a mouse. This method is very
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Figure 5.2: Automatic correlation areas.

constraining, as it is time-consuming and highly dependent on the visual
acuity of the operator, the quality of the warping depending on the good
localization of the points.

In the semi-automatic method, the user again identifies corresponding
points in each of the two images, but here the location in one image is taken
as the exact location around which a window is extracted. The location in
the other image is taken as the center of a larger search area. The exact
location of the control point in the search area is computed as the point
of maximum correlation with the window within the search area (Niblack,
1986).

In the fully automatic method, registration can be accomplished with
some measure of similarity or dissimilarity between two or more images. This
measure is a function of a relative shift between them. One similarity mea-
sure is the correlation between two overlapping image areas (Showengerdt,
1983). If the two image areas are registered, the correlation value is maxi-
mum.

Because correlations are computationally expensive for large areas, rel-
atively small areas, distributed over the total overlapping region of the two
images, are used (Showengerdt, 1983)(Fig. 5.2).

Areas in the reference image are the search windows containing the con-
trol points and those of the working image will be the search areas. Windows
from the reference scene are stored in a file or library and automatically lo-
cated by correlation in search areas in the input image.

The estimated locations of the search areas must be computed, and for
the automatic method to be feasible, there must be some way to do this
with reasonable accuracy. For satellite images, initial estimates of ground
features, given their latitude and longitude can normally be made within
10 to 20 pixels, sometimes much better, so this method is often used in
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operational systems for correcting satellite images (Niblack, 1986). Typical
window search areas range from 16 × 16 to 51 × 51 pixels. The size of the
search area is chosen to guarantee that the feature is included and so depends
on the uncertainty in the estimated feature location (Niblack, 1986). An
efficient implementation for determining points of correspondence between
images is the sequential similarity detection algorithm (SSDA) or template
matching (Barnea and Silverman, 1972; Silverman and Bernstein, 1971).

After applying a registration model on the working image, the values of
(x, y) do not necessarily occur exactly at the coordinates of an integer pixel.
Interpolation is then necessary to compute the pixel value to be inserted into
(X,Y ). Many different interpolations exist, and the most widely used in
remote sensing are (Bernstein, 1976; Park and Showengerdt, 1983; Schlien,
1991): zero order or nearest-neighbor interpolation; first order or bilinear
interpolation; and second order or bicubic interpolation. More details can be
found in Berstein (1976), Djamdji (1993), Keys (1981), Niblack (1986), Park
and Showengerdt (1983), Rifman (1973), Rifman and McKinnon (1974) and
Showengerdt (1983).

5.4 Image registration using the wavelet transform

5.4.1 Registration of images from the same satellite detector

Let In, n ∈ (1, N), N ≥ 2, be the images to be processed. Let I1 be
the reference image, and let M be the largest distance in the pixel space
between two identical features. The matching will be first processed with
the largest scale L, 2L−1 < M ≤ 2L, in order to automatically match the
identical features without errors (Bijaoui and Guidicelli, 1991; Djamdji et
al., 1993a,b).

On each image In, we compute the wavelet transform with the à trous al-
gorithm, up to the scale L. We then obtainN smoothed images, Sn(i, j), and
N × L wavelet images, Wnl(i, j), n ∈ (1, N) and l ∈ (1, L). The smoothed
images are not used in the matching procedure. The reference image will be
for n = 1.

Since L is the initial dyadic step, we specify a detection procedure on
Wnl(i, j) and we keep only the structures above a threshold of (θ × σn1),
θ being a constant which increases when the resolution decreases, and σn1

being the standard deviation of Wn1. We only retain from these structures
their local maxima which will then play the role of GCP. These points corre-
spond to significant image patterns, and we must find them in each wavelet
image corresponding to the same area. Considering that the noise n(x),
which is located in the high frequencies, has a Gaussian distribution, with a
standard deviation of σ, then 99.73% of the noise is located in the interval
of [−3σ, 3σ] (Stuart and Kendall, 1973). Therefore, the wavelet image Wn1

for the first resolution contains the high frequencies of the image and thus
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contains the noise. By thresholding this image at 3σ, only the significant
signal is retained, since 99.73% of the noise is eliminated. The algorithm be-
ing a dyadic one, the bandwidth is reduced by a factor 2 at each step, so the
amount of noise in the signal decreases rapidly as the resolution increases.

For the step L, and for each image n ∈ (2, N) , we compare the positions
of the objects detected to the ones found in the reference image W1L. At
this step, we can match identical features with confidence, and therefore
determine the relationship between the coordinates of the different frames.

Let (ξnl, ηnl) be the position of a maximum for Wnl, the matching iden-
tifying it as the object m with a set of coordinates:

xnlm = ξnl (5.3)

ynlm = ηnl (5.4)

The deformation model is then calculated by:

xnlm = Q(X1lm, Y1lm) (5.5)

ynlm = R(X1lm, Y1lm) (5.6)

We now consider the wavelet images of order L−1 and detect a new set of
maxima in each image. We then transform the coordinates of each maximum
detected in the reference image using the previous parameters. That allows
us to easily match the maxima and to determine the new parameters of the
deformation model (Djamdji et al., 1993a,b).

This process is iterated until the last scale corresponding to the wavelet
of the best resolution is reached. The best geometrical correspondence is
then established. A polynomial of degree one is used for the first steps, and
may eventually be increased to two in the last few steps. The image is then
warped using the final coefficients. The flowchart of this algorithm is given
in Fig. 5.3.

5.4.2 Registration of images from different sensor detectors

The registration of images obtained from different sensors with a different
ground resolution, is done in three steps (Djamdji et al., 1993a,b):

• First the images are reduced to the same ground resolution, generally
the lowest one.

• The matching is then carried out and the deformation model is calcu-
lated both in the real and the pixel space.

• The image of higher resolution is then registered in the real coordinate
space.
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Wavelet Transform

Up to step L

l - 1

Working Corrected Image

Figure 5.3: Flowchart of the geometrical registration algorithm.
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Reduction to the same ground resolution.

We studied the registration of SPOT versus MSS data, and SPOT versus
TM data. In order to be able to perform the registration, the images have
to be reduced to the same ground resolution. This is done by reducing the
high resolution image to the lowest resolution in order to be able to match
the two images. This reduction is done in the following:

• For SPOT to MSS data (20 m to 80 m), a pyramidal algorithm was
used up to 2 scales. One sample out of two is retained at each scale,
the data being then reduced by a factor of 2 at each step.

• For the SPOT to TM data (20 m to 30 m), a different approach was
used: the sampled image was assumed to be the result of the scalar
product of the continuous image with a scaling function φ(x), where
φ(x) is the door function. Thus an analytical approach was used to
compute the resulting transformation of SPOT data into TM data.
We get:

for k = 2l

nT (k) =

{
nS(3l) +

1

4
[nS(3l − 1) + nS(3l + 1)]

}
2

3
(5.7)

for k = 2l + 1

nT (k) =

{
3

4
[nS(3l + 1) + nS(3l + 2)]

}
2

3
(5.8)

where nT is the pixel in the TM image, nS the pixel in the SPOT
image and 2

3 is a coefficient introduced to satisfy flux conservation.

The flowchart of the registration of images obtained from different sen-
sors is given in Fig. 5.4.

5.4.3 Registration of images with a pyramidal algorithm

The method developed above is not well adapted to the processing of large
images for two reasons: computation time becomes large in this case; and
a lot of disk space is needed for the processing. One way to improve this
situation is to use a pyramidal implementation of the à trous algorithm.
The process is quite similar to the one above. The main difference lies in
the matching procedure. The image being reduced by a factor of 4 at each
step, due to the decimation procedure, the matching must be done in the real
coordinate space (Djamdji et al., 1993b). The flowchart of the pyramidal
algorithm is given in Fig. 5.5.
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Figure 5.4: Flowchart of the algorithm for the registration of images ob-
tained from different sensors.
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Figure 5.5: Flowchart of the pyramidal registration algorithm
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5.5 Application

We applied our algorithms on different scenes from LANDSAT and SPOT
satellites as well as on combinations of these, SPOT XS versus LANDSAT
MSS. For all of these images, we extracted subregions of different sizes in
order to avoid: (i) working on very large images since this is time-consuming
and requires lots of storage space in the case of a non-pyramidal algorithm;
(ii) dealing with regions full of clouds or snow. Sometimes, it is very difficult
to have a scene totally free of clouds or snow.

For each of these images, we will present the results of the registration
in the following detailed format:

• Threshold level:
Value of the constant θ used to estimate the detection threshold.

• Matching distance:
Distance in pixels used to match the maxima of identical structures in
the wavelet space.

• Deformation model:
Type of the polynomial model of degree n used.

• Number of detected maxima:
Number of detected maxima above the threshold level in each of the
processed wavelet images.

• Number of matched maxima before preprocessing:
Number of matched maxima as a first approximation using only a
distance criterion.

• Number of matched maxima after preprocessing:
Number of matched maxima after preprocessing. Preprocessing con-
sists of eliminating border points, multiple matching and GCP with a
high residual.

• Number of maxima used for estimating the deformation model:
Number of maxima (GCP) used for estimating the polynomial defor-
mation model.

Bicubic interpolation was used for the registration.

5.5.1 SPOT data

The scenes we worked on are:

• Scene number 51–279 dated 18/05/1989 taken at 10h 48mn 10s, com-
posed of 3005 rows and 3270 columns.
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• Scene number 51–279 dated 12/05/1986 taken at 10h 41mn 28s, com-
posed of 3003 rows and 3253 columns.

These scenes, from the region of Ain Ousseira in Algeria, were taken
with a three-year interval time, in a region subject to desertification, and
are therefore radiometrically very different as one can easily see. Two sub-
scenes of 750 × 750 pixels were extracted in the XS1 (0.5 – 0.59 µm), XS2
(0.61 – 0.68 µm) and XS3 (0.79 – 0.89 µm). Our registration algorithm
was then applied to the selected sub-images, using the scene of 1986 as the
reference one (Fig. 5.6) and the one of 1989 as the image to be registered
(Fig. 5.7). The processing was done using a six-level wavelet decomposition
and the results are shown for the XS3 band. The resulting registration is
given in Fig. 5.8, and the automatically selected GCPs can be seen in Figs.
5.9 and 5.10. A summary of the registration procedure is given in Tables
5.2, 5.3, 5.4.

Table 5.2: XS1 Band.

Reference image 1986

Working image 1989

Image size 750 × 750

Scale 6 5 4 3 2 1

Threshold level 1 1 1 1 2 3
Matching distance 32 16 8 4 2 2
Deformation model 1 1 1 1 1 2
No. detected maxima 90 327 1117 3696 3919 2226
(reference image)
No. detected maxima 87 322 1146 3410 3097 1772
(working image)
No. matched maxima 70 263 807 2189 1368 601
before preprocessing
No. matched maxima 45 155 532 1342 791 331
after preprocessing
No. maxima used for 45 155 532 1342 791 281
est. the deformation model
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Table 5.3: XS2 Band.

Reference image 1986

Working image 1989

Image size 750 × 750

Scale 6 5 4 3 2 1

Threshold level 1 1 1 1 2 3
Matching distance 32 16 8 4 2 2
Deformation model 1 1 1 1 1 2
No. detected maxima 101 352 1228 4001 4173 2100
(reference image)
No. detected maxima 95 344 1191 3668 3437 1422
(working image)
No. matched maxima 77 277 858 2436 1397 474
before preprocessing
No. matched maxima 42 158 555 1380 755 230
after preprocessing
No. maxima used for 42 158 555 1380 755 180
est. the deformation model

Table 5.4: XS3 Band.

Reference image 1986

Working image 1989

Image size 750x750

Scale 6 5 4 3 2 1

Threshold level 1 1 1 1 2 3
Matching distance 32 16 8 4 2 2
Deformation model 1 1 1 1 1 2
No. detected maxima 90 385 1343 4335 4338 1574
(reference image)
No. detected maxima 97 378 1337 4027 4182 1338
(working image)
No. matched maxima 72 285 1053 2995 1992 338
before preprocessing
No. matched maxima 33 130 742 1915 1129 169
after preprocessing
No. maxima used for 33 130 742 1915 1129 119
est. the deformation model
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Figure 5.6: The SPOT XS3 reference image.

Figure 5.7: The SPOT XS3 working image.
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Figure 5.8: The SPOT XS3 corrected image.

Figure 5.9: Selected GCPs in the 86 SPOT image – part of the original
image.
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Figure 5.10: Selected GCPs in the 89 SPOT image – part of the original
image.

Figure 5.11: The LANDSAT MSS3 reference image.
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5.5.2 MSS data

The scenes we worked on are:

• Scene number 195–29 dated 23/07/1984 composed of 2286 rows and
2551 columns.

• Scene number 195–29 dated 28/11/1984 composed of 2286 rows and
2551 columns.

These scenes, from the region of the Alpes Maritimes in France, were
taken in the same year but in different seasons, and are therefore radiomet-
rically different. Two subscenes of 600 × 700 pixels were extracted in the
MSS3 band (0.7 – 0.8 µm) which correspond to the near infrared wavelength.
The scene of July 1984 was chosen as the reference image (Fig. 5.11) and the
one from November 1984 as the working image (Fig. 5.12). The processing
was done using a six-level wavelet decomposition. The final registration is
given in Fig. 5.13. A summary of the registration procedure is given in Table
5.5.

Table 5.5: MSS3 Band.

Reference image July

Working image November

Image size 600 × 700

Scale 6 5 4 3 2 1

Threshold level 1 1 1 1 2 3
Matching distance 32 16 8 4 2 2
Deformation model 1 1 1 1 1 2
No. detected maxima 31 173 701 2538 2242 2213
(reference image)
No. detected maxima 39 158 609 2448 2531 2288
(working image)
No. matched maxima 16 92 344 1318 475 242
before preprocessing
No. matched maxima 14 38 156 654 240 100
after preprocessing
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Figure 5.12: The LANDSAT MSS3 working image.

Figure 5.13: The LANDSAT MSS3 corrected image.
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5.5.3 SPOT versus MSS data

The scenes we worked on are:

• Scene number 53–261 dated 24/07/1986, acquired by HRV of SPOT
satellite in its multispectral bands and composed of 3002 rows and
3140 columns.

• Scene number 195–29 dated 23/07/1984, acquired by MSS of LAND-
SAT satellite and composed of 2286 rows and 2551 columns.

These scenes are from the region of the Alpes Maritimes in France. The
bands processed were the XS3 for SPOT and the MSS3 for LANDSAT. The
SPOT scene was first reduced to an 80 m ground resolution, then two sub-
scenes of 350×400 pixels were extracted from the 80 m SPOT and from the
MSS3 scenes. Once these regions were selected, our algorithm was applied
using the MSS3 scene as the reference one (Fig. 5.14), and the 80 m SPOT
scene as the working one (Fig. 5.15). The processing was then done using
a six-level wavelet decomposition. Finally the original SPOT scene was
registered. Once the process was carried out, the rectified original SPOT
scene was reduced to an 80m ground resolution and inlayed (encrusted) in
the MSS3 scene in order to have a visual evaluation of the accuracy of the
procedure (Fig. 5.16). A summary of the registration procedure is given in
Table 5.6.

Table 5.6: MSS3 and XS3 Bands.

Reference image MSS3 – 80 m

Working image XS3 – 80 m

Image size 350 × 400

Scale 6 5 4 3 2 1

Threshold level 1 1 1 1 2 3
Matching distance 32 16 8 4 2 2
Deformation model 1 1 1 1 1 2
No. detected maxima 13 70 285 967 791 505
(reference image)
No. detected maxima 25 79 324 1043 1396 764
(working image)
No. matched maxima 14 69 251 813 519 166
before preprocessing
No. matched maxima 9 48 193 640 360 87
after preprocessing
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Figure 5.14: The LANDSAT MSS3 reference image.

Figure 5.15: The SPOT XS3 reduced to an 80 m ground resolution working
image.
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Figure 5.16: The original registered SPOT image, reduced to an 80 m ground
resolution and encrusted into the MSS scene.
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5.5.4 SPOT with different imaging directions

The scenes we worked on are:

• Scene number 148–319 dated 05/02/1991 taken at 07h 51mn 04s, com-
posed of 3000 rows and 3000 columns, level 1a.

• Scene number 148–319 dated 02/04/1988 taken at 07h 34mn 40s, com-
posed of 3003 rows and 3205 columns, level 1b.

This two scenes from the eastern region of Marib in the Republic of
Yemen, were taken under different imaging directions. The level 1a (Spo-
timage, 1986) (Fig. 5.17) was taken with an incidence of 25.8 degrees left,
while the level 1b (Spotimage, 1986) (Fig. 5.18) was taken with an incidence
of 6.3 degrees right. Two subscenes of 512× 512 pixels were extracted. An
attempt to register these two images was made, using level 1b as the refer-
ence image and level 1a as the working image. The registration was globally
not very good, especially in the elevation areas (Fig. 5.19). This was due to
the polynomial model used which is a global model and therefore inadequate
for the modeling of the local distortions introduced by the difference in the
viewing angles. Another approach for the registration of such images will
be seen in the next chapter.

Figure 5.17: The SPOT 1a input image.
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Figure 5.18: The SPOT 1b reference image.

Figure 5.19: The SPOT 1a output image.
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5.5.5 Astronomical image registration

Figure 5.20: Simulated image (upper left) and difference between the original
and the simulated image (upper right). Registered image (bottom left) and
difference between NGC 2997 and the registered image (bottom right).

In order to assess the robustness of the method for astronomical images
(Djamdji, Starck and Claret, 1996), a strong distortion was applied to the
galaxy NGC 2997 (see Fig. 1.6). A simulated image was made by shifting
the previous one by 5 and 10 pixels in each axis direction. Then this image
was rotated by 10 degrees and Gaussian noise was added. Figure 5.20 shows
the simulated image (upper left panel), and also the difference between the
original image and the simulated one (upper right panel). Figure 5.20 (bot-
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tom left and right) shows the corrected image and the residual between the
original image and the corrected image. The two images have been correctly
registered.

5.5.6 Field of view distortion estimation in ISOCAM images

The ISOCAM infrared camera is one the four instruments on board the ISO
(Infrared Space Observatory) spacecraft which was launched successfully
on November 17, 1995. It operates in the 2.5–17 micron range, and was
developed by the Service d’Astrophysique of CEA Saclay, France.

One way to assess the FOV (field of view) distortion consists of measuring
the astrometry of an open star cluster from ISOCAM data, and comparing
its astrometry with the theoretical values (as deduced from optical observa-
tions). The left panel of Fig. 5.21 represents a 9 arcmin × 9 arcmin field
in the vicinity of the NGC 7790 star cluster as observed by ISOCAM. The
right panel of Fig. 5.21 corresponds to the same FOV as observed in the
optical range (Digitized Sky Survey). Provided that all visible stars of this
FOV belong to the main stellar sequence, we can assume that the brightest
ones in the optical range are also the brightest ones in the infrared range.

The task consists of identifying the optical counterpart of all detected
sources in the ISOCAM image. Such an identification is easier once the
optical image has been rebinned to the ISOCAM resolution (see left panel
of Fig. 5.22). The registered ISOCAM image is presented in the right panel
of Fig. 5.22. The difference between the theoretical star positions (from
the optical image) and the measured ones (from the ISOCAM image) were
automatically estimated. The polynomial transformation of the ISOCAM
image into the optical image was also determined.

In order to visualize the distortion between the two images, this poly-
nomial transformation was applied to a 32 × 32 rectangular grid (see Fig.
5.23). The distortion effect was also applied to a 300 × 300 grid in order to
magnify it (Fig. 5.24).
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Figure 5.21: ISO image (left) and optical image (right).

Figure 5.22: Optical image at ISOCAM resolution (left) and ISOCAM reg-
istered image (right).
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Figure 5.23: Pattern 32 × 32.

Figure 5.24: Pattern 300 × 300.
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5.6 Error analysis

One of the criteria used for the evaluation of the registration accuracy is the
root mean square distance error (Djamdji et al., 1993a; Ford and Zanelli,
1985), given by:

RMSDE =

√√√√ 1

N

N∑

i=1

line-residual[i]2 + column-residual[i]2 (5.9)

N being the total number of ground control points.
This criterion was used in order to evaluate the quality of the registration,

and the results are given in Table 5.7. From these results, we can conclude
that the final registration is of good quality, as we have reached subpixel
accuracy. This is true for the case of images obtained with different sensors,
the RMSDE in the real coordinate system being less than the largest ground
resolution, as well as for images of the same sensor. But this is not true for
images obtained with different imaging directions, despite the fact that the
RMSDE is 0.594. This can be explained by the fact that the polynomial
deformation model is inadequate to model local distortions introduced by the
difference in the viewing angle and that the selected GCPs do not account
for these distortions.

The processing time gives the time taken by the procedure on a Sparc
IPC workstation. This includes the wavelet transform of the images, the
matching procedure and the registration and interpolation of the working
image and the image of higher resolution (in case of images with different
ground resolution) with a bicubic convolution.

Since the RMSDE criterion is not reliable in all cases for the evaluation
of the registration quality, we will now present a more accurate method for
this purpose.

This method consists of evaluating the quality of the registration by
comparing the transformation obtained with our method to the one obtained

Table 5.7: Summary of the principal results for the geometric correction
algorithm.

Image Number RMSDE RMSDE (m) Processing Time
of GCP (pixel) (real coordinate (mn)

system)

SPOT 327 0.623 15
MSS 106 0.559 10
SPOT/MSS 108 0.547 69.870 20
SPOT 1a–1b 329 0.594 6
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from a selection of a number of test GCPs. The test GCPs are different from
the ones selected by our method and usually chosen manually. As manual
choice was difficult in most of our images (difference in scene radiometry,
difference in size for the characteristic structures), we chose an automatic
selection with visual validation for the test GCPs. The method is the fol-
lowing: from the GCP file automatically detected by our method at the last
scale of analysis, a number N of points, regularly spaced in order to have a
global distribution over the entire image, is extracted. This will ensure that
the two sets of points are totally different. The set of N points will be used
to compute a test deformation model.

Let (Xi, Yi)i=1,···,M and (xi, yi)i=1,···,M be the coordinates of the GCP ob-
tained by our automatic method of registration, respectively in the reference
and the working image, and used to compute the associated deformation
models Qo and Ro. Let (Xti, Y ti)i=1,N and (xti, yti)i=1,N be the coordi-
nates of the test GCP and Qt and Rt be the deformation models evaluated
on these points by a least mean square approximation. The quality of the
registration is estimated from four measures which are the minimum (Min),
the maximum (Max), the mean (E) and the standard deviation (σ) of the
residues ei between the point transformation (Xti, Y ti) by the deformation
models (Qt, Rt) and (Qo, Ro), for i = 1, · · · , N .

e2i = (Qt(Xti, Y ti)−Qo(Xti, Y ti))2 +

(Rt(Xti, Y ti)−Ro(Xti, Y ti))2 (5.10)

Max(e) = max
i=1,···,N

(ei) (5.11)

Min(e) = min
i=1,···,N

(ei) (5.12)

E(e) =
1

N

N∑

i=1

(ei) (5.13)

σ(e) =

√√√√√ 1

N

N∑

i=1

(e2i )−
(

1

N

N∑

i=1

(ei)

)2

(5.14)

The following tables present the values of the quality measures for the
processed cases.

The automatic selection of the GCPs (20 points) being located in the
well-registered part of the images (low elevations), we manually added a
number of points, located in the badly registered areas (high elevations).
The statistical result is therefore different, as one can easily see.
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Table 5.8: Registration accuracy for the SPOT data.

Band No. GCP Evaluation (pixel)
N Min(e) Max(e) E(e) σ(e)

XS1 50 0.109 0.312 0.214 0.058
XS2 50 0.122 0.544 0.252 0.073
XS3 50 0.027 1.030 0.293 0.216

Table 5.9: Registration accuracy for the MSS data.

Band No. GCP Evaluation (pixel)
N Min(e) Max(e) E(e) σ(e)

MSS3 20 0.063 0.539 0.282 0.118

Table 5.10: Registration accuracy for the SPOT – MSS data.

Band No. GCP Evaluation (pixel)
N Min(e) Max(e) E(e) σ(e)

MSS3-XS3 20 0.068 0.525 0.272 0.142

Table 5.11: Registration accuracy, SPOT data, different viewing angles.

Band No. GCP Evaluation (pixel)
N Min(e) Max(e) E(e) σ(e)

XS1 20 0.138 0.929 0.383 0.225
XS1 31 0.152 7.551 2.025 2.008
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5.7 Conclusion on multiscale geometric registra-

tion

We have described a new method for the geometric registration of images
having the same, or a different, ground resolution. The procedure is fully
automated, the algorithms are fast and the implementation easy.

The main drawback of the non-pyramidal algorithm is the large amount
of disk space, as well as the large amount of processing time, needed to
process large images due to non-decimation. This algorithm has an order
of magnitude complexity of kN2. The main advantage is the possibility to
process small images up to a relatively high scale.

This drawback can be overcome by a pyramidal algorithm based on
pyramidal implementation of the à trous algorithm, but it is not possible
to process small images due to the reduction of the image size by a factor
of 4 at each scale. The complexity of the algorithm is of 4

3N
2 in this case.

The pyramidal à trous algorithm was preferred relative to Mallat’s algo-
rithm, due to the isotropy of the analyzing wavelet.

The final registration is of good quality, as we reach subpixel accuracy,
in both cases as shown in section 5.5.

The polynomial model used for the registration is inadequate for pro-
cessing images taken with different viewing angles as it cannot model local
deformations. But this model is adequate for processing images acquired
with the same viewing angles, since these images present only global defor-
mations. In order to process local deformations, another approach has to
be considered. This will be detailed in the next chapter.

The non-decimation algorithm is therefore optimal for small images and
the pyramidal one for large images.
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Chapter 6

Disparity analysis in remote

sensing

6.1 Definitions

Differences in images of real world scenes may be induced by the relative mo-
tion of the camera and the scene, by the relative displacement of two cameras
or by the motion of objects in the scene. These differences are important
because they contain enough information to allow a partial reconstruction
of the three-dimensional structure of the scene from its two-dimensional
projections. When such differences occur between two images, we say that
there is a disparity between them, which may be represented by a vector
field mapping one image onto the other (Barnard and Thompson, 1980).
The evaluation of the disparity field has been called the correspondence
problem (Duda and Hart, 1973). Time-varying images of the real world can
provide kinematical, dynamical and structural information (Weng, Huang
and Ahuja, 1989). The disparity field can be interpreted into meaningful
statements about the scene, such as depth, velocity and shape.

Disparity analysis, in the sense of stereovision, may be broadly defined
as the evaluation of the existing geometrical differences, in a given reference
frame, between two or more images of the same or similar scenes. The differ-
ences in remote sensing are mainly the result of different imaging directions.
The goal of the analysis is to assign disparities, which are represented as two-
dimensional vectors in the image plane, to a collection of well-defined points
in one of the images. Disparity analysis is useful for image understanding
in several ways. Since the images are generally not in the same geograph-
ical frame, a geometrical registration of the images is therefore necessary.
There is information in a disparate pair of images that is difficult or even
impossible to find in any single image. Disparity is therefore a very general
property of images which may be used in a variety of situations.

Our purpose is to determine the disparities ǫx(i, j) and ǫy(i, j) respec-

199
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tively in the x and y direction, at each point (i, j) of the image. Our approach
will rely on two main steps:

• The detection of a set of ground control points (GCPs) using a mul-
tiresolution approach (Djamdji et al., 1993a) over which the disparities
are computed.

• A mapping of the disparities over the entire image by the kriging
method.

An example of a situation where the disparities are useful, the geometrical
registration of a stereoscopic pair of images, will be presented.

6.1.1 Disparity

Let P be a point in the real world, and P 1
i and P 2

i be the images of this point
in frames 1 and 2 respectively. These two points are similar in that they
are the image plane projection of the same real world surface point. Con-
sequently, matching P 1

i with P 2
i is the same as assigning to P 1

i a disparity
with respect to image 2 of:

Di = (x1
i − x2

i , y
1
i − y2

i ) (6.1)
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Figure 6.1: Stereoscopic system.

We will modify this classical definition by getting rid of the deformation
polynomial model underlying the geometrical registration. Instead, we will
consider the disparity as being the divergence between two identical points
with respect to the deformation model considered. These distortions are
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produced by physical phenomena, and mainly in remote sensing from the
differences in the viewing angle.

Let (Xi, Yi) and (xi, yi) be the coordinates of an identical point in the
reference and the working frames. Then:

(x1
i , y

1
i ) = (Xi, Yi)

(x2
i , y

2
i ) = (xi, yi) (6.2)

If the viewing angles were the same, (Xi, Yi) and (xi, yi) would be related
by:

xi = f(Xi, Yi)

yi = g(Xi, Yi) (6.3)

where f and g are polynomials that take into account the global deforma-
tions between the two frames. But when the viewing angles are different,
the model considered previously is no longer valid, and a correction term
has to be introduced in order to take into account the local deformations
introduced by the viewing angles. Thus the previous relationship can be
rewritten as:

xi = f(Xi, Yi) + ǫxi(Xi, Yi)

yi = g(Xi, Yi) + ǫyi(Xi, Yi) (6.4)

where ǫxi and ǫyi describe the new local deformations. Then the disparity at
the point (Xi, Yi) along the X and Y axis is given by ǫxi and ǫyi respectively.

6.1.2 Matching

Matching is a natural approach to disparity analysis in an image (Barnard
and Thompson, 1980). Assigning a disparity to points in a sequence of
images is equivalent to finding a matching between sets of homologous points
in each image. Let S1 = (sx1 , s

y
1) and S2 = (sx2 , s

y
2) be two points in images 1

and 2 respectively. These two points should be matched if and only if they
are image plane projections of the same real world surface plane.

A matching approach for disparity analysis has to solve two major prob-
lems: how to select points for the matching; and how to quantify the quality
of the matching.

It is obvious that all the points cannot be matched with the same preci-
sion, since some of these will necessarily be located in regions of weak detail.
Some cannot be matched at all, as they are visible only in one image. In
order to avoid any ambiguity in the matching, it is advantageous to try
to match points that are easily distinguishable and have similar properties.
Wavelet analysis will provide a perfect tool for this problem.
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6.1.3 Extraction of ground control points

The extraction of the GCPs is achieved via a multiscale approach and its
implementation is given in Djamdji et al. (1993a). The method is based
on a special implementation of the discrete wavelet transform, the à trous
algorithm (Holschneider et al., 1989; Shensa, 1992). The matched GCPs
are the maxima of the detected structures in the wavelet images, on a set of
dyadic scales, the multiscale schemes starting from the coarsest resolution
and proceeding to the finest one. In the case of scenes acquired with the same
viewing angle, we have shown (Djamdji et al., 1993a,b) that we were able
to detect and correctly match the GCPs which, in turn, enables us, through
this multiscale scheme, to register the images with subpixel accuracy.

For images taken with different viewing angles, a residual remains due to
the disparity between these images. Nevertheless, we will use this multiscale
procedure for the GCP extraction.

6.2 Disparity mapping

Let us introduce some of the mathematical tools used in the following, prin-
cipally kriging and the variogram.

6.2.1 Kriging

The theory of regionalized variables was developed by G. Matheron in the
late 1950s. Matheron demonstrated that spatially dependent variables can
be estimated on the basis of their spatial structure and known samples
(Matheron, 1970). A random variable distributed in space is said to be
regionalized. These variables, because of their spatial aspect, possess both
random and structured components. On a local scale, a regionalized vari-
able is random and erratic. Two regionalized variables F (x) and F (x + h)
separated by a distance vector h are not independent, but are related by a
structured aspect. This structure function or variogram, γ(h), is dependent
on h (Carr and Myers, 1984),

γ(h) =
1

2
Var[F (x+ h)− F (x)]

=
1

2
E[(F (x+ h)− F (x))2] (6.5)

Usually as the length of h increases, the similarity between two regionalized
variables decreases.

At first glance, a regionalized variable appears to be a contradiction. In
one sense, it is a random variable which locally has no relation to surrounding
variables. On the other hand, there is a structured aspect to a regionalized
variable which depends on the distance separating the variables. Both of
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these characteristics can however be described by a random function for
which each regionalized variable is but a single realization. By incorporating
both the random and structured aspects of a regionalized variable in a single
function, spatial variability can be accommodated on the basis of the spatial
structure shown by these variables (Carr and Myers, 1984).

An important technique used in geostatistics for estimation and interpo-
lation purposes is kriging. Kriging is a regression method used on irregularly-
spaced data in 1, 2 or 3 dimensions for the estimation of values at unsampled
locations (Myers, 1991) using the available information. The value at un-
sampled points is estimated from a linear combination of all the available
samples weighted by a certain coefficient. The estimator is considered as
non-biased when the weight total equals one.

It is therefore possible to solve a kriging problem, which is to compute
the optimal weights for each sample, only if we are given the covariance or
variogram function (Matheron, 1965).

The kriging technique is optimal since it uses the spatial inter-depen-
dence information represented by the variogram γ(h) or by the covariance
function (Chiles and Guillen, 1984). As will be seen later, the weights are
obtained from a linear system of equations in which the coefficients are the
values of the covariance or variogram function, values which quantify the
correlation between two samples for a given distance. These equations are
obtained by minimizing the variance of the estimation error. Estimation and
modeling of the structure function is the most important and potentially the
most difficult step in the process (Myers, 1991).

One important characteristic of the kriging estimator is that the weights
(i.e. the kriging equations) do not depend on the data, but rather only on
the variogram or covariance function and on the sample pattern (Myers,
1987).

6.2.2 Variogram

One way of examining the spatial structure of a regionalized variable is to
analytically relate the change of the variables as a function of the separating
distance h. The function which defines the spatial correlation or structure
of a regionalized function is the variogram given by:

γ(h) =
1

2
E({f(x)− f(x+ h)}2) (6.6)

= C(0)− C(h) (6.7)

where C(h) is the covariance function, E the mathematical expectation and
h the lag or separating distance. Equation (6.7) holds only if the covari-
ance function is defined. The shape of the variogram reflects the degree of
correlation between samples. Variogram functions that rise as h increases
indicates that the spatial correlation decreases as more distant samples are
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chosen, until a separation distance is reached at which knowledge of one
sample tells us nothing about the others (uncorrelated) (Glass et al., 1987).

In order to use the variogram for kriging, a mathematical model must
be fitted (McBratney, Webster and Burgess, 1981a,b). This model must
meet certain criteria, and several so called ‘authorized models’ are available
(Journel and Huijbregts, 1978; Myers, 1991).

Theoretical models.

Different theoretical models of variograms exist. We will describe the most
common ones. Let us first describe the principal characteristics of a station-
ary variogram which are (Journel and Huijbregts, 1978):

1. Its behavior at the origin (parabolic, linear and nugget effect).

2. The presence or absence of a sill in the increase of γ(h), i.e., γ(h) =
constant when | h |> a.

h h h h0 0 0 0

(a) (b) (c) (d)

Figure 6.2: Behavior of a variogram at the origin: (a) parabolic (b) linear
(c) nugget effect (d) pure nugget effect.

The continuity and regularity of a random function F (x) can be in-
ferred from the behavior of the variogram at the origin (Matheron, 1970).
By decreasing regularity order, we can distinguish four types of variogram
behavior (Fig. 6.2):

• Parabolic:
γ(h) is twice differentiable at the origin. F (x) is then differentiable in
the mean square sense and presents a highly regular spatial variability.

• Linear:
γ(h) is no longer differentiable at the origin but remains continuous at
h = 0. F (x) is mean-square continuous but no longer differentiable,
consequently less regular.

• Microscopic correlation or nugget effect:
γ(h) does not tend towards 0 when h tends toward 0 (discontinuity at
the origin), although by definition γ(0) = 0. F (x) is no longer even
mean-square continuous, consequently highly non-regular.
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• Pure nugget effect:
This is the limit case when γ(h) appears solely as a discontinuity at
the origin. F (x) and F (x′) are uncorrelated (white noise). This cor-
responds to the total absence of autocorrelation.

Spherical

Exponential

Gaussian

1 2 3sqrt(3)

(r)

2/3

Figure 6.3: Models with a sill.

The theoretical models can therefore be classified as:

• Models with a sill (or transition models):

1. Linear behavior at the origin:

(a) spherical model:

γ(r) =





3

2

r

a
− 1

2

r2

a3
∀r ∈ [0, a]

1 ∀r ≥ a
(6.8)

(b) exponential model:

γ(r) = 1− exp

(
−r
a

)
(6.9)

The spherical model reaches its sill for a finite distance r = a =
range while the exponential one reaches it asymptotically. The
difference between the spherical and the exponential model is the
distance at which their tangents intersect the sill (Fig. 6.3):

– r = 2a
3 for the spherical model,
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θ

θ

θ = 1

< 1 

1

γ(r)

2 >

1 r

> 1

Figure 6.4: Models in rθ.

– r = a = a
′

3 for the exponential model.

2. Parabolic behavior at the origin:

(a) Gaussian model:

γ(r) = 1− exp

(
−r

2

a2

)
(6.10)

The sill is reached asymptotically and a practical range can be
considered for a

′

= a
√

3 value for which γ(a
′

) = 0.95 ≃ 1.

• Models without sill:
These models correspond to random functions with unlimited capacity
for spatial dispersion (Journel and Huijbregts, 1978) and therefore do
not have variance or covariance.

1. Model in rθ (Fig. 6.4):

γ(r) = rθ with θ ∈ ]0, 2[ (6.11)

In practice only the linear model is used:

γ(r) = ωr (6.12)

where ω is the slope at the origin.

2. Logarithmic model:

γ(r) = log r (6.13)

Note that log(h) → −∞ as h → 0, so that the logarithmic func-
tion cannot be used to describe regionalizations on a strict point
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support. On the other hand, this model, once regularized on a
non-zero support l, can be used as the model of a regularized
variogram (Journel and Huijbregts, 1978; Matheron, 1970). The
regularized variogram will have as expression:

γl(r) = log

(
r

l

)
+

3

2
r ≥ l (6.14)

with γl(0) = 0.

The asymptotic behavior of these variograms is conditioned by

lim
r→∞

γ(r)

r2
= 0 (6.15)

• Nugget effect:
This is a discontinuity at the origin of the variogram. The limit of
γ(r) when r tends toward zero is a positive constant C0 called nugget
constant.

This discontinuity can be linked to the presence of structures of lesser
scale than those of the measure support, but can also be produced
by measurement errors or by noise. When the discontinuity is total,
we say that there is a pure nugget effect. The phenomenon is totally
random and the variance is independent of the interval considered.

Every linear combination of these models is possible insofar as the coef-
ficients are positive.

Experimental variogram.

Let h be a vector of modulus r =| h | and direction α. If there are N pairs
of data separated by the vector h, then the experimental variogram in the
direction α and for the distance h is expressed by Journel and Huijbregts
(1978):

γ(r, α) =
1

2N

N∑

i=1

[F (xi + h)− F (xi)]
2 (6.16)

Although these expressions are unique, the methods used in constructing
variograms depend on the spatial configuration of the available data (Journel
and Huijbregts, 1978).

We will place ourselves in the context of the hypothesis where most of
the texture images present an isotropic characteristic (Ramstein, 1989). We
will therefore suppose that the image variogram γ(~h) is independent of the
orientation of the vector ~h and we will keep the notation γ(h), h being the
norm of the vector ~h. The use of a directional variogram is justified in the
case of anisotropic structures.
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In practice, good numerical approximation of a two-dimensional image
variogram is given by Ramstein (1989; Ramstein and Raffy, 1989):

γ(h) =
1

2
{ 1

NcNl

Nc∑

x=1

Nl∑

y=1

[I(x+ h, y)− I(x, y)]2

+
1

NcNl

Nc∑

x=1

Nl∑

y=1

[I(x, y + h)− I(x, y)]2} (6.17)

where Nl and Nc are respectively the number of rows and columns of the
image, and h is a distance expressed in pixels.

6.2.3 Kriging as an interpolator

At any given step of the matching procedure we have a set of matched
points, which leads to the disparities ǫx, ǫy. Our aim is to fully map these
functions, and for this purpose we will use kriging as an interpolation tech-
nique (Matheron, 1965).

Once the spatial structure of a regionalized variable has been demon-
strated through computation of the variogram, the spatial structure can be
used to estimate the value of the variable at unsampled locations.

Kriging is a means of weighted local averaging in which the weights λi,
i = 1, · · · , n are chosen so as to give an unbiased estimate f∗ at point x0,
while at the same time minimizing the estimation variance. Thus kriging can
be thought of as a special kind of linear smoothing filter (Atkinson, 1991).
Often, the weights are all the same and are therefore equal to 1

n . When the
property of interest is spatially dependent, however, a more precise estimate
is obtained if the weights are chosen according to their influence on the point
to be estimated. Kriging provides a means by which this is achieved.

Let F (x) be a function whose values F (x1), F (x2), . . . , F (xn) are known
at x1, x2, . . . , xn, and for which we want to estimate the value at an unknown
point x0. We are then looking for the estimator F ∗(x0), a linear combination
of the random values F (xk), k = 1, . . . , n as:

F ∗(x0) =
n∑

k=1

λkF (xk) (6.18)

In the following, the summation will vary from 1 to n, n being the number
of points used in the estimation.

F ∗(x0) must meet the two following conditions:

E[{F ∗(x0)− F (x0)}2] minimum (6.19)

E[F ∗(x0)− F (x0)] = 0 (6.20)
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Equations (6.19) and (6.20) imply on the one hand that the estimator F ∗(x0)
is non-biased, and on the other hand that it is optimal (in the least mean
square sense) as it minimizes the estimation error. By replacing (6.18) in
(6.20) and by considering the intrinsic hypothesis (Journel and Huijbregts,
1978) we get:

E[F (x0)]{
∑

k

λk − 1} = 0 (6.21)

which leads to the first kriging equation:

∑

k

λk = 1 (6.22)

Let us evaluate the two conditions that F ∗(x0) must verify

E[F ∗(x0)− F (x0)
2] minimum

E[F ∗(x0)− F (x0)] = 0
(6.23)

For this purpose, let us compute the two quantities [F ∗(x0)−F (x0)] and
[F ∗(x0)− F (x0)]

2. By definition and by eqn. (6.22) we have:

F ∗(x0)− F (x0) =
∑

k

λkF (xk)− F (x0)

=
∑

k

λk[F (xk)− F (x0)] (6.24)

and

{F ∗(x0)− F (x0)}2 =

{
∑

k

λkF (xk)− F (x0)

}2

=
∑

k

∑

l

λkλlF (xk)F (xl)− 2
∑

k

∑

l

λkλlF (xk)F (x0)

+
∑

k

∑

l

λkλlF
2(x0) (6.25)

or

γ(h) =
1

2
E[{F (x+ h)− F (x)}2]

= E[F 2(x)]− E[F (x)F (x+ h)] (6.26)

We will have the expressions of E[F (xk)F (xl)] and E[F (xk)F (x0)] as a
function of the variogram

E[F (xk)F (xl)] = E[F 2(xl)]− γ(xk − xl)
E[F (xk)F (x0)] = E[F 2(x0)]− γ(xk − x0) (6.27)
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which allows us to evaluate the value of E[{F ∗(x0)−F (x0)}2] as a function
of the variogram

E[{F ∗(x0)− F (x0)}2] = 2
∑

k

∑

l

λkλlγ(xk − x0)−
∑

k

∑

l

λkλlγ(xk − xl)

+
∑

k

∑

l

λkλlE[F 2(xl)]−
∑

k

∑

l

λkλlE[F 2(x0)]

= 2
∑

k

λkγ(xk − x0)−
∑

k

∑

l

λkλlγ(xk − xl)(6.28)

the variance being independent of x.
Let us minimize this expression with the constraint

∑
k λk = 1 using a

Lagrange multiplier
{
E[{F ∗(x0)− F (x0)}2] minimum
with the constraint

∑
k λk = 1

which is equal to minimizing

2
∑

k

λkγ(xk − x0)−
∑

k

∑

l

λkλlγ(xk − xl)− µ
∑

k

λk (6.29)

µ being the Lagrange multiplier, and
∑
k λk the imposed constraint. We

have then to solve the following system





∂

∂λ1

[
−
∑

k

∑

l

λkλlγ(xk − xl) + 2
∑

k

λkγ(xk − x0)− µ
∑

k

λk

]
= 0

...
...

...

∂

∂λn

[
−
∑

k

∑

l

λkλlγ(xk − xl) + 2
∑

k

λkγ(xk − x0)− µ
∑

k

λk

]
= 0

(6.30)

which gives





−
∑

l

λlγ(x1 − xl)−
∑

k

λkγ(xk − x1) + 2γ(x1 − x0)− µ = 0

...
...

...

−
∑

l

λlγ(xn − xl)−
∑

k

λkγ(xk − xn) + 2γ(xn − x0)− µ = 0

(6.31)

The variogram is symmetric, and so
∑
l λlγ(xn− xl) =

∑
k λkγ(xk − xn)

and the system becomes




−2
∑

k

λkγ(x1 − xk) + 2γ(x1 − x0)− µ = 0

...
...

...

−2
∑

k

λkγ(xn − xk) + 2γ(xn − x0)− µ = 0

(6.32)
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This gives the kriging system:

∑

i

λiγ(xi − xj) + µ = γ(xj − x0) j = 1, · · · , n
n∑

i=1

λi = 1
(6.33)

This can be written in matrix form after replacing γ(0) by its value:




0 γ(x2 − x1) · · · γ(xn − x1) 1
γ(x1 − x2) 0 · · · γ(xn − x2) 1

...
...

...
...

...
γ(x1 − xn) γ(x2 − xn) · · · 0 1

1 1 · · · 1 0







λ1

λ2
...
λn
µ




=




γ(x1 − x0)
γ(x2 − x0)

...
γ(xn − x0)

1




(6.34)

The kriging variance which is the estimation error is then given by:

E[{f∗(x0)− f(x0)}2] =
∑

i

λiγ(xi − x0) + µ (6.35)

In practice, a neighborhood of N points is defined outside which the
observations carry so little weight that they can be ignored. We will call
this neighborhood the kriging search window.

6.3 Disparity mapping with the wavelet transform

Our aim is to compute the disparity at each point of a pair of stereo images.
For this purpose we will introduce an iterative process for the computation
of the disparity values based on a multiresolution approach.

We begin by defining some of the terms used in the following. We will
call:

• real disparities: the disparities computed on the discrete set of GCP,

• disparity map: the disparities estimated at each point of the image,

• real variogram: the variogram computed from the discrete set of GCP,

• theoretical variogram model: the theoretical model used in the kriging
procedure which is based on a least squares fit of the real variogram
values.
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Let In, n ∈ (1, N), N = 2, be the two stereoscopic images to be pro-
cessed. Let us consider I1 and I2 as the reference and the working image
respectively. Let M be the largest distance in the pixel space between two
identical features. The matching must be first processed with the largest
scale L, 2L−1 < M ≤ 2L, in order to automatically match identical features
without errors (Bijaoui and Guidicelli, 1991; Djamdji et al., 1993a).

On each image In, we compute the wavelet transform with the à trous
algorithm, up to the scale L. We then obtain N smoothed image Sn(i, j)
and N×L wavelet images Wnl(i, j), n ∈ (1, 2) and l ∈ (1, L). The smoothed
images are not used in the disparity computation procedure. The reference
image will be for n = 1.

With L being the initial dyadic step, we perform on Wnl(i, j) a detection
procedure in order to detect the structures in the wavelet images and keep
only those structures above a threshold of (θ × σn1), θ being a constant
which increases when the resolution decreases, and σn1 being the standard
deviation of Wn1 (Djamdji et al., 1993a). We only retain from these struc-
tures their local maxima which will then act as GCPs. Our objective is to
obtain the largest number possible of matched points in order to have a real
disparity map which is as dense as possible.

Let (X,Y ) be the coordinates of a maximum in the reference image and
(x, y) the coordinates of the corresponding point in the working image. Let
(x1, y1) be the coordinates (in the working frame) of the point corresponding
to (X,Y ) after applying the deformation model. If the model used describes
correctly the geometrical deformation, (x1, y1) must be very close or equal
to (x, y). On the other hand, since the polynomial model does not model
the deformations adequately due to the difference in the viewing angles,
(x1, y1) is different from (x, y) and a correction term, the disparity, has to
be introduced (Djamdji and Bijaoui, 1995a). We have:

{
x1 = fl(X,Y )
y1 = gl(X,Y )

(6.36)

The disparity (ǫx, ǫy) is then computed at every point (X,Y ) by:

{
ǫx(X,Y ) = x− fl(X,Y ) = x− x1

ǫy(X,Y ) = y − gl(X,Y ) = y − y1
(6.37)

At step l, l 6= L, we carry out a new detection procedure over Wil. As
previously, we detect the coordinates of the local maxima (X,Y ) and (x, y)
in the reference and the working image respectively. We then compute the
variogram of the real disparities for step l − 1. The theoretical variogram
model is then adjusted by least squares over these values. The coordinates
(X,Y ) of the GCP from step l are then transformed into the working frame
using the deformation model (fl−1, gl−1) in order to get the new set of coor-
dinates (x1, y1). The disparities (ǫx, ǫy) are estimated on each GCP (X,Y )
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between the points (x, y) and (x1, y1) (eqn. (6.37)) by kriging with the the-
oretical variogram model of step l−1. These values are then used to correct
the values (x1, y1) of step l, from the distortions due to the difference in the
viewing angles. The corrected coordinates (x2, y2) (in the reference frame)
are therefore obtained from:

{
x2 = x1 + ǫx(X,Y )
y2 = y1 + ǫy(X,Y )

(6.38)

The points (x2, y2) are then matched with (x, y) and a new deformation
model is computed between (X,Y ) and (x, y). Next, the new real disparities
associated with each GCP (X,Y ) are computed and the process is reiterated
until we reach the finest resolution (Djamdji and Bijaoui, 1995a,b).

At the lowest resolution, generally one, the real variogram is computed
from the disparities at this resolution. The theoretical variogram is then ad-
justed over these values and the final disparity map is computed by kriging.

This approximation process can be seen as an inverse problem whose
solution can be computed iteratively. The inverse problem is formulated as
follows (Djamdji, 1993):
The two image being I1 and I2, by wavelet transform, thresholding and
maxima detection, we get a list of maxima L(I1) and L(I2):

L(I1) = (Max ◦ Thresh ◦WT)(I1)

L(In2 ) = (Max ◦ Thresh ◦WT)(In2 ) (6.39)

with: WT wavelet transform operator,
Thresh thresholding operator,
Max maxima detection operator.

The goal is to obtain an image In2 in the same frame as I1 and whose list
L(In2 ) is identical to L(I1), i.e.:

Distance{L(I1) , L(In2 )} minimum (6.40)

In2 is obtained by the application of an operator On over I2 = I0
2

In2 = On(I2) n ≥ 1 (6.41)

On being the geometrical operator to be determined, and n being the iter-
ation number.

The estimation of On must be refined until it converges toward a stable
solution. The working image, at a given iteration n, is then registered
using the deformation model associated with the final disparity map for that
iteration. The entire process is then reiterated using the registered image as
image I2. The convergence is fast and attained after a few iterations, 3 in
our case.
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Figure 6.5: Iterative procedure: 2 iterations.

Once the iterative process has been carried out, the resulting disparity
maps should be established for a given deformation model. We will use the
deformation model (f1, g1) of the first iteration. For a procedure with only
two iterations (Fig. 6.5), we have the following systems:

• First iteration: {
x1 = f1(x

′
1, y

′
1)

y1 = g1(x
′
1, y

′
1)

(6.42)

{
ǫx1(x

′
1, y

′
1) = x0 − x1

ǫy1(x
′
1, y

′
1) = y0 − y1

(6.43)

• Second iteration: {
x2 = f2(x

′
2, y

′
2)

y2 = g2(x
′
2, y

′
2)

(6.44)

{
ǫx2(x

′
2, y

′
2) = x′1 − x2

ǫy2(x
′
2, y

′
2) = y′1 − y2

(6.45)

Equations (6.42), (6.43), (6.44) and (6.45) allow us to establish the rela-
tion linking the coordinates (x′2, y

′
2) to (x0, y0) as a function of the disparities

and the successive deformation models. We have the final expression:
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



x0 = f1{ f2(x
′
2, y

′
2) + ǫx2(x

′
2, y

′
2) , g2(x

′
2, y

′
2) + ǫy2(x

′
2, y

′
2) }

+ǫx1(x
′
1, y

′
1)

y0 = g1{ f2(x
′
2, y

′
2) + ǫx2(x

′
2, y

′
2) , g2(x

′
2, y

′
2) + ǫy2(x

′
2, y

′
2) }

+ǫy1(x
′
1, y

′
1)

(6.46)

This model can be easily extended to any given number N of iterations.
We seek now to establish the disparity maps in X and Y linked to the

deformation model (f1, g1),

{
x

′

0 = f1(x
′
2, y

′
2)

y
′

0 = g1(x
′
2, y

′
2)

(6.47)

{
ǫx(x

′
2, y

′
2) = x0 − x′0

ǫy(x
′
2, y

′
2) = y0 − y′0

(6.48)

The outcome is the final disparity map (ǫx, ǫy) associated with the de-
formation models (f1, g1). The flowchart of this algorithm is given in Fig.
6.6.

Pyramidal implementation

As in the case of geometric registration, this wavelet method is not well
adapted for the processing of large images mainly due to computation time
which is very large in this case; and the very large disk space needed for
the processing. One way to reduce these factors is to use a pyramidal im-
plementation of the à trous algorithm. The process is globally quite similar
to the one above. The image being reduced by a factor of 4 at each step,
due to the decimation procedure, the matching must be done in the real
coordinate space (Djamdji et al., 1993b) and the disparity computation as
well as the kriging must take into account this decimation. The flowchart
of this algorithm is given in Fig. 6.7.

6.4 Image registration

Once the final disparity maps and the associated geometric deformation
model (f1, g1) are computed, eqn. (6.4) can be rewritten:

xi = f1(Xi, Yi) + ǫx(Xi, Yi) = FS(Xi, Yi)

yi = g1(Xi, Yi) + ǫy(Xi, Yi) = GS(Xi, Yi) (6.49)

and the two stereoscopic images are registered as follows (Djamdji and Bi-
jaoui, 1995c).
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• For each output pixel location (i, j), we compute (k, l), k = FS(i, j)
and l = GS(i, j), record the pixel value at the location (k, l) and assign
it to the output pixel at (i, j). The process is iterated over the entire
image and the output image is generated.

• The pixel locations (k, l) are generally not integers, so an interpolation
must be carried out to compute the intensity value for the output pixel.
Nearest-neighbors, bilinear, bicubic, spline interpolations are the most
widely used.

6.5 Application to real images

This procedure was applied to the two following SPOT scenes:

• Scene number 148−319 dated 05 February 1991 taken at 07h 51mn 04s,
composed of 3000 rows and 3000 columns, level 1a.

• Scene number 148− 319 dated 02 April 1988 taken at 07h 34mn 40s,
composed of 3003 rows and 3205 columns, level 1b.

These two scenes from the eastern region of Marib in the Republic of
Yemen, were taken with different imaging directions. Level 1a (Spotimage,
1986) (Fig. 6.8) was taken with an incidence of 25.8 degrees left, while level
1b (Spotimage, 1986) (Fig. 6.9) was taken with an incidence of 6.3 degrees
right. Two subscenes of 512× 512 pixels were then extracted.

Image 1b will be considered as the reference image and image 1a as the
working one. The noise level in the SPOT images being low, we reduced
the threshold in the matching procedure in order to obtain the maximum
number of GCPs. A four-iteration procedure is then applied to these two
images with a kriging search window of ten points.

For each iteration, we compute the real disparity maps in X and Y by
kriging. These maps, together with the associated deformation model, allow
us to register the working image, by correcting the local distortions due to
the viewing angles. The working corrected image is then used as the input
working image for the next iteration, and the process is reiterated until con-
vergence to a stable solution. A stability criterion can be determined from a
statistical study of the real disparity maps for each iteration. The iterative
process can be stopped if the standard deviation of the disparity maps (after
kriging) reaches a certain threshold. The convergence is nevertheless quite
fast and three iterations are sufficient. In this case, image yemen1b will be
the reference frame and image yemen1ai the working one at iteration i. The
working image at iteration i, i 6= 1, will be that of the (i − 1) iteration
corrected for the distortions and registered.

The resulting final disparity maps in X and Y (Figs. 6.10, 6.11 and 6.12)
are then built up from the disparity maps in X and Y for every iteration and
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Figure 6.8: Working SPOT image – level 1a.

Figure 6.9: Reference SPOT image – level 1b.
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Figure 6.10: Isocontours of the final disparity map along the X axis.

Figure 6.11: Isocontours of the final disparity map along the Y axis.
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Figure 6.12: Perspective view of the final disparity maps along the Y and
X axes, respectively, and plane view of the reference image.
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from the associated deformation model, which is in this case the deformation
model of the first iteration.

We used a six-order wavelet decomposition and a linear model for the
theoretical variogram. The variogram was computed only over the last five
resolutions, the number of GCPs in the first one (level 6) being insufficient
for a variogram computation. The theoretical variogram model was fitted
over the first 300 distance values h in pixels (h ∈ [1, 300]) of the real vari-
ogram γ(h) for the three resolutions (levels 5,4,3) and on a distance of 100
pixels (h ∈ [1, 100]) for the last two resolutions (levels 2,1). In Table 6.1 we
give the statistics on the final disparities for each iteration. Looking at this
table, it can be easily seen that the fourth iteration was unnecessary and
that three iterations would have sufficed.

Table 6.1: Statistics of the disparity images (after kriging) for different
resolutions.

Type of iteration mean standard-deviation max min
disparity (pixel) (pixel)

in X 1 −0.024 1.19 6.90 −10.54
in X 2 0.033 1.09 7.13 −3.37
in X 3 0.014 0.36 2.95 −1.35
in X 4 0.0062 0.29 1.81 −1.50
in Y 1 −0.047 1.01 1.82 −9.00
in Y 2 −0.0023 0.38 3.57 −1.63
in Y 3 −0.022 0.45 4.72 −2.23
in Y 4 −0.019 0.42 1.22 −3.39

The real and theoretical variograms in X and Y for the fourth iteration
are given in Figs. 6.13 and 6.14. The real variogram is noisy, especially for
the coarsest resolutions. This is due to the small number of points used for
its estimation.

The number of points detected in the working image decreases from the
first iteration to the second. This is due to the interpolation introduced by
the geometrical registration, which acts like a smoothing filter.

The parameters of the second order polynomial deformation model are
given by:

x′ = axX
2 + bxY

2 + cxXY + dxX + exY + fx (6.50)

y′ = ayX
2 + byY

2 + cyXY + dyX + eyY + fy (6.51)

The accuracy of the final disparity map must be checked. In order to
estimate the quality of the final disparity maps, we selected manually, on
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Figure 6.13: Real and theoretical disparity variogram along the X axis for
the fourth iteration as a function of the distance in pixels.
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the fourth iteration as a function of the distance in pixels.
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both the reference and the working image, 49 test ground control points
(TGCP) uniformly distributed over the entire image (regions with high and
low elevations). We then computed the disparities (ǫ testx, ǫ testy) at the
TGCP using the classical definition (eqn. (6.1)):

ǫ test(x,i) = x(ref,i) − x(wrk,i)

ǫ test(y,i) = y(ref,i) − y(wrk,i) (6.52)

(6.53)

with (x(ref,i), y(ref,i)) and (x(wrk,i), y(wrk,i)) respectively the coordinates of
the ith TGCP in the reference and working image. We then computed the
kriged disparities (ǫ krigex, ǫ krigey) at the TGCP, from the final disparity
maps (Idisp x and Idisp y) and the associated deformation model (f1, g1)
following the classical definition by:

ǫ krige(x,i) = x(ref,i) − {f1(x(ref,i), y(ref,i)) + Idisp x(x(ref,i), y(ref,i))}
ǫ krige(y,i) = y(ref,i) − {g1(x(ref,i), y(ref,i)) + Idisp y(x(ref,i), y(ref,i))}

and the residual (ρx, ρy) between the values (ǫ testx, ǫ testy) and the corre-
sponding values after kriging (ǫ krigex, ǫ krigey) for each TGCP:

ρ(x,i) = ǫ test(x,i) − ǫ krige(x,i)

ρ(y,i) = ǫ test(y,i) − ǫ krige(y,i) (6.54)

On these residuals, we computed the minimum (Min), the Maximum (Max),
the mean (E) and the standard deviation (σ). The results are given in Table
6.2. We can see from these results that the final disparity maps are well
estimated, very few disparity pixels are inaccurate, and the precision of the
TGCP selection is ±1 pixel.

Table 6.2: Validation of the final disparity maps in X and Y after kriging
(Nbh=Neighborhood).

Disparity Nbh Number of Evaluation (pixel)
TGCP N Min(ρ) Max(ρ) E(ρ) σ(ρ)

x 10 49 −7.147 2.135 −0.199 1.419
y 10 49 −3.012 4.823 −0.073 1.128

Image registration.

The resulting disparity maps are used to register the two original stereo-
scopic images. This is done by registering the working image with the defor-
mation polynomials (f1, g1) and adding the disparity maps (eqn. (6.4)). The
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result is shown in Fig. 6.15. As in the case of the disparity evaluation, we se-
lected manually, on both the reference and the working image, 40 test ground
control points (TGCP), respectively (x(ref,i), y(ref,i)) and (x(wrk,i), y(wrk,i)),
uniformly distributed over the entire image (regions with high and low el-
evations). Using the deformation model and the final disparity maps, we
computed, for each TGCP in the reference frame (x(ref,i), y(ref,i)), the cor-

responding point (xr
(wrk,i), y

r
(wrk,i)) in the working frame using eqn. (6.4).

Then we computed the residual between the latter values and the TGCP of
the working image (x(wrk,i), y(wrk,i)) by:

ρi =

√
((x(wrk,i) − xr(wrk,i))

2 + (y(wrk,i) − yr(wrk,i))
2) (6.55)

On these residuals, we computed the minimum (Min), the maximum (Max),
the mean (E) and the standard deviation (σ). The results are given in
Table 6.3. We can see from these results that the geometrical registration
is accurate, the precision of the TGCP selection being ±1 pixel.

We also added the reference and the registered image in order to have a
visual confirmation of the accuracy of the registration procedure (Fig. 6.16),
which in our case is very good. We just recall that we were unable to have
good registration of these images using a classical polynomial deformation
model (Djamdji et al., 1993a).

Table 6.3: Validation of geometrical registration of the stereoscopic images.

Number of Evaluation (pixel)
TGCP N Min(ρ) Max(ρ) E(ρ) σ(ρ)

40 0.176 3.012 1.064 0.638

6.6 Conclusion on disparity analysis

We have presented a new method that allows the computation of the dis-
parity maps along the X and Y axes, at each point of the image, between a
pair of stereoscopic images with good accuracy, and without any knowledge
of the position parameters of the satellite (ephemeris).

The procedure is fully automated and converges quite fast, three iter-
ations being sufficient to achieve a good estimation of the disparity maps.
The method has many other applications, one of which is the geometrical
registration of images obtained under different viewing angles, a process
which is achieved quite readily and with good accuracy. A pyramidal im-
plementation (Djamdji and Bijaoui, 1995a) of this procedure reduces the
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Figure 6.15: Registered working image with the help of the disparity maps.

Figure 6.16: The addition of the reference and the registered working image.
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processing time as well as the disk space needed, but can only be effective
on large images due to the decimation introduced in the algorithm. Another
important application is the computation of digital terrain models (DTM),
which needs the ephemeris of the satellite.



Chapter 7

Image compression

Image compression is required for preview functionality in large image data-
bases (e.g. Hubble Space Telescope archive); with interactive sky atlases,
linking image and catalog information (e.g. Aladin, Strasbourg Observa-
tory); and for image data transmission, where more global views are com-
municated to the user, followed by more detail if desired.

Subject to an appropriate noise model, much of what is discussed in
this chapter relates to faithful reproducibility of faint and sharp features in
images from any field (astronomical, medical, etc.)

Textual compression (e.g. Lempel-Ziv, available in the Unix compress

command) differs from image compression. In astronomy, the following
methods and implementations have wide currency:

1. hcompress (White, Postman and Lattanzi, 1992). This method is
most similar in spirit to the approach described in this chapter, and
some comparisons are shown below. hcompress uses a Haar wavelet
transform approach, whereas we argue below for a non-wavelet (mul-
tiscale) approach.

2. FITSPRESS (Press, 1992; Press et al., 1992) is based on the non-
isotropic Daubechies wavelet transform, and truncation of wavelet co-
efficients. The approach described below uses an isotropic multireso-
lution transform.

3. COMPFITS (Véran and Wright, 1994), relies on an image decomposition
by bit-plane. Low-order, i.e. noisy, bit-planes may then be suppressed.
Any effective lossless compression method can be used on the high-
order bit-planes.

4. JPEG (Hung, 1993), although found to provide photometric and as-
trometric results of high quality (Dubaj, 1994), is not currently well-
adapted for astronomical input images.

229
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The basis of the approach described in the following (see Starck et al.,
1996) is astronomical image compression through noise removal. Noise is
determined on the basis of the image’s assumed stochastic properties. This
is potentially a very powerful technique, since astronomical images are char-
acterized by (i) the all-pervasive presence of noise, and (ii) knowledge of the
detector’s and image’s noise properties, at least approximately. Rather than
being open-ended in the amount of information which can be thrown away,
the method described here has an inherent compressibility which is aimed
at, – i.e. lossless compression of the noise-filtered image. The primary user
parameter for controlling noise suppression is expressed in terms of the noise
(e.g. a multiple of the noise variance).

We choose other multiresolution transforms than the wavelet transform
for the reasons described in Chapter 1 (subsection 1.4.7).

7.1 Pyramidal median transform and image com-

pression

7.1.1 Compression method

The principle of the method is to select the information we want to keep,
by using the PMT (see Chapter 1, section 1.5), and to code this informa-
tion without any loss. Thus the first phase searches for the minimum set
of quantized multiresolution coefficients which produce an image of ‘high
quality’. The quality is evidently subjective, and we will define by this term
an image such as the following:

• there is no visual artifact in the decompressed image.

• the residual (original image – decompressed image) does not contain
any structure.

Lost information cannot be recovered, so if we do not accept any loss, we
have to compress what we take as noise too, and the compression ratio will
be low (3 or 4 only).

The method employed involves the following sequence of operations:

1. Determination of the multiresolution support (see Chapter 2).

2. Determination of the quantized multiresolution coefficients which gives
the filtered image. (Details of the iterative implementation of this
algorithm are dealt with below.)

3. Coding of each resolution level using the Huang-Bijaoui (1991) method.
This consists of quadtree-coding each image, followed by Huffman-
coding the quadtree representation. There is no information lost dur-
ing this phase.
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4. Compression of the noise if this is wished.

5. Decompression consists of reconstituting the noise-filtered image (+
the compressed noise if this was specified).

Note that we can reconstruct an image at a given resolution without having
to decode the entire compressed file.

These four last phases will now be described.

7.1.2 Quantized multiresolution coefficients

We define the set Q = q1, ...qn of quantized coefficients, qj corresponding to
the quantized multiresolution coefficients wj . We have:

• qj(x, y) = 0 if M(j, x, y) = 0

• qj(x, y) = int(wj(x, y)/(ksignalσj)) if M(j, x, y) = 1

Here, int denotes integer part. The image reconstructed from Q gives the
decompressed image D. Good compression should produce D such that the
image R = I −D contains only noise. Due to the thresholding and to the
quantization, this is not the case. So it can be useful to iterate if we want
to compress the quantized coefficients which produce the best image. The
final algorithm which allows us to compute both the quantized coefficients
and the multiresolution support is:

1. Set i = 0, Ri = I

2. Set M(j, x, y) = 0 and qij(x, y) = 0 ∀x, y, j

3. Compute the PMT of Ri: we obtain wj

4. If i = 0, estimate at each scale j the standard deviation of the noise
σj .

5. New estimation of the multiresolution support:
for all j, x, y, if | wj(x, y) | > kσj , M(j, x, y) = 1

6. New estimation of the set Q:
for all j, x, y, if |M(j, x, y) | = 1,
qj(x, y) = qj(x, y) + int(wj(x, y)/(ksignalσj))

7. Reconstruction of Di from Q

8. i = i+ 1, Ri = I −Di−1 and go to step 3
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In step 6, ksignal = 1.5. (This value has been fixed experimentally

and seems to be a good trade-off between quality and efficiency.) After
a few iterations, the set Q contains the multiresolution coefficients. This
allows a considerable compression ratio and the filtered image can be re-
constructed without artifacts. The residual image R is our reconstruction
error (rec(Q) + R = I). The results without iterating are satisfying too,
and are sufficient in most cases. If we are not limited by time computation
during the compression, we can carry out a few iterations in order to have
subsequently the best quality reconstruction.

7.1.3 Quadtree and Huffman encoding

We choose to code the multiresolution coefficients by using a quadtree
(Samet, 1984) followed by a Huffman (Held and Marshall, 1987) encoding
(fixed codes were used in our implementation).

The particular quadtree form we are using was described by Huang and
Bijaoui (1991) for image compression.

• Divide the bitplane up into 4 quadrants. For each quadrant code as
‘1’ if there are any 1-bits in the quadrant, else code as ‘0’.

• Subdivide each quadrant that is not all zero into 4 more sub-quadrants
and code them similarly. Continue until one is down to the level of
individual pixels.

7.1.4 Noise compression

If we want exact compression, the noise must be compressed too. There
is no transform which allows better representation of the noise, and the
noise compression ratio will be defined by the entropy. Generally, we do
not need all the dynamic range of the noise, and the residual map R is not
compressed but rather the image Rq = int(R/(knoiseσR)) with knoise = 1

2
in the applications below.

Lossless compression can be performed too, but this has sense only if the
input data are integers, and furthermore the compression ratio will be very
low.

7.1.5 Image decompression

The decompression is carried out scale-by-scale, starting from a low res-
olution, so it is not necessary to decompress the entire file if one is just
interested in having a look at the image. Noise is decompressed and added
at the end, if this is wanted. (The examples discussed below suppress the
noise entirely.)
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7.2 Examples and assessments

The examples cover digitized photographic (Figs. 7.1 and 7.4) and CCD
cases (Fig. 7.7). Figures 7.1, 7.2 and 7.3 show comparative results of the
approach described here with routines which we call mr comp and mr decomp,
and hcompress (White et al., 1992). Figures 7.4, 7.5 and 7.6 show another
set of comparative results. Figures 7.7 and 7.8 show a result of compressing
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Figure 7.1: The Coma cluster from a Space Telescope Science Institute
POSS-I digitized plate.

Figure 7.1 shows a 256 × 256 section of the Coma cluster from a Space
Telescope Science Institute POSS-I digitized plate. It was compressed using
the approach described in this chapter to produce Fig. 7.2. Default op-
tions were used (which included: 6 scales in the multiresolution transform;
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Figure 7.2: Compressed/decompressed using the PMT.

thresholding at three times the noise standard deviation; signal quantiza-
tion with a denominator of 1.5 times the standard deviation; and a Gaus-
sian noise model). Figure 7.3 shows the decompressed image resulting from
hcompress. Since the latter preserves textual image descriptors (our method
deletes most of them; neither approach seeks to compress the textual data in
the descriptors), we catered for this by having the hcompress decompressed
image be appropriately larger. Figures 7.1, 7.2 and 7.3 show the images
logarithmically transformed, and zoomed by a factor of two. The original
16-bit image had 131 072 bytes of image data. The mr comp compressed
image had 4288 bytes, and the hcompress compressed image – by design,
using a scaling factor of 2490 – had 4860 bytes. The compression factor was
therefore 131 072/4288 = 30.6.

Visually, Fig. 7.2 (mr comp) outperforms Fig. 7.3 (hcompress): one can
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Figure 7.3: Compressed/decompressed by hcompress.

notice all-pervasive box features in the latter at faint intensity levels. The
RMS (root mean square) error between compressed and original images was
273.9 for mr comp and 260.4 for hcompress. The SNR (signal-to-noise ratio,
defined as 10 times the logarithm, base 10, of the variance of the input image
minus the variance of the error image) was 14.1 dB for mr comp and 14.5
dB for hcompress. Thus, in this case, these global quality measures favor
hcompress.

In regard to such global quality measures, it may be noted that part of
what is measured is how well the respective algorithms relate to the noisy
(hence irrelevant aspect of the) input image. It may also encompass how
well input noisy features differ from restored noise, following quantization.
For the foregoing image, hcompress provided a better set of global quality
measures, but we have found visual quality to often differ substantially from
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global quantitative values. Visual quality is of primary importance, since
local and faint features are after all what one most often wishes to see
respected. Nonetheless, we will make use of MSE (mean square error) and
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Figure 7.4: NGC 5128 (Centaurus A), from the ESO Southern Sky Survey.

Figure 7.4 shows the central portion of a 900×900 subimage around NGC
5128 (Centaurus A), from the ESO Southern Sky Survey. This image and
also Figs. 7.5 and 7.6 (respectively mr comp and hcompress decompressed
results for approximately equal compression rates) are all shown histogram-
equalized. Compression to 104 Kbytes was attained in the case of mr comp,
with a slightly larger size for hcompress to compensate for preserving of
descriptors. A scaling factor of 1480 was used by design by the latter. This
gave therefore a compression rate for mr comp of 1 620 000/103 667 = 15.6.

The RMS values relating to Figs. 7.5 and 7.6 are respectively 39.4 and
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Figure 7.5: NGC 5128 compressed/decompressed using the PMT.

46.1. The SNR values were respectively 31.8 dB and 30.5 dB. In this case,
mr comp performed better as regards these global measures. The faint box
structures are visible in the hcompress output (Fig. 7.6).

Figure 7.7 shows an 800×800 Hubble Space Telescope WF/PC-2 (Wide
Field/Planetary Camera 2) image of NGC 4321 (M100). The central part
of this image, only, is shown in the figure. Figure 7.8 shows an mr comp

decompressed result. From 2 566 080 bytes of data in the input image, the
compressed image contained 51 394 bytes, which implies a compression factor
of 2 566 080/51 394 = 49.9. In Fig. 7.8, one can note that cosmic ray hits
(‘salt and pepper’ noise) have not been treated in any way.

Many close variants on the implementation adopted could be worthy of
consideration: a more finely tuned noise model; intervention to remove or
doctor detector faults; different quantization schemes; dependence of com-
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Figure 7.6: NGC 5128 compressed/decompressed using hcompress.

pressibility on the image’s content – e.g. large elliptical galaxy vs. star field.
Many such were looked at in this work. The resulting implementation is one
which we found to work convincingly and effectively.

For a 900 × 900 image, mr comp takes about 100 seconds, compared to
hcompress which takes around 24 seconds. This mr comp timing is with a
median transform kernel of dimensions 3× 3 (which can be varied, as a user
parameter). The routine mr comp aims at finding and separating out the
noise. On the other hand, the scale factor used by hcompress in practice is
set so that a certain compression rate is attained, and therefore this program
may need to be run a few times to find the desired value. This difference in
objectives between the two approaches should be noted.
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Figure 7.7: NGC 4321 (Hubble Space Telescope WF/PC-2).

7.3 Image transmission over networks

The decomposition of the image into a set of resolution scales, and further-
more the fact that they are available in a pyramidal data structure, can
be used for effective transmission of image data (see Percival and White,
1993). Some current work on World-Wide Web progressive image trans-
mission capability has used bit-plane decomposition (Lalich-Petrich, Bhatia
and Davis, 1995). Using resolution-based and pyramidal transfer and display
with WWW-based information transfer is a further step in this direction.

We prototyped a number of approaches to image transmission, based
on compressed images, and these will be briefly described. First, a few
particular aspects of this issue will be noted.

1. There are a number of somewhat different image transmission scenar-
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Figure 7.8: NGC 4321 compressed/decompressed using the PMT.

ios. In the case of image delivery from a large image database (e.g.
the Hubble Space Telescope archive) quick-look compressed images
are available to guide the user in whether or not the images are really
desired. In the case of storage management by an individual user,
analogous to the use of a Unix command such as compress for text,
efficient storage may be coupled with efficient on-the-fly uncompres-
sion and viewing. In the case of research collaborators sharing images
(not on the same scale as the image database scenario above), network
bandwidth may be a relatively scarce resource. In the following, our
thoughts are principally related to the last of these scenarios.

2. Astronomical images are noisy, and certainly if they are real-valued,
then true lossless compression is highly unusual.
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3. WWW browser support for in-lining of images does not currently ex-
tend to FITS. (FITS, Flexible Image Transport System, is an im-
age format universally used in astronomy.) Therefore there are good
grounds for providing GIF or JPEG versions of a FITS image, to fa-
cilitate viewing.

4. Actions can be defined for viewing (or performing other operations)
at the client end of the transmission, based on the content type of the
image file being transmitted. It is important to note that the client’s
local configuration usually does not override the WWW server’s rec-
ommended content type.

Three main options led to the following prototypes:

1. The web server which stores the multiresolution compressed images
(we will use file extension .MRC, and take the decompression exe-
cutable as mr_decomp), takes care of the uncompress process and sends
back the requested image as a FITS file. This option only requires a
FITS image viewer such as SAOimage (from the Smithsonian Astro-
physical Observatory) on the client machine.

The main drawback of this option is the load on the network since a
decompressed image is sent from the server to the client.

For this prototype, the server needs a CGI (the WWW Common Gate-
way Interface) script which calls the program to work on the MRC file
of the requested image. And the client needs to configure the browser
to recognize FITS images and locate the appropriate viewer. This
configuration depends on the browser and the client machine. This
is achieved by mapping the document MIME type, image/x-fits, to
the .fits filename extension and to the FITS viewer’s application.
(MIME is the Multipurpose Internet Mail Extension, a mechanisms
for specifying and describing the format of Internet files.) On Unix,
the .mime.type and .mailcap files are updated to do this.

2. The client decompresses the MRC file locally. The server sends back
an MRC file to the client browser which calls mr_decomp to get a
FITS image. Therefore mr_decomp must be installed on the client
machine. This client machine must be powerful enough to run the
decompression smoothly. This option saves the network’s bandwidth:
only compressed files are transferred.

The decompression is made via the MIME scheme. For the Netscape
browser, the X11 application default resource, encodingFilters is
modified.

Another option has also been studied: an intermediate proxy server is
used to decompress the MRC file and to send the FITS image to the browser.
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The proxy may also be used to cache the MRC file or the FITS image. This
elegant option combines the main advantages of the previous options since it
saves the wide area network bandwidth between the remote MRC file server
and the local proxy server. The decompression program, mr_decomp, runs
on a single machine, the proxy server (and so this saves the user any local
computation requirement), and this process is transparent to a user who
may access any MRC publishing server.

Another possible direction is to take advantage of the multiresolution
process to send the image resolution-by-resolution (from the lowest to the
highest). For example, one may request the lowest resolution of an image to
have a ‘quicklook’ of this image and afterwards ask for the next resolutions
until you are satisfied with the image’s quality and noise level. The FITS
image is reconstructed locally from the files that are sent one-by-one to the
client. This is progressive image transmission.

Current directions which are being actively worked on include: (i) pro-
gressive transmission with user-control of the part(s) of the image to be
transmitted with priority; and (ii) use of Java to send the decompressing
code to the client in association with the compressed data.

7.4 Conclusion on image compression

We set out to disentangle signal from noise in astronomical imagery, and
to use this to compress the signal part of the image (axiomatically, noise
is incompressible). An innovative approach was used to do this, which has
proven itself effective in practice. Some approximations and heuristics have
been noted in this work, which point to possible directions of study.

For image preview systems, the issue of photometric fidelity to the true
image is not of paramount importance. Instead, certain other issues are on
the agenda, where choice is required. Among these are: ought cosmic ray
hits be removed from the image, or should the user be presented with an
image which shows ‘warts and all’?; and should the noise image be stored
separately for reconstitution of the original image in the preview system?



Chapter 8

Object detection and point

clustering

A pyramidal or other multiresolution representation of an image can be used
to facilitate the extraction of information from an image. Imposing a certain
‘syntax’ on the image in this way may be of aid to the user in regard to the
image’s ‘semantics’: i.e. a structuring imposed on the image may help in
interpretation of the image.

For large objects in an image, a well-resolved galaxy for example, or for
superimposed objects, a multiscale approach is a very plausible one. Such
an approach has been pursued in Bijaoui (1991a, 1993a,b), Bijaoui et al.
(1994a), Bijaoui, Slezak and Mars (1989), Slezak et al. (1990, 1993).

Here we consider the case of images with sparsely located, small astro-
nomical objects. For search and analysis of a particular class of objects,
we use one privileged scale of a multiresolution transform. An object ‘map’
or boolean image may be derived from the multiresolution support. Such
a boolean image may be further cleaned of detector faults, and unwanted
objects, using mathematical morphology (or Minkowski) operators.

8.1 The problem and the data

Earlier work on our part aimed at finding faint edge-on galaxies in WF/PC
images. For each object found, properties such as number of pixels in the
object, peak-to-minimum intensity difference, a coefficient characterizing
the azimuthal profile, and the principal axis ellipticity, were used to allow
discrimination between potentially relevant objects, on the one hand, and
faint stars or detector faults, on the other hand.

Here we are concerned with the study of globular cluster systems sur-
rounding elliptical galaxies. NGC 4636 was discussed by Kissler et al.
(1993), and characterized as a rich globular cluster system in a normal ellip-
tical galaxy. Figure 8.1 shows an HST WF/PC image of NGC 4697, taken
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Figure 8.1: HST WF/PC image of NGC 4697. Globular clusters surrounding
the galaxy are of interest.

in May 1994 (hence pre-refurbishment). This image is of dimensions close
to 1600×1600, where the optically inactive borders have been removed, and
where one can see left-over features where the images produced by the four
different CCD chips have been mosaiced together.

8.2 Pyramidal median transform and Minkowski

operators

Pyramidal transforms based on the median transform were reviewed in
Chapter 1. The pyramid data structure offers a storage-efficient structuring
of the image. A given resolution level may be expanded up to the original
image’s dimensions, if this proves convenient for later processing. B-spline
interpolation can be used to reconstruct the original dimensionality. We
used the pyramidal median transform, with 4 resolution levels.

Figure 8.2 shows the level 3 resolution level (at full dimensionality) which
has been booleanized on the basis of a 3σ threshold, and under the assump-
tion that the image’s noise characteristics were modeled correctly by addi-
tive Poisson and Gaussian read-out noise (the latter of zero mean, gain 7.5
e−/DN, and variance 13 e−/pixel). Cosmic ray hits were removed (at least
to a first order) by consideration of a number of exactly similarly registered
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Figure 8.2: Resolution level 3, booleanized, version of previous figure.

frames.

In Fig. 8.2, as a good approximation, the objects of interest are with high
confidence among the contiguous boolean regions. Adaptivity for irregular
background or objects superimposed on larger, diffuse objects, is built into
our approach. Unlike traditional adaptive thresholding procedures for object
detection in astronomy, the multiresolution transform used here takes much
of the burden of defining background from the user. Detection thresholds are
based on the image’s noise properties, and thus on the detection of signal.

One also sees in Fig. 8.2 that this particular resolution level did not
perform particularly well in revealing all of the large elliptical object, for
which a different scale would be more appropriate. Detector faults (cold
pixel areas, column overflow or bleeding) have been fairly well removed, but
not all (see the very low-valued ‘circle’ of pixels in the upper right quadrant;
or the just noticeable differences in the four quadrants in Fig. 8.2).

To ‘fill in’ parts of the large diffuse galaxy object, and thus to avoid
later having to sift through parts of it which manifest themselves as small
object-like, we used two dilations, using as structuring element:

s =




0 1 1 0
1 1 1 1
1 1 1 1
0 1 1 1



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Such a structuring element is based on a priori knowledge of the object
sought, viz. point symmetric, and of small size.

Following this, 5 openings were applied, i.e. 5 erosions to kill off smaller,
spurious objects (left-overs of cosmic ray hits, thin detector faults) and 5
dilations to re-establish a sufficient hinterland around potentially relevant
objects for later analysis. Figure 8.3 shows the resulting image.

Figure 8.3: Following 2 dilations and 5 openings applied to previous figure.

The ‘blobs’ of Fig. 8.3 are then labeled; their corresponding original
image pixel values are used to determine a range of parameters which are
relevant for discrimination: size and magnitude information, and profile fits
of Gaussians assessed by χ2 discrepancy. In addition, we output for user
convenience a plot of the object numeric labels at their center positions.
Planned work will output astronomical coordinates for each object found in
this way, to allow matching against relevant catalog information.

8.3 Conclusion on astronomical object detection

We have investigated this approach to finding objects with particular, clearly
specified properties (faint globular clusters). For more massive, large-scale
object trawling in image databases, we have found that varying assumptions
about the desired types of objects can be partially met in this framework.
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One aim of the broad-ranging application of this method is to character-
ize the information content of images, through carrying out a preliminary
object detection and analysis. The image’s content can be summarized
through statistics related to number of objects present, their maximum and
average sizes (numbers of pixels), and other other easily determined charac-
terizations.

8.4 Object detection and clustering in point pat-

terns

In Chapter 2, object detection theory for point pattern data was discussed.
X-ray data typifies this problem. So also does point pattern clustering. A
short review of the literature in this area is provided in Murtagh and Starck
(1996). In all such cases, the data is sparse and in regimes characterized by
low counts. Hence detection theory based on a low-count Poisson model is
used.

Given a planar point pattern, a two-dimensional image is created by:

1. Considering a point at (x, y) as defining the value 1 at that point,
yielding the tuple (x, y, 1).

2. Projection onto a plane by (i) using a regular discrete grid (an image)
and (ii) assigning the contribution of points to the image pixels by
means of the interpolation function, φ, used by the chosen wavelet
transform algorithm (in our case, the à trous algorithm with a B3

spline).

3. The à trous algorithm is applied to the resulting image. Based on
a noise model for the original image (i.e. tuples (x, y, 1)), significant
structures are detected at each resolution level.

The cluster significance-testing procedure pursued here is similar to that
used in Bijaoui et al. (1994a), Bury (1995), Slezak et al. (1988, 1990, 1993)
in the study of large-scale cosmological structures.

8.4.1 Example 1: excellent recovery of Gaussian clusters

Figure 8.4 shows a point pattern set (a simulation for which the precise
generation details are given below). Figure 8.5 shows the corresponding
wavelet transform. Wavelet scales 1–6 are shown in sequence, left to right,
starting at the upper right corner. The images shown in Fig. 8.5 may be
summed pixel-wise to exactly reconstitute an interpolated version of Fig.
8.4, the interpolation being carried out, as mentioned above, by a B3 spline.
Two technical remarks regarding Fig. 8.5 are that (i) we rebinned each image
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Figure 8.4: Simulated Gaussian clusters with 300 and 250 points; and back-
ground Poisson noise with 300 points.

to 128 × 128 from the input 256 × 256 to cut down on space, and (ii) this
figure is shown histogram-equalized to more clearly indicate structure.

Figure 8.4 was generated with two Gaussian clusters designed with cen-
ters (64, 64) and (190, 190); and with standard deviations in x and y direc-
tions respectively (10, 20) and (18, 10). In the first (lower) of these clusters,
there are 300 points, and there are 250 in the second. Background Poisson
clutter was provided by 300 points. Figure 8.6 shows the 5th wavelet scale,
following application of the significance threshold for positive values. The
centroid values of the ‘island’ objects were found to be respectively (62, 63)
and (190, 190) which are very good fits to the design values. The standard
deviations in x and y were found to be respectively (9.3, 14.4) and (14.9, 8.9),
again reasonable fits to the input data.

The Poisson noise was successively increased, while keeping the same
number of points in the Gaussian clusters. Table 8.1 shows the results ob-
tained, even up to very substantial noise levels. These results show quite
remarkable recovery of the Gaussian clusters’ first two moments. The sec-
ond, smaller cluster shows some ‘eating into’ the cluster by the noise as ev-
idenced by the decreasing standard deviation. This assumes clearly that we
know what shapes we are looking for, in this case, Gaussian-shaped clusters.
To indicate the amount of noise associated with 40 000 Poisson-distributed
points, Fig. 8.7 shows this image.

A remark to make in regard to this result is that the wavelet method
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Figure 8.5: Wavelet transform (à trous method) of previous figure.

used prioritizes the finding of Gaussian-like shapes. The wavelet, as already
mentioned, is associated with a B3 spline. Its effect on cluster shapes which
are less Guassian-like will be investigated next.

8.4.2 Example 2: diffuse rectangular cluster

Figure 8.8 shows a simulated minefield in coastal waters (the denser aligned
set of points) with much clutter (Dasgupta and Raftery, 1995). For the Pois-
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Figure 8.6: The support image at the 5th scale-level of the wavelet transform
of Fig. 8.4 (multiplied by the wavelet resolution image at the same level),
following significance-testing for positive image structure.

Figure 8.7: The image showing 550 ‘signal’ points as two Gaussian-shaped
clusters, with 40 000 Poisson noise points added. Details of recovery of the
cluster properties can be seen in Table 8.1.

son clutter, 1500 points were used, and for the ‘stochastic bar’, 200 points
were generated as Poisson-distributed with an additive Gaussian compo-
nent. So we are seeking to find an approximate 200 somewhat more densely
located points among the 1500 uninteresting points. Figure 8.9 shows the
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Table 8.1: Recovery of two Gaussian-shaped clusters (centroids and standard
deviations) with increasing amount of Poisson noise.

Card noise x1 y1 x2 y2 x1-sd y1-sd x2-sd y2-sd

Input values 64 64 190 190 10 20 18 10

300 63 63 188 188 9.8 17.0 12.3 10.6
700 63 64 188 190 8.9 14.9 14.4 8.9

1100 65 63 188 188 8.5 19.1 17.4 9.3
1500 63 61 191 189 9.3 19.1 16.1 9.3
3500 62 62 190 188 9.3 12.7 14.0 9.3
7000 64 64 189 189 8.1 14.0 14.4 8.5

11000 63 63 184 189 7.6 14.9 13.6 7.2
15000 63 62 189 188 8.1 12.3 12.3 6.8
20000 65 63 174 186 5.1 8.5 8.1 6.4
30000 62 59 172 187 5.9 11.5 7.2 5.9
40000 61 70 187 186 6.4 8.1 7.2 6.4

Figure 8.8: A point pattern with clutter – simulated coastal water minefield.
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Figure 8.9: The support image (multiplied by the wavelet resolution image
at the same level) at the 5th scale-level of the wavelet transform of the
previous figure, following significance-testing for positive image structure.

significant parts of this image, again taking the 5th wavelet scale. This
result is visually quite good.

The input simulation used a bar in the x-interval (50, 200) and in the
y-interval (95, 100). To this was added Gaussian noise of standard deviation
3. Recovery for one simulation of the case of 200 ‘signal’ points and 1500
noise points yielded minimum and maximum x-values as (48, 196) and the
corresponding y-values as (86, 109).

We then reduced the number of points to 50 ‘signal’ points and 375
noise points. In this case, recovery (based on the 5th level of the multiscale
transform) yielded an x-interval of (61, 188) and a y-interval of (88, 107).
We can say that less information meant that our detection procedure allowed
the cluster to be ‘eaten into’ to a slightly greater extent.

8.4.3 Example 3: diffuse rectangle and faint Gaussian clus-

ters

To study effects of scale, we used Fig. 8.10 (left): a diffuse rectangular bar
containing 1300 points; less sharply defined, a Gaussian cluster of centroid
(64, 64) and with marginal standard deviations in x and y of 10 and 30,
respectively, which contained 600 points; and a Poisson noise background
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Figure 8.10: Left: input point pattern. Middle: support domain of wavelet
coefficients at 4th scale. Right: same for 5th scale.

of 1000 points. The middle and right parts of Fig. 8.10 show the 4th and
5th level of the wavelet transform, restricted to support (i.e. significant)
domains. The middle part of the figure shows the more high frequency
information, with just a little of the Gaussian cluster. The right part of the
figure shows more of the signal, whether relatively more or less diffuse.

8.5 Conclusion: cluster analysis in constant time

The overall method described here is very fast, taking less than about a
minute on a Sparcstation 10. Note in fact the rather remarkable computa-
tional result that the method is O(1), i.e. it is a constant-time algorithm.
There is no dependence at all on the number of points constituting signal
and noise. Thus the method described here shares this interesting property
of the human visual system.

It may be appreciated of course that there is dependence on the resolu-
tion level, i.e. the image size which is used to represent the point pattern
region. The computational requirements of the à trous method are linear as
a function of the dimensionality of the image.

It is interesting to note that while our objective in this chapter has
been to model noise accurately, thereby yielding the signal, an alternative
strategy is to attempt directly to model the signal. An initial phase of noise
modeling is commonplace in astronomy: traditionally carried out via local
or global background modeling, perhaps using polynomial fitting; and more
latterly carried out by multiscale noise-modeling. In this framework, fitting
of idealized stellar shapes (close to Gaussian in form) to the objects found in
an image is carried out following the estimation of the image ‘background’
or significant signal. This, then, is the starting point for discriminating
between stars and extended objects such as galaxies.

As opposed to noise modeling, cluster modeling remains at a basic level
in our method. We have noted how part of the ‘microscope’ which we are
using to seek clusters is a B3 spline, which is isotropic.
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In more general multivariate data analysis, including the analysis of point
patterns, Banfield and Raftery (1993) and Dasgupta and Raftery (1995)
tackle the problem of finding clusters with prescribed shapes (e.g., highly
elliptical multivariate Gaussian) in the presence of Poisson noise points.
This is done using an agglomerative (or hierarchical) clustering algorithm,
respecting the desired cluster shape. A stopping criterion, using a Bayesian
argument, halts the agglomerations before too many noise points can be
added. The precise definition of the cluster shape is set – based on the
covariance structure or some other parametrization of the shape.

Our main aim is the filtering of noise or clutter in the image, in order to
allow for accurate processing of the signal in a subsequent phase. Recovery
of object (signal) parameters can be very accurate. As noted, our approach
to noise modeling is computationally very efficient and has the intriguing
human-like property of being of constant computational complexity.



Chapter 9

Multiscale vision models

9.1 Artificial vision and astronomical images

Astronomical images contain typically a large set of point-like sources (the
stars), some quasi point-like objects (faint galaxies, double stars) and some
complex and diffuse structures (galaxies, nebulae, planetary stars, clusters,
etc.). These objects are often hierarchically organized: star in a small neb-
ula, itself embedded in a galaxy arm, itself included in a galaxy, and so
on. We define a vision model as the sequence of operations required for
automated image analysis. Taking into account the scientific purposes, the
characteristics of the objects and the existence of hierarchical structures,
astronomical images need specific vision models.

For robotic and industrial images, the objects to be detected and ana-
lyzed are solid bodies. They are seen by their surface. As a consequence, the
classical vision model for these images is based on the detection of the sur-
face edges. We first applied this concept to astronomical imagery (Bijaoui
et al., 1978). We chose the Laplacian of the intensity as the edge line. The
results are independent of large-scale spatial variations, such as those due to
the sky background, which is superimposed on the object images. The main
disadvantage of the resulting model lies in the difficulty of getting a correct
object classification: astronomical sources cannot be accurately recognized
from their edges.

We encounter this vision problem of diffuse structures not only in astron-
omy, but also in many other fields, such as remote sensing, hydrodynamic
flows or biological studies. Specific vision models were implemented for these
kind of images. For reducing astronomical images, many procedures have
been proposed using a model for which the image is the sum of a slowly
variable background with superimposed small-scale objects (Slezak et al.,
1988; Stobie, 1986). A background mapping is first built (Bijaoui, 1980).
For that purpose we need to introduce a scale: the background is defined
in a given area. Each pixel with a value significantly greater than the back-
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ground is considered to belong to a real object. The same label is given to
each significant pixel belonging to the same connected field. For each field
we determine the area, the position, the flux and some pattern parameters.
Generally, this procedure leads to quite accurate measurements, with cor-
rect detection and recognition. The model works very well for content-poor
fields. If this is not the case, a labeled field may correspond to many ob-
jects. The background map is constructed at a given scale. Larger objects
are removed. This smoothing is only appropriate for star detection and not
for larger objects.

We used this vision model on many sets of images. It failed to lead
to a complete analysis because it is based on a single spatial scale for the
adaptive smoothing and for the background mapping. A multiscale analysis
allows us to get a background appropriate for a given object and to optimize
the detection of different sized objects. The wavelet transform is expected
to be the tool allowing us to build up an analysis, taking into account all
the constraints.

9.2 Object definition in wavelet transform space

9.2.1 Choice of a wavelet transform algorithm

The 2D multiresolution analysis due to Mallat (1989) is generally performed
separately by row and column. This does not lead to an isotropic per-
spective, three wavelet functions are used, and it is not easy to associate
wavelet coefficients with a given pixel. Stars, and more generally astronom-
ical sources, are quite isotropic sources, with no direction prioritized. Thus
we choose an isotropic wavelet transform. We need also to make a connec-
tion between images at different scales. As the redundancy is not critical we
prefer to avoid decimation. This leads us to the use of the à trous algorithm.

9.2.2 Bases of object definition

After applying the wavelet transform on the image, we have to detect, to
extract, to measure and to recognize the significant structures. The wavelet
space of a 2D direct space is a 3D one. An object has to be defined in this
space. A general idea for object definition lies in the connectivity property.
An object occupies a physical region, and in this region we can join any pixel
to other ones. The connectivity in the direct space has to be transported to
the wavelet transform space (WTS). In order to define the objects we have
to identify the WTS pixels we can attribute to the objects.

At a given scale, it is clear that a given object leads to one connected field.
A region labeling has to be made, scale-by-scale. A physical object can show
features at different successive scales, and an interscale connectivity graph
has then to be established. Connected trees are identified from the preceding
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graph. These correspond to a WTS region which can be associated with an
object. This permits us to separate close components and to identify an
object from its full components. The identification of WTS pixels related to
a given object leads to the reconstruction of an image by partial restoration
algorithms.

9.2.3 Significant wavelet coefficients

The statistical distribution of the wavelet coefficients depends on the noise
process. Generally, we admit that we have stationary Gaussian noise for the
image. As we have seen in Chapter 2, we can transform the pixel intensity by
Anscombe’s transform (1948) in the case of Poisson noise, and then process
the data as Gaussian variables. This approach can be generalized to many
kinds of noise. So, for a simple presentation of our vision model we further
admit that the noise is Gaussian.

The means to compute the standard deviation σ(i) of the wavelet coef-
ficients at scale i due to the noise has been explained in Chapter 2. This
has allowed us to extract the set of significant coefficients at each scale for
a given decision level ǫ. The vision model is based only on these detected
significant pixels.

9.2.4 Scale-by-scale field labeling

After the identification of the significant pixels we carry out an image seg-
mentation scale-by-scale in WTS. In our present analysis we have examined
only positive coefficients, which correspond to light sources. Significant neg-
ative pixels may be associated with absorbing regions, but they are generally
associated with the wavelet bumps: around a peak we have always negative
wavelet coefficients. The corresponding pixels do not belong to a real object,
even if they are significant.

The region labeling is made by a classical growing technique. At each
scale, we give a label to a pixel: 0 if the wavelet coefficient is smaller than
the threshold, n > 0 for the contrary case. Neighboring significant pixels
have the same label. We indicate by L(i, k, l) the label corresponding to the
pixel (k, l) at the scale i, and D(i, n) a segmented field of label n at the
same scale. We have:

D(i, n) = {W (i, k, l) such that L(i, k, l) = n} (9.1)

.
An object could be defined from each labeled field, without taking into

account the interscale neighborhood. We can restore an image of these
objects from the known wavelet coefficients, but this restoration would not
use all the information. A given physical object may lead to significant pixels
at different scales. A correct restoration, however, needs all the information.
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9.2.5 Interscale connection graph

An astronomical object is described as a hierarchical set of structures. So
we have to link the labeled fields from one scale to the following one, in
order to give the hierarchy. Let us consider the fields D(i, n) at scale i
and D(i + 1,m) at scale i + 1. The pixel coordinates of the maximum
coefficient W (i, ki,n, li,n) of D(i, n) are (ki,n, li,n). The field D(i, n) is said
to be connected to D(i+ 1,m) if the maximum position belongs to the field
D(i+ 1,m).

L(i+ 1, ki,n, li,n) = m (9.2)

With this criterion of interscale neighborhood, a field of a given scale is
linked to at most one field of the upper scale. Now we have a set of fields
D(i, n) and a relation R:

D(i, n) R D(i+ 1,m) if L(i+ 1, ki,n, li,n) = m (9.3)

This relation leads to building the interscale connectivity graph, the ver-
tices of which correspond to the labeled fields. Statistically, some significant
structures can be due to the noise. They contain very few pixels and are
generally isolated, i.e. connected to no field at upper and lower scales. So,
to avoid false detection, the isolated fields are removed from the initial in-
terscale connection graph.

9.2.6 An object as a tree

Let us consider an image without any noise, which contains one object (for
instance a 2D Gaussian), and its wavelet transform. At each scale, one
structure is detected by the thresholding and segmentation procedures. The
evolution graph of the highest wavelet coefficient of the field of each scale
has one maximum at a scale that increases with the object size. The coor-
dinates of the highest coefficient do not vary with scale and correspond to
the brightest pixel in the original image.

This wavelet property leads us to associate an object with each local
maximum of the image wavelet transform. For each field D(i, n2) of the
interscale connection graph, its highest coefficient W (i, k2, l2) is compared
with the corresponding coefficients of the connected fields of the upper scale,
W (i + 1, k+, l+) and lower scale, W (i − 1, k−, l−). In the case of isolated
simple objects, W (i, k2, l2) only has to be compared with the coefficients
of the same coordinates of the scale i + 1 and i − 1 in order to detect the
object (k+ = k− = k2 and l+ = l− = l2) which is described by all the
fields linked to D(i, n2). But generally, the object we want to identify is
under the influence of the neighboring objects and may be contained in an
object of larger size or itself include smaller objects. At the lowest scales,
the division into small structures due to noise has to be taken into account
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too. At each scale, the position of the highest wavelet coefficient associated
with the objects may change and several fields can be attributed to the
object. Two problems have to be solved. First, the local maximum has to
be detected correctly, i.e. W (i + 1, k+, l+) and W (i − 1, k−, l−) have to be
localized precisely. Then the contribution of the object to each scale, i.e.
the fields or part of fields that can be assigned to it, have to be identified.
To determine W (i + 1, k+, l+) and W (i − 1, k−, l−), we have adopted the
following rules.

• Given D(i + 1, n3), the field of the scale i + 1 connected to D(i, n2).
If D(i, n2) is not linked to a field of the scale i+ 1, only the test with
W (i−1, k−, l−) will be processed. Let us note that D(i, n2) cannot be
isolated, otherwise it has already been removed at the previous step:
at least one field of the scale i+1 or i−1 connected to D(i, n2) exists.

• D(i+ 1, n3) has one antecedent D(i, n2), W (i+ 1, k+, l+) corresponds
to the highest coefficient of the field.

• D(i+1, n3) has several antecedents, so we have to isolate the sub-field
of D(i+ 1, n3), D̃(i+ 1, n2), the contribution of D(i, n2) to the upper
scale. So W (i + 1, k+, l+) is the highest coefficient of this field. We
have:

D̃(i+ 1, n2) = {W (i+ 1, k, l) ∈ D(i+ 1, n3)

such that L(i, k, l) = n2} (9.4)

and

W (i+ 1, k+, l+) = Max({W (i+ 1, k, l) ∈ D̃(i+ 1, n2)}) (9.5)

For W (i− 1, k−, l−), the same reasoning is applied:

• D(i, n2) has one antecedent, D(i− 1, n1), W (i− 1, k−, l−) is equal to
W (i− 1, k1, l1), the highest coefficient of D(i− 1, n1).

• D(i, n2) is connected to several fields, we select the field for which
the position of its highest coefficient is nearest to (k2, l2). So W (i −
1, k−, l−) is this coefficient.

If W (i− 1, k−, l−) < W (i, k2, l2) and W (i, k2, l2) > W (i, k2, l2), D(i, n2)
corresponds to a local maximum of the wavelet coefficients. It defines an
object. No other fields of the scale i are attributed to the object; D(i, n2)
concentrates the main information which permits the object image to be
reconstructed. Only the fields of the lower scales connected directly or in-
directly to D(i, n2) are kept. So the object is extracted from larger objects
that may contain it. On the other hand, some of these fields may define
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other objects. They are subobjects of the object. To get an accurate repre-
sentation of the object cleaned of its components, the fields associated with
the subobjects cannot be directly removed; as experiments show, their im-
ages will have to be restored and subtracted from the reconstructed global
image of the object.

By construction, D(i, n2) is the root of a subgraph which mathematically
defines a tree denoted T (Berge, 1967). The tree T expresses the hierar-
chical overlapping of the object structures and the 3D connectivity of the
coefficients set that defined it in the WTS. Subtrees of T correspond to the
subobjects:

T = {D(j,m) such that D(j,m) R· · ·R D(i, n2)} (9.6)

9.2.7 Object identification

We can now summarize this method allowing us to identify all the objects
in a given image:

1. We compute the wavelet transform with the à trous algorithm, which
leads to a set W (i, k, l), i ≤ N ;

2. We determine the standard deviation of W (1, k, l) due to the noise;

3. We deduce the thresholds at each scale;

4. We threshold scale-by-scale and we do an image labeling;

5. We determine the interscale relations;

6. We identify all the wavelet coefficient maxima of the WTS;

7. We extract all the connected trees resulting from each WTS maximum;

Let us remark that this definition is very sensitive to the kind of wavelet
transform used. We work with an isotropic wavelet, without decimation.
With Mallat’s algorithm this definition would have to be revised.

9.3 Partial reconstruction

9.3.1 The basic problem

Let us consider now an object O as previously defined. This corresponds
to a volume S in WTS. This volume is associated with a set V of wavelet
coefficients, such that:

O =⇒ {V(i, k, l), for (i, k, l) ∈ S} (9.7)
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F is an image and W is its corresponding wavelet transform. F can be
considered as a correct restored image of the object O if:

V(i, k, l) =W(i, k, l) ∀(i, k, l) ∈ S (9.8)

PS denotes the projection operator in the subspace S and WT the operator
associated with the wavelet transform, so that we can write:

V = (PS ◦WT )(F) (9.9)

and we will term this transformation of F , A(F).

We have to solve the inverse problem which consists of determining F
knowing A and V. The solution of this problem depends on the regularity
of A. In many papers and books authors have discussed the availability of a
solution to this class of inverse problem (for example, see Demoment, 1989).
The size of the restored image is arbitrary and it can be easily set greater
than the number of known coefficients. It is certain that there exists at least
one image F which gives exactly V in S, i.e. the original one: the equation is
consistent (Pratt, 1978). But generally we have an infinity of solutions, and
we have to choose among them the one which is considered as correct. An
image is always a positive function, which leads us to constrain the solution,
but this is not sufficient to get a unique solution.

The choice of unique solution can be governed by a regularization con-
dition. Many regularization conditions have been developed for restoration.
Taking into account consistency, we first used a direct simple algorithm (Bi-
jaoui and Rué, 1995), connected to Van Cittert’s (1931) one for which the
regularization is carried out by the limitation of the support. Then we ap-
plied the conjugate gradient algorithm (Lascaux and Théodor, 1994) which
corresponds to minimization of the energy. This method is more efficient
than the direct algorithm; the restoration quality and the convergence speed
are improved.

9.3.2 Choice of the scale number

The set V associated with O is defined on Nm scales, Nm being the scale
of the maximum of the wavelet coefficient maxima which has permitted
the object to be identified. In order to have an accurate reconstruction,
experiments show that V has to be extended to the upper scale Nm + 1,
with D̃(Nm+1, n) the contribution to this scale of D(Nm, n), the root of T .
If D(Nm, n) is linked to no field of the upper scale, V cannot be extended
and the image may not be well-restored (see below). Given D(Nm + 1, p)
the field linked to D(Nm, n), two cases arise to determine this contribution:

• D(Nm + 1, p) has one antecedent D(Nm, n), D̃(Nm + 1, n) is equal to
D(Nm + 1, p)
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• D(Nm + 1, p) has several antecedents. D̃(Nm + 1, n) contains the
coefficients of D(Nm+1, p) defined on the same support as D(Nm, n):

D̃(Nm + 1, n) = {W (Nm + 1, k, l) ∈ D(Nm + 1, p)

such that L(Nm, k, l) = n} (9.10)

The number of scales used for the reconstruction is such that Nr =
Nm + 1. The 3D support S of V becomes:

S = {(i, k, l) such that W (i, k, l) ∈ D(i, n) element of T }
∪ {(Nm + 1, k, l) such that W (Nm + 1, k, l) ∈ D̃(Nm + 1, n)} (9.11)

An efficient restoration is ensured by having a set V that contains the
maximum of the wavelet coefficients. But if D(Nm, n) is linked to no field
(Nr = Nm), for instance its local maximum is on the last scale of the wavelet
analysis, the real maximum may belong to a higher scale. The reconstruction
cannot be optimal in this case. There is some information missing and the
discrepancy between the original and the restored image can be large.

9.3.3 Reconstruction algorithm

We use the least squares method to solve the relation V = A(F ) which leads
to seeking the image F which minimizes the distance ‖V − A(F )‖. This
distance is defined for a wavelet structure W by the relation:

‖W‖ =

√√√√√
Nr∑

i=1

∑

k,l

W (i, k, l)2 (9.12)

‖V−A(F )‖ is minimum if and only if F is a solution of the following equation:

Ã(V) = (Ã ◦A)(F ) (9.13)

The initial eqn. (9.9) is thus modified with the introduction of Ã, the joint
operator associated with A. Ã is applied to a wavelet transform W and
gives an image F̃ :

F̃ = Ã(W ) =
N∑

i=1

(H(1) · · ·H(i− 1)G(i))(W (i)) (9.14)

H(i) and G(i) are respectively low- and high-pass filters used to compute
the smoothed images and the wavelet levels. We have:

F (i, k, l) =
∑

n,m

h(n,m)F (i− 1, k + 2i−1n, l + 2i−1m) (9.15)

= H(i)(F (i− 1))(k, l)
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and

W (i, k, l) =
∑

n,m

g(n,m)F (i− 1, k + 2i−1n, l + 2i−1m) (9.16)

= G(i)(F (i− 1))(k, l)

Initially, we implemented the reconstruction algorithm with this operator
Ã, but several tests showed the existence of spurious rings around the objects
in the restored images. This phenomenon is due to the positive bumps of the
filtering of the negative components at each scale of the wavelet structures
processed by G(i). The artifacts are removed by suppressing this operator
and we simply write:

F̃ = Ã(W ) =
N∑

i=1

(H(1) · · ·H(i− 1))(W (i)) (9.17)

Since we have a symmetric operator, Ã ◦ A, the conjugate gradient
method can be applied. Before describing the algorithm, some changes must
be made:
V is not a real wavelet structure because it is only defined inside S.

To easily manipulate V, we replace it by the wavelet structure W whose
coefficients outside S are equal to zero.

W =

{
= V(i, k, l) if (i, k, l) ∈ S
= 0 if (i, k, l) 6∈ S (9.18)

Now the inverse problem is to solve for F :

Ã(W) = (Ã ◦A)(F ) (9.19)

The steps of the conjugate gradient algorithm we applied to this new
system are now described. In these steps, F (n) is the estimation of the
solution F at iteration n.

0. Initialization step: the estimated image F (n), the residual wavelet

W
(n)
r and image F

(n)
r are initialized.





F (0) = R(W)

W
(0)
r =W −A(F (0))

F
(0)
r = Ã(W

(0)
r )

(9.20)

R is the wavelet reconstruction operator. From a wavelet structure W ,
an image F is restored corresponding to the sum of the wavelet and
the last smoothed images. W is not necessarily the wavelet transform
of an image, so WT (F ) may not be equal to W .
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1. Computation of the convergence parameter α(n):

α(n) =
‖Ã(W

(n)
r )‖2

‖A(F
(n)
r )‖2

(9.21)

2. An iterative correction is applied to F (n) to get the intermediate image

F
(n+1)
1 :

F
(n+1)
1 = F (n) + α(n)F (n)

r (9.22)

3. Finally, we obtain the restored image at iteration n + 1, F (n+1), by

thresholding F
(n+1)
1 in order to get a positive image:

F (n+1)(k, l) = Max(0, F
(n+1)
1 (k, l)) (9.23)

4. Residual wavelet computation where only the wavelet coefficients in-
side S are taken into account.

W (n+1)
r =W −A(F (n+1)) (9.24)

5. Test on the residual wavelet: if ‖W (n+1)
r ‖ is less than a given threshold,

the desired precision is reached and the procedure is stopped.

6. Computation of the convergence parameter β(n+1):

β(n+1) =
‖Ã(W

(n+1)
r )‖2

‖Ã(W
(n)
r )‖2

(9.25)

7. Residual image computation

F (n+1)
r = Ã(W (n+1)

r ) + β(n+1)F (n)
r (9.26)

8. Return to step 1

9.3.4 Numerical experiments

Restoration of a Gaussian pattern.

In order to test the validity of the algorithms, we considered first a Gaussian
pattern rather typical of the image of an astronomical object. We start
without any noise in order to examine the quality of the inversion. The
Gaussian pattern considered is shown in Fig. 9.1. On the right part of Fig.
9.1 we show the restored image. After about 20 iterations the convergence
is correct. The restored image support is maximum at the first iteration and
then decreases and converges to a compact field.
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Figure 9.1: Gaussian pattern without noise (left) and its restored image
(right).

Restoration of noisy Gaussian patterns.

We carried out a set of numerical experiments with noisy Gaussian patterns.
In Fig. 9.2 we plotted the Gaussian pattern with SNR (SNR is defined as
the ratio of the standard deviation of the signal to the standard deviation of
the noise) equal to 10 and its corresponding restored image. The pattern is
correctly restored, and the convergence is quite similar to the one without
noise. In Fig. 9.3 SNR is equal to 1, some distortions exist but the accuracy
is generally sufficient. In Fig. 9.4 SNR is equal to 0.1, the restoration is not
too bad for a further analysis. These experiments show that it is possible
to extract a significant pattern even for a small SNR. This would be quite
impossible by the other vision models we described in the introduction to
this chapter.

Restoration of close objects.

In the above experiments, we considered one isolated Gaussian, but gener-
ally astronomical objects may be close, and it is difficult to analyze them
separately. We consider now two Gaussian patterns at a variable distance.
In the right part of Fig. 9.5 we have plotted the Gaussian pattern considered
while their sum at distance 4σ is plotted in the left part. If the distance
between the two patterns is lower than 3σ, they cannot be separated. The
restoration of the right component is plotted in the left part of Fig. 9.6.
The reconstruction quality is quite bad because of the influence of the left
pattern.

In the case of objects which are too close, the reconstruction can be
improved by the following iteration. Let us consider an image F , a sum of
two objects with images F1 and F2. Their wavelet transforms are W1 and
W2. Their significant wavelet structures are V1 (in S1) and V2 (in S2). If
the objects are too close, F2 makes for a significant contribution to V1, and
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Figure 9.2: Gaussian pattern with SNR 10 (left) and its restored image
(right).
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Figure 9.3: Gaussian pattern with SNR 1 (left) and its restored image
(right).
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Figure 9.4: Gaussian pattern with SNR 0.1 (left) and its restored image
(right).
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Figure 9.5: The sum of the Gaussian patterns at distance 4σ (left) and the
original pattern (right).
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Figure 9.6: The reconstruction of the right Gaussian pattern without (left)
and with (right) account taken of the influence of the left pattern.
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F1 to V2:

V1 = V11 + V12 (9.27)

where V11 is the W1 coefficients ∈ S1 and V12 the W2 coefficients ∈ S1.
We improve the F1 restoration if we reduce the component V12, i.e. the

effect of F2. We get an approximate solution F̃2 of F2. We subtract F̃2

from the initial image F(k, l). The effect of F2 on F1 obviously decreases.
We can do the same operation for F1. Then we iterate to convergence.
This algorithm leads to a real improvement in the quality of the restoration,
for intermediate distances. For patterns which are too close, the initial
patterns are too far from the real ones, and the algorithm does not give
a correct solution. In the right part of Fig. 9.6 we have plotted the effect
on the right Gaussian component. The quality of the restoration is now
acceptable, in spite of the interaction between the patterns. The algorithm
could be applied to more patterns, but the complexity of the computations
is a serious restriction on the number of objects to be restored.

Restoration of superimposed patterns.

Finally we examine another important case, the case of superimposed pat-
terns. In Fig. 9.7 we have plotted a central cut of the image of a narrow
Gaussian function superimposed on a larger one. We have plotted in the
same figure the original narrow pattern and the restored one. We remark
that the influence of the larger background structure is negligible. The
quality of the restoration depends on the separation between the patterns
in WTS. We get no significant bias for a background pattern which can be
considered as locally constant for the narrow Gaussian function.

9.4 Applications to a real image

We propose to compare the performance of the multiscale model with that
of a well-known astronomical package for image analysis, INVENTORY
(Kruszewski, 1989). For this, the two methods are tested on an image
named L384-350 (see Fig. 9.8). This frame comes from a Schmidt plate
(field number 384) of the ESO-R survey of the southern hemisphere. In
its center, it contains the galaxy 384350 of the Lauberts catalog and other
galactic field objects like the bright star juxtaposed to 384350. We limit the
comparison to object detection and measurement.

9.4.1 Multiscale method

We performed a 7-scale wavelet transform of L384-350. 58 objects were
detected. The restored image, made from the reconstructed images of each
object, is given in Fig. 9.9 and the objects’ mapping in Fig. 9.13.
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Figure 9.7: The central cut of the superimposed Gaussian patterns. The
original narrow pattern is plotted with a solid line and the restored one
with a dashed line.

The tree of the central galaxy object is plotted in Fig. 9.10. The corre-
sponding restored image is plotted in Fig. 9.11. A subobject of the galaxy,
which corresponds to a spiral arm, has been extracted; its image is shown
in the same figure.

In the image center there is a large nebulous area that stands visually
out against the background. The model does not permit this zone to be
extracted. Indeed, its local maximum is hidden by the influence, up to high
scales, of the local maxima of the two central bright objects, and cannot be
detected. In order to isolate it, the vision model has only to be applied again
on the image resulting from the difference between the initial image and the
global restored images of all its objects. Figure 9.12 contains the restored
image of the nebulous area whose local maximum belongs to the scale 6.
Only the scales 5, 6 and 7 have been used to reconstruct this image in order
to reduce the effects of some artifacts of the difference image due to the
imperfection of the restored object images. In spite of this precaution, the
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Figure 9.8: Image of L384-350.
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Figure 9.9: Restored image of L384-350.
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Figure 9.10: Tree of the galaxy object of L384-350.

influence of the objects superimposed on the nebulous area cannot totally
be removed.

9.4.2 INVENTORY method

INVENTORY is a searching, photometric, and classifying package included
in the ESO-MIDAS image processing system. For L384-350, we take only
an interest in the results concerning the searching and analysis of objects.
The SEARCH routine of INVENTORY gives a preliminary list of objects.
We obtained 59 objects using a detection threshold equal to 3 times the
estimated standard deviation of the image noise. The ANALYSE routine
verifies the previous detections and removes or adds some objects of the list:
60 objects remain for which many measures of magnitude and size are made.
The corresponding mapping of objects is plotted in Fig. 9.13.

9.4.3 Comments

In the case of simple objects of small size, INVENTORY and the multiscale
model give very similar results for the object localization and magnitude
measurement as shown in Table 9.1 which gathers together results obtained
with selected objects of the image (mx and my are the coordinates of the
brightest pixel of the object and mag is its magnitude in an arbitrary scale).

On the other hand, for an irregular and complex object such as the star
or the galaxy of the image center, INVENTORY does not succeed in globally
identifying them. There are multiple detections. Also, this method cannot
bring out a structure hierarchy in the objects unlike the multiscale vision



272 CHAPTER 9. MULTISCALE VISION MODELS

1 142

1
15

0

1 90

1
7

6

Figure 9.11: Restored images of the galaxy object and one of its subobjects.
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Figure 9.12: Restored image of the nebulous central area.
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Figure 9.13: Mapping of detected objects (multiscale model: + (object) ◦
(sub-object) and INVENTORY: ×).

model that can decompose an object, complex as it may be, thanks to the
notion of a subobject: the model identifies all the little objects it contains
and points out their overlapping order.

9.5 Vision models and image classes

The vision model described above is based on the à trous algorithm. This
algorithm is redundant, so the application to large images needs a lot of
memory. The pyramidal algorithms provide smaller transforms, so a pyra-
midal vision model can easily be applied to these images. The vision model
is based always on the significant structures. An interpolation is made in
order to determine the interscale connectivity graph. The reconstruction al-
gorithm is similar to the one developed for the à trous case, and the quality
of the restoration is quite similar.

More generally, the vision model contains a set of operations which are
independent of the multiscale transform which is applied: thresholding, la-
beling, interscale labeling, tree determination, extraction of the coefficients
corresponding to a given object. The specific transform is needed at first to
compute the coefficients, and subsequently and finally to restore the objects.
A class of multiscale vision models results for this strategy, by changing the
transform.

In our comparison between the à trous and the pyramidal algorithms,
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Table 9.1: Results of the vision model and INVENTORY for some test
objects.

Object Vision Model INVENTORY
mx my mag mx my mag

3-1 10.68 29.95 15.52 10.32 29.98 15.39
3-4 77.34 140.03 15.79 77.44 140.2 15.72
3-6 79.08 206.45 15.91 79.03 206.30 15.94
2-2 179.22 32.19 18.37 179.20 32.08 18.55
2-4 244.82 37.95 16.97 244.50 37.89 16.87
2-5 122.35 79.42 17.30 122.40 79.39 17.30
2-6 95.57 86.48 17.55 95.71 86.51 17.59
2-26 143.71 201.61 16.70 143.70 201.6 16.73
2-30 29.83 238.63 17.26 29.79 238.70 17.33
1-28 225.48 138.95 18.54 225.55 139.30 18.75

we have established that the former furnishes more accurate geometric and
photometric measurements. The quality was similar only if the data was
previously oversampled for the pyramidal case. Clearly, in this algorithm
information is lost, and it can be recovered by the oversampling.

We have not tested all the multiscale transforms, but it is a priori clear
that the reconstructed objects will depend on the transform used. The choice
of the best tool is probably associated with the image texture. We have ap-
plied the à trous algorithm on diffuse structures, which correspond generally
to astronomical patterns. This transform works well for these objects, be-
cause the image is restored by cubic B-splines, which are also diffuse-like
patterns. Now, if we consider the images of solid bodies, their representation
by cubic B-splines is not optimal. Nonlinear multiscale transforms would
be better adapted to this class of images.

A general framework is provided by the procedure described, but much
effort has to be undertaken to determine the optimal multiscale vision model
related to a given class of images.
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Variance stabilization

A.1 Mean and variance expansions

Consider a variable x defined as x = αn + γ where α is the gain, γ is a
Gaussian variable of mean g and standard deviation σ, and n is a Poisson
variable of mean m0.

A transformation of x is sought, such that the variance is constant irre-
spective of the value of x. The general form of this transformation is arrived
at by the following argument. From the definition of x, its variance is given
by V (x) = σ2 +α2m0. Assuming the variability of x to be sufficiently small,
the variance of a transformed x, y(x), will be given by V (y) = ( dydx)2V (x).
Letting V (y) = 1, we get:

dy

dx
=

1√
σ2 + α2m0

To a first order approximation, αm0 = x− g. Thus

dy

dx
=

1√
σ2 − αg + αx

This leads to

y(x) =
2

α

√
αx+ σ2 − αg

This derivation of y(x) has been based on a local approximation. More
generally, we will now seek a transformation of this general form, i.e. y =√
x+ c. Series expansion about the mean will be used.

Define E(x) = m, and let t = x−m and m′ = m + c. An expansion of
y as a function of t is then:

y =
√
m′ + t =

√
m′

[
1 +

1

2

t

m′
− 1

8

t2

m′2
+

1

16

t3

m′3
− 5

128

t4

m′4
+ . . .

]
(A.1)
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Hence:

E(y) =
√
m′

[
1− µ2

8m′2
+

µ3

16m′3
− 5µ4

128m′4
+ . . .

]
(A.2)

where the µi are the centered moments of the variable t. We derive:

E2(y) = m′

[
1− µ2

4m′2
+

µ3

8m′3
− 5µ4

64m′4
+

µ2
2

64m′4
+ . . .

]
(A.3)

Hence the variance, V (y), is given by:

V (y) =
µ2

4m′
− µ3

8m′2
− µ2

2 − 5µ4

64m′3
+ . . . (A.4)

A.2 Determination of centered moments

The characteristic function of a sum of a Poisson variate and a Gaussian
variate is given by:

ϕ(u) = exp(−2πigu− 2π2σ2u2 +m0 exp(−2πiαu)− 1) (A.5)

Using the logarithm of ϕ(u), taking its derivative, and considering the value
of the derivative at the origin, yields:

ϕ′(u)

ϕ(u)
= −4π2σ2u− 2πig − αm02πie

−2πiαu (A.6)

from which the first moment (mean) is:

m = g + αm0 (A.7)

Using the second derivative yields:

ϕ′′(u)

ϕ(u)
− ϕ′2(u)

ϕ2(u)
= −4π2σ2 − 4π2α2m0e

−2πiαu (A.8)

providing an expression for the second centered moment (variance):

µ2 = σ2 + α2m0 (A.9)

The third derivative provides the third centered moment:

µ3 = m3 − 3m1m2 + 2m3
1 = α3m0 (A.10)

Finally, the fourth centered moment is:

µ4 = α4m0 + 3(σ2 + α2m0)
2 (A.11)
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A.3 Study of the expansions for the variance

Given that m′ = m+ c, the following binomial expansions can be written:

1

m′
=

1

m

[
1− c

m
+

c2

m2
+ . . .

]
(A.12)

1

m′2
=

1

m2

[
1− 2

c

m
+ 3

c2

m2
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]
(A.13)

1

m′3
=

1

m3

[
1− 3

c

m
+ . . .

]
(A.14)

We will consider the first two most significant terms of these. Consider
eqn. (A.4) above, which is an equation for the variance which we seek to
‘stabilize’. Expressions for µi for i = 1, 2, 3, 4 are provided by eqns. (A.7),
(A.9)–(A.11). Finally expressions for 1/m′, 1/m′2, and 1/m′3 are provided
by eqns. (A.12)–(A.14). Substitution gives:

V =
α

4
+
σ2 − αg − cα

4m
− α2

8m
+

14α2

64m
+ . . . (A.15)

which further reduces to:

V =
α

4
+

16(σ2 − αg)− 16cα+ 6α2

64m
(A.16)

A.4 Variance-stabilizing transformation

To force the term in 1/m in eqn. (A.16) to disappear, we take:

c =
3

8
α+

σ2 − αg
α

(A.17)

Using a normalizing term, 2/
√
α, will ensure that the variance will be

stabilized to constant 1. The desired transformation is then:

t =
2

α

√
αx+

3

8
α2 + σ2 − αg (A.18)

Note how Anscombe’s formula is obtained when α = 1, and σ = g = 0.
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Appendix B

Software information

A software package has been implemented by CEA (Saclay, France) and
Nice Observatory. This software includes almost all applications presented
in this book. Its goal is not to replace existing image processing packages,
but to complement them, offering to the user a complete set of multireso-
lution tools. These tools are executable programs, which work on different
platforms, independent of any image processing system, and allow the user
to carry out various operations using multiresolution on his or her images
such as a wavelet transform, filtering, deconvolution, etc.

The programs, written in C++, are built on three classes: the ‘image’
class, the ‘multiresolution’ class, and the ‘noise-modeling class’. Figure B.1
illustrates this architecture. A multiresolution transform is applied to the
input data, and noise modeling is performed. Hence the multiresolution
support data structure can be derived, and the programs can use it in or-
der to know at which scales, and at which positions, significant signal has
been detected. Several multiresolution transforms are available (see Figure
B.2), allowing much flexibility. Fig. 2.7 in Chapter 2 summarizes how the
multiresolution support is derived from the data and our noise-modeling.

A set of IDL (Interactive Data Language) routines is included in the
package which interfaces IDL and the C++ executables. The first release of
the package will be in the beginning of 1998 and more information will be
available at http://ourworld.compuserve.com/homepages/multires or from
email address multires@compuserve.com.
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DATA

MULTIRESOLUTION TRANSFORMNOISE MODELING

MULTIRESOLUTION SUPPORT

VISUALIZATION

FILTERING

DECONVOLUTION

DECONVOLUTION −
APERTURE SYNTHESIS

COMPRESSION

OBJECT DETECTION

Figure B.1: Software components diagram.
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MULTIRESOLUTION TRANSFORM

Wavelet Transform Morphological Multiresolution
       Transform

Isotropic Wavelet
   Transform

Without undersampling Undersampling

− Feauveau’s transform
− Pyramidal transform
  in Fourier space 
  (wavelet with a cut−off
   frequency)
− Pyramidal wavelet transform
    with a linear wavelet
    with a B−spline wavelet

− A trous algorithm
   with a linear wavelet
   with a B−spline wavelet
− Transform in Fourier space
− Feauveau’s transform without
  undersampling

− Mallat’s transform
− Haar’s transform
− Pyramidal Laplacian

Without undersampling

− median transform
− min−max transform

Undersampling

− Pyramidal median transform
− Pyramidal min−max transform
− Decomposition on scaling function
− G−transform

Non−Isotropic Wavelet
    Transform

Figure B.2: Multiresolution transforms available.
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Appendix C

Acronyms

1D, 2D, 3D one-, two-, three-dimensional
AGB Asymptotic Giant Branch
CCD charge-coupled device
CGI Common Gateway Interface
CWT continuous wavelet transform
dB decibel
DRNN dynamic recurrent neural network
DWT discrete wavelet transform
DTM digital terrain model
ESO European Southern Observatory
FFT fast Fourier transform
FIR finite input response
FOV field of view
GCP ground control point
HRV High Resolution Visible
HST Hubble Space Telescope
ICF intrinsic correlation function
IRAS Infrared Astronomical Satellite
ISO Infrared Satellite Observatory
JPEG Joint Photographic Expert Group
M Messier
MAXENT maximum entropy
ME maximum entropy
MEM maximum entropy method
MIDAS Munich Image Data Analysis System
MIME Multipurpose Internet Mail Extension
MLP multilayer perceptron
MRC multiresolution CLEAN
MSE mean square error
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MSS Multispectral Scanner
MTF modulated transfer function
NGC New Galactic Catalog
PA position angle
PCA principal components analysis
PSF point spread function
PMT pyramidal median transform
POSS-I Palomar Observatory Sky Survey I
RL Richardson-Lucy
RMS root mean square
RMSDE root mean square distance error
SAO Smithsonian Astrophysical Observatory
SNR signal-to-noise ratio
SPOT Satellite pour l’Observation de la Terre
STFT short-time Fourier transform
TGCP test ground control point
TIMMI Thermal Infrared Multimode Instrument
TM Thematic Mapper
WF/PC Wide Field/Planetary Camera
WTS wavelet transform space
XS multispectral
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pour le stockage et la distribution d’images astronomiques”, DEA dis-
sertation (under the direction of F. Bonnarel and M. Louys), Stras-
bourg Observatory.

[69] R.O. Duda and P.E. Hart (1973), Pattern Recognition and Scene Anal-
ysis, Wiley, New York.

[70] J.C. Feauveau (1990), “Analyse multirésolution par ondelettes non-
orthogonales et bancs de filtres numériques”, PhD Thesis, Université
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[92] J.A. Högbom (1974), “Aperture synthesis with a non-regular distri-
bution of interferometer baselines”, Astronomy and Astrophysics Sup-
plement Series, 15, 417–426.

[93] M. Holschneider, R. Kronland-Martinet, J. Morlet and Ph.
Tchamitchian (1989), “A real-time algorithm for signal analysis with
the help of the wavelet transform”, in J.M. Combes, A. Grossman and
P. Tchmitchian, eds., Wavelets: Time-Frequency Methods and Phase
Space, Springer-Verlag, Berlin, 286–297.

[94] L. Huang and A. Bijaoui (1991), Experimental Astronomy, 1, 311–327.

[95] A.C. Hung (1993), PVRG-JPEG CODEC 1.0, Portable Video
Research Group, Stanford University (anonymous ftp to: have-
fun.stanford.edu:/pub/jpeg).

[96] P.T. Jackway and M. Deriche (1996), “Scale-space properties of
the multiscale morphological dilation-erosion”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 18, 38–51.

[97] C.E. Jacobs, A. Finkelstein and D.H. Salesin (1995), “Fast multireso-
lution image querying”, Computer Graphics Proceedings, Annual Con-
ference Series, 1995, SIGGRAPH 95, Los Angeles, 277–286.

[98] S. Jaffard (1989), “Algorithmes de transformation en ondelettes”, An-
nales des Ponts et Chaussées.



BIBLIOGRAPHY 293

[99] E.T. Jaynes (1957), Physical Review, 106, 620–630.

[100] R. Jeansoulin (1982), Les images multi-sources en télédétection: Mise
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PhD thesis, Université Paul Sabatier de Toulouse.

[101] A.G. Journel and Ch.J. Huijbregts (1978), Mining Geostatistics, Aca-
demic Press, Chicago.

[102] C.O. Justice and P.H.Y. Hiernaux (1986), “Suivi du développement
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aperture photometry, 95
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cluster analysis, 247, 253
Coma cluster, 233
compression, 229, 230, 232
constant time algorithm, 253
continuous wavelet transform, 3, 8,
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continuum (of spectrum), 135
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Daubechies wavelet, 15
decimation, 16, 24, 44
deconvolution, 7, 85, 100, 105, 116,
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digital terrain model, 164
dilation, 48, 245
dirty map, 113
disparity analysis, 199

distortion, geometric, 164
distortion, radiometric, 164
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DTM, 283
dyadic analysis, 45
dynamic recurrent neural net, 158

entropy, 7
erosion, 48, 246

FFT, 3, 283
filter bank, 14
filtering, 7, 67, 68, 81, 110
forward mapping, 166
Fourier transform, 3, 5, 13, 39, 40,
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125, 128

frequency holes, 112

Gabor transform, 6
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geometric distortion, 164
geometrical registration, 163, 166, 197
globular clusters, 243
ground control points, 169, 200, 202

Haar wavelet, 3, 10, 229
Hertzsprung-Russell diagram, 121
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image registration, 215, 225
image restoration, 85
image transmission, 239
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Littlewood-Paley decomposition, 13
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minefield problem, 249
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multilayer perceptron, 160
multiresolution correlation, 82
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NGC 5128, 236–238
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opening, 48, 50, 246
optical depth, 138
orthogonal wavelet, 15
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point patterns, 247
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radiometric distortion, 164
recurrent neural net, 158
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regularization, 99, 102, 106
regularization, Tikhonov, 86
restoration, image, 7, 85
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Sammon map, 148
scale space filtering, 2
signal-to-noise ratio, 82
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stationary signal, 5, 52, 72, 85
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structuring element, 245
sunspot prediction, 158
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Tikhonov regularization, 86
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Van Cittert deconvolution, 36, 85, 87,
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variance stabilization, 55, 56, 275
variogram, 203, 207
visibility curve, 123, 124

wavelet transform, 1, 2, 18, 19, 23,
30–32, 34, 40, 43, 45, 51, 52,
57, 61, 68–70, 87, 98, 115,
129

wavelet transform, continuous, 8, 67
wavelet transform, discrete, 12
wavelet transform, Morlet-Grossman,
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Web, 239
WF/PC, 284
Wiener filter, 69, 70, 72
World-Wide Web, 239
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zero-crossing, 2


