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I PREFACE

Computing for Numerical Methods Using Visual C++ has been written to promote
the use of Visual C++ in scientific computing. C++ is a beautiful language that
has contributed to shaping the modern world today. The language has contributed
to many device drivers in electronic equipment, as a tool in the development of
many computer software programs, and as a tool for both research and teaching.
Therefore, its involvement in providing the solution for numerical methods is very
much expected.

Today, research has no boundary. A problem for study in a topic in research may
involve people from several disciplines. A typical problem in engineering for study-
ing the effect of chemical spills in a lake may involve engineers, chemists, biologists,
medical doctors, mathematicians, economists, urban planners, and politicians. A com-
prehensive solution that satisfies all parties can only be produced if people from these
disciplines cooperate, rather than having them acting as rivals.

Numerical computing is an important area of research in science and engineering.
The topic is widely implemented in the modeling of a problem and its simulation.
Additional work involves visualization, which makes the problem and its solution
acceptable to the general audience. In the early days of computing in the 1960s
and 1970s, the solutions to problems were mostly presented as text and numbers.
A programming language like FORTRAN was the dominant tool, and there were
no friendly interfaces to present the solutions. Things have improved much since
then, as new advancements in hardware and software produce friendly tools based
on Microsoft Windows. Numerical computing benefits much from Windows as the
results from computation can now be visualized as graphs, numbers, moving images,
as well as text.

We select numerical methods as the main title in the book as the concepts in
this topic serve as the fundamentals in science and engineering. The importance of
numerical methods has been proven as nearly all problems involving mathematical
modeling and simulations in science and engineering have their roots in numerical
methods. All numeric-intensive applications involving arrays and vectors have their
concepts defined in numerical methods. Numerical methods discusses vital and crit-
ical techniques in implementing algorithms for providing fast, reliable, and stable
solutions to these problems.

Numerical analysis is a branch of mathematics that studies the numerical solutions
to problems involving nonlinear equations, systems of linear equations, interpolation
and approximation for curve fittings, differentiation, integrals, ordinary differential
equations, and partial differential equations. Numerical solutions are needed for these

xiii
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problems as an alternative to the exact solutions, which may be difficult to obtain.
The exact solutions for these problems are studied using analytical methods based
on mathematical techniques and theorems. The numerical solutions produced may
not be exact, but they are good enough for acceptance as they only differ by a small
margin.

The scope for numerical analysis is very broad. The study involves the analytical
derivation of the methods or techniques using mathematical principles and rules.
The study also involves a detailed analysis of the errors between the approximated
solutions and the exact solutions, so as to provide faster convergence as well as more
accurate solutions.

Numerical methods is different from numerical analysis. Numerical methods is
a branch of numerical analysis that specially deals with the implementation of the
methods for solving the problems. The details about the derivation of algorithms
and techniques for solving the problems and the analysis of errors are not in the
main agenda of numerical methods. The main objective in numerical methods is
applying the given methods for solving the problems. It is the implementation of
the numerical methods that attracts interest from the practitioners who comprise the
biggest consumer market. Engineers, scientists, and technologists belong to this group
of people who view numerical methods as an important tool for solving their problems.
On the other hand, numerical analysis is mostly confined to die-hard mathematicians
who love further challenges in developing new numerical techniques for solving the
problems.

There are several objectives in developing Computing for Numerical Methods
Using Visual C++. First, no books on the market today discuss the visual solutions to
problems in numerical methods using C++. There are similar books using software
packages such as Matlab, Maple, and Mathematica. These software packages are
not really primitive programming languages. They have been developed to hide the
programming details and to implement the solution as a black box. In other words,
software packages do not really teach the mathematical concepts and principles in
solving a problem. For example, the inverse of a matrix can be computed using a
single line of command in these packages. The user only needs to know the format
and syntax of the command in order to produce the desired solution. It is not important
for the user to know the underlying concepts in solving the problem. Computing for
Numerical Methods Using Visual C++ is one effort to integrate C++ with the visual
solution to problems using numerical methods.

A student cannot be too reliant on software packages. There are cases where
software packages fail to provide a solution because of the lack of special routines.
For example, a software package may only support a maximum of five levels of the
rectangular grids in a boundary-value problem involving partial differential equations.
To produce 10 levels, the user will have to use C++ as the language because it is more
flexible. Flexibility and versatility are two features in C++ that cannot be matched by
any software package.

Our second objective is to promote C++ as a language for numerical computing.
C++ has all the necessary ingredients for numerical computing because of its flexible
language format, its object-oriented methodology, and its support for high numerical



PREFACE XV

precisions. However, in the past, the popularity of C++ has suffered from the emer-
gence of several new languages. Among them are Java, Python, and C#. These new
languages have been developed with the main objective to handle Web and network
programming requirements. Other than that, C++is still dominant and practical for im-
plementation. Because of this reason, C++ is still popular in schools and universities,
mostly for teaching and research purposes. C++ is also used widely in the manufac-
turing sectors such as in the design of device drivers for electronic components.

Our third objective is to make numerical problems friendly and approachable.
This goal is important as the general public perception about mathematics is that it
is tough, unfriendly, boring, and not applicable in daily life. A mathematician should
not be placed in the basement floor of a building under the feeling that he is not
important for people to meet. A mathematician can become a role model if he can
exert his usefulness in a friendly and acceptable way, which can be done by making
mathematics interesting and approachable through a series of friendly interfaces. A
weak or average student can become motivated with mathematics if the right tools
for understanding mathematics are provided.

A visual approach based on Windows in Computing for Numerical Methods Using
Visual C++ is our step in achieving this objective. The book teaches the reader on
the friendly interfaces in tackling problems in numerical methods. The interfaces
include buttons, dialog boxes, menus, and mouse clicks. The book also provides a
very useful tool called MyParser, which can be used to develop various friendly
numerical applications on Windows. MyParser is an equation parser that reads an
equation input by the user in the form of a string, processes the string, and produces
its solution. In promoting its use, we hide all technical details in the development of
the parser so that the reader can concentrate on producing the solution to the problem.
But the best part is MyParser is free for distribution for those who are interested.

Our last objective is to maintain links with the Microsoft family of products through
the .Net platform. Microsoft is unarguably the driver in providing visual solutions
based on Windows, and the .Net platform provides a common multilanguage program
development for applications on Windows. As Visual C++ is one product supported
in the .Net platform, there is a guarantee of continued support from Microsoft for its
users. A Visual C++ follower can also enjoy the benefit of integrating her product with
other products within the .Net platform with very minimum effort. This flexibility
is important as migrating from one system to a different system by bringing along
data and programs can be a very expensive, time-consuming, and resource-dependent
affair.

In providing the solutions, this book does not provide detailed coverage of each
topic in numerical methods. There are already many books on the market that do
cover these topics, and we do not wish to compete against them. Instead, we focus
on the development stages of each topic from the practical point of view, using
Visual C++ as the tool. Knowing how to write the visual interfaces for the numerical
problems will definitely contribute to guiding the reader toward the more ambitious
numerical modeling and simulation projects. This objective is the main benefit that
can be expected from the book. The reader can take advantage of the supplied codes
to create several new projects for high-performance computing.
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The book is accompanied by source codes that can be downloaded from the given
Wiley website. This website will be maintained and updated by the authors from time
to time. The codes have been designed to be as compact as possible to make them
easy to understand. They are based on the Microsoft Foundation Classes library for
providing the required user-friendliness tools. In designing the codes, we opted for the
unguided (or non-wizard) approach in order to show the detailed steps for producing
the output. This is necessary as the guided (or wizard) approach does not teach some
key steps, and it causes the program to be extremely long in size. However, the reader
should be able to convert each unguided program code to the guided code if the need
arises.

In preparing the manuscript for Computing for Numerical Methods Using Visual
C++, the authors would like to thank several people who have been directly or
indirectly involved. The authors would like to thank Tan Sri Prof. Dr. Ir. Mohd. Zulkifli
Tan Sri Mohd. Ghazali, Vice Chancellor of Universiti Teknologi Malaysia, for his
forward vision in leading the university towards becoming a world-class university by
2010. Special thanks also to Professor Dr. Alias Mohd. Yusof and Professor Dr. Md.
Nor Musa from Universiti Teknologi Malaysia, and Professor Stephan Olariu from
Old Dominion University, for their support and encouragement.

Shaharuddin Salleh
Albert Y. Zomaya
Sakhinah Abu Bakar
April 2007



I CODES FOR DOWNLOAD

All codes discussed in this book can be downloaded from the following URL.:

ftp://ftp.wiley.com/public/sci_tech_med/computing_numerical

The files in the URL are organized into a directory called SALLCode. The codes
for the program are located in the folders bearing the chapter numbers; for example,
Code4 is the project for Chapter 4. The files included are the executable (.exe), header
(-h), C++ (.cpp) and the parser object file, MyParser.obj.

The ftp site will constantly be maintained and updated. Any questions, comments,
and suggestions should be addressed to the first author at ss@utm.my.

The system requirements for the codes are as follows:

Intel Pentium-based Personal computer with 256 MB RM and above.
Microsoft Windows 1998 and above.
Microsoft Visual C++ version 6, and above.

All code files have been tested using Microsoft Visual C++.Net version 2003. The

same files should be compatible with Visual C++ version 6 and below and with
Microsoft Visual C++.Net version 2005 and above.

Xvii






IEEEN CHAPTER 1

Modeling and Simulation

1.1 Numerical Approximations

1.2 C++ for Numerical Modeling

1.3 Mathematical Modeling

1.4 Simulation and Its Visualization

1.5 Numerical Methods

1.6 Numerical Applications
References

1.1 NUMERICAL APPROXIMATIONS

Numerical methods is an area of study in mathematics that discusses the solutions
to various mathematical problems involving differential equations, curve fittings,
integrals, eigenvalues, and root findings through approximations rather than exact
solutions. This discussion is necessary because the exact solutions to these problems
are difficult to obtain through the analytical approach. For example, it may be wise

to evaluate
5
/ xsinxdx,
-1

as the exact solution can be obtained through a well-known technique in calculus
called integration by parts. However, it is not possible to apply the same method or
any other analytical method to solve

2 e
,—zdx.
o 3sinx 4+ x

The given equation in the above integral is difficult to solve as it is not subject
to the exact methods discussed in ordinary calculus. Therefore, a numerical method
is needed to produce a reasonably good approximated solution. A good approxi-
mated solution, whose value may differ from the exact solution by some fractions, is
definitely better than nothing.



2 MODELING AND SIMULATION

Numerical methods are also needed in cases where the mathematical function for
a given problem is not given. In many practical situations, the governing equations
for a given problem cannot be determined. Instead, an engineer may have a set of n
data (x;, y;) collected from the site to analyze in order to produce a working model.
In this case, a numerical method is applied to fit a curve that corresponds to this set
of data for modeling the scenario.

Solutions to numerical problems can be obtained on the computer in two ways:
using a ready-made software program or programming using a primitive language.
A ready-made software program is a commercial package that has been designed
to solve specific problems without the hassle of going through programming. The
software provides quick solutions to the problems with just a few commands. The
solution to a problem, such as finding the inverse of a matrix, is obtained by typing
just one or two lines of command. Matlab, Maple, and Mathematica are some of the
most common examples of ready-made software programs that are tailored to solve
numerical problems.

The easy approach using ready-made software programs has its drawback. The
software behaves like a black box where the user does not need to know the details of
the method for solving the problem. The underlying concepts in solving the problem
are hidden in the software, and this approach does not really test the mathematical
skill of the user. Very often, the user does not understand how the method works as
all he or she gets is the generated solution. In addition, the user may face difficulty
in trying to figure out why a particular solution fails because of problems such as
singularity in the domain.

A ready-made software program also does not provide the flexibility of customizing
the solution according to the user’s requirement. The user may need special features
to visualize the solution, but these features may not be supported in the software. In
addition, a ready-made software program generates files that are relatively large in
size. The large size is the result of the large number of program modules from its
library that are stored in order to run the program.

The real challenge in solving a numerical problem is through the native language
programming. It is through programming that a person will understand the whole
method comprehensively. The developer will need to start from scratch and will
need to understand all the fundamental concepts for solving a given problem before
the solution to the problem can be developed. The whole process in providing the
solution may take a long time, but a successful solution indicates the programmer
fully understands the whole process.

It is also important for us to accept both approaches. Ready-made software pro-
grams are needed in cases where the program needs to be delivered fast. A ready-made
software program can produce the desired solution within a short period of time if
all required routines are available in the software, which is done by following the
right commands and procedures in handling the software. In cases where some re-
quired actions are not supported in the software, it may be necessary to integrate the
solution with a programming language such as C++. Conversely, if one starts from a
programming language, it may be necessary call a ready-made software program to
handle some difficult tasks. For example, C++ may be used to draw up the numerical
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solution to the heat distribution problem. To see the solution in the form of surface
graph, it may be wise to call a few routines from Matlab as the same feature in C++
will require a long time to develop.

1.2 C++ FOR NUMERICAL MODELING

C++ is a language that has its origin from C, developed in early 1980s. C++ retains
all the procedural structure of C but adds the object-oriented features in order to
meet the new requirements in computing. Both C and C++ are heavily structured
high-level languages that produce small executable files. The two languages are also
suitable for producing low-level routines that run the device drivers of many electronic
components.

C++ is popular because of its general-purpose features to support a wide variety
of applications, such as data processing, numerical, scientific, and engineering. C++
is available in all computing platforms, including Windows, UNIX, Macintosh, and
operating systems for mainframe and minicomputers. C++ is arevolutionary language
that has a very strong following from students, practitioners, researchers, and software
developers all over the world. The language is taught in most universities and colleges
in the world as a one- or two-semester subject to support numerical and general-
purpose applications.

C++ is a language that strongly supports object-oriented programming. Object-
oriented programming is a programming approach based on objects. An object is an
instance of a class. A class is a set of entities that share the same parent. As it stood,
C++ is one of the most popular object-oriented programming languages in the world.
The main reason for its popularity is because it is a high-level language, but at the
same time, it runs as powerful as the assembly language. But the real strength of C++
lies in its takeover from C to move to the era of object-oriented programming in the
late 1980s. This conquest provides C++ with the powerful features of the procedural C
and an added flavor for object-oriented programming.

The original product from Microsoft consists of the C compiler that runs under the
Microsoft DOS (disk operating system), and it has been designed to compete against
Turbo C, which was produced by the Borland Corp. In 1988, C++ was added to C
and the compiler was renamed Microsoft C++. In early 1989, Microsoft launched
the Microsoft Windows operating system, which includes the Windows API (appli-
cation programming interface). This interface is based on 16 bits and it supports the
procedural mode of programming using C.

Improvements were made over the following years that include the Windows
Software Development Kit (SDK). This development takes advantage of the API
for the graphical user interface (GUI) applications with the release of the Microsoft C
compiler. As this language is procedural, the demands in the applications require
an upgrade to the object-oriented language design approach, and this contributes
to the release of the Microsoft C++ compiler. With the appearance of the 32-bit
Windows API (or Win32 API) in the early 1990s, C++ was reshaped to tackle the
extensive demands on Windows programming and this brings about the release of
the Microsoft Foundation Classes (MFC) library. The library is based on C++, and it
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has been tailored with the object-oriented methodology for supporting the application
architecture and implementation.

The main reason why Visual C++.Net is needed in numerical methods is its pow-
erful simulation and visualization tools. The Net platform refers to a huge collection
of library functions and objects for creating full-featured applications on both the
desktop and the enterprise Web. The classes and objects provide support for friendly
user interface functions like multiple windows, menus, dialog boxes, message boxes,
buttons, scroll bars, and labels. Besides, the platform also includes several tedious
task-handling jobs like file management, error handling, and multiple threading. This
platform also supports advanced frameworks and environments such as the Passport,
Windows XP, and the Tablet PC. The strength of the Net platform is obvious in pro-
viding the Internet and Web enterprise solutions. Web services include information
sharing, e-commerce, HTTP, XML, and SOAP. XML, or Extensible Markup Lan-
guage, is a platform-independent approach for creating markup languages needed in
a Web application.

A new approach in Visual C++.Net is the Managed Extension, which performs
automatic garbage collection for optimizing the code. Garbage collection involves
the removal of memory and resources unused any more in the application, which
is often neglected by the programmer. The managed extension is a more structured
way in programming, and it is now the default in Visual C++.Net. Central to the .Net
platform is the Visual Studio integrated development environment (IDE). It is in this
platform that applications are built from a choice of several powerful programming
languages that include Visual Basic, Visual C++, Visual C#, and Visual J++.

In addition, IDE also provides the integration of these languages in tackling a par-
ticular problem under the .Net banner. Visual C++.Net is one of the high-performance
compilers that makes up the .NET platform. This highly popular language has its root
in C and was improved to include the object-oriented elements; now with the .Net
extension, it is capable of creating solutions for the Web enterprise requirements. A
relatively new language called Visual C# in the .Net family was developed by taking
the best features from Visual Basic visual tools with the programming power of Visual
C++.

In addition to its single-machine prowess, Visual C++.Net presents a powerful
approach for building applications that interact with databases through ADO.NET.
This product evolves from the earlier ActiveX Data Objects (ADO) technology, and
it encompasses XML and other tools for accessing and manipulating databases for
several large-scale applications. This feature makes possible Visual C++.Net as an
ideal tool for several Web-based database applications.

1.3 MATHEMATICAL MODELING

Many problems arise in science and engineering that have their roots in mathematics.
Problems of this nature are best described through mathematical models that provide
the fundamental concepts needed in solving the problem. A successful mathematical
modeling always leads to a successful implementation of the given project.
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A mathematical model is an abstract model that uses mathematical language to
describe the behavior of a system. It is an attempt to find the analytical solutions for
enabling the prediction of the behavior of the system from a set of parameters, and
their initial and boundary conditions in a given problem. A mathematical model is
composed of variables and operators to represent a given problem. Variables are the
abstractions of the quantities of interest in the described systems, whereas operators
are the mechanisms that act on these variables. An operator can be expressed in the
form of an algebraic operator, a function, a differential operator, and so on.

One good example of mathematical modeling is in the heat distribution problem
in a two-dimensional plane, which is modeled as a Laplace function given by

Viu = 82_u + &

Tax2 0 ay?’

In the above equation, V? = a% + %22 is an operator that acts on the heat quan-
tity u, whose independent variables are x and y. The model describes the analyt-
ical solution of heat distribution in a given domain subject to certain initial and
boundary conditions. We will discuss the numerical solution to this problem later in
Chapter 11.

A mathematical model is often represented as variables in terms of objective
functions and constraints. If the objective functions and constraints in the problem
are represented entirely by linear equations, then the model is regarded as a linear
model. If one or more of the objective functions or constraints are represented with a
nonlinear equation, then the model is known as a nonlinear model. Most problems in
science and engineering today are modeled as nonlinear.

A deterministic model is one where every set of variable states is uniquely deter-
mined by parameters in the model and by sets of previous states of these variables.
For example, the path defined by a delivery truck for distributing petrol in a city is
defined as a deterministic model in the form of a graph. In this case, the petrol stations
can be modeled as the nodes of the graph, whereas the path is defined as the edges
between the nodes. Conversely, in a probabilistic or stochastic model, randomness
is present, and the variable states are not described by unique values. Very often, the
model is represented in the form of probability distribution functions.

A mathematical model can be classified as static or dynamic. A static model does
not account for the element of time, whereas a dynamic model does. Dynamic mod-
els typically are represented with difference equations or differential equations. A
model is said to be homogeneous if it is in a consistent state throughout the entire sys-
tem. If the state varies according to certain controlling mechanism, then the model is
heterogeneous. If the model is homogeneous, then the parameters are lumped, or con-
fined to a central depository. A heterogeneous, model has its parameters distributed.
Distributed parameters are typically represented with ordinary or partial differential
equations.

Mathematical modeling problems are also classified into black-box or white-box
models, according to how much a priori information is available in the system. A
black-box model is a system of which no a priori information is available. A white-box
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model, also called glass box or clear box, is a system where all necessary information
is available.

1.4 SIMULATION AND ITS VISUALIZATION

Mathematical modeling is often followed by a series of numerical simulations to
support and verify its validity and correctness. Simulation is an imitation of some real
thing, state of affairs, or process representing certain key characteristics or behaviors
of a selected physical or abstract system. It is also the objective of a simulation to op-
timize the results by controlling the variables that make up the problem. By changing
the variables during simulation, predictions may be made about the behavior of the
system. Simulation is necessary to save time, cost, human capital, and other resources.
Good results from a simulation contribute in some critical decision-making process.

Simulation can be implemented using three approaches: microscopic, macro-
scopic, and mesoscopic. In the microscopic simulation, the detail physical and per-
formance characteristics, such as the properties of the elements that make up the
problem, are considered. The simulation involves some tiny properties of the individ-
uals or elements that make up the pieces. The results from a microscopic simulation
are always reliable and accurate. However, this approach could be very costly and
time consuming as data from the individuals or elements are not easy to obtain.

An easier approach is the macroscopic simulation that considers the deterministic
factors of the whole population, rather than all the individuals or elements. In this ap-
proach, factors such as the governing mathematical equations and their macro data are
considered. The steps in this approach may skip the detail components, and therefore,
the results may not be as accurate as the one produced in the microscopic approach.
However, this approach saves time and is not as costly as the microscopic approach.

A more realistic and practical approach is the mesoscopic simulation that combines
the good parts of the microscopic and macroscopic approaches to produce a more
versatile model. In this approach, some deterministic properties of the elements in
the system are integrated with the detail information to produce a workable model.

A good simulation has several visualization features that accurately describe the
elements in a system. Visualization is a form of graphical or textual presentation
that easily describes the solution to a particular problem. An effective visualization
includes components such as text, graphics, diagrams, images, animation, and sound
in order to describe the system.

In most cases, numerical simulations are carried out effectively in a computer. A
computer can accurately describe the functionality and behavior of the elements that
make up the system. Today’s computers are fast and have all the required resources to
perform most college-level numerical simulations. Supercomputers also exist that are
multiprocessor systems capable of processing numeric-intensive applications with
a whopping gigaflop speed. Several parallel and distributed computer systems are
also available in processing these numeric-intensive applications. Computers are also
grouped into clusters to work cooperatively in grid computing networks that span
across many countries in the globe.
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1.5 NUMERICAL METHODS

Numerical methods is a branch of mathematics that consists of seven core areas, as
follows:

* Nonlinear equations

¢ System of linear equations

¢ Interpolation and approximation
¢ Differentiation and integration

¢ Eigenvalues and eigenvectors

¢ Ordinary differential equations

Partial differential equations

The basic problem in a nonlinear equation is in finding the zeros of a given function.
The problem translates into finding the roots of the equation, or the points along the
x-axis where the function crosses. The roots may exist as real numbers. In cases where
the real roots do not exist, their corresponding imaginary roots may become a topic
of study.

Linear equations are often encountered in various science and engineering prob-
lems. The problem arises frequently as the original problem reduces to linear equations
at some stage in the solution. For example, mesh modeling using the finite-element
method in a fluid dynamics results in a system of hundreds of linear equations. As
the size of the matrix in this problem is large, the solution needs to be tackled using
a fast numerical method.

Interpolation and approximation are curve fitting problems that contribute in things
like designing the surface of an aircraft. The techniques are also applied in other
problems, such as forecasting, pattern matching, and routing.

Differentiation and integration are fundamental topics that arise in many problems.
Good approximations are needed to these two topics as their exact values may not be
easy to obtain.

Problems involving ordinary differential equations arise in modeling and simu-
lation. Exact solutions are difficult to obtain as the models are subject to variation
because of the presence of constraints and nonlinear factors. Therefore, numerical
methods are needed in their successful implementation.

Modeling and simulation involving partial differential equations commonly use
numerical techniques as their fundamental elements. Numerical methods contribute
to provide the desired solutions in most cases as the exact solutions are not practical
for implementation on the computer.

1.6 NUMERICAL APPLICATIONS

Most problems in science and engineering are inherently nonlinear in nature. This
nonlinearity is because the problems are dependent on variables and parameters
that are nonlinear and are subject to many constraints. Many problems are also
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dynamic and nondeterministic with no a priori information. Because of their nature,
the solution to these problems will not be a straightforward task.

In most cases, the normal approach for solving nonlinear problems in science and
engineering is to start from the fundamental concepts that are based on mathematics.
A mathematical model that describes the system needs to be developed to represent
the problem. Data from the problem are collected as an input. Numerical simulation
based on the theoretical model is then performed on the data. During the simulation,
the results obtained are periodically compared and matched with some real values in
order to verify the correctness of the simulation.

We discuss some common modeling and simulation work that makes use of nu-
merical methods.

Bacteria Population Growth

Population growth of bacteria in a geographical region over a period of time has been
successfully modeled using a differential equation, given as

dx

— = kx,

dt
where x(t) represents the size of the population at time ¢ and k is a constant. In a
broader scope, x(¢) in the above equation may represent the number of bacteria in a
sample container.

The numerical solution to this model consists of solving an initial value problem
involving the first-order ordinary differential equation. A suitable solution is provided
in the form of the Runge—Kutta method of order 4, as will be discussed in Chapter 10.
However, the solution is not solely provided by this method alone. Constraints such
as temperature and the acidity of the fluid in the container may affect the validity of
the mathematical model. The bacteria may grow faster when the temperature is high
and when the acidity of the fluid is low. Therefore, a numerical simulation is needed
to integrate the mathematical model with other variables and parameters. Several
parameters can be included in the simulation in order to produce the correct model
for this problem.

Computational Fluid Dynamics

Computational fluid dynamics (CFD) is an area of research that deals with the dynamic
behavior and movement of fluid under certain physical conditions. Numerical methods
and algorithms are used extensively to solve and analyze problems involving fluid flow.
For example, the interaction between particles in fluids and gases are studied through
simulation on the computer. Millions of calculations are performed in this simulation,
as the original problem reduces to numerical problems such as matrix multiplications,
matrix inverse, system of linear equations, and the computation of eigenvalues.

One area of study in computational fluid dynamics is the blood flow modeling in
stenosed artery of the human body. The study contributes in predicting the occurrence
of cardiovascular diseases such as heart attack and stroke. CFD simulations have also
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been carried out in the aerospace and automotive industries for evaluating the air flow
around moving aircrafts and cars.

The fundamental tool in CFD simulation is the Navier—Stokes equation, which
describes a single-phase fluid flow. Also, a set of ordinary or partial differential
equations with their initial and boundary conditions is given. The solution to these
problems makes use of the finite-difference method or finite-element methods, which
reduces the problem to several systems of linear equations.

Finite-Element Modeling

The finite-element method is a numerical technique for evaluating things like stresses
and displacements in mechanical objects and systems. The finite-element method
has been successfully applied for modeling problems involving heat transfer, fluid
dynamics, electromagnetism, and solid state diffusion. At the National Aeronautics
and Space Administration (NASA), the finite-element method has been applied in
modeling the turbulence that occurs during the aircraft flight.

The finite-element method requires the domain in the problem to be divided into
several elements in the form of line segments, triangles, rectangular meshes, volume,
and so on. The method provides flexibility where the elements need not be of equal
in terms of dimension and size. Solutions are obtained from these elements, and they
are grouped to produce the overall solution.

The fundamentals of finite-element methods rest heavily on numerical methods.
They include curve and surface fittings using interpolation or approximation tech-
niques, systems of linear equation, and ordinary and partial differential equations.

Printed-Circuit Board Design

Massive simulations are carried out to produce optimal designs for printed-circuit
boards (PCBs). A PCB forms the main circuitry of all electronic devices. A typical
PCB can accommodate thousands or millions of microelectronic components such
as pins, vias, transistors, processors, and memory chips. In addition, the PCB has
massive wirings that connect these components.

As the space on a PCB is limited, the designer must optimize the placement of com-
ponents and its routing (wiring) so that the board is capable of accommodating as many
components as possible within the limited space area. We can imagine a PCB function
like a city where the buildings and streets need to be designed properly so that the city
will not be too congested with problems such as improper housing and traffic jams.

One technique commonly applied for routing in the PCB design is single-row
routing. The problem is about designing non-crossing tracks between pairs of pins
that are arranged in a single row in such a way that the tracks do not cross. Single-row
routing has been known to be NP-complete with many interacting degrees of freedom.
Figure 1.1 shows an optimal output from single-row routing involving 42 pins. The
proven methods for solving this problem involve computer simulations using graph
theory, simulated annealing, and genetic algorithm. A technique from the authors
called ESSR in 2003 has been successful in producing optimal results for the problem.
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FIGURE 1.1. Optimal single-row routing involving 42 pins.

Wireless Sensor Networks

A sensor network is a deployment of massive numbers of small, inexpensive, self-
powered devices called motes that can sense, compute, and communicate with other
devices for the purpose of gathering local information to make global decisions about
a physical environment. The object of the network is to detect certain items over a
geographical region, such as the presence of harmful chemical, bacteria, electromag-
netic field, and temperature distribution. In one scenario, thousands of tiny sensor
motes are distributed from an aircraft over a region. Sensor network research origi-
nates from a DARPA project called Smartdust in late 1990s [2]. The research attracts
interest from many disciplines because of several developments in the micro-electro
mechanical system (MEMS) technology that produces many cheap and small sensor
motes.

Locating sensor motes at their geographical location has become one major issue in
forming the network, because many constraints need to be considered in the problem.
Each node in a sensor network has a short lifetime based on a battery. To save energy,
the node sleeps most of the time and becomes awake only occasionally. Therefore,
the process of training the nodes in order to locate their correct location is a highly
nonlinear problem with many constraints.

A coarse-grain model developed in Ref. 3 proposed a method called asynchronous
training for locating the nodes in a sensor network. Figure 1.2 shows a model con-
sisting of three networks for training the sensor nodes. Each network is indicated by
concentric circles that originate from a center called sink. The sink is represented
by a device called the aggregating and forwarding node (AFN), which has a pow-
erful transmitter and receiver for reaching all nodes in its network. In this model,
AFN is responsible for training the nodes, storing and retrieving data from the sensor
nodes, and performing all the necessary computations on the data received to produce
the desired results. The model makes use of the dynamic coordinate system based on
coronas and wedges to locate the nodes through a series of transmission from the sink.
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FIGURE 1.2. The asynchronous model for training the sensor nodes.

This theoretical model is not implemented yet in the real world, but it has a strong
potential for applications. Modeling and simulation on the computer definitely helps
in convincing the lawmakers to realize the benefit from this research.

Flood Control Modeling

The city of Kuala Lumpur, Malaysia, recently completed the construction of a tunnel
that has dual purposes, as a road during the normal time and as a waterway tunnel
whenever flood hits the city. The project is called SMART or the Stormwater Man-
agement and Road Tunnel. This project is the first of its kind in the world, and it
contributes in controlling flash flood, which frequently disrupts communication in
the city.

SMART is an underground tunnel about 10 km long that was constructed using
tunnel-boring machines. The tunnel connects two rivers, one in the middle of the city
and the other away from the city. During the normal days, the tunnel serves as two
trunk roads going into and out of the city, and this contributes in reducing traffic jam
in some parts of the city. During heavy rain, parts of the city get flooded as water
overflows from the main river in the city. The tunnel is immediately closed to traffic,
and it is converted into a waterway to divert the water from the flood area into the
second river. This has the immediate effect of reducing the occurrence of flood in
these areas. When the flood ends, the tunnel is cleaned, and it is open for traffic again.

A lot of work involving modeling and simulation has been carried out before the
project gets started. As the project is costly, modeling and simulation using computer
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help in providing all the necessary input before a decision on the viability of the
project is made. The heavy costs involved are well justified here.
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2.1 C++ FOR HIGH-PERFORMANCE COMPUTING

Engineering problems involving large arrays with high-resolution graphics for vi-
sualization are some of the typical applications in high-performance computing. In
most cases, high-performance computing is about intensive numerical computing
over a large problem that requires good accuracy and high-precision results. High-
performance computing is a challenging area requiring advanced hardware as well as
a nicely crafted software that makes full use of the resources in the hardware.

Numerical applications often involve a huge amount of computation that requires
a computer with fast processing power and large memory. Fast processing capability
is necessary for calculating and updating several large size arrays, which represent the
computational elements of the numerical problem. Large memory is highly desirable
to hold the data, which also contributes toward speeding up the calculations.

C++ was originally developed in the early 1980s by Bjarne Stroustrup. The features
in C++ have been laid out according to the specifications laid by ANSI (American
National Standards Institute) and ISO (International Standards Organization). The
language is basically an extension of C that was popular in the 1970s, replacing
Pascal and Fortran. C is a highly modular and structured high-level language, which
also supports low-level programming. The language is procedural in nature, and it has
what it takes to perform numerical computing besides being used for general-purpose
applications, such as in systems-level programming, string processing, and database
construction.

13
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Primarily, C++ extends what is lacking in C, namely, the object-oriented approach
to programming, for supporting today’s complex requirements. Object-oriented pro-
gramming requires a problem to be broken down into objects, which can then be
handled in a more practical and convenient manner. That is the standard put forward
for meeting today’s challenging requirements. The programming language must pro-
vide support for exploring the computer’s resources in providing an easy and friendly-
looking graphical user interface for the given applications. The resources are provided
by the Windows operating system, which includes the mouse’s left and right button
clicks, text and graphics, keys from the keyboard, dialog boxes, and multimedia sup-
port. In addition, C++ is a scalable language that makes possible the extension of
the language to support several new requirements, for meeting today’s requirements,
including the Internet, parallel computing, wireless computing, and communication
with other electronic devices.

In performing scientific computing, several properties for good programming help
in achieving efficient coding. They include

¢ Object-oriented methodology

Modular and structured program design

* Dynamic memory allocation for arrays

* Maximizing the use of local variables

* Encouraging data passing between functions

In this chapter, we discuss several fundamental mathematical tools and their pro-
gramming strategies that are commonly deployed in high-performance computing.
They include strategies for allocating memory dynamically on arrays, passing ar-
ray data between functions, performing algebraic computation on complex numbers,
producing random numbers, and performing algebraic operations on matrices. As the
names suggest, these tools provide a window of opportunity for high performance
computing that involves vast areas of numeric-intensive applications.

2.2 DYNAMIC MEMORY ALLOCATION

A variable represents a single element that has a single value at a given time. An array,
in contrast, is a set of variables sharing the same name, where each of them is capable
of storing one value at a single time. An array in C++ can be in the form of one or
more dimensions, depending on the program requirement. An array is suitable for
storing quantities such as the color pixel values of an image, the temperature of the
points in a rectangular grid, the pressure of particles in the air and the values returned
by sensors in an electromagnetic field.

An array is considered large if its size is large. One typical example of large arrays
is one that represents an image. A fine and crisp rectangular image of size 1 MB
produced from a digital camera may have pixels formed from hundreds of rows and
columns. Each pixel in the image stores an integer value representing its color in the
red, green, and blue scheme.
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A computer program having many large arrays often produces a tremendous
amount of overhead to the computer. The speed of execution of this program is
very much affected by the data it carries as each array occupies a substantial amount
of memory in the computer. However, a good strategy for managing the computer’s
memory definitely helps in overcoming many outstanding issues regarding large ar-
rays. One such strategy is dynamic memory allocation where memory is allocated to
arrays only when they are active and is deallocated when they are inactive.

In scientific computing, a set of variables that have the same dimension and length
is often represented as a single vector. Vector is an entity that has magnitude or length
and direction. Opposite to that is a scalar, which has magnitude but does not have
direction. For example, the mass of an object is a scalar, whereas its weight subject
to the gravitational pull toward the center of the earth is a vector.

Allocation for One-Dimensional Arrays

In programming, a vector is represented as a one-dimensional array. A vector v of
size N has N elements defined as follows:

vy
v=[v v, - wlf=1|"]. 2.1
UN
The above vector is represented as a one-dimensional array, as follows:

v[1],vI[2],...,vIN].

The magnitude or length of this vector is

|v|=\/vf+v§+--~+v 2.2)

In numerical applications, this vector can be declared as real or integer depending
on the data it carries. The length of the vector needs to be declared as a floating-point as
the value returned involves decimal points. It is important to declare the variable cor-
rectly according to the variable data type as wrong declaration could result in data loss.

As the size of an array can reach several hundreds, thousands, or even millions,
an optimum mechanism for storing its data is highly desirable. For a small size array,
static memory allocation is a normal way of storing the data. An array v with N+1
elements is declared statically as

int v[N+1];

This array consists of the elements v[0], v[1], ..., v[N], and memory from the
computer’s RAM has been set aside for this array no matter whether all elements in
the array are active. Having only v [1], v[2], and v [3] active out of N = 100 from the
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above declaration is clearly a waste as memory has been allocated to all 100 elements
in the array. This mode of allocating memory is called static memory allocation.

A more practical way of allocating memory is the dynamic memory allocation
where memory from the computer is allocated to the active elements only in the
array.

In dynamic memory allocation, the same array whose maximum size is N+1 is
declared as follows:

int *v;
v=new int v[N+1];

Memory for a one-dimensional array is allocated dynamically as a pointer using
the new directive. The allocated size in the declaration serves as the upper limit;
memory is allocated according to the actual values assigned to the elements in the
array. For example, the array v above is allocated with a maximum of N+1 elements,
but memory is assigned to three variables that are active only, as follows:

int *v; // declaring a pointer to the
integer array
v = new int [N+1]; // allocating memory of size N+1

v[1]1=7; v[2]=-3; v[3]=1; // assigning values to the array

delete v; // destroying the array

Once the array has completed its duty and is no longer needed in the program, it
can be destroyed using the delete directive. The destruction means the array can no
longer be used, and the memory it carries is freed. In this way, the memory can be
used by other modules in the program, thus, making the system healthier.

Dynamic memory allocation for one-dimensional arrays is illustrated using an
example in multiplying two vectors. The multiplication or dot product of two vectors
ofthe same sizen,u = [u; us --- uy]” andv =[v; vy --- vy]” producesascalar,
as follows:

U.v =uvy +urvy+---+uyvy. 2.3)
This task is implemented in C++ with the result stored in w in the following code:
w=0;
for (i=1;i<=N;i++)
w += ulil*v[il;
The above code has a complexity of O(N). Code2A. cpp shows a full C++ program

that allocates memory dynamically to the one-dimensional arrays u and v, and it
computes the row product between the two arrays:
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Code2A.cpp: dot-product of two vectors
#include <iostream.h>
#define N 3
void main()
{
int i;
int *u, *v, w;
u=new int [N+1];
ul1]=4; ul[2]=-5; ul3]=3;
cout << endl << "Vector u:" << endl;
for (i=1;i<=N;i++)
cout << ul[i] << " ",
cout << endl;

v=new int [N+1];
v[1]=-2; v[2]=3; v[3]=7;
cout << "Vector v:" << endl;
for (i=1;i<=N;i++)

cout << v[i] << " ";
cout << endl;

w=0;
for (i=1;i<=N;i++)
w += ulil*v[il;
cout << "the product w=u.v is " << w << endl;
delete u,v;

Allocation for Higher Dimensional Arrays

A two-dimensional array represents a matrix that consists of a set of vectors placed
as its columnar elements. Basically, a two-dimensional array q with M+1 rows and
N+1 columns is declared as follows:

int q[M+1] [N+1];

The above declaration is the static way of allocating memory to the array. The
dynamic memory allocation method for the same array is shown, as follows:

int **q; // declaring a pointer to the
integer array
q = new int *[M+1]; // allocating memory of size

M+1 to the rows
for (int i=0;i<=M;i++)
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gqli]l=new int [N+1]; // allocating memory of size
N+1 to the columns

for (i=0;i<=N;i++)

delete qlil; // deallocating the columnar
array memory
delete q; // destroying the array

In the above method, a double pointer to the variable is needed because the array
is two-dimensional. Memory is first allocated to the M+1 row vectors in q. Each row
vector has N+1 columns, and therefore, another chunk of memory is allocated to each
of these vectors. Hence, a maximum total of [M+1] [N+1] amount of memory is
allocated to this array.

Case Study: Matrix Multiplication Problem

We illustrate an important tool in linear algebra involving the multiplication of two
matrices whose memories are allocated dynamically. Suppose A = [a;] and B =
[by;] are two matrices with i = 1,2, ..., M representing the rows of A, and j =
1,2,..., N arethe columnsin B. The basic rule allowing two matrices to be multiplied
is the number of columns in the first matrix must be equal to the number of rows of
the second matrix, whichis k = 1,2, ..., P. The product of A and B is then matrix
C = [Ci j]’ or

AB =C.

For example, if A and B are matrices of size 3 x 4 and 4 x 2, respectively, then
their product is matrix C with the size of 3 x 2, as follows:

11 C12
C=|ca ¢
31 e
[a11 an a3 au b b
I by by
a2l azz o by bu
Ld31 d A asl|,

[ai1b11 + ainbar + aizbsi + aubsr  anbia + annbxn + aizbs + aisba
= | a21b11 + axnby + axnbzi + axybsy  axbix + anby + axpbi; + axba

| as1b11 + azbay + aszbsi + azabar  azibiy + aznbxn + azzbi + azaba
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Obviously, each element in the resultant matrix is the sum of four terms that can
be written in a more compact form through their sequence. For example, c¢;; has the
following entry:

ci1 = anbi + annby + azbz + araba,

which can be rewritten in a simplified form as

4
c = E akby.
=1

Other elements can be expressed in the same general manner. The elements in
matrix C become

-, A _
Yoaubn Y aubi
=1 =1

i1 C12 4 4

C=|cu cnl|=|> axbu ) anbr

=1 =1

1 C3p . .
Yanbu Y aubp
| k=1 =1 |

Looking at the sequential relationship between the elements, the following simpli-
fied expression represents the overall solution to the matrix multiplication problem:

P
C =lc;j] = [Z aix bk,} (2.4)
k=1

fori =1,2,...,M,and j = 1,2, ..., N. This compact form is also the algorithmic
solution for the matrix multiplication problem as program codes can easily be designed
from the solution.

We discuss the program design for the above problem. Three loops with the iterators
i, j,and k are required. As k is the common variable representing both the row number
of A and the column number of B, itis ideally placed in the innermost loop. The middle
loop has j as the iterator because it represents the column number of C. The outermost
loop then represents the row number of C, having i as the iterator.

The corresponding C++ code for the multiplication problem has the complexity
of O(MNP), and the code segments are

for (i=1; i<=M; i++)
for (j=1; j<=N; j++)
{
c[i1[j1=0;
for (k=1; k<=P; k++)
clil[j]1 += alil [kI1*b[k][j1;
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Code2B. cpp is a full program for the multiplication problem between the matrices
A =laj] and B = [by;] withi =1,2,...,M and j =1,2,..., N. The program
demonstrates the full implementation of the dynamic memory allocation scheme for

two-dimensional arrays.

Code2B.cpp: multiplying two matrices
#include <iostream.h>

#define M 3
#define P 4
#define N 2

void main()

{

int 1,j,k;

int **a,**b,**C;

a = new int *[M+1];

b = new int *[P+1];

c = new int *[M+1];

for (i=1;i<=M;i++)
alil=new int [P+1];

for (j=1;j<=P;j++)
bl[jl=new int [N+1];

for (k=1;k<=M;k++)
c[k]=new int [N+1];

al1]1[1]1=2; al1][2]=-3; al1][3]=1; al[1][4]=5;
al2][1]1=-1; a[2][2]=4; a[2][3]=-4; a[2][4]=-2;
a[3]1[1]1=0; al3][2]=-3; al3][3]=4; al3][4]=2;

cout << "Matrix A:" << endl;
for (i=1; i<=M; i++)

{
for (j=1;j<=P;j++)
cout << ali][j] << " ",
cout << endl;
}

b[1]1[11=4; b[1][2]=-1;
b[2]1[11=3; b[2] [2]=2;
b[3]1[1]=1; b[3]1[2]=-1;
b[4]1[1]1=-2; b[4] [2]=4;
cout << endl << "Matrix B:" << endl;
for (i=1; i<=P; i++)
{
for (j=1; j<=N; j++)

cout << b[i][j] << " ";
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cout << endl;

}

cout << endl << "Matrix C (A multiplied by B):" << endl;
for (i=1; i<=M; i++)

{
for (j=1;j<=N;j++)
{
cl[il [j1=0;
for (k=1;k<=P;k++)
c[i1]1 [j]1 += ali]l [x]1*b[k] [j]1;
cout << c[i][j] << " ",
}
cout << endl;
}

for (i=1;i<=M;i++)
delete ali]l;
for (j=1;j<=P;j++)
delete b[j];
for (k=1;k<=M;k++)
delete c[k];
delete a,b,c;

The declaration and coding for arrays with higher dimensions in dynamic memory
allocation follow a similar format as those in the one- and two-dimensional arrays.
For example, a three-dimensional array is declared statically as follows:

int r[M+1] [N+1] [P+1];

The following code shows the dynamic memory allocation method for the same array:

int *kk*r; // declaring a pointer
to the integer array
r = new int *x[M+1]; // allocation to the

first parameter
for (int i=0;i<=M;i++)
{
r[il=new int *[N+1]; // allocation to the
second parameter
for (int j=0;j<=N;j++)
r[il [jl=new int [P+1]; // allocation to the
third parameter
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for (i=0;i<=N;i++)

{
for (j=0;j<=P;j++)
delete r[i][j];
delete r[il;
}
delete r; // destroying the array

2.3 MATRIX REDUCTION PROBLEMS

One of the most important operations involving a matrix is its reduction to the upper
triangular form U. The technique is called row operations, and it has a wide range
of useful applications for solving problems involving matrices. Row operation is an
elimination technique for reducing a row in a matrix into its simpler form using one
or more basic algebraic operations from addition, subtraction, multiplication, and
division. A reduction on one element in a row must be followed by all other elements
in that row in order to preserve their values.

Vector and Matrix Norms

The norm of a vector is a scalar value for describing the size or length of the vector
with respect to the dimension 7 of the vector. Norm values of a vector are extensively
referred especially in evaluating the errors that arise from an operation involving the
vector.

Definition 2.1. The norm-n of a vector of size m, v = [v; va «-- vy, is defined
as the nth root of the sum to the power of n of the elements in the vector, or

m
n
2
i=1

It follows from Definition 2.1 that the first norm of v = [v; vy --- v,]7, called
the sum of the vector magnitude norm, is the sum of the absolute value of the elements,
as follows:

i, =" =X +xl (2.5)

m
Wiy =" lvil = o]+ [val + -+ + [vn] - (2.6)
i=1
The second norm of v = [v; vy --- v,]7 is called the Euclidean vector norm,

which is expressed as follows:

m

vaz\/v%+v%+--~+vfn. 2.7)

i=1

il = 1wl =
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Another important norm is the maximum vector magnitude norm, or ||v| s, of
v =[v; va --- vy]’, which is the maximum of the absolute value of the elements.
This norm is defined as follows:

IVlloe = max |v;| = max (|vi], [val, ..., [vm]). 2.8)

1<i<m

The rule for determining the maximum matrix norm follows from that of a vector
because a matrix of size m X n is made up of m rows of n column vectors each. This
is expressed as follows:

|Alloo = max (la;1| + laiz| + -+ + |ainl)
1<i<m
= max(layi| + laz| + - - + lawl, laa| + lazz| + -+ |azl, .. ., lam1|
+lama| + -+ lamnl).

4 1 2
3 —1 5|, find ]y, IVl
2 -1 1

Example 2.1. Given v =[-3,5,2]" and A = |:

Vo and [|Allo.

Solution. The calculation is very straightforward, as follows:

3
Wl =Y lul=1-31+15/+ 2 =3+5+2 = 10.

i=1

vl =1vl, =

3
Z v? = (=32 +52+22 =38
i=1

Vlloo = max [v;| =max(|-3],15], |2]) = max 3, 5,2) = 5.

[Alloe = max (| =4[ + [1] + 2], [3] + =1+ 5], [=2] + [=1] + [1])
=max(7,9,4) =09.

Row Operations

Row operations are the key ingredients for reducing a given matrix into a simpler
form that describes the behavior and properties of the matrix.

Definition 2.2. Row operation on row i with respect to row j is an operation involving
addition and subtraction defined as R; <- R; + mR;, where m is a constant and R;
denotes row i. In this definition, R; on the left-hand side is a new value obtained from
the update with R; on the right-hand side as its old value.
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Theorem 2.1. Row operation in the form R; < R; +mR; on row i with respect to
row j does not change the matrix values. In this case, the matrix with the reduced
row is said to be equivalent to the original matrix.

’
Consider matrix A = P having two rows and three columns. Row

s t u
operation on row 2 with respect to row 1 is defined as follows:
Ry < R, + mR;.
The addition operation on R, produces

p q r
s+mp t+mq u-+mr

B =

From Theorem 2.1, the new matrix obtained, B, is said to have equal values with the
original matrix A. Another operation is subtraction:

p q r
s—mp t—mq u—mr

C =

which results in matrix C having the same values as A and B. We say all three matrices
are equivalent, or

rpq | p q r p q r
st u s+mp t+mq u-+mr s—mp t—mq u-—mr

A useful reduction is the case in which the constant m is based on a pivot element.
A pivot element is an element in a row that serves as the key to the operation on that
row. The normal goal of pivoting an element is to reduce the value of an element to
zero. In matrix C above, the element a;; in A can be reduced to 0 by letting m = %.
In this case, a;; = p is the pivot element as this element causes other elements in
the row to change their values as a result from the row operation. Row operation
Ry, <~ Ry, — %Rl produces

p q r
C= s s
0 t——q u——r
P p

Matrix Reduction to Triangular Form

Reduction to zero elements is the basis of a technique for reducing a matrix to its
triangular form. A triangular matrix is a square matrix where all elements above or
below the diagonal elements have zero values. The name triangular is reflected in the
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shape of the matrix with two triangles occupying the elements, one with zero elements
of the matrix and another with other numbers (including zeros).

An upper triangular matrix is a triangular matrix denoted as U = [u;;], where
u;j = 0for j < i. Other elements with j > i can have any value including zero. For
example, a 4 x 4 upper triangular matrix has the following form:

* % k%
0 * ok

U= 0 0 e 2.9)
0 0 =

where * can be any number including O.

Opposite to the upper triangular matrix is the lower triangular matrix L = [I;;],
where /;; = Ofori < j. The following matrix is a general notation for the 4 x 4 lower
triangular matrix L:

= 0 0 O
¥« % 0 0
L = (2.10)
* % % 0
* % ok %

A square matrix A is reduced to U or L through a series of row operations.
Row operation is a technique for reducing a row in a matrix into a simpler form by
performing an algebraic operation with another row in the matrix. Matrix A, when
reduced to U or L, is said to be equivalent to that matrix.

In general, a square matrix with N rows requires N — 1 row operations with respect
torows 1,2, ..., N — 1. A matrix is usually reduced by eliminating all the rows of
one of its columns to zero with respect to the pivot element in the row. The pivot
elements of matrix A = [a;;] are a;;, which are the diagonal elements of the matrix.
The reduction of a square matrix into its upper triangular matrix is best illustrated
through a simple example.

Example 2.2. Find the upper triangular matrix U of the following matrix:
8 2 -1 2

-2 1 -3 =8
2 -1 7 -1

Solution. There are four rows in the matrix. Reduction of the matrix to its upper
triangular form requires three row operations with respect to rows 1, 2, and 3.

Operations with Respect to the First Row. a;; = 8.000 is the pivot element of the
first row, and let m = a;;/a;; for the rows i = 2, 3, 4. All elements in the second,
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third, and fourth rows are reduced to their corresponding values using the relationships
ajj < a;j —m#ay; for columns j =1, 2,3, 4.

8.000 2.000 —1.000 2.000

0.000 1.500 —=3.250 —7.500 m =a/ai,arj < arj —m#ay;
0.000 —1.500 7250 —1.500 m =asi/ax,as; < azj —m#*a;
0.000 —8.250 1.125  —=2250 m = as1/axn, asj < asj — m+*ay;

Operations with Respect to the Second Row. ay, = 1.500 is the pivot element of
the second row, and therefore, m = a;,/ay, for the rows i = 3, 4. All elements in the
third and fourth rows are reduced to their corresponding values using the relationships
ajj < ajj — m#ay; for the columns j =1, 2,3, 4.

8.000 2.000 —1.000 2.000
0.000  1.500 -3.250  —=7.500
0.000  0.000 4.000 —=9.000 m =azn/an,
0.000 0.000 —16.750 —43.500 m = asr/azn,

Operations with Respect to the Third Row. az; = 4.000 is the pivot element of the
third row. Therefore, m = a;3/as; for the row i = 4. All elements in the fourth row
are reduced to their corresponding values using the relationship a;; < a;; — m=*as;
for the columns j =1, 2, 3, 4.

8.000 2.000 —1.000 2.000
0.000 1500 —3.250 —7.500
0.000  0.000 4.000 —9.000
0.000  0.000 0.000 —81.188 m = asz/ass,

Row operations on A produce U':

2 —1 2
1.500 —-3.250 —7.500

0 4.000  —9.000

0 0 —81.188

S O O ®

The C++ program to reduce A to U is very brief and compact. The code
is constructed from the equation a;; < a;; — m*ay;, where m = a;/a, and i =
k+1,k+2,...,Nk=1,2,...,N—1landj =1,2,..., N, as follows:

double m;
for (k=1;k<=N-1;k++)
for (i=k+1;i<=N;i++)
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{
m=a[i] [k]/alk] [k];
for (j=1;j<=N;j++)
alil [j] -= m*xalk][j];
}

27

Code2C. cpp shows the full program for reducing A to U with Code2C. in as the
input tile for A

Code2C.cpp: reducing a square matrix to its upper triangular form

#include <fstream.h>
#include <iostream.h>
#define N 4

void main()

{

int i,3,k;
double **a;
a=new double *[N+1];
for (i=0;i<=N;i++)
al[il=new double [N+1];

ifstream InFile("Code2C.in");
for (i=1;i<=N;i++)
for (j=1;j<=N;j++)
InFile >> ali][j];
InFile.close();

// row operations
double m;
for (k=1;k<=N-1;k++)
for (i=k+1;i<=N;i++)

{
m=a[i] [k]/alk] [k];
for (j=1;j<=N;j++)
alil[j] -= mxalk][j];
}
for (i=1;i<=N;i++)
{
for (j=1;j<=N;j++)
cout << afli]l[j] << " ",
cout << endl;
¥
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Computing the Determinant of a Matrix

As we will see later, the triangular form of a matrix says a lot about the properties
of its original matrix, which includes the determinant of the matrix. Finding the
determinant of a matrix proves to be an indispensable tool in numerical computing
as it contributes toward determining some properties of the matrix. This includes an
important decision such as whether the inverse of the matrix exists.

Definition 2.3. The determinant of a matrix A = [a;;] can only be computed if it is
a square matrix and A is reducible to U.

Definition 2.4. A square matrix A = [a;;] is said to be singular if its determinant is
zero. Otherwise, the matrix is nonsingular. A singular matrix is not reducible to U.

Definition 2.5. The inverse of a singular matrix does not exist, which implies that if
A is nonsingular, then its inverse, or A~!, exists.

The determinant of matrix A, denoted by |A| or det(A), is computed in several
different ways. By definition, the determinant is obtained by computing the cofactor
matrix from the given matrix. This method is easy to implement, but it requires many
steps in its calculations.

A more practical approach to computing the determinant of a matrix is to reduce
the given matrix to its upper or lower triangular matrix based on the same elimination
method discussed above.

Theorem 2.2. If a square matrix is reducible to its triangular matrix, the determinant
of this matrix is the product of the diagonal elements of its reduced upper or lower
triangular matrix.

The above theorem states that if a square matrix A = [q;;] of size N x Nisreducible
to its upper triangular matrix U = [u;;], then
N
Al = Ul =] Jui =un -uz.....uny. @2.11)
i=1

Example 2.3. Find the determinant of the matrix defined in Example 2.2.

Solution. From Theorem 2.2, the determinant of matrix A in Example 2.2 is the
product of the diagonal elements of matrix U, as follows:

|Al = |U| = uyy.u22.u33.U44

= (8)(1.5)(4)(—81.188) = —3897.024.

The following code shows how a determinant is computed:
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double Product, m;
for (k=1;k<=N-1;k++)
for (i=k+1;i<=N;i++)

{
m=a[i] [k]/alk] [k];
for (j=1;j<=N;j++)
alil[j] -= mralk] [j1;
}
Product=1;

for (i=1;i<=N;i++)
Product *= a[i] [i];

The full program for computing the determinant of a square matrix is listed in
Code2D. cpp, as follows:

Code2D.cpp: computing the determinant of a matrix
#include <fstream.h>

#include <iostream.h>

#define N 4

void main()
{
int i,3,k;
double A[N+1] [N+1];

cout.setf(ios::fixed);
cout.precision(5);

cout << "Input matrix A: " << endl;
ifstream InFile("Code2D.in");

for (i=1;i<=N;i++)

{
for (j=1;j<=N;j++)
{
InFile >> A[i][j];
cout << A[i][j] << " "y
3
cout << endl;
X

InFile.close();

// row operations
double Product,m;
for (k=1;k<=N-1;k++)
for (i=k+1;i<=N;i++)
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{
m=A[i] [k]/A[k] [k];
for (j=1;j<=N;j++)
A[i1[j1-=m*A[k] [j];
}

cout << endl << "matrix U:" << endl;
for (i=1;i<=N;i++)

{
for (j=1;j<=N;j++)
cout << A[i][j] << "™ "y
cout << endl;
}
Product=1;

for (i=1;i<=N;i++)
Product *= A[i][i];

// display results
cout << endl << "det(A)=" << Product << endl;

Computing the Inverse of a Matrix

Finding the inverse of a matrix is a direct application of the row operations in the
elimination method described earlier. Therefore, the problem is very much related to
the row operations in reducing a given square matrix into its triangular form.

Theorem 2.3. The inverse of a square matrix A is said to exist if the matrix is not
singular, that is, if its determinant is not zero, or |A| # 0.

The above theorem specifies the relationship between the inverse of a square matrix
and its determinant. The product of a matrix A and its inverse A~'is AA~! = I, where
I is the identity matrix. Hence, the problem of finding the inverse is equivalent to
finding the values of matrix X in the following equation:

AX =1.

X from the above relationship can be found through row operations by defining
an augmented matrix A|I. Row operations reduce A on the left-hand side to U and /
on the right-hand side to a new matrix V. Continuing the process, U on the left-hand
side of the augmented matrix is further reduced to /, whereas V on the right-hand
side becomes X = A~!, which is the solution.

Figure 2.1 depicts the row operations technique for finding the inverse of the matrix
A. It follows that Example 2.3 illustrates an example in implementing this idea.
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All

@ Row Operations

ul v

@ Backward Substitutions

I | A

FIGURE 2.1. Schematic flow of the matrix inverse problem.

Example 2.4. Find the inverse of the matrix in Example 2.2.

Solution. The first step in solving this problem is to form the augmented matrix A | 1,
as follows:

8.000  2.000 —1.000  2.000 1.000 0.000 0.000 0.000
—2.000 1.000 —3.000 —8.000 0.000 1.000 0.000 0.000
2.000 —1.000  7.000 —1.000 0.000 0.000 1.000 0.000
1.000 —8.000 1.000 —2.000 0.000 0.000 0.000 1.000

Operations with Respect to Row 1. Start the operations with respect to row 1 with
m = a;1/a;; by reducing a;, as; and a4y to O through the equations a;; < a;;
—mx*ayj and x;; < x;; — m#*xy; for the columnsj =1, 2, 3, 4.

8.000  2.000 —1.000  2.000 1.000 0.000 0.000 0.000
0.000 1.500 —-3.250 —7.500 0.250 1.000 0.000 0.000
0.000 —1.500  7.250 —1.500 —0.250 0.000 1.000 0.000
0.000 —8.250 1.125 —=2.250 —0.125 0.000 0.000 1.000

Operations with Respect to Row 2. The next step is row operations with respect
to row 2 with m = a;»/ay for i = 3,4 to reduce as; and a4, to 0. This is achieved
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through a;; < a;; — m=*ay; and x;; < x;; — m#*x,; for the columns j =1,2,3,4,
to produce the following values:

8.000 2.000 —1.000 2.000 1.000  0.000 0.000 0.000
0.000 1.500 —3.250 —7.500 0.250 1.000 0.000 0.000
0.000  0.000 4.000  —9.000 0.000 1.000 1.000 0.000
0.000 0.000 —16.750 —43.500 1.250 5.500 0.000 1.000

Operations with Respect to Row 3. Finally, U is produced from row operations
with respect to row 3 with m = a;3/a33 for i = 4. Other elements in the row
are updated according to @;; < a;j — m#*a3; and x;; < x;; — m#*x3; for j =1,2,
3,4.

8.000 2.000 —1.000 2.000 1.000 0.000 0.000 0.000
0.000 1.500 —-3.250 —7.500 0.250 1.000 0.000 0.000
0.000 0.000  4.000 —9.000 0.000 1.000 1.000 0.000
0.000 0.000  0.000 —81.188 1.250 9.688 4.188 1.000

Reducing U to I. The next step is to reduce U from the left portion of the augmented
matrix to the identity matrix /. The strategy is perform row operations starting on
row 4 toreduce aj4 to O for j =1, 2,3, 4.

8.000 2.000 —1.000 0.000 1.031 0239  0.103  0.025
0.000 1.500 —3.250 0.000 0.135  0.105 —-0.387 —0.092
0.000 0.000  4.000 0.000 —-0.139 —-0.074  0.536 —0.111
0.000 0.000  0.000 —81.188 1.250  9.688  4.188 1.000

This is followed by row operations with respect to row 3.

8.000 2.000 0.000 0.000 0996  0.220 0.237 —-0.003
0.000 1.500 0.000 0.000 0.022  0.045 0.048 —0.182
0.000 0.000 4.000 0.000 -0.139 -0.074 0.536 —0.111
0.000 0.000 0.000 —81.188 1.250  9.688 4.188 1.000

The next step is the row operations with respect to row 2.

8.000 0.000 0.000 0.000 0967  0.160 0.172  0.240
0.000 1.500 0.000 0.000 0.022  0.045 0.048 —0.182
0.000 0.000 4.000 0.000 —-0.139 —-0.074 0.536 —0.111

0.000 0.000 0.000 —81.188 1.250  9.688 4.188 1.000
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The last step is to reduce the diagonal matrix into an identity matrix by dividing
each row with its corresponding diagonal element, as follows:

a;; < @, followed by x;; < ﬂ, fori =1,2,3,4and j =1,2,3,4.

aij Aaji
1.000 0.000 0.000 0.000 0.121 0.020 0.022 0.030
0.000 1.000 0.000 0.000 0.015 0.030 0.032 —-0.122
0.000 0.000 1.000 0.000 —0.035 —-0.018 0.134 —0.028
0.000 0.000 0.000 1.000 -0.015 -0.119 -0.052 -0.012

‘We obtain the solution matrix

0.121 0.020  0.022  0.030
0.015 0.030  0.032 —0.122
—-0.035 —-0.018 0.134 —0.028
-0.015 -0.119 -0.052 -0.012

Al=x =

The following program, Code2E.cpp, is the implementation of the elimination
method for finding the inverse of a matrix.

Code2E.cpp: finding the inverse of a matrix
#include <fstream.h>

#include <iostream.h>

#define N 4

void main()
{
int 1i,j,k;
double **A, **xB, *xX;
A=new double *[N+1];
B=new double *[N+1];
X=new double *[N+1];
for (i=0;i<=N;i++)
{
Alil=new double [N+1];
B[i]l=new double [N+1];
X[i]l=new double [N+1];
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cout.setf(ios::fixed);
cout.precision(5);
ifstream InFile("Code2E.in");
for (i=1;i<=N;i++)

for (j=1;j<=N;j++)

{
InFile >> A[i]1[j];
if (i==j)
B[il[jI=1;
else
B[i] [j1=0;
}

InFile.close();

// row operations
double Sum,m;
for (k=1;k<=N-1;k++)

for (i=k+1;i<=N;i++)

{
m=A[i] [k]/A[k] [k];
for (j=1;j<=N;j++)
{
A[i1[3] -= m*A[k] [5];
B[i][j] -= m*B[k][j];
}
}

// backward substitutions
for (i=N;i>=1;i--)
for (j=1;j<=N;j++)

{
Sum=0;
for (k=i+1;k<=N;k++)
Sum += A[i] [kI=*X[k][j];
X[1i1 [j1=(B[1i]1 [j]1-Sum)/A[i] [i];
3
for (i=1;i<=N;i++)
{
for (j=1;j<=N;j++)
cout << X[i][j] << "™ "y
cout << endl;
+
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2.4 MATRIX ALGEBRA

Mathematical operations involving matrices can be very tedious and time consuming.
This is especially true as the size of the matrices become large. As described, each
matrix in a typical engineering application may occupy a large amount of computer
memory. As a result, a mathematical operation involving several large matrices may
slow down the computer and may cause the program to hang because of insufficient
memory.

Efficient coding is required to handle algebraic operations involving many ma-
trices. The preparation for a good coding includes the use of several functions to
make the program modular and a distance separation of code from its data. The two
requirements mean a good C++ program must implement an extensive data passing
mechanism between functions as a way to simplify the execution of code.

Generally, algebraic operations on matrices involve all four basic tools: addi-
tion, subtraction, multiplication, and division. We discuss all four operations and our
preparation for the large-scale algebraic operations. In achieving these objectives,
we discuss methods for passing data between functions that serve as an unavoidable
mechanism in making the program modular.

In making the program modular, several functions that represent the modules in
the problem are created. Four main functions in matrix algebra are addition (with
subtraction), multiplication, and matrix inverse (which indirectly represents matrix
division). We discuss the modular technique for solving an algebraic operation involv-
ing matrices based on all of these primitive operations. To simplify the discussion, all
matrices discussed are assumed to be square matrices of the same size and dimension.

Data Passing Between Functions

A good computer program considers data and program code as separate entities. In
most cases, data should not be a part of the program. Data should be stored in an
external storage medium, and it will only be called when required. This strategy is
necessary as each unit of data occupies some precious space in the computer memory.

Data passing is important in making the program modular. Data passing encourages
the variables to be declared locally instead of globally. A good C++ program should
promote the use of local variables as much as possible in place of global variables as
this contributes to the modularity of the program significantly. For example, if A is
the input matrix for the addition function in a program, this same matrix should also
be the input for the multiplication function. It is important to have a mechanism to
allow data from the matrix to be passed from one function to another.

Matrix Addition and Subtraction

Two matrices of the same dimension, A = [g;;] and B = [b;;] are added to produce
anew matrix C = [¢;;], which also has the same dimension as the first two matrices.
The matrix addition between two matrices is a straightforward addition between the
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elements in the two matrices; that is, ¢;; = a;; + b;;. The task is represented as the
function MatAdd () from a class called MatAlgebra, as follows:

void MatAlgebra::MatAdd(bool flag,double **c,double *x*a,
double *x*b)

{
int 1i,j,k;
for (i=1;i<=N;i++)
for (j=1;j<=N;j++)
if (flag)
clil [j1=alil [3j1+b[i] [j];
else
clil[j1=alil [j1-b[i1[j];
}

In MatAdd (), the input matrices are a and b, which receive data from the calling
function. The computed array is c, which returns the value to the calling function
in the program. The Boolean variable, flag, is introduced in the code to allow the
function to support subtraction as well as addition. Addition is performed when
flag=1 (TRUE), whereas flag=0 (FALSE) means subtraction. The use of flag is
necessary to avoid the creation of another function specifically for, subtraction, which
proves to be redundant.

Matrix Multiplication

The matrix multiplication function is another indispensable module in matrix algebra.
We call the function MatMultiply (), and its contents are very much similar to
Code2B. cpp, as follows:

void MatAlgebra::MatMultiply(double **c,double **a, double **b)
{
int 1i,j,k;
for (i=1;i<=N;i++)
for (j=1;j<=N;j++)
{
c[i]1[j1=0;
for (k=1;k<=N;k++)
cl[il [j] += alil [k]*b[k] [j];

In the above code, a and b are two local matrices whose input values are obtained
from the calling function. From these values, c is computed, and the results are passed
to the matrix in the calling function.
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Matrix Inverse

Matrix inverse is the reciprocal of a matrix that indirectly means division. Two ma-
trices A and B are divided as follows:

C===AB"".
B

As demonstrated above, C can only be computed if B is not singular, that is, B~
exists. Division means the first matrix is multiplied to the inverse of the second
matrix. Therefore, a function for computing the matrix inverse is necessary as part of
the overall matrix algebra operation.

Matrix inverse function, MatInverse() is reproduced from Code2E.cpp, as
follows:

void MatAlgebra::MatInverse(double **x,double **a)
{
int 1i,j,k;
double Sum,m;
double **b, *xq;
b=new double *[N+1];
g=new double *[N+1];
for (i=1; i<=N; i++)
{
b[i]l=new double [N+1];
qli]=new double [N+1];
}
for (i=1;i<=N;i++)
for (j=1;j<=N;j++)

{
b[i] [j1=0;
qlil [j1=alil [j];
if (i==j)
b[il [j1=1;
}

//  Perform row operations
for (k=1;k<=N-1;k++)
for (i=k+1;i<=N;i++)
{
m=q[i] [k]/q[k] [k];
for (j=1;j<=N;j++)
{
qlil [j]-=m*q[k] [j];
bl[i]l [j1-=m*b[k] [j];
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// Perform back substitution
for (i=N;i>=1;i--)
for (j=1;j<=N;j++)

{
Sum=0;
x[1] [j]=0;
for (k=i+1;k<=N;k++)
Sum += q[i] [k]*x[k] [j];
x[11 [j1=(b[1i] [j]1-Sum) /q[i] [i];
3

for (i=0;i<=N;i++)
delete b[i]l, qlil;
delete b, q;

MatInverse() requires two parameters, x and a, both of which are two-
dimensional arrays. In this function, a is the input matrix that receives data from
the calling function. The computed values in matrix x are passed to an array in the
calling function.

Putting the Pieces Together

We are now ready to deploy a technique for performing an operation in matrix alge-
bra. We discuss the case of computing Z = A2B~! + A~'B — AB, where the input
matrices A and B have the same size and dimension. This expression consists of
addition, subtraction, multiplication, and matrix inverse operations.

The expression A2B~! + A~ B — AB is a tree that can be broken down into sev-
eral smaller modules, as shown in Figure 2.2. The items in the expression are modu-
larized into three algebraic components: addition, multiplication, and inverse. Several
temporary arrays are created to hold the results from these operations, and they are P,
O,R,U,S,T,V,and Z. Groupings are made based on the priority level, as follows:

A B'+ A'B-AB
1 J
P Q R
| ] | ] 1 |
U S T
1
%
1
z

FIGURE 2.2. Tree diagram for Z = A’B~! + A~'B — AB.



MATRIX ALGEBRA 39

First level grouping:
P=A> Q=B 'andR=A4"".
This is followed by the second-level grouping:
U=PQ, S=RBandT = AB.
Then, the third-level grouping:

V=U+S.

And the fourth-level grouping:
Z=V-T.

The diagram in Figure 2.2 is a tree with the root at Z. Each grouping described
above is represented as a call to the corresponding function in main (). Supposing g
is the object linked in main () to those functions, the C++ solution to the expression
Z = A’B~!' + A~'B — AB is given as follows:

.ReadData(A,B);
.MatMultiply(P,A,A);
.MatInverse(Q,B);
.MatInverse(R,A);
.MatMultiply(U,P,Q);
.MatMultiply(S,R,B);
.MatMultiply(T,A,B);
.MatAdd(1,v,U,S);
.MatAdd(0,Z,V,T);

0g 08 0”9 0”9 0”9 09 09 09 09

In the above solution, MatAdd (), MatMultiply (), and MatInverse() are the
matrix addition, multiplication, and inverse, respectively. Prior to its implementation,
data for the matrices are read and passed into main () through ReadData(). In this
case, data for the matrices A and B are received from this function. The values for A
become an input for MatMultiply (P,A,A), which performs the multiplication A*A
and stores the result in a new matrix P. Similarly, MatInverse(Q,B) receives data
for matrix B, computes its inverse of B, and stores the result into a new matrix Q.
The function MatAdd (1,V,U,S) adds the matrices U and S and then stores the result
into V. The Boolean parameter 1 here means addition, or V=U+S; with 0 the function
performs subtraction, or V=U-S.
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The above code is demonstrated in its complete form in Code2F . cpp with A and
B matrices defined in a file called Code2F.in, as follows:

Code2F.cpp: computing Z = A’B~' + A~'B — AB.
#include <fstream.h>

#include <iostream.h>

#define N 3

class MatAlgebra

{
public:

MatAlgebra() { }

~MatAlgebra() { }

void ReadData(double **,double **);

void MatAdd(bool,double **,double **,double **);

void MatInverse(double **,double *x*);

void MatMultiply(double **,double **,double *x*);
}s
void MatAlgebra::ReadData(double **a,double **Db)
{

int 1i,j;

ifstream InFile("Code2F.in");

for (i=1;i<=N;i++)

for (j=1;j<=N;j++)
InFile >> alil[j];
for (i=1;i<=N;i++)
for (j=1;j<=N;j++)
InFile >> b[i]l [j];
InFile.close();

}

void MatAlgebra::MatAdd(bool flag,double **c,double **a,
double *x*b)

{
int 1i,j,k;
for (i=1;i<=N;i++)
for (j=1;j<=N;j++)
c[i]1 [j1=((flag)?alil [j1+b[i] [j]:
alil [3j1-b[i][j]);
¥

void MatAlgebra::MatMultiply(double **c,double **a,double **b)
{
int 1i,j,k;
for (i=1;i<=N;i++)
for (j=1;j<=N;j++)
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c[i1[j1=0;
for (k=1;k<=N;k++)
c[il [j] += alil [xI*b[k]I[j];

void MatAlgebra::MatInverse(double **x,double **a)
{
int 1i,j,k;
double Sum,m;
double **b, **q;
b=new double *[N+1];
g=new double *[N+1];
for (i=0; i<=N; i++)
{
b[il=new double [N+1];
qli]=new double [N+1];
}
for (i=1;i<=N;i++)
for (j=1;j<=N;j++)

{
b[i] [j1=0;
qlil [j1=alil [j];
if (i==7)
b[i] [j1=1;
}

//  Perform row operations
for (k=1;k<=N-1;k++)
for (i=k+1;i<=N;i++)

{
m=q[i] [k]/q[k] [k];
for (j=1;j<=N;j++)
{
qlil [j1-=m*q[k] []1;
b[i] [j]-=m*b[k] [j];
}
}

// Perform back substitution
for (i=N;i>=1;i--)
for (j=1;j<=N;j++)
{
Sum=0;
x[1] [j]=0;

1
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for (k=i+1;k<=N;k++)
Sum += q[i] [k]*x[k][j];
x[1] [j1=(b[i] [j]1-Sum) /q[i] [i];
}
for (i=0;i<=N;i++)
delete b[i], qlil;

delete b, q;
}
void main()
{
int 1i,j;

double **A,*x*B;
double **P,*xQ,**R,**S  *xT **xU, **V,**Z;
MatAlgebra g;

A=new double *[N+1];

B=new double *[N+1];

P=new double *[N+1];

Q=new double *[N+1];

R=new double *[N+1];

S=new double *[N+1];

T=new double *[N+1];

U=new double *[N+1];

V=new double *[N+1];

Z=new double *[N+1];

for (i=0;i<=N;i++)

{
A[i]=new double [N+1];
B[il=new double [N+1];
P[i]l=new double [N+1];
Q[i]l=new double [N+1];
R[il=new double [N+1];
S[il=new double [N+1];
T[i]=new double [N+1];
U[i]l=new double [N+1];
V[il=new double [N+1];
Z[il=new double [N+1];

}

cout.setf(ios::fixed);

cout.precision(12);

g.ReadData(A,B);

g.MatMultiply (P,A,A);

g.MatInverse(Q,B);

g.MatInverse(R,A);

g.MatMultiply (U,P,Q);



ALGEBRA OF COMPLEX NUMBERS 43

g.MatMultiply(S,R,B);
g.MatMultiply(T,A,B);
g.MatAdd(1,V,U,S);
g.MatAdd(0,Z,V,T);
for (i=1;i<=N;i++)

{
for (j=1;j<=N;j++)
cout << Z[i][j] << " "y
cout << endl;
}

for (i=0;i<=N;i++)
delete A[il,B[i],P[i],Q([i],R[i],S[i],T[i],U[i],V[i],
Z[i];
delete A,B,P,Q,R,S,T,U,V,Z;
}

2.5 ALGEBRA OF COMPLEX NUMBERS

Not all numbers in existence are real. There are also cases in which a number exists
from an imagination based on some undefined entity. Complex number is a number
representation based on the imaginary definition of

i=~—1.

This definition implies i = —1, which is not possible in the real world. However, the
existence of complex numbers cannot be denied as they provide a powerful foundation
to several problems in mathematical modeling.

Complex numbers play an important role in numerical computations. For example,
in one area of mathematics called conformal mapping, complex numbers are used
to map one geometrical shape from a complex plane to another complex plane in
such a way to preserve certain quantities. One such work is the mapping of a circular
cylinder to a family of airfoil shapes by considering the pressure and velocity of
particles around the cylinder. In another area of study called chaotic theory, complex
numbers are used in modeling randomly displaced particles in a fluid that are subject
to a motion called Brownian movement.

A complex number z has two parts, namely, real and imaginary, defined as follows:

z=a+bi. (2.12)

Inthe above form, a is the real part, whereas b is the imaginary part. A complex number
with b = 0 is a real number. Figure 2.3 shows a complex number z = a + bi with
respect to the real axis, R and the imaginary axis i, with the originatz = 0+ 0i = 0.

Complex numbers are not represented directly in their standard form in the com-
puter, because the computer supports integers only in its operations. Therefore, some
specialized routines need to be created for manipulating the integers in the computer
to enable complex number arithmetic.

In C++, a complex number can be defined using a structure whose contents consist
of the real and imaginary parts of the number. For example, the following structure
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z=a+bi

>R

a

FIGURE 2.3. Complex number z = a + bi.

called Complex declares a complex number:

typedef struct

{
double r; // real part
double i; // imaginary part
}
Complex;

Using the above structure, a complex number z can be created as an object through
the declaration

Complex z;

It follows that z. r represents the real part of z (which is a) and z. i represents the
imaginary part of z (which is b), or

z.r =a, and z.1i = b.

Arithmetic on complex numbers obeys the same set of rules in mathematics as
that of the real numbers. Basically, the operations involve addition, subtraction, mul-
tiplication, and division. We discuss the development of functions for each of the
algebraic tools using a single class called ComAlgebra.

Addition and Subtraction

The addition of two complex numbers is carried out by adding their real part and
imaginary part separately. The same rule also applies to subtraction. Suppose z; =
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ay; + byi and zp = ap + b,i are two complex numbers. Then their sum is
71+ 20 = (a1 + ap) + (b + by)i.

Similarly, subtraction is carried out as follows:
71— 22 = (a1 — az) + (b1 — by)i.

In C++, addition between two complex numbers u and v is performed using the
function Add () to produce w, as follows:

Complex ComAlgebra::Add(Complex u,Complex v)

{
Complex w;
w.r = u.r + v.r;
w.i=u.i+ v.i;
return(w) ;

}

Subtraction is very much similar to addition, using the function Subtract (), as
follows:

Complex ComAlgebra::Subtract(Complex u,Complex v)
{

Complex w;

W.r = u.r - V.r;

w.i=u.i- v.i;

return(w) ;

Multiplication

The multiplication of two complex numbers works in a similar manner as the dot-
product between two vectors where the product of the real parts adds to the product
of the imaginary parts. For two complex numbers z; = a; + byi and z, = a, + by,
their product is

21.22 = (a1 + bii)(as + byi)
= ajas + bi1bri* + (a1by + axby)i.

= (a1ay — b1b) + (a1by + axby)i
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Multiplication between two numbers, u and v, to produce w is demonstrated using
the function Multiply (), as follows:

Complex ComAlgebra::Multiply (Complex u, Complex v)
{

Complex w;

W.r = U.T*V.r — u.i*v.i;

wW.i = u.rxv.i + v.r*xu.i;

return(w) ;

Conjugate

The conjugate of a complex number z = a + bi is zZ, which is a reflection of the num-
ber on the imaginary axis, denoted as 7 = a — bi. The code segments for computing
the conjugate w of the complex number u using the function Conjugate () are as
follows:

Complex ComAlgebra::Conjugate(Complex u)

{
Complex w;
w.r = u.r;
w.i = -u.i;
return(w) ;

}

Division

When a complex number z; = a; + b;i is divided by another complex number z, =
ap + byi, the result is also a complex number. This calculation is shown as

z1 ay+bii
22 ay+ by

_a + byi a, — by

ar + bzl .az — bzl

_ (a1az + biby) + (asby — aby)i
a% + b%

_ (amar +b1by) | (a2bi —aiby).
= 2 2 VS
ay +b; ay +b;




ALGEBRA OF COMPLEX NUMBERS 47

A function called Divide () shows the division of two complex numbers, u on v,
to produce another complex number, w, as follows:

Complex ComAlgebra::Divide(Complex u, Complex v)
{
Complex c, w, s;
double denominator;
c = Conjugate(v);
s = Multiply (u, c¢);
denominator = v.r*v.r + v.ixv.i + 1.2e-60; // to prevent
division
by zero

w.r = s.r/denominator;
w.i = s.i/denominator;
return(w) ;

A variable called denominator in the above code segment has its value added
with a very small number 1.2e-60, or 1.2 x 107 The addition does not change the
result significantly, and it is necessary in order to prevent the value from becoming
zero, hence, avoiding the division by zero problem.

Inverse of a Complex Number

The inverse z ! of a complex number z = a + bi is computed as follows:

1 1
77l=-

z :a+bi
1 a-bi
T atbia—bi
a—bi
T2t
a b

RS L

The corresponding C++ code using the function Inverse() for computing the
inverse of u is shown as follows:

Complex ComAlgebra::Inverse(Complex u)
{

Complex w,v;

v.r = 1.0;

v.i = 0.0;
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w = Divide(v,u);
return(w) ;

Performing Complex Number Arithmetic

An algebraic arithmetic involving complex numbers is easily performed using the
basic operations discussed above: addition, subtraction, multiplication, division, con-
jugate, and inverse. The strategy is to have a function for each operation so that the
whole process becomes structured and modular. As demonstrated earlier in the case
of matrix operation, an algebraic operation on complex numbers should be based on a
good programming principle. To achieve this objective, the operation must maximize
the use of local variables, encourage data passing between functions, and encourage
object-oriented methodology.

We illustrate complex number algebra using an example in evaluating the ex-
pression 7 = %, assuming u and v are complex numbers, and 3u + v # 0. In
solving this problem, we adopt the same strategy discussed in Section 2.4. The whole
operation can be broken down into four levels of groupings based on their priori-
ties with respect to the basic algebraic tools. The whole concept for this problem is
depicted in the form of a priority tree in Figure 2.4.

e

First-level grouping:
p=2u,qg=v ' r=u’ands = 3u.

p q r Second-level grouping:
c=pqgandd =rv.

Third-level grouping:
e=c—dand f =5+ .

<

+ v Fourth-level grouping:

Compute z = ?

S

v =Py

1 3 AT 2u
FIGURE 2.4. Groupings according to the priority tree for z = =5 —
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The priority tree in Figure 2.4 is a structured approach for solving the expres-
sion 7 = % The solution is coded in main () based on calls to the respective

functions described earlier, as follows:

Complex u,v,z,k;
Complex p,q,r,s,c,d,e,f;
ComAlgebra Compute;

k.r=2; k.i=0;
p=Compute.Multiply (k,u);
g=Compute. Inverse(v);
r=Compute.Multiply (u,u);
k.r=3; k.i=0;
s=Compute.Multiply(k,u);

c=Compute.Multiply(p,q);
d=Compute.Multiply(r,v);
e=Compute.Subtract(c,d);
f=Compute.Add(s,v);
z=Compute.Divide(e,f);

Code2G. cpp shows the full program for the algebraic operation in solving the

. -1_,2
expression z = Z”‘QTU“”
. . _ 2uv'—u?v
Code2G.cpp: complex number algebra for solving z = S T

#include <iostream.h>
#include <math.h>

typedef struct

{
double r; // real part
double i; // imaginary part
} Complex;

class ComAlgebra

{

public:
ComAlgebra( );
Complex Add(Complex,Complex) ;
Complex Subtract(Complex,Complex) ;
Complex Conjugate(Complex) ;
Complex Multiply(Complex,Complex) ;
Complex Divide(Complex,Complex) ;
Complex Inverse(Complex) ;
double Magnitude(Complex) ;
double Angle(Complex) ;
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ComAlgebra: :ComAlgebra( )

{7
Complex ComAlgebra::Add(Complex u,Complex V)
{
Complex w;
W.r = u.r + v.r;
w.i=u.i+ v.i;
return(w) ;
}

Complex ComAlgebra::Subtract(Complex u,Complex v)
{

Complex w;

W.r = u.r - Vv.r;

w.i=u.i- v.i;

return(w) ;
}
Complex ComAlgebra::Conjugate(Complex u)
{
Complex w;
W.r = u.r;
w.i = -u.i;
return(w) ;
}

Complex ComAlgebra::Multiply (Complex u, Complex v)
{

Complex w;

W.r = Uu.r*vV.r — u.i*v.i;

wW.i = u.rxv.i + v.r*xu.i;

return(w) ;

}

Complex ComAlgebra::Divide(Complex u, Complex v)
{

Complex c, w, s;

double denominator;

¢ = Conjugate(v);

s = Multiply (u, c);

denominator = v.rxv.r + v.i*v.i + 1.2e-60; //to prevent
division
by zero

w.r = s.r/denominator;
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w.i = s.i/denominator;
return(w) ;

}

Complex ComAlgebra::Inverse(Complex u)
{

Complex w,vV;

v.r = 1.0;

v.i = 0.0;

w = Divide(v,u);

return(w) ;

}

void main()

{
Complex u,v,z,k;
Complex p,q,r,s,c,d,e,f;
ComAlgebra Compute;

u.r=-4; u.i=7;
v.r=6; v.i=3;

k.r=2; k.i=0;
p=Compute.Multiply(k,u);
g=Compute. Inverse(v) ;
r=Compute.Multiply(u,u);
k.r=3; k.i=0;
s=Compute.Multiply(k,u);

c=Compute.Multiply(p,q);
d=Compute.Multiply(r,v);
e=Compute.Subtract(c,d);
f=Compute.Add(s,v);
z=Compute.Divide(e,f);

cout <K "z = " <K z.r << "+ " <K z.i<K< "{" << endl;

2.6 NUMBER SORTING

One important feature in numbers is their order based on the values they carry. For
example, 3 has a lower value than 7; therefore, 3 should be placed before 7. Arranging
numbers in order according to their values helps in making the data more readable and
organized. Besides, ordered data contribute toward an efficient searching mechanism
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and for use in their analysis. The main application involving number sorting can be
found in the database management system.

Data can be sorted in the order from lowest to highest, or highest to lowest, based on
their numeric or alphabetic values. An integer or double variable is ordered according
its numeric value, whereas a string is sorted based on its alphabetical value.

Number sorting is a data structure problem that may require high computational
time in its implementation. Number sorting helps in searching for a particular record
based on its order.

The code below performs sorting with k steps with a complexity of O(N?), where
at each step the numbers w [1] with w[i+1] are compared. If w[i] has a value greater
than w[i+1], then the two values are swapped, using tmp as the temporary variable
to hold the values before swapping.

for (int k=1;k<=N;k++)
for (i=1;i<=N-1;i++)

if (wlil>w[i+11) // swap for low to high
{

tmp=w[i];

wlil=w[i+1];

wli+1]=tmp;
}

Example 2.5. Sort the numbers in the list given by 60, 74, 43, 57 and 45 in ascending
order.

Solution. Applying the sorting algorithm above with k = 1:

old | new
w[l] | 60 | 60 i=1: 60<74, no change with w[1]=60, w[2]=74.
w[2] | 74 | 43 i=2: 74>43, swap with w[2]=43, w[3]=74.
w[3] | 43 | 57 i=3: 74>57, swap with w[3]=57, w[4]=74.
wl4] | 57 | 45 i=4: 74>45, swap with w[4]=45, w[5]=74.
w[5] | 45 | 74

Continue with k£ = 2:

old | new
w[l] | 60 | 43 i=1: 60>43, swap with w[1]=43, w[2]=60.
w([2] | 43 | 57 i=2: 60>57, swap with w[2]=57, w[3]=60.
w[3] | 57 | 45 i=3: 60>45, swap with w[3]=45, w[4]=60.
wl4] | 45 | 60 i=4: 60<74, no change with w[4]=60, w[5]=74.
w[5] | 74 | 74




Next iteration with k = 3:

old | new
w[l] | 43 | 43
w[2] | 57 | 45
w(3] | 45 | 57
w[4] | 60 | 60
w[5] | 74 | 74
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i=1:43<57, no change with w[1]=43, w[2]=57.
i=2: 57>45, swap with w[2]=45, w[3]=57.

i=3:57<60, no change with w[3]=57, w[4]=60.

i=4: 60<74, no change with w[4]=60, w[5]=74.

The numbers have been fully sorted after k = 3. The final order from the given list is
43, 45,57, 60, and 74.

numbers as the input.

Code2H.cpp: sorting numbers

#include <iostream.h>
#include <stdlib.h>
#include <time.h>
#define N 8

void main()

{

int *v,*w,tmp;
v = new int [N+1];
w = new int [N+1];

time_t seed=time (NULL);
srand ((unsigned)seed) ;

for (int i=1;i<=N;i++)
{
v[il=1+rand()%100;

wlil=v[il;
}
for (int k=1;k<=N;k++)
for (i=1;i<=N-1;i++)
if (wlil>w[i+1])

{
tmp=w [1i];
wlil=w[i+1];
wli+1]=tmp;
}

Code2H. cpp shows the full C++ program for the sorting problem using random

// random numbers from 1
to 100

// swap for low to high

cout << "the unsorted random numbers v[i] are:" << endl;
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for (i=1;i<=N;i++)
cout << v[i] << " "y

cout << endl << "sorted from lowest to highest w[i]:"
<< endl;

for (i=1;i<=N;i++)
cout << w[i] << " ",

cout << endl;

}
2.7 SUMMARY

This chapter outlines the importance of good programming strategies for handling
several mathematical-intensive operations involving massive data. The strategies in-
clude exploring the resources in the computer to the maximum in order to optimize
the operations. This chapter highlights some important programming strategies such
as breaking down the program into modules, allocating memory dynamically to ar-
rays, maximizing the use of local variables, and encouraging data passing between
functions. It is important to consider these issues seriously in designing the solution
as a typical scientific problem often causes the computer to perform below its capa-
bility. In some cases, the computer performance is adversely affected through poor
management of memory and improper techniques that originate from the spaghetti
type of coding.

The main issue regarding scientific computing that affects the computer perfor-
mance is the handling of arrays. A typical array in an application represents a matrix
that often occupies a large amount of computer memory. A good strategy is to allocate
memory dynamically to these arrays. Besides memory management, an array is also
subject to its mathematical properties and behavior. Any operation involving arrays
must be carefully executed by considering their mathematic properties in all steps of
the operation. For example, if a given matrix is singular, then it is not possible to find
its inverse as the computation will only lead to some bad results.

Data passing is an important issue that contributes toward a structured and modular
program design. A good contribution can be seen from the feature in data passing,
which encourages the arrays and variables to be declared local, and their values can
be shared by another function through this mechanism. This is illustrated through a
discussion on how a complex expression involving arrays and vectors can be solved
easily through a modular technique that advocates data passing.

We discuss row operations, which is an important technique for reducing a matrix
into its simpler form. Row operations involve some massive and tedious calculations
that contribute to problems such as finding the determinant of a matrix, reducing
a matrix to its triangular form, and finding the inverse of a matrix. Another core
application involving row operations is in solving a system of linear equations, and
this topic will be discussed thoroughly in the next chapter.

We also explore some mathematical problems involving complex numbers and
number sorting. By default, complex numbers are not supported in the computer.
But, it is possible to perform operations involving complex numbers by treating
the numbers as members of a structure. We show how a difficult mathematical
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expression involving complex numbers can be solved easily using a modular pro-
gramming approach.

Number sorting is the extra tool that is included in this chapter. The topic itself

falls under the category of data structure, which is not in the scope of our discussion.
However, the problem appears quite often in various mathematical and engineering
problems. In this chapter, we show how number sorting is performed with program-
ming as its tool.

PROGRAMMING CHALLENGES

1.

Code2C project computes the upper triangular matrix U from any square matrix
A. Write a new program to reduce A into a lower triangular matrix L, as defined
in Equation (2.10).

. An extension to the Code2C project is the decomposition of a square matrix A into

the product of its upper and lower triangular matrices, or A = LU. Write a new
program to do this.

. Code2F . cpp illustrates a modular approach for solving an algebraic operation

involving matrices where the matrices are square and have fixed sizes. Design a
C++ program to compute Z = A’B~! + A~'B — AB for matrices A and B that
have flexible sizes. The program must provide a check on the dimension and status
of each matrix according to the fundamental mathematical properties in order to
allow operations such as multiplication and computing the inverse.

. Modify Code2F . cpp for solving the following problems:

a. Z=(A+3B)"".
b. Z=A"'B*+34?B".
c. Z=(AB)?* —3(AB)".

. An orthogonal matrix is the matrix A = [a;;] for i =1,2,..., M, and j =

1,2,..., N, where Z,Ail a;; = 1 and Zﬁil a;jar; = 0. Write a program to check
the orthogonality of a given matrix of any size.

. A function f(z) of a complex number z is defined as the mapping from z to f(z)

in such a way f(z) is unique. Write a standard C++ program for the following
functions:

a f(o)=1-z
b. f(z) =3—2z+2z— 2.
2z —1
c. flz)=1z ——
72 ifz >0,
d. f(z)= 1

if z <0.
1-z
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3.1 MICROSOFT FOUNDATION CLASSES

Microsoft Corporation released its C++ compiler, bundled with a set of library func-
tions called the Microsoft Foundation Classes (MFCs) in the late 1980s. The library
functions are targeted to support program development using C++ on the Windows
environment. Microsoft Foundation Classes consist of a set of more than 200 classes
for exploring the resources on Windows. Class is a grouping whose members consist
of functions and variables. Each class has several functions for things like displaying
text and graphics, creating dialog windows, and managing the events in Windows.
Prior to MFC, programming on Windows was a difficult task as calls to the appli-
cation program interface (API) for the Windows resources involved many low-level
routines using C. MFC simplified this process as it was designed to gain control over
the routines using a high-level language approach.

A window is a rectangular region on the desktop that allows the user to view the
data and to navigate using the mouse. A window on the Microsoft operating system
is referred to as Windows (with the first letter in capital). There are three types of
windows, namely, overlapped, pop-up, and child. An overlapped window is the main
window where all applications originate. A pop-up window is a small window that
appears when a certain event such as a message box is invoked. A common form of a
pop-up window is an error message box when a runtime error occurs. A child window
is a window branching from the overlapped window for representing another series
of events. Dialog boxes and push buttons are some of the most common form of child
windows.

56
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| CObject |

| CDC | | CFile | |CException

|CCdearget

|CGdiObject| | Cwnd |

CPen
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CBitmap |CFrameWnd | | CDhialog | | CView
CFont
CPalette
CCtrlview
CEdit
CPaintDC CListBox
CClientDC CComboBox
CWindowDC CButton CEALLView
CHotKeyCtrl . .
cstatic CLlstV}ew
CTreeView
CScrollBar
CTabCtrl
CcsliderCtrl

FIGURE 3.1. MFC hierarchical chart.

As a tradition, the name of a class in MFC is preceded by the letter C. Figure 3.1
shows some classes in MFC and their hierarchical structure. Top in the hierarchy is
CObject, which is a base class to a host of other MFC classes. A derived class from
CObject called CDC provides three important classes called CPaintDC, CC1lientDC,
and CWindowDC, which provide the base for managing the resources in Windows.
Another class called CGdi0bject has functions for creating pens, brushes, and fonts.

CWnd is another important class that is derived from CObject via CCmdTarget.
CWnd provides the creation of an overlapped window through CFrameWnd as well as
its child windows in the form of resources on the CEdit, CListBox, and CButton
classes. We will discuss these resources later in the subsequent chapters.

3.2 GRAPHICS DEVICE INTERFACE

Programming on Windows requires extensive calls to the resources provided in the
hardware. Before the introduction of MFC, this task is difficult as each call to the
resources involves several low-level programming skills. As an improvement, MFC
makes full use of a GDI, or graphics device interface, which is a layer in the Windows
architecture that insulates the application from direct interaction with the hardware.
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TABLE 3.1. Server/client classes derived from the CDC class

Class Description

CPaintDC Device context for the server area on Windows.
CClientDC Device context for the client area on Windows.
CWindowDC Device context for the whole window.

CMetaFileDC Device context for representing a Windows metafile or a
device-independent file for reproducing an image.

This interface has an extensive set of high-level functions that can be linked from its
objects for drawing and managing graphics in Windows.

A class that is commonly derived from CObject is CDC. In MFC, CDC is the base
class for providing an interface with other classes, including CPaintDC, CClientDC,
CWindowDC, and CMetaFileDC. An object abstraction called device context has been
provided through these four classes, which links to the functions in CDC for supporting
all the basic graphical and drawing functions on Windows. Table 3.1 describes each
of these classes.

Device context is an object that is responsible for displaying text and graphics
as output on Windows. In reality, a device context is a logical device that acts as
an interface between a physical device (such as the monitor and printer) and the
application. For achieving this task, a device context has a set of tools or attributes for
putting text and drawing graphics on the screen using GDI functions. Device context
is created from one of the following classes: CPaintDC, CClientDC, CWindowDC,
and CMetaFileDC.

The tools in device context are represented as graphic objects such as pens, brushes,
fonts, and bitmaps. Table 3.2 summarizes these objects. There are four types of device
contexts in GDI: display context, memory context, information context, and printer
context. A display context supports operations for displaying text and graphics on a
video display. Before displaying text and graphics, a display context links with MFC
functions for creating a pen, brush, font, color palette, and other devices. A memory
context supports graphics operations on a bitmap and interfaces with the display
context by making it compatible before displaying the image on the window. An
information context supports the retrieval of a device data. A printer context provides
an interface for supporting printer operations on a printer or plotter.

On Windows, everything including text is drawn as a graphics object. This is made
possible as every text character and symbol is formed from pixels that may vary in

TABLE 3.2. GDI objects for text and graphics

GDI Object Class Description

Pen CPen To draw a line, rectangle, circle, polyline, etc.
Brush CBrush To brush a region with a color.

Color palette  CPalette  Color palettes for pens and brushes.

Font CFont To create a font for the text.

Bitmap CBitmap To store a bitmap object.
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shapes and sizes. This facility allows flexibility on the shape of the text by allowing
it to be displayed from a selection of dozens of different typefaces, styles, and sizes.
Text and graphics are managed by GDI functions that are called every time a graphics
needs to be displayed on the screen.

Color Management

The color of an object on Windows is actually the color of a segregated set of pixels
that make up the object. In MFC, the color of each pixel is controlled using the
function RGB() from the CDC class. RGB() consists of three arguments in the order
from left to right as the red, green, and blue components. The function is declared as
follows:

RGB(int, int, int);

Each component in RGB () is an integer that represents the monotone scale from 0
to 255, with 0 as the darkest value and 255 as the lightest. The monotone scales for
red, green, and blue are easily obtained by blanking the other two color components,
as follows:

Red, r RGB(r,0,0)
Green, g RGB(0,g,0)
Blue, b RGB(0,0,b)

The three colors are the primitive colors for other color combinations. Figure 3.2
shows a hypercube that represents color combinations with axes at red, green, and
Blue. Yellow is obtained by setting r=g and b=0, whereas r=0, g=255, and b=255 pro-
duces cyan. A solid black color is obtained by setting r=g=b=0, whereas r=g=b=255

Blue cyan white
(0,255,255) (255,255,255)
blue
(0,0,255)
Green
green L7
(0,255,0) (255,255,0)
yellow
Red
(0,0,0) (255,0,0)
black red

FIGURE 3.2. Red-green-blue color relationship in RGB().
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174 55 171

Red Green  Blue

FIGURE 3.3. A pixel represented as RGB(174,55,171) in a 24-bit string.

produces pure white. It is obvious from this hypercube that a grayscale color is ob-
tained by setting r=g=b, in RGB(r, g,b), which corresponds to a position along the
diagonal line from (0,0,0) to (255,255,255) in the hypercube.

In Windows, a graphical object is formed from a rectangular composition of pixels
of varying intensity. Each pixel displayed on Windows is represented by a string
consisting of 24 bits of binary digits that is represented in MFC by RGB(). The
first eight bits in the string starting from the right form the red component. This is
followed by eight bits of green in the middle and the remaining bits make up blue. The
alignment of a set of pixels in a rectangle makes up an image, a graphical object, and
a text character. As one unit of the graphical object is represented by 24 bits of data,
there are a total of 2%, or 16,777,126, color combinations possible for supporting
various graphical output requirements.

Figure 3.3 shows a pixel in the shaded square having its value defined as
RGB(174,55,171) represented as a 24-bit string. The figure also shows the
corresponding values in hexadecimals: AD for 171, 37 for 55, and BS5 for
174. The value returned by RGB(174,55,171) is the 24-bit binary number
101010110011011110101110, or a decimal value of 11,220,910.

3.3 WRITING A BASIC WINDOWS PROGRAM

We start by discussing some basic concepts in creating an application on Windows.
Microsoft Visual C++.Net provides an interface called Visual Studio for developing
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TABLE 3.3. Some of the new project available options

Item Description

Console application Native C++ project that supports no Windows.

Win32 Project Empty project with or without MFC.

MEFC Application Wizard approach to creating a Windows application.

Managed C++ Application Managed C++ project with or without Windows
suppor.

an application. Besides C++, this interface is shared by other languages in the family,
including Visual Basic and Visual C#. To develop an application using MFC, a person
must know the C++ language very well. A good knowledge in C++ is a prerequisite to
developing applications on Windows. This is necessary because MFC has classes and
objects defined in a manner that can only be understood if one knows the language
well.

A C++ project can be created in many ways depending on the user requirements.
Table 3.3 lists some of the most common ways for creating an application on the
Visual Studio. In its simplest form, a standard C++ project which runs without the
support of any Windows functions is a console application. This option is necessary
to a beginner in C++, or a person who does not wish to use the Windows facilities.
The console option is available by choosing New Project, Win32 Application and by
choosing Console Application in Application Type.

A Win32 Project is an option for creating an empty application with or without the
support of MFC. This option does not provide a guide for creating an application as
the person must know all the details. One advantage in this option is the small number
of code required to generate an application. The option allows the application to exist
as an executable file (EXE) or as a dynamic-link library (DLL).

The MFC Application option is a guided approach for creating an application using
a tool known as wizard. With this option, the details about Windows are prepared by
Visual Studio through a series of menus and dialog windows in wizard. Therefore, the
user can concentrate on writing the code for an application. Wizard does not provide
the whole solution for the application as it only assists by generating the code related
to the Windows management.

The Managed Extension option is a structured way of writing an application. This
new option provides an opportunity to integrate the application with .Net frameworks
such as Passport, Windows XP, and Tablet PC.

Code3A: The Skeleton Program

We discuss the development of a skeleton program that produces a single-line message
on Windows. The program is called a skeleton because it has a minimum number of
codes, and it has been designed to be as simple as possible. This simple program will
become the template for all other programs in the book as it is from here that the
applications will be developed.
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New Project x|
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Project Types: Templates: [; e
(] Visual Basic Projects Project Control Application :l
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-~ Visual Studio Solutions E E -
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| A Win32 console application or other Win32 project,

Name: | Code3A

Location: | c:\MyProject _:J Browse... |

Project will be created at c:\MyProject\Code3A.
¥ More | | OK I Cancel | Help |

FIGURE 3.4. Creating a new Win32 project.

Step 1: Start a new project by choosing New from the menu, then Project. A window
as shown in Figure 3.4 appears. Choose the Win32 Project icon, and name the project
Code3A and the folder MyProject. Press the OK button to confirm.

Step 2: The window as shown in Figure 3.5 appears. Click Application Settings, and
tick Empty project in the check box. Press the Finish button to confirm.

Step 3: From the Solution Explorer, right-click at Code3A and choose Properties
from its menu. This is shown in Figure 3.6.

Step 4: The window in Figure 3.7 appears. In the Use of MFC category, choose Use
MFC in a Static Library.

Step 5: Right-click Source Files in the Solution Explorer as shown in Figure 3.8,
and choose Add from the menu followed by Add New Item. Name the file Code3A . h.
Repeat by creating another file, Code3A. cpp.

Step 6: Enter the following codes in Code3A.h and Code3A. cpp.

// Code3A.h
#include <afxwin.h>

class CCode3A : public CFrameWnd
{

public:
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Win32 Application Wizard - c04 x|
. . L
Application Settings

Specify the type of application you will build with this project and the options or libraries you —
want supported. |

Application type: Add support for:
(+ Windows application |
(" Console application I~ mrc
C o
(" Static library

Additional options:
¥ Empty project

Finish Cancel Help

FIGURE 3.5. Empty Windows application project.

CCode3A();

~CCode3A();

afx msg void OnPaint();
DECLARE_MESSAGE_MAP ()

3
class CMyWinApp : public CWinApp
{
public:

virtual BOOL InitInstance();
3

// Code3A. cpp
#include "Code3A.h"

CMyWinApp MyApplication;

BOOL CMyWinApp::InitInstance()

{
CCode3A* pFrame = new CCode3A;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
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(&b Solution Exp

Rebuild
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Project Only
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Debug
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Rename
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yce View

FIGURE 3.6. Choosing Properties.

return TRUE;
¥

BEGIN_MESSAGE_MAP (CCode3A,CFramelWnd)

ON_WM_PAINT()
END_MESSAGE_MAP ()

CCode3A: :CCode3A()
{

Create(NULL,"Code3A: The Skeleton Program",

WS_OVERLAPPEDWINDOW,CRect (0,0,400,200) ,NULL) ;

}

CCode3A: : ~CCode3A()
{
}
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FIGURE 3.7. Choosing the MFC static library.

[ Solution 'Code3A’ (1 project)
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FIGURE 3.8. Adding files into the project.
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~_ | Code3A: The Skeleton Program - 10| x|

Welcome to Windows...

FIGURE 3.9. Output from Code3A.

void CCode3A: :0nPaint ()
{
CPaintDC dc(this);
dc.Text0ut (100,50, "Welcome to Windows...");

Step 7: The program is completed. Build the program and run to produce the output
as shown in Figure 3.9.

Code3A: Discussion

Code3A is the simplest program that can be created to run on Windows. The project
consists of two source files, Code3A.h and Code3A. cpp. The program displays a
single line of message only involving a single application class and a single event. The
application class is called CCode3A, and this class is derived from MFC’s CFrameWnd.
A header file called afxwin.h needs to be included as this file has all the declarations
required for supporting CFrameWnd.

#include <afxwin.h>

CCode3A has a constructor function called CCode3A (), a destructor function called
~CCode3A(), and an application function called OnPaint (). The last function is a
message handler that must be preceded by afx msg in its declaration. A message
handler requires a mapping through the declaration DECLARE_MESSAGE_MAP ().

class CCode3A : public CFrameWnd
{

public:
CCode3A();
~CCode3A();
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afx msg void OnPaint();
DECLARE_MESSAGE_MAP ()

};
class CMyWinApp : public CWinApp
{
public:

virtual BOOL InitInstance();
I

Any application in Windows needs to be registered, initialized, and updated. The
following code segment performs these duties:

CMyWinApp MyApplication;

BOOL CMyWinApp::InitInstance()

{
CCode3A* pFrame = new CCode3A;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
return TRUE;

}

A message map is needed to detect events in Windows. The events to be detected
should be listed in the body that begins with BEGIN_MESSAGE MAP () and ends with
END_MESSAGE_MAP (). In Code3A, the only event mapped is the display output in the
main window. This event is recognized as ON_WM_PAINT, and this event is handled by
its default function called OnPaint ().

BEGIN_MESSAGE_MAP(CCode3A,CFrameWnd)
ON_WM_PAINT ()
END_MESSAGE_MAP ()

CCode3A() is the constructor function in Code3A. The function creates memory
for the class. This function is the best place to create the main window and its child
windows. It is also in the constructor that most global variables and objects are
initialized. In Code3A, the main window is created that occupies a rectangular area
from (0,0) to (400,200).

CCode3A: :CCode3A()
{
Create(NULL, "Code3A: The Skeleton Program",
WS_OVERLAPPEDWINDOW,CRect (0,0,400,200) ,NULL) ;
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In Code3A, the destructor function may be optionally needed to delete the memory
allocated to global arrays. This is an important step in dynamic memory allocation
so that the deleted memory can be returned to the computer to be used in other appli-
cations. In our case, no global arrays have been created, and therefore, the destructor
has no code.

CCode3A: :~CCode3A()
{
}

OnPaint () is the default function for handling ON_WM_PAINT. The function serves
as the host for displaying the output in the main window. To display the output, a
device context object from CPaintDC is needed in order to call functions from MFC,
and this object is called dc. The main window in this case is referred simply as this.
The message is displayed as a string at position (100,50) in the window.

void CCode3A: :0nPaint ()
{
CPaintDC dc(this);
dc.Text0Out (100,50, "Welcome to Windows...");

3.4 DISPLAYING TEXT AND GRAPHICS

All output on Windows is displayed as graphics. Windows is a form of raster graphics
that displays text and graphics through tiny dots called pixels. A pixel is the smallest
unit that makes up the screen display. A typical screen resolution of 800 x 600 is a
rectangular region consisting of 800 columns and 600 rows of pixels, or a total of
420,000 pixels. A higher resolution display such as in 1,280 x 800 has 1,024,000
pixels over the same rectangular region. This means each pixel in the latter is finer
than the former, and this results in a sharper display.

Text display on Windows consists of fixed alphabet characters that are formed
from pixels. By default, text is normally displayed in most applications using the
Times New Roman font of size 12. MFC provides a variety of other fonts for
selection, including Arial, Courier, Helvetica, and Avantgarde. Each character for
display can also be resized ranging from the smallest at size 6 to the largest at 72.
Text can also be aligned horizontally, vertically, or to some angle. Other attributes
supported by MFC include underlined text, crossed text, bold, italic, and their
combinations. A variety of text output functions are available for formatting a text
message and its background, as shown in Table 3.4.

A single point on Windows with its own unique coordinates is represented by a
pixel. As a consequence, all text and graphics objects in Windows are constructed
from a group of pixels. For example, a line is produced from a set of successive pixels
aligned according to the direction of the line. A circle is obtained from pixels that
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TABLE 3.4. Some common functions for displaying text

Function Description

SetBkColor () Sets the background color of the text.
SetTextColor()  Sets the color for the text.

Text0Out () Displays a text message at the indicated coordinates.

TABLE 3.5. Some common GDI functions for displaying graphics

Function Description

Arc() Draws an arc.

BitBlt () Copies a bitmap to the current device context.

Ellipse() Draws an ellipse (including a circle).

FillRect () Fills a rectangular region with the indicated color.

FillSolidRect() Creates a rectangle using the specified fill color.

GetPixel() Gets the pixel value at the current position.

LineTo() Draws a line to the given coordinates.

MoveTo () Sets the current pen position to the indicated coordinates.

Polyline() Draws a series of lines passing through the given points.

Rectangle() Draws a rectangle according to the given coordinates.

RGB() Creates color from the combination of red, green, and blue
palettes.

SelectObject () Selects the indicated GDI drawing object.

SetPixel() Draws a pixel according to the chosen color.

are aligned according to its radius. It follows that a rectangle is constructed from two
pairs of matching lines. A curve is obtained from the successive placement of pixels
whose shape is governed by a mathematical function.

What tools are needed in graphics? They are pens, brushes, paints, and so on, just
like what an artist requires. Previously, a programmer will need to apply difficult low-
level routines using C or assembly languages in order to display graphics on Windows.
Obviously, several ready-made tools from GDI bypass these tedious steps and cut the
development time for displaying graphics on Windows. Table 3.5 summarizes some
of the most common graphical GDI functions in MFC.

3.5 EVENTS AND METHODS

In object-oriented programming, an event is defined as a happening during the runtime
that requires immediate attention and response. The response to an event is provided
in the program in the form of a method, or a function. An event can be regarded as
an interrupt where a call to a specific task in the computer is immediately performed.
Some obvious examples of events are the left click of the mouse, a key stroke, a choice
of an item in the menu, and a push button click.
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In MFC, a message map is provided to detect the occurrence of an event during
the runtime. The message map is written in the following format:

BEGIN MESSAGE MAP(CMain, CFrameWnd)
<List of events, their ids and methods>
END_MESSAGE_MAP ()

For example, the following code shows two events, a keyboard press and an item
in the pulldown menu:

BEGIN_MESSAGE_MAP(CMain, CFrameWnd)
ON_WM_KEYDOWN ()
ON_COMMAND (ID_FILESAVE, OnFileSave)
END_MESSAGE_MAP ()

In the above example, ON_WM_KEYDOWN () is an event for detecting a keystroke,
whereas ON_COMMAND (ID_FILESAVE,OnFileSave) is an event for detecting an item
in the pulldown menu involving file saving. The two macros are called message han-
dlers. The first event is acted on automatically by a user function called OnKeyDown (),
whereas the second is acted on through the mentioned function, OnFileSave (). Since
only two events are listed in the mapping, other events such as the left click of a mouse
will have no effect on the program.

Table 3.6 lists some of the most common events in Windows. Of particular interest
is ON_WM_PAINT, which is the most common event as it triggers the initial display of the
application on the main window using a default function called OnPaint (). The dis-
play is also updated through an interrupt specified by a function called Invalidate ()
or InvalidateRect (). We will come across ON_WM_PAINT in almost all applications
in this book later.

TABLE 3.6. Some common message handlers

Function Description

ON_WM_PAINT Default output drawn on the main window derived from
the CFrameWnd class.

ON_WM_LBUTTONDOWN  Left button click of the mouse.

ON_WM_RBUTTONDOWN  Right button click of the mouse.

ON_WM_KEYDOWN Key press from the keyboard.

ON_BN_CLICKED Button click on an object from the CButton class.

ON_COMMAND Menu items as specified in its arguments.
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3.6 STANDARD CONTROL RESOURCES

MEFC provides hundreds of resources or tools that can enhance the viewing quality
on Windows. They include buttons, control boxes, menus, and toolbars. These tools
are important in providing a user-friendly environment on Windows, and they have
become a standard interface on computers these days.

Because of the limited scope in this book, it is not possible for us to discuss all
Windows resources here. Instead, we will only discuss some of the most essential
tools that are relevant to numerical applications.

Push Button

A push button is a rectangular object on Windows that becomes active when it is
clicked with the mouse. Normally, a click at a push button indicates the user would
like to see the effect when data input has been completed. This is useful, for example,
in performing an analysis on a set of data, as the visual results from the analysis can
help in some decision-making process.

A push button is a resource in the form of a child window created from the CButton
class. An object for a push button is normally declared in the header file, as follows:

CButton ObjectName ;
The object is created in the constructor according to a format given by

ObjectName.Create(Title, DisplayOptions , RectangularRegion ,
HostWindow, Id);

In the above format,

Title The title in the title bar

DisplayOptions Defines the shape of the button
RectangularRegion  Defines the coordinates and size of the button
HostWindow The host or parent window

1d The control id.

For example, the following statement creates a push button object called MyButton
that is displayed as Multiply:

CButton MyButton;

MyButton.Create ("Multiply",WS_CHILD | WS_VISIBLE |
BS_DEFPUSHBUTTON, CRect(CPoint(100,130),
CSize(100,25)) ,this, IDC_MYBUTTON) ;

A click on a push button is an event. Therefore, a message handler for this event needs
to be mapped according to
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ON_BN_CLICKED (Id, Method)

In the above message handler, Id is the control id and Method is the name of the
function that will respond to this event. For example, a function called OnMyButton ()
below responds to a click on a button with id IDC_MYBUTTON:

ON_BN_CLICKED (IDC_MYBUTTON,OnMyButton)

Edit Box

An edit box collects input directly from the keyboard. A typical input is an integer or
double value that is needed in a calculation. Input can also be in the form of a string,
such as the name of a person or a mathematical equation for evaluation. An entry in
an edit box can also be edited or deleted.

An edit box is created from an object from the CEdit class. Each edit box is
recognized through a unique control id that is defined in its creating function. The
entry in an edit box is collected as a string from the CString class. An entry in the
form of an integer or a double is read as a string, and then it is converted to the data
value using the C functions atoi () or atof (), respectively.

An edit box can be created as a global object with its declaration in the header file,
according to the following format:

CEdit ObjectName ;

The above example creates an object called ObjectName from the CEdit class. This
object is created in the constructor function according to

ObjectName.Create(DisplayOptions, RectangularRegion,
HostWindow, Id);

The following example creates a CEdit object called eBox:

CEdit eBox;
eBox.Create (WS_CHILD | WS_VISIBLE | WS_BORDER,
CRect (CPoint (250,50) ,CSize(80,25)) ,this, IDC.x);

Input from the user is collected as a string according to
ObjectName.GetWindowText (string) ;

As an example, an edit box eBox reads an input string called str. The string is
converted into an integer value and stored into a variable called x using the C function,
atoi().

CString str;
eBox.GetWindowText (str) ;
int x=atoi(str);
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Static Box

The static box is a rectangular region that displays a message in the form of a string.
Unlike an edit box, the content of a static box is for viewing only as no input or editing
is allowed. A static box finds its usefulness in displaying the result of a calculation or
in displaying a fixed message.

A static box is created from the CStatic class. As in an edit box, each static box is
identified through a control id that can be defined in its creating function. The global
declaration of a static box is made in the header file, as follows:

CStatic ObjectName ;
This is followed by its creation in the constructor according to

ObjectName.Create(Title, DisplayOptions, RectangularRegion,
Host Window, Id);

By default, a static box is displayed as a shaded rectangle. The shape and style
of a static box can be set and modified through DisplayOptions. As an example, the
following statements create a CStatic object called sBox:

sBox.Create("",WS_CHILD | WS_VISIBLE | SS_SUNKEN | SS_CENTER,
CRect (CPoint (250,130),CSize(80,25)) ,this,
IDC_STATIC);

Data in the form of a string can be displayed in a static box using the function
SetWindowText () according to

ObjectName.SetWindowText (string) ;

For example, to display the content of the variable z into a static box, sBox, the value
must be formatted to a string first, as shown below:

double z=6.05;

CString str;
str.Format (¢ ‘%1f’’,z);
sBox.SetWindowText (str) ;

List View Box

List view box is an extension of the static box for displaying data usually in the form
of a table. It is a more powerful tool as it has the horizontal and vertical scrolling bars
for displaying data. In reality, it is not necessary to display all the data on Windows
at the same time. Only a portion of the data needs to be displayed, and the scrolling
bars control this portion in order to keep the overall window neat. With this wider



74 NUMERICAL INTERFACE DESIGNS

scope, a single list view box is capable of displaying a large amount of data within
its restricted window. The scrolling capability is very useful as displaying all the data
from an application without this tool will be very troublesome.

A list view box can have a flexible size, and it can be placed anywhere in the main
window. The object is first created from the CListCtrl class,

CListCtrl TableName ;
It is created using Create () according to

TableName.Create(DisplayOptions ,RectangularRegion ,
HostWindow, Id);

The following example creates a list view table from (50,50) to (400,300):

CListCtrl table;

CRect rcTable=CRect (50,50,400,300);

table.Create (WS_VISIBLE | WS_CHILD | WS_DLGFRAME | LVS_REPORT
| LVS_NOSORTHEADER, rcTable, this, IDC_TABLE);

Further examples on the use of list view table will be discussed in the later chapters.

Code3B: Simple Multiplication Calculator

Edit and static boxes are useful resources for applications involving dialog between
the user and the program. We discuss a sample application on a simple multiplication
calculator that illustrates the use of edit and static boxes.

Figure 3.10 shows an output from Code3B. It consists of two edit boxes (white
rectangles) for input, a static box (shaded rectangle) for the output and a push button
called Multiply. The multiplication result from the input values of 4.5 and 1.7 in this
example is displayed as 7.650000 in the static box once the push button is left clicked.

Code3B has two source files, Code3B.cpp and Code3B.h. The project extends
from the skeleton program in Code3A with a few resources added. It is clear that a
push button called Multiply represents an event that becomes active once it is left
clicked with the mouse.

The application class in Code3B is called CCode3B, which is derived from MFC’s
CFrameWnd. The control ids are defined as macros in the header file through #define.
Any integer numbers can be assigned to the ids as long as no two of them have the
same value.

#define IDC_MYBUTTON 301
#define IDC_x 302
#define IDC_y 303
#define IDC_z 304
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" Code3B: Simple multiplication calculator - 10| x|

45

1.7

' 7.650000

FIGURE 3.10. Output from Code3B.

The objects are declared from their respective classes. Since only one class is used,
it is safe to declare the scope of these objects as private.

private:
double x,y,Zz;
CEdit ex,ey;
CStatic sz;
CButton MyButton;

Finally, the message mapping of the push button click requires its method called
OnMyButton() to be declared according to

afx msg void OnMyButton();
The full contents of Code3B.h are listed as follows:

#include <afxwin.h>
#define IDC_MYBUTTON 301
#define IDC_x 302
#define IDC_y 303
#define IDC_z 304
class CCode3B : public CFrameWnd
{
private:
double x,y,z;
CEdit ex,ey;
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CStatic sz;
CButton MyButton;
public:
CCode3B();
~CCode3B() {}
afx msg void OnMyButton();
DECLARE _MESSAGE MAP ()

s
class CMyWinApp : public CWinApp
{
public:

virtual BOOL InitInstance();
+;

The coding in Code3B. cpp consists of an event and its method besides the con-
structor and destructor. The push button event is mapped as

ON_BN_CLICKED (IDC_MYBUTTON,OnMyButton)

In the constructor, the child windows in the form of edit boxes, a static box, and a
push button are created in the main window as follows:

MyButton.Create ("Multiply",WS_CHILD | WS_VISIBLE
| BS_DEFPUSHBUTTON, CRect(CPoint(100,130),
CSize(100,25)),this, IDC_MYBUTTON);
ex.Create(WS_CHILD | WS_VISIBLE | WS_BORDER,
CRect (CPoint (250,50) ,CSize(80,25)) ,this, IDC_x);
ey.Create(WS_CHILD | WS_VISIBLE | WS_BORDER,
CRect (CPoint (250,90),CSize(80,25)) ,this, IDC_y);
sz.Create("",WS_CHILD | WS_VISIBLE | SS_SUNKEN | SS_CENTER,
CRect (CPoint (250,130),CSize(80,25)),this,
IDC.z);

It is necessary to place the initial position of the caret at ex, which is the first CEdit
object using

ex.SetFocus();

The method for the push button event is a function called OnMyButton (). Once
activated, this function reads the input from the edit boxes through GetWindowText ()
and converts the strings into double variables using atof (). The calculation follows,
and the result is converted into a string before it is displayed in the static box through
SetWindowText (). The code for this function is shown below:

void CCode3B: :0nMyButton()
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{
CString str;
ex.GetWindowText (str); x=atof(str);
ey.GetWindowText (str); y=atof(str);
Z=X*Y ;
str.Format ("%1f",z); sz.SetWindowText(str);
}

The full code listings for Code3B. cpp are shown below:
#include "Code3B.h"
CMyWinApp MyApplication;

BOOL CMyWinApp::InitInstance()

{
CCode3B* pFrame = new CCode3B;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
return TRUE;

}

BEGIN_MESSAGE_MAP(CCode3B, CFrameWnd)
ON_BN_CLICKED (IDC_MYBUTTON,OnMyButton)
END_MESSAGE_MAP ()

CCode3B: :CCode3B()

77

{
Create(NULL, "Code3B: Simple multiplication calculator",
WS_OVERLAPPEDWINDOW,CRect (0,0,450,250)) ;
MyButton.Create("Multiply",WS_CHILD | WS_VISIBLE |
BS_DEFPUSHBUTTON,
CRect (CPoint (100,130),CSize(100,25)) ,this, IDC_MYBUTTON);
ex.Create (WS_CHILD | WS_VISIBLE | WS_BORDER,
CRect (CPoint (250,50) ,CSize(80,25)) ,this, IDC.x);
ey.Create (WS_CHILD | WS_VISIBLE | WS_BORDER,
CRect (CPoint (250,90) ,CSize(80,25)) ,this, IDC_y);
sz.Create("",WS_CHILD | WS_VISIBLE | SS_SUNKEN | SS_CENTER,
CRect (CPoint (250,130),CSize(80,25)) ,this, IDC_z);
ex.SetFocus();

}

void CCode3B: :0nMyButton()

{
CString str;
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ex.GetWindowText (str); x=atof(str);
ey.GetWindowText (str); y=atof(str);

Z=XXY;

str.Format ("%1f",z); sz.SetWindowText(str);

3.7 MENU AND FILE I/O

Another indispensable resource in Windows is the menu, which provides a choice
of items for the user to choose from. The standard style of menu in Windows is
the pulldown menu, which is a menu that appears from the Windows top panel. A
pulldown menu in Windows is a resource that can be invoked at any time during the
runtime.

In making a program neat and tidy, data and programs should be separated and
stored in different files. This is important in order to preserve the integrity of the
program by not distracting its flow. A program tells the compiler on the method
for running the application, whereas data are part of the elements that make up the
application. Both items are equally important, and without any one of them, the
program will not be able to function properly.

Data can be stored in a file as a text file or as a binary file. The text file is a
common approach, and this option is suitable in cases where the data are open
for free distribution. In this case, the file does not need any security feature, and
it can be opened easily using any editor or word-processing program. On the other
hand, data that are restricted are normally stored as a binary file. With this approach,
the file cannot be easily viewed using the normal editor or word-processing pro-
grams. The file can only be opened using some special programs, and sometimes,
it can be protected with a special login and password. A more confidential data are
stored as binary files with some added security features involving several encryption
technologies.

In this section, we discuss the common saving and opening methods for text files
using a pulldown menu. This approach is the standard technique in Windows. We
start the discussion with text file input and output methods.

File Input and Output

A text file stores data in the form of a stream of bytes that represent the characters
in the file. Several different methods for opening and saving files are applicable in
Windows. MFC provides a special class called CFile for these purposes. However,
the classic C programming approach in opening and saving a file can still be applied
in both standard C++ and Visual C++. We discuss this approach.

In opening or saving a file, it is important to note that part or all the data may be
lost if the program’s operating procedure is not followed carefully. A common error
happens when an opened file is not closed as the program ends. Both opening and
saving a file involves four steps. In saving a file, the steps are as follows:



MENU AND FILE I/O 79

1. Create a pointer to the file. This is achieved using the built-in C structure called
FILE. The following example creates a pointer called ofp:

FILE *ofp;

2. Open the file for writing. The standard C method uses fopen (). The following
example opens a file called MyFile.txt for writing:

ofp=fopen("MyFile.txt","w");

3. Write data to the file using fprintf (). A text file stores data as strings only.
Therefore, all data from other types, for example integer and double, will have
to be formatted into strings. For example,

int x=3;

double y=6.5;

fprintf (ofp,"x is %d, y is %1f\n",x,y);
4. Close the file using fclose ().

fclose(ofp);

Opening a file follows almost the same steps as in saving a file with some differences
in the functions used. The steps are as follows:

1. Create a pointer to the file. The following example creates a pointer called
ifp:

FILE *ifp;
2. Open the file for reading, for example,
ifp=fopen("MyFile.txt","r");

3. Read the data using fscanf (). A formatted data can be read according to
their types by inserting their respective identifiers, for example,

int x;

double y;

fscanf (ifp,"%d %1f\n",x,y);
4. Close the file using fclose().

fclose(ofp);
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In Windows, files are organized into folders. A folder may have many files from
several different types, and it is going to be a difficult task for the user to remember the
names of the required files and their location. A convenient mechanism provided in
Windows is listing the names of the files for viewing in a pop-up window. This facility
allows the user to select the required file for reading or saving using the mouse.

Files in a folder can be listed using a modal window. A modal window is a pop-up
windows that does not allow access to other opened windows once it is active. Access
to other opened windows can only be done by closing the modal window. We discuss
the method for creating a modal window for listing and selecting files.

In listing the files, a filter is necessary to list the relevant files only based on their
type. Without a filter, all files will be listed, and this makes the display a bit messy.
As an example, the following statement creates a filter called strFilter for listing
files of type txt only:

char strFilter[] = {"TXT Files (*.txt)|*.txt
[A11l Files (k.%)|*.%||"};

The next step in creating the modal window is to create an object to MFC’s
CFileDialog class. The following example creates an object called FileDlg:

CFileDialog FileDlg(FALSE, ".txt",NULL,O0,strFilter);

The modal window can now be invoked by linking FileD1g to the MFC function,
DoModal (), as follows:

FileDlg.DoModal()

The required file can now be selected using a function called GetFileName (). A
string is needed to store the name of this file. The following example shows how a
string called str stores the name of the selected file:

char str[80];
str=FileDlg.GetFileName 0O;

Code3C: Displaying Menu and File I/O

We discuss a sample project to illustrate the use of menus for file input and output. The
project is called Code3C, which has a single menu item called File and five subitems,
Open, Save, Generate, Clear and Exit. The submenus Open and Save read and save
ten sets of (x, y) coordinates from and to files, respectively. Generate produces ten
sets of new (x, y) coordinates at random. Clear erases these data and clears the screen.
Exit terminates the program.

Figure 3.11 shows an output from Code3C. It consists of a pulldown menu with
an opened file called test . txt. The file consists of the coordinates of ten points that
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File Opened: test.txt

FIGURE 3.11. An output from Code3C.

serve as the centers of ten equal-sized circles. With this information, Windows draws
the circles at their corresponding locations.

Code3C has a single class called CCode3C. The project consists of the source files
Code3C.cpp and Code3C.h and a resource file called Code3C.rc. Nine steps are
involved in creating this application. The first four are the same steps as in Code3A,
whereas the rest involve the creation of Code3C.rc, which stores the information
about the items in the pulldown menu.

Steps 1-4: Follow the same steps 1—4 as in the Code3A project.

Step 5: Right-click Source Files in the Solution Explorer, and choose Add from the
menu followed by Add Existing Item. Add Code3C.h and Code3C.cpp from the
supplied files.

Step 6: From the Solution Explorer, right-click Resource Files, and then choose Add
and Add Resource, as shown in Figure 3.12. Name the resource file, Code3C.rc.

Step 7: From the Solution Explorer, double-click Code3C.rc. The Add Resource
window in Figure 3.13 appears. Double-click Menu to start creating the menu.

Step 8: Begin with File as the root menu, and fill up the items in the submenu as shown
in Figure 3.14. In Properties, name the id for each item according to ID_FILEOPEN
for Open, ID_FILESAVE for Save, ID_GENERATE for Generate, ID_CLEAR for Clear,
and ID_EXIT for Exit.



NUMERICAL INTERFACE DESIGNS
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FIGURE 3.12. Adding the resources from MFC.
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FIGURE 3.13. Adding a menu.
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FIGURE 3.14. Adding the File Open submenu.
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FIGURE 3.15. Selecting a file to open.

Step 9: All the steps have been completed. Build the project and run to see the results
as shown in Figure 3.15.

The full listings in Code3C. cpp and Code3C.h are available in the distribution
files. We will only discuss their main contents here. Code3C.h consists of the dec-
larations for the class. The resource file, Code3C. rc, requires two header files to be
included. The first file is afxd1lgs.h, which contains the declarations for the modal
window. The second file is resource.h, which has all the declarations on the re-
sources in the pulldown menu. This file is create automatically when a resource file
is created, and it cannot be edited by the user.
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#include <afxwin.h>
#include <afxdlgs.h>
#include "resource.h"

CCode3C contains an array called pt for storing the coordinates of the centers of
the circles. The class also specifies member functions for the project. Each item in
the menu is considered as an event that must be attended by its respective function.
Therefore, each item is mapped as an event with its declaration shown below:

class CCode3C : public CFrameWnd

{

private:
CPoint *pt;

public:
CCode3C();
CCode3C: : ~CCode3C();
afx_msg void OnFileOpen();
afx msg void OnFileSave();
afx msg void OnGenerate();
afx msg void OnClear();
afx msg void OnExit();
DECLARE MESSAGE MAP ()

};

Mapping for each event is done in Code3C. cpp, as follows:

BEGIN_MESSAGE_MAP (CCode3C,CFrameWnd)
ON_COMMAND (ID_FILEQOPEN,OnFileOpen)
ON_COMMAND (ID_FILESAVE,OnFileSave)
ON_COMMAND (ID_GENERATE, OnGenerate)
ON_COMMAND (ID_CLEAR,OnClear)
ON_COMMAND (ID_EXIT,OnExit)

END_MESSAGE_MAP ()

The constructor in CCode3C creates the main window and initializes the array pt
whose maximum size is n+1. In this case n is a macro whose value is predefined in
Code3C.h. The contents in the constructor function are given as follows.

CCode3C: :CCode3C()
{
Create(NULL, "Code3C: File menus",
WS_OVERLAPPEDWINDOW,CRect (0,0,600,400),
NULL ,MAKEINTRESOURCE (IDR_MENU1)) ;
pt=new CPoint [n+1];
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A file is selected by invoking Open from the menu. This selection is mapped as
ON_COMMAND (ID_FILEQPEN,OnFileOpen), which calls OnFileOpen(). The func-
tion opens the modal window, which displays all the filtered txt files in the current
folder. The selected file is stored in str and opened. OnFileOpen () reads the contents
of the opened file and draws circles according to their stored locations. The code for
these operations in OnFileOpen() are given by

void CCode3C: :0nFileOpen()

{
CClientDC dc(this);
CString str;
CRect rc;
FILE *ifp;
char strFilter[] = {"TXT Files (*.txt)|*.txt
|A11l Files (*.%)|*.x||"};
CFileDialog FileD1g(TRUE,".txt" ,NULL,0,strFilter) ;
if (FileDlg.DoModal ()==IDOK)
{
str=FileDlg.GetFileName() ;
ifp=fopen(str,"r");
dc.Text0ut (350,50,"File Opened: "+str);
for (int i=1;i<=n;i++)
{
fscanf (ifp,"%d %d",&pt[i] .x,&pt[i].y);
rc=CRect (pt[i] .x-30,pt [i].y-30,pt [i] .x+30,
pt[i].y+30);
dc.Ellipse(rc);
rc=CRect (pt[i].x-1,pt[i].y-1,pt[i].x+1,
ptlil.y+1);
dc.Rectangle(rc);
}
fclose(ifp);
}
}

OnGenerate () is a function that generates ten circles at ten random locations.
Random integer numbers are produced from a C function called time () based on the
clock cycle in the computer. Another function called srand () determines the scope or
range of these numbers. A number from this range is then generated through rand ().

void CCode3C: :0OnGenerate()

{
CClientDC dc(this);
CString str;
time_t seed=time(NULL);
srand ((unsigned) seed) ;
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OnClear();
dc.Text0Out (50,50, "Generating Random Numbers");
for (int i=1;i<=n;i++)

{
pt[i].x=100+rand () %400; pt[i].y=50+rand()%300;
str.Format ("%d %d",pt[il.x,pt[i]l.y);
dc.Text0Out (50,80+20%*1i,str) ;

}

OnFileSave () is doing the opposite of OnFileOpen (). The function saves the
coordinates of the currently displayed circles into a string called str, which then
becomes the file name.

void CCode3C: :0nFileSave()

{
CClientDC dc(this);
CString str;
FILE *ofp;
char strFilter[] = {"TXT Files (*.txt)|*.txt
A1l Files (x.*)|x.*|[|"};
CFileDialog FileD1g(FALSE,".txt",NULL,O,strFilter);
if ( FileDlg.DoModal ()==IDOK)
{
str=FileDlg.GetFileName() ;
ofp=fopen(str,"w");
dc.Text0Out(50,20,"File Saved: "+str);
str.Format ("%d4d",n);
dc.Text0Out (50,50, "Contents: "+str+" randomly
generated numbers");
for (int i=1;i<=n;i++)
fprintf (ofp,"%d %d\n",pt[i].x,pt[i]l.y);
fclose(ofp);
}
}

A function called OnClear () resets the coordinates of all the points to (0,0) and
erases the window. The main window has its location and size stored in a rectangular
object called rc, which is read through GetClientRect (). The window is cleared
by spraying the background color into rc.

void CCode3C: :0nClear ()

{
CClientDC dc(this);
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CRect rc;
GetClientRect (&rc);
CBrush whiteBrush(RGB(255,255,255));
dc.FillRect (&rc,&whiteBrush) ;
for (int i=1;i<=n;i++)
pt [i]1=CPoint (0,0);

OnExit () provides the formal way for exiting from the program. This is achieved
by calling itself, as follows:

void CCode3C: :0nExit ()
{

CCode3C: :0nExit () ;
}

The last part of Code3C is to delete the unused array pt, and this is done in the
destructor function.

CCode3C: : ~CCode3C()
{

delete pt;
}

3.8 KEYBOARD CONTROL

The keys in the keyboard provide the standard input in all computers. Each key has
been designed to represent a character or more in the standard American Standard
Code for Information Interchange (ASCII) system. The standard keyboard in today’s
computers is based on the typewriter convention of key arrangement, QWERTY,
which refers to the characters of the first six alphabetical keys of the standard keyboard
from left.

Each key in the keyboard can also be programmed to perform things other than
alphabetical input (see Table 3.7). For example, many computer games use the left,
right, up, and down arrow keys for navigation in their games. Many learning-based
software programs also make use of the arrow keys to perform certain functions
in their course modules. This feature is interesting as personal computers have been
known to have multipurpose uses, including office productivity, games, entertainment,
multimedia, education, and scientific applications. Therefore, the keys contribute in
making the software programs more user-friendly and interesting.
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TABLE 3.7. Some common key macros

Macro Key

VK_UP Up arrow
VK_DOWN Down arrow
VK_LEFT Left arrow
VK_RIGHT Right arrow
VK_SPACE Spacebar
VK_RETURN Return (Enter)

| Code3D: Creativity with keyboard graphics

Instructions:

left key to move left

right key to move right

up key to move up

down key to move down

FIGURE 3.16. Keyboard creativity application.

Code3D: Creativity with Keyboard Graphics

Spacebar to clear the screen

We discuss an interesting program involving the control of keys in the keyboard. A
project called Code3D has been developed to illustrate the concept. Figure 3.16 shows
the output from this project, which consists of rectangular grids and the origin marked
as a shaded square in the middle. A path is created by pressing on one of the following
keys: left arrow, right arrow, up arrow, and down arrow. A press on the spacebar clears
the path and resets the position at the origin.

Code3D has been developed based on the template in Code3A. The project has
one class called CCode3D. There are two source files in the project, Code3D. cpp and
Code3D.h. The header file is given as follows:

#include <afxwin.h>

class CCode3D : public CFrameWnd
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{
protected:
CPoint home,end,origin,pt;
int Increment,BgColor;
public:
CCode3D();
~CCode3D() {}
afx msg void OnPaint();
afx msg void OnKeyDown(UINT MyKey,UINT nRep,UINT nFlags);
DECLARE_MESSAGE_MAP() ;
};
class CMyWinApp : public CWinApp
{
public:
virtual BOOL InitInstance();
};

The contents of Code3D. cpp are given as

#include "Code3D.h"

BOOL CMyWinApp::InitInstance()

{
CCode3D* pFrame = new CCode3D;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow () ;
return TRUE;

}

CMyWinApp MyApplication;

BEGIN_MESSAGE_MAP (CCode3D, CFrameWnd)
ON_WM_PAINT()
ON_WM_KEYDOWN ()
END_MESSAGE_MAP ()

CCode3D: :CCode3D ()
{
Create(NULL, "Code3D: Creativity with keyboard graphics",
WS_OVERLAPPEDWINDOW,CRect (0,0,750,500)) ;
home=CPoint (40,40); end=CPoint (440,440);
origin.x=(home.x+end.x)/2; origin.y=(home.y+end.y)/2;
pt.x=origin.x; pt.y=origin.y; Increment=40;
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BgColor=RGB(255,255,255) ;

¥

void CCode3D: :0nPaint ()

{
CPaintDC dc(this);
CString s;
CRect rc;
GetClientRect (&rc);

CBrush blackBrush(BgColor) ;
dc.FillRect (&rc,&blackBrush) ;

CPen penGray(PS_SOLID,1,RGB(100,100,100));
dc.SelectObject (penGray);
for (int i=home.x;i<=end.x;i+=Increment)
for (int j=home.y;j<=end.y;j+=Increment)
{
dc.MoveTo(i,j); dc.LineTo(400,]j);
dc.MoveTo(i,j); dc.LineTo(i,400);
3
rc=CRect (CRect (origin.x-5,origin.y-5,origin.x+5,
origin.y+5));
dc.FillSolidRect (&rc,RGB(200,0,0));

CFont fontCourier,fontTimesNR;

dc.SetBkColor (BgColor) ;

fontCourier.CreatePointFont (120,"Courier");
dc.SelectObject (fontCourier);

dc.SetTextColor (RGB(0,200,0));

s.Format("%d,",pt.x); dc.TextOut(end.x+20,home.y,s);
s.Format ("%d",pt.y); dc.TextOut(end.x+60,home.y,s);

fontTimesNR.CreatePointFont (120,"Times New Roman");

dc.SelectObject (fontTimesNR);

dc.SetTextColor (RGB(200,0,0));

dc.TextOut (end.x+20,home.y+100, "Instructions:");

dc.SetTextColor (RGB(0,100,200));

dc.Text0Out (end.x+Increment,home.y+125, "Spacebar to clear
the screen");

dc.TextOut (end.x+Increment,home.y+150,"left key to move
left");

dc.TextOut (end.x+Increment,home.y+175,"right key to move
right");

dc.Text0Out (end.x+Increment,home.y+200,"up key to move
up");
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dc.TextOut (end.x+Increment,home.y+225,"down key to move
down") ;

}

void CCode3D: :0nKeyDown (UINT MyKey,UINT nRep,UINT nFlags)
{
CClientDC dc(this);
CRect rc;
CPen penBlue(PS_SOLID,3,RGB(0,00,200));
CBrush whiteBrush(RGB(255,255,255));
dc.SelectObject (&penBlue) ;

rc=CRect (end.x+10,home.y-10,end.x+100,home.y+30) ;
InvalidateRect (&rc);
dc.MoveTo(pt.x,pt.y);
switch(MyKey)
{
case VK_RIGHT:
if (pt.x<end.x)
pt.x += Increment;
break;
case VK_LEFT:
if (pt.x>home.x)

pt.x -= Increment;
break;
case VK_UP:
if (pt.y>home.y)
pt.y -= Increment;
break;

case VK_DOWN:
if (pt.y<end.y)
pt.y += Increment;

break;
case VK_SPACE:
{
pt.x=origin.x; pt.y=origin.y;
Invalidate();
break;
}

}
dc.LineTo(pt.x,pt.y);
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3.9 MFC COMPATIBILITY WITH .NET

The .Net framework was introduced by Microsoft Corporation in its Visual Studio
products beginning in 2002 as a massive improvement to its programming environ-
ment. With this extension, Visual C++ was rebranded as Visual C++.Net, and this
compiler supports a new style of programming environment called Managed Exten-
sions, which is a new language construct that consists of additional keywords, prepro-
cessor directives, and several compiler options, including the .Net Base Class Library
(BCL). Managed Extensions also improves on the garbage-collection mechanism,
reflection, and security. With this extension, all the Visual C++ environment before
this date, including those that run under MFC, has been referred to as unmanaged
extensions.

In general, the .Net framework was developed to enable applications to run on
top of the .Net Common Language Runtime (CLR). With this framework, Visual
C++.Net allows the managed and unmanaged code to be mixed freely within the
same application. A new preprocessor directive such as #using in .Net imports the
named metadata from a .Net executable object and library.

Because of its popularity, MFC is still supported in the .Net framework. The MFC
libraries have been well established, and it will take a great amount of time for
diehard followers of MFC to migrate to the new system. The reader has the option
of accessing .Net from MFC, or accessing MFC from .Net. We discuss two projects
called Code3E and Code3F, for accessing .Net from MFC and accessing MFC from
.Net, respectively.

Accessing .Net from MFC: Code3E

Code3E shows a simple example how .Net commands can be called from MFC.
The example is derived from the basic window framework in Code3A. Create a new
project called Code3E by choosing Win32 Project in the new project template. Add
two source files, Code3E. cpp and Code3E.h, into the project whose contents are
exactly similar to Code3A. cpp and Code3A . h, respectively. Follow steps 1 to 6 of
the Code3A project in Section 3.3 to produce the basic window.

In the Solution Explorer, select Properties. Choose Use MFC in a Static Library
and Yes in Use Managed Extensions option, as shown in Figure 3.17. These selections
make MFC as the host and .Net as its guest.

Add the following .Net code fragments into Code3E. h:

#using <mscorlib.dll>

#using <System.Windows.Forms.dl1l>

using namespace System;

using namespace System::Windows::Forms;

Add the following .Net messages into OnPaint () in Code3E. cpp:
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test Property Pages x|
Configuration: |Actrve{Dehug} LI Platform: |Acﬁve{‘.ﬂiin32} ﬂ Configuration Manager. .. |
=4 Configuration Properties B General
% General Output Directory Debug
Debugging Intermediate Directory Debug
ac/c++ Extensions to Delete on Clean = obj; =.ik; = pdb; = th; = th; = th; = tmp; .rsp; = bat;
IH_I Linker B Project Defaults |
L—-’ Browse Information Configuration Type Application (.exe)
[_—:l Buid E"'mt_s Build Browser Information No
g E;f:[;z:;'&ir Use of MFC Use MFC in a Static Library
Use of ATL Not Using ATL
Minimize CRT Use in ATL Mo
Character Set Use Multi-Byte Character Set |
Use Managed Extensions Yes _vl
Whole Program Optimization Mo

References Path

Use Managed Extensions
Specifies this configuration uses managed C++ extensions. This will disable some
other settings, i.e. runtime checks, See help for fcr switch for full list of conflicts.

0K Cancel Apr Help

String* str;

FIGURE 3.17. Accessing .Net from MFC.

// .Net command

str=S"this message box is from .Net"; // .Net command
AfxMessageBox ((CString)str); // .Net command,

typecast to MFC

It works! The following code listings show the two files, Code3E.cpp and

Code3E.h:

// Code3E.h

#include <afxwin.
#using <mscorlib.

h>
dl1l>

#using <System.Windows.Forms.d1l1l>
using namespace System;
using namespace System::Windows: :Forms;

class CMain : public CFrameWnd

{

public:
CMain();
~CMain() ;

afx_msg void OnPaint();
DECLARE_MESSAGE_MAP ()
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class CMyWinApp : public CWinApp
{
public:

virtual BOOL InitInstance();
I

The main program consists of the following code:

// Code3E.cpp
#include "Code3E.h"

CMyWinApp MyApplication;

BOOL CMyWinApp::InitInstance()

{
CMain* pFrame = new CMain;
m_pMainWnd = pFrame;
pFrame->ShowWindow (SW_SHOW) ;
pFrame->UpdateWindow() ;
return TRUE;

}

BEGIN_MESSAGE_MAP(CMain,CFrameWnd)
ON_WM_PAINT()
END_MESSAGE_MAP ()

CMain: :CMain()

{
Create(NULL, "Code3A: The Skeleton Program",
WS_OVERLAPPEDWINDOW,CRect (0,0,400,300) ,NULL) ;
}
CMain: :~CMain()
{
}

void CMain: :0nPaint ()
{
CPaintDC dc(this);
dc.Text0Out (100,10, "Welcome to Windows...");

String* str; //
str=3"this message box is from .Net"; //
AfxMessageBox ((CString)str); //

.Net command
.Net command
.Net command,

typecasted to
MFC
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Accessing MFC from .Net

Create a new project by choosing Empty Project (.Net) in the new project template.
Go to Properties and enter the options as shown in Figure 3.17. Include the following
codes into the header file:

#include <afxwin.h>

#using <mscorlib.dll>

#using <System.Windows.Forms.dl1l>

using namespace System;

using namespace System::Windows::Forms;

MEC routines can now be called from .Net using Managed Extension. The directive
#include <afxwin.h>needs tobeincluded toenable classessuchasCStringtobe
called from the Managed Extension. Other include files will also have to be included
according to the requirement in the application.

3.10 SUMMARY

The chapter discusses the fundamental aspects of MFC from creating the simplest
window, to using several basic resources, to mixing the codes from MFC and .Net.
The concepts are illustrated with several simple programming projects. MFC has been
widely used as a tool for proving a user-friendly interface based on Windows. Its rich
resources provide all the necessary tools to produce a wide range of applications
based on the friendly graphical user interface (GUI). Microsoft Corporation, which
develops the new .Net platform, realizes the importance of MFC by making the
platform compatible with MFC.



I CHAPTER 4

Curve Visualization

4.1 Tools for Visualization
4.2 MyParser
4.3 Drawing Curves
4.4 Generating Curves Using MyParser
4.5 Summary
Programming Challenges

4.1 TOOLS FOR VISUALIZATION

Mathematics is the queen of science. That is a well-known quote that describes the
role and contribution of mathematics as the fundamental element in science and
technology. In its inherent form, mathematics may be difficult to an average man
on the street. However, this perception can change dramatically if the approach for
solving problems in mathematics is simplified to the extent that it can be understood
and appreciated by anybody.

Mathematics will become interesting if a review is made on the way it is presented.
Foremost in the list is its friendliness. Mathematics should inherit a friendly look so
as not to frighten people. A program or software that serves students, for example,
must have friendly interfaces in the form of dialog boxes, list views, graphs, and so
on. The user should be provided with ample choices or options in using a software
program. The presentation must be clear and must have correctional features when
the user makes an error or typing mistake.

One of the most important items in a user-friendly solution to a given problem is
the graphical illustration. A curve describes a solid relationship between the variables
in the given function. The visual depiction through curve drawing definitely helps in
understanding the problem as well as its solution.

In this chapter, we discuss techniques for generating several types of curves for
providing practical visualization to a given problem. The discussion also touches on
the use of a tool called an equation parser, which allows the user to define the equation.

4.2 MYPARSER

In mathematics, a function is an operator for mapping one or more points in a domain
to a single point in a range. The mapping can be one-to-one or many-to-one, which

96
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maps a single point and more than one point, respectively. When a function is assigned
with a value, the whole expression is called an equation.

An equation describes the relationship or dependency between the variables in the
equation. In a computer program, equation parser is a routine that reads a mathemat-
ical expression in the form of a string and then evaluates this expression to produce
a numerical solution. For example, an input string of

x N 2%sin(x),

with x as a variable is interpreted as x? sin x. If x is assigned with a value such as 2,
then the expression becomes 22 sin 2 = 3.637190.

In an equation parser, a string in an expression consists of operands and an operator.
An operand is an item that is assigned with a value, whereas an operator connects
the operands through a mathematical operation. In the above expression, x, 2 and
sin(x) are the operands, while * and * are the operators.

The input string for the parser is normally typed by the user directly from the
keyboard. However, the standard keyboard in most computers does not support in-
put in the form of mathematical equations. Therefore, the user will have to key in
an equation as a single-line string, and the parser will interpret this string into an
equation. In the above example, the parser is intelligent enough to recognize the sym-
bol " as power of, * as multiply, and sin as sine of. The parser is also capable of
processing the input items according to the priority order as required in the given
expression.

There are many versions of parser in circulation today for supporting common
languages such as C, C++, Basic, and Java. Some of these parsers may be purchased
from vendors, whereas some others are distributed as freeware. A good parser should
be robust enough for handling input items in the form of operators, functions, and
tokens, capable of handling complex mathematical expressions, and have good error
correction capability.

In this section, we present our parser called MyParser that will be used throughout
the book. MyParser is robust, and it has most of the required features for support-
ing numeric-intensive calculations. The development of the parser program requires
some heavy understanding of the data structure concepts and knowledge, which is
beyond the scope of this book. Therefore, we will not discuss this issue. Instead,
we will focus on how to incorporate the parser for solving numerical problems. In
other words, we will concentrate on the usage of the parser, not on the making of
a parser.

MyParser is supplied in the form of an object file called MyParser.obj, which
needs to be included as one of the source files in the project. The user will find this
file very useful as it can be linked to the other source files in the project for producing
applications that require the use of a parser.

MyParser is easy to use as it involves only a few instructions. First, the object file
MyParser.obj needs to be included in the project as a source file. Second, an external
function called parse () is to be declared in the header file of the application. The
third step involves the assignment of values for each argument in parse (). Finally,
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the function parse() is called, and its returned value is assigned into a double
variable.

By including MyParser.obj in the project, all its functions can be accessed as
external functions into the . cpp and . h files. The only function inside MyParser. obj
that needs to be accessed externally is parse (). Since this function is external to the
.cpp and .h files, it is necessary to insert the following statement in the application
header file:

extern double parse(CString, int, double [], int []);

As shown, parse() returns a double value. The above declaration suggests
parse () requires four arguments, a follows:

parse(str, nVar, arrayl([], array2(]);
where the arguments are

str The string expression.

nVar The number of variables in the equation.

arrayl[] The array of the input values of the operands declared as double.
array2[] The array of the codes for the variables declared as int.

The first argument, str, is the string expression that represents the input equation.
A variable in the expression is recognized through its code starting with O for a, 1 for
b, and so on until the last code, 25 for z. Table 4.1 lists all the recognized variables
for the expression. The second argument, nVar, represents the number of variables
in the expression. The third argument is the variable array with its assigned values,
whereas the last argument is its code.

We use psv[] as the variable array and psil[] as its code array. For exam-
ple, the array psi[] defines x and y as variables in the equation whose codes are
23 and 24, respectively. They are assigned as the first two members in psi[], as
follows:

psil1]=23; psil[2]=24;
In this example, nVar is set to 2 since only two variables are used. Another array
called psv[] stores the assigned values of the two variables, for example, x = 7.5
and y = —1.9. They are assigned as follows:
psv[1]=7.5; psv[2]=-1.9;

The two arrays whose values have been assigned are passed to the expression
xsiny in parse() for evaluation, and the result is stored into a variable called

v

z=parse ("x*sin(y)",2,psv,psi);
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TABLE 4.1. Character codes
for the variables in Str
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It is not necessary to use a code for z as this variable is not inside parse (), and it
only takes the returned value from this function.

The built-in function, parse (), is a powerful function that can perform most of
the required mathematical operations. Tables 4.2 and 4.3 list down the mathematical
functions and operators supported in parse ().

Data input in the domain on a function in parse () must adhere to the governing
mathematical rules and theorems. The user must be aware of things like the domain
and range of a mathematical function. For example, it is not possible to compute
asin(2) since the argument in the function is not in the domain of sin~!. Therefore,
asin(2) is a violation of the domain, and it will definitely result in an error.

An equation is read according to the standard priority rules as in all other program-
ming languages. The order from top to bottom goes as follows:

1. Parentheses
2. Function
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TABLE 4.2. Mathematical functions supported in parse()

Function Return Value  Description
sqrt(double)  double Square root of a number, e.g., sqrt (4)=2.
sqr(double) double Square of a number, e.g., sqr (4)=16.
sin(double) double Sine of a number, e.g., sin(2)=0.909297.
cos(double) double Cosine of a number, e.g., cos(2)=-0.416147.
tan(double) double Tangent of a number, e.g., tan(x)=-2.18504.
exp(double) double Exponent of a number, e.g., exp (2)=7.389056.
asin(double)  double Inverse sine of x, sin”' x, e.g.,asin(0.4)=0.4115.
acos(double)  double Inverse cosine of x, cos™! x, e.g., acos (0.4)=1.1593.
atan(double)  double Inverse tangent of x, tan™' x, e.g., atan(0.4)=0.3805.
sinh(double)  double Hyperbolic sine of a number, e.g., sinh(0.4)=0.4107.
cosh(double)  double Hyperbolic cosine of a number, e.g., cosh(0.4)=1.0811.
tanh(double)  double Hyperbolic tangent of a number, e.g., tanh(0.4)=0.3800.
abs(double) double Absolute value of a number, e.g., abs (-0.95)=0.95.
log(double) double Logarithm of x, log x, e.g., 1og(0.4)=-0.3979.
TABLE 4.3. Operators in parse()
Operator Description
" Power of a number, e.g., 3"2=9.
+ Addition.
— Subtraction.
* Multiply.
/ Divide.
3.7
4. *and /
5. +and —

For example, (1-3*x*sin(x+y))/(x"2+3*exp(x)) is an input string that is

interpreted as

1—3x sin(x+y)
x243e*

. The priorities here are to the paired-parentheses first,

followed by the functions, power, and then the rest of the items.

Code4A: Scientific Calculator

CodedA. User Manual.

1. Enter a value each for ¢, u, v, x, and y.
2. Enter the input string at Expression.
3. Click the Compute push button to view the results.

Development Files: Code4A . cpp, Code4A.h and MyParser.obj.
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" Code4A: Scientific Calculator o =] |
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FIGURE 4.1. The scientific calculator for evaluating 2 cos xy — u sin(v + 1).

An electronic calculator is a battery-powered device whose size is as small as a credit
card. The calculator performs calculation on data input by the user and displays
the results. This handy device is powerful enough to compute several mathematical
operations at the click of some buttons to produce quick results. A basic calculator
normally supports elementary operations involving addition, subtraction, multiplica-
tion, and division only. Some powerful calculators have several advanced features,
including evaluating the inverse of a matrix, solving a system of linear equations, and
displaying graphs.

We discuss the development of a desktop calculator that is capable of evaluat-
ing a mathematical expression. The project is called Code4A, and it consists of a
class called CCode4A, and two files, Code4A. cpp and Code4A.h. The project also
includes MyParser . obj for referring to an external function in this file. The calcu-
lator incorporates an equation parser for reading and evaluating an input string from
the user. Figure 4.1 shows a sample runtime of Code4A whose input expression is
2cosxy — u sin(v + t). Five variables, ¢, u, v, x, and y are involved whose input val-
ues are shown in the figure. An edit box called Expression stores the input string for
the equation. The result from the calculation is displayed in the shaded rectangle in the
figure.

The display from Code4A consists of several resources, including a push button
called Compute, six edit boxes (white rectangles), and a static box (shaded rectangle).
All these resources are declared in the header file, Code4A .h. Output on the shaded
box is obtained once Compute is left-clicked.

The input in this application consists of the edit boxes that represent the variables
t, u, v, x, and y and Expression. They are organized into a structure called INPUT
whose contents are given by
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TABLE 4.4. The main variables in Code4A and their supporting resources

Content Home
Item (CString) CEdit box Coordinates
t input[1].item input[1].ed input[1] .hm
u input[2] .item input[2] .ed input [2] .hm
v input[3].item input[3].ed input [3] .hm
X input [4] .item input [4] .ed input [4] .hm
y input [5] .item input[5] .ed input [5] .hm
Expression input[6].item input[6] .ed input [6] .hm
TABLE 4.5. The main control resources in Code4A
Variable Class/Type Description
btn CButton Push button to start the calculation.
result CStatic The static box for displaying the result from the calculation.
idc int Control ids for the edit boxes and static boxes.

typedef struct

{
CString item;
CPoint hm;
CEdit ed;
CRect rc,display;
} INPUT;

INPUT input [nInput+1];

An array called input [] stores the values in INPUT as shown in Table 4.4. This
array has the number of elements specified by nInput+1, which is seven in this case.
The table lists the variables in this structure and their supporting resources. Input on
the operands ¢, u, v, x, and y are provided on the edit boxes, whereas the long white
rectangle collects the expression for the equation.

Table 4.5 lists other main variables and objects in Code4A. The push button is
represented by btn, whereas the result from the calculation is stored as result in a
static box. The control ids for the edit boxes and static boxes are stored as a single
integer variable called idc. It is not necessary to use a macro for each box as what
is important is that each resource must have a unique id. Hence, idc whose value
differs by 1 for the boxes will take care of this requirement. However, a macro called
IDC_BUTTON needs to be declared for btn as the resource needs a fixed reference
from the message map.

The complete declaration is shown in the header file, Code4A.h. A single class
called CCode4A is used in this application, and this class is derived from the MFC
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class, CFrameWnd. An external function called parse () is called from Code4A, and

this is done using extern double parse().

// Code4A.h

#include <afxwin.h>
#define IDC_BUTTON 501
#define nInput 6

extern double parse(CString,int,double [],int [1);

class CCode4A : public CFrameWnd

{
protected:
typedef struct
{
CString label,item;
CPoint hm;
CEdit ed;
CRect rc,display;
} INPUT;
INPUT input [nInput+1];
CStatic result;
CFont Arial80;
CButton btn;
int idc;
public:
CCode4A();
~CCode4A();
afx msg void OnPaint(),0OnButton();
DECLARE_MESSAGE _MAP ()
};
class CMyWinApp : public CWinApp
{
public:
virtual BOOL InitInstance();
};

Code4A consists of two events, an output display using the standard function

OnPaint () and a push button click. These two events are mapped as follows:

BEGIN_MESSAGE_MAP (CCode4A,CFrameWnd)
ON_WM_PAINT()
ON_BN_CLICKED (IDC_BUTTON,OnButton)
END_MESSAGE_MAP ()
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Basically, the constructor CCode4A () allocates memory for the class. It is also

in the constructor that the main window and all the control resources are created.
Besides these duties, the initial values of other main variables are assigned in the
constructor. They include the location of the objects in the main window, the initial
value of idc, and the labels for the edit and static boxes. CCode4A () is given as
follows:

CCode4A: :CCodedA()

{

Create (NULL,"Coded4A: Scientific Calculator",
WS_OVERLAPPEDWINDOW,CRect (0,0,700,350) ,NULL) ;

Arial80.CreatePointFont (80, "Arial");

idc=301;

input [0] . hm=CPoint (200,20) ;

for (int i=1;i<=nInput;i++)
input [i] .hm=CPoint (input [0] .hm.x+10,

input [0] .hm.y+50+(i-1)%30) ;

input[1].1label="t";

input [2] .label="u";

input [3] .label="v";

input [4] .label="x";

input [5] .label="y";

input [6] .1label="Expression";

btn.Create("Compute" ,WS_CHILD | WS_VISIBLE | BS_DEFPUSHBUTTON,
CRect (CPoint (input [0] .hm.x,input [0] .hm.y+5),
CSize(100,20)), this,IDC_BUTTON);

for (i=1;i<=nInput-1;i++)
input[i] .ed.Create (WS_CHILD | WS_VISIBLE | WS_BORDER,
CRect (input[i] .hm.x+70,input [i] .hm.y,
input[i] .hm.x+150, input[i].hm.y+20),this,idc++);

input [nInput] .ed.Create (WS_CHILD | WS_VISIBLE | WS_BORDER,
CRect (input [nInput] .hm.x+70,input [nInput] .hm.y,
input [nInput] .hm.x+350,input [nInput] .hm.y+20),
this,idc++);

result.Create("",WS_CHILD | WS_VISIBLE | SS_CENTER | WS_BORDER,
CRect (input [nInput] .hm.x+50,input [nInput] .hm.y+50,
input [6] .hm.x+150,input [6] .hm.y+70) ,this,idc++);

OnPaint () is the standard function for displaying the initial messages trig-
gered by an event whose id is ON_WM_PAINT. In Code4A, the initial mes-

sages consist of the labels for the edit boxes and static boxes, and they are

given as
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void CCode4A: :0nPaint ()
{
CPaintDC dc(this);
CString str;
dc.SelectObject (Arial80) ;
dc.SetBkColor (RGB(255,255,255) ) ;
dc.SetTextColor (RGB(100,100,100));
for (int i=1;i<=nInput;i++)
dc.TextOut (input[i] .hm.x,input[i] .hm.y,
input[i].label);
dc.TextOut (input [6] .hm.x,input [6] .hm.y+50, "Result");

An event whose id is ON_BN_CLICKED (IDC_BUTTON, OnButton) calls the function
OnButton() once the push button is left-clicked. OnButton () is the actual problem
solver here. The function responds to the push button click by first reading all the
input from the user, evaluates the expression, and displays the result. The input is read
as strings, and they are stored in input [1] . item. This is accomplished through the
MFC function, GetWindowText (), as follows:

for (i=1;i<=nInput;i++)
input[i] .ed.GetWindowText (input[i].item);

The five variables in this application, ¢, u, v, x, and y, are recognized through their
codes as defined in Table 4.1. A local array called psi[i] hosts these codes, which
stores its assigned values as input [i] . item. The string values in input [i] .item
are converted into doubles using the standard C++ function, atof (). The con-
verted double values are stored into another array called psv[i]. This process is
shown as

psil1]=19;

psil2]=20;

psil3]=21;

psil4]1=23;

psilb]=24;

for (i=1;i<=nInput;i++)
psvli]l=atof (input[i] .item);

The final part of OnButton () is to evaluate the input expression from the defined
variables and their assigned values. This is done using parse(), and the result is
stored in a double variable called z. The value from z is then formatted into a string
before it is displayed in the static box, result. The following code segment shows
how this is done:
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z=parse (input [nInput] .item,5,psv,psi);
str.Format ("%1£f",z);
result.SetWindowText (str);

4.3 DRAWING CURVES

A curve describes the dependency behavior of the variables in a function. A good
curve can show the solid relationship between all these variables, which contributes
to its understanding. Therefore, generating a curve from its given data is a very
useful visualization as part of the overall solution to the problem. Readers need
to be reminded that a program for drawing a curve on Windows is governed by the
fundamental rules in mathematics. A curve will display properly if all the fundamental
rules pertaining to its existence are obeyed.

In drawing a curve, several issues need to be addressed. Two main issues arise
here. The first issue is the domain, and the second issue is singularity. As men-
tioned, sin~! 2 does not exist because the domain for sin™' x is —1 <sin"'x < 1.
When dealing with a mathematical function, one has to know the validity of the in-
terval where the function is defined. A computer program will simply hang or will
produce some undesirable results if a rule regarding the validity of the domain is
violated.

A common mistake is to divide a number by zero. Singularity is a term that
describes a point or region where the given curve is not defined. For example, the
function f(x) = 1/(x — 3) is singular at x = 3 as f(x) is undefined at this point.
The curve from this function will definitely produce some weird result. However, this
problem can be addressed easily by adding a very small number to x, which will not
affect the desired result. A very small value such as e~ added to x in that function
will prevent this disaster from happening.

Strategies for Drawing a Curve

Drawing a curve in a Windows environment requires a correct mapping of the points
from the real coordinates, or the Cartesian system, to the pixels in Windows. As
discussed, Windows is based on integer coordinates that may indirectly conflict with
the Cartesian coordinate system, which is based on real numbers.

In producing high-quality curves on Windows, some strategies need to be imple-
mented that take into account factors concerning the existence and stability of the
curves. First, the rectangular region on Windows must be bounded by some fixed
coordinates that make up the rectangle. This region will serve as a child window with
the sides of the rectangle as the boundaries so that the curve does not explode to other
region. This strategy is necessary as the window needs to display another form of
output, for example, the textual explanation on the results.

The second strategy is to provide some flexibility on the curve drawing by allowing
user-control facilities. For example, the generated graph f(x) can be made flexible
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by allowing its range of x values input by the user. This means arange in0 < x <1
produces an inward zooming for a coarser graph f (x) thatis originallyin —2 < x < 5.
This flexibility helps in viewing the same graph from a different angle.

Third, the curve to be drawn must be properly scaled so that it displays clearly
on the screen. It is a good idea to use the display region fully by having the maxi-
mum and minimum values of the graph in the range shown. A good approach for
this objective is to compute the graph maximum and minimum values first and
then to scale the whole region according to these two values. We will illustrate
this point in our case studies later. For example, in drawing a curve, the points
(x1, ¥1) and (x2, y,) may represent the minimum and maximum values, respectively,
of y = f(x) in the domain. Applying this technique, the curve can then be drawn
nicely with the minimum and maximum points shown clearly within the Windows
viewport.

Another common error is computing a function that depends on a variable whose
value has not be assigned yet. For example, computing /x with no assigned value
of x will produce a runtime error that may cause the system to halt. A runtime error
may also arise in an array where its last element equals the size of the array. It is a
common mistake to define, for example, a[3]=5 when the array is declared as int
a[3]. In this case, only a[0], a[1], and a[2] are members of the array. Therefore,
the assignment of a [3]=5 is illegal.

Cartesian-to-Windows Coordinates Conversion

Windows provides a vast opportunity for displaying the results from a mathemat-
ical modeling and simulation. The output from numeric-intensive calculations can
be displayed nicely in a very structured and organized manner through the proper
handling of the resources in Windows. In designing an application, a developer
needs to understand these resources and their handling in order to achieve the
objective of producing high-quality results. One of the most important contribu-
tions from Windows is its flexibility in producing displays. The display on Win-
dows consists of a rectangular region that can be reconfigured according to the user
requirements.

In presenting a numerical output on Windows, one has to adapt to an environment
not familiar in mathematics. In mathematics, we are used to representing a point us-
ing the Cartesian coordinates. In contrast, Windows output is based on pixels whose
coordinate system uses numbers from zero and positive integers only. In other words,
negative numbers as well as numbers with decimal points (real numbers) are not
supported in the Windows system. However, this does not mean a point with coor-
dinates like (—1, 3.7258) cannot be displayed on Windows. To display this point on
Windows, we need to produce a transformation so that this point maps to a pixel on
Windows. This is just another trivial mathematical mapping problem with which we
should be familiar.

Figure 4.2 shows the Cartesian (left) and Windows (right) coordinates systems. We
denote the coordinates of a point in the Cartesian system as (x, y) and a pixel in the
Windows system as (X, Y). The Windows coordinate system starts with (0,0) in the
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y (0,0) (799,0)

L]
(0,0)

(0,599) (799,599)

FIGURE 4.2. Cartesian system (left) and Windows resolution of size 800 x 600 (right).

top left-hand corner as its origin. The end points in Windows depend on the desktop
resolution of the computer. A typical 800 x 600 screen resolution has 800 columns
and 600 rows of pixels with the coordinates of (799,0), (0,599), and (799,599) in
the top right-hand, bottom left-hand, and bottom right-hand corners, respectively.
A higher resolution screen, such as 1280 x 1024, can be obtained by setting the
properties in the desktop resolution. This setting produces finer pixels made from
1280 columns and 1024 rows for crispier display. However, very fine screen resolu-
tion also has some drawbacks. As the number of pixels increases, more memory is
needed in displaying graphical objects. Some graphics-intensive applications may fail
if the allocated amount of memory is not sufficient as a result from high-resolution
displays.

Mapping a point (x, y) from the Cartesian system to its corresponding pixel
(X, Y) on Windows is a straightforward procedure involving the linear relationships,
X =mx 4+ c;and Y = myy + c,. Inthese equations, m and m, are the gradients in
the mapping x — X and y — Y, respectively. The constants c¢; and ¢, are the y-axis
intercepts of the lines in the Cartesian system. In solving for m, m», ¢y, and ¢, a
total of four equations are required that can be obtained from points: any two points
in the Cartesian system and their range in Windows.

The mapping from (x, y) to (X, Y) is a type of transformation called linear trans-
formation. In this transformation, all coordinates in the domain are related to their
images in the range through a linear function. Figure 4.3 shows a linear transforma-
tion from a line in the Cartesian system to Windows. The line in the left is made up
of the points (x1, y;) and (x3, y»), which map to the Windows coordinates, (X, Y1)
and (X3, Y»), respectively. The mapping involving x — X is linear represented as
follows:

X1 =mx; +c, (4.1a)

X2=H11)C2~|—Cl. (41b)
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Xi=mx;+¢
Xo=myxy+ ¢y (Xz, Yz)
Yi=myyt e
(x5, »7) Yo=myyrt ¢y
(e 31
(X, 1p)
FIGURE 4.3. Conversion from Cartesian to Windows.
At the same time, the mapping y — Y is also linear represented as
Y1 = moyy; + ¢, (4.2a)
Y, =moy: +c. (4.2b)
Solving the first two equations, we obtain
X, — X,
m = ———, (4.3a)
X2 — X1
(&} =X1 — niXy. (43b)

The mapping equation in y — Y is solved in the same manner to produce the
following results:

_h-1
o=y

my (443)

C) = Y1 — myyi. (44b)

Equations (4.1) and (4.2) provide very useful conversion criteria of coordinates
from Cartesian to Windows. The contribution is obvious especially in confining certain
points in the real coordinate system to be within a rectangular region in Windows.

Example 4.1. The line from (-5, 6) to (7, —4) in the Cartesian coordinates system
maps to a line from (50, 30) to (500, 300) in Windows. Find a line in Windows that
is mapped from the line in the Cartesian system from (—2, 0) to (4, 2).
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Solution. In this problem, (x1, y;) = (=5, 6), (x2, y2) = (7, —4), (X4, Y1) = (50, 30),
and (X>, Y») = (500, 300). From Equations (4.3a), (4.3b), (4.4a), and (4.4b),

500 — 50
m =" =375,
7—(=5)
50 450( 5)=1237.5
c] = ——(=5 = .5,
! 12
_300-30 _ .
m2_ —4—6 - )

¢y =30 — (=27)6 = 192.

It follows that, X = 37.5(—2) + 237.5 = 162.5 ~ 163, Y; = —27(0) + 192 = 192,
X, =37.5(4) +237.5 = 387.5 ~ 388 and Y, = —27(2) + 192 = 138. Therefore, a
line from (—2, 0) to (4, 2) in the Cartesian system maps directly to (163, 192) to
(388, 138) in Windows.

Code4B: Drawing a Polynomial

CodedB. User Manual.
The program is a demonstration, and, therefore, no input is required.

Development Files: Code4B. cpp and Code4B. h.

We discuss a small project called Code4B for drawing a polynomial on Windows.
Figure 4.4 shows the polynomial f(x) = 2x* + 2x3 — 9x? — 4x + 1, which is the
output of this project. The curve is drawn in the range of —1 < x < 1.8 with the
maximum and minimum points as well as the left and right points of the curve shown.
The coordinates shown are the real coordinates from the Cartesian system.

It is no secret that a curve is drawn on Windows by placing pixels successively
through iterations from left to right according to its given function. In Code4B, the
polynomial is produced by iterating the points (x;, y;) using the function y; = f(x;),
for i = 0 to m, where x( and x,, are the left and right values, respectively, and m is
the number of subintervals in the given range. Pixels are placed on the display using
the MFC functions, SetPixel () or LineTo (). With large m, the successive pixels
lie very close to each other so that they appear like a curve.

The main advantage from Code4B is the ease in which the polynomial is drawn
according to scale on Windows. The drawing area in the window is bounded by
a rectangle (not shown in the output) with the CPoint objects called home in the
upper left-hand corner and end in the lower right-hand corner. With these defined
boundaries, the curve is scaled in such a way that the maximum and minimum values
touch the upper and lower boundaries of the rectangle. Therefore, the curve fits in
nicely in the drawing area as it does not appear to be too big or too small this way.
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" Code4B: Drawing a Curve i =]

(1.80.-2.7008)

(-1.00.-4.0000)

fixj=2 x4+ 2 " 390 2-4"x+1 1.29.-9.3050,

FIGURE 4.4. The polynomial f(x) = 2x* + 2x? — 9x% — 4x + 1 generated from Code4B.

Code4B is a brief project consisting of two files, Code4B. cpp and Code4B.h.
Code4B. cpp is a relatively compact file consisting of about 100 lines of code. It has
one class called CCode4B, which is derived from the MFC class, CFrameWnd. There
is only one event in this project, namely, the main display, which is handled by the
function OnPaint (). This implies Code4B does not take input from the user, and that
most variables and objects are locally based.

In Code4B, the points in the Cartesian system with (x, y) real coordinates are
declared in a structure called PT. The points along the curve are represented by an
array called pt, which is linked to this structure, as follows:

typedef struct
{
double x,y;
} PT;
PT *pt,max,min,left,right;
pt=new PT [m+1];

From this structure, the ith point in the graph is denoted as pt[i], with i =
0, 1, ..., m. The coordinates x; and y; of the point (x;, y;) are represented as pt [i] . x
and pt [1] .y, respectively. Other members of this structure are left, right, min and
max, which represent the left, right, minimum, and maximum points of the curve,
respectively.

Figure 4.5 shows the drawing area of the curve on Windows showing the CPoint
objects, home, end, left, right, max, and min. The drawing area is a rectangle
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") CodeaB: Drawing a Curve o [ [ 3]

home max

end

x[0] min x[m]

FIGURE 4.5. Windows objects in the drawing area.

designated by the CPoint objects, home (top left-hand corner) and end (bottom
right-hand corner). With this designation, the drawing area for the curve is restricted
to within the boundaries defined by the rectangle. A pixel in Windows is denoted
px whose components, px.x and px.y, are the results from mapping pt [i] .x and
pt[i] .y from the real coordinates according to Equations (4.1) and (4.2). This is
illustrated in Figure 4.6. The left and right points of the curve in the given range
are the CPoint objects, left and right. The maximum value of the curve is max,
whereas its minimum is min.

Table 4.6 lists all the main variables in Code4B. There are m uniform subintervals
in the x range whose width is given as h. Equations (4.1) and (4.2) convert the points
from the real coordinates in the Cartesian system to their corresponding pixels in
Windows with the constants determined by m1, c1, m2, and c2. The main objects in
the project are listed in Table 4.7.

px.x = ml*pt[i].x + cl

m2*pt[i] .y + c2

ko]
w
~

Il

(xi ,yi) /—-
] .
. . (pPx.x,pxX.V)
(pt[il.x,ptli].y)

FIGURE 4.6. Mapping from (x;, y;) to (px.x,px.y).
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TABLE 4.6. The main variables in Code4B

Variable Type Description

ptlil.x, ptlil.y double (x;, y;) coordinates of a point in Cartesian.
left.x, left.y double Left point of the curve in the interval.
right.x, right.y double Right point of the curve in the interval.
min.x, min.y double Minimum point of the curve in the interval.
max.x,max.y double Maximum point of the curve in the interval.
mi, cl double Constants m; and ¢, from Equation (4.1).
m2, c2 double Constants m; and ¢, from Equation (4.2).

h double Width of each subinterval.

m macro Total number of subintervals.

TABLE 4.7. Main objects in Code4B

Object Class Description

px CPoint Pixel on Windows with (px.x,px.y) as its coordinates.

home CPoint Home (top left-hand corner) coordinates of the
graphical area.

end CPoint End (bottom right-hand corner) coordinates of the

graphical area.

In drawing the curve, the width of each subinterval from x to x,, is first computed,
and this is given by

h=(pt [m] .x-pt [0] .x)/(double)m;

The curve is drawn by iterating on x; from i = 0 to i = m, incrementing the
value of x; by h at each step. To determine the maximum and minimum values
in the curve, comparisons are made through the expressions max.y<pt[i] .y and
min.y>pt[i] .y, respectively. The following code segment shows how this is done:

max.y=0; min.y=0;
for (int i=0;i<=m;i++)
{
pt[i].y=2*xpow(pt[i] .x,4)+2*pow(pt[i].x,3)
-9xpow (pt [i] .x,2) -4*pt [i] .x+1;
if (max.y<pt[i].y)
max=pt [i];
if (min.y>ptl[il.y)
min=pt [i];
if (i<m)
pt[i+1] .x=pt[i].x+h;

For mapping points from the real coordinates (pt [i] .x,pt[i] .y) into Windows
coordinates (px.x,px.y), Equations (4.1) and (4.2) need to be solved. From Figure
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4.5, we assign the variables in Equations (4.1) and (4.2) as follows:
xpisptlo] .x, y;ismin.y,

Xy is pt[m] .x, y;ismax.y,

X)ishome.x, Yjisend.y,

X, is end . x, Y, is home. y.

Equations (4.4a) and (4.4b) then become

m1=(double) (end.x-home.x)/(pt [m] .x-pt [0] .x);
cl=(double)home.x-pt [0] .x*m1;

m2=(double) (home.y-end.y)/(max.y-min.y);
c2=(double)end.y-min.y*m2;

In drawing a curve, it is important to have the x- and y-axes in the real coordinates
shown for reference. These axes are drawn as follows:

CPen pGray(PS_SOLID,1,RGB(200,200,200));
dc.SelectObject (pGray) ;

px=CPoint (m1*0+c1,m2*min.y+c2); dc.MoveTo(px) ;
px=CPoint (m1*0+cl,m2*max.y+c2); dc.LineTo(px);
px=CPoint (m1*pt [0] .x+c1l,m2*0+c2); dc.MoveTo(px);
str.Format ("%.01f",pt[0].x); dc.TextOut(px.x,px.y,str);
px=CPoint (m1*pt [m] .x+c1l,m2%0+c2); dc.LineTo(px);
str.Format("%.11f",pt[m].x); dc.TextOut(px.x,px.y,str);

The last step is to draw the curve by drawing points through iterations from left
to right. The curve is drawn by moving the pen to pt [0], then drawing a line to the
next point in the iteration, and so on until pt [m] . x. Each point in the real coordinates
pt [i] is mapped to its corresponding point on Windows px [i] using the conversion
formula in Equations (4.1) and (4.2). At each iteration, comparisons are made to
determine the maximum and minimum points of the curve. The following code shows
how this is done:

CPen pDark(PS_SOLID,2,RGB(50,50,50));
dc.SelectObject (pDark) ;
for (int i=0;i<=m;i++)

{
px=CPoint ((int) (m1*pt[i] .x+cl), (int) (m2*pt[i].y+c2));
if (i==0)
{

dc.MoveTo (px) ;
str.Format (" (%.21f,%.41f)",pt[0] .x,pt [0].y);
dc.TextOut (px.x,px.y,str);
}
else
dc.LineTo(px);
if (pt[i].y==max.y)
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{
str.Format (" (%.21f,%.41f)" ,max.x,max.y) ;
dc.TextOut (px.x,px.y-15,str);

3

if (ptl[i].y==min.y)

{
str.Format (" (%.21f,%.41f)" ,min.x,min.y) ;
dc.TextOut (px.x,px.y,str);

+

if (i<m)

pt[i+1] .x=pt[i] .x+h;
}
str.Format (" (%.21£,%.41£)" ,pt[m] .x,pt[m] .y);
dc.TextOut (px.x,px.y-15,str);
dc.Text0ut (100,350, "f (x)=2%x 4+2*x 3-9*x 2-4*x+1");
delete pt;

The above code draws the curve perfectly in the given interval. Once this is done,
it is important for us to delete the array pt from the structure as the allocated memory
is still active although the program has ended. This is achieved through delete pt.

4.4 GENERATING CURVES USING MYPARSER

Code4C. User Manual.

1. Enter the input strings of the functions.
2. Enter the range of values from left to right.
3. Click the corresponding method to view the results.

Development Files: Code4C. cpp, Code4C.h, and MyParser.obj.

We have discussed Code4B for drawing a simple polynomial. The project illustrates
some very important fundamental concepts in drawing a curve. However, the gen-
erated curve is static as the input is determined solely by the programmer. There is
no flexibility as the end user will not get a chance to key in his/her own equations
directly without the need to recompile the code. The program is also not user-friendly
as there are no events associated with its interaction with the user.

A practical curve drawing program is one that allows interaction and has the user-
friendliness features through MyParser. Curve drawing is considered complete if it
incorporates an equation parser as one of its interactive tools. One useful application
of an equation parser is in drawing a curve whose input equation is defined by the
user. MyParser reads the equation keyed in by the user as a string, processes this
string, and generates values for drawing the curve. We discuss two types of curves,
namely, y = f(x), which is a curve that is dependent on a single variable x, and the
parametric curve given by (x, y) = (f(¢), g(?)).
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The function y = f(x) is the most fundamental form of curve in mathematics.
This function is a direct mapping from x to y through the relationship defined in
f(x). This curve allows a single point in x to map to a point in y. It also allows
several values of x to map to a single value in y. However, mapping a single point in
x to multiple points of y is not allowed.

A parametric curve is a curve made up of points that are dependent on one or more
parameters. A two-dimensional parametric curve represented by (x, y), where x and
y are terms or functions that are dependent on the parameter ¢ in the interval given
by tp <t < 1t,,is expressed as follows:

(x, y) = (f (), g(1)). 4.5)

In a simple case like x =7 and y = t2 for 0 <t <2, the parametric equations
are equivalent to a single equation given by y = x2, for 0 < x < 2. In some other
cases, the relationship given by Equation (4.5) may not be expressed implicitly as a
single function of x. For example, x = 2 cost and y = 2 sin ¢ are parametric equations
representing a circle whose equation is x> + y? = 4.

We discuss Code4C, which provides flexibility by allowing the user to write an
equation directly into an edit box. Figure 4.7 shows a sample output from quite a

| CodedC: Curve Drawing using MyParser =101 x|
i<l [4%sin[2*x)-3*cos[1-sin[x]) | Interval of x: [3__Jw0o [5__]
| | Intervalof t: [ 1o [ ]
aff | |
3
Min 2.32-5.883) Max {2.24,4.528)

FIGURE 4.7. An exotic curve from f(x) = 4sin2x — 3 cos(l — sinx).
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sophisticated function given by f(x) = 4sin2x — 3 cos(l —sinx) for -3 < x <5.
The parser in the program reads the expression keyed in by the user and computes
the equation for i = 0 to m, where m is the number of intervals (which is also the
number of iterations).

Code4C supports two types of graphs, the function y = f(x) and the parametric
curve, x = f(t) and y = g(t). The two graphs can be selected using a menu in the
form of shaded rectangular boxes. Input for the first type of graph is provided in the
form of CEdit boxes that read the string for f(x) and range of values of x in the
domain. For the second graph, CEdit input boxes are provided to read the strings
x = f(t) and y = g(¢) and the start and end values of ¢. The curve is shown in the
big rectangular region, whereas its maximum and minimum points are displayed in
the static boxes at the bottom of the window.

Figure 4.8 shows another example of a curve from a set of parametric equations
givenby x(#) = 1 +tcostand y(t) = t sin(1 — t) for —30 < ¢ < 50. In this example,
the program determines the left and right values of x, as well as the maximum and
minimum values of y from the given range of ¢. Creativity continues from here. The
user should try several equations in mind and should view the results on the window.

Figure 4.9 illustrates the development steps in Code4C. A global variable called
fMenu has been created to monitor the progress in the execution, with fMenu=0

| Code4C: Curve Drawing using MyParser o [=] ]
f=) | ] Interval of x: l:ltn |:|
1 [1+"cos[y ] Interval of t: [30_] 10
alt) [t*sin{1-) |

48 a5

Min [-39.35,-46.549] Max [45.50.49.524)

FIGURE 4.8. The parametric curve x(¢t) = 1 + ¢ cos(t) and y(z) = ¢ sin(l — ).
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I Start I

Initializes variables
and objects. Sets

fMenu=0.
End
OnLButtonDown () [
Reads input from the edit
boxes. DrawCurve ()
fMenu=1. The graph y=f(x)
is drawn.
OnLButtonDown ()
Selects the graph type in the Drfleur vel()
menu. £Menu is assigned to the fMenu=2. The parametric
selected item. curve is drawn.

FIGURE 4.9. A schematic drawing showing the computational steps in Code4C.

as its initial value, and fMenu=1 and fMenu=2 indicating a selection of the first or
second item in the menu, respectively. Input from the user in the edit boxes is read in
OnLButtonDown (). Once input has been completed, a click at an item in the menu
results in its assignment of value to fMenu. Another function called DrawCurve ()
draws the selected graph according to the input values.

Code4C includes three source files, Code4C. cpp, Code4C.h, and MyParser.obj.
A single class called CCode4C is used, and this class is derived from CFrameWnd. The
same structure called PT as in Code4B is used, but this time ¢ is included as its
additional member to support the parametric equations, x(¢) and y(¢). The structure
is declared as follows:

typedef struct
{
double t,x,y; // x,y and t coordinates
} PT;
PT *pt,max,min,left,right;

The objects for the menu are organized into a structure called MENU. The structure
consists of members that represent the title, home coordinates, and rectangular objects
of the items. An array called menu[] stores these values.
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typedef struct

{
CString item; // title
CPoint hm; // home coordinates
CRect rc; // rectangular object
} MENU;

MENU menu[nMenuIltems+1];
Input is organized into a structure called INPUT.

typedef struct

{
CString item; // title
CPoint hm; // home coordinates
CEdit ed; // edit box
CRect rc; // rectangular object
} INPUT;

INPUT input [nInput+1];
Another structure is OUTPUT, which organizes the objects for displaying the output.
The structure organizes objects for the static boxes and their home coordinates and

rectangular objects through an array called output [].

typedef struct

{
CPoint hm; // home coordinates
CStatic st; // static box
CRect rc; // rectangular object
} OUTPUT;

OUTPUT output [nOutput+1];
The selected curve is displayed in the big rectangular region. A structure called
CURVE organizes the objects comprising the starting and end coordinates of the rect-

angle and the rectangular object. This structure is linked to a variable called curve.

typedef struct

{
CPoint hm,end; // start and end coordinates
CRect rc; // rectangular object

} CURVE;

CURVE curve;

There are five main functions in Code4C, and they are listed in Table 4.8.
OnPaint () responds to ON_WM_PAINT, which updates the output in the main win-
dow. A function called OnLButtonDown () responds to ON_WM_LBUTTONDOWN, which
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TABLE 4.8. Functions in Code4C

Function Type Description

CCode4C() Constructor Creates the main window and initializes the
variables and objects.

~CCode4C() Destructor Destroy the class and the array pt [].

DrawCurve () void Draw the curve selected from the menu.

OnLButtonDown () void Message handler for the left-click of the mouse.

OnPaint () void Output display in the main window.

is immediately activated when an item in the menu is left-clicked. Another func-
tion, called DrawCurve (), draws and label the selected curve once input has been
completed.

Two events are mapped in this application, and they are the default display on the
main window and the left-click of the mouse.

BEGIN_MESSAGE_MAP(CCode4C,CFrameWnd)
ON_WM_PAINT()
ON_WM_LBUTTONDOWN ()
END_MESSAGE_MAP ()

The code for the constructor function is listed below. Initial values are assigned to
the global variables and objects. They include the home coordinates of all the menu
items, edit and static boxes. The menu items are identified through a flag variable
called fMenu, with fMenu=0 as its initial value to denote no selection has been made.
The id for each edit and static boxes is uniquely assigned with the first box read given
with an initial value of idc=301. To guarantee a unique id for each box, this value is
incremented every time an edit box or static box is created.

CCode4C: :CCode4C()
{
int i;
Create(NULL, "Code4C: Curve Drawing using MyParser",
WS_OVERLAPPEDWINDOW,CRect (0,0,800,640) ,NULL) ;
pt=new PT [m+1];
fMenu=0; idc=301;
menu[1] .item="y=£f(x)";
menu[2] .item="Parametric";
curve.hm=CPoint (50,150) ;
curve.end=CPoint (750,560) ;
curve.rc=CRect(curve.hm.x,curve.hm.y,curve.end.x,
curve.end.y);
input [1] .hm=CPoint (240,20) ;
input [2] .hm=CPoint (660,20) ;
input [3] . hm=input [2] . hm+CPoint (60,0) ;
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input [4] .hm=CPoint (660,70) ;

input [5] .hm=input [4] .hm+CPoint (60,0) ;
input [6] .hm=input [1] . hm+CPoint (0,50) ;
input [7] .hm=input [6] . hm+CPoint (0, 30) ;
output [1] .hm=CPoint (170,580) ;

output [2] .hm=output [1] .hm+CPoint (280,0) ;
for (i=1;i<=nMenultems;i++)

{
menu[i] .hm=CPoint (20,20+(i-1)*50);
menu[i] .rc=CRect(menuli] .hm.x,menu[i] .hm.y,
menu[i] .hm.x+150,menu[i] .hm.y+30);
}

for (i=1;i<=n0Output;i++)
output [i] .st.Create("",WS_CHILD | WS_VISIBLE
| SS_CENTER | WS_BORDER,
CRect (output [i] .hm.x,output[i] .hm.y,
output [i] .hm.x+150, output[i].hm.y+20),this,
idc++) ;
for (i=1;i<=nInput;i++)
input[i] .ed.Create (WS_CHILD | WS_VISIBLE | WS_BORDER,
CRect (input[i] .hm.x,input[i] .hm.y,
input [i] .hm.x+((i>1 && i<6)?35:250),
input[i] .hm.y+20), this,idc++);
Arial80.CreatePointFont (80,"Arial");

OnPaint () displays the menu items and the labels for the edit boxes and static
boxes. The function also updates the display in the main window and draws curve
through DrawCurve () when it receives a call through InvalidateRect ().

void CCode4C: :0nPaint ()

{
CPaintDC dc(this);
CString str;
dc.SetBkColor (RGB(150,150,150));
dc.SetTextColor (RGB(255,255,255)) ;
dc.SelectObject (Arial80) ;
for (int i=1;i<=2;i++)

{
dc.FillSolidRect (&menul[i] .rc,RGB(150,150,150));
dc.TextOut (menu[i] .hm.x+5,menuli] .hm.y+5,
menul[i] .item) ;
}

CRect rc=CRect(curve.hm.x-10,curve.hm.y-10,curve.end.x+10,
curve.end.y+10);
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dc.Rectangle(rc);
dc.SetBkColor (RGB(255,255,255)) ;
dc.SetTextColor (RGB(100,100,100));

dc.TextOut (input[1] .hm.x-30, input[1] .hm.y,"f(x)");

dc.Text0Out (input [2] .hm.x-90, input [2] .hm.y,
"Interval of x:");

dc.TextOut (input [3] .hm.x-20,input[3] .hm.y,"to");

dc.TextOut (input [4] .hm.x-90,input [4] .hm.y,
"Interval of t:");

dc.Text0Out (input [5] .hm.x-20, input [5] .hm.y,"to");

dc.TextOut (input [6] .hm.x-30,input [6] .hm.y,"£(t)");

dc.TextOut (input [7] .hm.x-30,input [7] .hm.y,"g(t)");

dc.TextOut (output[1] .hm.x-40,output [1] .hm.y,"Min");
dc.Text0Out (output [2] .hm.x-40,output [2] .hm.y, "Max") ;
if (fMenu==1 || fMenu==2)

DrawCurve() ;

The above code updates the display on certain parts of the window whenever the
function InvalidateRect () is invoked. This is observed in the last two lines when
fMenu is assigned with the value of 1 or 2 whenever a menu item is selected. The
selection causes a curve to be drawn from the function DrawCurve ().

OnLButtonDown () responds to ON_WM_LBUTTONDOWN. This happens when an item
in the menu is left-clicked. This function has two parameters, nFlags and pxClick.
We are only concerned with pxClick here as it represents an object for recording the
pixel location where the click is made. OnLButtonDown () first reads the input made
on the edit boxes through the MFC function, GetWindowText (). Each input is read
as a string recognized as input [i] .item. Inputs such as the left and right values
of x are recognized as real values. Therefore, their input strings, input [2] .item
and input [3] . item, respectively, are converted to double using the C++ function,
atof (). Other inputs, input [1] . item, input [6] . item, and input [7] .item, are
global strings that represent the input expressions that will be read and evaluated by
the parser.

void CCode4C: :0nLButtonDown (UINT nFlags,CPoint pxClick)
{

input[1].ed.GetWindowText (input[1].item);

input [2] .ed.GetWindowText (input [2] .item) ;

input [3] .ed.GetWindowText (input [3] .item) ;

input [4] .ed.GetWindowText (input [4] .item) ;

input [5] .ed.GetWindowText (input [5] .item) ;

input [6] .ed.GetWindowText (input [6] .item) ;

input [7].ed.GetWindowText (input [7] .item) ;

pt[0] .x=atof (input[2] .item);
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pt[m] .x=atof (input [3].item);

pt [0] .t=atof (input [4] .item) ;

ptm].t=atof (input[5].item);

if (menu[1].rc.PtInRect(pxClick))
fMenu=1;

if (menu[2].rc.PtInRect(pxClick))
fMenu=2;

InvalidateRect (curve.rc);

When a shaded rectangle in the window is left-clicked, pxClick stores the pixel
coordinates at the location. A MFC function called PtInRect () checks whether the
click is within the named rectangle. For example, the following expression checks
whether if the first box has been clicked:

menu[1] .rc.PtInRect (pxClick)

where menu[1] .rc is the rectangle and pxClick is the location of the click. The
function returns TRUE (1) if the click is inside the rectangle, and FALSE (0) if it is
outside of the rectangle. A return value of 1 validates the selection, and the program
immediately assigns fMenu to indicate the type of function chosen.

The last statement in OnLButtonDown () updates the display in the main window.
This is done through InvalidateRect (), which calls OnPaint () for updating a
rectangular region in the display denoted by curve.rc.

The most important content in Code4C is the function for drawing a curve,
DrawCurve (). The code of this function is derived mostly from a function of the
same name in Code4B with some enhancement from the parser. The parser incor-
porates a function called parse (), which is derived from the external object file,
MyParser.obj. This external function is called through the statement

extern double parse(CString,int,double [],int []);

in the header file.

DrawCurve () draws a curve based on the assigned value assigned to fMenu, where
fMenu=1 indicates the curve y = f(x) and fMenu=2 for the parametric curve. The
first curve is drawn according to the following code segment:

if (fMenu==1)
{
h=(pt [m] .x-pt [0] .x)/((double) (m));
for (i=0;i<=m;i++)
{
psil1]=23; psv[1]l=pt[i].x;
pt[i].y=parse(input[1] .item,1,psv,psi);
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if (i==0)
{

left.x=0; right.x=0;

min=pt[0] ; max=pt[0];
}
left.x=((left.x>pt[i].x)7pt[i] .x:1left.x);
right.x=((right.x<pt[i].x)?pt[i].x:right.x);
if (min.y>ptl[i].y)

{
min.x=pt[i] .x; min.y=pt[i].y;
}
if (max.y<ptl[il.y)
{
max.x=pt[i] .x; max.y=pt[i].y;
3
if (i<m)
pt[i+1] .x=pt[i].x+h;
}
}
The above code computes y; = f(x;) fori =0, 1,...,m. The code also deter-

mines the maximum and minimum points in the curve as well as the left and right
intervals for x. The x variable is identified as a code in psi[1]=23. The value as-
signed to this variable is stored as psv [1]. These two values make up the arguments
in parse (), which reads the string expression from input [1] . item, as follows:

pt[il.y=parse(input[1].item,1,psv,psi);

The entry of 1 in the above statement denotes only one variable is involved in the
expression. The above statement computes the expression in input[1].item and
returns the value as pt [i] .y.

The second type of curve is generated from fMenu=2. Two variables are involved, ¢
and x, and they are identified as codes 19 and 23, respectively. The first function in this
parametric equation, x = f(#), is evaluated from the global string input [6] .item
through

psil[1]1=19; psv[1]l=pt[i].t;
pt[il .x=parse(input[6].item,1,psv,psi);

The second function y = g(¢) is read as input[7].item and evaluated through

psil1]=23; psv[1]l=pt[i].x;
pt[i].y=parse(input[7].item,1,psv,psi);

The following code segment evaluates x; = f(#;) and y; = g(t;) fori =0,1,...,m
besides determining the maximum, minimum, left, and right points in the curve:
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if (fMenu==2)

{

h=(pt [m] .t-pt[0].t)/((double) (m));
for (int i=0;i<=m;i++)

{

psil1]1=19; psv[1]l=pt[i].t;
pt[i] .x=parse(input[6].item,1,psv,psi);
psi[1]1=23; psv[1]l=pt[i].x;
pt[i] .y=parse(input[7].item,1,psv,psi);
if (i==0)
{

left.x=0; right.x=0;

min=pt [0] ; max=pt[0];
}
left.x=((left.x>pt[i].x)7pt[i] .x:1left.x);
right.x=((right.x<pt[i] .x)7pt[i].x:right.x);
if (min.y>pt[i].y)

' min.x=pt[il.x; min.y=pt[il.y;
if (max.y<pt[il.y)

¢ max.x=pt[i].x; max.y=pt[i].y;
if (i<m)

pt[i+1].t=pt[i].t+h;
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With all computed values for (x;, y;) determined from the parser, the last step in
the project is to display the curve in the designated graphical region. This is done

through

CPen pDark(PS_SOLID,2,RGB(50,50,50));
dc.SelectObject (pDark) ;
for (i=0;i<=m;i++)

{

px=CPoint ((int) (m1*pt[i].x+cl),

if (i==0)

else

dc.MoveTo (px) ;

dc.LineTo(px);

(int) (m2*pt[i] .y+c2));
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4.5 SUMMARY

In this chapter, we discussed in detail the techniques for drawing several types of
curves on Windows using the resources in MFC. As the platforms on Windows and
the real coordinates in mathematics differ, some simple transformations are required
to make them compatible. In addition, we also discussed MyParser, which is a very
useful tool in mathematics for developing user-friendly mathematical applications.
MyParser incorporates an equation parser that reads and evaluates a mathematical
equation from the user in the form of a string. The user should find the supplied object
file in MyParser very useful as this file can be linked to other source files in a project
for solving many numeric-intensive applications. Some useful applications include
the final year undergraduate, M.Sc., and Ph.D. projects, and modeling and simulation
in research.

PROGRAMMING CHALLENGES

1. Test on the following curves using Code4B:

y=1—3x+5x%

y = 3xsinx — 5x2cos(l — x).
_ 3x—1
Y= 1

. x(t) = 2cos(2t — 1) and y(¢) = ¢ sin(r> — 1).
. x(t) = 3sin2¢ and y = 3 cos’t.

o R TP

2. The polar coordinate system is represented as » = f(6), where r is the radius from
the origin and 6 is the angle measured from the x-axis in the counter-clockwise
direction. The conversion from (7, 8) to (x, y) is done according to the following
rules:

x =rcosfand y =rsinf.

Improve on the program in Code4A to include a polar curve given by r = sin 56.
3. Improve on the program in Code4C to include equations from the polar coordinates.

4. The curve drawing project in Code4C does not include mechanisms for checking
the domain of the function and for testing for its singularity at the points in the given
interval. These issues are important to consider as they may cause the program
to crash if not handled carefully. Study these issues, and incorporate them into
Code4cC.
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Systems of Linear Equations

5.1 Introduction
5.2 Existence of Solutions
5.3 Gaussian Elimination Techniques
5.4 LU Factorization Methods
5.5 Iterative Techniques
5.6 Visualizing the Solution: Code5
5.7 Summary
Numerical Exercises
Programming Challenges

5.1 INTRODUCTION

A linear system consists of a set of equations with some governing parameters or
variables that control the system. The variables that make up the system can be stated
in the form of differential equations or autonomous variables. The system works in a
dependent manner where changes in one or more variables affect the performance of
the whole system in general.

Definition 5.1. Anequation in the following form with the unknowns x; and constants
a;,fori =1,2,...,n,is said to be a linear equation:

a1x; +axxy + - - + a,x, = b. 5.1

In this definition, each unknown x; must have an index power of 1. Also, a linear
equation cannot have a variable inside sine, cosine, tangent, exponent, logarithm, and
other operators. It follows that any equation in the form other than Equation (5.1) is
called a nonlinear equation.

The following equations are examples of linear equations:

3x =5y +z=-2,
dxy +2x7 — 3x3 = 0.

A system of linear equations consists of a set of linear equations and a set of
unknowns. In general, a system of linear equations with m equations and #» unknowns

127
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is expressed as follows:

ayxy +apxy + -+ apx, = by,

a Xy + anxy + -+ +apx, = by, 5.2)
A1 X1 + QGuaxo + -+ 4 Aun Xy = by,.
The above system is represented in matrix form as Ax = b, as follows:
ay  ap ... apy X b
ar ax ... dy X2 | _ by ’ (5.3)
am1  Qp2  -.. Qun Xn b,
where A = [qa;;] is the coefficient matrix of the system, fori =1,2,...,mand j =
1,2, ..., n. Inthis system, m is the number of rows in the coefficient matrix, whereas

n is the number of columns (unknowns). The vector b = [b;] is the given constants,
whereas x = [x;] is the vector of the unknowns. If b; = O for all i, then the linear
system is called a homogeneous system; otherwise, if at least one of b; # 0, then the
system is nonhomogeneous.

In designing computer programs for solving the problem involving a system of
linear equations, it is important to incorporate good programming habits. These habits
include making the program easy to modify in order to have the problem scalable and
flexible. A program is said to be scalable if the code for a program with small data
applies to one with large data as well. A flexible program is one that adapts well to
changes in the parameters governing the problem with minimum modification in the
program. It is our duty to discuss these approaches in this chapter.

5.2 EXISTENCE OF SOLUTIONS

The solution to a system of linear equations may or may not exist, depending on the
given equations and several other factors. To complicate matters, a solution that exists
may not be unique, and there can be an infinite number of solutions for the system.
We study all cases that lead to the existence of the solution for a system of linear
equations.

Definition 5.2. A system of linear equations is said to have consistent solutions if all
its solutions satisfy each equation in the system. If one or more of the solutions do not
satisfy at least one equation in the system, then the system is said to be inconsistent.

The above definition describes the state of the solutions in a system of linear
equations. Referring to Equation (5.3), if the solution to the first equation also satisfies
all other equations in the system, then this solution is consistent. It follows that the
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system normally produces consistent solutions if m < n and inconsistent solutions
if m > n. A consistent system may have either unique or many solutions. A set
of inconsistent solutions consists of solutions that are valid in some but not in all
equations in the system.

Ideally, good and consistent solutions are obtained if the coefficient matrix is
square; that is, the number of equations in the system equals the number of unknowns,
or m = n. With this assumption, Equation (5.3) can now be rewritten as follows:

ayr ap ... dap || X by
azpi ayp ... aw || X2 | _ | b2 ‘ (5.4)
anl Apy ... pp Xn b,
Equation (5.4) is also expressed compactly in matrix form as A x = b, where
an an ... dip by X1
R Ol DR ) (L) PP P (5.5)
dnpt dp2 ... dpp bn Xn

In this representation, the square matrix A is the coefficient matrix of the system,
whereas x is the solution vector.

Theorem 5.1. If the coefficient matrix A of a system of linear equations is square
and if |A| # 0, then the system has consistent and unique solutions.

The above theorem states that a system whose coefficient matrix is not singular has
consistent and unique solutions. Unique solutions imply each unknown in the system
has only one value as its solution, and this value satisfies all equations in the system.

Example 5.1. The following system is consistent with unique solutions:

x+y=3,
x —4y =-2.

Solution. It can be shown that |A| = |i J4| = —5 # 0. Solving the above system
produces (x, y) = (2, 1), which is unique and applicable to both equations.

Theorem 5.2. If the augmented matrix A |b reduces to U |v after row operations
with one or more zero rows in U and the corresponding row(s) is v is also zero,
then the system is consistent with an infinite number of solutions. If one or more
corresponding row(s) in v is not zero, then the solution does not exist.
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Theorem 5.2 says an infinite solution exists if a row (or more) in the augmented
matrix has zero contents in all its (their) elements. The theorem is best illustrated
using two examples, one with an infinite number of solutions and another with no
solution.

Example 5.2. The following system is consistent with many solutions:

x+2y=1,
2x +4y =2.

Solution. Reduce the augmented matrix, as follows:

1 2
2 4

1 1 21

5 ~ o olo through Ry <— R, — 2R;.

Since all the elements in the second row of the augmented matrix have zero values,
the system has infinite solutions. (x, y) = (1, 0) and (x, y) = (—1, 1) are some of the
possible solutions to the system.

Example 5.3. The following system is inconsistent:

x+2y=1,
3x —y=-2,
2x +y = 3.

Solution. Reduce the augmented matrix, as follows:

1 2 1
3 —1| =2
1 3
2 1

~ 0 —-7| -5 through R, <~ R, —3R; and R, < R, — 2R,

0 —=5| 1

1 2 1
~ 0 -7 -5 through R3 <— R3 — %Rz.

0 0 | —32/7

The last row of the final reduced augmented matrix has zero elements on the left-
hand side and nonzero on the right-hand side. This contradicts the equation, and by
Theorem 5.2, no solution exists for this system.
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TABLE 5.1. Common methods for solving a system of linear equations

Method Type Condition

Gaussian elimination Elimination Nonzero pivot elements and nonsingular
coefficient matrix.

Gaussian Elimination Nonsingular rearranged matrix.

elimination with
partial pivoting

Gauss—Jordan Elimination Nonzero pivot elements and nonsingular
coefficient matrix.

Crout LU factorization Nonzero diagonal elements in the L
matrix.

Doolittle LU factorization Nonzero diagonal elements in the U
matrix.

Cholesky LU factorization Positive-definite coefficient
matrix.

Thomas LU factorization Tridiagonal coefficient matrix.

Jacobi Iterative Diagonally dominant coefficient matrix.

Gauss-Seidel Iterative Diagonally dominant coefficient matrix.

In this chapter, we will concentrate on discussing the system of linear equations in
the form of Equation (5.4) that is consistent with a unique solution. In general, there
are many techniques for solving this system, and they can be categorized as elimina-
tion, LU factorization, and iterative methods. An elimination technique reduces the
augmented matrix in the system to its triangular form before applying backward sub-
stitutions for the solution. The LU factorization technique factorizes the coefficient
matrix as a product of its upper and lower triangular matrices before generating the
solution through substitutions. Lastly, an iferative technique performs iterations on
all unknowns until their values converge to within a tolerable range.

Table 5.1 shows the common methods for solving a system of linear equations that
can be categorized under the elimination, LU factorization, and iterative techniques.
Note that some methods are very sensitive to the conditions imposed on the coefficient
matrix, and we will address them later in the chapter.

5.3 GAUSSIAN ELIMINATION TECHNIQUES

The elimination technique reduces the rows of a matrix into a simpler form through a
series of row operations, as discussed earlier in Chapter 2. We discuss three methods
commonly used in solving a system of linear equations, namely, the Gaussian elimi-
nation method, Gaussian elimination method with partial pivoting, and Gauss—Jordan
method.

Gaussian Elimination Method

The Gaussian elimination method is an elimination technique for solving a system
of linear equations through two series of steps. The method works best when the



132 SYSTEMS OF LINEAR EQUATIONS
Ax=Db
Row Operations
Ux=v

Backward Substitutions

solution x

FIGURE 5.1. Main steps in the Gaussian elimination method.

coefficient matrix is not singular; that is, |A| # 0 so that the solution obtained is
unique according to Theorem 5.1. The Gaussian elimination method consists of two
main steps, as depicted in Figure 5.1. The first step is the row operations for eliminating
the elements in the coefficient matrix so as to reduce the matrix into its upper triangular
form. If all elements in this triangular matrix have nonzero values, then the matrix
definitely has a unique solution. The second step, which is backward substitutions,
follows directly from the triangular matrix relationship for producing the solution.

We discuss a system of linear equations Ax = b having n linear equations and
n unknowns. The row operations technique in the Gaussian elimination method is
similar to the technique for matrix reduction discussed in Section 2.4. This time
row operations are applied to the augmented matrix A |b from the system of linear
equations according to the following relationships:

* *
aij <— ajj — p agj and bi <~ bi —p bk where p = aik/akk,

fork=1,2,...,n—1,followedbyi =k+1,k+2,...,nand j =1,2,...,n.
The above step reduces A |b to U |v. Backward substitutions are performed on
U | v to produce the solution x according to the following:

n
Uy Vi _Zk:' 1 Wik Xk .
and x; = I+ ,fori=n—1,n—2,...,1.
Unn Ujj

Xn =

Example 5.4. Solve the following system of linear equations using the Gaussian
elimination method:

2x1 —xo +Tx3 — x4 = —1,

—2x1 + 5x, — 3x3 — 8x4 = 3,

8x1 4+ 2xp — x3 + 2x4 = —2,

X1 — 8xy +x3 — 2x4 = 4.
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Solution. The above system is represented as the following augmented matrix:

2.000 —1.000 7.000 —1.000 | —1.000
—2.000 5.000 —3.000 —8.000 3.000
8.000 2.000 —1.000 2.000 | —2.000
1.000 —8.000 1.000 —2.000 5.000
Operations with Respect to the First Row. The row operation is R; < R; — pR)
for the rows i = 2, 3, 4. The pivot element of the first row is a;; = 2, and, therefore,
p = a;1/ap;- All elements in the second, third, and fourth rows are reduced to their
corresponding values using the relationships a;; < a;; — pa;; and b; < b; — pb;
for the columns j =1, 2, 3, 4.
2.000 —1.000 7.000 —1.000 | —1.000
0.000 4.000 4.000 —9.000 2.000
0.000 6.000 —29.000 6.000 2.000
0.000 —-7.500 —2.500 —1.500 5.500
Operations with Respect to the Second Row. The row operationis R; < R; — pR;
for the rows i = 3, 4. The pivot element of the second row is a, = 4, and, therefore,
p = a;z/a. All elements in the third and fourth rows are reduced to their corre-
sponding values using the relationships a;; < a;; — pas; and b; <= b; — pb, for the
columns j =1, 2, 3, 4.
2.000 —1.000 7.000 —1.000 | —1.000
0.000 4.000 4.000 —9.000 2.000
0.000 0.000 —35.000 19.500 | —1.000
0.000 0.000 5.000 —18.375 8.250
Operations with Respect to the Third Row. The row operation is R; < R; — pRj
for the rows i = 4. The pivot element of the third row is as3 = —35, and, therefore,
p = a;3/azz. All elements in the fourth row are reduced to their corresponding

values using the relationships a;; < a;; — paz; and b; < b; — pbs for the columns
j=1,2,3,4.

2.000 —1.000 7.000 —1.000 | —1.000
0.000  5.000 5.000  —9.000 2.000
0.000  0.000 —35.000 19.500 | —1.000

0.000  0.000 0.000 —15.589 8.107
Row operations on A and b produce U and v, respectively, where

2 -1 7 —1 -1

0 4 4 -9 2
U= andv =

0 0 =35 19.5 —1

0 O 0 —15.589 | 8.107
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Backward Substitutions. The reduced system of linear equations after row operations
is

2 1 7 —1 X —1
0 4 4 —9 X2 2
0 0 -35 195 ul | =1
0 0 0 —1558] 8.107

This system is solved by applying backward substitutions to get

X4 = U4/Lt44 = —0.520,

x3 = [v3 — (u3g*x4)]/uzz = —0.261,
X2 = [ — (uogx4 + uz*x3)]/uxn = —0.409,
x1 = [vr — (u1arx4 + u13x3 + ui2xx2)]/ur; = —0.050.

The C++ code for this method follows from the same coding for reducing a square
matrix to its upper triangular form and for finding the inverse of a matrix in Sections
3.3 and 3.4, respectively. Row operations reduce A | b to U | v, as shown below:

double Sum,m;
for (k=1; k<=n-1; k++)
for (i=k+1; i<=n; i++)

{
p=alil [k]/alk] [k];
for (j=1; j<=n; j++)
alil [j] -= pxalx]1[j]l;
b[i] -= p*b[k];
}

This is followed by backward substitutions:

for (i=n; i>=1; i--)

{
Sum=0;
x[i]1=0;
for (j=i ;j<=n; j++)
Sum += ali] [jI1*x[j];
x[i]1=(b[i]l-Sum)/ali] [i];
+

CodebA.cpp solves a system of linear equations using the Gaussian elimination
method. The data for the system is obtained from an external file called Code5A . in.

CodebA. cpp: Gaussian elimination method
#include <fstream.h>

#include <iostream.h>

#define n 4
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void main()

{

int 1i,j,k;
double *x,*b,**a;
for (i=0;i<=n;i++)

{
x=new double [n+1];
b=new double [n+1];
a=new double *[n+1];
for (j=0;j<=n;j++)
al[jl=new double [n+1];
}

ifstream InFile("CodebA.in");
cout.setf(ios::fixed);
cout.precision(5);

cout << "Qur input data: " << endl;
for (i=1;i<=n;i++)
{

cout << "a: ";
for (j=1;j<=n;j++)
{
InFile >> al[il[j];
cout << ali][j] << " "y
}
InFile >> b[il;
cout << "b=" << b[i] << " " << endl;
}
InFile.close();

// row operations
double Sum,p;
for (k=1;k<=n-1;k++)
for (i=k+1;i<=n;i++)

{
p=alil [k]/alk] [k];
for (j=1;j<=n;j++)
alil [j1-=p*alk] [j]1;
b[i] -= p*b[k];
}

// backward substitutions
for (i=n;i>=1;i--)
{

Sum=0;

x[1]=0;

135
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for (j=i;j<=n;j++)
Sum += ali] [j1*x[j];
x[1]=(b[i]-Sum)/a[i] [i];

cout << endl;
// display results

cout << "results after row operations:" << endl;
for (i=1; i<=n; i++)

{
cout << "u: ";
for (j=1;j<=n;j++)
cout << ali][j] << " ",
cout << "v=" << b[i] << " " << endl;
}

cout << endl << "results after backward substitutions: x=";
for (i=1; i<=n; i++)
cout << x[i] << " "y
cout << endl;
for (i=0;i<=n;I++)
delete ali]l;
delete a,x,b;

Gaussian Elimination Method with Partial Pivoting

Very often, the diagonal elements of a matrix have values equal or close to zero. A
matrix with this feature is called an ill-conditioned matrix. Division on a zero value
produces an undefined number. Division on a small number whose value is very close
to zero is the inverse of the division process that produces a very large number. Such
a number does not fit to be a pivot element in the row operations as the result affects
the accuracy of the division significantly.

An ill-conditioned matrix is treated differently when the Gaussian elimination
method is applied. To avoid division by zero or a number close to this value, partial
pivoting on the diagonal element is performed. Partial pivoting is a technique of
interchanging a row whose pivot element has a value equal to or close to zero with
another row whose element in the same column as the pivot element has the largest
modulus value. Therefore, partial pivoting requires an additional step of interchanging
two rows before row operations are performed.

Consider the following system:

3x1 +5x,+1=35,
3x; + 5xp — x3 =2,
6)61 —2)62 — 3)63 = —1.
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The augmented matrix A | b is

3 5 1 5
3 5 -1 2
-6 -2 3] -1

With the Gaussian elimination method, this augmented matrix reduces to the fol-
lowing form with R, <— R, — R;:

3 5 1 5
0 0 -21]-3
-6 -2 =31 -1

Continuing the next row operation with ay, as the pivot element will be disastrous
as this element is zero, and p = % is undefined. Therefore, Gaussian elimination
fails to solve this system. However, rearranging the rows by exchanging rows 1 and
3 manages to avoid this problem, as follows:

-6 -2 =3\ -1
3 5 -1 2
3 5 1

Reduction with R, <— R, + 2R, produces

-6 -2 -3]|-1
0 1 =7 0
3 5 1 5

which rectifies the above problem. We discuss an example here.

Example 5.5. Solve the following system of linear equations using the Gaussian
elimination method with partial pivoting:

—x3 4+ Txz — x4 = —1,
—2x1 — 3x3 — 8x4 = 3,

8x1 4+ 2xy — x3 + 2x4 = =2,
X1 — 8xy + x3 — 2x4 = 5.

Solution. The above matrix is ill-conditioned as some pivot elements have zero values,
namely a;; and ap,. Applying the Gaussian elimination method directly to solve the
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system will be disastrous as m is undefined due to division by these zero values. Let’s
try on the partial pivoting technique. The augmented matrix for this system is shown
as follows:

A b
0.000 —1.000  7.000 —1.000 | —1.000
—2.000  0.000 —-3.000 -—8.000 3.000
8.000  2.000 —1.000  2.000 | —2.000
1.000 —8.000 1.000 —2.000 5.000

Test for the Dominance of the Pivot Element in Row 1. The modulus of the pivot
element in the first row is not the largest as |a;;| < |as;|. Therefore, an interchange
between rows 1 and 3 is performed.

8.000  2.000 —1.000  2.000 | —2.000
—2.000  0.000 —-3.000 —8.000 3.000
0.000 —1.000  7.000 —1.000 | —1.000
1.000 —8.000 1.000  —2.000 5.000

Operations with Respect to the First Row. The row operation is R; <— R; — pRy,
where a;; = 8 is the pivot element of the first row and m = a;;/a;, for the rows
i =2,3,4. All elements in the second, third, and fourth rows are reduced to their
corresponding values using the relationships a;; < a;; — pa; and b; <= b; — pb;
for the columnsj = 1, 2, 3, 4.

8.000  2.000 —1.000  2.000 | —2.000
0.000  0.500 —3.250 —7.500 2.500
0.000 —1.000  7.000 -—1.000 | —1.000
0.000 —8.250 1.125 —2.250 5.250

Test for the Dominance of the Pivot Element in Row 2. The modulus of the pivot
element in the second row is not the largest as |a;| < |asz|. Therefore, an interchange
between rows 2 and 4 is performed.

8.000  2.000 —1.000  2.000 | —2.000
0.000 —8.250 1.125 —=2.250 5.250
0.000 —1.000  7.000 —1.000 | —1.000
0.000  0.500 —-3.250 —-7.500 2.500

Operations with Respect to the Second Row. The row operationis R; <— R; — pR;,
where ay; = —8.2501s the pivot element of the second row, and therefore, p = a;»/a»
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for the rows i = 3, 4. All elements in the third and fourth rows are reduced to their
corresponding values using the relationships a;; < a;; — payj and b; <= b; — pb,
for the columns j =1, 2, 3, 4.

8.000  2.000 —1.000  2.000 | —2.000
0.000 —8.250 1.125 —-2.250 5.250
0.000  0.000  6.864 —-0.727 | —1.515
0.000  0.000 —3.182 —7.636 2.758

Test for the Dominance of the Pivot Element in Row 3. No interchange of rows
is performed as the modulus of the pivot element in the third row is larger than the
elements below it.

Operations with Respect to the Third Row. The row operation is R; <— R; — pRj,
where as3 = 6.864 is the pivot element of the third row. Therefore, p = a;3/as; for
the row i = 4. All elements in the fourth row are reduced to their corresponding
values using the relationships a;; < a;; — pas; and b; < b; — pb; for the columns
j=1234

8.000 2.000 —1.000  2.000 | —2.000

0.000 —8.250 1.125 —-2.250 5.250

0.000 0.000 6.864 —0.727 | —1.515

0.000  0.000  0.000 -7.974 2.055

Row operations with partial pivoting reduce A | b. to U | v. with the following values:

8 2 —1 2 -2

0 —-8.25 1.125 -=-2.25 4.25
U= andy =

0 0 6.864 —0.727 —1.515

0 0 0 -7.974 2.055

Backward Substitutions. The same backward substitution technique as in the Gaus-
sian elimination method is applied to produce the solutions, x4 = —0.258, x3 =
—0.248, x, = —0.479, and x; = —0.097.

Gauss—Jordan Method

The Gauss—Jordan method is another elimination technique for solving the Ax = b
problem involving row operations. Unlike the Gaussian elimination method, the
Gauss—Jordan method is wholly based on row operations and does not involve back-
ward substitutions. The method assumes the coefficient matrix to be nonsingular and
fails to produce the desired result if the matrix is singular.

The Gauss—Jordan method is implemented as follows: Reduce the coefficient ma-
trix A into an identity matrix / by eliminating the elements in the rows and columns
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Ax=Db
@ Row Operations
IxX=vVv

FIGURE 5.2. The single main step in the Gauss—Jordan method.

of the other diagonals. The augmented matrix A |b. reduces to I |v. through row
operations where v is the final solution. This is described in Figure 5.2.
The Gauss—Jordan method is illustrated through Example 5.6.

Example 5.6. Solve the problem from Example 5.4 using the Gauss—Jordan method.

Solution. Form the augmented matrix A | b:

2.000 —1.000 7.000 —1.000 | —1.000
—2.000 5.000 —3.000 —8.000 3.000
8.000 2.000 —1.000 2.000 | —2.000
1.000 —8.000 1.000 —2.000 5.000
Reduce a;; value to 1 through Ry < R;/ay;.
1.000 —0.500 3.500 —0.500 | —0.500
—2.000 5.000 —3.000 —8.000 3.000
8.000 2.000 —1.000 2.000 | —2.000
1.000 —8.000 1.000 —2.000 5.000

Eliminate ay;, a3;, and a4; through Ry <— Ry — as1 Ry, R3 <— R3 — a3 Ry, and Ry <

R4 — a4 Ry, respectively.

1.000 —0.500 3.500 —0.500 | —0.500
0.000 5.000 5.000 —9.000 2.000
0.000 6.000 —29.000 6.000 2.000
0.000 —7.500 —2.500 —1.500 5.500
Reduce ay; to 1 through R, < Ry /a;.
1.000 —0.500 3.500 —0.500 | —0.500
0.000 1.000 1.000 —2.250 0.500
0.000 6.000 —29.000 6.000 2.000
0.000 —7.500 —2.500 —1.500 5.500
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Eliminate ai,, as3,, and a4, through R} <— Ry —a;p Ry, R3 <— R3 —apn Ry, and Ry <
R4 — agn R,, respectively.

1.000  0.000 5.000 —1.625 | —0.250
0.000  1.000 1.000  —2.250 0.500
0.000  0.000 —35.000 19.500 | —1.000
0.000  0.000 5.000 —18.375 8.250

Reduce as3 to 1 through R3 <— R3/ass.

1.000  0.000 5.000 —1.625 | —0.250
0.000 1.000  1.000 —2.250 0.500
—0.000 —0.000 1.000 —0.557 0.029
0.000  0.000 5.000 —18.375 8.250

Eliminate a3, ans, and aq3 thI'Ollgh R] < Rl — (l|3R3, R2 < R2 — a23R3, and R4 <
R4 — as3 R3, respectively.

1.000  0.000 0.000 0.604 | —0.364
0.000 1.000 0.000 —1.693 0.471
0.000 0.000 1.000 —0.557 0.029
0.000 0.000 0.000 —15.589 8.107

Reduce ay3 to 1 through Ry <— R4/ayy.

1.000 0.000 0.000  0.604 | —0.364
0.000 1.000 0.000 —1.693 0.471
0.000 0.000 1.000 —0.557 0.029
0.000 0.000 0.000 1.000 | —0.520

Eliminate aiq, a4, and asa through Rl < R] — a14R4, R2 < Rz — 6124R4, and R4 <
R4 — az4 R4, respectively.

1.000 0.000 0.000 0.000 | —0.050
0.000 1.000 0.000 0.000 | —0.409
0.000 0.000 1.000 0.000 | —0.261
0.000 0.000 0.000 1.000 | —0.520

The final step gives the solutions as x; = —0.050, x, = —0.409, x3 = —0.261, and
x4 = —0.520, which are the same as in Example 5.4.
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5.4 LU FACTORIZATION METHODS

LU Factorization Concepts

An important feature of a nonsingular square matrix A is it can be factorized into a
pair of upper and lower triangular matrices, U and L, as follows:

ayy dadypp ... dip 111 0 0 0 uypp U ... Uiy
asy axy ... dyy 121 122 0 0 0 Uuryp ... Uy

= . (5.6
aylr Ady2 ... dpp lnl l,,z e l,m 0 0 ce. Upp

The factorization into triangular matrices helps in solving the linear equations as the
unknowns can be directly determined through forward or backward substitutions. It
can be generalized that for A, « ,,, the number of unknowns in the matrices L and U
produced from the factorization of A is n>.

This is illustrated using an example on a 4 x 4 matrix A, as follows:

A = LU, where L = [lij], lij=0fori < j, andu;; =0fori > j.

app dip a3 dig Iy 0O 0 0 Uy Uy Uiz Uiy
dyr Ay A3 o4 | Ly Ip O 0 0 ux wuxp uy
ay an ay ay | Ly lp bz 0 0 0 uszz us
as1 Qap  d43 Qg Iyl Izl 0 0 0 Ugg
Liyuy Lijuyy Liyugs I
. Lyuy  DLyuy + boup Lyuyz + lpun Ly + luoy
| B B + bousy By + Lpugs + Issuss Iyjuy + Ipuog + I33us

lyguy gy + lourn  Layuis + lptas + lsuss Lyung + Liottog + Lasuss + Ligtiag

The values u;; and [;; fori, j =1, 2, 3,4 can be obtained by comparing the two
matrices element by element. Comparing the terms one by one, we have ay; = 1 u1,
aip = lj1u12, and so on. From these relationships, the values of all elements in L and
U can be determined.

We now discuss the solution to the LU factorization technique. The objective is to
solve the system of linear equations given by Ax = b. Factorize A = LU to get

(LU)x =b.
This simplifies into

L(Ux)=b.
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Let Ux =w, where w = [w;] for i =1,2,...,n is a temporary vector. This
gives Lw = b, where the values in w can be determined through forward sub-
stitutions. The values of x are then obtained from backward substitutions in
Ux=w.

The general factorization technique in A = LU is simplified through four main
methods for solving several different cases of the system of linear equations. Basi-
cally, these four methods differ in their representation in the triangular matrices, as
follows:

1. Ifu;; = 1fori =1,2,...,ninmatrix U, then the method is called the Crout
method.

2. Ifl;; = 1fori = 1,2, ..., ninmatrix L, then the method is called the Doolittle
method.

3. If U = L7 for the positive-definite matrix A, then the method is called the
Cholesky method.

4. The Thomas algorithm is a special adaptation of the Crout method when A is
a tridiagonal matrix.

We discuss each method and its C++ implementation.

Crout Method

The Crout method simplifies the whole factorization process by setting the values of
all diagonal elements of matrix U equal to 1; thatis, u;; = 1fori = 1,2, ..., n. This
technique had the advantage over the Gaussian elimination method where the number
of unknowns in L and U is n? — n, which is lower.

Figure 5.3 shows a schematic flowchart of the Crout method. The values of the
elements in L and U are determined by comparing the two matrices, A and LU,
element by element starting from the top row downward from left to right. These
values can be formulated as follows:

lj =daj; — thkuk], (578)

i—1
Uujj = (alj lkukj)/ (57b)
k=1

Example 5.7. Solve the system from Example 5.4 using the Crout method.
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Find Land UinA=L U.

Find wfromL w= b
through forward substitutions.

Find x from U x = w through

End L
backward substitutions.

FIGURE 5.3. Schematic flowchart of the Crout and Doolittle methods.

Solution. Let A = LU, or

2 -1 7 -1 Iy 0 0 O 1 wup wuiz up
-2 5 -3 -8 Ly b 0 O 0 1 wuxy uxn
8 2 —1 2| |ty In Ly 0[]0 0 1 u
-8 1 =2 Iy Ly Lz 0 0 0 1
I lijurn liugs li1u14
|l b+ Lyuyz + Inuy Lyuig + Inung
B B+ By A+ Bouss + I Ly + I3oung + l33u34

Ly lgyquin + 1l lyui +lpuos + 1y Laquig + Louos + Lizuss + lay

By matching the resultant matrix from the multiplication with the original A matrix
element by element, we get the following L and U matrices:

2 0 0 0 1 =05 3.5 —-0.5
-2 4 0 0 0 1 1 —2.25
L= and U =
8 6 -35 0 0 0 1 —0.557
-7.5 5 —15.589 0 0 0 1
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The vector w is obtained from Lw = b through forward substitutions:

2 0 0 0 w) -1
-2 4 0 0 wy 3
8 6 -35 0 wy | | =2
1 =75 5 —15589 ] [wy 4
which is the same as
2w; = —1,
—2w; + 4w, = 3,

8w; + 6wy — 35w3 = =2,
wy — 7.5wy + Sw; — 15.589w, = 4,

toproduce w; = —0.5, w, = 0.5, w3 = 0.029, and wy = —0.52. Finally, x is obtained
from Ux = w through backward substitutions, as follows:

1 —05 35 —05 7 [x ~0.5
0 1 1 =225]|x 0.5
0 0 1 —0557||xs| | 0.029
0 0 0 1 X4 ~0.520

This produces the solutions, x4 = —0.520, x3 = —0.261, x, = —0.409, and x; =
—0.050.

We discuss the C++ implementation of the Crout method. The main routine in this
method is in factorizing A = LU. The code is obtained by comparing the left-hand
and right-hand sides of the equations, element by element, to produce:

for (i=1;i<=n;i++)
1[i][1]=ali] [1];

for (j=2;j<=n;j++)
ul1][j1=al1]1 [j1/1[1]1[1];

for (j=2; j<=n-1;j++)

{
for (i=j; i<=n; i++)
{
z=0;
for (k=1;k<=j-1;k++)
z += 1[i] [k]*ulk] [j];
1011 [j1=alil [j1- z;
}
for (k=j+1;k<=n;k++)
{

z=0;
for (r=1;r<=j-1;r++)
z += 1[j] [r]*ulr] [k];
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uljl x]l=(alj] [k1-z)/1[j1(j];

}
z=0;
for (k=1;k<=n-1;k++)
z += 1[n] [k]1*ulk] [n];
1[n] [n]=aln] [n]-z;

The next step is to apply forward substitutions into the equation Lw = b using the
given values in b and the computed values in L. The code is shown as follows:

wl1l=b[11/1[11[1]1;
for (j=1; j<=n; j++)

{
z=0;
for (k=1; k<=j-1;k++)
z += 1[j] [k]*w[k];
wljl =(b[jl-2)/1[3]1[3];
}

Finally, we obtain the solution x through backward substitutions from Ux = w,
as follows:

for (i=n; i>=1; i--)

{
z=0;
for (k=i+1; k<=n; k++)
z += uli] [k]*x[k];
x[i]l=wli]-z;
cout << "x[" << i << "]=" << x[i] << endl;
}

Code5B. cpp shows a complete C++ code for the Crout method, which reads input
from Code5B.in.

CodebB.cpp: Crout Method
#include <iostream.h>
#include <fstream.h>
#define n 4

void main()
{
int 1i,j,k,r;
double z,*x,*w,*b,**a,**x],*%*u;
for (i=0;i<=n;i++)
{
x=new double [n+1];
w=new double [n+1];
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b=new double [n+1];
a=new double *[n+1];
l=new double *[n+1];
u=new double *[n+1];
for (j=0;j<=n;j++)

{
aljl=new double [n+1];
1[jl=new double [n+1];
uljl=new double [n+1];
¥

}
cout.setf (ios::fixed);
cout.precision(5);

// read the input data
ifstream InFile("Code5B.in");
for (i=1;i<=n;i++)

{
for (j=1;j<=n;j++)
{
InFile >> al[il[j];
1[i] [jI=uli]l [j1=0;
if (i==j)
ulil [j1=1;
¥
InFile >> b[i];
}

InFile.close();

// compute L and U

for (i=1;i<=n;i++)
1[i] [11=alil [1];

for (j=2;j<=n;j++)
ul1][jI1=al11 [j1/101]1[1];

for (j=2; j<=n-1;j++)

{

for (i=j; i<=n; i++)

{
z=0;
for (k=1;k<=j-1;k++)

z += 1[i] [kI*ulk] [j];

1011 [j1=alil [j]- =z;

}

for (k=j+1;k<=n;k++)
{

147
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z=0;
for (r=1;r<=j-1;r++)

z += 1[j] [r]*ulr] [k];
uljl [kI1=(alj] [k]1-2)/1(3]1[j];

}
z=0;
for (k=1;k<=n-1;k++)
z += 1[n] [k]*ulk] [n];
1[n] [nl=a[n] [n]-z;

cout << endl << "L matrix:" << endl;
for (i=1;i<=n;i++)

{
for (j=1;j<=n;j++)
cout << 1[i][j] << "
cout << endl;
}

cout << endl;

cout << endl << "U matrix:" << endl;
for (i=1;i<=n;i++)

{
for (j=1;j<=n;j++)
cout << ufi][j] << " ",
cout << endl;
}

cout << endl;

// forward substitutions for finding w
w[1]=b[1]/1[1][1];
for (j=1;j<=n;j++)

{
z=0;
for (k=1; k<=j-1;k++)
z += 1[j] [k]*w[k];
wljil =(b[j1-2)/1[31[j1;
}

cout << endl << "w vector:" << endl;
for (i=1;i<=n;i++)
{
cout << w[i] << endl;
¥

cout << endl;

// find x through backward substitutions
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for (i=n;i>=1;i--)

{
z=0;
for (k=i+1; k<=n; k++)
z += uli] [k]*x[k];
x[i]l=wli]-z;
cout << "x[" << i << "]=" << x[i] << endl;
}

// deallocate all used arrays
for (i=0;i<=n;i++)

delete alil,1[i],uli];
delete x,w,b,a,l,u;

}

Doolittle Method

The Doolittle method is the other side of Crout, where the values of the diagonal
elements in the lower triangular matrix are set to 0, or [;; = 1, fori =1,2,...,n
in factorizing A = LU. Doolittle shares the same flowchart as Crout in terms of
execution, as shown in Figure 5.3.

As in Crout, the values of the elements in L and U are evaluated by comparing
matrix A with the product LU, element by element starting from the top row, from
left to right. The rest of the steps in Doolittle are exactly similar to that of Crout: find
the values in w through forward substitutions from the equation Lw = b, and then
get the solution x from Ux = w through backward substitutions.

Example 5.8. Solve the system from Example 5.4 using the Doolittle method.

Solution.
2 —1 7 —1 1 0 0 0 ui Uip U3 U
-2 5 -3 —8 121 1 0 0 0 Uy U3 Uy
8 2 —1 2| |y Iy 0 0 0 uy uy
—8 1 -2 l41 142 l43 1 0 0 0 Ugq
U U Uz Uiy
. by biup +uxp Lyuyz +uo3 Lty + ung
Liuyy Byup +Ipuy  Byugs + Inugs + uss Lyt + [3pung + usg

Ipyuyy Ly + lpuyy Ly + Lpuss + Liguszs Ly + Liptog + lizusg + sy

Direct comparison between the two matrices produces L and U, as follows:

1 0 0 0 2 -1 7 —1
—1 1 0 0 0 4 4 -9
L = and U =
4 1.5 1 0 0 0 =35 195
05 —1.875 0.143 1 0 O 0 15.589
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From Lw =b, the temporary matrix w =[—1 2 —1 8.107]" is obtained
through forward substitutions. Finally, applying backward substitutionsinto Ux = w.
we get the solution x = [—0.050 0.409 0.261 0.520]7.

Cholesky Method

The Cholesky method is a method that can be applied to a system of linear equations
whose coefficient matrix is a special type of matrix called positive-definite. In most
cases, the method will not work if this requirement is not fulfilled. However, the
method may work in some exceptional cases where the coefficient matrix is symmetric
but not positive definite.

A square matrix A = [a;;] is said to be symmetric if A = AT, or a;; = a;;. A
symmetric matrix is one where the elements in its ith column have equal entries as
the ith row in the matrix. This type of matrix is common in many applications.

Definition 5.3. A square symmetric matrix A of size n x n is said to be positive
definite if it is symmetric, and the matrix satisfies the following requirement:

xTAx > 0, where x = [x; x5 - -~ x,,]" is any n x 1 vector.

Definition 5.3 is an analytical method for determining whether a given square
matrix is positive definite. The expression x” Ax in the definition produces a charac-
teristic polynomial, P(x) > 0.

Example 5.9. Determine whether the following matrix is positive definite:

Solution. Let x = [x; x», x3]7, and then

TAx=[x1 x» x]|-1 2 —1||x

le — X2
= [xl X2 xs] —x1 +2x2 — x3
—X2 + 2x3

= 2x12 — 2x1x2 + 2x§ — 2xx3 + 2x32
= xl2 + () —x2)% + (0 — x3)* + x% > 0.

Therefore, A is positive definite.
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In most cases, the characteristic polynomial method of determining the positive-
definiteness of a matrix may not be easy to implement especially when the size of the
matrix is large. The difficulty arises in converting the given equation into the form
of sum of squares. Alternative computational approaches using the properties of a
positive-definite matrix can also be applied, as follows:

Method 1. A square matrix A is positive definite if all conditions as stated below are
satisfied:

1. A is symmetric; thatis, a;; = aj; fori, j =1,2,...,n.
2. All the diagonal elements in A are positive, or a;; > Ofori =1,2,...,n.
3. The largest absolute value in each row of A is the diagonal element.

4. a;jajj > a,-zjfori,j = 1,2,...,]1.

It can be shown that, from Example 5.10, all four conditions above are satisfied to
prove that A is positive definite.

Method 2. All diagonal elements of the matrix U reduced from the symmetric matrix
A through row operations are positive.

A reduces to U through row operations, as follows:

2 -1 0 2 —1 0
-1 2 -1 ~10 3 =2
o -1 2 0 O 4

A is positive definite since u;; > O fori =1, 2, 3.

Method 3. All eigenvalues of the square matrix A are real and positive.

Figure 5.4 shows the schematic flowchart of the method. The method starts by
assuming U = L7 in the equation A = LU. Hence, the Cholesky method requires
finding the unknowns in L only. This assumption reduces the number of unknowns
to 1+ 2+ ---+ n, which is lower than that in Crout and Doolittle. For example, the
number of variables when A is a 4 x 4 matrix is only 10, against 16 in the previous
two methods.

Asin Crout and Doolittle, the elements in L and U are found by directly comparing
A with LU. In summary, these values are obtained using the following equations:

Lk

k=1
aw — Yy I3 fork=1,2,....n, (5.82)
j=1
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Read 4 and b.

Is A positive
definite?

SetU=LT.
Cholesky method is Set 4 =LU, and
not applicable. find L and U.

Set L w =x, and
find w.

Set Ux =w, and

End find x.

FIGURE 5.4. Schematic flowchart of the Cholesky method.

and

i1
ari — iy Lijly

7 fori=1,2,...,k—1. (5.8b)

I =

Once L and U have been found, the same forward and backward substitutions
steps as in Crout and Doolittle are applied before arriving at the solution.

Example 5.10. Solve the following system of linear equations using the Cholesky
method:

6 2 1 —17[xn 2
2 4 1 0 ||x -3
11 4 —1||x| |1
10 -1 3] |x —1
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Solution. Set A = LU, and let U = LT . This produces

6 2 1 -1 iy 0 O O I by I3y Iy
2 4 1 0 Ly l,n 0 O 0 ln I3n Ip
11 4 —1| |l o s 0|0 0 Iy I
-1 0 -1 3 Iyl Ly 0 0 0 Iy
2 L1112 11131 I11l41
U 3, + 15, I3 + Inlsn Ioilay + Inlan
| il Il + Lol B, +13,+ 13 [3ilay + I3l + 133143

Inly Ll + oy laly + Lol +lnls 1+ 10, + 13, + 13,
All the elements in the left and right matrices are compared to produce

2.449 0 0 0

0.816  1.826 0 0

0.408 0365 1.924 0
—0.408 0.183 —0.468 1.607

’

2449 0.816 0.408 —0.408
0 1.826 0.365 0.183
0 0 1.924 —0.468
0 0 0 1.607

U=L" =

Applying forward substitutions on Lw = b:

2.449 0 0 0 w) 2

0.816  1.826 0 0 wy -3

0.408 0.365 1.924 0 w3 I
—0.408 0.183 —0.468 1.607_ [wy -1

we getw =[0.816 —2.008 0.728 0.025]7. Finally, the last step is to perform
backward substitutions on Ux = w:

2.449 0.816 0.408 —0.4087 [x; 0.816
0 1.826 0.365 0.183 X2 —2.008
0 0 1.924 —0.468 | | x3 | o728 |
0 0 0 1.607 X4 0.025

and this produces the solution w = [0.665 —1.178 0.382 0.016]".
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We now discuss the program design for the Cholesky method. The difficulty in
this method lies on finding the values of matrix L according to Equation (5.8a) and
(5.8b). The code is given as follows:

for (k=1;k<=n;k++)
{
Sum=0;
for (j=1;j<=k-1;j++)
Sum += pow(1[k][j1,2);
1[k] [k]=sqrt (alk] [k]-Sum);
for (i=1;i<=k-1;i++)
{
Sum=0;
for (j=1;j<=i-1;j++)
Sum += 1[i] [j1*1[k][j];
1[k] [il=(alk] [1]-Sum) /1 [i] [i];

Once L is found, the other triangular matrix U is simply its transpose, or U =
[u;;] = [/;;]. This is achieved by setting u[i][j]=I[j][i] in the program for all i and j.
The code for the rest of the steps involving forward and backward substitutions is
similar to those in Crout and Doolittle, and it will not be discussed here. Code5C. cpp
shows the complete program of the Cholesky method, which reads A and b values
from an external file called Code5C. in.

Code5C. cpp: Cholesky method.
#include <iostream.h>
#include <fstream.h>
#include <math.h>
#define n 4

void main()
{
int 1i,j,k;
double *x,*w,*Db,**a, k%1 k*u;
double Sum;
for (i=0;i<=n;i++)
{
x=new double [n+1];
w=new double [n+1];
b=new double [n+1];
a=new double *[n+1];
l=new double *[n+1];
u=new double *[n+1];
for (j=0;j<=n;j++)
{
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al[jl=new double [n+1];
1[jl=new double [n+1];
uljl=new double [n+1];
+
}
cout.setf(ios::fixed);
cout.precision(5);

// read the input data
ifstream InFile("Code5C.in");
for (i=1;i<=n;i++)

{
for (j=1;j<=n;j++)
{
InFile >> al[i][j];
1[i] [j1=ulil [j]=0;
¥
InFile >> b[il;
¥

InFile.close();

for (k=1;k<=n;k++)
{
Sum=0;
for (j=1;j<=k-1;j++)
Sum += pow(1[k][j],2);
1[k] [k]=sqrt (alk] [k]-Sum);
for (i=1;i<=k-1;i++)
{
Sum=0;
for (j=1;j<=i-1;j++)
Sum += 1[i] [jI1=*1[k][j];
1[k] [i1=(alk] [11-Sum)/1[i] [i];
}
}
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
uljI1[i1=1[i]1[j1;
cout << endl << "L matrix:" << endl;
for (i=1;i<=n;i++)

{
for (j=1;j<=n;j++)
cout << 1[i]J[j] << "™ "y
cout << endl;
}

cout << endl;

155
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cout << endl << "U matrix:" << endl;
for (i=1;i<=n;i++)

{
for (j=1;j<=n;j++)
cout << ufi][j] << "
cout << endl;
}

cout << endl;

// forward substitution for finding w
for (j=1;j<=n;j++)

{
Sum=0;
for (k=1; k<=j-1;k++)
Sum += 1[j] [k]*w[k];
wljl =([j]-Sum)/1[j]1[j];
}

cout << endl << "w vector:" << endl;
for (i=1;i<=n;i++)
{

cout << w[i] << endl;

}

cout << endl;

// find x through backward substitutions
for (i=n;i>=1;i--)

{
Sum=0;
for (k=i+1; k<=n; k++)
Sum += uli] [k]*x[k];
x[i]=w[i]-Sum;
cout << "x[" << i << "]=" << x[i] << endl;
}

for (i=0;i<=n;i++)
delete al[il,1[i],ulil;
delete x,w,b,a,l,u;

Thomas Algorithm

Another LU factorization method is the Thomas algorithm, which is a derivative
of the Crout factorization method. The algorithm can only be applied in solving
a system of linear equation whose coefficient matrix is a special type of matrix
called a tridiagonal matrix. An advantage in applying the Thomas algorithm is its
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computational time at O(n) is lower than the Gaussian elimination approach, which
stands at O(n?).

Definition 5.4. A tridiagonal matrix is a three-band matrix whose elements other
than in the main diagonal and upper and lower diagonals have the value of zero, or

0 ifj>i+2fori=1,2,...,n—2,
ajj =10 ifj<i—2fori =3,4,...,n,
* fori —1<j<i+?2.

In the above definition, * stands for any value including zero. An example of a
tridiagonal matrix of size 5 x 5 is

3 =2 0 0 O
27 -1 0 O
0 -1 4 I 0
o 0 5 =23
0O 0 O 1 4

The tridiagonal matrix is often encountered in engineering problems. A typical ap-
plication is the computational fluid dynamics (CFD) problem, which involves break-
ing down the big problem into smaller ones by converting the continuous differential
equations in the system into ones that are discrete. The discrete equations are then
reduced further into one or more systems of linear equations, including some that
may have the triangular form. Therefore, the task of computing a triadiagonal system
of linear equations has become a challenging but rewarding exercise in numerical
computing.

The Thomas algorithm starts with a three-band coefficient matrix A. This matrix is
factorized and reduced into L and U, both of which are two-band. The next step is to
getw from the equation Lw = b through forward substitutions. Finally, the solution
x is obtained from Ux = w through backward substitutions.

In implementing the Thomas algorithm approach, the process is very much sim-
plified by setting the values of all diagonal elements in U to 1; thatis, u;; = 1. This
same approach is deployed in the Crout method. We discuss this approach through
an example.

Example 5.11. Solve the following system using the Thomas Algorithm:

4 2 0 07[x

1 =5 1 0 ||x 2
0 2 4 1 ||x| |-t
0 0 —1 —3]|x 3



158 SYSTEMS OF LINEAR EQUATIONS

Solution. The coefficient matrix A is tridiagonal. Let A and its factors, L and U, be
the following unknowns with «; and B;:

dl €] 0 0 1 ,3] 0 0 o 0 0 0
d 0 0 1 0 0 O
A |2 b e U= B2 Cand L — o
0 C3 d3 e3 0 O 1 ,33 0 c3 03 0
0 0 cg4 ds 0 0 0 1 0 0 ¢4 g

In U, all diagonal elements have values equal to 1. Next, factorize A = LU:

d e 0 0 ap 0 0 O 1 g 0 O
Cc d2 (%) 0 Cy 0O 0 0 0 1 /32 0
0 ¢ ds es| |0 e a3 0[]0 0 1 Bl
0 0 ¢4 dy 0 0 ¢4 ag 0O 0 0 1
4 =2 0 0 o o1 B 0 0
1 =5 1 0 o ofita azpa 0
0o 2 4 1| |o e b tas  asfs
0 0 —1 -3 0 0 ca cafs + au

Comparing the two matrices element by element produces the following matrices:

4 0 0 0 1 —-0.5 0 0

1 —45 0 0 0 1 —-0.222 0
L= and U =

0 2 4.444 0 0 0 1 0.225

0 0 —1 —-2.775 0 0 0 1

The next step is to compute w from Lw = b through forward substitutions:

4 0 0 0 wi 1
1 —45 0 0 ws 2
0 2 4444 0 wy | | =1
0 0 -1 -2775] | ws 3

We getw =[0.25 —0.389 —0.05 —1.063]7. Finally, applying backward sub-
stitutions to Ux = w:

1 —05 0 0 7 n 0.25
0 1 —022 0 ||x ~0.389
0 0 10225 | x| | =005 |
0 0 0 1] L ~1.063

produces the solution x = [0.077 —0.347 0.189 —1.063]7.
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I Start Read 4 and b.

Is A4 triadiagonal?

Thomas algorithm is not Set4=LU, and
applicable. find L and U.

Set L w=x, and
find w.

Set Ux =w, and
find x.

End <

FIGURE 5.5. Schematic flowchart of the Thomas algorithm method.

The implementation of Thomas algorithm follows the same path as the previous
LU factorization methods. This is shown in the schematic flowchart of Figure 5.5. The
task of finding L and U, and solving for x through forward and backward substitutions,
is shown below:

for (i=1;i<=n;i++)

{
dlil=alil [i];
if (i<=n-1)
elil=ali] [i+1];
if (i>=2)
clil=ali] [i-11;
¥

for (i=2;i<=n;i++)
{
cli] /= dli-1]1;
d[i] -= clil*el[i-1];
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for (i=2;i<=n;i++)
bli] -= c[il*b[i-1];

cout << "x values: " << endl;
x[n]=b[nl/d[n];
cout << x[i] << " ",
for (i=n-1;i>=1;i--)
{
x[il=(bl[il-e[i]1*x[i+1])/d[i];

cout << x[i] << " ",

Code5D. cpp shows the full source code for Thomas algorithm, which reads A and
b values from an input file called Code5D. in.

Code5D. cpp: Thomas algorithm

#include <iostream.h>
#include <fstream.h>
#define n 5

void main()
{
int 1i,j,k;
double *x,*w,*b,*c,*d,*e,**a;
for (i=0;i<=n;i++)
{
x=new double [n+1];
w=new double [n+1];
b=new double [n+1];
c=new double [n+1];
d=new double [n+1];
e=new double [n+1];
a=new double *[n+1];
for (j=0;j<=n;j++)
al[jl=new double [n+1];
}
cout.setf(ios::fixed);
cout.precision(5);

// read the input data
ifstream InFile("CodebD.in");
for (i=1;i<=n;i++)
{
for (j=1;j<=n;j++)
InFile >> alil[j]1;
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InFile >> b[i];
}
InFile.close();

for (i=1;i<=n;i++)

{
dlil=alil [i];
if (i<=n-1)
elil=ali] [i+1];
if (i>=2)
clil=ali] [i-1]1;
}
for (i=2;i<=n;i++)
{
c[i] /= dli-1];
d[i] -= clilxel[i-1]1;
}

for (i=2;i<=n;i++)
b[i] -= c[il*b[i-1];

cout << "x values: " << endl;

x[n]l=b[n]/d[n];

cout << x[i] << " ";

for (i=n-1;i>=1;i--)

{
x[11=(b[i]l-e[il*x[i+1]1)/d[i];
cout << x[i] << " ",

¥

cout << endl;

for (i=0;i<=n;i++)
delete alil;

delete x,w,b,c,d,e,a;

}
5.5 ITERATIVE TECHNIQUES

An iterative method is easy to implement as it is a repetition of the same set of
variables that does not require too much computer memory. An iteration starts with
some given initial values to the variables. These values are constantly updated at each
iteration, and eventually they converge to the desired values after some successful
iterations. The iterations only stop once the values have converged to some numbers
where stopping criteria have been met.

The stopping point for the iterations is normally based on a comparison between an
error in the iteration with some small value. A common error for an iterative process
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is the maximum from the difference in vector magnitude norm based on Equation
(3.8), or

k+1 k (k+1) (k) (k+1) *) k+1 k
@D — x® o = max (|« — x|, |25 = 37, D — X)),
(5.9
In the above equation, iteration on x = [x; xp --- x,]7 is indicated by the

superscript k. Equation (5.9) specifies the error as the difference between the com-
puted values of x at iteration k 4+ 1 with the ones at iteration k. The difference is
compared with some small number . If [|x**1) — x®||, > &, the iteration continues
by computing new values of x. Otherwise, if | x*+D — x®)|| < &, the iteration stops
immediately, and the iterative technique is said to have converged to the solution x.

We discuss two iterative methods that are commonly applied in solving a system
of linear equations. The first system is the Jacobi method, which updates the values
of the unknowns when an iteration has completed. The second system is the Gauss—
Seidel method, which performs an update on the values immediately without waiting
for an iteration to complete. These two methods are basically similar, having the
same formula for updating the values. Both methods require the coefficient matrix of
the system to be a special type of matrix called a diagonally-dominant matrix. The
difference between them lies in the way updates are made: Gauss—Seidel uses the
latest values of the variables, whereas Jacobi is not using the latest values.

Definition 5.5. A square matrix A is said to be diagonally-dominant if the absolute
value of its diagonal element in each row is greater than the sum of the absolute value
of all other elements in the same row. This condition is expressed as follows:

N
laiil > > lay], fori =1,2,....n. (5.10)

j=1
J#

In the above definition, a diagonally-dominant matrix must always have the largest
absolute values at its diagonal elements. As an illustration, the following matrix is
diagonally-dominant:

5 -1 3
2 =7 -1
4 -2 8

row 1: 15| > |—-1] + 3],
row 2 : |=7| > 2| + |—1],
row 3 : 8] > |4] + |-2|.

The following matrix is not diagonally-dominant but becomes diagonally-
dominant by exchanging rows 2 and 3:

5 -1 3 5 -1 3
2 3 -6 ~ 13 =7 2
3 =7 2 2 3 —6
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The diagonally-dominance criteria test on a coefficient matrix is implemented in
C++, as follows:

for (i=1;i<=n;i++)

{
Sum=0;
for (j=1;j<=n;j++)
if (i!'=3)
Sum += fabs(alil [j1);
if (fabs(ali] [i])<=Sum)
{
cout <<"Unsuccessful, the matrix is not
diagonally-dominant" << endl;
return;
}
}

Jacobi Method

The Jacobi method is an iterative method that performs updates based on the values of
its variables from the previous iteration. The method requires the coefficient matrix A
of the linear system to be positive definite to guarantee convergence to its solutions.
Otherwise, the computed values of the variables will not converge and will cause a
very significant error to the solution.

The Jacobi method starts with a formulation of the variables from the given equa-
tions in the system. The rth equation in the n x n system of linear equations is given
as follows:

n
E arjXj = br, or
j=1

arX1 + Xy + -+ QX + -+ App Xy = by,
From this equation, the variable x, is formulated as a subject of the rest of the variables:

n
b, — Zj:],j;ﬁr arjXj
Arr

X, =

br —Ar1 X1 — A2 Xp — o = pyp 1 Xp—1 —pp41 X1 — 00 —App—1Xp—1 — ArpXp

Ay

At iteration k, an update is made on x, based on the current values of the vari-
ables x® =[x x = x®]" to produce new values at the one-step ahead

iteration or iteration k + 1, which is x**1 = [xi“]) xg“’]) oo x%+D]T This is
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performed as follows:

(k) (k) (k) (k) k
(k+1) br —ap Xy —appXy s T T Ap -1 X, — ar.r+1xr+1 - arnx,(, )
X = .
r

Ay

(5.11)
The complete formulation of all variables in the system of linear equations based
on Equation (5.11) is shown below:

(k) (k) k k
LD by —apxy,’ —apxy — - —apx — - —ap
1 - )
ai
(k) (k) k k
Ll _ by —apx)’ —anxy — - —apx — - —ay, Y
2 - ’
an
(k) (k) (k) (k) k
LD _ by — Ay X)) — @p2Xy ) — = 1 X, = 1 X — = QXY
D = ,
arr
(k) (k) k (k)
Lo _ b mann” —anxy” = = a? = = e,
n - .
ann

Figure 5.6 shows the schematic flowchart of the Jacobi method. The iterations
start by assigning initial values to the variables at iteration 0, which is denoted as
x© = [xio) x§o> -« xO1". The normal initial values for these variables are 0,

or xfo) =0fori =1,2,...,n,although they can be any small numbers. From these
initial values, the values of the variables are updated according to Equation (5.13) to
produce xV =[xV x{" ... x(7.

The stopping criteria for the iterations are normally set according to the maximum
magnitude of the vector difference of Equation (5.9) or [|x**1 — x®|, < &.In this
case, the error is || x() — x@|| . If this value is equal to or smaller than the predefined
value ¢, the iteration stops immediately. Otherwise, the process continues at iteration
1 with the same step explained earlier repeated.

The same process as above is repeated for the subsequent iterations until the
stopping criteria of Equation (5.9) is fulfilled. The final solution is x, which consists
of the values in the last iteration where the stopping criteria are met.

Example 5.12. Solve the following system using the Jacobi method with the initial
valueof x@ =[0 0 0 0]7 until [|x*+t) — x® | < &, where ¢ = 0.005:

X1 —5x + x3 — x4 = 3,
—2x1 +xp — Sx3 4+ x4 = —2,
dx) — 2x7 + x3 — 8x4 = 2,
6x1 — X2 + 2x3 +2x4 = —1.
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FIGURE 5.6. Schematic flowchart of the Jacobi and Gauss—Seidel methods.

Solution. It can be shown that the coefficient matrix in the above system is not
positive definite. Therefore, the rows are interchanged in such a way that the dom-
inant coefficient of each row forms the diagonal in the new coefficient matrix.
This results in the following arrangement where the coefficient matrix is positive

definite:

X1 — 5x7 +x3 — x4 = 3,

4x1 — 2x0 + x3 — 8x4 = 2.

6X1 — X + 2X3 + 2X4 = —1,

=2x1 +x2 — 5x3 + x4 = =2,
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We get expressions for xy, x, x3, and x4, as follows:

X1

X2

X3

Xq4 =

-1 =+ x —2X3 —2X4
6 9

3—x; —x3+ x4
-5 ’

—242x1 — X2 — X4
-5 ’

2 —4x; 4+ 2xy — x3
-8 !

From Equation (5.11), the values of x;, x5, x3, and x4 are updated at each iteration k

as follows:
k k k
(1) _ -1 +x£)—2x§)—2xi)
X = ,
6
k k k
@iy _ 3=x — x4
X, = ,
-5
k k k
i _ —24 207 —xy” — i
X3 = ,
-5
k k k
(k+1) _ 2_4x§)+2x§) _xé)
X, =
-8
With £ = 0:
o 1A =2 —2x” 1 4(0) — 2(0) — 2(0)
X = = = —0.167,
6 6
o 3= —xP+x” 3-0-0+0
Xy = = = = —0.6,
-5 -5
o 2420 =P =¥ 2420)-0-0
Y = = =04,
- -5 -5
©) © _ 0
= 2-4" 420 —a 2240 +20-0 _ o

-8

-8

error =[x = x@| = max(]-0.167|, [-0.6|, [-0.4], [—0.25]) = 0.6 > .
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TABLE 5.2. Results from Jacobi iterations in Example 5.12

x}’f) x;k) x;k) xi’” D — x @

0 0.000 0.000 0.000 0.000 0.600
1 —0.167 —0.600 0.400 —0.250 0.150
2 —0.317 —0.503 0.297 —0.133 0.112
3 —0.305 —0.577 0.399 —0.245 0.045
4 —-0.314 —0.532 0.357 —0.208 0.021
5 —0.305 —0.550 0.378 -0.229 0.011
6 —0.308 —0.540 0.366 —-0.218 0.005
7 —0.306 —0.545 0.372 —0.223

The error is greater than the tolerance. Therefore, the iterations continue with k = 1:

o 1+ —2x? —2x) —14(=0.6) - 2(—0.4) — 2(~0.25)
X = = = —0.317,
6 6
o 3—ax x4V 3 (=0.167) — (—0.4) + (—0.25)
P = = = —0.503,
-5 -5
o —242x" =V =1V 24 2(-0.167) — (—0.6) — (~0.25)
x3 = = - 0297,
-5 -5
o 2—dxV 4o —xV 2~ 4(—0.167) +2(—0.6) — (—0.4)
_x4 = L 8 2 = = 8 = —0133,

error= |x® — x| = max(|-0.317|,1-0.503], [0.297|, [—0.133]) = 0.15 > «.

The error is reduced significantly in this iteration, which means convergence to the
solution is beginning to take its shape. Continuing the process gives the results as
shown in Table 5.2.

The final solution is x7 =[—0.306 —0.545 0.372 —0.223]7, which is
achieved at k = 6 when ||x7 — x©|,, < ¢.

Gauss—Seidel Method

The Gauss—Seidel method is an iterative method that updates the values of a variable
based on the latest values of other variables in the system. Because of these latest
values, convergence to the solution takes place faster than the Jacobi method.

The implementation of the Gauss—Seidel method is very similar to the Jacobi
method, as shown in the flowchart in Figure 5.6. For an equation givenby >/, a;;x; =
b;, wherei =1, 2, ..., n, the rth unknown, or x,, is expressed as follows:

n
b, — Zj:l,j;ﬁr arjXj
Ary

X =
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The update on x, at iteration k is the one-step ahead value given as follows:

k+1 k+1 k+1 k
i ot T g
" a
(5.12)
In the above equation, the update on x, involves the latest values of x; for i =
1,2,...,r — 1 at iteration k + 1 and the values of x; fori =r+1,r+2,...,n
at iteration k. The complete update on the variables is shown as follows:
k k
R ainxy’ —apxy’ = —apx® — o —apx
1 - k]
apy
k+1 k
@y b —anx{Y —apx? — . —apx® — .~ apx®
x, = ,
an
k+1 k+1 k1 k
kD b, —a,.lx} )—aerE S _ar,rfle—l )_ar,r+1x£+)1 — =X
g arr ’
k+1 k+1 k+1
e b D gy )
" Ann

The standard error in the iterations is the maximum magnitude norm as expressed
in Equation (5.9). This error is compared with the preset threshold value ¢, where the
iterations stop immediately if the error is smaller than or equal to this value.

Example 5.13. Solve the system of linear equations in Example 5.12 using
the Gauss—Seidel method with the initial value of x@ =[0 0 0 0]” until
lx®+D — x®) . < &, where ¢ = 0.005.

Solution. The coefficient matrix of the above system is not diagonally-dominant.
Rearrange the rows so that the diagonal elements become dominant, as follows:

6x1 — xo + 2x3 + 2x4 = —1,
X1 — S5x7 +x3 — x4 = 3,
—=2x1 +x2 — 5x3 + x4 = =2,
Ax; — 2xp + x3 — 8x4 = 2,
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From Equation (5.15), updates are performed according to

Ly _ LA x5 — 203 — 24"

1 6 ’

(k+1) (k) (k)

P O s Sl W o

2 _5 ’

() _ D) ®)

Ly _ T2 2 oy

3 -5 ’
a2 4HD b _ ke

4 _8 °

Starting with k = 0:

U 14+ =22 =22 —1+0-0-0

- = —0.167,
6 6
3 x4 3 (—0.167)-0-0
PO el Mt e s P ) — —0.633,
-5 -5
o 2420 —xP —x® 24 2(-0.167) — (—0.633) — 0
= = = 0.340,
-5 -5
o 2—axP2xl) -V 2 - 4(—0.167) 4+ 2(—0.633) — (0.340)
_x4 = _8 = _8 = — 0133,

error = ||x — x| = max(0.167, 0.633, 0.340, 0.133) = 0.633 > ¢.
The iteration continues with k = 1 since the error is greater than &:

@ —l+as) —2x) —2xV —140.167 — 2(0.633) — 2(0.340)
xl = = =

= —0.341,
6 6
(@) (1 ()]
N 3o -V 340341-0340-0133
-5 -5
@ 2+ —xP —x’  —242(-0.341) — (—0.574) — (-0.133) _
X = = =0.395,
_5 -5
2 — 4P 42 — X 2 4(—0.341) 4 2(—0.574) — 0.395
P kel e s M ke )+ ) = —0.228,

—8 -8
error = ||x® — xV|_ = max(0.341,0.574,0.395, 0.228) = 0.175 > .

Additional iterations produce results as shown in Table 5.3.
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TABLE 5.3. Results from Example 5.12

k x}k) x;k) xék) xik) l®D — x® | o
0 0.000 0.000 0.000 0.000 0.633

1 —0.167 —0.633 0.340 —0.133 0.175

2 —0.341 —0.574 0.395 —0.228 0.035

3 —0.318 —0.539 0.374 —0.228 0.013

4 —0.305 —0.541 0.368 —0.221 0.002

5 —0.306 —0.543 0.369 —0.221

The iterations stop at k = 4 to produce x® as the solution where the error given by
[ — x® | = 0.002 is less than .

Code5E. Gauss-Seidel method.

#include <iostream.h>

#include <fstream.h>

#include <math.h>

#define n 4 // array size

#define MAX 10 // maximum number of iterations

void main()

{
int 1i,j,k;
double *x,*x01d,*b,**a;
double Sum,error;

// allocate memory

x=new double [n+1];

x01ld=new double [n+1];
b=new double [n+1];

a=new double *[n+1];

for (i=0;i<=n;i++)

al[i]l=new double [n+1];

cout.setf(ios::fixed);
cout.precision(3);

// read the input data
ifstream InFile("CodebE.in");
for (i=1;i<=n;i++)
{
x[1]=x01d[i]=0;
for (j=1;j<=n;j++)
InFile >> alil[jl;
InFile >> bl[il;
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InFile.close();

// test for diagonally-dominance
for (i=1;i<=n;i++)

{
Sum=0;
for (j=1;j<=n;j++)
if (i!=j)
Sum += fabs(alil[j1);
if (fabs(al[i] [i])<=Sum)
{
cout <<"Unsuccessful, the matrix is not
diagonally-dominant" << endl;
return;
}
}

// perform iterations & update x
for (k=0;k<=MAX;k++)

{
error=0;
cout << "k=" << k << ": ",
for (i=1;i<=n;i++)
{
Sum=0;
for (j=1;j<=n;j++)
if (i1=3)

Sum += ali] [j1*x[j];
x01d[i]=x[1i];
x[i]=(b[i]-Sum)/ali] [i];
cout << x[i] << " ";
error=((error>fabs(x[i]-x01d[i])) 7error:

fabs(x[i]-x01d[1]));
}
cout << error << endl;
}

// delete memory

for (i=0;i<=n;i++)
delete alil;

delete x,x01d,b,a;
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5.6 VISUALIZING THE SOLUTION: CODE5

Code5. User Manual.

1. Enter the matrix values starting from the top left-hand corner. The size of the
matrix terminates at the first unfilled diagonal element.

2. Click the corresponding method to view the results.

Development Files: Codeb5. cpp, Code5.h and Codeb. rc.

We now discuss the design and development of several modules for solving a system
of linear equations. The modules are integrated into a single system based on Windows
using the resources in the Microsoft Foundation Classes library. The interface is user-
friendly with dialog boxes for input, and buttons for updates, which serves as a black
box for solving the system of linear equations problem to its user. A user-friendly
interface must have features that allow easy input of data, modification of the input
data, a choice of several methods for the same data, and an error-proof mechanism to
detect problems in data entry. The last factor is important since problems like singular
matrix as input can cause the system to crash instead of producing a good solution.

Figure 5.7 shows the Windows interface for solving a system of up to five linear
equations problem. The interface consists of a modal window with input in the form
of edit boxes (white), the output in static boxes (gray), buttons for activating the
methods, and text messages. The buttons are labeled Gauss, Crout, Cholesky, Thomas,
and Gauss—Seidel, which activate the named methods for solving the problem. The
Reset button clears all entries and refreshes the display.

CodeS5: System of Linear Equations x|
A b X
|8 |1 [ |2 | |2 jp.185384
|2 B |3 |1 | [ [o.071257
[+ |-t E] |2 | [+ [o.210831
|3 |3 |1 |10 | |7 jp.e44880
I I I I I |
Gauss | Crout | Cholesky |
=
Thomas | Gauss—Seidel Reset |
!m‘
Note: Fauss-SeiieI is successful.

FIGURE 5.7. Windows interface for solving a system of up to five linear equations.



VISUALIZING THE SOLUTION: CODE5 173

The figure also shows a sample run of the Gauss—Seidel method with A and b as
input in the edit boxes, to produce the output x in the static boxes once the Gauss—
Seidel button is clicked. The program is intelligent enough to recognize the coefficient
matrix A as diagonally dominant. Otherwise, if A is not diagonally dominant, then
a click on the Gauss—Seidel button will not produce the desired results. The same
input produces the same results when the Gauss and Crout buttons are clicked, but
it will respond with some error messages if the Cholesky and Thomas buttons are
clicked. In this case, the program can verify correctly that A is not positive definite
and tridiagonal, respectively.

Any size of matrix, from two to five, can be entered. Entries can be made beginning
from the top left-hand corner. The size of the matrix is then automatically determined
from the first unfilled entry in the diagonal elements.

We discuss the steps for producing this interface. They consist of creating a new
Win32 project codenamed Code5 using the MFC static library, creating the resource
file Code5.rc, and inserting codes for the Gauss, Crout, Cholesky, Thomas, and
Gauss—Seidel methods. Only three files need to be created, namely Code5.cpp,
Codeb5.h, and Codeb.rc. A single class called CCodeb is used, and this class is
derived from MFC’s CDialog.

Figure 5.8 shows a schematic drawing of the computational steps in Code5. The
process starts with the resource file Code5.rc for creating the dialog window. The
dialog window becomes the main window that hosts several child windows consisting
of edit boxes for collecting the input, static boxes for displaying the output, and buttons
for selecting a method for solving the problem.

I Start OnGauss() ShowResults()
Solves the problem using the fStatus=1 shows
Gauss elimination method. the results.
Codeb.rc
Creates the dialog window
and its child windows. OnCrout() ShowError()
c)—' Solves the problem using the )—' fStatus=0 shows
Crout method. the error message.
CCode5()
Initializes objects and OnCtheSky(} OnReset()
variables. ( )—' Solves the problem using the )—' Refreshes the entries.
Cholesky method.
ReadInput() OnThomas() End
Reads input data from the Solves the problem using the
edit boxes. Thomas algorithm method.

FIGURE 5.8. Schematic drawing of the computational steps in Code5.
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Global objects and variables are initialized in the constructor, CCode5 (). They in-
clude the matrices and vectors for the system of linear equations. ReadInput () reads
the input data in the edit boxes, and the data are then passed for processing to a func-
tion when a push button that points to the function is clicked. The activated function
returns either fStatus=1 or £Status=0, which indicates whether the supplied data
fit into the named method or not, respectively. With fStatus=1, the results from the
function are displayed in the static boxes through ShowResults (), and the method is
flagged as successful. A return value of £ Status=0 indicates the method fails because
of irrelevant data, and the error message is shown through ShowError (). Another
function called OnReset () refreshes the edit and static boxes for a new data entry.

There are six major steps in the development of Codeb. This project differs slightly
from the skeleton program in Code3A project as the main window is a dialog window
derived from MFC’s CDialog. A dialog window is a container class that can host
several objects from other classes.

Step 1. Create a new Win32 project.
From the menu, choose File, followed by New and Project. Name the project Code5,
and press the OK button. A new class called CCode5 is created. Declare the project
as an empty Windows application project through the check boxes.

From the Solution Explorer, highlight CCodeb and right-click Properties. Choose
Use MFC in a Static Library from the item Use of MFC in the combo box. These
options allow the application to use the resources in the MFC library.

Step 2. Add the resource file Code5.rc.

This step creates all the friendly tools in the modal window that are the resources in
Windows. Right-click Resource Files in the Solution Explorer, as shown in Figure 5.9.
Choose Add from the menu and then Add Resource.

Step 3. Add a dialog window.

A dialog window is host to several friendly tools such as buttons, edit boxes, combo
boxes, check boxes, and static boxes. To create a dialog window, choose Dialog from
the Add Resource window, as shown in Figure 5.10.

Step 5. Create edit boxes, static boxes, and buttons.
A dialog window as shown in Figure 5.11 appears. This window is automatically
assigned with the id IDD_DIALOG1. From the Toolbox, choose Edit Control, and draw
an edit box, as shown in the figure. Click Properties Windows, and assign this edit
box with the id IDC_A11 for representing the element @ in the coefficient matrix A.
Continue with the rest of the elements in matrix A (IDC_A12 up to IDC_A55) and
vector b (IDC_b1 to IDC_b5) to complete the input interface. Next, click Toolbox and
choose Static Text . Create static boxes for housing the vector x with ids from IDC_x1
to IDC_x5. Figure 5.12 shows the complete interface for this problem with ids on the
items in the Windows.

Step 6. Create the files Code5. cpp and Codeb . h, and insert their codes.
The main file is Code5 . cpp, which drives the application by calling both Code5.h
and Codeb.rc.
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———

% Solution 'CodeS' (1 project)
=~ [Zd Codes
- (3] References
&~ {23 Source Files
i [E] codes.h
{: &« 9] Code5.cpp
- (] Header Files
 Add P |55 Add New Item...
b Cut Add Existing Item..,
Copy. ] New Folder
(R paste ¢ Add Class...

S [t ]
R¢ Accelerstor . : :
Bitmap Import... |

- & Cursor Custom.. |
-- Dialog : Z |
(8] HTML O
[ lcon : :
B Menu Help I
abe Sting Table
(2121 Toolbar
@ Version

FIGURE 5.10. Add Resource items.

The contents of the header file Code5.h differ from the skeleton program in
Code3A, as its host window is a dialog window. It is necessary to add #include
“resource.h” in the preprocessing area of Code5.h as this file contains all the
necessary declarations for the resources created in Code5.rc.
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FIGURE 5.11. Dialog window with the id IDD_DIALOGI.

IDD_DIALOG1 IDC_b1
IDC_x1
IDC_A11 A :
o B2 N7 W5 o |
o___fo N+ N+ N+ |
o___§o N §-+ N7 |
IDOK
IDCANCEL
IDC

IDC_MESSA IDC_GAUSSSEIDEL
FIGURE 5.12. The ids of the resources in the dialog window.

#include <afxdisp.h>
#include <math.h>
#include "resource.h"
#define N 5
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class CCodeb : public CDialog

{

public:
CCodeb (CWnd* pParent = NULL);
enum { IDD = IDD_DIALOG1 };
virtual ~CCode5();
virtual void OnOK();
void ReadInput(),DisplayResults(),DisplayError(CString) ;
afx msg void OnGauss();
afx_msg void OnCrout();
afx msg void OnCholesky() ;
afx msg void OnThomas();
afx msg void OnGaussSeidel();
afx msg void OnReset();
int n;
double **A,**L,**U,*x,*Db;
CString **sA,*sx,*sb,method;
DECLARE MESSAGE _MAP ()

};

class CMyWinApp : public CWinApp
{
public:

virtual BOOL InitInstance();
I

The dialog window is created in Code5.cpp. This window is called the modal
window, as it does not allow background editing if the window is active. Its opposite
is the nonmodal window, which allows background editing when the window is active.
The following code segment in Code5. cpp creates the dialog window:

BOOL CMyWinApp::InitInstance()
{
AfxFnableControlContainer();
CCodeb dlg;
m_pMainWnd = &dlg;
dlg.DoModal();
return FALSE;

A method for solving the system of linear equations based on the input data
becomes active when one of the push buttons that correspond to the method is left-
clicked. Each push button has an id, and it calls the corresponding function through
an event mapping given by
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TABLE 5.4. Summary of functions, their ids, and their purposes in CCode5

Function Control 1d Purpose

CCode5() Constructor of the class CCode5.
~CCodeb () Destructor of the class CCodeb.
ReadInput () Reads input data in matrix A and vector b.
DisplayResults() Displays the output.

DisplayError () Displays the errors in the input.

Reset ) Clears all input and output information.
On0K () IDOK Closes the dialog window.

OnGauss () IDC_GAUSS Activates the Gaussian elimination method.
OnCrout () IDC_CROUT Activates the Crout method.

OnCholesky () IDC_CHOLESKY Activates the Cholesky method.
OnThomas () IDC_THOMAS Activates the Thomas algorithm.

OnGaussSeidel () IDC_GAUSSSEIDEL  Activates the Gauss—Seidel method.

BEGIN_MESSAGE_MAP (CCode5, CDialog)
ON_BN_CLICKED(IDC_GAUSS, OnGauss)
ON_BN_CLICKED(IDC_CROUT, OnCrout)
ON_BN_CLICKED (IDC_CHOLESKY, OnCholesky)
ON_BN_CLICKED(IDC_THOMAS, OnThomas)
ON_BN_CLICKED (IDC_GAUSSSEIDEL, OnGaussSeidel)
ON_BN_CLICKED (IDC_RESET, OnReset)

END_MESSAGE_MAP ()

It is obvious in the message map that a click on the Gauss button, whose id is
IDC_GAUSS, triggers a call on the function OnGauss (). This function reads the data
provided by the user in the edit boxes and then solves the problem using the Gaussian
elimination method.

Table 5.4 shows the member functions of the class CCodeb. Included are eight
main member functions representing the buttons in the class. Each function in the
class is named according to its duty; for example, OnGauss () responds to the Gauss
button click, and this function solves the system of linear equations based on the data
input from the user. The ids of these buttons are shown in Figure 5.12.

The edit boxes provide input spaces for matrix A and vector b. A system of up to
5 x 5 linear equations is supported, and this is indicated as the macro N in the header
file Code5.h. The program has been designed flexible so as to support other sizes
simply filling in the values of A starting from the top left-hand corner. The actual size
of the matrix is represented by a variable called n. The size is determined from the
filled elements in the diagonal. For example, to have a 3 x 3 system, or n=3, entries
must be made in the first three rows and three columns of the edit boxes beginning
from the top left-hand corner.

Beside the button functions, CCode5 has four other application functions,
ReadInput (), DisplayResults(), DisplayError (), and OnOK(). These func-
tions are called from the selected method for reading the input data, displaying the
output, displaying error messages, and closing the application, respectively.
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The constructor in the class is CCode5 (). This function activates the dialog box
with the id IDD_DIALOG1, which is the one shown in Figure 5.11. This window
is derived from the MFC class CDialog. Besides creating the class, CCode5 () also
initializes several arrays and allocates memory dynamically. This is shown as follows:

CCodeb: :CCodeb (CWnd* pParentWnd)
: CDialog (IDD_DIALOG1, pParentWnd)
{
x=new double [N+1];
b=new double [N+1];
sx=new CString [N+1];
sb=new CString [N+1];
A=new double *[N+1];
L=new double *[N+1];
U=new double *[N+1];
sA=new CString *[N+1];
for (int i=0;i<=N;i++)
{
A[i]l=new double [N+1];
L[il=new double [N+1];
U[i]l=new double [N+1];
sA[il=new CString [N+1];

The destructor in the program is ~CCodeb5 (). This function destroys the arrays
allocated in the constructor and the class to mark the end of the application runtime.
The code is shown as follows:

CCode5: : ~CCode5()

{
for (int i=0;i<=N;i++)
delete A[i],L[i],U[i],sA[i];
delete x,b,sx,sb,A,L,U,sA;
}

ReadInput () is a function for reading all input from the user in the form of
edit boxes, as shown in Figure 5.11. Input from the user is read through the func-
tion GetD1lgItemText (). Each edit box has an idd that reflects its matrix element.
For example, IDC_A24 represents the edit box for ay4 in matrix A, whereas IDC_b3
represents b3 in b. However, the representation is not straightforward. An edit box
takes only string (text) input, and this string needs to be converted to a double
value before a computation can be performed. Hence, the value input by the user
inside the box with the id IDC_A24 is stored as the string sA[2] [4], whereas that of
IDC_b3 is stored as sb[3]. These values are converted to the double variables called
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A[2] [4] and b[3], respectively, using the C function atof (). The code is shown, as
follows:

void CCodeb5: :ReadInput ()
{

GetDlgItemText (IDC_A11,sA[1][1]);
GetDlgItemText (IDC_A12,sA[1][2]);
GetDlgItemText (IDC_A13,sA[1][3]);
GetDlgItemText (IDC_A14,sA[1][4]);
GetDlgItemText (IDC_A15,sA[1][5]);
GetDlgItemText (IDC_A21,sA[2] [1]);
GetDlgItemText (IDC_A22,sA[2] [2]);
GetDlgItemText (IDC_A23,sA[2] [3]);
GetDlgItemText (IDC_A24,sA[2] [4]);
GetDlgItemText (IDC_A25,sA[2] [5]);
GetDlgItemText (IDC_A31,sA[3][1]);
GetDlgItemText (IDC_A32,sA[3][2]);
GetDlgItemText (IDC_A33,sA[3][3]);
GetDlgItemText (IDC_A34,sA[3][4]);
GetDlgItemText (IDC_A35,sA[3][5]);
GetDlgItemText (IDC_A41,sA[4][1]);
GetDlgItemText (IDC_A42,sA[4] [2]);
GetDlgItemText (IDC_A43,sA[4] [3]);
GetDlgItemText (IDC_A44,sA[4] [4]);
GetDlgItemText (IDC_A45,sA[4] [5]);
GetDlgItemText (IDC_A51,sA[5][1]);
GetDlgItemText (IDC_A52,sA[5][2]);
GetDlgItemText (IDC_A53,sA[5] [3]);
GetDlgItemText (IDC_A54,sA[5] [4]);
GetDlgItemText (IDC_A55,sA[5] [5]);
GetDlgItemText (IDC_bl,sb[1]);

GetDlgItemText (IDC_b2,sb[2]);

GetDlgItemText (IDC_b3,sb[3]);

GetDlgItemText (IDC_b4,sb[4]);

GetDlgItemText (IDC_b5,sb[5]);

for (int i=1;i<=N;i++)

if (sA[il[il=="")

{

n=i-1; break;

}
// convert the string input to double
for (i=1;i<=n;i++)
{

for (int j=1;j<=n;j++)
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Alil[j1=atof (sA[i1[i]);
blil=atof(sb[il);

The output in the programis x = [x; X3 X3 X4 x5]7, which is displayed by
the function DisplayResults (). The vector is represented by the double array x,
and it is displayed on the static boxes using SetDlgItemText () through the string
sx. Conversion from x to the string sx is achieved through the function Format ().
The static boxes are represented by ids that reflect their variables; for example, IDC_x1
represents the string sx [1]. The last statement in this function displays the successful
message to acknowledge that the given method is successful. The following code
shows the contents of DisplayResults():

void CCodeb: :DisplayResults()

{
for (int i=1;i<=N;i++)
sx[i] .Format ("%1f",x[i]);
SetDlgItemText (IDC_x1, ((1<=n)?sx[1]:""));
SetDlgIltemText (IDC_x2, ((2<=n)7sx[2]:""));
SetDlgItemText (IDC_x3, ((3<=n)?sx[3]:""));
SetDlgItemText (IDC_x4, ((4<=n)7sx[4]:""));
SetDlgItemText (IDC x5, ((5<=n)?sx[5]:""));
SetDlgItemText (IDC_MESSAGE,method+" is successful.");
}

OnGauss () is the function that responds to the Gauss button click identified
through the id IDC_GAUSS. This function is based on Code4A . cpp. A Boolean vari-
able called £Status is introduced to check the value of the pivot element A [k] [k],
where O (FALSE) indicates the element is 0. With this value, the Gaussian elimination
method is considered a failure, and an error message is displayed through the function
DisplayError (). Through this process, a division by zero inm=A [1] [k] /A [k] [k]
during the row operations with respect to row k can be avoided. The function is given
by

void CCodeb: :0nGauss ()
{
int 1i,j,k;
double Sum,p;
bool fStatus=1;
CString condition="invertible";
method="Gauss";
ReadInput();
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// perform row operations
for (k=1;k<=n-1;k++)
for (i=k+1;i<=n;i++)

{
if (A[k] [k]1==0)
{
fStatus=0;
break;
}
else
p=A[i] [k]/A[k] [k];
for (j=1;j<=n;j++)
A[i1[3]1 -= pxAlk] [31;
b[i] -= p*b[k];
}

// perform backward substitutions
for (i=n;i>=1;i--)

{
Sum=0;
x[i]=0;
for (j=i;j<=n;j++)
Sum += A[i] [jI1*x[j];
x[i]1=(b[i]-Sum) /A[i] [i];
¥

if (fStatus)
DisplayResults();
else
DisplayError(condition);

A click on the Crout button whose id is IDC_CROUT activates the function
OnCrout (), which computes the problem using the Crout() method. This function
also has a Boolean variable called £Status to check for the zero values in the diag-
onal elements of matrix L. Successful runtime is achieved through fStatus=1, and
the output is displayed through the function DisplayResults (). The code in this
function is given, as follows:

void CCodeb: :0nCrout ()
{
int 1i,j,k,r;
double Sum,*w;
bool fStatus=1;
CString condition="invertible";
method="Crout";
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w=new double [N+1];
ReadInput();

// initialize L and U
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)

{
L[i1[j1=U[i1[j]1=0;
if (i==j)
Uil [j1=1;

¥

// compute L and U
for (i=1;i<=n;i++)
LIi][1]1=A[i][1];
for (j=2;j<=n;j++)
if (L[1]1[1]1==0)

{
fStatus=0;
break;

}

else

U[1] [j1=AT11 [j1/L[1]1[1];
for (j=2; j<=n-1;j++)

{

for (i=j; i<=n; i++)

{
Sum=0;
for (k=1;k<=j-1;k++)

Sum += L[i] [k]1=*U[k] [j];

L[i1[j1=A[i]1[j1- Sum;

}

for (k=j+1;k<=n;k++)

{

Sum=0;

for (r=1;r<=j-1;r++)
Sum += L[j] [r]*U[r] [k];
if (L[j]1[j1==0)

{
fStatus=0;
break;
}
else
U[j][k]1=(A[j] [x]1-Sum)/L[j]1[j];
}
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Sum=0;
for (k=1;k<=n-1;k++)

Sum += L[n] [k]*U[k] [n];
L[n] [n]=A[n] [n]-Sum;

// forward substitutions for finding w
wl1l=b[1]1/L[1]1[1];
for (j=1;j<=n;j++)
{
Sum=0;
for (k=1; k<=j-1;k++)
Sum += L[j] [k]*w[k];
if (L[j1[j1==0)
{
fStatus=0;
break;
}
else
w[jl =(b[j]1-Sum)/L[j]1[j];
}

// backward substitutions for finding x
for (i=n;i>=1;i--)

{
Sum=0;
for (k=i+1; k<=n; k++)
Sum += U[i] [k]*x[k];
x[i]l=w[i]-Sum;
}
delete w;

if (fStatus)
DisplayResults();
else
DisplayError(condition);

OnCholesky () responds to the Cholesky button click. This function first performs
atest on the positive-definiteness of the coefficient matrix, with fStatus=1 indicating
positive and £Status=0 negative. The code is given, as follows:

void CCodeb5: :0nCholesky ()
{

int 1i,j,k;

double Sum,*w;

bool fStatus=1;
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CString condition="positive-definite";
method="Cholesky";

w=new double [N+1];

ReadInput();

// check for positive-definite
for (i=1;i<=n;i++)
for (j=i;j<=n;j++)
if (AL [31!=AL310iD)
| | A[i] [1]1<=0
| | (i'=j && A[i][il<=fabs(A[i][j1)))

fStatus=0;
break;

3

// initialize L and U
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
L[i]1[j1=U[i][j1=0;

// compute L and U
for (k=1;k<=n;k++)
{
Sum=0;
for (j=1;j<=k-1;j++)
Sum += pow(L[k][j],2);
L[k] [k]1=sqrt (A[k] [k]-Sum) ;
for (i=1;i<=k-1;i++)
{
Sum=0;
for (j=1;j<=i-1;j++)
Sum += L[i] [j1*L[k][j];
L[k] [i]=(A[k] [i]-Sum) /L[i] [i];

}

// forward substitutions for finding w
for (j=1;j<=n;j++)
{
Sum=0;
for (k=1; k<=j-1;k++)
Sum += L[j] [k]*w[k];
wljl =(o[j]1-Sum) /L[] [j];
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// backward substitutions for finding x
for (i=n;i>=1;i--)

{
Sum=0;
for (k=i+1; k<=n; k++)
Sum += U[i] [k]*x[k];
x[i]=w[i]-Sum;
}
delete w;

if (fStatus)
DisplayResults();
else
DisplayError(condition) ;

The case of the coefficient matrix in the system is tridiagonal, which leads to
the deployment of the Thomas algorithm through the function OnThomas (). Just
like other methods, this function uses the Boolean variable fStatus; a value of 1
indicates the matrix is tridiagonal, whereas 0 means the matrix is not tridiagonal.
With £Status=1, the Thomas algorithm is applied to the system, and the output is
displayed in DisplayResults (). The code is shown below:

void CCode5: :0nThomas ()

{
int 1i,j;
bool fStatus=1;
double *e,*f,*xg;
CString condition="tridiagonal";
method="Thomas";
e=new double [N+1];
f=new double [N+1];
g=new double [N+1];
ReadInput ) ;

// check for tridiagonality
for (i=1;i<=n;i++)
{
if (i==1)
for (j=3;j<=n;j++)
if (A[i1[j1!'=0)
fStatus=0;
if (i==n)
for (j=1;j<=n-2;j++)
if (A[i1[j1!'=0)
fStatus=0;
if (i>1 && i<n)
if (A[i][i+2]!=0 && A[i] [i-2]!=0)
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fStatus=0;
}
// compute e,f,g
for (i=1;i<=n;i++)
{
fli]=A[1][i];
if (i<=n-1)
glil=A[i] [i+1];
if (i>=2)
e[i]=A[i] [i-1];
}
for (i=2;i<=n;i++)
{
eli]l/=f[i-1];
f[i] -= elil*gl[i-11;
}

for (i=2;i<=n;i++)
bl[i] -= el[il*b[i-1];
x[n]=b[n]/f[n];
for (i=n-1;i>=1;i--)
x[11=(b[i]l-glil*x[i+1]1)/£[i];
delete e,f,g;
if (fStatus)
DisplayResults();
else
DisplayError(condition);

The iterative technique in the program using Gauss—Seidel is illustrated through
the OnGaussSeidel () function. This function checks to make sure the coefficient
matrix is diagonally dominant through the Boolean variable fStatus, just like in the
previous methods. The code is shown, as follows:
void CCodeb5: :0nGaussSeidel ()

{
const int MAX=10;
double Sum,error;
double *x01d;
int i,3,k;
bool fStatus=1;
CString condition="diagonally-dominant";
method="Gauss-Seidel";
x01ld=new double [N+1];
ReadInput () ;

for (i=1;i<=n;i++)
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{
Sum=0;
for (j=1;j<=n;j++)
if (i!=j)
Sum += fabs(A[i]1[j1);
if (fabs(A[i] [i])<=Sum)
fStatus=0;
}

for (i=1;i<=n;i++)
x[1]1=0;

// perform iterations & update x
for (k=0;k<=MAX;k++)

{
error=0;
for (i=1;i<=n;i++)
{
Sum=0;
for (j=1;j<=n;j++)
if (i1=5)

Sum += A[i][j1*x[j];
x01d[i]=x[1i];
x[1]=(b[i]-Sum) /A[i] [i];
error=((error>fabs(x[i]-x01d[i])) ?error:

fabs(x[1]-x01d[i]));
}
}

delete x01d;
if (fStatus)
DisplayResults();
else
DisplayError(condition);

The last application function is OnReset (), which responds to a mouse click on
the Reset button whose id is IDC_RESET. The function resets the data in the edit boxes
and prepares for a fresh input. This result is achieved by setting the string arrays sA,
sb, and sx to null (""). The code is shown below:

void CCodeb: :0OnReset ()
{
int 1i,j;
for (i=1;i<=N;i++)
{
for (j=1;j<=N;j++)
sA[il [j1="";
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sb[i]="";
sx[i]="";

}

SetDlgItemText (IDC_A11,sA[1][1]1);
SetDlgItemText (IDC_A12,sA[1][2]);
SetDlgltemText (IDC_A13,sA[1][3]);
SetDlgltemText (IDC_A14,sA[1]1[4]);
SetDlgItemText (IDC_A15,sA[1][5]);
SetDlgItemText (IDC_A21,sA[2] [1]);
SetDlgItemText (IDC_A22,sA[2] [2]);
SetDlgltemText (IDC_A23,sA[2] [3]);
SetDlgltemText (IDC_A24,sA[2] [4]);
SetDlgItemText (IDC_A25,sA[2] [5]);
SetDlgItemText (IDC_A31,sA[3][1]);
SetDlgItemText (IDC_A32,sA[3][2]);
SetDlgltemText (IDC_A33,sA[3] [3]);
SetDlgltemText (IDC_A34,sA[3][4]);
SetDlgItemText (IDC_A35,sA[3][5]);
SetDlgltemText (IDC_A41,sA[4][1]);
SetDlgItemText (IDC_A42,sA[4] [2]);
SetDlgItemText (IDC_A43,sA[4][3]);
SetDlgltemText (IDC_A44,sA[4][4]);
SetDlgltemText (IDC_A45,sA[4][5]);
SetDlgItemText (IDC_AB1,sA[5][1]);
SetDlgItemText (IDC_A52,sA[5][2]);
SetDlgItemText (IDC_A53,sA[5] [3]);
SetDlgltemText (IDC_A54,sA[5][4]);
SetDlgItemText (IDC_A55,sA[5] [5]);
SetDlgItemText (IDC_bl,sb[1]);
SetDlgItemText (IDC_b2,sb[2]);
SetDlgIltemText (IDC b3,sb[3]);
SetDlgItemText (IDC_b4,sb[4]);
SetDlgItemText (IDC_b5,sb[5]);
SetDlgItemText (IDC_x1,sx[1]);
SetDlgltemText (IDC_x2,sx[2]);
SetDlgItemText (IDC_x3,sx[3]);
SetDlgItemText (IDC_x4,sx[4]);
SetDlgIltemText (IDC_x5,sx[5]);

5.7 SUMMARY

We have discussed various systems of linear equations, their representation, methods
for solving them, and program designs in C++ as their solution. We also developed a
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Windows-based version of the program using the Microsoft Foundation Class library,
which provides a user-friendly interface for solving the problem.

In solving a system of linear equations, it is important to consider a user-friendly
interface that allows interaction between the user and the program. On the problem
side, the user must understand the factors affecting the existence and uniqueness of
the solution. The solution to a mathematical problem can be drawn based on the solid
understanding of the concepts that govern the problem.

Providing a friendly solution to the problem can be summarized to fall into three
steps. First, the conceptual and analytic solution based on the mathematical theories
must be fully understood. Second, when the first step has been cleared, the next
step is to derive the manual solution to the problem using a calculator as a tool. This
second approach should be applicable to a small problem, like a system of 3 x 3 linear
equations. Once this step is completed, the third and last step involving programming
can now be embarked on comfortably. This step is a realization to the problem where
all the tedious work in step one and two is simplified with the click of some buttons.
A computer is the ultimate tool that helps to digest the massive calculations involved
in solving a problem involving systems of linear equations.

All three steps have been discussed in this chapter, with a special attention on step
three. The methods for solving the systems of linear equations in this chapter are the
fundamental solution to many problems in engineering and the sciences, as will be
discussed later in the book.

NUMERICAL EXERCISES

1. Determine whether each matrix below possesses each of the properties: tridiagonal,
positive definite, or diagonally dominant.

- 6 —1 O
3 —1
a. b. |3 7 -1
2 5
L 2 4
5 -1 0 3 2 =2 1 1
—1 2 0 3 -3 2 2
c. d.
0 8 1 4 —4 3 3
| 3 1 6 |5 -5 4 4
7 3 0 0 0 _
5 =1 0 0
3 -5 0 0 0
-1 5 -1 0
e. |0 0 4 -2 0 f.
o -1 5 -1
0 0O -2 6 1
L 0 0O -1 5
0 0 0 -3
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2. Determine whether a system of linear equations whose coefficient matrix is each
of the matrices in Problem 1 can be solved using the the Gauss, Gauss with partial
pivoting, Gauss—Jordan, Crout, Doolittle, Cholesky, Thomas, Jacobi, and Gauss—
Seidel methods.

3. Solve the following systems of linear equations using the indicated method(s):

a. Gauss, Gauss—Jordan, and Crout.

3x —4y = —1
2x+T7y =1

b. Gauss, Gauss with partial pivoting, and Doolittle.
X1 —2x +x3=—1

3% —x2+2x3 =1
5x1 —3xy+x3=4

I

. Cholesky and Gauss—Seidel.

4)(1 —X2—|—X3=3
—Xx1+4x +x3 =4
X1 +x+4x3 =4

(=3

. Cholesky and Gauss—Seidel.

Sxi—x2+x3+x4 =-3
—X1 +5x2 + x5+ x4 = —1
X1+ X2 +5x3—x4=2

X1 — Xy —x3+5x4=1

e. Gauss, Thomas algorithm, and Gauss—Seidel.

3x1 —xp = —1
X1 +4xy +x3 = —4
Xy — Tx3+2x4 =2
2x3 —6x4 —x5=15
X4+ 5x5 = —4

Check the results by running Code5.
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PROGRAMMING CHALLENGES

1.

Design standard C++ programs for solving a system of linear equations using the
following methods:

a. Gaussian elimination method with partial pivoting.
b. Doolittle method.

. Design a standard C++ program to solve the system of linear equations in Example

5.11 using the Jacobi method.

. Improve on the Code5 project by adding a few user-friendly features, as follows:

a. Add the flexibility and scalability of the system. In the Code5 project, only up
toa5 x 5 system is supported. A flexible system allows scalability where any
size of linear systems up to n x n can be solved. Design an interface to allow
any choice of system up to 10 x 10 to be solved.

b. Show the staggered results from the calculations in each method applied. For
example, it is necessary to display the results from each iteration in the Gauss—
Seidel method instead of just the final results. Design a new interface with the
parent window from the MFC class CFrameWnd to achieve this objective.

. Add new buttons and their corresponding functions to the Code5 project using

the Gauss—Jordan, Gauss with partial pivoting, Doolittle, and Jacobi methods.
In each function, add features to check the runtime errors that may result from
properties such as diagonally dominance and singularity of the coefficient matrix.

. Improve on Code5 by including the file read and open options, specifically to

read and store the matrix and vector values in the problem.
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Nonlinear Equations

6.1 Introduction
6.2 Existence of Solutions
6.3 Bisection Method
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6.5 Newton—Raphson Method
6.6 Secant Method
6.7 Fixed-Point Iteration Method
6.8 Visual Solution: Code6
6.9 Summary
Numerical Exercises
Programming Challenges

6.1 INTRODUCTION
As described in the previous chapter, a nonlinear equation is an equation that has
one or more nonlinear terms in its expression, or an equation that is not in the form

of Equation (5.1). In its general form, a nonlinear equation involving n variables,
X1, X2, X3, ..., X, can be expressed as

f(x17x27"'7xn)=0' (6.1)

Some examples of nonlinear equations are given below:

3—3x24+x3=-2, nonlinear because of the presence of nonlinear terms x2
and x3.

X +siny = —1, nonlinear because of the presence of nonlinear term sin y.

xy =—1, nonlinear because the sum of indices in the variable term
is 2.

HLX, nonlinear because variable x is in the denominator.

Finding the root(s) of a nonlinear equation is one of the most fundamental problems
involving nonlinear equations. The problem is stated as follows:

Given a function f(x) where f(x) = 0 exists, find the value of x.

Alternatively, the problem is also called finding the zeros of a function. Graphically,
this problem can be described as finding one or more points along the x-axis where
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the curve f(x) crosses, provided the value(s) exist. Very often, f(x) does not cross
the x-axis. In this case, f(x) is said to have no real root.

6.2 EXISTENCE OF SOLUTIONS

Several theorems have been documented to help in finding the zeros of a function.

Theorem 6.1. Intermediate-Value Theorem. Given a function f(x) continuous in
[a, b] and anumber C, where f(a) < C < f(b),thenanumber p € (a, b) exists such
that f(c) = C.

Theorem 6.2. Mean-Value Theorem. A function f(x) that is continuous in [a, b]
is said to have at least one root in this interval if f(a)f(b) < 0.

The intermediate-value theorem and the mean-value theorem guarantee at least one
root exists in the interval [a, b] for f(x)if f(a)f(b) < 0. However, it does not assume
the uniqueness of the solution. f(a)f(b) < 0 suggests one of the terms in f(a) or
f(b) is positive and the other is negative. This suggestion implies the positive term
lies above the x-axis, whereas the negative term is located below the axis. Therefore,
the curve must cross the x-axis at least once along the path from (0, f(a))to (0, f(b)).
This is illustrated in Figure 6.1.

In this chapter, we will concentrate on the case of finding a unique root for f(x)
given the solution exists. We will discuss five methods based on iterations, namely, the
bisection, false position, Newton—Raphson, secant, and fixed-point methods. In each
method, we will emphasize on the construction of C++ code in solving the problem
and on the development of its Windows interface. All these methods are summarized
in Table 6.1 for their brief description.

J@=>0 f@>0

. /—\b

a X X X3

X

S(b)<0 J(b)<0

FIGURE 6.1. Mean-value theorem illustration of curves with one root (left) and three roots
(right).
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TABLE 6.1. Summary of the iterative methods

Method Type Summary of Method

Bisection Closed interval Update based on bisecting the middle point in
the interval.

False position Closed interval Update based on the secant line between the
end-points of the intervals.

Newton—Raphson Open interval Update based on the tangent line intersection
with the x-axis.

Secant Open interval Update based on the secant line intersection
with the x-axis.

Fixed-point iteration Open interval Update based on the formulation x = g(x) from
fx)=0.

An iterative technique for finding the zeros of an equation can be classified as either
the closed or the open interval approach. A closed interval means the final solution is
confined to within the given initial interval, whereas an open interval does not limit
the solution to be within this range.

In the closed interval approach, an interval x € [ag, by] that contains at least one
root is identified using the mean-value theorem. The two initial values, ag and by, serve
as the left and right points in the interval. The size of this initial interval is reduced
gradually through successive iterations to [ay, b} ], [a2, b>], and so on until the solution
converges to an acceptable value x* based on a stopping condition. This final value
is then the final solution to the problem. The beauty of the closed interval approach is
convergence to x™ is guaranteed through the mean-value theorem. Some well-known
methods in the closed interval approach are the bisection and false position methods.

In the open interval approach, an initial value x is selected as the starting value for
x in the iteration. This value is a guess value that should not be far from the solution. A
good guess for this value is either ag or by in the interval x € [ap, by] using the mean-
value theorem. The interval for the convergence is said to be open in this approach as
the generated values are not bound to be within a specified range. Successive iterations
are then performed on the initial value, which eventually leads to convergence to its
solution after a stopping condition has been reached. The Newton-Raphson, secant
and fixed-point iteration methods are some of the most common methods in the open
interval approach.

6.3 BISECTION METHOD

The bisection method is based on a closed interval that produces a solution by reducing
the interval size successively into a tolerable value through a series of iterations. The
iterations start at interval x € [ag, by] whose end points x = ag and x = by are any
values that comply with the mean-value theorem requirement, or f(ao) f (bg) < O.
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S (ag)

S(by)
i=3 agl |b3
i=2 azlilb2
i=1 al: =bI
i=0 a0= =b0

FIGURE 6.2. Bisection method.

Figure 6.2 illustrates the bisection method showing the shrinking intervals after
four successive iterations. At each iteration i, the size of the interval x € [a;, b;] from
the end points a; and b; is reduced into half by updating one of the two end points
with the value of the interval midpoint, given by

a; + bi
= , 6.2
c > (6.2)

The update is performed by looking at the sign of f(a;) f(c;) to quickly determine
the rough location of the root. A value of f(a;)f(c;) < 0 suggests the root lies in
x € [a;, c;], definitely not in [¢;, b;]. Therefore, the end point b; ;. is updated with the
value of ¢;, whereas a;| takes on a;, or b; ;| = ¢; and a;4| = a;, respectively. In a
similar note, f(a;)f(c;) > 0 suggests the root lies in x € [c;, b;], notin x € [a;, ¢;].
In this case, a;+1 = ¢; and b;+1 = b;. In a unique case where f(a;)f(c;) =0, the
solution has been reached with x* = ¢; as the root of f(x).

The update on the end points of the intervals has the effect of narrowing down
the search area to the stage where the difference between the end points is very
small. An error given by e = |c; — ¢;—;| for i > 0 is computed at each iteration.
This error value is compared with a preset small value ¢ to determine whether the
iterations are continued or stopped. The iterations are continued if e > &, which
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suggests convergence to the solution is not reached yet. Convergence is said to have
been reached if e < ¢, and the whole operation is stopped immediately. The final
value of ¢; obtained from the last iteration then becomes the desired solution.

Algorithm 6.1 summarizes the computational steps in the bisection method. It is
important to set the maximum number of iterations max to be a reasonable number
such as 20. Depending on the value €, convergence to the solution is normally reached
before this number.

Algorithm 6.1. Bisection Method.
Given f(x) = 0, ¢ and the initial end points [ag, bo], where f(ag) f(by) < 0;
Given max=maximum number of iterations;
Fori = 0 to max
Compute ¢; =
If fa)f(ci) <0
Update b; 1} = ¢; and a; 4| = a;;
If fla)f(ci) >0
Update a;+1 = ¢; and b; | = b;;
If |C,‘ - C,‘_]| <é&
Solution= ¢;;
Stop the iterations;
Endfor

ai+b; .
2 b

Figure 6.3 shows a schematic flowchart of the bisection method. The iterations
are performed as long as the computed error at each iteration, e = |¢; — ¢;—1], is less
than ¢. There are also other ways to determine the error, including e = |b; — a;|, or

e=[f(c)l

Example 6.1. Find the root of f(x) = x> — x> — 2 using the bisection method, given
the initial values of ay = 1 and by = 2 with iterations until |¢; — ¢;_;| < &, where
& = 0.005.

Solution. A quick check confirms f(ag)f(bo) = f(1)f(2) < 0. Therefore, at least
one root lies inside x € [1,2]. Ati =0, ag = 1 and by = 2, and this produces ¢y =
% = 0.5. It follows that f(ap) = f(1) = =2 and f(co) = f(1.5) = —0.875. This
gives f(ao) f(co) > 0. The update follows with a; = ¢y = 1.5 and b; = by = 2.

Ati=1,a; = 1.5 and by = 2. This gives ¢; = 132 = 1.75, f(a)) = f(1.5) =
—0.875,and f(c1) = f(1.75) = 0.296875. It follows that f(a;) f(c1) < 0to produce
an update with by, = ¢; = 1.75and a, = a; = 1.5. The erroris |c; — ¢y = 0.25 > ¢.
Therefore, the iterations continue with i = 2.

Table 6.2 shows the results after eight iterations, which eventually leads to con-
vergence when the error is smaller than &. The final solution is x™ = ¢7 = 1.699219,
which is obtained at i = 7 when |c; — ¢g| = 0.003906 < &.
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FIGURE 6.3. Schematic flowchart of the bisection method.

6.4 FALSE POSITION METHOD

The false position method is based on a linear interpolation of the two end points of
the interval for approximating the root. The method starts with the end points ay and
by in the interval [ag, bg], where f(ag) f (by) < 0. The gradient of the secant line from
(ao, f(ap)) to (cop, 0) is given by

_ 00— f(ao)
B Co — Qo ’

m



FALSE POSITION METHOD

TABLE 6.2. Numerical results from Example 6.1

i ai b; Ci flai) f(ci) lei — cizal
0 1.000000 2.000000 1.500000 1.750000

1 1.500000 2.000000 1.750000 —0.259766 0.250000
2 1.500000 1.750000 1.625000 0.305908 0.125000
3 1.625000 1.750000 1.687500 0.014766 0.062500
4 1.687500 1.750000 1.718750 —0.005206 0.031250
5 1.687500 1.718750 1.703125 —0.001669 0.015625
6 1.687500 1.703125 1.695313 0.000068 0.007813
7 1.695313 1.703125 1.699219 —0.000030 0.003906

whereas the gradient from the straight line from (cg, 0) to (b, f(by)) is

f(bo) =0
by —0 °

my =

Since the two lines above are colinear, or m; = m,,

fbo)—0  f(by)—0

b()—C() - bo—Co '
Simplify the above equation, we get

o — ao f (bo) — bo f(ap)
O T F(bo) — flao)

and this equation generalizes to

o a; f(b;) — b, f(a;)
' fb) — fla)

199

(6.3)

Figure 6.4 illustrates the false position method. ay and by are two guess values
that make up the initial interval [ag, by] that is derived from the condition in the
mean-value theorem. A secant line is drawn from (ag, f(ap)) to (bo, f(by)). Clearly,
this line intersects the x-axis at (cg, 0). After finding ¢y using Equation (6.3), the
interval [ag, bg] is divided into [ag, co] and[co, bol. If f(ap) f(co) < O, the root is in
[ao, co]. An update is performed with b; = ¢y and a; = ag. If f(ap) f(co) > 0, then
the update involves a; = ¢y and b; = by since the root lies in [cg, bo]. The iterations
continue with i = 1, and so on, until the stopping criterion is met. The same rule for
the stopping criterion as in the bisection method applies, and the iterations stop once
the error is smaller than €. In the case of f(a;) f(c;) = 0, ¢; becomes the solution and

the iteration is stopped immediately.
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FIGURE 6.4. False position method.

Algorithm 6.2 summarizes the computational steps in the false position method.
Obviously, the steps are similar to those in Algorithm 6.1 with the difference in the
update formula for ¢; only.

Algorithm 6.2. False Position Method.
Given f(x) = 0, ¢ and the initial end points [ag, bo] where f(ag) f(by) < O;
Given max=maximum number of iterations;
Fori = 0tomax ,
Compute ¢; = %,
If f(ai)f(ci) <0
Update b, = ¢; and a; 1 = a;;
Endif
If f(ai)f(c:) >0
Update a; 1| = ¢; and b; | = b;;
Endif
If |Ci — C,‘_1| <¢é&
Solution=c;;
Stop the iterations;
Endif
Endfor
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TABLE 6.3. Numerical results of Example 6.2

a; b; flai) f®b) Ci fla) fci) lei —cizal

1.000000  2.000000 —2.000000 2.000000 1.500000  1.750000

1.500000 2.000000 —0.875000 2.000000 1.652174  0.192303  0.152174
1.652174  2.000000 —0.219775 2.000000 1.686611 0.010291  0.034437
1.686611 2.000000 —0.046826 2.000000 1.693781 0.000450  0.007169
1.693781 2.000000 —0.009617 2.000000 1.695246  0.000019  0.001465

S LW = O

Example 6.2. Find the root of f(x) = x> — x> — 2 using the false position method,
given the initial values of ap = 1 and by = 2, and the error |¢; — ¢;_1| < &, where
e = 0.005.

Solution. Ati =0, ap = 1 and by = 2. We obtain f(ap) = f(1) = —2 and f(by) =
f(2) = 2. This gives ¢g = Ji<b°>_’;°(§ [ffo) = “><§)_§2_><2) D =1.5and f(co) = f(1.5) =
—0.875. Therefore, f(ag) f(co) > 0, and this gives the firstupdate witha; = ¢y = 1.5
and bl = b() =2.

Ati = 1,a; = 1.5and b; = 2. This gives f(a;) = f(1.5) = —0.875and f(b) =

— — af)=bifla) _ (1.5)2)—(2)(-0.875) _
f(2Q)=2.Wegetc| = o Ffa) . = 008 = 1.652174. Subsequently,

f(c1) = £(1.652) = —0.220 and f(a;)f(c;) > 0. An update results in a, = ¢; =
1.652174 and b, = by = 2. The error is |x; — xo| = |c; — ¢co] = 0.152174 > ¢.

The iterations continue until i = 4, where |c4 — c3| = 0.001465 < ¢. This pro-
duces the final solution with x* = ¢4 = 1.695246. The full results are shown in
Table 6.3.

6.5 NEWTON-RAPHSON METHOD

The Newton—Raphson method is an open interval method that requires one initial
value. This iterative method is based on a tangent line at the approximated point that
provides an update at the point where this line intersects the x-axis. An initial point
is any guess value that is not far from the solution. A good guess value will be xo = a
or xo = b from the mean-value theorem condition, f(ag)f(by) < 0. This theorem is
not required in the Newton—Raphson method, but it provides a good starting point for
the iterations, which contributes in faster convergence to the solution.

Figure 6.5 shows a situation for finding a root of the function f(x) with x = x¢ as
the initial value. A tangent line is drawn from the point (x, f(xo)), which intersects
the x-axis at (xq, 0). The value x = x; is the new value at iteration i = 0. Ati =1,
another tangent line is drawn from (x;, f(x1)), which intersects the x-axis at (x7, 0)
to produce an improved value of x = x,. The same step is repeated fori = 2,3, ...
until the error given by e = |x; | — x;| is smaller than a preset value ¢. The final value
of x is obtained at the last iteration where e < ¢ becomes the solution to the problem.

The formula for the Newton—Raphson method is derived by looking at the tangent
line to the point (xg, f(xo)). The gradient of this tangent line is f’(x(), which can also
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FIGURE 6.5. Newton—Raphson method.

be expressed as

f(x0)—0

Xo — X1

flxo) =

The above equation is simplified further to produce
f (xo)
f'(x0)

This equation is generalized to produce the Newton—Raphson update formula, as
follows:

X1 = X9 —

Xiyl = Xi — @ 6.4)

J'(xi)

The computational steps in the Newton—Raphson method are summarized in
Algorithm 6.3. The algorithm requires both f(x) and f'(x).

Algorithm 6.3. The Newton—Raphson Method.
Given f(x) = 0, ¢ and the initial point xo;
Given max=maximum number of iterations;
Find f'(x);

Fori = 0 to max
Compute x; 11 = x; —
If |X,‘+] - )C,'| <é&
Solution=x;;
Stop the iterations;
Endif
Endfor

fOxi) .
[’
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TABLE 6.4. Results from Example 6.3

i Xi fx) f'(x) [xip1 — xil
0 1.000000 —2.000000 1.000000 2.000000

1 3.000000 16.000000 21.000000 0.761905
2 2.238095 4.201706 10.551020 0.398227
3 1.839868 0.843048 6.475605 0.130188
4 1.709680 0.074396 5.349653 0.013907
5 1.695773 0.000796 5.235391 0.000152
6 1.695621

Example 6.3. Use the Newton-Raphson method to find the root of f(x) = x3 —
x2 -2, given the initial value of xo = 1 with iterations until |x; — x;_;| < &, where
e = 0.005.

Solution. With f(x) = x> — x> — 2 we have f'(x) =3x> —2x. Ati =0, xo =1

and we have x; = xg — }C((fc‘;)) = 3. This produces an error of |x; — xo| =3 — 1| =
fG)

2>e Ati =1, wegetx; =x; — 55 = 2.238095, and this produces an error of
|x, — x1] =12.238 — 3] = 0.761905 > «.

The iterations stop at i =5, where |xg — x5| = 0.000 < ¢, and this produces
the final solution, x* = x¢ = 1.695621. Table 6.4 shows the full results from the
iterations.

6.6 SECANT METHOD

One big difficulty with the Newton—Raphson method is in finding the derivative of
f(x) at the iterated points. This requirement adds to the overhead on the computer,
and it may also add to the computational cost in solving the problem. An alternative
approach is provided in the form of the secant method, which eliminates the derivative
by replacing it with a secant line.

We refer to Figure 6.6 to illustrate the method. The secant method starts with
two initial guess points xo and x;, where f(xo) # f(x;). These two points can be
any points that are reliably close to the solution, and they do not have to be on the
opposite sides of the x-axis. A good choice for the two initial points will be xo = a
and x| = b, which are the end points in the interval [a, b] that abides the mean-value
theorem requirement, f(a)f(b) < 0.

The first iteration with i = 0 produces an approximation at x = x,, which is the
x-intercept of the chord that passes through the points (xo, f(xg)) and (x, f(x1)).
Similarly, the next approximated value x = x3 is obtained from the x-intercept of
the chord that passes through the points (x1, f(x1)) and (x3, f(x3)). The same step is
repeated until convergence to the solution is reached through the stopping condition
e=|xiy2—xinl <e.
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FIGURE 6.6. Secant method.

The iterative formula is derived by referring to Figure 6.6. The gradient of the line
from (x9, f(x0)) to (x2, 0) is given by

fxo) =0
m=-—
X0 — X2

which equals the gradient of the line from (x1, f(x1)) to (x2, 0), given by

_ f(xo)—(): fx)—=0

X0 — X2 X1 —xy

my

The above equation is further simplified, as follows:

Fxo)(x1 — x2) = fx)(xo — x2),
x2 f(x0) — x1 f(x0) = xo.f (x1) — X2 f (x1),
x2(f(x1) — f(x0)) = xof(x1) — x1 f(x0)-

This produces

= xof(x1) — x1 f(x0)
f&x) — flxo)
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Replacing x¢ with x;, x; with x;;; and x, with x;1, in the above equation, we obtain
the iterative formula for the secant method:

X f (i) = X1 f ()

- 6.5
i ) — ) 65

The computational steps in the secant method are summarized in Algorithm 6.4.

Algorithm 6.4. Secant Method.
Given f(x) = 0, ¢ and two initial points, xo and xy;
Given max=maximum number of iterations;
Fori = 0 to max
Compute x;4p = %,
If |xi40 — xi41l < &
Solution=x;,5;
Stop the iterations;
Endif
Endfor

Example 6.4. Find the root of f(x) = x*> — x> — 2 using the secant method with the
initial values of xo = 1 and x; = 2. Perform the iterations until |x;;5 — x; 41| < &,
where ¢ = 0.005.

X fx)—x1f(x0) _ (D@)—=(2)(=2)

Solution. Ati =0,xy =1and x; =2. We get x, = o fon = oy =
; _ _ - _ afGo)—xmfhn) _
1.500. The erroris |x; —x1| = [1.5=2| =05 >¢c. Ati =1,x3 = W =

1.652174. The error is |x3 — xp| = [1.652174 — 1.500| = 0.152174 > ¢. The
iterations stop at i = 4, where |x¢ — x5/ = 0.000 < ¢, and this produces the so-
lution, x™ = x¢ = 1.695619. The full results from the iterations are shown in
Table 6.5.

TABLE 6.5. Numerical results from Example 6.4

i Xi fx) [Xip2 — Xig1l
0 1.000000 —2.000000 0.500000

1 2.000000 2.000000 0.152174

2 1.500000 —0.875000 0.051042

3 1.652174 —0.219775 0.007858

4 1.703216 0.039990 0.000261

5 1.695358

6 1.695619
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FIGURE 6.7. Reassigning the problem from f(x) =0toy = g(x).

6.7 FIXED-POINT ITERATION METHOD

Through simplification, the equation f(x) = 0 maybe rewritten as x = g(x). This
relationship can be obtained by making x the subject of the new equation from
f(x) = 0. This representation can be viewed as reassigning the problem into finding
the intersection point between the straight line y = x and the curve y = g(x) provided
the solution exists. Figure 6.7 shows this connection where g(x) is totally a different
curve from f(x).

The fixed-point iteration method requires an initial point x = x(, which is a guess
value relatively close to the root of f(x). Choosing xo = a or xo = b from the interval
x € [a, b], where f(a)f(b) <0 is an ideal choice for this value as it is close to
the solution. The reassignment from f(x) = 0 to x = g(x) gives rise to an iterative
relationship given by

Xit1 = g(x;) (6.6)
fori =0, 1,2, ....Convergence to the solution is guaranteed if the following condi-
tion is met:

g’ (x| < 1. 6.7)

Equation (6.7) suggests —1 < g’(x) < 1, and that the choice for the new equation
x = g(x) from f(x) = 0 must strictly obey this condition. There is no guarantee for
convergence to the solution if this condition is not fulfilled. Figure 6.8 illustrates a
case with convergence to the solution according to xo — x; — x, — x3 when the
above condition is fulfilled.

The fixed-point iteration method is outlined in Algorithm 6.5. The algorithm is
illustrated in Example 6.5.
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FIGURE 6.8. Convergence in the fixed-point iteration method.

Algorithm 6.5. Fixed-Point Iteration Method.
Given f(x) = 0, ¢ and an initial points xy;
Given max=maximum number of iterations;
Find a suitable equation x = g(x) from f(x) = 0 where —1 < g'(x) < 1;
Fori = 0to max

Compute x; 41 = g(x;);
If |xip1 —xi| < &
Solution=x;,1;
Stop the iterations;
Endif
Endfor

Example 6.5. Find the root of f(x) = x> — x> — 2 using the fixed-point iteration
method, given the initial value of xo = 1 with iterations until |x;; — x;| < &, where
e = 0.005.

Solution. Setting f(x) = 0 suggests several representations in the form of x = g(x),
including x = ++/x% — 2, x = —*— and x = (x? 4 2)!/3. The first two functions are

not suitable as they are not defined at xo = 1. Obviously, g(x) = x2+2)3isa good

candidate as g'(x) = W is a monotonically increasing function with values

between 0 and 1. Hence, x;41 = g(x;) = (x,-2 +2)!/3 is a suitable choice here.
Starting the iterations ati = 0 with the initial value of xo = 1 produces x; = (x? +
)3 = (12 +2)1/3 = 1.442250, with g'(xo) = 0.320500. The error is |x; — xo| =
[1.442250 — 1.000] = 0.442250 > .
At i=1, x2= (] +2)3=(1.442250% +2)!/3 = 1.597925 and g'(x)) =
0.376562. The error is |xp —x;| =[1.597925 — 1.442250| = 0.155675 > «¢.
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TABLE 6.6. Numerical results from Example 6.5

iox g(x;) lg'(xi)l [xip1 — xil
0 1.000000 1.442250 0.320500 0.442250
1 1.442250 1.597925 0.376562 0.155675
2 1597925 1.657464 0.387772 0.059539
3 1.657464 1.680656 0.391197 0.023192
4 1.680656 1.689743 0.392416 0.009087
5 1.689743 1.693311 0.392877 0.003568
6 1.693311

Therefore, the process continues with the next iteration. The iterations stop at
i =5, where |x¢ — x5] = 0.003568 < ¢. The final solution is x™ = x¢ = 1.693311.
Table 6.6 shows the complete results from this method.

6.8 VISUAL SOLUTION: CODE6

Code6. User Manual.

1. Select a method from the menu.
2. Enter the input values for the selected method.
3. Click the Compute push button to view the results.

Development files: Code6 . cpp, Code6.h and MyParser.obj.

MEC provides arich environment for developing a user-friendly interface for numeric-
intensive calculations. In this chapter, we illustrate and discuss a Windows interface
for finding the zeros of a function using four methods, namely, the bisection, false
position, Newton—Raphson, and secant methods. The other method discussed in the
last section, the fixed-point iteration method, is left as an exercise for the reader.
The Windows project for the nonlinear equations is codenamed Code6. Figure 6.9
shows a screen snapshot from the project that consists of an output from the bi-
section method. The input in this problem consists of the function f(x) = 3 sin2x —
5cos(4x — 1)in0 < x < 1, and the results are displayed in the list view table and plot-
ted as a graph. The solution to f(x) = Oin this problem is displayed as x = 0.508761.
The displayed output is made up of four regions. The first region consists of the
menu items that are located in the top left corner of the window. The second region
consists of the input boxes that are located to the right of the menu items. The results
from the calculations that are displayed in a list view table located below the menu
items. The last region is located at the bottom, and it displays the solution curve.
The menu region consists of shaded rectangles for the bisection, secant, Newton—
Raphson and secant methods. An item in the menu becomes activated from the left
button click of the mouse. A click at one of these items prompts the creation of the
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FIGURE 6.9. Output from the bisection method for f(x) = 3sin2x — 5cos(4x — 1) in
Code6.

input region. Edit boxes for input according to the selected method appear inside the
input region. A push button called Compute is also displayed in the input region. A
click at the push button causes the input to be read and processed. A complete input
for the selected method will produce the desired results in the list view table and its
corresponding graph in the curve region.

Figure 6.10 shows the development stages of Code6. A Boolean flag called
fStatus monitors the progress of the execution whose initial value of 0 indicates the
execution is not yet complete. Another variable called £Menu (not shown in the dia-
gram) stores a value for the selected method: with fMenu=1 for bisection, fMenu=2 for
false position, £Menu=3 for Newton—Raphson, and £Menu=4 for secant. A value for
fMenu is assigned inside the function OnLButtonDown (). The stage at fStatus=1
indicates the input for the selected method has been completed, and executed. The
results are displayed both in the list view table and visualized as a curve with this
status.

Code6 consists of two source files, Code6 . cpp and Code6.h, and the object file,
MyParser.obj. A single class called CCode6 is used in this application. This class
is derived from MFC’s CFrameWnd, which displays a single window.
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FIGURE 6.10. Schematic drawing showing the main computational steps in Code6.

The main variables in this project are represented as four structures: PT, INPUT,
MENU, and CURVE. PT defines the points based on the real coordinates, as described in
Table 6.7. An array called pt defines the points in the real coordinates in PT.

typedef struct
{

double x,y,ydl,a,b,c,error;

} PT;

PT *pt,max,min,left,right;
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TABLE 6.7. The elements of PT

Variable Type Description

ptlil.y, ptlil.y double The point (x;, y;).
ptlil.a, ptl[il.b double The left and right points in the interval ; < x < b;.

pt[il.error double Error at iteration i.

ptlil.c double The point ¢; between a; and b; in the bisection and false
position methods.

ptlil.yd double The derivative y; = f'(x;) in the Newton—Raphson method.

max, min CPoint The maximum and minimum points in the curve y = f(x).

left, right CPoint The left and right points in the curve y = f(x).

TABLE 6.8. Input elements in INPUT

Variable Type Description

input[i].item CString Value in string input by the user.

input[i] .label CString Label or title for the corresponding edit box.
input[i].ed CEdit ith edit box for collecting the input string.
input[i] .hm CPoint Home coordinates of the ith edit box.
input[i] .rc CRect Rectangular object for the ith edit box.
input[i] .display CRect Rectangular area for displaying the problem.

The number of input items varies with the methods. For example, the bisection
method requires four inputs, whereas the secant method requires five. A macro called
maxInput is declared to store the maximum number of input, whereas nInputItems
is the actual number of inputs for the selected method. Input is made using the edit
boxes, which are located in the input region. A structure called INPUT defines the edit
boxes and their components, and this is described in Table 6.8.

typedef struct

{
CString label,item;
CPoint hm;
CEdit ed;
CRect rc,display;
} INPUT;

INPUT input[maxInput+1];

The menu items are organized into a structure called MENU. A macro called
nMenultems stores the number of menu items whose value is four in this project.
The elements of this structure are the menu titles, their rectangular objects, and their
home coordinates. The elements are described in Table 6.9.
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TABLE 6.9. Menu elements in MENU

Variable Type Description

menu[i] .item CString Item i in the menu.

menu[i] . hm CPoint Home coordinates of the ith item in the menu.
menuli].rc CRect The rectangle for the ith item in the menu.

typedef struct

{
CString item;
CPoint hm;
CRect rc;

} MENU;

MENU menu[nItems+1];

A structure called CURVE organizes the generated curve so that it is confined to
a rectangular region called rc. The structure has its starting point and end point
represented by hm and end, respectively.

typedef struct

{
CPoint hm,end;
CRect rc;

} CURVE;

CURVE curve;

Table 6.10 describes other main variables and objects in Code6.h. The execution
of the program is monitored through the value of £Status, where £Status=0 is
the pre-evaluation stage and fStatus=1 indicates a method has been applied to the
problem. Therefore, this variable is suitable to be declared as a Boolean. £Menu is an
integer variable for denoting the selected method. Stop is a variable that stores the
last iteration number before convergence for all methods, whereas the last value of x
from this iteration is stored as Solution, which becomes the solution to the problem.

CCode6 has seven member functions that are described in Table 6.11.
BisectionFPP () is a function shared by the bisection and false position methods. It
is not necessary to create separate functions for these two methods as the only differ-
ence between them is the formula for ¢;. The Newton—Raphson and secant methods
are represented by Newton () and Secant (), respectively. Other functions in Code6
are more or less similar to functions of similar names as in the previous chapters.
They are described briefly in Table 6.11.

There are three events in Code6, and each one of them is handled by its corre-
sponding function. The code is given as



VISUAL SOLUTION: CODE6 213

TABLE 6.10. Other variables and objects in Code6

Variable/object  Type Description

fStatus bool A flag whose values are £Status=0 and £Status=1,
indicating incomplete and complete inputs, respectively.

fMenu int Flag for the menu whose value indicates the selected

method, £Menu=1 for bisection, £Menu=2 for false position,
fMenu=3 for Newton-Raphson, and fMenu=4 for secant.

nInputItems  int Number of input items in the selected method.

Stop int The last iteration whose value is smaller or equals the
stopping value, ¢.

Solution double The last x value in the iterations before convergence.

idc int 1d for the control resources.

btn CButton Push button object called Compute.

table CListCtrl List view table for displaying the results from iterations.

TABLE 6.11. Member functions in CCode6

Function Description

CCode6 () Constructor.

~CCode6 Destructor.

BisectionFPP() Solves the problem using the bisection and false position methods.
Newton() Solves the problem using the Newton—Raphson method.

Secant () Solves the problem using the secant method.

DrawCurve () Draws the curve y = f(x) in the given interval.

ShowTable () Creates a list view table to display the results.

OnLButtonDown()  Responds to ON_WM_LBUTTONDOWN, which the assigns the
method in the menu.

OnButton() Responds to ON_BN_CLICKED, which reads the input from the user
and calls the respective method to produce its solution.
OnPaint () Displays and updates the output in the main window.

BEGIN_MESSAGE_MAP (CCode6 , CFrameWnd)
ON_WM_PAINT()
ON_WM_LBUTTONDOWN ()
ON_BN_CLICKED (IDC_BUTTON, OnButton)
END_MESSAGE_MAP ()

The process starts at the constructor. Basically, the constructor allocates memory
for the class. It is also in the constructor that several variables are assigned with
their initial values. The initial values include the location of the objects, the size of
each object, and its title. It is also important to set the initial value for £Status=0
to indicate no input has been read yet at this level of execution. At this initial
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stage, the menu has not been displayed, and its flag is set to £Menu=0. The code is
given as
CCode6: :CCodeb ()
{
Create(NULL,"Code6: Nonlinear Equations",
WS_OVERLAPPEDWINDOW,CRect (0,0,800,635) ,NULL) ;
Arial80.CreatePointFont (80, "Arial");
pt=new PT [m+1];
fMenu=0; fStatus=0; idc=301;
menu[1] .item="NLE: Bisection";
menu[2] .item="NLE: False-Point Position";
menu[3] .item="NLE: Newton-Raphson";
menu[4] .item="NLE: Secant";
for (int i=1;i<=nMenultems;i++)

{
menu[i] .hm=CPoint (20,30+(i-1)*30);
menu[i] .rc=CRect (menu[i] .hm.x,menu(i] .hm.y,
menu[i] .hm.x+150,menu[i] .hm.y+20);
}

curve.hm=CPoint (320,320); curve.end=CPoint(760,590) ;
curve.rc=CRect (curve.hm.x-10,curve.hm.y-10,
curve.end.x+10,curve.end.y+10) ;
input [0] . hm=CPoint (200,10);
input [0] .rc=CRect (input [0] .hm.x,input [0] .hm.y,
input [0] .hm.x+560, input [0] .hm. y+260) ;
input [0] .display=CRect (30,180,170,250) ;
for (i=1;i<=maxInput;i++)
input [i] .hm=CPoint (input [0] .hm.x+10,input [0] .
hm.y+30+(i-1)*25) ;

OnPaint () displays and updates the output regularly. The initial display in the
main window consists of the menu items that are located in shaded rectangular boxes
in the menu region. An update is made immediately whenever InvalidateRect ()
is invoked. The update is made possible through the test

if (fMenu!=0)

This conditional test separates the initial screen display from the time when a
method has been selected. Another test written as

if (fStatus)

indicates the method has been successfully applied and produces its solution.
The message updates the window by drawing the corresponding curve through
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DrawCurve () and displaying the solution. If the method fails, for example in the
case of the absence of a root in the given interval, then the message No solution is
displayed. The complete code for OnPaint () is shown below:

void CCode6: :0nPaint ()

{

CPaintDC dc(this);

CString str;

dc.SelectObject (Arial80) ;
dc.SetBkColor (RGB(150,150,150)) ;
dc.SetTextColor (RGB(255,255,255)) ;
for (int i=1;i<=nMenultems;i++)

{
dc.FillSolidRect (&menu[i] .rc,RGB(150,150,150));
dc.TextOut (menu[i] .hm.x+5,menu[i] .hm.y+5,menu
[i].item);
}

dc.SetBkColor (RGB(255,255,255)) ;
dc.SetTextColor (RGB(100,100,100));
dc.Rectangle(input [0] .rc);
dc.Text0Out (input [0] .hm.x+150,

input [0] .hm.y+5,menu[fMenu] .item) ;
if (fMenu!=0)

{
for (i=1;i<=nInputltems;i++)
dc.TextOut (input [i] .hm.x+10,
input[i] .hm.y,input[i].label);
if (fStatus)
{
DrawCurve() ;
str.Format ("Solution: x=%1f",Solution);
dc.TextOut (input [0] .display.left,input
[0] .display.top,str);
fStatus=0;
}
else
dc.TextOut (input [0] .display.left,input
[0] .display.top,
"No solution");
}

OnLButtonDown () reponds to ON_WM_LBUTTONDOWN, which corresponds to a click

at one of the items in the menu. With the menu displayed, the user has the choice
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of four methods from which to choose. OnLButtonDown () handles this event and
returns true through the test

if (menu[k].rc.PtInRect(pt))

The above conditional test makes sure that only a left-click at the menu items
is valid. The click at one of the menu items causes the assignment of a number to
fMenu, with £Menu=1 for bisection, fMenu=2 for false position, fMenu=3 for Newton—
Raphson, and £Menu=4 for secant. With this selection, edit boxes and the Compute
push button appear in the input region. The complete code for OnLButtonDown () is
shown below:

void CCode6: :0nLButtonDown (UINT nFlags,CPoint pt)
{

int i,k;
for (k=1;k<=nMenultems;k++) // menu items
if (menul[k].rc.PtInRect(pt))
{
fMenu=k;
InvalidateRect (input [0] .rc);
switch(k)
{
case 1:
case 2:
nInputItems=4;
input [1] .1label="y=£f(x)";
input [2] .1label="a[0]";
input [3] .1label="b[0]";
input [4] .1label="epsilon";
break;
case 3:
nInputItems=5;
input [1] .1label="y=£f(x)";
input[2] .label="y=£’(x)";
input[3].label="x[0]";
input [4] .label="x[m]";
input [5] .1label="epsilon";
break;
case 4:

nInputItems=5;
input[1].label="y=f(x)";
input [2] .1label="x[0]";
input [3] .1label="x[1]";
input [4] .label="x[m]";
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input [5] .1label="epsilon";
break;

for (int i=1;i<=maxInput-1;i++)
input [i] .ed.DestroyWindow() ;
btn.DestroyWindow() ;
btn.Create("Compute" ,WS_CHILD|WS_VISIBLE|
BS_DEFPUSHBUTTON,
CRect (CPoint (input [0] .hm.x+10,
input [0] .hm.y+5),
CSize(100,20)) ,this,IDC_BUTTON) ;
for (i=1;i<=nInputltems;i++)
input[i] .ed.Create (WS_CHILD|
WS_VISIBLE| WS_BORDER,
CRect (input [i] .hm.x+100,
input [i] .hm.y,input [i] .hm.x+520,
input[i].
hm.y+20) ,this,idc++);

The user now completes the input by filling in the values in the edit boxes. Once
this is done, a click at Compute confirms the entries, and the process proceeds into
the next stage. This event is detected as ON_BN_CLICKED, and its message handler is
OnButton (). This function reads the input values, and then calls the corresponding
function according to its fMenu value.

void CCode6: :OnButton()
{
CString str;
if (fMenu!=0)
{
for (int i=1;i<=nInputltems;i++)
input[i] .ed.GetWindowText (input [i] .item);
if (fMenu==1 | | fMenu==2)
BisectionFPP();
if (fMenu==3)
Newton() ;
if (fMenu==4)
Secant () ;
if (fStatus)
{
ShowTable() ;
InvalidateRect (curve.rc);
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InvalidateRect (input [0] .display) ;
}
else

InvalidateRect (input [0] .display) ;

In the above code segment, a conditional test is performed to determine whether
the problem has been solved successfully using the selected method. This is done
through

if (fStatus)

A successful method is one that converges to its solution. This is indicated through
the assignment of fStatus=1. A message is also displayed in the main window if
the method fails, which is indicated through £Status=0.

The value of the status flag £Status is updated inside one of the functions from
BisectionFPP(), Newton(), and Secant (). An update of fStatus=1 indicates
the input data have been successfully executed in the selected method. A value of
0 means the method fails mostly from wrong end points in locating the root. With
fStatus=1, the process now proceeds to the next stage, which is a display of the
results in the table through ShowTable (). The graph of y = f(x) is also drawn
through an update in OnPaint () using InvalidateRect (). The final solution in
the form of an approximated value of the root to y = f(x) is displayed through
InvalidateRect (input [0] .display).

The bisection and the false position methods are handled by BisectionFPP (). In
terms of concepts, the two methods are similar as they are based on a fixed starting
interval given by ay < x < by. The only difference between them is the way an update
is made on ¢;. The code segment for BisectionFPP () is given by

void CCode6::BisectionFPP ()

{
int i,psil[2];
double fa,fb,fc,psv[2],epsilon;
pt[0] .a=atof (input[2] .item);
pt [0] .b=atof (input [3] .item) ;
epsilon=atof (input[4] .item);
psil[11=23; psv[1]=pt[0].a;
fa=parse(input[1].item,1,psv,psi);
psv[1]=pt [0].b;
fb=parse(input[1].item,1,psv,psi);
if (fa*xfb<0)
{

for (i=0;i<=maxIter;i++)

{
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if (fMenu==1)

ptl[il.c=(pt[i].a+pt[i]l.b)/2;
if (fMenu==2)

pt[il.c=(pt[i] .a*fb-pt[i] .bxfa)/(fb-fa);
psv[1]l=pt[i].a;
fa=parse(input[1].item,1,psv,psi);
psv[1]l=pt[i].b;
fb=parse(input[1] .item,1,psv,psi);
psvl1l=pt[il.c; ptlil.x=pt[i].c;
fc=parse(input[1].item,1,psv,psi);ptl[i].y=fc;
if (faxfc>0)

{
pt[i+1].a=pt[i].c; ptl[i+1].b=pt[i].b;
}
else
{
pt[i+1].b=pt[il.c; ptli+1].a=ptl[i].a;
}
if (1>0)
{
ptl[i].error=fabs(pt[i].c-pt[i-1].c);
if (pt[i].error<epsilon)
{
Stop=i;
Solution=pt[Stop].c;
fStatus=1;
break;
}
}

The bisection and false position methods will only produce the desired results if the
starting interval complies with the mean-value theorem. In the above code segment,
a conditional test is performed for this possibility, as follows:

if (fa*xfb<0)

In the above test, fa and fb are f(ag) and f(by), respectively. This test performs
a check on the validity of the starting points in the interval through the mean-value
theorem.

The iterations in the bisection and false position methods are governed by a com-
parison on the error, |¢; — ¢;—1| < € or pt[i] .error<epsilon. A check is made
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at every iteration to determine whether the stopping criteria have been achieved,
through

ptl[il.error=fabs(pt[i].c-ptl[i-1].c);
if (pt[i].error<epsilon)

{
Stop=i;
Solution=pt [Stop].c;
fStatus=1;
break;
}

Several assignments are made if the stopping mark for the iterations has been
achieved. First, the last iteration number is stored as Stop. The last value of ¢; is then
the final solution, and this value is assigned to Solution. Finally, the status flag is
assigned with a value of 1 to indicate the method is successful.

The Newton—Raphson method is handled by Newton (). This method is easier
to implement than the bisection and false position methods as the method does not
involve an update at the end points of the intervals. The code is shown as follows:

void CCode6: :Newton()
{
int i,psil[2];
double epsilon,psv([2];
pt [0] .x=atof (input [3] .item) ;
pt[m] .x=atof (input [4] .item) ;
epsilon=atof (input [5] .item) ;
psil1]=23;
for (i=0;i<=maxIter;i++)
{
psv[1]=pt[i].x;
pt[i] .y=parse(input[1].item,1,psv,psi);
pt[i].ydl=parse(input[2].item,1,psv,psi);
if (i<m)
{
ptl[i+1] .x=pt[i].x-pt[i].y/pt[i].yd1;
ptli].error=fabs(pt[i+1].x-pt[i].x);

}
if (pt[i].error<epsilon)
{
Stop=i;
Solution=pt [Stop] .x;
fStatus=1;
break;
3
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A difficulty with the Newton—Raphson method is the requirement of the first
derivative in its update formula. Since our application does not support symbolic
computing for determining the derivative, it is necessary for the user to enter the
input string. In the above code segment, f’(x) is denoted as pt[i].yd1, and its
string value is read as input [2] . item in the edit box. This string will be processed
through parse () to produce the numerical value of f'(x) at the given point.

The error in the Newton—Raphson method is |x;+; — x;|, and this is written
as pt[i] .error=fabs(pt [i+1] .x-pt[i] .x). The error is again compared with
epsilon at each iteration to determine whether convergence has been achieved.

The secant method is handled by Secant (). The method works on the same
concept as in the Newton—Raphson method with the derivative replaced by an ap-
proximation using a secant line. The code segment for Secant () is given by

void CCode6: :Secant ()

{
int i,psil[2];
double epsilon,psv[2];
pt[0] .x=atof (input[2] .item);
pt[1] .x=atof (input[3].item);
ptm] .x=atof (input[4] .item);
epsilon=atof (input [5] .item);
psil1]=23; psv[1]=pt[0].x;
pt[0] .y=parse(input[1].item,1,psv,psi);
for (i=0;i<=maxIter;i++)

if (i<m-2)
{
psv[1]l=pt[i+1] .x;
pt[i+1] .y=parse(input[1].item,1,psv,psi);
pt[i+2] .x=(pt[i] .x*pt[i+1].y
-pt [i+1] .x*pt[i].y)/(pt[i+1].y-pt[i].y);
ptl[i].error=fabs(pt[i+2] .x-pt[i+1].x);
}
if (pt[i].error<epsilon)
{
Stop=i;
Solution=pt [Stop].x;
fStatus=1;
break;

The two-ahead update in the value of x for the secant method is shown in the above
code segment through
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if (i<m-2)
{
psvl1]l=pt[i+1].x;
pt[i+1] .y=parse(input[1].item,1,psv,psi);
pt[i+2] .x=(pt[i] .x*pt [i+1] .y-pt[i+1].
xxpt[1].y) /(pt[i+1] .y-pt[il.y);
pt[i].error=fabs(pt[i+2] .x-pt[i+1] .x);

The error in the secant formulais pt [i] . error=fabs (pt [i+2] .x-pt [i+1] .x)
or |x;1p — X;+1|. As in the other three methods, the error is compared with epsilon at
each iteration to determine whether a stopping mark has been reached.

The results from the iterations in the selected method are tabulated in the list view
table through ShowTable (). The items displayed are the iteration number i, x;, f(x;)
and the corresponding error values. The code segment for ShowTable () is given by

void CCode6: :ShowTable()

{
CString str;
CPoint hTable=CPoint(20,310);
CRect rcTable=CRect (hTable.x,hTable.y,hTable.x+280,
hTable.y+290) ;
table.DestroyWindow() ;
table.Create(WS_VISIBLE | WS_CHILD | WS_DLGFRAME |

LVS_REPORT| LVS_NOSORTHEADER,rcTable,this,idc++);

table.InsertColumn(0,"i" ,LVCFMT_CENTER,25) ;
table.InsertColumn(1,"x",LVCFMT_CENTER,70);
table.InsertColumn(2,"f(x)",LVCFMT_CENTER,70) ;
table.InsertColumn(3,"error" ,LVCFMT_CENTER,70) ;
for (int i=0;i<=Stop;i++)

{
str.Format ("%d",i); table.InsertItem(i,str,0);
str.Format ("%1f",pt[i].x);
table.SetItemText(i,1,str);
str.Format ("%1f",pt[i]l.y);
table.SetItemText (i,2,str);
if (fMenu>2 | | ((fMenu<=2) && i>0))
{
str.Format ("%1f",pt[i] .error);
table.SetItemText(i,3,str);
}
}
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DrawCurve () is basically the same function as discussed earlier in Chapter 4.
There are some modifications to cater the needs in the methods discussed. The graph
is not drawn if the selected method fails. The full code segment for DrawCurve () is
given as follows:

void CCode6: :DrawCurve ()
{
CClientDC dc(this);
int i,psil2];
double h,m1,m2,cl,c2,psv[2];
CString str;
CPoint px;
psil1]=23;
if (fMenu==1 | | fMenu==2)
{
left.x=pt[0].a;
right.x=pt[0].b;

}
if (fMenu==3 | | fMenu==4)
{
left.x=Solution-2;
right.x=Solution+2;
}

h=(right.x-left.x)/(double)m;
pt[0] .x=left.x;
psv[1]=pt [0] .x;
pt[0] .y=parse(input[1].item,1,psv,psi);
max.y=pt [0] .y; min.y=pt[0].y;
for (i=1;i<=m;i++)
{
pt[i].x=pt[i-1].x+h;
psv[1]l=pt[i].x;
pt[i] .y=parse(input[1].item,1,psv,psi);
if (max.y<pt[i]l.y)
max.y=pt[i].y;
if (min.y>ptl[i].y)
min.y=pt[i].y;
}

// Cartesian-Windows conversion coordinates
ml=(double) (curve.end.x-curve.hm.x)/(right.x-left.x);
cl=(double)curve.hm.x-left.x*ml;

m2=(double) (curve.hm.y-curve.end.y)/(max.y-min.y);
c2=(double) curve.end.y-min.y*m2;
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// Draw & label the x,y axis

CPen pGray(PS_SOLID,1,RGB(100,100,100));
dc.SelectObject (pGray) ;

dc.SelectObject (Arial80) ;

px=CPoint (m1*0+c1,m2*min.y+c2); dc.MoveTo(px);
px=CPoint (m1*0+cl,m2*max.y+c2); dc.LineTo(px);

px=CPoint (ml*left.x+cl,m2*0+c2); dc.MoveTo(px);

str.Format ("%.01f",left.x); dc.TextOut(px.x,px.y,str);
px=CPoint (ml*right.x+c1l,m2%0+c2); dc.LineTo(px) ;
str.Format ("%.01f",right.x); dc.TextOut(px.x-10,px.y,str);

// draw the curve

CPen pDark(PS_SOLID,2,RGB(50,50,50)) ;
dc.SelectObject (pDark) ;

for (i=0;i<=m;i++)

{
px=CPoint ((int) (m1*pt[i] .x+cl),
(int) (m2*pt [i] .y+c2));
if (i==0)
dc.MoveTo (px) ;
else
dc.LineTo(px);
if (pt[i].y==max.y)
{
str.Format ("%.61f" ,max.y) ;
dc.TextOut (px.x,px.y-10,str) ;
}
if (pt[i].y==min.y)
{
str.Format("%.61f",min.y) ;
dc.TextOut (px.x,px.y,str);
}
}

The interval of x for the curve has been set differently the methods. In the case of
the bisection and false position methods, DrawCurve () draws a graph based on the
input values in the left and right intervals, or ag < x < by. This is given by

if (fMenu==1 | | fMenu==2)
{
left.x=pt[0].a;
right.x=pt[0].b;
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6.9 SUMMARY

We discussed five methods for finding the zeros of a function f(x), namely, the
bisection, false position, Newton—Raphson, secant, and fixed-point iteration methods.
Four methods are illustrated in their visual interfaces using Visual C++. Each method
is represented as an item in the menu. The solution for each method is shown in
a list view table and is depicted in its solution curve. This interface provides the
fundamental requirement for visualization on the nonlinear equation problems.

The nonlinear problem arises in many science and engineering applications. In
many cases, the problem appears as a small component from the overall problem.
Solving the problem as a component definitely contributes to solving the overall
problem. The Windows-friendly interface for handling the numerical computations
using C++ helps much in contributing to the solution.

NUMERICAL EXERCISES

1. Referring to the mean-value theorem, determine whether at least one root exists
in the given intervals of the following problems:

f(x)=1-3x,x € [-1,2].

fx)=1-=3x+5x>xe[-1,2].

fx)y=1-3x +5x2—6x*, x e[—1,2].

f(x)=3sinx —Scosx, x € [—1,2].

f(x) =3sin(2x — 1) — 5cos(l — 2sinx)), x € [—1, 2].

Check the results through their corresponding graphs by running Code6.

I I

2. Solve each problem in Question 1 using the following methods:
. Bisection method.

. False position method.

. Newton—-Raphson method.

. Secant method.

o 20 T

. Fixed-point iteration method.
Check the results by running Code6.

3. The graph from a given function provides a rough estimate on the location of one
or more roots in the function. This is obvious in the case of the occurrence of
multiple roots in the function. From the graph, a single root in a refined interval
can be obtained. Run Code6 to locate the single roots of the following functions
by refining their intervals using this approach:

a f(x)=1—x>24+2x3—s5x*+2x7,x e [-2,2].

b. f(x) = 3x* —5x2+1,x e [—1,3].

c. f(x) =—3cos’x +3sinx, x € [—6,2].

d. f(x) =3sin(2x — 1) — 5cos(l — 2sinx)), x € [—1, 2].



226 NONLINEAR EQUATIONS

PROGRAMMING CHALLENGES

1.

Improve on Code6 by adding the fixed-point iteration method as an item in the
menu. Add a mechanism to check for the convergence of the method by checking
for |g’(x)| < 1 at every iteration, where x = g(x) is derived from f(x) = 0.

. Code6 generates a graph and its solution only when the product of the left and

right end points is negative. Modify the project to display the graph even if the
product is positive.

. Anintelligent root finder is one that can determine a small subinterval from a given

function where its root is located automatically without the necessity of guessing
two end points beforehand. This task can be added to Code6 by adding a routine to
check for the occurrence of a root at every small subinterval from a given interval.
Modify Code6 to add this option.
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Interpolation and Approximation

7.1 Curve Fitting

7.2 Lagrange Interpolation

7.3 Newton Interpolations

7.4 Cubic Spline

7.5 Least-Squares Approximation

7.6 Visual Solution: Code7

7.7 Summary
Numerical Exercises
Programming Challenges

7.1 CURVE FITTING

The body of a car has been designed in such a way it possesses good aerodynamic
features. This is important in order for the car to be comfortable, energy-efficient,
cost-effective, and attractive. To achieve these objectives, the body surface of the car
is made to be smooth. The normal techniques for designing the body of a car involve
computer-aided design tools on the computer. The body is constructed by fitting and
blending a set of patches from the B-spline or Bezier surfaces by approximating a set
of points. B-spline and Bezier are some two-dimensional curves that are widely used
in curve and surface fittings.

In general, curve and surface fitting is useful in many applications, notably in the
design of body surfaces such as cars, aircrafts, ships, glasses, pipes, and vases. A
patch in the surface is the three-dimensional extension of the B-spline curve which is
obtained from a curve fitting technique.

Curve fitting is a generic term for constructing a curve from a given set of points.
This objective can be achieved in two ways, through interpolation or approximation.
Interpolation refers to a curve that passes through all the given points, whereas ap-
proximation is the case when the curve does not pass through one or more of the
given points. The curve obtained from interpolation or approximation is one that best
represents all points.

227
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FIGURE 7.1. Interpolation (top) and approximation (bottom).

Figure 7.1 shows two different curves that can be produced from a set of points

(xi, y;)fori =0,1,...,5. The curve at the top is generated through interpolation as
it passes through all points. The bottom curve is an approximation as it misses several
points.

In this chapter, we will discuss several common interpolation and approximation
methods. We will concentrate on the two-dimensional aspect of these methods that
provides a strong foundation for three-dimensional or higher problems. The topics
include the Lagrange, Newton, and cubic spline methods in interpolation, and the
least-squares method in approximation. In discussing the interpolation and approx-
imation methods, the interpolating points are given as (x;, y;), fori =0, 1,...,n.
There are n + 1 points given. The exact values at x; are y; = f(x;), whereas their
interpolated values are denoted as P(x;).

7.2 LAGRANGE INTERPOLATION

An interpolation on two points, (xg, yo) and (x;, y;), results in a linear equation or a
straight line. The standard form of a linear equation is given by

y=mx +c, (7.1)
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where m is the gradient of the line and c is the y-intercept. In the above equation,

Y1 — Yo
m=——
X1 — Xo

and ¢ = yy— mxop,

which results in

Y1 — Yo X1Yo — XoY1
= x + .
X1 — Xo X1 — Xo

French mathematician, Joseph Louis Lagrange, proposed to rewrite the linear equa-
tion so that the two interpolated points, (xg, yo) and (x1, y;), are directly represented.
With this in mind, the linear equation is rewritten as

Pi(x) = ap(x — x1) + ai(x — xo),

where ag and a; are constants. The points x( and x; in the factors of the above equation
are called the centers. Applying the equation at (xo, yg), we obtain yy = ag(xo —
x1) + ai(xo — xo), 0rap = nyfxl - At(xy, y1), we get y; = ao(x; — x1) + ay(x1 — xo),
leij . Therefore, the linear equation becomes

ora; =

(x —x1) (x — xo)
+ yi .
X0 — X1 X1 — Xo

Pi(x) = yo (1.2)

The quadratic form of the Lagrange polynomial interpolates three points, (xo, yo),
(x1, ¥1), and (x3, ¥2). The polynomial has the form of

Py(x) = ap(x — x1)(x — x2) + a1(x — xp)(x — x2) + az2(x — xo)(x — x1),
with centers at xg, x1, and x;. At (xo, Yo),
Yo = ao(xo — x1)(xo — x2) + a1(xp — x0)(Xo — x2) + az(xo — xo)(xo — x1),

or

_ Yo
(xo — x1)(x0 — x2)

do

Similarly, applying the equation at (x;, y;) and (x;, ¥,) yields

Y1
ay = s
(x1 — x0)(x1 — x2)
»
a

- (x2 — x0)(x2 — x1)
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This produces a quadratic Lagrange polynomial, given by

(x —x1)(x —x2) (x — x0)(x — x2) (x — xo)(x — x1)
(o — x)(x0 —X2) 7 (X1 — X)Xt — x2) (¥ — X)Xz — 1)
(7.3)

Py(x) = yo

Definition 7.1. The Langrange operator L;(x) for (x;, y;), where i =0, 1,...,nis
defined as

n

Li(x) = 1—[ (=20 (= x)(r —xp) - (6 — ) = Xpgr) e (X = xy)

Ll g —x) (= xo)(x — x1) -+ (6 — X)) — Xig1) o (6 — X))
keti

(7.4)

In general, the Lagrange polynomial of degree n is a polynomial that is produced
from an interpolation over a set of points, (x;, y;) fori =0, 1, ..., n, as follows:

Pu(x) = yoLo(x) + y1L1(x) + -+ - + y, L,(x). (7.5)

There are n factors in both the numerator and the denominator of Equation (7.5).
The inequality k # i denies zero value in the denominator, which may cause a fatal
error in division. It is obvious that n = 1 produces a linear curve or a straight line,
whereas n = 2 produces a quadratic curve or a parabola.

Algorithm 7.1. Lagrange Method.
Given the interpolating points (x;, y;) fori =0, 1, ..., n;
fori =0ton

n
Evaluate L;(x) = [] &=,
k=1

(xi—xx)”
ki
endfor

Evaluate P,(x) = yoLo(x) + y1Li(x) + -+ 4+ y, L, (x);

Example 7.1. Find a polynomial P(x) that interpolates the points {(—1,2),
(0, 3), (2, —1), (5, 1)} using the Lagrange method. Hence, find P(2.5).

Solution. There are four given points, and this will produce a polynomial of degree
n = 3, given as

P3(x) = yoLo(x) + y1L1(x) + y2Lo(x) + y3L3(x),

(x — x)(x — x2)(x — x3) _ x =0 —-2)(x—5)
(x0 — x)(xo — x2)(xp — x3) (=1 —=0)(—=1—=2)(—=1-Y5)

= —0.055556x(x — 2)(x — ),

Lo(x) =
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(x —x)x —x)x —x3)  (x+ Dx =2)(x —5)

Li(x) = =
(x1 — x0)(x1 —x2)(x1 —x3) (04 1)(0—2)(0-35)
=—0.1(x + D(x — 2)(x — 5),
Lo(x) = (O — X —x)(x —x3) _ (x + Dx — O)x — 5)
(X2 —x0)(x2 —x)(x2 —x3) Q2+ DE2-0)2-5)
= —0.055556x(x + 1)(x —5),
_ mx)—xPx —x) e+ D -0(x —2)
Li(x) =

(3 = x0)(x3 —x)(x3 —x2) (54 D5 = 0)(5 —2)
= 0.011111x(x + D(x — 2).

The polynomial as given by Equation (7.1) is

P3(x) = yoLo(x) + y1L1(x) + y2Lo(x) + y3L3(x)
— —0.111112x(x — 2)(x — 5) — 0.3(x 4+ D)(x — 2)(x — 5)

—0.055556x(x + 1)(x — 5) +0.011111x(x + D(x — 2).

Therefore, P(2.5) = P3(2.5) = —2.131944.

7.3 NEWTON INTERPOLATIONS

The Lagrange method has a drawback. The amount of calculations depends very
much on the given number of interpolated points. A large number of points require
very tedious calculations on the Lagrange operators, as each of these functions has
an equal degree as the interpolating polynomial.

A slightly simpler approach to the Lagrange method is the Newton method which
applies to polynomials in the form of Newton polynomials. A Newton polynomial
has the following general form:

P,(x) = ag + a;(x — xo) + ax(x — x0)(x —x1) +---

+a,(x —x0)(x —x1) - (X = Xp-1). (7.6)

Inthe above equation, a; fori = 0, 1, ..., n are constants whose values are determined
by applying the equation at the given interpolated points.

There are several different methods for evaluating the Newton polynomials. They
include the divided-difference, forward-difference, backward-difference, and central-
difference. We discuss each of these methods in this chapter.
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Divided-Difference Method

The divided-difference method is a method for determining the coefficients a; for
i =0,1,...,n in Equation (7.6) using the divided-difference constants, which are
defined as follows:

Definition 7.2. The divided-difference constant d;; is defined as ith divided-
difference of the function y = f(x) at x;, where

di—1,i+1 — dr—1,i
dy; = Sl T Gl
X — Xi

The initial values are dp; = y; fori =0,1,...,nandk =1,2,...,n — 1.

The general form of the linear equation in Equation (7.1), which interpolates
(x0, yo) and (x, y1), can also be expressed in the form of divided-difference constants,

P(x) =dpo + diox — x0),

where x is the center and dy o and d; o are special constants called the zeroth and first
divided-difference at xy, respectively. Applying the linear equation at the two points,
we obtain

Y1 — Yo
d()yo = Yo and d170 =
X1 — X0

This gives Pi(x) = do,o + di,0(x — x0) = yo + 3 =32(x — xo).
At the same time, the quadratic form of the Newton polynomial, which interpolates

the points (xg, o), (x1, y1), and (x2, y») can now be written as
P(x) =doo + dy,o(x — x0) + da,0(x — xp)(x — x1).

In the above equation, x( and x| are the centers. Applying the quadratic equation to
the three points, we obtain

do,o = Yo,
doi —doo Y1 — o
dip = = ,
X1 — Xo X1 — Xo
dop —do1  y2— i
di = = ,
X2 — X1 X2 — X1
2=y _ Y1—Yo
dii—dio  nox T niw
dro = = -

X2 — Xo X2 — Xo
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In general, the divided-difference method for interpolating (x;,y;) for i =
0,1, ..., n produces a Newton polynomial of degree n, given by

P,(x) = doo + di,0(x — x0) + dao(x — x0)(x — x1) + -+

+ dno(x — xo)(x —x1) -+ (X — Xp—1). (1.7)

Algorithm 7.2 summarizes the divided-difference approach. An example using this
algorithm is illustrated in Example 7.2.

Algorithm 7.2. Newton’s Divided-Difference Method.
Given the interpolating points (x;, y;) fori =0, 1, ..., n;
Setdy; = yi,fori =0,1,...,n;

Evaluate the divided-difference constants:
fori =0ton
fork=1ton—1
Compute d;; =
endfor
endfor
Get P,(x) using Equation (7.7);

di—1iv1—dk—1.i .
Xk —X; ’

Example 7.2. Find the polynomial from the interpolating points in Example 7.1 using
the Newton’s divided-difference method.

Solution. From the set {(—1, 2), (0, 3), (2, —1), (5, 1)}, we obtain

xo=-1, x1=0, x,=2, andxz =35.

doo=y0=2, do1=y1=3,dop=y»=-—1, anddp3 =y3=1.

It follows that

do 1 — d do> —d
d10= 0,1 0,0__1’ d1,1: 0,2 01__2’
X1 — Xo X2 — X
dos — d
dyy = 22702 0666667,
X3 — X2
dii—d di»—d
dro = L0 = 0333333, 4y, = 21 =0.533333,
X2 — Xo X3 — X1
d1—d
dyy = =120 — 0,033333.
X3 — Xo



234 INTERPOLATION AND APPROXIMATION

Therefore,

P3(x) = do,o + di,0(x — x0) + dao(x — x0)(x — x1) + d3,0(x — x0)(x — x1)(x — x2)
=2—(x+1)+0.333333x(x + 1) + 0.033333x(x + 1)(x — 2).

We obtain P(2.5) = P3(2.5) = —2.131944.

Forward-Difference Method

Both the Lagrange and the Newton divided-difference methods can be applied to
cases where the x subintervals are uniform or nonuniform. On a special case where
the x subintervals are uniform, it may not be necessary to apply the two methods
as other methods may prove to be easier. In this case, the divided-difference method
with uniform x subintervals can be reduced into a method called forward-difference.
This method involves an operator called the forward-difference operator.

Definition 7.3. The forward-difference operator Ay ; is defined as the kth forward
difference atx;,or Ay ; = Ag_1;+1 — Ag—1,;. Theinitial values are givenby Ag; = y;
fori =0,1,...,n.

In deriving the Newton polynomial using the forward-difference method, let # be
the width of the x subintervals. Uniform subintervals suggest all subintervals in x
have equal width given as 4. In other words, h = x;4y —x; fori =0,1,...,n — 1.

The forward-difference formula is derived from the divided-difference equation.
Consider a cubic form of the divided-difference equation from Equation (7.6) given
as

P3(x) = do,o + dy,0(x — x0) + dz,0(x — x0)(x — x1) + d3,0(x — X0)(x — x1)(x — x2).

This is simplified into

A Asg
P3(x) = yo + (x — x0) + (x — x0)(x — x1)
X1 — Xo X2 — X0
Az
(x — x0)(x — x1)(x — x2)
X3 — X0

= —i—ﬂ(x—x)—i—ﬂ(x—x)(x—x)
Yo h 0 o 0 1

+ﬂ(x—x )x —x)(x — x2)
3]1 0 1 2).

It can be proven that the general form of the forward-difference method for inter-
polating the points (x;, y;) for i =0, 1, ..., n can be extended from the cubic case
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above. The solution is given by

At Ar o
Py(x) = YO+T(x_XO)+W(X_XO)(X_XI)+"'

An,O

+nh

(x —x0)(x —x1) -+ - (x — xp_1). (7.8)

Algorithm 7.3 summarizes the forward-difference approach. This is followed by
an illustration using Example 7.3.

Algorithm 7.3. Newton’s Forward-Difference Method.
Given the interpolating points (x;, y;) fori =0, 1, ..., n;
Set Ag; = y;, fori =0,1,...,n;

Evaluate the forward-difference constants:
fori =0ton
fork=1ton—1
Compute Ay ; = Ajp—1,i+1 — Dp—1,i5
endfor
endfor
Get P,(x) using Equation (7.8);

Example 7.3. Find the Newton polynomial P(x) from the points given by
{(—-2,2),(0,3),(2,—1), (4, 1)} using the forward-difference method. Hence, find
P(2.5).

Solution. From the set {(—2, 2), (0, 3), (2, —1), (4, 1)}, we obtain

) Xi Ao = fx;) Ay Ay Az
0 =2 2 1 -5 11
110 3 —4 6

21 2 -1 2

3| 4 1

From the above table, we get the forward-difference values,
AO,O = 2, Al,() = 1, Az’o = —5and A3’() =11.
‘We obtain

Ao Az
P3(x) = Ao+ — 7 = Xo) + —=(x = xo)(x — x1)

Az
+ ?(x —x0)(x — x)(x — x2)
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=2+%u+n—%a+nu—m+§u+na—mu—m

=24 (x+1)—25x(x + 1)+ 1.833333x(x + D(x — 2).

It follows that
1 -5
P;(2.5) =2+ ?(2.5 +2)+ ?(2.5 +2)2.5-0)

11
+ 5 (25 +2)25 - 0)25 ~2) = ~ 11312500,

Backward-Difference Method

The operator Ay ; is based on forward difference. It is also possible to do the opposite,
that is, backward difference.

Definition 7.4. The backward difference operator Vi ; is defined as the kth backward
operator at x; or Vi; = Vi_1; — Vik_1,;—1. The initial values are Vi ; = y; for i =
0,1,...,n.

The backward-difference method is also derived from the Newton divided-
difference method. The method requires all x subintervals to have uniform width,
given as h. We discuss the case of a quadratic polynomial from the divided-
difference method in deriving the formula for the backward-difference method. From
Equation (7.7),

n n—1
Bw= v+ vy T e, 09)
: ©i=0

where V¥ f; = VA=1 f; — VA=1 £, is the backward-difference operator and r = =
Algorithm 7.4 summarizes the steps in the backward-difference method for gen-
erating the Newton polynomial. The algorithm is illustrated through Example 7.4.

Algorithm 7.4. Newton’s Backward-Difference Method.
Given the interpolating points (x;, y;) fori =0, 1, ..., n;
Set Ag; = y;, fori =0,1,...,n;

Evaluate the backward-difference constants:
fori =0ton
fork=1ton —1
Compute Vi ; = Vi_1iv1 — Vi1
Get P,(x) using Equation (7.9);
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Example 7.4. Find the Newton polynomial P(x) from the interpolating points given
by {(—2,2),(0,3), (2, —1), (4, 1)} using the backward-difference method. Hence,
find P(2.5) using the backward-difference method.

Solution. From the set {(—1, 2), (0, 3), (2, —1), (5, 1)}, we obtain

i ox Vo, = f(x) Vi Va.i Vi,
0| -2 2

1 0 3 1

2 2 —1 —4 -5

3 4 1 2 6 11

From the above table, we get the forward-difference values,
Vos=1, Viz=2, Vy3=6 V;33=11I1

This produces
Vi3 Va3 Vi3
P3(x) = Vo3 + T(X —x3)+ T(X —x3)(x —x2) + 7()( —x3)(x — x)(x — x7)

2 6 11
=14 (00 =9+ 5 (0 =5 =D+ (6 = 5Hx =D —0)
= 1+2(x —5)+3(x — 5)(x —2) + 1.833333x(x — S)(x — 2).

Therefore,

P(2.5) = 1 4+2(2.5—5) +3(2.5 — 5)(2.5 — 2) + 1.83333(2.5)(2.5 — 5)(2.5 — 2)

= —13.479163.

Stirling’s Method

The forward-difference and backward-difference methods may be bias toward the
forward and backward directions, respectively, in their construction of Newton poly-
nomials. As a result, the accuracy and precision of the results may differ to some
extent. A more practical approach is to consider both the forward and the backward
factors within a single formulation. Stirling’s method is one such method that con-
siders both factors to produce a more reliable result.

Stirling’s method is based on uniform x subintervals, which works best in inter-
polating points that lie close to the middle of the interval. In interpolating a point x in
X0 < X < X,, the method starts by locating the subinterval x; < x < x;11, where x;
and x; 1 are two given successive points. This determines the index k = i, where x; is
the lower-bound value in the subinterval, or x; = x;. Stirling’s solution is expressed
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in terms of variable r as

ﬁéz r(r2 —-1) 4 r2(r2 — 1)8;:

_ 1 3
P(r)_fk+ru“k+2!k+ 3 I’Lk+ 4!
r@r? — (2 — 22
+ ( ;f )u2+..-, (7.10)

where r = =5 and h is the width of the subintervals. The terms 8;7 and ,ul’ are called
the central-difference constants given by

(Sij = aij;ll/z - 5{:11/2, (7.11a)
i g j
M =5 [5i+1/2 + 5;‘—1/2] , (7.11b)

fori=0,1,...,nand j =1,...,n. In Equations (7.11a) and (7.11b), 8/ and u/
are the odd and even constants of the Stirling’s method, respectively. 8/ computes
the difference between its left and right point, whereas ] is the average between the
points.

Stirling’s method is implemented according to the steps in Algorithm 7.5. The
algorithm is illustrated through Example 7.5.

Algorithm 7.5. Stirling’s Method.

Given the interpolating points (x;, y;) fori =0, 1, ..., n;

Locate the subinterval x; < x < x;41 to determine k = i;

Evaluate r = =5 where x; < x < Xi11;

Evaluate the central-difference constants 8/ for odd j and
j=13,...,m 4

Evaluate the central-difference constants ,ul! ,foreven j =2,4,... n;

Get P,(x) using Equation (7.10);

Example 7.5. Find P(3.7) from the following points using the Stirling’s method:

i 0 1 2 3 4 5

X; 3.0 32 34 3.6 3.8 4.0
vi = f(x;) 2.5 2.9 24 2.0 2.1 2.7

Solution. The width of the subintervals is # = 0.2. Since 3.6 < 3.7 < 3.8, we have
x; = x3 and k = 3. Therefore, yy = y; =2 and r = =% = % = 0.5. We con-
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struct a table to determine the values of (Sij and ul’ based on Equations (7.11a) and
(7.11b):

i ox 80=fx) 8! 8? 5} 5 8
0 3 2.5
0.400
1 3.2 29 —0.900
—0.500 1.000
2 34 2.4 0.100 —0.600
—0.400 0.400 0.200
3 3.6 2 0.500 —0.400
0.100 0.000
4 3.8 2.1 0.500
0.600
5 4 2.7

From Equation (7.10), we obtain

ﬁ(Sz r(r2 -1 4 rz(r2 — 1)8‘3‘

P(x:3.7):P(r:O.S)%f3+rpL,1+2! R T T
—0.400 + 0.100 2
g (22 E0TON LT 0.500)
2 21
2 _ 1) {0.400 + 0.000 2P -1
Al : + =D o 400)
3! 2 4!

=2—0.15r + 0.25r> 4 0.033r(r> — 1) — 0.01772(r> — 1)

=2—-0.15(0.5) 4+ 0.25 (0.5%) + 0.033(0.5) (0.5 — 1)
—0.017(0.5%) (0.5 — 1) = 1.978.

7.4 CUBIC SPLINE

A spline is a single curve that is formed from a set of piecewise continuous functions
sg(x) for k =1,...,m — 1 as a result of interpolation over the points (x;, y;) for
k=0,1,...,m. A spline made from four pieces of functions, for example, has five
interpolating points that appear like a single piece of smooth curve. This is realized
as the spline is continuous at all joints. Not only that, the spline is also continuous in
terms of derivatives at these points, which contribute to the smoothness.

A spline of degree n is constructed from piecewise polynomials of the same degree.
The simplest spline is the linear spline, which consists of straight lines connecting the
points successively. A quadratic spline consists of quadratic polynomials connecting
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(x3.73)

FIGURE 7.2. A cubic spline interpolated from four points.

the points where the first derivatives at the interpolated points exist. As the name
suggests, a cubic spline connects the points through cubic polynomials where, beside
the continuity, the curve has the main property as it is differentiable in its first and
second derivatives at each connecting point between any two pieces of function.

Figure 7.2 shows a cubic spline interpolated over four points (x;, y;), for i =
0, 1, 2, 3, whose pieces are denoted as si(x) for k = 1, 2, 3. Each piece of the spline
is a continuous cubic function in the given subinterval. The spline appears to be very
smooth at each interior node as its first and second derivatives exist there.

Cubic spline is a spline of degree three in the interval xy < x < x,,, which is made
up of a set of piecewise polynomials s;(x). The general form of a cubic spline is
expressed as

si(x) =ay + byx + ckx,? + dkx,f. (7.12)

In the above equation, ay, by, ci, and d; are constants for k = 1,2, ..., m that
make up the cubic polynomials. The spline interpolates m + 1 points, (x;, y;) for
i=0,1,...,m.

A cubic spline has the following properties that satisfy the requirements of conti-
nuity and differentiability at the interpolating nodes:

Property 1. The spline is continuous in xg < x < X, or s1(xo) = Yo and sx(x;) = yx
for k =1,2,...,m. This property states that the spline passes through all m + 1
given points.
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Property 2. The points at the end of each interior node must be equal or s (xz+1) =
Sk+1(xg41) for k = 1,2, ..., m — 1. This property states that the value of the spline
from the left of the interior node must be the same as the value from its right.

Property 3. The first derivative at the end of each interior knot is continuous or
Sp(Xxq1) = 8 (k1) fork = 1,2, ..., m — 1. This property is derived from funda-
mental calculus where a derivative at a point is said to exist if its value from the left
equals that from the right.

Property 4. The second derivative is continuous at each interior knot or s/ (x¢41) =
Spy1(ayr) fork = 1,2, ..., m — 1. The same property from calculus applies where
the second derivative at a point is said to exist if its derivative from the left equals that
from the right.

Property 5. The end knots are free boundaries, which means the second derivative
at the end knots are zero or s{(xo) = s, (x,) = 0. This property suggests the two end
nodes must be tied to zero.

Property 5 above suggests the condition of s7(xo) = s,,(x,) = O referred to as free
boundaries at the end nodes. The spline with this condition is referred to as a natural
cubic spline. Alternatively, another type of spline called the clamped cubic spline is
produced if the condition at the end nodes is changed to s (xo) = s, (x,) # O.

The first derivative of the Equation (7.11) is a quadratic function whereas its second
derivative is linear. Let wy = s”(x) for 0 < k < m. From the condition s”(xg) =
s"(x,p) = 0, we have wy = w,,, = 0. The second derivative can be written as

S (X)) = wr— + gr—1(x — x_1),

Wi —Wk—1

where ¢, = Fo—

is the slope of s;'(x). This equation simplifies to

Wk—1 Wy

s¢(x) = l(xk —x)+ (X — Xp—1).

Xk — Xk X — Xk—1

Integrating the above term twice gives an alternative form of Equation (7.12),
sk(0) = Ax(x = 207 + Be(x — xi-1)* + Culk = %) + Dex = xe-p). (7.13)

fork=1,2,...,m — 1. The constants A, Bi, C, and D, are found to be

A= — kL (7.142)
6(xx — xx—1)’ -
B ol (7.14b)
==, .
6(xr — xx—1)
c, = 2! Wkt (7.14¢)

Xk — X1 600 — xp—1)
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Y uy
Xp — Xgp—1  6(xx — xx—1)

D = (7.14d)

The value of w; can be found from the condition s; (xx) = s;_, (xx). From Equation
(7.13), we obtain the relationship given by

(X1 — X)W1 + 2041 — Xe—1) Wi + (Xkg1 — Xp) Wit 1

=6|:)’k+1_yk+)’k—l_)’k:|’ (7.15)
Xk+1 — Xk Xk — Xg—1

fork =1,2,...,m — 1. This produces a tridiagonal system of linear equations, given
by
fi & O 0 0 0 [ wy 7] o 7
e fr g - 0 0 0 W I
0 e f3 0 0 0 w3 r3
: =1, (7.16)

0 0 0 Sfn-3 &m-3 0 Win—3 Fm—3

O 0 O em—2  fm—2 8&m-2 Wi—2 Fin—2

o o o0 --- 0 em—1  fm-1 Wp—1 Fim—1

whose three-band diagonal elements are

€kl = Xpp1 — Xk, (7.17a)

S = 2(Xp1 — xk-1), (7.17b)

8k = Xp41 — Xk, (7.17¢)

rk:6|:yk+1_Yk +yk1_yki|. (7.17d)
Xipl — Xk Xp — X1

With w; determined from Equation (7.16), we obtain the values of Ay, By, Cy, and
Dy using Equations (7.14a), (7.14b), (7.14c), and (7.14d), respectively.

Algorithm 7.6. Cubic Spline Method.
Given the interpolating points (x;, y;) fori =0, 1, ..., m;
Fork=1tom — 1
Compute fi = 2(xg41 — Xk—1);
Compute r;, = 6 [—iiii:ﬁ + =t
Ifk > 1

Compute e ] = Xp11 — Xk
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Endif
Ifk<m-—1
Compute g = X1 — Xk;
Endif
Endfor

Solve the system of linear equations to find wy;
Find Ay, By, Ci and Dy from Equation (7.14);

The Thomas algorithm is the most practical method for solving the tridiagonal
system of linear equations as the method uses a small number of variables and,
therefore, consumes a small amount of memory. Example 7.6 shows an example of
the cubic spline interpolation where the generated system of linear equations is solved
using the Thomas algorithm method.

Example 7.6. Find a cubic spline that interpolates (xi, yx) = {(—1, 2), (0, 3),
(2, -1),(5, 1), (6, 5)}.

Solution. In this problem, there are five points, and m = 4, where wy = wyq = 0.
From Algorithm 7.6, we get a system of three linear equations given by

fi &1 O wi r
e fr & |lw|=]|n
0 e f3||ws r3

The values of ey, fi, gk, and 7, for k = 1 to k = m are computed using Equations
(7.17a), (7.17b), (7.17c), and (7.17d). The results are displayed in the following table:

ko xx Yk e Jr 8k Tk

0 -1.0 2.0

1 0.0 3.0 6.000000 2.000000 —18.000000
2 2.0 —1.0 2.000000 10.000000 3.000000 16.000000
3 5.0 1.0 3.000000 8.000000 20.000000
4 6.0 5.0

This produces the following system of linear equations:

6 2 0w —18
2 10 3| |wa|=]| 16
0 3 8| |ws 20
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The above system is solved to produce w; = —3.588832, w, = 1.766497, and w3 =
1.837563. We obtain Ay, By, Ci, and Dy using Equations (7.14a), (7.14b), (7.14c),
and (7.14d), as shown in the following table:

Xk Vi Ay By Cy Dy

-1.0 2.0
0.0 3.0 0.000000 —0.598139 2.000000 6.588832
20 —-1.0 -0.299069 0.147208 1.799069 —0.647208
5.0 1.0 0.098139 0.102087 —0.431472 0.267706
6.0 5.0 0.306261 0.000000 0.693739 5.000000

L0 =O b

7.5 LEAST-SQUARES APPROXIMATION

The least-squares method is an approximation method for a set of points based on
the sum of the square of the errors. The method is popularly applied in many appli-
cations, such as in the statistical analysis involving multiple data regression. Mul-
tiple regression involves approximation on several variables based on straight lines
or linear equations. Its advantage of using low-degree polynomials contributes to
providing tools for forecasting, experimental designs, and other forms of statistical
modeling.

In the least-squares method, an error at a point is defined as the difference between
the true value and the approximated value. The method has the advantage over the
Lagrange and Newton methods as the approximation is independent of the number
of points. This allows low-degree polynomials for fitting a finite number of points.

The least-squares method generates a low-degree polynomial for approximating
the given points by minimizing the sum of the squares of the errors. The solution to
the problem is obtained by solving a system of linear equations that is generated from
the minimization.

Approximation using the least-squares method can be achieved in either continuous
or discrete forms. The difference between these two forms rests on the use of integral
in the former and summation in the latter. The continuous least-squares method is
appropriate in applications requiring the use of continuous variables and in analog-
based applications. On the other hand, the discrete least-squares method is good at
handling applications that have finite data. We will limit our discussion only to the
discrete least-squares method in this chapter.

The discrete least-squares form of the problem is based on m interpolated points
(xi,y;) fori =0,1,...,m — 1. The curve to be fitted is a low-degree polynomial
P(x) that best represents all points. The most common function used in the least-
squares method is the linear function P(x) = ag + a;x, which is good enough for
many applications. Occasionally, some applications also require quadratic or cubic
polynomials.
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FIGURE 7.3. Approximation using a polynomial in the least-squares method.

In the least-squares method, the error between the interpolated point y; and the
approximated value p; = P(x;) at the point x = x; is given by

e =Yy — Di. (7.18)

The sum of the squares of the errors ¢; at the points x = x; fori =0,1,...,m — 1
is expressed as an objective function E, as follows:

m—1 m—1
E=Y =Y (i—p) (7.19)
i=0 i=0

Figure 7.3 shows a case of m = 6 points with the interpolated points, (x;, y;) in
white squares and the approximated points (x;, p;) in dark squares. At each point
X;, the error e¢; = y; — p; is computed. The objective function in Equation (7.18) is
obtained by adding the sum of squares of all these errors.

The curves to be fitted in the least-squares approximations are normally low-degree
polynomials, such as

Pi(x) = co + c1x, for alinear function,
Py(x) =co+c1x + cyx?, fora quadratic polynomial,

P3(x) = co + c1x + cax? + c3x>, for a cubic polynomial.

In linear approximation, a straight line equation is used to approximate the points.
The objective function becomes

m—1 m—1
E= Z(;(yi — Pi(x))’ = Z(;()’i — (co+ c1x1))’. (7.20)
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Our objective here is to find the values of ¢y and ¢; by minimizing the sum of
the square of the errors. The minimization requires setting g—i =0 and g—i =0to
produce two linear equations that will be sufficient to solve for ¢y and c;. The partial
derivatives are obtained as follows:

9E m—1

de = _2;(” — (co + c1x)),
9E m—1

— ==2) x;(yi — (co+c1x)).
36‘1

i=0

Setting g—i = 0, we obtain the first linear equation

m—1
2) (i —(co+c1x) =0,
i=0

m—1 m—1 m—1
E Yi_E CO_E cx; =0,
i=0 i=0 i=0

m—1 m—1 m—1
5 RT3
i=0 i=0 i=0
The second linear equation is obtained by setting % =0:

m—1
> iy = (co+ e1x) =0,
i=0

m—1 m—1 m—1
2
Co E X; +c1 E xX; = E XiVi-
i=0 i=0 i=0

The two equations can be written in matrix form as follows:
m—1 m—1 m—1
X1 Y > Vi
i=0 i=0 |:co | =0 (721)

C1 m—1

m—1 m—1 )
x> X D ViXi
i=0 i=0 i=0

A least-squares approximation using the quadratic function P»(x;) = co + c1x +
c2x? produces a system of 3 x 3 linear equations. The objective function is

m—1
E=) (y—(co+cix + cax)). (7.22)
i=0

The approximation is obtained by minimizing the sum of the squares of the errors
through gTi =0, g—f =0, and g—i = 0. The first equation is obtained through the
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oE
e =-2 Z (y,- - (co +cix + szz)),

oF m—1
=0 Y (i (oot a en?) =0,
860 i—0

m—1 m—1 m—1

COZ]+CIZXI+CZZXIZ_Z)71

i= i= i= i=

The second equation is generated in the same manner, as follows:

dE = 5
— =2 in(yi — (co +c1x +cx )),

i=0
oFE m—1
=0: xi(vi = (co+ c1x + c2x?)) =0,
dey i=0
m—1
Co Zx, + ¢ lez + Zx? = szyl

i=0 i= i= i=

We also obtain the third equation from similar steps as above

oE = 2 2
9 =-2 in (vi — (co + c1x + c2x?)),

i=0
OE el
— =0: inz(y,- — (c0+c1x+ch2)) =0,

m—1

conf+C1fo+szxf_Zx,2y:

i= =l i=

The three equations are formulated in matrix form, as follows:

[ m—1
Z 1 Z X Z Xl-z Z Vi
i=0 i=0 i i=0
m—1 m—1 m—1
Yxo o Yx o yx||al=| X
i=0 i=0 i i=0
m—1 m—1 m—1
PIEAEDIE DI Y yix}
=0 i=0 i=0 . Li=0 _

m—1 m—1 T M m—1

€o

(&)

247

(7.23)
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Equations (7.21) and (7.23) can be generalized into approximating a polynomial
of degree n. The least-squares method produces the following system of (n + 1) x
(n + 1) linear equations:

r m—1

m—1 . m—1
. n— n r m-—1 N
> 1 > X > X > X 3y
i=0 i=0 i=0 i=0 2. i
m—1 m—1 ) m—1 m—1 4l ml_:lo
n n
> X DX > X > X co D Viki
i=0 i=0 i=0 i=0 1 i=0
m—1 m—1 m—1 — Cn—1 m=1
n n+1 2n—2 2n—1 .xﬂ_l
Xi > X > X Xi Cn Z(:) Yiti
i=0 i=0 i=0 i=0 1=
m—1
m—1 m—1 m—1 m—1 n
n+1 n+2 2n—1 2n Z YiX;
> X > X > X DX L i=0 .
=0 =l i=0 i=0 —

(7.24)

Equation (7.24) is a generalization for fitting a polynomial of degree n into a set
m—1 _j

of m points using the least-squares approximation method. Letting S; = ) . x;
and v, = ZZ:ol ykx,i fori =0,1,...n,and j =0, 1,...,2n this equation can be
rewritten as
So S1 Sn—1 Sn Co Vo
S S S, Snt1 1 vy
= - 1. (7.25)
Sp—1 Su o Swm—2 S—1 || Cu-t Up—1
Sn o Snt1 San—1 San Cn Uy

As a word of caution, since the equation involves a power of zero, a value of x = 0
produces 0°, which should be treated as 1.

Algorithm 7.7. Least-Squares Method.
Given the points (x;, y;) fori =0, 1, ..., m;
Select the polynomial P(x) = co +c1x + -+ - + ¢, x";
Find ; = Y1) x{ and v; = 3"} wex} from Equation (7.25).
Solve the system of linear equations to find a; fori =0, 1, ..., n;

Example 7.7. Find a least-squares polynomial of degree 2 that approximates the
pOintS (.Xk, Yk) = {(_17 2)s (01 3)» (27 _])1 (57 1)}

Solution. In this problem, the number of points is m = 4, whereas the polynomial
degree is n = 2. The quadratic polynomial is P»(x) = co + c1x + c3x2, and the ob-
jective here is to find the values of ¢y, ci, and ¢;. From Equation (7.24),a3 x 3 system
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of equations is produced, as follows:

3 3 3 3
Z 1 Xi Z xi2 Z Vi
i=0 i=0 i=0 i=0

3 3 3 €o 3
Yxiooyxp o yx|lal=| X
i=0 i=0 i=0 c i=0

2

3 3 3 3
DIETEED SIS DES > yix}

L i=0 i=0 i=0 | Li=0 _

which becomes
4 6 30 co 5
6 30 134 c1 | =
30 134 642 fo) 23

Solving the above system of linear equations, we obtain ¢y = 1.339713, ¢; =
—1.698565 and ¢, = 0.327751. Therefore, the approximated polynomial is P3(x) =
1.339713 — 1.698565x + 0.327751x2.

7.6 VISUAL SOLUTION: CODE7

Code7. User Manual.

1. Left-click the points in the graphical area in the order from left to right.

2. Select a method from the menu for displaying the corresponding curve.

Development files: Code7 . cpp and Code7.h.

Our discussion on interpolation and approximation methods will not be complete
without looking at the visual interface of the problems. The project is called Code7,
and it displays curves from the points clicked on the displayed window. Curves can
be chosen from the methods of Lagrange, Newton’s divided-difference, cubic spline,
and least-squares.

Figure 7.4 shows a sample output from Code7 showing the Lagrange polynomial
that interpolates five points. The main window in the output is split into three regions.
The first region consists of the menu items from the four methods. Second is the input
region for the points, which also displays the curve from the problem. Third is a table
of values of x and their interpolated/approximated polynomial values P(x).
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" Code7: Curve fittings through I J =10] x|

7.450122

% P(x) f|
-4.423077 2.744186

i
0

1 -4.400481 2904591
2 -4.377885  3.062383
3 -4,355288 3.216684
4 -4.332652 3.367820
5 -4.3100%6 3.515812
6 -4, 287500 3.650684
7 4. 264904 3.802459
8 -4.242308  3.941159
a -4.219712 4076309
10 4197115  4.209431
11 4174519 4339048
12 -4.151923  4.465682
13 4129327  4.,589357

14 -4, 106731 4, 710096
15 -4.084135 4827220
15 -4.051538 4.942853
17 -4.038942 5.054917
18 4016346 5164135 |

FIGURE 7.4. Output from Code7 .

Input for the problem is made by left-clicking the mouse in the input region in the
order from left to right. A maximum of 20 points can be clicked in as the input points.
A curve corresponding to the selected method is generated by left-clicking an item
in the menu once input has been completed.

Figure 7.5 is a schematic drawing illustrating the computational steps in Code7.
The execution progress in Code7 is monitored through fStatus with £Status=0
indicating the pre-curve drawing stage and fStatus=1 when the curve has been
generated. The program starts with the initialization of variables and objects in the
constructor, CCode7 (). The initial display consists of the menu items and the input
region. Input is performed by left-clicking anywhere in the curve region in the order
from left to right. A click anywhere in the input region is recorded as an input point, and
a small rectangle is drawn at the point. The event is handled by OnLButtonDown ().
With at least two points drawn, a click at a menu item activates OnLButtonDown ()
again, and a call to the selected method is made. This changes the fStatus value
from O to 1, and a curve corresponding to the selected method is drawn. The solution
is displayed in the list view table and plotted as a graph in the input region.

Code7 consists of three files, Code7 . cpp and Code7 .h. The application is based
on a single class called CCode7, which is inherited from CFrameWnd. The main
variables and objects are organized into four structures, PT, MENU, CURVE, and OUTPUT.
Basically, PT has the same set of objects as before. A new addition is the array ipt,
which represents the plotted points from the mouse clicks. The array has the size of
nPt+1, where nPt is the total number of plotted points. Therefore, ipt is not the
same as pt. The latter is an array that represents all points that make up a curve. PT
is given as follows:
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l Start I
End

CCode7 ()
Initializes variables and

objects. Set fStatus=0. Lagrange () Results from the cal.culations
—={ Solves the problem using the updated in Onpaint (),
Lagrange method. ShowTable () and
DrawCurve (). Set
fStatus=1.
OnLButtonDlown () DDifference ()
Plots the points. L Solves the problem using the
Newton's divided-difference
method.
OnLButtonDown () CSpline () SolveSLE()
Selects a method for Solves the problem using Solves the system of
interpolating/approximating the the cubic spline method. linear equations.
points.
LSquare ()
—> Solves the problem using the
least-squares method.

FIGURE 7.5. Schematic drawing of the computational steps in Code7.

typedef struct
{
double x,y;

}PT;
PT *pt,*ipt,max,min,left,right;

OUTPUT represents the output items that are accessed through output:

typedef struct

{
CPoint hm,end;
CRect rc;
}OUTPUT;

OUTPUT output;

MENU and CURVE are structures that represent the menu and curve items. The
structures are accessed through menu and curve, respectively. The two structures are
the same as the ones discussed in Chapter 6. Hence, their contents and components
will not be discussed any more here.



252 INTERPOLATION AND APPROXIMATION

TABLE 7.1. Other variables and objects in CCode7

Variable/Object Type Description
maxPt int Maximum number of plotted points allowed.
(macro)
nMenultems int Total number of menu items.
(macro)
m int Total number of subintervals of x for drawing the
(macro) curve.
fStatus bool Flag whose values are fStatus=0 and fStatus=1,
indicating incomplete and complete inputs,
respectively.
fMenu int Flag for the menu whose values indicate the selected

method, fMenu=1 for bisection, fMenu=2 for false-point
position, fMenu=3 for Newton-Raphson, and fMenu=4

for secant.

ml,cl,m2,c2 double Conversion variables from the real coordinates to
Windows.

h double Width between the subintervals of x for drawing the
curve.

nPt int Actual number of plotted points from the mouse clicks.

idc int 1d for the control resources.

btn CButton Push button object called Compute.

table CListCtrl List view table for displaying the results from iterations.

Table 7.1 lists other main variables and objects in CCode7. The maximum num-
ber of points allowed to be plotted is 20, and the number is represented by a macro
called maxPt. The actual number of plotted points is the integer nPt whose ini-
tial value is 0. This value is incremented by one each time a point is clicked in
the input region. There are five items in the menu, and they are represented by
nMenultems. The selected item in the menu is identified through fMenu, where
fMenu=1 is the Lagrange method, fMenu=2 is the Newton’s divide-difference method,
fMenu=3 is the cubic spline method, £Menu=4 is the linear least-squares method,
and fMenu=5 is the cubic least-square method. Conversion variables from the real
coordinates to Windows are represented by m1, c1, m2, and c2. These variables
are declared to be global as they are called by more than one function in this
project.

Table 7.2 lists the functions in CCode7. Each interpolation and approxima-
tion method is represented by a function: Lagrange () for the Lagrange method,
DDifference() for the Newton’s divided-difference method, CSpline() for the
cubic spline method, and LSquare () for the linear and cubic least-squares methods.

Mouse’s Left-Click Event

In Code7, the left button click is an event that represents two separate jobs, selecting
an item in the menu and plotting the points in the input region. The two jobs are
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TABLE 7.2. Member functions in CCode7

Function Description

CCode7 () Constructor.

~CCode7 () Destructor.

Lagrange () Interpolates the plotted points using the Lagrange method.

DDifference() Interpolates the plotted points using the Newton’s
divided-difference method.

CSpline() Interpolates the plotted points using the cubic spline method.

LSquare () Approximates the plotted points using the linear and cubic
least-squares methods.

DrawCurve () Draws the curve y = f(x) in the given interval.

ShowTable () Creates a list view table to display the plotted points.

OnLButtonDown () Responds to ON_WM_LBUTTONDOWN, which allows points to be
clicked in the input region and a menu item to be selected.

OnPaint () Displays and updates the output in the main window.

recognized inside OnLButtonDown() through menu[k].rc.PtInRect(px) and
curve.rc.PtInRect (px), respectively. The first option causes the program to call
a method for interpolating or approximating the points and to produce the desired
output. The second option invalidates the main window by drawing a small rectangle
for each plotted point. The code fragments for this function are given as

void CCode7: :0nLButtonDown(UINT nFlags,CPoint px)

{

CRect rc;

for (int k=1;k<=nMenultems;k++)
if (menu([k].rc.PtInRect(px))
if (nPt>1)

{

fMenu=k;
table.DestroyWindow() ;
switch(fMenu)
{
case 1:
Lagrange(); break;
case 2:
DDifference(); break;
case 3:
CSpline(); break;
case 4:
case b5:
LSquare(); break;
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fStatus=1;
ShowTable () ;
InvalidateRect (curve.rc);
¥
if (curve.rc.PtInRect(px))
{

ipt [nPt] .x=(px.x-cl)/ml;

ipt [nPt] .y=(px.y-c2)/m2;

rc=CRect (px.x,px.y,px.x+5,px.y+5);

InvalidateRect (rc);

nPt++;

Main Window Update

The main display is constantly updated in OnPaint () whenever a point is clicked
or the menu is activated. A point click in the input area causes a small rectangle to
be drawn, whereas a click on the menu activates the selected method for solving the
problem and displays the curve in the main window. The code fragments are

void CCode7: :0nPaint ()
{
int i,k;
CPaintDC dc(this);
CString str;
CPoint px;
CRect rc;
dc.SetBkColor (RGB(150,150,150)) ;
dc.SetTextColor (RGB(255,255,255)) ;
dc.SelectObject (Arial80) ;
for (i=1;i<=nMenultems;i++)
{
dc.FillSolidRect (&menu([i] .rc,RGB(150,150,150));
dc.TextOut (menu[i] .hm.x+5,menu(i] .hm.y+5,menu[i] .item);
}
dc.SetBkColor (RGB(255,255,255));
dc.SetTextColor (RGB(100,100,100));
dc.Rectangle(curve.rc);

// Draw & label the x,y axes

CPen pGray(PS_SOLID,1,RGB(100,100,100));
dc.SelectObject (pGray) ;

px=CPoint (m1*0+c1,m2*min.y+c2); dc.MoveTo(px) ;
px=CPoint (m1*0+cl,m2*max.y+c2); dc.LineTo(px);
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px=CPoint (m1*left.x+cl,m2*0+c2); dc.MoveTo(px);

px=CPoint (m1*right.x+c1,m2*0+c2); dc.LineTo(px);
dc.SelectObject (Arial80) ;

str.Format("%.01f",left.x); dc.TextOut(px.x,px.y,str);
str.Format ("%.01lf",right.x); dc.TextOut(px.x-10,px.y,str);
if (fMenu==0)

{
px.x=ml1*ipt [nPt-1] .x+cl;
px.y=m2*ipt [nPt-1] .y+c2;
rc=CRect (px.x,px.y,px.x+5,px.y+5) ;
dc.Rectangle(rc);
}
if (fStatus)
{
for (i=0;i<=nPt-1;i++)
{
px.x=m1*ipt[i] .x+cl;
px.y=m2*ipt[i] .y+c2;
dc.Rectangle(px.x,px.y,px.x+5,px.y+5);
}
DrawCurve() ;
}

Lagrange’s Solution

Lagrange’s method is handled by Lagrange (). The function performs the computa-
tion using Algorithm 7.1. The code segment is given as follows:

void CCodeT7::Lagrange()
{
int i,3,k;
double L, h=(ipt[nPt-1].x-ipt[0].x)/m;
pt[0] .x=ipt [0] .x;
pt[0] .y=ipt[0].y;
for (i=0;i<=m;i++)

{
pt[i].y=0;
for (j=0;j<=nPt-1;j++)
{
L=1;
for (k=0;k<=nPt-1;k++)

if (j!=k)
L*= (pt[i].x-ipt[k].x)/
(ipt[j].x-ipt[k].x);
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ptlil.y += ipt[j].y*L;
}
if (i<m)
pt[i+1] .x=pt [i] .x+h;

The Lagrange operator in this function is represented by L, and calculations are
made based on the product in Equation (7.4). Interpolation is obtained through the
following code segment:

for (i=0;i<=m;i++)

{
pt[il.y=0;
for (j=0;j<=nPt-1;j++)
{
L=1;
for (k=0;k<=nPt-1;k++)
if (j!=k)
L *= (pt[i].x-iptl[k].x)/
(ipt[j].x-ipt[k].x);
ptlil.y += ipt[j].y*L;
}
}

Newton’s Divided-Difference Solution

Newton’s divided-difference method is slightly simpler to execute than the Lagrange
method as it does not require the operator L(x) to be determined from the total number
of points. The code fragments for this method, as outlined in Algorithm 7.2, are written
inDDifference() as

void CCode7::DDifference()
{
int 1i,j,k;
double *xd,product;
double h=(ipt[nPt-1].x-ipt[0].x)/(double)m;
d=new double *[maxPt+1];
for (i=0;i<=maxPt+1;i++)
d[i]=new double [maxPt+1];
pt[0] .x=ipt [0] .x;
for (i=0;i<=nPt-1;i++)
dlo] [il=ipt[il.y;
for (k=1;k<=nPt-1;k++)
for (i=0;i<=nPt-1-k;i++)
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d[k] [i]=(d[k-1] [i+1]-d[k-1]1 [i]1)/
(ipt [k+i] .x-ipt[i].x);
for (i=0;i<=m;i++)

{
pt[i].y=d[0] [0];
for (j=1;j<=nPt-1;j++)
{
product=1;
for (k=0;k<=j-1;k++)
product *= (pt[i].x-ipt[k].x);
ptlil.y += d[j][0]*product;
}
if (i<m)
pt[i+1] .x=pt[i].x+h;
}

The solution in the divide-difference method is provided by Equation (7.7), and
the code for this equation is given by

for (i=0;i<=m;i++)

{
pt[i].y=d4[0] [0];
for (j=1;j<=nPt-1;j++)
{
product=1;
for (k=0;k<=j-1;k++)
product *= (pt[i].x-ipt[k].x);
ptlil.y += d[j] [0]*product;
¥
if (i<m)
pt[i+1] .x=pt[i].x+h;
}

Cubic Spline Solution

The cubic spline solution is provided through CSpline (). The function has been
developed based on Algorithm 7.6, and the following code segment lists the full
contents of this function:

void CCodeT7::CSpline()

{
int 1i,j,k;
double *e,*f,*g,*r,*w;
double h;
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e=new double [maxPt+1];
f=new double [maxPt+1];
g=new double [maxPt+1];
r=new double [maxPt+1];
w=new double [maxPt+1];

// form the tridiagonal system

e[0]=0; e[1]=0;

£[0]=0; gl[0]=0; r[0]=0;

g[nPt-2]=0;

for (k=1;k<=nPt-2;k++)

{
el[k+1]=ipt [k+1] .x-ipt [k] .x;
f[k]=2"(ipt [k+1] .x-ipt[k-1].x);
glkl=ipt [k+1] .x-ipt [k] .x;
r[k]=6*((ipt [k+1] .y-ipt [k].y)/(ipt [k+1] .x-ipt [k] .x)

+(ipt [k-1]1 .y-ipt [k].y)/(ipt [k] .x-ipt [k-1].x));
}

// Thomas algorithm to solve the system

w[0]=0; w[nPt-1]1=0;

for (k=2;k<=nPt-2;k++)

{
elkl/=f[k-11;
f[k]-=e[k]*g[k-1];

}

for (k=2;k<=nPt-2;k++)
r[k]-=e[k]*r[k-1];

w[nPt-2]=r [nPt-2]/f [nPt-2];

for (k=nPt-3;k>=1;k--)
wlk]=(r[k]-g[k]*wlk+1])/f [k];

for (k=1;k<=nPt-1;k++)

{
Alk]=w[k-1]/(6*(ipt [k] .x-ipt [k-1] .x));
Blkl=w[k]/(6*(ipt [k].x-ipt[k-1].x));
Clk]=ipt [k-1].y/(ipt [k] .x-ipt [k-1] .x)

-wlk-1]/6*(ipt [k] .x-ipt [k-1] .x);
D[k]=ipt[k].y/(ipt[k].x-ipt[k-1].x)
-wlk]/6* (ipt [k] .x-ipt [k-1].x);

}

h=(ipt [nPt-1] .x-ipt[0] .x) /m;

pt [0] .x=ipt [0] .x;

pt[0].y=ipt[0].y;

for (i=0;i<=m;i++)
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{
for (k=1;k<=nPt-1;k++)
if (pt[i].x>=ipt[k-1].x && ptl[il.x<=ipt[k].x)
pt[i].y=A[k]*pow(ipt [k] .x-pt[i].x,3)
+B[k]*pow(pt [1] .x-ipt [k-1] .x,3)
+C[k]1*(ipt [k] .x-pt [i] .x)
+D[k]* (pt[i] .x-ipt [k-1].x);
if (i<m)
pt[i+1] .x=pt[i] .x+h;
}

ShowTable() ;
delete e,f,g,r,w;

The main objective in CSpline () is to solve for the constants Ay, By, Cy, and Dy,
in Equation (7.13), for k = 1,2, ..., m — 1. The solution is provided by Equations
(7.14), which in turn requires the evaluation of wy, fork = 1,2, ..., m — 1. In finding
the values of wy, two main steps are involved. The first step is the formation of the
tridiagonal system of linear equations, as given by Equation (7.16). The second step
is the solution to the linear system using any suitable method.

The tridiagonal system of linear equations is formed based on Equations (7.17a),
(7.17b), (7.17¢), and (7.17d), as follows:

// form the tridiagonal system
e[0]=0; e[1]=0;
£[0]=0; gl[0]=0; r[0]=0;

g[nPt-2]=0;
for (k=1;k<=nPt-2;k++)
{

e[k+1]=ipt [k+1] .x-ipt [k] .x;

f[k]=2*(ipt [k+1] .x-ipt [k-1].%);

glkl=ipt [k+1] .x-ipt [k] .x;

r[k]1=6*((ipt [k+1].y-ipt [k].y)/(ipt [k+1] .x-ipt [k] .x)
+(ipt[k-1].y-ipt[k].y)/(ipt [k] .x-ipt [k-1].x));

The tridiagonal system of linear equations is solved using the Thomas algorithm,
as discussed in Chapter 5. The code fragments are given by

// Thomas algorithm to solve the system
w[0]=0; w[nPt-1]1=0;
for (k=2;k<=nPt-2;k++)
{
elk]/=f [k-1];
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f[k]-=elk]*g[k-1];
}
for (k=2;k<=nPt-2;k++)
r[k]-—=el[k]*r[k-1];
w[nPt-2]=r [nPt-2]/f [nPt-2];
for (k=nPt-3;k>=1;k--)
wlk]=(r[k]-g[k]*wlk+1]) /£ [k];

The computed values of wy are applied to determine the values of the constants
Ay, By, Cy, and Dy in Equations (7.14), as follows:

for (k=1;k<=nPt-1;k++)
{
Alk]=w[k-1]1/(6* (ipt [k] .x-ipt [k-1].%));
Blkl=wlk]/(6*(ipt [k] .x-ipt[k-1].x));
Clk]=ipt[k-1].y/(ipt [k] .x-ipt [k-1].x)
-wlk-11/6*(ipt [k] .x-ipt [k-1].%);
D[k]=ipt[k].y/(ipt [k].x-ipt [k-1].x)
-w[k]/6*(ipt [k] .x-ipt [k-1] .x);

The rest of the code in CSpline () generates (x;, y;) fori =0, 1, ..., m for plot-
ting the cubic spline. The code is given by

for (i=0;i<=m;i++)

{
for (k=1;k<=nPt-1;k++)
if (ptl[i].x>=ipt[k-1].x && pt[i].x<=ipt[k].x)
pt[il.y=A[k]*pow(ipt [k] .x-pt[i].x,3)
+B[k]*pow(pt [i] .x-ipt [k-1].x,3)
+C[k]*(ipt [k] .x-pt [i] .x)+D[k]* (pt[i] .x
-ipt [k-1].x);
if (i<m)
pt[i+1] .x=pt[i] .x+h;
}

Least-Squares Solution

In the least-squares approximation, linear and cubic polynomials are illustrated in
items 4 and 5 in the menu. A single function called LSquare () represents the solution
to both problems, as the only difference between them is the size of the systems of
linear equations generated, two and four, respectively. The solution is provided by
Algorithm 7.7, and the code fragments are given by
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void CCodeT7::LSquare()

{

int i, j,k,sa,sv;

double **a,*b,*S,*v,sum;

double h=(ipt[nPt-1].x-ipt[0].x)/(double)m;
pt[0] .x=ipt [0] .x;

pt[0] .y=ipt[0].y;

max.y=pt[0] .y; min.y=pt[0].y;

switch (fMenu)

case 4: sa=2; sv=1; break;
case 5: sa=6; sv=3; break;
}
a=new double *[sa+1];
S=new double [sa+1];
b=new double [sv+1];
v=new double [sv+1];
for (i=1;i<=sa+1;i++)
al[il=new double [sa+1];
for (k=0;k<=sa;k++)
{
S[k]1=0;
if (k<=sv)
v[k]=0;
}
for (k=0;k<=sa;k++)
for (i=0;i<=nPt-1;i++)

x==0&&k==0) 71 :pow(ipt [i] .x,k));
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{
S[k] += ((ipt[i].x==0&&k==0)71:pow(ipt[il.x,k));
if (k<=sv)
v[k] += ipt[i].y*((ipt[i].
}

//Form the SLE
for (i=1;i<=sv+1;i++)

{
for (j=1;j<=1i;j++)
{
alil [j1=S[i+j-2];
aljl[il=alil[j 1;
}
blil=v[i-1];
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// Solve the SLE
double ml,Sum;
for (k=1;k<=sv;k++)
for (i=k+1;i<=sv+1;i++)

{
mi=ali] [k]/alk] [k];
for (j=1;j<=sv+1;j++)
alil [j1 -= m1*alk] [j];
b[i] -= m1*b[k];
}
for (i=sv+1;i>=1;i--)
{
Sum=0;
c[i-11=0;
for (j=i;j<=sv+1;j++)
Sum += alil [j1*c[j-11;
c[i-1]1=(b[i]-Sum)/ali] [i];
}
for (i=0;i<=m;i++)
{
if (fMenu==4)
ptl[il.y=c[0]+c[1]*pt[i].x;
if (fMenu==5)
pt[il.y=c[0]+c[11*pt[i] .x+c[2]*pow (pt[i] .x,2)
+c[3]*pow(pt[i] .x,3);
if (i<m)
pt[i+1] .x=pt[i].x+h;
}

In the above code, linear polynomial approximation is recognized through the as-
signment fMenu=4, whereas cubic approximation is recognized through fMenu=5.
Two major steps are involved in the least-squares method. The first step is the forma-
tion of the system of linear equations, and the second is the solution to this system
using any suitable method. Linear approximation is represented by y = ¢y + ¢ x.
There are two unknowns to be determined from this equation, and this leads to the
formation of a 2 x 2 system of linear equations, given by

ISR
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Similarly, a cubic polynomial approximation in y = ¢ + c1x + c2x? + c3x° re-
quires the formation of a 4 x 4 system of linear equations, given as

So
M
$
S3

S
$2
S3
S4

S
S3
S4
Ss

S’; Co Vo
S4 | _ v
S5 C - %)
Se | |c3 U3

In LSquare (), the size of the matrix is held by sa, which receives its assignment
from fMenu. From this value, the values of S; and v; can be determined, and this leads
to the formation of the system of linear equations. The code for the above equation

is given by

for (k=0;k<=sa;k++)
{
S[k]=0;
if (k<=sv)
v[k]=0;
}
for (k=0;k<=sa;k++)

for (i=0;i<=nPt-1;i++)

{

S[k] += ((ipt[i].x==0&&k==0)71:pow(ipt[i].x,k));

if (k<=sv)

vkl += ipt[il.y*((ipt[il]

}

//Form the SLE
for (i=1;i<=sv+1;i++)

{

for (j=1;j<=i;j++)

{

ali] [j1=S[i+j-2];
aljl[il=alil [j];

}
blil=v[i-1];

.x==0&&k==0)71:pow(ipt [i] .x,k));

The system of linear equations is then solved using the Gaussian elimination method
to produce the values of ¢;, as shown in the following code segment:

// Solve the SLE
double ml,Sum;
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for (k=1;k<=sv;k++)
for (i=k+1;i<=sv+1l;i++)

{
mi=a[i] [k]/alk] [k];
for (j=1;j<=sv+l;j++)
alil[j] -= m1*alk][j];
bl[i] -= m1*b[k];
}
for (i=sv+1;i>=1;i--)
{
Sum=0;
cl[i-11=0;
for (j=i;j<=sv+1;j++)
Sum += al[i] [j1*c[j-11;
c[i-11=(b[i]-Sum)/a[i] [i];
}

The final section of LSquare () generates the points (x;, y;) fori =0, 1, ...

for generating the corresponding curves.

for (i=0;i<=m;i++)

{
if (fMenu==4)
pt[il.y=c[0]+c[1]*pt[i] .x;
if (fMenu==5)
pt[il.y=c[0]+c[1]1*pt[i] .x+c[2]*pow (pt[i].x,2)
+c [3]*pow(pt[i] .x,3);
if (i<m)
pt[i+1] .x=pt[i].x+h;
}
7.7 SUMMARY

,m

Interpolation and approximation concepts are widely used in science and engineering
applications such as in data analysis, curve and surface fittings, and forecasting. The
output from interpolation and approximation is often expressed as a polynomial that

becomes the generalization to the problem.

In this chapter, interpolation and approximation have been illustrated as polyno-
mials and display as curves. The techniques discussed are the Lagrange, Newton’s
divided-difference, cubic spline, and least-squares methods. Each of these methods
has its strength and weaknesses in interpolating or approximating the points depend-
ing on the objectives. For example, in producing low-degree polynomials, it is wise

to deploy the least-squares or spline fitting methods.
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Interpolation and approximation techniques are used widely in computer graphics
and computer-aided designs (CAD). In computer graphics, interpolation and approxi-
mation contribute to producing graphs that provide the relationship between the given
points. In computer-aided designs, various bodies and structures are constructed based
on interpolative and approximated techniques. In either case, interpolation and ap-
proximation are regarded as important tools for modeling and simulation.

NUMERICAL EXERCISES

1. Apply the Lagrange, Newton’s divided-difference and cubic spline methods for
interpolating the following sets of data:

a. {(0,3),(1,5), 4, =D}
b. {(0,3),(1,5), 4, —1), (5, 0)}.
c. {(0,3),(1,5), (2, —-1), (3, 0)}.

2. The chapter discusses interpolation methods using polynomials only. It is also
possible to use other functions, including nonpolynomials in interpolation. Find
the values of @ and b in f(x) = asinx + b cos x, which interpolates the points
(0,0.5) and (7 /2, —0.3).

3. Do some research to study the properties of a spline of degree two or
quadratic spline. Hence, find the quadratic spline that interpolates the points
{(0,3),(1,5), (4, —1), (5, 0)}.

4. Use the Stirling’s method to approximate the value of P(1.5) from a data set given
by {(07 3)’ (15 5)7 (27 _1)9 (37 0)}'

PROGRAMMING CHALLENGES

1. Run Code7 to check for the existence of at least one root of the functions in the
given intervals in the following problems.

2. CodeT produces curves based on points clicked in the rectangular region provided
in the window. This approach provides an easy mode of input for the user, but at the
same time, a difficulty arises where it is not possible to click the exact points using
a mouse. To overcome this difficulty, it is wise to provide another interface where
input for the points is allowed using edit boxes. Improve on Code7 by adding this
mode of input to the interface.

3. In Code7, the points for plotting the curves must be plotted in the order from
left to right only. Breaking this rule will produce some undesirable results on the
generated curve. Improve on the code to allow the points to be plotted from any
direction.
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4. A quadratic spline, instead of a cubic spline, may prove to be a better choice in
interpolating points for producing a low-degree polynomial. Find some suitable
references for studying the properties of this method, and produce a program for
generating its curve.

5. The Newton’s forward-difference and backward-difference methods and Stirling’s
method are based on equal-width subintervals. Devise a program for these methods
using the mouse clicks as their input. The input should start with a single interval
whose left and right end points are marked through the mouse clicks. The program
then divides the intervals into m equal-width subintervals automatically where m
in the input value is supplied by the user.
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8.1 INTRODUCTION

The derivative of a function gives a clear indication of the rate of increase or decrease
of the function with respect to its domain. The rate of increase or decrease of a
function contributes to the overall understanding of a system that is governed by such
parameters. In general, the derivatives of a function contribute to the modeling of
a given problem, which describes the properties and dynamics of the elements in
the problem. For example, in studying the electrostatic field properties of an area,
the solution requires a graphing of the first and second derivatives of the points in
the area. We will discuss some useful properties of the derivatives of a function for
modeling in the next few chapters.

The analytical derivative of a function f(x) with respect to the variable x is
denoted by f'(x) or Z—fc. This derivative returns the exact solution in the form of
a function of x. For example, if f(x) = x> — sinx, then its analytical derivative is
f/(x) =2x — cos x.

By default, a digital computer does not have the processing capability to produce
the analytical derivative of a function. However, this analytical solution can still be
produced through a software that stores a list of primitive functions and its derivatives
in a numerical database. On the computer, the analytical solution to a derivative is a
complex problem that requires several recursive calls to the functions in its numerical
database. Symbolic computing is one area of study that addresses this problem, which
involves the construction of a database of mathematical functions for generating the
analytical solution to their derivatives.

The computer gives a good approximation to the derivatives of a function based on
some finite points in the given domain. A numerical approximation to the derivative

267
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of as a function f(x)is a solution expressed as a number, rather than as a function of x.
The domain of f(x) is first decomposed into its discrete form, x; fori = 1,2, ..., m,
and the derivatives are computed at these points based on their relative points.

An integral of a function does the opposite of derivative. Integral returns the
differentiated function to its original value. A numerical approach for finding the
integral of a function is needed in cases where the integral is difficult to compute.

In this chapter, we will discuss several numerical approaches to finding the deriva-
tives and integral of a function. The approximated values returned from the methods
are reasonably close to the exact values and are acceptable in most cases.

8.2 NUMERICAL DIFFERENTIATION

The starting point in finding a derivative is the nth-order Taylor series expansion of a
discrete function y; = f(x;) given as follows:
h h2 h3 h
~ ’ (n)
Yit1 R yi + 1—!)’,‘/ + 2—!)’5” + 5)’[” +-t Eyin . (8.1)
Equation (8.1) gives the one-term forward expansion of y = f(x). In this equation,
h = Ax is the width of the x subintervals that are assumed to be uniform. The term
yi+1 = f(xi+1) above is equivalent to y; 1 = f(xi+1) = f(x;i + h).
Figure 8.1 shows the relative position of the discrete points of f(x) in the interval
Xi—p < x < x;4. Taking only up to the second derivative term, this equation reduces

to
2

h h
Yir1 2 yi + FY{ + Ey’{/' (8.2a)

S(xii2)

S (xier)

e >/

S(xip)
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2 —//

Xi2 Xi-1 X Xi+1 Xis2

FIGURE 8.1. Relative position of discrete points of f(x) in the Taylor series expansion.
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Obviously, the one-term forward expansion in Taylor series involves x;; = x; +
h. In a similar manner, we can define the two-term forward expansion by replacing &
with 2h, or x; 1o = x; + 2h, to produce

o,
Yit2 X yi + 1—!)’[ + o0

h)?* , 2h ,  4n*

oy Vi =Yk it i (8.2b)
It follows that the one-term backward expansion is obtained by replacing & with

—h,or x;—y = x; + (—h) = x; — h, to produce

~ (_h) ’ (_h)2 " o__ h / h? " 8.2
y571~yi+T)’i+2—!)’,’—yt—l—!yﬁ‘ay,w (8.2¢)
Subsequently, the two-term backward expansions of y = f(x) involve x;_, =
X; + (—=2h) = x; — 2h and are given by

_on —2h)? 2h 4h?
: T e ) (8.2d)

Yi-2 X yi + TR =Yi— T N Vi

The simplest rule for the first derivative is obtained by taking y! as a subject in the
first two terms of Equation (8.1). It produces the forward-difference rule for the first
derivative,

h /
Vi1 * yi + —1)’,"

yl/ ~ yiJrlh_ Yi ) (833)

The forward-difference rule for the second derivative is obtained by subtracting twice
Equation (8.2¢) from Equation (8.2d) and by simplifying the terms to produce

yo Yit2 = 2yip1 + Yi

/ - (8.3b)

There is also the backward-difference rule for the first derivative, obtained by
taking y/ as a subject in the first two terms of Equation (8.2c), to produce

r o Vi~ Yi-1
VR

(8.4a)
Similarly, subtracting twice Equation (8.2c) from Equation (8.2d) gives the backward-
difference rule for the second derivative:

= (8.4b)

yi A

As the names suggest, the forward-difference and backward-difference rules have
the disadvantage in that they are bias toward the forward and backward points, re-
spectively. A more balanced approach is the central-difference rules, which consider
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both forward and backward points. Subtracting Equation (8.2a) from (8.2c) and sim-
plifying terms, we obtain the central-difference rule for the first derivative,

;o Yitl T Yi-1

; T (8.5a)

By adding Equations (8.2a) and (8.2c) and simplifying the terms, we obtain the
central-difference rule for the second derivative,

v Vil = 2i + yici
Wom e (8.5b)
Example 8.1. Given y = x sinx, find y’ and y” at the points along 0 < x < 2 whose
subintervals have an equal width given by & = 0.3333 using the forward, backward,
and central-difference methods.

Solution. In this problem, m = (2 — 0)/.3333 = 6. The analytical derivatives are
given by ¥y’ = sinx + x cosx and y” = 2cosx — x sinx. Table 8.1 plots the values
of x; and y; fori =0, 1, ..., 6. The analytical derivatives at these points are shown
in the fourth and fifth columns of the table.

Ati =0, y, and yj can be evaluated using the forward-difference rules using
Equation (8.3a) and (8.3b):

’ Y1 — Yo 0.1090 — 0
~ - = 0.3270,
Yo h 03333

p_ Y2 =2y +y 04122 —2(0.1090) 4+ 0

~ _ = 1.7481.
Yo 2 0.3333?

It is not possible to evaluate y, and y; using the backward and central-difference rules
as both methods involve the terms y_; and y_,, which do not exist. The results at
other points are shown in Table 8.1. Through comparison with the analytical (exact)
method, the central-difference method produces the closest approximations for the
derivatives.

TABLE 8.1. The numerical results from Example 8.1

Analytical Forward- Backward- Central-
Solutions difference difference difference
X Vi ¥ v/ i v/ v v/ i ¥/
0 0 0 2 0.3270  1.7481 void void void void
0.3333  0.1090 0.6421 1.7809  0.9097 1.1342 0.3270 void 0.6183 1.7481
0.6667 0.4122 1.1423 1.1594  1.2877 0.2277  0.9097 1.7481 1.0987 1.1342

1.000 0.8414 1.3818 0.2391 13636 —0.8228 1.2877 1.1342 1.3257 0.2277
1.3333  1.2959 1.2856 —0.8255 1.0894 —1.8319 13636 0.2277 1.2265 —0.8228
1.6667 1.6590 0.8358 —1.8515 0.4788 void 1.0894 —0.8228 0.7841 —1.8319
2.000 1.8186 0.0770 —2.6509  void void 0.4788 —1.8319  void void

NN AW = O
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8.3 NUMERICAL INTEGRATION

An integral of the form fa b f(x) dx in the interval a < x < b has many applications,
especially in science and engineering. In its fundamental form, the integral evalu-
ates the area enclosed between the function f(x) and the x-axis (see Figure 8.2).
Area in this sense is a symbolic represention of many other quantities and problems
in engineering such as moment, volume, mass, density, pressure, and temperature.
Therefore, a numerical solution to a definite integral contributes as part of the whole
solution to a problem.

The exact methods for evaluating definite integrals have been widely discussed in
elementary calculus classes. Some popular methods involve techniques such as direct
integration, substitutions, integration by parts, partial fractions, and substitutions with
the use of trigonometric functions. However, not all definite integral problems can
be solved using such methods. This may be the case when the function f(x) is too
difficult to integrate, or in the case where f(x) is given in the form of a discrete
data set. Furthermore, it may not be possible to implement the exact method on
the computer as the computer does not have the analytical skill like a human does.
Therefore, approximations using numerical methods may prove to be an alternative
approach and practical for implementation here.

Numerical solutions for evaluating definite integrals are obtained using several
methods. Some of the most fundamental methods include the trapezium, Simpson,
Simpson’s 3/8, and Gaussian quadrature methods. We discuss these methods in this
section.

Trapezium Method

The trapezium method is a classic technique for approximating the definite integral
of a function fa b f(x) dx inthe interval @ < x < b. As the name suggests, the method

S(a)

J®)

JS®)

a b

FIGURE 8.2. The area under the curve between f(x) and the x-axis.



272 DIFFERENTIATION AND INTEGRATION

is based on an approximation of the area under the curve between the function and
the x-axis as several trapeziums taken over some finite subintervals.

In the trapezium method, the x interval in a < x < b is divided into m equal-
width subintervals, each with width 4. A straight line is connected from (x;, f(x;)) to
(xi+1, f(x;+1))in the subinterval [x;, x; ], and this forms a trapezium with f(x;)and
f(x;+1) as the parallel sides whose distance between them is 4. The area under the
curve in this subinterval is then approximated as the area of the trapezium, given as

Xit1

h
fx)dx ~ E(f(xi) + f(Xit)-

Xi

With m subintervals, L lh f(x)dx is approximated as the sum of all areas of the
trapeziums, given as

b m—1 /’l
fa fx)dx ~ ; 2 (FG) + f(xisn)
_h

= 2[f(xo) + fCm) +2{(f ) + fO2) + -+ fm-D}]. (8.6)

Equation (8.6) gives the trapezium method for finding the definite integral of a
function f(x) in the interval from x = a to x = b with m equal subintervals. The
method is illustrated in Figure 8.3 using four equal subintervals. From the figure, it is
clear that fxfﬁ f(x)dx forxy < x < x4isaproblem in finding the area under the curve
in the given interval. The interval in this problem is divided into four subintervals
with m = 4 and h = (x4 — x¢)/m. The total area is then approximated as the sum of

S (xo)

J(x3)

f(x4)

S )

> X
X0 X X, X3 Xy

FIGURE 8.3. The trapezium method with four subintervals.
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the subareas A; fori = 1, 2, 3, 4, given as
b
/ f)ydx ~ A+ A+ Az + Ay

h h h h
= E(f(xo) + f(x) + E(f(xl) + f(x2) + E(f(xz) + f(x3) + E(f(xs) + f(x4))

h
= E[f(x()) + fxa) +2(f(x1) + f(x2) + fx3))]

Example 8.2. Find f(; x sin x dx using the trapezium method with nine subintervals.

Solution. In this problem,m = 9, xo = 0, and x,, = 3. The width of each subinterval

ish= % = 0.333333. With nine subintervals, there are 10 points on y = f(x) =

x sin x, and their values are shown in the following table:

i 0 1 2 3 4 5 6 7 8 9

x; 0 0.3333 0.6667 1.0000 1.3333 1.6667 2.0000 2.3333 2.6667 3.0000
yi 0 0.1090 0.4122 0.8414 1.2959 1.6590 1.8186 1.6872 1.2194 0.4234

Therefore, f03 xsinx dx ~ %[yo +y+20n+y2+y3+ya+ys+ Yo+ yi+ys)l=
3.0846.

Simpson’s Method

The trapezium method uses a straight line approximation on two successive f(x)
values in the subintervals for evaluating fa b f(x)dx for a < x < b. A straight line
approximation may not produce a good solution especially when the number of subin-
tervals is small, because a straight line does not approximate a given curve well. From
the large error imposed, the trapezium method requires a large number of subintervals
in order to produce a good solution.

The accuracy of the trapezium method can be improved by replacing the straight
line with a quadratic function. This idea makes sense as a quadratic curve lies closer
to the real curve in the given function than a straight line. Since a quadratic function
requires three points for interpolation, the method suggests pairs of two subintervals
in the approximation. The approach is called the Simpson method.

As the Simpson method requires two subintervals in each pair, the total number of
subintervals in the given interval must be an even number. Consider the subintervals
[x;, x;41] and [x;41, x;4+2], which involve the points, (x;, f(x;)), (xi+1, f(xi11)), and
(xi42, f(xi42)). Figure 8.4 shows this scenario with the dotted curve as the quadratic
approximation to the real curve. This curve has an equation given by

y=ay+ax + azxz,
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Vi

{1 { {1 > X

Xi Xi+1 Xiv2

FIGURE 8.4. Quadratic polynomial fitting on two subintervals in the Simpson’s method.

where ay, aj, and a, are the constants that are to be determined. The quadratic curve
interpolates (x;, y;), (Xi+1, yi+1) and (x;42, yi+2). This produces a system of linear
equations, given as

yi =aop+ax; + azxiz,

2
Yit1 = ao + aixiy1 + axxi, g,

2
Yit2 = ao + aiXiy2 + axx;,.

The above system is solved to produce the Simpson’s formula, given by

Xit2 h
/ fx)dx ~ 3 i +4yip1 + Yiv2). (8.7)

Equation (8.7) can be extended into the case of m even subintervals for x = xg
to x = x,,. The total area is found as a sum of m /2 subareas, where each subarea
combines two subintervals. Applying Equation (8.7), we obtain the Simpson’s method
for m subintervals, as follows:

Fm h h h
/ S(x)dx =~ g(yo+4y1 +y)+ g(yz +a4y3+y)+ -+ g(ym—Z +4Yu—1+Ym)
X0

h
= g[(y0+y;n)+4()’1+Y3+ o YD) F 22+ ya+ o Fym—2)]

(8.8)

Example 8.3. Find f03 x sin x dx using the Simpson’s method with nine subintervals.
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Solution. In this problem, m =9, xo =0, x,, = 3, and h = % = 0.333333. The

problem refers to the same table as in Example 8.1. Therefore,

3
h
/ f@)dx ~ =100 +y0) + 41 + ¥3 +y5 +y7) + 2002 + ya + Y6 + 3s)]
0
= 3.0111.

An extension to the Simpson’s method is the Simpson’s 3/8 method. In this method,
three subintervals are combined to produce one subarea based on a cubic polynomial.
This approach requires four points for each subarea, and therefore, it provides a more
accurate approximation to the problem. With three subintervals for each subarea, the
total number of subintervals in the Simpson’s 3/8 method becomes a multiple of three.

Interpolation over four points for each subarea in the Simpson’s 3/8 method pro-

duces a system of four linear equations. The interpolating curve is a cubic polynomial
given by

y =ay+ax + azxz + a3x3,

where ag, a1, and a, are constants. The above curve interpolates (x;, ¥;), (Xi+1, Yi+1)»
(xi+2, Yi+2), and (x;13, ¥;i+3) to produce an approximated subarea, given by

Xi43 3h
/ f)dx ~ 3 i +3yip1 +3yir2 + Yit3) . (8.9)

With m subintervals, Equation (8.9) can be extended to produce

T 3h
/ f(X)dx%g[(yo+ym)+2(y3+y6+---+ym_3)
X0

+3yi+y2+yatys++yu2t+ym-)]. (8.10)

Example 8.4. Find f03 x sin x dx using the Simpson’s 3/8 method with nine subin-
tervals.

Solution. In this problem, m =9, xo =0, x,, = 3, and h = % = 0.333333. The

problem refers to the same table of values as in Example 8.1. Therefore,

/ fx)dx ~ (yo + y9) +2(y3 + y6) + 3(y1 + y2 + Y4 + y5 + yo + y7)]

= 3.1112.
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TABLE 8.2. Legendre polynomials

n Py (x)

0 1

1 X

2 GBx2—1)/2

3 (5x% —3x)/2

4 (35x* — 30x% +3)/8

5 (63x3 — 70x3 4+ 15x)/8

6 (231x% — 315x* 4 105x2 — 5)/16

Gaussian Quadrature

The three methods outlined above are applicable to problems whose data are normally
given in discrete form. Quite often data are given in the form of a function f(x) whose
integral is difficult to find. A method called the Gaussian quadrature specializes in
tackling this kind of problem. The method is based on an approximation on Legendre
polynomials.

A Legendre polynomial of degree n is given in the form of an ordinary differential
equation of order n, as follows:

n

Fux) = 2npdxn

(x> =1)"). 8.11)

Table 8.2 lists some Legendre polynomials of lower degrees. Legendre polynomials
have the characteristics of being orthogonal over x € (—1, 1) and satisfy

1
2
Pm Pn d =—8mna
L (P, ()dx = 5=

where §,,, is the Kronecker delta, which is 1 if m = n, and O otherwise.

The Gaussian quadrature method consists of two major steps. First, the integral
fab f(x)dx inthe interval a < x < b is transformed into the form of f_ll g(t)dt. This
is achieved through a linear relationship given by

‘= (b—a)t—}-(b—f-a)’ 8.12)
2

where g(¢) is a new function that is continuous in —1 < ¢ < 1. It can be verified that

substituting x = a and x = b into the linear equation produces t = —1 and # = 1,

respectively. The transformation preserves the area under the curve in [ _11 g(t)dt, as

illustrated in Figure 8.5. We have

Foydx = <b;a) f((b—a)t;-(b+a)) ir.
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[f(a)

y

f(b)

fx)

x !
a b -1 1

FIGURE 8.5. Transformation from fab f(x)dxto fjl g(t) dt in the Gauss—Legendre method.

The integral becomes

b b _ —
/f(x)dx:/ (bza)f<(b a)t;—(b-i—a)) it

This gives the relationship between the f(x) and g(¢) as

() = <b%a) f <(b _a)t;(bﬂl)). (8.13)

The second step in this method consists of an approximation to the integral
f_ll g(t) dt through a quadrature, given by

1 n
/1 gt)ydt ~ ) wigt). (8.14)
- i=1

The above equation is called the n-point Gauss quadrature, where n is an integer
number greater than 1. The constant wj is called the weight, whereas ¢; is the argument
in the quadrature. The argument #; in Equation (8.14) is actually a root of the Legendre
polynomial given in Table 8.1.

Equation (8.14) suggests the original problem is approximated as a sum of n
quadratures whose weights and arguments are determined from the quadrature prop-
erties. The weights and arguments of some of the Gaussian quadrature are tabulated
in Table 8.3.

Example 8.5. Find f03 X sin x dx using the three-point Gaussian quadrature method.
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TABLE 8.3. Weights and arguments in the Gaussian

quadrature
n Weight, w; Argument, #;
2 w; =1 t = —/1/3 = —0.577350
wy =1 t = +/1/3 = 0.577350
3 w; = 0.555556 t) = —/3/5 = —0.774597
w, = 0.888889 =0
w3 = 0.555556 3 = 4/3/5 = 0.774597
4 wy = 0.347855 t = —0.861136
w, = 0.652145 t, = —0.339981
ws = 0.652145 t; = 0.339981
wg = 0.347855 t, = 0.861136
5 w; = 0.236927 t; = —0.90610
wy = 0.478629 t, = —0.538469
w3 = 0.568889 ;=0
wy = 0.478629 ty = 0.538469
ws = 0.236927 ts = 0.90610

B=0)+(3+0) __
C-OHGHD) —

S 343 ,3z+3 3
xsinxdx = —
0 1 2 2
Yot +1) 3t+3
= sin dt.
., 4 2

We get g(t) = W(sinyl From Table 8.3, we obtain

9(=0.7746 + 1) [ . 3(—0.7746) + 3
o(ty) = 9(—0.7746) = = ot ) (sin ( ! )+ ):0.1682,
90+ 1 3(0 3
g(h) =g0) = ( : ) <sin ( )2+ ) —2.2443,

g(13) = g(0.7746) =

9(0.7746 + 1) < _3(0.7746) + 3
Sin
4 2

) = 1.8427.

Therefore,

3
/ xsinxdx ~ wig(t)) + wyg(ty) + wsg(t3)
0

= 0.5556(0.1682) + 0.8889(2.2443) + 0.5556(1.8427)
= 3.1123.
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8.4 VISUAL SOLUTION: CODES8

Code8. User Manual.

1. Select an item in the menu.
2. Fill in the input in the input boxes.
3. Left-click the Compute button to see the results.

Development files: Code8. cpp, Code8.h and MyParser.obj.

The programming solutions to the numerical differentiation and integration of a func-
tion are discussed here in a project called Code8. The project has two items in the
menu, namely, differentiation and integration. The first item focuses on computing the
first and second derivatives of the named function using the central-difference rules.
The second item computes the definite integral of the named function according to
its interval using the trapezium, Simpson, Simpson’s 3/8, and Gaussian quadrature
methods.

Figure 8.6 is an output from the project that shows the results and graphs of y =
x sin x and its first and second derivatives at x; fori = 0, 1, ..., m. The approximation

| Codes: Differentiation and Integration = [=] 3]
: 1 Diffe:
 Oiferentiaion |
Difterentiation - |><"sin|><| |
h [p-01 |
r2 |
[ |
| = yoit) | ydi=fGo | ydzarpg | o] 1818595 1.9997
1] -2.0000 1.8186
1 -.9900 18177 0.1034 -2.6317
2 -19800 18165 0.1206  -2.6123
3 -1.9700 1.8151 0.1556 -2.5924
4 -1L.9500 1.8134 -0.1815 -2.5723
5 -1,9500 1.8115 0.2071 -2.5518
6 -L9400 18093  0.2325 -2.5310
7 -19300 18068  0.2577 -2.5099
8 -1.9200 1.8041 <0.2827 -2.9884
g -1.9100 1.8012 40,3075 =2.4566
10 -19000 17980 0.3320 24445
11 -18900 17945 03563 24221
12 -1.8800 1.7908 <0.3805 -2.39%94
13 -1.8700 1.7869 <0.4043 -2.3764
14 -18500 17828 0.4280 -2.3531
15 -1.8500 1.7784 <0.4514 =2.3285
15 -LB400 17737 04746 2305
17 -1.8300 1.7689 0.497% -2,2815
18 -18200 17638 0502 -225M || 27 o540 R,

FIGURE 8.6. y = x sinx and its first and second derivatives in Code8.
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of the derivatives using the central-difference rules are valid in the interval from i = 1
toi =m — 1, as f'(x;) and f”(x;) are not defined at i = 0 and i = m. In addition,
each curve has been scaled so that its maximum and minimum points touch the upper
and lower portions of the drawing region.

Code8 includes the source files Code8.cpp and Code8.h. A single class called
CCode8 is used in this application. The global variables and objects in CCode8 are or-
ganized into four structures, namely, PT, INPUT, MENU, and CURVE. Basically, the
structures in CCode8 are very similar to the structures of the same name in the
previous chapters. PT represents the points in the functions in real coordinates with
two additional members, the first and second derivatives of the functions denoted as
yd1 and yd2, respectively.

typedef struct
{
double x,y,ydl,yd2;
} PT;
PT *pt,max,min,left,right;

The functions in this class are summarized in Table 8.4. Differentiation()
and Integration() are two key functions that represent the solutions to the dif-
ferentiation and integration problems, respectively. These functions are called from
OnButton (), which responds to the left-click on the Compute push button. The full
results are shown in a list value table through ShowTable () and are displayed as
graphs through DrawCurve ().

Figure 8.7 shows the schematic drawing of the computational stages in Code8.
A variable called £Status monitors the runtime progress, with its initial value of
fStatus=0. A value of fStatus=1 indicates the selected method for the problem
has been successfully executed. There are only two items in the menu, differentiation

TABLE 8.4. Member functions in CCode8

Function Description

CCode8() Constructor.

~CCode8() Destructor.

Differentiation() Computes the first and second derivatives of the given function
using the central-difference rules.

Integration() Computes the integral of the given function using the trapezium,
Simpson, Simpson’s 3/8, and Gaussian quadrature methods.

DrawCurve () Draws the curve, and its first and second derivatives.

ShowTable () Shows the results in a list view table.

OnLButtonDown () Responds to ON_WM_LBUTTONDOWN, which allows points to be
clicked in the input region and a menu item to be selected.

OnButton() Responds to ON_BN_CLICKED by calling the corresponding func-

tion for solving the given problem.
OnPaint () Displays and updates the output in the main window.




Start

CCode38 ()
Initializes variables and
objects. Set fStatus=0.

OnLButtonDown ()
Selects differentiation
(fMenu=1) or integration
(fMenu=2).
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Differentiation()
Finds the first and second
derivatives using the
central-difference rules.
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DrawCurve ()
Results shown as graphs.

OnButton ()
Activates the solution by
calling the methods.

Integration ()
Finds the integral using the
trapezium, Simpsons,
Simpson's 3/8, and Gauss

Results from the calculations
updated in OnPaint (),
ShowTable (). Set
fStatus=1.

quadrature methods.

End

FIGURE 8.7. Schematic drawing showing the computational stages in Code8.

and integration. The selected item is recognized through £Menu=1 for differentiation
and fMenu=2 for integration.

The process starts at the constructor function, CCode8(). The main window is
created, and all global variables and objects are initialized in this function. A status
flag called fStatus is set to zero to indicate its initial state of execution. A menu
consisting of two items, Differentiation and Integration, appears. A click at one of its
items activates OnLButtonDown (), which assigns fMenu=1 for Differentiation and
fMenu=2 for Integration. A selected item produces edit boxes for collecting input
data in the problem. The process is passed to OnButton () for branching the solution
to either Differentiation() or Integration(), according to its fMenu value.
Differentiation() causes the graph from f(x) and its first and second derivatives
to be drawn in the graphical region. Integration () causes the evaluation of the inte-
gral using the trapezium, Simpson, Simpson’s 3/8, and Gaussian quadrature methods.
The solutions are displayed in ShowTable () and plotted as graphs in DrawCurve ().
A successful execution is reflected with Status=1 in the final stage of the execution.

Differentiation

The solution to a differentiation problem is handled by Differentiation(). The
function evaluates the first and second derivatives of the given function at (x;, y;), for
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i=1,2,...,m — 1, using the central-difference rules as given by Equations (8.5a)
and (8.5b). The function is given by

void CCode8::Differentiation()
{
int i,psi[6];
double psvl[6];
CString str;
fStatus=1;
pt [0] .x=atof (input [3] .item) ;
h=atof (input[2].item);
m=(int) (atof (input [4] .item)-atof (input[3].item))/h;
m=( (m<M) 7m:M) ;
pt[m] .x=pt[0] .x+(double)m*h;
psi[1]1=23; psv[1]=pt[0].x;
pt [0] .y=parse(input[1].item,1,psv,psi);
for (i=0;i<=m;i++)
if (i<m)
{

pt[i+1] .x=pt[i].x+h;

psv[1]=pt [i+1] .x;

pt[i+1] .y=parse(input[1].item,1,psv,psi);

if (1>0)

{
pt[i].yd1i=(pt[i+1].y-pt[i-1].y)/(2%h);
pt[il.yd2=(pt[i+1].y-2*pt[i].y

+pt[i-1]1.y)/(h*h);

In Differentiation(), the input string is read as input [1] .item. The first
derivative is represented by pt [i] . yd1, whereas the second is pt [i] . yd2. With the
central-difference rules, no derivatives can be evaluated at (xo, yo) and (x,,, y,,) as the
solution requires one-point forward and one-point backward. Differentiation()
computes the first and second derivatives of the input function f(x) that is read
as input[1] .item. The derivatives are computed at each point (x;, y;), which is
represented by pt [i] .x and pt [i] .y in the coding.

Integration

A function called Integration() handles the solution to the integration problem
using the trapezium, Simpson, and Gaussian quadrature methods. The Simpson and
Simpson’s 3/8 methods produce the results correctly when the number of input subin-
tervals m is a multiple of two and three, respectively. The function is given by



VISUAL SOLUTION: CODE8

void CCode8::Integration()

{

int i,psil2];
double psv[2];
aTrap=0; aSimp=0; aSimp38=0; aGL=0;
fStatus=1;
pt[0] .x=atof (input[3] .item);
m=atoi(input[2].item); m=((m<M)?m:M);
h=(atof (input [4] .item)-atof (input [3].item))/(double)m;
pt [m] .x=pt [0] .x+(double)m*h;
psil1]=23;
for (i=0;i<=m;i++)
{
psv[1]l=pt[i].x;
pt[i] .y=parse(input[1].item,1,psv,psi);
if (i>0 && i<m)

{
aTrap += 2xpt[i].y;
if (m%2==0)
{
if (i%2==1)
aSimp += 4xpt[i].y;
if (i%2==0)
aSimp += 2xpt[i].y;
}
if (m%h3==0)
{
if (i%3==0)
aSimp38 += 2*pt[i].y;
else
aSimp38 += 3*pt[i].y;
}
}
if (i<m)
pt[i+1] .x=pt[i].x+h;
}

aTrap += pt[0].y+pt(m].y;

aTrap *= h/2;

if (m%2==0)

{
aSimp += pt[0].y+pt[m].y;
aSimp *= h/3;

}

if (m%3==0)

283
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aSimp38 += pt[0].y+pt[m].y;

aSimp38 *= 3%h/8;
3
double gl,g2,g3,t1,t2,t3,a,b;
a=pt[0] .x; b=pt[m].x;
t1=-0.774597; psv[1l=((b-a)*ti+(b+a))/2;
gl=(b-a)/2*parse(input[1] .item,1,psv,psi);
t2=0; psv[1]=((b-a)*t2+(b+a))/2;
g2=(b-a) /2*parse(input[1] .item,1,psv,psi);
t3=0.774597; psv[1]=((b-a)*t3+(b+a))/2;
g3=(b-a) /2*parse(input [1] .item,1,psv,psi);
aGL=5%g1/9+8%g2/9+5*g3/9;

The number of subintervals m is denoted as m in the coding. The maximum number
allowed is 200, which is stored as the macro M. A simple statement can be added to the
code to control the user’s input so that this maximum value is not breached, through

m=atoi (input[2].item); m=((m<M)?m:M);

The trapezium and Simpson methods are solved by performing iterations from i =
0toi = m. Because of their constraints, the points in the Simpson and Simpson’s 3/8
methods become relevant through the expressions m%2=0 and m%3=0, which indicate
the multiplicity of two and three, respectively. The following code fragments show
how the three methods are handled:

for (i=0;i<=m;i++)
{
psv[1]l=pt[i].x;
pt[i] .y=parse(input[1] .item,1,psv,psi);
if (i>0 && i<m)
{
aTrap += 2*xpt[i].y;
if (m%2==0)

{
if (i%2==1)
aSimp += 4xpt[i].y;
if (i%2==0)
aSimp += 2xpt[i].y;
}
if (m%3==0)
{

if (i%3==0)
aSimp38 += 2xpt[i].y;
else
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aSimp38 += 3*pt[i].y;

}
¥
if (i<m)
pt[i+1] .x=pt[i] .x+h;
}
aTrap += pt[0].y+pt[m].y;
aTrap *= h/2;
if (m%2==0)
{
aSimp += pt[0].y+pt[m].y;
aSimp *= h/3;
¥
if (m%3==0)
{
aSimp38 += pt[0].y+pt[m].y;
aSimp38 *= 3%h/8;
}
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The Gauss quadrature three-point method involves a transformation of coordinates
from x to ¢ through the relationship given by Equation (8.12). The method is handled

through the following code fragments:

double gl,g2,g3,t1,t2,t3,a,b;

a=pt [0] .x; b=pt[m].x;

t1=-0.774597; psv[1]=((b-a)*ti+(b+a))/2;
gl=(b-a)/2*parse(input[1] .item,1,psv,psi);
t2=0; psv[1]=((b-a)*t2+(b+a))/2;

g2=(b-a) /2*parse (input[1] .item,1,psv,psi);
£3=0.774597; psv[1]1=((b-a)*t3+(b+a))/2;
g3=(b-a) /2*parse(input[1] .item,1,psv,psi);
aGL=5xg1/9+8xg2/9+5xg3/9;

Table and Graph Output

Output in Code8 is expressed as the iterated values in a list view table and is plotted
as graphs. The functions for these operations are ShowTable () and DrawCurve (),
which are quite similar to the functions of the same names in the previous chapters. In
DrawCurve (), two additional curves are plotted on top of the graph of y = f(x). They
are the graphs of the first-derivative y' = f’(x) and the second-derivative y" = f”(x).
The three graphs are plotted in the same window to illustrate their relationship at the

points.
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8.5 SUMMARY

Numerical differentiation and integration are two important problems in numerical
analysis. The two problems contribute to providing the approximated solution, which
is needed in several application problems. A typical requirement in differentiation
is the numerical approximations to the first and second derivatives. Some funda-
mental methods for these approximations are provided using the forward-difference,
backward-difference and central-difference, rules. The central-difference method has
the advantage over the other two methods, as the method considers points from both
left and right of the approximated point. Therefore, this method produces more accu-
rate approximations to the problem. We illustrate this method in the visual interface.

The chapter also discusses numerical integration through the trapezium, Simpson,
and Gauss—Legendre methods. The first two methods are based on the given points
along the interval that are uniformly spaced. The last method does not require evenly
distributed points. Instead, the method produces a linear transformation that preserves
the area under the given curve.

NUMERICAL EXERCISES

1. Find the first and second derivatives at each point in the following table using the
Newton forward-, backward-, and central-difference methods:

X 0 025 05 075 10 125 15
y -1 1 25 4 2 1.5 1

2. Evaluate the following integrals on the given data using the trapezium, Simpson,
and Simpson’s 3/8 methods:

x 0 025 05 075 1.0 125 15
y -1 1 2.5 4 2 1.5 1

3. Evaluate fjl 3x?% cos 2x dx using

a. The trapezium method with six subintervals.

b. The Simpson method with six subintervals.

¢. The Simpson’s 3/8 method with six subintervals.
d. The Gaussian three-point quadrature method.

e. The Gaussian four-point quadrature method.

4. Evaluate f_31 % dx using

a. The trapezium method with six subintervals.
b. The Simpson method with six subintervals.



SUMMARY 287

¢. The Simpson’s 3/8 method with six subintervals.
d. The Gaussian three-point quadrature method.
e. The Gaussian four-point quadrature method.

PROGRAMMING CHALLENGES

1. Modify the graphs of the function and its derivatives in Code8 so that the vertical
values follow the scale in y = f(x).

2. The Newton—Raphson method in Chapter 6 requires the first derivative of the
function f(x) to be determined before iterations can be performed to find the root
of the function. Modify the program in Code6 so that the first derivative of this
function is approximated using the central-difference rule.

3. The expansion of a function y = f(x) at x = x;41 = x; + h, where h is a small
increment, using Taylor series of order 2 is given by

~ + h ’ + h2 ”
Yi+1 Yi lyi ) Vi
Design a program to find the values of y; fori = 2, 3, ..., 50, givenxy = 0, yp = 0,
y; = 1,and A = Ax = 0.1, using the Newton backward-difference rules.
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Eigenvalues and Eigenvectors

9.1 Eigenvalues and Their Significance
9.2 Exact Solution and Its Existence
9.3 Power Method
9.4 Shifted Power Method
9.5 QR Method
9.6 Visual Solution: Code9
9.7 Summary
Numerical Exercises
Programming Challenges

9.1 EIGENVALUES AND THEIR SIGNIFICANCE

The eigenvalues of a square matrix are important parameters in determining things like
the stability of the structure where the matrix is based. A bridge depends on the strength
of its beam across a given length whose stability is determined by its eigenvalues. In
image processing, the eigenvalues of a matrix that represent an image hold the key to
the quality of the image. With a proper technique, a blur image can be transformed
into a crisp one once the eigenvalues of its corresponding matrix are known.

Therefore, finding the eigenvalues of a square matrix and their corresponding
eigenvectors has become an important problem in many applications. The eigenvalue
problem can be stated as follows:

Given a matrix A, find the nonzero vectors v such that Av = Av, where X\ is the
eigenvalue and v is its corresponding eigenvector. The real eigenvalues and its
eigenvectors of the matrix will not exist if no value of v can satisfy Av = Av.

In many applications, it may not be necessary to find all the eigenvalues of a given
matrix. In this case, the eigenvalues whose values are extreme become the focus.
An eigenvalue whose modulus is the largest is called the most dominant eigenvalue,
whereas one that is smallest is called the least dominant eigenvalue. In most appli-
cations, it may not be necessary to find all the eigenvalues of a given matrix. Finding
the most dominant eigenvalue or the least dominant eigenvalue may be sufficient in
providing the solution to a given problem.

We discuss two iterative methods called the power method and the shifted power
method, for finding the most dominant and least dominant eigenvalues of a matrix,
respectively.

288
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9.2 EXACT SOLUTION AND ITS EXISTENCE

In a transformation, an eigenvector is a nonzero vector v, which transforms the given
quantity A into a new vector b that has the same direction as v. This transformation
can be written as T[v] = Av = b or

Av = \v = b. 9.1

In the above equation, A is the scale factor for this transformation, and it is called
the eigenvalue ). of the quantity A. In most cases, the quantity mentioned above can be
expressed as a matrix . We denote (X, v) as an eigen-pair of A for this transformation.

In a system of linear equations, A represents a square matrix in Ay =b. An
eigenpair (1, v) exists, where Av = Av = b.In general, a given square matrix A of size
n x n has n eigenpairs given as (A;, v;), fori = 1,2, ..., n, where each eigenvalue
can be a unique or repetitious real or complex number.

Since X is a constant in Equation (9.1), an identity matrix / can be inserted into
the equation so that A = Al. The term P,(1) = A — Al is then a function called the
characteristic polynomial of degree n. The exact method for finding the eigenvalues
of a matrix then becomes the problem of solving the following equation:

|[A—AIl =0, 9.2)
as (A — AI)v = 0 has unique solutions if |[A — AI| = 0. Equation (9.2) suggests an
exact method for finding the eigenvalues of a given matrix A. The method is illustrated

through Example 9.1.

Example 9.1. Find the eigenvalues A and its corresponding eigenvector v of a matrix
A, given as

3 -1 0
A=|-1 2 -1
o -1 3
Solution.
3 -1 0 1 0 0
[A—AIl=(]0 2 —1]—-2]0 1 O
0 -1 3 0 0 1
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Setting (A — Al)v =0, we have —A% +8A% — 191 + 12 = —(A — 1)(A — 3)(A —
4) = 0. This produces A; = 1, A, = 3 and A3 = 4. From Equation (9.2), the eigen-
vector v in the eigenpair (A, v1) is found by setting A, = 1, as follows:

3 _)\.1 —1 0 V11 2 —1 0 V11 0
-1 2—)\1 -1 Vi | = -1 1 -1 Vi | = 0
0 —1 3 _)‘l V13 0 -1 2 V13 0
This produces
2vp —vp =0,
vy +v2—vi3=0,.
—vip +2v13 =0.

Solving the above system of linear equations by setting v;; = kj, we get

V11
V12 = k] 2
V13 1

This gives the eigenvector for Ay =l asv| = [%]. For A, = 3:

3—A -1 0 U221 0 -1 0 V21 0
-1 2—A -1 Uy | = -1 -1 -1 Uy | = 0
0 —1 3—A U3 0 —1 0 U3 0

This produces

—vp =0,
—Vy — VU — V3 =0,.
—V22 =0.

Setting vy = ko, we get [va1 v2s U23]T = ko[1 0 —1]7. This gives the eigenvector for
Ay =3asv, =[10—1]T. Similarly, for A3 = 4,

3—A —1 0 V31 -1 -1 0 V31 0
-1 2—A —1 V3 | = -1 -2 -1 U3 | = 0
0 -1 3—A V33 0 -1 -1 V33 0
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This produces the following system of linear equations:

—v31 — v =0,
—v31 — 2v32 —v33 =0,

—v3 —v33 =0.

Finally, we get [v3; v3; v33]T = k3[1 —1 —1]T and the eigenvector for A3 =4 is
v3 =[1—-1-1]T.

9.3 POWER METHOD

A given matrix A of size n x n has n eigenvalues, denoted as A; fori = 1,2,...,n,
which may be real or complex, unique, or repeated. A 4 is said to be the most dominant
eigenvalue of A if its modulus is the largest, |A4| > |X;|, provided it exists. At the
same time, A, is the least dominant eigenvalue of the matrix if |A,| < |X;|, provided
it exists.

The most dominant eigenvalue of a matrix and its corresponding eigenvector can
be found using an iterative method called the power method. In this method, iterations
are performed to update the vector according to

yin = L g0 (9.3)

Akl

For consistency, we denote the most dominant eigenvalue of A as A4 and its
corresponding eigenvector as v4. The iterated values of these two variables at iteration
k are 1, and v;. The given values are A, and the error tolerance is a small number
close to 0, denoted as ¢. The error is defined as |Ay+1 — Ax|, and the iterations will
only stop when |Arr; — Ax| < e&.

A search for A4 and v4 begins by defining the initial values of v. A suitable value
is the unit vector, with one element having the value of 1 and the rest with 0. For
example,vg=[0 1 0]Torvg=[1 0 0]7 are some of the possible initial values
for a 3 x 3 matrix.

The iterations start at k = 0 by evaluating Av,. The elements in this vector are
compared with one whose absolute value is the largest assigned to A;. It follows from
Equation (9.3) thaty () = A—ll Av @ _ A test on the error with |A; — Ag| < ¢ is performed
to determine whether convergence has been achieved. The iterations continue with
k = 1 by repeating the same process if the test is not complied.

The iterations will only stop if the criteria of |A;1; — Ag¢| < & are achieved. The
number of iterations depends much on the given value of €. A given value such
as 0.00005 will require a lot more iterations than a bigger number such as 0.05.
Convergence is said to have been achieved at iteration k when |A;4; — Ax| < €. The
solutions are obtained as A4 = Ary1 and v4 = v* D, which are the last values in the
iterations.

Algorithm 9.1 outlines the summary of the steps for finding A4 and v4. The maxi-
mum number of iterations is indicated by K. This algorithm is illustrated in Example
9.2 using a 3 x 3 matrix.
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Algorithm 9.1. Power Method.
Given a square matrix A, an initial vector v, and error tolerance

value of ¢;

Fork=0to K
Find Ar41 = Avk where [AvF| > |AvF| fori =1,2,...,n;
Compute v« = L Ap®);

Akl

If [y — Ml < &
Aa = higpr and vy = p&FD;
Stop the iterations;

Endif
Endfor
2 2 -1
Example 9.2. Given A = | —1 3 —1 |, find the most dominant eigenvalue
0o -1 -2

and its corresponding eigenvector using the power method whose error tolerance is
[Ak+1 — Ai| < &, where ¢ = 0.005 and v©® = (0, 1, 0).

Solution. Start the iterations at k = 0 with v@ = (0, 1, 0). We get

2 -2 1 0 -2
AO=]1-1 3 —1||1]|=]3
0 -1 211o -1

Therefore, &, = 2.000andv) = %}Av(o) = (—0.666667, 1, —0.333333). Repeating
the same steps with k = 1, and we get

2 -2 1 666667 —3.666667
AvV=1-1 3 -1 1 = 4
0 -1 2 |]|-.333333 —1.666667

This gives A, = 4.000000 and v® = A—lev“) = (—0.916667, 1, —0.416667). The
error is |, — A| = 1 > ¢, which indicates the iterations will continue. Table 9.1
summarizes the results obtained until convergence at k =5, where |Ag — As| =
0.000583 < ¢. The solutions are A4 ~ Ag = 4.415430 and v4 = v = (—0.999776,
1, —0.415099).

9.4 SHIFTED POWER METHOD

The shifted power method is a slight extension of the power method for finding
the least dominant eigenvalue of a given matrix and its corresponding eigenvector.
In finding the least dominant eigenvalue of the matrix A, or A,, two separate sets of
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TABLE 9.1. Numerical results from Example 9.2
y® At (ks — Al

0 1 0 3.000000
—0.666667 1.000000 —0.333333  4.000000 1.000000
—0.916667 1.000000 —0.416667 4.333333  0.333333
—0.980769 1.000000 —0.423077 4.403846  0.070513
—0.995633  1.000000 —0.419214 4.414847  0.011001
—0.999011 1.000000 —0.416419 4.415430  0.000583
—0.999776  1.000000 —0.415099

AN AW = O |

iterations are performed. First, iterations are performed using the same power method
discussed in the last section to find the most dominant eigenvalue of A or A4. From
this finding, a new matrix called B is created from the relationship given by

B=A—iul, (9.4)

where [ is the identity matrix. The second set of iterations using the power method is
then applied to find the most dominant eigenvalue of B, or A, and its corresponding
eigenvector, v g. The power method formula in this case is

pn = L gy 9.5)
Akl

The least dominant eigenvalue of A is obtained by shifting the result as
Ao = Aa + Ap. 9.6)

Algorithm 9.2 outlines the steps in the shifted power method. The algorithm is
further illustrated in Example 9.3.

Algorithm 9.2. Shifted Power Method.
Given a square matrix A, vy and ¢;
Find 14 and v4 from Algorithm 9.1;
Let B=A — A4,

Fork =0to K
Find Ay = vi where |vi| > |vi‘| fori =1,2,...,n;
Compute v *+1 = ﬁBv(");
If M1 — Ml < ¢
A = Apand v g = v*FD;
Stop the iterations;
Endif
Get A, = Ay + Agandv, =vp;
Endfor
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TABLE 9.2. Numerical results from Example 9.3
y® At [Arr1 — Axl

0.000000  1.000000  0.000000  —2.000000

1.000000 0.707437  0.500000 —3.329749  1.329749
1.000000 0.751088 0.575081 —3.341970  0.012221
1.000000 0.789288 0.640292 —3.353158  0.011188
1.000000 0.822220 0.696511 —3.362804  0.009646
1.000000 0.850436 0.744678 —3.371068  0.008264
1.000000 0.874482 0.785727 —3.378111  0.007043
1.000000 0.894882  0.820552 —3.384086  0.005975
1.000000 0.912121 0.849982  —3.389135  0.005049
1.000000 0.926643  0.874772 —3.393389  0.004253
10 1.000000 0.938842 0.895597

O 001NN AW~ O |

2 2 —1
Example 9.3. Given A = | —1 3 —1 |, find the least dominant eigenvalue
0o -1 =2

and its corresponding eigenvector using the power method. The error tolerance is
|Aks1 — Al < &, where ¢ = 0.005 and v©® = (0, 1, 0).

Solution. From Example 9.2, we have Aj ~ A¢ = 4.415430 and vs =ve =
(—0.999776, 1, —0.415099). We obtain

—2.414875 -2 1
B=A—- Xl = -1 —1.414875 —1
0 —1 —2.414875

Tterations are performed to find Az and v . Table 9.2 shows the results from the
iterations.

We obtain Agp &~ Ajg = —3.393389 and vy ~ vy = (1, 0.938842, 0.895597). Fi-
nally, we get the solutions:

Ay = Ag +Ap =4.415430 — 3.393389 = 1.021486,
ve =vp = (1,0.938842,0.895597).

9.5 QR METHOD

A symmetric matrix is a square matrix that has the fundamental property of the entries
in the ith column equal those in the ith row, or

A=A" ora;; = a;. 9.7)
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A symmetric matrix appears in many problems in science and engineering. Its im-
portance is realized in problems where matrices play an important role. For example,
symmetric matrices are commonly encountered in computer graphics where they are
used in many algebraic operations.

Another important type of matrix is the orthogonal matrix. A square matrix A is
said to be orthogonal if

AT = A7 or AAT = I 9.8)

A symmetric matrix A whose contents are real numbers possesses another impor-
tant property in that it can be diagonalized by an orthogonal matrix or

D=0"AQ=0"40, 9.9)

where D is its diagonal form and Q is an orthogonal matrix. Two matrices A and B
are said to be similar if A = C~!' BC, where C is any nonsingular matrix.

A real Hermitian matrix consists of a symmetric matrix or A = A”. This type of
matrix has the property where all its eigenvalues are real. In addition, the eigenvectors
of a symmetric matrix are orthogonal, and the matrix consists of an orthonormal basis
of eigenvectors.

A symmetric matrix has an advantage over a nonsymmetric matrix as all its eigen-
values can be determined through some algebraic steps. Two main steps are involved
in finding these eigenvalues. First, the symmetric matrix is reduced into a tridiagonal
matrix using a series of transformation called the Householder transformation. The
second step is applying a technique called the QR method to the tridiagonal matrix
to produce the eigenvalues.

Householder Transformation

The Householder transformation converts a symmetric matrix into a similar symmetric
tridiagonal matrix. Let w € R" be a vector and w Tw = 1; then

P=1-2wwl, (9.10)

The n x n matrix P produced in the transformation from the above transformation is
symmetric and orthogonal, or P~! = PT = P.

The Householder transformation involves several iterative steps In producing a
symmetric tridiagonal matrix from a similar symmetric matrix. The steps are outlined
in Algorithm 9.3. This algorithm is illustrated through Example 9.4.
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Algorithm 9.3. Householder transformation.

Given a square symmetric matrix A = [a;;] fori, j =1,2,...,n;
Compute o = _Sgn(ak+1,k)(Z;:k+1 (a0
Compute r = (%oz2 — %aakH,k)l/z;
Letw;=wy=---=w, =0;
Fork=1ton —2
Compute wiy = “H = and w; = & for j =k +2,k+3,....n;

Compute P =1 —2uww’;
Update A®tD = prg4® p®),

Endfor

Example 9.4. Use the Householder’s method to transform the following symmetric
matrix into a similar symmetric tridiagonal matrix:

Solution. Let AV = A. At iteration k = 1,

o = 4.2426,
r = 3.3349,

w=[0 —-0.786 0.1499 0.5997].

PO =71 —2ww”

1 0 0 0

0 —0.2357 0.2357  0.9428
0 0.2357 0.9550 —0.1798
0 0.9428 —0.1798 0.2807

We obtain
2 4.2426 0 0
42426 1.6667 —1.4515 1.0295
A® — p A0 p) _
0 —1.4515 2.1844 —1.6127

0 1.0295 —1.6127 3.1490
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At iteration k = 2:

a = 1.7795,
r = 1.6955,
w=[0 0 —09528 0.3036].

P® =71 29w’

0 0 0
1 0 0
0 —0.8156 0.5785
0 0.5785 0.8156

S O O =

2 4.2426 0 0
4.2426 1.6667 1.7795 0

0 1.7795 4.0292 0.9883

0 0 0.9883 1.3041

A® — p@A@ p@ _

A® is a symmetric tridiagonal matrix transformation of A, where
T
A® = pO p g ) p@) — pAT pIIT 4 p) p@) — (p@ p1)T 4 p) p@),

Hence, A® and A are similar and they share the same eigenvalues.

QR Factorization

QR factorization is a technique for factorization of a symmetric tridiagonal matrix A
into the product of an orthogonal matrix Q and an upper triangular matrix R, or

A = QR
rio ri2 Fin
0 rp ... Iy
=[w w - ow]| . . ©.11)
0 0 rn
where u1, us, ..., u, are the orthogonal basis vectors of Q.

The computational steps for QR factorization are shown in Algorithm 9.4. This
algorithm is illustrated through Example 9.5.
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Algorithm 9.4. QR Factorization.

Given a symmetric tridiagonal matrix A = [g;;] fori, j =1,2,...,n;
Let 01 = A= [u1 U ... un];
Fori =1ton

Compute ri; = [lu;l;

Update u; = ui/r,-i;
Forj=i+1ton
Compute r;; = u;.uj;
Update uj= uj/rij;
Endfor
Endfor

Example 9.5. Find the QR factorization of matrix A below:

2 4.2426 0 0
4.2426 1.6667 1.7795 0

0 1.7795 4.0292 0.9883

0 0 0.9883 1.3041

Solution. Let Q = A =[uy uz u3 ua.
Fori =1,

1
rip = 4.6904, update u; = —u; = [0.4264 0.9045 0 O],
i

rip = 3.3166, update u, = [2.8284 —1.3333 1.7795 0],
ri3 = 1.6096, update u3 = [—0.6863 0.3235 4.0292 0.9883],
rig =0, updateus = [0 0 0.9883 1.3041].
Fori =2,
ryp = 3.5978, update up = [0.7861 —0.3706 0.4946 0],
r3 = 1.3334, update u3 = [—1.7346 0.8177 3.3697 0.9883],
ras = 0.4888, update us = [—0.3843 0.1812 0.7465 1.3041].
Fori =3,
r3z = 4.0012, update u3 = [—0.4335 0.2044 0.8422 0.2470],
ris = 1.1544, update us = [0.1162 —0.0548 —0.2257 1.0189].
Fori =4,

rqa = 1.0515, update uq = [0.1105 —0.0521 —0.2147 0.9690].
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Therefore,
r0.4264 0.7861 —0.4335  0.1105
0= = 0.9045 —0.3706 0.2044 —0.0521
Tl s = g 4046 08422 —02147 |
L 0 0 0.2470  0.9690
o ria Pz ria] 4.6904 3.3166 1.6096 0
R 0 ro r3 ral| 0 3.5978 1.3334 0.4888
10 0 ryy ol 0 0 4.002 1.1544
0 0 0 rul 0 0 0 1.0515
‘We obtain the factorization,
2 4.2426 0 0

4.2426 1.6667 1.7795 0
0 1.7795 4.0292 0.9883
0 0 0.9883 1.3041

[70.4264 0.7861 —0.4335 0.1105 4.6904 3.3166 1.6096 0

109045 —-0.3706 0.2044 —0.0521 0 3.5978 1.3334 0.4888
- 0 0.4946  0.8422 —0.2147 0 0 4.002 1.1544
0 0 0.2470  0.9690 0 0 0 1.0515

QR factorization is applied to find all the eigenvalues of a symmetrix matrix
and their corresponding eigenvectors by factorizing the matrix as A = QR and by
reversing the resulting factorization through a series of iterations until all the errors
from the eigenvalues are smaller than a tolerated value €. The error is computed as
|Ax+1 — Ax|, where k is the iteration number. The iterations are shown as

A = QoRo,
Apr1 = R Qr = Q41 Riq1,
S() = QO Sk = Sklek» fOl‘k=O, 1,2,....

Convergence to the solution is said to be achieved once all the errors are less than
the tolerated value €. The eigenvalues of A appear along the diagonal of final value of
Aj+1, whereas the columns of S; are their corresponding orthonormal eigenvectors
basis, listed in the same order as eigenvalues.

Algorithm 9.5 summarizes the QR algorithm for finding the eigenvalues of a
symmetric matrix A. The algorithm is further illustrated in Example 9.6.
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Algorithm 9.5. QR Algorithm.
Given a symmetric tridiagonal matrix A = [g;;] fori, j =1,2,...,n;
Given the error tolerance ¢;
For k = 1 to max
Let Ajy1 = Qi Ry, and find Qy and R; using Algorithm 9.4;
Let Sy = Ok
Reverse multiply and compute Ag4+1 = Ry Oy;
Compute the error of the diagonal elements in Ag;;
If error < ¢
Determine the eigenvalues from the diagonal elements of Ay, ;
Determine the eigenvectors from the columns of Si;
Endif
Endfor

Example 9.6. Find all the eigenvalues and their corresponding eigenvectors of a
symmetric matrix given by

2 4.2426 0 0
4.2426 1.6667 1.7795 0

0 1.7795 4.0292 0.9883

0 0 0.9883 1.3041

Solution. Tteration O :
Factorizing matrixA = Q¢ Ry, we have (from Example 9.5)

0.4264 0.7861 —0.4335 0.1105
0.9045 —0.3706 0.2044 —0.0521
0 0.4946  0.8422 —0.2147 |’
0 0 0.2470  0.9690

4.6904 3.3166 1.6096 0
0 3.5978 1.3334 0.4888
0 0 4.002 1.1544
0 0 0 1.0515

Ry =
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Reverse multiply these matrices to produce

5 3.2544 0 0
3.2544 —0.6738 1.9790 0

0 1.9790 3.6549 0.2597

0 0 0.2597 1.0189

Ay =RyQo =

Iteration 1:

Factorize A| = QR to produce

0.8381 0.4165 —0.3515 0.0236

0.5455 —0.6399 054  —0.036
S ) 0.6458  0.7618 —0.0512 |’
0 0 0.0671  0.9977

5.9658 2.3599 1.0795 0
0 3.0646 1.0937 0.1677
0 0 3.8705 0.2662
0 0 0 1.0033

Reverse multiply Q; and R to produce A,,

6.2874 1.6718 0 0
1.6718 —1.2549 2.4993 0

A :R = s
2= R 0 2.4993  2.9665 0.0673
0 0 0.0673 1.0011
0.7862 —0.6054 —0.0482 0.1140
0.5559 0.7459 —0.3658 —0.0276
S1=S000 =

0.2698  0.2273 0.8943  —0.2753
0 0.1595 0.2532  0.9542

301
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Continue the steps until iteration 13, where the error is less than ¢, to produce

1 —0.0003 0 0
0.0003 09986  0.0526 0
BT10 0 00526 —0.998 0]
0 0 0 1
6.7293 0.0033 0.0001 0
0  3.9441 0.0668 0
Ra=1 " 0 26751 0]
0 0 0o 1
0.5892 —0.4657 0.6479  0.1270
0.6566 —0.1915 —0.7289 —0.0299
S5= 104633 08083 02169 —02916 "
0.0843 03051 —0.0431 0.9476
67293 00012 0 0
0.0012 3.9421 0.1407 0
A=100 01407 26714 0
0 0 0 1

We obtain all the eigenvalues and eigenvectors of matrix A from A4 and Sy3,
respectively, as follows:

A1 =6.7283 and v; = [0.5892 0.6566 0.4633 0.0843],

A2 =3.9421 and v, = [-0.4657 —0.1915 0.8083 0.3051]7,

A3 = —2.6714and v; = [0.6479 —0.7289 0.2169 —0.0431]7,

A4 = 1.0000 and v, = [0.1270 —0.0299 —0.2916 0.9476]".

9.6 VISUAL SOLUTION: CODE9

Code9. User Manual.

1. Enter values for the matrix starting from the top left-hand corner.

2. Left-click the push button to see the results using the power and shifted-power
methods.

Development files: Code9. cpp and Code9.h.
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I codes: I d =101 x|

T
2 | 2 | [t | 2 | [t I | | | | |
] e | b1 | 2 | la I | | | | |
o | k4 | b | 3 | b I | | | | | |
G ][ ] b | [4 | B3 I [ ] [ J [ ]
e | | | [t | 2 | 3 | | J | il J
| | | | | | | | | | | | | | | |
| J | | | | | J | | | | | | | |
| I | I | I I I I I |

Powar Mathed for the Most Dominant Eigenvalue Shifted Power Mathod for the Lesst Dominant Eigenvalue
lambdahi | v[1] via | w3 v[ala] lambdalo | v[1] el Vi3l vi4]

5.107182 0.45303%  0.552486  0.130387 0.016:
6.183687  0.183879 1.000000 -0.221116 -0.156

i
4 2.153211 0.000000 1.000000 0.000000 0.000000
5

& 4.188697 -0.208835 1.000000 -0.456674 0.332

7

8

9

I
1]
1 -1.903211  0.500000 0.788303 1.000000 0.000000
2 03797856  0.258258 0.370597 1.000000 -0.093053
-7.6948%4  0.777561 1.000000 -0.758056  -0.666i 3 -0.831727  0.205564 0.514277 1000000  -0.187046)
7.892801 0.798475 -0.157407 0.423142 0.559: 4 -1.270073 0.227941 0.650588 1000000 <0,205350)
5.581547 0.564218 0.433878 0.047543 0.355¢8 5 -1.257949  0.261991 0.650948 1000000  -0.193817)
W 7.283863 0.361770 0.967632 0.314337 0.21%0 ] -1.162756  0.271650 0.626709 1.000000 -0.193508
11 5506792  -0.013408 1.000000 -0.525472  -0.002 7 -L144355  0.274071 0.626107 1.000000 -0.202877
12 -4.187145  -0.374883 1.000000 -0.730711  -0.187 8 -1.162746  0.280203 0.636966 1.000000 -0.212792)
13 9.075452 0925333 087821 1.000000 0.438¢ 9 -L174582 0.289302 0.695164 1.000000 £0.221294)
14 6870440 0.699505 0.015496  0.4962%4 0.303%
15  5.259597 0.507963 0.495812 0.088538 0.1842
16 6.862818 0.281699 1.000000 -0.275255  0.035¢
17 4.9187% 0. 100649 1.000000 0.500302 0.198
18 -5.191525 -0.527631 1000000 0.74209%6  0.367
18 8.977960 0.911801  -0.525813  0.73957% 0.532
20 6.233355 0.632657 0.204505 0.250099 0.3
21 6.151119 0.443346 0.703938 0.088817 0.1965%

il | i i

FIGURE 9.1. Output from Code9.

The eigenvalue problem is illustrated in a project called Code9. The project displays
the power and the shifted power methods for finding the most dominant and least
dominant eigenvalues of a given nonsymmetric matrix, respectively. For the case of
a symmetric matrix, the program applies the Householder transformation and QR
method automatically to compute all the eigenvalues.

Figure 9.1 shows an output from Code9. The figure shows the complete results for
finding the most dominant and least dominant eigenvalues and their corresponding
eigenvectors of the following matrix:

Input for the matrix is provided in the form of edit boxes. The results from the
power series methods are displayed in two list view tables, the most dominant in
the left and the least dominant in the right. The two tables display the m; and v,
values for k =0, 1, ..., Stop, where Stop is the stopping number of the iterations
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that complies with the stopping criteria, given as |m;; — my| < €. For the case of a
symmetric matrix, the QR method displays the eigenvalues and their corresponding
eigenvectors separately in two list view tables.

The maximum size of the matrix allowed in this interface is 8 x 8. The user has
the option of selecting the matrix size by filling in the values starting from the top
left-hand corner of the edit boxes. The actual size of the matrix is determined from the
diagonal elements. An empty entry for the diagonal element a; ; indicates the size of
matrixis (i — 1) x (i — 1). Therefore, the program is flexible in the sense that it allows
the user to determine the size of the matrix freely by entering values in the edit boxes.

Figure 9.2 shows a schematic drawing of the computational steps in Code9. The
progress in the runtime is monitored through fStatus whose initial value is 0. This
value changes to 1 when either the power method or the QR method has been suc-
cessfully applied to solve the given problem. Edit boxes for the input are created in

| Start I

PowerMtd ()
Computes the most dominant
cCode9 () eigenvalue and its
Initializes variables and corresponding eigenvector
objects. Set £Status=0. for nonsymmetric matrix 4.
Set fStatus=1.
PowerTable ()
CCode9 () Displays the results from A4
Creates edit boxes for matrix 4 and B in separate list view
and error tolerance value. tables.
ORMtd ()
onButton () Computes al! eigeqvalues ofa
Reads the input values of matrix —DO—D symmetric tridiagonal . End
A and error tolerance value. }natnx and ts correspondlng
eigenvectors for matrix B. Set
fStatus=1.
QRTable ()

Displays all eigenvalues and
eigenvectors.

FIGURE 9.2. Schematic drawing showing the computational steps in Code9.
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the constructor function, whereas their values are read in the OnButton () as soon as
the Compute button is left-clicked.

The OnButton () performs a simple test to determine whether the input matrix is
symmetric. If the matrix is symmetric, QRMtd () is called to execute the QR method.
Otherwise, the processing is passed to PowerMtd (), which refers to the power method.
A success in either method changes fStatus value to 1. The full eigenvalues and
eigenvectors are then displayed in the list view tables through QRTable () for the QR
method and PowerTable () for the power method.

Code9 consists of two files, Code9 . hand Code9 . cpp. A single class called CCode9
is used, and this class is derived from CFrameWnd. The main window from this class
consists of two list view tables, 64 edit boxes for representing the 8 x 8 matrix, another
edit box for the error stopping value ¢, and a push button called Compute.

The elements in the iterations in the power and QR methods are represented by a
structure called ITER, which are given by

typedef struct
{
double lambda,v[M+1],error;
double lambdaB,vB[M+1],errorB;
double lambdaQR[M+1],vQR[M+1] [M+1],errorQR[M+1];
} ITER;
ITER eigen[maxIter+1];

A maximum number of iterations allowed is a macro called maxIter. In the most
dominant eigenvalue problem, an array called eigen stores the values of m; and vy
for matrix A, fork =0, 1, ..., Stop. Here, m, is represented by lambda and v; by
the array v. In the least dominant eigenvalue problem, m; and v, of the matrix B are
represented by lambdaB and vB, respectively. The errors in the iterations are error
for the A matrix and errorB for the B matrix. For the QR method, 1ambdaQR and
vQR are the eigenvalues and their corresponding eigenvectors, respectively. The error
is errorQR.

The elements for the input boxes are represented by a structure called INPUT. The
boxes form matrix A whose elements consist of the array input. The elements in
the array are the edit boxes (ed), their home coordinates (hm), and their contents
(item).

typedef struct

{
CPoint hm;
CString item;
CEdit ed;

} INPUT;

INPUT input [nInputItems+1] [M+1];
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TABLE 9.3. Member functions in CCode6

Function Description

CCode9 () Constructor.

~CCode9 Destructor.

PowerMtd () The power method for finding the most dominant eigenvalue and
its corresponding eigenvector.

QRMtd () Computes all the eigenvalues and eigenvectors of a symmetrix

matrix using the Householder transformation and QR method.
PowerTable()  Creates a list view table to display the results.
QRTable () Displays all the eigenvalues and their corresponding eigenvectors
in two separate list view tables.
OnButton() Responds to ON_BN_CLICKED, which reads the input matrix from
the user and calls the respective method to produce its solution.
OnPaint () Displays and updates the output in the main window.

Table 9.3 lists the functions in CCode9. The key function in this class is
PowerMtd (), which computes the most dominant and least dominant eigenvalues
of the input matrix A and its corresponding eigenvectors. PowerTable () displays
the detail results from the iterations in two list view tables, one for the most dominant
eigenvalue and another for the least dominant eigenvalue.

Table 9.4 lists the main variables and objects in CCode9. The progress in execution
is marked using £Status, where, £Status=0 indicates the stage before the power
method is applied, and £Status=1 indicates the power method has been successfully
applied. The maximum matrix size shown is M, whereas its actual size is m. The number
of iterations performed before convergence in matrix A is indicated by Stop1, whereas
that in matrix B is indicated by Stop2.

There are two events, an update in the main window and the push button click, and
they are handled by OnPaint () and OnButton (), respectively.

BEGIN_MESSAGE_MAP (CCode9,CFrameWnd)
ON_WM_PAINT()
ON_BN_CLICKED(IDC_BUTTON, OnButton)

END_MESSAGE_MAP ()

The OnButton () responds to the push button click. There are three local arrays in
the function: A, B, and /. A is the original matrix whose most dominant eigenvalue
is the first subject in the problem. B is A — A/, and its most dominant eigenvalue
contributes to finding the least dominant eigenvalue for A. I is the identity matrix,
which is needed in computing B. The function is given, as follows:

void CCode9: :0nButton()
{
int 1i,j,k;
double **A,**B,**I;
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TABLE 9.4. Main variables and objects in Code9

Variable/object Type

Description

fStatus bool

fMenu int

m, M int
macro

StopA, StopB int

epsilon double

nInputItems int

maxIter int

idc int

btn CButton

A flag whose values are £Status=0 at the data input
level and £Status=1 when the power method has been
successfully applied, respectively.

The method assigned, with fMenu=1 for the power
method and fMenu=2 for the QR method.

Actual size and maximum size of A matrix,
respectively.

Maximum size of the A matrix.

Number of iterations before convergence to the most
dominant and least dominant eigenvalues,
respectively.

¢ or the stopping criteria for the iterations in the
power method.

Number of input items in the selected method.
Maximum number of iterations allowed for the power
method.

Id for the edit boxes.

Push button object called Compute.

A=new double *[M+1];
B=new double *[M+1];
I=new double *[M+1];
for (i=1;i<=M;i++)

{
Alil=new double [M+1];
B[il=new double [M+1];
I[i]l=new double [M+1];
}
for (i=1;i<=M;i++)
for (j=1;j<=M;j++)
input[i] [j].ed.GetWindowText

(input[i] [j].item);
input [nInputItems] [1].ed.GetWindowText
(input [nInputItems] [1].item);

// determine the actual size of matrix

for (i=1;i<=M;i++)

if (input[i] [i].item=="")

{

m=i-1; break;

3
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// read the contents of A
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)

{
I[i]l[j1=0;
if (i==j)
I[i] [j1=1;
Alil[jl1=atof (input[i] [j].item);
}

// test for matrix symmetry
k=0;
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)
if (A[i][j1==A031[iDD
k++;
fMenu=((k==m*m)72:1) ;
if (fMenu==1)

{
PowerMtd(1,A);
PowerTable(1);
if (StopA!=-1)
{
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)
B[i] [j1=A[i] [j]-eigen[StopA]
.lambda*I[i] [j];
PowerMtd(2,B);
PowerTable(2);
}
}
if (fMenu==2)
{
QRMtd (A) ;
QRTable(1);
QRTable(2);
}

The OnButton() first reads the input values from A beginning with the top row,
from left to right. The size of A is determined in this function by detecting the first
null entry in its diagonal element. A null entry at a; ; implies the size of the matrix is
(i — 1) x (i — 1), and this assigns m = i — 1. The code fragments for this task are

for (i=1;i<=M;i++)
for (j=1;j<=M;j++)
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input[i] [j] .ed.GetWindowText
(input[i] [j].item);
input [nInputItems] [1].ed.GetWindowText
(input [nInputItems] [1].item);

// determine the actual size of matrix
for (i=1;i<=M;i++)
if (input[i] [i].item=="")
{
m=i-1; break;

}

Once the actual size of the matrix is known, the corresponding identity matrix can
now be created. At the same time, the values for A are determined by converting their
corresponding strings in the edit boxes, as follows:

for (i=1;i<=m;i++)
for (j=1;j<=m;j++)

{
I[i][j1=0;
if (i==3)
I[i]1[j]1=1;
A[i]l [jl=atof (input [i] [j].item);
}

The OnButton () calls PowerMtd () twice for computing the most dominant eigen-
values and their corresponding eigenvectors in A and B. The results from the iterations
are displayed in the list view tables through PowerTable ().

if (fMenu==1)

{
PowerMtd(1,A);
PowerTable(1);
if (StopAl!=-1)

{
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)
B[i][jI1=A[i1[j]l-eigen[StopA]l.
lambda*I[i] [];
PowerMtd(2,B);
PowerTable(2);
}



310 EIGENVALUES AND EIGENVECTORS

In the case where matrix A is symmetric, the flag fMenu=2 becomes active to
indicate the problem is passed to the QR method in its solution. The code fragments
are as follows:

if (fMenu==2)

{
QRMtd (4) ;
QRTable(1);
QRTable(2);
}

Power Method

PowerMtd () computes the most dominant eigenvalue A and its corresponding eigen-
vectors v ;. There are two arguments in PowerMtd (). The first argument is fPower,
and its value identifies the matrix to compute: 1 for A and 2 for B. The second argu-
ment is matrix ¢, which obtains its values through data passing from either A or B.
The full code listing for PowerMtd () is given below:

void CCode9: :PowerMtd(int fPower,double **c)
{
double u[M+1],w[M+1],lamb[maxIter+1],error [maxIter+1];
int 1i,3j,k;
for (i=1;i<=m;i++)
{
w[il=0;
if (i==2)
wlil=1;
eigen[0] .v[il=w[i];
eigen[0] .vB[i]=w[i];
}
epsilon=atof (input [nInputItems] [1].item);
for (k=0;k<=maxIter;k++)

{
for (i=1;i<=m;i++)
{
ul[i]=0;
for (j=1;j<=m;j++)
ulil += c[i] [jI1*w(j];
3

lamb[k]=ul1];
for (i=1;i<=m;i++)
if (fabs(lamb[k])<=fabs(ul[il))
{
lamb[k]=uli];
if (fPower==1)
eigen[k+1] .lambda=lamb [k] ;
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if (fPower==2)
eigen[k+1] .lambdaB=lamb [k] ;

}
for (i=1;i<=m;i++)
{
wlil=ul[i]/lamb [k];
if (fPower==1)
eigen[k+1].v[i]l=w[il;
if (fPower==2)
eigen[k+1].vB[i]l=w[i];
}
if (k>0)
{

error [k]=lamb[k]-lamb[k-1];
if (fPower==1)

eigen[k] .error=error[k];
if (fPower==2)

eigen[k] .errorB=error [k] ;
if (fabs(error[k])<epsilon)

{
if (fPower==1)
{
StopA=k;
eigen[StopA] .lambda=1lamb [StopAl;
fStatus=1;
Invalidate();
break;
}
if (fPower==2)
{
StopB=k;
eigen[StopB] .lambdaB=1lamb [StopB] ;
break;
}
}
else
{
if (k==maxIter && fPower==1)
StopA=-1;
if (k==maxIter && fPower==2)
StopB=-1;
}
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In PowerMtd (), the initial values consist of vo = [0 1 0]7 for both matrix A and
B, and €. The code is given by

for (i=1;i<=m;i++)

{
wli]=0;
if (i==2)
wlil=1;
eigen[0].v([il=w[i];
eigen[0].vB[il=w[i];
}

epsilon=atof (input [nInputItems] [1].item);

Convergence to the solution is obtained from the error tolerance given by
[Ak+1 — k| < &, and this condition is applied through fabs (error [k])<epsilon.
The conditional test is performed at every iteration to determine whether the er-
ror complies with the given tolerance. The last iteration numbers before conver-
gence, StopA for matrix A and StopB for matrix B, are stored in order to display
the eigenvalues and eigenvectors in list view tables later. The code for this task is
given by

error [k]=1lamb[k]-1lamb[k-1];
if (fPower==1)

eigen[k] .error=error [k] ;
if (fPower==2)

eigen[k] .errorB=error[k];
if (fabs(error[k])<epsilon)

{
if (fPower==1)
{
StopA=k;
eigen[StopA] .lambda=lamb [StopA];
fStatus=1;
Invalidate();
break;
}
if (fPower==2)
{
StopB=k;
eigen[StopB] .lambdaB=lamb [StopB] ;
break;
}
}

else
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{
if (k==maxIter && fPower==1)
StopA=-1;
if (k==maxIter && fPower==2)
StopB=-1;
}
QR Method

The QR method is handled by QRMtd (). The function computes all the eigenval-
ues belonging to a symmetric matrix through a conditional check performed by
OnButton (). The function is given by

void CCode9::QRMtd(double **c)

{

int i,j,k,u,p;
double a[maxIter+1] [M+1] [M+1],r[M+1] [M+1];
double q[M+1] [M+1],s[M+1] [M+1],w[M+1] [M+1];
double t[M+1],P[M+1] [M+1],I[M+1] [M+1],B[M+1] [M+1];
double Alpha,R,Sum;
epsilon=atof (input [nInputItems] [1].item);
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)

{
r[i] [j1=0;
al0] [1]1 [j1=c[il[j];
I[i][j1=0;
if (i==7)
I[i]l[j1=1;
}

//Householder’s Method
for (k=1;k<=m-2;k++)
{
Sum=0;
for (i=k+1;i<=m;i++)
Sum+=pow(a[0] [1] [k],2);
if (al0] [k+1] [k]<0)
Alpha=sqrt (Sum) ;
else
Alpha=(-1)*sqrt (Sum);
R=sqrt ((pow(Alpha,2)*1/2)-(Alpha*a[0] [k+1] [k]1*1/2));
for (i=1;i<=k;i++)
t[i]1=0;
t [k+1]=(a[0] [k+1] (k] -Alpha)/ (2*R) ;
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for (i=k+2;i<=m;i++)
t[il=al[0] [i] [k]/ (2%R);
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)
P[i] [j1=I[i] [jI1-(2*t[i1*t[j]1);
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)

{
Sum=0;
for (u=1;u<=m;u++)
Sum+=P[i] [ul*a[0] [ul [j];
B[i] [j1=Sum;
}

for (i=1;i<=m;i++)
for (j=1;j<=m;j++)

{
Sum=0;
for (u=1;u<=m;u++)
Sum += B[i] [ul*P[u] [j];
al0] [i] [j1=Sum;
}

}
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)
qlil[j1=al0] [i]1[j1;

//QR algorithm
StopA=-1;
for (p=0;p<=maxIter;p++)
{
for (i=1;i<=m;i++)
for (j=i;j<=m;j++)
{
if (i==j)
{
Sum=0;
for (k=1;k<=m;k++)
Sum+=pow (q[k] [1],2);
r[i] [j]1=pow(Sum,0.5);
for (k=1;k<=m;k++)
qlk] [j1=(qlk] [j1/r[i1[j1);
¥
if (i<j)
{

Sum=0;
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for (k=1;k<=m;k++)
Sum+=(q[k] [i1*q[k] [j1);
r[i] [j]1=Sum;
for (k=1;k<=m;k++)
qlk] [j1=q k] [j1-(r[i] (5]
*xq[k] [11);

if (p==0)
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)
{
s[i1[j1=q[i] [3];
eigen[p] .vQR[i] [j1=q[j] [i];

else

for (i=1;i<=m;i++)
for (j=1;j<=m;j++)

{
Sum=0;
for (k=1;k<=m;k++)
Sum+=s [i] [k]*q[k] [j];
wli] [j1=Sum;
}

for (i=1;i<=m;i++)
for (j=1;j<=m;j++)
{
s[i] [j1=wli] [3];
eigen[p]l .vQR[i] [j1=w[j] [i];
}
}
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)

{
Sum=0;
for (k=1;k<=m;k++)
Sum+=r [1] [k]*q[k] [j];
alp] [i] [j1=Sum;
qlil [j1=alp] [i1[j];
eigen[p].lambdaQR[i]=a[p] [1] [i];
}
if (p>0)
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for (i=1;i<=m;i++)

{
eigen[p] .errorQR[i]=eigen[p].lambdaQR[i]
-eigen[p-1].lambdaQR[i];
if (fabs(eigenl[p].errorQR[i])<epsilon)
jt+t;
}
if (j==m)
{
fStatus=1;
Invalidate();
StopA=p;
break;
}

QRMtd () consists of two major steps. First, the symmetric matrix is converted
into a symmetric tridiagonal matrix through the Householder transformation. This is
achieved through

//Householder’s Method
for (k=1;k<=m-2;k++)
{
Sum=0;
for (i=k+1;i<=m;i++)
Sum+=pow (a[0] [i] [k],2);
if (al[0] [k+1] [k]<0)
Alpha=sqrt (Sum) ;
else
Alpha=(-1)*sqrt(Sum);
R=sqrt ((pow(Alpha,2)*1/2) - (Alpha*a[0] [k+1] [k]%1/2)) ;
for (i=1;i<=k;i++)
t[1]1=0;
t [k+1]=(a[0] [k+1] [k]-Alpha)/(2*R) ;
for (i=k+2;i<=m;i++)
t[il=al0] [i] [k]1/(2*R);
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)
P[i]1 [j1=T[i] [j1-(2*t[i1*t[j1);
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)
{

Sum=0;
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for (u=1;u<=m;u++)
Sum+=P [i] [u]l*a[0] [ul [j];
B[i] [j]1=Sum;
}
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)

{
Sum=0;
for (u=1;u<=m;ut++)
Sum += B[i] [u]l*P[u] [j];
al0] [i] [j]=Sum;
}

}
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)
qlil[j1=al0] [i1[j]1;

The second step consists of the application of the QR method in determining
the eigenvalues and their corresponding eigenvectors. Iterations are performed us-
ing p until convergence, which is indicated by the integer variable, StopA. With
the convergence, the flag status value is changed to fStatus=1, which means
the method has been successfully applied. The eigenvalues are the last values of
eigen[p] .lambdaQR[i], whereas their eigenvectors are eigen[p] .vQR[i]. The
code fragments are given by

//QR algorithm

StopA=-1;
for (p=0;p<=maxIter;p++)
{

for (i=1;i<=m;i++)
for (j=i;j<=m;j++)
{
if (i==j)
{
Sum=0;
for (k=1;k<=m;k++)
Sum+=pow(q[k] [i],2);
r[i] [j1=pow(Sum,0.5);
for (k=1;k<=m;k++)
qlk] [j1=(qk] [3]1/c[i1[j1);
}
if (i<j)
{
Sum=0;
for (k=1;k<=m;k++)



318 EIGENVALUES AND EIGENVECTORS

Sum+=(q[k] [i1*q[k] [j1);
r[i] [j]=Sum;
for (k=1;k<=m;k++)
qlk] [j1=q k] [j1-(r[i] [jI*q[k] [i]);

}
if (p==0)
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)
{
s[i1[j1=qli][j]1;
eigen[p] .vQR[i] [j1=q[j] [i];

else

for (i=1;i<=m;i++)
for (j=1;j<=m;j++)

{
Sum=0;
for (k=1;k<=m;k++)
Sum+=s[i] [k]*q[k] [j];
wl[i] [j1=Sum;
}

for (i=1;i<=m;i++)
for (j=1;j<=m;j++)
{
s[il[j1=wlil [3];
eigen[p] .vQR[1i] [j1=w[j] [i];
}
}
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)
{
Sum=0;
for (k=1;k<=m;k++)
Sum+=r [i] [k]*q[k] [j];
alpl [i1[j1=Sum;
qlil [j1=alp] [i1[j];
eigen[p].lambdaQR[i]l=alp] [i] [i];

}
if (p>0)
{
j=0;

for (i=1;i<=m;i++)
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eigen[p] .errorQR[i]=eigen[p] .lambdaQR[i]
-eigen[p-1].lambdaQR[i];
if (fabs(eigen[p].errorQR[i])<epsilon)

jtts
}
if (j==m)
{
fStatus=1;
Invalidate();
StopA=p;
break;
¥
¥
Output

Output in Code9 is produced in the form list view tables, which shows the results from
every iteration. Two functions are created, PowerTable () for the results from power
and shifted power methods and QRTable () for the QR method. The two functions
are given as follows:

void CCode9: :PowerTable(int c)

{

int Stop,i,j,k;
CString str;
CRect rcTable[3];
rcTable[c]=CRect(table[c] .hm.x,table[c] .hm.y,table[c] .hm.x
+370,table[c] .hm.y+290) ;
table[c].list.DestroyWindow();
table[c] .list.Create(WS_VISIBLE | WS_CHILD | WS_DLGFRAME
| LVS_REPORT | LVS_NOSORTHEADER,rcTable[c],this,
idc++);
table[c] .list.InsertColumn(0,"i" ,LVCFMT_CENTER,25) ;
table[c].list.InsertColumn(1l, ((c==1)7"lambda hi"
:"lambda lo"),LVCFMT_CENTER,70);
for (i=2;i<=m+1;i++)
{
str.Format ("v[%d]",i-1);
table[c].list.InsertColumn(i,str,LVCFMT_CENTER,70);
}
table[c] .list.InsertColumn(m+2,"error",LVCFMT_CENTER,70) ;
Stop=((c==1)7StopA:StopB);
for (k=0;k<=Stop;k++)
{
str.Format ("%d" ,k) ;
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table[c] .list.InsertItem(k,str,0);

if (k>0)

{
str.Format ("%1f", ((c==1)7eigen[k] .lambda

:eigen[k] .lambdaB+eigen[StopA].lambda)) ;
table[c] .list.SetItemText(k,1,str);
str.Format ("%1f", ((c==1)7eigen[k] .error:
eigen[k] .errorB));

table[c].list.SetItemText (k,m+2,str);

}
for (j=1;j<=m;j++)
{
str.Format ("%1£f", ((c==1)7eigen(k] .v[j]:
eigen[k] .vB[j1));
table[c].list.SetItemText(k,j+1,str);
}

}

void CCode9::QRTable(int c)

{
int Stop,i,j,k,p;
CString str;
CRect rcTablel[4];
rcTable[c]=CRect(table[c] .hm.x,table[c] .hm.y,table[c] .hm.x

+370,table[c] .hm.y+290) ;
table[c].list.DestroyWindow() ;
table[c].list.Create(WS_VISIBLE | WS_CHILD | WS_DLGFRAME
| LVS_REPORT | LVS_NOSORTHEADER,rcTablel[c],this,

idc++);
table[c] .list.InsertColumn(0,"i" ,LVCFMT_CENTER,25);
if (c==1)

for (i=1;i<=m;i++)

{

str.Format ("lambdal[%d]",1i);
table[c] .list.InsertColumn(i,str,
LVCFMT_CENTER, 70) ;
str.Format ("error[%d]",i);
table[c].list.InsertColumn(m+i,str,
LVCFMT_CENTER, 70) ;
}
if (c==2)
{
k=0;
for (i=1;i<=m;i++)
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Stop=StopA;
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for(j=1;j<=m;j++)

{
str.Format ("v[%d] [%d]",1i,3);
table[c].list.InsertColumn
(i+k,str,LVCFMT_CENTER,70) ;
k++;
}

for (k=0;k<=Stop;k++)

{

str.Format ("%d4d",k) ;
table[c] .list.InsertItem(k,str,0);

if (k>0)
{
if (c==1)
for (i=1;i<=m;i++)
{
str.Format ("%1f",eigen[k].
lambdaQR[i]);
table[c].list.SetItemText (k,i,
str) ;
str.Format ("%1f",eigen[k] .
errorQR[i]);
table[c].list.SetItemText (k,m+i,
str) ;
}
if (c==2)
{
p=0;
for (i=1;i<=m;i++)
{
for (j=1;j<=m;j++)
{
str.Format ("%1f",eigen[k]
vQRI1I[31);
table[c].list.SetItemText
(k,j+p,str);
}
p = m;
}
}
}
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9.7 SUMMARY

The chapter discusses the problem of finding eigenvalues of a given matrix. The
power method has been applied in finding the most dominant eigenvalue, whereas its
derivative called the shifted power method continues the step in determining the least
dominant eigenvalue. Both methods also produce the corresponding eigenvectors for
the computed eigenvalues through a series of iterations. In the case where the matrix is
symmetric, a technique called the QR method is more practical as the method produces
all the eigenvalues and their corresponding eigenvectors. The power, shifted power,
and QR methods are illustrated in a project called Code9.

NUMERICAL EXERCISES

1. Find the most dominant and least dominant eigenvalues and their corresponding
eigenvectors of the following matrices using the power and shifted power methods,
with error tolerance of ¢ = 0.05:

2 0 1
2 1

a. A= } b.A=|1 -1 1
1 2
L 0 1 2
3 -1 0 3 -1 0

cA=1[0 2 1 dA=|-1 2 -1
1 -1 3 0 -1 3
2 -1 0 3 2 -1 23
1 1 0 2 1 0 2
2 -1 1 1 2 0 1 1
1 -1 -1 3 1 -1 2 3

Check the results by running Code9.

2. Find all the eigenvalues and their corresponding eigenvectors of the following
matrices using the QR method:

2 0 1
2 1
a A= b.A=|0 2 1
12
L 11 2
_ 2 -1 0 3
3 -1 0
-1 1 0
cA=|-1 2 -1 d. A=
0 0 3 -1
0 -1 3
- |3 2 -1 3

Check the results by running Code9.
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PROGRAMMING CHALLENGES

1. Modify Code9 by adding a new list view table to show the iterated values of the
QR method.

2. Modify Code9 by adding the file read and save options. Data to be read are in
matrix A, which can have a size from 2 x 2 to 8 x 8, whereas for storage are the
eigenvalues and eigenvectors.

3. Modify Code9 by incorporating a method for detecting the singularity of the
input matrix. A singular matrix A is one where |A| = 0, and this type of matrix
does not have an inverse.
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10.1 INTRODUCTION

Problems involving the ordinary differential equation (ODE) arise in many areas, in-
cluding engineering, natural sciences, medicine, economics, and anthropology. These
problems are normally generally numeric-intensive and require fast computers in their
implementation. Solutions to these problems are normally formulated as models that
involve ordinary and partial differential equations. A mathematical model is the gen-
eral solution to a given problem that is subject to some conditions and limitations.
A typical model works best when all conditions and constraints in the problem are
satisfied. At the same time, the model may not work if one or more of these conditions
are not satisfied.

An ordinary differential equation is an equation that has one or more terms in the
expression in the form of derivatives. A good understanding of problems involving
ordinary differential equations is necessary in order to produce efficient mathematical
models and their simulations on the computer. In engineering, models involving
ordinary differential equations are commonly deployed as the fundamentals for the
overall solution to a given problem.

324
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Some well-known models for problems in engineering from ordinary differential
equations are shown below:

Decay Equation: ‘fl—’l‘ + kx = 0, where « is a constant.

. . . 2
Damped harmonic oscillator equation: a‘fT’{ + b% + cx =0, where a, b, c are
constants.

. 2
Pendulum equation: 4-2

iz
. 2 .
Van der Pol equation: ZT? +e(x?+ 1)‘;—;‘ + x = 0, where ¢ is a constant.

+ § sinf = f(t), where g, [ are constants.

The general form of an ordinary differential equation of order n with m variables,
x;,fori =1,2,...,m,1is stated as

g(x17x27 "'7xln7 _f(-xl»-x27 "'7-xm)7 .f/(xla'xZa "'a-xm)v ceey f(n)(x]5x25 '~~5-xm)) = O'

(10.1)
In the above equation, f ) denotes the nth derivative of the function
f(x1, x2, ..., x,y). Hence, the order of the differential equation is determined from

the highest derivative in the given equation.
The degree of an ODE is the derivative with the highest power in the equation. We
illustrate two examples to differentiate the concepts of degree and order, as follows:

3
5x? ﬂ)—sé%mw:—L

dx dx

2

3xE Y e + 5y = 3xy°.
dx?

The first equation above is a first-order ODE, whereas the second is a second-order,
ODE as determined from their highest derivatives. The degree of the first equation is
three, whereas the second is one, as determined from their highest power.

An ODE is said to be implicit if the derivative term cannot be separated from other
variables in the equation. Otherwise, if the differential equation can be separated from
other variables, then the equation is said to be in an explicit form. It can be verified
that the first equation above is implicit, whereas the second one can be written in an
explicit form as follows:

d*y _ 3xy? +xe¥ =5y
dx? 3x '
In this chapter, we will discuss several common numerical methods for solving the

first- and second-order ordinary differential equation problems. A strong emphasis
will be placed on the visual model using Visual C++ for each problem in the discussion.

10.2 INITIAL-VALUE PROBLEM FOR FIRST-ORDER ODE

In general, the first-order ordinary differential equation having two variables, x and
y = f(x), is expressed as

g(x.y.y)=0. (10.2)
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Definition 10.1. The initial-value problem for the first-order ordinary differential
equation consists of the equation

d
d_y — o(x, y), (10.3a)
X

whose initial value is given by
Yo = y(xo). (10.3b)

Equations (10.3a) and (10.3b) make up the initial value problem for a first-order
ordinary differential equation. The initial value specifies the starting point where the
solution to the first-order differential equation exists. The solution to the initial-value
problem is obtained analytically according to the following steps:

d
ﬁ =g(x,y),
dy = g(x,y)dx,
y = f(x)= f(xo) +/g(x, y)dx. (10.4)

It is obvious that the numerical solution requires computing the definite integral of
g(x, y)fromx = xy = atox = b, assuming the function is continuous in this interval.
The existence and uniqueness of the solution within a given domain is guaranteed if
certain conditions are satisfied. We start with the following definition:

Definition 10.2. A function g(x, y)aty = y; and y = y, is said to satisfy a Lipschitz
condition in the variable y if a constant C called the Lipschitz constant exists in such
a way that [g(x, y1) — g(x, y2)| = Clyir — yal.

The above definition suggests the difference in g(x, y) attwo y locations is bounded
by the Lipschitz constant. This definition paves the way for the uniqueness of the
solution.

Theorem 10.1. Suppose D = {(x, y)la <x < b, —00 <y < oo} and f(x,y) is

continuous on D. If f(x, y) satisfies the Lipschitz condition on D in the variable
v, then the initial-value problem given by

v = fx,y), a<x<b, ya=y
has a unique solution ina < x < b.

Definition 10.2 and Theorem 10.1 together guarantee the uniqueness of a solution to
the initial-value problem. Several exact methods for solving the initial-value problem
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have been studied and applied. However, we will not discuss these methods as our
focus is on the numerical solutions to the problems.

There are also several numerical methods for solving the initial-value problem in
the first-order ODE based on the general formulation in Equation (10.3). In this chap-
ter, we will discuss some of these methods, including the Taylor series, Runge—Kutta
of order 2, Runge—Kutta of order 4, and the Adams—Bashforth—-Moulton multistep
methods. We will also discuss the initial-value problem for a system of ODEs.

10.3 TAYLOR SERIES METHOD

The Taylor series method is based on the expansion of a given function based on the
Taylor series equation. The nth-order expansion in the Taylor series is an approxima-
tion that produces a polynomial with (n+1) terms.

Definition 10.3. The nth-order Taylor series of y = f(x) at y;+1 = y(x;4+1) is the
sum of (n+1) terms at y; = y(x;) fori =0, 1,...,m and xy < x < x,, in equal-
width subintervals, each of size h = Ax. The Taylor series is defined as

2

h ’ h " h " h" (n)
Vet = vk i o gy e o+ 0+ ). (10.5)

In the above equation, O(n + 1) is the sum of the terms involving y"*! onward.
The Taylor series method for the initial-value problem is an approximation of the
Taylor series taken up to the nth term expansion of Equation (10.5), as follows:

h / h2 hz " h (n)
T g (10.6)

yi+l:\\"/yi+1. i 31 Vi

The initial value in the Taylor series method is yo = y(xp). It is obvious from the
above equatlon that the nth-order expansion includes terms involving the derivatives
from yl to yl(") The Taylor series method requires the subintervals in xop < x < x,, to
be uniform.

The implementation of the Taylor series method for solving the initial-value prob-
lem according to Equation (10.6) is very straightforward. Algorithm 10.1 shows how

this method works.

Algorithm 10.1. Taylor series of order n method.
Given y' = g(x, y), yo = y(xo) and m equal-width subintervals 7 = Ax;
Compute the derivatives y”,y”, ..., y™;
Fori =0toi=m — 1
Compute the discrete values of y;, y/, ..., yl("),
Compute y; 1 according to Equation (10.6);

Endfor
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Y9=-0.2 n=7? =7 Yio="?
] 0 0 b x
x,=0 x,=0.1 x,=0.2 X9=1

FIGURE 10.1. The solution diagram for the initial-value problem.

It can be verified from Equation (10.6) that the solution generated in the Taylor
series method becomes more accurate with higher order expansion of the terms. This
is obvious as a high-order value like n = 5 requires the computation of up to y®
that results in six terms in the expansion. The expansion supports a higher precision
value that arises from a large number of decimal places. Algorithm 10.1 is illustrated
through the following example:

Example 10.1. Given y’ = xcos2y for 0 < x <1 with s = Ax = 0.1 and y(0) =
—0.2, find y(0.1), ¥(0.2), ..., y(1.0) using the Taylor series method of order 3.

Solution. First, sketch the domain of this problem, as shown in Figure 10.1. We
obtain the Taylor series of order 3 as

h h? n
Vitl Xy + Fy’/ + Eyi” + §y£,, =y + 0.1y[' + 0.005));/ + 0.000167))[-,”.

The equation requires y, y’, y”, and y” in their discrete form. They are evaluated as

X cos2y,

y' =
y" = —2xy’sin2y + cos 2y,

y" = —2xy"sin2y — 4y’ sin2y — 4x(y’)* cos 2y.
The equations are expressed into their discrete forms as

i = x; cos 2y;,
v/ = —2x;y} sin2y; + cos2y;,
y!" = =2x;y/ sin2y; — 4/ sin2y; — 4x;(y])? cos 2y;.

Starting at i = 0, we have xo = 0 and yo = —0.2. The discrete elements become

Y = X0cos2yp =0,
Yo = —2x0y,sin2yy + cos 2y, = 0.921061,

"

¥y = —2x0yg sin2yy — 4y( sin 2y — 4xo(y))* cos 2yp = 0.
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TABLE 10.1. Solution to the initial-value problem in Example 10.1

! "

i X; Vi ¥i v/ Vi

0 0 -0.2 0.000000 0.921061 0.000000
1 0.100000 —0.195395 0.092461 0.931653 0.208695
2 0.200000 —0.181456 0.186973 0.961417 0.375875
3 0.300000 —0.157888 0.285167 1.003691 0.448502
4 0.400000 —0.124279 0.387707 1.045571 0.354170
5 0.500000 —0.080221 0.493578 1.066008 0.004724
6 0.600000 —0.025532 0.599218 1.035399 —0.674864
7 0.700000 0.039454 0.697822 0.919879 —1.680773
8 0.800000 0.113555 0.779457 0.693513 —2.846112
9 0.900000 0.194494 0.832764 0.356803 —3.816957
10 1.000000 0.278919 0.848402 —0.049805 —4.186357

We obtain y; = y(0.1)

= yo + 0.1y, + 0.005y{ + 0.000167y;’

= (—0.2) 4 0.1(0) 4+ 0.005(0.921061) 4 0.000167(0) = —0.195395.
By repeating the same step above for i = 1 with x; = 0.1 and y; = —0.195395, we
get

y; = xj1cos2y; = 0.092461,

y{ = —2x;y;sin2y; 4+ cos2y; = 0.931653,

v = —2x1y] sin2y; — 4y sin2y; — 4x1(y})* cos 2y; = 0.208695.
Finally, we obtain the solution:

y2 = y(0.2)
= y; +0.1y; + 0.005y] + 0.000167y;"

= —0.181456.

The complete results for other values in the range of 0 < x < 1.0 are shown in Table
10.1. Figure 10.2 is the curve representing the solution to the initial-value problem.

Euler’s Method

A classic technique called Euler’s method is a special case of the Taylor series method
whose order is n = 1. The method is derived from the fundamental theorem of cal-
culus, stated as

/ g f()dx = / Ty dx = y(uen) — y(x). (10.7)

i i
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0.279

-0.200
FIGURE 10.2. Solution graph for Example 10.1.

Simplifying the above equation gives

Yoxien) = y() + / 7 g f()dx

Yi+1 = yi + hyl,

Yig1 = yi +hg(xi, yi). (10.3)

Euler’s method is easy to implement as it involves only the first derivative in the
Taylor series. It is not necessary to compute the derivatives of higher orders in this
method. However, because of its two-term only expansion in the Taylor series, the
results obtained using the Euler’s method are not as accurate as the Taylor series
method using higher orders.

10.4 RUNGE-KUTTA OF ORDER 2 METHOD

One difficulty with the Taylor series method is the necessity to evaluate one or higher
derivatives of the given expression that may become very tedious and complicated.
As a result, the method may not be practical for implementation on the computer as
a special routine for evaluating the derivatives has to be developed along with the
normal program. This special routine may involve symbolic computation, which is
one area of study that requires a good understanding of data structure and numerical
database knowledge. Therefore, the Taylor series method is seldom used in most
applications for solving the initial-value problems in ODE.

A suitable alternative to the Taylor series method is the Runge—Kutta methods,
which were first proposed by the German mathematicians, C. Runge and M. W. Kutta
in 1900. Because of its simplicity, the Runge—Kutta method became very popular,
and several variations to the original method were produced. The general solution for
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the explicit ODE is given by

Yit1 %y0+hzcjkj1 (10.9)
=

where 7 is the order of the Runge—Kutta equation, c; is the weight, and k; is the
term in the Taylor series expansion of the equation y' = g(x, y). We will discuss the
Runge—Kutta of order 2 and 4 methods in this chapter, which has two and four terms
in the summation of Equation (10.9), respectively.

Originally, the Runge—Kutta method of order 2 (RK?2) is derived from the Taylor
series method based on the equation given by

/ h2
Yir1 Ry + g, yi)h + g'(xi, yi) =

2
The above equation simplifies into
dg  dgdy\ h?
i+l Vi i, yi)h Tt ) 5
Yt % yi + 80, i) +<8x+8xdx 2
1 1
Vier Ry + (1= — ) ki + —k», (10.10)
2r 2r
where
ki = hg(xi, yi), (10.11a)
ky = hg(x; +rh, y; +rky), (10.11b)

and 0 < r < 1. RK2 is stable and produces reasonably good solutions if the value of
r is kept in the given range. The method assumes m equal-width subintervals with
h=Axinxy < x < xp,.

Algorithm 10.2. Runge—Kutta of order 2 method (RK2).
Given y' = g(x, y), yo = y(x0), h = Ax, m and r;
Fori =0tom

Compute k; = hg(x;, yi);
Compute k, = hg(x; +rh, y; + rky);
Ifi <m
Compute y; 11 using Equation (10.10);
Update Xiy] < X; + h;
Endif
Endfor
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Example 10.2. Solve the problem in Example 10.1 using RK2 with r = 0.8.
. . dy
Solution. Given 5> = g(x, y) = x cos 2y. Hence,
ki = hg(x;, yi) = hx; cos 2y;,
ko = hg(x; +rh,y;, +rk)) = h(x; + rh)cos2(y; + rky).

With r = 0.8, yi11 = yi + (1 — 3)ki + 3-ka = y; 4+ 0.375k; 4 0.625k;. At i =0,
xo = 0 and yp = —0.2. We obtain

ki = hxgcos2yy =0,
ko = h(xg + rh) cos 2(yo + rki) = 0.007368.
This produces
¥(0.1) = y;
= yo + 0.375k; 4+ 0.625k,
= —1+0.375(0) 4 0.625(0.007368)

= —0.195394.
Continuing at i = 1, we have x; = 0.1 and y; = —0.195394:

ki = hxj cos2y; = 0.009246,

ky = h(x; 4 rh)cos 2(y; + rk;) = 0.016742.

And, finally,
¥(0.2) = y;
= y1 + 0.375k; + 0.625k,
= —0.195394 4 0.375(0.009246) + 0.625(0.016742)
= 0.181463.
Table 10.2 summarizes the results obtained fori =0, 1, ..., 10.

Heun’s Method

Heun’s method is a special case of RK2 with » = 1. This produces

Yie1 = yi + 0.5k, + 0.5k, (10.12)
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TABLE 10.2. RK2 solution to the initial-value problem

i X; Vi ky ka

0 0 —-0.2 0 0.007368
1 0.1 —0.195394 0.009246 0.016742
2 0.2 —0.181463 0.018697 0.026461
3 0.3 —0.157913 0.028516 0.036621
4 0.4 —0.124331 0.038769 0.047166
5 0.5 —0.080313 0.049356 0.057806
6 0.6 —0.025675 0.059920 0.067932
7 0.7 0.039252 0.069784 0.076593
8 0.8 0.113292 0.077955 0.082625
9 0.9 0.194166 0.083298 0.084967
10 1 0.278508 0.084883 0.083099

where k; = hg(x;, y;) and k, = hg(x; + h, y; + k;). To implement this method,
Algorithm 10.2 is used by setting r = 1.

Modified Euler—Cauchy Method

The modified Euler—Cauchy is another special case of RK2 with » = 0.5 to produce

Yi+1 = yi + k2, (10.13)
where k; = hg(x;, y;)andk, = hg(x; + 0.5h, y; + 0.5k;). Although k; appears miss-
ing in Equation (10.13), the variable is still needed in the evaluation of k; and, there-
fore, will still need to be evaluated.

10.5 RUNGE-KUTTA OF ORDER 4 METHOD

The Runge—Kutta method of order 4 (RK4) is derived from the Taylor series of order
4 by approximating the second, third, and fourth derivatives. The method is given as

Yie1 R yi + é[kl + 2ky + 2k3 + ks, (10.14)
where
ki = hg(xi, yi), (10.152)
ko = ha(xi + h/2, i + k1 /2), (10.15b)
ks = hg(xi + /2, vi + ka/2), (10.15¢)

ks = hg(x; + h, yi + k3). (10.15d)
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RK4 is a method of choice in many applications for solving the initial-value
problem as it provides a more accurate solution compared with RK2. The method is
also easy to implement, as summarized in Algorithm 10.3. Example 10.3 shows an
example from this method.

Algorithm 10.3. Runge—Kutta of order 4 method (RK4).
Given y' = g(x, y), yo = f(x0), h = Ax and m;
Fori =0tom

Compute k1 = hg(x;, i);

Compute k, = hg(x; +h/2, yi + ki1/2);

Compute k3 = hg(x; +h/2, y; + k2 /2);

Compute ky = hg(x; + h, y; + k3);

Ifi <m
Compute y; .| using Equation (10.14);
Update x; 11 = x; + h;

Endif

Endfor

Example 10.3. Solve the problem in Example 10.1 using RK4.

dyi

Solution. Given 3
Xi

= g(x;, yi) = x; cos 2y;.
Ati =0, xo = 0 and yp = —1. This produces
ky = xgcos2yy =0,
ky = h(xo + h/2)cos 2(yy + k1/2) = 0.004605,
k3 = h(xo + h/2)cos 2(yo + k2/2) = 0.004614,
ky = h(xg + h) cos 2(yo + k3) = 0.009246.
Therefore,

1
YO = y1 = yo + ¢ [kt + 2k + 2k + kel = —0.195386.

Ati =1,x9 =0.1 and yo = —0.195386. With similar steps, we get

ki = x; cos 2y; = 0.009246,
ky = h(x; 4 h/2)cos 2(y; + k1 /2) = 0.013921,
ks = h(x; 4 h/2)cos 2(y; + ka/2) = 0.013947,

ks = h(x; + h)cos2(y; + k3) = 0.018698.
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TABLE 10.3. Results using RK4 for Example 10.3

i X; Vi ky ko k3 ky

0 0 —-0.2 0 0.004605 0.004614 0.009246
1 0.1 —0.195386 0.009246 0.013921 0.013947 0.018698
2 0.2 —0.181439 0.018697 0.023534 0.023574 0.028517
3 0.3 —0.157867 0.028517 0.033566 0.033616 0.038771
4 0.4 —0.124258 0.038771 0.044014 0.044062 0.049358
5 0.5 —0.080211 0.049357 0.054661 0.054693 0.059922
6 0.6 —0.025547 0.059921 0.064997 0.064994 0.069782
7 0.7 0.039401 0.069782 0.074174 0.074124 0.077947
8 0.8 0.113455 0.077949 0.081081 0.081000 0.083279
9 0.9 0.194353 0.083285 0.084613 0.084556 0.084841
10 1 0.278764 0.084856 0.084070 0.084120 0.082279

The above values produce

1
YO =31 = yo + Tkt + 2K + 2k + kil = —0.181439.

The full results of Example 10.3 are listed in Table 10.3.

10.6 PREDICTOR-CORRECTOR MULTISTEP METHOD

All the methods discussed in the earlier sections are single-step methods. The solutions
to these methods are based on iterations starting from a single initial value. The
results obtained are good, but they may not be precise because of factors such as error
truncation and the approximated approach in the methods.

A refinement to the solution in a single-step method is the multistep method. A
multistep method implements the predictor—corrector approach, which first deploys a
predictor function to predict the solution using the Lagrange polynomial interpolation.
The predicted value is then refined further using a corrector function.

We discuss the solution to the first-order ODE problem % = g(x, y) with an initial
value given by yp = y(x) using this approach.

Adams—-Bashforth—Moulton Method

The Adams—Bashforth—Moulton (ABM) method is the most popular multistep method
for solving the initial-value problem. The method is based on the fundamental theorem
of calculus from y = f(x) given by

Xit+1
Yitl = Vi +/ g(x, y)dx.
X,

i
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TABLE 10.4. Adams-Bashforth predictor functions

Adams—Bashforth Predictor Function

Two-step Piv1 =Yi + %[_g(xi—l, Vi) + 3g(xi, ¥i)]

Three-step Pi+1 =Yi + %[Sg(xi—b Yie2) — 16g(x; 1, yi—1) +23g(x;, yi)]

Four-step Di+1 = Yi + 2}'7[—98()51‘73, Yi-3) + 378(xi—2, yi2) — 598(xi—2, yi-1)
+55g(xi, yi)l

TABLE 10.5. Adams-Moulton corrector functions

Adams—Moulton Corrector Function
Two-step Vier = Vi + 15[—8(xi1, yim1) + 88(x;, i) + 58(xis1, Pis)]
Three-step Vi1 = Yi + %[g(xi—b Yi—2) — 5g(xi—1, yi—1) + 19g(xi, yi)

+9g(xiv1, piv1)]

The Adams—Bashforth—-Moulton method is a two-fold process consisting of the
predictor and corrector functions, p;+; and y;4+;. The predictor function is called the
Adams—Bashforth function, whereas the corrector is the Adams—Moulton function.
Several variations to the method have been documented, and they differ through the
number of step sizes in both the predictor and the corrector functions.

Tables 10.4 and 10.5 show some of the most common Adams—Bashforth predic-
tor and Adams—Moulton corrector functions. We discuss the implementation of the
Adams—Bashforth—-Moulton method using the four-step Adams—Bashforth method as
the predictor function and the three-step Adams—Moulton function as the corrector
function. The functions are given as

Four-step Adams—Bashforth Equation (Predictor):

h
Pit1=Yi + ﬂ[_gg(xi—& Yi—3) +378(xi—2, yi—2) —59g(x; 2, yi—1) +558(x;, yi)].
(10.16a)
Three-step Adams—Moulton Equation (Corrector):

Yit1 =i + 2h—4 [g(xi—2, yi—2) — 58(xi—1, yi—1) + 19g(xi, yi) + 9g(xi 1, pi+1)].
(10.16b)
The Adams—Bashforth predictor is based on the Lagrange polynomial approxi-
mation on four points,(x;_3, yi—3), (x;—2, yi—2), (xi—1, ¥i—1), and (x;, y;) to produce
the extrapolated point (x;41, p;+1) using Equation (10.16a). Starting with i = 3,
the values of g(xo, yo), g(x1, ¥1), g(x2, ¥2) and g(x3, y3) are first evaluated to produce
(x4, p4). Any single-step method discussed earlier can be used to evaluate these three
values.
The Adams—Moulton corrector involves a Lagrange interpolation over the points
(xi—2, Yi—2), (xi—1, Yi—1), (x;, ¥;) and the new point (x;41, p;+1) Starting at i = 3, to
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produce the corrected value, (x; 41, yi+1). With i = 3, the corrected value of (x4, y4) is
obtained using Equation (10.16b) from the values of g(x1, y1), g(x2, ¥2),and g(x3, y3).

Algorithm 10.4. Adams-Bashforth—-Moulton method.
Given y' = g(x,y), yo = f(x0), h = Ax and m;
Fori =0to2

Evaluate y;;; using RK2, RK4, or Taylor methods;
Endfor
Fori =3tom
Ifi <m
Evaluate p;,; using Equation (10.16a);
Evaluate y; | using Equation (10.16b);
Update x;+1 = x; + h;
Endfor

Algorithm 10.4 outlines the computational steps for the Adams—Bashforth—
Moulton method. This algorithm is illustrated using Example 10.4.

Example 10.4. Solve the problem in Example 10.1 using the Adams—Bashforth—
Moulton method, starting with RK4 for the first three values.

Solution. Starting with xo = 0 from the initial value, we apply RK4 to produce the
values of yi, y», and y3. The values are obtained from Example 10.3, as

y1 = —0.195386, y, = —0.181439 and y; = —0.157867.

We get the predictor value ati = 3:

h
ps =y + Y [—9g(x0, yo) + 37g(x1, y1) — 59g(x2, y2) + 55g(x3, ¥3)]

1
—0.157867 4 Y [—9(0) + 37(—0.092462) — 59(0.186976) 4 55(0.285171)]

—0.124226.

The corrected value follows:
h
Y4 =y3+ ﬁ[g(xl, y1) — 58(x2, y2) + 19g(x3, y3) + 9g(x4, p4)]

0.1
= —0.172063 + ﬁ[_0‘092462 —5(0.186976) + 19(—0.157867) 4+ 9(0.387718)]

= —0.124262.
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TABLE 10.6. Results from Example 10.4

i X; Di Vi

0 0 —0.200000
1 0.1 —0.195386
2 0.2 —0.181439
3 0.3 —0.157867
4 0.4 —0.124226 —0.124262
5 0.5 —0.080158 —0.080220
6 0.6 —0.025469 —0.025564
7 0.7 0.039497 0.039375
8 0.8 0.113541 0.113423
9 0.9 0.194379 0.194324
10 1 0.278675 0.278753

Similar calculations for i = 4 produce ps and ys, as follows:

h
ps = ya+ —[—9g¢(x1, y1) +37g(x2, y2) — 59g(x3, y3) + 55g(x4, y4)] = —0.80158,

24

h
ys = y4+ 2 [g(x2, ¥2) — 5g(x3, y3) + 19g(x4, y4) + 9g(xs, ps)] = —0.080220.

The full results from Example 10.4 are shown in Table 10.6.

10.7 SYSTEM OF FIRST-ORDER ODEs

Aninitial-value problem also arises from a system of ordinary differential equations. A
system of first-order ordinary differential equations consists of two or more differential
equations that share the same set of variables. As in the system of linear equations, a
system with n differential equations requires » initial values before it can be solved

with unique solutions.

Definition 10.4. In general, the initial-value problem for a system of n ordinary

differential equations involving y;(x), y2(x), ...

an
dx
dy
dx

dyn
dx

=g1(x, y1, ¥, ...

= g2(x, y1, Y2, . ..

= gn(x, Y1, y2, ...

’ Yn),

’ yﬂ)a

’ yl‘l)s

, Y»(x) can be written as

(10.17a)
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where g1(x, y1, ¥2, .5 Yu)y 820X, Y1, Y25 -y Yudse o5 &n(X, Y15 Y2, ..., ya) are the
given functions in xy < x < x,,. The initial values in this problem are given by

y1(xo), y2(x0), - - ., Ya(X0). (10.17b)

The domain for this problem consists of the successive points xg, Xy, ..., X, in m
equal-width subintervals that are h = Ax apart.

Primarily, the solution to an initial-value problem involving a system of differ-
ential equations is derived from the same methods used in the single-equation case.
Therefore, any method discussed earlier can be applied to solve this problem.

We discuss the Runge—Kutta of order 4 method for solving a system of two differ-
ential equations having three variables each. A system of two differential equations
with three variables x, y(x), and z(x) in xg < x < x,, has the following form:

dy
= gl('x7 Yy, Z)a

dx
dz ( )
- = X, ¥,2).

dx &2, y, 2

The initial values are given by yo = y(xo) and zo = z(x¢). The discrete values of x

are expressed as x; fori =0, 1,2, ..., m. Since the intervals are uniform with width
h = Ax, the terms in x can be expressed as

Xig1 =X +h=x0+ih.

The RK4 method for a system of two differential equations is expressed as

1
Yie1 = yi + 3 ki + 2ky + 2k3 + k4] , (10.18a)

1
Zit1 :Zi+8[K1+2K2+2K3+K4]~ (10.18b)

InEquations (10.18a) and (10.18b), k; and K; fori = 1, 2, 3, 4 are the RK4 parameters
defined in Equations (10.15a), (10.15b), (10.15c¢), and (10.15d). They are

ky =hg(xi, yi, z:), Ky =hga(xi, yi, zi)s

ky=hgi(x; +h/2, yi +ki/2,zi + K1/2), Ko =g2(xi +h/2,yi +ki/2,z; + K1/2),
ks=hgi(x; +h/2, yi +ka/2,zi + K2/2), Kz=gx(xi +h/2,yi +ko/2, 2i + K2/2),
ks =hg\(x; +h, yi + k3, zi + K3), Kys=g(xi +h, yi + k3, zi + K3).

Algorithm 10.5 summarizes the steps in solving the initial-value problem from a
system of two ordinary differential equations using RK4.
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Algorithm 10.5. System of first-order ODE with variables using RK4.
Given % =g1(x,y,2), % = g2(x,¥,2), h = Ax and m;
Given the initial values,yy = y(x¢) and zg = z(xo);

Fori =0tom
Evaluate ky = hg(x;, yi, 2i);
Evaluate K| = hgo(x;, vi, 2i);
Evaluate k, = hg(x; + h/2,yi +ki1/2,z; + K1/2);
Evaluate Ky = hgy(x; +h/2,y; + ki/2, zi + K1/2);
Evaluate ks = hg1(x; + h/2,y; + k2/2, zi + K2 /2);
Evaluate K3 = hgy(x; + /2, yi +k2/2, zi + K2/2);
Evaluate ky = hg(x; + h, y; + k3, 2 + K3);
Evaluate Ky = hgo(x; + h, y; + k3, z; + K3).
Ifi <m
Compute y;; using Equation (10.18a);
Compute z;, using Equation (10.18b);
Update x;+1 < x; + h;
Endif
Endfor

Example 10.5. Solve the differential equations % =y —2zxand j—i = xyz with the
initial values givenby xg = 0, yo = 2,andz9p = —1,andh = Ax =0.1in0 <x <1
using the RK4 method.

Solution. The system consists of

g1(x,y,2) =y —2zx,
8(x,y,2) = xyz.

We obtain m = (x,, — x0)/h = (1 — 0)/0.1 = 10. The parameters in RK4 are evalu-
ated as

ki = yo —2z0x0 = 0.2, K; = x9y0z0 =0,

ky = (yo +k1/2) — 2(z0 + K1/2)(x0 + h/2) = 0.220,

K> = (xo + h/2)(yo + k1/2)(z0 + K1/2) = —0.0105,

ks = (yo + k2 /2) — 2(z0 + K2/2)(xo + h/2) = 0.221053,
K3 = (xo+h/2)(yo + k2/2)(z0 + K2 /2) = —0.010605,
ks = (Yo + k3) — 2(z0 + K3)(x0 + h) = 0.242317,

K4 = (xo + h)(yo + k3)(z0 + K3) = —0.022446,
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TABLE 10.7. RK4 Solution to the system of ODE problem in Example 10.5
i Xi i Zi ki, Ky ka, K> ks, K3 ka, K4

0 0 2.000000  —1.000000 0.200000 0.220000 0.221053 0.242317
0.000000 —0.010500 —0.010605 —0.022446

1 0.1 2.220737 —1.010776 0.242289 0.264848 0.266178 0.290575
—0.022447 —0.035901 —0.036311 —0.052080

2 0.2 2486556 —1.047268 0.242289 0.264848 0.266178 0.290575
—0.022447  —0.035901 —0.036311  —0.052080

3 0.3 2.752376 —1.083760 0.242289 0.264848 0.266178 0.290575
—0.022447 —0.035901 —0.036311  —0.052080

4 04 3.018195 —1.120252 0.242289 0.264848 0.266178 0.290575
—0.022447 —0.035901 —0.036311 —0.052080

5 0.5 3.284015 —1.156744 0.242289 0.264848 0.266178 0.290575
—0.022447  —0.035901  —0.036311  —0.052080

6 0.6 3.549834 —1.193236 0.242289 0.264848 0.266178 0.290575
—0.022447  —0.035901 —0.036311  —0.052080

7 0.7 3.815653 —1.229728 0.242289 0.264848 0.266178 0.290575
—0.022447 —0.035901 —0.036311 —0.052080

8 0.8 4.081473 —1.266220 0.242289 0.264848 0.266178 0.290575
—0.022447  —0.035901  —0.036311  —0.052080

9 0.9 4347292 —1.302712 0.242289 0.264848 0.266178 0.290575
—0.022447  —0.035901 —0.036311  —0.052080

10 1 4.613112  —1.339204 0.242289 0.264848 0.266178 0.290575
—0.022447 —0.035901 —0.036311 —0.052080

Therefore, L
y1 = y(0.1) = yo + g[kl + 2ky + 2k3 + k4l

0.1
=2+ ?[0.2 + 2(0.22) + 2(0.221053) + 0.242317]
= 2.220737.
h
z1 = z2(0.1) = zo + E[Kl + 2K, + 2K5 + K4]
0.1
=2+ ?[0 + 2(—0.0105) 4+ 2(—0.010606) — 0.022446]

= —1.010776.

Table 10.7 summarizes the results for (x;, y;, z;) fori =0, 1, ..., 10.

10.8 SECOND-ORDER ODE

The second-order ordinary differential equation is an equation that has the second
derivative as its highest derivative. The general form of a second-order ODE involving
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y(x)is
glx,y,y,y")=0. (10.19)

Two problems arise in the second-order ODE, and they are called the initial-value
problem and the boundary-value problem. For an interval defined as a < x < b, the
initial-value problem involves Equation (10.19) with its initial values at x = a given.
A boundary-value problem has its boundary values given at x = a and x = b for
solving Equation (10.19).

In solving a second-order ODE problem, conditions from either its initial values or
boundary values are needed. A solution obtained from the second-order differential
equations may exist uniquely or infinitely. The following theorems describe the cases
of unique solution.

Theorem 10.2. Given y”" = f(x,y,y’) for xop <x <x, with y(xo) = yo and
y(Xm) = ym, which is continuous in D = {(x,y, y)|xo <x <Xx,,—-00<y<
00, —00 < ¥y’ < oo}. If fy and 9f/dy’ are also continuous in D, and |g—§,(x, v, ) <
M, then the solution is unique.

Theorem 10.3. If y” = p(x)y’ + g(x)y + r(x) for xo < x < x,,,, with y(xo) = yo
and y(x,,) = ym; p(x), q(x), and r(x) are continuous in [xg, Xx;,]; and g(x) > 0 in
[x0, X,z ], then the solution is unique.

We discuss the solution to the initial-value problem in the second-order ordinary
differential equation using a technique of reducing its order to a system of first-order
equations. This is followed by the boundary-value problem involving a method called
finite-difference.

10.9 INITIAL-VALUE PROBLEM FOR SECOND-ORDER ODE

The initial-value problem for a second-order ordinary differential equation is defined
as follows:

Definition 10.5. The initial-value problem for a continuous second-order ordinary

differential equation in an interval defined as xo < x < x,, withthe variables y = f(x)
consists of solving Equation (10.19) with the initial conditions given by

y(x0) = Yo, (10.20a)

¥ (x0) = ¥p- (10.20b)

A second-order ODE requires two initial conditions, one from the normal starting
value and another involving the first derivative. One good strategy for solving the
initial-value problem for the second-order ODE is to reduce its order to a system of



INITIAL-VALUE PROBLEM FOR SECOND-ORDER ODE 343

first-order ODEs. The same technique discussed in Section 10.8 can then be applied to
solve the problem once the system of first-order ODEs has been obtained. To achieve
this objective, any single-step method discussed in this chapter can be used to generate
the solution.

We discuss the reduction of the second-order ODE into a system of first-order
ODEs. The numerical solution to the initial-value problem involving the second-
order ODE can be modeled as the discrete points (x;, y;) over m uniform intervals in
X0 < x < x,, whose width is given by 7 = Ax.

A second-order ODE with two variables, x and y = f(x), can be reduced into a
system of two first-order ODESs. This is possible by setting z = y’, and this transforms
y” into z'. Hence, g(x, y, ¥, y") = 0is reduced to the following system of first-order
ODEs:

gilx,y,2) =1z,
&x,y,2)=17.

The initial-value conditions for this problem become y(xo) = yo and zg = y'(xp).
The solutions are then obtained by applying the same method discussed in Section
10.8. Any suitable first-order method such as RK2 and RK4 can be used to solve the
system of differential equations.

Algorithm 10.6 summarizes the steps in solving the initial-value problem. The
method applies RK4 for solving the system of first-order ODEs. The algorithm is
illustrated using Example 10.6.

Algorithm 10.6. Second-order ODE reduction to first-order ODE system.
Given g(x, y, ¥, y") = 0, yo = y(x0), y'(x0) = 20, h = Ax and m;
Letz=y and 7 =y”;

Form a system with z = y' = g;(x, y,z) and 2’ = y" = ga2(x, ¥, 2);
Fori =0tom
Evaluate k; = hg(x;, yi, 2i);
Evaluate K| = hg>(x;, vi, 2i);
Evaluate k, = hg(x; +h/2, yi + k1/2, zi + K1/2);
Evaluate Ky = hgy(x; + h/2,y; + k1/2,z; + K1/2);
Evaluate k3 = hg(x; + h/2, yi + k2/2, z; + K2 /2);
Evaluate K3 = hgy(x; + /2, yi +k2/2, zi + K2/2);
Evaluate ky = hgi(x; + h, yi + k3, zi + K3);
Evaluate K4 = hgy(x; + h, y; + k3, z; + K3);
Ifi <m
Compute y; 1 using Equation (10.18a);
Compute z;,; using Equation (10.18b);
Update x; 4 < x; + h;
Endif
Endfor
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Example 10.6. Solve the equation y” 44y’ + 5y = 0, with the initial conditions
given by y(0) = —1dan y’(0) =2,for0 < x < land h = 0.1.

Solution. The number of subintervals is m = (1 — 0)/0.1 = 10. Let z = y’, and this
reduces y” 4+ 4y’ + 5y = Ointo z' + 4z + 5y = 0. We obtain a system of first-order
ODE:s, as follows:

Y=g, y,2)=z
7 = ga(x,y,z) = —4z =5y

The initial values are yp = y(0) = —1 and zp = z(0) = 2. The parameters in RK4 are
obtained as follows:

ki = hz;, Ki = h(—4z; — 5y;),
ky = h(z; + K1/2), Ky =h[-4(z; + K1/2) — 5(yi + ki1/2)],
ky = h(z; + K2/2), K3 =h[—4(z; + K2/2) — 5(yi + k2/2)],

ky = h(z; + K3), Ky = h[-4(z; + K3) — 5(y; + k3)].
Ati =0,x9 =0, yo = —1, and zo = 2. This gives

ki = hzo =0.2, K1 = h(—4z0 — Sy0) = —0.3,
ky = h(zo 4+ K1/2) = 0.185, Ky = h[—4(z0 + K1/2) — 5(yo + k1/2)] = —0.29,
ks = h(zo+ K2/2) = 0.1855, K3 = h[—4(z0 + K»/2) — 5(yo -+ k2/2)] = —0.288250,

ks = hzo+ K3/2) =0.171175, K4 = h[—4Go + K3/2) — 5(yo + k3/2)] = —0.277450.

‘We obtain the first solution as
h
y1 = y(0.1) = yo + g[kl + 2ky + 2k3 + k4]
0.1
=—1+ ?[0.2 +2(0.185) + 2(0.1855) + 0.171175]

= —0.814638.

h
71 = z(0.1) =z + E[Kl + 2K, + 2K3 + K4]

0.1
=2+ ?[—0.3 + 2(—0.29) 4+ 2(—0.288250) — 0.277450]

= 1.711008.
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TABLE 10.8. RK4 Solution to the second-order ODE boundary value problem in
Example 10.6

i X; Vi Zi ki, K, ka, K ks, K3 kg, K4
0 0 —1.000000  2.000000 0.200000 0.185000 0.185500 0.171175
—0.300000 —0.290000 —0.288250 —0.277450
1 0.1 —0.814638 1.711008 0.171101 0.157247 0.157879 0.144750
—0.277085 —0.264443 —0.263508 —0.250621
2 0.2 —0.656954 1.447074 0.171101 0.157247 0.157879 0.144750
—0.277085 —0.264443 —0.263508 —0.250621
3 03 —0.499270 1.183139 0.171101 0.157247 0.157879 0.144750
—0.277085 —0.264443 —0.263508 —0.250621
4 04 —0.341587 0.919205 0.171101 0.157247 0.157879 0.144750
—0.277085 —0.264443 —0.263508 —0.250621
5 0.5 —0.183903 0.655271 0.171101 0.157247 0.157879 0.144750
—0.277085 —0.264443 —0.263508 —0.250621
6 0.6 —0.026220 0.391336 0.171101 0.157247 0.157879 0.144750
—0.277085 —0.264443 —0.263508 —0.250621
7 0.7 0.131464 0.127402 0.171101 0.157247 0.157879 0.144750
—0.277085 —0.264443 —0.263508 —0.250621
8 0.8 0.289148 —0.136533 0.171101 0.157247 0.157879 0.144750
—0.277085 —0.264443 —0.263508 —0.250621
9 09 0.446831 —0.400467 0.171101 0.157247 0.157879 0.144750
—0.277085 —0.264443 —0.263508 —0.250621
10 1 0.604515 —0.664401 0.171101 0.157247 0.157879 0.144750

—0.277085 —0.264443  —0.263508 —0.250621

The full results from this problem are shown in Table 10.8.

10.10 FINITE-DIFFERENCE METHOD FOR SECOND-ORDER ODE

The boundary-value problem for a second-order ordinary differential equation has
the boundary conditions given. In an interval defined as a < x < b, the boundaries
for the continuous function y = f(x) in the interval are the left and right points,
(a, f(a))and (b, f(D)). To solve the differential equation, the boundary values must be
given.

A boundary is an end point in the given interval or domain of the problem. There
are two types of boundaries in an ordinary differential equation:

a. Dirichlet boundary conditions, which are stated as the given values at the
ends of one of the intervals, for example, y(a) = @ and y(b) = ina < x
<b.

b. Neumann boundary conditions, which are stated as the given values of the
first derivatives at the ends of one of the intervals. For example, y'(a) = A and
y'(b) = pina < x < b are the Neumann boundary conditions.
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We will deal with the first type of boundary condition in this section and with the
second type in the next section.

Definition 10.6. The boundary-value problem involving a second-order ordinary
differential equation is Equation (10.19) in xy < x < x,, with boundary conditions
given by y(x9) = yo and y(x,,) = y,,. In this interval, the width is given by h = Ax
and there are m uniform subintervals.

We restrict our discussion on the boundary-value problems to the case of linear
second-order ODESs. A second-order differential equation is said to linear if it can be
expressed into the following form:

Py +q(x)y +r(x)y = wx), (10.21)

where p(x), g(x), r(x), and w(x) are continuous functions of x in the interval x; <
X < Xp.

A common approach for solving a linear second-order differential equation with
boundary conditions is the finite-difference method. The method is based on the
approximation of the derivatives of y at several finite points in the interval to yield
a finite-difference formula. The points are distributed at equal-width subintervals so
that the derivatives y’ and y” can be replaced by their approximated discrete values.

The solution to the boundary-value problem for ODE2 consists of two main steps,
as depicted in Figure 10.3. First, the differential equation is discretized where the
terms involving y” and y” are replaced by their approximated values using the central-
difference rules. This step leads the way to the formation of the finite-difference
formula for the problem.

The second step starts by applying the finite-difference formula to the m subin-
tervals in xg < x < x,,. The finite-difference formula is applied at each of the m — 1
interior points in the interval to produce a system of (m — 1) x (m — 1) linear equa-
tions. A technique from Chapter 5, such as the Gaussian elimination method, is
then applied to solve this system to produce the final solution to the boundary-value
problem.

Algorithm 10.7 outlines the implementation of the finite-difference method for
solving the boundary-value problem for a linear second-order ODE.

Algorithm 10.7. Boundary-value problem for the linear second-order ODE.
Given p(x)y” + q(x)y" +r(x)y = w(x);
Given y(xo) = Yo, (X)) = ¥ and b = Ax;
Discretize the variables into p(x;)y; + g(x;)y! + r(x;)y; = w(x;);
Obtain the finite-difference equation by substituting y; and y!’;
Form a system of linear equations from the finite-difference equation;
Solve the system of linear equations to get yi, y2, ..., Ym—1;
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Second-Order ODE,
Boundary-Value Problem
with m-1 unknowns

finite-difference formula

(m-1) x (m-1) System of
Linear Equations

Thomas algorithm,
Gauss elimination method, etc.

Solution

FIGURE 10.3. Two-step solution to the boundary value problem in the second-order ODE.

We discuss the general solution to Equation (10.21) using Algorithm 10.7. The
discrete form of this equation is given by

Py 4+ qxi)y; +r(x)yi = w(x;).

Let p; = p(x;), ¢i = q(x;), r; =r(x;), and w; = w(x;), and the above equation
becomes

piyl +qiy; +riyi = w;.

Finite-difference values are obtained by employing the central difference rules
discussed in Chapter 8 to approximate the first and second derivatives, given as
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1y Jitl T Yicd
% T

1" Ay Yi+1 — 2}71 + yi—1
yi ~ -2

Substituting y’ and y”, we get

Yig1 = 2yi + yic n Vit = i

—1
Pi 02 qi o +riyi = w;.

Rearranging the terms in the order of y;_;, y; and y; .|, we obtain the finite-difference
formula for the given problem:

pi G —2p; Di | 4
— = — i— i i — — i+1 = W;. 10.22
(h2 2h>)’ 1+( " —{—r)y +(h2+2h>y+] w ( )

There are m — 1 unknowns in the system, y; fori = 1,2, ..., m — 1, which can
be solved from the (m — 1) x (m — 1) system of linear equations. This system of
linear equations is obtained by first substituting i = 1, 2, ..., m — 1 into the above
equation. The process starts withi = 1:

P q —2p: P q .
<h2 2h>Yo+< 2 +V1>Y1+<h2+2h>y2—w1-

Since the value of yjy is given, the first term above is moved to the right-hand side of
the equation to give

—2pi P, 4 . P q
< n +V1> yr+ <h2 + op )2 =W w2 o)
Ati = m — 1, the equation becomes

Pm—1 qdm—1 —217m—1 Pm—1 qdm—1 o
< n2 " )ym—2 + ( 02 +rm—l) Ym-1+ < 2 + o )ym = Wp—1-

Since the value of y,, is given, the last term in the left-hand side is moved to the
right-hand side, and this produces the last equation in the system as

Pm—1 qm-1 —2pm—1 _ _(Pm=1 | Gme
< n2 " )ym—Z + ( 2 + rm—l) Ym—1 = Wpy—1 ( 12 " >ym
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Regrouping all the above equations into a matrix form, we obtain a tridiagonal
system of linear equations of size (m — 1) x (m — 1), as follows:

=
(St +n) (8+4) 0o .. 0 0 0
n_n) (2 P o0 [y ]
T 2o tre) Uz ta) - 0 0 0 R
y2
P q —2p
0 (8-%2) (3+n) .. 0 0 0 s
— V-
0 0 0 () (T i) 0 V=3
) Ym—2
Pm—2 Im—2 —“Pm—2 Pm—2 Im—2
0 0 0 (o) (TR ene) (F ) | e
Pm— dm— —2Pp—
| o 0 0o .. 0 (fmrt - tgt) (=t tr) |
wy — (% - Z—L) Yo
wy
w3
_ _ (10.23)
W—3
W2
Lot = (2251 + 250 )

From the above system of linear equations, we obtain the algorithm for the nonzero
entries of A = [a; ;] and b = [b;]in Ay = b, as follows:

2p;
P +r forj=iand i=1,2,...,m—1,
h2
a; =124+ % frj—itland i=1,2,....m—2, (10.24a)
' n " 2n
%—;’—; forj=i—land i=2,....,m—1,
P1 qi o
wl—(ﬁ—ﬂ)yo 1fl=1,
b = w; ifi=2,3,...,m—2, (10.24b)
pl‘)‘l— qm— . .
wm—l_<71+ 2hl>ym ifi=m-—1.

Since Equation (10.23) is tridiagonal, the most practical approach for solving this
system is the Thomas algorithm as the computational steps required in this method
are not as massive as in other methods. We discuss an example that shows the method
for solving this problem.
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yo=-1 n=1? =7 y=? yy=7? ys=1
] 1 1 1 ———#%—>x
Xo=1 x=1.4 x,=1.8 x3=2.2 x,=2.6 X5=3

FIGURE 10.4. The solution diagram for Example 10.7.

Example 10.7. Given (cosx)y” + (sin(2x — 1)) ¥’ + (sin(1 — 5x))y = x cos x in
1 < x < 3 whose width is 7 = Ax = 0.4, the boundary values in this problem are
givenas y(1) = —1 and y(3) = 1. Find the values of y(1.4), y(1.8), y(2.2), and y(2.6).

Solution. Figure 10.4 shows the solution diagram for the problem. There are four
unknowns in this problem, y; fori = 1, 2, 3, 4, since m = 5. We start with

(cos x;)y! + (sin(2x; — 1))y! + (sin(1 — 5x;))y; = x; cos x;.
Applying the central-difference rules for substituting y; and y,

Yit1 —2yi +Yi1
2

Yi+1 — Yi—1

+ [sin(2x; — 1)] o

[cos x;] =+ [sin(1 — 5x;)]y; = x; cos x;.

Simplifying the terms in the above equation, we obtain the following finite-difference
formula:

cosx; sin(2x; — 1) n —2cos X; + sin(1—5x;)
- i— 5 T SI=oX) | i
2 T 2 Y

cosx; sin(2x; — 1)
+ +

2 h :| Yi+1 = X; COS X;.

The next step is to form the system of linear equations. A system of four linear
equations is to be formed since there are four unknowns, y;, y», 3, and y4. The
equations are found by setting i = 1, 2, 3, 4 into the finite-difference formula to form
a4 x 4 system of linear equations, as follows:

i =1:-0.155015(—1) — 1.845174y; + 2.279604y, = 0.237954
—1.845174y; + 2.279604y, = 0.082939,

i =2:-2.064390y; + 1.850668y, — 0.775636y; = —0.4089638,

i =3:-3.358706y, + 7.900285y; — 3.997558y4 = —1.294702,

i =4:-4266085y; + 11.247682y, — 6.445024(1) = —2.227911
—4.266085y3 + 11.247682y, = 4.217114.
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1.000000

-
w

—1.000000
FIGURE 10.5. Solution curve for Example 10.7.

In matrix form, the linear equations become

—1.845174  2.279604 0 0 i 0.082939

—2.064390 1.850668 —0.775636 0 2 —0.408964
0 —3.358706  7.900285 —3.997558 » = | —1.294702
0 0 —4.266085 11.247682 V4 4217114

The above system of linear equations is solved to produce the following solution:

y=[» » yi »l".

=[0.486949 0.430533 0.258478 0.4729691".

Figure 10.5 shows the solution graph for Example 10.7.

10.11 DIFFERENTIATED BOUNDARY CONDITIONS

Under certain circumstances, the boundary conditions for the second-order ODE in
Equation (10.21) may be given in the form of derivatives, as follows:

Y'(x0) = @ and y'(x,,) = B,
where « and 8 are constants and m is the number of subintervals in xg < x < x,,.

In solving this problem, similar steps as in the previous case are applied to obtain
the finite-difference formula in Equation 10.22.

pi 4 —2pi Pi | 4 .
</’l2 2h>yl—]+( 2 +rl>yl+(h2+2h>yl+l_wl'




352 ORDINARY DIFFERENTIAL EQUATIONS

The left boundary is y; = . Applying the central-difference rule from Equation
(8.5a),

Y —Y-1
2h

We obtain a virtual value, y_; as this quantity is not inside ygp < y < y,,. Expressing
y_ as a subject of the equation, we obtain

= .

y-1=y1 — 2ha.
The right boundary condition consists of y, = 8, which becomes

Ym+1 — Ym—1

2h =5

Again, another virtual value y,,; is obtained as it is outside of yy < y < y,,. This
value is made the subject, as follows:

Ym+1 = Ym—1+ 2hB.

It can be verified that the virtual values are only applicable in the finite-difference
formula in cases of i = 0 and i = m. Ati = 0, Equation (10.22) produces:

Po 4o —2po q0
<h2 2h>)’1+< w2 +ro>)’0+<h2+2h)y1—wo

Substituting the value of y_;, the above equation simplifies to

—2p
(T RO = T P PO

—2po 2po Po 4o
( w2 L ro) Yo + ?yl = wo + 2ha <F — E) . (10.25)

Similarly, applying Equation (10.22) at i = m:

Pm qm _2pm _
<h2 2h>ym 1+< 2 +rm))7m+<h2+2h))7m+l—wm'

Substituting the value of y,,1:

m m -2 m
<Z_2‘Z_h>y’”"+( i +’"“>y'”+<h2 >(y’” A=

2pm _2pm
Ym— m m — Wm —2h 10.26
2 1+ ( 2 +r ) Y w B ( Zh) ( )
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Fori =1,2,...,m — 1, the entries in each row of the coefficient matrix consist of
the diagonal, and its left and right terms, as follows:
1 P q —2p P q _
i=1: AT Yo+ n +ri)n+ ﬁ‘f’ﬁ »2 =wi,
. P Q@ —2py P,
=2: =2y S ) v =,
l <h2 2h>}1+< 2 +r2)y2+<h2+2h)y3 wy

. Pm—2 qm—2 —2pm—2 Pm-2 qm—2 _
=m-2: ( 2 - o )ym73+( n2 +rm72)yn172+( n2 + h >ym7|—wm72,

. Pm—1 qm—1 *2[7»1—1 Pm—1 qm—1 _
=m-—1: < n2 - 0 )ym—2+< 2 +rm—1)y:n—l+< 2 + n )ym—wm—1~

~.

We obtain a (m + 1) x (m + 1) tridiagonal system of linear equations:

r —2po 2po N
R = 0 .. 0 0 0
P @ —2p Pq
2 LA L 0 0 0 S
A A SR Yo
P @ —2p i
0 —= - = 0 0 0
w o w7 "
2pm—2 Pm-2 qm—2 Ym—2
0 0 0 m— 0
R SR Yo
Pm—1 qm—1 2pm—] Pm—1 qm—1 Y
0 0 0 - - L ym
w2 w T Tty
2Pm —Zl’m
L 0 0 0 0 ? 02 +rm
B Po g0\ |
dha (22 B0
o+ 2he <h2 2h>
wi
w
= . (10.27)
W -2
Wm—1
Pm qm
m 2h Ty YR
2P (hz " 2h)_

Equation (10.27) is summarized as Ay = b, where A = [qg;;] is the coefficient
matrix in the left-hand side, b = [b;] is the vector in the right side of the equation, and
y = [y;] is the unknown vector, for i, j =0, 1, 2, ..., m. The tridiagonal elements
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of A are obtained as

_2 ;
. h” 7 fori=0,1,2,....m, (10.28a)
ilz); ;1;1 fori=1,2,...,m—1,
aii+1 = (10.28b)
’ 2po fori = 0
F ori =0,
%—;’—;l fori=0,1,....m—2,
aiy1,i = (10280)
2Dm )
—_ fori =m — 1.
h2

From the same equation, we obtain the representation for b, as follows:

wo + 2ha (%—3—2) fori = 0,
b, = w; fori =1,2,...,.m—1, (10.28d)
—2h,3( ‘21};) fori = m.

Collectively, Equations (10.28a), (10.28b), (10.28c), and (10.28d) are sufficient to
solve for y. Since the coefficient matrix in Equation (10.27) is tridiagonal, the most
suitable choice for solving the system of linear equations is the Thomas algorithm
method.

Example 10.8. Given (2cos x)y” 4+ (5cos2x)y’ — (9sin3x)y = —7 sin 2x with dif-
ferentiated boundary values given as y'(0) = 0.4 and y’(1) =0.9in 0 < x < 1, find

y; fori =0, 1, ..., m on m equal-width intervals with 1 = Ax = 0.2.
Solution. There arem = ==t = % = 5 subintervals in the domain, and this gives

the graphical representation of the problem, as shown in Figure 10.6. The discrete

V=04 y5=09
Yo=7? »n=7 »=? y3=7? V4=7? ys=7?
L] {1 {1 {1 4> x
Xy =0 x;=0.2 x,=0.4 x3=0.6 x,=0.8 x5=1

FIGURE 10.6. Graphical representation of the problem.
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solution of the second-order differential equation is given by
(2cosx;)y! 4 (5cos2x;)y! — (9sin3x;)y; = —7 sin 2x;.
Replacing y; and y!” in the above equation using central-difference rules, we get

i1 — 2y + Y- i1 — Yi— . .
yH—y—i_yl 4+ (5cos in)M — (9sin3x;)y; = —7sin 2x;.

(2 cos x;) W o

The above equation is simplified to produce the finite-difference formula given by

|:2 cosx; S5cos2x; ] |:—4 COS X;
Yi—1 e —

h2 — oh h2 — 9sin 3xii| yi

[2 cosx;  5co0s2x;

i + 7 :|yi+1 = —7sin2x;.

The boundary values at xo = 0 and x5 in this problem are given in the form of
first derivatives at these points. This implies yy and ys are also the unknowns in
this problem along with y;, y,, y3, and y4. Therefore, there are six unknowns that
require the reduction of the boundary-value problem to a 6 x 6 system of linear
equations.

The given first derivative at xo = 0 is simplified using the central-difference rule
to produce a virtual value, y_,. This is obtained as follows:

y'(0) =04,

Y=y 04,
2h

Y1 =Y1 — 0.8A.

The right boundary value is simplified in a similar fashion to produce another virtual
value, yg, as follows:

y'(1) = 0.9,

Y6 — Y4
2h

Y6 = y4 + 1.8h.

=0.9,
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The first virtual value and the finite-difference formula are applied ati = 0 to produce

2cosxg  Scos2xy —4 cos xg
— Vo + | —

i T i — Osin 3x0] Yo

2.¢os xg n 5cos 2xg
h? 2h

] y1 = —7sin2xg,

2cosxg  Scos2xy —4 cos x .
|: 2 — 2 :| (y1 — OSh) + [T — Osin 3in| Yo
2cosxg  Scos2xy — 74in2
02 oh 1= S 2Xxo,
—4 cos x . 4 cos xg .
T 9sin3xg | yo + e y1 = —7sin2xg
4cosxg Scos2xy
0.8h — .
+ |: h? 2h ]

Applying the formula at the other interior points produce

2cosx;  S5cos2x; —4 cos x;
Yo+ | — 75—

Ati =1, .
: [ n? 2 h?

n 2cos x; n 5 cos 2x;
h? 2h

- 9sin3x1i| Vi

:|y2 = —7sin2x1.

2cosxy  S5cos2xy —4 cos x,
i+ |———

Ati=2,|: — e

i 7 — 9sin 3xz:| b

|:2 COS X7 N 5cos2x;

02 2 ] y3 = —7 sin 2)C2.

. 2cosx3  S5cos2x;3 —4 cos x3 .
Ati =3, |: . 7 :|y2+|:T—9sm3x3 V3
n 2cos x3 n 5cos2x3 7sin?
= —7sin2x3.
2 I Y4 3

. 2cosxs 5cos2xy —4cos xy
Ati =4, Vit |——

2 2h h2

n 2CcoS X4 n 5cos2xy
h? 2h

— Osin 3X4i| Y4

V5 = —7sin2xy.
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The second virtual value is applied to the right boundary point, at i = 5, to produce

— 3

2cosxs  S5cos2xs n —4 cos x5
e w7

— 9sin 3X5:| A

2cosxs  S5cos2xs
Yo

i + T = —7sin2xs,

2cosxs  5cos2xs —4 cos x5
Yo+ | ——

i 7 i — 9sin 3x{| Vs

[2 cosXxs  5cos2xs

2 o } (v4 + 1.8h) = —7 sin 2xs,

4 cos xs |:—4 COS X5
. =R A

2 i — 9sin 3xs:| y5 = —7sin2x5

2cosxs  5cos2xs
—1.8h .
|: h? + 2h i|

We obtain the following system of linear equations:

—~100 4 0 0 0 0 Y
37.490066 —103.088440  59.320024 0 0 0 "
0 37344216 —100.494451  50.582522 0 0 "
0 0 36737300  —91.298190  38.426755 0 ¥
0 0 0 35200329 —75.749840  25.617914 | | ys
Lo 0 0 0 54030231 —55.300311] |ys)

12

—2.725928

—5.021493

| —6.524274

—6.997015

| —14.217863 |

The above system is solved to produce the final solutions, given by
y = —0.002208 0.244800 0.380864 0.476674 0.598627 0.841981]".

The solution curve for this problem is shown in Figure 10.7.
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0 1
FIGURE 10.7. Solution curve for Example 10.8in 0 <x < 1.

10.12 VISUAL SOLUTION: CODE10

Codel0. User Manual.

1. Select a method from the menu.
2. Enter the input according to the selected method.
3. Click the push button to view the results.

Development files: Code10. cpp, Code10.h, and MyParser.obj.

We discuss the visual interface for the ordinary differential equations problems. The
project is called Code10, and it consists of all the methods discussed in this chapter.
Code10 is menu-driven, and this provides friendliness to problems that are generally
considered difficult.

Figure 10.8 shows the output from Code10, which consists of a menu with eight
items that represent the methods in order from top to bottom, as follows: Taylor,
Runge—Kautta of order 2, Runge—Kutta of order 4, Adams—Bashforth—-Moulton, ODE1
system, ODE2 initial-value problem, finite-difference 1, and finite-difference 2. The
figure shows the solution to a sample problem from the fifth item in the menu (ODE 1
System), which is an initial-value problem on a system of first-order ODEs given by

y = f(x,y) =3sinxsinyz and 7’ = g(x, y) = 3 cosx cos yz,

whose initial values are xo = 0, yop = 0.5, and z¢p = 0.5, for 0 < x < 8. The results
are shown in the table with their corresponding graphs of y = ¢g(x) and z = r(x)
generated.

Code10 has been designed to allow the user a full control of the input as well as
the output. To allow this flexibility, the output from Figure 10.8 is divided into four
regions. The first region is the menu displayed as shaded rectangles on the top left.
The second region is the input area, which becomes active when an item in the menu
is selected. The third region is the list view table for displaying the results from the
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 Code10: Ordinary Differential Equations =10l x|
1 DE 1: System
ODE 1: Taylor {Order 3 R
po .. yotiny: [3*sinbdsinly*z) |
o PeashFeostrd |
--- 0 |
- L5 |
- s l
" Los |
2 B |
; 5 =) 3 a 4229
1] 0.000000 0.500000 0. 500000
1 0.050000 0.501102 0.643803 jLrd
2 0. 100000 0.505094 0.783794
3 0. 150000 0.512%87 0.918822
4 10.200000 0.525789 1047643
5 0. 250000 0.544529 1.168850
-} 10300000 0.5702%5 1280819
7 0.350000 0.504019 1381577
8 0.400000 0.646775 1469334
9 10450000 0.699252 1541617
10 10.500000 0.761740 1.596545
11 0.550000 0.833895 1.632719
12 0.500000 0.914551 1649755
13 0.650000 1002326 1,643537
14 0.700000 1094528 1631170
15 0.750000 1190543 1600610
16 0800000 1287633 1560145 . Lo
17 0.850000 1385162 1512944 0500
18 0.900000 1.482551 1.461769 ll

FIGURE 10.8. An output from Code10.

calculations. The fourth region is the graphical area that displays the solution graph
for the problem.

Codel0 has a single class called CCodel0, and this class is derived from
CFrameWnd. The development files in Code10 are Codel0.cpp, Codel0.h, and
MyParser.obj.

Figure 10.9 is the schematic drawing of Code 10 that shows the development stages
of Codel0. In this diagram, a status flag called £Status monitors the execution
progress whose updated value represents a step in the execution. Initially, fStatus
has a value of 0. When an item in the menu is selected, £Status changes its value to
1. At the same time, a variable called fMenu is assigned with a number that represents
the order of the item from top to bottom. The selection also creates edit boxes for
collecting input from the user and a push button called Compute that, when activated,
calls the function that corresponds to the selected method.

When input has been completed and confirmed with a click at the Compute button,
fStatus value is updated to 2. The click causes a call to be made to a function
corresponding to the selected method in the menu. This function represents a method
for solving the given problem. The function solves the problem according to the input
values, and the results are displayed in the list view table through ShowTable (). The
solution graph for the problem is also displayed through DrawCurve ().
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FIGURE 10.9. Schematic drawing showing the development stages of Code10.

Changes in the input values in the edit boxes are allowed by resetting fStatus
to 1 in DrawCurve () once the results have been obtained and displayed. This option
is necessary as part of the user-friendliness features for the given problem. With
this update, any small changes in the input values will cause the whole data to be
reevaluated, and the results are immediately updated both in the table and in the
solution graph.

The data structure in Code10 consists of four structures. The first structure is PT,
which represents the variables x;, y;, p;, and z; as the array pt in the methods. The
structure also defines the left, right, maximum, and minimum points in the solution
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curve in the problem. The structure is declared as follows:

typedef struct

{

double x,y,p,Z; // xi, yi, pi, and z; components
} PT;
PT *pt;

A structure called INPUT declares the input objects, and these objects are linked
to an array called input. The structure is declared as

typedef struct

{
CString item, label,; // input string and its label
CPoint hm; // home coordinates
CEdit ed; // edit box
CRect rc; // rectangular object
} INPUT;

INPUT input [maxInput+1];

The third structure is MENU, which declares objects for the items in the menu. This
structure is declared as

typedef struct

{
CString item; // menu item
CPoint hm; // home coordinates
CRect rc; // rectangular region
} MENU;

MENU menu[nMenultems+1];

The last structure is CURVE, which provides objects for creating the solution curve.
The structure defines the rectangular region for displaying the solution graph.

typedef struct

{
CRect rc; // rectangular region
CPoint hm,end; // starting and end
coordinates
} CURVE;

CURVE curve;

Three events are mapped in Code 10, namely, the display update, left-button click,
and push button click.

BEGIN_MESSAGE_MAP (CCode10,CFrameWnd)
ON_WM_PAINT()
ON_WM_LBUTTONDOWN ()
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TABLE 10.9. Functions in Code10

Function Description

ODE1Taylor () Taylor series method for solving the first-order initial-value
problem.

ODE1RK2() Runge—Kutta of order 2 method for solving the first-order
initial-value problem.

ODE1RK4 () Runge—Kutta of order 4 method for solving the first-order
initial-value problem.

ODE1AB() Adams—Bashforth multistep method for solving the first-
order initial-value problem.

ODE1System() Runge—Kutta of order 4 method for solving the initial-value
problem in a system of first-order equations.

ODE2to0DE1System() Reduction of the initial-value problem from the second-order

ODE to first-order ODE, and its solution using the Runge—
Kautta of order 4 method.

ODE2FD1() Finite-difference equation method for the boundary-value
problem in the second-order ODE.
ODE2FD2() Finite-difference equation method for the boundary-value

problem in the second-order ODE having differentiated
boundary conditions.

ON_BN_CLICKED(IDC_BUTTON, OnButton)
END_MESSAGE_MAP ()

Eight items in the menu represent eight different methods for solving the initial-
and boundary-value problems. Each method is represented by a function as described
in Table 10.9.

Taylor Series of Order 3 Solution

The Taylor series method is represented by 0DE1Taylor (). This function supports
the Taylor series method of order three only. It would be a good challenge for the
reader to modify the item to make it more flexible by supporting the method using
any high order. In the given problem, y’ = g(x, y) is the input function. Because of
the non-symbolic nature of the application, the program does not evaluate the second
or third derivatives automatically from the input function. The user needs to enter
the derivatives in the edit boxes, and the string will then be passed to parse() for
processing.

In reading the input string, the derivatives are represented as single characters in
parse (), as follows:

u=y,v=y", andw =y"”.
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The representation is necessary so as to use the character codes defined in
Table 4.1 where the corresponding codes for x, y, u, v, w, and z are 23, 24, 20,
21, 22, and 25, respectively . For example, y” = 3xy’ — 4(y”)? cos xy” is written as
v = 3sxxu — 4v A 2% cos(x*v).

The Taylor series method in ODE1Taylor () is written based on Algorithm 10.1
and Equation (10.6). The function is given as follows:

void CCodel0::0DE1Taylor ()

{
double psv[6],tmp,max;
int psil6];
int i;
double h,u,v,w,z;
pt [0] .x=atof (input [2] .item) ;
pt [0] .y=atof (input [6] .item) ;
h=atof (input[4] .item);
tmp=atof (input [3] .item);
m=(tmp-pt [0] .x) /h; m=((m<M)?m:M) ;
max=pt [0] . x+(double)m*h;
tmp= (tmp<max) 7tmp:max;
pt[m] .x=tmp;
psil1]=23; psil[2]=24;
psil3]=20; psil4]=21;
for (i=0;i<=m;i++)
{
psv[1]l=pt[i].x;
psv[2]=pt[i].y;
u=parse(input[1] .item,2,psv,psi);
psv[3]=u;
v=parse (input [6] .item,3,psv,psi);
psv[4]=v;
w=parse (input [7] .item,4,psv,psi);
if (i<m)
{
pt[i+1] .y=pt[i].y+h*u+pow(h,2)/
2xy+pow (h,3) /6%w;
pt[i+1] .x=pt[i].x+h;
}
}
}

There are m subintervals that require m iterations for computing y;, for i =
1,2,...,m. The input strings for the equations are read as input[1].item,
input [6] .item, and input[7].item. These strings are passed to parse() for
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processing. The returned values are stored as u, v, and w, which represent y’, y”, and

vy, respectively.

psv[1]l=pt[i].x;

psv[2]=pt[i].y;

u=parse (input[1] .item,2,psv,psi);
psv[3]=u;

v=parse (input[6] .item,3,psv,psi);
psv[4]l=v;

w=parse (input[7].item,4,psv,psi);

The Taylor series method solves the initial-value problem according to Equation
(10.6). The code for this equation is written as

if (i<m)

{
pt[i+1] .y=pt[i] .y+h*u+pow(h,2) /2*v+pow(h,3) /6*w;
pt[i+1] .x=pt[i].x+h;

Runge—Kutta of Order 2 Solution

RK2 is easier to implement than the Taylor series method as it does not require the
evaluation of high-order derivatives. In Code10, RK2 is handled by ODE1RK2 (). The
method is very straightforward, as shown below:

void CCodel0::0DE1RK2()

{
int i,psil6];
double h,r,psv[6],tmp,max;
double k1,k2;
pt [0] .x=atof (input [2] .item);
pt [0] .y=atof (input [5] .item) ;
h=atof (input[4] .item);
tmp=atof (input [3] .item);
m=(tmp-pt [0] .x) /h; m=((m<M) 7m:M);
max=pt [0] . x+(double)m*h;
tmp=(tmp<max) 7tmp:max;
pt[m] .x=tmp;
r=atof (input [6] .item) ;
psil1]1=23; psil[2]=24;
for (i=0;i<=m;i++)

{
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psv[1]l=pt[i].x;

psv[2]=pt[i].y;

kl=h*parse(input[1] .item,2,psv,psi);

psv[1]=pt[i].x+r*h;

psv[2]=pt[i].y+r*kl;

k2=h*parse(input[1] .item,2,psv,psi);

if (i<m)

{
pt[i+1] .y=pt[i].y+(1-1/(2*r))*xk1+1/(2*r) *k2;
pt[i+1] .x=pt[i] .x+h;

ODE1RK2 () solves the initial-value problem using Equations (10.10) and (10.11),
whose computational steps have been outlined in Algorithm 10.2. Equation (10.11a)
and (10.11b) are processed using

psv[1]l=pt[i] .x;

psv2]=pt[i]l.y;

ki=h*parse(input[1] .item,2,psv,psi);
psv[1]=pt[i] .x+r*h;

psv[2]=pt[i] .y+r*ki;
k2=h#*parse(input[1] .item,2,psv,psi);

The values of y;, fori = 1,2, ..., m, are updated using Equation (10.10), and they
are written in ODE1RK2() as

if (i<m)

{
pt[i+1] .y=pt[i].y+(1-1/(2%r)) *k1+1/(2*r) *k2;
pt[i+1] .x=pt[i] .x+h;

Runge-Kutta of Order 4 Solution

The function ODE1RK4 () represents the solution to the initial-value problem based
on Algorithm 10.3 and Equation (10.14). The code segment is given as

void CCodel0: :0DE1RK4 ()
{
int i,psil6];
double h,psv[6],tmp,max;
double k1,k2,k3,k4;
pt[0] .x=atof (input[2] .item);
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pt [0] .y=atof (input [5] .item) ;
h=atof (input[4] .item);
tmp=atof (input [3] .item);
m=(tmp-pt [0] .x) /h;
m=((m<M) ?m:M) ;
max=pt [0] . x+(double)m*h;
tmp=(tmp<max) 7tmp:max;
pt[m] .x=tmp;
psil1]=23; psil[2]=24;
for (i=0;i<=m;i++)
{
psv[1]l=pt[i].x;
psv[2]=pt[i].y;
kil=h*parse(input[1].item,2,psv,psi);

psv[1]=pt[i] .x+h/2;
psv[2]=pt[i] .y+k1/2;
k2=h#*parse(input[1] .item,2,psv,psi);

psv[1]=pt[i].x+h/2;
psv[2]=pt[i].y+k2/2;
k3=h*parse(input[1] .item,2,psv,psi);

psv[1]=pt[i] .x+h;

psv[2]=pt[i].y+k3;

k4=h*parse(input[1] .item,2,psv,psi);

if (i<m)

{
pt[i+1].y=pt[i].y+(k1+2%k2+2xk3+k4)/6;
pt[i+1] .x=pt[i] .x+h;

The parameters ki, k;, k3, and k4 in Equations (10.15a), (10.15b), (10.15¢), and
(10.15d), respectively, are written in the following code fragments:

psvl1]=pt[i].x;
psv[2]=pt[i].y;
kil=h*parse(input[1].item,2,psv,psi);

psv[1]l=pt[i] .x+h/2;
psv[2]=pt [i].y+k1/2;
k2=hx*parse(input[1] .item,2,psv,psi);
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psv[1]l=pt[i] .x+h/2;
psv[2]=pt[i].y+k2/2;
k3=h#*parse(input[1] .item,2,psv,psi);

psv[1l=pt[i] .x+h;
psv[2]=pt[i].y+k3;
k4=h*parse(input[1] .item,2,psv,psi);

RK4 solution in Equation (10.14) is written compactly as

if (i<m)

{

}

pt[i+1].y=pt[i].y+(k1+2+k2+2xk3+k4)/6;
pt[i+1] .x=pt[i] .x+h;

Adams-Bashforth—Moulton Multistep Solution

The Adams—Bashforth—-Moulton method is a multistep method that requires a single-
step method in its first few iterations to produce the predictor values. These values
are read and inserted into the corrector function to produce solutions in the subse-
quent iterations. In Code10, the function ODE1AB() implements this method based
on Algorithm 10.4.

void CCodel0: :0DE1AB()

{

int i,psil6];
double h,f0,f1,£f2,£3,fp,psv[6],tmp,max;
double k1,k2,k3,k4;
pt[0] .x=atof (input[2] .item); pt[0].y=atof (input[5].item);
h=atof (input[4] .item);
tmp=atof (input [3] .item);
m=(tmp-pt [0] .x) /h; m=((m<M)?m:M) ;
max=pt [0] . x+(double)m*h;
tmp= (tmp<max) 7tmp:max;
pt[m] . x=tmp;
psil1]=23; psil[2]=24;
for (i=0;i<=m;i++)
{
if (i<3)
{
psv[1]l=pt[i].x;
psv[2]=pt[il.y;
kil=h*parse(input[1].item,2,psv,psi);

psv[1]=pt[i].x+h/2;
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psv[2]=pt[il .y+k1/2;
k2=h*parse(input[1] .item,2,psv,psi);

psv[1]=pt[i] .x+h/2;
psv[2]=pt[i] .y+k2/2;
k3=h*parse(input[1] .item,2,psv,psi);

psv[1]=pt[i].x+h;
psv[2]=pt[i] .y+k3;
k4=h*parse(input[1] .item,2,psv,psi);

pt[i+1].y=pt[i].y+(k1+2%k2+2xk3+k4)/6;
}
if (i<m)
{
pt[i+1] .x=pt[i].x+h;
if (i>=3)
{
psv[1]=pt[i-3].x;
psv[2]=pt[i-3].y;
fO=parse(input[1].item,2,psv,psi);

psv[1l=pt[i-2] .x;
psv[2]=pt[i-2].y;
fi=parse(input[1].item,2,psv,psi);

psv[1l=pt[i-1].x;
psv[2]=pt[i-1].y;
f2=parse(input[1].item,2,psv,psi);

psv[1]=pt[i].x;

psv[2]=pt[i].y;

f3=parse(input[1].item,2,psv,psi);

pt[i+1] .p=pt[i].y+h/24* (-9*f0+37*f1
-59%f2+55%£3) ;

psv[1]l=pt[i+1] .x;

psv[2]=pt[i+1].p;

fp=parse(input[1].item,2,psv,psi);

pt[i+1].y=pt[i].y+h/24*(£1-5%f2+19%£f3
+9%fp) ;
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The Adams—Bashforth predictor function is Equation (10.16a), and it is based on
RK4. The function is represented by the following code segment:

if (i<3)

{
psv[1]l=pt[i].x;
psv[2]=pt[i].y;
ki=h*parse(input[1].item,2,psv,psi);

psv[1]=pt[i] .x+h/2;
psv[2]=pt [i].y+k1/2;
k2=h*parse(input[1] .item,2,psv,psi);

psvl1]l=pt[i] .x+h/2;
psv[2]=pt [i].y+k2/2;
k3=h*parse(input[1] .item,2,psv,psi);

psv[1l=pt[i].x+h;

psv[2]=pt [i].y+k3;
k4=h#*parse(input[1].item,2,psv,psi);
pt[i+1] .y=pt[i].y+(k1+2+k2+2xk3+k4)/6;

The Adams—Moulton corrector function is based on Equation (10.16b). The code
segment consists of

if (i<m)

{
pt[i+1] .x=pt[i].x+h;
if (i>=3)
{

psv[1]=pt[i-3].x;
psv[2]=pt[i-3].y;
fO=parse(input[1].item,2,psv,psi);

psvl1]l=pt[i-2] .x;
psv[2]=pt[i-2].y;
fl=parse(input[1].item,2,psv,psi);

psv[1]l=pt[i-1].x;
psv[2]=pt[i-1].y;
f2=parse(input[1].item,2,psv,psi);

psv[1]l=pt[i].x;
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psv[2]=pt[i].y;
f3=parse(input[1].item,2,psv,psi);
pt[i+1] .p=pt [i].y+h/24% (~9*f0+37*f1-59+f2+55%£3) ;

psv[1]=pt[i+1] .x;

psv[2]=pt [i+1].p;

fp=parse(input[1] .item,2,psv,psi);

pt[i+1] .y=pt[i].y+h/24% (£1-5x£2
+19%£3+9%fp) ;

ODE System Solution

The initial-value problem can be extended into a system of ordinary differential
equations by having an equivalent number of initial values. A system with three
independent variables requires two equations and two initial values in order to produce
unique solutions.

In Codel0, a system with two ordinary differential equations is solved in
ODE1System(). The code fragments are written based on Algorithm 10.5, and they
are given as

void CCodel0: :0DE1System()
{

int i,psil6];

double h,psv[6],tmp,max;

double k1,k2,k3,k4;

double K1,K2,K3,K4;

pt[0] .x=atof (input[3].item);

pt [0] .y=atof (input[4].item) ;

pt[0] .z=atof (input [5] .item);

h=atof (input [6] .item);

tmp=atof (input [7] .item) ;

m=(tmp-pt [0] .x) /h; m=((m<M)?m:M) ;

max=pt [0] . x+(double)m*h;

tmp=(tmp<max) 7tmp:max;

pt [m] .x=tmp;

psil1]=23; psil[2]=24; psi[3]=25;

for (i=0;i<=m;i++)

{
psv[1]l=pt[i].x;
psv[2]=pt[il.y;
psv[3]=pt[i].z;
kl=h*parse(input[1] .item,3,psv,psi);
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Kl=h*parse(input[2] .item,3,psv,psi);

psv[1]l=pt[i] .x+h/2;
psv[2]=pt[i].y+k1/2;
psv[3]=pt[i].z+K1/2;
k2=h*parse(input[1] .item,3,psv,psi);
K2=h#*parse (input[2] .item,3,psv,psi);

psv[1]=pt[i].x+h/2;
psv[2]=pt[i].y+k2/2;
psv[3]=pt[i].z+K2/2;
k3=h*parse(input[1] .item,3,psv,psi);
K3=h*parse(input[2] .item,3,psv,psi);

psv[1l=pt[i].x+h;

psv[2]=pt[i].y+k3;
psv[3]=pt[i].z+K3;
k4=h*parse(input[1] .item,3,psv,psi);
K4=h*parse(input[2] .item,3,psv,psi);

if (i<m)

{
pt[i+1].y=pt[i].y+(k1+2%k2+2xk3+k4)/6;
pt[i+1].z=pt[i].z+(K1+2%K2+2*K3+K4)/6;
pt[i+1] .x=pt[i].x+h;

RK4 is deployed in 0DE1System() based on the solutions provided by Equations
(10.18a) and (10.18b).

ODE2 to ODE1 Solution

The solution to the initial-value problem for the second-order ODE consists of
reducing the equation into a system of two first-order ODEs. The two systems
are then solved using RK4, using Algorithm 10.6. In Codel0, a function called
ODE2to0DE1System() performs this task.

void CCodel0: :0DE2to0DE1System()
{

int i,psil6];

double psv[6];

double h,tmp;
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double k1,k2,k3,k4;

double K1,K2,K3,K4;

pt[0] .x=atof (input[2] .item);

pt [0] .y=atof (input [3] .item) ;

pt [0] .z=atof (input [4] .item);

h=atof (input [5] .item) ;

tmp=atof (input [6] .item);

m=(tmp-pt [0] .x) /h; m=((m<M)?m:M) ;

pt [m] .x=tmp;

psil1]=23; psil[2]=24; psil[3]=25;

for (i=0;i<=m;i++)

{
psv[1]l=pt[i].x;
psv[2]=pt[il.y;
psv[3]=pt[i].z;
k1=h*pt[i].z; Kl=h*parse(input[1].item,3,psv,psi);

psv[1]=pt[i] .x+h/2;

psv[2]=pt[i].y+k1/2;

psv[3]=pt[i] .z+K1/2;

k2=h*(pt[i] .z+K1/2); K2=h*parse(input[1].item,3,
psv,psi);

psv[1]=pt[i] .x+h/2;

psv[2]=pt[i] .y+k2/2;

psv[3]=pt[i] .z+K2/2;

k3=h*(pt[i] .z+K2/2); K3=h*parse(input[1].item,
3,psv,psi);

psv[1]=pt[i] .x+h;

psv[2]=pt[i].y+k3;

psv[3]=pt[i].z+K3;

k4=h*(pt[i] .2z+K3) ; K4=h*parse(input[1].item,
3,psv,psi);

if (i<m)

{
pt[i+1].y=pt[i].y+(k1+2%k2+2xk3+k4)/6;
ptli+1] .z=pt[i].z+(K1+2*K2+2xK3+K4)/6;
pt[i+1] .x=pt[i].x+h;
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ODE2 Finite-Difference 1 Solution

The boundary-value problem for the second-order ODE is solved using the finite-
difference method. The solution is provided based on Algorithm 10.7. The operating
function is 0ODE2FD1 (), and this function represents the method in item 7 of the menu.
The code fragments for this function are given as

void CCodel0: :0DE2FD1()

{

int i,j,psil6];
double psv[6],h,tmp;
double **a,*b;
double *p,*q,*r,*w;
b=new double [M+1];
p=new double [M+1];
g=new double [M+1];
r=new double [M+1];
w=new double [M+1];
a=new double *[M+1];
h=atof (input [5] .item) ;
m=(int) (atof (input [7].item)-atof (input[6] .item)) /h;
m=( (m<M) ?m:M) ;
pt [0] .x=atof (input [6] .item) ;
pt [m] .x=pt [0] .x+(double)m*h;
pt[0] .y=atof (input [8] .item) ;
ptm].y=atof (input[9].item);
psil1]1=23;
for (i=1;i<=m-1;i++)
{
pt[i] .x=pt[i-1] .x+h;
psv[1]l=pt[i] .x;
plil=parse(input[1] .item,1,psv,psi);
qli]l=parse(input[2] .item,1,psv,psi);
r[i]=parse(input[3].item,1,psv,psi);
w[i]l=parse(input [4] .item,1,psv,psi);
¥
for (i=0;i<=M;i++)
alil=new double [M+1];
for (i=1;i<=m-1;i++)
{
for (j=1;j<=m-1;j++)
alil [j1=0;
b[i]=0;
}
b[11=w[1]-(p[1]/(h*h)-q[1]1/(2%h))*pt[0] .y;
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blm-1]=w[m-1]1-(p[m-1]/(h*h)+q[m-11/(2*h) ) *pt [m] .y;
for (i=1;i<=m-1;i++)
{
ali] [1]=-2*p[i]/ (h*h)+r[i];
if (i<m-1)
ali+1] [i]=p[i+1]/(h*h)-q[i+1]/(2%h);
if (i>1)
ali-1][il=p[i-1]1/(h*h)+q[i-1]/(2%h);
if (i>1 && i<m-1)
blil=wl[il;
}
SolveSLE(a,b);
for (i=0;i<=M;i++)
delete alil;
delete p,q,r,w,a,b;

The input for the ordinary differential equation is obtained from Equation (10.21)
in the form of p(x), g(x), r(x), and s(x). Their values are read as input strings from the
edit boxes, and these strings are processed into numerical values through parse ().
The following code segment implements this idea:

psil1]=23;

for (i=1;i<=m-1;i++)

{
pt[i] .x=pt[i-1] .x+h;
psv1]l=pt[i] .x;
plil=parse(input[1] .item,1,psv,psi);
q[i]l=parse(input[2] .item,1,psv,psi);
r[i]=parse(input[3].item,1,psv,psi);
wl[i]=parse(input [4] .item,1,psv,psi);

Two main steps are involved in solving the boundary-value problem. First, a sys-
tem of linear equations Ay = b is to be formed using the finite-difference equation
in Equation (10.22). Here, A = [a;;] and b = [b;] are determined using Equations
(10.24a) and (10.24b), respectively. The code segment is given as

for (i=1;i<=m-1;i++)
{
for (j=1;j<=m-1;j++)
ali] [j1=0;
b[i]=0;
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bl1]1=w[1]-(p[1]/(h*h)-q[1]/(2%h))*pt[0].y;
blm-1]=w[m-1]-(p[m-1]/ (h*h)+q[m-1]/(2%h) ) *pt [m] . y;
for (i=1;i<=m-1;i++)
{
ali] [1]=-2*p[i]/(h*h)+r[i];
if (i<m-1)
ali+1] [i]=p[i+1]/(h*h)-q[i+1]/(2%h);
if (i>1)
ali-11[il=p[i-11/(h*h)+q[i-11/(2%h);
if (i>1 && i<m-1)
blil=wl[il;

The second step is to solve the system of linear equations. We apply the Gaussian
elimination method by calling a function called SolveSLE(). Two arguments are
supplied as input to this function, namely, A = [a;;]andb = [b;]. SolveSLE() solves
the problem and produces the solution as y = [y;], which is pt [i] .y in the program.
The function is shown as follows:

void CCodel0::SolveSLE(double **a,double *b)
{

int i,j,k,lo,hi;

double ml,Sum;

if (fMenu==7)

{

lo=1; hi=m-1;
}
if (fMenu==8)
{

10o=0; hi=m;
¥

for (k=lo;k<=hi-1;k++)
for (i=k+1;i<=hi;i++)

{
ml=a[i] [k]/alk] [k];
for (j=lo;j<=hi;j++)
alil [j1 -= mixalk][j];
bl[i] -= mixb[k];
}
for (i=hi;i>=lo;i--)
{
Sum=0;
pt[i].y=0;

for (j=i;j<=hi;j++)
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Sum += al[i] [jI1*pt[j].y;
ptlil.y=(b[i]-Sum)/ali] [i];

SolveSLE(Q) is shared by items 7 and 8 in the menu. The size of the matrices in
the systems of linear equations in the two items are not the same. Two local variables
called 1o and hi have been introduced to represent the starting and ending indices
of the elements in the matrices. The current system has a size of (m — 1) x (m — 1),
whose rows and columns start with i = 1 to i = m — 1. Therefore, 1o and hi are 1
and m — 1, respectively.

ODEZ2 Finite-Difference 2 Solution

Item 8 in the menu is represented by 0DE2FD2 (). This function solves the boundary-
value problem in the second-order ODE whose boundary conditions are given in
the form of first-order derivatives. Basically, ODE2FD2 () is a little bit different from
ODE2FD1 () as it has to support the differentiated boundary conditions, which results
ina(m + 1) x (m + 1) system of linear equations. The complete code for 0DE2FD2 ()
is given below:

void CCodel0: :0DE2FD2()
{

int i,j,psil6];
double psv[6],tmp;
double h,alpha,beta;
double x**a,x*xb;
double *p,*q,*r,*w;
b=new double [M+1];
p=new double [M+1];
g=new double [M+1];
r=new double [M+1];
w=new double [M+1];
a=new double *[M+1];
for (i=0;i<=M;i++)

alil=new double [M+1];
h=atof (input[5] .item) ;
m=(int) (atof (input [7] .item)-atof (input[6] .item))/h;

m=((m<M) ?m:M) ;

pt [0] .x=atof (input [6] .item) ;
pt[m] .x=pt [0] .x+(double)m*h;
alpha=atof (input[8] .item); beta=atof (input[9].item);
for (i=0;i<=m;i++)
{

if (i<m)

pt[i+1] .x=pt[i].x+h;
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psv[1]=pt[i].x; psil[1]=23;

plil=parse(input[1] .item,1,psv,psi);
qli]l=parse(input[2] .item,1,psv,psi);
r[il=parse(input[3].item,1,psv,psi);
w[i]l=parse(input[4] .item,1,psv,psi);

}
for (i=0;i<=m;i++)
{
for (j=0;j<=m;j++)
alil[j1=0;
b[i]=0;
}
for (i=0;i<=m;i++)
{
alil [i1=-2*p[i]/(h*h)+r[i];
if (i>0 && i<m)
ali] [i+1]=p[i]1/ (hxh)+q[i]/(2*h);
if (i<m-1)
ali+1] [il=p[i+1]/(h*h)-q[i+1]1/(2*h);
if (i>0 && i<m)
blil=w[il;
}

a[0] [1]1=2*p[0] /m;
a[m] [m-1]=2#p[m]/ (h*h) ;
b[0]=w[0]+(p[0]/(h*h)-q[0]/(2%h))*2*h*alpha;
b [m]=w[m]-(p[m]l/(h*h)+q[m]/(2%h))*2+h*beta;
SolveSLE(a,b);
for (i=0;i<=M;i++)

delete alil;
delete p,q,r,w,a,b;

Asinitem 7, the solution to the boundary-value problem consists of two main steps.
First, a system of linear equations is created using the finite-difference equation of
Equation (10.22). We have to solve Ay = b, and A = [a;;] and b = [b;] are obtained
from Equations (10.28a), (10.28b), (10.28c), and (10.28d). The boundary conditions
are given in the form of first-order derivatives with o and 8 as the left and right
derivative values in the interval. Therefore, yy and y,, become the unknowns along
with y; fori =1,2,...,m — 1.

There are m + 1 unknowns, and this creates a system of linear equations of size
(m + 1) x (m + 1). From Equations (10.28a), (10.28b), (10.28c), and (10.28d), we
obtain the code segment for creating A = [a;;] and b = [b;]:

for (i=0;i<=m;i++)
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alil [i1=-2*p[i]/ (h*h)+r[i];
if (i>0 && i<m)
alil [i+1]=p[il/(h*h)+q[i]/(2*h);
if (i<m-1)
ali+1] [i]=p[i+1]/(h*h)-q[i+1]/(2*h) ;
if (i>0 && i<m)
blil=w[i];
}
a[0] [1]1=2xp[0]/m;
a[m] [m-1]=2%p [m]/ (h*h) ;
b[0]=w[0]+(p[0]/(h*h)-q[0]/(2%h))*2*h*alpha;
b[m]=w[m]-(p[m]/(h*h)+q[m]/(2%h))*2*h*beta;

The system of linear equations is solved using SolveSLE (). The unknowns in the
(m + 1) x (m + 1)systemare y; fori =0, 1, ..., m, and this prompts 10=0 and hi=m
in SolveSLE(). The solution is provided as pt [i] .y, which represents y = [y;].

10.13 SUMMARY

The chapter discusses the numerical solutions to the first- and second-order ordinary
differential equations. The first-order differential equations involve initial-value
problems, and their numerical solutions consist of the Taylor series, Runge—Kutta
of order 2, Runge—Kutta of order 4, and the Adam—Bashforth—-Moulton methods.
Problems in the second-order ordinary differential equations include both the
initial-value and boundary-value problems. Their initial-value solutions are derived
from the first-order methods, whereas the boundary-value problems are solved using
the finite-difference methods.

Several creative projects can be embarked from our discussion. Problems in or-
dinary differential equations are commonly encountered in science and engineering.
The problems are expressed in the form of models involving ordinary differential
equations, whereas simulations are performed to support these theoretical models. In
most cases, visualization from the solution is necessary to support the work. There-
fore, programming with a friendly graphical user interface is needed for visualizing
the results from the applications.

NUMERICAL EXERCISES

The following exercises are intended to test your understanding of the materials
discussed in this chapter. Use six decimal places for calculations.

1. Solve and compare the results from the following initial-value problems using the
Taylor series method of order 2 and 3:

a. yy =3sinx —4cosx,forO <x <1,h = Ax =0.25 and y(0) = —1.
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b. y =3x2y —4y,for0<x < 1,h = Ax = 0.25 and y(0) = —1.
c. yy =3sinxy,for0 <x <1,h = Ax =0.25and y(0) = —1.

Run Code10 to check the results from your work.

. Solve and compare the results from the following initial-value problems using
RK2 (with r = 0.8) and RK4:

a. yy =3sinx —4cosx,for0 <x <1,h = Ax = 0.25 and y(0) = —1.
b. y' =3x2y —4y,for0 <x <1,h = Ax =0.25 and y(0) = —1.

c. y =3sinxy,for0 <x <1,h = Ax =0.25and y(0) = —1.

d. 3xy/—2y2+4x =—1,for0<x <1,h=Ax =0.25and y(0) = —1.

Run Code10 to check the results from your work.

. Solve the following initial-value problems using the Adams—Bashforth—-Moulton
method with RK4 as their starting predictor values:

a. y =3sinx —4cosx,forO<x <1,h = Ax =0.25 and y(0) = —1.
b. y = 3x2y —4y,forO0<x <1,h = Ax =0.25and y(0) = —1.

c. yy =3sinxy,for0 <x <1,h = Ax =0.25and y(0) = —1.

d. 3xy —2y? +4x = —1,for0 <x < 1,h = Ax =0.25 and y(0) = —1.

Run Code10 to check the results from your work.

. Solve the following initial-value problems for the system of first-order ordinary
differential equations using RK4:

a.y =2x —3y and 7/ =3z+4+2x, for 0 <x < 1. The initial values are
y(0) = —1 and z(0) = —2.

b. yy =2cosy —3sinx andz’ = 1 — 2sinxyz, for 0 < x < 1. The initial values
are y(0) = —0.7 and z(0) = 0.2.

Run Code10 to check the results from your work.

. Solve the following initial-value problems for the second-order ordinary differ-
ential equations using RK4 by reducing the equations to a system of first-order
ordinary differential equations:

a.y"=3y+y—x—1, for 0<x<1 and h= Ax =0.25. The initial
values are y(0) = 0.5 and y’(0) = —0.5.

b. " =3x2y' +2xy —3x -2, for 0<x<1 and h=Ax =0.25. The
initial values are y(0) = 0.5 and y’(0) = —0.5.

c. ' =@Bsinx)y' +(2cosx)y —x — 1,for0 < x < landh = Ax = 0.25. The
initial values are y(0) = 0.5 and y’(0) = —0.5.

Run Code10 to check the results from your work.
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6.

Solve the boundary-value problems for the second-order ordinary differential equa-
tions using the finite-difference method, given by

a. y' =3y +y—x—1,for 0O<x <1, and h = Ax =0.25, y(0) = —1 and
y(1) = —0.5.

b. ¥ =3x2y’ 4+ 2xy —3x —2,for0 < x < 2,and h = Ax = 0.5, y(0) = 0 and
¥2) = 2.

c. 2y"4+3x%y =3xy—4dx =1,for =1 <x < 1l,and h = Ax = 0.5, y(—1) =
—1land y(1) = —0.5.

d. y/ = 3sinx)y’ + (2cosx)y —x — 1, for 0 <x <1, and h = Ax = 0.25,
y(0) = —0.5 and y'(1) = 1.

e. Y/ =Bsinx)y’ +(2cosx)y—x —1, for 0 <x <1, and h = Ax = 0.25,
y'(0) = —1 and y(1) = —0.5.

f. y =@sinx)y’ + (2cosx)y —x —1, for 0 <x <1, and h = Ax =0.25,
y(0) — y'(0) = —1 and y(1) + 2y'(1) = —0.5.

Run Code10 to check the results from your work in problems (a), (b), (c), and (d).

PROGRAMMING CHALLENGES

1.

Modify the Code10 project by improving on the module in the Taylor series method
to allow the user to determine the order of the series from two to five. This im-
provement requires new edit boxes for collecting the additional derivatives as input
to the method.

. Modify the Code10 project by improving on the module in the Adams—Bashforth—

Moulton method to allow the user to determine the step size in both the predictor
and the corrector functions according to the given equations in Tables 10.4 and
10.5.

. Modify the Code10 project by improving on the finite-difference method for the

second-order ordinary differential equations to support mixed boundary-value con-
ditions. For example, the boundary values may be given in the form of Problems
6(e) and (f) in the above numerical exercises.

. Modify the Code10 project to add some important features, such as file open and

retrieve options. These features are important because data are normally placed in
separate files from the program files.
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11.1 INTRODUCTION

Partial differential equation (PDE) is an equation that has one or more partial deriva-
tives as independent variables in its terms. Some typical examples are

9 af\’
3sinx—f +4y%x —f = COSXY,
dax ay

92 92 a b
3—f —2—f — 3x—f +4y—f =-1
y x dy

The order of apartial differential equation is defined as the highest partial derivative
of the terms in the equation. Therefore, the first example above is the first-order PDE,
whereas the second is the second-order PDE. The degree of a partial differential
equation is defined as the power of the highest derivative term in the equation. It can
be verified from the definition that the two equations above have the degrees of three
and one, respectively.

In general, a partial differential equation of order n having m variables x; for
i=1,2,...,misexpressed as

f( ( ) ou du  9%u 9%u " u "u
X1y X2s oovy Xy UXT, X2y ooy Xy )y s eees 5 3oy 5 ey P
ax; 0x, 0x 0x2 ax’ axn
1 m 1 m

(11.1)
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3%
dx?

9%u
dxady

In the above equatlon are
Uy, and uyy, respectlvely

In this chapter, we will concentrate on numerical problems involving second-order
partial differential equations only. A second-order partial differential equation with

variables xi, x,, and u(x], x,) has the following general form:

~ is simply u, in its compact form, wherea

9%u

0u
— ——,——>— | =0. (11.2)
dx1’ 9xy” 9x?’ 9x10xy " 0x3

b (xl,xz,u(xl,xz)

Table 11.1 lists some very common second-order partial differential equations. The
equations are common in many engineering applications such as heat distribution in
a plate, wave propagation, and electromagnetic fields. A second-order PDE u(x, y)
is said to be linear if it can be written into the following form:

Aazu L g 9%u
9x2 0xdy

Lol pt g e o 0,
u W G-
0 T Cax Ty

(11.3)
where A, B, C, D, E, F,and G are constants. A linear second-order PDE can fur-
ther be classified as elliptic, parabolic, and hyperbolic according to the following
rules:

1. IfBz—4AC<OOI'ZE|:A

B C] is positive definite, then the equation is

elliptic.
2. If B?
3. If B?

—4AC = 0, then the equation is parabolic.
—4AC > 0, then the equation is hyperbolic.

TABLE 11.1. Some common second-order PDEs

Equation Description
&y 4+ 2 “2 =0 Laplace’s equation
ax?
‘3)73' + d—“ = w(x,y) Poisson’s equation
% - “’;2 =0, forx >0 Wave equation
o 327 -2 =0 Diffusion equation
bu _ 2% =0 Heat equation
227‘2’ + % + f(x,y)u = g(x,y) Helmholtz’s equation
f;;‘ =a? (; —bu Klein-Gordon’s equation
?; = g 4 4 hef Modified Loiuville’s equation

1
@Un = Uy T Uyy

Vibrating membrane
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It can be easily verified from the rules that Laplace’s, Poissson’s, and Helmholtz’s
equations from Table 11.1 are good examples of elliptic equations. Similarly, heat
equation is parabolic, whereas Klein—Gordon’s and wave equations are hyperbolic.

Boundary-Value Problem

Mathematical models using partial differential equations are mostly based on their
boundary conditions. A typical boundary-value problem for a given function u(x, y)
that is continuous in a rectangular domain bounded by a < x < bandc <y < d has
its values defined in at least one pair of its sides. There are two types of boundary
conditions for this problem:

a. Dirichlet boundary conditions, which are stated as the given values at the ends
of one of the intervals, for example, u(a, y) = fi(y) and u(b, y) = fo(y) in
a<x<bh.

b. Neumann boundary conditions, which are stated as the given values of the first
derivatives at the ends of one of the intervals. For example, u,(a, y) = f3(y)
and u,(b, y) = f4(y)ina < x < b are the Neumann boundary conditions.

The initial conditions at one of the parameters may also arise in a boundary-
value problem. For example, a two-dimensional heat equation has u(x, t) defined
ina <x <bandc <t <d, where ¢ represents time. The boundary conditions for
this problem are stated as u(a, t) = fi(¢) and u(b, t) = f>(t), where fi(¢t) and f>(¢)
are functions governing the left and right sides of the domain, respectively. The
initial condition is u(x, ¢) = g(x), which suggests the initial heat value depends on
its location x from the origin.

The numerical solution to a partial differential equation problem is an approximated
approach based on some finite points in the domain of the problem. The most common
approaches include finite-difference, finite element, and boundary element methods.
Finite difference applies to cases where the boundaries are fixed, and the subintervals
within the boundaries have uniform width. The finite-element method is more flexible
as it can be applied on non-uniform elements in the problem. The boundary element
method applies to linear PDEs, which are formulated as integral equations. In this
method, calculations are made to evaluate the values along the boundaries only as
defined by its governing partial differential equation.

The easiest approach for solving the boundary-value problems involving partial
differential equations is the finite-difference method. This method is based on the same
concept as in the ordinary differential equation, that is, by dividing the given interval
into several equal-width subintervals and substituting the derivatives in order to yield
the finite-difference formula for the problem. We will focus on the finite-difference
methods for several boundary-value problems in this chapter.

The solution to a boundary-value problem from the partial differential equations
can be expressed as an explicit or implicit form. The explicit form of the solution is a
straightforward method that has its values evaluated directly from the finite-difference
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equation. The implicit form is more difficult as it requires the reduction of the problem
into a system of linear equations before its solution is obtained.

Central-Difference Rules

In the finite-difference method, solutions are obtained by replacing the given first and
second derivatives into their approximated form using the central-difference rules.
The rules for partial derivatives are merely the extension from the full derivatives
derived from the Taylor series expansion of the terms.

Figure 11.1 shows the finite points in the rectangular grids. In approximating the
partial derivatives, the grids are divided into horizontal and vertical subintervals whose
widths are h and k, respectively. A point u(x, y) is written as u(x;, y;), where the
subscripts 7 and j denote its x and y positions, respectively. u(x;4, ¥;) is one unit
in front of u(x;, y;), whereas u(x;_1, y;) is one unit behind. Similarly, u(x;, y;4+1)
refers to a point above u(x;, y;), whereas u(x;, y;_1) is one unit below. For simplicity,
u(x;, y;) is referred simply as u;, j, u(x;41, y;) as u;41, j, and so on.

For u(x, y) continuous and defined in a rectangular domain whose horizontal and
vertical grids have the widths of /& and k, respectively, the derivatives at the finite point
(x;, y;) are approximated using the central-difference rules from Equations (8.5a) and
(8.5b) as

3_u ~ u(xiy1, y;) — uxi—1, y;) (11.4a)
0% | y) 2h , |
u UG i) —ulxi, yio1) (11.4b)
Y I,y 2k
ulx;, yi+1)
k
P h
u(xi.1 ;) u(x;. ;) i1 ;)
k
u(xl»,yj_l)

FIGURE 11.1. Partial derivatives in rectangular grids.
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ib; ~ u(x,»+1,yj)—2u(xi2, yf)+”(xi*1’yf), (11.4c)
9% | () h
d%u ~ M(xi,yj+1)—2”(xiayj)+”(xi’yf—1)_ (11.4d)
ayZ (xi,¥j) k2

iYj

The partial derivatives given by Equations (11.4a), (11.4b), (11.4c), and (11.4d)
are merely the two-dimensional extension of the full derivatives discussed earlier in
Chapter 8. The partial derivative of u(x, y) with respect to the variable x is obtained
by differentiating that variable only. This means only the i subscript is involved.
Similarly, the partial derivative with respect to y involves the subscript j only.

11.2 POISSON’S EQUATION

The elliptic partial differential equation has many applications in areas such as har-
monic analysis in potential theory. The most common types of elliptic equations are
the Poisson’s and Laplace’s equations. The Poisson’s equation has many applications,
such as in the two-dimensional heat flow modeling, given by

2, = 1
Viu = ——q(x, y),
K

where the constant « is the conductivity and g (x, y) is the rate of heat distribution per
unit area.

Definition 11.1. Poisson’s equation is stated as V"'u = w(xy, x3, ..., X,), where V"
is the sum of the nth partial derivative with respect to the variables.

In the above definition, V is an operator, pronounced as del, which denotes the
potential function. In the two-variable case of x and y, V is the first partial derivative
defined as

d a

ax  dy’

The one-dimensional form of the Poisson’s equation with variables x and u(x) in
the interval @ < x < b is given by

?u  du
ol

Lo 2 2 32 2 2 . . .
Similarly, V2 = 4 + f7 and V2 = L 4 % + -, are the Poisson’s equations in

two and three variables, respectively.
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The Poisson’s equation with two independent variables, x and y, and two dependent
variables, u(x, y) and w(x, y), is given by

2 u  9%u
\% M=@+a—y2=w(x7)’)~

(11.5)

The domain €2 in the Poisson’s equation problem consists of a rectangular region
definedas {2: a < x < b, c <y <d}.Bothu(x, y) and w(x, y) are assumed to be
continuous in this rectangular region. The objective in the boundary-value problem
for the Poisson’s equation is to find the values of u(x, y) inside €2, given its values
along the sides of the rectangular region.

Figure 11.2 shows €2, which is made from m x n rectangular grids with m = 4
and n = 5 in the boundary-value problem. Discrete coordinates are used to label the
points in the grids with u; ; representing the value of u(x;, y;). The points are labeled
starting from the bottom left-hand corner as their origin whose coordinates are given
by uo,0 = u(xo, yo). This coordinates system is slightly different from the normal
Cartesian representation as the subscripts i and j in this system are assumed to be
positive integers, or zero only.

The points in Figure 11.2 are labeled according to their coordinates with black
squares denoting the given boundary and initial values and white squares for the
unknowns in the problem. The widths of the intervals are determined, as follows:

. . Xn — X0
horizontal interval, h = Ax = ——,
n
. . Ym — Yo
vertical interval, k = Ay = ——.
m
U4 Uy 4 U 4 u3 4 Ug 4 Us 4
[} [ ] [ ] [ ] [ ] [ ] V=Va
U3 3 u33 U3 _
Up3 W 1 = = = W Uus3 y=r3
U2 U2 u32 U2 _
g, W 3 1 {1 1 W us5) V=
uj Uz usz g Ug 1 _
Uy, ® 1 = = = W U5 ) Y=
k
h
[ ] [ ] ] ] ] ] Y=
Up,0 U0 2,0 Uz o Ug o Us 0
X:XO Y:XI X:XZ X:)C3 X:X4 X:.XS

FIGURE 11.2. The values of u(x, y) in the rectangular grids.
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The boundaries for Equation (11.5) are the left and right sides of the rectangles,
as shown in Figure 11.2. The Dirichlet boundary conditions are clearly functions of
X, given by

u(x, yo) = fi(x), for xg <x < x,,

u(x, ym) = fo(x), for xo < x < x,.

The vertical sides of the rectangle in Figure 11.2 are the initial conditions. The
bottom side of the rectangle denotes the initial values, whereas the top side indicates
the end values. In the Poisson’s equation, these values are functions of y represented
by g1(y) and g»(y), as follows:

u(xo, y) = g1(y), for yo <y < yum,
u(xn, y) = g2(y), for yo <y < yu.

These initial values cannot be mistakenly assumed as the boundary conditions because
the quantity y may be replaced by ¢, which represents time. A time-dependent variable
normally starts at a given value and ends at another given value.

We discuss the finite-difference method for solving the boundary-value problem
whose domain is {2 : xp < x < X, Yo < ¥ < ¥}. The numerical solution to the
boundary-value problem involving the Poisson’s equation consists of two main steps,
as depicted in Figure 11.3. First, the partial differential equation is reduced to its
finite-difference form by eliminating its first and second derivatives using the central-
difference rules. From the finite-difference formula, a system of linear equations is
obtained by substituting the initial and boundary values. A problem from m rows
and n columns in the rectangular grid results in (m — 1)(n — 1) unknowns, which
generate a system of linear equations of size (m — 1)(n — 1) x (m — 1)(n — 1).

The second step is solving the system of linear equations using any suitable method
as discussed in Chapter 5, such as the Gaussian elimination and Crout methods. This
step produces the values of u; ; = u(x;, yj)forl1 < j <m—1land1 <i <n-—1.

We start with the first step by finding the finite-difference formula for the problem.
This is achieved by eliminating the partial derivatives using the central-difference
differentiation rules:

n 3%u
dy?

9%u

ax? = Wi

(xi,¥5)

(xi,y;)
Wipt,j — 25+ wi—yj Wi j1 — 20+ Ui i
h? k2

2 2 2.2
K2 (i — 20+ uiong) + 07 (i = 2ui + i jo1) = Rk w; .

= Wi j,

Rearranging the terms, we arrive at the finite-difference formula:

hzui,j_] + kzui_l’j — 2(/’12 + kz)ui,j + kzui+1,j + hzu,-,j_,_l = hzkzwi,j. (116)
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Poisson's egn with sides in
a m xn rectangular grid

finite-difference formula

(m-1) X (n-1) System of
Linear Equations

Gauss elimination method, Crout, etc.

Solution u(x;, y;) for
i=12,...,n—-1,
j=12,...,m—1.

FIGURE 11.3. General solution to the implicit PDE problem.

Graphically, Equation (11.6) can be represented as a molecule, as shown in
Figure 11.4. This molecule can be mapped into the rectangular grids starting at the
bottom left-hand corner of the rectangle to generate a system of linear equations. The
initial position for this mapping is achieved by setting i = 1 and j = 1. The molecule
is moved from left to right until it reaches the right side of the rectangular, then contin-
ues to the next level, and so on until the right side of the topmost side is reached. Ateach
pointin (7, j), an equation is generated. Therefore, a total of (;m — 1)(n — 1) equations
are generated, and the number matches the number of unknowns in the problem.

In forming the equations, the terms involving the sides of the rectangle can be eval-
uated using the boundary and initial conditions. Therefore, these terms are moved to
the right-hand side of the equations. Referring to the rectangular grids in Figure 11.2,
the following results are obtained in the case of a m x n rectangular domain:

Atlevel j =1,

Left node, i = 1:

hui o+ Kugy — 20> + k)ur g + Kug,y + hPuy = h*kwy
—2(/12 + kz)ul,l + k2u2,1 + //l2u1$2 = /’lzkzwl’] - hzl/{]’Q - kzu(),].
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k2

2(h*+ k)

S

h? h?
k

kZ

FIGURE 11.4. Finite-difference molecule for the Poisson’s equation.

Interior node:

Rui o+ Kuiyg — 200 + kg g + Kuigy g + huip = W2k w;
Kui—i1 = 2(h* + Kuiy + ki + huip = k2P w; — hPu;p.

Rightnode,i =n — 1:

PP up—10+ kun—21 — 200% + kup_11 + Kty 1 + hup_12 = B kPw, 1 1,

KPup o1 — 2(h* + k11 + hup_12 = WP kPw,_ 11 — W10 — Kty 1.

At the middle level,
Left node, i = 1:

RPuy i1+ kugj — 200* + kP)uy j + KPua ; + huy jo1 = Wk wy j,
hzul,]‘_] - 2(h2 + kz)ul’j + kzuz,j + hzul,ﬁ] = hzkzwl,j — kzu(),j.

Interior node:
hzu,‘,j,l + kzu[,lqj — 2(]’12 + kz)bt,',j + kzu[+1’j + hzui,Hl = hzkzw,-,j.
Rightnode,i = n — 1:

P11+ kKo — 200 4+ Ky + Ky j + a1 = B2 w, ),

hzun_l,j_l + kzun_z’j - 2(]12 + k2)un_1’j + hzun_l’H_l = h2k2wn_1,j - kzun,j.
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Atlevel j =m — 1,
Leftnode, i = 1:

B2y pn + Ko m—1 — 200 + kAur et + K2tz oy + h2us = B2 KPw1 i,

B2t g — 2(h* 4+ Kyt + Kz oy = W2k w1 1 — Ktho 1 — B2t .
Interior node:

B2 Ui + ki et — 2007 + kit + K2ttt et + B2t = KW 1,

B2t s + ki1t — 200 + kit + Kttt 1 = WKW oy — Bt .
Rightnode, i = n — 1:

hzunfl,mfZ + kzun72,m71 - 2(h2 + kz)unfl,mfl + kzun,mfl + hzunfl,m
= KWt m-1,

B2yt 2 + K2ty 2t — 2(h* + KDty 1
= Rk w1 — K g1 — By .

Applying the approach to a special case with m = 3 and n = 3 results in a system
of linear equations of size 9 x 9, as follows:

M —2(h% + k%) K2 0 n? 0 0 0 0 0 T w

K? —2(h* + k%) K2 0 h? 0 0 0 0 oy

0 K2 —2(h* + k%) 0 0 n? 0 0 0 s
h? 0 0 —2(h% + k%) K2 0 h? 0 0 i

0 n? 0 2 —2(h* + k%) K 0 " 0 s

0 0 n? 0 K —2(h* + k%) 0 0 n? s

0 0 0 h? 0 0 —2(h% + k%) K2 0 s

0 0 0 0 h? 0 K2 —2(h* + k%) K2 23

0 0 0 0 0 n? 0 K —2(h* + k%) w33
B B2k wyy — hPuy o — KPug, T

hzkzum — h2uag
hzkzwm — hzuw — k2u4_1
k2w — ks
= hzkzwz.g
Rk ws — Kug o
B2k w3 — Kugs — hPuy 4

hzkzw“ — WUy

2k w33 — Kuy sy — hus g

From the above results, we obtain the formulation for the system of linear equations
Au = b, where A = [a;;]is the coefficient matrix, b = [b;], and u is the vector for the
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unknowns. The values of the elements in A are obtained by substituting the boundary

and initial conditions into the finite-difference equation of Equation (11.6). They are
determined, as follows:

—2(h? + k) fori = j,

h2 for Ain—14+i = Apn—-1+j,j»
ai; = , o ol AN (11.7a)
k ifimod(n —1)#0andi < (m — 1)(n — 1),
0 elsewhere,
b, = h*kPw;;, (11.7b)

where r =i + (j — 1)(n — 1). Algorithm 11.1 summarizes the finite-difference
method for the Poisson’s equation problem. This algorithm is illustrated using
Example 11.1.

Algorithm 11.1. Finite-difference method for the Poisson’s equation.
Givenm, n, h = Ax and k = Ay;
Given VZu = w(x, y)inxg <x < x,and yo < y < yu;
Given the boundary values, u(xg, y) = g1(y) and u(x,, y) = g2(»);
Given the initial values, u(x, yo) = fi1(x) and u(x, y,,) = fo(x);
Evaluate m = (y,, — yo)/k and n = (x,, — x0)/ h;
Evaluate ug j and u, ;j for j =1,2,...,m —1;
Evaluate u; g and u; ,, fori =1,2,...,n —1;
Find the finite-difference formula using Equation (11.6);
Find matrix A in Au = b, as follows:
Forr=1to(m — 1)(n — 1)
Ary = _2(h2 + kz);
Ifr<2(n—-1)
Arp—1+r = An—14r,r = hz;
Endif
Ifr%(n—1)!=0andr < (m —1)(n — 1)
Arr+1 = Qryl,r = kz;
Endif
Endfor
Find vector b in Au = b as follows:
For i=1 to n-1
For j=1 to m-1
r=i+( —Dn-1)
br = ]’lzkzwij;
Endfor
Endfor
Solve for u in Au = b;
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U3 U3 us3
g3 M n n n Wy y=03
U LW 32
Uy, M 00— — 1 L ) y=02
Uy OB usz |
Yo, ™ o O (= oy y=0.1
] ] ] ] ] X y=0
Uy,0 U0 U0 30 Ug 0
x=0 x=0.25 x=05 x=0.75 x=1

FIGURE 11.5. The rectangular domain in the example.

Example 11.1. Solve the Poisson’s equation given by u,, + u,, = 10xy, for 0 <
x <land0 <y < 0.3, withh = Ax = 0.25 and k = Ay = 0.1. The boundary val-
ues in this problem are u(0, y) = ysin y,andu(1, y) = ¢, for0 < y < 0.3, whereas
the initial values are u(x,0) = xe ™ and u(x,0.3) =1 — x,for0 < x < 1.

Solution. From the given values, we obtain m = (0.3 —0)/0.1 =3 and n = (1 —
0)/0.25 = 4. These values result in a rectangular domain, as shown in Figure 11.5.
The values in the left boundaries are satisfied from u(0, y) = y sin y:

uo,1 = u(0,0.1) = 0.1sin 0.1 = 0.009983,
up2 = u(0,0.2) = 0.25in 0.2 = 0.0397339.

The values in the right boundaries are determined from u(1, y) = e™”:

usy =u(l,0.1) = e %! = 0.904837,
usr = u(l1,0.2) = e % = 0.818731.

From the initial values, u(x, 0) = xe™*:

i1 = u(0.25,0) = 0.194700,
1z = u(0.5, 0) = 0.303265,
uz0 = u(0.75, 0) = 0.354275.
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Also, u(x,0.3) =1 —x:

i3 = u(0.25,0.3) = 1 —0.25 = 0.75,
ur3 = u(0.5,03)=1—0.5=0.5,
us3 = u(0.75,0.3) = 1 — 0.75 = 0.25.

Applying Equation (11.6) we get the finite-difference formula, as follows:

Kuirr =207 + h)ui j + Kuisyj + hui o + g oy = 10067xy;,
0.01ui+1,j —2(0.01 + 00625)1/!,, + 0.011/[,‘_1']‘ + 0.062514,',]‘4_]
+ 0.062514,"]‘_1 = 000625)61_))]

The finite-difference equation generates the following 6 x 6 system of linear

equations:
i=1,
i =2,
i =3,
i=1,
i =2,
i =3,

j=1:
j=1
j=1
j=2
j=2
j=2

0.0l — 0.145u; ;4 0.01ug 4 0.0625u; 5 + 0.0625u; ¢
= 0.00625(0.25)(0.1),
—0.01uy; 4 0.01us; + 0.0625u; » = —0.012112.

© 0.01uz, — 0.145uy 1 + 0.01uy 1 + 0.0625u.5 + 0.062517,

= 0.00625(0.5)(0.1),
0.01us, — 0.145u5 4 0.01u; ;4 0.0625u5 5 = —0.018642.

. 0.011/{4’1 — 0.1451/!3,1 + 0.0]142,1 + 0.06251432 + 006251430

= 0.00625(0.75)(0.1),
—0.145u3 1 + 0.01u, 1 + 0.0625u3 , = —0.030722.

0 0.01uzn —0.145u; 5 + 0.01ug 2 + 0.0625u; 3 + 0.0625u; ;

= 0.00625(0.25)(0.2),
0.01uz, — 0.145u 5 4+ 0.0625u; ; = —0.046960.

© 0.01us, — 0.145u5.5 + 0.01u; 5 + 0.0625u5 5 + 0.0625u5 |

= 0.00625(0.5)(0.2),
0.01u35 — 0.145u5 5 4 0.01u; 5 + 0.0625u ; = —0.030625.

© 0.01ugp — 0.145u3.5 + 0.01uz 5 + 0.0625u3 5 + 0.0625u3 |

— 0.00625(0.75)(0.2),
—0.145u35 + 0.01u 5 + 0.0625u3 | = —0.022875,
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[ —.145 .01 0 .0625 0 0 U [ —.0121127]
01 —-145 .01 0 .0625 0 Uz, —.018642
0 01 —.145 0 0 .0625 Uz —.030722
.0625 0 0 —.145 .01 0 Ui —.046960
0 .0625 0 01 —-145 .01 Uz,2 —.030625

0 0 .0625 0 01 —.145] | us> | —.022875 |

This system of linear equations is solved to produce

u(0.25,0.1) = uy ; = 0.320110,
1(0.5,0.1) = uy; = 0.360723,
(0.75,0.1) = u3 = 0.389812,
1(0.25,0.2) = uy » = 0.491201,
1(0.5,0.2) = 1z, = 0.425095,

u(0.75,0.2) = u35 = 0.355092.

11.3 LAPLACE’S EQUATION

The Laplace equation has many applications. For example, the steady-state solution of
the heat equation is an event governed by the Laplace’s equation. In another event, the
Laplace’s equation represents the potential function for the field created by electrical
charges that form the electrical force of attraction or repulsion.

Technically, the Laplace’s equation is the homogeneous form of the Poisson’s
equation, obtained by setting w(x, y) = 0 in the latter, as follows:

9%u 9%u

V=22 422
! 3x2+8y2

—=0. (11.8)

In the above equation, u(x, y)isinxg < x < x, and yp < y < ¥,,, where m and n are
the number of vertical and horizontal intervals in the rectangular grids, respectively.

The properties of the Laplace’s equation are inherited much from the Poisson’s
equation. These properties include the initial and boundary conditions that produce
the same rectangular grids as in the Poisson’s equation. Hence, the same diagrams as in
Figures 11.2 and 11.3 are applied for solving the boundary-value problem. The bound-
ary conditions for this problem are given as

u(x, yo) = fi(x) and u(x, y,,) = fo(x), forxg < x < x,,
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whereas the initial conditions are

u(xo, y) = g1(y) and u(x,, y) = g2(y), foryo <y < yp.

The finite-difference formula for the Laplace’s equation is obtained by setting
w;,; = 0 into Equation (11.6), to produce

RPui oy +kuiy j — 2% + hDu; j + kg j + h*ug j0 = 0. (11.9)

The above finite-difference equation for the Laplace’s equation is represented by the
same molecule as in Figure 11.4.

In the case of 4 x 4 rectangular grids, the following system of linear equations is
obtained by setting w; ; = 0:

[ —2(h* + k) K2 0 h? 0 0 0 0 0 T ]

I —2(h* + k%) K2 0 n? 0 0 0 0 sy

0 K2 —2(h* + k%) 0 0 h? 0 0 0 s
h? 0 0 —2(h% + k%) k? 0 h? 0 0 wia

0 h? 0 k2 —2(h% + k%) K2 0 h? 0 22

0 0 n? 0 K2 —2(h* + k%) 0 0 h? w32

0 0 0 h? 0 0 —2(h* + k%) k? 0 s

0 0 0 0 h? 0 K —2(h% + k%) K2 423

0 0 0 0 0 " 0 K2 —2(h* + k%) wss
B —h2uy o — Kug, T

—h*uz0
—h2uz o — kug,
—Kug

= 0
—Kuys
—k*ugs — hPui 4

—112143.4

—KPugs — hPus g

Example 11.2. Solve the Laplace’s equation given by u,, +u,, =0for0 < x < 1
and 0 < y < 0.3, with s = Ax =0.25 and k = Ay = 0.1. The boundary values in
this problem are u(0, y) = ysiny,and u(1, y) = e™”,for0 < y < 0.3, and the initial
values are u(x,0) = xe ™ and u(x,0.3) =1—x,for0 <x < 1.

Solution. The same rectangular domain as in Example 11.1 is produced and shown
in Figure 11.5, as the number of intervals for x and y are m = (0.3 — 0)/0.1 =3
and n = (1 — 0)/0.25 = 4. We get the same boundary and initial values as shown
in the figure. The finite-difference equation for this problem is obtained from
Equation (11.9), as follows:

0.0114,'_,_1’1' —2(0.01+ 0.0625)1/!,',]' + 0.01”,‘_1’]' + 0.06251/[,',]'4_1 + 0.0625u,-,j_1 =0.
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The finite-difference equation generates the following 6 x 6 system of linear
equations, obtained by mapping the finite-difference molecule into the grids in
Figure 11.5:

i=1j=1:00luy; —2(0.01 +0.0625)u; 1 + 0.01ug; + 0.0625u;
+0.0625u;,9 = 0,
—0.145u1 1 + 0.01uz.1 + 0.0625u1 5, = —0.012269.
i=2 j=1:00lus; —2(0.01 +0.0625)us 1 + 0.0l ; + 0.0625u;.,
+0.0625u5, = 0,
0.01u3 ) — 0.145u5 4 0.01u; ;4 0.0625u5 5 = —0.018954.
i=3,j=1:00lus; —2(0.01 +0.0625)u3 1 + 0.01u; + 0.0625u3.,
+0.0625u3,9 = 0,
—0.1uz + 0.145u5 1 + 0.0625u3, = —0.031191.
i=1,j=2: 00lussr —2(0.01 + 0.0625)u; > + 0.01ug > + 0.0625u; 3
+0.0625u;.1 = 0,
0.01u5 — 0.145u; 5 4 0.0625u; | = —0.047272.
i=2 j=2: 00luss —2(0.01 + 0.0625)u2 + 0.01u; 5 + 0.0625u5 5
+0.0625u5,1 = 0,
0.01us5 — 0.145u55 4 0.01u; 5 4 0.0625u5 | = —0.031250.
i=3,j=2: 00lus, —2(0.01 + 0.0625)u3 2 + 0.01u> + 0.0625us 3
+0.0625u3, = 0,
—0.145u3,5 + 0.01u35 4+ 0.0625u3 | = —0.023812,

C—.145 .01 0 0625 0 0 JTu] [ -.0122697
01 —.145 .01 0 0625 0 U 1 —.018954
0 0l —.145 0 0 .0625 || us, —.031191
0625 0 0 —.145 .01 0 ws || —.047272
0 0625 0 01 —.145 .01 Uzs —.031250
0 0 0625 0 01 —145] Lusn | [ —.023812

The above system of linear equations is solved using the Gaussian elimination method
or another appropriate method to produce the following results:

1(0.25,0.1) = u;; = 0.323412,
1(0.5,0.1) = up; = 0.367195,
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1(0.75,0.1) = uz , = 0.398015
1(0.25,0.2) = u; » = 0.495305,
1(0.5,0.2) = 1y, = 0.433187,

1(0.75,0.2) = u3, = 0.365675.

11.4 HEAT EQUATION

Heat equation is a parabolic equation that finds a lot of applications in engineering.
Heat flow is best modeled as partial differential equations as it involves two or more
variables. In one dimension, the heat problem can be modeled as heat flowing along
a given length of a rod, whose variables are the distance from one end of the rod
and time. In two dimensions, heat flow is modeled using variables whose domain
comprises a bounded area. In three dimensions, heat is modeled based on a domain
formed from volume.
A two-dimensional heat equation is given explicitly as

u(x, 1) = ue(x, ). (11.10)

In the above equation, u(x, ¢) is the heat value that depends on distance x and time ¢,
and c is a constant. The domain for this problemis {2 : xo < x < x,, t > 0}, where
n is the number of subintervals in the x-axis. The initial condition is defined as

u(x,0) = f(x),

for xo < x < x,, whereas the boundary conditions are

u(xo, 1) = g1(t) and u(x,, 1) = g2(7),

for r > 0. Figure 11.6 shows a 7 x 11 rectangular domain for the heat problem with
m = 7and n = 11. Itis obvious that, unlike the case of the Poisson’s equation, values
are given in three sides in the rectangle only with the top side not included.

A common approach for solving the heat problem is the finite-difference method
that can be implemented either explicitly or implicitly. The explicit approach
solves the problem directly from substitutions from its finite-difference equation,
whereas the implicit approach requires longer steps in its solution. We will only
discuss an implicit method called the Crank—Nicolson’s method for solving this
problem.
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u(xout) U(xy)

u(ox,tg)

FIGURE 11.6. Rectangular domain for the heat problem.

Crank—Nicolson’s Method

The Crank—Nicolson’s method is the most common implicit method for solving the
heat problem. As in the Poisson’s equation case, the Crank—Nicolson’s method is
based on two main steps. The first step consists of deriving the finite-difference
equation using the central-difference rules, and the values from the given initial and
boundary conditions. The second step generates the system of linear equations from
the derived finite-difference formula, and this system is solved to produce the final
results, u; j,fori =1,2,...,n—1land j =1,2,...,m.

In deriving the finite-difference formula for the heat equation problem, several
considerations are made. Figure 11.7 shows the point u; ; and its neighbors in levels
J and j + 1. Consider the point #; j;1/2, which is the middle point between u; ; and
u; j+1. The heat value at this point is u(x;, t; + k/2). From the central-difference rule,
the derivative u, at this point is

Wij+1 — Uij Ui j+1 — Ui

2k/2) k

u, =

WU jr1)2

ki/2

O
i, j

FIGURE 11.7. Position of Ujjr12 = u(x;, lj+1/2).
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The second derivative u,, at (x;, t; + k/2) is evaluated based on its upper and
lower points. An approximation is made on this derivative by taking the value as the
average between the derivatives u,,, at (x;, ¢;) and at (x;, #;41), as follows:

~ uxx(xia tj+1) + uxx(xia tj)
Uxx ~ 3

L[ sigrjpr — 24 41 + Uiyt 4 Mirlj ~ 2uij + Ui
2 h? h?

From the approximations of u, and u,,, we obtain the discrete representation of
Equation (11.10), given by

2
Wijp1 — Wi o (Uigq jp1 — 20 j1 + U1 41 n Uiprj — 2 +ui—r;) 0
k 2 h? h? ’

This equation is simplified further to produce

202 (ui jp1 — ui ) — 0k (Uig a1 — 20 1 + sy i) — k(i — 2u; + uisy ) _

2h%k 0
2R (ui jr — wij) — k(i iy — 2+ Ui 1)
— k(i1 j — 2u; ;4 ui—1,j) = 0.
Finally, we obtain the finite-difference formula for this problem,
— Otzku,'_lyj +2(—h%+ azk)u,-,j — azkui+1_j — azku,-_LHl
+2(h* + k)i j 11 — ki 1 = 0. (11.11)

It is obvious from Equation (11.11) that the finite-difference formula at u; ; in-
volves five other neighboring points. This equation is shown in its molecular form in
Figure 11.8.

Uj-1, j+1 Ui, j+1 Ui, j+1
[ 1 0
k
h h
O u 0
Uj1,j Ui j Uir],j

FIGURE 11.8. Molecular representation of Equation (11.11).
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upp ® 1 A2 1 2.2 7 12 WUy =ty

g, m ] =l ] Y 0 e W oy =t

[ ] = = | | =t
Uo,0 U0 2.0 us o g0
X=X X=X X=Xy X=x3 X=Xy

FIGURE 11.9. Rectangular grids with m = 2 and n = 4 for the heat problem.

Our objective in solving the boundary-value problem is to find the values of u; ;

fori =1,2,...,n—1and j =1,2,...,m, for atotal of m(n — 1) unknowns. This
requires a system of linear equations Au = b of size m(n — 1) x m(n — 1), where
u=I[u;jlfori=1,2,...,n—1and j =1,2,..., m are the unknowns. The finite-

difference equation from Equation (11.11) paves the way for the formation of a system
of linear equations, whose solution solves the heat problem.

The linear equations are obtained by placing the molecule of Figure 11.8 into
the rectangular grids in Figure 11.9 starting with u; ; at i =1 and j = 0, and this
produces the first equation. The molecule is then moved one unit to the right to get the
second equation, and the process continues until it reaches i = n — 1 and j = 0. The
molecule is then moved upward, and the process is repeated until the final position
ati =n — 1 and j = m is reached. At each move, a linear equation is generated.
Altogether, the moves produce m(n — 1) linear equations.

We discuss a case of four horizontal and two vertical intervals, as shown in
Figure 11.9. The domain consists of xo < x < x, and ) <t < t,,, where m = 2 and
n = 4. The initial condition is expressed as u(x, tp) = f(x), whereas the boundary
conditions are u(xg, t) = gi(¢) and u(x,, t) = g»(¢). The given initial and boundary
values in the rectangular domain are shown as black squares, whereas white squares
represent the unknowns.

The side values in the rectangle are evaluated from the given initial and boundary
conditions, as follows:

Bottom boundary: ug o = u(xo, to) = f(x0), u20 = u(xz, to) = f(x2),
uz o = u(x3, 1) = f(x3), uao = u(xs, t0) = f(xa),
uro = u(xy, fo) = f(x1).

Left boundary: uo.1 = u(xo, t1) = g1(t1) and up = u(xop, ) = g1(t2).

Right boundary: u, | = u(x,, t;) = g2(#;) and u, » = u(x,, 1) = g2(t2).

Next, the finite-difference formula of Equation (11.11) is applied using the cal-
culated side values. This step is achieved by placing the molecule beginning at the



HEAT EQUATION 401

bottom row from left to right ati = 1, j = 0, and then upward. The steps are shown

as follows:
i=1,j=0:
—Olzkuo,o + (—th + 2a2k)u1,0 — azkuz,o — ozzkuo_l
+ (2h* 4 20%k)uy | — a’kuyy =0,
(2h* + 2% k)1 — a’kuy
= ?kugo — (=2h* + 2a*k)u o + o’kus o + o’kug ;.
i=2,j=0:
— &’kuy o 4 (=2h% + 2% k)uy g — o’kusz o — o’ku
+ (2h* 4 20°k)uy | — o’kus =0,
— azkum + (2h2 + 2a2k)u2’1 — oezku3,1
= &?kuy o — (=2h* + 2a’k)us o + o’kus g.
i=3,j=0:
—azku;o +(=2hn% + 2a2k)u3,0 — a2ku4,0 — azkug,l
+ (2h* 4 20°k)us | — a’kuyy =0,
— o’kuy g 4+ (2h* + 2a*k)us
= azku;o — (—2h2 + 2a2k)u3,0 + a2ku4,0 + azku4,1.
i=1, ] 1:
—a’kug, + (=2 4+ 20°k)u; | — o’kus g — o*kug s
+ (2h* 4 20%k)uy 5 — a’kuy s = 0,
(=2h% + 2%k, — a’kuyy + QW 4 202k)uy 5 — o’kus s
= (xzkum +062ku0,2.
i=2,j 1:

—azkum + (—2h2 + 20[2]()142,1 - azkull - Olzkul,z

+ (2h* 4 20°k)us 5 — a’kus s =0,
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—azkul.l + (—2h2 + 2a2k)u2,1 — azku3,1 — azkul,z
+ (2h* 4 20°k)us 5 — a*kus s = 0.
i=3,j=1:
—azkuz,l + (—2h2 + 2a2k)u3,1 — azku4,1 — azkuz,g
+ (2h* 4 20°k)u3 5 — a’kug s = 0,
—a?kuy, + (—2h% 4 20k usz ; — o’kus s + (2h* + 20%k)us

= azku4,1 + Olzku4,2.

We get the following system of linear equations:

™ 2h% +20%k —a?k 0 0 0 0 T un ]
—ak 2h% + 2%k —a%k 0 0 0 Uy,
0 —a%k 2h2 4 202k 0 0 0 s,
—2h2 4+ 20%  —a’k 0 2h% + 2%k —ak 0 U
—o%k —2h?% +20%k —a?k —a?k  2h% 4 20%k —a?k Uz

B 0 -’k —2h 4202k 0 —a’k  2h% 4+ 2a%k | L us,

[ a?kigo — (—2h* + 2a02k)uy o + o?kuy o + o®kug, | 7]
azkul,o — (=2h% 4 2a%k)uz + azku3,0
azkuzyo —(=2n* + 2azk)u3,0 + azku4,0 + azku4,1
ozzkuo_l + azkuo,z
0

okug g + okug o

The above illustration can be generalized into the case of a m x n rectangular
domain. Three algorithms are presented, one for computing the contents of A = [a; ;]
in the system of linear equations given by Au = b. The second algorithm computes
the contents of b = [b;] in the same system, whereas the third is the Crank—Nicolson
solution.

Algorithm 11.2a. Computing the contents of A = [a; ;].
Given h, k, m, n and «o;
For j =0tom — 1
Fori=1ton—1
Set a;j = 0;
Forj=0tom —1
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Fori=1ton—1
Letr =i+ j(n—1);
Set a,, = 2(h* + a?k);
Ifr%mn—1)<>0
Set Arr41 = Qrgl,r = _azk;

Endif
Ifr<2n—1)-—1

Ifro(n —1) <> 1

Setayir—2, = —a2k;
Endif
Ifr%(n—1) <> 0
Set Aptryr = _azk;
Endif
Endif
Ifr <2(n—1)
Set ayir—1, = 2(—h* + o?k);
Endif
Endfor
Endfor

The contents of b = [b;] in the system Au = b are evaluated using Algorithm
11.2b.

Algorithm 11.2b. Computing the contents of b = [b;].
Given h, k, m, n and «;

Given u; o, U;m, to,j and u, ; fori =0,1,...,nand j =0,1,...,m;
For j =0tom — 1
Let b; = 0;

For j=0tom — 1
Fori=1ton—1
Letr =i+ j(n—1);
Ifj=0
Ifi=1
Set b, = o®ku; 1.0 — 2u;o(—h* + «?k) + a?ku; 1,0 + a*kug 1;
Endif
Ifi=n-1
Set b, = a?ku;_1,0 — 2u; o(—h* + k) + okui1,0 + okt 1
Endif
Ifj>0
Ifi=1
Set b, = azkuoqj + uo,j+15
Endif
Ifi=n-—1
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Set b, = azkun,j + Uy g1
Endif
Endif
Endif
Endfor
Endfor

Algorithm 11.3. Crank—Nicolson’s method for the heat equation problem.
Given u, = «?u,, h = Ax,k = Atinxg <x < x, and t > 0;
Given the boundary values, u(xg, t) = g;(¢) and u(x,, t) = g(¢);
Given the initial values, u(x, 1)) = f(x);

Evaluate m = (y,, — yo)/k and n = (x,, — x0)/ h;
Evaluate ug ; and u,, ; for j =1,2,...,m;

Evaluate u; o and u; ,, fori =0, 1,...,n;

Find the finite-difference formula using Equation (11.11);
Find matrix A in Au = b using Algorithm 11.2a;

Find vector b in Au = b using Algorithm 11.2b;

Solve for u in Au = b;

Algorithm 11.3 is an implicit finite-difference approach for solving the heat prob-
lem. This algorithm is further illustrated through Example 11.3.

Example 11.3. Solve the heat equation, u, = u,,, for0 < x < 1 and ¢t > 0, on two
levels, with the boundary values given by u(0, t) = ¢t sinf and u(1,¢) = 1 — e~ for
t > 0, and the initial conditions u(x, 0) = x(1 — x) for 0 < x < 1. The widths of the
intervals are h = Ax = 0.25and k = At = 0.1.

Solution. The graphical solution is shown in Figure 11.9. There are n =

1'8_2(5)'0 = 4 subintervals in the x-axis and m = 2 subintervals in the vertical axis.

Applying the central-difference rules for replacing the partial derivatives,

Xn—X0
h

2
Uy = 0 Uyy,

k 2 h? h?
—azkui,l,j + 2(—]12 + azk)u,-,j — ()[zkuiJrLj — azkui,l,jﬂ + 2(/’l2 + azk)ui,jﬂ

2
Uij1 —Uij o (ui+l,j+1 = 2u; jp1 + Uiyt 4 M — 2u; ; + ui—l,j) _0
- 9

—o?kuiyy jp1 = 0.
Witho =1, 7 = 0.25 and k£ = 0.1, we get the finite-difference equation,

—0.11/[,'_1’}‘ + 0.075”,‘,]‘ - 0.114,‘_;,_1,]‘ - 0.1“,‘_],]‘4_1 + 0.325141'.]‘_’_1 - 0.1u,~+1,]~+1 =0.
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The finite-difference formula produces a 6 x 6 system of linear equations by fitting
the molecule from Figure 11.8 into the rectangular grids in Figure 11.9. The process
starts ati = 1 and j = 0, as follows:

i=1,j=0:-0.1up0+0.075u; 90— 0.1uz,0 — 0.1 1 + 0.325u; ; — 0.1uy ; =0,
+0.325u; 1 — 0.1up; = 0.011936.

i=2,j=0:=0.1u;04+0.075u30 —0.1u3 0 — 0.1y ; +0.325u, 1 — 0.1u3,; =0,
—0.1uy 1 4+ 0.325u,; — 0.1u3; = 0.018750.

i=3,7=0:—=0.1uz0+0.075u30—0.1ug0 — 0.1u2; + 0.325u3; — 0.1uy ; =0,
—0.1uz,1 + 0.325u3,; = 0.020454.

i=1, j=1:-=0.1up; +0.075u;; — 0.1uz; — 0.1ug 2 + 0.325u; , — 0.1u, , =0,
0.075uy,1 — 0.1uz + 0.325u; 5, — 0.1uz, = 0.004972.

i=2,j=1:—-0.1u;;14+0.075u31 —0.1uz 1 — 0.1uy 2 + 0.325u5, — 0.1u3 , =0.

i=3,j=1:-0.1u;+0.075u3; —0.1ug 1 —0.1uz» +0.325u3, — 0.1us, = 0,
—0.1uz,1 + 0.075u3,; — 0.1uz 2 + 0.325u3 , = 0.027643.

The above linear equations are organized into a matrix form as

325 —-.01 0 0 0 0 U .011936
—-.01 .325 -.01 0 0 0 U .018750
0 —-.01 .325 0 0 0 uzg | | .020454
075 —-.01 0 325 —.01 0 uip | | 004972
-01 075 -01 —-.01 .325 -.01 U2 0
0 —-.01 .075 0 —-.01 .325 us o .027643

Finally, the system is solved using the Gaussian elimination method to produce

1(0.25,0.1) = uy , = 0.070352,
1(0.5,0.1) = us; = 0.109215,
1(0.75,0.1) = u3, = 0.096352,
1(0.25,0.2) = uy » = 0.058095,
1(0.5,0.2) = 1z, = 0.081452,

1(0.75,0.2) = u3, = 0.120952.
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11.5 WAVE EQUATION

The wave equation is a type of hyperbolic equation that has many applications in-
volving waves, such as in modeling the vibration of a string. The movement of soliton
in water is also modeled as a wave equation. Another common application is the air
flow dynamics as a result from the aircraft movement. Wave movement is a periodic
process that can best be modeled using partial differential equations.

The general form of a non-homogeneous wave equation u(x, t) has of the distance
x in the horizontal axis and time-dependent variable ¢ as its vertical axis, given by

3%u ,0%u
m—(x W:w(x,t), (1112)

where w(x, t) is another function of x and ¢ and « is a real constant. A common form
of the wave equation is the linear Klein—Gordon’s equation, given by

9%u 50U
e o T

where a and b are constants. In this section, we will discuss the linear and homoge-
neous form of the wave equation in Equation (11.12), stated as

Pu_ 20 _ (11.13)
— —a'— =0, .
012 dx?
foru(x,t)inxg < x < x, and t > f.

Figure 11.10 shows a rectangular domain for the wave problem consisting of 7
rows and 11 columns. There are two initial values in this problem, given at r = fy as

u(x, o) = fi(x) and u,(x, to) = fo(x).

u(xg,t) u(x,,,t)

u(x,to) u, (x,19)

FIGURE 11.10. The domain for the wave equation problem.
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The first-order partial differential equation u,(x, fy) = f>(x) is an additional initial
condition that contributes in solving the problem. This differential form for the initial
is the rate of change of the wave function with respect to time at this value.

The boundary conditions for this problem are the left and right boundaries that are
functions of ¢, given by

u(xo, 1) = g1(z) and u(x,, 1) = g2(7).

Unlike the methods in the elliptic and parabolic cases, the finite-difference solution
to the wave problem does not involve the reduction of the boundary-value problem
to a system of linear equations. This is because the finite-difference equation derived
from the given initial and boundary conditions is inherently in an explicit form that
is sufficient to solve the problem directly.

We derive the finite-difference equation for the wave equation problem. From the
central-difference differentiation rules:

2
Up — o U =0,
Ui jp1 = 2u4 5 + Ui j-1 g2 it = 2uij +uiyj

k2 e =0,

B2 j1 — 2uij + i j—1) — K2 (uigr j — 2u; j + ui—1,;) = 0.
The above equation simplifies to
Ru; oy — kK2oPui_y ;4 (=2h% + 2K%aPu; j — kKPa*uij + hu; i = 0.
We obtain the explicit form of the finite-difference formula, given by

Ui jr1 = % [—hzui’j_l + kzotzu,-_l,j — (—2]’12 + 2]{20{2)141',]' + kZOlzI/tH_Lj] .
(11.14)
Figure 11.11 shows the molecular representation of the finite-difference formula.
The white square is #; 41, which is the left-hand term of Equation (11.14). This term
is explicitly separated from other terms in the equation. This arrangement suggests
u; j+1 can be evaluated directly once the values of u;_1 j, w41 j, u; j, and u; j_; are
known.
The second initial condition is given by u,(x, t,,) = f>(x), which is the rate of
change of the wave with respect to time. This first partial derivative can be discretized
using the central-difference rule, as follows:

Ui j+1 — Ui j-1

T = fr(x).
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Ui, j+1

Uj-1,j Ui, j

]
Uj j-1

FIGURE 11.11. The molecule of the finite-difference formula for wave equation.

We consider a special case of the above equation at level j = 0, which produces

Uil — Uj—1

% = fa(xi).

We obtain u; _;, which is a virtual value as its point is not in the given rectangular
domain. This value lies one level below the bottom side of the rectangle that does not
really exist. Therefore, it is wise to make this value as a subject in the equation as

uj—1 = ui1 — 2k fr(x;). (11.15)
Equation (11.15) is a useful conversion that affects all the points in the first level of

the rectangular grids. We now apply the finite-difference formula in Equation (11.14)
to the rectangular grids. Starting at level j = 0, we get

I/li,1 = hzui,_l + kzozzu,»_l,o — (—2h2 + 2k2(x2)u,~’0 + kzazui+1,o] .

i

Substituting #; _; in the above equation using Equation (11.14),

1
i =17 [—R*(ui1 — 2k fo(x) + K20 Pui—1 9 — (= 2h% + 2k 0 u; o + kKPo*ui 0]
h? 1 2 2.2 2 2.2 2 2
Uig + o 5Ui1 =1y [21°k fo(xi) + KPa?ui—y,0 — (=20 + 2K a®)u; o + K>t 0] -
We obtain the explicit representation of u; | atlevel j =0fori =1,2,...,n—1,
1
iy = [2h%k fo(xi) + Ko ui—10 — (=20 + 2K2a®)u; o + k2o Ui 0] -

(11.16)
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The values fori = 1,2, ...,n — 1 at other levels follow immediately. They are
computed upward from the second level in the order by letting j =1,2,...,m — 1
into Equation (11.12), as follows:

1

j=1: Ui =17 [—hzui,o + K2aPui—1 1 — (=2h* + 2K2aP)u; +k20!2ui+1,|],
1

j =2: Uiz = ﬁ [—hzui,l + k20£21/£i_1,2 — (—2/’12 + 2k2a2)ui,2 +k2052ui+1,2] ,
1

jEm= i = [—hPuti s + K22 Ui ot — (=207 + 2K2)ut;

+k20521/l,‘+],m_1] .

Algorithm 11.4 outlines the computational steps in solving the wave problem. The
algorithm is further illustrated using Example 11.4.

Algorithm 11.4. Finite-difference method for the wave equation problem.
Given u,, = ¢?u,,, h = Ax, k= Atinxg < x < x,andr > 0;
Given the boundary values, u(xo, t) = g1(t) and u(x,, t) = g»(t);
Given the initial values, u(x, tp) = f1(x) and u;(x, tp) = fo(x);
Evaluate m = (y,, — yo)/k and n = (x,, — x0)/ h;
Evaluate ug j and u, ; for j =1,2,...,m;
Evaluate u; o and u; ,, fori =0, 1,...,n;
Find u; _| from Equation (11.15), fori =1,2,...,n —1;
Find the finite-difference formula;
Find u; j;i using Equation (11.14),fori =1,2,...,n—land j=1,2,...,m;

Example 11.4. Solve the wave equation, u;; — 4u,, =0, for0 <x < land? >0
on two levels, with the boundary values u(0, t) = ¢ sint and u(1,1) =1 —e~' for
¢t > 0, and initial conditions, u(x, 0) = x(1 — x) and u,(x, 0) = 3x2, for 0 < x < I.
Assume h = Ax = 0.25and k = Ar =0.1.

Solution. The number of x intervals is n = % = 4. There are m = 2 vertical

intervals in the problem. The rectangular domain is shown in Figure 11.12. The figure
also shows the position of the virtual values u; _; fori =0, 1, 2, 3, 4. Applying the
central-difference rules,

2
Uy — o ug =0,

Wijar = 2ij+Uijor  pMis1j = 2Wij Uiy
k2 h?

=0,
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W) U2 U3

up, m 0 0 ] W Uy) =t
Uy, u,1 U3l
up,) | ] {1 1 | Uy =t
k
h

| | | | | =t
llo’o H ul’() H uZ,O : Ll},o : u4’0 :

[ ] ] ] | |
Up,-1 Uy,-1 U1 U3 -1 Ug,1

X=X( X=X X=Xy X=X3 X=Xy

FIGURE 11.12. Rectangular domain showing the virtual values.

Wij1 = 2Uij +uij1 gt — 2uij+uioy; 0

0.12 0.252

100Cu;, jp1 — 2u4j +ui j—1) — 64ipr,; — 2u; ; +ui—y,;) =0.
We get the finite-difference formula,
1001,{,‘,]‘_‘_1 = 7214,"]‘ — IOOu,;j_] + 6414,‘.;,.],]‘ + 6414,‘_1,.,'.

From the differentiated initial condition, we get

Uil — Ui —1 2
u,(x, O) ~ T = 3xi s
uj—1=u;1 — 6kx12 = Ui — 06x12

Applying the finite-difference formula to level j = 0,

i=1,j=0:100u;; = 72u; o — 100u; 1 + 64us o + 64ug o,
100u;,; = 72uy,0 — 100(uy,1 — 0.6x7) + 64wz o + 64u,,
200u;; = 72(0.188) — 100(—0.6)(0.25%) + 64(0.250) + 64(0),
ur,; = 0.1660.

i=2,j=0:100us; = 72u30 — 100us _; + 64us o + 64u, o,
100uy 1 = 72uz9 — 100(u2,1 — 0.6x§) + 64us 0 + 64u, o,
200uy,; = 72(0.25) — 100(—0.6)0.5% + 64(0.188) + 64(0.188),
uz1 = 0.2850.
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i=3,j=0:100us; = 72u30— 100us__, + 64uy o+ 64us,
100u3,; = 72u39 — 100(uz,1 — 0.6x3) + 64us o + 64us .
200u3,; = 72(0.188) — 100(—0.6)0.75% 4 64(0) + 64(0.25),
usy = 0.3163.

The values in the second level at j = 1 are computed directly from Equation (11.15),

i=1,j=1:100u;, = 72uy; — 100u; o + 64us | + 64ug 1,
100u; 2 = 72(0.166) — 100(0.188) + 64(0.285) + 64(0.010),
ui» = 0.1210.

i=2,j=1:100u, = 72uy; — 100us o + 64us | + 64u, i,
100u, , = 72(0.285) — 100(0.250) + 64(0.316) + 64(0.166),
uz» = 0.2640.

i=3,j=1:100us3, = 72u3; — 100u3,9 + 64us1 + 64us 1,
100u3, = 72(0.316) — 100(0.188) + 64(0.095) + 64(0.285),
u3, = 0.2835.

11.6 VISUAL SOLUTION: CODE11

Codell. User Manual.

1. Select a method from the menu.
2. Enter the input according to the selected method.

3. Click the button to view the results.
Development files: Codel1.cpp, Codell.h, and MyParser.obj.

A visual interface for problems in partial differential equations is necessary as the
problem is referred extensively in many science and engineering applications. A
typical problem in PDE is relatively difficult to solve as it involves a lot of input as
well as a lot of steps in its solution. A friendly interface in the form of direct input
from the user and other interactive activities will definitely help in understanding the
topic. The solution too needs to be presented in such a way that it displays all the
textual and graphical elements in the problem.

We discuss the visual interfaces for problems involving the Poisson’s, heat, and
wave equations. The project is called Code11. The basic elements for the visual solu-
tion in Code11 consist of an input region, a region for displaying matrix A and vector
b in Au = b, and another region for displaying the solutions in the rectangular grids.

Figure 11.13 shows the output from a problem involving the Poisson’s equation.
The output consists of four regions for displaying the menu, an input region, the
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—Cod il =101 %]
o =
PP Fg 0.027778 0.000000  0.000000  0.000000 0.000000
S— 0. 180556 0027778 0000000  0.000000 0.000000
0.027778 018055 0027778 0.000000 0.000000
0.000000 002777 008055 0.02777 0.000000
0.000000 0.000000 0.000000 L]
0,000000 0.000000 0.027778
0.000000 0.000000 0.180555
—————— 0.000000 0.000000 0,000000
| Compute | 0.062500 0.000000 0,000000
0.000000 0.062500 0.000000
Poisson's Equation 0.000000 0.000000 0.000000
ulxxj+ulyy]=8"xy 0.000000 0.000000 0,000000
0<x<2,0<y <1 0.000000 0.000000 0.000000
| | i
0,6 16 26 3,6 4,6 56 6,6 76 8,6
0.0000 0.1875 0.2500 0.1875 0.0000 -0.3125 -0.7500 -1.3125 2.0000
0,5 15 25 35 4,5 55 6.5 75 8,5
2.0172 0.3770 0.1154 0.0189 -0.1020 -0.2854 -0.3990 -0.0153 3.9818
04 1,4 24 34 4.4 54 6,4 7.4 84
2.3577 0.3532 0.0216 -0.0459 -0.0701 -0.0765 -0.0107 0.5067 3.8878
1 = - o s
| s*cos(v) 03 13 23 33 43 53 6,3 73 83 4*sin(2*y) I
2.6327 1.0770 0.7658 0.7911 0.8899 0.9803 1.0736 1.4013 3.3659
0.2 1.2 22 32 4.2 52 6.2 72 8.2
2.8349 1.6287 1.4375 1.6328 1.8947 2.0983 2.2098 2.2694 24735
0,1 11 2,1 3,1 4,1 5,1 6,1 71 8,1
2.9584 1.7477 1.9745 2.5006 2.9995 3.3496 3.4802 3.2030 1.3088
0,0 1,0 2,0 3,0 4,0 50 6,0 7,0 8,0
0.0000 1.2370 2.3971 3.4082 4.2074 4.7449 4.9875 4.9199 4.5465
o

FIGURE 11.13. Visual solution for the Poisson equation problem.

rectangular grids region for displaying the results, and a list view tables region for
displaying the system of linear equations generated from the problem.

The first region consists of the menu items that become activated when they are
left-clicked. The second region hosts the edit boxes for the first set of input. This
same region is also shared by the fourth region, which hosts the list view tables
for displaying the system of linear equations generated from the problem. The third
region is the rectangular grids for displaying the results from the calculations.

The menu provides a selection of items from the Poisson’s, heat, and wave equa-
tions. When a selection is made, edit boxes as shown in Figure 11.14 appear. These
edit boxes collect information about the initial values of the variables in the problem.
The figure shows the case when the selection is the Poisson’s equation. Almost similar
items also appear in cases of heat and wave equations.

The edit boxes in Figure 11.14 provide input on the number of subintervals in
the domain and on their start and ending values. It is important to furnish all this
information as the rectangular grids are drawn according to these input values. In-
put for the number of vertical m and horizontal subintervals n in the edit boxes in
Figure 11.14 will determine the actual sizes of the rectangular grids for displaying
the results in the main window.

Once the first set of input has been completed and the push button is left-clicked,
the rectangular grids appear. Input for the initial and boundary conditions are needed
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Poisson's Equation: u[xx] + u[yy]=0

wi(x,y) [10*%x*y |
n(2-8) (8 |
m28)  [6 l
X[0] ) |
x[n] [2 |
y[0] [0 |
yim] (1] |

FIGURE 11.14. Input for the rectangular grids in Code11.

in order to proceed further. The input strings representing the equations for these
initial and boundary conditions can be entered in the edit boxes that are provided
along the sides of the grids. When the inputs are completed, a click at the push button
produces the results, which are displayed inside the rectangular grids. The values of
the A matrix and b vector are also displayed in the list view tables.

Codel1 consists of three files, Code11. cpp, Codell.h, and MyParser. obj. Only
asingle class called CCode11 is used in this application, and this class is derived from
CFrameWnd. Figure 11.15 shows a schematic drawing of the main development steps
in Codell. A variable called £Status monitors the progress of the execution with
fStatus=0 as its initial value. The value changes to £Status=1 when the first set
of input has been completed and £Status=2 when the second set is completed. The
final stage is at £Status=3, which indicates the selected method is successful, and
the results are displayed both in the rectangular grids and in the list view tables.

Several functions have been declared in CCodel1, and they are summarized in
Table 11.2. The three main functions from this list are Poisson(), Heat (), and
Wave (), which represent the solutions for the Poisson’s equation, heat equation, and
wave equation problems, respectively. Another function called SolveSLE() solves
the system of linear equations using the Gaussian elimination method when it is
called from Poisson() and Heat (). Input for each problem is collected from the
edit boxes using OnButton() and SecondInput (), whereas the output from each
selected method is displayed in OnPaint () and ShowTable().

The main variables used in this application are organized into three structures, PT
for representing the points in the real coordinates, INPUT for representing the objects
in the input variables, and MENU for representing the objects in the menu. PT consists of
the domain variables, x;, y;, and t;, represented as pt [1] .x, pt[i].yandpt[i].t
respectively, with pt as its array. The variables form the rectangular coordinates in the
grids, (x;, y;) in the case of the Poisson’s equation, and (x;, ¢;) in the heat and wave
equations. The structure for supporting all these variables is declared as follows:

typedef struct
{
double x,y,t;
} PT;
PT *pt;
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Initializes with
fStatus=0

OnLButtonDown ()
Selects the problem
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OnButton ()
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second input (£Status=2)
for the selected problem.
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PARTIAL DIFFERENTIAL EQUATIONS

Poisson ()
Reduces the Poisson's
equation into a system of
linear equations. Updates
with fStatus=3.

Heat ()
Reduces the heat equation
into a system of linear
equations. Updates with
fStatus=3.

SolveSLE ()
Solves the system of
linear equations.

Wave ()
Solves the wave equation.

Updates with fStatus=3.

Results from the
calculations updated in
OnPaint () and
ShowTable ().

End

FIGURE 11.15. The main computational steps in Code11.

Input from the user is organized as variables in a structure called INPUT. The
objects are similar to those defined earlier in the earlier chapters, as follows:

typedef struct

{

3

CString label,item;

CPoint hm;
CEdit ed;

CRect rc,display;

INPUT;

INPUT input[maxInput+1];
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TABLE 11.2. Functions in Codel1

Function Description

Codel1() Constructor.

~Codel11() Destructor.

Poisson() Computes the Poisson’s equation problem.

Heat () Computes the heat equation problem.

Wave () Computes the wave equation problem.

SolveSLE(Q) Solves the system of linear equations.

ShowTable () Creates the tables for displaying the system of linear equations.
SecondInput () Input on the initial and boundary values.

InputLabels() Labels for the first set of inputs.

Clear() Clears the named region of the window.

OnButton() Message handler for the Compute push button. Reads the first

and second inputs, and calls the corresponding function for
solving the problem.
OnLButtonDown()  Message handler for selecting an item in the menu.
OnPaint () Initial and updated display in the main window.

The menu objects are organized into a structure called MENU. These objects are
also similar to those defined earlier.

typedef struct

{
CString item;
CPoint hm;
CRect rc;

} MENU;

MENU menu[nItems+1];

Table 11.3 lists other main objects in Code11. They include btn for the push button
and tablel and table2 for the list view tables. The objects called hGrid, rcGrid
and wrc shape up the rectangular grids for displaying the output.

TABLE 11.3. Other objects in Code11

Object Class Description

tablel, table2 CListCtrl Objects representing matrix A and vector b,
respectively, in the generated system of linear

equations.

hGrid CPoint Home coordinates of the top left-hand corner
rectangle of the grids.

rcGrid CRect Rectangular region of the grids.

wrc CSize Size of each rectangle in the rectangular grids.

btn CButton The push button called Compute.
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TABLE 11.4. Main variables in Code11

Variable Type Description

uli] (5] double The unknown u; ; in the problem.

wlil [3] double The nonhomogeneous expression w; ; of the Poisson
equation.

alpha double The given constant « in the heat and wave equations.

h double The width # = Ax in the rectangular grids.

k double The width k = Ay or k = At in the rectangular grids.

m int The number of vertical subintervals in the rectangular
grids.

n int The number of horizontal subintervals in the rectangular
grids.

ali] [3] double Element g; ; in the matrix A = [g; ;] of the system of linear
equations.

b[i] double Element b; in the vector b = [b;] of the system of linear
equations.

z[i] double The solution z; to the system of linear equations.

fMenu int The selected item in the menu with fMenu=1 for Poisson,
fMenu=2 for heat, and £Menu=3 for wave.

fStatus int Status level of the execution indicated by a flag value,
with O for nothing, 1 for menu selected, 2 for first input, and
3 for the second input, which produces the desired results.

nInputItems int Number of input items for each selected item in the
menu.

idc int Ids for the control resources in the form of edit and static
boxes.

hSpace, double Horizontal and vertical spacing for the boxes in the

vSpace, rectangular grids.

rlvspace

Table 11.4 lists the main variables in Codel1l. The variables that make up the
problems include u, w, alpha, h, k, m, and n. The variables involved in solving the
system of linear equations are the arrays a, b, and z. fMenu is a flag for indicating the
selected item in the menu. fStatus is a variable that indicates the execution stage.
The number of input items is indicated by nInputItems, whereas idc represents the
control id for the edit boxes.

Three events are mapped in the application, and they are handled by their respective
functions, as follows:

BEGIN_MESSAGE_MAP(CCodel1l,CFrameWnd)
ON_WM_PAINT ()
ON_WM_LBUTTONDOWN ()

ON_BN_CLICKED (IDC_BUTTON, OnButton)

END_MESSAGE_MAP ()
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The constructor function creates the main window and initializes several global

objects and variables. They include the menu items, input items, and the variables for
formatting the output display. The code fragments for this function are given as

CCodell::CCodell1()

{

Create(NULL, "Codell: Partial Differential Equations",
WS_OVERLAPPEDWINDOW,CRect (0,0,900,700) ,NULL) ;
Arial80.CreatePointFont(80,"Arial");
menu [0] .hm=CPoint (10,300); hGrid=CPoint(150,285);
menu [0] .rc=CRect (menu[0] .hm.x,menu[0] .hm.y,
menu[0] .hm.x+139,menu[0] . hm.y+500) ;
menu[1] .item="Poisson equation";
menu[2] .item="Heat Equation";
menu[3] .item="Wave Equation";
for (int i=1;i<=nMenultems;i++)

{
menu[i] .hm=CPoint (20,30+(i-1)*30);
menu[i] .rc=CRect (menu[i] .hm.x,menu(i] .hm.y,
menu[i] .hm.x+150,menu[i] .hm.y+20);
}

input [0] .hm=CPoint (200,20) ;
input [0] .rc=CRect (input [0] .hm.x,input [0] .hm.y,
input [0] .hm.x+560, input [0] . hm.y+220) ;
for (i=1;i<=maxInput;i++)
input [i] .hm=CPoint (input [0] .hm.x+10,input [0] .hm.y
+30+(i-1)*25) ;
input [0] .display=CRect (20,170,170,230);
pt=new PT [MxN+1];
fMenu=0; idc=301;
fStatus=0; fMenu=0;
wrc=CSize (50,30);
hSpace=70; vSpace=50; rlvspace=40;
rcGrid=CRect(hGrid.X-lSO,hGrid.y—30,hGrid.x+750,
hGrid.y+500);
a=new double *[M*N+1];
b=new double [M*N+1];
z=new double [M*N+1];
u=new double *[N+1];
w=new double *[N+1];
for (int i=0;i<=N;i++)
{
ul[i]l=new double [M+1];
w[il=new double [M+1];
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for (i=0;i<=M#*N;i++)
ali]=new double [M*N+1];

In the above code, the input rectangular region and its home coordinates are
identified as input [0] .rc and input [0] . hm, respectively. Another variable called
input [0] .display defines a small rectangular region below the Compute button
for displaying the brief information about the currently selected problem.

OnPaint () handles and constantly updates the display in the main win-
dow. The display is updated based on the current value of £Status whenever
InvalidateRect () is called from any function within the program. With an ini-
tial value of £Status=0, the initial display consists of items for selection in the menu
shown as shaded rectangles. With £Status=2, the display consists of the rectangu-
lar grids whose values are not calculated yet. With £Status=3, the results from the
calculations according to the selected method are shown in the rectangular grids.

void CCodell: :0nPaint ()

{
CPaintDC dc(this);
CString str;
CRect rc;
int i,j,r;
dc.SelectObject (Arial80) ;
dc.SetBkColor (RGB(150,150,150));
dc.SetTextColor (RGB(255,255,255)) ;
for (i=1;i<=nMenultems;i++)

{
dc.FillSolidRect (&menu[i] .rc,RGB(150,150,150));
dc.TextOut (menu[i] .hm.x+5,menuli] .hm.y+5,menui] .
item);
}

dc.SetBkColor (RGB(255,255,255)) ;
dc.SetTextColor (RGB(100,100,100));
dc.Rectangle(input[0] .rc);
if (fMenu==1)

str="ulxx] + ulyyl=0";
if (fMenu==2)

str="u[t] - alpha 2*ul[xx]=0";
if (fMenu==3)

str.Format ("u[tt] - alphaA2*ul[xx]=0");
dc.TextOut (input [0] .hm.x+150, input [0] .hm.y+5,menu[fMenu] .

item+": "+str);
if (fMenu>=0)

for (i=1;i<=nInputltems;i++)
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dc.TextOut (input[i] .hm.x+10,input[i] .hm.y,
input[i].label);
if (fStatus>=2)

{
for (j=m;j>=0;j--)
{
dc.MoveTo (hGrid.x+wrc.cx/2,hGrid.
y+wrc.cy/2+j*vSpace) ;
dc.LineTo (hGrid.x+wrc.cx/2+n*hSpace,
hGrid.y+wrc.cy/2+j*vSpace) ;
}
for (i=0;i<=n;i++)
{
dc.MoveTo (hGrid.x+i*hSpace+wrc.cx/2,
hGrid.y+wrc.cy/2);
dc.LineTo(hGrid.x+i*hSpace+wrc.cx/2,
hGrid.y+wrc.cy/2+m*vSpace) ;
}

dc.Text0Out (hGrid.x-100,hGrid. y+m/2*vSpace-20,
((fMenu==1)7"u(x0,y) " : "u(x0,t)"));

dc.Text0Out (hGrid.x+(n+1)*hSpace-10,hGrid.y+m/2*vSpace-20,
((fMenu==1)?"u(xN,y)": "u(xN,t)"));

dc.Text0Out (hGrid.x+n/2*hSpace-40,250,
((fMenu==1)7?"u(x,ym)":""));

if (fMenu==2 | | fMenu==3)

dc.Text0Out (hGrid.x,hGrid.y+(m+1)*vSpace-10,
"u(x,t0)");
if (fMenu==3)
dc.TextOut (hGrid.x+200,hGrid.
y+(m+1) *vSpace-10, "uD(x,t0)") ;

if (fMenu==1)
dc.Text0Out (hGrid.x+n/2*hSpace-40,hGrid.y
+(m+1) *vSpace-10,"u(x,y0) ") ;
for (j=m;j>=0;j--)
for (i=0;i<=n;i++)
{
rc=CRect (hGrid.x+i*hSpace,hGrid.y+j*vSpace,
hGrid.x+ixhSpace+wrc.cx,hGrid.
y+j*vSpace+wrc.cy) ;
dc.Rectangle(rc);
str.Format ("%d,%d",i,m-j);
dc.TextOut (hGrid.x+wrc.cx/3+i*hSpace,
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hGrid.y+2+j*vSpace,str);

}
}
if (fStatus==3)
{
for (j=m;j>=0;j--)
for (i=0;i<=n;i++)
{
str.Format ("%.41f",ulil [j1);
dc.Text0Out (hGrid.x+i*hSpace+5,
hGrid.y+15+(m-j)*vSpace,str) ;
}
if (fMenu==1)
{
dc.Text0ut (30,180, "Poisson equation");
dc.Text0ut (30,195, "ulxx]+ulyy]
="+input[1].item);
dc.Text0ut (30,210, input [4] .
item+"< x <"+input[5].item
+", "+input[6].item+"< y <"+input[7].
item);
}
if (fMenu==2)
{
str.Format ("%1f",pow(alpha,2));
dc.Text0ut (30,180, "Heat Equation");
dc.TextOut (30,195, "u[t]-"+str+" ulxx]=0");
dc.Text0ut (30,210, input [4] .item+"< x
<"+input[5] .item
+", "+input[6].item+"< t <"
+input [7] .item) ;
}
if (fMenu==3)
{
str.Format ("%1f",pow(alpha,2));
dc.Text0ut (30,180, "Wave Equation");
dc.Text0ut (30,195, "ultt]-"+str+" ulxx]=0");
dc.Text0ut (30,210, input [4] .item+"< x
<"+input[5] .item+", "+input[6].
item+"< t <"+input[7].item);
3
}
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A left-click on the mouse is an event that is mapped as ON_WM_LBUTTONDOWN and is
handled by OnLButtonDown (). Two flag variables, fMenu and £Status, have been
assigned to monitor the status of execution starting from this event. Both variables are
initially set to 0, and their values will change during the course of the execution. fMenu
changes its value once one of the items in the menu is left-clicked, with fMenu=1
when the selection is Poisson, fMenu=2 with heat, and fMenu=3 with wave.

The menu is selected through a  conditional test using
menu [k] .rc.PtInRect(pt). A selection on the menu displays the titles for
the input items through InputLabels(), and creates a push button and the
corresponding edit boxes for collecting the input. The code fragments for
OnLButtonDown () consist of

void CCodell::0nLButtonDown (UINT nfStatuss,CPoint pt)
{
int i,k;
for (k=1;k<=nMenultems;k++)
if (menu[k].rc.PtInRect(pt))
{
fMenu=k; fStatus=1;
for (i=1;i<=maxInput;i++)
input [i] .ed.DestroyWindow() ;
tablel.DestroyWindow() ;
table2.DestroyWindow() ;
Clear(input[0] .display);
Clear(rcGrid);
InvalidateRect (input [0] .rc);
btn.DestroyWindow() ;
btn.Create("Compute" ,WS_CHILD | WS_VISIBLE
| BS_DEFPUSHBUTTON,
CRect (50,140,150,170) ,this,IDC_BUTTON) ;
for (int i=1;i<=maxInput-1;i++)
input [i] .ed.DestroyWindow() ;
switch(k)
{
case 1:
fMenu=1; InputLabels(); break;
case 2:
fMenu=2; InputLabels(); break;
case 3:
fMenu=3; InputlLabels(); break;
}
for (i=1;i<=nInputIltems;i++)
input[i] .ed.Create(WS_CHILD | WS_VISIBLE
| WS_BORDER,
CRect (input[i] .hm.x+100,input [i].
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hm.y,input[i] .hm.x+520,
input[i] .hm.y+20) ,this,idc++);

Both sets of input are made inside OnButton (). This function is activated when
the push button Compute is left-clicked. The first set is made possible through the
assigned value in the status control flag, with fStatus=1. The second input happens
through SecondInput () when this function is called from the selected method. Upon
the completion of the inputs, the flag status is updated to £Status=2 by calling the
corresponding function for the selected method. With this progress, the input boxes
for the initial and boundary conditions are created. The code for these operations is
shown below:

void CCodell: :0nButton()

{

CRect rc;

int 1i,j;

if (fStatus==3)
fStatus=2;

if (fMenu==1)

{
if (fStatus==2)

Poisson();

if (fStatus==1)

{
for (i=1;i<=nInputltems;i++)
input[i] .ed.GetWindowText (input [i] .item);
n=atoi(input[2].item); n=((n<=N)7n:N);
m=atoi(input[3].item); m=((m<=M)7m:M);
pt [0] .x=atof (input [4] .item);
pt[n] .x=atof (input [5] . item) ;
pt[0] .y=atof (input [6] .item) ;
pt[m] .y=atof (input[7].item);
h=(double)1/n*(pt[n].x-pt[0].x);
k=(double)1/m* (pt [m] .y-pt [0].y);
input [nInputItems+1].ed.DestroyWindow() ;
input [nInputItems+2] .ed.DestroyWindow() ;
input [nInputItems+1] .ed.Create (WS_CHILD
WS_VISIBLE
| WS_BORDER, CRect(CPoint(hGrid.x-100,
hGrid.y+m/2*vSpace),
CSize(90,25)),this,idc++);
input [nInputItems+2] .ed.Create (WS_CHILD
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WS_VISIBLE
| WS_BORDER, CRect(CPoint(hGrid.x+(n+1)
xhSpace-10,hGrid.y+m/2*vSpace),
CSize(90,25)) ,this,idc++);
input [nInputItems+3] .ed.DestroyWindow () ;
input [nInputItems+4] .ed.DestroyWindow() ;
input [nInputItems+3].ed.Create(WS_CHILD
WS_VISIBLE
| WS_BORDER, CRect(CPoint(hGrid.x+n/
2xhSpace,hGrid.y
+(m+1) *vSpace-10) ,CSize(90,25)) ,this,
idc++) ;
input [nInputItems+4] .ed.Create(WS_CHILD
WS_VISIBLE
| WS_BORDER, CRect(CPoint(hGrid.x+n/
2xhSpace, 250) ,
CSize(90,25)) ,this,idc++);

fStatus=2;
}
3
if (fMenu==2)
{
if (fStatus==2)
Heat();
if (fStatus==1)

{
for (i=1;i<=nInputltems;i++)
input[i] .ed.GetWindowText (input [i] .item);
n=atoi(input[2].item); n=((n<=N)7n:N);
m=atoi(input[3].item); m=((m<=M)7m:M);
pt [0] .x=atof (input [4] .item); pt([n].
x=atof (input [5] .item) ;
pt [0] .t=atof (input [6].item); pt[m].
t=atof (input [7] .item) ;
h=(double)1/n*(pt[n] .x-pt [0] .x);
k=(double) 1/m* (pt [m] . t-pt [0] .t);
input [nInputItems+1] .ed.DestroyWindow() ;
input [nInputItems+2] .ed.DestroyWindow() ;
input [nInputItems+1].ed.Create(WS_CHILD
WS_VISIBLE
| WS_BORDER, CRect(CPoint (hGrid.x-100,
hGrid.y+m/2*vSpace) ,
CSize(90,25)) ,this,idc++);
input [nInputItems+2] .ed.Create(WS_CHILD
WS_VISIBLE
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| WS_BORDER, CRect(CPoint (hGrid.
x+(n+1) *hSpace
-10,hGrid.y+m/2*vSpace) ,CSize(90,25)),
this,idc++);
input [nInputItems+3] .ed.DestroyWindow() ;
input [nInputItems+3] .ed.Create (WS_CHILD
WS_VISIBLE | WS_BORDER,
CRect (CPoint (hGrid.x+n/
2*hSpace,
hGrid.y+(m+1)*vSpace-10),CSize(90,25)),
this,idc++);

fStatus=2;
}
}
if (fMenu==3)
{
if (fStatus==2)
Wave();
if (fStatus==1)

{
for (i=1;i<=nInputltems;i++)
input[i] .ed.GetWindowText (input [i] .item);
n=atoi(input[2].item); n=((n<=N)7n:N);
m=atoi(input[3].item); m=((m<=M)7m:M);
pt[0] .x=atof (input[4] .item); pt[n].
x=atof (input [5] .item) ;
pt [0] .t=atof (input [6] .item); pt[m].
t=atof (input [7] .item) ;
h=(double)1/n*(pt[n] .x-pt[0].x);
k=(double)1/m*(pt[m] .t-pt [0].t);
input [nInputItems+1].ed.DestroyWindow() ;
input [nInputItems+2] .ed.DestroyWindow() ;
input [nInputItems+1] .ed.Create(WS_CHILD
WS_VISIBLE
| WS_BORDER, CRect(CPoint(hGrid.x-100,
hGrid.y+m/2*vSpace),
CSize(90,25)),this,idc++);
input [nInputItems+2] .ed.Create (WS_CHILD
WS_VISIBLE
| WS_BORDER, CRect(CPoint(hGrid.
x+(n+1) *hSpace
-10,hGrid.y+m/2*vSpace) ,CSize(90,25)),
this,idc++);
input [nInputItems+3] .ed.DestroyWindow() ;
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input [nInputItems+4] .ed.DestroyWindow() ;
input [nInputItems+3].ed.Create(WS_CHILD
WS_VISIBLE
| WS_BORDER, CRect(CPoint(hGrid.x+40,
hGrid.y
+(m+1) *vSpace-10) ,CSize(90,25)),
this,idc++);
input [nInputItems+4] .ed.Create(WS_CHILD
WS_VISIBLE
| WS_BORDER, CRect(CPoint (hGrid.x+240,
hGrid.y
+(m+1) *vSpace-10) ,CSize(90,25)),
this,idc++);
fStatus=2;
}
}
rc=CRect (CPoint (hGrid.x+(n+1)*hSpace-10,hGrid.y
+(m+1) *vSpace-10) ,CSize (100,25));
InvalidateRect (rcGrid);

The next step in the execution is a call to the respective function of the selected
problem, with fMenu=1toPoisson (), fMenu=2toHeat (), and fMenu=3toWave ().
This is achieved when the push button is left-clicked at an instance when £fStatus=2.
We discuss the the code for each problem.

Solution to Poisson’s Equation

The solution to the Poisson’s equation problem is given in a function called
Poisson(). The code fragments for this function are written as

void CCodell::Poisson()
{
int i,j,r,sh;
int psil[4];
double psv[4];
SecondInput () ;
pt[1] .y=pt[0] .y+k;
for (j=1;j<=m-1;j++)
{
psil1]=24; psv[1]l=pt[j]l.y;
u[0] [jl=parse(input [nInputItems+1] .item,1,psv,psi);
u[n] [jl=parse(input [nInputItems+2] .item,1,psv,psi);
pt[j+1] .y=pt[j].y+k;
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for (i=0;i<=n;i++)

{
psil[1]=23; psv[1]l=pt[i].x;
u[i] [0]=parse (input [nInputItems+3].item,1,psv,psi);
uli] [m]=parse(input [nInputItems+4].item,1,psv,psi);
if (i<n)
pt[i+1] .x=pt[i] .x+h;
}

for (j=0;j<=m;j++)
for (i=0;i<=n;i++)

{

psil1]1=23; psv[1]l=pt[i].x;

psil2]1=24; psv[2]=pt[j]l.y;

wli] [jl=parse(input[1].item,2,psv,psi);
}

// form the SLE
sA=(m-1)*(n-1);
for (i=1;i<=sA;i++)

{
b[i]=0;
for (j=1;j<=sA;j++)
alil [j1=0;
}
for (r=1;r<=sA;r++)
{
alr] [r]=-2%(h*h+k*k) ;
if (r<=2%(n-1))
{
al[r] [n-1+r]=hx*h;
a[n-1+r] [r]=h*h;
}
al1] [2]1=k#*k; al[2] [1]=kx*k;
if (r%(n-1)'=0 && r<(m-1)*(n-1))
{
al[r] [r+1]=kxk;
al[r+1] [r]1=k*k;
}
}

for (j=1;j<=m-1;j++)
for (i=1;i<=n-1;i++)
{
// compute b[r]
r=i+(j-1)*(n-1);
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b[r]=h*hxk*k*w[i] [j];

if (j==1)
{
blr] -= hxh*xul[i] [0];
if (i==1)
blr] -= kxk*xul[0] [1];
if (i==n-1)
blr] -= kxk*u[n] [1];
3
if (j>1 && j<m-1)
{
if (i==1)
blr] -= kxk*ul[0][j];
if (i==n-1)
blr] -= kxk*u[n] [j];
}
if (j==m-1)
{
blr] -= h*h*u[i] [m];
if (i==1)
blr] -= kxk*u[0] [m-1];
if (i==n-1)
blr] -= kxk*u[n] [m-1];
}
}
fStatus=3;
Clear(input[0].rc);
ShowTable () ;
SolveSLEQ);

InvalidateRect (rcGrid);
InvalidateRect (input [0] .display) ;

Poisson() collects its initial input data from OnButton () and its input from the
initial and boundary conditions from SecondInput (). The strings from the initial
and boundary conditions are converted to double values and are evaluated through
parse(). The parsed values are assigned to their respective variables in the code
segment given by

for (j=1;j<=m-1;j++)

{
psil1]=24; psv[1l=pt[j]l.y;
ul[0] [jl=parse(input [nInputItems+1] .item,1,psv,psi);
uln] [jl=parse(input [nInputItems+2] .item,1,psv,psi);
pt[j+1] .y=pt[j].y+k;
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for (i=0;i<=n;i++)

{
psil1]1=23; psv[1]l=pt[i].x;
u[i] [0]=parse (input [nInputItems+3].item,1,psv,psi);
uli] [m]=parse(input [nInputIltems+4] .item,1,psv,psi);
if (i<n)
pt[i+1] .x=pt[i].x+h;
¥

for (j=0;j<=m;j++)
for (i=0;i<=n;i++)

{

psil[1]1=23; psv[1]l=pt[i].x;

psil[2]=24; psv[2]=pt[j].y;

wli] [jl=parse(input[1].item,2,psv,psi);
}

The biggest challenge in Poisson() is in forming the system of linear equations.
The system has a size of sA=(m-1)*(n-1). In forming the system, the arrays a and
b are first initialized by assigning them with zeros, through

sA=(m-1)*(n-1);
for (i=1;i<=sA;i++)
{
b[i]=0;
for (j=1;j<=sA;j++)
alil [j1=0;

Next, the coefficient matrix A is formed using Equation (11.7a). This code segment
takes care of the nonzero values of A only, as those not filled with these values have
already been assigned with zeros earlier.

// form the SLE
for (r=1;r<=sA;r++)
{
alr] [r]=-2*%(h*h+k*k) ;
if (r<=2%(n-1))
{
al[r] [n-1+r]=hx*h;
a[n-1+r] [r]=h*h;
}
al[1] [2]=k*k; al[2] [1]=k*k;
if (rh(n-1)1=0 && r<(m-1)*(n-1))
{
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alr] [r+1]=k*k;
alr+1] [r]1=kx*k;

The entries for the b vector follow similar steps as in A, using Equation (11.7b).
The coding is longer here because of the irregular nature of the initial and boundary

values.

for (j=1;j<=m-1;j++)
for (i=1;i<=n-1;i++)

{
// compute b[r]
r=i+(j-1)*(n-1);
b [r]=hxhxk*k*w[i] [j];
if (j==1)
{
b[r] -= h*h*u[i] [0];
if (i==1)
blr] -= kxkxul[0] [1];
if (i==n-1)
blr] -= kxk*xu[n] [1];
}
if (3>1 && j<m-1)
{
if (i==1)
blr] -= kxk*ul[0][j];
if (i==n-1)
blr] -= kxkxuln] [j];
}
if (j==m-1)
{
blr] -= hxh*ul[i] [m];
if (i==1)
blr] -= kxk*xul[0] [m-1];
if (i==n-1)
blr] -= kxk*u[n] [m-1];
}
}

With A and b formed, the rest of the code in Poisson() involves solving the
system of linear equations through SolveSLE(), and displaying the results in the

main window.

Clear(input[0] .rc);
ShowTable () ;
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FIGURE 11.16. Visual solution for the heat problem.

SolveSLEQ);
InvalidateRect (rcGrid);
InvalidateRect (input [0] .display) ;

Solution to the Heat Equation

The solution to the heat equation is handled by the function Heat () according to

Algorithm 11.4. Figure 11.16 shows an output from Heat ().

The contents of Heat () consist of the finite-difference method that generates
a system of linear equations, and solves this system by calling SolveSLE(). The

function is given, as follows:

void CCodell:
{

:Heat ()

int i,j,r,sA;
int psil4];
double psv([4];
SecondInput () ;

alpha=atof (input[1].item);
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pt[1].t=pt[0] .t+k;
for (j=1;j<=m;j++)

{
psil1]=19; psv[1]l=pt[j].t;
u[0] [jl=parse(input [nInputItems+1].item,1,psv,psi);
u[n] [jl=parse(input [nInputItems+2] .item,1,psv,psi);
if (j<m)
pt[j+1] .t=pt[j].t+k;
}
for (i=0;i<=n;i++)
{
psil1]1=23; psv[1]l=pt[i].x;
uli] [0]=parse(input [nInputItems+3].item,1,psv,psi);
if (i<mn)
pt[i+1] .x=pt[i] .x+h;
}
sA=m*(n-1);
for (i=1;i<=sA;i++)
{
b[i]=0;
for (j=1;j<=sA;j++)
alil [j1=0;
¥

for (j=0;j<=m-1;j++)
for (i=1;i<=n-1;i++)
{
r=i+j*(n-1);
// compute A
a[r] [r]1=2%(h*h+alpha*alpha*k) ;
if (r%(n-1)!=0 && r<m*(n-1))
{
al[r] [r+1]=-alpha*alphaxk;
alr+1] [r]l=alr] [r+1];
}
if (r<=2%(n-1)+1)
if (r%(n-1)!=1)
a[n+r-2] [r]=-alpha*alphax*k;
if (r<=2*(n-1))
a[n-1+r] [r]1=2% (-hxh+alpha*alphax*k) ;
if (r<=2%(n-1)-1)
if (r%(n-1)'=0)
a[n+r] [r]=-alpha*alphaxk;
// compute b[r]
if (j==0)
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{
b[r]=pow(alpha,2)*k*ul[i-1] [0]-2*u[i] [0] *
(-pow(h,2)+k*pow(alpha,2))
+pow(alpha,2)*k*u[i+1] [0] ;
if (i==1)
blr] += pow(alpha,2)*k*u[0] [1];
if (i==n-1)
blr] += pow(alpha,2)*k*u[n][1];
}
if (3>0)
{
if (i==1)
b [r]=pow(alpha,2)*k*(ul0] [j]1+u[0]
[j+11);
if (i==n-1)
b[r]=pow(alpha,2)*k+*(u[n] [j]+u[n]
[j+1);
}
}
fStatus=3;
Clear (input[0].rc);
ShowTable();
SolveSLEQ);

InvalidateRect (rcGrid);
InvalidateRect (input [0] .display) ;

The initial and boundary values are read in Heat () in the same manner as in
Poisson(). The input strings are converted to the initial and boundary values through
parse (). The code segment for this job is given by

for (j=1;j<=m;j++)

{
psil1]=19; psv[1]l=pt[j].t;
u[0] [jl=parse(input [nInputItems+1] .item,1,psv,psi);
u[n] [jl=parse(input [nInputItems+2] .item,1,psv,psi);
if (j<m)
pt[j+1].t=pt[j].t+k;
}
for (i=0;i<=n;i++)
{

psil1]1=23; psv[1]l=pt[i].x;
uli] [0]=parse(input [nInputItems+3].item,1,psv,psi);
if (i<n)

pt[i+1] .x=pt[i] .x+h;
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Again, the biggest challenge in Heat () is in forming matrix A and vector b. These
two tasks are performed using Algorithms 11.2a and 11.2b, respectively. The code
segment is

sA=m*(n-1) ;
for (i=1;i<=sA;i++)
{
b[i]1=0;
for (j=1;j<=sA;j++)
alil [j1=0;
}

for (j=0;j<=m-1;j++)
for (i=1;i<=n-1;i++)
{
r=i+j*(n-1);
// compute A
a[r] [r]=2* (h*h+alpha*alphaxk) ;
if (r(n-1)'=0 && r<m*(n-1))
{
alr] [r+1]=-alpha*alphax*k;
alr+1] [rl=alr] [r+1];

if (r<=2%(n-1)+1)
if (r%(n-1)'=1)
a[n+r-2] [r]=-alpha*alphax*k;
if (r<=2%(n-1))
a[n-1+r] [r]=2% (-h*h+alpha*alphax*k) ;
if (r<=2%(n-1)-1)
if (r%(n-1)!=0)
a[n+r] [r]=-alpha*alphaxk;
// compute b[r]
if (j==0)

b[r]=pow(alpha,2)*k*ul[i-1] [0]-2*u[i] [0] *
(-pow(h,2)+kxpow(alpha,2))
+pow (alpha,2)*k*u[i+1] [0];

if (i==1)
blr] += pow(alpha,2)*k*ul[0] [1];
if (i==n-1)
blr] += pow(alpha,2)*k*u[n] [1];
}
if (3>0)
{

if (i==1)
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b[r]=pow(alpha,2)*k*(ul[0] [jI1+ul[0] [j+11);
if (i==n-1)
b[r]l=pow(alpha,2)*k*(uln] [jl+uln] [j+11);

[}

The last part in Heat () is solving the system of linear equations and is displaying
the results in the rectangular grids as well as in the list view tables.

Solution to the Wave Equation

The wave equation problem is slightly different from the Poisson’s and heat equation
problems as it is not a system of linear equations. The fundamental tool is still the
finite-difference formula, but the equation generated is in explicit form. Figure 11.17
shows an output produced from Wave ().

The solution to the wave equation problem is provided in Wave (). The function is
written as follows:

“Icode1 =10} x|
Wave Equation: u[tt] - alpha”2*u[xx=0

alpha 2 |

n(2:8) [6 ]

mee) a I

X[0] [0 ]

Compute x[n] [ ]

Wave Equation 1o [o |
U[tt]-4.000000 ufxx]=0

0<x<1,0<t<4 tim) [.4 ]

[ 1. 1683 i 1. 1482 0.4 8435 ||2 1438 | 5.1 6955 10.! 9561 I 3.4 6842 |

u(xo,h

(38I® | [5550

u(xN,Y

ssms | (40050 |

uet0) 2% (1-x) u0.0) [G*cos(2%x-1)

FIGURE 11.17. Visual solution for the wave problem.
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void CCodell: :Wave()

{

int 1i,j,r,sA;
int psi[2];
double psv[2];
double uD[N+1];
SecondInput () ;
alpha=atof (input[1].item);
pt[1].t=pt[0] .t+k;
psil[1]1=19;
for (j=1;j<=m;j++)
{
psvl1]=pt[j].t;
u[0] [jl=parse(input [nInputItems+1] .item,1,psv,psi);
u[n] [j]=parse(input [nInputItems+2] .item,1,psv,psi);
if (j<m)
pt[j+1] .t=pt[j].t+k;

}
psil1]1=23;
for (i=0;i<=n;i++)
{
psv[1]=pt[i].x;
ul[i] [0]=parse(input [nInputIltems+3] .item,1,psv,psi);
uD[i]=parse(input [nInputItems+4].item,1,psv,psi);
if (i<m)
pt[i+1] .x=pt[i].x+h;
}

for (i=1;i<=n-1;i++)
uli] [1]1=1/(2*pow(h,2))
* (2xpow (h,2) *k*uD [1] +pow (k,2) *pow (alpha,2)
*xu[i-1][0]
- (-2xpow (h,2) +2*pow (k,2) *pow (alpha,2))*uli] [0]
+pow (k,2) *pow (alpha,2)*uli+1] [0]);
for (j=1;j<=m-1;j++)
for (i=1;i<=n-1;i++)
uli] [j+1]1=1/pow(h,2)*(-pow(h,2)*uli] [j-1]
+pow (k,2) *pow(alpha,2)*uli-1] [j]
- (-2xpow(h,2) +2*pow (k,2) *pow (alpha,2))*uli] [j]
+pow (k,2) *pow(alpha,2)*uli+1] [j1);
fStatus=3;
InvalidateRect (rcGrid);
InvalidateRect (input [0] .display) ;
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The input data in Wave () is read in OnButton() and SecondInput (). Wave()

processed the input strings and converted them into initial and boundary values ac-
cording to the code fragments given by

for (j=1;j<=m;j++)

{
psvl1l=pt[j].t;
u[0] [jl=parse(input [nInputItems+1].item,1,psv,psi);
u[n] [jl=parse(input [nInputItems+2] .item,1,psv,psi);
if (j<m)
pt[j+1] .t=pt[j].t+k;
}
psil1]=23;
for (i=0;i<=n;i++)
{
psv[1]l=pt[i].x;
uli] [0]=parse(input [nInputItems+3].item,1,psv,psi);
uD[i]=parse(input [nInputItems+4].item,1,psv,psi);
if (i<n)
pt[i+1] .x=pt[i].x+h;
}

The second initial value is read and processed through parse () as the array uD,

which represents u,(x;, tp) fori =0, 1, ..., n. As mentioned, this array is needed in
substituting the values of the virtual values u; _; when its finite-difference method is
applied.

The solution to the wave equation is provided by the explicit finite-difference
formula of Equation (11.14). This formula is written in Wave () according to

for (i=1;i<=n-1;i++)
uli] [1]1=1/(2*pow(h,2))
* (2xpow (h, 2) *k*uD [i] +pow (k, 2) *pow (alpha,2)*u[i-1] [0]
- (-2*pow (h, 2) +2*xpow (k, 2) *pow (alpha,2) ) *ul[i] [0]
+pow (k,2) *pow (alpha,2)*ul[i+1] [0]);
for (j=1;j<=m-1;j++)
for (i=1;i<=n-1;i++)
uli] [j+1]1=1/pow(h,2)*(-pow(h,2)*uli] [j-1]
+pow (k,2) *pow(alpha,2)*uli-1] [j]
- (-2xpow (h,2) +2*pow (k, 2) *pow(alpha,2))*uli] [j]
+pow (k,2) *pow(alpha,2)*uli+1] [j1);
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11.7 SUMMARY

This chapter discusses the numerical solutions to the partial differential equations
involving initial- and boundary-value problems. Four topics are covered, namely,
Laplace’s, Poisson’s, heat, and wave equations. The problems are solved using the
finite-difference method over rectangular grids that have uniform horizontal and ver-
tical widths. We discuss the numerical solution for each topic and develop the visual
interface for solving each problem.

The computing platform for the partial differential equations problems has been
very challenging. This is because of the nature of the problem, which involves three
variables on three dimensions. The domain in each problem has been assumed to
be rectangular with the initial and boundary values given along the horizontal and
vertical boundaries. Therefore, the quantities to be evaluated, such as the magnetic
field, heat, and wave values can be visualized as the surfaces over the rectangular
domain.

The idea from the visual solutions provided in this chapter can be extended to create
projects from several applications in science and engineering. The finite-difference
method is a fundamental tool in solving the boundary-value problems involving partial
differential equations. The method produces good approximations to the problems,
which are very close to the exact solutions. However, the requirement that the grids
in the rectangular domain must have equal width confines the method to some appli-
cations only. The method is not applicable in cases where the domain is not in the
form of rectangle, or in grids with non-equal width.

Nevertheless, the concepts in the finite-difference method provide the fundamen-
tals to several advanced methods, such as the finite-element and boundary-element
methods. The reader should study the methods and visual solutions discussed in this
chapter and should apply them in projects involving modeling and simulation in partial
differential equations.

NUMERICAL EXERCISES

1. Solve the following boundary-value problems involving the Poisson’s and

Laplace’s equations:

a U Uy = 3x2y, for 0 <x <1 and 0 <y < 0.3, where h = Ax = 0.25
and k = Ay = 0.1. The initial conditions are u(x, 0) = 10 and u(x, 0.3) = 20,
whereas the boundary conditions are (0, y) = 5 and u(1, y) = 15.

b. u,, +u,, =10sinxy,for0 <x < land0 < y < 0.3, where h = Ax = 0.25
and k = Ay = 0.1. The initial conditions are u(x, 0) = 5sinx and u(x, 0.3) =
4 cos x, whereas the boundary conditions are u(0, y) = 4sin2y and u(l, y) =
3cos3y.

C Uxx +uy, =0, for 0 <x <1and 0 <y <0.1, where h = Ax =0.25 and
k = Ay = 0.025. The initial conditions are u(x, 0) = 2sin2x and u(x, 0.1) =
3 cos x, whereas the boundary conditions are u(0, y) = 4siny and u(1, y) =
2cos2y.
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Check the results by running Code11.

2. Solve the following boundary-value problems involving the heat equation:

a. u; —4u,, =0,for0 < x < landt > 0,atr = 0.1, where h = Ax = 0.25 and
k = At = 0.1. Given the initial value of u(x, 0) = 10, and the boundary values
of u(0, t) = 30 and u(1, tr) = 50.

b. u; —9u,, =0,for0 <x < landt > 0,atr = 0.1, where h = Ax = 0.25 and
k = At = 0.1. Given the initial value of u(x, 0) = 3 sinx, and the boundary
values of (0, ) =3 cost and u(1,t) = 4e™".

c. u; —2uy, =0,forO0 <x <landt > 0,atr = 0.1, where h = Ax = 0.25 and
k = At = 0.1. Given the initial value of u(x, 0) = 3 cos 2x, and the boundary
values of u(0, t) = 3cos2t and u(1, 1) = 4e™".

Check the results by running Code11.

3. Solve the following boundary-value problems involving the wave equation:

a. Uy —4u,, =0, forO<x <landt >0, at t =0.1, where h = Ax = 0.25
and k = At = 0.1. Given the initial values of u(x, 0) = 10 and u,(x, 0) = 15.
The boundary values are u(0, t) = 30 and u(1, ¢) = 50.

b. u;; —9u,, =0,for0 <x <land ¢ >0, at t = 0.1, where h = Ax = 0.25
and k = At = 0.1. Given the initial values of u(x, 0) = 3sinx and u,(x, 0) =
5 cos x. The boundary values are u(0, r) = 3cost and u(1, t) = 4e~".

Check the results by running Code11.

4. Find the finite-difference formula for the non-homogeneous wave equation, given
by Equation (11.12) using the central-difference rules.

5. By referring to Table 11.1, apply the central-difference rules to derive the finite-
difference formula for each of the following equations:

a. Diffusion equation

. Helmholtz’s equation

. Klein—Gordon’s equation

. Modified Louiville’s equation

o &6 T

. Vibrating membrane

PROGRAMMING CHALLENGES

1. The Laplace’s equation is the homogeneous form of the Poisson’s equation,
obtained by setting w; ; = 0 in Equation (11.5). Describe the difference between
the Laplace’s equation and the Poisson’s equation. Hence, develop this new module
as an item in the menu in Code11.

2. Provide flexibility to Codel1 by adding several new features, such as file open
and retrieve options. These features are important as the problem generates new



SUMMARY 439

matrices and vectors, as well as solutions in rectangular grids. The generated data
can be very massive as it is dependent on the input.

. Modify Codell to include the non-homogeneous wave equation of Equation
(11.12). Study the initial and boundary conditions, and derive the finite-difference
formula for this problem.

. The Helmholtz’s equation given in Table 11.1 by % + ‘;:—‘; 4+ fx, y)u=gx,y)
is an elliptic equation that does not differ much from the Poisson’s equation. Study
the initial and boundary conditions for this problem, and develop it as a new module
in Codell.

. The diffusion equation given in Table 11.1 by o % - ‘;—’; = 0 has a lot of applica-
tions, such as in the movement of fluids from one medium to another. Study the
initial and boundary conditions for this problem, and develop it as a new module

in Codell.
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Code2G, 49-51
Code3A, 61-68
class,
CCode3A, 62
files,
Code3A.cpp, 63
Code3A.h, 62
function,
OnPaint (), 68, 70
output, 66
Code3B, 74-78
class,
CCode3B, 74
files,
Code3B. cpp, 77
Code3B.h, 75
function,
OnMyButton(), 76
output, 75
Code3C, 80-87
class,
CCode3C, 81
files,
Code3C. cpp, 83
Code3C.h, 83
Code3C.rc, 81
functions,
OnClear(), 86
OnExit (), 87
OnFileOpen(), 85
OnFileSave(), 86
OnGenerate(), 85
output, 81
Code3D, 88-91
class,
CCode3D, 88
files,
Code3D. cpp, 88
Code3D.h, 88
functions,
OnPaint (), 91
OnKeyDown (), 91
output, 88
Code3E, 92-94
class,
CMain, 93
files,
Code3E. cpp, 94
Code3E.h, 93

Code4A project, 100-106
class,
CCode4A, 101
files,
Code4A. cpp, 100
Code4A.h, 103
MyParser.obj, 100
function,
OnPaint (), 103-104
output, 101
Code4B project, 110-115
class,
CCode4B, 111
files,
Code4B. cpp, 110
Code4B.h, 110
function,
OnPaint (), 111
output, 111, 112
Code4cC project, 115-125
class,
CCode4cC, 118
files,
Code4C.cpp, 115
Code4C.h, 115
MyParser.obj, 115
functions,

DrawCurve(), 118, 120-121,

123

OnLButtonDown(), 121-122

OnPaint (), 121
output, 116
schematic drawing, 118
Codeb project, 172—-189
class,
CCodeb, 173
files,
Code5.cpp, 173
Code5.h, 173, 176
Codeb.rc, 173-174
functions,

OnCholesky (), 173, 184

OnCrout (), 173, 182
OnGauss (), 173, 181

OnGaussSeidel(), 187

OnReset (), 173, 188
OnThomas (), 173, 186

ReadInput (), 173, 179

ShowError (), 173

ShowResults (), 173-174



output, 172
schematic drawing, 173
CodebA, 134-136
Code5B, 146-149
CodebC, 154-156
Code5D, 160-161
Code5E, 170-171
Code6 project, 208-224
class,
CCode6, 209
files,
Code6. cpp, 209
Code6.h, 209
MyParser.obj, 209
functions,

BisectionFPP(), 210, 213, 218

DrawCurve (), 210, 213,223
Newton(), 210, 213, 220
OnButton(), 210, 213, 217

OnLButtonDown(), 210, 213, 216

OnPaint (), 210, 213, 215
Secant (), 210, 213, 221
ShowTable (), 210, 213, 222
output, 209
schematic drawing, 210
Code7 project, 249-264

class,

CCode7, 250
files,

Code7.cpp, 249

Code7.h, 249
functions,

CSpline(), 251, 253, 257, 260
DDifference(), 251, 253, 256
DrawCurve(), 251, 253
Lagrange (), 251, 253, 255
LSquare (), 251, 253, 260
OnLButtonDown(), 251, 253
OnPaint (), 253-254
ShowTable(), 251, 253
SolveSLE(), 251

output, 251

schematic drawing, 251
Code8 project, 279-285

class,
CCode8, 280

files,

Code8. cpp, 280

Code8.h, 280
MyParser.obj, 279

INDEX

functions,
Differentiation(), 280-282
DrawCurve (), 280-281
Integration(), 280, 282-285
OnLButtonDown (), 280-281
OnButton(), 280-281
OnPaint (), 280
ShowTable (), 280281

output, 279

schematic drawing, 281

Code9 project, 302-321

class,

CCode9, 305
files,

Code9.h, 305

Code9. cpp, 305
functions,

OnButton(), 304-30308
PowerMtd (), 304, 306, 309-313

PowerTable(), 304, 306, 319-320

QRMtd (), 304, 306, 313-316
QRTable (), 304, 306, 320-321
OnPaint (), 306

output, 303

schematic drawing, 304

Code10 project, 358-378

class,
CCode10, 359

files,
Code10.h, 359
Codel0. cpp, 359
MyParser.obj, 359

functions,
DrawCurve (), 360
ODE1AB(), 360, 367
ODE1RK2(), 360, 364
ODE1RK4 (), 360, 365
ODE1System(), 360, 370
ODE1Taylor (), 360, 363
ODE2to0DE1System(), 360, 371
ODE2FD1(), 360, 373
ODE2FD2(), 360, 376
OnLButtonDown (), 360
OnButton(), 360
SolveSLE(), 360, 378
ShowTable (), 360

Output, 359

schematic drawing, 360

Codel1 project, 411-436
class,

443
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Code11 project (Contd.)
CCodel1,413
files,
Codel1l.h, 413
Codell.cpp, 413
MyParser.obj, 411
functions
Clear(), 415
Heat (), 414415, 430-434
OnButton(), 414415, 422
OnLButtonDown(), 414415, 421
OnPaint (), 414-415, 418
Poisson(), 414-415, 425430
SolveSLE(), 414415
ShowTable(), 414415
Wave (), 414415, 434-436
output, 412
schematic drawing, 414
Color management, 59
Complexity, 16, 19
Complex number, 43-51
addition, 44
arithmetic, 48-51
conjugate, 46
division, 46
inverse, 47
multiplication, 45
subtraction, 44
Computational fluid dynamics, 8, 157
Conformal mapping, 43
Constructor, 67—-68
Crank-Nicolson’s method, 398-405
Crout method, 131, 143-149, 156
Cubic spline, 239-244
Curve, 106
drawing, 106
fitting, 227
parametric, 116
polynomial, 110-111

Data passing, 35
Derivative,
analytical, 267
numerical, see numerical differentiation
Device context, 58
Destructor, 68
Diffusion equation, 382, 438—439
Dirichlet boundary conditions, 345, 383, 387
Display context, 58

Displaying graphics, 58

Displaying text, 68

delete, 16-18, 21, 87, 115
Domain, 106

Doolittle method, 131, 143, 144, 149

Edit box, see Standard control
Eigenvalue, 288
most dominant, 288, 291
least dominant, 288, 291
Eigenvector, 288
Transformation, 289
Eigen-pair, 289
Elimination method, 131
Equation parser, 96-97
operand, 97
operator, 97
Euler’s method, 329-330
Event, 67, 69, 103
ON_BN_CLICKED, 76, 103, 105, 178, 213,
306, 361, 416
ON_COMMAND, 70
ON_WM_KEYDOWN, 70
ON_WM_LBUTTONDOWN, 70, 120, 122, 213,
361,416
ON_WM_PAINT, 67-68, 70, 103, 119-121,
213, 306, 361, 416
ON_WM_RBUTTONDOWN, 70

False position method, 195, 198-201
File, 78
binary file, 78
input/output, 78-80
pointer, 79
resource, 81
text file, 78
Finite-difference formula, 348, 350,
387-388, 399, 407
molecule, 389, 399, 408
Finite-difference method, 346-347, 373,
376, 391, 409
Finite-element modeling, 9, 437
Fixed-point iteration method, 195,
206-208
Flood control modeling, 11
Fortran, 13
Forward-difference rules,
first derivative, 269
second derivative, 269
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Gauss-Jordan method, 131, 139-141 black-box model, 5
Gauss-Seidel method, 131, 162, 165, deterministic model, 5
167-171 heterogeneous model, 5
Gaussian elimination, 131-136, 263 homogeneous model, 5
Gaussian elimination with partial pivoting, linear model, 5
131, 136-139 model, 5
Gaussian quadrature method, 276-278, 285 nonlinear model, 5
GDI or Graphics Device Interface, 57-59, 69 stochastic model, 5
Graphical user interface, 3 white-box model, 5
Matrix, 17-21
Heat equation, 397—405, 430 addition, 3543
Helmbholtz’s equation, 382, 438—439 augmented, 30, 130
Heun’s method, 332-333 backward substitutions, 31, 132, 134, 139,
High-performance computing, 13—-14 143, 145-146, 157
Householder transformation, 295-297, determinant, 28-29
316-317 diagonally-dominant, 162-163
forward substitutions, 143, 145, 157
Intermediate-value theorem, 194 Hermitian, 295
Interpolation, 227 ill-conditioned, 136
ISO or International Standards inverse, 28, 30-33, 3743
Organization, 13 matrix algebra, 35-40
Iterative methods, 131, 161-171 multiplication, 18-22, 36, 38-43
norm, 22, 23
Jacobi method, 131, 162—-167 orthogonal, 55, 295
pivot element, 24-26
Keyboard control, 87-91 partial pivoting, 136
VK_DOWN, 88 positive-definite, 150-151
VK_LEFT, 88 reduction, 22
VK_RIGHT, 88 row operations, 23-26, 31-33, 129,
VK_RETURN, 88 132-133, 138, 139
VK_SPACE, 88 similar, 295
VK_UP, 88 singular, 28
Klein-Gordon’s equation, 382, 406, 438 square, 28, 30
subtraction, 35-43
Lagrange method, 228-231 symmetric, 150, 294
Lagrange operator, 230 triangular, 24-25, 243, 259
Lagrange polynomial, 230 upper, 25, 27, 28, 132
Laplace’s equation, 382, 394-397 lower, 25
Least-squares approximation, 244-249 tridiagonal, 156157, 349, 353-354
Legendre polynomials, 276 Mean-value theorem, 194
Linear equation, 127 Memory, 14, 68
Linear transformation, 108 dynamic memory allocation, 14-21, 68
Lipschitz condition, 326 static memory allocation, 15
List view box, see Standard control Memory context, 58
Lower triangular matrix, see Matrix Menu, see Standard control
LU factorization, 131, 142-161 Message handler, 70
Method, 69
Managed extension, 4, 61, 92 MEC or Microsoft Foundation Classes, 3,

Mathematical modeling, 4 56-57
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MFC Application project, 61

MFC classes,
hierarchical chart, 57
CBitmap, 58
CBrush, 58
CButton, 71
CClientDC, 58
CDC, 57-58
CDialog, 173
CEdit, 72,76, 117
CFileDialog, 80
CFile, 78
CFont, 58
CFrameWnd, 57, 66, 103, 111, 305
CListCtrl, 74
CMetaFileDC, 58
CPaintDC, 58, 68
CPen, 58
CPalette, 58
CPoint, 110
CRect, 74
CStatic, 73
CString, 72
CWindowDC, 58

MFC files,
afxwin.h, 66
afxdlgs.h, 83
resource.h, 83

MEC functions,
Arc(), 69
AfxMessageBox(), 93
BitBlt (), 69
Create(), 67,71,73,74,76
DoModal (), 80
Ellipse(), 69
FillRect(), 69
FillSolidRect(), 69
Format (), 73, 181
GetClientRect (), 86
GetDlgItemText (), 180
GetFileName (), 80, 85-86
GetPixel(), 69
GetWindowText (), 105
Invalidate(), 70
InvalidateRect(), 70, 121, 218
LineTo(), 69, 110
MoveTo (), 69
Polyline(), 69
PtInRect (), 123, 216, 421

Rectangle(), 69
RGB(), 59-60, 69
SelectObject (), 69
SetBkColor(), 69
SetDlgItemText (), 181
SetFocus(), 76
SetPixel (), 69, 110
SetTextColor (), 69
SetWindowText (), 73, 76
Text0Out (), 69
MEFC skeleton project, 61
Micro-electro mechanical system (MEMS),
10
Microsoft C++, 3
Microsoft DOS, 3
Modal window, 80, 177
Modified Euler-Cauchy method, 333
Modified Loiuville’s equation, 382, 438
Modular program, 14
Multistep method, 335
MyParser, 96-100, 115, 126
character codes, 99
functions, 100
parse(), 98, 105, 123, 219-221,
282-283, 363-377, 427436

Net
accessing .Net from MFC, 92-94
accessing MFC from .Net, 95
framework, 92
MFC compatibility, 92
new, 16-18, 20, 21
Neumann boundary conditions, 345, 383
New project, 61
Newton interpolation methods, 231-239
backward-difference, 236237
backward-difference operator, 236
divided-difference, 232-233
forward-difference, 234-236
forward-difference operator, 234
Stirling’s method, 237-239
Newton-Raphson method, 195, 201-203
Nonlinear equation, 127, 193
existence of solutions, 194
finding the roots, 193
Numerical differentiation, 268
Numerical integration, 271
Numerical methods, 1, 7
Numerical modeling, 3



Object, 3, 112
Object-oriented approach, 14
Object-oriented programming, 3
Open interval, 195
Ordinary differential equations, 324
Dirichlet, see Dirichlet boundary
conditions
decay equation, 325
damped harmonic oscillator equation,
325
degree, 325
explicit form, 325
first order, 325, 370
initial value, 326, 339
initial value problem, 326, 328, 332,
334,337, 339-340
system, 338
implicit form, 325
Neumann, see Neumann boundary
conditions
order, 325
pendulum equation, 325
second order, 341
boundary, 345
boundary conditions, 345
boundary value problem, 346,
350, 373
differentiated boundary conditions,
351-352, 354
Dirichlet, see Dirichlet boundary
conditions
initial conditions, 342
initial value problem, 342, 344
linear, 346
Neumann, see Neumann boundary
conditions
reduction to first order system,
343, 371
Van der Pol equation, 325

Parametric curve, see Curve

Partial differential equations, 381
boundary value problem, 383
boundary conditions, 383, 394, 407
degree, 381
Dirichlet, see Dirichlet boundary

conditions

elliptic, 382
hyperbolic, 382
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initial conditions, 383, 395, 406

linear, 382

Neumann, see Neumann boundary

conditions

order, 381

parabolic, 382

second order, 382
Pascal, 13
Pixel, 14, 68
Poisson’s equation, 385-394, 425
Potential equation, 385
Printed-circuit board design, 9
Printer context, 58
Polynomial, see Curve
Power method, 291-292, 310-313
Pulldown menu, see Standard control
Push button, see Standard control

QR method, 294-302, 313-319
QR factorization, 297-302

Resources, 71, 81, 101-102

Row operations, see Matrix

RK2, see Runge-Kutta of order 2 method

RK4, see Runge-Kutta of order 4 method

Runge-Kutta of order 2 method, 330-333,
364

Runge-Kutta of order 4 method, 333-335,
339-341, 365

Scalar, 15
Secant method, 195, 203-205
Shifted Power method, 292-294
Simpson’s method, 273-275
Simpson’s 3/8 method, 275
Simulation, 6

macroscopic, 6

mesoscopic, 6

microscopic, 6
Single-row routing, 10
Singular, 106
Sink, 10
Smartdust, 10
SMART project, 11
Software development kit (SDK), 3
Spline, 239

cubic, see Cubic spline

linear, 239

quadratic, 239
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Standard control , 71
edit box, 71, 101-102
list view box, 73-74
menu, 78
pulldown menu, 78
push button, 71, 101-102, 209
static box, 73, 102
Static box, see Standard control
Structured program, 14
Symbolic computing, 267
System of first order ordinary differential
equation, 338-341
System of linear equations, 127, 290,
349-350, 357, 375, 390, 395, 402,
405, 428
consistent solutions, 128—130
existence of solutions, 128
homogeneous, 128-129
inconsistent solutions, 128—130
matrix form, 128
nonhomogeneous, 128
unique solutions, 129

Taylor series, 268-269, 327
Taylor series method, 327-330, 362

Thomas algorithm, 131, 143, 156-161,
243, 259

Trapezium method, 271-273

Triangular matrix, see Matrix

Upper triangular matrix, see Matrix

Vector, 15
dot product 16, 17
magnitude or length, 15
norm, 22-23

Vibrating membrane equation,

382,438
Visual C++.Net, 4
Visualization, 6

Wave equation, 382, 406411, 434
‘Win32 project, 61-62
Window, 56
Windows, 56, 68
child, 56
coordinate system, 106—110
overlapped, 56
pop-up, 56, 80
Wireless sensor networks, 10





