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Preface to the English Edition 

The present English edition is not a mere translation of the German 

original. Many new problems have been added and there are also 

other changes, mostly minor. Yet all the alterations amount to less than 

ten percent of the text. We intended to keep intact the general plan 

and the original flavor of the work. 

Thus we have not introduced any essentially new subject matter, 

although the mathematical fashion has greatly changed since 1924. 

We have restricted ourselves to supplementing the topics originally 

chosen. 

Some of our problems first published in this work have given rise to 

extensive research. To include all such developments would have 

changed the character of the work, and even an incomplete account, 

which would be unsatisfactory in itself, would have cost too much labor 

and taken up too much space. 

We have to thank many readers who, since the publication of this 

work almost fifty years ago, communicated to us various remarks on it, 

some of which have been incorporated into this edition. We have not 

listed their names; we have forgotten the origin of some contributions, 

and an incomplete list would have been even less desirable than no list. 

The first volume has been translated by Mrs. Dorothee Aeppli, the 

second volume by Professor Claude Billigheimer. We wish to express 

our warmest thanks to both for the unselfish devotion and scrupulous 

conscientiousness with which they attacked their far from easy task. 

Our thanks are also due to Dr. Klaus Peters for his unflagging interest 

and wise advice and to Dr. Julius G. Baron for his kind help with the 

proofsheets. 

Stanford, March 1972 
G. Polya • G. Szego 
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Preface to the First German Edition 
for the s:ln 

What is good education? Giving sys- *' ~T“ 
tematically opportunity to the student to 7 7.- 7t i 177 
discover things by himself. --ir- * ^ 

(Condensed from H. Spencer.) 
One sim 

them ^zzk 
In the mathematical literature there exist a number of excellent and 

comprehensive collections of problems, books of exercises, review texts 

etc. The present book, in our view, differs from all these, both in its 

aim and in the scope and arrangement of the material covered, as well as 

in the manner in which we envisage its use. Consequently each of these -_v 

points requires some explanation. 

-——- mastering 

to reach m 
The chief aim of this book, which we trust is not unrealistic, is to 

accustom advanced students of mathematics, through systematically _ 
TO- 

arranged problems in some important fields of analysis, to the ways 

and means of independent thought and research. It is intended to serve 

the need for individual active study on the part of both the student and 

the teacher. The book may be used by the student to extend his own 

reading or lecture material, or he may work quite independently through h&iv * ' 

selected portions of the book in detail. The instructor may use it as an 

aid in organizing tutorials or seminars. 

This book is no mere collection of problems. Its most important 
- — - - 

feature is the systematic arrangement of the material which aims to 

stimulate the reader to independent work and to suggest to him useful 

lines of thought. We have devoted more time, care and detailed effort ^ _ 

to devising the most effective presentation of the material than might 

be apparent to the uninitiated at first glance. ^ 

The imparting of factual knowledge is for us a secondary considera- __ 

tion. Above all we aim to promote in the reader a correct attitude, 1 >r- 1 

a certain discipline of thought, which would appear to be of even 
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more essential importance in mathematics than in other scientific 

disciplines. 
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General rules which could prescribe in detail the most useful disci¬ 

pline of thought are not known to us. Even if such rules could be for¬ 

mulated, they would not be very useful. Rather than knowing the correct 

rules of thought theoretically, one must have them assimilated into 

one’s flesh and blood ready for instant and instinctive use. Therefore, 

for the schooling of one’s powers of thought only the practice of thinking 

is really useful. The independent solving of challenging problems will aid 

the reader far more than the aphorisms which follow, although as a 

start these can do him no harm. 

One should try to understand everything: isolated facts by collating 

them with related facts, the newly discovered through its connection 

with the already assimilated, the unfamiliar by analogy with the accus¬ 

tomed, special results through generalization, general results by means 

of suitable specialization, complex situations by dissecting them into 

their constituent parts, and details by comprehending them within a 

total picture. 
There is a similarity between knowing one’s way about a town and 

mastering a field of knowledge; from any given point one should be able 

to reach any other point1. One is even better informed if one can imme¬ 

diately take the most convenient and quickest path from the one point 

to the other. If one is very well informed indeed, one can even execute 

special feats, for example, to carry out a journey by systematically 

avoiding certain forbidden paths which are customary—such things 

happen in certain axiomatic investigations. 

There is an analogy between the task of constructing a well-integrated 

body of knowledge from acquaintance with isolated truths and the 

building of a wall out of unhewn stones. One must turn each new insight 

and each new stone over and over, view it from all sides, attempt to 

join it on to the edifice at all possible points, until the new finds its 

suitable place in the already established, in such a way that the areas 

of contact will be as large as possible and the gaps as small as possible, 

until the whole forms one firm structure. 

A straight line is determined by two points. Similarly, many a new 

result is obtained by means of a kind of linear interpolation between 

1 See e.g. problem 92 and the neighboring problems in Part VI, also problem 64 
in Part VIII. 
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two extreme special cases1. A straight line is also determined by a direc¬ 

tion and one point. New results also frequently arise from the fortunate 

coincidence of the direction of one’s work with a notable special case. 

Also the drawing of parallels is a valuable method by means of which new 

results may be derived2. 

An idea which can be used only once is a trick. If one can use it more 

than once it becomes a method. In mathematical induction the result 

to be obtained and the means available for its proof are proportional, 

they stand in the ratio of n + 1 to n. Hence, strengthening the statement 

to be proved may also be advantageous, for we strengthen at the same 

time the means available for its proof. It is also found in other circum¬ 

stances that the more general statement may be easier to prove than 

the more particular; in such cases the most important achievement 

consists precisely in setting up the more general statement, in extracting 

the essential, in realizing the complete picture3. 

“Qui nimium probat, nihil probat”. One should examine every proof 

with suspicion to see if in fact all the assumptions stated have been 

used. One should attempt to obtain the same conclusion from fewer 

hypotheses, or a stronger conclusion from the same hypotheses, and 

should be satisfied only when one has found counter-examples which 

show that the limit of the possible has been attained. 

However, one must not forget that there are two kinds of generaliza¬ 

tion, one facile and one valuable. One is generalization by dilution, the 

other is generalization by concentration. Dilution means boiling the 

meat in a large quantity of water into a thin soup; concentration means 

condensing a large amount of nutritive material into an essence. The 

unification of concepts which in the usual view appear to lie far removed 

from each other is concentration. Thus, for example, group theory has 

concentrated ideas which formerly were found scattered in algebra, 

number theory, geometry and analysis and which appeared to be very 

different. Examples of generalization by dilution would be still easier to 

quote, but this would be at the risk of offending sensibilities. 

1 See e.g. problem 139 in Part I. 

2 See e.g. the first section in Chapter 1 of Part IV, in particular problems 13 
and 14. 

3 It happens frequently that a hint which is appended to the problem, or the 

grouping of the neighboring problems, points to a strengthening or a generalization 

of the result which may be useful for the solution of the problem. Thus compare 

with each other problems 1 and 2, 3 and 4, 5 and 7, 6 and 8 of Part I. 
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Not all the subject matter of analysis is suitable for problems. A 

collection in which all the more important fields of analysis were ex¬ 

haustively dealt with would necessarily become too extensive and awk¬ 

ward. One can, of course, make a selection in many different ways. We 

have placed the greatest weight on the central field of modem analysis, 

the theory of functions of a complex variable. However, we have kept 

ourselves somewhat apart from the common highway travelled by the 

usual lectures, textbooks and collections of problems, and have, all 

things being equal, given preference to those fields which lie closest to 

our personal interests. We have also taken problems from more difficult 

fields and such as are still very much in the developmental stage, which 

have scarcely or not at all been considered as yet in the textbook litera¬ 

ture. The table of contents will illustrate this in more detail. Certain 

chapters may also be made use of by the specialist. But we have nowhere 

attempted to attain the completeness of a monograph since we have 

subordinated the selection of the material to our chief aim, which is to 

present the material, to the best of our ability, in an arrangement that 

provides guidance and suggestions to the reader. 

The origin of the material is highly varied. We have made selections 

from the classical body of knowledge of mathematics and also from 

treatises of more recent date. We collected problems which had in part 

already been published in various periodicals and in part communicated 

to us verbally by their authors. We have adapted the material to our 

purpose, completed, reformulated and substantially expanded it. In 

addition we have published here for the first time in the form of problems 

a number of our own original results. We thus hope to be able to offer 

something new even to the expert. 

The material is arranged in two volumes. The first comprises three 

parts of a more fundamental nature, the second six parts which are 

devoted to more specialized questions and applications. 

Each volume presents in its first half problems and in its second 

half their solutions. In the part containing the problems, especially at 

the beginning of the separate chapters, there are also some explanations, 

which recall the general notions and theorems needed as a background. 

Often there is added to a problem a method of attack or hint. The 

solutions are presented in as brief and concise a form as possible. Trivial 

deductions are omitted for they should become clear enough after a 

serious consideration of the problem. In exceptional cases the solution 
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is merely sketched and the reader is referred to the relevant literature. 

On occasion, extensions, other applications and unsolved problems are 

touched upon. 

The parts are divided into chapters and these are subdivided into 

sections. Whenever an explanation follows or a new train of thought 

is introduced, we indicate this by a space. 

The arrangement of the problems within the chapters and sections 

is the point wherein the present book differs perhaps even more from 

the other similar books known to us than in the selection of the material. 

Practice problems in the narrow sense which aim to clarify newly learned 

theorems and concepts by means of suitable special cases occupy rela¬ 

tively little space. Isolated problems are rare. The individual problem is 

mostly incorporated into a longer series of problems which on the 

average cover a section, and the organic construction of these series has 

been the object of our greatest concern. 

One may group problems from various points of view—according to 

required previous knowledge, difficulty, method, or result. We have 

not committed ourselves to any of these viewpoints, but have chosen 

varying arrangements, which may reflect the different situations that 

one meets in independent research. One section for example may be 

concerned with a method which is explained briefly at the beginning 

and is afterwards applied to the solution of as many problems of various 

forms as possible and which is thus developed further and further. 

Another section may deal similarly with a theorem which is stated at 

the beginning (or proved, if this can be done easily and quickly) and is 

then applied and specialized in several ways. Still other sections are 

constructed on an ascending pattern: The general theorem appears 

only after preceding special cases and small, fragmentary remarks which 

suggest the result or lead to its proof. Occasionally a proof which is more 

difficult is attained in several steps, through a sequence of problems; 

each problem yields an auxiliary lemma, an independent part of the 

proof, or some perspective, and thus forms a link in a chain of ideas, 

by means of which the reader finally reaches the theorem that is to be 

proved. Some sections bring “miscellaneous problems” and are more 

loosely knit. They recapitulate preceding material by means of more 

difficult applications or present isolated results which are of interest 

in themselves. 

Now and then four consecutive problems form a “proportion”, in 

which the fourth has the same relation to the third as the second to the 
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first (generalization, converse, application). Some paragraphs are devoted 

to a more detailed presentation and examination of analogies1. Here the 

problems are taken in turn from the two subjects which are placed in 

parallel. They belong together in pairs and form what may be termed a 

“continued proportion”. This arrangement seems to us to be particularly 

instructive. 

One may approach the book with a view to finding in it opportunity 

for practice for oneself, or for one’s students, or simply for reading. In each 

case a suitable way of using it for the particular purpose can be found 

quite naturally. 
The initial chapters of each of the parts mostly require comparatively 

little previous knowledge. The different parts are, though not entirely, 

yet largely independent of each other, and also the connection between 

the sections of the same part is frequently loose, so that for example one 

is not required to keep scrupulously to the given sequence of topics. 

The reader who wishes to solve a problem should think not only 

about what is asked, but also how and where it is asked. Many problems, 

which would be intractable even for an advanced student if set in isola¬ 

tion, are here surrounded by preparatory and explanatory problems and 

presented in such a context that withv some perseverance and a little 

inventiveness it should be possible to master them. There occur of course 

also really difficult problems without any preparation. These are con¬ 

tained mostly in sections of a looser structure (miscellaneous problems) 

or else occur only as isolated problems. 
The hints are at the disposal of the reader but they are not intended 

to be forced on him. 
If you are unable to solve a problem, you should not despair. The 

“Socratic method of teaching” does not aim at drilling people in giving 

quick answers, but to educate by means of questions. If repeated efforts 

have been unsuccessful, the reader can afterwards analyze the solution 

wilich is to be found in the second half of the volume with more incisive 

attention, bring out the actual principle which is the salient point, 

assimilate it, and commit it to his memory as a permanent acquisition. 

The book, already while in process of being written, was repeatedly 

made use of for the organization of practice sessions and problem-solving 

seminars for students in the middle and upper semesters. In such 

i See^Part II, Chapter 2; Part IV, Chapter 1, §1; Part V, Chapter 1, §1; 

Part VIII, Chapter 1, § 4. 
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sessions the easier problems were discussed in the classroom and the 

answers were given orally by the students, while the more difficult 

problems were answered in writing by an appropriately set deadline. 

Important problems serving as paradigms were solved by the instructor. 

Within one semester it was possible to cover approximately the material 

of one chapter. Several chapters have been tested in this manner and in 

part revised on the basis of the experience which we have gained. We 

believe that we may in good conscience recommend for the organization 

of practice sessions and seminars the method which we have followed: 

to pose not isolated problems, but carefully considered connected se¬ 

quences of problems. Nearly all the chapters of this book can be used as 

a basis for such instruction. It is obvious that some care should be exer¬ 

cised. Especially, for homework or examinations, it is advisable to 

replace some problems by related ones. 

A continuous reading of the work, in which immediately after each 

problem the solution is also read, can be recommended only to more 

experienced readers. On the whole this is not in the spirit of the book. 

Nevertheless certain chapters are suitable for such continuous reading 

and may be used essentially as a teaching text. However, for this pur¬ 

pose the presentation is rather condensed; it w’as intended to allow some 

time for thinking about the problem between its formulation and its 

solution, and about the proposition between its statement and its proof. 

If our undertaking has not been successful in all respects we appeal 

to two extenuating circumstances: Firstly, as the plan of this work is 

essentially new, we had no models which we could have followed. Se¬ 

condly, a more extensive treatment of the various chapters would have 

required so much space and the improvement of the presentation in some 

aspects so much time that the carrying out of the entire plan would have 

been placed in jeopardy. In the interests of the project we would be 

grateful to the critical reader if he would direct our attention to possible 

deficiencies which could be eliminated at a later opportunity. 

Numerous friends and colleagues have made available to us un¬ 

published items and others have assisted us by reading the manuscript 

or the proofsheets. We gratefully mention by name A. Aeppli (Zurich), 

P. Bernays (Gottingen), A. Cohn (Berlin), R. Courant (Gottingen), 

P. Csillag (Budapest), L. Fejer (Budapest), M. Fekete (Budapest), 

A. Fleck (Berlin), F. Gassmann (Zurich), A. Haar (Szeged), A. Hirsch 

(Zurich), E. Jacobsthal (Berlin), L. Kollros (Zurich), J. Kurschak (Buda- 

A. Os* 

T. Rak 
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pest), E. Landau (Gottingen), E. Lasker (Berlin), K. Lowner (Berlin), 

A. Ostrowski (Gottingen), M. Plancherel (Zurich), H. Priifer (Jena), 

T. Rado (Szeged), M. Riesz (Stockholm), A. Stoll (Zurich), 0. Toeplitz 

(Kiel), A. Walther (Gottingen). We were also permitted to incorporate 

some results from unpublished papers in the estate of A. Hurwitz, and 

also in that of F. and Th. Lukacs. In particular we would like to thank 

sincerely T. Carleman (Lund) and I. Schur (Berlin) for their valuable 

problems and also A. and R. Brauer (Berlin), H. Rademacher (Ham¬ 

burg), and H. Weyl (Zurich) for their truly devoted co-operation. Our 

sincere thanks are also due to the publisher who accommodated us in 

every respect in spite of the present difficult times. 

Zurich and Berlin, October 1924 

G. Polya • G. Szego 
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§ 7 (263 — 265). The Order of Growth of Certain Sequences of Poly¬ 

nomials . 157 365 

Chapter 6 

The Maximum Principle 

§ 1 (266 — 279). The Maximum Principle of Analytic Functions . . 157 367 

§ 2 (280—298). Schwarz’s Lemma. 160 369 

§ 3 (299 — 310). Hadamard’s Three Circle Theorem. 164 374 

§4 (311 — 321). Harmonic Functions. 165 377 

§ 5 (322 — 340). The Phragmen-Lindelof Method. 166 379 
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We tried to be as consistent as possible in regard to notation and abbreviations 

and to denote quantities of the same nature by the same symbol, at least within a 

section. A particular notation might be specified for one or two sections. Otherwise 

the meaning of every letter is explained anew in every problem except when a 

previous problem is referred to. A problem that is closelyr related to the preceding 

one is introduced by the remark "continued"; if it is related to some other problem 

the relevant number is mentioned, e.g. "continuation of 286 . 
We denote Parts by roman, Chapters (if necessary) by arabic numerals. The 

numbering of the problems recommences with each Part. The problem numbers 

are in boldface. Within the same Part only the number of the problem is given; if, 

however, we refer to another Part its number is indicated also; e.g. if we refer to 

the problem (or solution) 123 of Part II in a problem (or solution) of Part II we 

write "123"; in a problem (or solution) of any other Part we write "II 123". 
Remarks in square brackets [] mean hints in the problems and quotations in 

the solutions (in particular at the beginning of the solutions) or references to other 

problems that are used in the proof. All other remarks are in ordinary parentheses. 

A problem number quoted refers to the problem as well as to the solution except 

when the one or the other is stressed, e.g. [solution 38]. 
Almost always references to the sources are given only’ in the solution. Prob¬ 

lems that appeared already in print are quoted as such. If the author but no biblio¬ 

graphy is mentioned the problem has been communicated to us as new. Problems 

whose number is preceded by the sign * (as *5 in Part II) or contains a decimal 

point (as 60.10 in Parti) are new (that is, either not contained in the original 

German edition, or contained there, but essentially modified in the present English 

version). If the problem is the same as in the original, but the solution has some 

essential new feature, the sign * is used only in the solution. The abbreviations of 

the names of journals are taken from the index of Mathematical Reviews and, if 

not listed there, from World List of Scientific Periodicals Published 1900—1960, 

Peter Brown, British Museum, Washington Butterworths, 1963. 

The journals most often quoted are: 

Acta Math. 

Amer. Math. Monthly 

Arch. Math. Phys. 

Atti Accad. Naz. Lincei Rend. 

Cl. Sci. Fis. Mat. Natur. 

C. R. Acad. Sci. (Paris) Ser. A —B 

Acta Mathematica, Stockholm 

The American Mathematical Monthly 

Archiv der Mathematik und Phvsik 

Atti dell’ Accademia Nazionale dei Lincei 

Rendiconti. Classe di Scienze Fisiche, Mate- 

matiche e Naturali, Roma 

Comptes rendus hebdomadaires des seances 

de l’Academie des Sciences, Paris, Series A 

et B 
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Giorn. Mat. Battaglini 

Jber. deutsch. Math. Verein. 

J. reine angew. Math. 

Math. Ann. 

Math. Z. 

Nachr. Akad. Wiss. Gottingen 

Nouv. Annls Math. 

Proc. Lond. Math. Soc. 

= Giornale di Matematiche di Battaglini 

= Jahresbericht der deutschen Mathematiker- 

Vereinigung 

= J ournal fur die reine und angewandte Mathe- 

matik 

= Mathematische Annalen 

= Mathematische Zeitschrift 

= Nachrichten der Gesellschaft der Wissen- 

schaften Gottingen 

= Nouvelles Annales de mathematiques 

= Proceedings of the London Mathematical 

Society 

The following textbooks are quoted repeatedly and they are cited by the name 

of the author only or by a particular abbreviation (e.g. Hurwitz-Courant; MPR.): 

E. Hecke: Vorlesungen iibcr die Theorie der algebraischen Zahlen. New York: 

Chelsea Publishing 1948. 

E. Hille: Analytic Function Theory, Vol. I: Boston-New York-Chicago-Atlanta- 

Dallas-Palo Alto-Toronto-London: Ginn & Co. 1959; Vol. II: Waltham/Mass.- 

Toronto-London: Blaisdell Publishing 1962. 

A. Hurwitz-R. Courant: Vorlesungen liber allgemeine Funktionentheorie und ellip- 

tische Funktionen, 4th Ed. Berlin-Gottingen-Heidelberg-New York: Springer 

1964. 

K. Knopp: Theory and Applications of Infinite Series, 2nd Ed. London-Glasgow: 

Blackie& Son 1964. 

G. Kowalewski: Einfiihrung in die Determinantentheorie, 4th Ed. Berlin: Walter 

de Gruyter 1954. 

G. Polya: How to Solve It, 2nd Ed. Princeton: Princeton University Press 1971. 

Quoted: HSI. 

G. Polya: Mathematics and Plausible Reasoning, Vols. 1 and 2, 2nd Ed. Princeton: 

Princeton University Press 1968. Quoted: MPR. 

G. Polya: Mathematical Discovery, Vols. 1 and 2, Cor. Ed. New York : John Wiley & 

Sons 1968. Quoted: MD. 

E. T. Whittaker and G. N. Watson: A Course of Modern Analysis, 4th Ed. London: 

Cambridge University Press 1952. 

The following notation and abbreviations are used throughout the book: 

an a means: an tends to a as n -> oo. 

an co bn (read: an is asymptotically equal to bn) means: bn =j= 0 for sufficiently 

an 
large n and-1 as n —oo. 

0{an), with an > 0, denotes a quantity that divided by an remains bounded; 

o(an) a quantity that divided by an tends to 0 as n —> oo. 

Such notation is used analogously in limit processes other than n oo. 

x -> a + 0 means x converges from the right (x a — 0 from the left) to a. 

exp (x) = ex, e is the base of natural logarithms. 

Given n real numbers alt a2, ..., an, max [alf a2, an) denotes the largest (or 

one of the largest) and min [alt a2, ..., an) the smallest (or one of the smallest) 

among the numbers av a2, .... an. max f(x) and min/(^) have an analogous meaning 

for a real function defined on the interval a, b, provided f(x) assumes a maximum 
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or a minimum on a, b. Otherwise we retain the same notation for the least upper 

and the greatest lower bound resp. (similarly in the case of a complex variable). 

sgn x stands for the signum function: 

f +1 for x > 0 

sgn ^ < 0 for x = 0 

[ — 1 for x < 0 

[xj denotes the largest integer that is not larger than # [x — 1 < [*] ^ x). 

Square brackets, however, are also used instead of ordinary parentheses if no 

misunderstanding is expected. (Their use in a very special sense is restricted to 

Part I, Chap. 1, § 5.) 

z is the conjugate to the complex number z. 

For the determinant with general term A, /u = 1,2, we use the 

abbreviated notation 

I \n | | | in 
||i or or ax2. *•-. ll- 

r- New York: 

a : ago-Atlanta- 

1th am/Mass.- 

rie und ellip- 

- York: Springer 

l L : r. 3 on-Glasgow: 

I : Berlin: Walter 

Press 1971. 

d_ : Yd. Princeton: 

John Wiley & 

4.Y Ed. London: 

A non-empty connected open set (containing only interior points) is called a 
region. The closure of a region (the union of the open set and of its boundary) is 

called a domain. (As this terminology is not the most frequently used, we shall 

sometimes overemphasize it and speak of "open region" and "closed domain".) 

A continuous curve is defined as the single-valued continuous image of the inter¬ 

val 0 ^ t ^ 1, i.e. the set of points z = x -j- iy, where x = <p(t), y — xp{t), q>{t) and 

xp(t) both continuous on the interval 0 ^ ^ 1. The curve is closed if <p(0) = (p[ 1), 

y(0) = y(l), without double points if ^(/1) = (p(t2), xp{t^) = y>(t2), t1 < U, imply tl = 0, 

t2 sss 1. A curve without double points is also called a simple curve. A not-closed, 

simple, continuous curve is often referred to as simple arc. 

A closed continuous curve without double points (Jordan curve) in a plane 

determines two regions of which it is the common boundary. 

Paths of integration of line, or complex, integrals are assumed to be continuous 

and rectifiable. 

(a, b) denotes the open interval a < x < b, [a, b) the half-open interval 

a x < b, {a, b] the half-open interval a < x ^ b, [a, fe] the closed interval 

a ^ x ^ b. When we need not distinguish between these four cases we use the 

term "interval a, b”. 

"Iff" is used now and then as an abbreviation for "if and only if”. 
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Problems 

Part One 

Infinite Series and Infinite Sequences 

Chapter 1 

Operations with Power Series 

§ 1. Additive Number Theory, Combinatorial Problems, 

and Applications 

*1. In how many different ways can you change one dollar? That 

is, in how many different ways can you pay 100 cents using five different 

kinds of coins, cents, nickels, dimes, quarters and half-dollars (worth 1, 

5, 10, 25, and 50 cents, respectively) ? 

*2. Let n stand for a non-negative integer and let An denote the 

number of solutions of the Diophantine equation 

x + 5y + 10* + 25 u + 50v = n 

in non-negative integers. Then the series 

A0 + A£ + A2C2 + ••• + An? + - 

represents a rational function of f. Find it. 

*3. In how many ways can you put the necessary stamps in one row 

on an airmail letter sent inside the U.S., using 2, 4, 6, 8 cents stamps ? The 

postage is 10 cents. (Different arrangements of the same values are 

regarded as different ways.) 
4. We call Bn the number of all possible sums with value n (n a 

positive integer) whose terms are 1, 2, 3, or 4. (Two sums consisting of 
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the same terms but in different order are regarded as different.) The 

series 

1 + Bif + £2f2 + * * * + BM£W + * * * 

represents a rational function of J. Which one ? 

5. Someone owns a set of eight weights of 1,1, 2, 5,10,10, 20, 50 grams 

respectively. In how many different ways can 78 grams be composed of 

such weights? (Replacing one weight by an other one of the same value 

counts as a different way.) 

6. In how manv different ways can one weigh 78 grams if the 

weights may be placed on both pans of the scales and the same weights 

are used as in problem 5 ? 
7. We consider sums of the form 

15. A set 

that is a tositrB 

scales are used, < 

16. Write 

(1 H 

Find the general 
17. Consider 

H + £2 + 2e3 + 5£4 + 10e5 + 10f6 + 2°£7 + 50eS > 

where ev e2, e3 assume the values 0 or 1. We call Cn the number of 

different sums with value n. Write the polynomial 

C0 + CXC + C2£“ + + ^99^ 
99 

as a product. 

8. Let sv e2,.... sa assume the values —1, 0, 1. Modify problem 7 
accordingly. Let Dn denote the number of different sums of value n 

Find the factorization of the following expression (function of £) 

99 

What is the sip 

18. Prove ti 

(i -; 4 

18-1. The nn 

concerned with 
common genera 

2 djt. 
99 

9. Generahze the preceding examples by replacing the particular 

values of the coins, stamps and weights by av a2> at. 

10. An assembly of p persons elects a committee consisting of n of 

its members. How many different committees can they choose ? 

11. There are p persons sharing n dollars. In how many ways can 

they distribute the money ? 

12. There are p persons sharing n dollars, each getting at least one 

18-2. In a k 

parties. In bow i 

the parties s-: t3 

n*r otner iw -c pfl 

19. 

20. Each poi 

nostive :n:rr-rs 
dollar. In how many ways can they do it ? 

13. Consider the general homogeneous polynomial of degree n in the 

p variables xlt x2, ..., xp. How many terms does it have ? 

14. Any weight that is a positive integral multiple of a given unit 

can be weighed with the weights 1, 2, 4, 8, 16,... on one pan of the scales, 

and this can be done in exactly one way. That is, any positive integer 

admits a unique representation in the binary system. 
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15. A set of weights 1, 3, 9, 27, 81, ... can be used to weigh any weight 

that is a positive integral multiple of a given unit if both pans of the 

scales are used, and this can be done in exactly one way. 

16. Write 

(1 + qC) (1 + q?) (1 + q?) (1 + tf8) (1 + q<T16) * * * 

— ao + aiC + aoC~ + a3C3 + * • •. 

Find the general formula for an. 

17. Consider the expansion 

(1 -a) (I- b) (1 -c)(l- d) ••• 

= 1 — a — b + ab — c + ac + be — abc — d + • • •. 

What is the sign of the n-th term ? 

18. Prove the identity 

(1 + £ + f2 + C3 + - + f9) (1 + f10 + f20 + ••• + C90) 

x (1 +C100 +C200 + ••• + £900) 

18.1. The first and the third problem considered in the solution of 9 

(concerned with An and Cn respectively) are the extreme cases of a 

common generalization which, properly extended, includes also 18. 
Formulate such a generalization. 

18.2. In a legislative assembly there are 2n + 1 seats and three 

parties. In how many different ways can the seats be distributed among 

the parties so that no party attains a majority against a coalition of 

the other two parties ? 

19. 

(i + o (i + f2) (i + c3) (i + f4) ••• =-j_ 
v 'v y ^ ; (i — o (i — 4:3) (i — (i — e7)... * 

20. Each positive integer can be decomposed into a sum of different 

positive integers in as many ways as it can be decomposed into a sum 

of equal or different odd positive integers. E.g. the decompositions of 6 

into sums with different terms are 

6, 1+5, 2 + 4, 1 + 2 + 3, 

with odd terms 

1+5, 3 + 3, 1 + 1 + 1 +3, l + l+l+l+l + l. 



4 Operations with Power Series 

21. It is possible to write the positive integer n in 2n 1 — 1 ways 

as a sum of smaller positive integers. Two sums that differ in the order 

of terms only are now regarded as different. E.g. only the seven following 

sums add up to 4: 

1+1+1 +1, 1 + 1 + 2, 2 + 2, 1+3, 

1 + 2 + 1, 3 + 1. 

2 + 1 + 1, 

22. The total number of non-negative integral solutions of the follow¬ 

ing Diophantine equations is n + 1: 

x + 2y = n, 2x + 3y = n — 1, 3x + 4y = n — 2] ..., 

nx + (n + 1) y = 1, (n + 1) x + (n + 2) y = 0. 

23. The total number N of non-negative integral solutions of the 

following Diophantine equations 

x + 2y = n — l, 2x + 3y = n — 3, 3x + Ay = n — 5,... 

is smaller than n + 2; moreover the difference n + 2 — N is equal to 

the number of divisors of n + 2 (cf. VIII, Chap. 1, § 5). 

24. Prove that the total number of non-negative integral solutions 

of the following Diophantine equations is n: 

x + 4y = 3n — 1, Ax + 9y = bn — 4, 9x + 16y = In — 9, ... 

25. The number of non-negative solutions of the Diophantine equa¬ 

tion 

x + 2y + 3z = n 

is equal to the integer closest to ^ ^ . 

26. Let a, b and n be positive integers, a and b relatively prime to 

each other. The number of non-negative integral solutions of the equa¬ 

tion 

ax + by = n 

is equal to or + 1. [More may be less: to prove a more general 

or a more precise theorem may be less trouble.] - 

27. Let ax, a2, al be positive integers without a common factor 

different from 1 and An be the number of non-negative integral solutions 
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i .' “ * — 1 ways 

tz-rz in the order 

t r-rven following 

— 3, 

of 

a1x1 + a2x2 + ^3^3 + * * * + &i%i = n • 

Then we have 

li An 1 
n-vco nl~l ~ ala2 •••*;(!— 1)! ‘ 

- 1. 
27.1 (continued). We suppose more: we assume that a{ and a- are 

relatively prime whenever i 4= /• Then we can assert more: 

mi >f the follow- 

An = P(n) +Qn, 

where P[x) is a polynomial with rational coefficients of degree l — 1 and 

the sequence Qn is periodical with the period a^a2 • • • ax\ 

i — 2;..., Qn + a^—ai ^n * 

r= 0. 27.2 (continued). In the particular case 26 where l = 2, ax = a. 

i iitions of the 
d2 — b 

An ^ 1, when n < ab} 

= n - 5, ... 

An ^ 1, when n> ab — a — b, 

Aab = 2. Aab-a-b = 0 and generally 
— -V is equal to 

An+ab = An + 1* 

rr^rral solutions 28. The points in three-dimensional space whose Cartesian coordi¬ 

nates x, y, z are integers are called lattice points of this space. How many 

lattice points of the closed positive octant [x ^ 0, y ^ 0, £ ^ 0) lie on 
= In - 9, ... the plane x + y + z — n? How many lattice points of the open octant 

:: -.inline equa¬ 
[x > 0, y > 0, z > 0) are contained in this plane ? 

29. Let n be a positive integer. How many lattice points (xv x2, xp) 

of the ^-dimensional space he in the “octahedron” 

ls rly prime to 

c-5 Df the equa- 

\X1 | + |*2 1 + !*3! + "* + \Xp \ ^ n ? 

30. Consider those lattice points in the closed cube 

—n ^ x, y, z ^ n 

that satisfy the condition 

—s ^x+y + z^s 

- - more general 
where n and 5 are positive integers. The number of such lattice points is 

equal to 

:: mmon factor 

: - r nral solutions 

1 r(sm 2 sm 2 * 

— \ sin Y ! smY 
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T 

31. Let n ^ 3. The number of positive integral solutions of 

x + y + z = n 

that satisfy the additional conditions 

x + z, y +x, z^x +y 

is given by 
(n + 8) (n - 2) 

8 
for n even, 

n2 — 1 
for n odd. 

§ 2. Binomial Coefficients and Related Problems 

The binomial coefficients ) are defined as the coefficients in the 

expansion of 

<l+»>'=(«)+(?)«+(?)‘! + -+(')‘' + -- (o)-1- 
ji denotes any number. If p is a positive integer then ) can he inter- 

preted as the number of combinations of /1 objects taken r at a time, see 

10. In the following problems we assume that n is a non-negative integer. 

31.1. Prove that 

in several ways, especially with and without a combinatorial inter¬ 

pretation, with and without the binomial theorem. 

31.2. Prove that 

(:)■-G)+(•)-■+(-«'(;)•-(-ire -')■ 

M;M:r+G)!+-+p!=o- 

33. cr - w+w—- L2- .)■+©’ - <-»" ©■ 
34. Put 

= 2Vn 
k=0 1=0 n=0 

£ £*» ££** = £ 5-^- 
k = 0n! I-o'- n=Q n * 

Deduce from these identities 

c» — atpn + a]Pn—1 + a2.K-2 + + atfio> 

yn=°io Pn +(”)*A-i + (2) + ”■ +aA- 

V 
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: - -ralive integer. 

r: rial inter- 

T1)- 

■= -»■(:)• 

34.1. Given aQ) a1} a2, ... Define, for n = 0, 1, 2, ..., 

»„ = «»- (”)«i + (2) % - - + (-1)” «. 

Derive hence, for n = 0, 1, 2, ..., 

an — b0 — ( j + (2) ^2 “ + (~1)” £»• 
35. Defining 

= x(pc — h) (x — 2h) • • • {x — (n — 1) h) 

we have the .identity 

(* + y)"|A = xn\" + (i)*n-11 V* +(”)*’,_2|*rl* + "• + /'*• 

36 (continued). Prove the following generalization of the multinomial 

theorem 

(xi + x2 + x3 + • • • + Xi)Klh 

y 
V1+vi- 

Vi! v0! Vo! • • • v,! ■7 = » 1-0 < 
1*^*1 • • • #*7j* *3 

39. i (-1)“-* 224 (*+A++x) =»+1. 

40. i -«)2(;;)*••( 1 - *)— = (* -ccf + *(1 . 

41. Put 

q>(x) = aQ axx + a^x(x — 1) + a3x(x — 1) (x — 2) + •••, 

y>(x) = a0 + ^x + |f-*(* - 1) +?§.*(*— 1) (x - 2) + •••, 

' ■ 

then 
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and 

(oV(°> “(iVw +(2)^ - - + (-ir (»)?(w) = ("1)na’‘wL 

42. 

43. 

(;) (0 - *)2 +(“) (2 - ”)* + (2) (4 - n)" + 

+ (” ^ (2v — rif + — =2nn. 

(;)(0-^-(”)(2-«)2+(;)(4-«)2-- 

+ (-ir(”)(2v-w)2+-" 

f 0 for n =(= 2, 

18 f or w = 2. 

43.1. Verify the identity 

“ / i\»-i vn / 1 1 . , 1 \ *n 

2^—=e~T(1+T+T + ' *'“T' 
§ 3. Differentiation of Power Series 

Let y be an arbitrarily often differentiable function of 2. We define 

the operation ^2 y by the recursion formula 

/ d\n d( dy-i. 
(**) y-zdi(zdi) 

d 
zTzy = zy- 

E.g. (4)v=*v. 
Let = C0 + eye + ■ • • + Cnxn be an arbitrary polynomial. We define 

f(zi)y = c°y+Ciizi)y + + Cn(zdz) 

44. We have 

i(,±y=mA 

45. If f(x) is a polynomial with integral coefficients (cf. \ III, Chap. 2, 

§ 1) then the sum of the following series is an integral multiple of e, the 

base of the natural logarithms, 

«0)+® +« + .•.+« + -. 

y- 
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1 = —1 )n ann\. 

— 
» / n: 

: :. We define 

r-ial. We define 

VIII, Chap. 2, 

oltiple of e, the 

46. Define fn(z) by 

(*s)"rri= +2V + sv + /.w 

a-*) 
« = 1, 2, 3,... 

Then fn(z) is a polynomial of degree n with positive coefficients (except 
for the absolute term /„(0) = 0). Furthermore 

/»(!)=«!• 

47. Let /(x) and g(x) be two arbitrary polynomials, assume however 

that g(x) does not have any non-negative integral zeroes. The series 

7 S(0) ^g(l) ^g{2) 2 ^g(3) ^ 1 

satisfies the differential equation 

*(*£)y=/(*s)nb- 
This is soluble by quadratures. 

48. Suppose that f(x) and g(x) are two polynomials relatively prime, 

that the degree of g(x) is not smaller than the degree of f(x) and that 

8(0) = 0, g(k) =t= 0 for k = 1, 2, ... The series 

y = 1 4. z i _ /(1)/(2) # + fwmm 
g(l) g(2) g(3) 

satisfies the linear homogeneous differential equation 

z3 + 

g(zi)y=f(zSzy- 
49. The series 

1 + (l)h + (K)V +... +(H;-4!^-1|)V + 
satisfies the differential equation 

o. 

§ 4. Functional Equations and Power Series 

50. The function 

F(z) = (1 — qz) (1 — q2z) (1 — q3z) •••, 

can be expanded in a power series 

F(z) =A0 + Axz + A2z2 + A3z3 + —. 

kl < i, 
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Find the coefficients Ak by using the functional equation 

F(z) = (1 - qz) F(qz). 

51. Let F(z) be the function defined in 50. Find the coefficients of 

the power series 

1L=B0 + B1z + B2z2 + B3z3 + -. 

52. Determine the coefficients Q in the identity 

(1 + qz) (1 + qz-1) (1 + q3z) (1 + q3z~1) •••(!+ q-n~1z) (1 + q-n~1z~1) 

= C0 + Cx(z + 2_1) + C2[z~ +2 ')+"•+ Cn(zn +2 "). 

53. Deduce the following equation from the identity 52 by taking 

the limit: 

77 (1 + ?2b-12) (1 + t (1 - f) = Z 

54. 

55. 

oo 3n' + n 

77 (i -f) = Z (-1)* q 2 . 
»=i 

1 - 1 - q* 1 - ?6 

oo iifn + 1) 

q I < i- 

q\< 1. 

?|<1. 
1 -q 1 - ?3 1 - „=0 

56. We have for | q | < 1 the relation 

t t q2 ^ 1 — q3 * 1 ff4 m' m_-t _ o | n 4 _ 9 „9 j_ 9 ~16 _ ... 

1 + ? h?2 it?3 1 + ?4 — ^ q ‘ ^ 

57. Let |^| < 1. Define 

6(2) = (! - z) + tFf ^ - z) - ?z) 

+ 
1 -, (1 - 2) (1 - ?2) (1 - q2z) + 

This function satisfies the functional equation 

1 + G(z) - G(qz) ='(1 - qz) (1 - q2z) (1 - q3z) ■ ■ ■. 

58. Find the coefficients of the power series of the function G(z) 

defined in 57: 

G(z) = D0 + D^z + D222 + D323 + 

59. Prove the identity 

z 
k=i 

.. n, . » — lv n—k + l< 
(1 - a ) (1 - a )••-(!- a _) 

, k 
1 — a 

— n, n = 1, 2, 3,... 
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. :-rfficients of 

52 by taking 

kl < !• 

I?l< !• 

- Va 

r- 

: motion G(z) 

: = 1, 2, 3, ... 

Use it to derive the power series of —log (1 — x). [We have 

G(q~n) = —n, n = 0, 1, 2, ..., 

where G(z) is the function defined in 57.] 
60. The power series 

*2 ~4 frG 

f[z) = 1+-+-+- + ... 

satisfies the functional equation 

/(lT^)=(1+^)/W 39]. 

§ 5. Gaussian Binomial Coefficients 

Let n and k denote integers, and q a variable. We define the Gaussian 

binomial coefficient1 as 

no = i - r i - <r 
L*J 1 ~q 1- 

1 - q 
.n — k -j-1 

1 -q* 

for 1 k n and as = 1 when k = 0. If k is not an integer or 

does not satisfy the inequality 0 k n we set 

We suppose initially that q avoids the roots of the denominators (certain 

roots of unity). Sometimes we shall find it necessary to emphasize the 

dependence on q\ then we shall use the more explicit notation jj^j 

for 

60.1. Show that 

Cf. 10. 

60.2. Show that 

Pay attention to the case k = 0. 

60.3. Prove the identity in x 

k = l = o L * J 

1 Cf. C. F. Gauss: Summatio quarundam serierum singularium, Opera, Vol. 2, 

especially p. 16 — 17. 
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60.4. 
ft+l 

60.5. Show that which we have defined as a rational function 

of q is, in fact, a polynomial in q} of degree k(n — k) 

k{n — k) 

The coefficients cnkx are positive integers and “symmetric”, that is 

Cn,k,oc Cn,k,k(n-k) — <x' 

(We may regard henceforth [“] as a polynomial, defined for all values 

of q.) 

60.6. According to the notation explained above 

pression which we obtain from by substituting q2 for q. Prove the 

identity in z 

[I],.isthe ex- 

/7 (1 + (1 + ?2A_1 
h = l 

h)- 

60.7. Let m, r, and s denote non-negative integers. For q = — 1 the 

Gaussian binomial coefficients assume simple values: 

0 when r odd 

60.8. Show that 

equals 0 when n is odd but 

= (1-?)(1-?3) (l-?5)--(l-?n_1) 

when n is even. [Call F[q, n) the proposed expression. Then you have to 

prove that 
F(q, n) = (1 — qn~x) F(q, n — 2), for 3. 

You may try to start by passing from n to n — 1 in using 60.4.] 



rational function 

tr.: that is 

it i for all values 

is the ex- 

: r q. Prove the 

./V + *"*)■ 

For q = — 1 the 

r-en you have to 

^ 3. 

^mg 60.4 ] 
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We consider a plane with an attached system of rectangular coor¬ 

dinates x, y. A point of which both coordinates are integers is called a 

lattice point (of the plane; we consider now only the two dimensional 

space, cf. 28, 29). A line parallel to one or the other of the coordinate 

axes that passes through a lattice point (and therefore through infinitely 

many lattice points) is called “street”. These streets constitute a '‘net¬ 

work of streets” in which the lattice points are street corners; the net¬ 

work divides the plane into square “blocks” with unit sides. Let r and 5 

be non-negative integers. A shortest path in the network of streets 

between the origin (0, 0) and the street corner (r, s) is of length 

r + s = n; 

we call it a “zig-zag path”. The “area under the zig-zag path” is included 

by the path, the “horizontal” coordinate axis y = 0 and the “vertical” 

line x — r. 

60.9. The number of zig-zag paths between the street corners (0, 0) 

and [r, s) is 

(:)• 
60.10. The number of those zig-zag paths between the street corners 

(0, 0) and (r, s) the area under which is <x equals cn r a (notation 60.5). 

In order to specify one of the zig-zag paths considered in 60.9 

we view in succession the unit segments of which it consists starting from 

(0, 0) and we write x or y according as the segment viewed is parallel 

to the #-axis or the y-axis. Thus the zig-zag path specified by the sequence 

of letters 

xxyxyyx 

ends at the point (4, 3) and the area under it is 4. 

Take any two letters in such a sequence; they form an inversion 

generated by the zig-zag path if and only if they are different and y 

comes before #. Thus, in our above example there are four inversions. 

60.11. The number of inversions generated by a zig-zag path equals 

the area under the path. (Thus 60.10 determines the number of certain 

paths, or letter sequences, having a given number oc of inversions.) 

§ 6. Majorant Series 

Let 

^l» ^2’ • • • > ■ • • 
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be any complex numbers and 

Po> P\> Pi* • • • * Pm • • • 

be non-negative real numbers. We define 

a0 + a3z + a2z2 -\-+ anzn + • • • = A (z), 

Po + P\z "f" P-2z2 + ''' + Pnz" + " ‘ = P(z) ■ 
If the inequalities 

|«o| Si Pq, |«! | SI Pv Kl = Pf ■■■’ K! = Pn> 

hold simultaneously for all n we use the notation 

A(z) < P(z), 

in words: “P(z) is a majorant of A(z)” or “A{z) is a minorant of P(z)”. 

61. If A (z) P(z) and A*(z) 4 P*(z) then we have also 

and 

A(z) + A*(z) « P(z) + P*{z) 

A{z) A*(z) P[z) P*(z). 

62. If n is a positive integer we have 

('+$<'■ 
f(z) = z + a2z2 + a3z3 H-+ anzn d-. 

63. Put 

From 

deduce the inequalities 
^ f(z) ^ 1-z 

n = 1,2, 3,... 

64. Let av a2> ..., aL be positive integers. Prove the following rela¬ 

tion twice, a) by applying, b) without applying, the results of 9: 

(1+J*) (l+**)-(l+**9 

1 ^ l 

(1 _ y*i) (1 _ 2**) ... (1 - Z*l) 1 - ZU} ~ Za2 - Za3  -Z*l 

64.1. Let zltz2,...,zn denote the zeros of the polynomial 

+ dy?-1 + a2zn~2 + ■•• + an and define 

S& = Z1 ~t“ Z2 + ’ * ’ + 

for k = 1. 2 X 

Tbesi 

izdln 21 

64.2 conzm 

Linear T 

§L Tr 

65. Cooada 

each row is 1: 

P- ^ 0, -j 

We transform i 

a 9»meaoQ 

As? 

of i% is cm 

We have La 
of a sequence m 

oofenn. 
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Lr 

mz :nnt of 

r also 

n = 1, 2, 3,... 

rr allowing rela¬ 

ys of 9: 

-zai' 

z rlvnomial 

for k = 1, 2, 3, ... Assume that 

Then 

and [III 21] 

sA|<[l for k = l,2 ,...,n. 

kl^i 

\zk\<2 for k = 1, 2,n. 

64.2 (continued). Show by an example that the case of equality can 

be attained in the relation \ak\ ^ 1. 

Chapter 2 

Linear Transformations of Series. A Theorem of Cesaro 

§ 1. Triangular Transformations of Sequences into Sequences 

65. Consider the infinite triangular array of numbers 

Poo> 

^io> Pu> 

p20> p21> p22y 

Suppose that the numbers pnv are non-negative and that the sum of 
each row is 1 : 

Pnv ^ ®>PnO + Pnl 4-+ pnn = 1 for V = 0, 1, ..., » = 0, 1, 2, ... 

We transform any given sequence of numbers s0, sv s0, ..., sn, ... into 

a new sequence t0, tv t2,..., tn,... in setting 

K = Pni)SQ + PnlSl + ’ # “ + PnnSn • 
Assuming that the numbers s0, sv ..., sn,... are real, show that the 

value of tn is contained between their minimum and their maximum. 

We have here an important particular case of a linear transformation 

of a sequence into a sequence. In defining pnv = 0 for v > n we extend 

our triangular array into an infinite square array, the matrix of the trans¬ 

formation (;pnv) in which pnv is the element in the n-th row and r-th 
column. 
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66 (continued). We say that the transformation is regular if from 

the convergence of a sequence to a limit we can conclude the convergence 

of the transformed sequence to the same limit, that is, if necessarily 

whenever 

lim L = s 

lim sn = s. 

The transformation defined in 65 is regular if and onl\ if 

lim pnv = 0 for r = 0,1, 2,... 
n->oo 

(This is a particular case of an important theorem of Toeplitz, see 80, 

and III, Chap. 1, § 5.) 
67. The existence of lim sn implies 

n->oo 

*0±il±^+-+in = lim$>| 
n + 1 >*-*“ 

68. If the sequence fiv fi2,.... K - °f Positive numbers convergeS 

to the positive value p then 

lim \-pQpiP-2 ••• Pn = P- 
n-^-oo 

68.1. The numbers a0, av ... are positive and 

lim — - = p • 

Then lim Yan exists also and has the same value p. 
n -> oo n - 

69. Reduce the computation of lim ] ^ to the computation of 

lim (l +1)”. 
\ * / 

70. Let the two given sequences 

satisfy the conditions: 

CIq, CL^j CL<2,i •••» an> ' * * 

b0, bv b.2, • • • ,bn, • • • 

K>*> 

b0 + bi + ^2 + ' * * + + ‘ ” 

n = 0,1,2,...; 

diverges; 

lim = 
oo 



r 

regular if from 

c. -1- the convergence 

:: necessarily 

- .eplitz, see 80, 

K 

?rs converges 

mputation of 

= 0, 1, 2, 

diverges; 
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Then 

lim U° + + H-s 
+ bi + b2 + + bn 

71. Assume <% > 0. Reduce the computation of 

iimr1+^-1+«a-l + -+"g-j 
«->oo na 

to the computation of 

lim 
n->oo 

[n + 1)* — nx 

■ The value of this limit is well known from calculus.) 

72. Let pQ} fi1}..., fin, ... be a sequence of positbT numbers that 
satisfy the condition 

Pn lim- 
n->oo Pq 4“ ~b Pq “b *” "b Pn 

The existence of lim sn = 5 implies 

= 0. 

lim S°Pn + Sl^n~1 +-h Sn^o _ 
Pq -b Pi ~b ••• -b Pn 

73. The two sequences of positive numbers 

Po> Pl> Pi’ — ’ Pn> •••> %y <h> %2> 9n’ • • * 

are assumed to satisfy the conditions 

Pn „ ?« lim 0, lim 
?o + + ^2 + —b qn 

0. 
Po + Pi + P2 H-b pn 

Define a new sequence 

rn = Mn + hln-1 + Piln-i H-+ Pn%- ft =0,1, 2,... 

This sequence satisfies again the condition 

lim —---=0. 
''O + rl + r2 d-^rn 

74. Let 

PlPv Pi- •••» Pn. -?0. <h- 1i> •••>?»> ••• 

be defined as in 73, and let 

S0> ^l> S2> •9 • > $n’ • • • 

be an arbitrary sequence. Consider 

lim S°Pn + *x*-1 + + "• + *»*> 
n-^oo PQ + p1 + p2 + ••• _j_ pn 
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and 

Linear Transformations of Series. A Theorem of Cesaro 

lim 
«->oo 

5pgn + ^ig»-i + s2qn_ 2 + ••• + snq0 

% + + ?2 + ‘' ’ + ?n 

If both these limits exist they are equal. (The proposition is of special 

interest if limsn does not exist. If lims„ exists the proposition is a 
n—>oo H—>oo 

consequence of 72.) 

75. Let a > 0. If the series 

0^1-° + «22_0r + ^38_<y + — + ann~G + — 
is convergent, then 

lim + a2 -}-••■ -j- an) n = 0. 
«->°o 

(Series of this kind are called Dirichlet series. Cf. VIII, Chap. 1, § 5.) 

76. Assume p1 > 0, p2 > 0, p3 > 0,... and that the sequence 

P1,Pz,Ps,...,P„=P1+p2+Pz 4-f />„,••• is divergent, and 

limp„P„^ — 0- Then 
n-^oo 

,. P1Pr1+P2P21 +-+PnP;1' i 
lim--—=-= 1. 

»->oo 

(Generahzation of 1 + y + y + " ’ + — ^ log n.) 

77. Let pv p2, p3,pn,... and qv q,, q3, be two sequences 

of positive numbers for which 

.. P1+P2+ P3 + -+Pn 
hm —--:-= k, 

nPn Mn 

oc + > 0. 

Then 
.. Pi<h + 2P2^2 + 3^3?3 4- ••• + npnqn ^ 
hm-;-= ^h8- 

n~Pn?n 

78. The series aq + a2 + az + * * * does not necessarily converge if 

{ai — an) + (#2 “ an) + + ian-1 — an) 

is hounded as n oo. If, however, the additional conditions 

ax ^ a2 ^ as ^ • • •, lim an = 0 

are satisfied the series a± + a2 + a3 + • • • must converge. 
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r 
ft :: -csaro 

Ml 

§ 2. More General Transformations of Sequences into Sequences 

79. Consider the infinite matrix 

' :::-n is of special 

tirr imposition is a 

Poo* Poi> Po?> • • • 

Pw> Pn> Pi2> • ■ * 

p2O’ P‘21’ p'22’ * * * 

n: Chap. 1, § 5.) 

- ii: the sequence 

. _ ergent, and 

Suppose that all the numbers pm are non-negative and that the sum in 
oo 

each row is convergent and equal to 1 (pnv ^ 0; £ Pnv =f°r n> 
v=0 

v — o, 1, 2,...). Let s0, Sj,..., sn,... form a bounded sequence. Define 

a new sequence t0, tv t2, ... by setting 

tn = pn0S0 + P»1S1 + Pn2S2 +-H Ph,Sp H-• 

Show that tn has a value between the upper and the lower bound of the 

sequence s0, sv ..., sn,... (whose terms are here supposed to be real). 

80 (continued). The convergence of the sequence s0, s^, s2, ... to a 

limit s implies the convergence of the transformed sequence t0, tv t2,... 

to the same limit s if and only if 

lim pnv = 0 
H—>oo 

r two sequences for each fixed v. (This is the necessary and sufficient condition of the 

“regularity” of the transformation with matrix (p„v); cf. 66.) 

81. Assume that the series 

cx + 2c2 + 3c3 + 4c4 + • • • + ncn + • • * 

converges. Then the series 

*
 

1 

11 

cn + 2c„+1 + 3cn+2 + 4»n+3 H-=tn 

converges too and 
lim tn = 0. 

feorLconverge if 
«—> oo 

82. Let the power series 

— it f(x) = a0 + axx + a2x- -\-+ anxn H- 

■si i:::ons be convergent for x = 1 and assume 0 <C oc <Z 1. Then the power series 

M 

fere. 

/W+/«4+/')f*s+-+^»-+- 

is convergent for h — 1 — oc. 
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§ 3. Transformations of Sequences into Functions. 

Theorem of Cesaro 

83. Let the functions 

••• 

be non-negative in the interval 0 < t < 1 and assume that 

+ ViW + + ’** + 9>n(*) + '** = 1 
holds for all 0 < t < 1. The sequence s0, Sj, s2,..., sn, ... is supposed to 

be bounded. Construct the function 

0(t) = s0(p0{t) + s^OO + s2<p2{t) H-+ sn<pn(t) + •••. 

The range of &(t) will fall into the interval between the upper and lower 

bounds of the sequence s0, sv s2,..., $n, ... 

84 (continued). Show that 

lim (s0cpQ{f) + + s2<p2(t) H-+ sn<pH(t) +•••)— s 
1-0 

holds for every convergent sequence s0, sv s2, ... for which lim sn = s 

if and only if for each fixed v 

lim 9\{t) = 0. 

85. The infinite sequences 

ao> ai> a2> •• • * an» • • • * K *: 

satisfy the following three conditions: 

K>*> 

K • ’ * > ^n> * * * 

n = 0, 1, 2, 

lim — s. 
n-¥ oo 

Then 

a0 + + •*' + arF H-converges for |*| < 1 

and 

aQ + a^t + a2r +-b V* + 
lim-z--- 

/-*1—0 -f- bjt + ^ + ••• + + ••• 

(This proposition is due to E. Cesaro. Several applications will be given 

in the sequel.) 
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[F(x) and G(x) satisfy a linear homogeneous differential equation of the 

second order by virtue of the recursion formulas for An and Bn.] 

92. Let a > 0. If the series 

*i l~a + + a33-ff + • • • + ann~a +••* 

is convergent then we have 

lim (1 — t)a {axt + aj2, + cizt3 + * • ‘ + + ‘") = ® ITS] • 

93. Show that 

lim |/l~t I (tn‘ - 2t2n') 
<-►1-0 n = 1 

exists and is negative. 

94. The two given sequences 

a0, Cl•••» Q'n* • • • y bQi b^} &2> • • • > *' * 

satisfy the conditions 

bn > 0; y, bntn converges for all values of t\ 
n=0 

an 
lim — = s. 

n —> oo 

Then a0 + axt + aj2 -|-+ antn -1-converges too for all values of t 

and in addition 

ao T 4- ao4* ••• 4- ani + ••• 
lim-—5--- 
t-+oo bQ -f b^t + 4- 4- 4- ••• 

95. If lim sn = s exists then 
n-yoo 

H™(s° +SiT\+Ssh + "' 

(Cf. IV 72.) 

s. 

96. Assume that the sum 

ao "T ai "T a2 4“ “* T- an + **• — 5 

exists. Define 

Then 

g(t) =a0 +«irr + a2 5T + ••• +a«h. 

j e ‘g(t) dt = s. 
0 

97. The Bessel function of order 0 is defined as 

1 /*\2 , \ (AT \4 (- l)m / ^ \2i 

m =1 - iiii (4) + 2T21 (t) 



Pt. I, Chap. 2, No. 92-97 • Chap. 3, No. 98-102 23 

We have 

dt=±. 

Chapter 3 

The Structure of Real Sequences and Series 

§ 1. The Structure of Infinite Sequences 

98- Let the terms of the sequence av a2, az, ... satisfy the condition 

am+n<am+an, m,n = 1,2,3,...; 

then the sequence 

ax a2 a2 an 

T* ~2* T’ “* 
either converges to its lower bound or diverges properly to — oo. 

99- Assume that the terms of the sequence av a2, az, ... -satisfy the 

condition 

am + an — 1 < atn + n < Um + an + !• 

Then 

lim — = oj 
tl—> OO 'Vi 

exists; co is finite and we have 

ojn — 1 < an< con + 1. 

100. If the general term of a series which is neither convergent nor 

properly divergent tends to 0 the partial sums are everywhere dense be¬ 

tween their lowest and their highest limit points. 

101- Let an > 0, lim an = 0 and the series + a2 + • • • + an + • • • 
n-> oo -1 

be divergent. Put ax + a2 + • • ■ + an — sn and denote by [sn] the largest 

integer fg sn. Find the limit points of the sequence 

Sj - [sj, s2 - [s2],s„ - [s„],... 

102- Assume that there exists for the sequence tv t2,..., tn,... a 

sequence of positive numbers sv e2, ..., en, ..., converging to 0, for which 

4+i > 4 — en for a11 n- 

Then the numbers tv t2,tn, ... are everywhere dense between their 

lowest and highest limit points. 
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103. Let vv v.2, ...,vn,... be positive integers, v2 sS v2 5S v3 • • •. 

The set of limit points of the sequence 

J-J v3 vn 

r+v t+v2’•■■’« + v„’"' 

consists of a closed interval (of length 0 if the limit exists). 

104. A subsequence whose terms are the successive partial sums of 

an absolutely convergent series can be picked out from every convergent 

sequence. 
105. A sequence tv U,..., tn, ... that diverges to + oo contains a mini¬ 

mum (i.e. there exists a tn such that tm ^ tn for all m). 

106. A convergent sequence has either a maximum or a minimum or 

both. 
The following propositions showr that even the most extravagant 

sequences behave occasionally like good mannered sequences, i.e. they 

showr some feature of monotone sequences. 

107. Let lv 4, Z3, ...,ZW, ... be a sequence of positive numbers 

(positive in the sense of > 0) and let lim inf lm = 0. Then there are 
W-><=° 

infinitely many subscripts n for which ln is smaller than all the terms 

lv /2, Z3,..., ln_x preceding ln, (ZM < lk, k = 1, 2, 3,..., n — 1). 

108. Let lv Z2, Z3, ..., lm, ... be a sequence of positive numbers 

(positive in the sense of > 0) and let lim lm = 0. Then there are infini- 
m->oo 

tely many subscripts n for wrhich ln is larger than all the terms Zn+1> Zn+2> ■ • • 

following lni (ln > Zn_*, k = 1, 2, 3, ...). (Not only the conclusion but 

also the hypothesis is different from the one in 107.) 

109. Given twro sequences 

•••> • ■ •» L > 0, 

51» s2’ S3> * * •» Stn> * • '» 51 > sm4-l. ^ Sm' W ^ 3, ... 

satisfying the conditions 

hm lm = 0, lim sup lmsm = + oo. 
W->co co 

Then there are infinitely many subscripts n such that two different kinds 

of inequalities hold simultaneously: 

In > 1> 4 > 4^-2’ 4 ^ ^»+3» •' *» 

4s,, > 4-lS»-l. 4S» > 4-2S»-2. • • •. 4S„ > 4S1 • [107> 108 1 

110. If the sequence y, ..., ™, ... tends to +oo and if A is 

larger than its minimum [105] then there exists a subscript n (or several 
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subscripts ri), n7> 1, so that the quotients 

— Ln—i Ln — Ln_ 2 Ln — Ln_3 

1 2 ' 3 

K 
n 

are 5^ A and the infinitely many quotients 

Ln +1 Ln Ln + 2 ~ ^»+3 — Ln 

T ’ 2 * 3 

are all ^ A. [The quantities in question can be interpreted as the slopes 

of certain connecting lines between the points with cartesian coordinates 

(0, L0), (1, Lx), (2, L2),..., (m, Lm),...; L0 = 0. 

This interpretation leads to a geometric proof of the statement.] 

111. Assume that the sequence l2, l3, ..., lm,... satisfies the sole 

condition 

lim lm — +00. 
m-> 00 

Let ^4 be larger than lx (A > /x). Then there exists a subscript », n J> 1, 

such that all these inequalities hold simultaneously: 

ln-fi +1 + ••• + 4- /w < Zn + 1 + Zn + 2 + •" + ln+v 

[i == 1, 2,..., n\ v = 1, 2, 3, — 

If A tends to infinity then so does n. 

112. Let the sequence llt Z2, ..., Zw, ... satisfy the two conditions 

lim sup ^ + l2 + • • • + lm) = + 00, lim lm = 0, 

and assume lx> A > 0. Then there exists a subscript n, n7> 1, such 

that the inequalities 

ln-v + \ + + Zn-] + ln + Zn+2 +-^ Zn 

fx = 1, 2, ..., w; r = 1, 2, 3, ... 

hold simultaneously. If A tends to 0, then n tends to infinity. 

§ 2. Convergence Exponent 

The convergence exponent of the sequence rv r2, rz, ..., rm, ... where 

0 < rx r2 fg • • *, lim rm = 00, is defined as the number A having the 
m->c© 

following property: 

rf" + rz° + r,"" + ••• + r~° + ••• 
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converges for o > X and diverges for a < X. (For a = X it may converge 

or diverge.) For <r = 0 the series is divergent, therefore X S2 0. If the 

series does not converge for any a then X = oo. 

113. Show that 
log m 

lim sup 
log rt 

=A. 

114. Let x1,x2,xs,...,xm, ... he arbitrary real numbers, 4= 0. 

If there exists a positive distance d such that \xt — xk \ > d, l < k, 

I k = 1, 2, 3,..., then the convergence exponent of \xx |, \x21, \x31,..., 

\xm\,... is at most 1. 
115. Let /S be larger than the convergence exponent of the sequence 

rv r2,... Then there exist infinitely many subscripts n for which the 

n — 1 inequalities 

rt<d. 
are satisfied. [107] 

116. Assume that the convergence exponent A of the sequence 

r3> •••> rm> *s positive an(^ 6 <.oc < A < Then there are 

infinitely many subscripts such that the two types of inequalities 

l 

> for ^ = n — 1, n — 2, ...» 1, 

i_ 

> for v = » + 1, w t 2, w + 3) 

hold simultaneously. [109.] 

§ 3. The Maximum Term of a Power Series 

117. Suppose 0 < < r2 < r3 < * * * ■ For what values of x, x ^ 0, 

is the w-th term of the series 

1+f + 7T +- +r r 
+ — 

rlr2 rl'2 tn 

larger than all the other terms, m = 0, 1, 2, ... ? 

118. Assume 

0 < rx ^ r2 ^ r3 ^ * * •, 0 < s± s2 ^ s3 
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:t may converge 

re /. > 0. If the 

timbers, xm =f= 0- 

xk > d, l < k, 

xi l> 1*8 I-'-’ 

of the sequence 

r for which the 

- i 

: the sequence 

Then there are 

e qualities 

... 

c ' of a;, x ^ 0, 

Then arbitrarily large values of n and r can be found for which the 

following inequalities hold simultaneously [111]: 

12 ' H 

' >’ 

< k = 0, 1, 2, 3,... 

(At the root of this fact, and of 122, lies the comparison of two power 

series 

1 +f + — + — + 

Suppose that pQ ^ 0, ^ 0, ..., pm ^ 0, and that 4= 0 for at 

least one subscript i. Let q, q > 0, possibly o = oo, be the radius of 

convergence of the power series 

fio+PS+Pz*? +•••+*«*" + •■•• 
The sequence 

^0' PiX.pvX2, ...,pmXm, ... 

converges to 0 if 0 < x <C p. Therefore there exists [105] a maximum 

term whose value is denoted by ju(x). I.e. 

pmxm ju[x), m = 0,1, 2, ... 

The central subscript v(x) is the subscript of the maximum term, i.e. 

u(x) = pv[x)xv[x). If several of the terms pmxm are equal to ju(x) we call 

v(x) the largest of the corresponding subscripts. More details in IV, 

Chap. 1. 

119. For an everywhere convergent power series in x which is not 

merely a polynomial the central subscript v(x) tends to oo with x. 

120. The subscript of the maximum term increases as x increases. 

(One might consider this situation as somewhat unusual: in the course 

of successive changes the position of maximum importance is held by 

more and more capable individuals.) 

121. The series 

A) + Pi* + P2X* + **• + Pm*™ + ”• 
with positive coefficients and finite radius of convergence p {pm > 0, 

p > 0) is such that one term after the other, all terms in turn, become 

maximum term. Then — is the radius of convergence of the series 

T +T +? + '“+?+'*'- Po Pi P 2 Pm 
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122. The dominance of the maximum term is more pronounced in an 

always convergent series than in one that does not always converge (it 

is strongest in a polynomial). More exactly: let the radius of convergence 

of the power series 

Uq -f- UyX -f“ CLoX 4" * * * 4“ ^ 

be infinite and that of the power series 

K + V + + +*** 

be finite. Suppose am ^0, bm > 0, m = 0, 1, 2, ... The coefficients 

K blf b2, ... be such that all the terms bmym become in turn maximum 

term [120]. Then a value y can be determined for certain arbitraiily 

large positive x such that for these corresponding values the respective 

series have the same central subscript. Let the common central sub¬ 

script be u. Then all the following inequalities hold simultaneously. 

akxk bkyk 
g 1, k = Q, 1, 2,... 

[Consider the maximum term of 2J ir z™ - ] 
m=o 

123. If there are values x* to which no y corresponds in the sense of 

122 then they are "rare”. They have a finite logarithmic measure, i.e. 

the set of points log x*, x* exceptional value, may be covered by count¬ 

ably many intervals of finite total length. 

§ 4. Subseries 

Let tv t2, tz, ..., tn,... be integers, 0 < tx < t2 < tz < • • The series 

a 4- a 4-a, 4- • • • 4- at + • *• is called a subseries of the series 
tj ' t2 1 h ' ln 

+ #2 + H ‘ ' ' + an + ’ * ** 

124. From the harmonic series 

T+T+T+-+T+- 

remove all terms that contain the digit 9 in the decimal representation 

of the denominator. The resulting subseries is convergent. 

125. If all the subseries of a series converge then the series is absolu¬ 

tely convergent. 
126. Let k and l denote positive integers. Must the convergent series 

ax 4- a2 + az + • • • be absolutely convergent if all its subseries of the 
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form 

ak + ak+l + ak+2l + ak+zl 4- 

subscripts in arithmetic progression) converge ? 

127. Let k and l be integers, k ^ 1, l ^ 2. Must the convergent series 

4+^2 + ^ + *“ be absolutely convergent if all its subseries of the 
form 

ak + aki + %s 4~ aki> + *•• 

subscripts in geometric progression) are convergent ? 

128. Let cp(x) denote a polynomial assuming integral values for 

integral x, q>(x) == CqX1 + + ••• [VIII, Chap. 2]. Assume that 

the degree is l ^ 1 and that the coefficient c0 of x1 is positive (c0 > 0). 

The values <p(0), <p(l), 2), ... form a generahzed arithmetic progression 

of order /; since cQ > 0 only a finite number of terms of the progression 

can be negative. Must a convergent series a1 + #2 + az + “ * converge 

absolutely if all its subseries whose subscripts form a generalized arith¬ 

metic progression 

a<F(0) + %(l) + %(2) + Uq>(3) + * ' * 

(omitting the terms with negative subscripts) converge ? 

129. If the series + a2 + az + * * * converges absolutely and i f 
every subseries 

ai 4* a2i 4“ a,M 4“ * ’ * > / = 1, 2, 3, ... 

has the sum 0 then a1 = a2 = • • • = 0. 

130. Consider the set of points determined by all the subseries of 

4+4+^+-+p+ 

This set is perfect and nowhere dense (closed and dense in itself, but 

nowhere dense in the set of all real numbers). (We have to consider all 

the subseries, finite and infinite, including the ‘‘empty’1 subseries to 

which we attribute the sum 0.) 

131. Let the terms of the convergent series 

Pi +P*+tz+—+1>n+ — =S 

satisfy the inequalities 

Pi^p2^Pz^"-f 

0 <Pn^ Pn +1 + Pn+2 + Pn + 3 4" * * * * » = 1, 2, 3, ... 
Then it is possible to represent any number a in the half-closed interval 
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0 < o' ^ s by an infinite subseries: 

Pi, +Pt, + Pi, +"' = or- 

132. Find the series px + p2 + P$ + *"* that satisfies the conditions 

t>1=Y- Pn = Pn + l + Pn+2 + Pn+S + "'> W = 1, 2, 3, ... , 

and verify that in this case every a mentioned in 131 can be represented 

by one infinite subseries only. 

§ 5. Rearrangement of the Terms 

132.1. By rearranging the factors of the infinite product 

(* +t) (x “ t) i1 +t) (*■ ~t) (x +t) - = 
we obtain the infinite product 

x C1—4-) C1 ~ 4-) (x “ sr^Fi) C1 +2Fm)‘" 
in which blocks of p factors greater than 1 alternate with blocks of q 

factors smaller than 1. (Factors of the same kind remain in the “natural” 

order.) Show that 

[II 202.] 
PPA=\%- 

132.2. By rearranging the terms of the infinite series 

J_ _ 1 +-i-- + •••= Su = 1 - log 2 
2 3 ' 4 5 1,1 

ve obtain the infinite series 
.. .. 4 1 

+ 111 1_1_1_1 
= ~2 I 4 ^ 6"^” 3 5 2^ + 1 'p,q — ~2 T 4 ' 6 1 ’2p 3 5 2? + l 2p + 2 

in which blocks of p positive terms alternate with blocks of q negative 

terms. (Terms of the same kind remain in the “natural” order, steadily 

decreasing in absolute value.) Show that 

Sp,q ~~ ^i,i ~T!°sV' 

Let rv r2, r3,..., sv s2, s3,... be two sequences of steadily increasing 

natural numbers without common terms. Suppose furthermore that all 

positive integers appear in one or the other of the two sequences 

< *m-V * 

I 
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m ^m + 1 

s <s , r S s. for m,n = 1,2, 3,...). The two series 

+ «„ + + 
fthe “reds” and the “blacks”) are complementary subseries of the senes 

( 1 7. , ... Let r, v* v,,... be a sequence of integers such that 

17 ^Inbe^A-. app- once and only one. in i. (a 

permutation of the natural numbers). The senes 

aH + a,, + av, + '" ^ a' n 

is obtained from the series 

a1 + % + H H-+ a« + ' ‘ ‘ 

by rearrangement. We call special attention to the 
/ {m = 1, 2, 3,...) is the r.-th term before as well as after the 

arrangement Le. which preserve the subseries «„ + «„ + a„ + "*• 

If before as well as after the rearrangement precedes and 

precedes for all number pairs ». - < - say that the rearrange¬ 

ment shifts the two complementary subseries relatively to each other (and 

leaves each in its original order). . 
133 ' If one of the two to each other complementary subseries of a 

convergent series is convergent the other is convergent too. A rearrange¬ 

ment which only shifts the two subseries relatively to each other 

not change the sum of such a series. f 
,34 if one of the two to each other complementary subsmes of a 

conditionally convergent series diverges to + =o then the other d.verge 

,0 - «. Provided that all the terms of one of these two snbser.es a 

rhe srune sign it is possible to obtain an arbrtrary sum for the whole 

series by shifting the two subseries relatively to each other 
135." It is not possible to accelerate by rearrangement the divergence 

of a divergent series with positive monotone decreasing terms 
,36. By rearranging the series we can slow down arb.t.ar.iy the 

divergence of a divergent series with positive terms which tend - 

More explicitely: Assume 

p >0, lim p„ = 0, lim [Pi + P2 + '' ‘ Ph) = 00 > 

: OO. 
0<Q1<Q,<-<Qn<-> }ZQn 

Then there exists a rearranged series ft, + P„ + K + *'' + 

such that pVl + f>v,-\-K = Q" f°r n = 1’ 2? 3 ''' 

+ 
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137. Assume that 

ai + a2 + a3 + ■" + an + = s is convergent, 

and \ax \ + \a2 \ + |a3| + — + \an \ + is divergent. 

Let s' < s < s''. By a rearrangement that leaves all the negative terms 

at their places the sum s' can be realized; by a rearrangement that leaves 

all the positive terms at their places the sum s" can be realized [136]. 

are satisfied- The a 

it converges its s m 

^ - (s - 

:t lies between r*x> 

§ 6. Distribution of the Signs of the Terms 

138. Assume that p„ > 0, px ^ p2 ^ p3 ^ ••• and that the series 

Pi + P-2 + P3 ^-+ Pn H- 
is divergent and the series 

E\P\ + e2fi'2 + EsPs H-+ enPn + 
where ek is —1 or +1, is convergent. If under these conditions a certain 

percentage of terms is positive then it is 50%. More precisely: 

lim inf 
n-> oo 

+ e2 “* £n 

n 
<10 5^ lim sup 

ei + + £n 

139. Suppose pn > 0, p1 ^ p2 ^ p3 ^ • • • and that the series 

£lPl + S2p2 + e3p3 + ■" + £nPn + 
where sk is —1 or +1, is convergent. Then 

lim (ej + s2 + s3 H-b sn) pn = 0. 
n-> 00 

(Notice the two wellknown extreme cases 

£1 = £2 = ^3 = and £^ = £2 = e3 == ^4 = ’’*•) 

the series is emtl pit 

[Quart. J. pure apf 
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I is convergent, 

:i divergent. 

r - negative terms 

genent that leaves 

realized [136]. 

I :hat the series 

- iiiions a certain 

fxrdiely: 

- -•• + *« 

- *ir senes 

-£4 = •**.) 

:he number A if 

71 = 0,1, 2,... 

are satisfied. The enveloping series may be convergent or divergent; if 

it converges its sum is A. Assume that A, aQ) av ... are all real. If we 

have 

A - (a0 + <*! + a2 + ••• + a„) = dnan+1, for all n = 0,1, 2,... 

and 0 < 0n < 1, 

the number A is enveloped by the series aQ -f- + #2 t ’ “ > an<^ in ^ac^ 

it lies between two consecutive partial sums. In this situation we say 

the series is enveloping A in the strict sense. G. A. Scott and G. N. Watson 

‘Quart. J. pure appl. Math. (London) Vol. 47, p. 312 (1917)] use the 

expression “arithmetically asymptotic” for a closely related concept. 

The terms of a strictly enveloping series have necessarily alternating 

signs. 

140. Suppose that f(x) is a real function of the real variable x. If 

the functions |/'(#)|, |/"(*)|, ••• are steadily and strictly decreasing in 

the interval [0, x], x > 0, then f(x) is enveloped in the strict sense by its 

Maclaurin series. 

141. The functions 

e~x\ log (1 + #); (1+x)-*, P>0) 

are strictly enveloped by their Maclaurin series for x > 0. 

142 (continued). Prove the same for the functions1 

cos sin #. 

143 (continued). Prove the same for the functions 

arc tan at, /„(*) = 1 - jAt(t)" + 2lV G) - '" t141 ’142 J 

144. Suppose that the terms of the series a0 + ax + #2 + **' are 

alternately positive and negative and that there exists a number A such 

that 

A — (tf0 + a\ + a2 T- ‘ * * + an) 

assumes always the same sign as the next term, tfw+1. Then the series 

envelops A in the strict sense. 

145. If the series aQ + + •**, an real, n = 0, 1, 2, ..., 

envelops the real number A and if in addition | | > | #21 > I az I > * ‘ ’ 

1 Obviously only the non-vanishing terms of the Maclaurin series are to be 

considered. E.g. the n-th partial sum of the Maclaurin series for cos * is 

2! 4! 
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then the terms av a2, az,... have alternating signs and A is enveloped 

in the strict sense. 

146. Let the function f(x) assume real values for real x, x > R > 0. 

If f(x) is enveloped for x > R by the real series a0 + ~ H- 

then the numbers av a2, az, ... have alternating signs and the series is 

strictly enveloping. 

147. Suppose that the real valued function f(t) is infinitely often 

differentiable for 0 and that all its derivatives f{n)(t) (n = 0, 1, 2, ...) 

have decreasing absolute values and converge to 0 for t —> oo. Then the 

integral 
co 

f f(t) cos xt dt 
o 

is, for real x, strictly enveloped by the series 

f'(0\ f"'( Oi /v(0) /VII(0) 

,r6 1 

but not in the strict sense. 

1491. Plot the first seven terms of the series 

successively as complex numbers and compute so the value of el to 

three decimals. 

150. Let $ denote a ray with origin z = 0. Assume that along § all 

the derivatives of the function f(z) attain the maximum of their absolute 

values at the origin and only there; i.e. 

|/(”>(0) I > \f(K\z) I 

whenever 2 is on § and \z\ > 0. Then: 

a) The function f(t) is enveloped for every z on § by the Maclaurin 

series 

[140]. 

1 In 149 —155 the terms of the series are complex numbers; they are regarded 

as points in the Gaussian plane (complex plane) [III 1 et seqq.]. 



Pt. I, Chap. 4, No. 146—155 35 

■ 

> enveloped 

l x>R> 0. 

“3 i ... 

i .eries is 

finitely often 

c = 0, 1, 2, ...) 

— :x Then the 

: ilue of e* to 

- :.at along § all 

: :heir absolute 

:he Maclaurin 

[140]. 

f 

b) the function .F(z) = f e ~l is for every z on enveloped 

bv the series 

/(»)+£ffl+£W+m + [147]; 

•£> is the mirror image of £> with respect to the *-axis; the integral is 

taken along the positive £-axis and converges under our assumptions 

on f(z). 

151. The Maclaurin series of e~z, log (1 + z) and (1 + z)~p, fi > 0, 

envelop the respective functions for 0, z =)= 0. 

152. Let 2 be restricted by the following conditions: 

n ^ ^ n 

— T — arg 2 — T ’ 
3rr   5 7t 
T^arg z^ — , 

Then the function e2 J e 2 dt is enveloped by the series 

1 1.1-3 1-3-5 , 
2 2s 2? Z7 

z + 0. 

(strictly enveloped if 2 is real). 

153. Suppose that an and bn are arbitrary complex numbers that 
a 

have the same argument, i.e. — is real and positive. If at a certain point 

2 + 0 the two series 

ao + axz + a2z2 H-+ anzn + • ■ •, b0 + bxz + b2z2 H-+ bnzn + • - 

envelop the values 9o(z) and y)[z) then the combined series 

*0 + *0 + («3 +t>i)z + (a2 + b2) z2 + ••• + (an + bn) sT + ••• 

envelops the value 9o(z) + ip(z) for this z. (The same is true for enveloping 

in the strict sense if all the coefficients and z are real.) 

154. If z lies in the sectors described in 152 the function z coth z is 

enveloped by its power series 

z coth z = z 
ez + e~ 

l+w- B. W 
4! 

4- fi (2z>6 
+ B* 6! + 

(strictly enveloped if z is real). The coefficients Bv S2, B3,... are called 

the Bernoulli numbers. 

155. The function 

co(z) = log T(1 + z) - (z + 1) log z + z - \ log (2n) [II 31 ] 
- ey are regarded 
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can, for > 0, be written as an integral 

arc tan — arc tan — 

[Cf. E. T. Whittaker and G. N. Watson, pp. 251—252.] Prove that the 

resulting (divergent) Stirling series 

•^1_j _... 
1*2 -z 

envelops the function co(z) if 9^^: > 0 and —~ arg z . 

§ 2. Various Propositions on Real Series and Sequences 

156. Assume that y{x) is defined for positive % and that for # large 

enough it can be represented in the form 

ak real, k = 0, 1, 2, ... The infinite series 

<p(l) + <p(2) + (p(3) -|-1- (p{n) H- 

converges if and only if a0 = ax = 0. 

157 (continued). Suppose <p(n) 4= 0. The infinite product 

«p(i) <p(2) cp{3) •■■<p(n) ••• 

converges if and only if a0 = 1, ax = 0. 

158 (continued). Under what conditions does the following infinite 

series converge 

9?(1) + <p(l) 9?(2) -f 9?(1) (p(2) (p(3) -+ 99(1) 99(2) <p(3) • • • <p(n) + • • * ? 

159. For which positive values of oc does the following series converge 

21 (2 - ex) (2 - e*12) • • • (2 - ea‘n) ? 

160. 
1 

j x~xdx = £n~n. 
1 

0 n = 1 

161. Considering positive square roots only we find 
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162. Let aJf an,... be positive numbers and put 

K — \a\ + ]/«2 + * ” + V an > 

where only positive square roots are considered. The convergence of the 
sequence 

is related to 

log log &n 

lim sup-= (x 
n 

n-± co 

in the following way: 

if oc < 2 then (t) converges, 

if oc > 2 then (t) diverges. 

163 (continued). The sequence (t) is certainly convergent if the series 

2 2~nan(a1a2 ••• an)~* converges. 
n = 1 

164. We have for 0 < q < 1 

1 ~ g /l — g2 \* /l - /l - ?8 \* _ x2 

1 + ?(l + ?VU + f) (.1 + ?8/ — ^ ^ ' 

165. The series 

+ /"(*) + m + m + f m +/#,//(« «, + ••• 
0 0 0 

is infinite in two directions. Suppose it does converge uniformly on some 

interval. Which function does the series represent ? 

166. Let (pn(x) and yin[x) denote the polynomials of degree n, n = 

0, 1, 2, ... defined by the formulas 

<Po(x) = !. <p'n(x) = <pn-l{x), <pn(0) = 0, 

y>0(x) = 1, ,pn[x + 1) - y>n(x) = y„-i(*). y.(0) =0, n = 1, 2, 3,... 

Find the two sums (p{x) and ip(x), 

<p{x) = <p0(x) + tp^x) +-1- cpn(x) + •••, 

f(x) = %(*) + V>i(x) H-+ y>„(x) + •••• 

167. We define 

= yne yn — n\n ‘en, n = 1, 2, 3, 

Then each interval (xk, yk), £ = 1,2,3,..., contains the interval 

y*+1) as a subinterval. 
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168. The sequence 
/. , l\*+* 

= (x +~) ■ 

is monotone decreasing if and only if p ^ 

169. The sequence 

a»=(1+v)'(1 +^)’ 
is monotone decreasing if and only if x ^ 

170. Let n be a positive integer. Then we have 

n = 1, 2, 3, ... 

n = 1, 2, 3, ... 

2n + 2« + 1' 

171. As is well-known, the number e = lim ^1 + — j is contained 

in the interval 

(>+i)' <•<(* + T' 1,6,1 
In which quarter of the interval is it contained ? 

172. The sequence 

»=i, 2,3,... 
is monotone decreasing if and only if 0 < x ^ 2. 

173. Prove that the w-times iterated sine function 

sinn x = sin (sinn _x x), smx x = sin x, 

converges to 0 as n —> oo if sin x > 0 and that, moreover, 

Jim J y sm„ * = 1. 

174. Assume that 0 < f(x) < x and 

fix) = x — ax? + bxl + de(x), lim e(x) = 0 
' #->0 

for 0 < x < x0, where 1 < k < l and a, b positive. Put 

*0 = x> Vl= f(Vo)> v2 = f(Vl)> "•> Vn= f(Vn-l)> • • * 

Then we have for n^oo 

nk 1 vn -> [(k — 1) a] 

175. Discuss the convergence of the series 

l 
k-i 
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n = 1, 2, 3, ... 
where 

vi = sin x, v2 = sin sin x, ..., vn = sin yn_x, ... 

We can obviously assume that vx > 0. 

176. Prove the formula 

n = 1, 2, 3, ... # — 1 = ux + uxu2 + u±u2u3 -|- 
where 

un . 
“i = * 3? 0, u„+1 = log—--, » = 1, 2, 3,... 

W« 
177. Compute 

n 
is contained s = cos3y — y cos3 3<p +icos3 3V — cos3 339> -]-. 

[168] 
178= Let an, bn, bn 4= 0, n = 0, 1, 2, 3,..., be two sequences that 

satisfy the conditions: 

n = 1, 2, 3,... 

o 

00 

a) the power series f(x) = £ anxn has a positive radius of conver¬ 
gence r. n=0 

b) the limit 

bn 
lim - = q 

°n~l 
exists and | q j < r. 

We define 

cn = 0o6rt + a1bn_l -\-+ w = 0, 1, 2, ... 

Then ~ converges to f{q) asw^oo. 
°n 

179. Let 

/»(*) = + «„2^2 + V3 + —. » = 1, 2, 3, ... 

be arbitrary functions, | ank | < A for all positive integral values of n 
and k and 

lim /„(*) = 0 if 0<*<1. 
«-» 00 

Then we have for fixed k, k = 1, 2, 3,... 

lim = 0. 
M -> co 

180. Suppose that the series 

+ ^«1 + an2 + * * ’ + ank + * • • = sn, ft = 0, 1, 2, , 

have a common convergent majorant 

Ao+A1+A2 + ~-+Ak+- = Si 



40 Miscellaneous Problems 

183. Let the nun 

values —1, 0, 1. Then 
i.e. for each k the inequalities \ank | Ak hold simultaneously for all n. 

Assume furthermore that 
lim ank = ak 
n-> oo 

exists for k = 0,1, 2,... Then the series 

a0 + ai + ^2 --- S 
is convergent and 

lim s„ = s. 
n-> oo 

181. Justify the limits in 53 and 59. 
181.1. Assume that 

% + ai2 + + ain + * * ’ = St 

converges for i = 1, 2, 3,..., define Ut as the least upper bound of 

I + atZ + *'' + ain I > n = 1,2,3,... 

and assume that 

t/l + £4+"* + tfn+- 

converges. Then the series 

(*) an + a12 + a21 + a13 + a22 + «3i + •" + «i» + az,*-i + 

which you obtain by arranging the numbers in the array 

^11 ^12 ^13 • • • • ^1 n * * * 

#21 ^22 * * ’ a2,n — 1 * * 

#31 aS2 a3S. 

"diagonally”, converges and its sum is 

si + S-2 + *' * + sn + * • ’ • 

(The interesting point is that the absolute convergence of the double 

series ZZatk is not assumed.) 
182. If a is fixed, a > 0, and n an integer increasing to + oo, then 

The meaningless term with subscript v = n has to be omitted, which is 

indicated by the comma at the summation sign. Notice the case tx- = 1. 

£o| 2 + ei 1 3 

(The left hand side m 

for n->oo. These ex: 

square roots are usr i 

184. Every value 

x- 

where ek, k = 0, 1 2 

unique if x is not of tl 

are the only numbers 

The finite represen: it 

by putting either 

185 (continued 

tional, if and only i: t! 

term. 

185.1. Construct a 

the series 

diverges for / = 5, tut 

ent from 5. 

185.2 (continue! . 

arbitrarily) into r.vo 

ment in common . 

, a.->,..., an,... such\ 

to C and diverges wfci 
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iltaneously for all n. 

s 

upper bound of 

n = l, 2, 3,, 

“ a2,n-l + 

rav 

nee of the double 

■ing to + oo, then 

omitted, which is 

:e the case oc = 1. 

183. Let the numbers e0, elt e2,..., ent... assume one of the three 

values —1, 0, 1. Then we have 

«.^^2+^ + - = 2sin(i f ^5^). 

(The left hand side must be interpreted as the limit of 

£o 1 ^ % j/2 + £2 ^ 2 + ’' * + £n , n = 0, 1, 2, ... 

for n^oo. These expressions are well defined for all n. Non-negative 

(square roots are used throughout.) 

184. Every value # of the interval [—2, 2] can be written in the form 

x = £o } ^ |/ 2 + £2 V 2 + * * • 
where ek, k = 0, 1, 2, ..., is either —1 or +1. The representation is 

t> 
unique if * is not of the form 2 cos n, ft, q integers, 0 < ft < 2L These 

are the only numbers that may be written in the finite form 

£o I 2 + ex J 2 + £2 |^2 -(-•••+ 2 . 

The finite representation can be extended to an infinite one in two ways: 

by putting either 

£n-L] — L £n+2 £n+3 — fin-f4 — " • = i. 
or 

£n-fl = —1, £n+2 £n+3 = £n± 4 == •• = 1. 

185 (continued). The number x is of the form x = 2 cos kn, k ra¬ 

tional, if and only if the sequence £0, ev e2, ... is periodical after a certain 
term. 

185.1. Construct a sequence of real numbers av a.2, ..., an, ... so that 
the series 

ai H~ a2 + ' * * +#» + ’*■ 

diverges for l = 5, but converges when l is any odd positive integer differ¬ 
ent from 5. 

185.2 (continued). Let the set of all odd positive integers be divided 

(arbitrarily) into two complementary subsets C and D (having no ele¬ 

ment in common). Show that there exists a sequence of real numbers 

av a2, ., an,... such that the series mentioned converges when l belongs 

to C and diverges when l belongs to D. 
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§ 3. Partitions of Sets, Cycles in Permutations 

A partition of a set S is formed by disjoint subsets of S the union of 

which is S. “Disjoint” (or non-overlapping) means that the intersection 

of any two subsets involved is the empty set. If k subsets are involved 

in the partition none of which is the empty set we speak of a partition 

into k classes. 
We let SI stand for the number of different partitions of a set of n 

elements into k classes and Tn for the total number of its different parti¬ 

tions (into any number of classes): 

rn = s? + S” + ••• + SJ. 

The Snk are called the Stirling numbers of the second kind. 

*186. Tabulate the numbers Snk for n eg 8, 1 k fg n. 

*187. Obviously 

st = s = i. 
Show that 

*188. Show that 

= sju + ksi 

>+i ^ „*+2 ^ T zn+1 z(z - 1) (z - 2) ••• (*-*)• 

*189. Show that, for n [> 1, 

SI = ±[k” -({)(*- 1)” +(*) (* - 2)“ - - + (-1)4 O’*]. 

*190. Show that 

k\ 

*191. Prove the identity in x 

xn = S”z + Sn2x(x- 1) + ••• + S*x(x - 1) — (*-» + 1). 

[189, III 221.] 

*192. Prove the identity of 191 independently of 189 [by a com¬ 

binatorial argument] and derive hence a new proof for 189. 

*193. Define T0 — 1. Then 

T . l£+Z£ + 
10 I 11 1 2! ‘ 

y-i 

+-sr + -"“' 
*194. Show [by a combinatorial argument] that 

r.+,-(’„)r.+0)r.-1+C,)r.., + -+C)r„. 

*195. Use 194 : 
*196. Show that 

We let snk stand i 

that are the prod - :t 

The snk are caLvi 

There are ?i pers<j 

equal) so that at >a 

essentia/ 

(1) who sits next 

hand neighbor of 3 

Or we regard as c 

(2) which people 

The number ot di 

Obviously 

*197. Tabular- zl 

*198. Obviously 

Show that 

*199. Show that 

x(x + l) (X - : 

or, which is the same 

x(x -l)(x- 2) - (i 

*200. Show that 

Compare 200 with 13 
VII 54.2 and VIII 2C 

Define S* as the 1 

rlasses each of which 

1 See, e.g., Garrert 

Algebra, 3rd Ed. Nr - \ 
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BCiZDOS 

E : 5 the union of 

fci_ :he intersection 

s .: • are involved 

i : of a 'partition 

r * ns of a set of n 

L .: - different parti- 

p i ••• - — k) * 

-1)*0“]. 

— n + 1). 

189, III 221.] 

189 by a corn¬ 

ier 189. 

*195. Use 194 to prove 193 [34]. 
*196. Show that for n ^ 1 

T = 3^ 
n * \1! ^ 2! ~ 3! 

+ 

We let sj stand for the number of those permutations of n elements 

that are the products of k disjoint cycles1. Obviously 

si + s2 + sl + '' ’ + sn = n! • 
The s” are called the Stirling numbers of the first kind. 

There are n persons seated around k round tables (where all seats are 

equal) so that at least one person sits at each table. We may regard as 

essential 
(1) who sits next to whom, and whether A is the left-hand or right- 

hand neighbor of B. 

Or we regard as essentia/ only 

(2) which people sit at the same table, no matter in which order. 

The number of different seatings is snk in case (1) and S" incase (2). 

Obviously 

snk^Snk. 

*197. Tabulate the numbers snk for n ^ 8, 1 k ^ n. 

*198. Obviously 

s5 = (n-l)!f snn = l. 

Show that 

s2+1 - sLi + nsl 
*199. Show that 

x[x + !)(* + 2) ••• (x + n — 1) = s"x + s\x2 H-+ snnxn 

or, which is the same, that 

%{% — 1) [x — 2) • • • (x 

*200. Show that 

* + 1) = (-1)" - ■1 six + ■■ - £+ s*xT. 

oo n n 

(Compare 200 with 190, 199 with 188, and again 199 with 191. See also 

VII 54.2 and VIII 247.1.) 

Define as the number of partitions of a set of n elements into k 

classes each of which contains more than one element. 

1 See, e.g., Garrett Birkhoff and Saunders MacLane: A Survey of Modern 

Algebra, 3rd Ed. New York: Macmillan 1965, p. 137. 
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*201. Tabulate the numbers S£ for n <: 8, 1 k <1 n. 

*202. Obviously 

S" = l when n ^ 2, = 0 when n < 2£. 

Show that 

.sr1= 
*203. Show that 

= 2n~1 - « ■ (2m — 1). 1, Sf = 1 • 3 • 5 

*204. Returning to Snk, show that 

S«-l—(2)’ Sn~2 \3 / 4 ’ ”_S l 4/ 

and, generally, that S*_a is a polynomial in n of degree 2a divisible by 

n(n _ (n — 2) • • • (n — a); of course, a ^ 1. 

*205. Define T0 = 1, 

r, = sj + s;+ •••+$: 

for w ^ 1. Compute Tn and Tn for n ^ 8. 

*206. rB+1 = (”) T„_1 +(”) r„_2 +••• + (nli)Fi+(l)Fo- 

T,z T2z2 T_zn 

*207. r0 + -;V- + -It- + — + • + = 
1! 1 2! 1 1 w! 

*208. f.-(;)r. -(l)r._, +(*) r,_a - - + (-irC)r.. 

(Tn =AnT0, if we use the notation of the calculus of finite differences, 

see introduction to III 220.) 
*209. If the function F(t) has an n-th derivative 

(£)” ^ = s"F'(eX)e* + slF"(eX)e2x + ••• + 5»-F(’V) «“• 
*210. Derive the identities in the variables * and w\ 

if 
n = 0x 

(i) 

i ns^=^-x*m. 
» =0 

(2) 

°° wkzn 2 2 ^—a-*)-' 
« = 0 

(3) 

either on the basis of the foregoing [10,190, 200] or independently of the 

foregoing. 

(On the other b 

57 and sj, respect* 

::c establishing :bi 

tions, discussed m I 



L = - <^ n. 
(On the other hand, we could regard (1), (2) and (3) as defining , 

Sk and s£, respectively, and then take them as basis and starting point 

for establishing the propositions, especially the combinatorial proposi¬ 

tions, discussed in the section herewith concluded.) 

- > 1. 

—+■"+(»-1) - 

':)r-—■ + <-l>‘(. 
:he calculus of finite differ 

-:h derivative 

«** + ••• +s;F<’V)f- 

iriables z and w: 

_ e[e*-\)w 

= (i - *) 

190, 200] or independent 



Part Two 

Integration 

Exazi| 

CCCSk-ZZscZL 

Chapter 1 

The Integral as the Limit of a Sum of Rectangles 

§ 1. The Lower and the Upper Sum 

Let f(x) be a bounded function on the finite interval [a, &]. The 

points with abscissae x0, xlt x2, xn_lt xn, where 

a = x0 < xx < x2 < • • * < xn_1 < xn = b, 

constitute a subdivision of this interval. Denote by mv and Mv the greatest 

lower and the least upper bound, respectively, off(x) on the v-th subinterval 

lx*,-!, x„], v = 1, 2, . . . , n. We call 

L = y mv(xv — the lower sum, 

U = y Mv(xv — xv_1) the 
r = 1 

belonging to the subdivision xQ, xv x2,..., xn_v xn. Any upper sum is 

always larger (not smaller) than any lower sum, regardless of the sub¬ 

division considered. If there exists only one number wrhich is neither 

smaller than any knvei sum nor larger than any upper sum, then this 

number, denoted by the symbol 

/ f(x)dx, 
a 

is called the definite integral of f{x) over the interval [a, b] and f(x) is 

called (properly) integrable over [a, b] in the sense of Riemann. 



K rnangles 

r Sezn 

- rval 0,6]. The 

U =3, 

Mr the greatest 

- i’-th subinterval 

U:* *r 

upper'sum is 

^ :-~ss of the sub- 

uich is neither 

c -r sum, then this 

^ .i b_ and f(x) is 

r Mrmann. 

Example: 
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«*)=?. 

Xv xv-lxv x~_. 

47 

a > 0. 

consequently 

- < V < 2 
V = 1 

We have 

= f M _±\ a__L 
vfi **-1*. ,fiU-l *r/ « b ■ 

I he number -- — y is therefore larger than any lower sum and smaller 

than any upper sum. If we can prove that no other number with this 
property exists we can conclude that 

i-r-U*- 
a 

^nce ~z is monotone the desired proof isveasy. 

Cf. e.g. G. B. Thomas: Calculus and Analytic Geometry, 2nd Ed. 

Reading/Mass.: Addison-Wesley Publishing 1958, pp. 140_141 

1- Suppose that a > 0, r integer, r ^ 2. Show in a similar way as in 
the previous example that 

.5 r~ tv, ++vt[)- x’-J 

__ 1 / J_1 \ __ r dx 

r - 1 W-1 6'"1 j V V • 
a 

2. Assume that a > 0 and that r is a positive integer. Show that 

j %r dx = hr l-ar + l . . br + 1_ar-rl 
i.e. the number -- 

r + l y + 1 

lower sums and smaller than all upper sums. 

is larger than all 

The points of division x0, xlt x2, ..., xn_v xn form an arithmetic 
progression if 

%v+l Xv ^V — 1 
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for v = 1, 2,..., n — 1. They form a geometric progression if 

for v = 1, 2,...» n — 1. In the second case we assume a > 0. 

3. Work out the lower and the upper sum for the function ex on the 

interval [a, b] with the points of division in arithmetic progression. Find 

the limit as n becomes infinite. 

4. Construct the lower and the upper sum for the function — on the 

interval [a, b] with the points of division in geometric progression, a > 0. 

Find the limit as n becomes infinite. 

*5. We divide the interval [1, 2] into n subintervals by the n + 1 

points 
n n + 1 n -f- 2 n -f- n 

n ’ n * n * ’ n * 

and consider the lower sum Ln and the upper sum Un for the function 

f[x) = 1 that belong to this subdivision. Show that 

Ux = 1, = 1—U2 = 1-^- + y, •" 

and generally that the sequence Ult Lv U2> L2, , Un, Ln, ... is identical 

with the sequence of the partial sums of the series 

2 ' 3 4 1 ~ 2n — 1 2 n 

6. Consider the infinite sequence whose n-th term is the w-th partial 

sum of the series 
sin x t sin 2x 

“T ' 2 ' 

sm nx 

at the point x = The sequence converges to a limit different from 

zero. (This fact shows that the series in question cannot converge uni¬ 

formly in the neighbourhood of x = 0.) 

7. Assume that the function f(x) mentioned at the beginning of this 

chapter is the derivative of the function F(x). Denote any lower sum of 

f(x) by L and any upper sum by U. Then we have 

L ^ F(b) - F(a) ^ U. 

(But F(b) — F(a) is not necessarily the only number satisfying this 

double inequality for all L and U.) 

8. Assume :hj 

creasing on the in 
1] and that * | 

J.=j 
tends to zero like 

9. Suppose 

interval ‘0, 1~. Tli 

L=j 

tends to zero like 

have 

10. Suppose tl 

derivative in the i 

j. 
Find lim n 

11. Assume tin 

mtegrable over 'i. 

tends to zero like 

mine its value. 

12 (continued . 

converges to zero 

find its value. Skon 

a < x < b. 



?:on if 
§ 2. The Degree of Approximation 

u > 0. 

unction ex on the 

progression. Find 

8. Assume that 0 < f < 1, that the function f(x) is monotone in¬ 

neasing on the interval [0, f] and monotone decreasing on the interval 

X 1] and that /(f) = M. Then the difference 

I 4» = //(*) X [/(i) + /(f-) + •" +/(v)] 

ir.ction — on the 
X 

gression, a > 0. 

tends to zero like -asw^oo. We find 
n 

M-m ^ A 

n — n — n 

-is by the n -J- 1 

9. Suppose that the function f(x) is of bounded variation on the 

interval [0, 1]. The difference 

I A„ =jf{x)dx-![/(!) +/(f) + ••• +/(■£)] 

for the function tends to zero like -- as n -> oc. In fact, calling the total variation V we 

have 

l 14,1 g-. 

T* ’* 

X ... is identical 
10. Suppose that the function f(x) has a bounded and integrable 

derivative in the interval [a, 6]. We write 

the w-th partial 

AH=ff{x)dX-b-^ZfU+vb-^A. 

Find lim nAn. 
n->oo 

11. Assume that j[x) is twice differentiable and that f"(x) is properly 

integrable over [a, b]. Then the difference 

:: different from A'n = //(*) dx - h-=± 2 f (a + (2v - 1) 6 - a) 

•t converge uni- 
tends to zero like as n^oo. More precisely, lim n2 A'n exists; deter¬ 
mine its value. 

r ginning of this 

iv lower sum of 

satisfying this 

12 (continued). The difference 

A" f dx 2n + 1 ' 2 -S /(a + 2v 2b + J 

converges to zero like ~ as n^oo. More precisely, lim n2 A” exists; 
n n^-oo 

find its value. Show, in addition, that A” ^ 0 if f(a) ^ 0 and f”{x) ^ 0, 
a x b. 

satisfying this 





can be established. Note the particular cases f(x) = —, f(x) = —log #. 

19. Assume that f(x) is differentiable for x ^ 1 and that f'(x) is 

monotone increasing to oo as # —>- oo. Then 

W) + m + m +■••+/(»- 1) + if(n) = //(*) dx + 
i 

More precisely, 

o< Ml) + m +/(3) + •■•+/(«-1) + if(n) -/f(x)dx<if'(n) -£/'( 1). 
1 

19.1. We may regard the relation [18] 

^ (x +T + y + "■ +v~l°zn) = c 
as the definition of Euler’s constant C. Derive hence that 

1 -4-+4--+ x—^—r -4-4- =log2. 

19.2. The definition of C given in 19.1 is convenient. Yet it would 

be desirable to approximate C by rational numbers, to represent C as 

the sum of a series whose terms are rational. Prove that the following 

series fulfills this desideratum: 



52 
The Integral as the Limit of a Sum of Rectangles 

large values. Furthermore let /(*) be properly integrate over each closed 

subinterval of [a, b] that does not contain c. Then the integral / /(*) dx 

is defined as the limit 

// wdx=je+0 (7f(x) dx +JJ{x) dx) ■ 
(If c coincides”with « or 6 there is only one integral to consider.) If /(*) 

becomes infinite at several (finitely many) points of the interval [a, 6] 

the integral is defined in a similar way. 
Assume that /(*) is defined for * ^ a, furthermore that it is properly 

integrate over any finite interval [a, «]. Then we define 

00 r 
f fix) dx = lim f f(x) dx. 

$ a 

One type of improper integral may be transformed into the other type 
of improper integral by an appropriate substitution. 

20. Assume that the function f(x) is monotone on the interval (0, ). 

It need not be bounded at the points x = 0, x = 1, we assume owever 

that the improper integral / /(*) dx exists. Under these conditions 
0 

lim 
n->°o 

- = J f(x) dx. 

lim 
n-+oo 

21 (continued). If <p[x) is properly integrable over [0,1] we have 

, j-vw m ix. 

22. Prove in a way different from I 71 that for oc > 0 

lim 
!*-i + 2<x—1 + ••• + 1 

cx 

23. We put 

Z If-1? 2 =*£**?, 
k = 1 1 = 1 

oc, ft > 0. 

Then 
lim nl * pan 
n->oo 

exists and is non-zero. (If 0 < oc < 1, 0 < ft < 1, oc + ft ^ 1, z 1, 

the product series is divergent although the two factors are convergent.) 
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: - ~ ible over each closed 
b 

fc- :h*r integral f f(x) dx 
a 

\ 

24. The converse of the statement of problem 20 is not valid: There 

are functions, monotone in the interval (0, 1), for which lim T — f (—1 
n-+°°k=i n \n' 

exists but not the integral. 

ij ”)■ i 

25. The integral f f{x) dx exists if f(x) is monotone in the interval 

:o consider.) If f(x) 

cr :: the interval [a, 6] 

0 
(0, 1), finite at x = 0 or x = 1 and if the following limit is finite 

z~~ that it is properly 

v: define 

lim/(“)+/(«) ' '''+/( » ) 
«->-oo n 

L 26. Let the monotone function f(x) be defined on (0, 1). Then the 

equation 

into the other type Si 5'CJ')-/«*)* 

ctr the interval (0, 1). 

• c assume however 

holds under the condition that the integral at right exists. 

27. If oc > 0 

u-- these conditions lim ^ - 2"-1 + 3“_1 - - + (-1)”-1 «“-1 _ o 
»->oo 

28. If f(x) is properly integrable over [0, 1] we have obviously 

= 'x)dx. 

:7 ‘0, 1] we have oo yi 

r;1) i 
-Jcp{x)f(x)dx. 

0 

Sir x > 0 

Show that this is true also if f(x) is improperly integrable but monotone. 

29. If f[x) is monotone for x > 0, lim g = 0, c > 0, e„ > — we find 
n— oo n n 

lim /W + + ^ + * i) + - ■+'(‘- + "^) _j 
n->oo n q ' 

provided that the integral at right exists and f(x) is finite at * = 1. 

*,£>0. 

-- — P ^ 1, z = —I, 

- *: rs are convergent.) 

§ 4. Improper Integrals Between Infinite Limits 

30. Assume that the monotone function f(x) is defined for x ^ 0 

and that the improper integral J f[x) dx exists. Then we have 
0 

lim h{f[h) + /(2A) + /(3A) + •••) = lim h £ f(nh) — f f[x)dx. 

— ft ^ 1, z = —1, 

- ': rs are convergent.) 
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31. The /"-function is defined for > 0 (or > 0) by the integral 

r(oc) = f e-y-1 tix. 

Using I 89 prove that 

f(oc) = lim m~oo (x[(x + 1) •••. (« + n — 1) * 

32. As it is well known [cf. E. T. Whittaker and G. N. Watson, 

p. 246] Euler’s constant C can be written as an integral 

Show that 

33. 

lim 
<-> l 

34. 

c =,^0 [(1 " (rh + i=T* + T=T> + + [I? + "') 

-logrTr]- 

jm0(i-i)(rT7+rti5+rri5 + "' +777+ '") = log2- 

J4. 
ft /2 tz tn . \ n1 

2(r3T + 2i^ + 3r=^ + ’" +wLT7 + " / 6‘ 

35. We have 

lim )/1 — 2 (1 -M + + * *' + + *,‘) = -2- 

and more generally for <% > 0 

((1 +*“ + r + <•* + - + +•••)= . 

36. Compute 
/I 22 22 . 2/ . \ 

+tr* +'“ ■ * + *+”V- 

37. Let oc > 1 and put g(t) = 77 (l + "~<) • show that 
H = 1 ' 

38. Establish the equation 

oo 
J log (1 — 2x~2 cos 2<p + *-4) dx = 2tt sin q>t 0 ^cp ^ n, 

with help of 

39. Cornj 

of rect an gle< 

40. Let k 

mnmtv. Too 
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rith help of the following identity, valid for all complex t: 

sin t e11 — e 

~T~ 

it —it 00 
2it ■SS'-S)- 

39. Compute the integral f log x dx as the limit of an infinite sum 
0 

of rectangles corresponding to the points of division 

a, aq, aq2} aqd, ..., 0<q<l. 

40. Let Hea fixed positive number and n an integer increasing to 

infinity. Then 

)~ ,.0W ]/k vw 
[58]. Observe the particular cases k = 1, k = 2. 

§ 5. Applications to Number Theory 

41. Divide the integer n by v, v = 1, 2, 3,..., n, and call the resulting 

remainder np. E.g. 173 = 2, 10* = 10; obviously n=nv (modv), 

0 ^ nv < v. Find the probability that nv . 

Solution: 

consequently 
n = v[v] + n- 

— V L V J V 

In the favorable case we have 

in the adverse case 

The probability in question is therefore 

[VIII 3]. 
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--[t> 

1^) 
S629... 

- - ::ons of the form 

r 0 ^ oc 1. 

b limit 

[VIII 4.] 

: all the divisors 

[VIII 81]. 

- 2" cf. VIII, 
I * = I 
t? 

n = 1, 2, 3, ... 

;0, 1] if <% > 0, 

46. Let r(w) = <r0(w) denote the number of divisors of n. Then 

t(1) + r(2) + t(3) + - + r(n) = £ ["“l 

= n (log n + 2C - 1) + 0(|/») [VIII 79], 

C is Euler’s constant. [Apply the idea of 9 to ~ — j~~J in the interval 

(~, l)> m = [|/w] + 1; solution 18.] 

47. Denote by On the number of odd divisors and by En the number 

of even divisors of the integer n. E.g. O20 = 2, Ew = 4. Prove that 

°i “ Ei + °2 ~ E2 + - + on - En 
lim 

n->oo 
log 2. 

§ 6. Mean Values and Limits of Products 

The arithmetic, geometric and harmonic means of the numbers 
av a2,..., an are 

fll f fl2 f ff3 4" ' * ‘ 4~ an 
n 

n_ 
}' a^ «o ^3 * * * } 

respectively. For the last two expressions all the a?s are supposed to be 
positive. (More details in Chap. 2.) 

48. Suppose that the function f(x) is defined on [a, b] and properly 
integrable over this interval. Define 

Then 

fvn — f(a + vdn)> <5» = ”—- ■ 
n 

hm ^ln +J^2n +-t~/nw 
n -> oo 77 //(*) dx, 

a 

Um V'flnftnfsn-'-Ln 

$logf{x)dx 
, a 

a 

These three limits are called the arithmetic, geometric and harmonic mean 

of the function f(x). In the last two relations the greatest lower bound of f{x) 

should be positive. (To improper integrals apply with caution!) 
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49. Prove the existence of 

in a way different from I 69 and that the limit is equal to the geometric 

mean of f(x) = x on the interval [0, 1], i.e. = 

50. Let a and d be positive numbers and call An the arithmetic, and 

Gn the geometric, mean of the numbers a, a + d, a + 2d, ..., a + [n 1)^. 

Then we obtain 

Gn 2 
lim — = —. 

51. Let An denote the arithmetic, and Gn the geometric, mean of 

the binomial coefficients 

Show that 

52. Prove 

l 

(*.)• G)- G). O- 
lim ]/An = 2, lim \^Gn — \e. 

f 2 log r for r ^ 1, 
f log (1 — 2r cos x + r2) dx = ] 

27i J b K ( 0 forO^Kl. 

53. Let r be positive and smaller than 1; let x assume any value in 

the interval [0, 2tz] and £ denote the number closest to x for which 

sin (x — f) = r sin x. 

Then we find 

A / log (1 — 2r cos £ + r2) dx = log (1 — r2). 
2n 0 

[Interpret eix, eiS, r in the complex plane.] 
54. Assume that f(x) is properly integrable over [a, &]. Using the 

same notation as in 48 establish 
b 

jf[x)dx 

lim (i + A A) (1 + 4 A) •••(!+ 4 A) = 
n-^-co 

55. Compute 
(«2 + 1) («2 + 2) ••• (K2 + n) 

lim ~ n 77 a / 9 ~T • 

56. Prove tl 

(X-S 

-flj 

«-Ij 

Whence there i 

to infinity has 

; l 

57. Let \ 1 

Show that 

li~i 
M 
1 

58. Let * as 

m such a wav tl 

nen 

59. Let / be 

ill 

60. Suppcse 

:: a function F\ 

in the rectangle 



c.- - :he geometric 

arithmetic, and 

t a + (n — 1 )d. 

r.etric, mean of 

r ^ 1, 

1. 

«zme any value in 

: v for which 
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56. Prove the identity 

'"i1 + (2«-i1)a-i)(1-2^r=rr) 

(” + I) ex . (w -f 2) a (w -j- w) oc 

(» + 1) a — 1 (n + 2) oc — 1 (w + «) a — 1 * 

Whence there follows that the product on the left hand side extended 
i_ 

to infinity has the limit 2*, provided that oc =f= 0, 1, .i.# # 

[(2»)! = 2nn\ 1 • 3 • 5 (2» — 1).] 
57. Let /9, 5 be fixed, 5 > 0 and 

1 , cx. 
# — 1 “i- 5 = 1 + £-, d=- 

Show that 

lim ±.±3lf*.g + 2d...a + ln-l)d_ (1 
n-^oo 6 b + <* 6 + 2d b + {n - i)d~ [ ‘ 0> 

58. Let n and v be integers, 0 < v < n. If n and v increase to infinity 

in such a way that 

lim 

then 
V* 

»-> oo 2n \ v / f' 7E 

59. Let t be a fixed real number. Define z = 2ne^n . Then we have 

lim 
2n — 1 2n — 2 2n — 3 2n — « 

2—1 z — 2 z—3 z — 

£\ Using the § 7. Multiple Integrals 

60. Suppose that the function f(x, y) is the second mixed derivative 

of a function F(x, y), 

d2F(x, y) 

in the rectangle R 

dx 8y =HX>y)• 

a ^ x ^ b, c^y<Ld. 
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t subrectangles” 

* y = 1, 2, n. 

±~rsz lower bound 

-*»-i) > 

64. ihe three-dimensional domain ® is defined by the inequalities 

—1 ^ x, y, z ^ 1, —or y -j- z ^ a. 

Using I 30 show that the volume of $ is 

///***-£/(t-O’t2*- 35 -oo 

65. Let ocv <x2,<xp be arbitrary positive numbers, define 

fv(z) = V'-'z + 2*v~1z2 + ••• +nav-lf + v = 1, 2, ft 

and 

< U. 

r z. 

'.ng determinant 

‘."are 0 x < 1 

: -are 0 % < 1, 

Show that 

A (*) A W • • • L (2) = 2 «„2n ■ 

lim 
n -> 00 ai+<**+• •• + <** —1 

= //- Ur1*?-1 (i-x1-x2~-~ xp_xyp-' 

X dx j dxc) * * * dxp_| j 

where the integral is taken over the domain described by the p inequa¬ 

lities ^ 0, x2 ^ 0, xp_1 ^ 0, +«2 -f ••• + %#,_1 ^1 (p _ 1 

dimensional simplex). 

66 (continued). 

//'** /*? 1^22-1 (1 — ^1 — -— xp-iTp~1 

Xdxxdx2-dxp 1= f(ai> r^)-^P) 
f~1 r(<x1+<x2 + ... + <Xp) ■ 

n 

67. Work out the product f] (1 + jkn dn) (same notation as in 48, 
k=l 

54) as a polynomial of degree n in dn. Prove that the term containing dp 
converges to the limit 

II”* I K*i) f (*2) * * * f (xp) dx2 ''' dxp = tt ( f f(x) dx) , 
^x^x^.^xp^b p P'• V ) 

when p is fixed and n increases to infinity. 

68. Suppose that the 2m functions 

/(* fjx), 

<p{Xi),(p{x2),(pjx) 
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are properly integrable over the interval [a, b]. Then we have 

b b b 

Jfi(*) <Pi(x) dx Jf\(%) <p2(x) dx ••• j fi(x) (pm(x) dx 
a a a 

b b b 

f fz(x) <Pi(x) dx J f2(x) (p.2(x) dx ■■■ f f.,(x) <pm(x) dx 
a a a 

b b b 

jL(x) <Pi(x) dx f fjx) q>o(x) dx • • • f fjx) <pm(x) dx 

b b b fl(Xl) fl(xz) ”fl(Xm) 

i//••■/ 
a a a 

f2(X]) fl(^2) ■ ■ fi(xm) 

m fm(Xl)fm(X2) ■ fm(Xtn) 

fliXl) <Pl(Xi) ’ ■■<Pl(Xm) 

(p-Axi) (pAn) ■ ' • <P*(xm) 

<Pm{Xl) <Pm(X2) ' ■•<PmiXm) 

X dx1 dx2 • • • dxm. 

[Compute in two different ways the product of the two matrices 

Jvn I U-1,2.m 
v=l,2 

Pm IUl,2.m’ 
v — 1,2 

fin =fx[a + vh--), (pin = +vb 

Chapter 2 

Inequalities 

§ 1. Inequalities 

Let ax, a2, ..., an be arbitrary real numbers. Their arithmetic mean 

9l(#) is defined as the expression 

d-% -j- #0 -j- • • • -j- a 
91(a) = -1- - - 

n 

If all the numbers alf a2, ...,an are positive we define their geometric 

and harmonic means as 

n 

11 1 ’ 
— + — + ••• + — 
U1 a2 

respectively. 

a. then 

For © j - ~k 

mean udues < 

all the s am 

ii — z =% 

Let the la 

interval x- 1 

If fix is strid 

that fix > k 

denned as 

A8 If fK de* 

• x on ~x1, x*j 

m=4 
It is nnderstco 

The follow* 

#(/ — g) = xj 

Let a2, a- . j 

equal. Then 

&(a) — \ axa2 ••• an, 
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* ■ t have 

. h(x) ’Pm{x) dx 
A 

. h(x) <Pm(%) dx 
A 

fm(X) <Pm(X) dx 
A 

- '"Vi (*Ji 

- "’ftW 

- '' • (Pm(XJ 

matrices 

^)] 

arithmetic mean 

their geometric 

T ’ 

respectively. If m denotes the smaUest and M the largest of the numbers 

m ^ 91(a) ^M, ©(a) ^M, m g $(a) <-' M. 

tor ©(a) and £>(«) we assume m > 0. The three numbers represent 

mean values of ay,a„, ..., an. The inequalities become equalities only if 

all the a, s are equal. The mean values have the following properties: 

3f(a + b) = 9t(a) + 91(6), &(ab) = ©(a) &(b), log ©(a) = 91 (log a). 

Let the function f{x) be defined and properly integrable on the 

interval [xlr x2], We define the arithmetic mean 91 (/) of f(x) as 

If f(x) is strictly positive, i.e. if there exists a positive constant k such 

that f(x) > k for x in [xv x2], the geometric and harmonic means are 
defined as 

48.] If m denotes the greatest lower and M the least upper bound of 
f[x) on [xv x2] then 

It is understood that m > 0 for ©(/) and .§(/). 

The following i elations are obvious .* 

9I(/ + g) = 91 (/) + 91(g), ©(/g) = ©(/) ©(g), ^ m = 2t(log f). 

Let al,a2,...,an be arbitrary positive numbers which are not all 
equal. Then 

-1 have 

. h(x) ’Pm{x) dx 
A 

. 4 W <pjx) dx 
A 

fm(X) <Pm(X) dx 
A 

- "'<Pi (*ji 

- "’ftW 

- '' • (Pm(XJ 

matrices 

vT] 

- y::hmetic mean 

their geometric 

T ’ 

W) < ©(«) < 91(a). 
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(Theorem of the means, arithmetic, geometric and harmonic.) A very 

beautiful proof1 was given by Cauchy in his Analyse algebrique (Note 2, 

Oeuvres Completes, Ser. 2, Vol. 3; Paris: Gauthier-Villars 1897, pp. 375— 

377). 

i It is obviously sufficient to prove 21(a) > ffi(a). Here is the passage referred to: 

“La moyenne gcomctriqne entve plusienrs nombres A, B,C, D, ... est toujours 

inferieure a leur moyenne arithmetiqne. 
Demonstration. — Soit n le nombre des lcttres A, B, C, D, ... 11 suffira 

de prouver, qu’on a generalement 

A + B + C + D + ••* 
\!A BCD ... 

ou, ce qui revient au meme, 

A BCD ••• < 

(1) 

B -f CM- D + 
")■ 

(2) 

Or, en premier lieu, on aura evidemment, pour n — 2, 

/A + B\2 IA -By! (A + B\2 

^ = K~) "Hr-) <(—) • 

et l’on en conclura, en prenant successivement n = 4, n = 8, ..., enfin n = 2”‘ 

/A + B\2 /C + D\2 /A - B + C + D\* 
A BCD < (-J-) (-*-) < (-4-) ' 

+ a + c + ay -i- f + g + ny 

/A + B + C + D + E + F + G+H\* 

ABCD ■■■ < 
1A + a + C + D + 

ntn 
(3) 

En second lieu, si n n’est pas un terme de la progression geometriquc 

2, 4, 8, 16. 

on designera par 2m un terme de cette progression superieur a n, et l’on fera 

A D C ~r D — •• • 
K =-; 

n 

puis, en revenant a la formule (3), et supposant dans le premier membre de cette 

formule les 2m — n derniers facteurs egaux a K, on trouvera 

ABCD ... K2m-» < 

ou, en d’autres termes. 

On aura done par suite 

ABCD ... < 

ce qu’il fallait demontrer.” 

A +B + C-\-D 

ABCD . . . 

■ + (2W - n) K 

B A- C -f D + 

69. Le: t 

mterval 

or. wit 

Then the moi 

1 

ioJgs, "—ere 

A fonctia 

if for each pa 

is satisfied- 1 

fee arbitrary j 

with ^ smd 

It' H| 
somewhat ik 

convex and * 

rsxisidei boon 

110 free usd 

71. Surra 

val Xj, m 

convex on :be 
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nonic.) A very 

zrique (Note 2; 

I ^97, pp. 375 — 

zssage referred to: 

. est ioztjours 

D. ... 11 suffira 

(i) 

(2) 

n = 2”‘ 

(3) 

jn fera 

i-nibre de cette 

69. Let the function f(x) be defined and properly integrable on the 

interval [xv x2] and let f(x) have a positive lower bound. Then 

i 
X2—Xi 

X2 

J log]{x)dx 

< - 

/ dx 

7w 

//(*) dx. 

or, with the notation just defined, 

m ^ m ^ m- 

70. Suppose that the (not necessarily differentiable) function cp[t) 
satisfies for arbitrary values tv t2, t± 4= t2 the inequality 

*(H4)< 
<Pih) + <p{t2) 

9 

Then the more general inequality 

(h + t2 + ' * * + *»\ ^ <P(h ) + + * * * + <Pttn) 
^ \ n / n 

holds, where the t/s are arbitrary but t{ =f= tj for at least one pair i, j. 

A function <p(t) defined on the interval m <L t M is called corn;** 

if for each pair tv t2 on [tn, M], tx 4= t2 the inequality 

q, ^1 + < yfe) + y(*2) 

is satisfied. (By the solution of 70 we have then generally 

T 1*1 + /2-i-_+ *»\ ^ <P(* 1) + 0>(<2) d-b ?(<») 
^\ n /= n 

for arbitrary points tv t2,... ,tn of the interval.) If instead of the inequality 

with <: strict inequality is supposed (<) then <p(t) is termed strictly 

convex. If <p(t) is convex, cp{t) is termed concave. (A more intuitive but 

somewhat clumsier terminology would be “convex from below” for 

convex and “convex from above” for concave.) In the sequel we will 

consider bounded convex functions only; these are continuous [cf. 124; 
110 often useful]. 

71. Suppose that the function f{x) is properly integrable on the inter¬ 

val [xv x2] and m f[x) M and, furthermore, that <p(t) is defined and 

convex on the interval [m, M]. Then we have the inequality 

v }*& dx) £ hm\ dx. 
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72. Suppose that the function <p(t) is defined on the interval \m, M] 

and that (p" if) exists and cpn if) > 0 on [m, M]. In this case cp(t) is strictly 

convex. If we have <p"(t) ^ 0 only, then <p(t) is convex. (A function can 

be convex in an interval where its second derivative does not exist at 

all points.) 

73. The functions 

f (0 < * < 1) 

are concave on any positive interval; 

& {k < 0 or k > 1) 

are convex on any positive interval; 

log (1 + 4) 

are everywhere convex. 

74. Assume that <p(f) is a convex function defined on [m, M], that 

px,p2, ...>Pn are arbitrary positive numbers and that t1,t2, .tn are 

arbitrary points of the interval \m, M]. Then we have the inequality 

/Pf\ + P^2 + *•* + Ptfn\ ^ PMh) + ^2^2) + ••* + PtfPtin) 

P\ “h P% 4“-\~Pn ) = P\ P 2 "t" * * * T Pn 

75. Assume that fix) and p(x) are two functions which are properly 
*2 

integrable over [xv x2] and that m ^ f[x) ^ M, p(x)^. 0 and J p(x) dx > 0. 

Let cp(t) denote a convex function defined on the interval m ^ M. 

Then we have 
Xt \ X2 

f p(x) fix) dx\ f p{x) <p[f(x)] dx 

—- I < *-. 
~ r‘ 

f P(x) dx / f P(x) dx 
X1 ' *1 

76. Suppose that on the interval [m, M] the first and the second 

derivative of (p(t) exist and that (p"{t) > 0. Then we find for positive 

Pl> Pz> ‘"’fin 

tPxh +P2l2 + — +Pn*n\ < PM*l) + PMW + — + Pn<P (*„) 

^1+^2+-F Pn )= Pi+Po + ^'+Pn 

There is equality if and only if tx = t2 = • • • = tn. 

77. The functions f(x) and p[x) are assumed to be continuous on the 

interval [xv x2], p{x) is strictly positive and m ^ f(x) ^ M; the function 

cpit) is defined on the interval [m, M], q>(t) can be differentiated twice 

and log* 

and Hog t 

and ]/c* + t2 (c > o) 

and <fr,(f) > 0. 

There is eq ua~.il 

78. Prove I 

arithmetic, geo* 

denote arbitrar 

i. / = 1, 2, .... 1 

Pi-Pt-j 

Pi . Pt j 
*1 4 

are satisfied- Fu 

Pi*i 

79. Let fix) 

x1, x,~; further. 

1 

] 
zarreover 

/ *2 
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ir ~:erval [m, M] 

■: t) is strictly 

l A function can 

: — not exist at 

(c > o) 

:n jn, M], that 

are 

-inequality 

- 

* K 

- h are properly 
xi 

-i J p(x)dx> 0. 

ral m 

Lnd the second 

nd for positive 

■ P«<P (*„) 

itinuous on the 

-r: the function 

ntiated twice 

and <p"(t) > 0. Then 

( I Pi*) f(*) dx \ / £(*) ?[/(*)] rf* 

<P 

J P(x) dx !p{x) dx 

There is equahty if and only if f[x) is a constant. 

78. Prove the following generalization of the proposition on the 

arithmetic, geometric and harmonic means: Let pv pn< aa,, ., a 

denote arbitrary positive numbers, a{ 4= for at least one pair i + j, 

*, J = 1, 2, then the inequalities 

.... , . />j l°g«i +ptlogat+—+p nlogan 
Pi + P2 + —v pn — 

< e 

ai a2 ' an 

are satisfied. Furthermore 

~ log®! + loga2 *+ • ■ a\ a2 

Pi +P*-\-VPn ^ PiPl + P2P2 + ’ • • + Pnan 

Pi +P2 '+P» 

Pn 
logan 

Pi , Pi . Pn —— ; !-•••+   
ai an 

Plal +P2“2 + + Pnan 

< Pi +P2 Pn 

Pi j Pi . I ^ « 
ai a2 

Pia-ilogai+p<lai\oga2 + — +pnan\ogan 

g PiaiJrPid% + '"+pnan 

Pi +Pn + ■■■+Pn 

79. Let f[x) and p(x) be continuous and positive on the interval 

xv x2]; further, f(x) is not a constant. Then we have the inequalities 

*3 
J p(x)\0gf{x)dx 

fp(x)dx xfmdx jp(x)f(x)dx 

A-<« *’ -: 
rm 

J m 

moreover 

fmlog/Mix 

dx 

I 
P(*l 
m 

X2 
f P(x) dx 

<X~- 

S) 
Pi*) 

m 

f p{x) dx 
XI 

Xg 
5 P[x)f{x)\ogf{x)dx 

Jp(*)f(*)dx }'Mf(x)dx 

< e x‘ 

dx 

Xg 

f Pi*) dx 
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i- numbers. Show 

r* - and bv are pro- 

r.,/2 + ju2 > 0. 

c r mat are properly 

y±ix 

i mi ^ are positive, 

-4 + ••• + *„)'. 

r where <x = ($.) 

r - \ and are posi- 

:, Then 

~h + — 
: irr.bers oc, /?, ..., X 

82. Let ava2,..., an be arbitrary positive numbers, not all equal. 
Then the function 

is monotone increasing with t. Find the values of 

7>(-oo), y(-l), y(0), y(l), y(+oo). 

(Define y(0) so that ip(t) is continuous at the point t = 0.) 

83. Assume that the function f{x), defined on [x^, x2] is properly 

integrable and that it has a positive lower bound. The function 

is non-decreasing for all t. Compute 

V(0), y>{l), y(+oo). 

Tor y)(0) see 82. In computing xp(— oo) and yj(oo) assume that f(x) is 
continuous. 

84. Let av, b9, v = 1, 2,..., n, be arbitrary positive numbers. Prove 
the inequality 

The relation becomes an equality if and only if a„ = Xbv, v = 1, 2, 

85. The functions f(x) and g(x) are properly integrable ov 
interval [xv x2] and strictly positive. Then 

®(f+g)> ®{f) + ©(g). 

86. The functions /,(*), f2{x),.... fjx) are defined on the interval 

ixv xi\, properly integrable and strictly positive (there exists a constant 

ii numbers. Show 

r* -\ and bv are pro- 

r.,/2 + ju2 > 0. 

c r : ;:at are properly 

y±ix 

i mi ^ are positive, 

-k + - + KY- 

r where <x = ($.) 

r - \ and are posi- 

:. Then 

•. -4 + -"Lf- 

- -.-r.bers «, /?, .... X 
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Let K such that 0 < A’ ^ /,(*), v = 1, 2,..., m, x1£x^x2). 

p p0j ..., pm denote arbitrary positive numbers. Then 

<Wl + Pik + •" + PJm) ^ PMh) + Pi®ifa) + •" + 

87. Suppose that the functions /,(%), v = 1, 2,m, are of bounded 

variation on the interval [%, x2] and that pv p2, ■ ••> Pm are arbitrary 

positive numbers. Define 

pJAx) + f>,/2W + ••• + PJJ.*) 

m = —p1+Ps + ^+K '' 

The lengths of the arcs of f2{x), f.2(x),.... fm[x) are denoted by lx,l.2,.... lm, 

the length of the arc of F{x) by L. (At a point of discontinuity the jump 

must be included in the length of the arc.) Then we have 

P\l\ “T P'2^2 T ’ * * "b P tn'm 
L < ■ 

Pi +P% + •" + Pn 

88. Let f{x) be a positive continuous and periodic function with 

period 2n and let p(x) be a non-negative and properly integrable function 

on [0, 2n\ with positive integral. Then 

m=- 

/*({)/»+*)# 

2n x 2* 
- f logF{x)dx — J log;(*)d* 

■o > e 0 

is positive and continuous; furthermore 

j_2* i 
2 n , 

e 

©(F) ^©(/). 

89. Assume that /(*) is a periodic function with period 2n and that 

p(x) is non-negative and properly integrable over the interval [0, 2n] 

and that its integral is positive. If f(x) is of bounded variation then this 

is true also for 

F(x) 
f Pit) ns + x) dt 

f Pit) dt 

If l, L denote the lengths of the arcs of f{x) and F(x) on [0, 2ji] then l and 

L satisfy the inequality 
L<1. 

90. The arbit 

We define 

Then 

3 

according as * 2 

v = 1, 2,c 

case x = 2 ? Mi 

91. The fund 

strictly positive. 

Let g(*) be a im 

according as * ^ 

92. Let a, A 

numbers alt a2 .. 

between b and 3 

1< 
(of - 4 

The first inequal 

an equahty if am 

are integers and i 

i = n — k) of d 

coincide with B a 

93. Let a, A, 

functions fix am 

and if a < fix ^ 
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^ x ^ x2). Let 

are of bounded 

% are arbitrary 

4. •••./*. 

- iity the jump 

rr. : : function with 

" -grable function 

er.od 2jc and that 

t interval [0, 2tt] 

‘i iriation then this 

- * 2n] then l and 

90. The arbitrary numbers av a2,..., an and bv b2,...,bn are positive. 
We define 

— (ai + a2 + ~h an)X • 

Then 

mja + b) ^ or ^ WlH{a) + mx{b), 

according as x^l or x ig 1. Equahty is attained only for av = Xbv> 

v = 1 ,<2,-..,n, or if x = 1. (What does the proposition mean in the 

case x = 2 ?) (Minkowski’s inequality.) 

91. The function f[x) is defined on [xlf x2], properly integrable and 
strictly positive. We introduce 

i_ 

= (/*[/(*)]" 

Let g[x) be a function with the same properties as f(x). Then we have 

mx(f + g) ^ 0r ^mx(f)+mx(g), 
according as ^ ^ 1 or ^ ^ 1. 

92. Let a, A,b, B .be positive numbers, a<A, b < B. If the n 

numbers alf a2, ..., an he between a and A, and the n numbers blf b9,... ,b 
between b and B we can prove that 

1 ^ 
/ 2 , 2 . 
(al + ao T 

(«1 \ 
’ * * + #„) (^1 + + * *' + 
+ "2^2 +-1“ anbJ2 

The first inequality is identical with 80. The second inequality becomes 
an equahty if and only if 

A b 

are integers and if k of the numbers av coincide with a and the remaining 

l (=n — k) of the a* s coincide with A, while the corresponding b’s 
coincide with B and b resp. 

93. Let a, A, b, B be, positive numbers a < A, b < B. If the two 

functions f[x) and g(x) are properly integrable over the interval [xlt x2] 

and if a ^ f(x) ^ A, b^ g(x) ^ B on [xv x2] then 

2 
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Inequalities 

The first inequality is identical with Schwarz’s inequality. 

93.1. The numbers av %.a„, T and s are posl 1 ’ 
n 

and E stands for \ . Then 

”=1 L E 
(Eal)s < (Ear,)r . 

94 The'function /(*) is defined on (0,1), non-decreasing, «<) a «■ 
but not identically zero. Let 0 < « < ». H all the integrals occurring 

exist we find the inequalities 

( fxa+bAx)dx\ 

t a-b Y2 <- '0 _ 

1 “(a + F+V = } 
< 1. 

/ x2aJ(x) dx f x2bf(x) dx 

The inequality on the right hand side is well known. The inequal,ty on 

the left becomes an equality if and only if /(*) is a constan . 

§ 2. Some Applications of Inequalities 

94.1. A solid is so located in a rectangular coordinate system that 

its intersection with any straight line that is parallel to one of the three 

coordinate axes is either empty or consists of just one point or ius o 

line segment. (Such a solid need not be convex.) Let S be the su 

area of the boundary of the solid and P, Q and R the areas of its ortho 

gonal projections onto the three coordinate planes respectively. Show 

that i 

2(P- +Q- +R2)2 +Q ■R) 

and point out simple polyhedra for which the case of equality is attained 

" ^denote ^he area of the surface of an ellipsoid with semi¬ 

axes a, b, c and prove that 

in(bc +_ca + Ob) <E< . 
3 — — 3 

[Derive, or take for granted, that 

E = J j (b2c2t? + c2a2n}2 + a?b2l?)*do)'. 

the integration is extended over the surface of the unit sphere of which 

(|, r), £) is a point, 

P+•»*+{* “i- 

and acj the > 

94.3 oc v 

surface area < 

unless 2 = I 

95. Let m 

oi a conduct 

of an ellipsoi 

arithmetic m 

radii are ecu; 

In analvll 

We 

Pro 



r- 
r < s, n > 1 

Or r .asing, f(x) ^ 0, 

- ~: : <rals occurring 

h< 1* 
k 

- "t inequality on 

dc "scant. 

r:.-.ate system that 

i one of the three 

t ; >int or just one 

•' 5 be the surface 

e -reas of its ortho- 

T-pectively. Show 

- cahty is attained 

5-—r soid with semi- 

'phere of which 
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and doj the surface element, 

JJ dm = 47t.] 

94.3 (continued). The surface area of the ellipsoid is larger than the 

surface area of the sphere with the same volume, that is 

2 

E > 4tt(abc)3 
unless a — b~c. 

95. Let us call the ratio of the electrostatic capacity to the volume 

of a conductor its “specific capacity”. Show that the specific capacity 

of an ellipsoid with three axes is always between the harmonic and the 

arithmetic means of the specific capacities of the three spheres whose 
radii are equal to the three semiaxes of the ellipsoid. 

In analytic terms: we have to prove the inequalities 

be ca ab < dii 
< 

abc 
t i-H—— 
be ca ab 

3 

which hold for all positive number triples [a, b, c) unless a = b = c. 

95.t (continued). The capacity of the ellipsoid is larger than the 

capacity of the sphere with the same volume. That is, the upper bound 

in the double inequality 95 can be replaced by the sharper (abc)~llz. 

95.2. If all the roots of the equation of degree n 

xn — a1xn~1 + a2x”~2-= 0 

are real, they are all contained in the interval with the endpoints 

1 (n- 2” \ ‘‘ 
V1 

95.3. We consider the non-decreasing sequence of positive numbers 

Yi> Ya- Vs. ■■■ 

°<Vi ^Vs^Vs^---. 
We set y1 = y, 

vr+Yr+vr + -=*„ 
and assume that this series is convergent for n = 1 (and so also for 
^ ^ 1). Prove that 

<■ <r<- <±<A< 
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and that 

Inequalities 

lim iy/n —y= lim 
SnJ 1 oo S 'n+1 

(If sv s2, s3, ... are given, we have here a “perfect’' scheme for com¬ 

puting y. The n-th step yields the lower bound s~1,n and the upper bound 

sjsn+1 for the next step improves both bounds and both bounds 

converge to the desired y as n tends to oo. 

Observe that 

s,z + v2 + v* + ••• = y- 
V=1 / V 

where 

w-nk-T) 

*G'M 
’ “ G(z) 

and y is the zero of G(z) nearest to the origin. Compare 197, III 342.) 

95.4 (continued). Even if s„ is not given for all values of n but only 

for Yi — \ 2 4 8, ..., 2W, ..., we can devise a scheme for computing y. 

Prove that 

and that 

95.5. A wire which forms a closed plane curve C carries a unit electric 

current and exerts a force F on a unit magnetic pole in the plane of, and 

interior to, C. Given A, the area enclosed by C, prove that F is a mini¬ 

mum when C is a circle and the magnetic pole is at its center. — [Assume 

that C is star-shaped with respect to the magnetic pole [III 109 which is 

located at the origin of a system of polar coordinates r, cp. Then 

dcp 

Express .4.] 

96. Assume that 

a > 0, 
/JV ’ 

/l=l *=1 

and 

= CLfl T~ a/x'2X2. "T * * * 4” apnxn 
• = 1, 2, 

Pt. II. 

Then we have 

97. Let alt az .. 

their geometric mea 

inequality 

implies the inequaH 

where o and q detx 

Dectivelv of the trai 

98. We define 

g(x) = sin- s 

and 

Is G(x) integrable ; 

99. Let the fund 

Hi 
Show that f(x) is 

every rational x an i 

100. The two : i 

[a, b]. Subdivide the 

a = | 



-cheme for com- 

: e upper bound 

both bounds 

197, III 342.) 

s of n but only 

- computing y. 

<— 

a unit electric 

plane of# and 

‘ F is a mini- 

cr. —[Assume 

109] which is 
Then 

1, 

Pt. II, Chap. 2, No. 95.4-97 • Chap. 3, No. 98- 100 75 
i hen we have 

y&s ■■ ■ y* ^ xn. 

M -G 

~ 

res- 

implies the inequalities 

1+'<S<1+e'. * = 1,2 

“7 °n‘y «- <•» »n,y positive too, 
- actively of the transcendental equation 

(1 + *) e'* = (1 — e)n. 

Chapter 3 

Some Properties of Real Functions 

§ 1. Proper Integrals 

98. We define 

and 

S{x) — sin“ nx -f- sin2 tty me" 1*2 a 
^ bin nx cos wc + smw nx cos4 nx + 

+ sin2 nx cos2A nx + • • • 

Gix) = lim g(n\ x). 
Is G(#) integrable ? 

99. Let the function /(*) (cf. also 169, VIII 240) be given by 

f0 if * is irrational 
A*) = j i 

|7 .f * is rational, *_£, {p,q) = 1,,^u 

>liow that f(x) is continuous for every irrational a- 

* *?properly in,esrabk »'■» it"""",or 

>, *»*-* over 

« = *o < *1 < *2 < ••• < 3r„_j <xn==b, 

xv-i<y,<x„, x,-i<y]v<x„ v = l,2 



Some Properties of Real Functions 

If max _ xv i) -> 0 (the subinterval of maximal length converges to 

0) we obtain the relation 

lim j fM (*> - *v-i) = / /(*) vW dx- 
°°v=\ a 

101. Suppose that /(*) is properly integrable over [a, 6j and <p{x) 

properly integrable over [a, b + d], d > 0. Then 

b b 

lim f f{x) <p(x + 6) dx = f fix) <p[x) dx. 
<5->+0 £ » 

102. Let fix) denote a properly integrable function on [a,b]. There 

exist to every positive number e two step-functions, v(x) and !?(*), sue 

that for the entire interval [a, 6] 

ip{x) g /(*) ^ 

and 

f ¥{x) dx - j y>{x) dx < e. 

It is even possible to choose f(x) and ¥(x) so that their points of discon- 

tinuity are equidistant. a \ifu\ mav 
103 (continued). If fix) is of bounded variation y><*) and JM1“ 7 

be chosen so that the total variation of neither exceeds the total va 

tion of f(x). 

104. We define 
4[*]-2[2*] + l = s(x). 

Then we have (n integer) the limit relation 

1 
lim f f{x) s{nx) dx = 0 
« —> OO Q 

for any properly intefrable function /(*) on [0,1], [Sketch *(“*). vm 3'I 

105. Let /(*) be P™P«ly i»le«rable ov" ^ Th'” ” Pt°V,! 

that 
b 

lim f f{x) sin nx dx = 0. 

106 (connnued). Yet 

lim f /(*) | sin nx | dx = / /(*) ^ • 
n-><» a a 

Suppose that the function f(x) is bounded on the interval [a, 6] and 

that this interval is subdivided by the points x0, xv x2,..., x„_t, x„. 

whereby 

The greatest lower 

X-l> Xrl are 
-railed the osciilazim 

properly integral k: 

numbers a subdivj 

length of the sohl 

smaller than rt. B 

107. The funeti 

for * ^ 0. 

108. If /(* isp 

:: j x) are everywl 

109. The fundi 

is satisfied if and i 

110. Assume tl 

'a y, that m ^ * 

15 continuous on ( 

j. b~. 

111. If f(x) 3M 

properly integrabli 

112. If /(* is 

* x*f\x) dx existsl 

113. If fix is 

tusis then 
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'rngth converges to 

r r x dx. 

rr [a, b] and cp(x) 

M dx. 

t'. r. on [a, b]. There 

k . and W{x), such 

•points of discon- 

c . and xF(x) may 

L ir the total varia- 

^ ct: :h s(nx), VIII 3.] 

. :.tn we can prove 

k 
:r.:erval [a, b] and 

1 ; X2’-->Xn-l>Xn> 

whereby 

* = xn_1 cxn = b. 

The greatest lower and the least upper bounds of f(x) in the subinterval 

A-i> xv] are denoted by mv and Mv respectively. Then Mv — mv is 

called the oscillutiofi of f[x) on the v-th subinterval. The function f[%) is 

properly integrable over \cl, bj if and only if to every pair e, tj of positive 

numbers a subdivision of the interval can be found so that the total 

length of the subintervals for which the oscillation is larger than e is 

smaller than rj. [Riemann’s criterion, cf. l.c. 105, Riemann, p. 226.] 

107. The function (i- - is properly integrable over [0, 1] 

for oc 0. 

108= If f(x) is properly integrable over [a, b_ the points of continuity 

of f(x) are everywhere dense on this interval. 

109. The function f(x) is properly integrable over [a, 6]. The equation 

/ [f[x)Ydx = 0 
a 

is satisfied if and only if /(f) = 0 at every point of continuity f of f(x), 
a < f < b. 

110. Assume that the function y = f[x) is properly integrable over 

[a, b], that m fg f(x) glon this interval and that the function cp{y) 

is continuous on [m, M]. Then also 9o[f(x)] is properly integrable over 
[a, b]. 

111. If f[x) and (p[y) are properly integrable 9o[f(x)'\ need not be 
properly integrable. [98, 99.] 

§ 2. Improper Integrals 

112- If /W is a monotone function on the interval (0, 1] and if 

f xaf(x) dx exists then 
0 

lim xa+1f(x) = 0. 

113. If f[x) is monotone on the interval [1, oo) and if f xa/(x) dx 
exists then i 

lim xa+1 fix) = 0. 
X->oo 



[Analogous to 1180.] 

116. Prove 58 using VI 31. 
117. If the Dirichlet series [VIII, Chap. 1, § 5] 

a:l-s + «22"s + «33"s + •" + ann~s +-- = D(s) 

converges for s = o’, <J > 0 we obtain for s > o 
oo 

D(s) r(s) = / P(y) ys_1 dy, 
0 

where 

a,e "y + a2e 2y + cize 3y + • a„e 
,-ny + - = P(y). 

118. Suppose that f(x) is properly integrable over every finite interval 

and that f \f(x) | dx exists. Then we have 

lim / f{x) sin nx dx = 0, lim f f{x) \sinnx\ 
«->°° __ 

dx ■ f f(x) dx. 

TL :ol 

: if 1 

rues : vj 

120. Le 



- m :the integral 

= D(s) 

: they satisfy the 

cz^formly in x. 

oo 

and J F(x) dx 
— oo 

d: 

= J / /(*) dx. 

§ 3. Continuous, Differentiable, Convex Functions 

119. Are there actually functions of three variables? 

More precisely: Is it possible to write every real function j[xy y, z) 

of three variables with the help of two functions y(x, y) and y{u, z) in 
the form of 

fix> y> z) = y((p{x, y), z) ? 

Discuss the question: 

(1) ^ f[x> y, z), cp{x, y), y)(u, z) are defined for all real values of the 
variables, 

(2) if these functions are defined for all real values of the variables 
and are continuous. 

119a. Setting * + y = S(x, y), xy = P(x, y) we can write 

yz + zx + xy = S{P(x, y), P[S(x, y), *]}; 

in this formula xy + yz + zx is composed of four functions of two 

variables “boxed” in each other. Prove that it is impossible to express 

f{x, y, z) using only three functions of two variables boxed in one 

another if these functions are defined for all pairs of real values and if 

they are arbitrarily often differentiable. [We have to show that 

f(x, y,z) — yz -\- zx + xy cannot be represented by any of the combina¬ 
tions <p{y[X{x, y), z], z}, <p[xp{x, z), x[y, z)]( cp{ip[x{x, y), z], x}.] 

120. Let the function f{x) have a continuous derivative on {a, b). 

Decide whether it is possible to find for each point f of this interval 
two points xv x2, Xl < f < *2, such that 

: t values and is 

-: and such that 

x different from 1. 

= P(y). 

v* finite interval 

118.1. There are rational functions R[x) such that for an arbitrary 
function j{x) of the real variable x 

o° oo 

/ /(^M) dx — j f(x) dx 
— oo —CO 

provided that the integral on the right hand side exists. Show that this 

property belongs to those, and only to those rational functions that are 
of the form 

R[x) = e(x-oc-tl_h_ *n \ 
\ x - <XX X - (X2 x ~ OCn] 

"here e = +1 or -1, a, ocv <xn are real, and pn are po¬ 

sitive, numbers; n ^ 0. (The case n = 0 must be interpreted as meaning 
#(*) = e[x — oc).) 

Pt. II, Chap. 3, No. 114—120 
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BO Some Properties of Real Functions 

121. Assume that the function f(x) is differentiable on [a, b], but 

not a constant and that/(u) = fib) =0. Then there exists at least one point f 

on (a, b) for which 

122. The function f(x) is twice differentiable. Then there exists a 

point £ in (x0 — r, x0 -f- r) where 

/"»)=■£ / t/w - /widx- 

x0-r 

122.1. When is the mean value of a function in an interval a simple 

mean of those two values that the function takes at the endpoints of the 

interval ? 
Assume that f(x) is defined, bounded and integrable in the interval 

[a, 6]. Introduce the abbreviations 

f(u) = U, /(v) = V, 

—— f fix) dx = W 
V — U J 

and determine the most general function f(x) satisfying 

for all u and v subject to the condition 

a <v ^b. 

122.2 (continued). Analogous question for 

W = ]/UV\ 

assume that f(x) > 0 for a ^ x ^ b. 

122.3 (continued). Analogous question for 

assume that f(x) > 0 for a ^ x ^ b. 

123. The numbers p0> plt p2> • • • are non-negative, at least two 

of the pf’s do not vanish. Then the logarithm of the series 

Pq + PS +&**+'- 
is a function of *, convex on every interval where the series converges. 

124. A bounded convex function [p. 65] is everywhere continuous 

and it is even everywhere differentiable from the left and from the right. 

125. Suppoa 

infinite inter al 

Consider the pd 

curve y = fix i 

Prove that the 9 

limits a tarreac 

126. If a na 

closed interval t 

rent oi Dini. 

127. Prove 1 

monotone conti 

interval to a co* 

§4. Singd 

128. If theft 

then the terms « 

f mo j 
s 

are between tne 

*■ r. Cf. 165 II 

129. Let il 

In order that 

kolds for all m 

•nent that 

for all positive i 

n = { the nrs 

:c;r.ed. (Cf. I< 



ET-" ::ible on [a, b], but 

• > at least one point £ 

Tnen there exists a 

r 'in interval a simple 

h * he endpoints of the 

pr-fTible in the interval 

' native, at least two 

*_it ^ries 

7 series converges. 

• " v.vhere continuous 

' ir.d from the right. 
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125. Suppose that the real function f(x) is defined on a finite or 

infinite interval and that it has there a continuous derivative f'(x). 

Consider the points of intersection of all the horizontal tangents of the 

curve y = f(x) with the y-axis, i.e. the set M of all points 

y = f{x) for which f'(x) = 0. 

Prove that the set M cannot fill out an entire interval. (This proposition 

admits a farreaching generalization.) 

126. If a monotone sequence of continuous functions converges on a 

closed interval to a continuous function it converges uniformly. (Theo¬ 

rem of Dini.) 
127. Prove th*e following counterpart to 126: If a sequence of 

monotone (continuous or discontinuous) functions converges on a closed 

interval to a continuous function it converges uniformly. 

§ 4. Singular Integrals. Weierstrass’ Approximation Theorem 

128. If the functions 

P2{t), ■■■, Pn(t)> 

are continuous on the interval [a, 6] and if they satisfy the conditions 

6 

p„(t) ^ 0, f pn{t) dt = 1, n = 1,2,3,..., 
a, 

then the terms of the sequence 

/ Piit) m dt, / p2(t) m I Pn(t) m <#. — 
a CL CL 

are between the minimum and the maximum of the continuous function 

f(t). (Cf. I 65, I 79, I 83.) 
129. Let x be a fixed point of the interval [a, b] considered in 128. 

In order that 

/ Pnif) fit) dt = fix) 

holds for all functions f(t) continuous on [a, 6] it is necessary and suffi- 

cient that 

lim ( f p„(t) dt + / pn{t) dt\ = 0 
\a x+e ) 

for all positive values of e for which a <C. x — s <C # + £ <C b (if x = a 

or x = b the first or second integral resp. under the limit sign has to be 

omitted.) (Cf. I 66, I 80, I 84.) 
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130. We have 

lim e f e~ct fit) dt = lim f{t) . - - n y t-±oo e-> + 0 

provided that the integral on the left and the limit on the right hand side 

exist. 

131. If the integral 

f txf(t) dt 
o 

converges for A = a and for A = (t, oc < /?, it converges for ot ^ A ^ ft 

and it represents a continuous function of A on that interval. 

132. We assume that 

0l(*, t), p2(X,t), PniX’t)’-" 

are continuous functions of x and t, a ^ t ^b, and that for each n 

b 

pn(x,t)^0, f pn{x,t)dt = l. 
a 

Let f(t) denote a continuous function. The functions 

/„(*) = / P»{*. t) /W dt> n= 1,2, 3,... 
a 

lie between the minimum and the maximum of /(f) on [a, b] for any 

a<x<b; i.e. min f{x) ^ /„(*) S max /(*). Furthermore 
a^x^b a,<>x<Lb 

lim fn(x) = f{x) for a<x<b, 

provided 

lim(/ pjx, t)dt+ f p„(x, t) dtj = 0 

uniformly for a + e ^ ^ b - e, e fixed and positive. The convergence 

is uniform on any closed subinterval of {a, b). 
133. Let f(x) denote a continuous function on [0,1]. The convergence 

of - - 2n +1 1 ,.135 
iSiT’T-T 2 n 

fm tfr dt=f(X) 

is uniform for e ^ x 1 — s, 0 < e < J, e fixed. 
134. Let f(x) be a continuous periodic function with period 2n. Then 

/ . x — * \ 2 
. 27* / sin n - \ 

lim -55S fI -—r I *=/(*)• 

the convergence is uniform for all x. 

135. Every fi 

[a, b] can be apf 

degree of accurac 

136. Every <x 

be uniformly apj 

any assigned degi 

137. Let f(x) < 

([0, 2ri\). Two po 

can then be founc 

and 

b 

f P(x) dx - 
a 

138. The n-xh 

If all the moment 

finite interval ~i. 

139. If ah the 

of a function thal 

then the function 

140. If the fin 

/ f(x) dx = f f 
a 2 

of a function f x 

interval (a, b the 

n times in the in* 

141. The 2«-t 

constants, cf. VI 

f i 

If the first 2 n — 1 

with period 2rr '.*3 

any interval of leu 
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right hand side 

-r— for oc ^ A ^ 

l_*. interval. 

r : : .at for each n 

I 

w = 1, 2, 3,... 

" [a, 6] for any 

r—Trmore 

:: 

cl - The convergence 

L 1 The convergence 

v :. period 2tt. Then 

135. Every function defined and continuous on the finite interval 

[a, b] can be approximated uniformly on [a, b] by polynomials to any 

degree of accuracy. (Weierstrass’ approximation theorem.) 

136. Every continuous function that is periodic with period 2n can 

be uniformly approximated by trigonometric polynomials [VI, § 2] to 

any assigned degree of accuracy. (Weierstrass’ approximation theorem.) 

137. Let f(x) denote a function that is properly integrable over [a, 6] 

([0, 27t\). Two polynomials (trigonometric polynomials), p(x) and P(x), 

can then be found for any positive s so that for a x fg b (0 ^ x ^ 2n) 

fi(x) g f{x) g P(x) 

and 

b b / 2.71 271 

J P(x) dx — J p(x) dx < e If P(x) dx — J p(x) dx < e 
a a \0 0 

138. The w-th moment of a function f(x) is given by 

/ f[t)tndt. 

If all the moments of a function that is defined and continuous on the 

finite interval [a, 6] vanish then the function vanishes identically. 

139. If all the moments 
b 

f f{t)tndt, n = 0,1,2,..., 

of a function that is properly integrable over the interval [a, 5] vanish 

then the function f(x) vanishes at every point of continuity. 

140. If the first n moments vanish, 

b b b b 

f f(x) dx= J f(x) x dx = f f(x) x2, dx — ••• = f f(x) xn~l dx — 0, 
a a a a 

of a function f(x) defined and continuous on the finite or infinite 

interval (a, b) then the function changes sign (V, Chap. 1, § 2) at least 

n times in the interval (a, b) unless it is identically 0. 

141. The 2w-th and (2n + l)-th trigonometric moment (Fourier 

constants, cf. VI, § 4) of a function with period 2n are defined as 

2 71 271 

J cos nx f(x) dx and J sin nx f(x) dx. 
o o 

If the first 2^ + 1 trigonometric moments of a continuous function f(x) 

with period 2n vanish then f(x) changes sign at least 2n + 2 times in 

any interval of length > 2n (V, Chap. 1, § 2) unless j{x) is identically 0. 



84 Some Properties of Real Functions 

142. Let the function <p(x) be defined and continuous for x ^ 0. 
Suppose that the integral 

J(k) = f e~kx cp(x) dx 
0 

converges for k = k0 and that it vanishes for a sequence of k's increasing 

in arithmetic progression: 

J(k0) - J(k0 + ») = J(k0 + &*) = •• • = /(*0 +««)= — = 0, « > 0. 

Then <p(x) vanishes identically. 

143. The r-iunction 

r(s) = lim 
n5 n! 

S(S + 1) *" (5 + n) 

can be written as an integral [31]. Use this fact to prove that T(s) does 

not have any zeroes. [r(s + 1) = &T(S)» 142 

We associate with each function that is defined on 0, 1] the poly¬ 

nomials 

This polynomial is bounded on [0,1] from below by the greatest lower 

bound, and from above by the least upper bound, of /(*) and it coincides 

with f(x) at the endpoints. 
144. Work out the polynomials Kn(x), n = 0, 1, 2, ... for 

f(x) = 1, f{x) = x, f(x) = x2, f[x) = ex. 

145. Let % be any point on [0, 1] and 

1 = £ ( n ) xv(l - x)n~v = Z1 + Z11, 

where S1 refers to the subscripts for which v — nx\< nSli and Iu to 

those for which \v — nx | > w3/4, n ^ 1. Then 

146. Let f(x) be continuous on [0, 1]. The polynomials Kn(*) converge 

uniformly to f(x) on [0, 1]. (New proof of Weierstrass theorem, 135.) 
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Chapter 4 

~ :e of k’s increasing 

Various Types of Equidistribution 

§ 1. Counting Function. Regular Sequences 

In the sequel we are considering monotone sequences of positive num- 

= ••• = 0, cc > 0. 

bers. The counting function N(r) of such a sequence rlt r2,..., rn,..., 

0 < rx < r2 < r3 rn ^ • • •, is defined as the number of those 

rn*s that are not larger than r, r ^ 0: 

N(r) = £1. 
rn^r 

:: ve that F(s) does 

(If /(<) is a function of t then Y. f{rn) denotes the sum 
rn^r 

/K) + m + - + /(O. ^ ' < rm+v) E-g- if rl = !> = 2’ 
r3 = 3, ... then N(r) = [r]. 

N[r) is a piecewise constant, non-decreasing function whose jumps are 

L :n [0, 1] the poly- 
integers and which is everywhere continuous on the right. 

147. If f(t) is differentiable and f'(t) properly integrable, t > 0, then 

n = 0, 1, 2, ... 
If(r„) = N(r) f(r) - / N(t) f(t) it. 

rn^r 0 

■ the greatest lower 

* -v) and it coincides 

148. Let N(r) denote the counting function of the sequence 

ri> r2> r3> • • • > rn> • • ■» which increases to infinity. Then 

- ... for 
lim sup = lim sup —, lim inf — — = lim inf —, 

r-> oo Y n->oo rn r->oo Y n-+ oo rn 

- =«*. lim sup -!oS N{r) - lim sup Iog * , lim inf ‘°f NW- - lim inf /°g * . nmsup logy Tit F log Yn ’ r->oo logr n^co log rn 

T~II 

149. The counting function N(r) and the convergence exponent A of 

the sequence r,, r2, r3, ..., rw,... [I, Chap. 3, § 2] are connected by the 

relation 

. ^ n3/4 and Z11 to 

log N(r) - 
hmsup f-—— = A. oo r log K 

150. A function L(r) defined and positive for r > 0 is termed slowly 

increasing if it is mono cone increasing and satisfies the condition 

Trials Kn(x) converge 

iss’ theorem, 135.) 

limT-l. 
f-»- L(r) 

Show that 
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151. Suppose that L(r) is positive for r > 0, monotone increasing 

and that for r sufficiently large 

L(r) = (log rf' (log, r)x' ■ ■ ■ (log* r)**, *1 > °- 

[log* * = log*_j (log x).] Then L(r) is slowly increasing. 

152. If L(r) is slowly increasing then 

iim!?im=o. 
cc log r 

153. If N(r) denotes the counting function of the sequence 

rlf r2, r3,rn,... and if 

N{r) oo /L(r), 

where L(r) is slowly increasing, 0 < A < oo, then A is the convergence 

exponent of the sequence rv r2, r3, ..., rn,... 

A sequence rv r2, r3> ..., rn,... of the type considered in 153 will 

be called a regular sequence in the sequel, 154 159. Later on (e.g. I\ 

59 — IV 65) sequences for which N(r) oo will also be termed regular. 

If we take the term in this broader sense also the prime numbers 2, 3, 5, 

7, 11, ... form a regular sequence and the propositions 153 159 remain 

valid without alteration. 

154. The counting function of a regular sequence with convergence 

exponent X satisfies the relation 

lim: 
N(cr)  

N(r) 
c > 0. 

155. Let N(r) be the counting function of the regular sequence 

r\> r'->> rs> • • • > rn> • • • wrth convergence exponent X and f(x) be a piecewise 

constant function on the interval (0, c], c > 0. Then 

lim 
N{r) (t) =//(** M- 2 /l-r) = 

rn^cr 

156. The limit relation in 155 is also valid if f(x) denotes a properly 

integrable function on [0, c]. 
157. Let N(r) denote the counting function of the regular sequence 

rltr9, ...,rn>... with convergence exponent X and let <x > 0. Then 

lim ——- 
r->oo N(r) i (r 

rn^r 

1 fL 

= /* 
dx = - 

158 rd 

159. Asma 

Thence r.. r.. 

tor x > 0 am 

• <j<^ 

iud 

Show that 

160. Supf 

interval 0. 1] 

inequality 

The counting 

The sequence 

161. The I 

an i satisnes I 

l 

The sequence 

A sequeno 
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rr.onotone increasing 

oct > 0. 

of the sequence 

- - /. is the convergence 

fjs (f7y/ 
759 Later on (e.g. IV 

'■ ~ termed regular, 

numbers 2, 3, 5, 

153—159 remain 

'ith convergence 

c > 0. 

regular sequence 

be a piecewise 
pt 

L 

■ i- notes a properly 

' *- regular sequence 

* ' > 0. Then 

158 (continued). 

lim— - v (!jl) * A_ 7 ~ 
N^rHi5r> i 

159. Assume that N(r) is the counting function of the regular se¬ 

quence r]tr2, ... with convergence exponent /, that f[x) is defined 

“°r x>° and properly integrable over every finite interval [a, b], 
1 <C & < b and that furthermore 

[/Ml < in a neighbourhood of x = 0 
and 

|/M I <*-*-* in a neighbourhood of x = oo, oc > 0. 

lim 

160. Suppose that the function f[x) is defined and monotone on the 

interval (0, 1] and that it satisfies in the neighbourhood of x = 0 the 
inequality 

\f{x)\<x*~\ oc> 0. 

The counting function and the convergence exponent of the positive 

sequence rv r2,..., rn, ... are called N(r) and l resp.; let 0 < X < oo 
Then 

"RSf'wKr)s//P)|/(t)' tin*.] 
rn^r 

The sequence rn need not be regular. 

161. The function f(x) is defined for x > 0, is positive and decreasing 
and satisfies the inequalities 

f(x) < x* 1 in the neighbourhood of x = 0 

f{x) < in the neighbourhood of x = oo, 5c > 0. 

The sequence rlt r2, r3, ..., ... is defined as in 160. Then 

[1116] 

§ 2. Criteria of Equidistribution 

A sequence of the form 

Xl> X2> x3> •••> xn> • • • 
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is called equidistributed in the interval [0, 1] if all the xv x2, x3,..., xn, ... 

are on [0, 1] and if for every function that is properly integrable over 

[0, 1] the following equation holds: 

(*) 
f{% i) +/(*?) + ••• + /(*«) 

lim-=- 
n~>co 71 

The term “equidistribution” is explained by the following criterion: 

162. A sequence , *2, xB, ..., xH, ..., 0 ^ ^ 1, is equidistributed 

on [0,1] if and only if the “probability” of a term *n to fall into a certain 

subinterval of [0, 1] is equal to the length of that subinterval. More 

precisely, if the sequence has the following property: Let [oc, /?] be an 

arbitrary subinterval of [0,1] and vn{<x, denote the number of xv’s, 

v = 1, 2, ..., n, on [oc, /?], then 

vn{octp) 
lim- 

n->oo It 
(3 — oc. [102] 

163. Let [oc,j3] be an arbitrary subinterval of [0,1] and sn(oc, ()) 

denote the sum of the xv’s, v = 1, 2,,..., n, that fall into [oc, /?]. A se¬ 

quence xvx2,x8,...,x„,..., 0 ^ x ^ 1, is equidistributed if and only if 

lim 
•»-> oo 

*,(<*. 0 

n 

164. A sequence xv x2, x3, ..., xn, ..., 0 fg ^ 1, is equidistributed 

on [0, 1] if and only if for every positive integer k 

lim - 
tt->cx= 

“b T ■ + < 1 

: k +T • 
[137] 

165. A sequence x]} x2, x3, ..., xn, ..., 0 ^xn : 

on [0, 1] if and only if the two equations 

1, is equidistributed 

cos 2nkx, + cos 2nkx9 
lim-- 

oo 71 

cos 2 nkxn 

= o, 

sin 2jikx^ -f sin ^7ikx9 + • • ■ -j- sin 2nkxn 
lim--- 
n-^oo 71 

0 

hold for every positive integer k. [137.] 

§ 3. Multiples of an Irrational Number 

166. Let 6 be an irrational number. The numbers 

xn = On — [On] 

are equidistributed on the interval [0, 1]. 
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integrable over 

U ix. 

t- ;ng criterion: 

^ - is equidistributed 

rail into a certain 

r ibinterval. More 

cr Let [<*,/?] be an 

■e number of xy’s, 

[102] 

I! and sn(oc,p) 

itc >,/?]. Ase- 

r .:-d if and only if 

-- equidistributed 

[137.] 

- .5 equidistributed 

fcer 

£ 

167. Let 6 denote an irrational number. Put en = 1 or en = 0 accord¬ 

ing as the integer next to n6 is larger or smaller than nO. Let a and d, 

a 0, d > 0, stand for two integers. Then we find that 

lim 
n ->oo 

n —1 
V 

*=0 

11 2 * 

168. Let 6 be an irrational number and oc be defined as oc = qO, q 

integer, q =f= 0. As z converges to e27llx along the ray arg z = 2nx, the 

function 

/(«) =Z(n6 - [nO]) z\ 
n = 1 

increases to oo in such a way that 

lim (1 — r) fire2mx) = 
f—>1 -0 ' M ' 2mq 

169. Determine for real x the function 

^ arbitrary complex, | z | < 1, 

[188]. 

fix) = lim 
S2 71X + COS^ 271X 4* COS6 371X - 

170. The decimal fraction 

(9 = 0.12345678910111213... 

(the natural numbers listed consecutively) represents an irrational 

number. According to 166 the numbers 

nQ — [nO], n = 1, 2, 3, ... 

are everywhere dense on the interval [0, 1]. Show that this is already 

the case for the subset 

lOn0- [lOn0], a = 0,1, 2, 3, ... 

171. The number 

e_1+Tr+¥r+¥r + '"+irr + 
is irrational. [VIII 258.] Prove that the only limit point of the set 

n\ e — [n\ e], n = 1, 2, 3, ... 
is zero. 

172. Suppose that the polynomial P(x) = a±x 4- a0x2 + ••• + arxr 

has at least one irrational coefficient. Then the numbers 

Pin) - [P(n)]f 

have infinitely many limit points. 

n = 1, 2, 3, ... 



90 Various Types of Equidistribution 

173. Let 6 be an irrational number, xn = nd — [»0], n = 1, 2, 3,... 

and let *1( «2, a3, . be a monotone decreasing sequence of 

positive numbers whose sum diverges. Then we find for any properly 

integrable function f(x) on [0,1] that 

^ «!/(*,) +«2/(*2) + - + «„/(*») = I f[x) dx 

§ 4. Distribution of the Digits in a Table of Logarithms 

and Related Questions 

174. The function g(t) has the following properties for t^> 1: 

(1) g(t) is continuously differentiable; 

(2) g(t) is monotone increasing to oo as t -> oo; 

(3) g'(t) is monotone decreasing to 0 as t —oo; 

(4) tg'(t) tends toooas^oo. 

Then the numbers 

x. = g(n) - [g(w)L n= 1, 

are equidistributed on the interval [0, 1]. 

175. Suppose that a > 0, 0 < tr < 1. The sequence 

xn = an0 — [«»"] 

is equidistributed on the interval [0,1]. 

176. Let a > 0, a > 1. The numbers 

xn= a (log n)° - [a (log«)°] 

are equidistributed on [0, 1]. 

177. For 0 < a < 1, { 4= 0 the series 

sin lg| , sin 2° | , sin 3^ 

^ 2° ^ 3e 
+ ••* + 

is absolutely convergent if and only if q > 1. 

178. Suppose that the square roots of the natural numbers 1, 2, 3, ... 

are written up one below the .other in an infinite array. Examine the 

digits at the fth decimal place (to the right of the decimal point), j ^ 1. 

Each digit 0, 1, 2, ..., 9 appears on the average equally often. More 

precisely: let vg(n) denote the number of those integers ^ n whose 

square roots show a g at the 7-th decimal place. Then 

lim 
*-,(*) 

10’ 
= 0,1, 2,...,9. 

179. Assume a> 0 and = a log n — [a log »], n = 1,2,3,... 

and that the arbitrary function f(x) is defined and properly integrable 

over ’0,1“. Thei 

lim 

holds provided t 

0 <: f <; 1. The 

K{x,£)=r 

4 

K(x, 0) = J 
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I — KQ[t n = 1, 2, 3, ... 

7rising sequence of 

ind for any properly 

= * x) dx. 

: Logarithms 

- for £ L> 1: 

n = 1, 2, 3, ... 

nr L numbers 1, 2, 3, ... 

-~3.y. Examine the 

f mal point), j ^ 1. 

: rally often. More 

—:igers ^ ^ whose 

. =0,1, 2,..., 9. 

n = 1, 2, 3,... 

: 7 r: perly integrable 

over [0, 1]. Then the limit relation 

/(^i) + /(**) + + /(*rt) 4 
nL“ -*- = / /(*) K(X> V dx 

0 

holds provided that n increases to infinity in such a manner that xn 

The function K(x, |) is given by 
■£. 

K[x, f) = 
if 

lpgg yr-f 
q - 

if f ^ 1, q = ella, 0<i<l; 

JK(x,0)=K(x,l)=j2LLf. 

180 (continued). The limit points of 

/(*i) +/(*2) + ••• + /(*») 
= 1, 2, 3, ... 

cover an entire interval J = J[a, f) which depends on a and / only. 

This interval degenerate into a point if and only if f(x) = c, c a 

constant, at each point of continuity. What can you say about J(a, /) if 

^ is a very large or a very small positive number ? 

181. Suppose that the common logarithms (to the base 10) of the 

natural numbers 1, 2, 3, 4, ... are listed below each other in an infinite 

table of logarithms. Consider the digits at the j-th decimal place (to the 

right of the decimal point), 7 ^ 1. There exists no definite probability 

for the distribution of the digits 0, 1, 2, ..., 9 in this sequence. More 

exactly: let vg(n) denote the number of those integers ^n whose loga¬ 

rithms show the digit g at their j-th decimal place. Then the quotients 
vg(n) . 
—^ do not have a limit as n —> 00: Their limit points fill out an entire 

interval of positive length. 

182. The function g(t) has the following properties for t ^ 1: 

(1) g(£) is continuously differentiable; 

(2) g(t) is monotone increasing, to 00 as t -> 00; 

(3) g'(t) is monotone decreasing to 0 as t->oo; 

(4) -> 0 as t 00. 

(Cf. 174.) Then the numbers 

** = g(*) - [?(»)], n = 1, 2, 3, ..., 

are everywhere dense on the interval [0, 1] but they are not equidistri- 

buted. Their distribution is characterized by the following limit theorem: 

Let the function f(x) be properly integrable over the interval [0, 1]. If n 
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increases to infinity so that xn -> 0 < f < 1, then 

lim 
f(xl) /(*2) + ••• + /(*») 

n =m 

holds provided that /(#) is continuous at a; = f. If /(a;) has a simple 

discontinuity (jump) at the point x — the set of limit points of 

/(*!> +/(*2) + — +/(*») 

71 

covers the interval [/(£ — 0), /(f + 0)]. The statement is true also for 

f = 0 or £ = 1 if /(1) = /(0) and if /(*) is extended so that it becomes a 

periodic function with period 1. [Then /(1 + 0) = /(+0), /(I — 0)= /(—0).] 

183. The sequence 

xn = a (log n)a — [a (log ri)G], n = 1, 2, 3, ... 

is for 0 < a < 1 everywhere dense on the interval [0, lj but not equi- 

distributed. [176, 179.] 
184. Assume that the square roots of the logarithms of the 

natural numbers 1, 2, 3, 4, ... are tabulated below each other in an 

infinite array. Consider the digits at the j-th decimal place (to the right 

of the decimal point) / 1. There exists no definite probability for the 

distribution of the digits 0, 1, 2, ..., 9 at the j-th decimal place. More 

exactly: Let vg(n) denote the number of integers k among the first n 

integers for which ]/log k has the digit g at the j-th decimal place. Then 

the quotients^^- tn — I, 2, 3,... are everywhere dense between 0 and 1. 

§ 5. Other Types of Equidistribution 

185. Imagine in the ^-dimensional space a rectilinear uniform motion 

described by the equations xv{t) = av + 6vt, av, 6V constants, v = 1, 2,..., p, 

t time. If the numbers 6X, 02, 6p are rationally independent (i.e. if 

+ n262 + * * ■ + np0p = 0, nv n2,...,np rational, has the only solu¬ 

tion nx = n2 = • • • = np = 0) any function f(xv x2, ..., xp), that is 

periodic in xv x2, ..., xp with period 1 and properly integrable over the 

unit cube 0 xv 1, v = 1, 2,..., fi, satisfies the relation 

t ill 

lim- f f(x1{t),x2{t),...,xp{t))dt= f /■■■f/(xJ,x2,...,xp)dx1dx2---dxp. 
<-►«> 1 0 0 0 0 

186. Let ocv oc2, j3lt be arbitrary constants, 0 fg ocx < oc2 < 1, 

0 < 1. The conditions 

x — [x] a2, ^ y — [y] ^ p2 

ar 
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z-~: :5 true also for 

- : uat it becomes a 

— 0)=/(—0)0 

n = 1, 2, 3, ... 

- but not equi- 

. finthms of the 

> Ti:h other in an 

l .ace (to the right 

i T7:bability for the 

k- iimal place. More 

r ^ziong the first w 

. imal place. Then 

iween 0 and 1. 

lt uniform motion 

fctn* i. v = 1, 2,..., j)t 

— irpendent (i.e. if 

the only solu- 

- xp), that is 

— :-grable over the 

. dx1 dx2 • • • dxp. 

S X1 < <x2 < 1, 

determine an infinite number of rectangles with sides parallel to the 

axes and congruent mod 1, i.e. they are congruent by translations 

parallel to the axes through integral lengths. The equations x — a -f 0±t, 

y = b + 02t, a, 0V b, 02 constants, t time, define a linear uniform motion. 

Let T(t) denote the sum of the time intervals up to time t the moving 

point is spending in one of the above mentioned rectangles. In the case 

where 6,: So is irrational we can establish the relation 

lim 
oo 

m 
— («2 0C±) (^2 ft) • 

187. A billiard ball is moving rectilinearly with constant speed on a 

smooth square table with surface 5- The ball is reflected by the cushion 

each time according to the law of reflection (angle of incidence = angle 

of reflection). Suppose that the tangent of the angle between the direction 

of the motion and a side of the billiard table is irrational. We denote by 

T[t) the sum of the time intervals up to the time t that the moving ball 

spends in a certain subregion of size f. Then 

m _ T 

The numbers 

lim ■ . , 
t-> oo t 

n = 1, 2, 3, ... 

which appear in the construction of sums of rectangles (subdivision 

according to an arithmetic progression) are in a certain sense equi- 

distributed. A similar type of equidistribution comes up in the next two 

problems. 

188. Let 

smaller than 

25]. Then 

lim 
/ 

\n> r2n> rzn> • rtpn den°te the positive integers that are 

i and relative prime to n\ their number is <p = cp(n) [VIII 

(p{n) 
f f{*)dx 

holds for any properly integrable function f(x) on [0, 1]. [VIII 35.] 

189. We write down in increasing order all reduced fractions 1 

whose numerators and denominators are among the numbers 1,2,3, ..., n: 

(Farey series 

1 

w2, , 

= T' N = N{n)=(p[l) +<p(2) +<p(n))- 
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Then the relation 

Various Types of Equidistribution 

Um /(a>))+/^)+/K) + - + /(^i = j f{x) dx 
n->co ^ o 

holds for any properly integrable function f(x) on [0, 1]. [I 70.] 

Some of the number sequences occurring in the preceding problems 

were equidistributed, i.e. the probability that a number would fall into 

a certain interval was proportional to its length, e.g. 166, 175, 188. This 

will not be the case in the following examples: For these sequences there 

exists a certain probability density according to which the density of 

points may be different in different subintervals. A similar case appeared 

already in 159. r —-i 
190. Suppose that /{%) is a properly integrable function on I 0, J/— I 

and that there exists a positive number p such that x~pf(x) is bounded 

on this interval. We set 

^C) 
2n 

Then 

v — 0, 1, n; n = 1, 2, 3,... 

lim 
/(W +/(*!»> +/<52n) + -+/U 

-n I'm- 
—2x2 dx. 

191. Let 

%ln> X2n> • • •» Xnn> ~l < Xyn < 1, V = 1, % - 

be the zeros of the n-th Legendre polynomial Pn{x) [VI 97] and A be 

real, A > 1. Then 

log 
lim - 

«-> oo 

+ log(l + -p] + - + logfl+^- 

= log 
A + /A2 — 1 

2 A 

where the positive value of the square root is considered. [Use 203.] 
192 (continued). Let k be any positive integer. Show that 

lim 
+ 4« + ••• + — f cosk [1179.] 

71 J 

193. Let 

> X2n> •”> Xn —l<xvn<l, V — 1, 2,n, 

denote the zeros of the n-th Legendre polynomial Pn(x), and f(x) be a 

properly integrable function on [—1, 1]. Then 

/(*!») + PX2 n) 
lim' ——)- = ^ //(cos#) d&. 
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194. Assume that <x <: x ^ (} is an arbitrary subinterval of [—1, 1] 

and that vn(<x,fi) is the number of zeros in [«,£] of the »-th Legendre 
polynomial. Then 

lixn V"® _ arccos ot. — arccos yS 
»-> oo n ji 

The points xm are not equidistributed on the interval [—1, 1] but the 

values arccos *„ are equidistributed on [0, n}. We may interpret the 

interval [—1, 1] as the horizontal diameter of a circle and each point x 

as the normal projection of two points of the circumference onto the 

diameter. We are facing here an equidistribution on the circumference 
but not on the diameter. 

n = l, 2, 3,... 

j ~e~2^dx. 

v= 1, 2,.... n, 

' T 97] and A be 

=:,gi±^|- L 
2A Eirred. [Use 203.] 

w that 

[1179.] 

-r. v , and f(x) be a 

d&. 

Chapter 5 

Functions of Large Numbers 

§ 1. Laplace's Method 

195. Let plt p2, ..., fa, aJf a2, ..., be arbitrary positive numbers. 
Then 

„1™1+M 

exists and it is equal to the largest among the numbers a1( a2,.... at. 

196. Under the same hypotheses as in 195 

1{m *A+1+pA+' + -+Pi*rl 
+ = maX a2’ • •' ’ ^ • 

197. Let f(x) be an arbitrary polynomial whose zeros are all real 
and positive and for which 

m 
/« 

Show that 

= co + cix + c2x2 H-+ c„xn ■ 

lim -X- = lim —— 
n~^°° yc n->oo Cn 

exists and that it is equal to the smallest zero of f(x). 
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198. The two functions <p(x) and f(x) are continuous and positive on 

the interval [a, 6]. Then 

lim 1/ f cp[x) [/(*)]" dx 
»-»■“ ' a 

exists and is equal to the maximum of f(x) on La, b_. 

199. Under the same hypothesis as in 198 

b 

fv(*) [/(*)f+1 d* 
hm —~b-= max f{x). 

f<p(*) [/(*)]“<?* 
a 

200. Let k be a positive constant and a < | <b. Show that for 

a, b, f, k fixed and n-^oo 

a 

201. The functions <p{x), h(x) and f(x) = ehM are defined on the 

finite or infinite interval [a, 6] and satisfy the following conditions. 

(1) (p(x) [f{x)]n = <p{x) enhM is absolutely integrable over [a, b]; 

» = 0,1, 2,... 

(2) The function h(x) attains its maximum only at the point £ in 

(a, b); moreover, the least upper bound of h(x) is smaller than h(i) on 

any closed interval that does not contain f; there is, furthermore, a 

neighbourhood of £ where h"[x) exists and is continuous; finally h"(£) < 0, 

(3) cp[x) is continuous at x = f, ?(f) 4= 0- Then the following asymp¬ 

totic formula holds as « —> oo1 

/ <p(x) mr dx ~ *(£) umn+V2 ]/- ^=?>(« e”MI) ]/- 
a 

i On the use of such integrals Laplace has this to say: ... On est souvent conduit 

a des expressions qui contiennent tant de termes et de facteurs, que les substitutions 

numeriques y sont impraticables. C’est ce qui a lieu dans les questions de probabilite, 

lorsque Ton considere un grand nombre d'evenements. Cependant il importe alors 

d’avoir la valeur numerique des formules, pour connaitre avec quelle probabilite 

les resultats que les evenements developpent en se multipliant sont indiques. II 

importe surtout d’avoir la loi suivant laquelle cette probabilite approche sans cesse 

de la certitude qu’elle finirait par atteindre, si le nombre des evenements devenait 

inf ini. Pour y parvenir, je considerai que les integrales definies de differentielles 

multipliees par des facteurs eleves a de grandes puissances, donnaiept par 1 integra¬ 

tion, des formules composees d’un grand nombre de termes et de facteurs ... 

He adds the following remark on his method of which 201 describes the first 

step: ... un procede qui fait converger la serie avec d’autant plus de rapidite, que 

la formule qu’elle represente est plus compliquee; en sorte qu’il est d’autant plus 

exact, qu’il devient plus necessaire ... (Essai philosophique sur les probability 

Oeuvres, Vol. 7. Paris: Gauthier-Villars 1886, p. XXXVIII.) 
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1 

fcl cs nd positive on 

* 

Show that for 

— t defined on the 

L - g conditions: 

r - f ible over [a, b]; 

Id- it the point f in 

B Lier than /*(£) on 

■ if furthermore, a 

c - finally h" (f) < 0, 

:: llowing asymp- 

• ••1_2*. 

i -:-=t sou vent conduit 

I les substitutions 

1 :: ns de probabilite, 

t ' ' lant il importe alors 

: quelle probabilite 

I sont indiques. II 

: ipproche sans cesse 

enements devenait 

: :: de differentielles 

iziient par l’integra- 

m : : de facteurs ... 

i 2f1 describes the first 

l—z de rapidite, que 

r . :st d’autant plus 

\ ~ -ir les probability 

3-Ve consider only a neighbourhood of f and expand h (x) in powers of 

(x — |) up to terms of the second order.] 

202. Let n be an integer, n + oo. Using the fact that 

7t_ 71 

2 IT 
J sin2” x dx = f cos2” x dx = 

o o 

3 ... (2n - 1) 71 

2-4 ...2» 2 * 

prove that 
1 - 3 ... (2n - 1) 

2 • 4 •«•2w 

203. We assume that A is real, A > 1; Pn(x) denotes the n-th Legendre 
polynomial. As n->oo 

PnW 
1 (A + l/FLTT)^!/2 

V J/A2 — 1 

The positive value of the roots must be used. [VI 86.] 

204. The Bessel function Jv(t) can be defined by Hansen’s expansion 

eitCOSX = Jo(t)+'2Z ivJv(t) cosvx. 
V = 1 

Derive the following asymptotic formula: 

et 

J,{it) ooiv — , t^+oo, v = 0,1, 2,... 

205. Show that for positive n, n —> -f- oo, 

r(n + 1) =/ «-.*» dx (±)a j/im 
0 \ e ' 

and, more accurately, 

(~) r(n + 1) = K&r* + o . [18,1167.] 

206. Let k and l be real numbers, k > 1. Prove that for n + oo 

(nk + A (ft -_!)»/ ft \ 

\ n / |/2Tin 1/ 

nk + l+ — 

207. Assume that a is real and that t is positive and increases to 
infinity. Then 

]/Ynt 

i 
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208. Let 0 < « < L The following approximation is justified as 

+0: 

0 x 

209. Let oc > 0. As t -> oo we obtain 

f x-axf dx oo 1 rT i1' exp (e-1***) . 

§ 2. Modifications of the Method 

210. Let «. and /S be two real constants. Then the relation 

holds where 

n + <x\n -rP B , / i \ 

— f e Xxn dx = A + — + 0 /—) 
n! J \» \r n ! 

211. We denote by X a positive proper fraction and by x„ the only 

positive root of the transcendental equation 

1+— + — + •••+4 = ^'' [V 42]. 

As n—>oo the root is given by 

xn = n + <x \ n + f} +-o(l), 

where <x and f> satisfy the equations: 

*fe-*dt = X. P = ^r1- 

212 (Continuation of 201). Let a denote a real constant. Then, for 

n —> oo, 

j” v(x) [f(x)Y dx ~ <p(£) J e 2 dt 

= y(f)S*(ei . 1 - C = ] -/-|l=l//^r(F). 

213. The functions <p(#), A(v) and /(v) = c'!{'' are defined on the finite 

or infinite interval [a, 6] and satisfy the following conditions: 

(1) <p(x) [f(x)-_' 

n = 0,1, 2, ... 
(2) The value of 

its least upper bou:* 

not contain f. More* 

exists and is bounder 

(B) is contim 

Prove, for n oc 

s n 

f 
a 

where oc and fi star i 

214. Let f denott 

= 1. Then we 1 

where cc and are re: 

215. Suppose tda 

of the equation 

As n oo is asi 

where f is the only r 

given by 
1 

oc = — - 

216. Assume th-: 

* and that 

lirn 

We define 



. - is justified as 

e “ . 

: by xn the only 

[V 42]. 

: r. '-.ant. Then, for 

i e 2 dt 

f = i 

' rd on the finite 
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(1) (p{x) [f(x)]n = (p(x) enh^x) is absolutely integrable over [a, b], 

n = 0, 1, 2, ... 

(2) The value of the function h(x) at a point f of (a, b) is larger than 

its least upper bound in any closed interval to the left of £ which does 

not contain f. Moreover there is a neighbourhood of f in which h"(x) 

exists and is bounded. Finally A'(f) > 0. 

(3) 9)(x) is continuous at x = £, <p(t;) 4= 0. 

Prove, for n -> oo, the asymptotic formula 

\log» , j5 
si—-i- 

/ Vw [/(*)r dx^i%ems} • 

where a and (3 stand for real constants. 

214, Let | denote the only real root of the transcendental equation 

= 1. Then we have for n-^oo 

£n + «log»+0 

f exxndxconAB, 
71 ! J 

where oc and (3 are real constants and 

l +f 1 .4 ==*- 
2 ' £ = -~- 

|/ 2tt 1 + £ 

215. Suppose that w is odd and let — denote the only real root 

of the equation 

1+tt+!t + -+£ = 0 Cv?4]. 
As w-^oo is asymptotically given by 

%n — + « log n + p + 0(1), 

where £ is the only real root of the equation e1+*£ = 1 and a and (3 are 

given by 

^ log (b 2 7t l + *\ 
2i+F ** i + 1 £ 

216. Assume that the function g{x) is monotone increasing for positive 

a; and that 

We define 
X^+ oo * 

lim g(x) = +oo 
t-»-f oo 

a =4 f e~x+t{x)xn dx. n n! y 

lim €W=0. 
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where a > 1, has the 

approximated by If there is a positive number y such that 

lim ^ 
%-> + “ g{X) 

exists and is a continuous function of <x for 1 — y^oc^l+y then 

log an 
lim 

g{n) 
: 1. 

The method of problem 201 to evaluate functions of large numbers can 

be generalized in the following way: We have to estimate an integral of 

the form 

/»(«) AW AW - AW * = / *>W * 

where the functions V*), **(*)• • ■ • • are Positive °n (“’ 6) and 
their maximum at the same interior point £ Then we approximate 

A„(*) = Av(f) + i (* ~ ^)2 + ‘' ’ by h”^ +^hv ® ^ _ ^2 

and the integral by 

f<p(£)e “ 

We have supposed that <p(£) 4= 0, moreover tiv(£) = 0, h"(£) < 0 as 

condition for the maximum at the point f, and 
_h"nt) - h",{£) -_/£(£) = s. The method can be justified in 

many instances and it is clpable of adaptation and refinement. 

n\2 
>2»cos# 

d& — In. 
J |(2ne^ - 1) (2nJ* - 2) (2ne*° - 3) ••• (2nelx} - w) 1 

[Put # = -^L and recall 59, 115.] 

217.1.1 Analogy to 201 suggests sufficient conditions under which 

for n -> + °° 
2 71 

ff <p{x, y) enh{x,y) dx dv ~ 9$> ’?) enK('n) “j7 
w K hxx\y hXy 

where the partial derivatives of second order hxx, hyy, and hxy are taken 

at the point (f, rj). Give a full statement and a proof. 

§ 3. Asymptotic Evaluation of Some Maxima 

218. The function 

1 /7/V -1W*- 2"! ••• (x — n) a~x, 

219. The function 

x(jt 

where a > 1, has the 

approximated by 

220. We define z 

U (1—: 

The sequence of funct 

Qi(x) 
is uniformly bounde i 

0 < a < 2. 

221. We define = 

•(‘-tJMK* 
The sequence of funct 

PiW «-«, 

is uniformly bounded 

bounded if 0 < a < 3 

222. Assume tha: 

of e~(x+axfl) xn in the n 

*223. The function 

Then its maximum : 

parallel to the y-axif 

is a continuous func::: 
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= * ^ 1 + y then 

large numbers can 

late an integral of 

- dx 

:n (a, b) and attain 

approximate 

iK® (*-£)* 

= 0, h"{t) < 0 as 

: an be justified in 

: i -tiinement. 

dj} = 2?r. 

: i: lions under which 

and hxy are taken 

Maxima 

where a > 1, has the maximum Mn on the interval (n, -j- oo). It can be 
approximated by 

1 i 

nl ]/2n la - nM+i/2 ' f16-] 
219. The function 

x(x2 - l2) (x2 - 22) ••• (X2 - n2) a-*, 

where a > 1, has the maximum Mn on the interval (n, +oo). It can be 
approximated by 

Mn 1 / 2 J/a\2n+1 
• [17.] 

220. We define j/5 = Q0(x), 

- t) (1 - T) - (1 - —1.2,3,... 

The sequence of functions 

&(*)*"'• &(*) .... Qn{x)a~*, ... 

is uniformly bounded for * > 0 if a ^ 2; it is not uniformly bounded if 
0 < a < 2. 

221. We define x = PQ (#), 

X(X ~t) 0 ~ t) 0 ~ t) (1 = pn(x), n = 1,2,3,... 

The sequence of functions 

P^x) a , P2(x) a x, Pn(#) a-*, 

is uniformly bounded for * > 0 if « ^ 3 + j/8 ; it is not uniformly 
bounded if 0 < a < 3 + j/8. 

222. Assume that a > 0, 0 < ^ < 1 and that Mn is the maximum 
of e (x+azf) xn in the interval (0j + oo). We find 

(MXn-l* 
bm —- =6~a. 

«->oo \ n\ J 

§ 4. Minimax and Maximin 

*223. The function f(x, y) is continuous in the rectangle 

a x a', b<^y<:b'. 

Then its maximum for a given * and b ^ y ^ b’ (along a segment 
parallel to the y-axis) 

is a continuous function of x. 

max f{x, y) = cp(x) 
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We interpret the surface 

z = f(%> y) 

in a rectangular coordinate system x, y, z with vertical z-axis as a topo¬ 

graphical surface in a mountainous region. Then the curve 

z = <P(X) 

(in the x, z-plane) is the skyhne of the range (as it appears when seen 

from a faraway point of the y-axis) and the minimax 

min cp (x) = min max f(x, y) 

(the minimum of the maxima) refers to the lowest point m the skyline. 

*224 (continued). Show that 

max min fix, y) ^ min max f{x, y). 
y X X y 

*225 (continued). Which one of the two signs, < and =, is valid in 

the example 
f(x, y) = 1 — (% — y + l)2» 

a = 0, a' = 2, 6 = 0, V = 4? 
*226. Add to the assumptions of 223 that f[x,y) > 0. Then 

§ 1. Regions 

Comjri 

The complex vai 

z = x + iv = 

We call 

x = ffiz the r 

r = | z' the : 

^ = arg z tin 

The number z = x - 

1. The number 

and not negative. 

2. What sets of 

ditions: 

${z > 0; 9b: 2 

[a, b, (x, Rt R' real. 

3. What sets o: | 

tions 



Part Three 

— as a lopo- 
rirve 

ippears when seen 

in the skyline. 

=, is valid in 

* . Then 

Functions of One Complex Variable 

General Part 

Chapter 1 

Complex Numbers and Number Sequences 

§ 1. Regions and Curves. Working with Complex Variables 

The complex variable z is written in the form 

z = x + iy = re10 (x, y, r, & real, r> 0, taken mod 2n). 

We call 

x=z$tz the real part of z, y = the imaginary part of z, 

r = |z| the absolute value of 2 (also modulus), 

& = arg z the argument or amplitude of z. 

The number z = x — iy = re~'9 is the conjugate of z. 

1. The number 2 + z is real, z — 2 is purely imaginary, z~z is real 
and not negative. 

2. What sets of points in the 2-plane are characterized by the con- 
ditions: 

> 0; 9Iz ^0; a < $z < b; agar gz z= 0; 

\z — za\ = R; \z — z0\<R; )z — 20| R; R I2I g f?'; 9J-1 = Jl 
frn, Z R 
[a, b,«, /?, R, R’ real, 20 complex, a < b, * < 0 < «%+ 2tz, 0 <R<R’)? 

3. What sets of points in the 2-plane are characterized by the condi- 
tions 

lz — «| + \z — b \ = k; \z — a \ + |z — ^ k, k > 0? 
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4. What open set of the 2-plane is characterized by the condition 

|z2 + az + 6| < 2?2? 

For what values of R is this set connected, for what values of R is it not 

connected ? 
5. Assume |a| <r 1. For any point of the complex z-plane 

I z — a I 

II — az\ 

is either < 1, or = 1, or > 1, and so the whole plane is divided into 

three subsets. Describe them. 

6. Suppose 9ft# > 0. For any point of the z-plane 

is either < 1, or = 1, or > 1, and so the whole plane is divided into three 

subsets. Describe them. 
7. Let <x, (1 be real; a complex; ot, ft and a are fixed. Suppose that the 

complex variables z1 and z2 satisfy the relation 

(XZ^Z^ rf- UZ^Z.2 + dZ^Z<2 T" P%2Z2 = ^ * 

liocfi — aa<0 the points Me ona circle, possibly a line segment. (The 

left hand side of the equation is called a Hermitian form of the variables 

z1 and z2.) 
8. Let a and b be positive constants and the real variable t signify 

time. Describe the curves given by the three equations 

zx = ia + dt, z2 = —ibe~xt, z = id + dt — ibe 

9. Describe the motion of the point 

z = [cl -f- b)elt — be b , 

where d, b are positive constants and t denotes time. 

10. Let the radius vector r and the argument # be functions of the 

time. The complex function z = re™ of the real variable t is represented 

by the motion of a point in a plane. Compute the components of velocity 

and of acceleration parallel and perpendicular to the radius vector. 

[Differentiate z twice with respect to t.] 

11. For what values of z is the absolute value of the n-th term — of 
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Pt. Ill, Chap. 1, No. 4-15 

(exponential series in the complex plane) larger than the absolute value 
of any other term ? n = 0,1,2,... 

theltta” Wha' V“'“'S ' “ *he “bSOlute v*‘“ 01 th« «-«' term of 

*(*- 1) -..(«-» + 1) ” /,\ 

(binomij series for (1 + O' with < _ 1 ,„d complex ,, th„ 

absolute value of any other term of this series ? n = 0 1 2 
13. We put 

For wte wduesof.is I^M|l»ger than |J>oW|, |P,W|,.f'p'^ 

1, . iJ) ,S lte *-th P"“»l Pt»tl»ot in the product expansion r sm tt? . 
Of--.) 

intoai?ST<mh 'tf, tr'*1 ,nnC,i°nS/<'» “d?«> ”« defined on the 

integrate. Then ' /W “ P°S‘l,T'"d con,i™‘>»s “d properrly 

11 m eMt) dt rg f f(t)dt. 
I a I J 

mod &CriP," “d,°nl,r if '°“'i0n ^ ™«s «“ value mod In at all its points of continuity 

finitiflntenrah’lf6 'S ° ^ "***“■ «« »y 

oo 

f e~{tJrMt))dt = p, f e-W+W)) dt = Q, 

then 0 

(4P2 - 2Q\g: 3. 

Equality holds if and only if <p(t) assumes the same value mod 2* at 
all its points of continuity. 

§ 2. Location of the Roots of Algebraic Equations 

We consider polynomials of degree n 
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with arbitrary coefficients; a0 =f= 0 is often assumed. The complex number 

z0 is called a zero of this polynomial if 

<Vo + + a2*0~2 + •" + an-l Z0 + Un = °- 
(z0 is a root of the algebraic equation P(z) = 0.) If zv z2,...,zn are the n 

zeros of the polynomial P{z) we can write 

P(z) = a0{z - Zj) (z -%)••• (2 - ZH) 

as is proved in algebra. 

16. A polynomial of the form 

S* - - p2Zn~2 --pn-l* ~ Pn> 

where ^ 0, 5; 0, ..., pn ^ 0, + — + h > has Just one 

positive zero. 

17. If z0 is a zero of the polynomial 

z"+ ^z”-1 + a2zn~2 +••■+«„ 

then lz0[ is not larger than the only positive zero £ of the polynomial 

zn — |% | z"_1 — |a2 j z"-2 — ••• — \an\. 
18. Assume an 4= 0. The absolute value of none of the zeros of the 

polynomial 
P(z) = z" + axzn-^ + a.zzn~2 +- 

is smaller than the only positive zero £ of the polynomial 

z“ + Klz"-1 + \a2\zn~2 + ••• + k_ib- |«»l- 

19. All the zeros of the polynomial z" + c are on the circle centred at 

z = 0 with radius |c|1/w. 
*20. Let clt c2,..., cn be positive numbers and 

°i + c2 + ’" + cn = 1 • 

The absolute values of the zeros of the polynomial 

Zn -j- <21Z>1 1 “1“ H- ~ an 

are not larger than 

(\al\ ”| /1 i \/\an\ \ 
M = max -, |/— ..... y—). 

*21. The absolute values of the roots of the equation 

+ aiZn-1 + a.2zn-2 + **• + an = 0 

are not larger than the largest among the numbers 

._ 3 - --- 
n\al\, Vn\a2\> Vn\az\> \n\an\'> 

aso they are: 

and they are i 

22. As s am 

The polynomi 

cannot have a 

23. Surcos 

are positive, 

a < 2 < 3. 1 

24. Let ^ 

a: is integer 

ros of the no 

are either in tl 

The best uppe 

and 4. 

25. We ass 

are in the up 

r = 0,1, 2_ 

Then the polvn 
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: .’mplex number 

U, = o. 

L - .., £n are the n 

-, > 0, has just one 

: the polynomial 

: the zeros of the 

c:n:al 

- :ircle centred at 

also they are not larger than the largest of the numbers 

k —- 

J/ViyW’ k = i.2,3, 

and they are certainly smaller than the largest of the numbers 

2/K|, 

Po>Pi>P2-">pn>0. 

k = 1, 2, , n. 
22. Assume 

The polynomial 

Po +PiZ +p2z- + ••• +Pnzn 

cannot have a zero in the unit disc 1 z 1 i 

23. Suppose that all the coefficients p^p.,,....pn of the polynomial 

Poz>' + P\Zn 1 + • • • + p„_xz + pn 

are positive. Then the zeros of this polynomial lie in the annulus 

* ^ ^ where * is the smallest, the largest among the values 

tl tl t* p" 
Po P% * Pri-\ 

24. Let a0, auaz,...,an be digits (in the ordinary decimal notation, 

that is integers between 0 and 9 inclusively) n ;> 1, aH ^ 1. Then the 
zeros of the polynomial 

ao -f- axz + a2z2 + • • • + anzn 

are either in the open left half-plane or in the open disk 

1 1 2 

Ihe best upper bound that may replace the last number is between 3 
and 4. 

25. We assume that all the zeros of the polynomial 

P(z) == a0z" + a1zn~l + • • • + an_xz -)- an 

are in the upper half-plane » > 0. Let *„=*„+ ft, real, 

v= 0, 1, 2,...,«, and 

L(z) = tx0zn + ajz"-1 + ••• + a,n_xz _|_ 

rW = &*“ +01*'-1 + ••• +pn_1z+pn. 

Then the polynomials U(z) and V(z) have only real zeros. 
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26. Let P(z) = 0 stand for an algebraic equation of degree n all 

the zeros of which are in the unit circle \z\ < 1. Replacing each coefficient 

of P(z) by its conjugate we obtain the polynomial P(z). We define 

P*(z) = znP(z~1). The roots of the equation P(z) + P*(z) = 0 are all 

on the unit circle \z\ = 1. 

27. Suppose that the polynomial P[z) of degree n, n ^ 2, assumes 

the values oc and for z = a and z = b, respectively, where a 4= & and 

oc 4= ft. Let (£ denote the closed domain bounded by two arcs of circle 

the boundary whereof is the set of those points at which the line 

segment a, b subtends the angle . Show that to each point y on 

the line connecting a and there exists a point z in (£ such that y = P(z). 

§ 3. Zeros of Polynomials, Continued. A Theorem of Gauss 

28. If all the complex numbers zv z2,...,zn (considered as points in 

the complex plane) are on the same side of a straight line passing through 

the origin, then 

+*2+-+z„* 0, f +7- +- + y + °- 

29. Suppose zlt z2,...»zn are arbitrary complex numbers that add 

up to zero. Any straight line l through the origin separates the numbers 

z1,z2f...,zn so that there are some zv’s on each side of l unless all the z/s 

lie on l itself. 

30. Let zv z2, ...,zn be arbitrary points of the complex plane, 

m1 > 0, m2 > 0, ..., mn > 0, ml + m2 +••*,+ = 1 and 

z = »hSi + m2z2 +-h mnzn. 

Then there are points 2V on both sides of any straight line through z 

except when all the zv’s lie on that straight line. 

We can interpret the numbers m1,m2> as masses fixed at the 

points zlt z2>..., zn. Then the point z defined in 30 is the center of gravity 

of this mass distribution. If we consider all such mass distributions at 

the points zlf z2,zn the corresponding centers of gravity cover the 

interior of a convex polygon, the smallest one containing the points 

z±, z2, , zn. The only exception arises when all the points are on a 

straight line. Then the centers of gravity fill out the interior of the smal¬ 

lest line segment that contains all the points zv z2>..., zn. 

31. The derivative P'(z) of P(z) cannot have any zeros outside the 

smallest convex polygon that contains all the zeros of P(z) (considered 

as points in the complex plane). Those zeros of P'(z) that are not zeros 

of P(z) lie in :i 

line segment :b 

32. Let z1. z 

\=V, fJL, v = 1, 

vanish only ar 1 

order). The set ol 

is everywhere < 

•••> V 
33. Let P : 

he in the sir.LI 

parallel to the 

A zero of cl* 

in one of the foQ 

of P(z); (b) the* 

34. Let o1 c 

complex number 

and p — 1 resp. 1 

I 

Suppose that the 

A(z) P"(z) + 2B 

where C(z) denote 

convex polygon tl 

35. If a polyn 

zeros then this :s 

zeros then thev ; 

tot images to ea cl 

conjugates. We is 

are the line segnu 

f'(z) has any ccn 

imaginary part of 

I 

36. Assume tbs 

—x ^ arg z ^ a 

h *+*2 + — 

are either both c<: n 
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— P* z) — 0 are all 

>; :> 2, assumes 

t where a =(= b and 

r- : *o arcs of circle 

5 l: which the line 

each point y on 

i -a:h that y = P(z). 

■irem of Gauss 

u-.itred as points in 

c nr passing through 

:: numbers that add 

arates the nurpbers 

. unless all the z*s 

•;_r complex plane, 

, = 1 and 

r light hne through z 

_r masses fixed at the 

* ;.r center of gravity 

mass distributions at 

:: gravity cover the 

maining the points 

the points are on a 

t interior of the smal- 
v 

inzeros outside the 

: - of P(z) (considered 

: that are not zeros 

of P(z) lie in the interior of the smallest convex polygon (the smallest 
line segment) that contains the zeros of P(z). 

32. Let 2j, z2,zn be arbitrary complex numbers, zp =j= zv for all 

H 4= v, [i, v = 1, 2,..., n. We consider all the polynomials P(z) that 

vanish only at the points zv z2,...,zn (having there zeros of arbitrary 

order). The set of the zeros of the derivatives P\z) of all these polynomials 

is everywhere dense in the smallest convex polygon that contains 

h> *e.—. V 
33. Let P(z) denote a polynomial. The zeros of cP'{z) — P(z), c =j= 0 

he in the smallest (infinite) convex polygon that contains the rays 

parallel to the vector c starting from the zeros of P(z). 

A zero of cP'(z) — P(z) appears on the boundary of this region only 

in one of the following two cases: (a) the zero in question is also a zero 

of P(z); (b) the region in question degenerates into a ray. 

34. Let qvq2,...,qp be positive numbers, ava2,...,ap arbitrary 

complex numbers, and let the polynomials A(z) and B(z) of degree p 
and p — 1 resp. be related by 

B(z) _ £i , S_2 , Qp 
4(z) 2 — 0-^ 1 2 — a„ 1 " ’ z _ a • 

Suppose that the polynomial P[z) is a divisor of 

A(z) P"{z) + 2B(z) P'{z), i.e. 

A(z) P"(z) + 2B(z) P'{z) = C(z) P(z), 

where C[z) denotes a polynomial. Then the zeros of P(z) lie in the smallest 

convex polygon that contains the numbers av a2,..., ap. 

35. If a polynomial f(z) whose coefficients are all real has only-real 

zeros then this is true also for its derivative f'(z). If f(z) has complex 

zeros then they appear in pairs, the two zeros forming a pair are mir¬ 

ror images to each other with respect to the real axis; they are complex 

conjugates. We draw all those disks the “vertical” diameters of which 

are the line segments connecting the conjugate zeros of such pairs. If 

f'[z) has any complex zeros they lie in these disks. [Examine the 

imaginary part of UV.] 
J\Z) 

§ 4. Sequences of Complex Numbers 

36. Assume that the numbers zv z2,, zn,... are all in the sector 

—oc A' arg *<y. Then the series 

zi'+ z2 4 - and |*a| + |*2|4-+ K|H- 

are either both convergent or both divergent. 
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for which all the 

k = 1, 2, 3, ... 

k = 1, 2, 3, ... 
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37. Suppose that the numbers *1? *2, ..., zM, ... are all in the half¬ 

plane $iz ^ 0 and that the two series 

*x + *2 + •••+*» + ■” and + 4 + ’ ’ ’ + 4 H- 
converge. Then \zx |2 + |*2 |2 H-h |*» |2 + "* converges too. 

38. There exist complex sequences zv *2, 

series 

zi + 4 + ” * + 4 + * ’ * > 

converge and all the series 

1*1 I* + \h\k + *" + I Znt + "* 
diverge. 

39. Let zlf *2, ..., *n, ... be arbitrary complex numbers. If there 

exists a positive distance <3 such that | zl — zk | ^ d for l < k> 

l,k — 1, 2, 3, ... the convergence exponent of the sequence 

|*i|, |*21, |*31, ... is at most 2. [1114.] 

40. The limit points of the complex numbers 

^ + ^+^ + ...±^ ^0, m = 1;2)3;... 
n 

fill out the entire circle with radius (1 + <x2)~^12 and center at the origin. 

[The expression in question is closely related to a sum of rectangles.] 

41. Find the locus of the limit points of the complex sequence 

zv *2, where 

z» = (1 +t) (*■ +t) i1+i)i1 +v)- 
42. Put 

(1+iT) (1+^)‘"(1+^)=^ 
and connect the points zn_x and *w by a straight line. The distance 

between these two points is always 1. The polygonal line connecting the 

successive points approaches with increasing n an Archimedean spiral; 

nei<Pn, rn > 0, 0 < <pn < then 

lim 
rn-1 lim 

43. Let t be a fixed real number and put * = 2ne^n . Then 

nm y^ n-^oo f ft 

2zn! -t2 
z(z — 1 )(z — 2) ••• (z — n) 

[II 59; I110 slightly modified.] 
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§ 5. Sequences of Complex Numbers, Continued: 

Transformation of Sequences 

By means of the infinite triangular array 

*n> 

a2l> a2£, 

we transform an arbitrary infinite sequence z0,. 
•.. into a new 

sequence w0, wlt w2,...,wn,.. 

~ an0z0 + anlZl + a„2Z2 + * ’ * + KnZn > = 0, 1, 2, ... 
The triangular array is called convergence preserving if it transforms every 

convergent sequence .into a convergent sequence 

ifk'fulSs th M, ’' (Cf' l’ ChaP' 2,) ThC iS conver£ence preserving if it fulfills the following condition, consisting of two parts: 

W a*p = a” exists for all fixed v; 

(2) with the notation 

" » 
Z»m = an, 2\ = 

V=0 

y ence °b< ffj, cr.2, ..., an, ... is convergent and the sequence 

,'io 7."'"' 15 bounded- [O.Toeplitz: Prace mat.-fiz Vol 22 

amv'r l^ f stdnhaTO: Prace“*-*■ vol 22, PP. m-iS 
lJll), T. Kojima: Tohoku Math. J. Vol. 12, pp. 291-326 (1917)- 

1. bchur. J. reme Math v°j ^ pp 79_m '* 

,r ’ ,Tm6 tbe eas*er Part ^he above mentioned proposition- If 

I?—8 (1) and (2) ^ SatiSfied the arraT preserves convergence. 

45. What conditions must the series u, + «, + u _ ... 

satisfy m order that its Cauchy product [I 34, II 23, VIII, Chap 1 

? ] Wth any convergent series u0 + ^ + u, +... + „ + ... results 
m a convergent series “ “ ' esuits 

U°v° + (%v1 + ulV„) + (u0v2 + ulVl + u.2v0) + ... 
+ (U0Vn + “l^-l + "• + Un_1V1 + UnVQ) + ••• ? 

46. What condition must the series u, + «, + .. - + „ + ... satisfv 

m order that its Dirichlet product [VIII, Chap. 1, § 5] with any conver- 
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gent series v,+v2 + -+vH + - results in a convergent series 

u + (UjVa + «2»l) + (“l®* + U3vl) + + Z U‘V+ ‘ 

47. The sequence of factors 

yo> Yv Yz> •••> Yn> ••• 

turns any convergent series a0 + ax + a„ + • •' + <*» + ”' int0 a con 

vergent series 

7oao + yiai + y&z + “ * + v«an + 
if and only if the series 

Iro — ri I + — ^2 i + ^ I — yn+i \ + 
converges. 

48. The existence of 

lim + u2 + • • * + wn-i + cun) = * 
n-^oo 

imphes the existence of 

lim [Ux + U2 + * * * + ^n-l ~T Un) = 00 
n^-co 

in two cases only: if c = 0 or if 91c >y, but not if 9lc ^y, c #= 0. 

49. Let u0,uvu2.un>... be arbitrary complex numbers. For 

what values of c does the existence of 

«0 + + • • • + «n \ 

n + 1 lim (un -f" c 
n->oo \* 

imply the existence of lim un ? 

50. If the Dirichlet series 

^l"* + a2,rs + «33-s + ••• + a„n~s + — 

converges for s = o + it, o, t real, a > 0, then 

lim (1 - t)a (ay + a./ + a/ + ••• + af + *") = 
/-►1-0 

[I 92.] 

§ 6. Rearrangement of Infinite Series 

51. If every subseries of a series with complex terms converges the 

series converges absolutely. 

52. Assume that the series |za| + |z2l + I + ’' ‘ dlvergeS’ 
Then there exists a direction of accumulation, that is a real number « 

such that those term 

contained in the sectc 

divergent subseries fo 

53. If lim zn = ' j 
»->oo 

mulation of the coi 

then there exists a sii 

diverges to + oc and 

54. If the series :x 

convergent, any valw 

can be obtained as :b 

[Consider two comple: 

52, 53, 1133, 1134 
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such that those terms of the series 
h. + z2 d-+ zn d-that are j . . -L. J Z 1 i I LliCXt CtlC 

contained in the sector a - e < arg -r < « + £ constitute an absolutely 
divergent subseries for any e > 0. 

53' If it™ Zn = 0 and if the Positive real axis is a direction of accu¬ 

mulation of the conditionally convergent series zx + z2 + z3 -)_ 

then there exists a subseries ^ + 2r> + - the real part of which 

diverges to + oo and the imaginary part converges to a finite number. 

54. If the series 2, + z2 + z3 -is convergent, but not absolutely 

convergent, any value represented by a point of a certain straight line 

can be obtained as the sum of the series rearranged in a suitable order. 

[Consider two complementary subseries shifted relatively to each other' 
52, 53, 1133, 1134.] 

Chapter 2 

Mappings and Vector Fields 

If we associate each point 2 of some domain $ of the z-plane with a 

certain complex value w according to a given law then w is called a 

unction of 2. Two geometrical interpretations of the functional relation 

are particularly useful. One uses one plane, the other two planes. The 

value w belonging to the point 2 (or, if more expedient, w) can be thought 

of as a vector acting on the point 2; in this way a vector field is defined in 

the domain T>. In the other interpretation, the value w associated with 

the point 2 in the 2-plane is conceived as a point in another complex 

plane (a.-plane). In this way the domain % is mapped onto a certain point 
set of the z^-plane. 

§ 1. The Cauchy-Riemann Differential Equations 

Let u(x, y) and v(x, y) be two real functions of the two real variables 

x and y. Then w — u + iv is a function of the variable 2 = x + iy. The 

function w = u + iv of 2 = x -f- iy is called analytic in a certain open 

legion if u and v are continuous as well as their first partial derivatives 

and satisfy the Cauchy-Riemann differential equations 
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Observe the combination 

55. Are the functions 

z, z2, \z |, z 

analytic ? 

55.1. Assume that f(z) is analytic, use the notation 

w = u + w = f(z) —f{x + iy) 

as above and use subscripts to denote partial derivatives in the usual 

way. Verify that 

t£+vl = ul+vl=ul +uy=vl+vl = uxvy - UyVx = -^1" . 

55.2 (continued). Prove that 

Uxx + Uyy — Vxx + Vyy = °* 
55.3 (continued). Let cp(x, y) and yj(x, y) denote functions of the two 

real variables * and y having continuous derivatives of first order; they 

can also be considered as functions of u and v where f'(z) =f= 0. Verify that 

VxVx + VyVy = (VuVu + Vv%) 

dw j2 
dz 

55.4 (continued). If <p(x, y) has continuous derivatives of the second 

order, also 

Vxx + Vyy = (v«u + Vvv) 

55.5 (continued). Assume that a, b, c and d are real constants, 

dw\2 

~dz | ' 

ad — be = 1, 

and consider 

Then 

w 
az + b 

cz + d ' 

<ft + <pI __ Vuu + Vvv 

vl +<p2y~ Vxx + Vyy ** ' 

56. Find the analytic function of z that vanishes for z = 0 and has 

the real part 
x{i + x2 + v2) 

U — 1 + 2^2 - 2y* + (x- + y2)2' 

57. We denote by a and b, a <b, two fixed real numbers, by z a 

variable point in the half-plane Qz >► 0 and by co the variable angle 

under which the in:a 

an analytic function 

58. Show that for 

59. Show that :: r 
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fields will be discus see 

60. We consider s 

dimensional space. An 

i2 + V2 T- C2 = 1 -in 
(north-pole of the sphe 

projection be (x, y. * 

terms of x and y. (Ste: 

61 (continued). Le 

graphic projection of tJ 

the angle n of the uni: 

point P". This point 

point P"' of the £, rrp 

and the point P'" the 

x + iy. 

We introduce on tb 

(longitude and latitude 

The sphere is descrit e i 

£ = cos <f o 

We consider now t 

£2 + rf + f2 = 1 alom 
Imagine a system of -y 

cartesian system when 
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■ u. 
! dw 2 

i dz 

:: lions of the two 

: first order; they 

= 0. Verify that 

e-s of the second 

:i constants. 

:; r z = 0 and has 

numbers, by z a 

be variable angle 

[a’ b] iS Seen fr0m the point 2- If Possible find an analytic function the real part of which is o>. 

58. Show that for any analytic function f{z) = f(x + iy) 

+ tyi) \f(x + ty) |8 = 4 \f\x + iy) p. 

59. Show that for any analytic function of z = x + iy 

{h + |*) loS (1 + !/(* + iy) |2) = -iJ££±Md_ 
y (! + \f(* + iy)1)1' 

§ 2. Some Particular Elementary Mappings 

an Cauchy-Riemann differential equations express the fact that an 

the l nl " r brmgS ab°Ut a conf°rmal mapping of the *-plane into 
the w-plane. (Preservation of the angles including sense) 

.. JhG ™P°*of the Cauchy-Riemann differential equations for vector- 
fields wiU be discussed later. Cf. § 3. 

60. We consider an orthogonal coordinate system f, v, £ in three 

dimensional space. An arbitrary point (£, rj, f) of the sphere 

t ~ 1 (unit sPhere) is projected from the point (0 0 1) 
(north-pole of the sphere) into the plane J _ 0 (equatorial ptoe) LM ihe 

projecttoo be (a, y. 0). Express a + * in tenns of {, ,, /and f 7( Z 
terms of % and y. (Stereographic projection.) ’ C 

61 (continued). Let the point P on the plane f = 0 be the stereo 

graphic projection of the point P' on the unit sphere. A rotation through 

pointT'^rL ""I1 Sphf6re ar°Und the "‘aX1S moves the P°mt P' to the 
point R^'of br, I th6n Pr°jected stere°graphically into the 
point P of the f. 17-plane. Let the point P have the coordinates * y 0 

*1 ‘y 6 P°mt P the coordinates u, v, 0. Express u + iv in terms of 

n JJ* l;tr°d;f ?n ‘he unit sPhere ‘he geographic coordinates 6 and » 
(longitude a.nd latitude) whereby ^ 

~n<d^n, - -£ <: » < iL 

The sphere is described by 

i = cos y cos6, 17 = cos <p sin 6, C = sin cp. 

« W‘< ZTZ ,T ,hV'CUkr Cy“”der ,“S“' *° «““»■* 
: ‘ +;1 alon& ‘he equator (great circle in the plane t = 0) 
Imagine a system of coordinates („, „) on the cyhnder that becomes a 

cartesian system when the cylinder is unrolled. Let the point * = 0, 
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v = 0 coincide with (1, 0, 0), the positive ^-axis be a generatrix pointing 

upwards and let the v-axis on the cylinder coincide with the equator. 

The values of v varie on the cylinder in the same sense as 6 from —n to n. 

The points obtained in this way fill out an infinite strip of width 2n with 

the u-axis as center-line when the cylinder is unrolled. 

Mercator’s projection establishes a conformal one to one correspon¬ 

dence between the unit sphere and the uy ^-cylinder (unrolled into a strip). 

The point on the cylinder corresponding to the point cp, 6 on the sphere 

has the coordinates 

« = log tan (|- + -j) , v = 0. 

62. Into which lines does the Mercator projection transform the 

meridians and parallel circles ? What are their images under the stereo¬ 

graphic projection ? 

63 (continued). The point P of the unit sphere is stereographically 

projected onto the point (x, y, 0) of the plane z = 0 and the image of P 

under Mercator’s projection is u, v on the cylinder. Express x + iy in 

terms of u + iv. 

64. Suppose z = ew. To what curves in the 2-plane do the two fami¬ 

lies of lines = const, and = const, in the z£>-plane (which are 

orthogonal to each other) correspond ? 

65. Along which curves of the 2-plane is the real part of z2 constant ? 

Along which curves is the imaginary part constant ? The two families of 

curves form an orthogonal system; why ? 

66. Which curves in the 2-plane are transformed by w = ]/ 2 into 

the lines 91te> = const, in the w-plane ? Same question for 3w — const. 

67. The mapping w = cos 2 transforms the line 912 = const, of the 

2-plane into hyperbolas, the lines ^52= const, into ellipses of the z^-plane. 

68. Consider the function 2 = w+ew, z = x + iy, w — u + iv. Find 

the equations of the curves in the xf y-plane that are mapped onto the 

lines u = const, and v = const, respectively. What corresponds to the 

lines v — 0, v = 71 ? 

69. Given the function w = e* compute the area of the image of the 

square a — e ^ x ^ a + e, —e ^ y 5^ s, 0 < e < n, 2 = x + iy- Find 

the ratio of the two areas and its Emit as e converges to 0. 

We define the linear enlargement (enlargement ratio, stretching, change 

of scale) of the mapping w = f(z) at a point 2 where f{z) is regular to be 

the ratio of the length of the line element at the point w = f(z) (in the 

ze>-plane) to the length of the line element at the point 2 (in the 2-plane). 

This ratio is equa 

ogous ratio o: tl 
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of size 

The change in jj 
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function ez is schli 

any wider horizon 

lishes a conformal 
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i generatrix pointing 

- . 1T with the equator, 

as d from —n to n. 

-trip of width 2n with 

itr:3ed. 
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mr oiled into a strip). 

ir.t <ft 6 on the sphere 

::on transform the 

under the stereo- 

:s stereographically 

= and the image of P 

_ : : Express x + iy in 

.ane do the two fami- 

a -plane (which are 

a. nart of z2 constant ? 

The two families of 

—v d by w = y z into 

:: :i for = const. 

Rz = const, of the 

ddses of the z£/-plane. 

w = u + iv. Find 

: are mapped onto the 

'-.a: corresponds to the 

: of the image of the 

T* = x + iy. Find 

-^s to 0. 

rav.D, stretching, change 

-r-i f(z) is regular to be 

j- aoint w — f(z) (in the 

t . mt z (in the 2-plane). 

This ratio is equal to [f'(z] [. We define the area enlargement to be the anal¬ 

ogous ratio of the area elements; it is equal to j/'(z) :2. A curve L in the 

2-plane is therefore transformed into a curve in the w-plane of length 

/i/'(*) ik* i- 
L 

An area A in the 2 = x + *’y-plane is mapped onto an area in the z#-plane 

of size 

// !/'(*) I2 dxdy. 
A 

The change in direction of the line element under the mapping w = f[z) 

is.equal to arg /.'(2). It is called the rotation at the point 2 and it is deter¬ 

mined up to a multiple of 2n at any point where f[z) 4= 0. The branch 

for which —71 < arg f{z) ^ n is usually adopted. 

70. The function w = cos 2, 2 = x + iy, yields a one to one con¬ 

formal mapping of the rectangle 

0<%<;x<^%2<^-, 0<yi^y^y2, 

onto a domain bounded by parts of confocal ellipses and hyperbolas 

[67]. Compute the area of this domain. 

71. Consider the function w = 22. What is the locus of those points 

at which the linear enlargement equals some given constant ? Analogous 

question for the rotation. 

72. Let a be an increasing positive parameter. Determine the region 

onto which the function w = ez} z = x + iy, maps the variable square 

—a < x < a, —a < y < a. Up to what value of a is this region covered 

only once ? For what values of a is the image covered exactly n times ? 

73. We examine the image of the closed disk 121 r under the func¬ 

tion w = ez. Suppose r is continuously increasing. There is on the ray 

arg w — oc a point that is covered by the image of the disk growing with 

r at least as often as any other point of that ray for all values of r. Where 

is this point ? 

The regular function w = f(z) is called schlicht (or univalent) in the 

region if it does not assume in any value more than once. E.g. the 

function f(z) = z2 is schlicht in the upper half-plane Qfr > 0; the function 

j/2 is schlicht in the 2-plane cut open along the positive real axis; the 

function ez is schlicht in the horizontal strip —71 < $jz 5^ n but not in 

any wider horizontal strip [72] etc. A schlicht function w = f(z) estab¬ 

lishes a conformal one to one correspondence between the region and 

a region 8 of the z^-plane. Very often it is useful to consider the point 
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at infinity as an ordinary point. In fact, stereographic projection onto 

the sphere maps the point at infinity onto a point that plays no special 

role on the sphere. If f(z) is schlicht in the region the derivative f'(z) 

does not vanish in 9ft. The converse is not true [72]. 
74. The function w = z2 + 2z + 3 is schlicht in the open disk 

|z| < 1. 
75. The function w = z2 is schlicht in the upper half-plane ^z > 0 

and maps it onto the z^-plane cut along the non-negative real axis. 

76. Let oc be real and a I < 1. The function 

maps the unit disk \ z\^l univalently onto itself. [5.] What is the locus 

of those points at which the linear enlargement equals some given con¬ 

stant ? 

77. Assume that C is a circle inside the unit disk. Then there exists 

a transformation of the unit disk onto itself of the type 

that maps the circle C onto a circle centred at the origin. 

78. Find a function that transforms the upper half-plane > 0 

onto the disk | w I < 1 so that 2 = i is transformed into w ~ 0. 

79. The function w = y ^2 + is schlicht in the open unit disk 

and maps it onto the z^-plane cut open along the real line segment 

— 1 w <[ 1. What curves correspond to the rays starting from the 

origin ? What is the image of the unit circle ? 

80. Find a function that maps the annulus 0 < r± < 121 < r2 onto 

the area bounded by the two confocal ellipses 

| w — 2 j -f- | w -j- 21 == 4OL-^y | w — 21 -{- j w -}- 2 | = 4#2» 1 #2 ■ 

[The result of 79 can be used if the given constants satisfy the relation 

ai ~~ y - * a2 ~~ v at — 1 

~ y2 

(the roots are positive).] 

81. Transform the upper half of the unit disk 121 < 1, $2 > 0 onto 

the upper half-plane [79]. At which points of the 2-plane is the linear 

enlargement equal to — ? At which points is the rotation ± ^ 

82. Map the upper half of the unit disk j 21 < 1, ^52 > 0 onto the 

w-plane cut along the non-negative real axis in such a way that 

2 = 0 correspond 

point corresponii 

83. Let 0 <[ % 
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non-negative reL 
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l-.:s satisfy the relation 

: : < 1, $z > 0 onto 

r ;-plane is the linear 
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r. tation ±y ? 

<1, x$z > 0 onto the 

m such a way that 

z — 0 corresponds to w = 0, z = 1 to w = l, z = i to w + oo. Which 
point corresponds to z = — 1 ? 

83. Let 0 a. < /9 < The function 

2 JT 

w = (e~icxz)p~x 

maps the sector <% < arg z < (3 onto the ze>-plane cut open along the 
non-negative real axis. 

84. Let 0 f^oc < < 2n. Map the circular sector 

oc<argz<p, \z\<l 

onto the unit disk \w\ < 1. 

§ 3. Vector Fields 

We use a special notation (slightly different from the one used in 

other parts of the chapter) to discuss vector fields that are defined by 

analytic functions of a complex variable. The independent variable is 
denoted by 

z = x iy = rei&, 
x, y, r, ft real, r 0. Let 

/ = f{z) = cp -j- iy> = (p(x, y) + iy)(x, y) 

be an analytic function of z; cp, real. WTe write 

df 
— = w = u — IV . 
az ’ 

u, V real; w = u ~ tv is again an analytic function. Its Cauchy-Riemann 

equations, obtained by separating the real and imaginary parts of 

^(u-iv)=±±(u~w), 

are 

du_ __ oy_ ?.u dv 

dy dx ’ ~dx ~~ “ ~dy * 

W e assign the vector w = u + iv to the point z = x -j- iy. In this way 

we obtain a vector field in the horizontal 2-plane. This, in turn, defines 

a three-dimensional vector field. It is obtained by assigning to a given 

point in space with vertical projection z = x+iy the same vector 7 

that is assigned to the point 2. In this way all points along the same 
perpendicular to the 2-plane play the same role. 

This vector field is irrotational. the first Cauchy-Riemann differential 
equation 

dv 
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expresses the fact that the rotation vanishes. (It is obvious that the other 

two components of the rotation vanish.) Furthermore the vector field 

is a solenoidal vector field: the second Cauchy-Riemann differential 

equation 
3u dtr_q 
8x dy 

shows that the divergence vanishes. (The third term usually appearing 

in the expression for the divergence is obviously 0.) 

85. Show that 

[cp{x, y) is the potential of the vector field; the curves cp{x, y) = const, 

are the level lines.) Furthermore 
cw 

u = Hy' v ~ ~ dx' 

(y>(x, y) is the conjugate potential or stream junction or stream potential; 

the lines y>(x, y) = const, are the stream lines or the lines of force, depend¬ 

ing on the physical interpretation of the vector w.) 

86. The lines <p(x, y) = const, and the lines f(x, y) = const, are 

orthogonal to each other. 

87. We have 
l ^1. = 0 (Laplace's equation). 

ax2 dy2 

88. Connect two points zx = + iyi and z2 = *2 + ^2ln the vector 
field by a curve L whose line element forms the angle r with the positive 

%-axis. Prove that 

f (u cos r + v sin r) ds = cp{x2, y2) — <p{xv yx), 
L 

i.e. the line integral of the tangential component of w is equal to the 

potential difference (work). 
89. Using the same notation as in 88 establish the relation 

f [u sin t — v cos t) ds = y(x2, y2) — rp{xv yx), 
L 

i.e. the line integral of the normal component of w is equal to the change 

of the stream function (flux of force). (The normal to the curve L is 

pointing to the right as one moves from zl to z2: 

—i (cos r + i sin r) = sin r — i cos r.) 

The vector field generated by an analytic function can be interpreted 

as an electrostatic, magnetostatic or gravitational field. The vector 

field may ah: 

electricity. Ir. 1 

proportional :: 

also thought c* 

compressible fls 

90. The s:es 

and variable pr 

complex plane i 

C\i 

If w — u — :: 
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r :ual to the change 

to the curve L is 

pcc*s T.I 

- r. ran be interpreted 

field. The vector 

field may also be interpreted as the_ field of a steady flow of heat or 

electricity. In this case the vector w is the gradient and as such it is 

proportional to the intensity of the flow. Finally the vector field can be 

also thought of as the field of the irrotational steady flow of an in- 

compressible fluid. 

90. The steady flow of an incompressible fluid of constant density e 

and variable pressure p, subject to no forces, and moving parallel to the 

complex plane is described by the equations1 

du du + iSL-«. o dx 
% + o, 
ex cy q By 

ru 

dx +—■- 
^ 8y 

0. 

£f w = u — iv is an analytic function the components of the vector 
w = u + iv and 

P A) y (w2 + ^2) (Bernoulli’s equation) 

(Pq constant) satisfy these equations. 

91. The function 

l 
w = — 

determines a vector field. Find the direction and absolute value of w 

at the point 2 = re'6, the potential, the conjugate potential, the level 

lines and the stream lines. (That part of the vector field that lies in the 

annulus 0 < r, < \z < r2 can be considered as the electrostatic field 

between two condenser plates of a Leyden jar, or as the field of the 

heat flow in the chimney of a factory.) 

92. Let 99 denote the potential and \p the conjugate potential of the 

vector field described in 91. Suppose that z, and 22 are arbitrary points 

on the circles 121 = r, and | z \ = r2, respectively, and that <pt and rp2 are 

the values of the potential at zx and z2. Find 

<P2 — <Pi 

(difference of the potentials between the two condenser plates of the 
Leyden jar). 

The conjugate potential yj in 91 turns out to be infinitely multivalued. 

Study the change in value along an arbitrary closed curve L without 

double points that contains the circle |x| = r, and lies in the annulus 

y! < N < r2- For a given point 2 of L let ip be the value of the stream 

1 Cf. e.g. A. Sommerfeld: Mechanics of Deformable Bodies. New York • Acade- 
mic Press 1950, p. 86. 
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potential in z before, and y)' be the value after, describing L exactly once 

in the positive sense. Evaluate 

y)' — y). 

(Flow of force passing from one condenser plate of the Leyden jar to the 

other.) Furthermore find 

<P-2 <Pl 

(Rapacity of the cylindrical condenser plate per unit of the generatrix.) 

93. Discuss the same questions as in 91 for the vector field determined 

by 
i 

W =-. 
z 

(Stationary magnetic field of force generated by an infinite straight 

conductor perpendicular to the 2-plane.) Are the potential cp and the 

conjugate potential yj uniquely determined in this field? 

94. Two infinite straight conductors are perpendicular to the 2-plane 

piercing it at the points 2 = —1 and 2 = 1. They carry cuirents of the 

same intensity but in opposite directions. Determine the stream lines and 

the level lines in the magnetic field so generated. 

95. There are n infinite straight conductors perpendicular to the 

2-plane piercing it at the points zv z2,..., zn. They carry currents of the 

same direction. There exist at most n — 1 points in the 2-plane where 

the generated magnetic force vanishes (points of equilibrium); these 

points lie in the smallest convex polygon that contains the points 

z1,z9,..., V [When all the vectors of the field are rotated through 90° 

the last statement is an evident consequence of the mechanical inter¬ 

pretation of the field.] 

96. Two confocal ellipses are given with foci at 2 = — 2, 2 = 2 and 

semi-axes 2av 2d1 and 2a2, 2b2 

9 7 9 2 t9 -1 
q — ^2 ^2 — t • 

Find an irrotational and solenoidal vector field in the region bounded 

by the two ellipses such that these ellipses are level lines. (Electrostatic 

field in a condenser whose plates are confocal elliptic cylinders.) What 

do the stream lines and level lines look like? Find the capacity [92]. 
[Map the region between the ellipses onto the region bounded by two 

concentric circles. Cf. 80 and 91.] 
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97. Suppose 0 < a < b, *</?<« + 2ji. In the domain defined 

by the inequalities 

a <; (21 ^ b, oc^aigztiP 

determine an irrotational solenoidal vector field for which the bounding 

circular arcs are stream lines and the bounding straight segments are 

level lines (electric current in a plate of constant thickness). 

We call ip± and xp2 the values of the conjugate potential on \z \ = a 

and j 2 ] = b resp., (p1 and cp2 the values of the potential on arg 2 = oc and 

arg z = resp. Compute 
V* ~ <Pi 

Vt - Wi ‘ 

(Resistance, except for a factor depending on the thickness and the 

specific resistance of the plate.) 

When the problem is more difficult it is advisable to consider at the 

same time three (possibly four) planes: the 2-plane (stream plane), the 

^-plane (velocity plane) and the /-plane (potential plane); and possibly 

the w-plane. The notation suggests the flow of a fluid. Since f = <p + ixp 

and w = u — iv = — are analytic functions of the complex variable 
dz 

z = x +iy the 2-, w- and /-planes are conformally mapped onto each 

other. These three planes are mapped onto the w-plane with preservation 

of the angles but with reversed orientation. The w-plane in particular 

is the mirror image of the z^-plane with respect to the real axis. The 

stream lines and the level lines in the stream plane (2-plane) correspond 

to lines parallel to the axes in the potential plane (/-plane). The two 

undetermined real constants contained in 99 and xp correspond to a trans¬ 

lation of the /-plane. 
98. Find an irrotational solenoidal vector field outside the unit circle 

(|21 ^ 1); w ought to be = 1 for 2 = 00 and tangent to the unit circle. 

(A fluid passing a circular pillar; at a considerable distance off the pillar 

the flow is uniform.) [By reasons of symmetry the two segments of the 

real axis inside the vector field have to be stream lines. We may expect 

that the horizontal component of w everywhere points to the right. Find 

the mapping of the stream plane onto the potential plane.] 

99. At which points of the vector field determined in 98 does the 

velocity vector vanish ? (Stagnation points.) In how many points of the 

field does w assume the same value ? Where is the pressure p minimal, 

where is it maximal? [90.] What is the resultant pressure exerted on the 
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pillar ? Rotate all the vectors of the field through 90°: Give a physical 

interpretation of the vector field so obtained. 

100. The figure represents the contours of a vector field determined 

by the following conditions: The irrotational and solenoidal field covers 

the entire upper, and part of the lower, half-plane; it is symmetric with 

respect to the imaginary axis. For z —■ oo the velocity w becomes —i, 

for £ = 0 we have w = 0. The following stream lines are known: the 

positive imaginary axis, the two pieces of real axis from z = 0 to z = l 

and from z = 0 to z = — l (C to A, A to B and A to D in the figure); 

Stream plane (z-plane) 

the direction of w is indicated by arrows. The two remaining curvilinear 

parts of the boundary, which lead from z = l and z = —l (B and D in 

the figure) to —i oo should be determined so that they are at the same 

time stream lines and lines of constant velocity, i.e. w is tangent to, 

and \w\ constant on, both curves. Draw the contours of the images of 

the field in the w-plane and in the/-plane. (Stagnant water, “dead water”, 

or infinite wake of constant pressure, behind a planklike barrier perpen¬ 

dicular to the direction of flow.) The segment from z = — l to z = l 
represents the barrier, the stagnation point z = 0 is at its center. The 

undisturbed flow is assumed to be homogeneous with constant velocity 

—i. Throughout the wake the pressure is constant; this implies, according 

to Bernoulli’s equation [90], that | w | = const, along the stream line that 

separates the stagnant from the flowing water. 

101 (continued). With the help of a conformal mapping express w 

in terms of / and then 2 in terms of / [82]. Determine the width of the 

wake at a great distance. 
102 (continued). Assuming that the density is q — 1, compute the 

total pressure against the barrier. 
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Chapter 3 

Some Geometrical Aspects of Complex Variables 

§ 1. Mappings of the Circle. Curvature and Support Function 

1 J°f; SUPP,°Se the P°int *is m°ving with uniform angular velocity 
that ret>r 1 ~ Flnd thr vector (its magnitude and direction) r;rnthe v ty °f the image • & the point z under the mapping w = f(z). ° 

104. We consider the image of the circle |z | = r in the ®-plane under 

ie mapping® ■==/(*). What is the shortest distance of the tangent at 
e point w — f(z) from the origin of the z^-plane ? 

I , l05- P0111^ moves with uniform angular velocity 1 on the circle 
^at 1S angular velocity of the vector drawn from the origin 

to the point w = /(z) in the ®-plane ? 8 

106. The image of the circle |z| = r under the mapping w = /(,) has 
at the point w = f(z) the curvature 8 ' 

_/"(*) Sftz 
f'U) 

e zf'(a) I 

gent ^ deallng Wkh thC angUkr Vel0dty of the rotation of the tan- 

107 (continued). The sign of the curvature depends on the situation 

t jTzv Th f 'I'the °rigin) not °n the trajectory of the movine P°int 

iectorl H 6 1Xfed P°mt may be t0 the rlght or t0-the left of this tra- 

Note the °n f C°nC7e 01 COnVCX SidC- ExPIain this dependency. [Note the example * = z» + «, * real, a complex ] 

108. We assume that in the motion defined in 103 the point ® = f(z) 

describes m the positive direction a closed curve without double points 

Tmscurve is everywhere convex (seen from outside) if and only if to 

r J°®V A d°Sed ” d°uble points is called starshaped with 

curvT at e! T “ ^ lnteri°r if any ray fr0m this Point intersects the 
xac \ one point (all the points of the curve can be “seen” 

H6t theimageof the circle M = r under the mapping 

senTe 1M1 Th ^ Wlth°Ut d0Ubk P°intS deSCribed in the Positive 
ense [103], The curve is star-shaped with respect to the origin w = 0 if 



126 Some Geometrical Aspects of Complex Variables 

— 71 fgj Qcc g 

cos (f k 

%) = 

only if the function w = zf' (z) maps | z | = r onto a curve that is star¬ 

shaped with respect to the origin. 
111. The set of points with respect to which a closed curve is star¬ 

shaped forms a convex set. Prove this purely geometric proposition for 
116. The rq analytic curves with the help of 109. 

\z | ^ 1 onto a 

the half-plan- * 
Let $ denote a finite convex domain in the w = u + w-plane. For 

a fixed angle cp the expression 

u cos (p + v sin cp = dlwel<f 

assumes a certain maximum h(<p) in The function h(<p) is periodic 

with period 2n and is called the support function of St The straight line 

u cos cp + v sin cp — )i(cp) = 0 

is a line of support•; its normal points away from St and forms the angle cp 

with the positive u-axis. If St' extends to infinity these definitions are 

modified insofar as a finite maximum exists only in a sector with an 

opening ^ it. The two cases: the infinite strip and the half-plane are 

exceptions; then there exist only two lines of support, or only one, 

respectively. 
112. Find the support function of the convex domain that consists 

of the point a = \a | etx. 

113. The function w = f[z) establishes a one to one correspondence 

between the disk \z\^r and the convex domain £. Suppose that f(z) 

is regular and f [z) ={= 0 at a certain point z on the boundary, z | r. In 

this case a definite line of support (tangent) passes through the boundary 

point w = /(*) of St Express the corresponding quantities cp any %) 

in terms of f(z). 

114. The function w = log (1 + z) maps the disk \z\ = 1 onto an 

infinite domain contained in the strip — y < < y* Its support 

function (defined only for — y (p ^ y) is 

h(<p) = cos cp- log (2 cos cp) + <P sin cp. 

means: If av 

i its value at tJ 

".-alues on the I 

115. The function w = arcsin iz maps the disk \z\ ^ 1 onto a 
i 

finite convex domain which has two corners and lies in the strip 
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—it ^ 71. Its support function is 

cos cp log (( cos 2cp + y 2 cos cp)2 + 2 sin cp arcsin (|/-2 sin <p) 

h(<p) = ■ for 0 <p <; 

for n sin cp 

h(cp -(- 7t) = h{—(p) = h{<p). 

116. The equation we~w+1 = z defines w=f(z). It maps the disk 

^1 = 1 onto a finite convex domain which has one corner and lies in 

the half-plane ftw 1. Its support function is 

h{(p) = cos cp for —~^(p 

in the sector y < <P < -p it is given in parametric form 

h((p) ei<p = y~; ~ w) 

whereby w describes the boundary, |we~w+11 = 1. 

§ 2. Mean Values Along a Circle 

117. With 2 = ei& we find for k,l = 0, 1, 2, 3, ... 

<2* f0 0 for k =\= l, 

for k = l. 

The functions 1, 2, z2, z3, ... form an orthogonal system on the unit 
circle. 

118. Let f(z) denote a regular function on the disk \z\^r. The arith¬ 

metic mean [II 48 of f(z) on the circle \z\ = r is defined by 

f f(rel&) dft = hm 
f(r) + f(noH) + /(rail) +-b/Fa>” *) 

2m 

where con =en . Show that 

±]f{rJ*)d» = f{ 0). 

This means: If an analytic function is regular at every point of a closed 

disk its value at the center of the disk is equal to the arithmetic mean of 

its values on the bounding circle. 
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119. Let the function f(z) be regular and different from zero for 

| g r. Prove that the geometric mean of |/(^) | on the circle \z | = r 

i 2n 
2^-J \og\f(ret&)\di> 

= lim |/| f(r) f(rcon) j{rorn) ••• f{rm" *) | — |/(°) 

[log f(z) is regular for \z \ ^ r.] 
120. The function f(z) is regular in the disk \z\ <1 r and does not 

vanish for 2 = 0; the zeros of f(z) in the disk are zv z2,..., zM, where each 

multiple zero is represented with its multiplicity. Then the geometric 

mean of |f(z) | on the circle \z\ = r is 

i 2n 
oZ J log\f[rel&)\d& 
,0 = 1/(0) | 

rn 

\fW = {X - h) {*-PW re§ular and different 

from 0 for \z \ ^ r.] 
121. Under the hypothesis of 120 the geometric mean of |/(z)| on 

the disk \z\ 
i r2n 

—T J 1 log\f(Qet&)\Qded& 

9 M = « 00 

is always smaller than the geometric mean of /(z) on the circle zj y , 

i ~n 
5T J log|/(«*#)|<i» 

®(r) = i 0 

We have in fact 

JW__ g-Ty ^ / 
<m 

122. Let /(z) = a0 + ay + ay- -+ anzn -\- be a regular 

function for |z|^r. The arithmetic mean of |/(z)|2 on the circle 

| z | = r is 

A f|/K) |2 = !«0|2 + hi2'2 + Kl2*-4 + ••• + Ia»|2 r2" + -• 

123. Assume that f(z) = u0 + + #2^2 “* "t" **■ is regu¬ 

lar for ^ 1. The partial sums 

Sn(z) = aQ + + *’* + anztly 
n = 0, 1, 2, ... 

of the power series of f(z) have the following minimum property: If P{z) 

denotes any polynomial of degree n the integral 

l 
2 n 

2.71 

is a m inimum if and 

§ 

124. We assume tj 

/w — 

is regular for \z \ r. 

into a domain of the 

M ^ correspond h 
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<p[z) - a 

is regular and schlich: 

subset of the z^-plane. 1 

n ^Jc 2 r 

127. Suppose that tl 

w = f(z) = 2 = 
n= — oo 

is regular and establish* 

of the circle \z\ = r and: 
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IS a minimum if and only if Pa(2) = s„(z). The minimum equals 

I^B + ll" + \an+ 2P + [«B+S |2 d-. 

§ 3. Mappings of the Disk. Area 

124. We assume that the function 

f{z) = a0 + axz + a„z2 + • • • + anzn + • • • 

is regular for |r| g r. The mapping w _ /(,) transforms the disk Is I Sr 

m o a domam of the .-plane. The .-values to which several „al«s, 

TheimatHhe^r ‘° C°“"'d "'h *he ^ 

^(1*1 |V + 2 Kfv + 3 K|V +... + n +...). 

(The area, is the additive combination of the areas of the images of the 
disk |z| — r under the functions w = a zn n — 012 1 

125. Let ’ 1’2’-> 

W = f{z) =njf + - +a_1z~1 

+ a0 + axz d--(- anzn d- 

be regular in the annulus r ^ \,\ ^ R. The area of the image (count 
covering with the proper multiplicity) is equal to 

oo 

71 S n. \an\2 (R2n — 
n~ — oo 

126. Assume that 

<P(Z)=CZ+C0 +£+$ + ...+£+..., c + 0< 

is regular and schlicht for |,| The range of „ = »(,) is a proper 

subset of the re-plane. The area of its complement is ^ 

n(\c\2r* _!^!_.£M2_3lc3i12 \ 
V 1 P- ,4 *-75 )■ 

127. Suppose that the function 

' “ m = J.'-2-—• + 

+ %+a1z + — +aHf + — 

is regukr and estabhshes a one to one relationship between the points 

circle M = r and its image L. The area of the domain bounded by 
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| 12 2 
n £ n\an\ r 

n= — oo 

The area is considered positive or negative depending on whether the 

moving image w of the point z describing the circle in positive sense 

leaves the area enclosed by L on the left or on the right. 

128. Let f[z) be regular on the disk \z\<r and let J(o) denote the 

area of the image of the disk {2! ^ q, 0 ^ q ^ r, undei the mapping 

w = f(z). Then 

f' M. dq = f I fire*9) |2 d& - 2n |/(0) |2. 

6 w 0 

129. Assume that the function 

c. c9 
w = (p{z) = cz -\- cQ + n 1 

is regular outside the circle |z = r and that it maps the domain \z \ ^ly 

univalently into the closed exterior of a curve L in the w-plane. We 

assume a homogeneous mass distribution on the circle \z\ =r and on 

the curve L in the z^-plane, a distribution such that arcs which correspond 

to each other under the mapping w = cp(z) carry the same mass. The 

mass distribution defined in this way on L has a certain center of gravity 

f (conformal center of gravity of L). We find 

§ 4. The Modular Graph. The Maximum Principle 

Let the function f{z) = u + iv be regular in a domain % of the 

z = x + ^y-plane which we conceive as horizontal. We assign to each 

point z in $ the point over the 2-plane with cartesian coordinates x, y, 4, 

where 

C - |/(*) I2 - «a + v2. 

The surface obtained in this way appropriately represents the variation 

of the modulus of the function f(z). We will call it the modular graph1. 

Jensen [Acta Math. Vol. 36, p. 195 (1912)] calls it an “analytic land¬ 

scape”. 
130. We take the cylinder over the disk \z\^r and intersect it with 

the modular graph of the function 

f(z) = a0 4“ aLz + a2z~ 4" * * * ~h anzn + * “ * 

1 There is no connection with the modular group or with elliptic functions. 
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g on whether the 

in positive sense 
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nder the mapping 

le domain \z\^> r 
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le , z ( = r and on 

- which correspond 

e same mass. The 

n center of gravity 

inciple 

iomain 15) of the 

h assign to each 

oordinates y, £, 

ents, the valuation 

e modular graph1. 

n " analytic land- 

id intersect it with 

elliptic functions. 

The volume of that part of the cylinder that is contained between the 
2-plane and the modular graph 

»P+K]M+! + 
| a IV" 

+ !_r + ■ 
2 1 3 n + 1 

131. Let y{z) denote the angle between the x, y-plane and the tangen¬ 

tial plane of the modular gr aph at z, |/(z) |2. Then 

tan y(z) = 2 |/(z)| |/'(z)|. 

132. A point of the modular graph with a horizontal tangent plane 

belongs to one of two types, it is a “pit” or a “saddle point”: If the tan¬ 

gent plane is the x, y-plane, then there are only isolated points of the 

graph on it, pits. If the tangent plane is not the x, y-plane it intersects 

the modular graph along a curve (level line) 2n branches of which meet 

under equal angles, —, at the point of contact which is a saddle point. 

(For a mountain pass, a saddle point in an actual landscape, we expect 

n = 2.) The 2n regions of the modular graph determined locally in this 

way lie alternately above and below the tangent plane. (All the pits are in 

the x, y-plane, all the saddle points above, at diverse heights.) 

133. The intersection of the modular graph of a polynomial with real 

zeros only and of a plane perpendicular to the *-axis is a convex curve 

the lowest point of which lies in the ;-plane. 

134. Let f(z) be a regular and single-valued function in the disk 

\z~zo\^r andM be the maximum of j f(z) I for 2 on the circle 12 — 2n I = r 
Then 

I f(*0)\^M. 

Equality holds if and only if f(z) is a constant. 

135. The function f(z) is assumed to be regular and single-valued in 

the domain $>. The maximum of | f(z) \ on the boundary of 2) is denoted 
by M. Then 

|/«l< M 

m the interior of $ unless f{z) is a constant. (The Maximum Modulus 

Principle, or briefly Maximum Principle; cf. Chap. 6.) 

136. What does the maximum principle say about the modular 
graph ? 

137. The n points Pv P2, ...,Pn are given in a plane, P is a variable 

point in this plane. In any domain & the function of the point P 

PP^PP2-PPn 
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(PPV is the distance between the points P and Pv) assumes its maximum 

on the boundary. . 
138. Let f{z) be regular, single-valued and non-vanishing m the 

domain If /(z) is not a constant, |/(z) | can assume its minimum only 

at boundary points of <£>. 
139. We assume that the given points Pv P2,P„ are all inside a 

circle of radius R and P is moving along this circle. Then 

« __—- — 
yPP1-PP2- PPn 

(the geometric mean of the n distances PP„) attains a maximum > R 

and a minimum < R unless all the P/s coincide with the center of the 

circle. 
140 (continued). The same statement as in 139 is true for the maxi¬ 

mum of the arithmetic mean 

Tp[ + 'ppI+ ■■■ + 

n 

of the n distances PP„, but it is not true for the minimum. 

141 (continued). The same statement as in 139 holds for the mini- 

mum of the harmonic mean 

n 

= + = + ••• + *== 
PP, PP. PP« 

of the n distances but not for the maximum. 
142. Consider the domain bounded by a closed level line (|/(z)| is 

constant along this curve) without selfintersections and lying inside the 

region where f(z) is regular. It contains at least one zero of f(z) unless 

f(z) is a constant. 
143. Given n points P1} P2, • • • , Pn in a P^ane in P varies. The 

locus of the points P for which the product of the distances 

PP^ PP,'"PPn : const. 

is a “lemniscate with n foci”. (The standard lemniscate represents the 

special case n = 2, cf. 4.) Show that a lemniscate with n foci can never 

consist of more than n separate closed branches. 
144. Let the function f(z) be regular on the disk \z\<^r and % 

|^0| = r, be a point at which j/(,z) | assumes its maximum. Then zn 

is real and positive. [103, 132. J 
°/(* 0 
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Chapter 4 

Cauchy’s Theorem. The Argument Principle 

§ 1. Cauchy's Formula 

133 

145. Put 
2 711 

co = e 1 *, = L = - 
+ *» 

v = 1, 2, ..., n; z0 = zn, a fixed, a 4= 0. 

Compute the sum 

r0 I Z2 ~~ ■ 
£1 

ZS z» . .. , *» zn 
T- T" ' 

£2 £3 1 1 c» 

which converges to the integral (£ ^ along |*] = |a | as n -> 00. 

146. Let k denote an integer different from —1 and L a closed curve 

without double points and of finite length; if k ^ — 2, L does not pass 

through z = 0; furthermore the points zlf z2,zn are consecutive points 

on L. Show that the integral (£ zk dz vanishes; try to approximate it 
by a sum of the form L 

*l(*l - zo) + 4(z2 - h) + • • • + 4(zn Z0 = V [111,11 2.] 

147. Evaluate 

along the ellipse z = # + iyf x2 — xy + y2 + x + y = 0. 

148. Show that 

h 
xd& 

+ sin2# 2}/1 -f- at2 
when x > 0. 

149. Prove the formula 
271 
r (1 + 2 cos t$) ” cos K0 2jt (l 

J l-r-2rcos# ^ ~ /H-2r\ 

150. Evaluate the curvihnear integral 

r (1 — x2 - y2) y dx + (1 -f x2 + 

T ~ 1 + 2x2 - 2y2 + (*2 

along an ellipse with the foci (0, —1) and (0, 1). 

~ r ~Y 1 - 2r - 3 r2\n 

2r2 ) ’ 

n = 0, 1, 2, ... 
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151. We have for 0 < $Rs < 1 

oo *ns 
/ xs~1e~ix dx = T(s) e"^. 

o 

152. The equation 

C^ldx = 
J xn n — 1 \ n) \ n 2) 

0 

holds for n > 1. 

153. We find, assuming [i > 0, 0 < (x < w = 0, 1, 2, .. 

-^cos* sin ^ sjn *w dx = —£'(- —) sin — . 
V ' LL \ [X J ft 

that 

/■ 

Note the special case oc = jun. 

154. Assume ja > 0, x > 0, ju fixed, x variable. Show that 

lim x^x f e~i" cos xt dt = r(/LL + 1) sin ^. 
%—> CO Q 

155. Let a > 0. The integral 

/W=53 / £* 

7W = 

along the straight hne $ = 0 + — oo < £ < oo, parallel to the imag¬ 

inary axis converges absolutely for all real values of a. The integral 

turns out to be 

JO if <x^0, 

}(% if oc ^ 0. 

156. We call //(£) the largest term of the series 

t t2 tn 
1+7r + 2! +-+1T! +•" 

Assume A > 0 and let 2 be the only positive root of the equation 

X — z — e~z = 0. 

Then 

#*w ■ 
0 
J e u dt — 

u 

+ ~sin|. **(»+*-/)* 

^ = 
1 if n < t < n -\- 1, 

0 if £ < ^ or t~> n 1. 

157. The Leg 

the expansion :nt 

l/l - 2-x -j- 

Deduce from this 

1 

and the DirichLt- 

P„(cos&)=- 

(The square roots 

158. Let £ dei 

and L the bounds 

£ so that £) is on ■ 

defines a function 

E[z) is an entire fi 

159 (continued 

160 (continue i 

is bounded outside 

is bounded. 

161. We define 
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3, 1, 2, that 

v that 

illel to the imag- 

tx. The integral 

e equation 

157. The Legendre polynomials can be defined as the coefficients of 

the expansion into a power series [VI 91] 

. P0(x) , Pit*) , W *»(*> l ... I _JL_L ... 
“r -3 "T ' ji+1 ' 

/l - 2** + *2 * ** ’ 

Deduce from this Laplace’s formula (VI 86) 

and the Dirichlet-Mehler formula 

L 

Pn(costf) =4/ 
COS (« + J) * 

} 2 (cos 2 — cos #) 
- dt 

=1/ 

sin (« -r ' 

]/ 2 (cos # — cos q 
dt, 

o r ' ’ # 

0 < # < 7T. 

(The square roots are positive.) 

158. Let § denote the half-strip 

SR* > 0, *—ft <$z<7t 

and L the boundary of £ consisting of three straight pieces. We orient 

L so that £> is on the right hand side of L. The integral 

defines a function E(z) for points 2 on the left hand side of L. Show that 

E(z) is an entire function which assumes real values for real 

159 (continued). We find 

160 (continued). The function 

■*(*» +t) 

is bounded outside <p. Inside £> the function 

is bounded. 

161. We define 

2{E(z)-/+j) 

z{z - l)(z - 2) ... (z - n) - n\ 
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on the entire z-pi 

assume that G\: : 
Show that 

<£/„(*) dz 
M=2» 

w=2" 

= 

where the integrals are computed along the positively oriented circles. 

[II 217.] 
162. Assume that f(z) is regular in the disk \z\£r and different from 

0 on the circle \z\ —r. The largest value of on \z\ = r is at least 

equal to the number of zeros of f(z) in | z ] < r. 

163. Let zvz2, ...,zn be arbitrary but distinct complex numbers 

and I be a closed continuous curve without double points, enclosing all 

the zv*s. The function f(z) is supposed to be regular inside of, and on, L. 

Then 
/(£) co{C) — co[z) ^ 

c»(0 Z-z 

where co{z) = (z — zx) (z — z2) ••• [z — zn), is the uniquely determined 

polynomial of degree n — 1 that coincides with f(z) at the points 

z\y z2> * *•» Zn’ 

164. The function f(z) is analytic on the segment a z 5^ b of the 

real axis and it assumes there real values. The closed curve L is conti¬ 

nuous without double points and encloses the segment a ^ z ^ b\ f(z) 

is regular inside L. Let zv z2,...,zn denote arbitrary points of the real 

segment [a, b]. Then there exists a point z0 on [a, b] such that 

_m_ 
(z - (z - Z.2) (z - zn) 

M 

(* - *o)n ' 
dz. 

165. Assume that the entire function F(z) satisfies the inequahty 

| F(x + iy) | < Ce9^' 

in the entire 2-plane, z = x + iy; C and o are positive constants. Then 

/ m \ 
+ oo c >(-i) ”f(™) 

_ V \ Q ) 

\sin qz) 
2j 

n — — oo 
(qz — nn)2 

Example: F(z) = cos qz. 

166. The entire function G{z) is supposed to satisfy the inequahty 

Example: G[z) =\ 

167. We suppc 

Then 

/ f{x) dx = 
0 

1 

/ xkf{x)dx = 
0 

We integrate with 

respect to z along 

point z = 1 with 1 

that is positive, fai 

168. The funcd 

the condition 

Let k > — 1. Then 

/ **/(*) i 
0 

169. Let x > - 

variables xv x2, x^ . 

is bounded, i.e. thei 

whenever the var.ai 

an integer and M = 

170. We assume 
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on the entire z-plane, z — x + iy; C, g positive constants; in addition 

assume that G(z) is an odd function, G(—z) = —G(z). Then 

(- i)M G 
— — = v V e - 
2qz cos gz ((„ + J) „)» _ e2z2 • 

Example: G(z) = sin gz. 

167. We suppose that the function f{z) is regular in the disk Izl < 1 
Then 1 1 — 

1 

/ f{x) dX = L. f_tto l°Szdz = 2Vi $ M Qog* - **) dz, 
W-1 JxJ =1 

1 

/ **/(*) dx = $ z*f(z) dz, k > —1; k 4= 0, 1, 2, .. 

We integrate with respect to * along a straight line from 0 to 1, with 

respect to z along the positively oriented unit circle. We start at the 

point z = 1 with the branch of log z that is real, and the branch of z* 
that is positive, for positive z. 

168. The function f(z) is regular in the unit disk Izl g 1 and satisfies 
the condition 

I \m i^=i. 

Let k > — 1. Then 

* 
i / **/(#) dx 

Y when k is an integer. 

I, when k is not an integer. .2 [sin kn\ 

169. Let « > -2. The quadratic form of the infinitely many real 
variables xv x2, x3,... 

21 I-rAz- 
is bounded, i.e. there exists a constant M independent of n such that 

XX*y. 
n n 

y y - 
!a=i /4 = 1 * + +“, 

< M 

whenever the variables x1,x2,...,xn satisfy the condition 

*i + *2 + — + 4 = 1; * = 1, 2, 3,... We may choose M = n if « is 

an integer and M 
Jsin ajr | if a is not an integer. 

170. We assume that the functions /l(z), /2(z), ...,/n(z),... are regular 

in e open region sJi and that they converge uniformly to the function 
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f(z) in any closed domain inside 9T Then the limit function f(z) is regular 

in 

171. The complex function f[z)=u(x,y) + iv(x, y) of the real 

variables x and y is defined and continuous in a region 3ft of the z = x + iy 

plane. Moreover we assume that the integral 

<£ f(z) dz 

along any circle inside vanishes. Then f(z) is an analytic function of 

the complex variable >2, regular in the entire region [Compute the 

variation of the area integral 

Fr(z) = fff(z+ f + «?) <m dr) 
S'+n'^r* 

when the real or the imaginary part of z varies.] 

§ 2. Poisson's and Jensen's Formulas 

172. The function /(*) is assumed to be analytic in the open disk 

| z | < 1, bounded on the closed disk |z| ^ 1 and continuous, possibly 

with the exception of a finite number of points. Then 

(More general than 118.) 

173. The function f(z) is regular in the disk \z\ ^ R] let 0 < r < R. 

Then we have Poisson’s formula 
271 

Hr**)=h! /&**)*= 
R2 - y2 

2Rr cos (0 - #) + r2 
d0. 

174. Suppose that the function f(z) is regular and bounded in the 

half-plane ^ 0. Then, for a > 0, 

fix + iy) =“ / fiirj) d arctan n-^-. 

175. We assume that the. function f(z) is meromorphic in the disk 

|z| ^ 1, regular and non-zero on the boundary and at the origin. The 

zeros of f(z) in \z \ ^1 are alt a2, ..., am and the poles bv b2,..., bn (mul¬ 

tiple zeros and poles are listed with correct multiplicity). Then we have 

Jensen’s formula 

log |/(0) | + log Ap + log 
+ logKJ 

- “* ra - 108 kt-108 ra - & /108 W'"1i 

[Draw circles : f 

\z\ < 1 so that the 

other nor with the 

circle by paths that 

circle if all the pok 
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\z\ < 1 to a simply o 

along the positively 

176. The func: .: 

and different from I 

the zeros al3 a2, .. g 

multiplicities. If the 

we have 

log I /(. \Z) - 

0 

177. The functioi 
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multiplicity. If f(z is 
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log - 
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r and bounded in the 

X 

morphic in the disk 

nd at the origin. The 

les bv b2,..., bn (mul¬ 

teity). Then we have 

tog j/(*") I d&. 

139 

1,1 lDr tCl6S u iadiUS 6 ar°Und thC Z6rOS and P°les in the "Pen disk 
M < 1 so that these circles do not have points in common with each 

other nor with the circle |,| = 1. Connect the e-circles with the unit 

circle ^tJe T ^ T ^ ^ ^ by radii of the unit if all the poles and zeros have different argument, cf. diagram). 

v exc u ng the e-disks and the connecting paths we reduce the disk 

|*! < 1 to a simply connected region m,. Compute the integral f**M dz 

along the positively oriented boundary of SR,.] J * 

a T6‘ The function f(z) is meromorphic in the disk |z| ^ R regular 
and different from 0 on the circle I ^ I   7? anH u • •, [ ^ 
the zeros * * nie circle |*| _ R and it has inside the circle 

, . r . }’ 2’ ' Um an<^ P°^es blf b2> .. b counted with correct 
multiplicities. If the point z = rj* r <r P « 
we have ’ < R' 15 neither a zero nor a pole 

lo£ | f[z) | + £ log ——- J1 log — bv* \ 
v=i ~Z)R vri s | (bv - Z) r\ 

In 

~~2^ I l°g\f(tei&) | 
R* _ 

w j i?2 _ 2Rr cos (© — ft) -f r2 d@ • 

I77. The function f(z) is meromorphic in the half-plane > o 

rz"°on rjr** - “ - 
multiplicity’ If t(\*m ^ ^ P°leS h',b2’-‘-’ h»> counted with correct 
multiplicity. If f[z) is regular at infinity (but also under weaker condi- 

, _ “ t tTUr U infinHy) and ^ f(Z) iS regUlar and non_zero at z — x ~r x > 0, we have 

H! /W! + J log:) tj _ v log lit, | 
^=1 J n v=i r ~~ bv\ 

J + ®o 

= / ^0g | d arctan dLzl^ 
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178. The function f(z) is regular in the domain 

($) r^\z\^R, -y^argz^y, 

different from zero on the boundary of 2) and it has in ® the zeros 

ava.2,...,am, = ,. = 1, 8,...,». Using the definition 

log \f(Q<?°) I = lT(o, 0) we have the formula 
71 

H- 

2 (r-i)cos#" = ^ /2 u(R, 0) cos & d& 
r<r,.<R •" / _iL 

+ s/(y-»)[K*T)+"(••-*)]*+*«■ 

where %{R) is hounded as R -> oo; r, f(z) are fixed. 

[<£log/(z)(4 +^)t hastobe comPuted along a Path anal°g°us 

to the one in 175.] 

§ 3. The Argument Principle 

V(x) 
179. Prove 25 by examining the change of arctan as x increases 

from — oo to + oo along the real axis. 

We consider a closed, continuous, oriented curve in the z-plane that 

avoids the origin. If, starting from an arbitrary point, z describes the 

entire curve in the given direction (returning to its starting point) the 

argument of z changes continuously and its total variation is a multiple, 

2nn, of 2?r. The integer n is called the winding number of the curve. 

180. Every ray from the origin intersects the curve in question at 

least \n | times. 
In the sequel (181 —194) L denotes a closed continuous curve without 

double points and 2) the closed interior of L. The function /(z) is assumed 

to be regular in ®, except possibly at finitely many poles, finite and non¬ 

zero on L. As z moves along L in the positive sense the point w — f(z) 

describes a certain closed continuous curve the winding number of 

which is equal to the number of zeros inside £ minus the number of poles 

inside L. [The Argument Principle. Cf. Hille, Vol. I, p. 253.] The pro¬ 

position remains true also when /(z) is only continuous and non-zero 

on L. 

181. The I 

at finitely mi 

of We deni 

*0 = f[z) of L i 

of L under u = 

182. Prove 

183. The a 

in the domain 

curve of $) ge 

is a single-vain 

principle from 

184. The re 

2m cos md — bm 

has at least im 

amine 

P(z) = (am - 

185. Let 0 4 

4 
zzs 2n distinct 

real zeros onlv. 1 

186. The fm 

ind regular on 1 

:c: L then f z a 

187. The ftaj 

iis^rmes any val 

rail-strip $lz > < 

188. Suppose 

rzzvalent on the 

than once. Then 

i I 7. ur I = T 

ask z < r. 

189. The zen 
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am 

hi it has in % the zeros 

Using the definition 

/ R, $) cos# d# 

-y)]<*e+*(*). 

ixed. 

along a path analogous 

iple 

V{x) 
arctan —— as x increases 

U{x) 

:rve in the ^-plane that 

rv point, z describes the 

to its starting point) the 

l! variation is a multiple, 

.umber of the curve, 

he curve in question at 

xmtinuous curve without 

- xunction f(z) is assumed 

my poles, finite and non¬ 

sense the point w = f[z) 

the winding number of 

inus the number of poles 

t ol. I, p. 253.] The pro- 

ontinuous and non-zero 

^ c > ThC functlons VW and VW are regular in except possibly 

W “”ite “d <™ 0 «* boundary l of J>. W. de .no /(«) _ *,) The windi number of ,hc J 

' 7 /W.°' I * equal ,o the sum ,he winding „„mbers 0, 
Of L under * = <p(z) and w = y,(2) respectively. § 

182. Prove the argument principle for a polynomial. 

: th3\ Thc argument principle implies: If <p{z) is regular and non-zero 

curve of ST nUmbCr °f the image °f L (the bo™dary 
- ®) generated by w = cp{z) vanishes; i.e. the argument of w(z) 

i, a single-valued function on L. Deduce the general statement of toe 
principle from this particular case. 

184. The real trigonometric polynomial 

C°S W& + K Sin + a»+i cos (» + 1) tf + bm f, sin (m + 1) +... + 

+ «„ cos n& + bn sin n& 

has at least 2m and at most 2m zeros in the interval 0 < # < 2n (Ex 
amine = ^ 

p(z) = (*« - **J zm + (am+1 _ 2™+3 + ••• + j 

Let 0 < < a, < • • • < an. Then the trigonometric polynomial 

ao + a\ cos $ + cos 2# 4- • • • + COS 11$ 

has 2n distinct zeros in the interval 0 ^ d < 2n 2n. [22.] [Consequently it has 
real zeros only, VI 14.] M y s 

j**®' 'h*16 lun^tlon !{z) is meromorphic in the interior of the curve L 

on ” 1*1is ^ the of «| » i then ,H assume, the , inside L jus( ^ often ^ ,t haj W ) I 

187. The function 

w = a** — e~7tz 

half-strip'sRz >T- ^ *** °““ ^ °n'y °nCe in the 

188. Suppose that' f(z) is regular in the closed disk 1,1 <r and 

umvalent on the circle |,| = that is it assumes there no'vLue more 

:ationase|zI =" aTw ^ '1 = ' Under " = /{z) has the same orien- 
disk u, J l 6 funCh0n f[z) 13 univalent (schlicht) also in the 

189. The zeros of the function fe 
dx lie with the exception of 
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2 = 0 inside the region 5Rz2 < 0. [Cornu spiral, cf. e.g. A. Sommerfeld. 

Optics. New York: Academic Press 1904, pp. 243—244], 

190. The function /(z) is single-valued, regular and does not assume 

a certain value a in the annulus r < U j < A. All the closed continuous 

curves without double points that enclose the circle | z j = r and that lie 

inside the annulus are mapped by the function w = f(z) - a onto curves 

in the w-plane with the same winding number. 
191. The function /(z) is regular in the domain $ and its absolute 

value on the boundary curve L of T5 is constant. As z moves on the curve 

L the argument of /(z) changes monotonically. (Whence a new proof of 

142.) 
192. The function f(z) has one zero more than f'(z) inside L under 

the hypothesis of 191. (More informative than 142.) This means geo¬ 

metrically: Inside a closed level line without double points the modular 

graph has more pits than saddle points, namely precisely one more. 

193. If /(z) is regular in the domain T and / (z) does not vanish in 

% the mapping w = /(z) of $ is not necessarily schlicht 72]. If however 

|/(2) | is constant on the boundary of % the mapping in question has to 

be schlicht. 

194. We suppose that f{z) and cp(z) are two functions that are regular 

in the interior of continuous in the closed domain ® and that further¬ 

more |/(*)j>M*)l on the boundary L of ®. Then the function 

f(z) + (p{z) has exactly the same number of zeros inside ® as f(z). 

195. Let A be real, A > 1. The equation 

has exactly one root in the disk \z\ = 1. This root is real and positive. 

196. Let A be real, A > 1. The equation 

has only one root in the half-plane Ste ^ 0 which, consequently, is real. 

197. A function (not necessarily schlicht) that maps the closed unit 

disk onto a domain contained in the open unit disk has exactly one fixed 

point. I.e. if f(z) is regular in the disk \z\ ^ 1 and if \f{z) | < 1 in \z\ < 1 

199. Id 

function on 

has infinite! 

:: < ' ' 

many comp 

like the zen 

200. let 

defines an ei 

annulus 

and has exi 

the maxima 

201 oty* 

me functkMi 

n*:-t vanish : 

= ... 

ir'::crary £L* 

:-:c ad suffid 

202. Th« 

- ten me fn 

203. Let- 

then the equation f(z) — 2 = 

198. The entire function 

the half-strip 

z — 0 has exactly one root in |z( ^ 1. 

ion -- assumes each value infinitely often in 

—d<$z<d, Wz < 0 (d arbitrary). 
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et d. e.g. A. Sommerfeld: 

p: .43-244]. 

- ri.ir and does not assume 

l A'l the closed continuous 

rcle | J2r | = r and that lie 

r. - _ = f(z) — a onto curves 

199. Let f(t) be a real-valued twice continuously differentiable 

function on the interval 0 <; 1. If |/(1) | > |/(0) | the entire function 

1 

F(z) = J f(t) sin zt dt 
0 

has infinitely many real zeros and only a finite number of complex zeros; 

if 0 <; [/(l) | < 1/(0) | it has only a finite number of real, and infinitely 

main X and its absolute 

fcr As 2 moves on the curve 

Whence a new proof of 

many complex, zeros. [The zeros of F{z) behave with respect to reality 
like the zeros of /(0) — /(1) cos z.] 

200. Let a be a constant, \a\ > 2.5. The power series 

- man f(z) inside L under 

* - ir. 142.) This means geo- 

. :. able points the modular 

' v precisely one more. 

£ ni f'(z) does not vanish in 

b_r_l sehlicht [72]. If however 

t - upping in question has to 

1 + t+£+5 + -+;p + - = *W 

defines an entire function which does not vanish on the boundary of the 
annulus 

and has exactly one zero inside the annulus, n = 1, 2, ... [Examine 

the maximum term on the circle |jar| = \a\2n, 1117 “ 

201 (continuation of 170). Let 0 denote the set of all zeros of all 

rarem 

: unctions that are regular 

i main X and that further- 

• X. Then the function 

: mros inside X) as f{z). 

vr 1 

the functions fn(z), n = 1, 2, 3, ... in 9L If the limit function f(z) does 

not vanish identically its zeros in $ are identical with the limit points 

of @ in 91. (The term '‘limit point” is used here to mean a point an 

arbitrary fixed neighborhood of which contains at least one zero of fn(z) 
for all sufficiently large n.) 

202, The functions 

u- root is real and positive. 
AW. /2W. /,(*), ... 

are sehlicht in the unit disk j z | < 1 and converge in any smaller disk 

z\<^r <1 uniformly to a not everywhere constant limit function f(z). 

Then the function f(z) is sehlicht in the unit disk \z\ < 1. 

ach, consequently, is real. 

: :hat maps the closed unit 

disk has exactly one fixed 

md if |/(2) | < 1 in j^| ^ 1 

:.r root in \z | ^ 1. 

203. Let ^(2), g2{z), • • • > gn(z)> * * * t>e entire functions which have real 
zeros only. If 

lim = g(z) 
«-»00 

uniformly in any finite domain, the entire function g(z) can have only 
real zeros. 

- _ value infinitely often in 
204. Assume 

arbitrary). Q < ao< ai * * * 4S ; a ^ 0, d > 0. 
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Cauchy's Theorem. The Argument Principle 

The entire function 
n 

av cos (a + vd) z 
v = 0 

has only real zeros. 
205. Suppose that f(t) is a positive valued, never decreasing function, 

defined on the interval 0 ^ t < 1 and that its integral //(<) dt is finite. 
0 

The entire function 
i 

f f[t) cos zt dt 
o 

has real zeros only. [185.] 
206. The domain $ contains the segment a ^ 2 ^ b of the real axis. 

The functions fx{z), f2(z),...,fn(z),... are regular in $, they assume real 

values for real 2 and they have no zeros on [a, &]. If these functions con¬ 

verge in ® uniformly to a not identically vanishing limit function f(z) 

then f(z) has no zero on the segment a^z ^ 6.—This statement is 

false. 
206.1. The analytic functions fl[z)> f2{z),..., fn{z) are regular and 

single-valued in the connected closed domain T>; let cx, c2,cn denote 

constants. If the function 

ClfliZ) 4“ ^2/2 (^) 4“ * * * 4“ ^nfnfe) 

does not vanish identically the number of its zeros in ® cannot exceed a 

certain upper bound which depends on 4(2), • • • > /»(^) ^ 

does not depend on ^ c2,..., cn. (206.2 is less general but more precise.) 

206.2. Let Ap A2.A, denote real numbers 

Aj A2 ^ A; 

and ral: m„,.... m, positive integers, 

^ 1,..., Wj S 1, + nt2 + • • • + »*, = M• 

Let /,(*), 4(z),..., 4W stand for the functions 

...,2mi-V'3 

eA<, .... 2mi~V'z 

taken in this order, and N for the number of those zeros of the function 

cxfx{z) + c,4(2) + ••• + cjn{z) 
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-r decreasing function, 
1 

r^ral j f(t) dt is finite. 
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that are contained in the horizontal strip 

3-^/3. 
Assuming that 

lcil + |e*| +•" + |c*| > 0, |e._,J+1| + + jc„_, | + ]C„| > 0 

show that 

~■ *) , ^ Ar ^ (}-, - ).,) (ft - *) 
2?t -I- 

(206.1 is more general but less precise.) 

r 5^ & of the real axis, 

l 2, they assume real 

: these functions con- 

r.g limit function f(z) 

—This statement is 

% :) are regular and 

et clf c2,..., cn denote 

:n cannot exceed a 

..., fn(z) and *£) but 

ral but more precise.) 

Chapter 5 

Sequences of Analytic Functions 

§ 1. Lagrange’s Series. Applications 

The power series 

aiz ~ + ’•• + UnZn + • • • = W 

which converges not only for * = 0 and for which ax * 0 establishes a 

conformal one to one mapping of a certain neighbourhood of * = 0 onto 

a certain neighbourhood of w = 0. Consequently the relationship between 

z and w can also be represented by the expansion 

+ b2w2 + • ■ • + bnwn + • • • = 2, 

= 1. To compute the second series from the first we set 

l 

m, — n. 
ai + a.2z + asz~ 4* • • • + anzn 1 + •. • 

The equation 

zeros of the function 

' <p(z) ’ 

where <p(z) is regular in a neighbourhood of z = 0, <p(0) =f= 0, implies 

z = Y 
„ n! 

dn~l [?(*)]" 

dx"-1 i = 0 

More generally, if f(z) is regular in a neighbourhood of z = 0, then 

d2_ 1/'(•*> [<p(x)]n m =/(0) + 2 =r „ 11! 
«=1 dx 
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37; Whittaker and 

before and expand 

-agrange’s formula 

oth formulas. [The 

nediately the other 

sing the coefficient 

on of the transcen- 

x z where oc is an 

a x of the trinomial 

here oc denotes an 

omial equation 

, \ and derive 209, 

217. Arrange the successive powers of the trinomial 1 

regular triangular array 

1 

1 + w + w2 

1+2 z# + + 2wz + w4 

1 + + 6ze>2 + 7 m?8 + 6^4 + 3z+ we 

The sum of the middle terms (in boldface) is 

1 + w -f 3w2 + lwz + ■ 

■ w + w2 in a 

]/1 — 2w — 3 w2 

218. Arrange the successive powers of the binomial 1 -j- in a regular 

triangular array (Pascal's triangle) 

1 

1 + w 

1 + 2 iv + w2 

1 + 3z# + 3 w% + wz 

1 + 4m + 6it?2 + 4 w3 + w4 

hind the sum of the middle terms (in boldface) and, more generally, 

the sum of any column. 

219. Find the generating functions of the polynomials Pn(x), P^p)(x), 

^n\x)y defined by the formulas 

(1) 
1 dP 

pn(x) = ^7 Jli (*2 — 1)" (Legendre’s polynomials); 

\n ,n 

(2) (1 - *)« (1 + xf pw\x) = Cil! (1 _ *)«+« (1 + xy+f> 
2 n! dx 

(3) 

<*> — 1, > — 1 (Jacobi’s polynomials) ; 

ot> — 1 

(generalized Laguerre’s polynomials). 

(Cf. \ I 84, VI 98, VI 99. The generating function of the Legendre poly- 
nomials is the series 

po(x) + Pl(X) w + P2(x) w2 + ■■■ + Pn(x) wn + ••• 

= 1 + xw + — w2 _|- 
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the sum of which has to be found as a function of x and w\ similarly in 

the other two cases.) 

We define as usual 

AF(z)=F(z + 1)-F(z), 

A2F(z) = A[AF(z)} = F(z + 2) - 2F(z + 1) + F(z), 

AnF(z) = F{z + n) -(”)F(* + »- 1) +(”)f(2 + n - 2) 

-••• + (-1)” F(z) 

220. Let 5 be a constant of sufficiently small modulus. Then the 

following formulas are valid for F[z) = esz: 

(1) F(z) = F( 0) + yj-JF(0) +£<£_li)zl2ir(0) + ... + 

i±AnF(0) + .... 

(2) F'(z) = AF(z) - ± A2F(z) +±A*F(z) — - + 

(3) F(z) = F( 0) +~F'{1) + F"{ 2) + • • • 

In the sequel 21 

^ ^k - 

where ak, k = 0, — 1 

224. Define 

F(z) = 

and establish the r '_; 

TTT F(i 
225. Define 

F(z) = a, 

and show that 



f x and w; similarly in 

-!)+*(*). 

+ (*)*('+"” 2) 

iali modulus. Then tlie 

- + 

[210]; 

—-^-A 2nF{-n) 

- -F{-n + 2) - F(-n)] 

2 

[212, 216]. 

i: Id for any polynomial 

Iso valid for any rational 

be real part of any of the 

ilitional condition that 

rmulas (3) and (4) hold 
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In the sequel (223—226) we use the notation 

A ak = ak+n — ^ i ^ak^n_1 + ( ak+n_2-4- {—l)nak. 

223. 

(1 -*)n I akzk= Z Anakzn + k 
k— — 00 k= — 00 

where ak, k = 0, 4:1, +2, • ••> denote arbitrary constants. 

224. Define 

F(z) = a0 + axz + a2z2 H-+ anzn -{- 

and establish the relation 

1 t -w) = 4- Aa0t A~a^ + • • • + Ana0tn -\- •••. 

225. Define 

F(z) = <z0 + 2#,z + 2^2^" + *** + 2<znzw + ’** 

and show that 

l 1 + 2* - ]/7 + 4/\ . ,, 
^T+~4t \ / aQ ^ A a_xt + Zl a_.2i~ + • • • 4- 

+ ^2na_wr + •••. 

226. Define 

F{z) = 2#^ -f- 2u.2z^ -|- 2u2z^ -}“ * * * -f- 2unzn -J~ 

and show that 

V: 

±F(i + 2t - ]/l + 4 + 4A , 
J — ai a-i + (A~a0 — Zl“a_2) t t \ 21 

+ J V,) <2 + • • • + (^2”a_M+1 - Aina_n_,) *”+•••. 
227. 

rr /1 . _fH.~ *) \ _ sin rar _ 

/Ji \ « (* 4 1) / Ml - 4 * 

228. sin nz is a single-valued function of w = z( 1 — z). The expansion 

0: sin ttz in powers of w contains only positive coefficients (except the 

constant term) [227]. 
229. Prove that 

dn(7Z — x) n 3 cos X 

dxn 
> 0, n = 0,1,2,... 
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§ 2. The Real Part of a Power Series 

230. We assume that the function 

f(z) = a0 + axz -h a2z2 -f-anzn + is regular in the disk \z\< R. 
Express the coefficients ax, a2, ... in terms of the real and the 

imaginary part resp. of f[z) on the circle \z | = r, 0 < r < R. 
231 (continued). We set ^f{reid) = U{r,d) and assume that /(0) is 

real and \z \ < r. Then 

r + ze d&. /W=2njU^-&)rZ 

232 (continued). Suppose f{z) does not vanish on |z| =r and that 

its zeros in the disk I z I < r are c,, c„ .... cm. Then we have for ! z | < r 

fit (_ q \ y -i 2 71 

log f(z) = iy+z log ^ _ § - + 2^- / log \f{re' 
id\ | r + » d$, 

where y is a real constant. [Consequence of 231 as 120 is a consequence 

of 119] 
233. The function f(z) is regular, its real part is positive in the open 

disk \z\ < R and continuous in the closed disk z\<f, R. If the real part 

becomes identically zero on an arc of the circle the imaginary part of 

f(z) changes on this arc always in the same sense: it decreases as arg z 

increases. 

234. Let f[z) = aQ + axz + a2z2 -\-+ anzn -\- be regular in 

the disk \z \ < R, f(rei0) = U{r,&) +iV(r, &), U(r, ft), V(r,d) are real. 

Then the equation 

J*[U{r, #)]2 dfi = f [V[r, tf)]2 d§ 
o o 

holds for 0 < r < R provided that it holds for r = 0. 

235. The function 

/(z) =1 + axz + ••• + aBz” + ••• 

is assumed to be regular and to have positive real part in the open disk 

i z | < 1. Then j an | 1, n = 1, 2, ... In none of these inequalities can we 

replace 1 by a smaller number. 

236. Suppose that the function 

f(z) = a0 + axz + a2z2 + •♦• + ^ H-is regular and that $if(z) < A 

on the disk \z\ < R. Then the inequality 

\ao \ “1“ U1 I r + I ^2 | Y~ + + | an ! + ’' ’ = |*o B — Y ^ ~ 

holds for 0 < r < R. Example: f(z) Z + 1 
z — 1 

, R = 1, A =0. 

237. We as - j 

converges on the 

have been rem \ 

singular points 

\z\ = r is denotes 

r as r —> oo and fs 

Ina 

238. We as' in 

is regular in the ii 

of the real par: y 

lW-av(4 : 

The factor — cam 
71 

Interpret th> ] 

239. Let the v 

in the disk \z < 

for \z \ < R, i.e. . 

\h \ < R> \h < ‘Z- 

The factor J car: m 

sit ion geometri c a 1 ] i 

240. Let the :tr 

(1) f(z) is regul^ 

(2) f(z) does n« t 

(3) f(z) has ir. tl 

[We may assume s 
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237. We assume that the Laurent series 

151 

i: in the disk |z | < R. 

r.s of the real and the 

< r < R. 

md assume that /(0) is 

d&. 

on \z \ = r and that 

n we have for \z\<r 

-w 
' re id\ | r + ze 

r — ze 

ls 120 is a consequence 

is positive in the open 

: ^ R. If the real part 

the imaginary part of 

e it decreases as arg z 

1 — • • • be regular in 

r, &), V(r,rd') are real. 

1 part in the open disk 

^ese inequalities can we 

[ar and that %if(z) < A 

<0! + 

1, A = 0. 

y,(z) = 21 
H = — oo 

converges on the annulus 0 < | z j < oo (sphere from which two points 

have been removed) and that z = 0 and z = oo are essential isolated 

singular points. The maximum of the real part of y>(z) on the circle 

l*[ = r is denoted by A(r). A(r) increases to oo faster than any power of 

r as r -> oo and faster than any power of ~ as r 0. Precisely 

. loS A(r) lim 
log r + °°> lim!^Jr)=+00. 

r-> 0 , 1 l°gy 

238. We assume that the function f(z) = a0 + atz +-\~ anzn -|_ 

is regular in the disk | z | < R and we denote by A (/) the largest oscillation 

of the real part of f(z) in z\ < R, i.e. A(f) is the least upper bound of 

|8V(*i) — W(h) I for \h [ < R, \z2 [ < R. Then we have 

2 
The factor cannot be replaced by a smaller one. 

Interpret this proposition geometrically. 

239. Let the function f[z) = a0 -f- axz + * • * + anzn + • • • be regular 

in the disk |^| < R and denote by D{f) the largest oscillation of f(z) 

for \z\ < R, i.e. D(f) is the least upper bound of |/(zx) — f{z2}\ for 

I zi I < I ^2! < Then we have 

K| R^~D(f). 

The factor \ can not be replaced by a smaller one. Interpret this propo¬ 

sition geometrically. 

240. Let the function f[z) satisfy the following conditions; 

(1) f(z) is regular, \f(z) | <: M in the disk \z — s\<^r; 

(2) f{z) does not vanish in the closed half-disk \z—s\<Lr, $l(z— s) > 0; 

(3) f(z) has in the disk \z — s| g § r the zeros cltc9,..., cr Then 

^/(s) = , l0g 1/(5) ( 

[We may assume s = 0; 232, 120.] 

^9i—1 
;.=i 
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§ 3. Poles on the Circle of Convergence 

241. Suppose that the unit circle is the circle of convergence of a 

certain power series and that there are only poles of first order on this 

circle (no other singularities). Then the sequence of coefficients is bounded. 

242. If there is only one singular point z0 on the circle of convergence 

of v and if z0 is a pole then 
« =o 

an 
lim - = Zo. 

243. Let y anzn be the expansion into a power series of a rational 
n=0 

function whose denominator (relative prime to the numerator) has degree 

q. The radius of convergence is called o and An denotes the largest among 

the q numbers \a„\, l^n-i !»■••» \an-q+i !• Then 

r 1 lim I An = —. 
oo Q 

(lim not lim sup!) 

244. Let vn be the number of non-zero coefficients among the n 

coefficients aQ) av . If there are only poles (and no other singu¬ 

larities) on the circle of convergence of the power series 

aQ 4 axz -f a.-yT -+ anzn 4 • • • the number of such poles is not 

smaller than 

v n lim sup —. 

Example: 1 + , ■ , , ~r * “r 1 - . 

245. We assume that the coefficients a0, av ..., an, ... of the power 

series a0 + axz H-+ anzn + ••• are real and that oeix and oe~ix are 

poles and the only singularities on the circle of convergence, 0 < oc < ti. 

We call Vn the number of changes of sign in the sequence a0, al,..., an _x, an. 

Then 

,. n tv 
lim — = —. [VII114.] 

246. If there is aiso a pole among the singularities on the circle of 

convergence the power series converges at no point of the circle of 

convergence. 

247. Suppose that the point z = 1 is a regular point of the power 

series 

f{z) = axz + a2z2 + ••• + anz" 4 ■** 

that converges 

convergent for 

J 

defines an enti 

of order h of 

have poles onh 

a pole); the pc 

J xs~1f(e~z ) ix 

248. The ^ 

condition 

Then the series 

0(S) = 

converges in :hi 

of the s-plane. 

interior strip — 

analytic funcr..: 

all the coefficie: 

249. We a— 

converges inside 

to 0 as z tends t 

Then there are t 

(1) f(z) vanis 

(2) z = 1 is ; 
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role of convergence of a 

: rs of first order on this 

: :oefficientsis bounded, 

-he circle of convergence 

wer series of a rational 

he numerator) has degree 

kmotes the largest among 

Tficients among the n 

- (and no other singu- 

-r series 

r: of such poles is not 

.., an, ... of the power 

:hat oetx and ge~t<K are 

. nvergence, 0 < oc < tz. 

- -ence cIq , ,..., 

[VII114.] 
'arities on the circle of 

point of the circle of 

Tar point of the power 

that converges inside the unit disk. Then the Dirichlet 

convergent for certain values of s. 
series, assumed 

D(s) — ax 1 5 + s + • • * + ann s 4- • • • 

defines an entire function. In the case where the point ^ = 1 is a pole 

of order h of the function f(z), D(s) is a meromorphic function which can 

have poles only at the points s = 1, 2, .... h (only the last one must be 

a pole); the poles are simple. [D(s) T(s) = f xs~1f(e-z) dx, cf. 11117- 

co 0 

/ xs~'f(e~x) dx is an entire function of s if o > 0 ] 
q * *J 

§ 4. Identically Vanishing Power Series 

248. The sequence a0, ax, a2, ..., an, ... is assumed to satisfy the 
condition 

t log la | 
lim sup ——— = —h h>0 

J n ^ 

Then the series 

0(s) = 2a0 + a^e* + e~s) + a2 ( el'2s + ) + ... + 

+ an(e'!"* +«-V«) + ... 

converges in the infinite strip 

—k < 9ls < h 

of the s-plane. The convergence is absolute and uniform in any closed 

interior strip -h + e <L h — *. « > 0; there the series defines an 

analytic function &{s). The function 0(s) vanishes identically only if 

al the coefficients aQ, av a2, ..., an, ... vanish. [Compute 

F M = J ^(5) "^2“ ds> 0<«<h, u > 0; 155.] 
a—too J 

249. We assume that the power series 

f[z) = «0 -j- axz -j- a2z~ + * * • + anzn 4- * * • 

converges inside the unit disk and that /(,) and all its derivatives tend 

t° 0 as z tends to 1 on the real axis. i.e. lim fn]{z) = o, n = 0 1 2 

Then there are two possibilities: 

(!) /(*) vanishes identically; 

(2) z = 1 is a singular point for j(z). 



154 Sequences of Analytic Functions 

If the power series converges in a disk larger than the unit disk, i.e. if 

.. los Kl n 
hm sup —-— < 0. 

»-> OO 

we are necessarily dealing with the first case. The weaker condition 

v log I I n 
lim sup —1=— < o 

n-> oo 1' n 

admits the same conclusion. [Construct the function <P[s) of 248 

250. The proposition 249 is not valid if the condition on the coeffi¬ 

cients a0,ava2,...,an,...oi f(z), namely lim sup < 0, is replaced 

by 
r log \an\ n lim sup--— < 0, 

[Put 

f[z) = J e~xlXcosf171 sin (x? sin (xn) e x(1 z) dx; 

§ 5. Propagation of Convergence 

The following examples show that the convergence of sequences of 

analytic functions is often “contagious”. 

251- If the series 

g(z) +g'(z) +g"(z) + "• +g[n,(z) + "■ 

converges at one single point at which g(z) is regular then g(z) is an entire 

function and the series converges at every point. The convergence is 

uniform in any finite domain of the 2-plane. 

252. If the sequence 

If'tol. VV'(*)|. •••> he{n)(z)\’ 
is bounded at a single point of the 2-plane then g{z) is an entire function 

and the sequence stays bounded at all the points of the 2-plane. It even 

has the same limit superior at all the points. 

253. Let 
a0, av a2> an> 

C0> Cc)y °1> 

be two infinite sequences, the second one being arbitrary, the first one 

such that an =j= 0, am =j= an when m =j= n, m, n = 0,1, 2,... and that 

-+^+T- + + 

converges absc !■ 

m 
define a unique 

sequence 

converges at a 3 

ever}’ point 2. 

254. Let 

denote a sequent 

polynomial of ie€ 

If the sequence oi 

QJA 

converges for twJ 

point 2, even unifi 

255. The seen: 

degree not excedi 

These n -f- 1 cor.ii 

Qo'A 
converges at a s:ni 

uniformly in every 

256. We 

: z)» f\ (z), f-2 ~ 

:heir absolute va 

fn(z) = 0 in :b( 
1—» 

uniform in everv 3 

257. The harmc 

uo{x,y), j 

are assumed to be 1 

y-plane. If the ;r 

- 
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log I an I 
up < 0, is replaced 
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0 <t* <-j- 

I_-’> dx; 153,11222.] 

rgence 

overgence of sequences of 

* M + - 

gular then g(z) is an entire 

•int. The convergence is 

rwi. ... 
: g(z) is an entire function 

:ts of the 2-plane. It even 

ig arbitrary, the first one 

= 0, 1, 2,... and that 

converges absolutely. The equations 

QMo) = c0, <?>,) = c,. <?„(«„) = c„ 

define a unique polynomial Qn(z) of degree not larger than n. If the 
sequence 

QoW’ QM, q2[z), ..., Qn(Z), ... 

converges at a single point * different from a0, av a2. ... it converges at 

every point 2, even uniformly in any finite domain of the 2-plane 
254. Let 

C~n’ c-*+i’ •••> co< •••• cn_v c„, 

denote a sequence that is infinite in two directions and Q. (z) be the 

polynomial of degree 2n that satisfies the equations 

Q-rni-n) =c_n, Q2„(~h + 1) = C_H+1, .... (?2»(0) = c0> .... 

Q2H(n- l)=cH_v Qojn) = cn. 

If the sequence of polynomials 

& W' 02W. QM .... QiH(z), ... 

converges for two different non-integral values of 2 it converges at every 

point 2, even uniformly in any finite domain of the 2-plane. 

255. The sequence c0, cvc2,..., cn, ...is given. A polynomial Qn(z) of 

degree not excedmg n can be found [VI 76] for which 

<?»(0) = c0, Q'n( l) = Cv q"(2) = c2, ..., QW(n) = cn. 

These n + 1 conditions define Q„(z) uniquely [VI 75]. If the sequence 

0o(*)* Qz{z), .... Qn[z), ... 

comerges at a single point 2, 2 4= 0, it converges at every point 2, in fact 

uniformly in every finite domain of the 2-plane 

in ,he unit disk- 1*1 <>• «* Actions 
If'.’ h[J’ • • • ’ /.M- • • • are Aguiar and different from zero and that 

their absolute values are smaller than 1. If lim /„(0) = 0, then 

^ '2' ~ ° m the entire °Pen disk |2 j < 1; the convergence is actually 

uniform in every smaller disk \z\ ^ r < 1. 

257. The harmonic functions 

uo(x,y), «i(*. y), u,{x, y), ..., uH(x,y), ... 

are assumed to be regular and positive in a certain open region 9? of the 
x, y-plane. If the infinite series 

Mo(-T y) + «i(*, y) + u2(x, y) -I-+ un(x, y) -|- 
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converges at a single point of 9ft it converges everywhere in 9ft; in fact, 

it converges uniformly in any closed subdomain of 9ft. 

258. We suppose that the functions of the sequence 

fQ(z), f^z), f2(z),..., fn(z), ... are analytic in the open region 9i and that 

the sequence of their real parts converges uniformly in every closed 

subdomain of 9b Then the sequence of their imaginary parts either 

diverges at all points or it converges uniformly in any closed subdomain 

of 9b 

§ 6. Convergence in Separated Regions 

259. The series 

1 4. * + (i -f- z) (1 + Z2) “r (l -1- z) (1 + z2) (1 + z4j ■ + 

+ 7i~ + 
' (i 4- z) a + z2) (i + z4) (i + *) 

converges uniformly in any domain that lies either entirely inside or 

entirely outside the unit circle and its sum is z or 1 according as \z | < 1 

or |J2r| > 1 [114]. 

260. Let (x denote an arbitrary constant, & 4= 0. The series 

1 + £ - 

n = 1 

. >»-1 n —nx ■+- n) x e 

converges uniformly for all positive values of x; it represents the function 

e*x for 0 5^ x ^ 1 and a different analytic function for 1 < x < oo. 

261. The sequence of functions fx(z), f2{z), , fn{z), ... 

/»(*) - 
n{ lz_1 + 2Z 1 • + it*"1) 

n = 1, 2, 3, 

converges uniformly in any finite domain that does not contain the 

imaginary axis. 

262. Let 

> 0, > 0, oc + p = 1, 

and put 

cp{z) =ocz +/S — • 

The sequence of iterated functions 

cp(z), ?>[?(*)], <p{<p[<p(«)]}. 

converges to +1, when > 0, to — 1 when 3tz < 0 and diverges when 

fHs = 0. 

§7. The 

263. Let 

domain cons:'- 

/„(*)= l-Ld 

where z = rf 

h((f) is the si 

bounded. 

264. Let i 

considered :n 

where z = r-f 

smallest functi 

265. Let « 
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§ I- 
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one part withe* 
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1 E. Bore. Mi 

Yillars 1922. Inirc 
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§ 7. The Order of Growth of Certain Sequences of Polynomials 

263. Let h(<p) denote the support function of the infinite convex 

zomain considered in 114. The sequence fx{z), /9(z), fn[z)t ... 

/„(z) = I7* 2) ...(«-» + 1) (z - n) k{v) 
n = 1, 2, 3, 

where z = re**, is bounded in the entire half-plane $lz 0 12, II 2201; 

%) is the smallest function of the angle cp that keeps the sequence 
bounded. 

264. Let h(<p) denote the support function of the convex domain 

considered in 115. The sequence f^z), U(z), , fn(z), ... 

= * i1 - f) i1 - w) --■ i1 - S) e~rhM> n = 1. 2, 3,..., 

where z = ret<p, is bounded in the entire z-plane [13, II 221]; h(<p) is the 

smallest function of the angle cp that keeps the sequence bounded. 

265. Let h(<p) denote the support function of the convex domain 
considered in 116. Then 

1 +±-*e-'kto) < 1 

^ = ret(p, in the entire plane. 

Chapter 6 

n = 1, 2, 3, 

The Maximum Principle 

§ 1. The Maximum Principle of Analytic Functions 

The values that an analytic function assumes in the different parts 

of its domain of existence are related to each other: they are connected 

by analytic continuation and it is impossible to modify the values in 

one part without inducing a change throughout. Therefore an analytic 

function can be compared to an organism the main characteristic of 

which is exactly this: Action on any part calls forth a reaction of the 

entire system. E.g. the propagation of convergence [251 —258'. can be 

compared to the spreading of an infection. Mr. Borel advanced ingenious 

reflections upon similar comparisons1. We shall examine in what manner 

1 E. Borel: Methodes et problemes de theorie des fonctions. Paris: Gauthier- 
Villars 1922. Introduction. 



158 The Maximum Principle 

the moduli of the values are related that the function assumes in 

different parts of its domain of existence. 

Let the function f(z) be regular in the circle \z \ < R; the maximum 

of its absolute value on the circle \z\ = r, r < R, is denoted by M(r). 

266. The maximum of j f[z) j on the disk z j ^ r is M(r). 

267. The maximum M(r) is monotone increasing with r unless f(z) 

is a constant. 

268. We assume that the function f[z) is regular in the simply connected 

region |z| > R. M(r) denotes the maximum of j/(*)', on the circle 

\z \ ==r>r> R. Then M(r) is also the maximum of |f(z) | for \z \ ^ r and 

M[r) is monotone decreasing unless f(z) is a constant. 

269. Let f(z) denote a polynomial of degree n\ then 

M(ri) > 0 < r-, < r2. 
rn = rn 3 
Y\ *2 

Equality is attained only if the polynomial is of the form czn. 

270. Suppose that f(z) is a polynomial of degree n and that 

\f(z)\^M 

on the real interval —l^z^l. Then we have 

|/M | ^ M(a + b)n 

for any z outside this interval; a and b are the semi-axes of the ellipse 

through z and with foci —1 and 1. What does the proposition imply for 

z —> oo ? 
271. We assume that f(z) is a polynomial of degree n, that Ex and £2 

denote two homofocal ellipses with semi-axes b^ and ^2’ ai ^ 

bx < b2. The maximum of |/M | on E1 and E2 is denoted by M± and M2 

resp.; then 
M± ^ M, 

(«i + bj)11 {a2 + b2) 

Derive 269 and 270 from this proposition. 

272. If an analytic function is regular in a closed disk and not a 

constant its absolute value at the center of the disk is smaller than the 

arithmetic mean of its absolute value on the boundary of the disk. 

273. If the absolute value of an analytic function f(z) is constant 

in an open set of the 2-plane (e.g. in a disk) f(z) must be a constant. 

274. We suppose that the functions (p[z) and ip{z) aie regular in the 

closed disk |jar| ^ 1 and non-zero in the open disk \z\ < 1 and that, 

besides, <p(0) and y(0) are real and positive. If cp{z) and y>(z) have the 

same modulus on the circle \z \ = 1 then <p(z) = y)(z) identically. 
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ary of the disk. 

:ion f(z) is constant 

•t be a constant. 

- are regular in the 

• zl < 1 and that, 

and ip(z) have the 

identically. 

5. Ihe function f(z) is regular and single-valued in the interior of 

the closed domain 2) and continuous in ®, boundary included; the maxi¬ 

mum of \f(z) on the boundary of $ is called M. Under these conditions 
we have the inequality 

m\<M 

than'IM]™* °f ^ UnkSS f(Z) ^ a COnStant [This statement is stronger 

276. Let T denote a domain, f be an inner point of $ and 33 be the 

set of those boundary points of $ whose distance to f does not exceed 

e' ThC Clrde of radius e and center f is assumed to have an arc that does 

not belong to $ and the length of which is not smaller than n integer. 

We suppose that the function /(*) is regular and single-valued in the 

interior of ® and continuous on the boundary and that, in particular 

. J ="at the P°ints of * and I/M l^at the remaining boundary 
points of $; a<A. Then y 

fPr°dUCt H /[C + {Z~C) 0J~y] in a Stable domain, 

277 We assume that the function /(,) is regular and bounded in 

sector 0 < arg z< «, continuous on the real axis and thatlim fix) = 0 
x real, x > 0. Then the limit relation 

lim f(z) = 0 

holds uniformly in any sector 0 <1 arg 2 g a £ a 

reJon' The ^ i* * P°SitiVe C°nStant and by 81 a connected open 

properties: /W “ assumed to have the following 

(1) f{z) is regular at every point of 9} ; 

(2) f(z) is single-valued in 91; 

(3) each boundary point of 91 has for every positive number 8 a 

to i„,zry such ,h“"every p°in*z ot *,n *>* ™«hb.»,h»»d 

\f(z)\<M+e 
is satisfied. 
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These conditions imply 

\f(z)\^M for z in SR 

and even | f(z) | < M unless f(z) is a constant. [Stronger than 275.] 

279. Let f(z) be regular and bounded on the disk | z | < 1 and let 

lim f(re*) = 0 
r-+1 

hold uniformly in a sector a d ^ ft, oc < 0. Then f(z) vanishes iden¬ 

tically. 

§ 2. Schwarz's Lemma 

280. The function f(z) is assumed to be regular and |/(z) | < 1 in 

the disk \z \ < 1. If /(0) = 0 either the stricter inequality \f{z)\ < \z\ 

holds for z 4= 0 or f(z) = etocz, oc = real. 

281. We denote by z — cp{£) and w = y)(£) two schlicht maps of 

the unit disk |f | < 1 into the regions 91 and S of the z- and z^-plane 

resp.; the images of the origin £ = 0 are the points z = z0 and w = w0 

resp. In addition let 0 < q < 1 and r and 5 be the images of the disk 

\£\ g under the above mentioned maps. We assume that w = f[z) is 

a regular analytic function in 91 the range of which belongs to 6 and 

that f(z0) = wQ. Then f(z) assumes in the subdomain t of 91 values that 

belong to the subdomain § of These values are in the interior of 3 

unless f{z) is a schlicht function that maps the region 91 onto the region ®. 

282. Let f(z) be regular and \f(z) | < 1 for |z| < 1. Then 

I/M /(°)l = I^11 — |/(0)j |*| ’ 

The relation will be an equahty only for the linear function 

0 < \z\< 1. 

,, \ e%CLz-\-w~ . 
Hz) =-, oc real. 

1 + w^z 
283. Suppose that f(z) is regular for | z | < R and that A (r) denotes 

the maximum of the real part of f(z) for | z | ^ r, 0 r < 7L Then we 

have the inequality 

A(r)^- 
2 r 

0 <r<R, 

where lim A(r) = A(R) [A(r) increases monotonically with r, 313]. 
~->R — 0 

There is equality only for the linear function 

m 
— Rwq + r^o — 2^(-R)i ^ 

R - eiotz 
oc real. 

284 

in the iisi 

Mr < 

285. 7 

2 <R. 1 
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absokrrd 

is absolute! 
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iB
' 
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284 (continued) The maximum M(r) of the absolute value of flz) 
in the disk | ar | ^ r is restricted by 

M(r) <; M(0) + -*- [A(R) _ .4(0)] X+ZM( 0) +^A{R). 

285. We assume that f(z) is regular, non-zero and bounded for 
\z\< R. Then 

R — r 2 r 

M[r) ^ M (0)*+' . 0 <r<R, 

where lim MM = M(R). 
r^R-0 V 1 

286. The functions 4(44(4 AW--4ft,... are supposed to be 

regular, non-zero, and of absolute value smaller than 1, for \z\ < 1. If 
the series 

A(°) + 4(0) + /3(0) -f— +4(0) -i— 

is absolutely convergent, the series 

C4(*)]2 + (44)]2 + [AW]2 + ••• + \jn(z)f + ••• 

is absolutely convergent for \z\ ^ 

287. We assume that the function f(z) is regular, has positive real 
part for |zj < 1 and that /(0) is real. Then we have 

There is equality only if 

,,s l + «’“z 
/(z) =^0 — 

1 — e™z 

o< Ulci. 

w0, a real, wo>0. 

288. Let f{z) be a regular function with |9t/(z) I < 1 for |z| <r 1 Tf 
/(0) = 0 the stronger inequality 

| Cretan \z\, 

holds; in addition 

ia/wis|iogiA{A, 

Equality occurs if and only if 

f(z) =-^log 1 

i - 7*z' 
<x real. 
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289. Suppose that the function f(z) is regular for |z| < R and that 

A denotes the oscillation of its real part in the dish, i.e 

\W(h) - H/to I < A 

for < R, |22| < R- Then the oscillation of its real part in the smaller 

disk | z | ^ r, r < R, is 

IWM - I ^ arctan \z2\^r. 

The oscillation of the imaginary part is restricted by the inequality 

mh) - s/w i ^ vlos 1^7 ’ i*ii ^r- i**i= 
290. We denote by T the infinite region of the 2-plane that is symme¬ 

tric with respect to the *-axis and whose points are characterized by 

the inequalities 

x > 0, —k(x) < y < k(x), 

where k(x) is a positive and continuous function defined for x^O. Then 

there exists a positive function h(x) that depends only on % and has the 

following properties: If F(z) is regular in % and bounded from below, 

IF(2) I > c, then 
loglF(*)l 

h(x) 

is bounded from above as x increases to infinity. (The theorem is parti¬ 

cularly interesting when k{x) converges monotonically to 0; i.e. when 

the region % is “tapering"; whereas an analytic function can increase 

arbitrarily fast along a ray (IV 180) the rate of increase is limited if the 

function grows to infinity in some properly chosen neighbourhood of the 

ray. The result can be formulated with reference to the points of the 

modular graph somewhat vaguely so: If none should fall below a certain 

minimum standard none may rise arbitrarily high.) 

291. Let f(z) be a regular function and 1/(2) | < 1 in the unit disk 

|*| < 1; in addition let f(z) be regular at 2 = 1 and /(0) = 0, /(1) = 1. 

Then /'(1) must be real and /'(1) ^ 1. 
292. We assume that the function f(z) is regular and \f(z) | < 1 in 

the unit disk bid, and that, besides, f(z) is regular for 2 = 1 and 

real axis and 

the inequaiit 

294. Let 

and let f : 1 

stronger ineq 

holds for r • 

of the open 

zx = 0.) 
295. Leri 

let f(: be be 

the stronger.! 

noids for a.. j 
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296. A fra 
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tie risk r <3 
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real axis and f[a) b, b real. Then f'(a) is real and positive and we have 
the inequality 

1 

3 ,-> 1 
b - /to — ° (a - z) f(a) for g* > 0 . 

294. Let the function /(*) be regular, have the zeros zuz9,.. z 

and let f(z) be bounded, \f{z) | ^ M, in the unit disk 1*1 < l. Then the 
stronger inequality 

i/wisi l ~ zxz L — Z2Z 1 — zz 
n , 

holds for |*j < 1. We have equality either at every point or at no point 

of the open disk jzj < 1. (Proposition 280 is a special case, n = 1 

Z1 = 0.) 

295. Let the function /(*) be regular, have the zeros z.,z9,...,z and 

let f(z) be bounded, \f{z) | ^ iV, in the open half-plane Wz > 0. Then 
the stronger inequality 

|/(»)|^ 
' ' “ ; + * *2 + * 

— z' 
M 

holds for all * with 81* > 0. We have equality either at every point or 
at no point of the right half-plane 9?z > 0. 

296. A function that is meromorphic in a closed disk and of constant 

absolute value on the boundary circle is a rational function; in fact it is, 

up to a constant factor, the product of linear fractional functions that 

map the disk m question either onto the interior or the exterior of the 
unit circle. 

,. 2.97; We aSSUme that the function /(*) is regular and bounded in 
e sk |zJ < 1 and vanishes at the points zv z2, z3, ... Then 

~ l*il) + (1 — |**|) + (1 — |z3|) -|- 

(the sum of the distances of the zeros from the unit circle) is finite or 
else f(z) = 0. 

298 We assume that the function /(*) is regular and bounded in 

the half-plane 9Jz> 0 and vanishes at the points z^,*,,... outside 

e unit disk in the half-plane, i.e. |zM| > 1, ftzn > 0, n = 1, 2, 3.... 
then the sum of the series 

is finite or else f(z) = 0. 

»f+ «- + »- + - Z1 Zi 
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§ 3. Hadamard’s Three Circle Theorem 

299. The sum of the absolute values of several analytic functions 

attains its maximum on the boundary. Here is a more detailed statement. 

The functions AM,/*(*)./*(*). ••-./.(*) are supposed to be regular and 

single-valued in the domain 3). Then the function 

(p{?) = |/i(2) | + I/2W I + •“ + \fn(z)\> 
which is continuous in ®, assumes its maximum on the boundary of 2>. 

300 (continued). The function cp(z) assumes its maximum only on 

the boundary of $> unless all the functions /x(*), f2{z), ...,/„(*) are con“ 

stants. 
301. In three dimensional space, the n points Plt P2, Pn are 

given and P denotes a variable point. The function 

<p(P) = PP1-PP2--PPn 

(PPV is the distance between P and Pv) of the point P assumes its 

maximum in any domain on the boundary. (Generalization of 137.) 
302. We assume that the functions fx{z)t f2(z),fn(z) are regular 

and single-valued in the domain Let p19p2,...,pn denote positive 

numbers. The function 

V[z) = iaw \p■ + 1/1W 1*+••• + i/.w \Pn 

is continuous in '3). It reaches its maximum only on the boundary of ® 

unless all the functions f^z), f2{z), ■■■, l„iz) are constants. 

303. The function /(z) is supposed to be regular in the multiply 

connected closed domain 2> and |/(z)| single-valued in %. \]{z) is not 

necessarily single-valued.] The absolute value |/(z) | attains its maximum 

at a boundary point of T). The maximum cannot be attained at an inner 

point of % unless f[z) is a constant. 

304. Let the function /(z) be regular in the disk |z| < R. Suppose 

0 <r1<r2<r3< R. 

Then 

log Af(r2) ^ 
log r2 — log rx 

log Yz — log rx 
lo gM(r3) + 

log r$ — log r2 
log r3 — log r± 

log M(rx). 

This means that in an orthogonal system of coordinates the graph of 

log M(r) as a function of log r appears as a convex curve. (Hadamard s 

three circle theorem.) [Examine z*f(z) with suitably chosen oc.] 

305 (continued). The function log M(r) is a strictly convex function 

of log y unless f(z) is of the form az*, a, oc constants, oc real: this is the 

only type of function for which the inequality in 304 becomes an equality. 

306. Supp 
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-denote the ar 

function lt r) 

convex timet* 

307. Let r 

denotes the ge 

function @ r) 

log r (in the w 

308. The f 

a constant. \V5 

* ne function 1 

function of log 

309. Let * 
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omes an equality. 

306. Suppose that the function /(,) is regular for |^[ < 7? but not 

Of the form czn, c constant, n integer; let 

0 

denote the arithmetic mean of |/(*) p on the circle \z\=r,r<R. The 

unction /2(r) is monotone increasing with r and log I2{r) is a strictly 
convex function of log r. y 

307. Let f(z) be regular for \z\ < R; 

®w _ 

denotes the geometric mean of \f(z) | on the circle \z\=r,r<R The 

function ©M is monotone increasing with r and a convex function of 
log r (in the wide sense). 

308. The function f(z) is supposed to be regular for \z\ < R and not 
a constant. We put 

., 2n 

/(r,“S*/lr < R. 

The function I(r) is monotone increasing with r and log I{r) is a convex 
function of log r. 299, 304.] ' x 

309. Let f(z) be regular and not a constant in the disk \z\ < R 

he function «* = /(*) maps the circle |*| = r. r < R, in the J-plane 

, Hr) 
is monotone 

onto a curve in the ze<-plane with length l(r). The ratio — 

increasing with r. 2m 

310. We suPPose that f{z) is regular and not constant for \z\< R and 
that p is a positive number. We define 

\pd&, r<R 

The function Ip(r) is monotone increasing with r and log I Jr) is a convex 

funchon of log r. (Cf. 306, 308,307, 267 and 304, for an analogous case see 

§ 4. Harmonic Functions 

311. An analytic function that is regular in the closed disk £ cannot 

assume real values at all the boundary points of ff except if it is a real 
constant. 
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312. If a harmonic function is regular in a closed disk its absolute 

value at the center does not exceed the arithmetic mean of its absolute 

values on the boundary. Under what conditions is there equality ? 

313. A harmonic function is supposed to be regular and single-valued 

in a domain *2). Then it attains its maximum and its minimum on the 

boundarv and only on the boundary unless it is a constant. 

314. A harmonic function that is regular in the domain $ and vanishes 

at all the boundary points of ® is identically zero. 

315. The equilibrium described in solution 31 is not stable. 

316. A harmonic function is assumed to be single-valued in the 

domain $ and regular with the exception of finitely many points at 

which it becomes — oc (i.e. the function converges to — oo as 2 approaches 

such a point). Then it assumes its maximum on the boundary of X. 

317. Let the function f(z) be regular in the disk j/| R. The function 

w = f(z) maps the disk onto a certain domain of the w-plane that is 

assumed to be star-shaped with respect to w = 0. Let /(0) = 0. Then 

the images of the concentric circles \z\ = r, r < R, are also star-shaped 

with respect to the origin. 

318. Suppose that the function f(z) is regular in the disk |*[ ^ R 

and that it maps the disk onto a convex domain of the z^-plane. Then 

the image of an arbitrary circle in the open disk \z | < R is also convex. 

319. Let u^x, y),u2{x,y), ...,un(x, y), z = x + iy, be regular har¬ 

monic functions in a domain *2). The continuous function 

following propert 

(1) there exis 

(2) 

(i.e. on the bom 

| f(z) | ^ 1 holds ij 

Proof: Let i 

the function er *w 

real axis onto :is 

entire closed se:t 

We have 

on the two boim 

On the circular it 

(The comparisor. i 

but the conclusio 

— which value' a 

condition (1) is sa 

y) | + \u2(xy y) | + •*• + |unix> y)! both conditions fa 

assumes its maximum on the boundary of 

320. Consider a regular harmonic function in the disk \z < R. We 

denote by A(r) its maximum on the circle \z\=r, r < R. When 

0 < rx < r2 < rz < R we have 

log “ log ri 4 (r) i log “ l0g -2 A K) A(r2) = log y^ __ log r^- (3) i0g.r3 _ ]0g ri 1 

i.e. A{r) is a convex function of log r. 

321. Deduce Hadamard’s three circle theorem 304 from 320 and 

vice versa 320 from Hadamard’s three circle theorem. 

in question.) 

Examine now 

point z0 of the sed 

bounded by the zi 

between these ray* 

r > j 

By virtue of cond 

sector 

§ 5. The Phragmen-Lindelof Method 

322. Let a be given, 0 < « < The function f{z) is assumed to 

be regular in the sector -a ^ ft ^ * (2 = re0). In addition f(z) has the 

By virtue ot' con fit 

we have on the boj 

rfl 
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L r < R is also convex. 

— iy, be regular har- 

ls function 

«.(*. y)| 

m the disk \z \ < R. We 

z ~ r, r < R. When 

:sm 304 from 320 and 

rtrem. 

fethod 

ction f(z) is assumed to 

In addition f{z) has the 

following properties: 

(1) there exist two positive constants A and B such that 

\f(z) | < AeBM for -oc^ft^a, z = rew; 

^ I/M I = 1 for ft = — ot and ft = oc 

(i.e. on the boundary of the sector considered). Then the inequality 

\f[z) | 1 holds in the entire sector. 

Proof: Let X be a fixed number, 1<X<~. Compare f(z) with 

the function e* where we choose the branch of / that maps the positive 

real axis onto itself. The “comparison function’’ e:>' is regular in the 

entire closed sector except at the origin z = 0 where / is continuous. 
We have 

\e-l\: «'*“•** ^ 1 

on the two bounding rays ft = _* and ft = « because 0 < Xoc <£. 

On the circular arc |z| = r, -oc g ft ^ *, we have 

| eZ> | = er''QOi>-ii > gA COSAX 

(The comparison function almost satisfies the conditions of the theorem 

but the conclusion is not valid. Imagine that X = 1 or that X_ 71 

— which values are, in fact, excluded; in the first forbidden limit cate 

condition (1) is satisfied, in the other condition (2), but in no case are 

both conditions fulfilled and in no case is e? bounded inside the sector 
in question.) 

Examine now the function f(z) where e> 0, at a certain inner 

point z0 of the sector. Enclose the point z0 in the finite (circular) sector 

bounded by the rays ft = —oc, ft = oc and the arc of the circle \z\=r 
between these rays; r is subject to the conditions 

r>\zol r > 
log A 

B ’ 

By virtue of condition (2) we have on the rectilinear boundary of the 
sector 

|/(z) e_“*| g 1 • g 1 

By virtue of condition (1) and the inequalities er* cos Xoc > 2Br, eBr > A 
we have on the bounding arc \z\ = r. 

!/(*)«-“*| < AeBre-cr>ma* < Ae~Br < 1. 
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The maximum principle together with these inequalities implies that at 

the inner point z0 
—- 

W0)e °|£1. 

This inequality holds for any s, however small, which concludes the 

proof. 
323. Condition (1) of 322 can be generalized insofar as the inequality 

\f(z)\<AeBM 

need not be required to hold in the entire sector but only on the arcs of 

the circles |z| =r1, \z\ = r„.... |*1 intercepted by the rays 

# _ §' = oc, lim rn - oo. The conclusion, namely \f{z) | ^ 1 in the 

entire sector, remains the same. What more general curves can replace the 

circular arcs ? 
324. We modify condition (2) of 322 in the following way: There 

exist in the sector —ct ^ ^ two curves Ti and P2 connecting the 

points z = 0 and z = oo that do not intersect and along which \f(z) | 2= 1. 

This modified condition together with condition (1) as stated in 322 

implies the inequality | f[z) | ^ 1 in the domain bounded by A and T2. 

325. The function f(z) is assumed to be regular in the half-plane 

fRz ^ 0 and to satisfy the following conditions: 

(1) there exist two constants A and B, A > 0, B > 0 such that in 

the entire half-plane 
\f(z)\^AeBA; 

(2) we have for r ^ 0 

\f{ir) 15= i, !/(-»>) I ^ i; 

(3) limsupl£iMrU^o. 

Then f(z) is bounded by 1 in the entire half-plane: 

|/(2) | <11 for 

Proof: In treating 322 we extracted the desired conclusion from 

the maximum principle by introducing a variable parameter (the number 

e); now we introduce two parameters. Assume jj > 0. By virtue of 

condition (3) the function | f{r) e-”r| of the variable r converges to 0 as 

r_>oo; it reaches its maximum Fn at a certain point r0, r0 3: 0. If 

r0 = 0 the maximum is Fn ^ 1 because of (2). We choose a fixed number 

% l < ^ < 2 ("e.g. A = -f) and study the analytic function 

f(z) W 

in the sector . 

positive real axi 

; A 

in the same 

the | 
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B > 0 such that in 
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■ameter (the number 

> 0. By virtue of 

r converges to 0 as 

>oint r0, r0 ^ 0. If 

>ose a fixed number 

nction 

in the sector 0 ^ ^i, . > 0; take the branch of / that maps the 

posit,ve real axis onto itself. We see that in the above mentioned sector 

m -rjz.-ee J I 
■' = \f[z)e^\e 

cos(M-^)^cos(±^)>o. 

~er ^'cos 

In the same way as in 322 we derive from (1), (2) and (3) that for 

0 ^ the absolute value \f(z) | cannot be larger than 1 Qr ^ 

whichever is larger. The same can be said for the sector - — ^ ^ 0 

wL-T<pat 1: If^Were larger thanlwe have 
|/( ) ; =Fv °n the entire half-plane and at the point t = rn the 

maximum would be reached, \f(rQ) e~^\=Fn (see above). This is 

impossiWe because the maximum cannot be attained at an inner point 
z ro- -Hence Fn ^ 1, consequently 

t^n /*'Sid f°r any V Which concludes the proof. Notice that in condi¬ 
tion (3) the positive real axis may be replaced by any ray from , = 0 

at goes to infinity in the half-plane 3tz ^ 0. Such a ray cuts the half¬ 

plane into two sectors, both with an angle smaller than Onlv thL 
fact is essential [322, also 33<T. 7 

"eul“in the h,1'-pla“ & a 0 »d 

the l‘«5Lr COnS,“,S > 0.B > 0, such ,ba, in 

\m<AeBW; 

(2) /(«) is bounded on the imaginary axis, 

|/(*')|^i, \f(—ir) J^l, r^0; 

(3) there exists an angle a, — ~ < a < ± such that 

lim 
log I /(re**) I 

: — oo. 

Such a function must vanish identically. [Examine the function e™f(z), 

327. The function f(z) is supposed to be regular in the half-plane 

** ^ 0 and to satisfy the conditions: P 
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(1) there exist two constants A and B, A > 0, B > 0, such that 

on the entire half-plane 

\f(z)\<AeBW] 

(2) there exist two constants C and y, C > 0, y > 0 such that for 

r ^ 0 

\f(±ir)\<iCe-*'. 

A function satisfying these conditions must vanish identically. [Examine 

the function f(z) g_*32l°8(2+1).] 

328. The function sin tzz is the smallest function that is analytic for 

gtz [> 0 and that vanishes at the points z = 0, 1, 2, 3, ... More precisely, 

the following proposition holds: 

We assume that the function f(z) is analytic in the half-plane ^ 0 

and that it satisfies the conditions: 

(1) there exist two constants A, B, A > 0, B > 0, such that for 

0 

\f{z)\<Ae^' 

(2) there exist two constants C and y, C > 0, y > 0 such that for 

r ^ 0 

| f(±ir) | ^ Ce^~v)r\ 

(3) f(z) has the zeros 0, 1, 2, ..n, ... 

Such a function vanishes identically. 

329. Let m(x) be a positive function of the positive variable x that 

increases with x and tends to + oo as % increases to + oo. A function 

f(z), regular in the half-plane 9fU ^ 0, that satisfies the inequality 

|/(s)| ^ for **^0 

does not exist. 
330. Suppose that the function f(z) is regular at any finite point of 

the sector a g ^ /3, bounded by 1, \f(z) | ^ 1, on the two rays & = x 

and &=(} and that, furthermore, there exists a positive constant <5 

such that 

|/(z)|exp(-|zf_“ ) 

is bounded for oc ($. Then , f(z) | ^ 1 at every inner point of the 

sector oc ^ ^ /S. [Comparison function exp (z^-* ).] 

331. Let f(z) be regular in the sector If f{z) | ^ 1 on 

the bounding rays # = oc and d = and if there exists for every e > 1 

an r0 such tha: 

in the above m-riu 

holds in the entire 

332. The fund 

the maximum :: 
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B > 0, such that 

7 > 0 such that for 

£ ientically. [Examine 

'::*n that is analytic for 

... More precisely, 

'he half-plane $tz ^ 0 

> B > 0, such that for 

7 > 0 such that for 
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7 : ^itive variable x that 

'to + oo. A function 

: — the inequality 

> 0 

it at any finite point of 

n the two rays {) = oc 

a positive constant d 

cry inner point of the 

W If |/(*)|^1 on 

exists for every e > 0 

an r0 such that 

jS-<* 
lf(re**) | < e£r for r > r0 

in the above mentioned sector then the stronger inequality 

I/(*)| < 1 

holds in the entire sector. [Method of 325/ 

332. The function g(z) is assumed to be an entire function, MM be 

the maximum of \g(z) | on the circle [*| = r. If 

limiogyM = 
\ r 

then g(z) cannot be bounded along any ray. [E.g. g(z) is not bounded 
along the negative real axis.] 

333. Suppose that the function f(z) is not a constant and that it is 

regular m the half-strip 6) defined by the inequalities 

x ^ 0, n ^ ^ 7i 
2 — y z = x -f- iy. 

If there exist two constants A and «, A > 0, 0 < « < 1, such that in @ 

I /(* + iy) | < ,Aea 

and if 

W) I ^ l 
on the boundary of © (i.e. for x = 0, - ~ ^ y and for x>0 

y — ~jr) then f(z) satisfies the strict inequality 

!/(*)! < i 

m the interior of &. [The comparison function is of the type /*.] 

H ww LCt haVe the SamC ProPerties as in 329. Every function 
f(z) that is regular in the half-strip 

Zl ^ ^71 

-T = y=T> z==x - iy 

must satisfy the inequality 

W + iy) | < e*™** 

at least at one point z = x + iy oi the half-strip. 

335. The assumptions of 278 are weakened insofar as (3) is satisfied 

m all but possibly finitely many boundary points zv z2,... z of 91 4n 

other assumption, however, is added, namely that there exists^ positive 
number M for which the inequality 

m\<M' 
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holds everywhere in SR. (Only the case M'> M is interesting.) This 

modification of the hypothesis does not change the conclusion of 278 
that under those conditions \f(z)\£M, |/(z) | < M respectively. [In 

the case where the point at infinity belongs to SR and all the boundary 

points of SR lie in the disk |z| < r we examine the comparison function 

(2r)” fl (z - *r)-1-] 

336.1 The domain ® is supposed to lie in the half-plane 3* ^ 0; the 

boundary contains a finite number of segments of the real axis; Q denotes 

the sum of the angles under which the segments are seen from an inner 

point t of ®. Assume that f[z) is regular and single-valued in the interior 

of $ and continuous on the boundary of ®, that \f(z) | ^ A at the rea 

boundary points, | /(z) \<aon the remaining boundary of ®, 0 < a < A. 

Then 
u u 

[57.] £ i-e. 

337. The function f(z) is supposed to be regular on that piece of the 

Riemann surface of log* that covers the annulus 0 < \z\£l. U M 

is bounded and in particular if \f(z) | ^ 1 for |*| = 1 then |/(z) I ^ 1 ln 

the entire domain. „ , 
338 Let g(z) denote an entire function but not a constant, 1R be a 

connected region on the boundary of which (more exactly: at whose 

boundary points different from z = oo) |g(*) | = * and m the interior of 

which |g(z) \>k,k>0. Then the point z = oo is necessarily a boundary 

point of fR and g(z) is not bounded in 5R. 

339. Let ri and J\ be two continuous curves that have a common 

starting point, extend to oo and enclose together with z = oo a certain 

region SR (e.g. two rays enclosing a sector). We assume that no pom o 

the negative real axis belongs to SR. . , , , 

The function f(z) is supposed to be regular on rv 1\ and in t e^enc osc 

region; in addition lim f[z) = 0 as z tends to oo along and 12. It M 

is bounded in SR then lim f(z) = 0 as z goes to oo along any path m Si. 

[Examine A /(z)-] 

340. Let the curves and rt have the properties described in 339. 

Let Hz) be bounded and regular in the region between rx and / * and 

assume, in addition, that lim/(z) = a as z tends to oo along A an 

lim f(z) = 6 as z tends to oo along r2. Then we have a — b. [Consi er 

r :c tae 

(/w 
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Solutions 

Part One 

Infinite Series and Infinite Sequences 

*1. [Cf. HSI, pp. 238, 252—253, ex. 20.] 4100 = 292 [2], 

2. [For an intuitive solution see G. Polya: Amer. Math. Monthly Vol 63 

pp, 689—697 (1956). Cf. MD, Vol. 1, p. 97, ex. 3.84.] 

ajt = a +c 
n = 0 

+ £2 + C3 + • " +£* + • 

lot a constant; 9$ be a (i+f5 + f10 -K15 + • •• +C5y + ' 
.ore exactly: at whose 

k and in the interior of 
(i+fi° + f20 

+ C30 + • •• +c10z + • -) 

necessarily a boundary 
(l + f25 + £50 . £25« 

+ • -) 
(l + f50 + f100 + C1B0 + 

B
 

o
 r

 + • '•) 
: that have a common 1 

with ^ = ooa certain (i - 0 (i - f5) (t - flO) (1 - f25) (1 - PV 

the^ funetkms riCal C°mpUtati°n °f the COefficients An expand successively 

(l-a-1 a-:5)-1, 

(l - O'1 (l - C5)-1 (l - f10)-1, 

(i - 0_1 (i - f5)-1 (i - f10)-1 (i _ 

(1 - f)_1 (1 - f5)-1 (1 - (1 _ (1 _ £50)-!. 

It is convenient to dispose the coefficients needed for the computation 

01 ^100 m a octangular array. 
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*3. B5 = 15 [4]. 
4. The coefficient of C in the expansion of 

(f +t2 + c8 + cy 
is equal to the number of sums of value n with 5 terms of value 1, 2, 3, 4, 

where the order of the terms is taken into account. Therefore we have 

i + ^ B„r = i + c + c2 + cs + c4) + (c + c2 + cs+ c4)2 + ••• 

For the numerical computation use the relation 

B„ = Bn_! + Bn_ 2 + Bn_ 3 + 4, 

which follows from the definition of Bn or from the above equation. 

5. 4 = C78 [7], 
6. 20 = Z>78 [8]. 

7. f c„r = a + ga (i + c2) (i +c5) (i+c10)2 (i +c20) (i+c60)- 
n = 0 

99 

8. ^ Dnt;n = (r1 +1 + a2 (c-2 +1 + c2) (r5 +1 + ?5) 
n = — 99 

(r10 +1+c10)2 (C“20 +1+120) (r50 +1 + c50)- 

9. [Cf. Euler: Introductio in Analysin infinitorum, Chap. 16, De 

Partitione Numerorum; Opera Omnia, Ser. 1, Vol. 8, pp. 313—338. 

Leipzig and Berlin: B. G. Teubner 1922; also e.g. W. Ahrens: Mathema- 

tische Unterhaltungen und Spiele, 2nd Ed., Vol. 1, pp. 88—98, Vol. 2, 

p. 329. Leipzig: B. G. Teubner 1910, 1918.] The “change problem” [2]: 

(1-£*•)(!- {*)••• (!-£*') »?oAnC ' 

An denotes the number of non-negative integral solutions of the Diophan- 

t.ine equation 

#1#! -j- ^2^2 "1” * * * T" ~= ^ • 

The “postage stamp problem” [4]: 

1 = z bj?. 
n=0 

The “first weighing problem” [5] (all the weights on one pan): 

(i+{-) (i + n a + n = 2 • 

The “second weigh 

pans): 

(r*1 +1 c 

10. This prob.Ti 

on one pan of the s* 

one unit. According 

the coefficient of T 

(i + op = i 

therefore: 

In abstract tern 

contained in a'd A 

11. This probl-ei 

quarters minted in j 

he pay out n quarte 

An, the coefficient :: 

l 

thus 

=4 
12. According -: 

. ne result follows aJj 

*13. Identical r 

and identify the x f 

Intuitive solm 

hand end there a 

place filled with a mi 

—ed with x9, then a 
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ms of value 1, 2, 3, 4, 

Therefore we have 

-s^+f4)2 +••■ 

i —4 > 

e above equation. 

Mi+f20) (i+c! 
■50 \ 

(f-50 4- 1 -l- /-501 

+ 1 + f5) 

+ 1 + £* 

orum, Chap. 16, De 

ol. 8, pp. 313-338. 

Ahrens: Mathema- 

pp. 88-98, Vol. 2, 

.ange problem” [2]: 

ions of the Diophan- 

one pan): 

The “second weighing problem” 6 (weights may be placed on both 
pans): 

(f_ai +1 + £•*) (f— +1 + c-)... (f-*» +1 + = v 
n = — oo 

10. This problem is equivalent to the following: We have to weigh 

on one pan of the scales an object of n units with p different weights of 

one unit. According to 9 the number C„ of the different possibilities is 
the coefficient of £" in the expansion of 

a +cr-1 +((){ + ({) + - + (>):■ +••■ + £', 

therefore: 

C =(p) =_pl 
n \nj n! (n — p)! * 

In abstract terms: The number of different subsets of n elements 

contained in a set of p elements is (^^j- 

11. This problem is equivalent to the following: Someone owns 

quarters minted in p different years. In how many different ways can 

he pay out n quarters? According to 9 the number of different ways is 
An, the coefficient of in the expansion of 

iTTo* =1 +(?)(-« + ■"+(?)(-£“ + 
thus 

j _ P(P + 1) ••• (p+ n- 1) 
^ ft i T ‘- 1 • 2 ••• n 

12. According to 11 this number is 

/P + (n — p) - 1 
V P ~ 1 ) \p ~ 

The result follows also directly from the expression (f + J2 -j_)P, 

*13. Identical with 11. Another solution: Consider the p-fold series 

2 x'l*2 
-,vp= 0,1,2,3,... 

1 X? = (1 - *i) 1 (1 - x,)-1 •••(!-*.) -1 

and identify the x/s with J. 

Intuitive solution: Consider n + p — 1 places in a row. At the 

left hand end there are a certain number of places filled with xv then a 

place filled with a multiplication point, then a certain number of places 

filled with x2, then a multiplication point and so on, as shown: 

X-iX-i * * * X ■ 
1 ’ *2*2 " • *2 • *3 • XpXp Xp. 
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We have to choose p — 1 among the n + p — 1 places for the p — 1 

multiplication points which can he done in ( * £ j ) different ways, 

by 10. (“Combination with repetition of p different elements taken n 

at a time” is the traditional term. In some of the cases that must be 

admitted the multiplication points are placed in an unorthodox way.) 

14. According to the first weighing problem [9 extended to infinitely 

many weights we have to consider 
i _ £2 l — t4 l — C8 i — C16 

(1 + 0 (1 +12) (1 + C4) (1 + C8) ••• =T7IT ' • TCTfi- • 1 -£»"■ 

=-i-7=i + : + f2 + c3 + -- 
1 4> 

Cf. 16, 17. 

15. 

(f-1 + 1+C) (£-3 +1 + C3) (f 3” + i + 0 ) 

,1?3- 1.-3 f9-l 

c -14 £3 - 1 

^3m+1 i r*n+1 l 
J. 3n ~ t f-N 

1 

r 

1 

-N £-N+l _j_ ... 
+ l _ 1 

+ c.v-r+c.v 2 • 

16. = aFfl, where F„ is the number of digits 1 in the binary repre¬ 

sentation of n (its expansion in powers of 2). 
17. [E. Catalan, Problem: Nouv. Corresp. Math. Vol. 6, p. 143 

(1880). Solved by E. Cesaro: Nouv. Corresp. Math. Vol. 6, p. 276 (1880).] 

The series in question results from the expansion into a power series of 

(1-0 (1-0) (1-0) (i-O)- 

on setting f = 1. To determine the sign of a coefficient it is sufficient to 

examine the case where a = b = ••• = 1. According to 16 the sign is 

given by (—1)F» where Fn denotes the number of ones in the binary 

expansion of n. y 

18. 
j _ £10 l _ £100 1 — £1000 1 

1 _ J ' 1 - £i°' 1 - C100 " _ i - t' 

This problem is not contained in 9. The result, however, is well known. 

Any positive integer admits a unique representation in the decimal 

notation. Cf. 14. 
18.1. There are l kinds of coins and we have a limited number c * 

each kind, p1 coins of the first kind, each worth % cents, etc. In hov 

many ways can we pay n cents ? 
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— 1 places for the p — 1 

- 1 i different ways, 

hierent elements taken n 

>: the cases that must be 

m an unorthodox way.) 

n _9 extended to infinitely 

l - l - C8 l - C16 
C2 * l- t4 ’ i -c8* 

= i+f + C2 + ?3 + --. 

in + i + i3”) 

— 1 

- 1 
rN 

C- 1 

Tits 1 in the binary repre- 

p. Math. Vol. 6, p. 143 

Lth. Vol. 6, p. 276 (1880).] 

:: n into a power series of 

efficient it is sufficient to 

:ording to 16 the sign is 

>er of ones in the binary 

l 

r=r* 

however, is well known: 

entation in the decimal 

ive a limited number of 

th ax cents, etc. In how 

Given the positive integers 

• • •) &i, 

KPi. ■■■•'Pi, 

find En, the number of solutions of the equation 

“p ^2*^2 * * * “p == W 

in integers xlt x2, xn subject to the condition 

0 <xl^pv 0 ^x,^p2> ..., 0 ^Xl^pt. 

By the method of solution 2 

^ T7 „n _ 1 ~ xa'{pl+1) l - xa*{pi+1) i - xadpi+1) 
S , J-'tiX —-* ■ ■ -. 

«=0 1 - xa* 1 - Xth 1 - xal 

Particular cases: 

En = Cn when px = p2 = • • • = pt = 1, 

= An when p±=p2= •••=/>, = oo, 

^a+n = Dn when Pi = P2 = = 2 and -p u2 -p ••• -p = a. 

To encompass 18 we admit l = oo (properly interpreted). We have 

Pi = Pi — * * * = 9, ai = 1, a2 = 10, a2 = 100, ... in the case 18. 

18.2. Particular case of 18.1; l = 3, aY = a2 = a3 = 1, pr = p2 = pz = n, 

®,„=rr)-3rr)=cr)' 
*19. [Euler, l.c. 9.] First solution: According to solution 14 we 

have 

(i + n (i+?) (i+?) (i+{•)...=rA_, 

(1 + c3) (1 + £6) (1 + f12) (1 + £«) - =14?, 

(1 + £5) (1 + f10) (1 + f20) (1 +140) ••• etc. 

Second solution: 

* «) = 77 (i + H (l-c2"-1) 
n = l 

is invariant under the substitution of f2 for f because 

1 - c4*-2 = (1 + t2”-1) (1- c2n_1), 

i.e. [|f|<l] 

m = K(C-) = K(?) = K(?) =••• = ii’(O) = 1. 
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Third solution: 

00 °° fl — r-r 1 

20. [Euler, l.c. 9.] Interpret the coefficients in the expansion of the 

functions in 19. The result states that the first weighing problem with all 

the integers as weights admits as many solutions as the change problem 

with the odd integers as coins. 
21 If we omit the restriction that the terms in the sum have to be 

smaller than », i.e. if we admit also the representation n = n then we 

are dealing with the postage stamp problem [9]. The number of differen 

sums is equal to the coefficient of £ in 

or m 

1 — C — t2 — C3 — 

1 - c - c2 - 

1 1 -{ = (l-t)(l + 2£+€2 + "-) 

1 
g 1 - 2g ' 

1 - g 

= 1 +1 + 2c2 + 4g3 + ••• + + •••• 

Intuitive solution: The interval 0 ^ ^ » appears as a sum 

of subintervals of integral lengths if some of the n -1 pomts 1,2,3,..., n -1 

are chosen as points of division. For each of these points there are two 

possibilities, to be chosen or not, independently of the other n - 2 

points, and so the total number of possible choices is 2K . [MD, \ ol. , 

p. 189, problem 3.40.1.] 
22. [E. Catalan, Problem: Mathesis (Gand) Vol. 2, p. 158 (188:.). 

Solved by E. Cesaro: Mathesis (Gand) Vol. 3, p. 87 (1883).] The total 

number of solutions is equal to the coefficient of f* in the expansion of 

(1 — C)\i-CT + (1 - C2) (1 - c3) + JT- ?) T' 

( _ 1_ y 

+ (i _ g*-+i) (i - g’’+2) ' £(1 - ® »=' 

= rnS) (rS- i) = i (« + 1} 
C(1 — W V1 “ £ ' n=0 

1 1 1 
Vt-r+1 i-r+2 

23. [E. Catalan: Nouv. Annls Math. Ser. 3, Vol. 1, p. 528 (1882). 

Solved by E. Cesaro: Nouv. Annls Math. Ser. 3, Vol. 2, p. 380 (1883).. 

The number of solutions is equal to the coefficient of g"'1 in the expansion 

of 

a-; * 
-i 

h-:] 
(i - ri 

1 

“ >(i - : * 

We have 

v 
»=i 

where r{v) dene 

24. [E. Grs4 

The number ol 

infinite sum 

°® tr»_ 
v - 

It is therefore s 

sum is equal to 

A multiple o: f1 

only if v2 is a fa 

right hand side 

25. [Cf. G.j 

Xtimber5 and ia 

Change probld 
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l 

^V 

l the expansion of the 

^hing problem with all 

ls the change problem 

n the sum have to be 

ation n = n, then we 

le number of different 

(1 + 2C + 4C2 H-) 

2n-1fn ... 

n appears as a sum 

joints 1, 2, 3,1 

points there are two 

of the other n — 2 

is 2n~1. [MD, Vol. 2, 

ol. 2, p. 158 (1882). 

7 (1883).] The total 

in the expansion of 

+ - + 

1 1 \ 

1 vT
-f -f

 
K>

 

ol. 1, p. 528 (1882). 

>1. 2, p. 380 (1883).] 

' ~1 in the expansion 

of 

a - 9 a - c*) +1r^Tpfjrr-p', + (T~ ?) [i + ••• + 

+ 
(i . £’+1) n __ r + 2) 2 r-1 

* v = 0 ■v+2 , 

1 
C2(1 - 0* 

We have 

v = l l - , 

r 
rW f + t(2) f + • • • + r[v) £v + y -J 

Ci i - r 
where r(v) denotes the number of divisors of v [VIII 74\ 

24. [E.Cesaro, Problem: Mathesis (Gand) Vol. 2/p. 208 (1882)1 

Ihe number of solutions is equal to the absolute term (f-free) of the 
infinite sum 

“ £**-(2»+l )n co 

v% = £ (f-(2'+l)»+r(2.+l)(»-l)+f-(2,+l,(»-2)+ ... 

+ 1 + C2t+1 + f2<2’+1> + ...) l_±_1 
\l-r! 

rt is therefore sufficient to show that the absolute term of the following 
sum is equal to 1 for k ^ 1: s 

2Z 
v = l 

>-(2v+l )k 

(rr? - =fi 
£-(2v+l)i _ .-(2«.-l)£ 

1 - r + 7 

f-—k 
r 

A multiple of v2 is, however, equal to (2v + 1) /e or to (2v - 1) k if and 
only rf ,2 a factor of *. Therefore the absoIute tgrm of tfae sum on ^ 

right hand side vanishes, which concludes the proof. 

25. [Cf. G. H. Hardy: Some Famous Problems of the Theorv of 

Numbers and in Particular Waring’s Pioblem. Oxford 1920, pp 9 10 1 
Change problem" 9; put co = e2™/3: 

1 

■ 6(1 - C)3 

(i - o 

i + —i_+-JL. , 
4(i - n* + 4(1 - f)2 + 72(1 - f) + 8(1 + f) + 9(1 - (lit) + o77 

= y /(» + 3)2 7 {—1)» 

l 12 72 "1 8 

9(1 - eo2f) 

i 2 2mjt\ 

+ TC0S^-j^ • 

It is 

7 i (~l)n . 2 2^ 
72 ' 8 ~9~C0S 3 < — < _L 

= 72 ^ 2 * 
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*26. [Proposition by P. Paoli; cf. Intermed. math. Vol. 1, p. 247 — 

248 (1894). Ch. Hermite, Problem: Nouv. Annls Math. Ser. 1, Vol. 17, 

p. 82 (1858). Solved by L. Rassicod: Nouv. Annls Math. Ser. 1, Vol. 17, 

p. 126—130 (1858).] Cf. the more general 27.1 and the more detailed 27.2. 
27. [Cf. Laguerre: Oeuvres, Vol. 1. Paris: Gauthier-Villars 1898, 

pp. 218 — 220.] A decomposition into partial fractions similar to the one 

-l 
in 25 furnishes for An£n = (1 — £a') 1 (1 — C*2) 1 “* (1 

the “principal term” 

n = 0 

aifl2" ’ ai (i - fr 

Since av a2, ..., ax do not have a common factor the denominator of the 

other terms is of degree / — 1 at most. The statement follows from this 

[solution III 242]. Cf. 28. Notice also that the /-dimensional volume 

characterized by the inequalities 

xx ^ 0, x2 ^ 0, x3 ^ 0, .. 

in /-dimensional space is 

xl ^ 0, a1x1 + a2x2 + azx3 + ••• + axxx ^ n 

In n n , A d / 1 n n n\ 

l\ a1 a2 at n dn\l\ ax a2 ax) 

27.1. [Cf. E. Netto: Lehrbuch der Combinatorik, 2nd Ed. Leipzig 

and Berlin: B. G. Teubner 1927, pp. 319-320.] We assert that 

_= R( 1 \ , _i®_ 
_ £“1) \1 — iJ ! i ^ (i _ f«.) (i - ,r*)... (i - s“‘) vi -v ■ i-r- 

where R(x) and S[x) are polynomials, of degree / and smaller than 

aia2 *** ai> respectively. 
By our assumption concerning the a- s the denominator of the left 

hand side of (*) is the product of (1 — g)1 by a polynomial which has no 

multiple roots and is, therefore, a divisor of 1 — £a'a*'"aK Based on this 

fact the decomposition in partial fractions yields (*). The expansions of 

the two terms on the right hand side of (*) yield the two terms into which 

An is decomposed, cf. Ill 242 and VII1158, respectively. 

27.2. We consider various values of n one after the other. 

(1) We consider the case n < ab. Let xf, yr, x", y" be non-negative 

integers such that 

ax' + by' = n, ax" + by" = n. 

Then 

0 <Lx'<b, 0 <Lx"<b, 

a(x' - x") = —b(y' - y") 

That is, the i 

(2) By a s 

and so .4.. = 

(3) By tJ 

is a polynomi 

Hence 

is also a poi\"i 

so 

4 Bv the 

isd so, by I), 
ii 

Iv
l 
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and so x x" is divisible by b. Yet 

—b < x' — %” < b 
and so 

*' - x" = 0. 

That is, the number of solutions is A < 2. 

(2) B\ a slight modification of the foregoing Aab <C 2 Yet 

a‘b + b- 0 = a- 0 + b- a — ab 
and so Aab = 2. 

(3) By the argument of the solution 27.1 

(1 - (1 __ 

(1 - t) (1 -£b) 

is a polynomial 

Hence 

r(i)=^-“-»+i + ...+ i( 

7(1) = ^=l. 
ab 

i -( 

is also a polynomial. Now 

im - TW = _g*-a-b + 

So(A” ~ An~ab) r = (1 - *“) i? 
w = o 

= JW_ 
l 

= r(fl - j(i| i 

oo 
— • ■ •   frab — a — b i V 

and so + 

^ ab-a-b ~ 

+ 1^1 when n> ab — a — b. 
(4) By the last result 

An=A~-i iu + B]- 
Yet 

and so, by (1), 
-[oblab<n-(~b-l) «* = #6 

L-pLja* = 0 or which proves 26. 

181 
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28. Put p — 3 in 11 and 12, respectively. 

29. Let k be a non-negative integer. The number of solutions of 

[ xx | + \x2\ + * * • + \xp\=k is equal to the coefficient ak of £k in the 

expansion of 

(1 + 2£ 4- 2t2 + 2f3 + • •')p = (prff = i? • 

The number of lattice points in the octahedron is therefore equal to 

a0 + % + ^2 + ” * + 

the coefficient of in the expansion of 

(l + P* =(2t + i-0* 

(i-0*+1 (l-0*+1 

=(2f)/,(i-o_i,-1+(i) vcy-1 (i-crp+(p2)mp-2a-c) ?+1+ 

i.e. equal to 

2'(;)+2'-'(Wa)+2,-«ha) 
+ i. 

30. [G. Polya: Math. Ann. Vol. 74, p. 204 (1913).] The number of 

lattice points is equal to the sum of the coefficients of £ s, £ s+1, 

1,..., fs-1> Cs in the expansion of 

(r* + rM+1 + + r1 +1 + c + ••• + r_1 + n3- 
k 

The following relation between the series £ avC and its coefficients 

av holds in general: v=-k 

dt = ar> C = 

and 
2m+ 1 2m+l 

2 _ g 2 

. 2m + 1 
sin---t 

£ = e". 

31. [Cf. Ch. Hermite, Problem: Nouv. Annls Math. Ser. 2, Vol. 7, 

p. 335 (1868). Solved by V. Schlegel: Nouv. Annls Math. Ser. 2, Vol. 8, 

p. 91 (1869).] Since z = n — x — y we have x + y <n, x > 0, y>0; 

also x ^ n — x, y — x^n—x — y^x-\-y. 

Consequently the number of solutions in question is equal to the 

number of solutions of the inequalities 

31.1. I) \ 

a committee ■ 

committees 1 

which vou do 

(2) "(1 - T] 
then consider 

(3) Straigh 

binomial ccerfi 

31.2. Pass 

32. Compa: 

33. Compa; 

34. Evideo 

34.1. Fro* 

there follow^ 

34 . 5+e also 1 

35. We Lai 

therefore 

Apply 34 

36. Cf 35 

37. Differei 

1 - I 

ind r ut x = L 

38. Trob&a 
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\r r. imber of solutions of 

-::icient ak of £k in the 

r- r = f «•£*■ 
k = 0 

ir :herefore equal to 

[) ~)s_2(l—C)_a+1H—, 

; _ ^-^ 1- 

- 1913).] The number of 

r±:ients of £-s, C-s+1, ..., 

» 

-w 

r_! +r)3> 

and its coefficients 

—k ^ r ^ k 

—, t = **. 

mis Math. Ser. 2, Vol. 7, 

ltjiIs Math. Ser. 2, Vol. 8, 

t — y < n, x > 0, y > 0; 

question is equal to the 

> 0, x + y < n. 
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31.1. (1) You are one of n persons forming an assembly which elects 

a committee consisting of r of its members. There are (”) possible 

committees [10], namely to which you belong and (n ~ X) to 

which you do not belong. 

(2) (1 + x) = (1 + x)n 1 (1 + x). Use the binomial theorem and 
then consider the coefficients of xr on both sides. 

(3) Straightforward verification if you use the usual expression of the 
binomial coefficients. 

31.2. Pass from r — 1 to r by mathematical induction; use 31.1. 

32. Compare the coefficients of zn in the identity 

(1 + z)n (1 + z)n = (1 + zf\ 

33. Compare the coefficients of z2n in the identity 

34. Evident. 

34.1. From 

there follows 

(1 + z)2n (1 - z)2n = (1 - z2f\ 

V (-i)X** 
n\ 

f-1 )nbnxn a„ x 

T~ 

34]. See also VII 54.1. 

35. We have 

therefore 
00 yn\ h x 

Z—*n = (i +fe)A. 
K = 0 

Apply 34. 

36. Cf. 35. 

37. Differentiate the identity 

and put x = 1. 

38. [Problem from Ed. Times. Cf. Mathesis (Gand) Ser. 2, Vol. 1, 

P-104 (1891). Solved by Greenstreet et al.: Mathesis (Gand)’Ser. 2, 
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I 

Vol. 1, p. 236 (1891).] The sum in question is equal to 

i 

/ 1 - (1 - x)n 
dx = Ji—dx = j9 (1 + x + x2 + • * • + xn a) dx 

— 1+ —+ — + 
1 2 ' 3 ‘ 

+ • 

39. The general term of the left hand side sum is the coefficient of 

jn _{_ 2x)n+k+1 (—x2)n~k. Therefore we have to consider the 

. n + 1 f1 + 
n +1 

(~A 

a;2m+1 
coefficient of x2n+1 in 

i* a + 2*r*+i (-*2r*=i a + 2*) z 
*=o ’ 

or in the power series of $(1 + 2^)2n+2 (1 + x)~2. Division leads to a 

polynomial of degree 2n, the remainder is }[1 — (2n + 2) (2x + 2)]. 

The coefficient of x2n+1 in 
1 1 2n+ 2 

2 (1 + x)2 1 + * 

is equal to — J(2n + 2) + 2n + 2 = n + 1- 

40. Decompose the sum into three terms according to 

(v — not)2 =n2oc2 — (2not — 1) v + v(v — 1). 

The formula 

Z(nv)fqn-v=(P + q)n 
v=0 N 7 

and its first and second derivatives with respect to p furnish the three 

terms if p is replaced by x and q by 1 — x. Cf. I1144. 
41. It is sufficient to consider n^p and 

x{x — 1) ••• (x — p + 1) 
<p(x) 

P! 

We have now 

.toe)-ra4 c: j) - (;) ^ - 2><-> • 

4/-i)-(:)(;)-ir^7ii4;(-1)'(’:P-{(->rS«=^ 
42. This is a special case of 49 with x = ot = 1/2. It is also a special 

case of 41 with 

cp(x) = (2x— n)2 = n2 — 4xn + 4a;2 = n2 — Mn — 1) x + 4a; (x — 1) 

ip(x) = n2 — 2(n — 1) a; + x(x — 1). 

We have ip(n) = n. 
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— at 4-+ x"*1) dx 

zzn is the coefficient of 

r have to consider the 

■ - 2x)n+1 - (~x2)n+l 

(1 + xf 

*. Division leads to a 

- (2n + 2) (2x + 2)]. 

cding to 

rr-l). 

t :o p furnish the three 

I 144 

1 ( X \ 

=iAp)- 

T~p = 2nip(n), 

0 f or n > p, 

[ (—1)” for n — p. 

1 2. It is also a special 

— 1) * + Ax (x — 1) 

-1). 

43. Special case of 41 for (p(x) = (2x — n)2 [42]. We obtain an = 0 

for n 4= 2, an = 4 for n = 2. 

43.1. (1) First multiply both sides by ex, then use 34 and 38. 
(2) Let y denote either the left hand, or the right hand, side of the 

desired identity and verify that, in both cases, y = 0 for x = 0 and 

dy 1 — e~x 

dx x 

44. Write f(x) = cn{x — x^) (x — x2) ••• (x — xn). We have 

(*£“*)**=(k~x>)zk- 

45. [G. Darboux, Problem: Nouv. Annls Math. Ser. 2, Vol. 7, p. 138 

(1868).] We deduce from 44 

where g(z) is a polynomial with integral coefficients. 

46. [E. Cesaro: Elementares Lehrbuch der algebraischen Analysis 

und der Infinitesimalrechnung. Leipzig and Berlin: B. G. Teubner 1904, 

p. 872.] The functions fn+i and fn are connected by the recursion formula 

fn+1(*) = *[£(*) (1 “ *) + (n + 1) /»(*)] ■ 

Therefore the coefficients of fn(z) — a^z + a^z2 + ••• + a^]zn are 

linked by the relations 

(w+i). = «»J*) + (»-r + 2)«<n21( r = l,2,...,»+!; = 0. 

This together with fx(z) = z concludes the proof. The value of /n(l) is 

determined by 

/n+l(l) = («+!)/„(!). 

47. [Cf. N. H. Abel: Oeuvres, Vol. 2, Nouvelle edition. Christiania: 

Grondahl & Son 1881, p. 14.] If g(x) is constant then the proposition is 

a consequence of 44. In assuming that the proposition holds for poly¬ 

nomials of a degree smaller than the degree of g{x) we write 

g(x) = (x — xj) g±(x). 

(m , /(i)„ , m -2 
Sl \ dz) Wi(0) + £i(l) '^(2) ' / '[ dz) 1- 
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The given differential equation is soluble by successive quadratures 

because this is so for the equation 

{zTz~ *°) y = zy' ~ x°y = ' 
48. According to 44 both sides are equal to 

** + — + 
/<t)/(2) „2 , mmm ^ , mm •••/(« - *)/(«) 

*”+■ 

49. Apply 48 putting f(x) — (x — l)2, g(x) = x2. 

50. Comparing the coefficients of z" on both sides of the functional 

equation we get 
An(qn-l)=An_iqn, n = 12,3,...; A0= 1, 

hence 
n(n + l) 

= n = 1, 2, 3, ... 
' (q-l)(q2-l)...(qn-l)’ 

51. According to the functional equation [50] 

Bn(l - qn) = Bn_iq, n= 1,2,3,...; B0= 1, 

therefore 

5. = - 
(1 -?) (1 -<n ■■•(!- <?”) 

n = 1, 2, 3, ... 

52. [Cf. R. Appell and E. Lacour: Principes de la theorie des fonctions 

elliptiques et applications. Paris: Gauthier-Villars 1897, p. 398. For 

closely similar preceding work of Gauss see l.c. solution 55.] Call^M(^) 

the expression in question: 

<Pn(<fA = <Pn{2) 
1 + ?• 

2» + l 

qz 
2 n 

From this identity follows 

C,?2v+1( 1 - J2”-2”) = Cv+1(l - 92’,+2v+2) 

C=an\ 

v = 0,l, ...,n — 1, 

C = 
2»+2v+2\ (1 - q ,2«4-2j» + 4' 

) - (1 - <?4W) 
(l-*2) 

v = 0, 1, ..., n — 1. 

53. [Jacobi: Fundament a nova theoriae functionum ellipticarum, 

§ 64,; Werke, Vol. 1. Berlin: G. Reimer 1881, p. 234.] Take the limit 

n -> oo in 52 [181] 
54. [Euler: Commentationes arithmeticae, Vol. 1; Opera Omnia, 

Ser. 1, Vol. 2. Leipzig and Berlin: B. G. Teubner 1915, pp. 249—250.] 

Special case of 53: q | qzl'2, z = — q112. 



successive quadratures 

r •••/■» - l)/(n) 

r - — *(« - i) 

i 'ides of the functional 

= 1 2,3,...; 4,-1. 

n = 1, 2, 3, .. 

= 1,2,3,...; 50 = 1, 

n = 1, 2, 3, ... 

la theorie des fonctions 

ars 1897, p. 398. For 

solution 55.] Call cPn(z) 

v = 0,1, 

v = 0, 1,i. 

ctionum ellipticarum, 

234.] Take the limit 

ol. 1; Opera Omnia, 

1915, pp. 249—250.] 
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v ,55,' rG!USS: Summatio quarundam serierum singularity, Opera, 

°i " k "I"11' GeS" d' Y1SS' 1863, PP- 45-3 Special case of 53: 

sofutioVof' t9 and 2 ^ and aPPly 19 °r the Procedure of the third 

56. [Jacobi, l.c. 53, § 66; Werke, Vol. 1, p. 237/ Put * = -l in 
53 and use 19. 

57. Setting - fg = a„ we obtain 

1 +GW —G(qz) _ 1 + f M- (1 (1 _ ft ... „ _ _ j, 

= 1 + ai + Ml + flj) + «s(l + a,) (1 + «2) 

+ a4(l+«i) (l+«2) (1 + as) +••■ 

= (! + ax) (1 + a.2) + a3( 1 + «,) (1 + «,) 

+ Ml + M (1 + a,) (1 + «3) -l- 

= (1 + ax) (1 -j- a.2) (1 -)- as) 

+ *4(1 + M (1 + «2) (1 + «,) + •••, etc. 
58. 

A» = G(0) -2_L g , _ r . , qn 

applying 50 and 57 we find 

G(z) - G{qz) = 2^ A„zn, G(qz) ~ G(qiz) = £ Anq”zn, 

« = 1 

- Gfes2) = 2 Anq-nzn, 
«=1 

hence addition of the fim „ equations and taking the I™, 

G(z) - G(0) = £ ~^-z- 
»-X 1 - q" 

59 Obviously C(l) = 0. The functional equation in 57 implies with 
the help of complete induction that 

G(q ’") = 2 ~—i{i - —Vi -X)... A 
v Wl W l ~/= * ? =a- 
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Introducing (1 — q) n — y, 1 ^ — q we get 

*=i l + q + 1 +•" + ? 

Let n oo for y fixed, and so q-*-l: 

z-r (i - <?)h = ~y ■ t181^ 
ft=l * 

60. If we regard as known the sum of the series (cf. 59) we have 

. 1 , \ z 
/M“* logrrr 

and the solution is straightforward. Without supposing such knowledge 

we equate the coefficients of z2” on both sides and so obtain 

V f_il—» 2 1_. 2j \ 2^ + 1 \n — k) '2n + 1 

To verify this observe that 

2n + 1 (n + /» + * + *\ . / n + k \ 

2k + 1 \n — k) \ 2k -f 1 / \2A + 1/ 

and apply 39. 
60.1. If l and m are positive integers 

1 — q _ 1 4- q + ■** + ? 

+ q + — + 

60.2. Obvious in the Gaussian as in the ordinary case. 

60.3. Define f(x) as the left hand side of the desired identity. Then 

(1 + x) f(qx) = f{x) (1 + <f%) ■ 

Proceed hence as in 50, 51, and 52. 
60.4. Multiply the identity 60.3 by 1 + qnx and compare coefficients. 

Or verify directly from the initial definition. 
60.5. ' Obvious for k = 0 and k = ». For 0 < k < n from 60.4 by 

mathematical induction except the last clause about symmetry for 

which use the initial definition and substitute q-1 for q. 

60.6. Start from 60.3, substitute first 

2 n for n, q2 for q, 

then 
Zq-2.»+i for x 

and multiply 

The result is, 

60.7. Acoc 

60.3 reduce- I 

60.8. By , 

60.9. ”5ee 

Use this rema 

and matheira 

60.10. ;g. 

Fairly obvion 

mathematical 

60.11. Cm 

width 1 by eq 

an .v-segmert 

area of the s 

forming an u 

The Gaos 

fetermine the 

a given numb 

Chapel Hill C 

canons: Chap 

61. FoGo* 
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r- 

’] = -(i — ?)»• 

[181] 

t - furies (cf. 59) we have 

r opposing such knowledge 

r md so obtain 

\j~l 
F"1' 

; r unary case. 

■ t desired identity. Then 

- . 

1: -r.d compare coefficients. 

r < k < n from 60.4 by 

-i ise about symmetry for 

t r~l for q. 

1 a. 

and multiply finally by 

x z z z 

The result is, in fact, identical with 52. 
60.7. According as n = 2m or n = 2m -f 1, the left hand side in 

60.3 reduces for q = —1 to 

(1 - x2)m or (1 - x2)m (1+x). 

60.8. By virtue of 60.4 

(-«*([* i ■] + [;: !]«-*) 

= 2’Vi)‘ (i - ;2] q.e.d. 

60.9. [See e.g. MD, Vol. 1, pp. 68 — 78.] Obvious when r = 0 or s = 0. 

Use this remark, the relation 

CH-CK’.) 
and mathematical induction to pass from n to n -(- 1*. 

60.10. [G. Polya: J. Combinatorial Theory, Vol. 6, p. 105 (1969).] 

Fairly obvious when oc = 0 or oc = r(n — r). Use these cases, 60.4, and 

mathematical induction. 

60.11. Cut the area under the zig-zag path into vertical strips of 

width 1 by equidistant parallels to the y-axis. The top of such a strip is 

an ^-segment (unit segment parallel to the *-axis) of the path and the 

area of the strip is the number of y-segments of the path preceding 

(forming an inversion with) that top ^-segment. 

The “Gaussian” analogues of polynomial coefficients can be used to 

determine the number of certain more general letter sequences having 

a given number of inversions. [Cf. G. Polya: Proceedings of the Second 

Chapel Hill Conference on Combinatorial Mathematics and its Appli¬ 

cations: Chapel Hill N. C. 1970, pp. 381 — 384.] 

61. Follows from the definition; for the product use 34. 
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62. If alta2,..., an are positive we have 

1 + avz < eay\ v = 1,2, 

According to 61 

(1 + a,z) (1 + M - (1 + anz) < 

From this the particular case ^ = a2 = ••• = an = — follows. 

63. A{z) 4 P{z) implies 

jA{z) dz < / P{z) dz and em < ep{1). 

Therefore 

leads to 

af) _ J_ ^ _JL_ 
/(*) * l - * 

iog®-«ios<nbr.. 
M- <g —= y*tz”-1 • 
- ^(l-*>2 „fl 

64. a) It is obvious from the combinatorial meaning of An, B„, Cn, 

defined in 9, that 
0 £C„^A„^Bn. 

b) The first part of the statement follows immediately from 

1 -|- za -== 1 + Z<z z“a T- ’ * * > 
l — za 

where we put a = alt a2,..., at and multiply [61]. The second part 

follows from 
(1 - ^ - za*-(1 ~ ^ 

l - *a' - za' - - am — 1 — zam 

= 1 + 
(2ai + Za* H-h Zant-l) za™_ 

i _ #>i _ za2 _ ... _ zaw-1 — 
> 1 

for w = 2, 3, ..., l; multiplication yields 

(1 - f') (1 - Za2) (1 - - 

1 _*«!_**-^ 
> 1. 

Multiply both sides by [(1 — za') (1 Z<lz) *** (I z l)~\ 

64.1. We shall use the notation 

J 1 1 _ Cm , Cm+l | CmJr2 . ... 
=*w+2 

for any expansion in negative powers in which the coefficient of z 

vanishes for k = 0,1, 2,..., m - 1. We shall also extend the concept 

of a Hi;: n 

and n egad 

jt - f/i 

= i* a 

azdso j*| 

64v2. 7 

** = 1 aal 

65. Oh> 

66. Asg 

«-3C 
COOdftj 

any p:s:di 

*: - : M 

iei 

67. Spc 

«■ 

0.1. £ 
rt 
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v = 1, 2,n. 

, !-\-an)z 

= = — follows. ■M 

■- ^ SO. 

—; = 21 • 
»-l 

:il meaning of An, Z?n, Cn, 

immediately from 

61]. The second part 

I — 2a”*) 

1 

> 1. 

11 -z^)]-1. 

ich the coefficient of z k 

. also extend the concept 
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of a majorant series and the use of the symbol to expansions in positive 

and negative powers. 

zn + a-^z*1 1 + a2zn “ + • * • + — ^i) — ^2) *' ’ lz — zn) 

= *-«ip(loe(l-i) +log(l--7) + - +log(l-y)) 

...) 

<8 

= + {t^})=*■+++ +1 +{t} 
Z 

and so | ak | 1 for k — 1, 2,..., n; apply III 21. 

64.2. For the polynomial 

M-|-l . 

i—= + - + 1 
£ — 1 

ak = 1 and sk = —1 for k = 1, 2, ..., w. 

65. Obvious. 

66. Assume sn = 0 for n -\= v, sv = 1, therefore tn = pnv for n^>v. 

If lim tn = lim sn holds for this special sequence then lim pnv = 0, i.e. 
n-^-oo n->oo »^-oo 

the condition is necessary. Suppose the condition is satisfied. Let s be 

any positive number. Find N such that |sn — s | < -|- for all n > N; in 

addition n has to be such that pn0, pnl, ..., pnN are all smaller than 

-rxv r~rr^» where M denotes the maximum of |s„|. From 
4 (N + 1) M 1 v 1 

4 - S = Pn0iS0 - S) + Pnlih - s) H-h P„n{sn - s) 

we now deduce 

l‘.-sl<<W + D2«i-(FTTiM 

+ y (Pn,N+\ + Pn,N+2 + * * * + Pnn) = Y T * 

67. Special case of 66: pnv = - . 

68. Equivalent to 67: log pn = sn. 

ar 68.1. Equivalent to 68, pn = -—- -. This reformulation is useful in 
an-1 

dealing with power series. 
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69. Special case of 68: put 

Po — ft* \ n ) ’ 

then we have 

PoPlPl '"fin 

70. Special case of 66: put 

(» + l)w+1 
(n + 1)1 

f a0 + al + a2 + “ ‘ + an . 

H ^0 ~b ^1 d" ^2 "h ■** "h 

observe 

lim pnv = 0. 

71. Special case of 70: aw = (w + l)a &w = (« + 1)* — ^a- Since 

we obtain 

1*_1 2*_1 + ••• + (« + 1)“—1 («+l)“_1 _1 

n-*oo (W + 1)* »-►«> (tt + 1) — 

72. [For 72—74 cf. N. E. Norlund: Lunds Universitets Arsskrift, 

N. F. Avd. 2, Vol. 16, No. 3 (1919).] Special case of 66: 

, _Pn—v_ ^ _Pn—v_ 

^nV ~ Po + Pi + ^2 d-+ Pn = Po + Pi + P2 d-h Pn-v 

73. Special case of 66. Set 

Po “T Pi d“ p2 + * * * + Pn ~ Pn> % + £l + ^2 + * * ‘ H" 

d" ^1 d- *2 d" d- » 

and 

P0Qn+P1Qn-1 + - 

We obtain [cf. 74] 

■* + PnQ0 Po+Pi-1-b Pn-i 

PpVn +Pl?n-1 d-?p 

+ ^1 Qn-1 + *** + PnQp 

74. We write 

50^« + SlPn-l + ' '' + 5nPo 

Po+^i+ - + />, 

50?n ~b 5i?n-l ~b “* ~b Sn^0 

+ + + 
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V, (n + 1V‘ 

l1*’1 

(rn as in 73). Then 

r   Pn@0% + P« —l^l^h + *•* + P{}Qn% 

PnQo +Pn-lQl + "• + P0Qn 

_ In^OP0 + ?«-l^lPl + "• + 7oP„P„ 

T Vn-lPl + + qQPn 

J0 + al + a2 + * ’ * + anm 

^0 + + *" *+■ bn’ 

consequently [66, 73] lim pn = lim q„ = lim r„. To establish the above 
ti —> oo n-^-oo n ->oo 

identities we use the power series whose coefficients are the sequences in 
question [34]: 

oo OO oo oo oo 

S ^ II Pnz\ 21 «* 2V = 21 ft.*". 
^ = 0 1—0 n — 0 k = 0 2 = o n = 0 

, = (» + 1)* - n". Since 
z*2y = i v = f p*** i?,/ = f #*** f a**. 

~ = (S **),.!=*• 

A ^ 1 0 n —0 ft—0 2=0 ft = 0 2=o 

i PnpMtr" = f pkzk 2 s/, f &q„2" = f qhzk v , 
M_0 * = 0 J = 0 n = 0 ft=0 2 = 0 

_ « + l)*-1 _ 1 

’ - = n -j- l)a — n* <* * 

. ir if Universitets Arsskrift, 

l of 66: 

2 Rntnf= Z PS ZqJ I Smz” 
«=0 ft=0 2=0 m=0 

= I tS S Qfi/ = i qS IP.P.Z1. 
k = 0 2=0 ft = 0 2 = 0 

75. Put 
P n—v 

— P-2 + **' + {” = (ai + a2 + •" + a») n~°> sn = a}l'° + a.22~a 4-4- 

and lim sn = s. The expression 
»-> oo 

- - ~ + **’ 4- <?» = (?„, 
4 — w °(» 4- 1)° (s„ — s) = n~a £ (s„ — s) [va — (v 4- 1)°] 4- n~as 

»-i 

converges to 0 [66]. 

Pn—v 

-Pi + ••• + *„_,• 
76. [E. Cesaro: Nouv. Annls Math. Ser. 3, Vol. 9, pp. 353—367 

(1890).] According to 70 the limit is equal to 

- ~ r,1a + + j!,Bnsv 1 lim , /"P"1_ lim 1 
«->=o log Pn - log PM_J _log (1 _ pnp-l} ■ 

~ 5l?n-l + ••• + snq0 

?o + + qn 

TI. [I. Schur.] Set ^ p„ = P„, 2 q„=Qn and assume 8 > 0. 
J> = 1 v — \ 

\\ e have lim Qn = lim nqn = oo, because otherwise we would have 
00 n->oo 

K ~ 5* ro 
p7 

q 
> ?>0; i.e. ]76] Q„ ~ ?log«00: contradiction. Also 

lim PM = lim npn =00. If « > 0 the same argument as for Q„ can be 
Hr —7 OO fl —v 00 0 w 
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used. For <x = 0 lim np„P^ = oo, all the more lim npn =oo, conse- 
n-)-oo n-+°° 

OO 

quentlv T P diverges. Therefore the series £ np„q„ is divergent. If 

»-i J 
« = 0 we conclude nqn < /«?„, K independent of n, 

2 vpA < K V p,Q,. f A, = - 
V = 1 v = l ’^1 

i.e. 
n 

Z*P,1, p Q 
lim J=1-= lim ” • lim — = 0. 

n2p„qn npn nqn 

In the case * > 0 replace the proposition by 

PnQn 
lim « +/S. 

2 vp, % 

Apply 70: 

«„ = PnQn ~ P«-lQ*-l> K=”Pn<l«- 

^L = -P" + Q" _ —-><x +P = S. 
' «P» «?» * 

78. Example: ^ = #., = = *** = 1- Now assume that ^ ^«+i* 

a„ -> 0 and 

ax + «2 + •" + «„ - ^ X for » = 1, 2. 3,... 

For a given wi find n such that an ^ \a,„- From 

-+ «m — + K.+1 + + a») 

— (n — w) a„ > m(«m - a„) 

follows that + «-2 + ‘ ■ ■ + am = K + mam = ^0r W = 3’ " 
We are dealing here with a transformation under special conditions; 66 

in itself is no help. 
79. Contains 65 as a particular case; the proof is the same. If pkl = 0 

for Z > & the matrix is called triangular (cf. 65, 66) or more specifically 

lower triangular. If pkl = 0 for l < k the matrix is termed upper tri¬ 

angular. 
80. Contains 66 as a special case. Proof analogous. 

81. With sn = ncn + (n + 1) cM+1 + ••• we can write 

*• = ^s» + (dh ~v)Sn+i +(irT2_«^i)s"+2 + '"- 

Obviously lim sM = 0, which implies lim tn = 0 [80]. 
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r- iim npn =oo, conse- 
« —■ ;c 

pH<In is divergent. If 

it «r 

= A'p„a 

: ”‘P,q n> 

= S. 

-fume that an > an+1, 

= 1, 2, 3, ... 

: ~ •" +*») 

a for m = 1, 2, 3, ... 

'pedal conditions; 66 

' the same. If pkl = 0 

) or more specifically 

i> termed upper tri- 

311$. 

i write 

_ J Sn + 2 + ***• 
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Vnl“; G' H- Hardy and J- E. Littlewood: Rend. Circ. Mat. Palermo 

v ' ’ PP' °°~5i (1916); ci also T- Carleman: Ark. Mat. Astr. Fys 
\ ol. lo, No. 11 (1920).] Put y 

ao + ai + «2 + - - • + an = s dM. = i 
7l\ n * 

b0 + *i(l -«)+•••+ 6„(1 - a)» 

o fJT!^ analySiS [Hurwitz-C°urant, pp. 32-33; Hille. Vol. I 
p. -LJ8.J that for |y| < 1 _ a 

bo + bxy 4 + Ky 4 = a0 + «i(<* +y) 4-4- an(tx + y)n _ 
holds identically. Consequently 

The coefficient of y on the left handside is f. and on the right h»d side 

a-«r'[s.+(*tV..,+(Ns)«v, 
+C«,)“V.+-]=-<.. 

K ~ 1 <binomial *“"»*>• The present transformation has an 

h^LAC,“"“,he —■»85— 
83. Cf. the analogous propositions of 65 and 79. 
84. Cf. the analogous propositions of 66 and 80 
85. In 84 put 

btn 

bo + \t + b2t2 -f ... -j_ bntn + 

For given v and £j£>0, choose n so that 

We have 
^o+^i + ^2 + ’ * * 4- > —. 

<pM<- 
b.f 

b0 + *1* + V" + ••• + v"' 

The right hand side converges to a value smaller than e as t i The 

pr.pos.tron holds also if the radius convergence is«, instesSofl! > 0 
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86. [N. H. Abel, l.c. 47, Vol. 1, p. 223.] According to 85 

2 («„ + «i + ••• + “») 

' a0 + axt + a2t2 + =“ 
Zf” 

n —0 

- lim 
n->oo 

a0 + «i ' 
: S. 

87. [G. Frobenius: J. reine angew. Math. Vol. 89, pp. 262 264 

(1880).] It follows from the hypothesis that n~^an is bounded, therefore 

£ ant converges for |f | < 1. According to 85 we have 

n=0 n .ft i 

a0 + axt + a2t- + '' • + aJ + "' 

2 (o0 + «! + ••• + “»)<n 2(so + si + 
»-o 0 __ 2=2___ 

Ztn 
n=0 

s0 + 51 + + Sn 
lim ---= *• 

n-s-oo W + 1 

2 {n + 1) ^ 
n=0 

88. Multiplying numerator and denominator with the geometrical 

series we obtain 

#q 4" Q-yt 4“ *h * * * 1 1 

b0 + hll + fy2 + * * * + bj" + 

2 (*0 + al + * “ + fln) fH 
_ n=0__ 

f(fr0 + 6l + •’• + 6n) f 
n = 0 

a0 + + - 
► hm — 

&o + &i + 4- bn 

— s. 

89. Set 9>(x) = log (l + y) - <* log (l + y). According to 156 

2 [log (i + 4) - «]°g (*■ + t)] 

converges, i.e. there exists a finite limit 

hm 
n-*oo < 

; > 0. 
0 <x(ot + 1) • * * (« 4- n — 1) 

_1 , 7 oc{oc -4- 1) ••• (a 4- n — 1) 
In 85 put an = w* 1 and 6„ ---• 

90. The integral in question expanded in powers of k2 is 

n ^ /I • 3 •»» (2n — 1) \2 ^2n 

T ~ V 2 • 4 • • • 2» / 

, ^ n fl • 3 ••• (2« — 1) \2 ^ k? = t 
Special case of 85: aM = -r—0 . * n’ 2' 



"1
 >]

 H 

. r :u'?nces 

A:: or ding to 85 

2o T ai + *** + «n) tn 

fl0 - al + 

Ath. Vol. 89, pp. 262—264 

*~l*» is bounded, therefore 

y (n + 1) tn 
'.=0 

i:or with the geometrical 

A + al + — + 

~ 61 +-f- hn) *n 

h + a 1 +-h _ 
:-0 + 61 + ...+^-s- 

f . According to 156 

-f)] 

rowers of k2 is 

k~\ 

K =A=i k2 = t. n 2 
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91. [Cf. O. Perron: Die Lehre von den Kettenbrtichen. Leipzig: 

B. G. Teubner 1913, p.353, formula (24); R. G. Archibald: An Intro¬ 

duction to the Theory of Numbers. Columbus/Ohio: Charles E. Merrill 

Publishing 1970, p. 176.] Recursion formulas for An and Bn: 

■A+2 = (2w -(- 1) An+1 -)- aA„, Bn+g = (2n -f- 1) Z?n+1 + uBn, 

n = 0,1,2,...; A0=BX = 1, A1 = B0 = 0. 

This leads to the differential equation 

y" = 2 xy" +y' + ay, 

where y stands for F(x) or G(x). Substituting v2 for a(l — 2x) we find 
d?y _ 
-fo2 — y = 0, y = cxev + c2e v, cx and c2 constant, i.e. 

F(X): 
+<-»+V« 

2 G(x) = 
ev-^a + e~v+ia 

Put 2x = t. Then 85 may be applied in the following manner: 

An n^T^T Wy) 
lim -g- = lim —-= Hm = ]/«V 

n->oc Bn n^oc £w jl r ya 

evr _ 4-y. 

tt! o» —l 
eya 4- * -Va 

The power series for G' (y) is divergent for if = 1 because all its coeffi¬ 

cients are non-negative and ^ lim ,G' (y) = °°- 

92. Special case of 88. 

n = 0 n=0 ' n ' 

oo 

Since (1 — t) G 1 = (^0 + + • • • + bn) tn we have 
«=o 

K+K+h + "‘ +K=^n) 
(o' + t) (<r + 2) • • • (o -j- w) 

[Solution 89.] According to 75 we obtain 

lim ao + ai + g2 +-h an 
*0 + bx + 62 + ... + b„ 

n! 

: 0. 
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93. According to solution 89 vve have 

lim (1 - /)3'2 £ 
<-1-0 H = 1 

_ 0 
-IV [1 ■'«']- 2 

1. 'i )f = lim — . 
J 2 / «-+<» 3 5 t 

< 0. 

_ r .. . (| 2 — l) 1 rr * . 5 . 7 ...2w +J. gl/— [H 202]. 
The limit is- 2 * > ab T T T 2 n V * 

94. The statement 85 is true not only for / 1 but also for t -> 00. 

Cf. 84. The sum of the series 

b0 + bxt + bjr + • • • + bntn + ’** 

increases to infinity as t -> 00 because bn > 0. 

95. Application of 94: an=^> K =^r- [Borels summation, 

Knopp, p. 471.] 
96. We write sn — a0 -j- + "* + an> s~i =0- Then using partial 

integration for the subtrahend we get [95 

f e~xg(x) dx= y J d* = 2 sv J fc - (A l);)dx 
J r ~o 0 v~° 0 

00 y — 1 

= Js. 
'..fo *’(*'+ »>! ' 

97. In 96 put an = 0 for n odd 

a —_• —-2w ~ - for n=2m. 
an l *■) 2 4 6 2m 

We have s = (——_—\ = -— . Similarly we obtain for 1 — % ^ 1 
\Vi - *h— i l 2 

98. [For a special case see M. Fekete: Math. Z. Vol. 17, p. 233 (1939).j 

It is sufficient to consider the case where the lower bound ol is finite. 

Assume s 0 and —— <C oc ~j~ s. Any number it can be written in the form 
m 

n = qm -j- r where r is an integer, 0 ^ r ^ m 1. We define a0 = 0. 

Then we have 

aH = aqm+r ^ am + am + ■ * • + am + ar = + ar > 

+ ar am qm 
m qm + t 

+- 

oc< — <(x + s) 
- M 

qm 

*99. Since 

(*) 

The series 

£l. /f* 
l \± 

is convergent 1 

is, on account 

system, i.e. 

n u 

Applying 66 w 

= 

we conclude ] 

Another J 

- 1 < ft 

Tr conclude bj 

where —o. bd 

We conclude | 

qm -f- r 



’ 
r*

j«
 

. «]• 

in + 1 < 0. 

- 4 6 2n 

1 ^ 2 j^~. [II 202J. 

— 1 but also for t ->■ oo. 

Borel’s summation, 

U. Then using partial 

-V+vi)e *dx 

■ r n = 2m. 

obtain for —1 ^ < 1 

- Z. Vol. 17, p. 233 (1939).] 

^ lower bound a: is finite. 

:an be written in the form 

— 1. We define aQ ~ 0. 

- i. =■ qam + ar, 

Pt. I, Solutions 93 — 99 299 

*99. Since 2am - 1 < a2m < 2am + 1 we have 

(*) ! a2m am ^ 1 

, 2m m ^ 2w * 
The series 

+ , /«» ai\ , v V 
i + U iy + U = « 

is convergent because 

|«i| + 2-i + 2-2 + 2-3 + ••• 

is, on account of (*), a majorant series. Write the integer n in the binary 
system, i.e. 

* = 2»+ei2-i 

where sv e2,...,em are 0 or 1; according to the hypothesis 

a2m + ei«2»-i + ••• +£ma1 — (e, + e2 -f-+ sj 

«2» + e1a2m_i + ••• + £maj + (e, + s2 + ••• + em), 

nW a eym~ 1 a 

2 2">-l _ log* 

H 2W 

Applying 66 with 

_ <3j m 
» 1 = W : w log 2 * 

so = 0, Sl=^ V-i 
5W-1 9»! — 1 

PnO — Pn\ — — > - = 
^2” 

"* ^ Pn,ni+l — 0, 

we conclude lim n 1an = co. By virtue of (*) we finally obtain 

co- < __W_ _4w _ a2m 

2m, m 4 m 2m 

Another proof: From 

am+n + 1 < (am + 1) + (a„ + 1), 1 - am+n < (1 - aj + (1 - aj 

we conclude by 98 that 

h™, ~H— = co> llm-~ = —co, n~>0° w n->oo n 

where -co, being a lower bound, cannot be + oo, and so co is not - oo. 
We conclude further that 

2m 4 m m 

r 1 

^ CO, 

1 — a n 
— CO. 
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100. [L. Fejer: C. R. Acad. Sci. (Paris) Ser. A—B, Vol. 142, pp. 501 

503 (1906).] The proof will show that it is sufficient to discuss the case 

of bounded partial sums sv s2, ss,s„,... Put hminfsn=w and 

M — m 
lim sup sn = M, l is a positive integer, l> 2 and ; 

the number line into l intervals by the points 

— = 5. Divide 

oo, m + 8, w + 25, ..., M 2(5, M 8, 00 

Choose N such that |s. - sB+11 < <5 for w > N. Let, furthermore, V 

> Nt be in the first (infinite) interval, s„t, n2 > nv in the last (infinite) 

interval. In each of the l - 2 intervals of length 8 there will be at least 

one point sn>+k (0 < k < n2 - «,). A similar argument holds if the 

sequence does not "slowly increase” but is slowly decreasing . 

101. [Cf. G. Szego, Problem: Arch. Math. Phys. Ser. 3, Vol. 23, p. 361 

(1914). Solved by P. Veress: Arch. Math. Phys. Ser. 3, Vol. 25, p. 88 

(1917).] The interval (0,1). Cf. 102. 
102. [G. Polya: Rend. Circ. Mat. Palermo Vol. 34, pp. 108—109 

(1912).] There are subsequences with arbitrarily high subscripts 

t , t that descend arbitrarily slowly from the lim sup to 

the lim inf of the sequence. The detailed proof follows the lines of solu¬ 

tion 100. 

103. 
V«_yH + t _ 

n + vn n + 1 + vn+1 

n[v„ • »+l ) +”« .< T<V- t102^ ) n 
~~ (» + vj (* + 1 + v»+l) (* + VJ (” -i- 1 + vn+1 

104. Let s,, s2, s3,.. •, s„,..., lim s„ = s, be the sequence in question. 

Choose sVi anywhere in the interval s — y, s + y, and more generally 

sV)( in the interval ss Vl<v2<v3< ■■■. The terms of the 

series s,._ + (sVi - sp) + (sVj -sj+- are not larger than the terms 

of kl +(y+t)+(t+it) + '''- 
105. Only finitely many terms of the sequence are below a certain 

fixed number. Among finitely many numbers there is a smallest one. 

106. If the Weierstrass least upper and greatest lower bound of the 

sequence coincide there is nothing to prove. If they are different then at 

least one of them is different from the limit of the sequence. This bound 

is equal to the largest or smallest term of the sequence. 
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l~— B, Vol. 142, pp. 501 — 

Tilt to discuss the case 

Put lim inf sn = m and 
n-± oo 

j — = <5. Divide 

-d, M — d, oo. 

' . Let, furthermore, s„ , 

> nv in the last (infinite) 

h 6 there will be at least 

argument holds if the 

wly decreasing”. 

Ser. 3, Vol. 23, p. 361 

' Ser. 3, Vol. 25, p. 88 

Vol. 34, pp. 108—109 

high subscripts 

‘ v from the lim sup to 

follows the lines of solu- 

he sequence in question. 

and more generally 

< ••*. The terms of the 

: larger than the terms 

-nee are below a certain 

lere is a smallest one. 

test lower bound of the 

Ley are different then at 

ie sequence. This bound 

[uence. 

107. The smallest among the numbers llf l2, /3, ..., lm (m given) is 

called y), r] > Q. According to the hypothesis there are terms of the 

sequence that are smaller than rj. Let n be the smallest index for which 
ln < r). Then we have 

n > K < h> k-i- 

108. Apply 105 to the sequence Ij"1, lj~*v ... 

109. [G. Polya: Math. Ann. Vol. 88, pp. 170-171 (1923).] We call 

Kn an outstanding term” of the sequence if lm is larger than all the 

following terms. According to the hypothesis and to 108 there are in¬ 

finitely many outstanding terms: 

^n3> •••) ^nl '^> ln2 Ki 3 * * * • 

If lv is not oustanding it lies between two consecutive outstanding terms 

(for v > i.e. nr_x < v < nr. We find successively ln ln , 

Kr-2 ^ Kr> • • • > K = Kr> consequently 

(*) KSv<lnr\- 

From this we conclude 

lim sup i s. = +oo. 
r->oo r t 

Otherwise lnsnf and consequently, according to (*), the sequence 

^i5i, 4S2> • • • would be bounded, contrary to the hypothesis. Apply now 
107 to the sequence 

7~i c-1 7-1 o-i /-I c-i 
5nx » *ng Sn2 > ln3 Sn3 » ••• 

110. [Concerning 110—112 cf. A. Wiman: Acta Math. Vol. 37, 

pp. 305—326 (1914); G. Polya: Acta Math. Vol. 40, pp. 311—319 (1916); 

G. Valiron: Ann. Sci. Ecole Norm. sup. (Paris) Ser. 3, Vol. 37, pp. 221 — 

225 (1920); W. Saxer: Math. Z. Vol. 17, pp. 206—227 (1923).] 

Analytic proof: We have lim (Lm — mA) = + oo. Let L — nA 

[105] be the minimum of the sequence 

Lo-0, L-l-A, Lz-2A, L3 — 3A, ... 

Obviously 

L„_m - (n - n) A ^ Ln - nA. Ln+P - {n + v) A ^ Ln - nA 

for (i = 1, 2,...,«; v = 1, 2, 3, ...;«== 0 is excluded by the assumption 
on A. 

Geometric proof: From the given points draw vertical rays 

upwards, construct the smallest convex figure (infinite polygon) con- 
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taining these rays and determine the line of support1 of slope A. We call 

(n, Ln) the corner (or one of the corners) through which this line of 

support passes. The lines connecting (n, Ln) with the points to the left 

(in the convex domain) have a slope smaller than A, and with the points 

to the right (in the convex domain) a slope larger than A. 

111. [Cf. G. Polya, Problem: Arch. Math. Phys. Ser. 3, Vol. 24, 

p. 282 (1916).] Write 

h +4 + •" +lm=L«,’ w = l,2, 3, .... L0 = 0 t11®] 

Since Lx - A < 0 the difference L0 — 0 cannot be the minimum mentioned 

in the solution of 110. Then In+1 A, therefore ln+x, and consequently 

n, increases to infinity simultaneously with A. 

112. Put Zj +4 + + lm = Lm, m = 1, 2, 3, . L0 — 0. We find 

lim 
L — mA 

= -A [67]. 

The sequence 

L0 — 0, Lx-A, L,-2A, .... Lm -mA,... 

tends to — oo. Let the maximum be Ln —nA. The inequalities in 

question are satisfied for this subscript n. There are in the sequence 

t Lj, .... Lm,... infinitely many terms larger than all preceding terms 

[107]. Let Ls be one of them. 

h ls-i + h h + h +-th 

T > 2 ’ ‘’ s 

are all positive. If A is smaller than their minimum the subscript n 

belonging to A is ^ s. — The points (w, Ln) are to be enclosed in an 

infinite polygon convex from above. 

113. Set lim sup = S. Then we have a) S ^ This is obvious 
log rm 

for S = oo. If S is finite we find for e > 0 and for large enough m 

log m < (S + s) log rm. Therefore 

rj e<m 1, 
_ S— *>£ ^ r < m 

S+2e 

Zr, 
m = 1 

-S — 2e converges, 

1 By line of support of a closed set we mean a line that contains at least one 

point of M but such that one of the open half-planes determined by this line does 

not contain any point of The intersection of the closed half-planes defined by all 

possible lines of support containing is a convex domain the smallest that 

contains W (the convex hull of 9R). Every line of support of m is a line of support 

of $ and vice versa. These concepts can be easily adapted to the case where the 

ideal point (point at infinity) belongs to the set 9ft, as is the case here. Cf. Ill, 

Chap. 3, §1. 
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5...., L0 ~ 0 [110]. 

- : he minimum mentioned 

" —n-v and consequently 

- o, Z0 = 0. We find 

n: 

Lm - ... 

d. The inequahties in 

ere are in the sequence 

t r.an all preceding terms 

- + h 

minimum the subscript n 

are to be enclosed in an 

5 ^ A. This is obvious 

and for large enough m 

. rm6 2e converges, 
1 

-e that contains at least one 

determined by this line does 

d half-planes defined by all 

)main §?, the smallest that 

rt of sJJl is a line of support 

pted to the case where the 

' is the case here. Cf. Ill, 
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i.e. S + 2s ^ A, S ^ A. Furthermore b) S g A. For A = co this is evident. 

If A is finite ]T r-*-> converges for s > 0. Therefore, by the well 

known particular case of 139, where s = 1, mr~x~B 0 je 
log m . m ’ ' ' 

1 + £ for large enough m, S ^ X + e, S ^ X. 

114. Since the assumption on the xm’s is independent of the number¬ 
ing we may assume that \xm | = rM, We enclose 

each number xr, v = 1, 2, 3,.... m in an interval with center and 

length <5. These intervals do not have inner points in common and lie 

completely in the interval [-r. rm +£]. Therefore 

mb < 2rm + <5, i.e. lim supm 
m-±°or log y 1. 

115. According to 113 lim mr~» = 0. Apply 107 with l = 

116. We have limsupmr~* = + <x> because otherwise we could 

find a constant K independent of m such that mr~x < K, thus 

1 -K1+e- . 

»d+£) i+. f°r < *(1 + e) < A, 
m m 

which is contradictory to the hypothesis that A is the convergence ex¬ 

ponent of the sequence rv r2,.... rm, ... Furthermore mrj -y 0. Apply 
109 with 

s,„ = m1 m' 

117. The maximum term’s index is m — 0 if 0 x < r ; its 

index is m if < * < rm+1 and m ^ 1. The terms increase at’first 

until the m-th term is reached (maximum term) and they decrease 
afterwards. 

118. In 111 put fm = logrM-logsm, k = n-fi and k = n + „ 

respectively. For given A determine n according to 111 and then draw 

r from the relation A = log r — logs*. It is obvious [117] that for 

y ~ s" the M'th term of the second power series becomes the maximum 
term. 

119. Let pnxn be an arbitrary term and choose m such that m > n, 
i>m > 0. Then we have 

m — n ,- 

> Pn*" if *> 
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120. If for a certain % a term pnxn is larger than all preceding terms, 

i.e. if for a certain value of x all the inequalities 

xv[pnxn~v -pv)^Q,v = 0, 1, 2,n - 1, 

hold, then this remains true also for any larger value of *. 

121. Let m be arbitrary and choose x so that pmxm is the maximum 

term. Then 
1 nm 

tjTZP'S**o, 

On the other hand pm[dg)m is bounded for m -* oo, 0 < 0 < 1. Conse¬ 

quently 
m— . 

lim \/K = 2r- 

122. [l.c. 110.] Suppose that for a certain positive value 2 the central 

subscript of the series 2 j1 z” is n [121] and that Vis a value for which 
m—0 w 

00 _ _ — ~x 

the same n is the central subscript of £ bmym. Define x by z = ■=-. 
m=o y 

Then we have 

* = o,i,af... 
bk y bn yn 

123. [l.c. 110 ] Let 

nv n2i ... 

00 a 
be the successive values of the central subscript of the series £ — zm. 

m-0 m 
Assume that the term with the specific subscript k is the maximum 

term in the interval (£*_,, Ch) and that yk is the value for which bkyk 

becomes the maximum term of the series £ Kym- The method used 
m=0 

for the solution 122 associates these values yv y2, ... with values of x 

that belong to the intervals 

(o,yxfi), (^2^1’y2^2)^ (ysC2>y£z)> •••> (y^k—1>yk£k)*••• 

The exceptional values x* with which no y is associated must he in the 

intervals 

tvifi' (^2^2' y^z)’ * • •» 1» * * • 
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crer than all preceding terms, 

realities 

1. 2, ...,n — 1, 

Lre^r value of x. 

-.fiat ftmxm is the maximum 

-> oo, 0 < 6 < 1. Conse- 

r. positive value 2 the central 

lt. i that y is a value for which 

_,vw. Define x by z =~ 
y 

= 0, 1, 2, ... 

:~pt of the series — zm. 
m = 0 m 

ir-script k is the maximum 

:s the value for which bkyk 

— • The method used 
»=o 

'••• y2, ••• with values of x 

ykQ> • * • 

associated must lie in the 

-y£k~i)y • • • 

Thus the values log x* have to fall into intervals of length 

+ log^ 4-+ log —-f-= lim log —— = log —, 
^2 yk_x a-*oo *>yi *yi> 

where o denotes the radius of convergence of £ 6nyn. 
n = 0 

124. [A. J. Kempner: Amer. Math. Monthly Vol. 21, pp. 48 —50.] 
All the non-negative integers between 0 = 00 • • • 000 and 1(T — 1 = 

99 • • • 999 that are written with the nine digits 0, 1, 2, .... 8 are obtained 

by lining up these nine digits in all possible ways m at a time. Thus we 

get a total of 9” numbers. Let rn be the n-th non-negative integer that 

is -written without the figure 9. If 1(T_1 — 1 < rn < 10”' — 1 then 
n 9*. Therefore 

lim sup 
«->oo 

lQgrc < log9 

log rn — log 10 ^ [113]. 

More directly. The number of terms of the subseries in question with 

values between 10m~1 - 1 and 10w - 1 is 9W - 9*"1. Consequently 

the sum of the subseries is smaller than 

, 92 - 9 . 

+ 10 + 
93 - 92 

100 

125. Consider the two subseries which- contain all positive and all 
negative terms, respectively. 

126. [K. Knopp: J. reine angew. Math. Vol. 142, pp. 292 — 293 

(1913).] No. Example: Let b± -f b2 b3 + be convergent and 

l&il + |&a| + \b3\ H-be divergent. Put 

ai = bv a2 = a3 h 
2! ’ 

CLa — CLe a10 — 

Noticing that n! is divisible by and collecting all the terms which 

belong to the same bm we transform the subseries ak + ak+l + ak+ol -1_ 

into the series — \ + — b2 + -j b3 + • • • except for a finite number of 

terms. 

127. No [128]. 

128. No. — Use bn of 126. Suppose that the functions tp(x) and &(x) 

assume only positive integral values and are strictly increasing: 

0 < 9(1) < 9(2) < —, 0 < 0(1) < 0(2) < 0(3) < •••; cp(n), 0(») inte¬ 

gers. Define a new series a1 -}- a2 + a3 + • • • with the general term 

= <»(») - £(m - 1) for^; % = a2 = • ■• • = am) = A-. 
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The inequality <p(tm) S «>(») < <p(tm + 1) determines the integer t„ 

completely. Collecting the terms that belong to the same bm we trans- 

, ^-i Kn-l r 

form the series ap(1) +%&) -mto the senes ^ &(m) - 0{m - l) °m' 

If we set 0(x) = 2*2 we obtain a series ax + a2 + az + • • * which furnishes 

a counter example for the problems 126-128: If q>{x) is a polynomial 
’m *m \ is, beyond a of degree ^ 2 or if <p[x) = klx the sequence ^ 

certain m, monotone decreasing [Knopp, p. 314]. 
If g)(x) = k + lx we transform the contracted series by adding an 

absolutely convergent series into the series l 1{b1 + b2 + • • * + K + • **) 

[126]. 
129. [A. Haar.] Since the series st = at + a2i + % + *** °* 

the same type as sx it is sufficient to show ax = 0. We denote the first 

m prime numbers by pv p2> • • •> Pm- ser*es 

5i - isPl +SP> + ”' +spJ 

+ (sp+ SPJ> + ■”) 

+ (—l)m sPip2-p 

contains only ax and the an’s whose subscripts n are not multiples of 

one of the prime numbers pv p2, - - - > pm- Each of these an s appears 

exactly once [VIII 26]. I.e. 

2 Kl> fl1==0- 

The condition “absolutely convergent” is essential as can easily be 

shown by the example £ ~~~ [VIII, Chap. 1, § 5]. 

130. [G. Cantor, cf. E. Hewitt and K. Stromberg: Real and Abstract 

Analysis. Springer: New York 1965, pp. 70-71.] We obtain the set of 

points in question by removing from the closed interval [0, 1] the open 

middle third of the interval, then apply the same process to the remaining 

two intervals and so on indefinitely. (This set is often called the Cantor 

discontinuum or the Cantor ternary set.) 
131. [Cf. S. Kakeya: Proc. Tokyo math.-phys. Soc. Ser. 2, Vol. i. 

p. 250 (1914); Tohoku Sc. Rep. Vol. 3, p. 159 (1915).] Write 

Pn ~^Pn + l + '** "^Pn+v Pntv» 
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iT-.rrmines the integer tm 

: the same bm we trans- 
30 t - t 
y1 m m~ i i. 

0 (m) — 0(m — 1) m' 

- j3 + * ’ * which furnishes 

B I: (p (x) is a polynomial 

1} beyond a 

- : t i series by adding an 

* \ ~^2+*“+^+*-) 

^2/ "f" H- is of 
l = • We denote the first 

n are not multiples of 

i:r. of these an’s appears 

= 0. 

'-ntial as can easily be 

• § 5]. 

::berg: Real and Abstract 

‘i.j We obtain the set of 

i interval [0, 1] the open 

- process to the remaining 

> often called the Cantor 

hys. Soc. Ser. 2, Vol. 7, 

1915).] Write 

i = 3,...,v=0,1,2,... 

Assume that fn> is the first term for which pn < a. Either there exists 

a such that Pn^ < a, P„_ ^, > a, 0 or Pn< ^ a. In the second 

case we have P„_ = cr because ^ ^ a (for nx = 1 this means 

= s = ff)' be. a may be represented as an infinite subseries. In the 
first case we determine the first term* with n„>n, +v, P -\--b <-„ 

Either there exists a with P, 4- p < a P 4-P „ 

v2 = u or + Pni g a. In the second case we have Pn v -f Pn — Gj 

because P,htVi + Pni ^ -PM|tlfi + pn%—\ ^ cr (w2 > -f- v1 +1, because 

± fini+Vl+i = Pn1>Vl+i ^ o) i.e. or may again be written as an 
infinite subseries. If this procedure never terminates (if the first case 

occurs at every step) then a = Pn v + Pn v _f Pn q_ 
132. From the relations 

tn = Pn +1 + Pn h2 + Pn + Z + * * * 
Pn + l — Pn+2 Pn + Z + *’* 

we gather pn = 2p thus pl=~} £>=-i . 

representation by infinite binary fractions is unique. 

132.1. [G. Polya, Problem: Amer. Math. Monthly Vol. 51, pp. 533— 

534 (1944). Solution Amer. Math. Monthly Vol. 53, pp. 279 — 282 (1946).] 
Define 

',i>n 2"’ 
The 

Then 

(*+±)(‘4) 

,. (2n + I ) 

2n 

(1+i9= R. 

2n 

A __ y 
00 n'z 2n 2 Rn 00 n2 2n 2 by II 202 

and so the product of the first m(p + q) factors of Pp q is 

R mp 

132.2. See 132.1. From log (1 + *) =* _il _ 
2 3 

log pt,q = st.„ + A 

• follows 

where the infinite series A is absolutely convergent and so its sum is 

independent of p and q (of the rearrangement of its terms). Another 
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proof can be derived from the expression of Euler’s constant given m 

the solution of I118. 

133. Insertion of appropriate vanishing terms into the two comple¬ 

mentary subseries reduces the proposition to the termwise addition of 

two convergent series. 

*134. We assume that all the terms of the divergent subseries 

ar -f ar +ars + ••• are non-negative. Then the complementary sub¬ 

series as + aSo + a$3 + • • • will be such that to each positive s there 

corresponds an integer N so that 

+ m +1 
+ < £ 

provided that n> m> N. After this remark the proof essentially 

coincides with the well known usual proof for Riemann’s theorem on 

the rearrangement of the terms of conditionally convergent series. 

[Knopp, pp. 318; cf. also W. Threlfall: Math. Z. Vol. 24, pp. 212-214 

(1926).] 

135. From fi1 ^ p2 ^ pz ^ 0 < m1 < m2 < mz < follows 

that 

ml ^ 1, m2 ^ 2, ms ^ 3, ..., mn ^ n, 

ft+fe-l-+ Pn = Pmx + Pm, + Pmz + ’** + Pmn' 
136. Determine the "red” subseries pfi + pu + prz + so that 

i>rn < min (2~K> Qn - Qn-l). * = 1, 2, 3, = 0. 

Then pr + pr% + * * * + Pr ^Qn> complete “red” subseries con¬ 

verges and Qn — (pfi + pti + + pff) increases beyond all bounds. 

The terms of the complementary subseries are successively accommodated 
n 

where the relations £ Pr < Qn permit it. This construction only shifts 
1 1 

the two complementary subseries relatively to each other. 

137. [W. Sierpinski: Bull. int. Acad. pol. Sci. Lett. Cracovie 1911, 

p. 149.] To obtain s' the divergence of the positive subseries is slowed 

down by the method used in 136. 

138. [E. Cesaro: Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. 

Natur Ser. 4, Vol. 4, 2nd Sem. p. 133 (1888); J. Bagnera: Darboux Bull. 

Ser. 2, Vol. 12, p. 227 (1888). Cf. also G. H. Hardy: Mess. Math. Ser. 2, 

Vol. 41, p. 17 (1911); H. Rademacher: Math. Z. Vol. 11, pp. 276—288 

(1921).] Put En = sx + e2 + ••• + en, E0 = 0. We have now 

SlPl “H £2^2 “1“ * ' + enPn ~ 2 (Ev * 

t=l 
-K-l)Pv = I EV{Pv-pv + l) 

v — 1 
+ EnPn 

’ «-I ‘ “ 

^p9 

the inequality 

are all positive 

lor r > m the 

140. The p 

non of the rea 

x — 

tecause r 
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-rnces 

-*Lers constant given m 

into the two comple- 

- termwise addition of 

—e divergent subseries 

- *-.v complementary sub- 

" - each positive e there 

< £ i 

: the proof essentially 

' Riemann's theorem on 

5'illy convergent series. 

Vol. 24, pp. 212—214 

y-2<mz<"' follows 

wn ^ n, 

~ ’ fi>nn * 

L — fir3 + ’ * * so that 

>: = 1,2, 3, ..., @0 = 0. 

- "red” subseries con- 

' - beyond all bounds, 

ressively accommodated 

construction only shifts 

each other. 

^:i. Lett. Cracovie 1911, 

-::ive subseries is slowed 

Rend. Cl. Sci. Fis. Mat. 

Bagnera: Darboux Bull, 

rdy: Mess. Math. Ser. 2, 

Z. Vol. 11, pp. 276—288 

W e have now 
-l 

- Ev[Pv~-pv +1) -\~EnPn- 

Suppose that En > <xn for n > N, oc > 0. Then we have 

£\Pi + e2p2 + * *' + £npn > 2Ev(pv — pv+1) + oc yj v(pv — pv+1) + ocnpn 
v~ 1 v=AT ~r 1 

= K + « fiy 
”=N+1 

where K is independent of n; therefore the right hand side tends to oo 
in contradiction to the hypothesis. 

139. [E. Lasker.] Set £„ = + e2 -|-(- e„ as in 138. The se- 
quence 

W E1,E2,E3,...,En>... 

has the property that between two terms with different signs there must 

be a vanishing term. We distinguish two cases: (1) Infinitely many 

terms of the sequence (£) vanish. (2) All but finitely many terms of the 

sequence (E) have the same sign. Suppose they are positive. In the first 

case choose the subscript M so that EM = 0 and that we have for 
M ^ m < n 

\„_t A\ =I X F* - E-] - (^-1 ~ £J] fi\ Jt’-w-l [ [v = m+l 

i n~1 | 
— | 2 (Ev — Em) {fiv — pr+1) + (En — Em) pn \ < s. 

i v=m -p i 

Let Em denote the last vanishing term ahead of En in the sequence (E) 

l‘e' E’"+i’ Em.r2> ■■■>En have the same sign. The inequality (*) implies 

' V Em) fin | = \Enfin | < e. In the second case choose M such that 
the inequality (*) holds for M Sj m < m and that EM, EM+1, EM 

are all positive. Let Em be their minimum. Since in this case £ — £ "]> o 

for v > m the estimate (*) yields (£„ - EJ fin < e, consequently “ 

Enfin < s + Emfin. 

Since m is fixed and fin converges to 0 we find for n sufficiently large 
^nPn < €‘ 

140. Ihe proposition is a consequence of the well-known representa- 
tion of the remainder 

/(*)-(/(»)+®*+ca«< + --+/Aa*- 

O<0<1, 

because ]) (6x) = 0M/(*+1,(0) with 0 < 0„ < 1. 

_/(M+1)(0*) +1 
(»+!)! 
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141. Consequence of 140. 

142. Integration of cos x ^ 1 (equality only for 

x = 0, i ± ± ...) implies for positive x 

x2 x* 
sin % < x; 1 — cos x < , i.e. cos x > 1 —■ •—, 

2 

x — sin x < —, i.e. sm x > x — , 

X& X^ AT1* 

+ cos # — 1 < —, i.e. cos % < 1 — yi + j\, etc. 

143. arctan # — 

144. Assume aQ > 0, hence ax < 0, a2 > az < 0, • • • Then 

A — «0 < 0, A — a0 — > 0, A — — a2 < 0, ..., i.e. 

ax< A — a0< 0, 

0 <d A aj > 

a3 < A — a0 — % — a2 < 0, ..., 

whence the proposition follows. The proof runs similarly if a0 < 0. 

145. Suppose e.g. that a0<^ A; then ax cannot be negative because 

in this case we would get A — (a0 + a±) = | A — (a0 + %) | ^ \ax\ > \a2\ 

in contradiction to the hypothesis. Hence ax > 0. Since 0 fg A — a0 < |aj| 

we have furthermore A — (a0 + a^) = A — a0 — ax < 0. By similar 

arguments we find a2 < 0 and a0 + ax + a2 < A, az > 0 and 

a0 _j_ Ul _|_ #2 -j_ a3 > A etc. In general, the terms of an enveloping 

series need not have alternating signs [148], yet the terms of,a strictly 

enveloping series must have alternating signs. 

146. If, in 145, we assume only \a1\ > \a2 \ > ••• > \an | we show 

in the same way that av a2, ..., an_x have alternating signs and that 

the first partial series (with subscripts 5^ n — 1, n — 2, 3, 4, ...) are 

strictly enveloping. For % sufficiently large and n fixed we have in the 

present case 

N > I—i >...> 

I* i*2i k. 
Thus the proposition is proved for the first n — 1 terms, consequently in 

general. 



r 

_ences 

ily for 

r;:ive x 

^">*-31 ’ 

:; .v < 1 _ £. . £. et 
2! ‘ 4!* 

2b + 1/ 

J’ cos 
r===- at. 

* . l - *2 

-z3 < 0, ... Then 

Ji ^2 < 0, .i.e. 

• similarly if a0 < 0. 

nnot be negative because 

- a0 -f ax) | \ax\ > \a2\ 

. SinceO-a0< 1^1 

Jo ~ < 0. By similar 

1 < A a3 > 0 and 

.erms of an enveloping 

-t the terms of a strictly 

2 > *” > \&n | we show 
cernating signs and that 

- 1, n = 2, 3, 4, ...) are 

- » fixed we have in the 

i terms, consequently in 
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147. The hypothesis implies that the derivatives /'">(<) are alternately 

ITZ r7XdeCTng and negative monotone increasins- Let 
WAV,A ’l 6 P°SltlVe and monotone decreasing, /'ft), 
/ (t), t (t), ... be negative and monotone increasing. 

Rn = / /(<) cos xtdt - / m +0)_ ... , 
0 \ *2 xl r \ 1) 

l,(0) 
2 n 

*2"+1 6 
f f(2n+1>(() sin xtdt 

= / D(2n+1)« - /(2n+1) (* + t)+/(2”+1) (* + ~) 

— ‘-'J sin xtdt. 

Obviously Rn has the same sign as (—l)n+1 Apply 144 

148. The sum of the first 2n ^ 2 terms is * 

A i <-Dn 
3 "r 3.2»-2 

The sum of the first 2^ — 1 terms is 

---<y 3 
3 • 2n~2 2n+1' 

A (-i)n+1 
3 3.2n+1’ 

—!— <_L_ 

3•2n+1 2n+1 

The signs of the terms do not alternate. 

149. The graph consists of line segments forming a kind of spiral 

Its shape justifies to some extent the expression “enveloping”. We have 

J _ 389 , 101 . 
~ 720 + 120* + 6■ |<5| < —< 2 • 10- 

[Graph or 151.] The result is accurate up to three decimals 

Weyl') 1 * *■ “ M*l > » The abso.,«, value o, «he 

m - (,<», +mz+m,, + ... =/<£^r«,w „ 
0 

is smaller than 
Id ,1 

|/(B + 1)^0) | f^dr = \f^0, 
J i(n + ljr 

b) Assume, more generally, that f(z) is enveloped by the series 

*° + + *■** + ••• for 2 on ©. Suppose now that 2 lies on £ |*| > 0 
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and that t is real and positive. Then tz~x lies on Therefore 

I ^(t) — a° < 
axt | _ 

thus the integral defining F(z) is convergent. Furthermore 

17/ \ 1 \ a l F{z)—ao--^ 
2! a, n \ a 

= fe~‘ 

= f e~ 
0 

a,t 
a* — — ■ 

a0t2 
dt 

n+1 
dt = 

(n + 1)! an+1 

151. [For e~z cf. E. Landau: Arch. Math. Phys. Ser. 3, Vol. 24, 

p. 104 (1915).] Cf. 150. (For = 0, z 0 the absolute values of the 

derivatives of e~z are constant, e~z however is not constant. Therefore 

the remarks of 150 are still valid.) (141.) 
z\ _/» 

152. e*Je - dt = — f e^e~‘dt. 
z Z C 

Since 91-^- ^ 0 we can apply 151 (141 resp.). 

153. \an + K \ = Kl + IM* Cf- definition. 
154. [Cauchy: C. R. Acad. Sci. (Paris) Ser. A—B, Vol. 17, pp. 370— 

376 (1843); cf. also E. T. Whittaker and G. N. Watson, p. 136, ex. 7.] 

2z2 
z coth z = l+£ 

z2 n2n2 
[151,153]. 

155. [Cf. Cauchy, l.c. 154.] Its Maclaurin series envelops arc tan £ 

for Sfte2 ^ 0, =f= 0. This has been proved in 143 for real z; we use the 

same formula for the complex 2 in question. 

156. It is sufficient to consider cp{x) — a0 + . We get 

(p{ 1) + <p{2) H-h <p(n) = a0n + ax log n + 0(1). 

157. A necessary condition for convergence is that lim cp{n) = a0 = 1. 

Apply 156 to the function 

a2 ~i a\ , ... 
log <p(x) = log (l +4+p- + •") =Y + 

158. The series in question is certainly convergent if (p (n) = 0 for a 

positive integer n. Therefore we assume that cp{n) 4= 0, n = 1, 2, 3,... 

160. 

161. 

:fx< 

**-H 

MU 

1*. :=\ 
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“ d. Therefore 

: Furthermore 

at 
dt < 

i* Phys. Ser. 3, Vol. 24, 

:he absolute values of the 

r not constant. Therefore 

' A-B, Vol. 17, pp. 370— 

; Watson, p. 136, ex. 7.] 

[151,153]. 

n series envelops arc tan 2 

143 for real 2; we use the 

— ~. We get 

h log n + 0{1) • 

■ that hm <p(n) =aQ = 1. 
M->oo 

_!_ 112 h , 

nvergent if <p(n) = 0 for a 

<p(n) 4= 0, n = 1, 2, 3,... 

We have [68] 
»,-:_ 

Hm K!95(i) 9,(2) 9,(3) ■■■<p{n)\ = |a0|. 

Hence the series converges for a0j -< 1 and diverges for \a0 \ > 1. 

Assume a0 = 1 and (for the sake of simplicity) cp(n) > 0, n — 1, 2, 3,... 
Then we get [157] 

\ogcp{l)(p{2) ■■■ (p{n)=ai\ogn+b + en, i.e. cp(l)<p(2) •■■(p(n) =eb+e»na', 

nil! £n ~ ^ is an w-free constant. Consequently we have convergence 

for ax < -1, divergence for ax [> -l.-If a0 = -1 we put 

cp{n) = -y\n), <p{ 1) 9,(2) ••• cp{n) = (-1)>(1) y)(2) ■■■y,(n). 

The remainder of the series Zn~2 is 0(«_1). Hence, cf. also solution I118, 

9,(1) y>(2) ••• ip(n) = ecn~a‘ + 0(»“',1_1), 

c is independent of n. Therefore this series converges if and only if 

^] (—1)' n a‘ converges, i.e. for ax > 0. Summing up: the given series 

converges if and only if at least one of the following conditions is satisfied: 

a) <p{n) = 0 for some positive integer n; b) |«01 < 1; c) a0 = 1, ax < -1; 
d) a0 = —1, ax > 0. 

159. Special case of 158: 

?>(*) = 2-/=l—2._£4 + ... 
x 21 x2 

convergent for oc 1, and oc = log 2' log 4, log 8, ... are 1. 

160. f^Tdx-zJLjshogiydx. 
o »=o o x XJ 

Substitute xn+1 ~ e~y. 

161. Set | 1 + ]/l -f-F ]/l = tn, then % = 1 + tn_x, tx = 1, 

tn-i < t„, n = 2, 3, 4, ... For positive * we have x2 < 1 + *.if and only 

if x < £(1 -j- J, 5), i.e. if % is smaller than the positive root of the equation 

x* ~x -1=°-Hence %=1+<-i <1+4~i < %< ' 

n — 2, 3, 4, ... and Jim tn = t exists, 0 < t J(1 + |/'5), t2 = l +t, 

i.e. t = £(1 + j/5). We proceed similarly in the case of the continued 
fraction where the recursion formula is 

n = 2, 3, 4 
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162. [G. Polya, Problem: Arch. Math. Phys. Ser. 3, Vol. 24, p. 84 

(1916). Solved by G. Szego: Arch. Math. Phys. Ser. 3, Vol. 25, pp. 88— 

89 (1917).] If (for the sake of simplicity for v ^ 1) log log av < v log 2, 

av < e2V, then tn < j/ e? + "J/e* + ••• + |/e2" < e 1 ^ [161 ]. If, however, 

/jo? log a 
an> ep , ft > 2, then tn > e'2' . — If ^ 1, then, of course, • ——- 

must be interpreted as — oo. 

163. We prove 

^n + l <C M 
2 ’*' ^«an + 1 

by complete induction. Suppose that the corresponding relation is proved 

for the n quantities ai)} a3, ..., an+1, i.e. that 

y a2 + ] a3 + * * ■ + ~]j an + V an- < t + S, 

where 

~ja'2 4" "j/^3 + ' ’ * + \ an - ^ 

*n-fl 
= S. 

Hence 

2n 1Va2a3---an^ 

<*1+t+s< (Va, + t + < {tn + ^)2 

164. [Jacobi, l.c. 53, § 52, Corollarium: Werke, Vol. 1, pp. 200—201.] 

Write 1 — q = a0, 1 + qm = am, m= 1, 2, 4, 8, 16, ..., then the n -f- 1-th 

partial product is 

iii _L 
4~ [a0a\a2a±Y% /a0ala2 ,,,«2n-l\2w 

l a8 / \ a2n ) 

(ala2a4aS •••a2n)2_W 

The product ^1a2a4a8 ... converges. Cf. also VIII 78. 

165. Calling the sum in question F(x) we find 

F'(x) = F(x), F(x) = const.- ex. 

166. cp'{x) = <p(x), <p{ 0) = 1, cp{x) = ^ = l+ ^- + |yH-+ 4- 

Aip(x) =y>(x),y>( 0) = 1, y>(x) =2I=1+(i)+(T-K») + "’ 



?~ys. Ser. 3, Vol. 24, p. 84 

' Ser. 3, Vol. 25, pp. 88— 

; ^ 1) log log av < v log 2, 
i i ]fk 

If, however, 

log log CL 
'hen, of course,- 

i^n-l 

spending relation is proved 

- -1 < * + 5 > 

n +1 

■ ' 32°3 *** an+l 

4+*)* 
rke, Vol. 1, pp. 200 — 201.] 

16, ..., then the n -f 1-th 

J0ala2 ** * a2w“l\ 2n 

u2n 

[II 78. 
ind 

>nst.* g*. 

n+ lr + ‘" +4 + • 

+ (*) + '"+(») + 
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for x > —1. We have 

?.(*) =£■ y(») = Q =—■x) (* ~ 2!r~ ”+1} 

215 

1,2,3, ... 

167. 

, *n -I 
log -— = log 

*+1 y»+i i2n(n 

1 -J- X f X *3 

hnj • log>“ = (» + 4) l°s i1 + 4) - != 

. 1 -J- X ~ ( X , X3 t X5 \ . _ 
lo8r- * =2 (t + T + T + " j yields for x 

' 2n + 1 ’ 

1 < (n + log (1 + —^ = 1 -|---!---u • • • 
\ 2/ 6 \ ' w / 3(2n + l)2 1 5(2?* + l)4 ^ 

< 1 — —-1--— — 1 ' 1_ 
3[(2n -p l)2 — 1] 12n(n + 1)5 

therefore xn < xn+1, yn > yn+1. Part of 155 resp. II 205. On the other 

hand, 167 together with II 202 implies II 205 for integral n. 

168. [I. Schur.] The fact that an is decreasing for p J is obvious 

from the expansion 

log“- =^tt(1 +«(2»1+i)i + 65rriF+"■) 

[solution 167], This leads to 

1 + 
3 (2m + 1)2 + 5(2 n + l)4 1 

thus 
^ -1 ~ ++ 0 (4) • 

log a»+1 - log an Ol 
(n 4. 1) (n + |) 

hence an increases for n larger than a certain subscript N if ft < J. If 

P =! 0 this is true already for n^. 1 as can easily be verified by expanding 

^1 + —^ with help of the binomial formula. 

169. We write an = 1 + 2 ~ n ; the first factor decreases 

[168]; the square of the second factor is 1 + ——- -]-—— 

condition x ^ J is therefore sufficient. Now expand 

log an = 2n (—-1-1---1---- _j_\ 
6 n \2« + 1 1 3(2?* + l)3 r 5(2n + l)5 1 ) 

_L 9 f * _ J_ / X \3 ( / X \5 n 

‘ ^ l_2?* + x ‘ 3 + x) ~r 5 \2w -f ‘ J 

fyvt. *>¥ 1 / 1 \ 

. The 

2n + 1 1 2n + x ^ 12w2 
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Since log an — log an+1 = —4--2--2 + 0 (-t) the condition x ^ y is also 

necessary. 

170. [Cf. problem No. 1098, Nouv. Annls Math. Ser. 2, Vol. 11, p. 480 

(1872). Solved by C. Moreau; Nouv. Annls Math. Ser. 2, Vol. 13, p. 61 

(1874).] The first inequality means 

{1+i)n 1 <e(1+i) 
and this is a consequence of the following inequality 

f(x) = X + xlog(l +y) -(!+*) log (1 +*) >°> °< 

' * x A 1 + X _ 
f(x) = ~ lo?-7 >; 

1 + T 

1 + at 

i+T 

+ 1 = 0, /(0) = 0. 

The second inequality is equivalent to 

•<(* +v)"(’ + ~t) t»]. 
171. [I. Schur.] The number e lies in the second quarter of the interval 

because 

The first inequahty follows from 170 because 

1+jr<(1+v)(1 + ir1’ 
the second inequality is contained in 169. 

172. [I. Schur.] We infer that an is decreasing for 0 < * ^ 2 from 

the equation 

1 4- 

log «„ = (« + 1) log--_r+ * = (2n + 2) 2 2^7 (2» V*)" 

oo 2v — 1 

= 2: 

2 n 

1 

V — 1 

Furthermore 

2v - 1 (2 n + x)' 

00 r2*-l 

oVZo + (2 — x) * 2 2v - 1 (2 n + *) 

log an =x + '- — 
1 X(2 - x) +0(i): 3 (2n + x)2 ‘ 2n + x 

an — l°§an+i = (2n _i- x) (2n + * + 2) ® in*) ’ 

i.e. log an — log an+1 < 0 for n sufficiently large, if x < 0 or x > 2. 

For x = 0 we have an = 1, n = 1, 2, 3, ... 
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173. [Proof based on a communication of E. Jacobsthal.] Cf. 174 for 
lim sinM x. We have 

x-li<sinx<x-T+m> x>0 [142]. 

From the binomial expansion we derive that 

_£_W g \3 c c 1 / c \3 1 / c \5 o 

(/« 6 Vi/«/ YZ+T0Tv^~^\V7) <yrTT 
for constant c and sufficiently large n, n N(c), according as c <C J/ 3 

or c > 3. Let c < |/ 3 and « > 0, a fixed and such that sinv x > c 
_ ‘ 
then 

c \ ( c y 
vr + a 6 \l 'Ar + <x / 

> 
KiV + a + 1 

thus sin„% > - ,n7zN. Consequently for all c < ]/ 3, lim inf 1/ « sin r>c 
[/* + « n—x» ' n = 

i.e. |/3. If c > ]/ 3 choose w so large that sinm * < — = In a similar 
■ /n+ r 

X< way as in the first case we conclude sin , x < =— sin <r _ 
etc. ”+1 J^+i’ "+2 Ws ’ 

174. The sequence v„ is decreasing, vn > 0, therefore lim v„=v 

exists; v = f{v) implies v = 0. Consequently it is sufficient to prove the 

proposition for small *. Let V be fixed, b' > b. For sufficiently small * 
we have 

x ~ axk < f(x) <x — axk + b'x1 

and when n is sufficiently large, n > N(c), 

/ x \2r-i cn k 1 — a(cn k 
\2n + x) or 

cn k 1 — a \cn 

> c(n + 1) 

i V 

l 
k~i 

< c{n + 1) 
1 

'*-1 

c<[{k- l)af 
-q 

,i*-l or c > [(A — l)a]* 

Cf. 173. The assumption on the sign of b is not essential. 

175. [J. Ouspensky, Problem: Arch. Math. Phys. Ser. 3, Vol. 20, 

p. 83 (1913).] Convergence for s > 2, divergence for s ^ 2 [173]. 
176. [Cf. E. Cesaro, Problem: Nouv. Annls Math. Ser. 3, Vol. 7, p. 400 

(1888). Solved by Audibert: Nouv. Annls Math. Ser. 3, Vol. 11, p. 35* 
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(1892).] The inequalities 

x > log — J-1 > 0, x>0; x < log - ~ 1 < 0, x<0 

imply that the sequence un is steadily decreasing in the first case, un > 0, 

and increasing in the second case, un < 0. We have lim un = u = 0 

because 

eu — i 

u log —-— for w Jg 0. 

The recursion formula en — 1 = unenJrl, n = 1, 2, 3, ... yields 

= 1 + Wj + u±u2 + • • * + • • • «n_1 + %%‘' ’ ^n0*n+1 

and lim • • • unenJrl = 0. 
H—>oo 

177. [C. A. Laisant, Problem: Nouv. Annls Math. Ser. 2, Vol. 9, 

p. 144 (1870). Solved by H. Rumpen: Nouv. Annls Math. Ser. 2, Vol. 11, 
3 

p. 232 (1872).] s = — cos q>. Notice that 4 cos3 <p = 3 cos cp + cos 3cp. 

178. [I. Schur, Problem: Arch. Math. Phys. Ser. 3, Vol. 27, p. 162 

(1918). Cf. O. Szasz: Sber. Berlin Math. Ges. Vol. 21, pp. 25—29 (1922).] 

If e > 0 is so small that \q\ -\- e < r then there exists a constant A 

independent of n and v such that 

< A (l?l+ e)”> v = 0. 1,n; n= 0,1,2,... 

For n > m we obtain 

m (b \ n b n 
T - m = 2X(g--f) + I av-^- Z ay 

n v = 0 \ n ) v = m + l °n v = m +1 

The sum of the last two terms is absolutely smaller than 

A i H(ki+*r+ i Kii?r. 
v=tn +1 v=m+l 

i.e. arbitrarily small with m 1. Choose m so large that these two terms 

are smaller than e. For fixed m choose n so that the first term becomes 
absolutely smaller than e. 

179. [Special case of an important proposition in function theory by 

Vitali. Cf. E. Lindelof: Bull. Soc. Math. France Vol. 41, p. 171 (1913).] 

We show only that lim anl = 0. (Then form *_1/M(*) — anl> etc.) Assume 

e > 0 and x so small that 0 < A < e. Then we have 1 — X 
X 

1 - * 

r rr nxec x c 

180. We) 

gent. Moreo* 

than e. Havi 

181. a Si 

Apply 180 

b Let v < 

( 

Apply 180 

181.1. V. 'e 

is aosohiteiV c 

[tins = d 
series * Tbe 

anl | < x 1 | fn(X) | + A < x 1 |/„(*) | +e. 
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<0, x < 0 

^5 in the first case, un > 0, 

'• e have lim un = u = 0 
»—> oo 

i$0. 

- 2, 3,... yields 

■ - u1u2---uneUn+1 

mis Math. Ser. 2, Vol. 9, 

‘-'Jils Math. Ser. 2, Vol. 11, 

- = 3 cos <p -(- cos 3cp. 

- Ser. 3, Vol. 27, p. 162 

- 21, pp. 25—29 (1922).] 

s-re exists a constant d 

1 •••>«; « = o, l, 2,... 

nailer than 

;?r. 
arge that these two terms 

-- first term becomes 

ion in function theory by 

e Vol. 41, p. 171 (1913).] 

rn(x) — &nl, etc.) Assume 

cn we have 

For fixed x choose n so large that | fn (.x) | < ex. 

180. We have |ak | ^ Ak> k = 0,1, 2,.... therefore jj ak is conver- 
gent. Moreover a=o 

k - sl ^ ko - ao\ + ki - «i| + ••• +1 | + 2 
k = m +1 

Assume « > 0. Choose m large enough to render the last term smaller 

than e. Having fixed m we select n so large that la „ - aj < - \ nk k I ^ w j > 
k — 0, 1, ..., m. Then we get 

K — s| < 2e. 
oo 

181. a) Since the infinite product [J (1 - qik) converges for |9I < 1 
k=l 

all its partial products he between two positive numbers a and b, a < b. 
Therefore Cv as defined in 52 is bounded: 

\CV \ < ba 2 qv\ 

Apply 180. 

b) Let y <C 0 in 59, i.e. q >► 1. Then we have 

_i*_ 

1 + ? + ?2 + ••• + ?4_i 

furthermore (l - ^yn+' > **, v = 0,1, 2.thus 

< (1 — ey)k. 

Apply 180. 

181.1. We derive from the definition of U- that 

and then from our assumption concerning £ Ui that 

5i ~F s2 “F 53 + *** + si -{-•••=: S 

is absolutely convergent. Define, for m = 0, 1, 2, ..., 

7i,m = + ^-,w+2 + *”> 

(thus ri0 = s,.) and define S* as the sum of the first M terms of the 

series (*). These definitions are illustrated by the relation 
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Generally, for arbitrary M, 

where mi depends on M and as M —>oo 

mx -» oo, ri m. 0 

for any fixed i. Observe that 

There follows, by virtue of 180, that 

s-s* ->0. 

(The foregoing argument, without essential modification, shows that 

various "geometrically defined" rearrangements of the terms of the 

series (*) leave its convergence and its sum unchanged- square, rectangle, 

quarter of a circle instead of a triangle.) 

182. We are dealing with the limit of the series 

f' *‘~h» + kr1 K* + - n*r2 = r i<p (4) 
k=l-n k=l-n 

f0rw-»oo; the term with subscript k = 0 must be omitted. The function 

rp(x) is defined by 

<p(x) is continuous for — 1 < * < oo if we set <p(0) = «~2; <p(x) = 1 if 

ix = 1; otherwise (fix) ~ xl~“ for x —> oo, cp(x) >—> (1 + x)' 1 for x -*■ —1. 

If a = 1 the value of the limit follows immediately from 

If K 4= 1 the general term tends, for k fixed and n -> oo, to k fy(0). 

If a > 1 <p[x) is bounded for —l<x < oo. If the maximum of 

q>(x) is denoted by M the series has as a majorant the series E'Mk~2 for 

n = 1, 2, 3, ... [180.] 
If 0 < <x < 1 there exists a positive number M such that 

<p{x) < M for 

<p(x)^M(l+X)*-1 for -lcx^-y, 

<p(x) < M#1-* for x^ 2. 
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modification, shows that 

:ents of the terms of the 

:hanged- square, rectangle. 

series 

, i 

' = f F? & = 1 — n 

st be omitted. 

(4) 
The function 

<rt <p(0) = or2] (p{x) = 1 if 

— (1 -h *)*-1 forx-> —1. 

lately from 

_ TC2 
~~6' 

md n -> oo, to k~2(p(0). 

: 20. If the maximum of 

rant the series H'Mk~2 for 

r M such that 

Consequently 

> ^ Mk1 * for n = 1, 2, 3, , k = 2n, 2n + 1, .. 

Hence the remaining part of the series (from —\n to oo) hasE'M \ k\~1~‘x 

as a majorant. [180.] 

183. We have 

Y 2 + | 2 + ]/2 + • • • + ]/2 < ]/2 + 1/2 +)/2 + •• • = 2, 

therefore 

= £o I ^ + 611/ 2 -j- e21/2 + * ’ * + en ]/ 2 

always makes sense. To prove 

2V 

use mathematical induction. We have 

sgn an = sgn 2 sin I ~ 21 — 

and for £0 =)= 0 

<*«- 2 = «1}//2+£2]/2 +••• + £M }/ 2, 

4 sin2 (2 
2” 

2= -2cos(f 2’—— 
2 ,=o 2” 

= — 2 cos 1 v 
2" ^ ' 

v = l 2V 

= 2 sin 

Take the limit n -> 00. 

184. [Cf. S. Pincherle: Atti Accad. Sci. Torino, Cl. Sci. Fis. Mat. 

Natur. Vol.53, pp. 745-763 (1917-1918); Atti Accad. Naz. Lincei 

Rend. Cl. Sci. Fis. Mat. Natur. Ser. 5, Vol. 27, 2nd Sem. pp. 177—183 

(1918).] Put x ~2 cos cp, 0 ^ y n. Then the binary expansion is 
unique 

2 <p Si , £2 S, 
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P 
except in the case of cp n> P> integers, 0 < ft < 2?. In this case 

there are two representations possible. The equation 

2 COS (p — £g J/ 2 + "j/ 2 -f- £2 V 2 “1“ ' ’ * 

is [183] equivalent to 

O . JT /0 0 . JT / ^ Vl *"en 
4 v 4 \»r0 2w 

or, because both arguments are in the interval ^ — equivalent to 

1 eo£i 

2-^=2:- 
n n=0 

¥=2- 
« = 0 

therefore 

£« 
1 ~ 

2 
« = 0, 1, 2,..., 

provided that the above mentioned exception is excluded. These equa¬ 

tions determine the sn from the gn uniquely (and vice versa). In the 

exceptional case cp = -^n, ft, q integers, 0 < ft < 2q, q^> 2, there are 

two representations of ^ possible: 

2 (p 

71 So + V 
+ ^+_L_ 

' ~n~- ^2«-l 2!_ -+— + 
2q ' 2q+1 

= H—-—\~— H—1 + •••. 
&0 n- 2 ^ ^ 2<7—2 ^ 2?—1 ^ g* ' 2?+1 ' 

In this case £0, ev ..., £?_2 are, as before, uniquely determined, sq = — 1, 

£ +1 = £^+2 = ••• = 1, sq_x may be chosen —1 or +1. We have there¬ 

fore 

x = 2 cos cp =e0 ]/ 2 + j/2 + £2 + ••• + £q_2 V 2 . 

According to 183 any number written in the above w~ay has to be of the 

type 2 cos-^ n, ft, q integers, 0 < ft < 2?. If q = 1 we have to modify 

slightly: the numbers g0, ..., g?_2, £0, • • • » £?-2 do not 

x = 0. 

185. The sequence gn is periodic beyond a certain term if and on’;' 

if this is true of the sequence sn. 
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2" 

n = 0,1, 2,..., 

:s excluded. These equa- 

and vice versa). In the 

P < %q> <1 2^ 2, there are 

:~-_v determined, e = —lf 

- °r +1. We have there- 

+ Sq—2 V 2 . 

>ove way has to be of the 

= 1 we have to modify 

do not exist, w =^L 
Y 2 * 

185.1. [For precursory heuristic considerations see MD, Vol. 2, 

pp. 49-50 and 171.] We seek a solution of the system of 2 equations 

w -f- 2v -f“ 3^ = 0 

ia -f“ -j- 27w = 0 

with integral values for the three unknowns. We find 

u — 5, v = —4, w = 1. 
We note that 

u + S2v + 243^ = 120. 

We define, for m = 1, 2, 3, ..., 

ai0m -9 aiQm-8 ~ ai0m~7 ~ aiQm-6 = a\0m-5 = ni~1/5 

and so the series considered converges to 0 conditionally for / = 1 and 

l = 3, and diverges to + oo for / = 5. It is absolutely convergent for 

185.2. [G. Polya, Problem: Amer. Math. Monthly Vol. 51, p.593 

(1944). Solved by N. J. Fine: Amer. Math. Monthly Vol. 53, pp. 283- 

284 (1946).] (1) The case where D consists of just one odd number can be 

settled by an easily visible extension of solution 185.1. (Why is 

u + ?j2v + 243to + 0? Give a reason avoiding numerical computation.) 

(2) If D consists of a finite number, say h, of different odd numbers, 
construct by (1) the corresponding sequences 

each of which yields a divergent series just for one required exponent 

2" 

n = 0, 1, 2, ..., 

:s excluded. These equa- 

and vice versa). In the 

P < %q> <1 2^ 2, there are 

1 —y determined, eq = —lf 

- °r +1. We have there- 

+ Sq—2 V 2 . 

>ove way has to be of the 

= 1 we have to modify 

do not exist, w =^L 
Y 2 ’ 

certain term if and only 
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and form the sequence 

#11 > #21 > * * * > ^hi* ^12 > • • * * ^h2> ^13* * * ‘ 

which has the desired property. 
(3) If D has an infinity of members use the construction (1) infinitely 

often and form the desired sequence “diagonally" as suggested by 

181.1. You can fulfill the condition on EUnby considering, if necessary, 

instead of the sequence 

#i'l> ^i2> * * * ’ ^in> * * * 

obtained at first by the construction (1) the sequence 

Mi> M:2> ••• 

where the positive numbers plt p2, pz.decrease sufficiently rapidly. 

*186. List concretely the different possibilities for small n, use 187 

for all 3. 

n\k 1 2 3 4 5 6 7 8 

1 1 

2 1 1 

3 l 3 1 

4 l 7 6 1 

5 l 15 25 10 1 

6 1 31 90 65 15 1 

7 1 63 301 350 140 21 1 

8 1 127 966 1701 1050 266 28 1 

*187. You belong to a set of n + 1 persons. In a partition of this 

set into k subsets you may stand alone and form a subset by yourself; 

-- ^ ^ j 
already formed by the others; there are kS£ partitions of this latter kind. 

*188. We set, without contradicting our original definition, 

S\ = 0 if 0<Ln<k 

and let E stand for Y . By 187 
n=0 

cn + l 

(z-k) = Z 
s£+1 - kSnk _ v S"_J 

„n+1 n+1 

and this proves our assertion for k if it was assumed for k — 1. The case 

k = 1 is easy. 
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■«1* — 

ronstruction (1) infinitely 

anally” as suggested by 

:: nsidering, if necessary, 

jqnence 

’-i'r sufficiently rapidly, 

for small n, use 187 

7 8 

L 1 
28 1 

r. a partition of this 

- subset by yourself; 

one of the k subsets 

~s of this latter kind, 

pr il definition, 

— -i-i 

iei :or k — 1. The case 

*189. The right-hand side in 188, decomposed into partial fractions, 
equals 

_£_. (-i)*"1 i . (-i)* 
k\ z - k 1\(k ~ 1)\ z - k + 1 1 1 (A — 1)! 11 jr — 1 ‘ k\z * 

Expand in powers of z_1 and consider the coefficient of z~n~l. For a 

combinatorial proof see VIII 22.1. 
*190. From 189, since 

(*2 - 1)* = <*-({ ) e*~V‘ + ( J ) - • • • + (-1)* 

= f [*• - (I) (* - 1)- + ( * ) (* - 2)” - • • • + (-1)* o«] L. 

*191. Using the notation explained in the introduction to III 220, 
we can present 189 in the form 

c« _ ^ 

**--*T' 

Apply III 220 (1) to F(z) = zn, see III 221; observe that Akzn = 0 for 

k > n (for z = 0 this follows from our argument). 

*192. We have to paint n distinct objects (n houses of a settlement, 

n faces of a polyhedron) with x different colors, by using just one color 

for each object. There are obviously xn different possibilities. If exactly 

k among the x colors are used, the objects of the same color form a subset, 

and the k subsets so formed constitute a partition of the total set of n 

objects. Hence the number of ways of using just k different colors among 

the eligible x is 

Snkx(x~ 1) (*-2) — (*-£ + l). 

As k can be 1, 2, 3, ..., or n, this proves the assertion for any positive 

integer %, and hence for indeterminate x. In using the same facts as in 

solution 191, but in the reverse order, we end up by proving 189. 
*193. Use the definition of Tn at the beginning and 190 at the end: 

Tzn 
l + Z S' 

n=1k=l 

CO oo 

-1 + 2-2-^=!:' 
& = 1n — k A=0 

*194. You belong to a set of n + 1 persons and, in a partition of this 

set, to a subset of k + 1 persons. This can happen in Tn_k different 

ways. In fact, the other people in your subset may be chosen in ^ j 

different ways [10] and, once they are chosen, the people remaining 
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outside your subset can be partitioned in Tn _k ways. Now, k = 0,1,2,..., n 

exhaust all possibilities. 

*195. Set 
OO T Jt 
V n" 

Znn) =y- 
«=o 

Then, by 34, the relation 194 is equivalent to 

dy 5 dy z , 
■j- — ey or — = e dz. 
dz y y 

Integrate this differential equation and use the initial condition 

y = T0 = 1 for z = 0. 

*196. After differentiating n times 

set z — 0 [193L The result can be used to prove 45. 

*197. List concretely the different possibilities for small n, use 198 

for all n 3. 

n\k 1 2 3 4 5 6 7 8 

1 l 

2 l 1 

3 2 3 1 

4 6 11 6 1 

5 24 50 35 10 1 
6 120 274 225 85 15 1 
7 720 1764 1624 735 175 21 1 
8 5040 13068 13132 6769 1960 322 28 1 

*198. In a permutation of n + 1 objects which is a product of k 

distinct cycles a given object may form a cycle by itself; there are 

such permutations. Or the given object may enter at some place a cycle 

already formed by the n other objects; there are nsnk permutations of 

this latter kind. 

*199. Set s” = snk == 0 if 1 ^ n < k. By 198 

(x + n) f snkxk = V1 + nsnk) J = £ st~'xk. 
k=i k=i k=i 

Use mathematical induction. 
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ays. Now,& = 0,1,2,... ,i *200. 

(i _ t)~x = *(* + *)(* +2) •••(* + ^ — i) y 

22. 

initial condition 

°° n <nYktn 
= 1 + 2’ I-V 

» = U=1 • 

M y- "V = i + 2d 
£ = 1 n=k 

= e —xlog(l— /) 

45. 

for small n, use 198 

We have first used the binomial expansion, then 199. Consider the coef- 
ficient of xk. 

*201. List concretely the different possibilities for small n use 202 
for all n > 4. 

7 8 

: nich is a product of k 

by itself; there are s£_1 

er at some place a cycle 

~e ns” permutations of 

n\k 1 2 3 4 

1 0 
2 1 0 
3 1 0 
4 1 3 0 
5 1 10 0 
6 1 25 15 0 
7 1 56 105 0 
8 1 119 490 105 

*202. \ ou belong to a set of n + 1 persons. In a partition of this set 

into k subsets of the desired kind you may be paired with another person 

to form a subset of 2; there are «S”:J partitions of this kind. Or you may 

belong to a subset of more than 2 persons; there are kS’‘ partitions of 
this kind. 

*203. By mathematical induction on the basis of 202, or by combina- 
torial considerations: 

Sn2 = S” - n = 
2n 

— n. 

For S'ln see MPR, Vol. 1, p. 118, ex. 11. 
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*204. In a partition enumerated by S”_a there may be 

n — a — 1, n — a — 2, ..., n — 2a + 1 or n — 2a 

subsets containing just one element each. Therefore 

Use numerical data from 201 for a = 1, 2, 3. 

*205. 

n 0 1 2 3 4 5 6 7 8 

Tn 1 1 2 5 15 52 203 877 4140 

Fn 1 0 1 1 4 11 41 162 715 

*206. Follow the line of solution 194; observe that T0 = 1, T x = 0. 

*207. By following the line of solution 195 you arrive at the differen¬ 

tial equation 

*208. From 193 and 207 

[34]. 

*209. Obvious for n — 1. Use 187 and mathematical induction. 

*210. (1) immediate consequence of 10. 
(2) from 190. Or take F(t) = and compute the n-th derivative 

of F(ex) at the point x = 0 by using 209. 
(3) See solution 200. A proof independent of 186—209 is based on 

a fact quoted in solution VII 46: 

2 2 2- 
*x=0 kz=0 *3=0 

*,+2*8+3A, + - *,+**+*>+- 

e-wlog{l-z). 

rtsce rtr* * 

Foe a 

oooduda 

191-2. 

We can give an analogous proof for (2) by using the well known fact 

that the number of partitions of a set containing n elements into kx 

subsets each containing 1 element, k2 subsets each containg 2 elements. 



Pt. I, Solutions 204 —210 229 

fc*:-tnces 

' -re may be 

it — 1 or n — 2a 

bereiore 

7 8 

877 4140 

162 715 

~ that T0 = 1, = 0. 

6 : arrive at the differen- 

[34], 

L'.r.rmatical induction, 

rr.pute the n-th derivative 

of 186—209 is based on 

.. *1 ~&2 + &.1 + ”• 

1 

3 

'.ng the well known fact 

iming n elements into \ 

each containg 2 elements, 

kz subsets each containing 3 elements, etc. is 

n! 

V (1 !)*1 • A2! (2!)*2 • £3! (3!)*3 ... 

where, of course, 

l&i -f- 2k2 -j- Skz -f- • • • = n. 

To rework 186-210 starting from 210 is left to the reader as a 

research project. Just one hint: If we let / denote one of the expressions 
(1), (2) and (3), then 

which involves 

CtO-c:.)-(;)• 

s/ , , 0/ 0/ Yz-wf=f, W-, z-L 

sr1 - s\_x = ks;, 
°k-l = ns1 

respectively. 

For additional material on the subject treated in the section just 

concluded see V 62.1, VII 54.2, VIII 22.1, 22.2, 22.3, 58.3, 247.1, All91.1, 
191.2. 



Part Two 

Integration 

1. 

2, 

3. 

1■ 
r ^ ~'~1 

< 

x'+1 - x'+1 

(r + 1K-1< ; _,-<(>■ +IK- 

21 A«a+(,_1)*, Zhea+vH, 
V = 1 V=1 

where h = xv — xv_1 = 
b — a 

1 — enh eb — ea » 

lim hea--r = lim h —r-— - 
n->oo j _ g'1 n->oo en — 1 

eb -ea 

because 

lim —jr— = VJ-] =1* h-+o h \dxjx=o 

n v — 1 , , v 

a<i (g ~ *) 
V = 1 

T 
with q = —-— = 1 —. We have [31 

*r-l * * 

f/H-i 

logfc — loga 

lim n 

n v — 1 . 
^ a(l (ff ~ 1) 
jL V_1 

V=l aq 

lim 
1 

log h — log a 
(log b — log a) = 
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*5.S«tl+l + A+...+i=*-.Then 

: -—-1-5-L . . . J_L. 
n+1 ‘ n+2 ‘ ' n+n 

2 ' 3 

L = ± y_L_ . = _L_ 

»-l X 

= Hm -Hn= H2n - 2(iH„) 

-‘+T+T + 4 + -+eW 

_2_ 

2n 

Moreover 

6. 

= i_i+i_j. ,..., _j_i 
2 3 4 1 ' 2n — 1 212 

^-| + ^Tl + -+^i-r 

= z'n +ir~2^==z'» +2^- 

lim - ( —n_+± , 
n->oo n -f- 1 \ 

71 • 0 n sin 2 - 
n + 1 

n + 1 w -j- 1 

_j_n + 1 | _ JSm 
0 * 

71 l- 
n + 1 

7. The mean value theorem implies 

F[b) — F(«) = V [-?■'(*„) — 

n 

= 21 /(f,) (*, - *,_x) , <£,< 
r=l 

^ et, according to the definitions we use /tere, 

F(b)-F(a)= j f{x)dx 
a 

need not be true. [Cf. V. Volterra: Giorn. Mat. Battaglii 
p. 335 (1881).] 

8- Let ——— ^ f < —. Then M 12 

j-si /[«-'(v)]^s-^)+ f 
»-i p=*+i 

dx > 0. 

(VI 25.) 

Vol. 19, 
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and 

s /[/(£)-a*)]dx^ 
v~lv-l 

'(4)— 

■ *v. 
^ « w 
V=1 

9. [Cf. G. Polya: Arch. Math. Phys. Ser. 3, Vol. 26, p. 198 (1917).] 

The least upper bound of the expression 

|A*i) - /(*o) I + I/(*z) - /(*i) I + - + IA*«) - A*—l) I 
for all possible subdivisions of the interval [a, b] is cahed the total 

variation of the function /(*) on [a, b] (same notation as on p. 46). 

Functions of finite total variation are also called functions of “bounded 

variation". 
i i- 

14.1 ^/ [i 
0 L"'1 J 0 

10. 
b — a 

a+v- 

-/i.= i /" (“+'!V-')/'(«*• 
V==1 , , 6-fl 

where a + (v — 1) b -- < tv < a + v n > t^LUS 

I ,1, S -4. S | C-^)’ 2 «.: 

Af, and m„ denote the least upper and the greatest lower bound of f'{x) 

in the v-th subinterval. We obtain 

b - a 
lim n An = 

11. 
Hm n- An 

»-=*• OO 

2 

(6 - «)2 r*' 
24 

[/(«)-/(*)]. 

[/'(&) -/m 

because 

X 

/(*) -/(« + (2» - 1) “sr) -(«-•- (2» - 1) 

r (. + <*-« ^)+t (* — <2v -1) r<« ■ 

• —-- 

i - r — 

12. We 

^■nctjon 

— 1 fci 

13. In 

14. 
Ser. 

■ 

Zx - 
= — ** 



■m- m 

3, Vol. 26, p. 198 (1917).] 

L \a, b] is called the total 

aie notation as on p. 46). 

Llled functions of *'bounded 

dx< j Vdx. 

0 

- x) /'(£,) dx> 

thus 

V = ] 

latest lower bound of f'(x) 

-«»)]■ 

-/'Mi. 

■-<2— 
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The intergal of the linear term over the interval 

|~a + (v — 1) ~ na, a + v b — a j vanishes. Cf. 10. 

12. We have [11] 

b—a 

233 

a-f 
2«-f-l 

K= f [/(*) -M\dx 

a + (2v+l) 
b—a 

+ „| / 
b—a 

2v 
b — a 

2n + i)] dx 

a+( 2v-l) 
2n-l 

= f (x — «) /'(f0) 
a 

b — a 
a + (2v + l) 

n 2» + l 

+ T / (x~a~2v /"&) • 
6 — a 

a-f (2v—1) 
2n-f ] 

The hmit in question is 

(6 - a)* 

24 
[/» +2/»]. 

In the case of /'(a) = 0 this result is a consequence of 11: extend the 

function f(x) considered in 11 to the left of a by reflection and substitute 
2w + 1 for n. 

13. In 10 and 11 set f{x) = a=0,b = l. Cf. also 5. 
14. [For more details cf. G. N. Watson: Lond. Edin. Dubl. Phil. 

Mag. Ser. 3, Vol. 31, pp. 111-118 (1916).] 

»-1 

- . vn 
*-l sin — 

\ n n n ) 

| [log. + c+o(i)] + . [ / (-L- - J- - „+o (i) 

= ^-(log« +C) -|-log^ + 0(!), 

with the help of 9. 
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15. [E. Cesaro, Problem: Nouv. Annls Math. Ser. 3, Vol. 17, p. 112 

(1888). Solved by G. Polya: Nouv. Annls Math. Ser. 4, Vol. 11, pp. 373— 

381 (1911).] Put f(x) = * log xt a = 0, b = 1 in 10. Although the hypo¬ 

thesis of 10 is not completely satisfied the conclusion of 10 remains 

valid. 

16. Write P(x) =± + Z ~r~v> P = l1 ~ 0-1- The equation 
V — 1 

P(x) = tx has degree n + 1 and possesses one root in each of the intervals 

(0, 1), (1, 2), (2, 3),1,«), (»,oo). The largest root is xn. In 12 

put f(x) =p 1 a — 0, b = 1. We find 

1 

jp^rx = * = p(x«) = pi(n + i)P) + 4' > °- 
0 

Since P{x) is decreasing for * > n we have xn < [n + ^) /?. The mean 

value theorem implies 

d;; K 
o < (w + i)P — x„ = — p,,|} < — + P) > x„<i<(n+1) p. 

The quotient on the right hand side converges to 0 121 because 

i 

1 P'{(n +i) Pi^ — J (ff_ ■ 

17. The equation <x = J ^y2dx leads to Pro0^ 

6 
is similar to the one given in 16. 

18. [J. Franel. Related to Euler’s summation formula, cf. Knopp, 
X 

p. 523. We write F[x) = J /(f) Summation of the equations 
i 

F(v + £) - F(r) = J/W + if'd), y<l<v + l<r)„<v + l; 

-F(v + i) + F(v +1) = \f(v + 1) -if(Vv) 1 v = 1, 2, 3,1, 

yields 

*/(i) + m + /(3) + — +/(»-i)+ j/w - F(w) 

= ¥f(rn) — /'(£i) + /,(*7a) ~ /'(fa) + •" + f[Vn-1) — /'(f»-i)]- 

The series 

—/'(fa) + /'fax) - /'(f2) + /'(%) - /'(fa) + /'(%) - ••• = 8s 
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Ser. 3, Vol. 17, p. 112 

-r. 4, Vol. 11, pp. 373— 

10. Although the hypo- 

:n elusion of 10 remains 

is convergent because the terms have alternating signs and their absolute 

values converge monotonically to 0. In the case of f'(x) < 0 we find 

T /'(«)< 4 ntn) <-| U'(Vn)-f(L) +f'(Vn+l)-f'(L+i) + -]<0. 

- The equation 

This proves for f(x) = — the existence of 
X 

(t +T +T + - + T - 1°g") = c H 
: in each of the intervals 

digest root is xn. In 12 (Euler’s constant) and furnishes the inequalities 

lllll i i 
2^~8^<T+Y+T + -+ir-logM-C<2^- 

- - /i" a; > o. 

For f[x) = —log x we find 

log«! = (» + £) log n — n + 1 - s + en, 

< (n + i) ft- The mean 
where s is a constant and 0 < sn < i Stirling’s formula [205] states 

that 1 — s = log j/ 27t. 

19. Cf. solution 18. The sum mentioned there. 

*„ < £ < (« + i) Wivi) — /'(£ 1) + /'(»? 2) — fill) + ••• + /'(>?„_]) — /'(fn_i)], 

to 0 [12] because is positive in this case. Furthermore 

■ *)z * 

f(Vi) ~ /'(£>) < 0, /'(ife) - /'(#3) < 0, .... ffo.-t) - /'(£„_,) < 0, 

/'(fi) >/'(!), /'(ViX/'W. 

i = 1 1 ^ . The proof ■ 
19.1. Cf. 5. The relation 

iim (ff„ - log «) - lim (#„„ - log 2n) 
>1 -> 00 n->co 

implies 

:>n formula, cf. Knopp, log 2= lim (Hin-Hn). 
H —> 00 

of the equations 19.2. [G. Polya; see Research Papers in Statistics, Festschrift for 

J. Neyman. New York: Wiley & Sons 1966, pp. 259-261.] Use notation 

\<V + 1 <Vv <v + l-, 

= 1, 2, 31, 

5. From 

lim (2Hn — 2 log w) = 2C, 
n->oo 

lim (HnS — log n2) = C 
n—j-oo 

if(n) - F(n) 
follows that C is the limit of 

2 +1 ••• + — 

-3
 

3 1 1 1 " 1 ~ 4 r *2 

lllll 1 
1 2 3 4 5 n2 

/'(%)-= 8s 
_ J_ _ J_ 1,3 1 2« - 1 

1 2 3 ~r 4 5 1 ' 
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which coincides with the partial sum of the proposed series that has 

1 2 + 3 + • • • + (2» — 1) terms. It still must be shown that the 

limit of this subsequence of partial sums is the sum of the series. (Easy.) 

20. [Cf. e.g. l.c. 9.] Let f(x) be monotone increasing. [Otherwise 

consider —/(*).] Then 

n 

The condition that the function is monotone increasing is essential only 

in the neighbourhood of the singular points. 

21. We can assume that the function f(x) increases [20 and that 

f(x) ^ 0 [otherwise decompose f(x) an(* 

examine the two terms separately]. Let e > 0, rj be chosen such that 
l 

0 < rj < 1, f f(x) dx < e. Then we have 
i-v 

v? Vt) f{i)=/ ^x) f{x) dx- 

If, on the other hand, M denotes the least upper bound of \<p(x) | we can 

write 

l-rj 

, n—i . . , . n —1 

V 
jLj 

1 v = [(l-r/)n]+l 

/ ^ M J /(%) ^ ^ Me. 
1-7/ 

22. In 20 set f(x) = a*-1. 

23. 
= l—1^ — l)*"1 + 2x~1(n - V)*'1 + ... + (n - If 1 1^ 1 

= ««+*-i V -Lpq—1 (i - JiY"1 ~ *•+*-» / s*-1 (i - x)"-1 
v% n\nj \ nj o 

Cf. 20. 
24. 

25. Let /(*) be monotone decreasing and finite for x = 1. The in¬ 

equality [20] 
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e proposed series that has 

must be shown that the 

te sum of the series. (Easy.) 

ne increasing. [Otherwise 

increasing is essential only 

i increases [20] and that 

‘Wl +f{x) tJ/WI and 

), rj be chosen such that 

f x) f(x) dx. 

: rr bound of |9?(%) | we can 

x l 
J f(x) dx <L Ms. 

1-V 

- (n - If-1 f-1 

-1/ x"-1 (1 - xf-1 dx. 
0 

finite for x — 1. The in- 

imphes that the left hand side is bounded, i.e. that 

i 
lim I f{x) dx 

£-> + 0 £ 

is finite. 

26. Let f(x) be monotone decreasing. Then 

2» — 1 

2 n 

2n-l 

2 n 

i t C-2nl) + S £f ("T ~) ^ V f (i) + / /(*) dx ■ 

and a fortiori 

2n — i 
2m 

2m 

2m-1 
2m 

2 / f(x) dx + / /(*) dx^±- £ f (-~) ^ 2 / /(*) ix + / f(x) dx 
2n—1 1 v = l ' 7 0 1 

2n 2m 

Similarly 

9 I2 J /9-, _n i 

lim — yj f (--) = f f(x) dx. 
n v=i \ n > 0J 

27. Cf. 28 for f(x) = x*-1. 

28. 

a 
— (-lr1/(-)=- 2 /(— 
n v \ w / w ^~l \ n / n ~ \n / 

[20 and solution 26.] 

29. Cf. 26. 

30. Since f(x) is monotone and lim f(x) = 0, f(x) cannot change its 
X->oo 

sign. Assume that f(x) is positive and monotone decreasing. Then we have 

{m + l)h 

f f(x) dx ^ h(f(h) + /(2A) + ••• + f(mh)) ^ / /(*) dx 
mh 

/ 
0 

and so for m^oo 

f f(x) dx ^ h £ f(nh) ^ J f[x) dx. 
h n = 1 o 

The condition that f(x) be monotone is essential only for large % and in 

the neighborhood of x = 0. 
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31. By setting f(x) = e~xxx~1, = (in 30 we get 

T(«) = ( Um() (log yj' (r~lt + 2'~Jt2 + 3*-1;* H-) 

= lim (1 - t)x Z nX~1t" = lim [189]. 

32. Introduce in 30 /(*) = e have 

hi 
nh 

log- 
1 - e 

33. In 30 put f(x) = - e-, e h = t and notice that 
1 + 

f — - dx= f -JO— — log 2. 
J 1 + e~x J t +y 6 

Or apply 32 and note 

oo n oo » oo 2rt 

v —-_= y L_ _ 2 y 1 
, ^ . 2n * 

n = l 1 + / «= 1 1 — t 

34. The statement follows from 

n=i 1 — t 

f JZi- 
0 o 1 n=1 

We can also argue in the following manner: we have [VIII 49, VIII 65] 

oo » oo 

1”*-^= lox{t)t\ 
M = 1 1 — t n = 1 

r~i 2 ** = i’ k(l) + <r,(2) + ••• + a,(n)) f. 
n = 1 n = l 

Noticing 45 we now apply I 88. 

35. In 30 set f(x) = e~x', e~h2 = t, respectively f(x) = e~x<x, e~h* = t. 

36. The limit is n. Introduce f(x) = —, hrY = t in 30. Observe 
the formula 

2t + 2/ I... i 1_,_ **+ ,-*1 
42 i 02 I 1 ^2 i „_2 I - / 1 /2+l2 /2 + 22 ' ' t2 + «2 

[Hurwitz-Courant, pp. 122—123. 
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30 we get 

[189]. 

t. We have 

: notice that 

= log 2. 

1 — t 

**e have [VIII 49, VIII 65] 

- <r^(2) -)-+ o^(n)) tn. 

ively f(x) = e e~h* = t. 

r: > hrl = t in 30. Observe 

*** = n 
ent + 

37. The proposition follows from 30: f(x) = log (1 + h = t * . 

Transformation of variables and partial integration lead to 

- oo _J_ 

/ log (1 + %~x) dx= f tl du = — n . 
J ,/ 1 ~r U 7t 
o o sm — 

a 

38. Apply 30 with f(x) = log (1 — 2x~2 cos 2<p + x~*). Write 

= ~ el<p, v 
h 

both sides : 

* — ~!t el(f > use formula for sl~ and square the absolute value on 

n (1 — ~—2?- -(_L\ _ 1,2 
^ \ n2h2 ' «4W 4rr 

2ti . 2 rr 
— sm<p — — sin?; 

+ « — 2 cos cos 9?) 

39, 

~ a oo 

2] («?” - «g"+1) log a?’1-1 < f logxdx< £ (aqn - aq"^) log aqn 
n = 0 «=0 

= loga + ^ -> a log a — a 

for ? -> 1. A more general proposition can be deduced in analogy to 30. 

40. Taking 58 into account we obtain 

A . -»H]' 
2kn(—Vn 2 V* v V» / —[ 

/> 
,-2fc*s 

*-i _L 

-‘"(if* ‘ (b)‘- 
For more details see e.g. Jordan: Cours d’Analyse, Vol. 2, 3rd Ed. Paris: 
Gauthier-Villars 1913, pp. 218—221. 

41. [For problems 41-47 cf. G. Polya: Arch. Math. Phys. Ser. 3, 
Vol. 26, pp. 196—201 (1917).] 

42. 

ss. i?, a - ed=fa - gd* - * fa - gd * 
0 1 

n 

= 1 “H™ i1+Y+y+"•+i~ lo8n)=1 - c. 
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where C is Euler’s constant.—Define 

1 
\ C 1 — X' J r'{pi + 1) , p 0(*)=J ~xdx = TT>T-i) +c 

and note that the relation 

i 
= 1 - C J oc d&(oc) = 0(1) — j &(oc) doc = 1 

o o 

holds; i.e. the operations of taking the limit and computing the mean 

value can be interchanged [44]. 
43. [Cf. Cesaro, Problem: Nouv. Annls Math. Ser. 3, Vol. 2, p. 239 

(1883).] 

v-i 0 

= i _ Y— (}-_1 -A = i — — . 
“. 2 W (n + 1)V 12 

n = 1 

44. [G. L. Dirichlet: Werke, Vol. 2. Berlin: G. Reimer 1897, p. 97 — 

104; cf. also G. Polya, l.c. 41, p. 197 and Nachr. Akad. Wiss. Gottingen 

1917, pp. 149 — 159.] We are dealing with [VIII 4] 

Si i i (H - [f - *]) -/ ([7] - [7 - *]) 

:/ ([7] - [7 - *]) * - .1” "l (7 - rh) 

dx 

^1- 1 — 1 — 1 
1 + * 2 2 + -«=/ — J 1 - x 

Z x dx. 

If oc = J we obtain 41. 

45. [G. Polya, l.c. 41, pp. 199 — 200.] We assume at first that a > 1. 

Then 

i 
1 00 n 

(* + !) f [-7] x'dx= Z n j [<x + l)x'dx = 1 +77 +^TI + 
d n=1 1 

» +1 

= f 0* + 1) • 



U - 1) 

\x ~ 1) 
+ c 

i\ = 1 - C 

and computing the mean 

Math. Ser. 3, Vol. 2, p. 239 

I x dx 

» + l) 
) — i _ 
7 12 

G. Reimer 1.897, p. 97— 

Akad. Wiss. Gottingen 

mi 4' 

E-]-[v-]) dx 

I - r 

"time at first that <x > 1. 

r=l +-4- + —— + ••• 
0X + 1 'o*+l ^ 
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The total variation [cf. solution 9] of |~i-J a;* = /(#) is 

(/(l) - /(* + 0)) + {f(i - 0) - /(* + 0)) + (/(£ - 0) - /(J + 0)) + 

= 1(1-* - 2"“) + 2~* + 2(2-* - 3-*) + 3— + — = 2f(«) - 1 

whence the two statements follow [9]. The limit relation holds also for 

a = 1. If 0 < ex. < 1 we have to examine ^J) x* and use 22. 

46. [G. Polya, l.c. 41, pp. 200-201.] We write /(*) = 1 - [_L]; 

according to 42 f f(x) dx = 1 — C; furthermore, the total variation 
o 

of f(x) in the interval (J^-, lj is 2(m — 1). We have 

S /««)*-i 2 l(i) 
m *’ = » + ! +.|/KLri+*)-'&)!*■ 

Since V > ^ the first term is n<>t larger than [9]; the second is 

smaller than —. 
n 

47. 

i(o.-*.) = i<-ir1[f] 

=■ i (-!)- 
1 v=l 

The first sum on the left hand side divided by u converges to 0 as n -> oo 
[28: 

48. Consequence of the definition of the definite integral. 

49. Special case of 20 for f(x) = log With regard to [ log x dx 
cf. 39. g 

50. Put c = Then 
a 
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51. A. 
2“ 

n + 1 
. Moreover 

ooo-o- n! ,n 4-1 

(1! 2! 3! ••• w!): 
= [] {n +1 - v)n+1-2v 

n 

because 2j [n + 1 — 2v) = 0. Making appropriate use of 20 we obtain 
t*=i 

lim — log Gn = lim — (l-2f—) log f 1-v~) 

= / (1 — 2*) log (1 — *) dx=Y- 

52. In 48 set /(#) = 1 — 2r cos x + r2 = \r — etx |2, a — 0, b = 2jt. 

The identity 

rn -1 = fl (r - e2nivln) 
V = 1 

implies 

/l»4»-/n»=(^-l)2- 

If r = 1, /nn must be omitted (it vanishes); notice 20. 
53. [G. Szego, Problem: Arch. Math. Phys. Ser. 3, Vol. 25, p. 196 

(1917). Solved by J. Mahrenholz: Arch. Math. Phys. Ser. 3, Vol. 28, 

pp. 79—80 (1920).] According to the hypothesis e~ix(e^ — r) is real, i.e. 

the arguments of etx and ei$ — r are equal or differ by n. Since f is the 

number closest to x with this property etx and — r have the same 

argument, which means that ef* is the point of intersection of the ray 

from r parallel to the vector eiX with the unit circle. If, therefore, 

0 ^ x < 7t and £' is the argument that belongs so to x + n as £ to x, 

then er, and are on the same line. Thus we obtain by elementary 

geometry 

\ex*' — r f \e* — r |2 = (1 — 2rcosf' +r~) (1 — 2r cos£ +r) = (1 — r2)2, 

[log (1 — 2r cos £ + r2) + log (1 — 2r cos f' + r2)] dx 

log (1 — r2)2 dx = log (1 — r2). 

hence 
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:= n (» T 1—*')* 
+ 1-2* 

I t - . - _V 

’ 

c - t riate use of 20 we obtain 

At log (* — ++i) 

: - v dx =—. 

1 = r — eix I2, a — 0, b = 2n. 

54. We have [Maclaurin series] 

|log (1 + %) — % | x2 for \x\i^L\. 

Assume | f{x) \ < M. Whenever SnM ^ \ 

log (1 + fvn6n) — 2/ fvn^n ^ 2 finin' 
. v=l v = l j/ = l 

The sum on the right hand side converges to an integral. Cf. 67. Other 

subdivisions of the interval [a, b] may be considered instead of the sub¬ 

division by points in arithmetic progression, and we can choose any 

point in a given subinterval as the point where we evaluate the function. 

There is an obvious analogy between the integral as a limit of sums and 

the limit of products considered. 

55. According to 54: 

Jsl n 
*-i l - 

V 1 

l notice 20. 

Ser. 3, Vol. 25, p. 196 

A-'... Phys. Ser. 3, Vol. 28, 

- e~ix(e* — r) is real, i.e. 

i r differ by n. Since f is the 

ar.d e^ — r have the same 

:f intersection of the ray 

t • t unit circle. If, therefore, 

+ . ngs so to X 2LS g to X, 

r . + we obtain by elementary 

— 2r cos f -J- r2) = (1 — r2)2, 

: —2r cos £' + r2)] dx 

1: z 1 — r2). 

56. The product in question is 

1.3.5... (2n - 1) ocn . 2n 

[(« + 1) oc — 1] [(w T 2) oc — 1] ••• (2noc — 1) 

{n 1) \ (n -t~ 2) oc (n -)- n) oc 

1) a - 1 [n + 2) oc - 1 (« + n) oc — 1 

1 

1- 1 - 

The particular case of oc = 2, i.e. 

Jl.JL. «— 1 
2 ‘ 2 ’ “6 ’ 6 ‘ 10 * 10 ’ * ’ ~ 1/2 

follows also from the product representation of cos x at the point x = . 

[Euler: Opera Omnia, Ser. 1, Vol. 17. Leipzig and Berlin: B. G. Teubner 

1915, p. 419 (distorted by a misprint).] 

57. 
a + vd 

b -j~ vd 
= 1 

oc — (i 

1 ft + r<* n 
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Make use of the remark to solution 54 for f(x) = - -4*—^ on the inter¬ 

val [0, dl 

58. Let n be even, n = 2m, v~~l -> A l/2~, moreover A ^ 0, v>m. 
y m 

Then we get 

o m m — 1 w — (y — m — 1) 
/2m \ m -1- 1 w I 2 

o 
m + (v — m) 

1 1 

1 
1 - 

\'m 1!m 

1 1 « 2 1 

1 + 77^ T=" 1 + —7=— 
y m y m Km (/ m 

- J xdx 

.e 0 
= e-2A! [54]. 

1 - 

1 + 

r — m — 1 1 

v — m 1 
—t=— /— 

|/m km 

f. 

Notice that (2m) oo 202L and that, furthermore, 
\mj^ ymn 

/2m + 1 \ / 2m \ 

\ v ) m + 1 \v — 1/ 

/2m 1 \ 

\ m + 1 / o' 
59. 

/7 ^\=n 
t z v _i 

(2w — v)2 
•=.77 t a 1 \ ■ 9 * 

] 4w2 — 4nv cos + v2 *=1 1 + 77-r, sin2 
yn {2n-v)2 2(4 

3 77- 

1 4- 

7 
8nv 

00 5 

(2—*)21 

(2n — v)2 4n 

We can iustify the substitution of f°r sin —7=^ expanding 
J J 2yn 214 

sjn —4_ in powers of -jLr and taking the logarithm of the product in 
2(4 (4 

the same manner as in 54. 
60. We mite for the second difference in question 

F(b, d) — F(b, c) — F(a, d) + F(a, c) = Zl2-F4, y), 



T 

x-B i . , 
f , - v -— on the mter- 

o 1 + x 

. moreover 7 ^ 0, v > m. 

- l 

v — m — 1 1 

j/m |/ w 
v — m 1 

j/ra }/ w 

~hermore, 

n 
i 

l 
. t 

(2n-v)*Sm 27T 

r sin —by expanding 

rarithm of the product in 

question 

• = A2F(x, y), 
R 

thus 
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m n 

A2F(x, y) = Z A2F(x, y). 
R M = 1 »» = 1 RMv 

245 

Ihe mean value theorem of the differential calculus applied to 

GM yv) -F(xtyv_1) 
leads to 

42 A F(x, y) = G,(Xfl) - = (*„ - yv) - F'x(^, yr_x)) 

= (*„ - *„-i) (y, - y,-i) f(i„. vX *„-i <i„< v y,_i < »?„ < y„. 

Cf. 7. 

61. Multiplying the determinant in question by its complex conju¬ 
gate row by row we find 

|1 +e*-M +£2(A-,) +r. +£(n-l)(A-,)|^ = oi> ^ = ^ 

On the other hand we have (Vandermonde's determinant) 

Ojl.--.w-l 0,l,...,n-l/ t 

')"• 
n l«y-^!2 = 77 ( 
;<A X 

Hence we conclude by comparison 

0,1,.„ 
TT1 

Ssin^ —5 

.5 iQg;sin (f - v)=i ^* - (1 - i) t :io&2 • 

Argument 20! 

62. Cf. 54. 

63. We denote the expression in question by ITn. Then the inequality 

used in solution 54 yields for sufficiently large n 

Cauchy’s inequality [80] provides an upper bound for the right hand 
side: 

n n 

This expression converges toOasw^-oo. Therefore 

lim 77, = e° 0 

1 1 

J J J[x,y)dxdy 
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64. [Cf. G. Polya: Math. Ann. Vol. 74, pp. 204—208 (1913).] Sub¬ 

divide the space by the three sequences of planes 

5 3 113 5 

%,y,Z = 'mm, ~~2n> ~2n’ ~2n’ 2n ’ 2n * 2n * “ * 

into cubes of volume-j. The expression in I 30, with s — [w], gives the 

number of cubes whose center is in <£). This number multiplied by n~3 

converges to the given integral. 

65, We have 

«»= zz-z 
Vi-rV,-\-\-Vp —n 

= ZZ‘"Z vl'-'vl'-' .-v^-\n-Vl-v2-*,-1Y* S 
*,+»,+-+v/)_1s» 

thus 

* i + -bap 
_ 1 V-V...V (hY'-1 (VA**~1 --■(vp~1)*p~1 1 

+-+“/>-l n*-1 u+„+„.,p A*/ V*/ \ * / 

. (i _Zi _. 
\ n n 

vp-1\*P~1 

Cf. 23. 
66. We use the same notation as in solution 65. According to solu¬ 

tion 31 we have for t 1 — 0 

Introducing 

/*W~-H*»)(1-<)-**. k = 1,2, 

oo 

F(z) = Z 
n = l 

we obtain 

F(0 coTK +«* +•••+«#) (1 _i)-(«. + «.+-+V ; 

/i(o/2w -/*w _ n«i) A*,) -n«p) 
/-rimo f(<) r(«! + «2 + ••• + <xp)- 

On the other hand this limit is, according to I 85 and 65, equal to the 

integral in question. The ^-fold Dirichlet-Jordan integral can be easily 

computed with the help of this relation, cf. E. T. Whittaker and G. N. 

Watson, p. 258. 
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l p?. 204-208 (1913).] Sub- 
r lanes 

— A A 
’ 2n ’ '* * 

- 30. with s = (W], gives the 

number multiplied by ^~3 

v2--vp^yp-1, 

-::n 65. According to solu- 

£= 1, 2, 

. - - jfi+«*+••*. 

:-n«p) 
--h (Xp) ' 

> I 85 and 65, equal to the 

rian integral can be easily 

I T. Whittaker and G. N. 

67. The term in question is 

*22-2 

~~t f f ” ‘ /fe) * * * /Cfy) dx0 dx\ 

l b b b 

~~ J\ f / * ” J A*i) f(x'i) * * • f(xp) dxl dxo - dx, 
a a a “ /> 

Moreover [I 62] 
n 

77 (1 + */,A) ^ (1 + zM8n)a = **"(»-«), 

This rnequ^ty combined with the above proved proposition implies 

^hm 77 (1 + zf„dJ = 1 + ~ j /(*) dx+t |'JdxJ + ... 

+~(jf(*)dXJ+:.=;fAx>dx. 

Tins new solution of 54 illustrates well the limit operations which lead 

to Fredholm’s solution of integral equations. Conversely 67 an bf 
deduced from 54 with the help of 1179 y b 

by r°"'S '“dS * ”••— » with 

f h{x) (p„(x) dx; = 1, 2,rn. 

On the other hand we have (n j> m) 

p= s 
1S»i<i’i<-<rm£n 

/(I) fW . 
i-v^n iv2n 

hmn 
qp-} <rW . 
Tvpn Yvzn ••<pM ' 

A2) /(2) . 
n fv2n 

.. m 
hmn w{2) w{2) • TVjH Y-,2n • * 

A™) Am) 
t }v^n !v2n 

.. /(»*) 

lvmn' | 
ffij”*)«,(»).. 
r^n Tvzn 

r"mn 

v 2 .- muepenaently all the values 1,2, ...,n we 

obtam ml P. The sum established in this way is ~ A.Vtimes the 

m-fold integral exhibited in the problem. 

69. [For a fuller account of the subject etnri;^^ • j.u 
Chap 2 see a H Mo j t ,  - uoject studied m the present 
Chap, see G. H. Hardy, J. E. Littlewood and G. Polya: Inequalities. 
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Cambridge: Cambridge University Press 1952.] The statement follows 

as a limit relation from the proposition on the arithmetic, geometric and 

harmonic mean [48]. 
When we pass to the limit “>” becomes and so our proof is 

not suitable for specifying the cases in which equality is attained. For an 

essential remark on such cases see 109. 
70. [J. L. W. V. Jensen: Acta Math. Vol. 30, p. 175 (1906).] The 

proof is analogous to Cauchy’s proof for the inequality between the 

arithmetic, geometric and harmonic means given in the footnote on 

p. 64 (which deals with the case y(t) = logt). First the statement is 

proved for n = 2k (k integer), then it is extended to arbitrary n. 

71. [J. L. W. V. Jensen, l.c. 70.] Using a similar notation as in 48 we 

get for each n 

<P 
(f\n F f2n F * .. 4- f ' • J nn 

V n 
< 9(/in) + P(/2») + **# + 9>(/nn) 

Let n increase to infinity and notice 124, 110. 

72. Let tv t2 be twx arbitrary points on [m, M], tL < t2. Then 

*<U = v (H-)+-r1 v (H-) + *4^ »" w' 
= r (''-p-j + ’’-P f (H3) + W ■ 

where < rx < -1- and ^ < t2 < t2. Hence 

+ ?>(4) — 29»(- U) > °‘ 

provided cpn(t) > 0 on [m, M]. 

73. [72 ] 
74. [j. L. W. V. Jensen, l.c. 70.] In the case where the pv are integers 

the proposition is a consequence of 70 where px points coincide with tv p2 

points with t2,..., pn points with tn. Then we extend the proposition to 

rational pv \ for arbitrary pv we need the continuity of cp{t) [124]. 

75. [J. L. W. V. Jensen, l.c. 70.] Introducing 

/» = /(*! +v—rTi)' P™=p(h+v—nJ^> v = l,2,...,n, 

we obtain according to 73 

l Pin fin * Plnf^n F *** F P nnf 

\ P\n P%n ^ ‘ ~ Pnn J 

< ^l»y(/ln) F P2n<P(f2n) F ** * F Pnn<P(fnJ_ 

Pi n F F * ‘ * + Pnn 

Let n increase to infinity. 
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The statement follows 

- inthmetic, geometric and 

r ^ , and so onr proof is 

c zuality is attained. For an 

k 30, p. 175 (1906).] The 

t- inequality between the 

given in the footnote on 

: First the statement is 

ti-d to arbitrary n. 

rimi'.ar notation as in 48 we 

fe. - - <p(U 

h ^2)2 hi \ 

(*l)> 

-t where the pv are integers 

- points coincide with tv p2 

-xtend the proposition to 

u nity of (p{t) [124]. 
me 

—). v—1, 2, 

’.nVifnn) 

76. [0. Holder: Nachr. Akad. Wiss. Gottingen 1889, p. 38.] We put 

then 

Pjh + P^_2 + ••• + pntn _ 

P1+P2+ ••• + p„ ~ ’ 

n — M)2 
Viti — <p{M) + {tv — M) <p'{M) d—-—--<p"(rv), 

thus 

PMh) + P2W 2) + — + Pn<p(tn) 

Pi +P*2 + •** + Pn 

n (tf - M)2 
Z Pv-*-<p"{rv) 

- <p(M)+—-1-> <p{M), 

provided that at least one of the tk’s is different from M. 

77. [Cf. G. Polya,Problem: Arch. Math. Phys. Ser. 3, Vol. 21, pp. 370 — 
371 (1913).] Analogous to 76. 

78. In 76 set cp(t) = —log t, and t log t resp., M > m > 0; further¬ 

more replace av by —, v = 1, 2, ..., n. 
% 

79. In 77 put: q)(t) = — log t, and tlogt resp., M > m > 0; then 

replace f(x) by^-. 

80. First proof: 

M n / H \2 1,2,...,» 

S a; 2 — [2 *A) = 2 («A — akh, 
, = 1 V = 1 \, = 1 / i<k 

■f ^ 0. 

Second proof: If }. and fi denote real variables the quadratic 
form 

(Xal + -|- {Xa2 + f^b2)2, -+-•** + [Aan + jubn)2 

= A?2 + 2BApi + C/u2 ^ 0. 

Provided that A2 + /*2 > 0 the case of equality presents itself only then 

when there is a particular set of A, ^ for which Aax + pb9 ~ 0, 

v = 1,2, , n. Therefore AC — B2 is positive or 0 as asserted. 

81. By taking the limit in 80: Writing /„=/(*, + v-2 ~ , 

8vn = g ’ We obtain [80] 

/An^ln + f'2n&2n + “ * + fnnSntX ^ fin + fen + *** +/«» *!» + ^2« “>-f inn 

V » / = n *-‘ 

Let n increase to infinity. It is also possible to adapt both methods used 

in 80 to the present problem; as to the first method cf. 68. 
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81.1. See 81.3. 
81.2. See 81.4, 

81.3. Let £ stand for Z, set 

£av = A, £bv = B,.... £lv=L, 

and use 78: 

{A“B* ••• LV1 2 t (ij 
= z[*-j + + ••• +)■ f) 
= cc ft + **• + A = 1 • 

81.4. From 81.3 by a passage to the limit or by analogy. Analogy 

may be better: It may allow us to discuss the case of equality. 

82. Let t 4= 0 and introduce a[ = Av, v = 1, 2, Because of 78 
we have 

t2 _ A1 l0g^l + A2l°%A2 +-f“ Anlo%An 

A 9 4* • • • 4" A n 

— log 
Ao + + A 

l>0. 

We find 

ip{— oo) = min [a), 1) = §(«), ^(0) = (3(a), ^>(1) = %{a), 

y( + oo) = max (a). 

Thus we have a new proof of the proposition on the relation between the 

arithmetic, geometric and harmonic means. 

83. Assume t =(= 0 and set [/(#)]* = F(x). Proposition 79 implies 

*2^1 
m 

xt 
f F[x) log F{x) dx 

Xi_ 
*2 

f F(x) dx 
xi 

0. 

(Or taking the limit in 82.) 

n-v = m no) = ©(/). ^(i) = m ■ 

Let M denote the maximum of f(x) on [xv x2] and <3 the length of - 

subinterval of [xlf x2] in which f(x) > M — s. Then we have for t > C 

l 
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- ••• + A = 1. 

lit or by analogy. Analogy 

:ase of equality. 

= 1,2Because of 78 

-AJ°S A„ 

A n 

>0. 

= ©(«), V>{1) = at (a), 

n the relation between the 

Proposition 79 implies 

- f F(x) 0. 

!P(1) =«(/). 

2* and d the length of a 

Then we have for t > 0 

i.e. ^(oo) = hm ¥(t) = M\ oo) is found in a similar wav. This 
/->oo 

proposition contains therefore a new proof for 69. 

84. [H. Minkowski; cf. e.g. Hardy, Littlewood and Polya, l.c. 69, 
p. 21.] First proof: We assume 0 <L 2 fg 1 and define 

n _1_ 

9(0 = FI DM + (1 - t) bv]n. Then [80] 
V«1 

<p(t) i(i - K 

tav + (1 — 0 bv 
— _ V 

n ^ 
v=l 

~ b„ 

+ (t ~ 0 bv 
<0, 

unless —Xbviv — 1, 2, ..., n. 

Second proof: With log — log ap = tv the inequality becomes 

log (1 + e‘>) + log (1 + e‘‘) + ... + log (1 + A) ^ , (H , -+<1+'"+'".N] 
-*-^log^l+« « j. 

log (1 + et), however, is convex [731. 

Third proof: Particular case of 81.3: 

n = 2, oc = (3 = ••• = A. 

Also particular case of 90, k = 0. 

85. [Cf. W. Blaschke: Arch. Math. Phys. Ser. 3, Vol. 24, p. 281 
(1916).] We define 

^ X2 
^3^ f logp/[*) + (l -«*(*)]<* 

(p(t)=e‘ , 0^*Sgl; 

Schwarz’s inequality implies [81 ] 

v"® _ /_(_ f f(x) - g(*> , \ 
9(0 xi J tf(x) + (1 — t) g(x) J 

_1_ h /(*) - g(*) Y n 
W(X) + (1 -t) g(x)J dx = °- 

X1 

(Or take the hmit in 84.) Particular case of 91. 
86. By repeated application of 85 to the functions 

MM. ^2/2M> .... pmfm(x)- 
87. By definition 

4 = least upper bound of ^ (/Vv) — aM1*)2 + [/^M’1) — /ftM_1))]2 
*=1 

for all possible subdivisions of the interval [xlt x0] 

M = *(0) < *(1) < *<2> < ••• < x{n) = *2). 
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t ::rarv subdivision 

- - uk(^ ) -4(^-5))]2 

■1 

: - -F&fi) - F(x(p~D)]2 . 

I P^fUv 
.,2 n \ 

- 1-\-x) 
 » = i v n / 

o 
I 

ition of f(x) in an interval of 

because of 86 ®[Fn) ^ &(/). 

ablish that lim Fn(x) =F(x) 

- V + *)]«! 

dS. 

— V, 

:0, 2n]. Since the length l 

> is the same for each v, 

the length Ln of the arc of Fn[x) can be estimated by Ln ^ l. Besides, 

the limit relation 

I j/(*w + I;j7(*<«>) _ ir(*(«-i))]2 
« = 1 

°° « = 1 

holds for any arbitrary subdivision of the interval [0, 2tz], 

0 = x{0) < *(1) < • • • < x{s~1] < *{s) = 

A particularly interesting special case of this problem is due to 

F. Lukacs. The arc lengths of Fejer’s means of the Fourier series of f(x) 

[134] cannot be larger than the length of the arc of y — f(x) over the 

interval [0, 2n]. (The “jumps” have to be included in the length of the 

arc, also |/(+0) — f(2n - 0) |.) 

90. Assume x #= 0 [84]. Put Ay = tay + (1 — t) by, 0g(gl, 

v = 1, 2,...,n and <p(t) = 2)?X(T). The second derivative is 

(p"{t) = (x - 1) {A* + A% + • • • + A*)* ~~. 

{(A*, + Al + - + A*) [{a, - J,)* A?-2 + (a2 - b2f A^2 

+ ■■■ + k-k?a:-2] 

— ((«! — ij) A\ 1 + (a2 — b2) A2_1 -f-+ («„ — bn) A*-1)2}. 

The quantity in curly brackets is always positive unless ay = Xby [80]. 

Thus sgn^"^) = sgn (x — 1). Therefore we have 

29or ^g>(0) +<p( 1) 

according as * 2t 1 or x ^ 1. If * = 2, Mx represents the distance of 

the point av a2,..., an in the w-dimensional space Rn from the origin. 

The proposition states in this case that one side of a triangle is shorter 

than the sum of the other two sides. 

91. In 90 put * = f(x, + , bt = g(x, + vx^Fx), 

v = 1, 2, .,. f n and let n become infinite. 

92. [For the special case ayby = 1, v = 1, 2,..., *, cf. P. Schweitzer: 

Mat. phys. lap. Vol. 23, pp. 257-261 (1914).] We rearrange the numbers 

ay so that ax ^ a2 ^ ••• <S an. To determine the maximum it is then 

sufficient to consider values b,^ b2^ ■■■ ^bn. (If by < b , v < p, we 

interchange bv and b„: b2v + 52 = 62 + 62 and + ayby %bv + aybu.) 
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We may also assume that not all the av’s are equal, noi all the bv’s, i. e. 

aibn = (an — ai)bx + a\{bx — bn) > 0. 

If n > 2 the numbers ul, «2,..., un_1, vlt v2,.... dm_1 are defined by the 

equations 

. *v = «,&! + , v = 2, 3, — 1. 

We find uv Si 0, vr ]> 0 and Si + vvanbn [80]; = 0 if and 

only if av = av+1 = ■•■ = an, b„ = bv+1 = ••• = bn and vp =1. In a 

similar way vv = 0 implies uv = 1, etc. If uv> 0, v„ > 0 then 

+ vvanbn. Thus the expression in question is 

< 
(pa\ + (pbi + ?&2) 

(Pal^l + ?«A> 

where 1 + u2 + us H-(- un_x = p, v2 + v3 H-p yn_a + 1 = q. 

The inequality becomes an equality if and only if the uv's and vp’s are 

0 or 1, p, q, are integers, ax = a2 = ••• = ap, ap+1 = ap+2 = ••• = «„, 

b1=b2 = = bp, bp+1 = bpj_2 = ■" = bn. The last expression is 

= 1 +pq lM2 ^ 1 + pq (-¥2 
AalJl + ?«» 6» / \2 Kf>«l ?«„ bn 

it is an equality if and only if If we replace a1; 

by a. A, B, b, in the term on the right hand side it does not decrease. 

93. [For the special case a = b, A = B see J. Kiirschak: Mat. phys. 

lap. Vol. 23, p. 378 (1914).] In 92 define 

av — f{xK=g(xi+v-—-^, v = 1,2,, n. 

Then let n increase to infinity. 

93.1. Define 

Then 

(I!asv)s 

< 

a 

'-ii: so j 

Taves t3 

proved 

Well 

rj cirtfi 

94.1. 
5or tbe a 

^ :oc 

we have 

93.1 
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ire equal, noi all the bv’s, i. e. 

i A - K) > 0. 

. ■■■> are defined by the 

v = 2, 3, ...,n — 1. 

- s+A [80]; «„ = 0 if and 

'" = A and vv = 1. In a 

•7» >0, > 0 then 

in question is 

- vs i-+ vn-i +1 = 8’. 
^nly if the m/s and vp's are 

+ ■ ap+1 = ^+2 = = 

The last expression is 

i v>» y 

- Palhlanb») 

If we replace av an, bv bn 

ride it does not decrease. 

- J- Kiirschak: Mat. phys. 

-), v = 1,2,...,». 

T 

Whereas several foregoing problems of this chapter were arranged 

m pairs, each problem about sums followed by a companion problem 

about integrals, the present problem has no such companion. (Why is 

that so? Whereas in former cases, e.g. 81.3, multiplying each 27 by — 

leaves the relation in question unchanged, this is not so in the present 
case.) 

94. [G. P61ya, Problem: Arch. Math. Phys. Ser. 3, Vol 28 p 174 

(1920).] Assume that /(*) is not constant. We show that the quadratic 
form 

Q{x, y) - / f(t) [(2a + 1) t2ax2 + 2(« + b + 1) t*+bxy + (2b + 1) t2iy2] dt 

=■ Ax" -J- 2Bxy + Cy2 

is indefinite, i.e. AC — B2 < 0. Integration by parts leads to 

df(t) /(l) 
k + 1-lSiW- k>Q> 

provided that/(l) = lim /(f) is finite. Thus 
t—*■! — 0 

Q(x> y) = /(1) (x + y)2 — f (tax + tbyf t df(t). 
0 

We ha\e <3(1, 1) > 0, <3(1, —1) < 0. If /(1) = oo we can also establish 
by careful manipulation [112] that <3(1, —1) < o. 

94.1. Assume that the solid is a polyhedron and let pv, qv and r„ stand 

for the areas of the orthogonal projections of one of its faces onto the 

three coordinate planes, respectively. Extending the sums over all faces 
we have 

S=E{p2v+ql+rlf> 

s iS 27(/>„ + qv + n) = 2(P + <3 + f?), 

5 ^ [(27A)2 + (27q,f + (27»g2]i = 2[P2 + <32 + p2]t, 

see 93.1 and 90. A cube attains the upper bound for 5 and a regular 

octahedron the lower bound provided that the edges of the former and 

the diagonals of the latter are parallel to the coordinate axes; and these 

ounds remain attained even if we apply to these solids arbitrary dilata¬ 
tions parallel to the axes. 

If the solid has a smooth (differentiable) surface, integrals should be 
used instead of sums. 
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94.2. By symmetry 

ff£2dco = ffr)2dco = f f £2 day = y f f (f 2 + r\2 + C2) dco = —■. 

(1) By 80 

E = If (ib2c2£2 + c2a2rj2 + a2b2C2)* (£2 + rj2 + do, 

= // + wy2 + aK2) (5c + ca + ab). 

(2) We may, and shall, assume that c is the shortest semiaxis. 

To obtain the last line work backwards and use that c a, c ^ b. 

(3) The more elementary 94.1 yields better estimates when c is near 

0. For other approximations to the area of the ellipsoid see G. Polya: 

Publicaciones del Instituto de Mat. Rosario Vol. 5, pp. 51 — 61 (1943). 

94.3. Lower bound in 94.2 and the theorem of the means. 

95. [G. Polya, Problem: Arch. Math. Phys. Ser. 3, Vol. 26, p. 65 

(1917). Solved by G. Szego: Arch. Math. Phys. Ser. 3, Vol. 28, pp. 81—82 

(1920).] [For a generalization see G. Polya and M. Schiffer: Journal 

d'Analyse math. Vol. 3, p. 323 (1953/54).] 

95.1. Consider the polynomial in u 

w = (a2 + ^) (52 + u) (c2 + u). 

By the theorem of the means 

1 dw 

3 w dn 
3 

k<22 + u b2 ~\~ u 1 c2 + u 
w 

and so 

|„=0 = (aic) 8 

A comparison with 94.3 may suggest generalizations. Cf. G. Polya 

and G. Szego: Isoperimetric Inequalities in Mathematical Physics. Prin¬ 

ceton: Princeton University Press 1951. 
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+ if+ £*)*» = £. 

+ rf + £2)* ico 

5c + ca + ab). 

:he shortest semiaxis. 

iT * dco 

— r/2^ J dco 

ise that c <: a, c<:b. 

-r estimates when c is near 

the ellipsoid see G. Polya: 

ol. 5, pp.51 —61 (1943). 

:zn of the means, 

ivs. Ser. 3, Vol. 26, p. 65 

her. 3, Vol. 28, pp. 81—82 

and M. Schiffer: Journal 

— u). 

i \  l dw 

- uj 3 w du 

1 loo I 

6_«=0 = (abc) 3. 

leralizations. Cf. G. Polya 

ithematical Physics. Prin- 

95.2. [E. Laguerre: Oeuvres, Vol. 1. Paris: Gauthier-Villars 1898, 

p. 93.] Let the roots be x, xv x2, ...,x„_1. Then, by 80, 

K - *)2 = (*1 + *2 + - + ^»-i)2 ^ (* -1) (4 + 4 + - + 4-i) 

= [n — 1) (a\ — 2a2 — x2). 

The bounds proposed are the two roots of the quadratic equation that 

we obtain hence by considering the case of equality. 

95.3. [See G. Polya: Numerische Math. Vol. 11, pp. 315—319 
(1968).] By 93.1 

— 1 _JL_ JL_ 

=(Zyv-n)n > Mr-1)9*1 = Ci • 
By 80 

S2n = [Zy-^-Wy-^+Wf 

Obviously 

s»+i =2y, V,1 <y 1£y,n=y 

The rest is more obvious. 

95.4. From 95.3 

ii It < (h)s (iiV/2 < El • frith. 
U h \h/ ’ Vs,/ s2 ’ h s7 ss 

and so on. Also directly from 81.1 

n (tr <(?)”= 
52» = Z (n~w)2/3 (yr4M)1/3 < 5 2/3 . 1{S 

n ' r<(er 
Obviously 

s2n = 2y„ ”y, ” < y ”s„. 

The result is useful in certain applications of Graeffe’s method, see l.c. 
95.3. 

95.5. [See Hardy, Littlewood and Polya, l.c. 69, p. 163, theor. 218.] 

Iti 
2A = J r2d(p. 

By 81.2 

2.71 \ 2/3 / 2.tc \ 1/3 

(/r>) =F^(2A)^. 

The case of equality, and so the minimum of F, is attained when r is 
constant. 
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96. [Cf. I. Schur: Sber. Berlin. Math. Ges. Vol. 22, pp. 16—17 

(1923).] Suppose that xv x2,xn are positive. Since log x is concave 

on any positive interval 

logy„ aMl log .r, + au2 logx.2 + ••• + aM„ log x„, p = 1, 2 

Add these inequalities. 

97. [G. Polya, Problem: x\rch. Math. Phys. Ser. 3, Vol. 20, p. 272 

(1913). Solved by G. Szego: Arch. Math. Phys. Ser. 3, Vol. 22, pp. 361— 

362 (1914).] 

98. [Cf. E. Steinitz, Problem: Arch. Math. Phys. Ser. 3, Vol. 19, 

p. 361 (1912). Solved by G. Polya: Arch. Math. Phys. Ser. 3, Vol. 21, 

p. 290 (1913).] If x is an integer g(x) — 0; if ^ is not an integer g(x) = 1. 

If % is rational G[x) = 0; if x is irrational G{x) = 1. Any lower sum of 

G(x) is 0, any upper sum over the interval [a, b] is b — a. The function 

G(x) is integrable over no interval. 

99. If x is irrational f(x) = 0 and if h converges to 0, x + h is either 

irrational and so f(x + h) = 0, or rational, x + h = — and so 
^ ^ q 

f(x + 7z) = —; — converges to 0 as h ->■ 0. If x = —, rational, fix) = — 
q q q q 

and x + h irrational, f[x + h) — f[x) = —-j- . Any lower sum is 0. We 

now divide the interval [0, 1] into k3 equal parts. Since there are at 
k(k — l) 

most 1 + 2 + • • • + (k — 1) = ——-positive proper fractions with 

denominator k, the upper sum is < k(<k ~ 1} ~ + — • 1. 
2 ft3 k6 k 

100. If we call Qv the oscillation of f{x) in the interval \xv_l9 xv] and 

if \(p{x)\ < M we get 

Zffa)<pfa) fa — *„-i) — 2[ffa)<pfa) fa—\-i) <M£Qvfa—x,_,). 
|v = l v = l v=l 

The last sum converges to 0. 

101. Let n denote a positive integer, 6 and Qv the oscillation 
n 

of cp(x) on the interval Fa + (v — 1) —, a + v- 1 , v = 1, 2,_, n. 
L w n J 

Suppose that <p{x) < M. Then 

/\<p(x + d)~ <p(x)\dx<b-^a-nZ + S2r+i) +2Mb-=±. 
a r = l 

M 

ZL£ S 

fi) 

--nd 

as «i 

IT 

ne i 

czm 

I 

iZi± tl 

m 

To* a! 

^ 1 ! - y 9*^ 

£. -ar. 1 
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Ges. Vol. 22, pp. 16—17 

;ve. Since log x is concave 

-ogxn, [jl = 1, 2,n, 

iys. Ser. 3, Vol. 20, p. 272 

' Ser. 3, Vol. 22, pp. 361 — 

:h. Phys. Ser. 3, Vol. 19, 

ath. Phys. Ser. 3, Vol. 21, 

i> not an integer g(x) = 1. 

• ’ = 1. Any lower sum of 

: is b — a. The function 

■ ’erges to 0, x -}- h is either 

tal, a; + h = —, and so 

= —, rational, fix) = — , 
q W q ’ 

Any lower sum is 0. We 

parts. Since there are at 

ve proper fractions with 

12 1 
-!-f- _ • l 

k» k* ' k 

the interval [xp_v xv] and 

-i) <MZQ(xv— 
V=1 

— and Qv the oscillation 
n y 

b — a~1 
-] * v = !,%> -..,1 

O + m 
b — a 
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102. Construct the lower sum L and the upper sum U that belong to 

the subdivision a = x0 < Xj < • • • < = b (as described on p. 46): 

U = % Mv(xv - x,^). L = £mv(xv —xv_1). 

By a proper choice of the subdivision we can attain that U — L < e. 

Now we define W(x) as follows: W(x) = Mv on [xv_lf xv), v = 1, 2,..., n—1, 

W{x) = Mn on [xn_x, xn]. We define ip(x) similarly using mv. Then 

b b 
J Y(X) dx=U, / y>(x) dx = L. 

a a 

The only condition imposed on the subdividing points is that the maximal 

length of the subintervals [xv_v xv], v = 1, 2, converges to 0 

as n increases. Therefore these points can be chosen equidistant, forming 

an arithmetic progression. The functions W(x) and ip(x) constructed in 

the described way are continuous on the right; they could be defined 

continuous on the left instead. 

103. Define W[x) and yj(x) as in solution 102. Then the total variation 

of W{x) is 

|M, - Mx\ + \M3 - Mt\ + - + |Mn - M„_11 

and that of ip[x) is 

I m2 — mi | + | — m2 | + • • • + | mn — m, 

Both are not larger than the total variation of f(x) because f(x) assumes 

on [xv_x, xv] values which are arbitrarily close to Mv and m%. 

104. Let v be an integer, v = 1, 2,..., n\ in the first half of the 

interval ~ wehaves(^) == +1, in the second half 5 (nx) = — 1. 

Thus 

2n n 

f /(*) sM dx =/ ,5 {f(hr+y)~ 1 + y + 
0 0 

The absolute value of the expression between the curly brackets is 

smaller than the oscillation of f{x) on ^ . 

105. [Riemann: Werke. Leipzig: B. G. Teubner 1876, p. 240; 

E. W. Hobson: The Theory of Functions of a Real Variable & The Theory 
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of Fourier’s Series, 2nd Ed., Vol. II. New York: Dover Publication 1957, 

pp. 514—515.] We may choose a = 0, b = 2it. 

2 71 

J f(x) sin nx dx 
o 

n 

= f sin ny £ j/((v — *) V + v) ~ f(\v ~ x) IT + V + t)}dy' 
0 v=\ t X } 

The absolute value of the expression in the curly brackets is smaller than 

the oscillation of f(x) on £(v — 1) , v . 

106. [L. Fejer: J. reine angew. Math. Vol. 138, p. 27 (1910).] We 

may choose a = 0, b = 2n. 

2n 2n 
v — v- 

2 n n n n n 

J f(x) |sin nx\dx= £ f fix) |sin nx\dx = £ fvn f \smnx\dxt 
0 *=1, ,.2* v = l 2n 

(,-D- (v-D- 

where fvn denotes a value between the least upper and the greatest 

lower bound of f(x) on jjv — 1) ^ , v . 

107. If the points of discontinuity of the bounded function f[x) have 

only finitely many accumulation points on [a, b] it is possible to find 

finitely many intervals of arbitrary small length outside of which f(x) 

is continuous. Such a function is therefore integrable. The function in 

question has the points of discontinuity and 

also js == 0 if oc = 0. 

108. According to Riemann’s criterion it is possible to find in an 

arbitrary subinterval [a0, 50] of [a, 5] a smaller subinterval [av 5J, 

b1 — ax < -Q-^ —-, in which the oscillation of f(x) is smaller than ~. 

Iterating this procedure we obtain a sequence of intervals \an, bn], 

n = 1, 2, ..., b„ — a„ < ——— , on which the oscillation of fix) is smaller 
’ ’ n n gW * ' ' 

than —. The point oc = lim an = lim bn lies in \aQ, b0] and f(x) is conti- 
2n n oo w oo 

nuous at oc. 

109. Assume that /(£) = 0 at each point £ of continuity of f[x), 

a <z £ < b. 
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c: Dover Publication 1957, 

iv~^+y +^))dy. 

lv brackets is smaller than 

>1. 138, p. 27 (1910).] We 

2a 
v — 

n n 

= 2 fvn / \sinnx\dx, 
v=1 2a 

'-"IT 

upper and the greatest 

ounded function f(x) have 

i,b] it is possible to find 

§th outside of which f(x) 

tegrable. The function in 

is possible to find in an 

tiler subinterval [av 5J, 

r f[x) is smaller than ~. 

ice of intervals [an, bn], 

scillation of f(x) is smaller 

ao> b0] anc* f(%) is conti- 

£ of continuity of f(x), 

where xv_1 < £y< xp and the maximal length of the subintervals 

[*v_i, xv] converges to 0 as n^oo. According to 108 £v can be chosen 

such that f(x) is continuous at # = fy, and so /(fv) = 0. Let, on the other 

hand, be /(£) 4= 0 at the point of continuity f, a < f < b. Then we have 
fft)2 

for <5, 6 > 0 and sufficiently small, f(x)2 > -— whenever \x — £| < d, 

and therefore 

b | + <5 

/ /(*)2 dx ^ / f{x)2 dx ^ (5/(f)2 > 0. 
a £— 6 

110. Assume that e, rj are given, e, rj > 0 and that 6 is such that 

M^i) — 9(^2) i < e whenever | — y2 \ < <3. Since /(a?) is integrable, a 

subdivision of [a, b] can be found for which the total length of the sub¬ 

intervals where the oscillation of f(x) is ^ d is < r). On the other sub¬ 

intervals the oscillation of cp [/(#)] is at most s. 

111. [Cf. C. Caratheodory: Vorlesungen iiber reelle Funktionen. Leip¬ 

zig and Berlin: B. G. Teubner 1918, pp. 379—380.] Let f(x) be defined 

as in 99 and G(x) as in 98 and 

fl for y = 0 
cp(y) = 

[0 for vy 0. 

Then q> [/(%)] =G(x). 

112. Assume that f[x) is non-increasing. We obtain for 0 < x < ~ 

1 - (—)a+1 

/ trm 2= m /ra = *a+1 /w —1|L_ 
XX _r 
'2 2“ 

2* 2* a +1 . 
/ £7(0 dC sj /(*) J £ad£ = f(x) a~- • 

In the case of a = —1 the last factors, both positive, must be replaced 

by log 2. 

113. Change the variable of integration in 112: substitute ~ for x. 

Or prove the statement directly in a similar manner as 112. 

114. The integral over [0, s] exists if and only if the integral of 

xa(l —or converges, i.e. certainly for < — 2; for 

/? ^ — 2 if and only if <x > —1. The integral over [co, 00), a> > 0, is 

convergent for /S 0 if and only if a < —1. If /? > 0 and n an integer 
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According t: 11 

hereby j F vj 



-J dx. 

1 ^ Ax, 

nverge we must have 

i that the integral in 

1, $ < —2 or if 

e numbers such that 

moreover an < y. 

« = 3, 4,... 

. . 

*er every finite inter- 

e I f(x) | ^ F(x) the 

- / /„(*) dx 
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The first four terms on the right hand side are arbitrarily small for 

sufficiently large co and the same is true for the last term if n is suffi¬ 

ciently large while co is fixed. 

116. Set V=~+Xn 1In, X„ ->A. VI 31 implies 
2 

ji y» 
yn (n \ 1 r f x \n 
~zr ( ) = o— / COS — COS AnX dx. 2 \ v/ J \ 2\/n » 

— 7i\n 

In 115 we put: 

/»(*) = 
2n (COS 2[AT) cosAn*for |*| ^n]/n 

0 for | x | > 7i \/n . 

We have lim/n(#) = f(x) = -—e 8 cos/U. To find a function Fix) as 

described in 115 we proceed as follows: Since 

log COS X 

T2 

is continuous and negative on ^0, y^ , 

!. log cos # 1 ,. log COS X 
lim —5—— =   , lim -= - oo, 

2-»+0 x 2 n x 
~2-° 

there exists a (absolute) constant K, K > 0, such that 

log COS # ~ ^ 71 
—cos% < e , 0 < x<- . x1 — — — 2 

-Kx8 

Thus we can pick F(x) = 4- e 4 . 

117. Put 2 *ve~'v = Pn(y). Then 

/ pn(y) Vs 1 dy=[a11 s + a22 s H-h «„« s) T(s) = Dn(s) i». 
0 

According to 115 it is sufficient to find F(x) such that | Pn(y) ys_11 < F(y), 

whereby J F(y) dy exists. Partial summation yields 
o 

Pnty) = 2 D,(a) &’*-'*-(* +l)a* 
V = 1 

a —(v + 1 )y ] + naD„(o) e~ 
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The function xae xy has its maximum, [ae 1)<7y-<r, at x = ~; thus 

| Pn(y) | < Ay-a, | Pn(y) ys~x I < Ays~a~1> A independent of n and 

y. Set F(y) = Ay5~°~l for 0 < y < 1; F(y) = Be~y for y 1, B > 0, 

B independent of y. 

118. We have with co > 0 

oo I —CO oo ' 0) 

f f{x) sin nxdx ^ / |f(x) \dx + J | f(x) \dx + J f(x) sinnxdx . 
— oo I —OO co — CO 

The first two integrals on the right converge to 0 as co -> oo, the third 

integral converges to 0 as n -> co, co fixed [105]. The proof of the second 

part of the problem runs similarly: 

I “ 2 °° 
f f(x) | sin nx | dx — — f f(x) dx | 

- (* + V) / W*) idx+f1 + -§) / l/(*)ldx 
— oo ' ' CO 

I ® 2 03 
+ f f{x) [ sin nx | dx-j f{x) dx 

I —o> ^ — CO 

[106]. 

118.1. [G. Polya, Problem: Jber. deutsch. Math. Verein. Vol. 40, 

2. Abt., p. 81 (1931). Solved by G. Szego: Jber. deutsch. Math. Verein. 

Vol. 43, 2, Abt., pp. 17-20 (1934).] 

119. (1) Reduction to two functions of two variables possible: Let 

y(x, y) make different values u = <p(x, y) correspond to different pairs 

of numbers y (e.g. a one to one correspondence between the #y-plane 

and the number line u). For a given function f(x, y, z), ip(u, z) is then 

found in the following way: 

If u* does not belong to the range of q>(x, y), y)(u*, z) is chosen arbi¬ 

trarily, e.g. ip(u*, z) = 1. 

If u* does belong to the range of cp{x, y)} it corresponds to a unique 

pair #*,y*,thus u* =cp(x*,y*) ;in this case we choose y)(u*, z) = f(x*, y*,z . 

Then it is true for all #, y, z: yi((p{x, y), z) = f[x, y, z). 

(2) Representation impossible, e.g. for the function 

f[x, y, z) *= yz + zx + xy. 

Arbitrarily many pairs xvy1\ *2, y2; ...; xn,yn exist so that a 

given continuous function cp(x, y) assumes the same value for all of 

them. (They are points of the same “level line”.) If cp(x, y) = const, the 

statement is evident. If cp(x, y) is not a constant and if e.g. cp(x't yf) = 1. 

(p[x'",yf") = 3 there exists on each circular arc connecting x', y' with 

x'", yr" an intermediate point x", y" for which cp(x", y") = 2. 

If t(x, y, z) =a 

arbitrarily many 

V 

identically in i. J 

if to hold identic; 

~ust be satis del 

li x1 = xv then j 

there exists exart 

rrarily many as 11 

yz — zx — xy, 

— the form *r q y. 

In the same : 

xy — yz — z can* 

:: two variables 1 

three such funcria 

xy — %- 

X: cation 119a. 

It is easier to < 

runs ]119a;. Wee 

teat does not sal 

oixmg into each 

Xiirr Akad. Wise 

119 a. We wal 

jcrrrarives by snbe 

1 The relatia 

xx which / =: 4 

— 
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;• at x = thus 
y 

•independent of n and 

= Be~y for y 1, B > 0, 

CO 

r — J f(x) sin nxdx j. 

:: 0 as co —>■ oo, the third 

. The proof of the second 

I/Ml dx 
' 0) 

f(x) dx [106]. 

Math. Verein. Vol. 40, 

deutsch. Math. Verein. 

> variables possible: Let 

spond to different pairs 

ce between the *y-plane 

f{x> y, z), tp(u, z) is then 

ip(u*, z) is chosen arbi- 

corresponds to a unique 

3sey>[u*, z)=f(x*,y*,z). 

f{*’ y. A- 
.nction 

xn,yn exist so that a 

• same value for all of 

’ If <p(x> y) = const, the 
and if e.g. 9(x', y’) = 1, 

connecting x’, y' with 

(*", y") = 2. 

tiicic are If y’ ^ y)> z) as proposed, cp(xt y) continuous 
arbitrarily many pairs *1( y,; *2, y2;...; y„ for which 

f(xi> Vi, z) = f(x2, y2, z) = ••■ = f{xn, yn, z) 

identically in z. If 

(xi + Vi) X + xlVl = (x2 + y2) z + X0t 

is to hold identically in z the two equations 

*1 +yi = *2 +y2> xiy1 = x2y2 

must be satisfied. Eliminating y^ we find 

*1 ““ (x2 + y%j xi + x2y2 = 0. 

If % =f= % then Xl = y2, Vl = % This means that to a given pair *, v, 

there exists exactly one different pair on the “level line” and not arbi- 
trarily many as the proposed form asks for. 

yz + « + xy, being a symmetric function, cannot be represented 
m the form y)[(p(y, z), x) or y)((p(z, x), y) either. 

In the same manner one can show that the continuous function 

XV +yz+z cannot be written with the help of two continuous functions 

of two variables boxed in each other, however it can be done with 
three such functions: 

xy+yz + z=(x+z)y+z = S{P[S(x, z), y], z}. 

(Notation 119a.) 

ft isI easier to discuss similar questions for narrower classes of func¬ 

tions [119a]. We cannot represent an analytic function of three variables 

that does not satisfy some algebraic partial differential equation by 

boxing into each other a finite number of analytic functions of two 

variables. Cf. the 13th of the “Mathematical Problems” by D. Hilbert: 
Nachr. Akad. VViss. Gottingen 1900, p. 280. 

119a. We write f(x, y, z) = yz + zx + xy and denote the partial 
derivatives by subscripts. 

(1) The relation f(x, y, z) = 9{v[x{x, y), *], z} for all value$ 
for which fy = z+x + 0 imphes 7 

dz 
/4\ a (W-A 
Vv) &\ va) 

thus fxJy /. fyz 0, yz ~ zx -j- xy does not satisfy this equation. 
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(2) First proof: Taking the derivative with respect to *, y, z and 

eliminating <pv and cpy we deduce from the relation 

f(x, y, z) = <p[y>(x, z), x(y, *)] that 

fx V>x 0 

| /, 0 Xy |=0- 

I fz V>z Xz i 

We can assume that Vx 0, Xy s 0. If y>x H= 0 and ty + 0 we may write 

yu 

y>x 
—V, 

7,y 

V — v(x, z), u = u{y, z), thus vy = ux = 0. Moreover 

fyM + fx° + fz — 0 • 

This leads to a contradiction: Put F — fyu + fxv + f2,f = Vz + zx + 

Then 

of , dF . . f = _2z. 
b ’T-5Zty—-*zU^- fix Bv Jx,y 

B2F 

Bx }y By ex By * 

Second proof: Take the derivatives with respect to x, y, z and set 

z = —yin the three corresponding equations. The first equation implies 

then 0 = <p,ipx ■ We can assume ipx = 0 so that for the special values 

mentioned we have <pv = 0, as long as ipx 4= 0. I.e. 

fy = x — y = (pxXy> fz = *+y=<P?.Xz- 

U x ^y, then <px 4= 0. Xy + 0 and 

x + y_ 

x - y~~ Xy' 

The right hand side depends on y and z = —y only: contradiction. 

(3) Differentiation of f{x, y, z) = <p{y[x(x. y), *]. x} implies 

/, = + v*' 

fy = %%Xy 

fz=%Vz> 

fxy = ''" i“ (PwXxXylPy.r. ’ 

fyy = ' ‘' + <frXy>Pr.y.' 

In the last two equations the terms containing fx are not written down. 

We set 2 = —x 

and because of the i 

that y)y = 0. Thus 

for the special vain 

contradiction be car 

the three function 

120. No. Exam| 

121. [Cf. G. Pol 
least upper bound < 

f(x)=fr 

a <£< x, x < rj 

identically because 

*=-r •Thns 

b 
f f[x) dx < M 
a 

122. [W. Blasd 
p. 273 (1917)d Aco 

/(*) -/W = (* - 

Integration and th« 

xo + r 

f m-fwi 

x0 — r 

because the functi. 
between its great— 

122.1. The func 

122.2. Introdac 

and take for (u. • : 

(*-■*) 
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r_:r. respect to x, y, z and 

C*: n 

that 

and /v 4= 6 we may write 

r-over 

— fzt f = yz + zx + xy. 

= —2z. 

i respect to x, y, z and set 

The first equation implies 

ia: for the special values 

L I.e. 

" = 9JU- 

only: contradiction. 

x} implies 

We set 2 = — x and obtain 9— 0. Since we may assume %y 4= 0 

and because of the third equation we conclude for * + y 4= 0 and % 4= 0 

that y)y = 0. Thus 

1 = <PWX/lCy%x. 0 = %XyWxx , 

for the special values mentioned above. These two equations contain a 

contradiction because, according to the second equation, at least one of 

the three functions involved has to vanish. 

120. No. Example: f{x) = r5; f = 0 is a point of inflection. 

121. [Cf. G. Polya: Tohoku Mat. J. Vol. 19, p. 3 (1921).] Denote the 

least upper bound of | /'(*) | on [a, b] by M. Then M > 0 and 

/(*) = /'(£) (* - a) ^ M(x - a) for a 

/(*) = f'(v) M(b - x) for 

a < £ < x, x<rj <b. It is not possible that both inequalities hold 

identically because such a function would cease to be differentiable at 
a T & 

x = —— . Thus 

a + b 
~Y~ 

f f{x) dx<M J (x - a) dx + M f (b - x) dx = M {b - a)* 

a + b 
2 

122. [W. Blaschke; Problem: Arch. Math. Phys. Ser. 3, Vol. 25, 

p. 273 (1917).] According to Taylor’s theorem we can write for 

/(*) - /w = (*- *„) /'« + - 

X ^ Xn 

r < x < x0 + r. 

Integration and the first law of the mean for integrals yield 

x0+r x0 + r 

J [/(*) - /Ml A* = j /"(*) dx 
*0 T ■ 

no f (* - *o)s dx, 

because the function f"(x), being a derivative, assumes all the values 

between its greatest lower and its least upper bound. 

122.1. The function f(x) is linear; method of 122.2. 

122.2. Introduce the abbreviations 

/(*) = A, f(x) = X, m = B, 

and take for [u, v) first (a, x), then (x, b), then (a, b): 

(x- a) ]/AX + [b~x) YXB = {b~a) |/Zb, : v'z are not written down. 
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and hence 

/(*)=* = <^r 

where c and d are appropriate constants. Convince yourself by performing 

an elementary integration that a function of this form satisfies the 

imposed condition. 

122.3. By the method of 122.2 

^X')=]/\ex+i\ ‘ 
oo 

123. First proof: Suppose that the series 2 pnenx = f{x) is con- 
n=0 

vergent on the interval [a, b); then it can be differentiated arbitrarily 

often in that interval: 

/'(*) = 2 /"(*) = f » V*. 
n=0 » =0 

fix) f"(x) - [/'(*) ]• = KtJm+n)x > 0 [72] • 
m=0n=0 

__ 
Second proof. Proposition 80 implies for x1<xi, av = Vftve~ 

— tli 

=/k«2 

[/(^)]2</W /(**)• 

124. [Cf. J. L. W. V. Jensen, l.c. 70, pp. 187-190.] Suppose that 

the function y(x) is convex on the interval [a, b] and that <p(x) < G. 

I*i + *21— + *n\ < y(^i) + <p(*2) + “• +?(*») 
^ \ w ) = w 

implies that for % = *2 = • • • = xm = x + n <5, xm+1 = * * * = xn = 

a; an arbitrary point of (a, b), |<5| sufficiently small, m < n, 

q?(x + n<5) — <p(x) ^ y(* + md) — <p{x) 

n — m 

Substituting — 6 for d and remembering that 

q){x + m d) — cp{x) ^ cp{x) — qp(x — mb) we obtain 

cp(x -f nd) — op(x) ^ (p{x + mb) — (p(x) 
n ~ yn 

W ^ (p{x) — <f(x — m6) ^ <?(*) — (p[x — 77(5) 

m 
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: e yourself by performing 

this form satisfies the 

s S Pn^x = /M is con- 
w=0 

differentiated arbitrarily 

PmP«e[m+n)x> 0 [72]. 

— tdi 
r x1 < x2, at = ]/ppe2 

>7—190.] Suppose that 

’ and that <p(x) < G. 

-+ <p(*n) 

» Xm + 1 =••• =Xn=Xt 

all, m < n, 

tin 

- yfo — w(5) 
n 

Hence for w = 1 

;f— ^ + (5) — <p(x) ^ <p(*) — <p(x — <5) 1> ~ 
n 

Let <5 converge to 0 and w increase to infinity in such a way that # + n (5 

remains in (a, 6). Then the continuity of ?>(*) is established. Assume 

S > 0 and replace d by — in (*): 

P(* + 6)-y(*)^y(* + V*)-yW 
<5 m . 

<p(*)-<p(x--d) 
>_V n / > y(*) — y(* — <5) 

™8 = 6 ' 
n 

Since ^(^c) is continuous : 

<p(x+ 8) - y(*) ^ 9»(j«r + <5') - $>(*) , 

5 = a5- 

> ?(*) - p(* - <$') - <p(x - $) '0 < ^ ^ 
= = 6 . 

As <5 —>• 0 the first term converges to a limit l+ and the last to a limit L, 
^ . 

125. [G. Polya, Problem: Arch. Math. Phys. Ser. 3, Vol. 24, p. 283 

(1916).] The values which y = /(%) assumes on an interval of length l 
fill a closed interval of length L: 

L = max |/M) — /(*2) | = max ( f /'(*) id ^ f max )/' (*) I. 
I x\ 

Let e > 0. About each point * where f’(x) = 0 construct the largest 

interval for which \f'[x)\ < e. We denote the length of the interval by 

lx. The values f(x) is assuming on such an interval cover at most an in¬ 

terval of length lxs. The points of M (y = /(*) with f'{x) =0,^^ b) 

are enclosed in countably many intervals of total length <7 e(b — a). This 

proof shows in addition that the set M has measure 0. " 

126. [U. Dini; cf. C. Caratheodory, l.c. Ill, pp. 176—177; Hille, 

Vol. II, p. 78.] It is sufficient to consider the following case: 

AM = AM = fn(x) ~2i •••, fn{%) continuous, lim fn(x) = 0, 

0 — * — 1’ If the convergence were not uniform, infinitely many points 
X would exist for which/„(*„) > a > 0, 0 ^ 1, a independent of n. 

Let f denote an accumulation point of the xjs and m be such that 
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/w(f) < a' Determine a neighbourhood of f in which fm(x) < a, thus 

fn(x) < a for n m. There are infinitely many *n’sin this neighbourhood: 

contradiction. 

127. [Cf. G. Polya, Problem: Arch. Math. Phys. Ser. 3, Vol. 28, 

p.,174 (1920).] The limit function is monotone too, say monotone in¬ 

creasing. Subdivide the interval of convergence of the sequence fn(x), 

n = 1, 2, 3, ..., into subintervals [xv_lf xv]} v = 1, 2, ..., N, so small 

that f(xv) — f(xv_1) < e, moreover choose n so large that j fn (xv) — f(xv) | < s 

for every v. Then we have for xv_x tg x xv 

/(*,-1) — e < fn(xy_j) < fn(x) <L fn(xv) < fix,) + 6 

thus | fn(x) — f(x) ( < 2s] we have used the hypothesis that fn(x) is in¬ 

creasing. 

128. Obvious. 

129. Assume a < x <C b. (It is obvious what has to be changed in 

the proof below to accommodate the cases x = a and x — b.) 

/pn(t) m dt - fix) = / V„« m - /(*)]dt+7+ /• 
a x — e a x + e 

x+e 

The absolute value of the first term on the right is <<5 f pn(f) dt ^ d 
x—e 

whenever | f(t) — f(x) | < <5 for * — e ^ x + s. The absolute values 

of the other two terms are smaller than 

2 max|/(0 | (jp„(t)dt+ f p„(t) dt\. 
“S'S6 \a xU I 

Thus the condition is sufficient.—We define 

0 

1 

for x — e -\-7j^t^x-\~s — 7], 

for a ^ t ^ x —e and x + £ ^ t b, 
. linear for x — e^t^x^-e-\-rj and % e — rj <L t x e, 

0 < r\ < e\ f(t) is continuous. From 

b x—e+r] x+e x—e 

f tnty) /(0 dt ~ fix) = j Pn{t) f{t) dt + f pn(t) f{t) dt + f P„(t) dt 
a x — e x+e—rj a 

+ / fin{£) 
x+e 

follows that the condition is necessary because all the terms are positive. 

* 

130. The 

-i = oc. In 15 

»~ «rxe oj is pi 

131. The 

l ~ tr¬ 
over (- «J 
I: the mt-rrs 

converges :a 

writing ■+~ t, 

f e~ 

hence for cj 4 

Tnis integral 

132. CL 1 
defined then 

uniform cofl 

133. ]E.J 

1908 h Appi 

For 0 < £ fg 

7V.(x,oj 

According to 
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- 'vh'ch fm(x) < a, thus 

- this neighbourhood: 

i Phys. Ser. 3, Vol. 28, 

i- :oo, say monotone in- 

L*:-r of the sequence fn(x), 

• = 1, 2, ..., AT, so small 

— ;hat !/„(*,) ~f{xv)\<s 

'■ ■ < f(x,) + £ 

-othesis that f„(x) is in- 

has to be changed in 

i and a; = b.) 

x — e b 

- . dt + f + f. 

a x+e 

x+e 

ht is <d f p„(t) dt ^ 8 
x—e 

- s. The absolute values 

.W dt 

gb, 

~ £ " ^ ^ t ^ -J- £, 

/(<) +*fp„(t) dt 

a 

b 

+ / fin(t)dt~> 0 
*-f-£ 

il the terms are positive. 

130. The statement of 129 can be extended to the case b = oo, 

x = oo. In 129 put » = ±, £,(*) = then 

CO ^ 
lims / <r“ dt = 0, s f dt = 1 
e ->u n J } 

0 0 

where a> is positive and independent of e. 

131. The substitution of e‘ for t changes the interval of integration 

, Oo) m 0 ( oo, oo). The new integral can be split into two parts 

h7Jt«ZJ [0,°o) We «• - p- 

/ e,lf{e‘) efdt = j eucp(t) dt 
0 0 

converges for A = £ it converges for any smaller A, X = B-s e > 0- 
writing e^‘tp(t) = yi(t) we obtain ’ 

CO w 

/ dt = dt + £ />- / />(T) dt> 
0 0 \o / 

hence for co -> oo 

00 00 / t 
/ dt — e J e-°‘ ^ f y,(r) drj dt. 

This Integra1 is, as a function of e, continuous on the right [1301' 

132. Cf. 128 and the first part of the proof of 129. The number <3 

made arbitranly sma11 with * inde^d^ * * 

Palermo Vo1-25’ »•**-*« 

pn(x,t) =rIL^(*-02f 

/[!-(*- tf r dt 
0 

x+e 
a - s2r (1 - e2)n 

For0<sgj:gi _£ 

* —e 2 

f Pn(X! t) dt + J P„(x, t) dt < 

/ [1 ~ (* - i)2]B / (1 _ (Vi, 

According to 201, 202 this expression converges to 0 because 

/(I-t2)ndt~ 2” 

' * 1 3 5 2n + 1' 
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134. [L. Fejer: Math. Ann. Vol. 58, pp. 51-69 (1904).] Apply 132: 

a = 0, b = 27t} fin[x, t) = 

pn’s are “normed”, i.e. 

x -t\ 2 
sin n ——— 

2nn l . x — t 
sm—-— 

f Mx> t)dt = 1; 

According to VI 18 the 

also for 0 < e ^ x ^ 2tz — e 

f p„(x, t) dt + f pn(x, t) dt < 

Since the integrand is periodic, any interval of length < 2n can be 

considered as an interior subinterval. 

135. Cf. 133. 

136. Cf. 134. 
137. We may assume that f(x) is non-negative and [102] that it is 

piecewise constant. Such a function can be obtained by addition and 

multiplication by positive constants of functions with the following 

properties 

f 1 on a subinterval [<x, /9] of \a, b], a a, < ft ^ 5 

[ 0 outside of [oc, . 

For simplicity’s sake let a < oc, fi < b. 

We define for sufficiently small r), r) > 0, 

/„(*) = 

1 -\- y), 

rj, if ai^x^cc — 7] or/9 + rj 5^ x^b; 

linear, if oc — rj^x^oc or p^x^p + r). 

Then fv(x) — f(x) ^ rj, furthermore 

b b 
Oc//, [x)dx- f f(x)dx = t](ec — t]—a) 

a a 

+ r]{b—p — r]) + r)(l+2r]) +ij[p — at), 

i.e. arbitrarily small with rj. The function /,(#) is everywhere continuous. 

If the polynomial P(x) is such that 

|/,(*) — P(x) | < rj, then f(x) C /„(*) — rj < P(x) 
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-69 (1904).] Apply 132: and 

According to VI 18 the f P(x) dx — f f(x) dx < rj(b — a) + / /,(*) dx — f f(x) dx. 
a a a a 

l 

’-5m T 

For oc = a or $ = b some slight changes have to be made. A similar 

proposition holds for trigonometric polynomials if a — 0, b = 2n. 

138. [M. Lerch: Acta Math. Vol. 27, pp. 345—347 (1903); E. Phrag- 

men: Acta Math. Vol. 28, pp. 360—364 (1904).] Let P{x) denote an 

arbitrary polynomial: 

/ [/(*)]2 dx = f f{x) [/(*) — P(*)] dx + f f(x) P(x) dx 
a a. a 

= /mm - pw dx, 
of length < 2n can be a 

thus 

pative and [102] that it is 

:ained by addition and 

c-: cions with the following 

b b 

f [/M]2 dx ^ max |/M — I * / |/M 1 [135,109*] 
a a 

A similar statement holds for trigonometric moments (Fourier constants) 

/.f(x) cs°* dx, n = 0,1,2,... 

139. Determine />(*) as in 137 and assume |/(*)| M. Then [cf. 
i :', a ^ oc < 5^ b solution 138] 

b b 
f [/(*)]2 dx^Mj \J[x) - p{x)] dx<CMs. 
a a 

r ' — rj ^ %^*b; 

r c x fg + r]. 

140. Let f(x) not vanish identically and not change sign more than 
b 

n — 1 times. According to the first condition, J f(x) dx = 0, there exist 
a 

numbers xv %k, a < x1 < x2 < * ■ * < xk < b, with the following 

property: f(x) does not vanish identically in any of the subintervals 

(a, xj, (xv *2),..., (xk_v xk)), (xk> b); f{x) does not change sign in any of 

these subintervals (V, Chap. 1, § 2) but the signs alternate for consecutive 

r-a) subintervals. Therefore f(x) (x — xx) [x — x2) * ■ • (x — xk) has the same 

sign for the entire interval (a, b) and does not vanish identically. Accord¬ 

--ri) +»?(/? — «). ing to the hypothesis we wrould have in the case k ^ n — 1 

:5 everywhere continuous. 
b 
f f{x) [x — *x) (x — x2) •••(* — xk) dx = 0 
a 

- ?? < p(*) i.e. [109] f(x) (x — xY) (x — x2) ■■■ [x — xk) = 0, f{x) = 0: contradiction. 



274 Integration 

141. [Cf. A. Hurwitz: Math. Ann. Vol. 57, pp. 425-446 (1903).] 

Suppose that /(0) > 0 and that fix) changes sign 2k < 2n + 2 times m 

the interval (0, 2n). Let xlf x1} x2, x2, •••> %k> xk> 

0 < x± < x[ < x2 < x'2 < • • • < %k < xk < 

be the points where the changes of sign occur. In analogy to solution 

140 we form 

X — X-i X — x'-, X — x2 . x X’2 

f[x) sin —-— sin —^— s^n 2 sm 2 

Note that 

_ x — (X . X — p 1 - 

sm sin —g- = y cos 2 :-Tcos(*-^) 
(« 8 constant, 0 < « < 2jr, 0 < fi < 2n) changes sign in the interval 

(0, 2n) only at * = a and * = 0. Use V110. If /(0) = 0 consider f(x + a) 

with f(a) 4= 0. 

142. [L.c. 138.] Writing / e~k°‘<p(t) dt = 0(x) we obtain for 

k > 

J(ft) = [#(*) *-»-**% +(k- k0) f<P(x) e-^dx. 

The relations 

e-*x _ 0 log ~j = ip(y), y(0) = J(k0) = 0, 

define ip{y) as a continuous function on the interval [0, 1], furthermore 

f yj(y) y”-1 dy = Q, n = 1, 2,... 
o 

Hence [138] f(y) = 0, 0(x) = 0, cp{x) = 0. 
143. [M. Lerch, communicated by M. Plancherel.] If s0 were a zero 

of the T-function s0 + m, m = 1, 2,.... would be zeros too [functional 

equation]. Let m be so large that 9t(s0 + m) is positive, put 

s = s# + m + 1 = a + it, a > 1. The equation 

f e-nxy?~1 cos [t log x)dx = 9lf 0~*Vdx = 91 = 0,» = 1,2,3,... 

o 0 
would imply [142] that *0-1 cos (t log x) = 0: contradiction. 

144. For /(*) = 1, x, x2 cf. I 40. For f(x) = e*: 
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pp. 425-446 (1903).] 

m 2.k < 2w -}- 2 times in 
145. We have [I 40] 

< Xk < 27Z, 

Ir. analogy to solution 

2 {v — nx)2 f ) xv(l — x)n~v — nx{ 1 — x), 
v=0 'V ' 

thus 

1 
n2 nx{ 1 — x) ^ 4 . 

• x~xk . x~xk 
2 Sln 2 • 

146. [Cf. S. Bernstein: Communic. Soc. Math. Charkow Ser. 2, 

Vol. 13, pp. 1—2 (1912).] We define sn(x) = max f(x) — f(~)\ for 

i 

ges sign in the interval 

= 0 consider f(x + a) 

all v for which —-x ^ n 4. lim en(x) = 0 uniformly in x, i.e. 
n \ n->oo 

£nW < £„> ^m en — 0. Moreover 
n—>oo 

/(*) - *.M = Z [/(*) - /(f)] (“ )*’(! - *)*"'. 

<P{x) we obtain for 
According to 145 we have the inequahty 

I/M - *.M 1 <«, 21' + 2M ^ <«. + f »-*, 

i T
 

tiL where | f(x) | < M on [0, 1]. 

147. [Cf. J. Franel: Math. Ann. Vol. 52, pp. 529—531 (1899).] 

Obvious for 0 ^ r < rv For rm ^ r < rm+1 the right hand side is equal 

ii o
 II ©

 to 

mf[r) - ![/(*>) - /(r,)] - 2[/(r3) -/(rs)]-(w-1) [/(rj -/(^-a)} 
rval [0, 1], furthermore 

- w[/(r) - f(rj]. 

§
 II j-
i 

CO
 

But this exactly equals the expression on the left hand side. Indeed, 

the formula we have proved is the formula for “partial integration”: 

berel.] If s0 were a zero 

be zeros too [functional 

positive, put 

/ f(t) dN[t) = N(r) f(r) - / N(t) f(t) dt. 
0 o 

148. If rn_k_1 < = ••• = rn = = *•• = ?n+i ^ rn+i+x 

(possibly k = 0 or l = 0; rQ = 0) then 

i —= 0,w = l, 2, 3,... 
ns 

N(rn — °) -r 1 n — k n n + l N(rn) 1 A 
-=-<— < - = ■-, hm — =0. 

y y y — y y y 
n rn rn rn rn n-^oo rn 

ntradiction. 
i. 

If rm ^ y < rm+1 we find N(r) =m and 

. =[l+(e»-l)J . I 

m 1 1 m ^ N(r) ^ m 

^nt + l +1 Vm + \ ^ rm 

Analogously in the second case. 
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149. Cf. 148 and 1113. 
150. [E. Landau: Bull. Acad. Belgique 1911, pp. 443-472. Cf. 

G. Polya: Nachr. Akad. Wiss. Gottingen 1917, pp. 149—159.] We 

assume c > 1 and choose m so large that 1 < c < 2”'. Then 

L(2r) i(22r) L(2mr) 

1 < L(r) ' L(r) L(r) 1(2*-) L(2m~1r) 
■ 1. 

If c < 1 we replace c by y and use the slowly increasing function L{cr). 

151. Mathematical induction shows that for positive integral ft 

,. 1°gfc2’' , 
lim ;-= 1 • 
r-¥ oo r 

por k = 1 the value of the limit is obvious; if ft > 1 we have for suffi- 

ciently large r 

logfe_! (2 log r) ^ log* (2r) ^ log*r* 

1 < log* r < log* r 

152. It is sufficient to prove 

lim 
log L{ 2” 

log*.! (log r) 

= 0. 

For J 

This relation is a consequence of the inequality < 1 + <5> where 

d > 0 is arbitrary and m sufficiently large, m > M{8). 

153. [149, 152 ] 
... N{cr) x L(cr) 

154‘ N{r) £(*•)• 
155. Any function that is continuous on the left and piecewise 

constant can be obtained as linear combination of the functions 

/(*) = 
1 for 0 <C x ^ y, y > 0 

[ 0 for all the other values of *. 

For such functions the proposition reads 

lim ... . 
r-*oo W(r) 

AT(y>-) _ i [154]. 

Cf. 156 for other functions. 
156. We bound f{x) by two functions that are piecewise constant and 

continuous on the left 

y>{x) ^ f{x) ^ ^(x) 



w 

1911, pp. 443-472. Cf. 

1917, pp. 149-159.] We 

: : < 2”. Then 

' —~—j—* 1. 
L 2m~1r) 

increasing function L(cr). 

: r positive integral k 

-■ > l we have for suffi- 

2 log r) 

: •°g r) 

.. LI2”) 

1 2m_1) 

> M(d). 

< 1 + (5, where 

the left and piecewise 

r. of the functions 

Bes of .v. 

[154]. 

piecewise constant and 
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so that 

f lF^xAJdx — f y>\KxA)dx<£ ;A ) dx 

£ > 0, s arbitrary [102]. Then 

* M *** * W ~ * M ^ f\r)- N(r) \ r ) 

lim inf and lim sup of the middle term he therefore [155] between 

f y){x}^ dx and f‘ W^x*) dx, which differ from f f(x;-j dx by less 
oo o 
than £. 

157. According to 147 we have 

1 y (rn\*-l_S-a (Nlr) 

N(r) / N(r) 
+ (A - *) / NV) t-^-'dt 

OO 1 + 
(A — <x)r~ 

Hr) 
- J L{t) t* 1 dt. 

For 0 < c < 1 

t*-1 dt<w)iL{f) r_1 dt<r~' /dt-l’ 

hm inf and lim sup of the middle term he therefore between * ~ c* an(j _L 

where c is arbitrarily small. a a 

158. Proposition 147 implies that 

S C*"A = N(R) R-*-’' 
r<rn^R 

N(r) r—1 + (« + A) / N(t) t dt. 

hence [152, 153] 

— y (-)" N(r) \r) 
= _i +^LjN{t)t-^-ldt 

-i + 

N(r) 

(« + X)r* 
L(r) 

Let 0 < s < 2* — 1; for sufficiently large r the inequality 

L(2r)<L(r) (1 + e) holds, henceL(2*>) <L{r) (1 + e)’forr = l, 2, 3,...; 
consequently 

1 a 00 <x <» 2 vr 

i<mf i<‘»r*“il<m2£<2V> / <—1 *< 

2 (1 + «)” (2 

zw»-i' 2»-i, 

-a(v—1)   2~71 \   t + e 2 — 1 

a 2* - 1 - 
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159. [As to 159—161 cf. G. Polya: Math. Ann. Vol. 88, pp. 173—177 

(1923).] Generalization of 155—158. As in 156 bound f{x) by two func¬ 

tions y>[x) and W{%) that coincide with —x% '' and xx * respectively on 

[0, 6), with f[x) on [d, m) and with and respectively on 

[<u, oo). We have [157] 

1 V M"~* lim 6X~Xn^t) 1 y (rA*-X =dx- 
A A' ! N{r) mSr)r^6r\Sr] * 

lim ^ , 

and [158] 

Km— X (-) * A = lim 
m~x~>'N(<ar) 

N(r) N(wr) 
i_ y (1») 

—<x—\ 

hm sup and lim inf of £ /—) are therefore bounded by 

-«“- + //(**)&and 1 fi*1 
“ i * “a* 

A ^ dx + co * —. 

Let <5 converge to 0 and co increase to infinity. 

160. Let f(x) be decreasing, /5 > 1 There exist [1115] infinitely many 

values of n such that 

/u = l,2,...,«-l. 
rn \nj 

Choose a number r, rn_1 < r < such that the inequalities 

—< (~y, 

are satisfied too. Thus, since f{x) is decreasing, 

/(»»/[(•€■)? 

We have N(r) = n — 1, consequently 

= 1, 2,n — 1, 

^ = 1, 2,w — 1. 

i ■ 

j tH
 

1 

A
ll ©1 

/* + ! 

J_ V / f—) = — £ f [—) — ——r f / (^') dx. 
N(r) '\r ! N(r) f-"f1 \ r ) ~ n -l J V 7 

r 

The in:egE 

arg aments 

161. Le 
larlv as in 1 

id b 
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Vol. 88, pp. 173—177 

\ : : und f(x) by two func- 

xx~x respectively on 

c respectively on 

rounded by 

~ f f(xX)dx+Q>-* — . 
y- 

• I 115] infinitely many 

/“ = 1, 2, — 

inequalities 

li = 1, 2,^ — l, 

,u = 1, 2,..., * — l. 

f(xj)dx, 

f f(xfl) dx. 
1_ 
n 

The integral J f\x^) dx is a continuous function of /? [131], Similar 

arguments apply if f(x) is increasing. Replace f(x) by —/(*). 

161. Let 0 < <x < A < /?. By making use of 1116 we establish simi¬ 

larly as in 160 the existence of arbitrarily large n for which 

n k = \ \ n/ o i 

Choose <x and /? sufficiently close to ?, [131]. 

162. .For 162—166 cf. H. Weyl: Nachr. Akad. Wiss. Gottingen 

1914, pp. 235—236; Math. Ann. Vol. 77, pp. 313—315 (1916).] If f(x) = 1 

on the subinterval [*, p] of [0,1] and f[x) = 0 otherwise the equation 

(*) on p. 88 leads to the condition lim — = p — oc. Now suppose 

that the condition is satisfied. To begin we note that it does not matter 

whether the subinterval oc, p is open, halfopen or closed. The relation (*) 

holds for any function that is constant (=)= 0) on a subinterval and vanishes 

outside this subinterval, therefore (*) holds also for any linear combination 

cif\{x) + c,f,(x) + •" + cifi(x) of such functions /„(*), c„ constant, i.e. 

for any piecewise constant function. If f[x) is properly integrable there 

exist piecewise constant functions [102, with a = 0, b = 11 mix) and 
^{x) such that 

y(*x) + y(*s) + • •• + ^f(xj) +f(x2) + —i- f(xj 

n ~ n 

< nxj) + w(x2) +... + w(xn) 

n 

The first and the last expression converge to f ip(x) dx and f W(x) dx 

i 0 0 
resp. and both are arbitrarily close to f f{x) dx. The weaker conditions 

o 

J™ « = & o<p<i 
or 

r V«(P’ lf , 0 
0 </?<! 

are also sufficient. It will even do if one of these conditions is satisfied 
for a set of /9-values everywhere dense on (0, 1). 

163. The condition is obviously necessary. As in 162 the interval 

may be open, half-open or closed. We replace the functions y[x) and 
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if/(x) jn 102, if a > 0 by piecewise linear functions for which the extensions 

of the single line segments pass through the origin (y = kx). As in 162 
we now can establish (*) for a properly integrable function on [0, 1] 

that vanishes in an interval containing the origin, e.g. 

lim-= 1 — p. 0</5< 1 [solution 162]. 

164. Cf. 162. Instead of 102 use 137. 
165. Cf. 162. Instead of 102 use 137. 
166. The condition of 165 is satisfied because 

^fZnikxy _j_ ^2mkx2 _j_ - + e 
,2 Ttikx. V* JZnikvB _ 2nikQ _f 

= e 
,2 Ttiknd - 1 

2nik0 
e — 1 

167. In the notation of 166 we have to examine 

f(xx) +f(x2) + ••• +/(*„) 
lim 
n->oo 

f(x) = , Od +xd), 

where cp(y) = 1 or 0 depending on whether the integer next to y is on 

the right or on the left of y. (If y = n, n + b n integer, we choose, e.g. 

<p{y) == i.) 166 implies that the limit is 

1 1 1 
= f f(x) dx = f <p(y)dy=Y- 

o o 

The proposition is also valid for arithmetic progressions of higher order 

[1128] as can be proved by more elaborate methods [H. Weyl, l.c. 162, 

p. 326]. The result might be interpreted as an expression of a certain 

degree of “irregularity” of the sequence e1, e2, s3> v* 

ses: Math. Z. Vol. 5, p. 57 (1919).] 
168. [E. Hecke: Abh. math. Sem. Hamburg Vol. 1, pp. 57— 58 

(1922).] According to I 88 we have 

00 a, + a0 +-b an 
lim (1 — r)m y anrn = lim---, 

r=l—0 n = 1 

provided that the limit on the right, hand side exists. For 

= (nB - |>0]) e2"ina 

this limit becomes, according to 166, 

o * 

169. [E. Steinitz, Problem: Arch. Math. Phys. Ser. 3, Vol. 19, p. 361 

(1912). Solved by G. Polya: Arch. Math. Phys. Ser. 3, \ol. 21, p. 290 

(1913)." The 1 

166: easier m 

170. We a 

by 10” and a 

.a = x1x2 * * * a 
- — T 

Then 

171. The 

hence n\e — i 

* — l * — 
172. ’Corn 

me ser m ques 

val ]0, 1].] Fo 

mat af is :mai 

are periodic n 

mis would be 

Pin + r —I 

This, howevei 

173. Let I 

is rounded t 

is bounded :o 

174. [L.F 

_ence c 1 . j 

= c : 1 

r: imply the! 



: r which the extensions 

"mm (v = kx). As in 162 
srable function on [0, 1] 

F- e.g. 

[solution 162]. 

t 
- 

'.rrikd e 
2mkn0 

e2mk6 

.“.Lie 

: i9 — Od -\-xd), 

- integer next to y is on 

integer, we choose, e.g. 

missions of higher order 

mods [H. Weyl, l.c. 162, 
expression of a certain 

... £n, ... [cf. R. v. Mi- 

:nrg Vol. 1, pp. 57—58 

. - • •• + an 
n ’ 

exists. For 

Ser. 3, Vol. 19, p. 361 

Ser. 3, Vol. 21, p. 290 
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(1913).] The limit is the function f(x) defined in 99. For irrational * cf. 
166; easier in the case of rational x. 

170. We obtain lOn0 — [lOn0] by multiplying the decimal fraction 

by 10n and omitting all the digits to the left of the decimal point. Let 

a = axa2 • • • ock represent a finite decimal fraction. Choose n so that 

lOn0 — [1O”0] starts with the digits av <x2,...,ock and that r zeros follow. 
Then 

|10”0 - [1OK0] - «| <-J— 
1 io*+r ’ 

171. The Taylor series of e is 

* = 1 +TT+ 2l ^ + V\ + (n + 1)! ’ °<e»<l. 

hence nle = n\ + £ -f -f-1 + 
S_! 
2! 

e » 

n + 1 For 2 we have 

172. [Communicated by H. Priifer; H. Weyl proved, l.c. 162, that 

the set in question is everywhere dense, even equidistributed on the inter¬ 

val [0, 1].] For r = 1 the statement follows from 166. Assume r > 1 and 

that ar is irrational [otherwise we omit the highest rational terms which 

are periodic mod 1]. If the set had only a finite number of limit points 

this would be true also of the remainder mod 1 of the numbers 

P(n + r —1) - ^ P(n + r — 2) + (r g ^ P(n -f- r - 3)- 

+ ( — iy~lP{n) = arr! (n+r-^-^J +«,_x(r —1)!. 

This, however, contradicts 166. 
173. Let k be a positive integer. Then 

e2 nikxy _j_ ^2 nihxt ... _j_ ^2nikxn 

is bounded [166]. Partial summation shows that 

2nikx' + oc2e2”ikx* -|--f ocne2nikxn 

is bounded too [165] 

174. [L. Fejer.] Let N(x) denote the counting function of the se¬ 

quence g(l), g(2),..., g(n), ... and let t = y(x) be the inverse function 

of x = g(i). Then N(x) = [y{x)]. The conditions (1)—(4) imposed on 

g{t) imply the following properties of y{x) for % ^ g(l): y(x) is continuously 

differentiable, y(x) is monotone increasing to infinity as x^oo, y'(x) 

is monotone increasing to infinity as x-s-oo, while-> 0. 
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Since —— < 2 
rW 

rW-y(l) 

2 ^ 
— <C x-. < x, we conclude from the 

1, e fixed or above that -~-r 0 as # -> oo; furthermore —'x~r\~ 
y{%) y(*) 

bounded, as a; increases. 

Let 0 < oc < 1. It is sufficient to prove [162] that 

m — 1 
2 (X(k + <x) - N(k)) + N(m + A„) - N(m) 

—-N[m + -» m = EP(»)]. K - min (xn,») 

converges to oc as n oo. We replace N(x) by y(x). In view of the proper¬ 

ties of y(x) we find that this proposition is equivalent to 

m 

lim J_ 21 (y(* + *) - y(*)) = *• m^oo y(m) k==l 

According to 19 this quotient is, with g(l) = x0, equal to 

y{m +.»> - yM + _L_ f (y(x + *) - y(*)) <** + o(rM) 
2y(m) rfw) / 1 n \y{m)J 

%-fy'(£)dx + o( 1), 
y(m) 

x <C £ — £{x) <%+<%. Since y'(#) is montone we have 

m m m 
y(m) — y(#0) = / /(*) < / y'(£) dx < J y'(x + oc) dx 

Xq X0 % 

= y{m + «) — y(%0 + <*) • 

175. Special case of 174: g{t) = af. 

176. Special case of 174: g(£) = a (log t)a. 

177. Assume 0 < q ^ 1. We write 

sn = | sin 1°£ | + | sin 2a£ J + • • • + | sin i 

174 implies for 

g{t) = f’ A*) = | sin 2nx \, 

'fl- 

lim — = f | sin 2nx\ dx = — . 
n J 1 1 n 

Thus (s0 = 0) 

s-lzl_ = £ s( _L _ 1 

(v + 1) / 

I ^ f 
+ -»-+ +°°- 

Le. c: =4 

179. U 

exrrea 

granon. oc 

180. n 

z £ = /j 

ii 
i 
^
 

i 



n
 
^

 

; x, we conclude from the 

y>x t£) 

7W 

$2' that 

1, £ fixed or 

= 7 n)l> K = min (*w> *) 

. In view of the proper- 

■alent to 

i* = *■ 

- equal to 

• x) dx + o(£M) 

■ e have 

m 

’ < / y'(x + a) dx 
* *0 

sin n° f |. 

^ i -—> + oo. o 1 
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178. [J. Franel: Vjschr. Naturf. Ges. Zurich Vol. 62, p. 295 (1917).] 
Write in decimal notation 

]/n = c(B). We'"’-. 

(We exlude the case where all the cjn)’s are equal to 9 for j larger than a 

certain given index.) In 175 we put a = J, a = lO-1'"1; then 

= 10,’-1j/« - [10,_1 /»] = 0. cfcjVy+2 

* ^ ^ g + 1 

c(«) -(») 
y + 1 y + 2 * •*> 

i.e. cjw) = [10*n]. We find = g if and only if -L < * < 
10 ~ n io This 

means 

V*) - - / ^ =—• J 10 

179. Using the notation of solution 174 we have to prove 

lim 

rn — l 

X W(k + a) - N(k)) + N(m + A„) - N{m) x 
k = l 

W(« 4- xH) J K(x,£)dx, 

as n oo, w -* oo. xn -> f, with 2V(*) = [?*]. We replace W(*) by y* in 

the expression in question, which is justified because mq~m 0, and 
obtain 

m-i 
2 ? V - i) + - i) 

k = l 

nm+xn 
q* - i 

? + (?A — !) ? A = min (f, a). 

a 
The last expression is = J K(x, £) ^ as can be easily checked bv inte- 

0 
gration, or better by differentiation with respect to oc. 

180. The function 

=/ «*) *<*■ «*) «■* + (»- d jW*) 

is continuous in the interval [0, 1], <p(0) = <p(l); <p(|) is constant if and 

onl^ ^ /(^) assumes the same value at all its points of continuity (differ¬ 

entiate) . As a oo, q converges to 1, as a -> 0, q tends to infinity. We find 
accordingly 

i i 
lim J f[x) K(x, £)dx = f f(x) dx. 

0 o 
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As a increases to infinity J{a\f) is reduced to a point, J f(x) dx; the 
o 

distribution is almost uniform for large a’s [176]. If 0 < f < 1 we find 

in addition x 

lim / f(x) K{x} f) dx = f{t) 
° o 

for any point of continuity f [132]. If f is a point of ordinary discon¬ 

tinuity (jump) of f(x) the limit is /(£ — 0). The limit is /(I — 0) for f = 0 

and f = 1. If f(x) is e.g. of bounded variation J(a;f) approaches the entire 

range of the function f[x) on (0,1) as a -> 0. The jumps of f(x) at points 

of ordinary discontinuity are included. For small values of a the distri¬ 

bution is almost like the distribution in 182. 
181. [J. Franel, l.c. 178, pp. 285—295.] We denote the common 

logarithm of n by Log w and write it as a decimal fraction 

Log n = 
log n 

In 179 and 180 set a 

log 10 

ioJ 1 

. r(*> An) r(») An) 
- w • wi wo wq 

log 10 
. Then 

xn = lO*-1 Log n — [10J-1Logtt] = 0. 

i.e. cjn) = [10xn], Thus we are concerned with the range of the continuous 

function g+1 
IF 

?>(£) = / K(x, |) dx 
g_ 
10 

log 10 

on the interval [0, 1]; K[x, f) is defined as in 179 and q = eloj 1 = 101()1 

182. Let [solution 174] 

m = [g{n)], x = g(t), t = y(x), N(x) =[y{x)]. 

Because of the conditions (1)—(4) the function y(x) is continuously 

differentiable for x ^ g( 1), monotone increasing to infinity as *->oo, 

moreover y'(x) —> oo, —>• oo, whence -> 0 as x -> oo and also 
r K 1 y{x) y(x) 

N[x — £) 
N(x) 

0 if e fixed, s > 0 or if e has a lower positive bound as x in¬ 

creases. Assume that 0 < f < 1, f(xj continuous at x = f, s > 0, s 

arbitrary, d > 0 such that | f{x) — /(f) | < e whenever \x — f | < <5. We 

choose n so that | x„ f|<|[1101] and find 

/(* i) + fix2) + *** + /(*») 
-m 

. l/(*i) - m I +i/(^2)- /(fl ! + •'• + !/(*,) - /(fl 1 ^ N{m + f - d?) +£ 

Xo 

185 

pripe-s: 

STr HI* 

181 
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i point, J f{%) dx; the 
o 

If 0 < f < 1 we find 

:r.t of ordinary discon- 

it is /(I - 0) for f = 0 

*' approaches the entire 

r- imps of f(x) at points 

fcL. '.’allies of a the distri- 

*”t denote the common 

|C fraction 

• , ^ ... 

range of the continuous 

log 10 

Sand ? = e10,_l = 10loW 

'•'(*) = [y(*)]. 
n:n v(^) is continuously 

Eif to infinity as x ->• oo, 

1—* 0 as # oo and also 

t: positive bound as x in- 

nous at x = f, £ > 0, e 

r.enever j* — £ | < (5. We 

d 

provided ]/(%) | < M. According to the hypothesis we have, however, 

Now suppose that f is a jump point of f(x) and that again | %n — f | < — . 
Then * 2 

where ju{d) and M(d) denote the greatest lower and the least upper bound 

of f(x) in the interval |* — £| < <5. These inequalities imply that the 

limit points lie between /(f — 0) and /(£ + 0). Now we prove that the 

limit points cover the entire interval between /(£ — 0) and /(£ + 0) : 

Since f(x) is integrable there exist points of continuity of f{x) arbitrarily 

close to f [108]. Let £' and f" be two such points, 0 < ff < land 

let xnr and *M„ [nr, n" integers) be two sequences such that xn, f' and 

xn"-+£", fe(»')] = fe(»")3- We set /(*i) + /(*2) + •** + f{xn) =nFn, 
thus i\, —> /(£'), Fn„ -> /(£"). Moreover we have for each w 

The sequence Fn,} Fn,+V Fn,+2, ..., Fn„ is “slowly increasing” or “slowly 

decreasing” in the sense of solution 1100. It is easy to adapt the proof 
to the case f = 0 or f = 1. 

183. Special case of 182: g(t) = a (log t)a. 

184. The proposition follows from 182, 183 for 

g[t) = 1(P 1J. Log t = y-—— Vlog t, f(x) = 1 for [10#] = g, otherwise 

f(x) = 0. Cf. 178, 181. 

185. _H. Weyl, l.c. 162, pp. 319 — 320.] It is sufficient to prove the 

proposition for f(xv x2, ..., xp) = e2ni^ +M.+-+V*>, wherekvk2,...,kp 

are integers at least one of which does not vanish [165]. Introduce 

Vi + KH + — + kpap = a, + k202 + + kp6p = 6; 

- point, J f(x) dx; the 
o 

If 0 < f < 1 we find 

:r.t of ordinary discon- 

it is /(I - 0) for f = 0 

** approaches the entire 

Viz mips of f(x) at points 

fed values of a the distri- 

*”t denote the common 

|E fraction 

• , ^ ... 

range of the continuous 

log 10 

Sand ? = e10,_l = 10loW 

'•'(*) = [y(*)]. 
mn y[x) is continuously 

Eif to infinity as x ->• oo, 

1—> 0 as x oo and also 

t: positive bound as x in- 

nous at x = f, e > 0, e 

r.enever |# — £| < <5. We 

d 

186. Special case of 185: p = 2, /(xv x2) = 1, if «, Sx1^cc2, 

— x2 ~ @2> otherwise f(xv x2) = 0 in the unit square. n 
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187. [Cf. D. Konig and A. Sziics: Rend. Circ. Mat. Palermo Vol. 36, 

pp. 79—83 (1913).] We may assume that the motion in question takes 

place in the square By reflection in the lines 

x = i, y = i three domains besides f are obtained. The four domains 

form a subdomain f* of the unit square 0 ^ x ^ 1, O^y^l. Trans¬ 

lating f* by an integer number of units parallel to the axes we construct 

an infinite number of domains as in 186. The original zigzag motion in 

the square 0 fg # 0 ^ y ^ i can be replaced by a rectilinear motion. 

Special case of 185: fi — 2, f(xv x2) = 1 if xlf x2 is in f*, otherwise 

f(xi, x2) = 0 in the unit square. 

188. [G. Polya: Nachr. Akad. Wiss. Gottingen 1918, pp. 28—29.] 

We put ip(y) = e2mky, k positive integer, in VIII 35. Then we obtain, 

using the same notation, g(ri) = 0 for n > k. I.e. 

2 V (i) = 11* (t) I ^ !*(!) I + l*(8) I + - + kW I 
r,n)= 1 \t\n-t^k W/ 

for any value of n [165]; and cp(n) -> oo cf. VIII 264. 
189. Using the notation of 188 we set in 170 

K = <p(n) 

+ -+/ if 
n = 1, 2, 3,... 

190. Apply 137 to x~pf(x). Cf. 40 for the special functions 

a0xp + a1xp+1-\- ••• + ap**1, where a0, alt ..., at are constants. The 

result generalizes a well known theorem in probability theory. Cf. e.g. 

A. A. Markoff: Wahrscheinlichkeitsrechnung. Leipzig: G. B. Teubner 

1912, pp. 33—34. H. Cramer: Mathematical Methods of Statistics. 

Princeton: Princeton University Press 1966, p. 214. 
/o„.\ I 

191. We denote the highest coefficient of Pn[x) by kn 

[solution VI 84]. Then 

1+^1 +:f) -(l +~)=K\-X)-P, 

[49, 203], 
192. We find [52] 

l + )/A2 - 1 _ _1 

2 ”(w!)2 

-A)=A-1A-“PS(A) 

log' 
2A 

i r i (* . cos # 
- / log 1 +-J 

In 1179 put 

X = T = 

,k-l 
lx\n + x2n + *' ■■ + xL 1 
\ n n 

) d-9 . 

— f cos4#rf#), A = 2. 
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Dr: Mat. Palermo Vol. 36, 

t : ::on in question takes 

I reflection in the lines 

: • ^r.ed. The four domains 

1, 0 <1 y 1. Trans¬ 

it the axes we construct 

r ;r.rinal zigzag motion in 

l -i by a rectilinear motion. 

■ v2 is in f*, otherwise 

ttmgen 1918, pp. 28-29.] 

'•'Ill 35. Then we obtain, 

- S(2)| + **• + \g{k)\ 

mi 264. 
:70 

*; r(fn\ 
- 

n = 1, 2,3,... 

fecial functions 

a, are constants. The 

:r jbabihty theory. Cf. e.g. 

Leipzig: G. B. Teubner 

L Methods of Statistics, 

p. 214. 

of Pn{x) by k = 
w 2n(n\)* 

■■ Pn{-X) = k-1X-nPn{X) 

■ ^)dd. 

y cosk&dft), A = 2 

193. [Cf. G. Szego: Math, termeszettud. Ert. Vol. 36, p. 531 (1918).] 

Follows from 192 in analogy to 164. 
194. Special case of 193: f(x) = 1 if oc rg x fg otherwise f(x) = 0 

in the interval [—1,1]. 

195. We can assume ax > a2 > ••• > at. Then 

tiai++pa +# ■ ■ + m 

-*4i+rM+7Sd'+---+K&Y.- 
The expression in square brackets converges to 1. A different proof 

follows from 196 and I 68. Cf. 82. 
196. [Solution 195.] 
197. Let f(x) = c(x — ax) (x — a2) ••• (x — a;), c =)= 0. Because of 

m 1 + -zr~r H-+ ~~ x — a, x — a9 

we find 

a- 
-n-1 , —n—1 

+ ^2 + * * * + ai n='0, 1, 2,... 

Use 195, 196 (95.3, somewhat amplified, so that it applies also to finite 

sums, is much more informative. See also III 242.) 
198. Let f[x) attain its maximum at x = f, a ^ f ^ b, e > 0, d be 

positive and so small that 

whenever \x — f | < <5, x ^b. Then 

l+<5 b b 

[/(f) — eT f <p(x) dx ^ / <p[x) \J{X)Y dx ^ [/(f)]” / <pix) dx. 
I —<5 a a 

If f — <5 < a the lower hmit f — d of the integration is replaced by a, 

if f + <5 >5 the upper hmit f + <5 is replaced by 5. Take the w-th root, 

let n increase to infinity and then let e converge to 0. Cf. 83. 
199. First proof [P. Csillag]: Let 0 < e < M = max f(x). Then 

f <p(x) U(X)Y+1 dx ^ f <p{x) [/(*)f+1 dx^(M-e) f V(x) [f(x)Ydx, 
f{x)^M~e f(x)^M-e 

f <p(x) mr dx ^ / f(x) [/(*)]" dx^c(M- \)\ 
> M — St r \ * / f(x)^M-6 
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where the positive constant C is independent of n. Consequently 

b 

f tp(x) Lf{x)]n+Jdx [/(*)]"<** 

b 

f<p{*) [Mfdx f(x)'^M-e f{x)<M-e f(x)<M — e 
a 

As n —oo the last quotient converges to 1 because 

b 
/ <P(x) lf{*)?dx (M - e)n f <p(x) dx 

f(x) < M — e__a_ 

The proof almost involves the concept of the Lebesgue integral. 

Second proof: We write 

b b _ n — 1 _ w-j-1 

In= f <P{%) [/(*)]” dx= J ]/<p{x)\j{x)} 2 • \/<p(X) [/(*)] 2 dx, 
a a a 

i n , i 

The sequence —— is therefore monotone increasing. The value of the 
n 

limit follows from 198 and I 68.1. 

200. By introducing the new variable J/kn[x — f) = t we transform 

the integral into 

1 1kn(b-S) 

As n oo this integral converges to f e dt = | jt. 
— oo 

201. [Laplace: Theorie analytique des probabilites, Vol. 1, Part 2, 

Chap. 1; Oeuvres, Vol. 7. p. 89. Paris: Gauthier-Villars 1886. G. Darboux: 

J. Math. Pures Appl. Ser. 3, Vol. 4, pp. 5-56, 377-416 (1878). 

T. J. Stieltjes, Ch. Hermite: Correspondence d’Hermite et de Stieltjes, 

Vol. 2. Paris: Gauthier-Villars 1905, p. 185, 315-317, 333. H. Lebesgue: 

Annls Fac. Sci. Univ. Toulouse Ser. 3, Vol. 1, pp. 119—128 (1909). 

H. Burkhardt: Sber. bayer. Akad. Wiss. 1914, pp.1 — 11. O. Perron: 

Sber. bayer. Akad. Wiss. 1917, pp. 191—219.] Let e > 0, d be positive 

and so small that a < £ — d < fj + d < b and 

9?(f) — s < cp[x) < q>(g) + s, A"(f) — s < h"{x) < A"(f) + e < 0, 



Pt. II, Solutions 200 —205 
289 

:: of n. Consequently 

;x)^M-e__ 

•• Jtofdx+Tvi7) uwfdx 
f{x)<M~e 

because 

<p(x) dx 

£ f 
~TJ 

' Lebesgue integral. 

- • m mfPdx, 

n = 1, 2, 3, ... 

reasing. The value of the 

r x — f) = t we transform 

oabilites, Vol. 1, Part 2, 

- :liars 1886. G. Darboux: 

-56, 377-416 (1878). 

: Hermite et de Stieltjes, 

— 317, 333. H. Lebesgue: 

1, pp. 119—128 (1909). 

- pp.1 — 11. O. Perron: 

Let s > 0, 6 be positive 

whenever £ - d < x <£ +d. Then 

f<p(x) fM-vm dx = Y<p(x) e^-^dx + 0(*-) 

= / e2 dx + 0(ocn); 
£-<5 7 

where 0 < « < 1, a depends on e but not on n, f - 3 < f' < | + g 

S 3<r<t + <5. The first term on the right hand side lies between 
£-{-<5 n 

[?(£) —8] / 82 

l-i 

f + d « 
’ dx and [99(f) + e] f ea 

I —<5 

According to 200 these bounds are asymptotically equal to 

m) ~ e]y _ and [99(f) + s]yZ~ 

Th“" alS° tTUe if H increases continuously to infinity. 
202. Ylallis formula.] J 

'(£) + £\n 
resp. 

1.3-..(an - 1) 

2-4~.2n — / sin2n* dx. 71 X 

Special case of 201 : 

0, b — 71, 99(x) = —, f(x) = sin2 a:, f = -T. (Follows also from 205.) 

203. 

jD" ^’) ~ ijr / + l'^2— 1 cos x)ndx. 
— 71 

Special case of 201 : 

7T, 5 — .% ^ f{x) = X + J/A2 — 1 cos x, f — o. 

204. 

J ^»W ~ f e~~tcosx cos vx dx. 
o 

Special case of 201: 

a = 0, b = 2n, <p{x) = S. cos vx, f{x) = e~co-x, f — n> n = t, 

205. [Stirling’s formula.] 

i> + 1) = nn+1 f (e~xx)n dx. x] < h"{f) + e < 0, 
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Special case of 201: 

a = 0, b = oo, (p(x) = 1, f(x) = e~xx} £ = 1. 

For more accurate approximates see 18, I 167, I 155. 

206. According to 205 we have 

/nk -{- l\ _ 

\ n ) r\n 

rink + / + 1) 
+ 1) r{nk — * + / + 1) 

/ nk V 

\nk — n) 

r{nk + 1) 
r(n + 1) r(nk — n + 1) 

/ k \l/nk\** ( eY ( e \nk~n 1 / 

— 1/ \e / \ n ) — n) | 27in • 

2 nnk 
• ^ziink — n) * 

207. The substitution of tx for x transforms the integral into 

dx' 

Let t be so large that /-1 < The integral 

can be disregarded because the function f(x) = increases on the 

interval [o, yj , i.e. f(x) <: ]/2e < e on jj), -t] • Apply 201 to the integral 

<l = ~, b = ca, (f(x) = x'~l, /(*) =(-7) . f = 1. « = ^ 

1 

208. Substitute t 1_a (1 + x) for x. There results 

ft -a —7 / --A_(i + *)*_ i_aA , 
r i-«exp^———r !-*j J exp^r 1_A— ^-/^. 

Special case of 201: 

j j r \ i 7 / \ (1 + X)a — 1 — tt.Y 
<2 = —1, b = oo, <£>(*) = 1, h(x) =-—- 

ex 

£ = 0, M = T-i-«. 

209. Substitute (1 -f x)for x. There results 

e~xt* exp (e~1odJ exp [x — (1 + x) l°g (1 + *)]} dx. 

. _ 

210. V 
becomes ]J 

Mice tii-e 

z~ the ren 

The facial 

comes the* 

I • 

We have 

/ 
—vl 

bution of ( 

_ 



Pt. II, Solutions 206 — 210 

h r n + 1) r(nk — n + 1) 

2rr nk 

. ~ • 27i(nk — n) * 

' :he integral into 

= —^ increases on the 

Apply 201 to the integral 

-f, f = 1 ,n = t. 

- results 

x)* — 1 — OCX\ , 
-dx. 

oc J 

— x)x — 1 — OCX 

c suits 

- x) log (1 + x)] 1 dx. 

Special case of 201: 

a = —1. b =oo, cp(x) — 1, h(x) = x — (1 + x) log (1 +x), 

1^ 

£ = 0, n = e~lod% * 

210. We put rjz=n~i+ef 0 < e < ~. The integral in question 
becomes [205: 

= K s l1 + 0 (t)] / + x^ndx + 0 (K^-!B2t) • 
Since the function e *(1 T x) increases for x < 0 the integral over 

[—i, -tj] is smaller than [^(1 — rj)]n. We now expand the integrand 
on the remaining interval 

e~‘{l +x) = e-^+^-^1+6xr\0<d = 6(x) < 1. 

_T f -n^O+dx)-*' 
The factor e is of the form 1 -j- 0(^~1+4e). The integral be¬ 
comes therefore 

)4, [1 + 0{n~^)] J e U + ). 

£ 8 = 1 _|_ _|_ 0(w“1 + 6t). 

—n— *3 
Since f e 2 dx is oi order «“* the O-term of eJ yields a contri 

bution of 0(n~1^6e). Hence 

i /T~ etn-t+fin —1 

\ to t1 + 0(n~1+ie)] f e 2 +n^dx + 0(«~1+6£) 

^ + 0(^ •l+6fi\ _ 
1 «+0« £ „ 

') = 7^i e"¥(1+|v) 

X& + 0(w”1+6£) 

a+j8»~i x2 , 

T 0(n 
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211. [Cf. A. de Moivre: The Doctrine of Chances, 2nd Ed. London 

1738, pp. 41—42.] We have 

K.w=hJe~Vdx 
Therefore xn is the only positive root of the transcendental equation 

K„{x) = 1 — A. According to 210 we find for arbitrary »-free oc and f) 

Kn{n + tx]j n + {$) = A + -j=- + o 
y n 

where A and B have the same meaning as in 210. Determine oc and ft so 

that A = 1 - A and B = 0. Then *„-(»+<* ]/» + P) must converge 

to zero. If, on the contrary, we had x„ — (n + oc \'n + ft) > c > 0 for 

infinitely many n we could conclude that 

where B' depends on oc and /J + c as B depends on a and ft. In particular 
** _a}_ 

B' = b 4- —1 - ce 2 = 1 ce 2 > 0. Since A = 1 — A the last in- 
YSi 

equahty is impossible. In a similar way we show that 

xn — (n oc}/ n fi) <. — c < 0 

cannot hold for infinitely many n. 

212. By a similar computation as in 201: Instead of 200 consider the 

formula 

where a is real, k > 0, a, k fixed. 212 does not completely imply 210. 

213. By a similar argument as in 201 we find that the integral in 

question is 

co f <p(x) enh{x)dx = <p(£')enh® f enWx)~m]dx, 

where en = (xn~l log n + d a positive constant, d so small and n 

so large that <p[x) is continuous, h(x) twice continuously differentiable 

and h'(x) > 0 in the interval of integration; we have f — d < % < f + en. 

Put rjn = n~m and choose n so large that sn< rjn< d. On [f — <5, f — rjn] 

the integrand is of the order of e nr]nh = e h where h' denotes aposi- 
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ii^r-rs, 2nd Ed. London 

i- Transcendental equation 

- - ::rary ^-free a and 

no. Determine a and so 

+ /?) must converge 

- \ 1 n -f p) > c > 0 for 

- : r. \ and /?. In particular 

^ -1 = 1 — A the last in- 

cw that 

-*< 0 

■. ^ead of 200 consider the 

e 2 dt} 

rompletely imply 210. 

find that the integral in 

nstant, <5 so small and n 

r.tinuously differentiable 

avef — d < < f +£n. 

,<(5. 

where K denotes a posi¬ 

tive lower bound of h'(x). On the remaining interval expand up to terms 
of second order, 

n h' (|) (x -1) +■- (x- f) */»"(!") 

/ *..f->).<r<i+s.. 
t-Vn 

Herein h"{f") is bounded and n(x — f)2 ^ nrfn = «-*, furthermore 

enenh'($) _ e~nr}nh'{Z) e{*logn+p)h'(£) 

S-Vn 
nh'($) 

214. A change of variables leads to 

■ C\D ■ 
nh’($) 

^+fdogn+l_ 

[205, 213]. ±-^r~ I (e1+*x)n dx 
0 

215. According to solution 211 we have 

1 *n i %n 
7T\J e~Xx”dx = ^.I «**"<** = 1. 

Determine the constants a and /? in 214 so that A = 0, B = 1. Then 

+ « log ■»+/?) must converge to 0 [solution 211]. 

216. Assume < G = const, for % > 1. We split the integral 

„ *-v+1 1-,+^ Y, 
an = —— / [e « V dx 

into four parts corresponding to the intervals (0, e), (e, 1 — e), (1_£, 1 — s) 

(1 + e, oo) where s does not depend on n, 0 < e < J, e < y and so small 

that m the first interval xex~x+G* < 1. In the second and fourth interval 

xe1 * < 1; choose <5 = <5(e) so small that we have evsnxe1~x+dx < 1 and 

n so large, n>N = N(e), that < 8 and ns > 1. Then, except on 

the third interval, the integrand is O(0n), 0 < 6 < 1, 0 independent of x 

and n, 6 = (9(e). The mean value theorem of integrals [in addition note 
205] implies that 

— n n-fl l+e 
— g*(»« e n 

n! J {e1-x*)ndx+0[yn6n),l-e<£<l+s. 

lQg a_n 

g{n) 
g(n£) 

g(n) 
+0(1). 

Hence 
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Now lim — exists and the convergence is uniform onl — e ^ 1 -f £• 

The limit is arbitrarily close to 1 if e is sufficiently small. 

217. The integral in question can be written in the following way: 

n\ 2- 

(2n - 1) (2n 
_-4- f 2 

2) (2n — 3) • • • n ]/n * ,— 
' —7i\n 

n 2n/cos-A—1\ n 
9 V Vn / n / 7 

2« — v 
dx. 

2n e V » 

Apply 115. The hmit of the integrand is e-** [59], the convergence is 

uniform on any finite interval as a supplement to the proof of 59 shows. 

For an appropriate F(x) in the sense of 115 cf. G. Polya: Nachr. Akad. 

Wiss. Gottingen 1920, pp. 6—7.—For the generalized Laplace formula cf. 

also R. v. Mises: Math. Z. Vol. 4, p. 9 (1919). 

217.1. The real-valued functions (p{x, y) and h(x, y) are defined in the 

(bounded or unbounded) region and satisfy there the following con¬ 

ditions : 

(1) (p(x, y) enh(x,y) is absolutely integrable in for n = 0, 1, 2, ... 

(2) The function h(x, y) attains its maximum in at a single point 

rjy and in the region 9T that remains when we exclude from a closed 

neighbourhood of f, rj the upper bound of h{x, y) is less than h(£, rj). 

Moreover, the second partial derivatives hxx, hxy and hyy exist and are 

continuous in a certain neighbourhood of f, rj and at the point f, rj 

Kx < °. KAy ~ h% > °- 

(3) cp{x, y) is continuous at the point f, rj and cp{£, rj) =(= 0. 

The proof is closely analogous to the proof of 201. 
218. [Cf. G. Polya, Problem: Arch. Math. Phys. Ser. 3, Vol. 24, 

p. 282 (1916).] Let xn, xn > n, be the point at which the function attains 

its maximum Mn: 

Mn /*»(*» - J) (*» ~ 2) "• (*« =*h~ ” (xn\ a-xn 

"«T «! |/^ \n) 

1 
+ ; i+*: 

+ ••• + - log a. 

In view of 16 we derive from this that xn = (n + —^ b + sn where 

b = (1 — a-1)-1, lim en = 0. We have b > 1. Thus we obtain fore positive 
«->°o 

and n sufficiently large 

Arcrriim 

il 

219. 
220. ' 

jn 12 s 

». : 
222. 1 

« = I. 

log 
\/ 

*223. 

By the if 

aad bv 

izd we ca 

*224. 

- 
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inform onl — e^oc^l + e. 

,-ntly small. 

'•?n in the following way: 

V = 1 

| 2n e'n — v j 

59], the convergence is 

"" -o the proof of 59 shows. 

:: G. Polya: Nachr. Akad. 

-:Lized Laplace formula cf. 

n h(x, y) are defined in the 

r.* there the following con- 

ic fH; for n = 0, 1, 2,... 
iurn in 91 at a single point 

«'e exclude from 91 a closed 

• x, y) is less than 77). 

and exist and are 

: and at the point £, r\ 

>0. 

and <p(£, rj) =f= 0. 

f of 201. 
- Phys. Ser. 3, Vol. 24, 

■hich the function attains 

— = loga. 

= + y) & + e„ where 

ns we obtain for £ positive 

M + 
n 

e 

)■ 

According to 206 these two bounds are asymptotically equal to 

{b — 1 )n f b \(»-r|)& + £—« (ft — l)w / & \(» + I)6 + I+e 

and y^r(b--i) resp- 

219. Analogous to 218, use 17. 
220. We put f(n, x) = \Qn(x) ] a~x, then we have for m — 1 fg x < ra, 

m positive integer, a ^ 1, 

j[m — 1, x) }> f(m, x) f(m + 1, %) • • • 

[III 12] so that the least upper bound of f(n, x) for fixed positive x and 

variable n is attained when n < x. Cf. 218. 
221. [219, 220 ] 
222. The point #n where Mn is attained is determined by 

n = xn + a^n- We have n > xnt lim — == 1, lim-— = Conse- 
n-> oo M »->oo wf* 

quently xn — n — afxnM + o(n**), log xn = log n — ajun^-1 -f- o{n'x~1)) 

thus 

M 

log yf = w log xn—xn — a< n log —■ -{- o(w") = —aw" + o(w"). 

*223. Let 

<p(xi) = /(*i> yj. ?>(**) = /(*2. y2) • 
By the definition of 9?(x) 

<p{x 1) ^f(xvy2), 

and by the continuity of f(x, y) 

/(%. y2) ^ /(*2» y2) -« 

when | — a:2 | is sufficiently small. Hence 

<p(*i) ?- 9>(«2) — « 

and we can interchange % and x2 in the foregoing argument. 

*224. Let 

mfX (“f1 ^x' y)) = A*i» yi). ™in (max /(*, y) j = f(x2, y2). 

In view of the first operation (the inner one, written on the right) 

[f[xv yt) ^ f{x2, y,) ^ /(*2, y2). 
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*225. 

max f(x, y) = 1, min f(x} y) = 
y x 

1 — (y — l)2 when y ^ 2, 

1 — (3 — y)2 when y ^ 2. 

min max f(x, y) = 1, max min /(#, y) = 0 
x y y x 

*226. By using 198 complete the following outline: The quantity 

whose limit is desired is 



Part Three 

if — l)2 when y 2, 

— 2 when y 2. 

l - r. y) = 0 

—f outhne: The quantity 

■ 

Functions of One Complex Variable 

1. z -f- z = 2x, z — z = 2 \iy, zz = r2. 

2. The open right half-plane; the closed right half-plane; the open 

horizontal strip bounded by the lines y = a and y = b parallel to the 

x-axis; the closed sector between the two rays which form the angles a 

and /3 resp. with the positive x-axis; the imaginary axis; the circle with 

center z0 and radius R ; the open disk and the closed disk resp. with center 

z0 and radius R; the closed annulus between the two circles with radii 

R and R' and centred at the origin; the circle with center at z = — and 
R ^ 

radius —. 

3, The ellipse, and the domain bounded by the ellipse, with foci 

z = a and z — b and the semimajor axis k if \a — b \ ^ k. (If \a — b \ ~ k 

the ellipse degenerates into a segment.) If k < \a - b | no point * satisfies 
the condition. 

4. Let z1 and z2 denote the two roots of the equation z2 + az + b = 0. 

The region in question is the interior of the curve \z — zx \ | z — z^ i = R2 

with foci z± and z2. The curve is the locus of all points for which the 

product of the distances to z± and z2 is constant, equal to R2. It consists 

of two pieces for R - - and of one piece for R > . If 

the curve is called lemniscate. 

5. The condition in question is equivalent to 

l*-a|2S or to (1 — M2) (|^|2 - 1) = 0. 

The first set is the open disk |z| < 1; the second set is the unit circle 

1*1 = 1; the third set is the exterior |z| > 1 of the closed unit disk. The 

value of the expression in question is j«f-1 for z = oo, thus z = oo 
belongs to the third set. 
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6. The condition in question is equivalent to 

\a - z\2= \a + ^|2 or to —$R(a + 5) * = 0. 

Since a -f- a is real and positive the condition means U 0. The 

set is the open right half-plane; the third set is the open left half-plane, 

the second set is the imaginary axis. (The value of the expression in 

question is for z = oo equal to — 1; z = oo belongs to the second set.) 

7 With the notation a = y -f- i d, — = x + iy, the equation reads 
Zo 

<x(*2+ y2) + 2(y* + dy) + P — 0. 

8. Suppose that a wheel of radius a is rolling on the real axis. Let P 

be a point on the wheel at a distance b from its center. The point z1 

moves on a straight line, the path of the center of the wheel; the point 

z2 describes the path of the point P if the wheel would rotate around the 

origin but not slide. The point z = z± + z2 describes a prolate, a regular, 

or a curtate cycloid according as a >, =, or < b. 

9. The point describes an epicycloid. 

10. 

The coefficient of is the radial component, the coefficient of iP& is 

the component perpendicular to the radius. 

11. In the annulus 

n <C \z | < n + 1, n = 0, 1, 2, ... 

the inequalities 

n! j ^ | {n + 1)! 2! | < * *" < , (n — 1)! 

are satisfied; i.e. in SR* the absolute value of the n-th term is larger 

than the absolute value of any other term. On the common border of 

and 1 the absolute values of the n-th and the n + 1-st term are 

equal, all the others are smaller. In general: let 

^ 0> a0 + axz + a2z2 + * • • + ^ + T * * * 

be an everywhere convergent infinite power series. Then the 2-plane can 

be divided by concentric circles in such a way that in each annulus the 
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r :o 

- w j — a) z = 0. 

. - means sJk 0. The first 

£ -he open left half-plane; 

-- :e of the expression in 

to the second set.) 

- : v, the equation reads 

- 3 = 0. 

■—- f on the real axis. Let P 

■ center. The point zx 

■ of the wheel; the point 

~would rotate around the 

- :~ibes a prolate, a regular, 

< b. 

' dt* 

" the coefficient of iei& is 

) 1, 2,... 

*»+* I 

: the n-th term is larger 

-ti the common border of 

md the n -f- 1-st term are 

rt 

~ ^ 

ties. Then the £-plane can 

that in each annulus the 

absolute value of a certain term is largest (maximal term). The subscripts 

of these terms increase as z proceeds from one annulus to the next 
larger one. [1119, 1120.] 

12. The circles 

are tangent to one another at z = — 1 where they are perpendicular to 

the x-axis. They intersect with the x-axis also at the points z = 2» + 1. 

®*+i contains G„. In the crescent shaped region inside and outside 
the inequalities 

are satisfied. Hence 

i.e. the absolute value of the n-th term is larger than any other in 9ftn. 

On the common boundary of 9i„ and St„+1 the »-th and the n + 1-st 

terms have the same absolute value, all the other terms have smaller 

absolute values. (At z = — 1 all the terms have the absolute value 1.) 

The regions 9i„ together with their boundaries cover the entire half¬ 

plane 3ftz > —1, including z = —1. If 3tz -1, z =f= —1, the absolute 

values increase monotonically, there does not exist a largest term. 
13. The lemniscates 

are tangent to each other and to the straight lines = ±3* at the 

point z = 0. They intersect the real axis at the points j/2. £„+1 

contains 2„. The inequalities 

hold in the “double crescent” shaped region between 2„+1 and 2„ (9t0 

is the region bounded by fi,). Therefore the inequalities 

are satisfied in i.e. j Pn(z) | is in 9iM larger than the absolute value of 

any other partial product. On the common boundary of 9in and 91 

the absolute values of the «-th and n + 1-st partial products are equal 

r :o 

- ~ j — a) z = 0. 

. - means Sir ® 0. The first 

r :he open left half-plane; 

-.e of the expression in 

bogs to the second set.) 

- : y, the equation reads 

- 3 = 0. 

■—- f on the real axis. Let P 

■ center. The point zx 

■ of the wheel; the point 

~.vould rotate around the 

- :~ibes a prolate, a regular, 

< b. 

' dt* 

" the coefficient of iei& is 

) 1, 2,... 

*»+* I 

: the n-th term is larger 

-ti the common border of 

md the n -J- 1-st term are 

rt 

~ ^ 

ties. Then the ^-plane can 

that in each annulus the 
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and larger than any other. (At z = 0 all vanish.) The 9tn’s together with 

their boundaries fill out the region consisting of the two angles 

n n ^ ^ 6n 
-T< arg^<T, —< arg^< — 

and the point z = 0. Outside this region and this point Pn(z) increases 

with n monotonically. 
b 

14. We put # = arg f j{t) em) dt. Then 
a 

j f(t)em)dt =«-’*/ f(t)eMt)dt = f f(t) cos [<p{t) -&]dt< J f(t)dt, 
a a a a 

except if <p{t) = & (mod 2n) at all points of continuity of cp{t). 

15. [K. Lowner: Math. Ann. Vol. 89, p. 120 (1923).] It is sufficient 

to prove 9i(4P2 — 2Q) ^ 3. [Replace <p{t) by cp{t) + y where 

# = arg (4P2 — 20, cf. solution 14.] Now we have [II 81] 

3t(4 P' ,2 — 20 = 4 ^ Je 1 cos <p(t) dtj — 4 | Je 1 sin cp{t) dtj — 

oo 

— 2 J e~2t cos 2<p(t) dt ^ 
o 
/ oo \ 2 oo 

4 If e~l | cos 9)(t) | dt\ — 2 f e~2t cos 2<p(t) dt 
\o / o 
OO oo 

tg 4 f e~* cos2 (p{t) dt — 2 J e~2t cos 2cp[t) dt = 
o o 

= 4 f {e~t — e~2t) cos2 cp{t) dt + 1 ^ 4 J (e~* — e~2t) ^ + 1 = 3. 
o o 

If 91 (4P2 — 2Q) = 3 then cos2 cp(l) = 1 and cos <p(t) has the same sign 

at all the points of continuity of cp[t), i.e. <p(t) = 0 or cp[t) = n (mod 2n). 

16. The function pYz~l + p2z~2 -\-+ pnz~n is monotone decreas¬ 

ing from oo to 0 as 2 is positive and increasing; therefore it assumes the 

value 1 at exactly one positive point f. Consequently 

zn - pxzn~l - p^-2-— Pn > 0 or rgO 

according as 2: > f or z ^ £. 

17. We have 

+ * * * + an\ ^0! 

+ \a2 I + * ’ * + | an | » 

hence, according to 16, | z01 f. 

18. Apf 

19. The 
case. identi 

*20. 3y 

> 

*21. Ft 

respective!] 

22. [G. 
41: 1 

Math. J. 
VoL 4, p. 8 

> AH 

because i 

argument, 
weaker sta 

23. We 

the second 

24. We 

have — 

The last e: 

e quation 
corresprnd 
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The 9fn’s together with 

t: : :he two angles 

- -his point Pn{z) increases 

>(<) — 0] dt < / /(f) dt, 
a 

"inuity of 9?^). 

(1923).] It is sufficient 

; - + ~ where 

7 7 have [II 81] 

sin 9o{t) dt 
it 

:: s 2<p[t) dt <L 

p : dt = 

± [e-1 ~ e~2t) dt + 1 = 3. 

:: 5 99(2) has the same sign 

= 0 or 99$ = 7t (mod 2tl). 

Pnz~n is monotone decreas- 

-5 therefore it assumes the 
c quently 

■ . > 0 or ^ 0 

^.1 

+ !«»[. 
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18. Apply 17 to a~1znP(z~1). 

19. The two test polynomials considered in 17 and 18 are, in this 
case, identical, namely z” — [c j. 

*20. By 16 and 17 it is enough to ascertain the sign of 

^ AT - c1MMn-'i - czM2Mn~2-- cnMn A 0. 

*21. From 20. Substitute for ck 

n ’ 2" — i ’ 

respectively and add a little remark to 20 in the last case. 

22. [G. Enestrom: Ofvers. K. Vetensk. Akad. Forh. 1893, pp. 405— 

415; Tohoku Math. J. Vol. 18, pp. 34-36 (1920); S. Kakeya: Tohoku 

Math. J. Vol. 2, pp. 140-142 (1912); A. Hurwitz: Tohoku Math. J 

Vol. 4, p. 89 (1913).] We find for \z\ ^ 1, * 4= 1, 

K1 - z) (:Po + Pi* + Ptf- + •" + p„zn) | 

= \Po - (Po -Pl)*~ (Pi -P2)z2-- (Pn-l - Pn) z" ~ Pn? + X | 

^ Po - \(Po - Pi) * + (Pi ~ Pi) Z2 + + finzn+l | 

> Po — (Po — Pi + Pi — Pi + • • • + fin) = 0, 

because (fi0 — fij z, (fi1 — fi2) z2,finzn+1 cannot have all the same 

argument. (Unless z ^ 0, in which case the proposition is trivial.) A 

weaker statement, < instead of 2S, follows immediately from 17. 

23. We replace z by — and -j- respectively and choose q, q > 0 (in 

the second case we first multiply by zn), so that 22 can be applied. 

24. We call the polynomial in question /(«). For 9tz ^ 0, |z| > 1, we 

have 91 — i> 0, therefore 
Z 

I/M > I 
I h| = an + 

n — 1 j n—2 

U|2 

n - 3 

ThT 

>*(^+¥)-w-ct- 

^ 1 - 

The last expression is S; 0 if |z| ;> r, where r is the positive root of the 

equation r2 - r = 9, r = £ ((1 + J/37), 3 < r < 4. The polynomial 

corresponding to the number 109, 9 + z2, has the roots ±3i. 
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25. [Ch. Hermite and Ch. Biehler; cf. Laguerre: Oeuvres, Vol. 1. 

Paris: Gauthier-Villars 1898, p. 109.] We write 

P(z) = U(z) + iV{z) = a0{z - 2,) (z - *2) ••• (z - zn), a0 4= 0; 

let * be a root of V(x) = 0 or U{x) = 0. Hence 

U(x) + iV{x) = U(x) - iV(x) or U(x) + iV{x) = ~[U{x) - iV(x)}, 

that is 

a0{% — zj (x — z2) • • • {x — zn) = +a0{x — 5X) (x — z:2) * * * {x — ~zn). 

Such an equation, however, is possible only for real x. Assume y$x > 0, 

then \x-z,\< | % — zv 1 for v = 1, 2, By the same token * cannot 

lie in the open lower half plane. 

26. 'Cf. I. Schur: J. reine angew. Math. Vol. 147, p. 230 (1917).] 

Put P{z) = a0(z — zx )(z — z2) ••• (z — z„), a0 4= 0. Let * be^a nxrtof 

P(z) + P*(z) = 0. Then 1 P(x) j = | P*(x) j; since P*{z) 

(1 — 12z) •••(!— ~z„z) we have 

o(l - V) 

n \x ~ zv\= n 
v = l V — 1 

Such an equation can hold only for \x\ = l. Assume \x \ < 1: then [5] 
\x-z,\< 11 — \x! for all v, thus the first product is smaller than the 

second. By the same token it is impossible that \x\> 1. We argue 

analogously in the case of P(z) -z-yP*(z)} \y [ = 1. 

27. [M. Fekete.] Define y = XP{a) + juP(b), 0 < X < 1, A + ^ — 1- 

If all the zeros of P{z) — y = a0(z — z^) (z — z2) ---(z — zn) were outside 

the domain in question, the inequality 

< arg b — z. < V = 1, 2,n 

w'ould hold, thus 

-* < arg < n’ in contradiction to = ~ T ’ 

28. We assume that the straight line mentioned is the imaginary 

axis and 9tz„ > 0 for all v (this can always be achieved by multiplication 

with a suitable eia); then we have also 9t — > 0 and 

+ *2 + ’ ’ * + zn) > °> Z1 + z2 H-0» 

k(±.+±+ ...+!-)> 0, f +f + -+7- + 0. 
\*1 *2 Zn) Z2 Z» 
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n-rTre: Oeuvres, Vol. 1. 

•*«).«0 + °; 

= ~[U{x) - iV{x)], 

x-zj ■■■ (x-Z„). 

r real x. Assume $x > 0; 

■ :r.e same token x cannot 

Vol. 147, p. 230 (1917).] 

= 0. Let % be a root of 

Knee P*(z) = aQ{l — zxz) 

Assume \x \ < 1: then [5] 
r: duct is smaller than the 

that \x\ > 1. We argue 

= 1. 

* 0<A<1, 1+^ = 1. 
• • ’(z — zn) were outside 

v = 1, 2, ..., n 

to pia) —jy _ _ & 
P(b) -y A * 

ntioned is the imaginary 

ichieved by multiplication 

0 and 

*4— +zn 4= 0, 

- + ••• + 4+°- 

The conclusion holds also in the case where all the points are in a 

closed half-plane determined by the straight line unless all the points 

lie on the line itself. 

29. Cf. 28 

30. We have m1(zl — z) + m2[z2 — z) +-b mn(z* ~ z) = 0* APP*y 
29 to the points mv(zv — z). If mv(zv — z) lies on one side of a straight 

line l' through the origin, zv lies on the corresponding side of the straight 

line l through z and parallel to 

31. [Gauss: Werke, Vol. 3, p. 112. Gottingen: Ges. d. Wiss. 1886; 

Vol. 8, p. 32, 1900; Ch. F. Lucas: C. R. Acad. Sci. (Paris) Ser. A—B, 

Vol. 67, pp. 163-164 (1868); Vol. 106, pp. 121-122 (1888). Cf. also 

L. Fejer: C. R. Acad. Sci. (Paris) Ser. A—B, Vol. 145, p. 460 (1907), 

and Math. Ann. Vol. 65, p. 417 (1907).] First solution: The vector 

determined by the complex number represents a force directed 

from a to z the magnitude of which is inversely proportional to the 

distance. Let zv z2,..., zn denote the zeros of P(z) and let z be a zero 

of P'(z) different from zv z2,..., zn. Then 

P\z) 

P(z) 
= 0, i.e. + • ——' + *' * ~r — = 0, 

this means that z represents an equilibrium position of a material point 

subjected to repellent forces exerted by the points zv z2, ..., 2n and 

inversely proportional to the distance. If z were outside the smallest 

convex polygon that contains the z/s the resultant of the several forces 

acting on 2 could not vanish: there could be no equilibrium. (315.) 
Second solution: Using the same notation as before we have 

^5+77—r.i + — + 0, 

thus 

z = mlzl + m2z2 + mnzn, mx + m2 -j-+ mn — 1, 

;, v = 1, 2,n. where the v-th. “mass” mv is proportional tor^- 
\Z ~v I 

32. [L. Fejer, O. Toeplitz.] Let f denote an arbitrary interior point 

of the convex polygon in question. Then 

£ = Xxzx + }i2z2 + •• • + > 0, l2 > 0, ..., Xn > 0, 

^1 + h + * * * + K — 1» 
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thus for £ 4= zv 

Pv 
Approximate mv by the rational numbers —, v = 1, 2, n, 

fti + po + * • • + ftn = P, and remember that the roots of algebraic 

equations are continuous functions of the coefficients. The derivative 
n 

of the polynomial f] {z — zv)Pv has a zero arbitrarily close to £. Since £ 

lies inside or on the border of at least one of the triangles determined 

by three of the points zv it is sufficient for this problem to know that 

the zeros of a polynomial of degree 2 are continuous functions of the 

coefficients, which is obvious. [Remark due to A. and R. Brauer.] 

33. [M. Fujiwara: Tohokn Math. J. Vol. 9, pp. 102—108 (1916); 

T. Takagi: Proc. Phys. Math. Soc. Japan Ser. 3, Vol. 3, pp. 175 — 179 

(1921).] Set P(z) = a0(z — zj (z — z2) ••• (z — zn) and let £ denote a 

point at which 

P(z) - cP'{z) = 0, P(z) =4= 0. 

Hence 

(i) c 

Introducing 

M2Ki + + —1- »*n) 

we can write (1) as 

(2) m1 + m2 + ••• + mn 

The first term on the right hand side of the equation represents the center 

of gravity of a certain mass distribution at the points zv z2,zn, 

that means a point inside the smallest convex polygon containing all 

the points zv. The second term represents a vector parallel to the vector 

c. Hence the statement follows.—Cf. V 114. 
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v = 1, 2,.... n. 
r 

5 - v = 1, 2, n, 

:he roots of algebraic 

:::ients. The derivative 

v . ':i.rily close to f. Since f 

triangles determined 

' problem to know that 

ir.uous functions of the 

A. and R. Brauer.] 

• pp. 102-108 (1916); 

Vol. 3, pp. 175-179 

- : and let >2: denote a 

: - 0. 

l 

~n C 

-Me. 

i:ion represents the center 

r the points zv z2, 

x polygon containing all 

■tor parallel to the vector 

34. [T. J. Stieltjes: Acta Math. Vol. 6, pp. 321-326 (1885); G. Polya: 

C. R. Acad. Sci. (Paris), Vol. 155, p. 767 1-769 (1912).] Let z„, 

v = 1, 2,..., n denote the zeros of P(z) and assume A (z„) 4= 0. Then 

P'{zv) 4= 0 because otherwise the differential equation for P(z) would 

imply that P"[zr) = 0 and repeated differentiation would show that 

P(z) is identically zero. The equation 

1 

P"M £(a) _ n 
2P%)^A(z,) U’ 

+ "• + -- + ••• + 

= 0 

implies [31] that zy lies in the interior of the smallest convex polygon 

that contains the points zv z2,..., zv_^, zy+1,..., zn, av a2, ..., ap (on the 

line segment that contains all these points). Consider now the smallest 

convex polygon that encloses zlt z2,..., zK, av a2,..., ap. Only the a’s 

and no zy different from the zeros of A{z) can lie on the polygon. 

35. [L. J. W. V. Jensen: Acta Math. Vol. 36, p. 190 (1913); J. v. Sz. 

Nagy: Jber. deutsch. Math. Verein. Vol. 31, p. 239—240 (1922).] We 

denote the zeros of f(z) by zv z2,..., zn and assume 

7=-T1+7r^ + '" + jMn=0- z*z’ z + zv V~1,2, 

Because of the pairwise symmetry of the zeros we have 

The formula 

z = x + iy, z0 *o + + yl ~{x~ x0)* - y* 

\(z~-z0) (*-I0)|» 

shows that the above equation can not hold when 2 is outside all the 
circles described. 

36. W riting zn — xn -f- iyn we find \z \ ^ —— . Therefore the con- 
( 1 cos a 

00 00 

vergence of £ xn implies the convergence of V |z„ j. The converse is 
obvious. ”=1 ”=1 
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37- Set zn = xn + iyn. The hypothesis implies in turn the convergence 

of 

oo. 

n 

38. Example: = e2nin6 (log (n + 1)) \ 6 irrational, ^ e2nivM is 

bounded as n^oo [solution I1166, Knopp, p. 315]. V=1 

39. We assume that all the numbers zn are different from zero and 

that they are arranged according to increasing magnitude, 

0 < \z1\'^ |^2 I = 1^3 I = ■“• We enclose each v = 1, 2,m, in a 

circle with center zv and radius ~. These circles have no common inner 
£ 

points and are completely contained in | z | | zm | + — . Therefore 

40. The expression in question is 

The first factor is everywhere dense on the unit circle [1101]; the second 

is a sum of rectangles and converges to 

Writing i + n = |/1 + n2 e2m*n, 0 < #n < we have tan 2jiftn = —; 
n 

thus the series §1 + + #3 + * * • + #w + • • * diverges and Hm #n = 0. 
n->oo 

We find 

arg+#2 + — + #„ - + &> + — + «?„])• 

According to 1101 the limit points of z„ cover the entire circle 
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; - - m turn the convergence 

-z ^.-yl) = ZW|2. 
« = - n=1 

n 

- irrational, ^mvke -s 
V = 1 

l* different from zero and 

magnitude, 

; v = 1, 2,..., m, in a 

have no common inner 

—. Therefore 

sSra** p113]- 

: circle [1101]; the second 

we have tan 2= -i- • 
n n 9 

diverges and lim = 0. 

+"• +#,])• 

the entire circle 

42. 

_ l*»I2 _ i1 +t)(x + f) i1 +1) =t’t■":!hri=n+1> 

= Sir IT N Ji/TTI _ j) 
‘ + 1 I y»- ’’-i arctan-V W > 

1u 

y _ *y - ^» +1 ~» | — 

= i-- -f - 
2 1 

Hence rn °° 2 <?« r1 70]. 

43. According to II 59 and II 202 the absolute value of the expression 

in question converges to e~l\ Therefore it is sufficient to prove 

n 2n sin 

2n sin -}=- log 2 — arctan-—— = 
1 2k cos — v 

(/« 

where — y < arctan * < y . Let n > t2, then [1142] 

= o(l), 

2n sin 
t ! 

(A* 
< 2(/„ |(| 

2w cos — y 

K» - s) - ’ 
^3 

Thus arctan # = # —— + * * • can be replaced by x. The statement 

now follows from 

lo v / t Y 2 _ — + 2 I — cos ~ ■ 1 
Yn )\ 

= 0(n~ 

This estimate can be justified by a slight extension of 1110: if we 

replace in the sum An the term f(a + v~^by }(a + v—~ a 

where £n = 0(^_1) we still obtain An = 0(n~~1), (We assume that the 

interval of definition of f[x) contains the interval a — eN x b + £v, 

N <z n, and that /(#) is bounded on this interval.) 

44. Assume that lim <rM = <r, fM < A and lim = z% \z I < M, 
n->oo n^oo n 

p| fUM, K and M independent of n. The series 

oc = aQ -T d-y ~h "T * * * T" an “l- * * * 
and 

fi = a0Z0 + alzl + <hZ2 + "• + Vn + "* 
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are absolutely convergent; let e be an arbitrary positive number and 

N = N(e) be such that \zn — z \ < e whenever n> N. We define 

w = (a — oc) z + and deduce from 

' n \ n n 

ffn~ 2 o\z + 21 v, + 2K„ - «„) {z„ - z) 
i v=0 / v=0 v=0 

w — wn < M \a — on | + M 
OO 

2 a\ 
| 
+ 2 avZv 

v=n+1 | v = « + l 

N 

+ 2M Z + 2 Ke. 
v = 0 

45. [Cf. I.Schur: J. reine angew. Math. Vol. 151, pp. 100—101 

(1921); F. Mertens: J. reine angew. Math. Vol. 79, pp. 182—184 (1875).] 

We denote by Vn and Wn the partial sums of the series £ vn and 
00 n=0 
2 (uovn + uivn-1 + * * * + unvo)- The two sums are related by the equa- 

n — 0 
tion 

Wn = UnV0 + Un~lVl H-+ % Vn, 71 = 0, 1, 2, .. . 

In order that a convergent sequence Vn generates a convergent sequence 

Wn it is necessary that the sums \un | + \un_x [ -\-b |«0 I are bounded, 

i.e. the series u0 + + u2 + • • • must be absolutely convergent. In this 

case the conditions (1) and (2) (cf. p. Ill) are automatically satisfied. 

Therefore the absolute convergence of the series 

«o + + u2 + • • • + un + • • • 

is the desired necessary and sufficient condition. 

46. [Cf. I. Schur, l.c. 45, pp. 103—104; T. J. Stieltjes: Nouv. Annls 

Math. Ser. 3, Vol. 6, pp. 210-213 (1887).] Let Vn and Wn be the partial 
OO CO 

sums of the series £ K and 2 (2utvA ■ Now tVI11 81] 
n = l n = l \tjn t) 

Wn = UlVn +U2V |nj + U3V ^ + '** + *n^»J. » = 1, 2, 3, ... 

The coefficient of Vk is equal to the sum of those u/s for which £yj = k. 

Set v = [J/«]. For those values of l which are less or equal to v the coeffi¬ 

cient of Vrn i is precisely ur This follows from the fact that for 2 ^ l <g v 
h J 

7i n   n ^ w -i 

I — 1 T ~ 1(1 — 1) > ~J2 = 

II 

afl 

afl 

H 

i 

tfe 

B; 

As 

M 

j 

$i 
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t. rirv positive number and 

r: n > N. We define 

_ * - «,) k - *) 

oo 

— 2 a,z, 
v=«+1 

— a, | + 2iiTe. 

VoL 151, pp. 100—101 

' pp. 182-184 (1875).] 

r ■ :: the series 2 v« and 
n=0 

cni are related by the equa- 

- Vn, n = 0,1, 2, ... 

t'a'rs a convergent sequence 

-- • • • + | uQ | are bounded, 

lately convergent. In this 

t automatically satisfied. 
ries 

U — *** 

r. 

• Stieltjes: Nouv. Annls 

n and Wn be the partial 

Till 81] 

n = 1, 2, 3,... 

u/s for which j^yj = k. 

Ass or equal to v the coeffi- 

rhe fact that for 2 ^ l ^ v 

j^l. 

In order that the sum of the absolute values of the coefficients in the n-th. 

row be bounded the same must hold for \u^\ + \u2 \ + ••• + \uv |, that 

is, u _|_ Uc, +•••+«„+'*• is absolutely convergent. Hence the validity 

of the other conditions follows, and so the absolute convergence of the 

series ux + u2 + • • • + un -f-is the desired necessary and sufficient 

condition. 

47. [R. Dedekind, cf. Knopp, p. 315; Hadamard: Acta Math. Vol. 27, 

pp. 177 — 183 (1903).—Cf. I. Schur, l.c. 45, pp. 104—105.] Put 

An = a0 + + a2 H-+ an) Bn = y0a0 + yxax + y2a2 + ••■ + ynan> 

then 

Bn = 2 (yv — yv+i) Av + ynAn. 

48. [Cf. G. Polya, Problem: Arch. Math. Phys. Ser. 3, Vol. 24, p. 282 

(1916). Solved by S. Sidon: Arch. Math. Phys. Ser. 3, Vol. 26, p. 68 

(1917).] Set 

CU0 — Zq, Uq “f" + ^n — 1 “H ^n Zn> 1, 2, 3, ..., 

U0 Ul T * * ’ T un~ 1 T Un — Wn> n — 0, 1, 2, ..., 

2untr = u®, 2*jr = z®, i^n = w(o. 
«=0 n=0 »=0 

By comparing the coefficients we find that 

mt)=^r-r m 

and hence 

w(C) 

'i-t 

z{0 

+ (c - 1) U(0, 

c + (1 — c) f 

Assume c =(= 0. Compare the coefficients in the last equation: 

(c - l)n . (c - l)n 

Wn c*+1 Z° cn 
C - 1 

*iH-h——*n-i +TZ*’ n = 0>1>2>-- 

00 fc_±\n 
According to the criterion on p. Ill 2 ' n+i~ must absolutely 

«=o °n' 
I Q _ ]_ I 

convergent. This is the case if and only if —— j < 1, i.e. if and only if 

atoj. 
49. [I. Schur: Math. Ann. Vol. 74, pp. 453—456 (1913.)] The case 

c = — k, k positive integer, can be excluded from the start; example: 

/ n \ , uo + ui d-+ un 

Un=\k_X)’ Un + C ^j-[ 0 for k 2, un = log (n + 1) 
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for k — 1 [169] . The case c = 0 is obvious. We put un -f- c — 
n -f l 

= zn, un = wn and, as on p. Ill, 

Wn = <Wo + anlZ\ + * ‘ ‘ + • 

Multiplying the relation 

(n -f- 1) zn — nzn_} = (n 1) wn — nwn_1 + cwn, n = 1, 2, 3, ... 

T(« + c + 1) 
by and adding the first n equations we obtain 

r(v + c + i) 

r{n + 1) 

r{yi -J- o T" 2) -r^, 

reTlT "»- r{c + 2) ”'<• = 

n-l 

T(v + 1) 
[(r + 1) z, - 

i.e. 

/•(k + C + 1) , v _ y. r(v + C + 1) _ ™ O’) 2 

r(« + i) ( 1 /> + i) - 1 ( + 

_■ J>+1) VAHt + 1) 
* ~ * + c + 1 n J> + C + 2) v^0 r(v +1) 

For fixed v one finds aHV oo — c ~ --n 
nv 1 (V + 1) 

exists if and only if 91c > —1. Assume 91c > —1 and put 

— u, = u2 = • • • = —-— , then zM = 1, wM = —4 , thus 0 1 2 1 + e n > n i ^ c 

[1155]. Thus lim an 

an\ + #*9 + ■ “ + ann ~ 1 + C 

With 91c = y we have 

I r(n + c + i); ^ iny FI) j ^ jD^-y-i 
<Afl> r(n+c + 2) \<*n I r(n + i) 

where A and B are constants, independent of n. Hence 

Kol + Kil +•" + K»-il< \c\ABn-'-1 T vy 
v = 0 

-> |c\AB f xvdx = ^AB 
ii j l + y [II 22]. 

The desired necessary and sufficient condition is therefore 91c > —1. 

50. Set an = ocn + ^n, an’ Pn rea^ The relation 

i: \vs - {v + l)s\= 2 v° 1 - (l + —Yl = 0(n°) 
V = 1 ' v = l \ V/ 
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U0 U1 “T *•* + M, 
n + 1 

— cwn, n — 1, 2, 3, ... 

:•: "5 we obtain 

■Ty- [(” +1) — «v_i] 

i—1 *, - r(c + 2) *0, 

1 [1155], Thus lim 

-1 and put 

— 1 , thus 

< Bn”*-1, 

" Hence 

n-1 

V —0 

AB 

therefore > — 1. 

inon 

- |)S| = 0(n°) 

Pt. Ill, Solutions 50 — 55.1 3H 

(binomial series) and a generalisation of the proof of 175 imply 

lim («j + a2 H-+ an) n~a = 0, i.e. 
n —> oo 

lim («j + (*2 H-+ «„) »_<I = Um (/Sx + /5, + ••• + /?„) = 0. 
n->oo n->oo 

Now I 92 can be applied to both power series 

(xxt + oc2t2 + * * * + ocntn + • * •, + j$ot2 + ■ • • + fintn + • * *, 

hence 

t lim (1 — t)a fat + oc2t2 -|-+ ocntn H-) 

= lim (1 t)a t + /?2tr + * * * + Pntn + •••) = 0. 
/->i—o 

51. Whenever the four subseries consisting of the terms in the four 

quadrants (jjte 0, $z ^ 0, etc.) converge, the series converges abso¬ 

lutely. 

52. By successive bisection: Assume that all the terms 2 ,z , lie M ~2 
in the sector ^ argz^&2 and that |jz,J + \zr%\ 4- diverges. 

Construct the two subseries with terms in g arg z g ^ + and in 
ft 1 ft 

^ arg z ^ §2 resp. At least one of the two is divergent. 

53. Choose a finite number of terms zm—xm + iym from each of the 

successive sectors 

(-* *)•(-**).(-?■#)■••• 

The different sectors should contribute different terms so that the 

points zr , zr , , 
r V rk+i' 

sector and that 

rk+k that correspond to ^ are in this 

1 < + x + + xrh+k< 2- 

54. [More on this topic: P. Levy: Nouv. Annls Math. Ser. 4, Vol. 5, 

pp. 506—511 (1905); E. Steinitz: J. reine angew. Math. Vol. 143, pp. 128 — 

175 (1913).] Let the direction of the positive real axis be the direction 

of accumulation (which can always be arranged by multiplication with 

a suitable etot) and zr^ + zTx + • • • be the subseries chosen in 53; apply 

1134 to the real part, 1133 to the imaginary part. 

55. z = x + iy, z2 = x2 — y2 + 2ixy are analytic, | z | = \^x2 + y2 
and z = x — iy however are not analytic. 

55.1. Cauchy-Riemann equations. 
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l' triable 

: equations once the exist- 

uroblems of mathematical 

:;^rimetric Inequahties in 

c University Press 1951, 

- 55.3. 

.: wn and 

y 

- f v'y(x, y) dy 
0 

y 
ix - f K(x, y) 

0 

unctions that are conjugate 

_ = _f_ j_f_ 

: cely determined according 

uulytic. [Hurwitz-Courant, 

. and y, verify 

non. 

- — 9f& log (z — a) is the 

; seen from z. Thus 

. . , z — a 
— 1C =ic -\- l log-- , 

z — b 

denote the partial deri- 

i:ion yields 

~ vvyy) - 

UK2+a 

60. By comparison of similar triangles: 

x:£ = y:rj = 1:1 — £, thus x -\-iy- = ^ , 

£2 + rf _ 2 

.14- iy 

x2 +y2 = 

2x 
rj. 

(1 - 02 “ i -C 

' *2 + y2 4- 1 ’ 

61. We have in turn [60] 

x* + y2 1’ 

1, 

x2 y2 — 1 

' *2 -j- y2 H- 1 

P:*+*y = i±-|, P':$,r),C, P":$,-r,,-C; 

therefore 
... , v._£ - ir) _{x - iy) {\ - £) _ x - iy _ 1 

+ l+f 1 +1 *2+y2 x + iy - 

62. In the case of Mercator’s projection: straight lines parallel to the 

axes on the unrolled cylinder, generatrices and directrices on the cylinder 

itself. This property together with the condition of conformity determines 

Mercator’s projection completely (cf. e.g. E. Goursat: Cours d’analyse 

mathematique, Vol. 2, 3rd Ed. Paris: Gauthier-Villars 1918, p. 58). In 

the case of stereographic projection: rays from the origin and concentric 

circles with center at the origin. 

63. x +iy = £4-in 
i-C 

hence 

cos (petd 

1 — sin 9? 
e iO 

x + iy = eu+iv. 

64. With w = u + iv we have 

| z | = euy arg z = v. 

The curves in question are concentric circles, centred at the origin, and 

rays perpendicular to the circles. [62, 63.] 

65. Comparison of the real and imaginary parts of 

w = u 4- iv = z2 = [x -j- iy)2 yields 

u = x2 — y2, v — 2 xy. 

The curves u = const, and v = const, form two families of hyperbolas. 

Since the mapping is cpnformal the images in the z-plane of the straight 

lines u = const, and v = const, in the z#-plane are orthogonal. 

66. Put z = x + iy, w = u + iv; then x = u2 — v2, y = 2uv; 

elimination of v and u resp. yields the parabolas y2 = 4u2(u2 — x) as 

images of the lines u = const, and the parabolas y2 = iv2{v2 + x) as 
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images of the lines v — const. All these parabolas have the common axis 

y — 0 and the focus x = y = 0. Two orthogonal parabolas pass through 

every point z, z =j= 0, of the ^-plane. 

67. Let z = x + iy, w — u + iv. Then 

u -f iv = 
ei{x+iy) _J_ e-i(x+iy) 

, thus U = 
ey + > e~y - # 

The lines x = const, are mapped onto the hyperbolas 

and the lines y = const, onto the ellipses— — ——- 

, V = —-_ c 
2 

u2 v2 
COS2 X 

_1_ 

sin2 x 
v2 

2 • / ■ 
L ~y - A2 

sm x; 

They have the common foci w = —1, w = 1. The two families of curves 

are perpendicular to each other (confocal conics). 

68. Elimination of v and u respectively from x = u + eu cos v and 

y = v -f- eu sin v leads to 

X — u = eu cos [y —)/e2xi — (x — uf), y — v = ex~{y~v)cotv sin v. 

The line v = 0 is transformed 'into y = 0 and the line v = n into the 

twice covered line segment y = n, — oo < * fg — 1. 

69. The image of the square is bounded by the two rays arg w = e 

and arg w = — e and the two circles |ze>| = ea+£ and \w\ = ea~s. The 

area is therefore e(e2a+2s — e2a~2s). The ratio in question is 

46 

70. 

/ / \f'(z)\2dx dy = j f |sin (x + iy) |2 dx dy. 
*1 Vi xt yx 

Because of 

|sin (x + iy) |2 = sin (x + iy) sin (x - iy) = -J cos 2x + l{e2y + e~2y) 

the integral is 

(e2y, _ e2y,_ e-2y, + g-2yt) _ (sin ^ _ sin . 

For % = 0, x2 = y> y-i = 0, y2 = y we obtain one quarter of the area 

of an ellipse with semi-axes 

ey + e~y , ey — e~y 

a =-2- • b=-2—' 

71. /'(*) = %z. On circles with center at the origin, i.e. \z\ = const, 

and on rays from the origin, i.e. arg z = const. 
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:• ^ have the common axis 

:" - ;; arabolas pass through 
72. When 0 < a ^ n the image of the square is the simply covered 

region bounded by the two circles with radii ea and e~a and the two rays 

arg w = —a and arg w = a. When a > n either part or all of the region 

is covered several times. If a — nn the image is covered exactly n times, 

e~y __ ey 
:; ^ r, v —---sin x; 

except certain points of the real axis that are covered only n — 1 times. 

73. The intersection of the ray arg w = oc with the circle | w | = 1; 

_ T U2 v2 
cos2 x Sin2*-1’ 

--f-— = J r r.-'r ' 
r two families of curves 

fees). 

x = u -f eu cos v and 

observe the vertical line segment within the disk \z\<Lr that intersects 

as many of the parallels %z = « + 2kn, k = 0, ±1, ±2, ... as possible: 

it lies on 9Iz = 0, i.e. on the image of ' w | = 1 (VIII16; N(r, a, oc) assumes 

its largest possible value for r, oc fixed if log a = 0.) 

74. Assume z, #= z2, |z,| < 1, |z2| < 1. Then 

z2 + 2z2 + 3 — (zf + 2zj + 3) = (z2 — Zj) (z2 + z1 + 2) =|= 0. 

75. If z = rei&, r > 0, 0 < ■& < n, then w = Re'0 = r2ei,{>. R = r2, 

6 = 2d, and so R > 0, 0 < 6 < 2n. If, on the other hand, R and 6 are 
= ^-(y-^otv sin V' given r, and # are completely determined. 

i the line v = n into the 

^ -1. 

:; ■ the two rays arg w = e 

£ and |zer| = The 

question is 

76. The function in question is schlicht on the closed unit disk 

M = where furthermore \w j ^ 1 [5]. The inverse function is 

a + e~icxw 

1 + ae~totw 

and. so the dependence of z on e~t0lw is of the same nature as the 

r*. 
dependence of w on z. Hence each value w, \w\ ^ 1, is assumed. The 

locus of the points with constant linear enlargement is given by the rela¬ 
tion 

— /y) |2 dx dy. 1 - M* const 
|1 -az\2~ COnSt- 

-J cos 2# + + e'2?) 

If a 4= 0 these are certain arcs of circles centred at 4- (reflection of a 
with respect to the unit circle). 

77. [Cf. A. Winternitz: Monatsh. Math. Vol. 30, p. 123 (1920).] 

sin 2x2 — sin 2xx). 
According to the hypothesis we have _ 1 = const, along the circle 

1 1 — 0*1 ° 
C, i.e. a and (0 and oo if a = 0) are the pair of harmonic points common 

t one quarter of the area to C and the unit circle. Let denote the center of C and y be its radius, 

zo 4= 0, r < 1 — \z01. Then a, \a | < 1, satisfies the quadratic equation 

f~v (a~zo)(-J-*o) = r2 or (|«|-KD(i^|-|^l) = »*. 

e origin, i.e. jzj = const. arg a = arg z0; oc arbitrary. 

78. w = a*— 1 where a is constant, |#| = 1. 
Z l Ml* 
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79. Write z = re™. Then w becomes 

— + r 
cos ft — i - - sin ft. 

The circles \z \ = r, 0 < r < 1, are mapped onto confocal ellipses with 
l l 
-b r-r 

semiaxes — and — , the common foci are w = +1, w — — 1. The 

rays ft — const, are transformed into confocal hyperbolas with the same 

foci, w = +1, w = — 1. The two families of conics are orthogonal to 

each other. If \z\ — 1, z = et&, thenze> = cos#. Consequently, if zdescribes 

the unit circle then w describes the segment — 1 fg w ^ 1 twice. 

80. The function w = kz + p , 0 < kr± < kr2 < 1 maps the annulus 

in question onto the region bounded by the two ellipses with foci w — — 2 
l 

kr9 

a1 — a\ — 1   a2 — \ a\ — 1 

and w = 2 and major semiaxes krx + and kr2 + jz~ respectively. Put 

k = - 

81. The function w == — - ■, z = re** maps the upper half of the 

unit disk into the upper half-plane [79]: 

+ r 
+ i- - sin ft; >0 for 0 < ft < n. 

The linear enlargement 

for the points z = x + iy for which 

\x2 — y2 — 1 + 2ixy |2 = \x2 — y2 + 2ixy |2, i.e. x2 — y2 = J. 

They define an equilateral hyperbola which intersects the real axis at 

the points z = + -r= . The rotation becomes 
— yY 

arg —2— = ± T 

when 9ft ~ = 1, i.e. r2 = cos 2ft. These points lie on the lemniscate 

2-7= : 2 +7 
\'2 



Variable 
Pt. Ill, Solutions 79 — 89 317 

i 
z -\- 

82. The auxiliary function f =-maps the region in question 

onto the upper half-plane 3C > 0 [81]. The origin z = 0 corresponds to 

f — oo, z — * to C = 0 and z = ±1 to f = ^1. The function ^ 

transforms the upper half-plane 3C > note 75, into the z^-plane cut 

open along the non-negative real axis. The point f = oo corresponds to 

w = 0, f = 0 to w =oo, C = ±1 to = 1. The mapping function 
d are z# = +1, w = —1. The 

al hyperbolas with the same 

of conics are orthogonal to 

K Consequently, if z describes 

— 1 w ^ 1 twice. 

having the required properties is therefore given by 

C kr2 < 1 maps the annulus 

vo ellipses with foci w = — 2 

d kr.2 + respectively. Put 
RYn 

The images of z = ±1 are both at w = 1 but on different sides of the cut. 

83. arg w = (arg z — a), i.e. 0 < arg w < in. 

84. The first auxiliary function £ = («“” zf * maps the circular 

sector onto the upper half of the disk |£| < 1. The second auxiliary • - 

r. 

c + T 
function s=-~ [81] maps the disk onto the upper half-plane 

3$ > 0. Apply 78. 
maps the upper half of the 

85. Follows from 

u — iv = Yx [?>(*> y) + *v>(x> y)] = ^ v > 0 for 0 < # < n. 

by separation of real and imaginary parts. 

86. They are the images in the z-plane of the lines 91/ = const, and 

3/ = const, parallel to the axes in the /-plane under the conformal mapp¬ 

ing / = /(*). 
87. Follows from 85 by virtue of the Cauchy-Riemann differential 

equation ^ = 0. Also the function y)(x, y) satisfies Laplace's ry 2, i.e. x2 — y2 = 

. intersects the real axis at differential equation. 
88. With u cos x T v sin r = 91 [u — iv) eir the integral in question 

becomes 

= m fd^e"ds = m f%dz= «[/(**) -/(*!)] 
L L 

:nts lie on the lemniscate where dz denotes the directed line element with modulus ds and argu- 

ment t. 

89. u sin r — v cos r — 3(u ~ *v) e%x > c^* 88. 
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90. The third equation is identical with the second Cauchy-Riemann 

differential equation. We get the first two by differentiation, keeping 

the first Cauchy-Riemann differential equation in mind: 

1 dp du dv du du 
q dx udx 

i ii l<8 

1 

dx V dy ’ 

1 dp du dv dv dv 
e fy dy dy dx V a * dy 

tor w = — et& forms the angle # with the 
l r m 

axis, its modulus is —. The functions in question are up to a constant 

f[z) — log z, (p(x, y) = log r = log ]/x2 -f y2, ip(x, y) = ft = arctan ~. 

The level lines are concentric circles around the origin, the stream lines 

are rays perpendicular to these circles. 

92. 

(p2 — <Pi = lo gY2 — log r1 = log — , yj' — %p = 2 n, 
ri 

93. The amplitude of w is equal to •& + —, the modulus is — 
2 Y 

Furthermore we have (up to an additive constant) 

f(z) = — i log z, (p(x, y) = & = arctan , 

V (*> y) = — log r = — log \'x2 + y2. 

The level and stream lines are the stream and level lines resp. of 9i. 
The potential <p is infinitely multivalued. 

94. According to 93 the field of force is described (up to a real 
constant factor) by 

thus f{z) = i log , V = log | — q> = arg 
z — 1 

*+!' 

The level lines are circles through the points z = — 1 and z = +1, the 

stream lines are circles too, namely the ones with respect to which the 

points z = — 1 and z = +1 are mirror images of each other (circles of 
Apollonius). 
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:he second Caucl^-Riemann 

t v differentiation, keeping 
in mind: 

CX 

Lf-- § with the positive real 

-:r:ion are up to a constant 

* V(x,y) = # = arctan-^-. 
X 

• :-e origin, the stream lines 

\p’ — yj = 2 71, 

- — , the modulus is — . 
r 

stant) 

= arctan —, 

Lr.d level lines resp. of 91. 

- described (up to a real 

— 1 z — 1 
-r-Ty — ar& TTjri • 

- = -1 and z = +1, the 

:*ith respect to which the 

of each other (circles of 

95. We are looking for the points 2 for which [93] 

n _ q 
~ Z - Zx z - Z2 z - zn 

———1———1— + 0; 

the positive numbers A2, • ■ ■, An are proportional to the intensities of 

the currents. Cf. 31, in particular the first solution given. 

96. The vector field is generated by an analytic function f(z) for 

which 31/ = const, on the given ellipses. The function [80] 

z = kZ 2\kZ = 2 - - 4 

maps the region bounded by the two ellipses onto the annulus r1 <C \Z\<Cr2- 

The semi-axes and the radii are related by 

i'i ax — |/a\ — 1 ^ — |/flf ~ t __ ^2 ~ ~ 1 

r* ~ a2-l/^T’ _ * ri '2 

provided that > <z2 an<^ positive roots are chosen. The problem is 

now reduced to 91: w = defines a vector field in the Z-plane for which 

the concentric circles around the origin Z = 0 are level lines, i.e. 

= const. Consequently the same is true for \Z[ = const. 

rdz i , r dz 

J dz zdz~ J 
along the given ellipses in the £-plane, i.e. 

w = - . 1—, f(z) - log (z - Vz* - 4). 
1/^-4 

The stream lines are confocal hyperbolas, the level lines confocal ellipses 

with foci — 2 and 2. The relations between the potentials are 

i - v = <P2-<Pi = lo& ~ = 

The capacity is 

97. Put [93] 
«i —1/< 

log <*2 - V«l ~ 1 

al — 1^1 — 1 

Z0 = y>i = —log a, = —log b, 9>i =«. ¥>2= 
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The resistance is (the sign is not important) equal to 

_ P — (X 

log b — log a * 

98. According to 85 the unit circle |jar | = 1 is a stream line. If the 

constant value of the conjugate potential along the unit circle and on 

the real axis inside the vector field is assumed to be zero the function 

/ fW transforms the unit circle |z| = 1 into a segment of the real axis. 
In view of 79 set 

f(z) = k (z + —^ -f- k0, k, &0real. 

Since w = 1 for z = oo we have k — 1, i.e. 

99. The stagnation points are z = ± 1; w assumes the same values at 

each pair of points that are symmetric with respect to the origin. There¬ 

fore the resultant total pressure on the pillar vanishes [cf. 90'. The 

pressure is minimal or maximal when j 1 — — I is maximal or minimal 

resj)., i.e. for z = 4-i and z = ± 1 resp. Rotation of all the vectors through 

90° generates a field of force which admits the following interpretation: 

A homogeneous electrostatic field is disturbed by a circular, insulated 

wire perpendicular to the direction of the field. (The most simple ex¬ 

ample of electrostatic influence.) 

100. [G. Kirchhoff: Vorlesungen fiber Mechanik, 4th Ed. 1897 

pp. 303-307; A. Sommerfeld: Mechanics of Deformable Bodies. New 

York: Academic Press 1950, pp. 215-217.] Supplementary continuity 

condition: the boundary of the wake (the stagnant water) stretches 

to infinity where \w\ = 1; since \w\ is constant on the entire boundary 

it has to be equal to 1. The direction of w is known along the boundary 

segments AB, AD (barrier) and the magnitude of w is known along the 

boundary lines BC, DC (along the wake), w is completely known at the 

four points A, B, C, D. Noticing that either the direction or the magni¬ 

tude of w is constant on the respective parts of the boundary we find a 

half-circle in the w-plane as image of the boundary of the field of flow. 

We fix the constant contained in / [p. 123] so that / = 0 corresponds 

to the stagnation point * = 0. Then the left and right “banks” of the 

positive real axis of the /-plane correspond to the streamlines ABC and 

ADC, respectively. The /-plane cut along the positive real axis corres¬ 

ponds to the whole field of flow; it is not possible that only a subregion 
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- -- a stream line. If the 

'f '-he unit circle and on 

ei to be zero the function 

'c<ment of the real axis. 

k, £0real. 

-- - tmes the same values at 

; --to the origin. There- 

r vanishes [cf. 90]. The 

maximal or minimal 

- ^11 the vectors through 

:: flowing interpretation: 

i :y a circular, insulated 

- i The most simple ex- 

L-thanik, 4th Ed. 1897, 

1 erormable Bodies. New 

- -rplementary continuity 

t ignant water) stretches 

:n the entire boundary 

"-*n along the boundary 

' : ^ is known along the 

: mpletely known at the 

- direction or the magni- 

:-~e boundary we find a 

of the field of flow. 

: that / = 0 corresponds 

right “banks” of the 

'treamlines ABC and 

7: drive real axis corres- 

-t that only a subregion 

of the /-plane so cut should correspond to the field of flow because 

w=—coi 3.s oo, thus / oo iz. The same point, but associated with 
dz 

the left or right bank of the cut in the /-plane, corresponds to the two 

points B and D, respectively, because of symmetry. Note that a dilata¬ 

tion of the /-plane with w retained, causes the same dilatation of the 

z-plane because df = w dz. Now we dilate the /-plane so that / = 1 

becomes the image of z = 4d. In this way we attribute a numerical 

value to Z. —If a one to one relationship can be established between the 

corresponding parts of the z-, w- and /-planes we can find out [cf. 188] 
whether the interior is to the left or to the right as one moves in the 

direction given by A BCD A (see the last line given in the table). In the 

following diagrams the points in the different planes corresponding to A 

are also called A; B, C, D are used similarly. 

z w w / 

A 0 0 0 0 

B l 1 1 1 

C oo —i i oo 

D -l -1 -1 1 

region lies to the left right left left 

0 A B C 

VI 
J f ^ l 

1 > 
l A B C- oo 

y l 
6 

“° 
D 

c D A B 

Velocity plane (z£;-plane) (w-plane) Potential plane (/-plane) 

101. According to 82 we have 

. _ . 1 _ 1 + l/l -/ 

' (1 + ^2)2, 1,e* w J/f * 

where y 1 — / becomes 1 as / = 0. Observe the continuous change of the 

value of w on the two banks of the cut in the /-plane. Hence 

Z = / ^ = 2 // + ri — / + arcsin tff, 

z = x + iy = 2 Yf + y i [/j/iTy - log (v7+ ri -1) 

The first formula for z is to be used when 0 < / < 1, the second when 

/ > 1 (positive roots); it furnishes the boundary of the wake: 
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z = l = 2 + y for / = 1; x cx> 2 ]// , y co —/, thus the width of the wake 

is 2x co 4 V\y\ at a great distance from the barrier. 

102. If the pressure is ft = c — | \ w^ at the point z [90] it is in 

particular equal to ft1 = c — \ on the boundary and therefore every¬ 

where in the wake. The total pressure desired is 

+/ +/ i 

f (P — Pi) dz = f \ (1 — \w|2) dz = f (1 — w2) dz 
-i -i o 

= / (1 - a*2) % = / 4 ]/l - fd \'f = n. 
0 0 

103. Put z = ret&. Since the sign of the angular velocity is positive, $ 

is increasing, i.e. z describes the circle in the positive sense. We have 

= iz and the velocity vector in question is 

df(z)  df(z) dz 

d& dz d'd 
izf(z). 

104. Let co denote the angle through which the vector w (radius 

vector) has to be rotated in the positive sense to fall into the direction 

of the vector izfiz) (tangential vector, 103). Then the distance in question 

is given by 

|/(*) I sin co = | f{z) T/<fL 
\izf{zy 

! /w 
l<f«l ‘ 

105. The amphtude of the vector in question is (s log f{z). The angular 

velocity is therefore, with z = re'9, 

d& 
3 log /(*) = 3 d± = iz = . 

m ' m 

106. The curvature is-i- = ^, where dQ denotes the change in the 

direction of the velocity vector of /(*), i.e. according to 103, the change 

of 3 log izf(z); dS denotes the line element of the curve described by 

f(z). According to 103 we have^‘~4 = | izf(z) |; consequently, with z = re™. 

l 

o 

dS 
d$ 
dS_ 
dd 

— TloiM-fH o%zf(z)dz 
4»'sm /() ^ dz M 

I “/Ml [*/'M| 

The curvature is positive or negative according as the velocity vector 

turns in the positive or the negative sense. 

107. 

If = • 

shown b; 

108. 
109. 

;io5; 
110. 

considers 

axis is gr 

argumem 

with the 

shaped. 

111. 

which tin 

i.e. 

Hence :a 

Rsr'j 

The proj 

reasoning 

112. 
113. 

with the 

(-) 

104 
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107. 

concave convex 

to the left + - 

to the right - + 

If w — zn + a, n ^ 0, then — = . The four possibilities are already 

shown by the special cases r = 1, \a | > 1, n = 1, or n = —1, where 

w = 0 is chosen as reference point. 

108. [106, 107 ] 

109. The angular velocity of the vector w = f{z) is always positive. 

[105] 
110. The proposition follows from 108 and 109 or from the following 

consideration: the angle between dw, w = f(z), and the positive real 

axis is given by the argument of izf (z) [103]. Convexity means that this 

argument is always changing in the same sense, which property coincides 

with the definition of the image of the circle under w = zf'(z) as being star¬ 

shaped. 

111. [Thekla Lukacs.] Let a and b be two points with respect to 

which the image of the circle \z \ = r is star-shaped. Then 

-J~-— > 0, 
/W - « 9tzf/vLh> °* /(*) - b 

i.e. 

9ty'(2) fiz) ~ a > 0, 

Hence for A > 0, fi> 0, X + fj, = 1 

1Rzf'(z) f{z) — 6 > 0. 

9f zf[z) f{z) — (Xa + fib) > 0, thus 9tz m 
m - fa+/to) 

>o. 

The proposition can also be easily proved by elementary geometric 

reasoning. 

112. h((p) — dtae,l>’ = \a | cos (<p — oi). 

113. (1) The velocity vector [103] izf'(z) forms the angle (p + — 

with the positive real axis: cp = arg zf'[z) = 3logzf'(z). 

(2) 

«*/'(*)/M h{<p) = 
W(z) \ 

[104.]; note the sign. 
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114. 

<P = 3 log ^7^ = 3 log 
2c°sy 

[113]. 

115. For ^ ^ = ~^ the support function is identical with the one 

of the point m [112]. Outside this sector we find on the basis of 113 

116. (p = arg zf'(z) = arg“—, %) = ~~ S(1 — if the line 

of support is a tangent to the boundary; h(cp) =coscp if the line of 

support passes through the corner w = 1. 

the integer n — k — l is different from zero or not. 

118. Follows from the expansion 

by integration and application of 117. 

119. Apply 118 to log f(z) and consider the real part. 

120. [Jensen’s Formula, cf. 175.] The geometric mean of the single 

factor j 2 — | can be computed with the help of II 52, the geometric 

mean of | f*(z) | with the help of 119. 

121. For f(z) =|= 0 in \ z\ ^ r the means are equal: g(r) = &(r) = |/(0) | 

[119]. If f(z) is the product f(z) = f±(z) f2(z) of two functions fx(z) and 

f2(z) that are regular for \z\ ^ r, its mean is equal to the product of 

the corresponding means. It is therefore sufficient to examine the parti¬ 

cular case f(z) = (z — z0), \z01 ^ r. According to II 52 

= max (r, \z0\) = r, 

\ I max(log^,log1201) q&q logr— A 4- 
r f\ & 

— e 

122. [Cf. M. A. Parseval: Mem. par. divers savants Vol. 1, pp. 639— 

648 (1805); A. Gutzmer: Math. Ann. Vol. 32, pp. 596 — 600 (1888).] 
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} dd' 'dkaL 

123. We set P[z) = x0 + x±z + x2z2 -\-+ xnzn with arbitrary 

complex coefficients x0, xlt ..., xn. Then 

i /“ \j{e'&) - P(eie) |2 

' X0 h + I a\ ~ X1 !** + ’ * * + I an + I +1 |“ + I an + 2 I2 + * * * * 

This expression becomes a minimum if and only if the first n + 1 terms 

vanish. 

124. [As to 124—127 cf. L. Bieberbach: Rend. Circ. Mat. Palermo 

Vol. 38, pp. 98—112 (1914); Sber. Berlin Math. Ges. 1916, pp. 940—955 

and T. Carleman: Math. Z. Vol. 1, pp. 208—212 (1918).] Particular case 

of 125; replace r and R by 0 and r respectively. 

125. With w = f(x + iy) = u + iv the area in question becomes 

F = j'J du dv = JJ 

r2^xz+y°-^Rz r2^x2+y2^R2 

We have (cf. p. 117) 

d(u, v) 

8(u, v) 

d{x, y) 
dx 

dy=i i 
r 0 

d[u + iv) I 

R 2n 

' | d(u, v) ! 

I d(x, y) | 
q dg d&. 

dx 

_du dv du dv /du\2 ^ /dv\% _ 

d(x,y) dx dy dy dx \dx) \dx) 

122] 
R ( OO 

/ z *2kre- 
r \n = 

hence [cf. 122] 

F = J f | f{Qe*) |2 q dQ d$ 2 n 
r 0 

= |/'WI2. 

) 
do 

= n 2 n\an\2 (R2n ~r2n). 

126. Particular case of 127. As to the orientation cf. 188 or 190 - 
What does the result suggest when c = 0? [124.] 

127. The area is given as the sum of elementary triangles provided 

with a sign, bounded by the arcs of the curve L and radii. The sign is 

positive or negative depending on whether the point w = 0 is to the left 

or to the right of the bounding oriented arc. It coincides with the sign of 

sin co introduced in solution 104. Thus the area is 

2 7i 2n _ 

= if \izf’iz) I \KZ) | sin wd& — \ f 3\zf{z) f(z) dft 
o o 

2rr co oo 

= i 9f / V kakrkem 2 a/e~md&, [117]. 
z = re'*. 
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128. According to 124 we have 

r 

4 fJ-fdQ = 2nZ K|V" [122], 
0 " —1 

129. [Cf. K. Lowner and Ph. Frank: Math. Z. Vol. 3, p. 84 (1919).] 

The density function of the mass distribution in question is proportional 

to |cp (z) |_1, because j \ (p'(z) j’1 \dw | over an arbitrary arc of L gives the 

length of the corresponding arc of the circle \z\ = r. Therefore 

2tc 2n 

f J W{z) |-1 \dw\ = f <p(z) [ <p'(z) i.e. gfrd& = J <p(rei9) r d&. 
L L 0 0 

130. The volume is given by 

// I /feO |2 Qdod& = 271j (zWn? e2"+1) do, 
0 0 0 \» = 0 / 

where z = oei&. 

131. [J. L. W. V. Jensen: Acta Math. Vol. 36, p. 195 (1912).] 

cos y ■ >+©'+(f)T- ‘»-H!)!+(§ \dy) 

The Cauchy-Riemann differential equations together with the relation 
f = u2 + v2 imply 

1 ■»■>•=(« I+' Sf+(«%+»1)!=<»! +»!) [©*+(£)*] • 
132. Let Zq be a point with horizontal tangent plane. According to 

131 we have either f(z0) = 0 or f{z0) 4= 0, f'(z0) = 0. As to the first case 

one has to note that an analytic function has only isolated zeros. In the 

second case we consider f'(zQ) = f"(z0) = ••• = f{l-1]{z0) = 0, f«\z0) 4= 0 

[l ^ 2, saddle point of order / — 1], thus 

f(z0 + h) = f(z0) 

f = Wo + h) |» = I f{z0) I* + /ft) Al U + hl 4- 

= |/(*o) I2 + A \h\l cos (iUp— ot) -f-, 

where h = |/L 4, * are real constants, A 0, determined by f(z0) 

and f{l](z0). The 21 values of (p that correspond to the 21 directions of the 
branches joining at z0 are 

oc . 2k ~ 1 
<P=— + _2/— n> ^ = 1, 2, 2L 

71 

:-e 

•ai 

rk 

cjj 

bm 

Ac 
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i " ^ [122]. 

^ Z. Vol. 3, p. 84 (1919).] 
i — : nestion is proportional 

- : ::rary arc of L gives the 

- = r. Therefore 

2 71 
f 1 r d$ = J (p(rel&) r d&. 

o 

.% 2 Q2n+^dQ, 

. p. 195 (1912).] 

::>gether with the relation 

*+■">[©■+©a 
igent plane. According to 

= 0. As to the first case 

: nlv isolated zeros. In the 

= /'-1,W = 0, /(,>(z0) =)= 0 

Sj 0, determined by /(^0) 

to the 21 directions of the 

k = l,2, 21. 

The sign of A cos [kp — oc) is alternately positive and negative between 

these directions. 

133. Suppose that the polynomial in question is given by 

aQ(z — aq) (z — a2) • •• (z — ocn), <xv <%2>..., ocn real. Then 

: = k l2 n [(* - *,)2 + y2] ^ k l2 n (*- «,)2, 
v=l K=1 

«>0. 

134. 122 imphes 

l/w I2 + /'W 
1! 

ra + !/'W|2 4 
2! 

,4 + ...+&f^+... 
»! 

= i/ |/(20 + ^)|2^^m2, 

i.e. | /(z0) | ^ M. In the case of equality we must have 

f'(Zo) = f"(2o) = ••• = /<n)(2o) = •'• = 0 

which means /(z) = /(z0), constant. 

135. The continuous function |/(2) | has to attain its maximum in the 

closed domain T>. According to 134 j/(z) | cannot assume its largest value 

at an interior point z0 of *2). 

136. The piece cut off from the modular graph by an arbitrary 

cylinder perpendicular to the x, y-plane has its highest point on the 

boundary unless the modular graph is parallel to the y-plane. There 

are no “peaks" in an “analytic landscape". 

137. Geometric interpretation of the proposition that a polynomial 

(z — zx) (z — z2) • ■ • (z — zn) always assumes its maximum on the bound¬ 

ary of any domain [135]. 

138. The function^ is regular in 3) [135]. 

139. Assume \zv | < R, v = 1, 2, ..n. The function 

f(z) = i.j'/(R* - v) {R2 - v) ••• (R2 - V) 

has a regular branch for \z \ ^ R, furthermore f(z) 4= 0 for \z\ ^ R. 

According to 135 and 138 7(0) | = R must lie between the maximum 

and the minimum of |f(z) | on \z\ = R. We have for |*| = R [5] 

W)\ = v\z-Zl\ |*~ *2 | — 

The only exception occurs in the case f(z) = const., i.e. if 

*1 =*2 = •" = 2» = 
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140. We find for [ | = i? 

R ^ max 
j_ (fl2 - y) + (ii2 - v> + - + (g2 - yo j 
R n 

^max(l I*2 - VI +i*2 - VI + - + I*2 - V 

[* - + I* - z2! + ••• +1* - *„! 
[5]- 

The inequality becomes an equality only if z± + z2 d-+ zn = 0 and 

all the 2^’s have the same argument, i.e. zv = 0, v = 1, 2, ..., n. Notice 

the particular case n = 4, z1 = 1, z% = i, z3 = — 1, z4 = —i, R > 1. 

The arithmetic mean of the projections of the distances in question into 

the diameter through P is already equal to R. 

141. The function 

if2 -V ' A2 - V R2 - v 

is regular for |z| g P. Hence [135] for |z| = R 

min 
n 

s 
v = l 

< n 

n j? 
max i>-v| 

< 

.2^ 

Note the special case w = 3, z2 = ei9x = 1, z2 = ei9s = e 3 , ^ = eida = e 

R ^ b. Then we have for z = Re*9, v = 1, 2, 3, 

.4tt 

!T 

j/i?2 1 — 2 j? cos I 

_ £ (0 - #,>] 

^ “ ,to P*+1 
where Ps(%) denotes the Mh Legendre polynomial [VI, § 11]; 

P0(cos #) = 1, Pl (cos #) = cos#, P,(cos#) = ~ + -|-cos 2#. Hence 

[VI 91] 

_ = _L + J_. 

i? ^4.R3 

+ f 
A-3 

Pi [cos (0 - 0#] + -Pftfcos (0 - 02)] + P*[cos (0 - 0g)] 

3P*+1 

>i-4—L _ V _1 = -L j_R ~ 5 > J_ 
P 4P3 ^ fl*+l P ' 4P3(P - 1) = R • 

142. If f(z) =(= 0 everywhere inside the level line the absolute value 

j/(z) | attains its maximum and its minimum on the boundary according 

to 135 and 138. This implies that |/(z)' must be constant in the interior. 
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•• — (r2 — ZH*)\ 

- z2 + * * * + zn = 0 and 

= . v = 1, 2,n. Notice 

:: = — 1, h = —i, R > l. 

- -fiances in question into 

l 

l 

- < R. 

*=i R2 - V 

1 = e * , z<> = e1®3 = e 

' pt;cos (& - #„)] 

& + 1 

-111 [VI, § 11]; 
1 3 

= y T- cos 2$. Hence 

- p,:cos 

: = R * 

.me the absolute value 

ir.-r boundary according 

: instant in the interior, 

Pt. Ill, Solutions 140-146 

and so f(z) = const. Geometric interpretation: Since there is no peak 

inside a closed level line on the modular graph there must be at least 

one pit unless the modular surface is a horizontal plane. 

143. At least one zero must lie inside any closed line 142] along 

which the absolute value of the polynomial [z — z3) (z — 22) • * * [z — zn) 

is constant. There are only n zeros. 

144. The theorem is not valid for f(z) = const. Thus we may assume 

f(z0) 4= 0. If there is a saddle point on the circle \z \ =r the projection 

of at least one of the sectors with points above the saddle point mentioned 

in 132 protrudes into the interior of \z\<Lr. Therefore z0 cannot be a 

saddle point, i.e. f!(z0) =f= 0. 

We put f(z) = w and consider the image of the circle | z | = r in the 

ze;-plane. The point farthest from w = 0 is wQ = f(z0), the curve has a 

definite tangent at w0 because f'(z0) =j= 0. The tangent, that is the vector 

izQf'(z0) [103], is perpendicular to the vector wQ — f(z0) (obvious for 

geometric reasons). Hence 1d^lAzA js purely imaginary. In the neigh- 
J\zo) 

bourhood of w0 the side of the image curve turned towards the origin 

corresponds, according to the hypothesis, to the side of the circle, turned 

iz z ) 
towards the origin. Therefore y' must be positive imaginary. 

145. [Cf. A. Pringsheim: Sber. bayer. Akad. Wiss. 1920, p. 145; 

1921, p. 255.] 

H . v V —] v 
£) yp &(co co ) 
" Zj , V , V — ] 

,=] a(co + co ) 

71 
2ni tan-> 2m. 

n 

146. [A. Pringsheim, l.c. 145.] We define 

t-!-f (4-J + 4-izv 4-+4) for A = 0,1, 2,, 
ft*) = J k + 1 

+^:?V2+-+V-1i4+1) for* = -2,-3,...; 

then 

£l\Z\ ~~ Zo) + ^2](Z2 *]) + “*■ + £n](Zn ~ Zn-l) = * k + 

The total length of L is called Z, R is the largest, r the smallest distance 

of L from the origin z = 0; assume R > 1. The quantity 

1*1 ~ Zo \ + !*2 ~ Zl \ +\ZS — h \ + + \Zn ~ Zn-1 | 

is the length of an inscribed polygon, thus fg l. The points zv z2, .zn 

can be chosen so that for a given <5, <5 > 0, and sufficiently large n, 



(l-')l 
Let o bi 
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0, then 

*r — 1 X) + ’ * * | \Zp Zv-1 

— 0] i?*-1 I2, 

to use r instead of R for 

i:ion and Cauchy’s Theo- 

' The interior of the given 

<0. 

-— i , of the inte- 
\ -■ jfa 

-1 + 0. 

- A 2dz 
r — v J z2 -f 2zx—X ’ 

r:' : = 1 which includes 

h; >er. 3, Vol. 24, p. .84 

:-vs. Ser. 3, Vol. 26, p. 66 

- - - *2)" , 
-T»—2\ dz> ■ : - r{ 1 + n 

If r^O, -l<r<y, 

-: nation 

(1 _ z _ r{\ -\- z2) = 0 has its two roots separated by the unit circle. 

Let q be the root inside the unit circle, i.e. \q | < 1, 

(1 — r)z — r( 1 + z2) = —r[z — q) (z — . We obtain 

■(1 + * + *2y 
■ 2 7t 

~r\ hi) i r\ 
Z = Q (t-) 

1 - r - ]/l - 2r- 3r2 
q is real, q =-^-- 

150. With the notation z = x + iy the integral can be written 

1 £ z dz — ~z dz -J- zz{z dz — z d~z) 1 / (1 4■ z2) z dz — (X z2) z dz 

2if 1+z2 + -z2 + Al2 2i d (1 + z2) (1 + z2) 

The foci of the ellipse are the poles of the integrand. 

151. We have for co > 0 

co 2 l7IS co 

f x?~le~x dx + (osi f d& - e2 f y?~x6~ix dx = 0. 
0 0 0 

Let co converge to + oo. Then the first integral converges to jT(s) and 

the third to the integral in question. The modulus of the second integral is 

n n n_ 

< A d& = A f d& + A f e~acos& d& < ^ e~ms™ +As, 
0 0^ 

2 ~e 

■T |3s| n i 
where A = e~ , 0 < e < — .By setting s = —^< k < 1, we see 

that the second term converges to 0. 

152. The integral is 

1_2 

x n sin x dx. 

We conclude from 151 that for real s, 0 < s < 1, 

f xs 1 sin x dx = r (s) sin ~ . 
o J 

This integral converges for — 1 < 9ts < 1 and the right hand side is 

regular for the same s values. Hence the formula holds for —1 < 91s < 1. 
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153. [Cf. Correspondance d’Hermite et de Stieltjes, Vol. 2. Paris. 

Gauthier-Villars 1905, p. 837; cf. G. H. Hardy: Mess. Math. Vol. 46, 

pp. 175-182 (1917).] 
.(w + l)* 

f e-^x" dx=- f e~’z M " dx. 
I * 

The last integral is taken along the ray arg z = oc and it is equal to 

dx — r fn + 1 

V )■ 
because the integrand, with z — ge1*, 0 converges to 0 as r 

tends to 0; the convergence is uniform in #. For a = ftn, 0 < [A < i we 

get the function 
e-xt*costin s-n s^n , 

all the Stieltjes moments of which vanish without the function vanishing 

itself (no contradiction to I1138, I1139). According to E. Borel [Le9ons 

sur les series divergentes. Paris: Gauthier-Villars 1901, pp. 73 75, cf. 

also G. Polya: Astronom. Nachr. Vol. 208, p. 185 (1919)] a similar state¬ 

ment can not be true for a function /(*), | f{%) | < e~k^, k> 0, k = const. 

Our formula shows that ]/x cannot be replaced in this theorem of Borel 

by a lower power, xPt {i < £, of x. H. Hamburger has proved [Math^Z. 
/— 1/' X 

Vol. 4, pp. 209—211 (1919)] that]/ x cannot even be replaced by „ ^ 

by showing that 

n\!x - log*) sin Nx log* + 7t\ 

(log*)2 + 7iz) \(Iog x)2 + n2] 
xndx — 0, n = 0, 1, 2, ... 

154. 
r e~tflCos xt dt = xfi f sin xt • dt = $ f elz ~6z dz, 

o o o 

where the variable of integration is z = xMtM, /i~1 = v and x_fl — 5. Rotate 

the line of integration through a small positive angle, put (5 = 0; then 

rotate the line of integration in the positive sense until arg z = —. 

155. We replace in the integral 

a + iT 

a — iT 

T > a, 

the rectilinear path of integration by the semicircle over the segment 

(a — iT, a + iT) to the right or to the left according as cc ^ 0 or a > 0. 
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^'.ieltjes, Vol. 2. Paris: 

Mess. Math. Vol. 46, 

—-l 

dz. 

- = a and it is equal to 

r = a converges to 0 as ~ 

- ' x = 0 < ^ we 

T 

a: :he function vanishing 

riing to E. Borel [Le9ons 

-ars 1901, pp. 73-75; cf. 

-' - 1919)] a similar state- 

< *~k , k > 0, k = const. 

-1 :n this theorem of Borel 

-err has proved [Math. Z. 

en be replaced bv 
F y (l0 g*)2 

= 0, n = 0, 1, 2, ... 

0 

= V and = a. Rotate 

- angle, put d = 0; then 

ense until arg z = . 

T > a, 

-circle over the segment 

ording as * ^ 0 or oc > 0. 

In the first case the integral does not change and is absolutely smaller 

1 e*a e*a 
than — tzT =—- ; in the second case it decreases by a (residue at 

Z7i Tz 21 

1 exa 
the pole s = 0) and the new integral is absolutely < — - —_ ^ nT. 

Now let T increase to + oo. 

156. [The case A = 1 + e_1 is due to H. Weyl.] We have 

u(t) =-- for n t n + 1, 
* 71! 

thus (the interchange of summation and integration can be justified 

by various arguments) 

f M0 e *‘dt= Z f ~^re 
0 n=0 n 

7/ 

siny 

(ft 

w — 
sm —e2 ~ ,, 

-?-e-ae-'lu V — 

U = — oo / = 0 

+ o 

n = 0 

■ dt du 

= —. f f —-L et{-x-iu+‘iu) dt du 
2m J J u 

— J_ f e 
— 2™ J u(X + i 

- 1 

(A + iu - 
-— du. 

This integral is equal to the sum of the residues in the upper half-plane 

because the integral of-— along the half-circle u = re1*, 
u(X-\- iu — etu) 

0 ^ # f=k n, converges to 0 as r tends to infinity. The only pole in the 

upper half-plane is u = iz [196], the corresponding residue is . (Cf. 

215, IV 55.) 
157. [Dirichlet: J. reine angew. Math. Vol. 17, p. 35 (1837); Mehler: 

Math. Ann. Vol. 5, p. 141 (1872).] Assume — 1 < * < 1, x = cosft, 

0 < ft < n. Then [cf. G. Szego: Orthogonal Pelynomials, 3rd Ed. 1967, 

pp. 86 — 90] 

Pn(cosft) = (£ . z -dz, 
V 2m J |/i _ 2z cos ft + z2 

where the (positively oriented) path of integration encloses the two 

singular points el* and eTx*. We may contract the path to a straight line 
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segment from e1^ to e~^ (Laplace’s formula) or to the arc —# 5^ arg z ^ # 

of the unit circle (Dirichlet-Mehler formula). (In both cases we should 

proceed carefully because the integrand becomes infinite at the endpoints, 

although only of the order £.) When z goes around the singular point 

the integrand changes only its sign. Thus 

1 
(cos ft + ioc sin ft)n i sin ft da 

)/1 — 2 (cos ft + ia sin ft) cos ft + (cos ft + ia sin ft)2 
-1 

We obtain the third expression either by contracting the path of inte¬ 

gration to the arc # 5^ arg z <[ — $ of the unit circle or by changing 

the variable and replacing # by n — ft in the second expression. 

[Pn(~ cos#) = (-irPw(costf).] 

158. If z is real and negative, any two pieces of L that are symmetric 

to each other with respect to the real axis contribute conjugate complex 

values. We denote by La the negatively oriented boundary of the half¬ 

strip ffiz > oc, —n < $z < n (in particular L0 = L). If z is not in § and 

if (x > 0 the integral along each of the LJs has the same value. By letting 

oc increase to + oo we successively extend E[z) analytically over the 

entire plane. 

159. The integral along L — L0 has the same value as the integral 

along La, # Jg 0. Since e** '171 = e** tn — e~^ the contributions of the 

horizontal parts of La cancel each other. The vertical segment of La 

supplies 

This value is independent of oc, hence =1, as can be seen for oc — oo. 

160. (1) Let z be outside Jp. We have [159] 

L 

Evaluate the integral not along L but along L', an inner parallel curve 

to L at the distance (5 (boundary of the region > d, —n + d < $z < n-—<5) 

whereby 0 < d < ~ . Note that the real integral 

o 
converges. 
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-: :: ~.he arc —$ arg z g # 

l In both cases we should 

~ - r infinite at the endpoints, 

s-r iround the singular point 

t ; n i sin $ doc 

- -s 0 + (cos # + sin #)2 

•-acting the path of inte- 

unit circle or by changing 

' — the second expression. 

l-:-5 of L that are symmetric 

* Tribute conjugate complex 

tnifd boundary of the half- 

1- = L). If z is not in and 

l- :he same value. By letting 

. I r analytically over the 

ime value as the integral 

the contributions of the 

t vertical segment of La 

f can be seen for oc -> — oo. 

r 

-I an inner parallel curve 

b, -n + d<%z<n-d) 

gral 

(2) Let z be in the rectangle —1 < < 0, — n < $z < n. Accord¬ 

ing to the residue theorem we have 

Consequently 
L-i 

w-f-7 +issf(-t+thy« 
L-i 

for all z in the rectangle and then, by virtue of analytic continuation, 

in the half-strip Instead of L_1 choose the outer parallel curve at the 

distance 6, 0 < 6 < y, as path of integration. 

161. The numerator is 

= **2 HO" 
v=0 

The denominator is 

2V 

v! (n — v)! ft! 

-h 
* 17 |2netl 

v = l 

n\ 
[II 217]. 

Explanation: The principal parts of both integrals stem from an arc 

centred at z = 2n whose length is of order J/n. Along it the argument of 

dz is close to y and the argument of fn(z) is nearly 0. [43.] 

162. The number of zeros in the disk \z\ < r is: 

\z\=r 

163. The function is a polynomial of degree n — 1 in z. 
C % 

Furthermore 

pw=2=t{*,). v=i,2,...,n. 
L 

164. Apply Cauchy’s integral formula to both sides. The proposition 

is now identical with V 97. 
165. Let e > 0. Consider that region of the z-plane where all the 

inequalities I z — — > e, n = 0, H~l, -4-2, t.. are satisfied (the riddled 

plane). There exists a constant K depending on e such that in the entire 

riddled plane 

| sin q(x + iy) | > K~leQ^. 
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It is sufficient to check this in the region 

0 < e < — . The integral 
V * >«. 

i i m dj 
2ni J sin of (J — zf 

along the circle | £ j = (n -j- — converges to 0 as u —> oo because 

\F(C) (sin oC)-1 < CK along the path of integration. Compute the sum 

of the residues. [Hurwitz-Courant, pp. 118—123.] 

166. We substitute in 165 G (z + £) for F(z) and then z — for z: 

/ <?(*) > 
oo o(— l)w G | 

1 — __ V 

((n + j) ^ 

Vcos qz) 
»=_«, (e* - (» + i) 

We now combine the terms with the subscripts n and — n — 1: 

[n + \) n]2 [qz + (n + 1) n]2) 

and integrate 

gw 
COS QZ 

- Z {-iy i 
QZ - (K + 1) n + 

ez + (« + i) ;)• 

The constant of integration has to be 0 because there must be an odd 
function on both sides. 

167. The functions f(z) log z and £f[z) are regular in the domain 
described in the diagram. 

168. Since [log^ — in\ ^ n for \z\ = 1 167 implies 

}f(x)dx Irgi-. 
|0 I z 

If k is an integer we replace f[z) by zkf(z); if k is not an integer the second 
formula in 167 is used. 

169. 
Math. An 

140, p. 16 

(1921 ; :: 

Then 122 

and 

/ **/(*) • 
o 

170. L 

let I lie c 

According 

From this 

is uniform 

more 

The last ft 

171. 1 
with cente 

is dz = 

integratioi 

change of 

geometric 

By a simil 
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m [D. Hilbert, cf. H. Weyl: Diss. Gottingen 1908, p. 83; F. Wiener: 

. Ann. Vol. 68, p. 361 (1910); I. Schur: J. reine angew. Math. Vol. 

14U, p. 16 (1911); L. Fejer and F. Riesz: Math. Z. Vol. 11, pp. 305—314 

(1921).] Introduce in 168 

:? 0 as n->oo because 

mion. Compute the sum 

b.; 

Then [122] 

f | /(O | m = %\ + %\ + 4 + ••• + 4 = i 
0 

and . and then z — for z: 
% 

170. Let L denote a closed continuous curve without double points. 
' »: and — n — 1: let L he completely inside 9t, and let z be a point in the interior of L. 

According to Cauchy’s integral theorem we have 

L 

From this and from the fact that 

;)• /.(£) m 1 .1 qz + {n + J) n) * 

there must be an odd 
lim T~T~ 

n—yoo Q % 

is uniformly valid on L it follows that /(C) is continuous on L. Further¬ 

more i regular in the domain 

L 

The last function is regular inside L. 

171. [T. Carleman.] We call Fr(z) the area integral of / over the disk 

with center z, radius r and boundary circle Cr. The element of arc of Cr 

is dz = eir \dz\. If a; varies and its increment is Ax, i.e. if the area of 

integration is displaced through Ax in the direction of the #-axis, the 

change of the area per element of arc is \dz\ Ax sin r as is obvious by 

geometric considerations; i.e. 

‘ implies 

By a similar argument we obtain 

not an integer the second (£ / cos r \dz\, 
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hence by virtue of the hypothesis 

dFr(z) _ i dFr{z) 

dx i dy 
— j) f dz = 0. 

Therefore [p. 113] Fr(z) is analytic as well as r~2Fr(z) and finally [170] 

F (z) 

= ■ r-+0 7 71 

Instead of all the circles we could consider all the curves that are similar 

to a given closed curve without double points and similarly situated. 

172. To show that the difference 

f /(«*) d& - 2jr/(0) = / \j{ei9) - f{rei&)} d&, 0 ^ r < 1 [118] 
0 0 

vanishes we prove that this expression can be made arbitrarily small with 

1 — r. We take each point of discontinuity as the center of an open disk 

of radius e so that different disks have no common point. Removing these 

“small” disks from the unit disk we obtain a domain in wrhich f(z) is 

uniformly continuous. We now split the integral into two parts: The first 

part consists of the integral along the arcs inside the above mentioned 

disks, the second part consists of the integral along the remaining piece 

of the circle. The first part can be made arbitrarily small writh e [f(z) 

is bounded] and then, once e is fixed, the second part can be made 

arbitrarily small wrhen 1 — y is sufficiently small. 

173. Cf. 174. Cf. also 231, Hurwitz-Courant, p. 327, and E. Hille, 

Vol. II, p. 361. 

174. It is convenient to consider the following general situation: 

Let $ be a simply connected domain in the C-plane and assume that 

the mapping yi(£) = Z is conformal in the interior of £), sufficiently 

continuous on the boundary and that it establishes a one to one rela¬ 

tionship between *£) and the disk | Z ^ 1; let the point f = z correspond 

to Z = 0. We have f — where yr1 denotes the inverse function of 

ip. We “transplant” the function /(C), which is regular in from the £- 

plane to the Z-plane by defining 

We have 

F(0) = $F(Z) 
dZ 

2niZ * 

the i 

and 1 

i: 

Cf. i 

by ^ 

c-rre 

_v, 

TZT3M 

£ —f 

11 

17 

mrrpi 



T 

fc = v. 

" ‘ : and finally [170] 

Ife ra -ves that are similar 

li i niilarly situated. 

0^r<l [118] 

- :r arbitrarily small with 

nnter of an open disk 

::nt. Removing these 

-main in which f(z) is 

:. two parts: The first 

li- ihe above mentioned 

- if the remaining piece 

rirtly small with e [f(z) 

: : nd part can be made 

l 

r. 327, and E. Hille, 

~-ng general situation: 

-plane and assume that 

Ti::r of 3), sufficiently 

i'-irs a one to one rela- 

: point f = z correspond 

- the inverse function of 

7 pillar in T), from the f- 
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the integral computed along the positively oriented circle \Z\ = 1 [172]. 
The change of variable Z = ip(C), for which 

leads to 
W)] =/(£), y[z) = o, 

flX) = sm*®. 
' 9 2my>(Q ’ 

the integral is taken along the positively oriented boundary of 173 
and 174 are particular cases: 

Kl ^ R, v>(0 . (C - *) R y'g) dC __ 
i?2 *v(5) 

(R2 _ r2) 

i?2 — 2if(' cos (© — #) -j- r2 

2):3fC^0, y(C) 

c = R^0, 

* — c 

2 = re1 

y'(C) ^ _ 
*v(0 

2.v dr] 

X2 + _ y)2 '* +1 
C = ir\} z = x + iy. 

175. [J. L. W. V. Jensen: Acta Math. Vol. 22, pp. 359—364 (1899). 

Cf. E. Hille, Vol. II, pp. 189 — 190.] The integrand is a single valued 

function on contains the point r = 0 if e is sufficiently small 

(hypothesis) and then the value of the integral is 2ni log /(0). We denote 

by *i,*2, • * •> --’fin endpoints of the paths that connect the 

e-circles around ax> a2> ..., am> ..., bn with the unit circle \z\ = 1 

(lai I = — Wml = I A. | = ’** = \Pn I = 1). The loop starting at oc^ 
turning around along the e-circle and ending at oc^ contributes, as 

0, 

—2ni = — 2ni log ~ 

fafj Is assumed to be a simple zero). The circle I I = 1 contributes 
2 71 1 1 

/ log f{e ) i dfy' Take the imaginary part on both sides of the equation 

/ log /0 
m oc n R 

I ) * di) - 2ni Vlog— + 2 ni 2 log ~ 
fi = l aH V —1 bv 

2ni log /(0). 

The method used in 120 leads to another proof. 

176. Cf. 177. Cf. also 232 

^77- [R- and R- Nevanhnna: Acta Soc. Sci. Fennicae Vol. 50, No. 5 

(1922).j Same notation as in 174. Consider a function /(£) that is mero- 

morphic in 5), and different from 0 and oo on the boundary of and at 

the inner point z; inside $> the zeros are a]t a2, ..., am and the poles 
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kp &2, ..., bn. The “transplanted” function F(Z) = has the 

zeros Am = y>(aM) and the poles Bv = y){bv). Then [175] 

W 1 W 1 

log |^(0) [ +Jlog^-Xlogj^ = ^log|F(Z)|^, 

the integral taken along \Z\ — 1. Hence by a change of variables [1741 

the integral taken along the boundary of &. The signs on the left hand 

side are in evidence: \y)(aM) j < 1, |y>(bv) | < 1; is positive. Suppose 

that /(£) is variable and |/(*) | is fixed; then the essence of the formula 

can be roughly expressed as follows: zeros in the interior increase, 

poles in the interior decrease the moduli of the boundary values. 

176, 177 are a consequence of Jensen's general formula as 173 and 

174 follow from the generalized formula given in 174.—Also the proof 

of 120 can be suitably generalized [174]. —The condition that f[z) be 

different from 0 on the boundary can always be weakened [120], that 

f(z) be regular on the boundary can be weakened in many cases. 

178. [Cf. F. Nevanlinna: C. R. Acad. Sci. (Paris) Ser. A—B, Vol. 175, 

p. 676 (1922); T. Carleman: Ark. Mat., Astron. Fys. Vol. 17, No. 9, p. 5 

(1923).] Put a circle of radius e, s sufficiently small, around au and 

connect the e-circle with the half-circle \z\ = R, — ~ ^ arg 2 y 

so that the connecting paths do not intersect. Removal of the e-circles 

and the connecting paths reduces to a simply connected region 

its boundary is the appropriate path of integration. The loop around 

% starting and ending at zM, |*J = R, contributes 

— 
R2 

Take the real part of the expression 

/ log f[Re'6) d-9 + (/ + / ) (- -1 + X) log dy 
_ \R —r ) x ' 

2 

71 

2 / -i& id' 

+ / log fire19) (V+^F, d»-2n2 -i-^T4) = 0. 
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R2 ^ ~T R3 

Pt. Ill, Solutions 178-184 

The formula is so simple because the differential +^2) % is always 

real on the half-circle \z\ = R, fftz > 0 and the function --is 

purely imaginary. 

179. We introduce a0 = |«0 j e,y =4= 0, 2 — zv = rthus 

U[z) + iV(z) =%{z- zj (2 - z2) (z — zn) 

= \a0\jrr1e‘*-rtj* — rn(rf"; 

when z = x is real and increasing from — 00 to -[- 00 all the arguments 

increase from — n to 0, hence arctan ^ = y + <Pi + <P2 4-+ fn 

increases by nji. The quotient = tan (y (pi + 9>2 + * • * -i- (pn) 

therefore assumes the value 0 n times and becomes infinite n times. 

This method shows in addition that the zeros of U[x) and V(x) alternate. 

180. Obvious, because the argument changes continuously. 

181 ■ Consequence of the argument principle: Compare the zeros and 

poles of the factors with the zeros and poles of the product and take 

into account the points that are special (pole or zero) for both <p{z) and 

y>(2).— Directly: arg f(z) = arg 99(2) + arg y>(z). 
182. A polynomial is the product of linear factors 2 z0, where z0 

denotes a zero. According to 181 it is sufficient to prove the proposition 

for a linear function 2 — 20. The transformation w = z 20 translates 

the curve L through the vector —20. If z0 is inside L the point w = 0 is 

inside the image of L, the winding number is equal to 1. In the other 

case the winding number is equal to 0. 

183. If f(z) is regular in T with the possible exception of finitely 

many poles and if it is different from 0 on the boundary L of $ then it 

can be written as a product, f(z) = R{z) <p{z), of a rational function R(z) 

and a regular function 99(2) without zeros in %, that is a function 99(2) 

to which the restricted principle of the argument as stated in the problem 

applies. [181,182.] 
184. [A. Hurwitz: Math. Ann. Vol. 57, p. 444 (1903). Cf. also Ch. 

Sturm: j' Math. Pures Appl. Vol. 1, p. 431 (1836).] The number of zeros 

has to be ^ 2n by virtue of V114. The winding number of the curve 

described by P(z), where 2 = ret9, r > 0 and & varies from 0 to 2n, is at 

least m because P{z) has a zero of order m at the origin. Hence it inter¬ 

sects the imaginary axis at least 2m times. Consider r = 1 e, e > 0 

and suitably chosen, or r = 1 depending on whether P(z) has zeros on the 

circle |2j = 1 or not. An essentially different proof follows from I1141. 
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185. The polynomial P(z) = aQ + a\z + + **' + <zM£M has n 

zeros inside the unit circle \z\ = 1 [22]. Hence the winding number of 

the image of the unit circle under w — P{z) is equal to n. Apply 180 to 

the positive and to the negative part of the imaginary axis. 

186. [A. Ostrowski.] Imagine in the w-plane a circle of radius 

M = max \f(z) j and center w = a. This circle does not contain the point 
z on L 

w = 0. The image of L under the mapping w = a — f(z) lies inside the 

above mentioned circle, therefore its winding number is 0. 

187. For z = iy, w = eniy — e~my = 2i sin ny. For 

z = x ± x }> 0, w = -Pi(enx + e~nx). Thus, when z moves along the 

boundary in the positive direction w describes the imaginary axis from 

-j- too to — too. Let z = x + iy, x fixed, and — \ ^ y ^ £. The decom¬ 

position 

w = enx • eniy - e~nx • = (enx — e~nx) cos ny + i(enx + e,~nx) sin ny 

shows that w describes the right half of the ellipse centred at the origin 

and with semi-axes enx — e~nx and enx + e~nx as z moves on the line 

8b = *, g 3* ^ l 
Therefore, if w0 is an arbitrary point in the right half-plane %iw > 0, 

x can be chosen so large that the following situation is met: As z moves 

on the boundary of the rectangular region 

0 <$iz<x} -i < 3* < i 

the winding number of the curve described by w — w0 in the z^-plane 

is equal to 1. Cf. also 188. 

188. Let w0 denote an arbitrary point in the interior of the image C 

of the circle |^| = r. The translation given by the vector — w0 moves C 

to Cr\ i.e. C' is the image of the circle \z\=r under the mapping 

w = f(z) — wQ. According to the hypothesis its winding number must 

be +1 or —1. Since f(z) — w0 is regular the winding number has to be 

non-negative [argument principle], thus it is +1. The function f(z) — w0 

has, therefore, exactly one zero in the disk | z ] < r. In an analogous 

way we show that a point w0 outside C cannot belong to the range of 

f(z) in |z| ^ r (the corresponding winding number is 0). 

189. We map the circular sector, — ^ ar gz^j, 12r | ^ r, by 

r -—X* 
means of w = J e 2 dx into the z^-plane. The image of the two radii 

0 

can be obtained by rotating through 45°, and reflecting and rotating, 

respectively, the right half of the Cornu spiral, described by Sommerfeld, 

l.c. The ii 

[IV189 

4 
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_“ ~h anzn has n 

e the winding number of 

r qual to n. Apply 180 to 

Lgmary axis. 

iane a circle of radius 

: rs not contain the point 

-a — f[z) lies inside the 

umber is 0. 

- e_:Tiy = 2i sin ny. For 

when £ moves along the 

the imaginary axis from 

^ y h The decom- 

l.c. The image of the bounding circular arc is near the point w = J/ -T- 

[IV189]. We choose r so small that the image of the arc z = rew, 

— Y ^ ^ y , intersects the images of the radii only at the points that 

i 71 ’ 71 
correspond to z = re 4 and z = re 4. We now consider the image of 

the boundary of the above mentioned sector outside the circle \z \ = r. 

It has the winding number 0. Hence w 4= 0 when — < arg z < —. 

Different proof in V 178. 

190. The integral 

l I A*) dz 
2ni J f{z) — a 

is an integer. Therefore it cannot change if the path of integration is 

r. + i(enx + e~nx) sin ny 
deformed continuously. The curves in question can be transformed into 

each other by a continuous deformation. 

pse centred at the origin 

as z moves on the line 

191. Let f{z) ^ 0, then f(z) 0 on L. The function 

log f[z) = log R + id is regula at every point of L. Now [clear when dv 

and ds coincide with dx and dy, respectively, cf. p. 113] 

ight half-plane > 0, 

ition is met: As 2 moves 

3 log# dQ 
dv 8s * 

where — denotes the differentiation in the direction of the outer normal cv 

cl 

it’ — w0 in the z^-plane 

and in direction of the positive tangent at the point z of L. The 

derivative on the left hand side is positive [maximum principle] hence 

the derivative on the right hand side has to be positive too. The image 

interior of the image C 

he vector — w0 moves C 

= r under the mapping 

winding number must 

riding number has to be 

The function f(z) — 

< r. In an analogous 

belong to the range of 

er is 0). 

■rg |*| ^ r, by 

of L is a circle (possibly described several times in the same sense). 

192. [B. Riemann: Werke. Leipzig: B. G. Teubner 1876, pp. 106— 

107; H. M. Macdonald: Proc. Lond. Math. Soc. Vol. 29, pp. 576—577 

(1898); cf. also G. N. Watson: Proc. Lond. Math. Soc. Ser. 2, Vol. 15, 

pp. 227—242 (1916); Whittaker and Watson, p. 121.] We assume that 

f'(z) = RielQ ^ 4= 0 on L (same notation as in 191). Let the winding 

numbers of the curves described by f[z) and f(z) be denoted by W and 

W' resp. (W is the winding number of a circle which may be described 

several times in the same sense). Thus 2n(W' — W) is equal to the change 

of the argument of ^ as 2 describes the curve L. Let ds = \dz\ be the 

image of the two radii line element of L, ^ ^ ^. The first factor is always real, therefore 

reflecting and rotating, 

•scribed by Sommerfeld, 

only the change of the argument of the second factor is important. The 

argument °f yr = is equal to the negative value of the argument of 
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dz. The change in direction of dz, i.e. the change in direction of the tangent 

vector along a closed curve without double points, is 2tc\ this can be 

easily seen in the case of a polygon. Hence W' — W = —1. If f(z) 

vanishes on L we consider a level line inside but sufficiently close to L. 

The geometric formulation of the proposition can also be verified directly; 

cf. H. M. Macdonald, l.c., or MPR, Vol. 1, pp. 163—164. 

193. The function f{z) is not a constant because f(z) =j= 0; f(z) has 

exactly one zero in the interior of $ [192]. Therefore w = f[z) describes 

a (circular) curve with the winding number 1 as z describes the boundary 

of The winding number of the path described by f(z) — wQ is 1 or 0 

depending on whether |ze»0| < or \w0 \ > the constant modulus of f(z) 

on the boundary of 

194. [E. Rouche: J. de l’Ec. Pol. Vol. 39, p. 217 (1862).] We may 

assume that f[z) and cp (z) are regular on L because f(z) and f(z) -{- cp(z) 

are different from 0 and \ f(z) | > \q>(z) | sufficiently close to L. The func¬ 

tion 1 + has on L a positive real part and so, as z describes L, 

the change of its argument is equal to 0. Furthermore f(z) + y[z) = 

thus [181] the image of L under f[z) has the same winding 

number as the one under f[z) + (p{z). 

195. Special case of 194: f(z) = ze*~z, cp(z) = —1, L is the unit circle. 

Since ze}'~2 increases with z on 0 <L z 1 from 0 to eA-1 > 1 there is a 

root on this segment. 

196. If z = iy, y real, we have |A — iy | ^ X > 1 == \e~iy |. If [*| is 

sufficiently large, 8br ^ 0, we have |A — z\ > 1 \e~z |. Moreover 

A — z = 0 has the root z = X in the right half-plane. Special case of 194: 

f(z) = A — z, cp(z) = —e~z, L a sufficiently large half-circle in ^ 0 

and its closing diameter. The only root is real because the modular graph 

is symmetric with respect to the vertical plane through the real axis. 

197. [Cf. G. Julia: J. Math. Pures Appl. Ser. 8, Vol. 1, p. 63 (1918).] 

Special case of 194: on the unit circle | jgr | = 1 > \f{z) |. 

198. [Example of a general theorem of G. Julia: Ann. Sci. Ecole 

Norm. Sup. (Paris) Ser. 3, Vol. 36, pp. 104-108 (1919).] Let Rn be the 

rectangle with the four corners n ±_ J + id, n integer, d fixed, d > 0 

and write z = x + iy = ret&. Because of 1155 we have on the boundary 
of Rn as n —oo 

log |jT(«) | co (% — J) log r — yd' — x, 

so that the minimum of |jT(s) | on Rn tends to oo as n -> oo. On the other 

hand we find | sin nz [ > c on the boundary of Rn where c is independent 
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ru'-v close to L. The func- 

^ - so, as £ describes L, 

r crthermore f(z) + cp(z) = 

- :ias the same winding 

= — I, L is the unit circle. 

t to ex_1 >- 1 there is a 

> l = \e~iy\. If |z|is 

> 1 ^ \e~z\. Moreover 

:lij:e. Special case of 194: 

' r t half-circle in 9b ;> 0 

use the modular graph 

' rrough the real axis, 

r Vol. 1, p. 63 (1918).] 

> f(z)\. 

ilia: Ann. Sci. Ecole 

- 1919).] Let Rn be the 

integer, d fixed, d > 0 

r' have on the boundary 

\ — xt 

• co. On the other 

L - here c is independent 

of n and c > 0. Hence the minimum of 

N^|r(l-2)| 

converges on the boundary of R_„ to +ooas»^oo. Thus we have for 

arbitrary a and sufficiently large n 

W) 
> \a\ 

on the boundary of R_n whereas at the center of R 

194 to f{z) = ~, q,{z) = -a. 

199. Integrating by parts twice we obtain 

-ryz) = 0- Apply 

zF(z) = /(0) — /(1) cos z +11/'(1) sin z — f f"{t) sin zt dt^ 

= /(0) — /(l) cos ^ + <p(z). 

We draw circles of radius e around all the zeros of the periodic function 

/(°) — /(l) cos z, where e > 0 and 2s smaller than the distance between 

any two zeros. In the z-plane from which all the e-disks have been lifted 
q>{z) 

/(0) — /(i) cos * converges 0 as 2 oo. [To begin with prove this for 

the strip —n 5^ n.] With the exception of finitely many zeros 

zF(z) has, therefore, in any disk the same number of zeros as the function 

/(0) — /(l) cos z [194], that is 1. This zero is necessarily real in the case 

1/(1) | > |/(0) | where the disk is cut in half by the real axis; the non-real 

zeros of the functions that assume real values for real z appear in pairs 

[solution 196]. 

200. The term zna~n assumes its role as maximum term of the 

series 

1+—+ — + — • — • — 
a a a3 a a3 a5 

+ ' 

on the circle |*| = |a|2n_] and abandons it on the circle |*| = \a\2n+1 

[1117]. To study the dominance of the maximum term in between those 

two circles notice the formula 

F{z) 

_2n +1 + ~ _|-f __ . + • 

+ a2”"1 a2^ _ 

z ' z + 
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On the circle \z\= \a\2n the corresponding terms of the two subseries on 

the right hand side have the same absolute value, thus 

| F(z) - tna~n‘l 
<2(i- + -L._L+_L._L. 

\|«r M M3 M3 I 
9 1 J H2 <x 

[«l3- i ^ ’ 

Tis + 

< 
M 1 - a] 

because the only positive root of the equation z3 — 2z2 — 1 = 0 is 

smaller than 2.5 [16]. Hence F(z) has in the disk \z\ < \a\2n the same 

number of zeros as zna n , namely n. The disk |z| < | a |2n-2 contains, by 

virtue of the same proof, n — 1 zeros.—Cf. V 176. 

201. [A. Hurwitz: Math. Ann. Vol. 33, pp. 246—266 (1889).] The 

closed disk D has a as its center, lies completely in 9ft and contains no 

other zeros of f(z) than possibly a. We have \f{z) | > j fH{z) — f(z) | on the 

boundary of D when n is sufficiently large. Apply 194, fn(z) — f(z) = cp(z). 

More generally: Each subdomain of 91 on the boundary of which there 

are no zeros of f[z) contains exactly the same number of zeros of fn(z) 

as of f(z) if n is sufficiently large. Important for the applications! 

202. The limit function is regular in the unit disk | J2r | c 1 [170]. 

Assume that /(^) = f(z2) for z1 =f= z2, | ^ | < 1, \z2 \ < 1; consider the 

sequence fn(z) — n — 1,2,... which converges to f{z) — 

In a disk that has its center at z2, hes completely inside the unit circle 

and does not contain zlf fn(z) — fn[zj) would have to vanish for sufficiently 

large n [201]: contradiction. 

203. [170,201 ] 

204. In the case where a and d are integers the proposition is proved 

in the same way as proposition 185 because the zeros of the polynomial 

a0za -f + 022b+2<* H + anza+nd lie in the disk \z \ ^ 1 [23]. 

If a and d are rational z has to be replaced by a suitable multiple of z. 

If a and d are irrational approximate these two constants by rational 

numbers and apply 203. 

205. [G. Polya: Math. Z. Vol. 2, p. 354 (1918).] We have [II 21] 

1 n-1 . 

f f(t) cos zt dt = lira £ — / (—) cos — z [185, 203]. 
0 oo n \n / 71 

206. Counter-example 

/.W=2*+- 1,2,3,...; 2): |z| <£ 2; a = -1, b = +1. 

206.1. [G. Polya, Problem: Jber. deutsch. Math. Verein. Vol. 34, 

2. Abt., p. 97 (1925). Solved by R. Jungen: Jber. deutsch. Math. Verein. 
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[ath. Verein. Vol. 34, 
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Vol. 40, 2. Abt., pp. 6—7 (1931).] We may assume without loss of 

generality that fx(z), f2(z), ..., fn(z) are linearly independent and 

I Cl I2 + I C2 I2 + '' * + ! cn |2 = 1 

so that the set of coefficients cv c2, cn can be conceived as a point c 

on the surface 8 of the unit sphere in 2n dimensions. If there were no 

finite upper bound of the nature stated, there would exist an infinite 

sequence of points c',c", ... such that the linear combination correspond¬ 

ing to c(m) has not less than m zeros in %. This sequence has at least one 

limit point c(oo) on 8, yet the linear combination corresponding to c(oo) 

has only a finite number of zeros in Hence contradiction to the last 

remark of solution 201. 

206.2. [G. Polya, Problem: Jber. deutsch. Math. Verein. Vol. 34, 

2. Abt., p. 97 (1925). Solved by Nikola Obreschkoff: Jber. deutsch. 

Math. Verein. Vol. 37, 2. Abt., pp. 82 — 84 (1928).] Apply the argument 

principle to a rectangle with corners 

—a + i<*> a + a + ~a + 
where a is sufficiently large. Use V 75 and solution 180 in considering the 

horizontal sides. 

207. From z — wcp(z) = 0 follows 1 — wq)'(z) = cp[z) . Thus La¬ 

grange’s formula (L) (p. 145) for f(z) implies by differentiation with 

respect to w 

f(z) <p{z) _ y ^w~1 <*n~V» <p(*) [yi*)]*"1 

1 - wq>'{z) ~nr1 (n - 1)1 [ dxn~1 

i.e. the formula to be proved for the function f'(z) cp(z). The family of 

admissible functions f{z) is identical with the family of functions f'(z) cp(z), 

where f'(z) is the derivative of an admissible function, because (p(0) =)= 0. 

Thus 207 leads to Lagrange’s formula (L), p. 145, by integration. 

208. 

y, W 

n=0 

dnf(x) [<p{*)T 

dxn 

dnm [y(*)]n 

dxn 

/(£) [y(C)]n ft 

r t’ 

1 I fit) dl y, (wpit) \n 

t t J ’ 

integrated along a circle around the center £ = 0 and for w so small that 

|£| > \ w(p{t) along the path of integration. Then the path of integration 

encloses the same number of zeros of £ — wq){t) as of £ [194], i.e. exactly 

one. Denoting this single zero by z we further find 

1 T /(CMf _ /M 
2ni 7 £ - : wq?{£) w(p'(z) 
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209. [L. Euler: De serie Lambertiana, Opera Omnia, Ser. 1, Vol. 6. 

Leipzig and Berlin: B. G. Teubner 1921, p.354.] In (L), p. 145, set 

<p{z) = f(z) = z> 

+ + • 
, 2w2 , 3W , 

210. Introduce in (L), p. 145, <p(z) = ez, f[z) = e*z, 

»=1 

211. We write x = l+z, <p(z) = (1 + zf, f(z) = 1 + z; (L), p. 145, 

yields 

x = i+z=i + 2( pn )?c. 
«_iVn - v « 

212. [Cf. l.c. 209, p. 350.] Set * = 1 + z, <p(z) = (1 + , f(z) = (1 + z)“; 

(L), p. 145, implies 

y = *“ = (l + z)“ = 1 +f _”r 

213. We obtain for /? = 0, /? = 1 the binomial series, for ft = 2 

[-*-) =1+\Z{ n- 1 

for p = — 1 essentially the same series; for J 

00 /* + T~ A » 
= i+«^ 2t 

_ \ n — 1 / w 
n = l * ' 

Put x = 1 + , w , oc = aft \ fix f, co, # and let increase to + oo. 

The equation in 211 becomes 

214. By setting tp(z) = e2, f(z) = e*z and applying 207 we obtain 

y(n+ oc)n wn _ eM __ e*z 

n=0 nl 1 — we2 1 — z * 

where z has the same meaning as in 209. The radius of convergence is 

= lim {?L±^n_(“ + 1)1_= 

(o+? +■ 

nl 

215. We are dealing with 

M~hl 

(« + !+«) n+1 

2 J £*-** = £ f^±^e-^dcc. 
*-®y »=oy ”• 



T 

table 

a Omnia, Ser. 1, Vol. 6. 

4/ In (L), p. 145, set 

= «**, 

f =1 +z; (L), p. 145, 

i +»)',/{») = (!+*)•; 

l1 series, for p = 2 

t - i 

l / tt ’ 

r~ 

- 1 / n ’ 

i let increase to + oo. 

ring 207 we obtain 

XT 

- Z ’ 

.dius of convergence is 

rtf-1. 

•A(n + a) dfc. 
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The convergence of the series 

349 

(n + a)* 
w! 1 - * ’ 

is uniform for 0 ^ « 5S 1, and z is given by the equation ze z = e \ 

\z\ < 1 [214, 209]. Thus the integral in question becomes 

j / jx[z—A) 

TV74*- 

‘-1 

(1 — z) (z — A) A - Z 

We verify immediately that £ = A — z satisfies the equation X—£—e :=0; 

X — z is real and positive. 

216. [Regarding 216 -218, 225, 226, cf. G. Polya: Enseignement 

Math. Vol. 22, pp. 38-47 (1922).] We put <p(z) = (1 + z)fi, /(z) = (1 +z)“ 

and apply 207: 

1 — ] l\ <xwn 

1 ) n —, \ n / 
n =0 N 

(i + *r *+i 

w + z)i>-i v-ftx+r 
where 1 + z = x and x is the root of the equation 211 which is algebraic 

for rational /J. 

217. [Cf. L. Euler: Opuscula analytica, Vol. 1. Petropoli 1783, 

pp. 48-62.] We introduce <p{z) = 1+ z + z2, f{z) = 1 and apply 207: 

1 — w — l/l — '2w — 3 w2 
Z =-o-» 

2 w 

~ + X + *! .2\* 

x=0 1 — w(l + 2zj j/ 1 — 2w — 3 w2 

218. The sum of the terms in the &-th column to the left of the middle 

column is [216] 

!+( ! )»+( 2 )»*+•••+( „ )w +- 

i /1 — yi — 4w\ 

~ 1/1 - 4te \ ^T 

219. [Cf. Jacobi: Werke, Vol. 6. Berlin: G. Reimer 1891, p. 22.] 

It is sufficient to consider the cases (2) and (3). 

(2) Suppose £ #= — 1, £ 4= 1; choose some branch of (1 — £)* and of 

(1 + £)p if (x and ft are not integers. Introduce in 207 

y(z) = tt+y~1; /(z)=Mi-i-zr(i+f+*y. 

/(0) = (!-£)“ (1+1)'*. 
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On the right hand side we find (1 — |)“ (1 + £ P^’p]($) wn, whereas 
z . .. »=0 

w = — - implies 
<p{*) _ 

1 — $w — l l — 2$w + w2 

f(z) = 2*+* (1 - £)« (1 + Sf (1 - w + VI - 2£w + w2)-* x 

(1 + w + 1' 1 — *2fze> + w2)~P, 1 — 109/ (2) = J/l — 2fze; + ze;2. 

Thus 

2 ™n 
«=0 

2*+0 
—1/7—ot , ot1 ~ w +171 — + O/2) *(1 + w +l/l — 2fie» + w2). 

Y 1 — 2 §w + 

The two cases f = — 1, f = 1 can be discussed directly [solution VI 98]. 

(3) Assume f 4= 0 and put in 207 

<p(z) =z + £; f(z) = e-^(z + £)*, /(0) = e-*F. 

On the right hand side we have 6~*g* £ jL^(f) wn\ the relation w = — 

yields n=0 ^ 

*=T*Z~. f[z) 
1 — w ' 

therefore 
(l - wy 

i 4a)(f) *"= 

eu< , 1 — W(pf{z) = 1 — w, 

Jw_ 

aw- 1 

(1 - w)* 

The case f = 0 can be treated directly [solution VI 99]. 
220. 

Aesz = esz(es — 1), Ane5S = esz(es — l)n. 

(1) (l+wy=l+^-w+z-^=-^-w2+ - 

I l)-(^-« + l).xn , 
n! r * 

where w = es — 1, valid for |es — 1 < 1, 2 arbitrary. 

(2) s = es - 1 - -i (es - l)2 + -i (es - l)3- 

(3) = 1 + £sS + (sO2 + - + («*)» + 
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2 P(n^}(£) wn, whereas 
*=o 

- — 2£w -j- w2) a x 

• = ) 1 — 2£w -f- w2. 

~ —I 1 — 2-f- w2) &. 

urectly [solution VI 98]. 

m = e-*F. 

- the relation w = 
(p(z) 

- ^<p'(z) = 1 — W) 

VI 99]. 

1 - 1)\ 

rary. 

< 1. 

~^(seT + -, 

follows from 210 with 2 = -s, « = -z. According to II 205 we have 

— (Ses)n co (—1)M_1 ze~‘{2jr)_i (ses+’f. z(z — n)n 1 f„„s\n 

n! 

hence the series converges whenever g 1; at any rate the formula 

holds in a neighbourhood of s = 0. 

(4) in 212 put: x = es,fi = l, thus w = esl'2 — e s/2, tx = z, 

Replace s by — s and add the two formulas: 

esz + e~‘ 
[ S _ ±\2m 

i + z^(zLm~iW-e~2i ■ 
m — ] 

Replace s by — s, subtract and rearrange and then apply 216 to x — es, 

f} = \,w = e5/2 — e~sl2, <x = z — i: 
s \2m —2 

^2 _ --SZ 

2 2m — 1 
!=f K*+ 

m = 1 “ ' 
The sum of the last two formulas produces the desired expansion of es\ 

We remember Stirling’s formula and white sin nz as an infinite product 

to obtain 

z fz m — 1 z fz + m ~ 

2 m \ 2 m — 1 

/ s $\2m 
\ ( 2 -T) 1£E£ 

( . is \2w 
I <;in — 1 

)\e / yn VSm 2 ) 

this shows convergence for sin 
is < l; the formula is certainly correct 

in a neighbourhood of s = 0. 

221. [With respect to the formulas (2) and (3) cf. N. H. Abel: 

Oeuvres, Vol. 2, Nouvelle edition. Christiania: Grondahl & Son 1881, 

pp 72—73.] Expand in 220, F{z) = esz, both sides in ascending powers 

. . sk 
of 5 and compare the coefficients of • We have 

k \ 00 sk jt . ...\  £_ 
k\ k=Q 

222. It is sufficient to prove (1) and (2) for E(z) = (z — w)~lm, for 

other rational functions differentiate with respect to w, spht them 

up into partial fractions and apply 221. The formulas (1) and (2) hold 

for F(z) = e5Z if s is real and negative. [Solution 220. Multiplication 

with e~sw ds and integration over — oo < s ^ 0 yield (1) and (2) for 
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F(z) = (z — w)-1. It is easier to discuss the range, in which the formulas 

are valid, in the following way: Since 

An(z — w)—1 _(-1 )nn\_ 
[z — w) (z — w + 1) • • • (z — w + n) * 

we have to prove 

1 __1_y z(z — l) ... (z — n)~ 

z — w w w(w — 1) ••• [w — n — 1) * 

t _ _ y_«!_ 
[z ~w)2~ - W) [z - w + l) (z - w + n + lj ' 

We obtain (2) by replacing in (1) w and z by w — z — 1 and —1 respec¬ 

tively. Formula (1) is derived by a limit process from the identity 

——=-+_-_+_2(2 -11_+ ... 
w — z w w(w — 1) w(w — 1) (w — 2) 

, z(z — 1) [z — n +1) z z — 1 ' z — n 1 

w(w — 1) (w — 2) • • • (w — n) 1 w w — 1 w — n w — z* 

which is easily proved by complete induction. If w and z are different 

from one another and from 0, 1, 2, 3, ... the remainder is [cf. II 31 ] 

( — *)(—* + 1) —(-* + «) n~wn\_ 

n~z n\ — w( — w -f 1) ... ( — w + n) w — z 

P(-W) nw~z 
CO —-- -. 

/ (—z) w — z 

The formulas (3) and (4) cannot be valid in a non-empty region for 

non-entire rational functions: Otherwise the partial sums of order n and 

2n resp. would converge uniformly in any finite domain according to 255 

and 254, thus F[z) would be regular everywhere: contradiction. 

223. The identity in question is purely formal; it represents the 

combination of the infinitely many equations that define the quantities 

Ancifr, k = 0, ±2, 

224. Since the expansion of —does not contain a constant term 

the coefficient f1 in the expansion of \ J depends on a0, alt..., an 

only. Therefore we can restrict ourselves to the case where F(z) is a poly¬ 

nomial. Every polynomial however can be written as a linear combination 

of the special polynomials (1 — z)m, tn = 0, 1, 2, ...; besides we have for 

two sequences ak and bk and two constants c± and c2 the linear relation 

An{c1dk + c2bk) — c1Anak + c2Anbk. Consequently it is sufficient to prove 

the statement for F(z) = (1 — z)m, m = 0, 1, 2, ... In this case Ana0 is 

(1) 

(2) 
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- —in which the formulas 

• • t> — w -f- n) * 

- • ■ • [z — n) 

■ w — n — 1) ' 

- ••• [z - w -f n + 1) ’ 

— z 1 and —1 respec- 

from the identity 

* I_z — n 1 

w — n w — z9 

• If w and 2 are different 

err.ainder is [cf. II 3t ] 

— w + n) w — z 

a non-empty region for 

mial sums of order n and 

? domain according to 255 

contradiction, 

rmal; it represents the 

-.at define the quantities 

ontain a constant term 

. depends on a0,alt... t an 

^ where F(z) is a poly- 

" as a linear combination 

; besides we have for 

tnd c2 the hnear relation 

' it is sufficient to prove 

• In this case Ana0 is 

equal [223] to the coefficient of zn in the expansion of (1 — z)n • (1 — z)m 

= (1 - z)n+m, i.e. = (—l)” (” + m). Thus 

V 
zL* 

n= 0 

i_ 

(i + t)m+1 

1 

1 + t 

225. It is sufficient to prove the statement for F(z) = (1 — z)m, 

m = 0, 1, 2, ... [solution 224]. Then the quantity A2na_n is [223] equal 

to the coefficient of zn in the expansion of 

(1 - z)2n Z «*** = (1 - *)' 
k= — oo 

2m F(z) + F(z~')_ 
(1-Z) 

2 n + tn * (-DB 

i.e. = (-1)” (2" +n . [Solution 218.] 

226. We put F(z) = (1 - z)m — 1, m = 1, 2, 3,... [solution 224, 

225]. Then A2na_n+1 — A2na_n_5 is equal [223] to the coefficient of zn 

in the expansion of 

(1 - z?" (z-' - z) Z akS = (1 - zf (z-'- z) 
k = — OO 

,2n + tn 1 

F(Z) - F(z~x) 

= (1 - z)2n+m (z-1 ~ Z) 
1 + (-1) 

m-f 1 — m 

n + 

Set ft = 2, a = m, w = — t in solution 213. 

*227. 
sin nx 

-(-ir If+:+I)-r.+;.+1)} 
_ ^^M+l m (2” + m + 1 /2 n + m + 1\ 

1 V n )' 

:“'(1-t)(1+t)(1-t)(1+t)- 

=5=3 - n (1+i) (1 ■- A) ■- n (1 + • 
228. [I. Schur.] By carrying out the multiplication in the last infinite 

product in 227. 

229. Apply (L), p. 145, to 

cp(z) = l —, f(z) = sin 7iz, w = z(l — z). 

We find 

sin nz = An = \d— 
n = 1 ' L 

(1 — X) 71 COS 7ZX 

dxn 
[228]. 
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230. W e split f{z) into the real and imaginary parts 

i(re«) = U(r,&) +iV[r,&), U(r,&), V(r,&) real, an~b + ic b c 
real. The series * “ 

CO 

L (r, ft) — b0 + V Yn{bn cos nft — cn sin nft), 

CO 

V (r, ft) = c0 + £ r,l(cn cos nft -f bn sin nft) 
»=i 

are uniformly convergent for 0 ^ & <; 2n, hence 117] 

a„ = bn+ icn = — / U(r, &) e~inB d& 
7ir o 

2 31 
= ~ / 

nY 0 

231. Solution 230 implies 

n = 1, 2, 3,... 

/(*) ^0 + ^ (^n + ^n) Z" = y- / #) 1 + 

232. 1st special case: /(z) does not vanish in the disk lz\<^r. Apply 

231 to the function log/(z), which is regular in \z\ <L r. 

2nd special case: f(z) = {^JL . |c| < ,. Since log |/(,«») | = 0 [5] 

the integral on the right hand side vanishes. 

Any function that is regular in the disk |«| ^ r and different from 0 

on the circle \z | = r can be written as a product of special functions of the 

types 1 and 2. The condition that f(z) be non-zero on the boundary 

I * | — r can finally be dropped because both sides depend continuously on 

r.-Different solution with the help of 176, in the manner of solution 56 

233. Assume 0 < * < 2* and that Re*, 0 < *, is a point of 

the arc in question. We use the same notation as in 231; U(r, 0) = 0 for 

0 < i? < «; /(0) is supposed to be real. Two limit operations lead to 

KmJ(re»)=f{Rj«) = ^JU(Rt0)Li 
A 1 - 

&<***>=£/ U(R,e)cott^Qd&i 

eH&-G) 

; &-e) d®, 

d_ 
d&' ~^f(Re^) = 

1 
2ti f U(R,0)( 

(X ' 
sin --<9 

2 
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parts, 

an = + i°n> bn, cn 

^:n nd), 

, sin nd) 

117] 

* = 1,2. 3,... 

disk [ z | ^ y. Apply 

= r- 

log I f(re») | = 0 [5] 

and different from 0 

ecial functions of the 

ro on the boundary 

>end continuously on 

anner of solution 56. 

* < oc, is a point of 

231; U(r, d) = 0 for 

operations lead to 

e 

e 

i(9~G) 

7(9-G) to, 

dS 0. 

234. We retain the notation of 230: 

-L f [U(r, ■&)]- dd = bl+\z rn(4 + 4), 
271 0 » = 1 

2- f [V(r, &)? dfi = 4+\£ rn(bl + 4). 
2n o - *-l 

235. [Cf. C. Caratheodory: Rend. Circ. Mat. Palermo Vol. 32, 

pp 193—217 (1911).] In the notation of 230 we have R = 1, a0 = \ and 

an = —„ /” U(r,&)e-in6dd, \U(r,'&)d#=±, 
nr o nr o 

0 < r < 1; n = 1, 2, 3,... 

Let r converge to 1.—Example: 

/W-Tf3-' = T + * + j8+-+jf,+‘"- 

236. The function 

00 n 7?n 

i ^ _ 1_L v_L_*w 

T ^ - $a0 2 2 ^ A - ^ao 

satisfies the conditions of 235. Hence 

2 (A - $a0) 
< 

Rn 
i.e. I \an\rn^2(A-$ia0) 2 (jj)* ■ 

n=l W=1 

The upper bound is attained for the function given as example. 

237. It is sufficient to prove the first equality (to obtain the second 

we replace 2 by 1). The function anzn remains bounded for 121 ^ 1, 
Z n = — 00 

y anzn < M. We denote by A*(r) the maximum of the real part of 

n — 1, 2, 3, ; 

the entire function y anzn on the circle \z \ — r; then we have for r > 1 

[solution 236 n=0 

A*(r) ^ Wflo + i K | r”, 

furthermore A(r) ^ T*(r) — M, thus 

A(r) ^ — M + \ \ an\r • 

If an is different from 0 we conclude 

lim inf > n. 
r->oo log r — 

There are arbitrarily large n’s for which an 4= 0. 
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238. [E. Landau: Arch. Math. Phys. Ser. 3, Vol. 11, pp. 32—34, 

(1907); cf. F. Schottky: J. reine angew. Math. Vol. 117, pp. 225—253 

241 

from 1 

(1897).] It is sufficient to prove the inequality R 2 /](/); for 

if (x is a real constant the largest oscillation of the real part of f[eix z) is 

also A(f) and the inequality | | R ^ A (/) for all oc imphes 

|«i| R ^~A(f).—Let A denote the arithmetic mean of the upper and 

lower bounds of 91/(2) in the disk |z| < R. We find 91/(2) — A | ^ \A{f) 

for | jgr | < 7?. Besides [230] 

nrai= J [$tf{reid)] e~i& dft, 0 <r<R, 
o 

thus 

nr^ia^ — f [dlf(ret&) — A ] cos ft dft, nr ] 91^ | ^ ) | cos ft | dft = 2A (/). 
o 1 o 

Let r converge to R.—For R = 1 

The ii 

hand £ 

241 

we have 

In geometrical terms the theorem reads as follows: A disk is mapped 

conformally but not necessarily univalently onto a region. The width 

of this region in any direction is at least equal to times the product 

of the radius of the disk and the linear enlargement at the center of the 

disk. In the above mentioned special case the image of the disk is the 
241 

These vertical strip — ~ < 91/(2) < ~ . 

239. [E. Landau, O. Toeplitz: Arch. Math. Phys. Ser. 3, Vol. 11, 

pp. 302—307 (1907).] The least upper bound of \f(z) — /(—2) | on 

[21 < R is denoted by D*(f), then D*(f) ^ D(f). Let 0 < r < R. 

0 

implies 4nr |^| ^ £>*(/) • 2n ^ D{f) • 2n\ let r converge to R. If f(z) is 

linear, f(z) = a0 + axz, then D(f) = 2 \ a1\ R. The proposition admits 

the following geometrical interpretation: A disk is mapped conformally 

but not necessarily schlicht onto a region. The maximum distance of 

two boundary points (diameter) of this region is at least equal to the 

product of the diameter of the disk and the linear enlargement at the 

center. In the special case mentioned the image is an open disk. 
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J(/) for all oc implies 
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image of the disk is the 

Phys. Ser. 3, Vol. 11, 
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240. [Cf. E. Landau: Math. Z. Vol. 20, pp. 99—100 (1924).] We derive 

from 232 by differentiation and by setting z = 0 [117] 

= Y) + ^/ (i°gM - log i/K*)I) 
JV*) h=\\cfi / 0 

- ^ f 5»(r - i r (log M - log |/K) I) dd 
/l = 1 \ A* / 0 

m / 1 2 r \ 2 M 

w.i 

[120]. According to the condition (2) we have 31c,, < 0; thus for /n > / 

For fji 2J l we have 

3} (- ‘f - 2 log ^ 1;1 + 2 log y<0. 

The inequality x + 2 log x < 0 holds for 0 < * 5S y because the left 

(2 \2 
—J < 1, i.e. 80 < 27. 

241. The power series in question can be written in the form 

”/- 
\z. I = IzJ = = IzJ = 1, lirn supl/|&J < 1, whence 

1 n-> oo 

an = C1Z1 + C2Zl + ■" + CkZk + K, |6„| < B. 

242. The radius of convergence is assumed to be 1, thus ZqZ0 = 1. 

The series can be written as 

co + ci * + **• + ckzk 
Zanzn 

n=0 

+ 2 bnzn, 
n=0 (*o - 

Co+vJ-+ ck4 ± 0, q 4= 0, lirnsup ]/ \ bn | < 1; whence iorn>k 

Un = ( A ) 20+1 + (" 1 >*-W+2 +(” 1 ) C4-2^0 + 3 + + 

+C Y)vo+*+i +k 

/« \-n+k+l I (n -\- k — /i) (n + k — — \) ■■■ (n — n + i) u 

= {k)Z» ( fo-M(* - 1) («-* + !) ^ 

+ 
(;)• 

n -J- k +1 
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The expression in parentheses converges to 

c0 + + • • • + ckz^ 4= 0 as n^oo. 

Cf. also 1178 and II 95.3, I1197. 

243. [G. Polya: J. reine angew. Math. Vol. 151, pp. 24—25 (1921).] 

The power series P(z) £ an^ = X K3? can t>e made to satisfy the 
«=0 n = 0 

conditions of 242 by an appropriate choice of the polynomial 

i».i P(z) — CQ + CjZ + c2z* “1“ ‘ 

V\K\ =} [i 68; . Furthermore 
u«+11 

q implies 

IM — !C0 an + C\Un~ 1 + "• + Cq_2an_q+2 + + 1 | 

= ^«(|C0 I + IC1 I + *** + K-2 1+1). 

244. Let k be the number of poles. We set an = ocn + bn, 

lim sup }f\bn [ = b < -1 , V ocnzn rational with exactly k poles on the 
n-*°° Q n =o 

circle of convergence \z| = g. We choose s so small that b + e < 1-e. 

According to 243 we have 

max (|«„|. |«„_j |,.... |) > max [(F - e)" , (F -£)”~* + 1] 

for n sufficiently large; i.e. |«-| > ^ — e)’’ > |6-| for at least one n, 

n ^ n ^ n — k '-\- 1] thus a- — oc- + b~^ =j= 0. Consequently vn ^ — c, 

c independent of n. The proposition holds also in the case where the multi¬ 

plicity of the poles is not taken into account, but the proof has to be 

approached differently. 

245. [J. Konig: Math. Ann. Vol. 9, pp. 530-540 (1876).] If the 

poles are of order k we have an = Ank~1g~n (sin (noc + 5) + sn), A, oc, 6 

real, limen = 0 [solution 242]. Assume that A > 0, 0 < 2ri < oc < n — hi 
n->oo ' ' 

and that \en j < sin rj whenever n > N. If the distance between noc + d 

and the closest multiple of n is larger than rj then an has the same sign 

as sin {noc + 6). In the case where n > N and where an does not have 

the same sign as sin [noc + 6) the coefficients an_j and an+: have certainly 

the same signs as sin [(n — 1) oc + 6) and sin [{n + 1) a + d) resp.; 

an_j and an+] have different signs because —r\ < noc + b — mn < r\ 

imphes — n -\-ri<(n — l)oc-\~& — mn < —rj, 

?7<(^ + l) oc + d — mn < n — rj. Therefore the number of changes of 

sign be 

as ber 

Now u 

241 

1. If tl 

have 1 

hence 

241 

pp. in 

Vol. ? 

and o 

abs ' 

Then 

Multi] 

poles 

becan 

24 

conve 

intr^T 

By vi 

F(U) : 

i.e. F 
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is n —oo. 

ol. 151, pp. 24—25 (1921).] 
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^mall that b -f e < 1_e. 
o 

\n /I \n —fc + 1-1 

~‘) J 
b~ | for at least one n, 

Consequently vn ~ — c, 

r- the case where the multi- 

hut the proof has to be 

-540 (1876).] If the 

- \nx +d) +en),A,oc,d 

0 < 2rj < oc < n - 27; 

vstance between noc + d 

n an has the same sign 

i here an does not have 

and an+J have certainly 

et- n 1) oc + <5) resp.; 

— mn < rj 

V 

- number of changes of 

sign between an_1 an an+l is the same 

as between sin [(n — 1) oc + 6) sin (noc 4- d) sin [(n + 1) d + oc). 

Now use VII114. «, 
246. The radius of convergence of the series £ anzn is assumed to be 

n= o 
1. If the series converges at some point of the circle of convergence we 

have lim an = 0, thus [I 85] 
«->co 

lim (1 -z)(a0+a.z -{-b anzn +•••)= lim ^ = 0 
-o »-»•“> 

hence the point 2=1 cannot be a pole. 

247. [M. Fekete: C. R. Acad. Sci. (Paris) Ser. A—B, Vol. 150, 

pp. 1033—1036 (1910); G. H. Hardy: Proc. Lond. Math. Soc. Ser. 2, 

Vol. 8, pp. 277—294 (1910).] Let 

/(O = c_hx~h +c_i+]Ar*+1 +•••, h>0, c_* + 0 

and o, 0 < o < 1, be so small that this series converges uniformly and 

absolutely for \x \ o (disregard the terms with a negative exponent). 

Then we obtain, at first for 95s > h, 

f Xs ■ 1f(e X)dx= cn^ 
s + n 

Multiphcation by [/'(s)]-1 ehminates all the poles except possibly the 

poles at s = h, h — 1, ..., 1, if h ^ 1. In this case there is a pole at s = h 

because c_h 4= 0. 

248. The series % e-«1» , oc > 0, is convergent. The integral F(u) 
n=1 

converges because <P(a + it) is bounded for all values of t. Term by term 

integration [I1115] yields 

n = o 

an r ' £s(V»-«) + £-s(V* + «) 
2 ni J s2 

ds. 

By virtue of 155 we have for J m — 1 u 5^ \ m 

F(u) = am(]/ m — u) + am+i(Vm + 1 — «) + am+^m + 2 — u) + 

i.e. F(u) is a piecewise hnear function whose derivative is 

am am+l am + 2 “* 
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in the interval \ m — 1 < u < y m. If &(s) vanishes identically then 

F(u)= 0 for m > 0, thus am + am+l +«w+2 + ••• = 0 for m = 1, 2, B, ... 

249. We have <£(2ft+1)(0) = 0; 0{2k)(O) vanishes also because 

(z*-)kf(z) = annkzn and lim £ a„nkzn = £ annk> i-e- ^(s) = 0- 
' dZ n= 0 9~¥l n =0 w=0 

250. The function f(z) described in the problem has the following 

properties 

(1) f[z) is regular for ! z | < 1 because the integral converges absolutely 

when ^ 1; we have 

an = I e~^x+xMcos/I7T) sin (xM sin fin) dx, n = 0, 1, 2, .. 
6 n' 

(2) an cannot vanish for n = 0, 1, 2, ..., because 

|e-(*+*^cosfin) sjn s*n | ^ e-x [soiution 153]; 

(3) for 12r | < 1, the derivatives are 

fh\z) = j e-xMcoSfinsin (f sin fin) e~x(1~z)xn dx, n = 0,1, 2,; 
o 

this integral converges absolutely and uniformly for ^ 1; thus, if z 

tends to 1 along the real axis. 

lim f{n)(z) = f e-xMcoSMJr sin (x? sin fin) xndx = 0 [153]; 

(4) 

IflJ < F F e-<*+*'W*) x” dx + V x ^+2) f x~-dx, 
[ n1 n\J nl nl v '/ 

hence [II 222] 
log | an | 

lim sup-— ^ —cos fin < 0. 

The use of Hamburger’s function, exp ^ - 
71 Jfx — log * \ • Nx log * + 71 

) \(\Ogx)2 + 7l2 (log x)2 + 7T2 

given in solution 153, instead of e ^cos/i7r sin (xf sin fin) shows in a 
log \ an\ log \ an\ 

similar way that in 249 —=r— cannot be replaced even by (logw)2 
yn yn 

251. [G. Polya, Problem: Arch. Math. Phys. Ser. 3, Vol. 25, p. 337 

(1917). Solved by H. Priifer, K. Scholl: Arch. Math. Phys. Ser. 3, Vol. 28, 

p. 177 (1920).] We assume 

and tha 

I Cm + k “I 
n = 0, 

252. 

g(*) 

The •* 

lim sup 
n-> * 

such it 

gW(z) 

Hence 

limit : 

point 2 

253 
proceet 

254 
1924, } 

write 

where 
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’anishes identically then 

* = 0 for m — 1, 2, 3,... 

hes also because 

Z a„nk\ i.e. 0(s) = 0. 
«=o 

^blem has the following 

jral converges absolutely 

n = 0, 1, 2, 

luse 

>lution 153]; 

'x, n = 0,1,2,...; 

' for 912 g; 1; thus, if 2 

1 x" dx = 0 [153]; 

] 

0. 

^)sin( 
•t-/ V(log*)2 + jj2/’ 

sin fin) shows in a 

tven by (logw)*— 
V n 

Ser. 3, Vol. 25, p. 337 

Phys. Ser. 3, Vol. 28, 

^-«r + 

and that the series in question converges for z = a, i.e. that 

co + c\ + c2 H-t- c„ d-converges, thus 

k„+*+cm+*+i+-"+W+-l<£ for m sufficiently large, k, 

n = 0, 1, 2, 3, ... Then 

|gw(*) +g(m+1)(z) +- +g(m+"’(2)l 

= Z (cm+k +cm+1+h + -+ cm+n+h)! < e«|i-a|■ 
ft=0 

252. Write g(^) as a series: 

g(z) =a0 +2l(2-Z0) +||(z-20)2 +••• +^(2-20)n +•••. 

_ n _ 

The sequence | # x |> V\ |> • • • > V | an I* • • • *s assumed to be bounded, 
n_ 

lim supK|«„l = A‘ There exists a number N t0 any Siven e> s > °> 
n-> 00 

such that \an \ < (A + e)n whenever n > N, consequently 

g{n](z) = «„ + (2 - 20) + ^ (z - 20)2 + • • • 

< {A +8)* 
{A + e) »+l 

1! I* — *0 + 
(A +«) 

n + 2 

2! 

= [A + e)» e< 

Hence lim sup /1 g(n) (2:) | ^ A = lim sup /1 g(M) (20) | • That means the 
»-> 00 n->-oo 

limit superior in question is at no point z larger than at any other 

point z0. 
253. [J. Bendixson: Acta Math. Vol. 9, p. 1 (1887).] The proof 

proceeds along similar lines as the proof of 254. Notice 

<?.+iM - <?.(*) = r» 77 (i -7) ~ 77 (i —f\ ■ v==0 V UV ) y=0 V V } 

254. TCf. N. E. Norlund: Differenzenrechnung. Berhn: Springer 

1924, p. 210.] We consider the product Pn(z) defined in 13. Then we can 

write 

Q-2n+ 2(2) — Q-lM = (Ynz + <U P„(z), 

where yn and Sn are constants. Let a and b be the two points of conver- 
co 00 

gence. The two series £ An and 2 &n> (yna + Pn(a) = An> 
n=0 n=0 



n 
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(y«& + Pfl{p) = Bn, converge. Since the series 

I pn(z) 71 
Ai*l 1 ! Pn—l(z) -S'2 — CK2 

Pn-!<<*> n.l J-P—lW *3-”2 

converges uniformly (Pn[z) -+*~) for a = a or « = b and z an arbi- 

trary point in any finite domain of the 2-plane so do the series 

00 PJ*) Y A v 
n~0 nPn(*) ’ 

yn^) 
»r0 npn<P) 

[Knopp, p. 348]. We have however 

J.**+« '■» - ^ .1/.^ + t=i „f *. 
255. According to VI 76 the polynomials are 

c„z{z ~n)n~l 
Qn{Z) — c0 + C\z + 3 - 2, 2~ + • 

Let a be a point of convergence for the sequence Q (z) a 4= 0 
cna(a - «)”-! “ 

= an< 2j <*n convergent. For n > \zI, n > \a I the following 
n =0 0 

product can be expanded into a power series: 

A , A , ... depend on a and 2 but not on n. The series with the general 
term 

converges absolutely, therefore 

[Knopp, p. 348] converges too. 

256. Cf. 285. The theorem can be formulated more generally: The 

functions f„(z) are regular and different from 0 and the absolute value 

of each is smaller than 1 in the region fft. If at one point a of 31 we have 

^ = 0 then J™, /»(*) = 0 everywhere in 9t; the convergence is 

in fact uniform in every closed subdomain of 9L To prove this cover 9t 
with appropriately overlapping disks. 

n(n -f l) + ■ 
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ties 

* -<*» 
) X2 - »* ’ 

j or x = b and z an arbi- 

e so do the series 

P^l 

>.(*) 

4 ~ a K-o "-P„(6) ' 

re 

- w)”-1 
« ! 

:uence &(*),« 4= 0, 

- > ^ > | # | the following 

series with the general 

z_ \n_ ea~gA' 

-f 1/ w(w -f l) 

n 

ed more generally: The 

and the absolute value 

ae point a of 9ft we have 

1 9ft; the convergence is 

To prove this cover 9ft 

Pt. Ill, Solutions 255-260 

257- [A. Harnack: Math. Ann. Vol. 35, p. 23 (1890).] We denote 

by vn(x, y) the harmonic conjugate of un(x, y) and put 

gn{z) = e~un(*>y)-™n(*>y)y z = x + iy, and fjz) = g0[z) gx(z) • • • gn(z). 

Suppose that £ un(x, y) diverges at some point z0 = x0+ iy0 of 9ft. 
n=0 

Then we would find lim fn(z0) = 0, consequently [solution 256] 
n->oo 

lim fn(z) — 0 everywhere on 9ft: contradiction. 
» ->oo 

By using III 285 to a fuller extent one proves first that the conver¬ 

gence is uniform in a closed disk inside 9ft and centred at the presupposed 

point of convergence. The region 9ft is then successively covered with 

appropriately overlapping disks. 

258. Put fn(z) = un{x, y) + ivn(x, y). The imaginary part is given by 

v„{x, y) = v„(x0l y0) + J y) , y) , 
dy-——dx, 

dx dy 
x0,y0 

t 

the path of integration is any curve in 9ft that connects the arbitrarily 

chosen fixed point xQi y0 with the variable point #, y. The integral conver¬ 

ges for n 00 uniformly in any subdomain of 9ft because the sequences 
du du 

of the partial derivatives converge in any subdomain of 9ft [cf. 

230]. The sequence vn(x, y) converges therefore if and only if the sequence 

vn(x0, y0) converges, in which case it converges uniformly in any sub- 

domain of 9ft. 

259. Let a0, av a2, ... denote arbitrary numbers. The identity 

implies 

Oq{ 1 - *i) + ^oM1 — *2) + W211 — «s) + ••• 
+ dn) = a0 a^a^a.2 • • * an 

2 a0aia2 an(l l) = a0 a0aia2 * * * an > 

provided the last limit exists. Put 

1 
aQ — 1, an ■■ 

260. The power series 
l + z‘ 

2»-l ' ** = 1,2,3,... [114]. 

1 + 
n = 1 

(X((X + n)n 

n! 
W 
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has the radius of convergence e~x [214]; therefore the series in question 

converges in any connected region of the #-plane where \xe~x\ < e~x 

and there it represents an analytic function. The interval 0 ^ < 1 as 

well as the interval 1 < % < oo can be imbedded in such a region, one 

in 3ftlf the other in $ft2, but the intervals cannot both be imbedded in the 

same region. According to 210 the infinite sum is equal to eax if x is 

sufficiently small, thus it is equal to exx for x in 9^. Suppose that 

1 < * < oo and that x' is defined by xe~x = x,e~x'i 0 < x' < 1. The 

series in question stays the same, therefore its sum is eax' 4= e*x.—The 

series converges also for x = 1 [220, (3)], its sum is e* according to Abel’s 
theorem [I 86]. 

261. 

For SJU > 0 we have 

= *(* + l)-1 t(z + 1) [II 45], 

For < 0, = x we obtain 

where A is independent of n. Furthermore 

« 

lim 2’ ^ 1 = lz_1 + 2*-1 + ••• + + ••• = 1 - z) 4='o 
K-»00 p _ j v 71 

[VIII 48]. Hence in this case 

lim fn(z) = 1. 

262. [G. Polya, Problem: Arch. Math. Phys. Ser. 3, Vol. 25, p. 337 

(1917). Solved by H. Prufer: Arch. Math. Phys. Ser. 3, Vol. 28, pp. 179— 
180 (1920).] We put 



I 
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>re the series in question 

ane where | xe~x [ < e~l 

!c interval 0 ^ x < 1 as 

ed in such a region, one 

both be imbedded in the 

n is equal to exx if x is 

v in Suppose that 

x’e~x', 0 < x' < 1. The 

sum is exx’ =)= exx.—The 

is e? according to Abel’s 

1. 

/([vM)'* 
1 
f xz~x dx 

0 

when x =|= — 1, 

when x = — 1, 

••■ = £(!-*)=#<> 

Ser. 3, Vol. 25, p. 337 

>er. 3, Vol. 28, pp. 179- 

ID, 

then 
p[y(*)3 - 1 
q> [?(*)] + 1 

= v>[f(Oi, 
y{y[y(z)]} - 1 

<p{<p\sp(z)Y) + 1 
= y>{y>[f (£)]}• •••» 

v>(0 = C 1 + (a - 0 c 

and the statement becomes: the sequence 

v>(£) * v 1>(£) 1 - viv tv(£)]}>••• 

converges to 0 if |f| < 1 and converges to oo if If | > 1, converges to 1 

or diverges if |f | = 1. 
Let |C| = r, r < 1 and denote by M(r) the maximum of 

I £ ~b — ft 
|l + (<*-ftKI 

for [C| ^ r; we find M(r) < 1 [5] and monotone increasing with r [267]. 

The inequalities 

|y(C) | ^ rM(r), |y[y({)] | ^ |y(£) I Af[rM(r)] ^ r[M{r)f, 

\ip{y>mm\^ \v>lv>(0] | M{r[M(r)]>} ^ r[M(r)f, 

follow from the definition of y>{£). We reason analogously if |f | > 1. 

Assume finally |f | = 1. Then 

|v(f)| = | = |y{V'[v(C)]}l = "- = l- W the sequence in question 

converges to a limit point f0, |f0| = 1, we have 

v _j- £o + <* ~ ft 

Co — 1 + (a - )8) f0 ' 
i.e. to = l- 

263. Put ^ ~ ^ 2) —— = Pn(z). We find on the positive 
w! 

imaginary axis 

^ = iy, y > o, |b'y Pn{iy)I2 = y(i +t)(1 +b)l1 +^) 
y2\ sin iny 

in 

eny _ e-*y 

2 n 

For fixed z we have 

Urn (-1 )n Pn(z)rf =r$=Ty 

Consequently the sequence is bounded, e.g. in the half-disk 912 0, 

[ z | ^ 1. In the crescent 

| z — n\~2Ln, |z — n — 1|^« + 1 

the absolute value of P„(z) is larger than the moduli of 

P„^(z), P^2(.z),...,Pn+1{z),... [12]. On the inside border of the 
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iz p (z\ i — I V~*r(z) 
A)\-\r(z-n)r{n+l)\-\^ - n)x~n-*e~z+nnn+*e~n 

ev>M 

i(pyt<p \r pvM 

crescent, where 12 - n | = n, z = 2n cos cpe*, we find, if | * | ^ 1, that 

\~ 

= | (7=7) | i” * «V(2'B) = | (2 cos <pe -r \ e . 

where y>(z, n) remains bounded for all pairs of values z, n. [For a proof of 

Stirling’s formula to the extent as it is used here cf. e.g. Whittaker and 

Watson, pp. 248—253.] On the outside border of the crescent the same 

estimate holds for Pn+-i{z) and Pn(z) because |P,,+1(*) | = |PB(«)| on 

\z ~ n ~ 11 = w + 1- The modulus of Pn(z) increases as z moves from 

the inner to the outer border of the crescent on a ray from the origin with 

slope cp, 0 ig <p ~ , because all the factors (z — 1), (z — 2),..., (z — n) 

are increasing as can be seen by a geometric consideration. 

264. [Cf. N. E. Norlund, l.c. 254, p. 214.] On the inside border of the 
crescent cut out by two lemniscates 

2»2 cos 2<p r2 ^ 2(n + l)2 cos 2<p 

but in the exterior of the unit circle we have the relation 

r[z -j- n -f- 1) I 

r{z - n)[r(n-f l)]2 I 

/ el<p |/2 cos 2cp + l\«I<p 

>/| 1 1 * - l el(p j/2 cos 2(p — 1 / 
Mz>n) 

= I (e~* ]/2 cos 2<p -f- f ev{x‘n), 

where y>(z, n)is bounded [13, 263], 
» I 

265. The maximum of (l + j along the ray z = re*, <p fixed, 

is independent of n; put z = wf, J = qei(p. The maximum of 

jfj 1°§ 11 + f | = cos cp —|- cos 2<p + y cos Sep — • • • 

is obtained by differentiation with respect to q and some subsequent work ; 

it is equal to cos cp and is reached for q = 0 if — — < m < — If 
^ ^ 7tc ., . . . , 4 4 ' 

-j < cp < — the maximum is attained when 

-1 log (e2 + 2o cos cp + 1) + 
z p2 r 2o cos® 4- 1 

= 3}(log ‘ 
C + 1 C + l 

Qz 

= 0, 

Pul 

F = 

Thi 

exa 

in 1 

191 

and 

in cl 

(19 

In t 

pol] 

the 

1 

axes 

two 

Not 

real 

we < 
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y iriable 

find, if \z\ ^ 1, that 

■ ■--! »«»+**-» I 

: cos ***•»>, 

: values *, w. [For a proof of 

-re cf. e.g. Whittaker and 

L-t of the crescent the same 

fe25e Pn+l(z) | = \Pn(Z) | on 

* increases as z moves from 

a ray from the origin with 

k-1), (* — 2), ...t (z — n) 

nsideration. 

ra the inside border of the 

. : cos 2cp 

z :he relation 

f{z + n -f- 1) 

Hz — n)[r{n -f l)]2 

\ei(P ;:2(p + 1Y 
>2<p— 1/ 

>V(?,n) 

:he ray z = 99 fixed, 

- maximum of 

°2 Q — 77- cos 09? — • • • 

ind some subsequent work; 

= 0 if if 

O2 + Q COS (p 

'• — 2q cos <p + 1 

| C + 11 > 1 an<I has the value 

kg(C +1)= ~Vl(l 

Put _~1 — = w\ w then satisfies the equation \we~w^x | = 1; \w \ < 1, 
S "t" t 

90 = arg rzr = arg - j — and the maximum in question is 

= !“! «(!-»)• 

The discussion of the sign of the derivative can be replaced by the 

examination of the domain in 116.—The appearance of convex curves 

in 263-265 is no accident; cf. G. Polya: Math. Ann. Vol. 89, pp. 179— 

191 (1923). [Also Math. Z. Vol. 29, pp. 549—640 (1929).] 

266. 135.] 
267. [135.] 

268. The function f(z) = /(£-1) is regular in the open disk |f | < ~ 

and M(r) is the maximum of /(t_1) | on the circle | f | = -i- [266, 267". 

269. The functionis regular in the “punctured” plane \z \ > 0, 

including the point z = 00 [268]. 
270. [S. Bernstein: Communic. Soc. Math. Charkow, Ser. 2, Vol. 14 

(1914); M. Riesz: Acta Math. Vol. 40, p.337 (1916).] Apply 268 to 

V ) [79]. We*find for ; = r, r > 1, r = a + b, 

In the case £->00 the proposition becomes: the maximum modulus of a 

polynomial of degree n on the interval — 1 ^ z ^ 1 is at least equal to 

the absolute value of its highest coefficient multiplied by 2~n. 

271. We may assume that the axes of E1 and E2 coincide with the 

axes of the coordinate system and that the foci are z — ± 1. Let the 

two ellipses be the images of the circles \ z\ —rr and 2 = r2,1 < < r2, 

under the mapping z = \ + ^) > then ri = ai + r2 = a2 + b2. 

Noting 268 we proceed as in 270. 
The extreme case in which E1 degenerates into the twice covered 

real segment [—1, 1] leads to proposition 270. If the two foci coincide 

we obtain two circles and the problem is the same as 269. 
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272. We may assume without loss of generality that /(0) is real and 

/(0) > 0; put /(z) = f{qem) = U{o, ■&) + iV(o, &), then 

/(0) = ~ f [U(q, #) + iV(o, #)] d,9 

= £f U{q, f [U2(q, 0) + V-(Q, 0)]* dO. 
710 0 

The upper bound for /(0) is reached if V(q, #) = 0 for 0 ft 2n} hence 

/(*) = /(0) [230] 
273. [134 ] 
274. The function f(z) = ~-j- is regular for \z\ < 1. It is also 

regular on the unit circle, where \f(z) \ = 1 unless \p(z) =0. If z0 is a zero 

of yj(z) it is also a zero of cp{z) and with the same multiplicity [otherwise 

z = z0 were a zero or a pole of f(z) which is impossible: at other points 

of the unit circle, arbitrarily close to z0> we have \f(z) | = 1], We drop 

the common factors of (p(z) and y(z) and so obtain the regular function 

f(z) which is different from zero in the closed disk \z\ 1 and whose 

modulus is equal to 1 on the unit circle, \f{z) | = 1 for \z\ — 1, therefore 

[138] f(z) = c, | c | = 1. Since <p(0) and ^(0) are real and positive we have 

c = 1. 

275. The absolute value j f(z) | is a real continuous function in %; 

it assumes therefore its maximum in This is impossible at an inner 

point if f(z) is not a constant [134]. 
276. [Cf. E. Lindelof: Acta Soc. Sc. Fennicae, Vol. 46, No. 4, p. 6 

(1915).] A rotation through around a point f maps the domain onto 

the domain %v and the set SB onto the set 93y, v = 0, 1, 2,..., n — 1, 

$0 = SB, $>0 = The intersection 3 (largest common subdomain) of 

the domains $0, <2)1,..., contains f as an inner point. Those inner 

points of 3 that can be connected with f by a continuous curve in the 

interior of 3 form a region 3*- The boundary of 3* consists, according 

to the hypothesis and the construction, of certain points of the sets 

$80, •••» ^n-3- The absolute value of the function /(£ + (z — f) co~v) 

is A at all the boundary points of 3* [275] and ^ a at those boundary 

points of 3* "that belong to SBV. The absolute value of the function 

/ff + (* - ?)] /[£ + (*-£) «_1]-fit + (* - 0 (o~n+1] 

is therefore not larger than aAn~x at all the boundary points of 3*, 

consequently [275] also at the inner point z = J. 

277\ 

genera'.: 

oit^Dia 
that is ts 

real axr 

276 whe 

plane ai 

arg 2 = 

converge 

Repeat 

278. 
of 

of 91 sol 

P the le 

If :h 

exists a 

conditioi 

In cm 

then * : 

l/w ^ 
279. 

If n is si 

the _ 

m /(J 
propositi 

280. 
Vol. 2. I 
f(z) . . 
J— whic 

z 

281. 
Concern 

(1920), 

t = 
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that /(0) is real and 

t ' then 

- V'2(q} #)]* d&. 

= tor 0 ^ 27i, hence 

r ::r z\< 1. It is also 

y>(z) = 0. If Zq is a zero 

s-T r multiphcity [otherwise 

^.possible: at other points 

/(*)[ = 1]. We drop 
the regular function 

disk 12 [ 5^ 1 and whose 

I = 1 for |*| = 1, therefore 

- r-al and positive we have 

ttnuous function in $>; 

impossible at an inner 

VoL 46, No. 4, p. 6 

. maps the domain onto 

*. »' = 0, 1, 2, 
r ommon subdomain) of 

mner point. Those inner 

i tontinuous curve in the 

- 3* consists, according 

- “ain points of the sets 

c-::ion /(£ + (z - £) <*>-') 

g a at those boundary 

of the function 

- (r - f) 

undary points of 3*, 

277. [Cf. E. Lindelof, l.c. 276.] Assume oc < tz without loss of 

generality because we can consider /(**), with 0 suitably chosen, instead 

of f(z). Draw a circle around an arbitrary point of the ray arg z = £(<% — s) 

that is tangent to the ray arg z = oc. The chord cut by this circle from the 

real axis is always seen from the center under the same angle. Apply 

276 where $ is identified with the portion of the disk in the upper half¬ 

plane and 93 with the chord on the real axis; thus lim f(z) = 0 along 

arg z = e). By modification of the conclusion we show that the 

convergence lim f{z) = 0 is uniform in the sector 0 ^ arg z %(oc — e). 
Repeat the argument for the rays 

arg *=4 (*-«). ig(*-«)'"• 

278. Cf. E. Lindelof, l.c. 276. Let R denote the least upper bound 

of !/(*) | in 9t. There exists at least one point P in 91 or on the boundary 

of 9i so that in the intersection of 91 with a sufficiently small disk around 

P the least upper bound of ] f(z) | is equal to R. 

If there is no such point P in 91 then \f[z) | < R in 9f, but then there 

exists a boundary point P with the required property. According to 

condition (3) we have R g M, i.e. \ f{z) ] < M in 9f. 

In case there exists at least one point P, z = z0, of the described type, 

then f(z0) | = R. Along a sufficiently small circle around z0 we have 

I /(*) I ^ R, thus, according to 134, f[z) = constant. 

279. [P. Fatou: Acta Math. Vol. 30, p. 395 (1905).] Put o> = e2niln. 
If n is sufficiently large then 

f /(*) /(<*>*) ' f((on~:z) = 0, z = re'1*, 

the convergence is uniform in the unit disk, 0 ^ ^ 2n. The function 

f(z) f(mz) f(co2z) f(con~1z) vanishes identically according to 278. [This 

proposition is not an immediate consequence of 275/ 

280. [H. A. Schwarz: Gesammelte mathematische Abhandlungen, 

Vol. 2. Berlin: Springer 1890, pp. 110-111.] Apply 278 to the function 

— which is regular in the disk |z[ < 1. 

281. E. Lindelof: Acta Soc. Sc. Fennicae, Vol. 35, No. 7 (1908). 

Concerning problems 282-289 cf. P. Koebe: Math. Z. Vol. 6, p. 52 

(1920), where also ample bibliography is provided.] We denote by 

f = y>-i(w) the inverse function of w = y(£). The function 
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satisfies the conditions of 280. Hence \F{£)\< q for |£| ^ q; there is 

equality only if F(£) = * real. The inequahty states that the points 

F(£) lie in the disk |£ | ^ Q, that means that the points y>[F(£)] = /[?>(£)] 

lie in the domain 3; z = q>(£) represents an arbitrary value in r. In the 

extreme case we have y’(e’*0 = /[?>(£)]> i-e- fiz) =ip{etc‘(p 1(z)], where 

f = <^—1 (2) is the inverse function of z = <p{C), <x is real. This is the most 

general function that maps 91 univalently onto S and z = z0 onto 

w = w0 [IV 86]. 
282. [C. Caratheodory: Math. Ann. Vol. 72, p. 107 (1912).] Apply 

281 to the following special case: 91: the disk | z | < 1; @: the disk 

M < 1; za = °> wo — /(°)> 

f + “’o 
?(£) = £. v(0 1 + w0* 

The subdomain r is the disk \z\ o, r is the image of |£| ^ Q under the 

function w = y(£), thus § is also a disk. The points of § satisfy the relation 

\w — wn \ = 
ICKi-Kl2) 

11 + I 
i - K 

1 — \wn\ 

The inequahty becomes an equahty only if f(z) = y>[etlx<p 1 (2:)] — fp(e**z) — 

__ e 2 + w0 -n case11 _j_ wQet0Cz| = 1 — | t0o \z\, i.e. 
1 + wQex%z 

arg z = arg w0 — <x + n. 
283. Apply 281 to the following special case: 81: disk \z\ < R‘, 

6: half-plane $lw < A(R) ] z0 = 0, ze-0 = /(0), 81 w0 = -4(0), 

<p(Z) = RZ, y(0 
 ^0 + Oo — 2A(R)~\ £ 

'0 + K+^o-2^(^)]r^r 
p under the mapping 

l - t 

t is the disk |*| qR = r, 3 is the image of |Cl 

w = y(C). The points of § satisfy the inequality 

9to = 3H + K + W0-2A(R)} 9t S 9fe>0 - 2[9te0 - A (F)] ^ 

1 + e 1 +e 
A(R). 

7W l(*)] ’(« It is an equahty or 

284. The following relation [solution 283] holds 

H ^ K| + [2.4(F) -w0- w0] ^ = M(0)+Yzrg [4(F) - ^(0)L 

which is a weaker statement than 236. 
285. Apply 283 to log f(z): 

9ft log f(z) = log |/(z) | ^ log M(r). 
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W sn&ble 

f = :• for |f | g; there is 

states that the points 

:-ints *[*•(£)] = /[$>(£)] 

: ::rary value in r. In the 

: =y)[eiX<p~1(z)], where 

i' real. This is the most 

2 and z = z0 onto 

?. 107 (1912).] Apply 

: <1; ©: the disk 

+ of |f | <J q under the 

• f s satisfy the relation 

= - yxq> x(*)] ==y)(eiaz) — 

- -z |, i.e. 

SR: disk \z\ < R; 

=m, 

-w0^2A(R)]J^m 

= o under the mapping 

-2[8to0(*)]--«- 
1 + Q 

- yg[A(R) - A(0)], 

|J/ r . 

286. Proposition 285 implies 
2 i-l*i 

|/.WI*^|/»(0)| 1+w. 

For ^ y the exponent is 2 | ~-j"| 1,consequently \fn(z) |2<S |/„(0) |. 

287. Use 281: 31: the disk |z| < 1; @: the half-plane 31® >0; 

z0 = 0- wo = /(°) > 0, 

<p{C)=C, y(f) = wo yi ■ 

t: the disk \z \ 5^ q, §: the disk whose boundary circle intersects the real 

axis orthogonally at the points w0 and w0 J ~ ~ . The radius of this 

circle is w0 ^ ^o2 • points of § satisfy the inequahties 

wn 1 , - < to < w0 y~+ Q, 
» — u 1 — o 

2g 

>1 + g 

Wn 
1 - 0 

w \ <wt -—:- ^ \W\ ^ “- 
1+0 - 1 1 - 0 1 — Q 

|>| ^ + 

1 + e 

We have equality only in the case where f(z) = /ip[ei*(p~1{z)'] = y)(eixz), 

oc real. 

288. Special case of 281: SR: the disk \z\ < 1, ©: the vertical strip 

— 1 < to < 1, z0 = 0, w0 = 0, 

9C)=C, y(0=^logl+|; 

r is the disk | z | ^ q. The points | f | ^ q are mapped by -j—onto the disk 

that intersects the real axis orthogonally at the points -1 ~ ° and 1 ~ g. 
1 — Q 1 + Q 

This disk hes completely in the sector whose bisector is the real axis 

and whose center angle is 2 arctan - ^ = 4 arctan q. Therefore 3 lies 

completely in the strip | to | arctan q. Besides we have in § 

fl+i 
11 — C 

^ — log 
71 ^ 

1 + g 

1 - g’ 

Equality is attained only for f(z) = (z)] = y){eioiz), oc real. 

289. We may assume that R = 1, A = 2, and | fftf(z) | < 1 for 

\z\ < 1 as in 288; /(0) = w0 however is arbitrary in the strip — 1 < to < 1. 

Depending on the choice of w0 each disk \z\ fg q < 1 is mapped onto a 

domain that contains the range of f(z). We have to consider the maxi¬ 

mum width of these domains in the direction of the real and the imaginary 

axis respectively while w0 moves over the entire strip. It is obviously 
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sufficient to examine only real ^-values, — 1 < w0 < 1. In this case 

The image of |f | = q in the ^-plane is convex [318], moreover it is 

symmetric with respect to the real axis because y(f) is real for real f- 

values. Thus assumes its maximum and its minimum for real f = -j- q . 

The width in the horizontal direction is therefore 

As w0 varies between —1 and +1 the derivative with respect to w0 has 

always the same sign as —sin . The maximum is equal to — arctan q 
and it is reached for w0 = 0. 

The oscillation of cannot be larger than twice the least upper 
bound of | | given in 288; proof similar. 

290. [H. Bohr: Nyt. Tidsskr. Mat. (B) Vol. 27, pp. 73—78 (1916).] 

We choose rj so that \rj\ = 1, r)F(l) > 0. Picking out the branch of 
log rjF{z) that is real for z = 1 we set 

We have /(1) = 1, $lf(z) > 0. Apply 281 by identifying ^ with %, @ 

with the right half-plane, with 1, w0 with 1. The functions ^ = (p(£), 

w = viC) are supposed to be normed in such a way that they transform 

real values into real z- and z^-values ; in addition let (piX) = oo, ^(1) = oo 
[IV 119]. Hence 

Assume x > 1 and x — <p(q), 0 < q < 1. According to 281 the range 

of f(z) in the ze>-plane is contained in the image of the disk \C\^Q under 

the mapping w = y>(£). The image of the disk is a disk whose points are 

at a distance of at most y)(Q) from the origin; i.e. |f(x) | ^ w{q)‘ Hence 
we can define h(x) = ip[(p~l(x)]. 
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hence 

By tai 

Assum 

y < 

unit ci 

analvd 

$ + a. 

conditi 

for ary 

292. 

■ 

The ftn 

hypoihf 

1 ^ f 

293. 

3*o > «• 

Then 2! 

294. 

disk ^ * 

close to j 

applicat: 



IT
T

* 

T 

- < 1. In this case 

t 

mw0 
“ 2 

-tlC 

1 - ie - C 

318], moreover it is 
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iT-iT.um for real C = it ^ ♦ 
brr 

:f 2 g 
t7tte'0 

o 
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291. [K. Lowner.] According to 280 we have \f(z) | ^ \z\ for \z\ < 1; 

hence for positive z, 0 < z < 1, 

1 -z — 

By taking the limit ^lwe find 

Assume that arg /'(1) = oc. A sufficiently small vector with the direction 

UL < # < — , attached to z = 1, points towards the inside of the 

unit circle and is mapped by the function w = f[z), /'(1) =j= 0, onto an 

analytic curve segment through the point w = 1 with the direction 

■& +x. Since \f[z) \ < 1 for |z| < 1 the direction is restricted by the 

condition 

y<& + x<~r 

for any admissible ■&. This is possible for <x = 0 only. Cf. 144. 

292. Let Zq be fixed, |z0| <.l, /(zo) = wo> \wo\ < 1- Choose the 

constants e and rj so that e ]—= f] —=® = 1, | s j = | rj | — 1. Put 
' l—^o 1 — w0 

£ 
Z ~ Zq 
1 — ZqZ 

rj w ~_^o — iy, 
1 — WQW 

The function W = F(Z) defined with the help of w = f{z) satisfies the 

hypothesis of 291. Therefore 

1 < F'(l) = 
_/dW\ 

\ dw )w= 

/dw\ / 

,1 \ dz)z=l V 

' dz \ 

dZ)z= 
y(± - KP) j'/in 

(1 - »„)2 /We(l 
(1 - *o>2 

293. [G. Julia: Acta Math. Vol. 42, p. 349 (1920).] Let z0 be fixed, 

$z0 > 0, f(z0) = w0, > 0. Choose the constants s and 17 so that 

^j!>= b-Lw? = 1> , j = | | = L Define 
n — ? _ ' h — io> _ 

e — 1° = Z, = W. 

Then [291, 292] 
. ^(dW\ 
1 —\dz)z=i 

tdW\ 
\ dw As 

„, a / dz \ v(wo ~ “'o) t>,„\ (« - *o)2 

JW{dz)z-1” fAz» — zn) 

1 — Z*Z 1 ZnZ 1 zy^z ' . . ,, 

294. The function Hz)-----—— is regular in the 
Z— Z^ Z — ^2 z zn 

disk j z | < 1, its absolute value is smaller than M + e} e > 0, sufficiently 

close to any boundary point [5]. Apply 278.—Different proof by careful 

application of 176. 
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295. The function Hz) — • • • *n — is regular in the half- 
Zi — z z2 z zn z 

plane Sftz > 0; its absolute value is smaller than M + ey s > 0, suffi¬ 

ciently close to any boundary point [6]. Apply 278.—A different proof is 

based on 177. In fact, both methods go beyond the particular case of 

the half-plane > 0; both can be easily adapted to a generalized 

proposition which relates to 294 as 281 relates to Schwarz’s lemma 280. 

296. The function f(z) is assumed to be meromorphic with the zeros 

ava2, and the poles bvb2,...ibn (counted with proper multi¬ 

plicity) in the disk \z\ <Z 1 and \f(z) | = c > 0 for \z\ = 1. The function 

w 1 - a z 

^=1 l1 V = 1 

" z — b 
= <p{z) 

is regular and non-zero for |z| < 1, its modulus is constant, equal to c, 

for |z| = 1. Therefore q>(z) is a constant [142]. 
297. [W. Blaschke: Sber. Naturf. Ges. Lpz. Vol. 67, p. 194 (1915).] 

Let a. be real, 0 ^ tx < 1, /(«) 4= 0. 294 implies that the product 

1 *" * does not diverge to 0. Hence the series n 
V = 1 

“ (i-«2) (i + M 

“i I1 _ *^l2 
(i-KI) 

V = 1 

converges. 

298. Let be real, oc > 1, /(«) 4= 0. Proposition 295 implies that 

the product 
V— 1 

does not diverge to 0. Consequently the series 

Zv — (X 2\ 00 
4a 

Zv + a / ^ 
/ v = 1 

/Y 12 
1 + -, 

Zv 

ZV T 4<X ^-1 qn 1 

“2^7 = (T+^)5<fi ^ 

converges. 

299. [T. Carleman; cf. also P. Csillag: Mat. phys. lap. Vol. 26, 

pp. 74—80 (1917).] Let 20be an inner point of $ and put | fv{zQ) \ = sjv(z0), 

v = 1, 2, ..., n. (In the case fv(zQ) =0 we choose sv = 1.) The function 

F(z) = ej^z) + s2f2{z) +-b ejn(z) 

is regular and single-valued in $; F{z) assumes its largest absolute value 

at a boundary point % of $). Hence 

\F(z1)\^\F(z0)\=<p(z0). 

300. 
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■ regular in the half- 

— e, e > 0, suffi- 

-A different proof is 
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: v-varz’s lemma 280. 

“hie with the zeros 

with proper multi- 

= 1. The function 

:: xstant, equal to c, 

. *37, p. 194 (1915).] 

? that the product 

i — k 

. 295 imphes that 

zuently the series 

4* 

- 

00 l 
Z*T- 

:hys. lap. Vol. 26, 

-• /,(*0)I=UW- 
= 1.) The function 

w 

rgest absolute value 

300. It is more convenient to prove the statement as follows than 

to refine the proof of 299: Let z0 be an inner point of 3) and the disk 

\z — zQ \ ^ r be inside 3). Addition of the inequahties [272] 

(*) I/,(«<o) 1 = 2^/ IMzo + rei0) \d®> V = 1, 2, ...,n 

yields 

<p(zo)^^ I <p[z0+rei9)d^. 

If one of the summands (*) satisfies a strict inequality the sum satisfies 

a strict inequality; i.e. if at least one of the s is not a constant the 

maximum cannot be attained at an inner point z0. 

301. [G. Szego, Problem: Jber. deutsch. Math. Verein. Vol. 32, 

2. Abt., p. 16 (1923).] It is sufficient to prove that <p(P) attains its 

maximum on the boundary of any plane domain 3 whereby the points 

P±, P0, ..., Pn are not necessarily in the same plane. We introduce an 

orthogonal coordinate system in 3, x, y; z = x + iy. Now we have to 

show: A function of the form 

n(\z-ar\*+b?) 

where av are arbitrary complex, and bv real, constants, v = 1, 2, ..., n, 

attains its maximum on the boundary of any domain of the z-plane. 

Work out the product [299]. 

302. Let z0 be an inner point of $), where some of the functions, 

called f {z), do not vanish and other functions, called fv(z), do vanish. 

(One or the other type may be absent.) Let the radius r be so small that 

the disk } z — z01 ^ r lies completely inside 35 and does not contain any 

other zero of the functions fv(z) but z0. The functions f^z)^ are regular 

in this disk. According to 299 there exists a point zv \zL — z0 \ = r such 

that 

Ob\dously 

Z \Uh)\p^ Z \fMp“- 
n n 

z\m\K^Q=z\fAzo)\K> 
V v 

i.e. pfo) ^ (p{z0); in fact q>{z^ > (p(z0) if at least one fM(z) is not a constant 

or, in the other case, if at least one jv[z) does not vanish identically. Since 

% is closed and 9o(z) continuous there exists a point in 3) where the func¬ 

tion <p(z) assumes its maximum: it cannot be an inner point except in the 

particular case mentioned in the problem. 
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303. Since $ is closed the function \ f{z) |, which is single-valued and 

continuous, attains its maximum in 2). Proposition 134 shows that this 

cannot happen at an inner point of $ except in the case where f{z) is a 

constant. 

304. [J. Hadamard: Bull. Soc. Math. France Vol. 24, p. 186 (1896); 

O. Blumenthal: Jber. deutsch. Math. Verein. Vol. 16, p. 108 (1907); 

G. Faber: Math. Ann. Vol. 68, p. 549 (1907). Hurwitz-Courant, pp. 429— 

430; E. Hille, Vol. II, pp. 410 — 411.] The function z*f[z) is not single¬ 

valued in the annulus r± \z\ its modulus however is. Hence the 

maximum of | zocf(z) | is either ^M(rx) or r|Af(rs) [303]. Choose a so that 

(*) r*1M(r1)=r*sM(rs). 

Considering a specific point on the circle \z\ = r2 we see that 

r*2M(r2)<r*M(r1)=rlM(r3). 

We introduce the value a from (*). (The condition that f(z) be regular 

and \f(z) | single-valued on the punctured disk 0 < |*| < R is sufficient.) 

305. The maximum of z*f(z).is reached at a point of the circle \z\=r2> 

i.e. in the interior of the annulus r2 | z | r3, only if z*f(z) is a constant. 

306. Put f(z) = a,Q -f- a^z -f- a2z2 -f- ••• + + *'*• The integral 

I2(r) becomes 

4W —1*0l~ + \a\ i2 + \a2h / + “* + |#« |“ y2n + ••* = 2 fit/1 > 

n=0 

where fin 0 and at least two pn’s are non-zero [I1123]. 

307. Assume that f(z) is not a constant and that none of the zeros 

zi> z2> • • •, zn of f[z) in the disk \ z\^r coincides with z = 0 (for simplicity’s 

sake assume also /(0) = 1). Then we have [120] 

log ®(r) = n log r - log|^ | - log \z2 |-—log |zH|. 

Hence the graph of log @(r), as a function of log r, consists in a sequence 

of straight pieces with monotone increasing slopes. The change of slope 

for log r — log r0 is caused by the appearance of additional zeros on the 

circle \z\=r0. The increase in slope is equal to the number of such zeros 

counted with appropriate multiplicity. 

308. [G. H. Hardy: Proc. Lond. Math. Soc. Ser. 2, Vol. 14, p. 270 

(1915).] Suppose 0 < r± < r2 < r3 < R. Define the functions e(tf), F(z) 

by the relations 

s{&) /(V*) - I f(r2ei9) |, 0 ^ # S 2n, F(z) =±f f(zeia) e(&) d§. 
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- that f(z) be regular 

: < R is sufficient.) 
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i :: zxf(z) is a constant. 

— The integral 
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functions e($), F(z) 

= — Y f{zeia)e[&)d&. 

The function F(z) is regular in the disk \z\ ^ r3 and its absolute value 

reaches the maximum on the boundary, say, at the point r3e^s. Hence 

I(r2)=F(r2)^\F(rse'*')\^I(r3), 

that means If) is not decreasing. Determine the real number oc by the 

equation 

rll{rx)=rll(rz). 

The absolute value of the function z*F(z), which is regular in the annulus 

r1 5^ | z | 5^ r3, is single-valued. Hence [303] 

ril{r2) = r$F{r2) ^ max \zaF(z) \ ^ = rzI(rs), 

from which the convexity property of If) follows [304]. 

309. If) = 2f\f'{rei&) | r d# [308]. 
o 

310. Define e2mv,n = cov,v = 1, 2,..., n. Let 0 ^ r1 < r2 < 7?. There 

exists [302] a point ,r2^% on the circle \z\ = r2 such that 

/(Wor 
V =1 V=1 

As n -> oo this inequality becomes 

ip('i) ^ w- 
Assume 0 < < r2 < r3 < R, oc real. The functions 

<x <x a 

z* f{(D1z), zp f{co2z),.... zp f(co„z) 

are regular in the annulus r1 5^ \z\ ^ rz, however, only their moduli are 

necessarily single-valued. All the same [303, 302] we may conclude that 

the sum of the ^-th power of their absolute values assumes its maximum 

on the boundary of the annulus. Applying the same arguments as in 

304, 308 and taking the limit we establish the behaviour of Ipf) with 

regard to convexity.—Cf. II 83 for the limit cases p = 0 and p = oo. 

311. We may assume that the center of $ is at the origin. Apply 230. 

The proposition states in other words: A harmonic function that is 

regular in a closed disk and that vanishes on the bounding circle vanishes 

identically. 

312. We denote by u(x, y), z = x + iy, a harmonic function that is 

regular in the disk (x — xQ)2 + (y — y0)2 ^ r2. The value of u(x, y) at 

the center is 

l 2n 
u(xo> y0) =2^ / u(xo +r cos yo +7 s*n #) ^ [118], 



578 Functions of One Complex Variable 

consequently 

\u{x0, y0) I ^ F. j |u(xQ + f cos &,y0+r sin ■&) | d&. 
0 

The inequality becomes an equality if 

2tc 

— f [|«(»o + 'c°s#, y0 +r Sintf) I ± u{x0 + r cos#,y0 + r sin#)] «*# = 0, 
2jr o 

where the sign depends on whether u(xg, y0) ^0 or u(x0, y0) ^ 0. The 

integrand must vanish identically, i.e. u{x, y) cannot change sign on the 

given circle [u{x, y) possibly becomes 0 at some points). 

313. Suppose that the point x0, y0 at which the maximum is reached 

is an interior point of 2!. Choose r so small that the disk with radius t 

and center x0, y0 lies in the interior of 2. The equation 

V f [u(x0, y0) - u(xo + r cos #, y0 + r sin #)] d& = 0 [solution 312] 

implies 

u(x0, y0) — u(x0 + r cos y0+ r sin #) = 0, 0 ^ # < 2tc, 

i.e. [311] u(x, y) = const. 

314. Follows from 313. 

315. log\z - zx | + log |* - *21 +-b log I* - *w | = SR log P(z), 

which is the potential of the system of forces in question, is a harmonic 

function and as such it does not have a maximum nor a minimum at a 

regular point. Stability would require a minimum of potential energy. 

316. Remove the finitely many exceptional points from 3) by enclos¬ 

ing them in circles so small that these disks have no points in common 

and do not contain any point at which the function reaches its maximum 

in $>. Apply 313 to the remaining domain. 

317. According to 188 the orientation of the image of the circle 

|*| = R is preserved. Therefore 109 can be applied. The harmonic func¬ 

tion 

/M 

which is regular in the disk \z\^R[f{z) being schlicht has the only and 

simple zero z = 0] is positive for \z\ = R. Hence it is positive on any 

smaller concentric circle |^| = r < R [313]. The images of the circles 

1*1 = r are star-shaped with respect to the origin according to 109. 
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- r sin ft) | dft. 

ft.y0 + rsin ft)]dft = 0, 

or u(x0, y0) fg 0. The 

not change sign on the 

oints). 

.r maximum is reached 

the disk with radius r 

nation 

} = 0 [solution 312] 

. 0^ft^2 n, 

— zn [ = St log P(z), 

iuestion, is a harmonic 

n nor a minimum at a 

of potential energy, 

ints from by enclos- 

no points in common 

i reaches its maximum 

e image of the circle 

i. The harmonic func- 

Jicht has the only and 

it is positive on any 

images of the circles 

according to 109. 

318. According to 188 the orientation of the image of the circle 

U| R is preserved. Thus we can apply 108. The harmonic function 

which is regular on the disk \z\^ R {f\z) 4= 0 because f(z) is schlicht] 

is positive for \z\ = R. Hence it is positive on any smaller concentric 

circle |*| = Y < According to 108 the images of the circles \z\=r 

are convex. The statement is now proved in the case where the inner 

circle is concentric to the disk \z\<L R. 
Let the inner circle he anywhere inside the disk \z\ < R- We build 

Up w — f(z)} the given function, by combining two functions: a linear 

mapping f = l{z) of the disk \z\^R onto itself whereby the given inner 

circle is transformed into one with center at the origin f = 0 [77] and a 

second one ze> = g(f) = /(H(f)); in fact, w = f(z) = g{l(z)). By considering 

w — g(g) we reduce the problem to the previously discussed special case. 

319. Proof analogous to the proof of 299. 

320. [Cf. A. Walther: Math. Z. Vol. 11, p. 158 (1921).] Let 

z = x _|_ iyf be the harmonic function in question. The function 

u{x} y) -j_ oc log r, <x arbitrary real constant, is regular in the annu- 

kis rx<L\z\<>rz. Its maximum there is either A(rx) + a log or 

A (r3) + a log r3. Define a so that 

A (rj + a log r2= A (r3) + a log r3 [313, 304]. 

321. [Cf. A. Walther, Lc. 320.] (1) The three circle theorem proved 

in 320 holds also for harmonic functions that have in the disk | z | < R 

finitely or infinitely many isolated singularities provided their accumu¬ 

lation points are not interior points of the disk and that, in addition, 

the function tends to — oo as z approaches a singular point [316]. 

Apply this generalized three circle theorem to the function 

8tlog/M = log |/(*)!• 

(2) Let u(x, y), z = x + iy, be a regular harmonic function in the 

disk \z\ < R and v(x,y) denote the conjugate harmonic. Now apply 

304 to the function f(z) = eu^x>y)+iv^x>y); | f{z) \ = eu{x,y\ hence log M(r) =A[r). 

322. [Concerning the method used and the problems 322—340 cf. 

in the first place E. Phragmen and E. Lindelof: Acta Math. Vol. 31, 

p. 386 (1908); then P. Persson: These (Uppsala 1908) and E. Lindelof: 

Rend. Circ. Mat. Palermo Vol. 25, p. 228 (1908); also E. Hille, Vol. II, 

pp. 393-397.] 



380 Functions of One Complex Variable 

323. The arcs may be replaced by any continuous curves that cross 

the sector connecting the two rays. Their minimal distance from the 

origin must increase beyond all bounds. 

324. All the estimates of solution 322 remain valid in the domain 

bounded by Fx and jT2. 

325. Cf. solution p. 168. 

326. The function emzf(z) satisfies the conditions (1), (2) and the modi¬ 

fied condition (3) of 325 [final remark in the proof] however large co. 

Consequently 

| f(z) | ^ for ^ 0. 

Let co increase to infinity. 

327. Put arctan —y— = w. Then 
x + 1 r 

z log(z + 1) = (r cos # + it sin d) [J log (r2 + 2r cos # + 1) + iyj], 

hence for — ^ # ig —, r > 1, 

z log (1 + z)] = np sin # — \r log (r2 + 2r cos & + 1) • cos # 

^ r~ — r log r cos & . 
A A 

Let 0 < B < %. The function 
jZ 

~ f(z) e-W«w(*+D 

satisfies the conditions (1), (2) and (3) of 326 with A = 0.—Instead of 

quoting 326, 325 we could apply the ideas developed in those solutions 
to the function 

f{z) exp (coz — fiz log (z + 1) — ee~iXn,4e z*). 

Then we set e = 0 and finally co = + co. 

328. [F. Carlson: Math. Z. Vol. 11, p. 14 (1921); These, Uppsala 

1914.] First solution. 327 can be applied to . The existence of 
sin 7iz 

an inequality 

(with A' >> A) is best established first outside and then inside the circles 

— n \ = n = 0, 1, 2, ... [solution 165]. 
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rorves that cross 

Lstance from the 

Second solution: 178 and the fact that the terms on the left hand 

side are positive imply 

in the domain 
i (j - &S i f - i) [2 log c + 2(» - ,) ,] i,+C. 

fX-l 1 

i and the modi- 

however large co. 

where C and C denote constants. The left hand side is oo log n, the right 

hand side oo ^ - log n: contradiction. This method can be generalized 
71 

[F. and R. Nevanlinna, l.c. 177]. 

329. Assume s > 0; the function 99(2) =-is regular in the half- 

plane 91* ^ 0. We have [/W]* 

| cp{z) | <J. 1 for = 0 and | 99(2) | 1 for | z | = r, 

H-l) +**»], if r is so large that co(r) > hence [99(2) | 1 in the entire half-plane 

312 ^ 0; and finally, as e —>■ 0, \ez\ 5^ 1: contradiction. (Borderline case 

> — 1) • COS $ 

of 290: The region % becomes a halfplane.) 
.*+i5 

330. Assume s> 0, h = ee 2 , 0 < cr < <5, o(fi — oc) < n. Apply 

the reasoning of 322 to the function 

F(z) = f(z) exp (— (hz)11-* ). 

= 0.—Instead of 

. those solutions 

There results the conclusion: |F(2)|^1 in the entire sector. Let e 

converge to 0.—The proposition could also be reduced to theorem 322 

with the help of a function that maps the sector a, arg 2 ^ onto the 

sector —y ^ arg z fg y, y = ~ , and leaves 2 = 0 and 2 = 00 

unchanged. 

331. In the special case oc = — ^~ the statement is weaker 

than 325. The proof involves the function 

These, Uppsala 

'he existence of 

( .j6~r(x n 71 \ 

f(z) exp ( — rje 2 2^“* ) . 

nside the circles 

Start by proving with the help of 330 that the maximum of the modulus 

of f(z) on the bisector is not larger than 1 [325]. 

332. Assume \g(—r) | 5^C: apply 331 to the functionin the 

sector —7i # ^7i; this leads to |g(2) | ^ C in the entire plane, thus 

g(2) is a constant. 
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We can also examine 

g(*)« 
-rjiz—e( — iz)± 

This function is analytic in the open sector 0 < # < n and continuous 

in, the closed sector 0 ^ # fg n. Cf. 325.—Also 325 can be applied to 

C-ig(*2)._The function 
sin 11z 

illustrates how strong the theorem is. 

333. Let a < b < 1. The absolute value of the test function ee 

)[x+\y) ebxcosby 

cos b — ■< A 
thus on the boundary of Sfr it is > e “ > 1. Let l >-log- 

b — a 7t 
€ cos b — 

Then we find on the boundary of the rectangle 0 ^ x ^ l, — — ^ y ^ — 
2 2 

the inequality 

I f{z) e-“bz I < 1. 

334. Assume the contrary: consider the function 

in the rectangle 

<p(z) = 

0^x^xv -jgygy, 

s > 0, z = x + iy, 

where x1 is chosen so that €co(x1) > 1. On the boundary of this rectangle 

we have 

I<p(*y) | ^ ^ <p (x ± i f)| ^ l, 

! tpfa + iy) | ^ g^tcosy-^K)] < 1; 

hence in the interior \cp{z) | ^ e. As s 0 we obtain 

thus e.g. ee ^ e: contradiction. The role of the function e** is explained 

by 290 and 187. 

335. It is sufficient to consider the case hinted at in the problem 

[linear transformation]. Take s > 0; the function 

is rq 

is sii 

is ck 

boui 
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is regular in the intersection of 9i and the disk \z\<Lr and its modulus 

is single-valued in 9tr [303]. The maximum of \f(z) | on the circle \z\=r 

is denoted by M(r). Taking into account the condition on f(z) on the 

boundary of 91 [278] we find that in 

cp(z) g max [M, M(r)]. 

Hence for e -> 0 

|/(*) | ^ max [M, M{r)]. 

If, in particular, / is also admissible [see hint] and / < r, then we have 

M(r') < max [M, M(r)]. 

On the other hand [268[ 

M(r) 

Hence the alternative: Either M{r) ^ M, thus M(r) = M(r'), f(z) = const. 

[268] or M(r) < M, | f(z) | ^ M, even | f(z) | < M [278]. 
336. We assume that n boundary sections of $ lie on the real axis. 

From a variable point z in the upper half-plane they are seen under the 

angles cov co2,..., con. Determine a regular and analytic function cpv(z) 

in the half-plane $z > 0 so that 7i$i(pv(z) = ojv [57] and put 

,, . (A \<Pi(s)+<P*(*)+-+9»(*) 
0[z)=a\-) 

The function f(z) 0(z)~1 is regular and bounded in the interior, g 1 on 

the boundary, of 3) with the possible exception of 2n boundary points 

[335]. 
337. The function f(e11) is single-valued, regular and bounded in the 

half-plane 9lu 0. We have | f(eu) \ ^ 1 at all the boundary points of this 

half-plane except at the boundary point u = oo. [335.] 
338. If z = oo were not a boundary point we would have [135 

suffices] necessarily | g(z) | ^ k in : contradiction. HeAce z = oo is a 

boundary point of 9T If g(z) were bounded in 9t we could use 335 (only 

excluded point z = oo) which would lead to |g(^) ] ^ k in 9h 

339. There exists, according to the hypothesis, a constant M, M > 0, 

such that | f[z) | < M in the region bounded by and jT2. Choose 

R > 1 and so large that | f(z) | < e on r* and jT2 outside the circle 121 = R. 

Take the branch of log z that is real for positive z. This branch is regular 

and single-valued in 9t, where ] log 21 < log |*| + n provided that 

121 ^ R. The inequality 

\M (log R + n) + e (log z + n)| ^ M (log R + n) + s (log \z \ + n) 
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holds and for |^| ^ R both addends on the right hand side are positive. 

Thus we obtain for I z I = R, z in 9ft, 

log; 

M (log R + n) + f (log z 4- n) 

If |*| ^ R, z on rx or on F2 we find 

/w < 
log n 

M(log R 4- 7i) 
M = l. 

lo gz /m| <• log l-g| + gg _ , 
' ^ e(log \z\ + n) 8 M(log R -|- 7i) + f (log z + tv) 

Hence we have, by virtue of 335, at each point z in 

circle \z\ = R 

[ ® (log Z + 7i) + JVf(log R 4- Jr) 

' but outside the 

|/MI< log* 

The right hand side becomes smaller than 2e when [ z | gets sufficiently 
large. 

340. Assume, if possible, a =j= b and consider two disks Dx and D2 

in the ze>-plane, with no points in common, centered at a and b respec¬ 

tively. Outside the two disks the expression j (w — - 
has a positive minimum = e. Proposition 339 applied to the function 

{f(z) 2 ) 2—) ™P^es that the absolute value of this function 

is smaller than e in the region 9ft bounded by rx and r2 whenever 

M > R = ^(e): we consider only such points z. Find two points, zx 

on r± and z2 on F2> such that w± = f(z±) is in Dx and w2 = /(z2) is in D2 

and join the two points by a curve in 9ft. The image in the w-plane of 

this curve leads from to D2. Therefore there exists on it a point w = f(z) 

for which (w ^(~2~) — e: contradiction. 
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